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ABSTRACT

We develop a field-theoretical version of kinetic theory based on the pioneering work
in [39, 40, 22]. A canonical generating functional for correlators of macroscopic ob-
servables is derived using the language of path integrals with the microscopic phase-
space coordinates as the fundamental variables determining the dynamics. The find-
ings of the original works are generalised to systems with correlated initial conditions.
An exact initial phase-space distribution for a homogeneous and isotropic Gaussian
random field is calculated, translated into a diagram language and factorised into
connected contributions. The grand canonical generating functional is derived for
systems obeying statistical homogeneity and isotropy. Using this, a perturbation the-
ory in terms of coupled integral equations is developed and shown to suffer from
inconsistencies due to the presence of initial correlations. We discover hints at a pos-
sible cure by using the first order solution for two-point cumulants to reorganise one-
loop diagrams. Applied to cosmological structure formation the first order solution
for the density power spectrum is found to be the familiar linear growth solution. We
argue why our approach should have superior performance in non-linear structure
formation compared with the standard approach.

ZUSAMMENFASSUNG

Wir entwickeln eine feldtheoretische Version der kinetischen Gastheorie basierend
auf den grundlegenden Arbeiten [39, 40, 22]. Ein kanonisches Erzeugendenfunktional
tiir die Korrelatoren makroskopischer Observablen wird hergeleitet, wobei die Pfad-
integralmethode benutzt wird und die mikroskopischen Phasenraum-Koordinaten
als fundamentale Variablen die Dynamik beschreiben. Die Ergebnisse der Originalar-
beiten werden auf Systeme mit korrelierten Anfangsbedingungen verallgemeinert.
Eine exakte anfiangliche Phasenraumverteilung fiir ein statistisch homogenes and
isotropes Gaufisches Zufallsfeld wird berechnet, in eine Diagramsprache {tibersetzt
und in verbundene Anteile faktorisiert. Wir geben eine Herleitung des grofskanonis-
che Erzeugendenfunktional fiir statistisch homogene und isotrope Systeme an. Da-
rauf aufbauend wird eine Storungstheorie in Form gekoppelter Integralgleichun-
gen entwickelt und es wird gezeigt, dass diese aufgrund der Anwesenheit von An-
fangskorrelationen Inkonsistenzen aufweist. Wir entdecken Hinweise auf eine mogli-
che Umgehung des Problems indem wir die Losung erster Ordnung fiir die Zwei-
punkt-Kumulanten benutzen um Ein-Schleifen-Diagramme umzusortieren. In der
Anwendung auf kosmologische Strukturbildung finden wir das wohlbekannte line-
are Wachstum des Dichte-Leistungsspektrums als Losung erster Ordnung unserer
Feldtheorie. Wir argumentieren warum unser Ansatz bei nicht-linearer Strukturbil-
dung der Standardmethode tiberlegen sein sollte.






Sic parvis magna.

— Motto of Sir Francis Drake
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INTRODUCTION

1.1 MOTIVATION AND OUTLINE

The original motivation for this thesis was to find a new approach for the calculation
of the time evolution of the statistics of the large scale structure (LSS) in the universe,
with the density power spectrum being the main object of interest. Recent observa-
tions have provided more and more evidence in favour of the standard ACDM-model
of cosmology. Especially observations of the cosmic microwave background (CMB),
i.e. the remnant radiation released during the epoch of matter-radiation decoupling,
have shown that our picture of a nearly flat and statistically homogeneous and
isotropic universe, with structures having evolved from small perturbations of the
matter density through gravitational interaction in a ‘bottom-up’ process, seems to
fit well with reality. Compared to its predecessor WMAP [12], the latest full sky sur-
vey performed by the Planck satellite [50] has lead to sizable improvements in the
precision with which the statistics of temperature fluctuations in the CMB can be de-
termined. While at the present time these observations when considered on their own
are our most powerful probe for constraining the various parameters of cosmological
models, one should always strive to combine information from the observation of
different physical effects. Two prominent candidates for this purpose require a good
theoretical understanding of structure formation.

¢ The baryonic acoustic osciallations (BAO) are remnants of waves in the strongly
coupled baryon-photon fluid which filled the universe in its radiation domi-
nated epoch. Today, they are observed as a periodic fluctuation in the density
of baryonic matter in the universe. More precisely, they lead to a ‘bump” in the
two-point correlation function ¢ of galaxies at around 100 Mpc/h when calcu-
lated from large redshift surveys like the Sloan Digital Sky Survey [24]. If one
has a clear theoretical understanding how this feature of the correlation func-
tion evolves during the history of the universe it can be used as a ‘standard
ruler” for measuring distances at different cosmological epochs and thus probe
the expansion history of the universe. One especially hopes to constrain dif-
ferent models of dark energy, which governs the accelerated expansion of the
universe in the present cosmological epoch.

¢ Weak gravitational lensing (cf. [5, 3] for reviews of the topic) describes how the
signal of light emitted by distant background galaxies is distorted due to the
deflection of this light by the LSS between the source and the observer. Since the
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matter power spectrum with its time evolution is an input parameter for the
theoretical model of weak lensing, observations of this effect allow us to put
constraints on the model for the power spectrum. Since this model itself will
depend on the cosmological parameters, weak lensing provides yet another way
to constrain them.

Using the CMB as a probe for constraining cosmological parameters has the advantage
that in order to describe the relevant physics it is sufficient to use theoretical models
that are linear in the dynamical variables. In the case of LSS formation this is no
longer the case. While linear approximations have been shown to work very well
on large enough scales, the dynamics on smaller scales are intrinsically highly non-
linear. With many upcoming observations of LSS like Euclid [34] designed to probe
scales deeply in the non-linear regime, a more complete theoretical understanding of
structure formation is sorely needed when employing effects like the BAO or weak
lensing to constrain parameters.

The principal question of structure formation can be summarized as: How does a
distribution of mass evolve under the influence of its own gravity in an expanding spacetime?
Despite the relative simplicity of this question, developing an analytical model that is
able to describe this process on a large range of scales has persisted as a very difficult
problem over the years. The Standard Perturbation Theory (SPT) that was developed
is based upon using the hydrodynamical equations of an ideal and pressureless fluid
which is solved perturbatively around the cosmological background. A very extensive
and complete review of the developments up to the turn of the millenium can be
found in Bernardeau et al. [13].

Until today the most accurate theoretical descriptions of structure formation have
been obtained by running numerical N-body simulations. While projects like the
Millenium-II simulation (cf. Boylan-Kolchin et al. [16]) and Illustris (cf. Vogelsberger
et al. [56]) have reproduced the statistics of the observed LsS to a remarkable degree,
they are also very expensive both in terms of time and money. For applications like
parameter studies more direct analytical tools would be preferable.

The interest in cosmological structure formation was renewed after the publica-
tion of two pioneering papers by Crocce and Scoccimarro [20, 21], where the authors
applied methods that originated in Quantum Field Theory (QFT), like Feynman di-
agrams and their resummation, to the Standard Perturbation Theory that had been
developed so far. This sparked a plethora of efforts to transfer other such methods
like renormalisation group equations [37, 47] or effective, coarse-grained field the-
ories [48]. These allowed to probe the mildly non-linear scales relevant to the BAO
feature but not much further beyond. In addition, they are plagued by the necessity
of approximations to the underlying equations of motion like the single-stream ap-
proximation (SSA) which a priori limit their validity to length scales above a certain
threshold.

The starting point from which this thesis was begun is to combine the description
of the dynamics in terms of particles instead of macroscopic observables, which has
proven succesful in numeric simulations, with the powerful analytical tools devel-
oped in QFT for studying field theories, i.e. in terms of what had been achieved in
structure formation we tried to combine ‘the best of both worlds’. The theoretical
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framework for such an approach had already been developed in a series of papers
by Das and Mazenko [22], Mazenko [40, 39]. However, the authors main interest
lay in the application of this field theory to the fluctuations of systems in thermal
equilibrium and transitions between ergodic and non-ergodic behaviour explored in
[42, 23, 41, 52].

Structure formation on the other hand is a process far from thermal equilibrium
and starts out from an initially correlated random density field. The main task was
thus to find a way how one can implement such initial conditions for a particle based
theory and to investigate how this potentially modifies the perturbation equations
for macroscopic observables one derives from the microscopic field theory. These
problems are adressed in chapters 3 and 4 respectively, which make up the bulk
of part i of this thesis. Over the course of working with the theory it became clear
that it should not only remove some of the more problematic approximations of SPT,
but that it is actually a reformulation of kinetic theory that could also potentially
prove to be very powerful in other fields of statistical physics. An example is that one
might be able to derive the equations of hydrodynamics from first principles, with the
need for heuristic arguments significantly reduced. We therefore provide a thorough
introduction into this kind of field theory in chapter 2, where we explain its working
principles, the connection to the standard formulations of both equilibrium statistical
mechanics as well as non-equilibrium kinetic theory and give reasons why we believe
that it posseses some distinct advantages. We also tried to keep the developments
throughout part i as general and with as little specialisation to cosmological structure
formation as possible.

After that, part ii of this thesis then deals with exactly this specific application of
the field theory to the problem of LSS formation. In chapter 6 we briefly explain the
physical scenario one is working in by introducing the bare necessities of cosmology
and SPT, as well as to argue which of its principal problems are avoided by the par-
ticle picture of our approach. Chapter 7 then demonstrates that the implementation
of the exact particle dynamics is a rather simple exercise when compared to SPT. In
chapter 8 we finally show that the well-known linear growth solution of SPT is exactly
reproduced by our field theory with the added benefit of a small-scale cutoff origi-
nating in the exact inclusion of initial velocity dispersion. Due to time constraints, we
are sadly not able to present calculations of the matter power spectrum beyond the
tirst order of our perturbation expansion. By making a very general comparison be-
tween the perturbation expansion of our theory and that of SPT we can however argue
that additional contributions will necessarily show up in our theory even at the one-
loop order. The investigation of such one-loop effects and their possible resummation
present themselves as the logical next step for the author’s future work.

At the time of the completion of this thesis, one paper (Fabis et al. [25]) has been
submitted for publication which is entirely derived from work found herein. A num-
ber of papers (Bartelmann et al. [6, 7, 8], Kozlikin et al. [32], Viermann et al. [55])
have been submitted by other members of our group, which are the result of our co-
operative work on this theory and thus contain ideas also found in this thesis. While
none of them have been accepted for publication so far, references to the respective
electronic preprints can be found in the bibliography.
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1.2 NOTATION AND CONVENTIONS

As is usual in field theory we will introduce some notation of our own specifically
tailored towards shortening the often extensive length of many expressions we will
encounter as well as reducing the amounts of indices.

1.2.1  Phase-space notation

We will often deal with properties and quantities that can be attached to the individ-
ual particles of an N-particle ensemble moving through a 2dN-dimensional phase-
space, where d is the dimension of real space. In part i of this thesis 4 is kept arbitrary
and in part ii we use d = 3. The most basic quantities are the actual phase-space co-
ordinates of the particles, the position §;(t) and the canonical momentum p;(t). We
bundle these into the single vector

Xi(t) = 7i(t) > . 1.1
G (ﬁj(f) -y

Unless explicitly stated otherwise, lower-case latin indices like 7, j, k and so on desig-
nate quantities as belonging to individual particles. In order to write down expres-

sions that depend on properties of all particles without sums over their labels we
introduce the following tensorial notation

x(t) = Z Xi(t)y®e =x(t)®¢;, (1.2)

where the second equality introduces the common Einstein summation convention,
i.e. repeated indices or labels are summed over their domain space. We also intro-
duced

(&) = dij, (1.3)

which is a N-dimensional column vector, whose j-th entry is unity and all others
are zero. Whenever scalar or vectorial quantities that are properties of individual
particles appear in bold script they are to be understood in the sense of (1.2). We may
for example write for positions or momenta alone

q(t) =) @e,  p(t) =pil) ®¢ . (1.4)
The tensor product has the following general property
(A®B)o(C®D)=(AoC)®(BoD), (1.5)

where o defines some bilinear operation that is well-defined for all quantities in-
volved. In the case of the scalar product we may then define

-

(a,b) = (7 ®¢&) (bj®¢&) = 4@ b)) (& &)= (- b)) = (a-b) . (1.6)
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We will also encounter the phase-space gradient

w:(v"f‘) - V=V;®§, (1.7)
ij
where

Vﬂ]f(‘?) =V f(q)‘q:% (1.8)

with V; the usual d-dimensional gradient and the same of course holds for V..
Integration over all of phase-space is written in the shorthand notation

o (100) (1)) 1)

with obvious restrictions to any kind of subspace. For the rest of this thesis we use
the latter vector notation for any integral measures. Another important quantity is
the symplectic matrix

jz( 0 Id) - J=J®IN, (1.10)
~7, 0,

where Zy is the N x N-dimensional unity matrix and 0; the N x N-dimensional
zero matrix. Whenever matrix valued objects in bold script appear they are to be
understood in the above sense. We will also encounter source fields J and K which
are defined as

NG ) . _ ( Ry (1) ) .
t) = . €, K(t) = . e 1.11
J(t) (]p]-(t) ®€; (t) Qe (1.11)

with obvious reduction to the g and p subspaces as in (1.4).

1.2.2  Field theory notation

We will encounter expressions which contain a multitude of fields ®(7,t) and integra-
tions over their arguments or ‘labels’. In order to make these expressions manageable
we will introduce a few shorthand notations. We abbreviate the combined space and
time arguments of fields as simple numbers

D(q1,H) = P(1) (1.12)

and we stress that 7 as a field argument never pertains to the position of the particle
with index 1 and the same holds true for any such label. We also combine integrations
over space and time into

/dl - /dt1 /dzf1 . (1.13)
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We will have to deal with vector-valued fields that have multiple components. This
is most easily treated with an index notation where greek characters run over these
components. We can combine this with the above notation for the field arguments.
For example let @ be a two component vector of fields, then we have

Dy(1)

O(q1,t1) = P(1) = ( p(1)
B

) =y, = Dy =DPy(1) = Pa(qr, 1) . (1.14)

We will also use an extended Einstein summation convention which for repeated
labels p; includes both summing over the components of fields and integration over
their spacetime arguments. For two fields this would read as

D, ¥, = ;/dl ®,(1)¥,(1), (1.15)

which can be understood as a kind of functional scalar product in the component
space of the fields. If we write out the components and only have repeated space-
time labels left we still understand that integrals are performed as

®p Y = /dl (1) Fa(1) . (1.16)

Of course the same notation can easily be extended to tensor-valued fields in the
same component space. In some instances, especially when we only have few labels
present, we may condense notation even further by understanding the greek indices
as encompassing both the field component and the space-time label, i.e. y; — p, and
still use the above extended Einstein convention for repeated indices.

1.3 MATHEMATICAL CONCEPTS

There are a few mathematical concepts that are important for this work. We will now
introduce the necessary definitions and notational conventions.

1.3.1 Functional derivatives

As the name already suggests functional derivatives can be seen as the generalisation
of the concept of a derivative from normal functions to functionals. While a basic
function f(x) maps an element of some field K (usually R or C) into that same field
as f : K — K, a functional maps functions themselves into a field, usually the one
over which the functions are defined. Since this will in most cases include some kind
of integration, one could for example write F : C*(K) — K for some functional
F[f], where C*(K) are the infinitely differentiable functions over the field K. A very
simple example for a functional would be for functions f € C*(R)

1
FIf) = [ dxf(x). (1.17)
0
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The functional derivative (sj‘f(F j Now measures the change in the value of the functional

F if the function f is varied. While the actual definition of a functional derivative is
more intricate, for the purpose of this work it will be enough to remember that for suf-
ficiently smooth functions the functional derivative obeys the same linearity, product
and chain rules as the normal derivative does. The order of mixed functional deriva-
tives can be interchanged arbitrarily and actual computations can be done using that

0
Wf(x) =op(x—y) (1.18)

with obvious extension to functions of multiple variables. We will assume that the
reader is familiar with the Dirac delta distribution and its properties. We only men-
tion that for vectorial quantities X,ij we always implicitly understand

Ip (X — H Ip(x, — . (1.19)

We will often encounter the case where functional derivatives are applied to the
exponential of an integrated product of two functions. For this case we find

o 5
5f(x) exp {/dyf(y)g(y)} = mexp {F[f.gl}
SF[f, gl

- (dF[f g P FLf g”) 57 (x)

= exp {F[f, ]} / dy ﬁ;g; 8(y)

= exp {F[f, 3]} /dy oy —x)&(y)

= g(x) exp { / dy f(y) g(y)} (1.20)

One may read this in the sense of the exponential function providing an eigenbasis
of functionals for the functional derivative operator just like it does for the normal
derivative. This is important because we will encounter operators which are defined
in terms of analytic functions of the functional derivative operator. Let A be such an
analytic function with a series representation

Alx) =) apx". (1.21)

If this series converges on the entire image of the function g¢(x), then we may write
in general

Ag@)ee | [arfwsm b= ¥ ot ee { [avrwsm )
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This relation will see frequent use throughout this thesis. Most of the time we will
take functional derivatives w.r.t. vector-valued functions. We understand this in the
usual sense of a ‘gradient” operator as

)

5 f1(%)
=3 —_= S (1'23)
57 (%) :
6fn(¥)

for an n-component function.

1.3.2  Fourier transform

We assume that the reader is familiar with the concept of Fourier transforms, so we
will only give the conventions used in this work. The Fourier transform of a function
f(7) in real space is defined by

F® = [ i f(@)e (124)
and the inverse transform is consequently given by
dk =~ oz
2\ el ig-k
1@ = | G fBT (1.25)

/ die T — / die® — 2)4 6p(F) , (1.26)

a relation we will make frequent use of. The above equations formally only hold for
integration over all of real and Fourier space. We will however often have to deal with
integrations over a finite volume V, so in order to be completely correct we would
have to use a discrete Fourier transform. Besides leading to a lot of notational hassle
this will not provide any real gain in understanding. Since the Dirac delta distribution
is the continuous analogue of the discrete Kronecker delta, all the manipulations we
perform using (1.26) can directly be translated into a discrete Fourier language. We
thus loose nothing if we still use the above notation of integrations over an infinite
space. We only have to keep in mind that

(271)? 6p(0) = /ddq =V. (1.27)

There is also a more physical motivation for using integrations over an infinitely
large space. In all our applications we will in principle be free to choose the size of the
volume V of the physical system under consideration. As such we will always choose
it to be much larger than any of the scales on which we investigate its statistical
properties. In this sense the volume can be assumed to be infinite relative to the scales
of interest.



1.3 MATHEMATICAL CONCEPTS

Throughout this work we will not use the tilde to distinguish between quantities
defined in real space and their Fourier counterparts, since we find that the distinction
is easily made by the arguments 7 and k. This is also desirable in the light of our field
theory notation introduced in section 1.2.2. We extend the field argument label 1
to mean either (7y,t) or (ki,t1). If we choose expressions to be formulated with
quantities in Fourier space we must remember that the extended Einstein convention
of (1.15) transforms into

qDVlTVl /dlq) Ty /dfl /dqlq> fh, tl V(ql’ tl)

" dkl - i_‘ - dEz - i_‘ -
—/dtl /dql/ (kl,tl)ekl ql/W\Fy(kz,tl)ekqu

dk dk - - = (R 4R -7
_/dtl/ L /(an)d CIDH(kl,h)‘I’y(kz,tl)/dqle(k1+kz) i

dk dk - - S
B /dtl / ! / ( Zd q)y(kl,tl)lf;,(kz, tl) (27T)d (SD(kl +k2)

27)
/ dt / dkl @, (Fy, 1) ¥, (—F, 1)
:/d1q># 1)%(—1), (1.28)

where we introduced the notation —1 = (—EL t1). If we remember that the ‘scalar
product’ of the field theory Einstein notation involves a factor 1/(277)? and one minus
sign in one of the field arguments when evaluated in Fourier space, we can use the
same index notation for both real and Fourier space quantities. It will also be useful
to keep in mind the following relation between the derivative of a function and its
Fourier transform

[ 47 V@ e =ik r(), (129

which can be proven by a straightforward integration by parts and assuming that
the function vanishes on the boundaries. The extension of this relation to higher
derivatives is trivial.

1.3.3 Laplace transform

The Laplace transform is a close relative of the Fourier transform. It is especially
useful in treating problems where causality must be observed and as such we will
employ it to solve integral equations that involve causal propagators. We use its one-
sided definition

F(s) == Liss[f (1) /dtf et secC, (1.30)
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where the script £ represents the integral operator defining the Laplace transform.
One often calls f(t) the time-domain function and F(s) its frequency domain counterpart.
The inverse transform is usually defined in terms of the so-called Bromwich integral

Y+HT
_ 1
F(8) = LLIF()] = 5 lim [ dsF(s)e”, (1.31)
y—iT

where 7 is a real number chosen such that it is larger than the real part of all singu-
larities of F(s). This choice makes sure that all these singularities lie on the left hand
side of the vertical line in the complex plane along which the integration is performed.
While the integral may be performed using for example the Cauchy residue theorem,
it is much more common and easier to decompose F(s) into simple functions for
which one knows the corresponding time domain functions and thus assemble f(t)
by inspection. An easy example for this procedure would be

c arete st = ST L i R(s) > b
ise?] = / te e s with R(s) > b. (1.32)

Formally we now apply the inverse transform with o > b, but the actual logic em-
ployed here is

1
ﬁtels [S—b:| Etis [‘Ct%s[ebt]} = ebt . (133)

There are some general properties of the Laplace transform that we will need. The
effect of a ‘time shift’ is

Liss[f(t—a)O(t—a)] /dtft—a O(t —a) —Sf—/dtf e o
/ e s(t'+a) — e_S”F(s) , (1.34)
0

where we made the change of variables ' = t — a in the second line and ©(t — a) is
the Heaviside function. Another very similar relation is

Liosf(t+a)] /dtfH—a _St—/dtf )

— e [dif(H0(t—a)e ™ —e L [f(HO(E-a),  (133)
0
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where we again made a substitution # = t 4 a in the first line and then renamed ' — ¢
in the second line. Finally, there is the generalisation of the convolution theorem

Liys {/ dt' f(t—t') g(t' +a)
0

_ / dte / dr @t —t') f(t — ') g(t +a)
0 0

dt' g(t +a) /dt@(t —t)f(t—t)e ™
0

dt' g(t' +a) /du Ou) f(u) e sH+t)

—t

= /dt’g(t’+a)e‘sf'/dtf(t) e s
0 0

= Less[f(D)] Looslg(t +a)], (1.36)

where we substituted u = t — t' in the third line and then renamed u — t in the
fourth line. The standard convolution theorem is obtained by setting a = 0.

11
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NON-EQUILIBRIUM STATISTICAL FIELD THEORY BASED
ON PARTICLE DYNAMICS
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In this chapter we will go through the basic ideas of the field-theoretical approach
to kinetic theory pioneered by Das and Mazenko in [22, 40, 39]. We will refer to it
as Statistical Field Theory for Classical Particles (SFTCP). As shown in Bartelmann
et al. [6], the derivation of the generating functional can be done in a more general
way with actual fields as the primary variables. However, as the chapter title already
suggests we will try to develop a generating functional that has a close connection to
the standard canonical partition function of equilibrium statistical physics. In fact, it
can be seen as a generalization of this concept to non-equilibrium systems. Because of
this we will stick to our more special case where the primary variables are the phase-
space coordinates of an N-particle system. This will allow us to mark the difference
between the standard equilibrium statistical physics and our approach more clearly
as we go along.

2.1 QUICK SUMMARY OF EQUILIBRIUM STATISTICAL PHYSICS

At its very core, equilibrium statistical physics is based only on a few quite simple
principles, which we will quickly go through. For a much more thorough discussion
we refer the reader to Bartelmann et al. [9]. One usually starts by considering a system
of N particles which are subject to some set of equations of motion which can be
formulated in the Hamiltonian formalism as

ox—JVH=Ex]=0. (2.1)

Given a set of initial conditions x(!) defining the initial state of the system one could
then in principle evolve the system to any desired point in time according to the
phase-space flow mapping x(t) = ¥;(x)) derived from the above equations. How-
ever, in practice it is impossible to even measure the initial state due to the large
number F of degrees of freedom (d.o.f) of the system, let alone solve the equations
of motion due to the interactions between them. F is usually set by the number N of
particles, typically of order N4y =~ 10% and larger. We will stick to particles without
internal d.of. leading to / = dN for a d-dimensional configuration space and a 2dN-
dimensional phase-space. Equilibrium statistical physics circumvents these problems
by looking at the system from a different angle.

* One gives up interest in the precise microscopic description of the system and
rather concentrates on characterising the system by a few macroscopic observ-
ables {A}. These can be called collective in the sense that they are often made

15
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up by contributions from the individual particles and we may consequently
write A(x).

* Any real measurement of a macroscopic variable will have to be taken over
some period of time T and then averaged afterwards

Ar

T
% 0/ dt A(Y (x1)) . (2.2)

Over the course of this measurement the system will travel through states in
phase-space with the phase-space flow Y.

* We can define the average of a macroscopic observable in a different way by
introducing the notion of an ensemble, a large collection of copies of the same
system that have all been prepared in the same macroscopic state but their
microscopic states may and usually will differ greatly. Mathematically these
can be thought of as a point sampling of the probability density P(x) in the
2dN-dimensional phase space I', which gives the probability that our actual
system is found in the phase-space cell dT" = [T ;! d7; d; * around the state
x. Then the ensemble average is defined as

(4) = / dr P(x) A(x) . (2.3)

This would correspond to an instantaneous measurement of A on many sys-
tems who all have been prepared in the same macroscopic state.

The conceptual leap of statistical physics is now to equate these two different defini-
tions of an average at least approximately. This becomes feasible if the system under
consideration meets certain conditions.

¢ The system must be in equilibrium. This means that the relative fluctuations of
the real value of A about its mean A7 are small and one can thus use it as a
meaningful quantity to characterise the system.

* The system must be ergodic in the sense that on the timescale T of the mea-
surement it travels through such a large amount of states that these cover a
sizable fraction of its accessible phase space. Taking the successive time average
Ar over all these states then becomes comparable to taking the instantaneous
average (A) over the members of the ensemble occupying these states.

We would thus exchange the task of determining the initial state x(!) and then solving
(2.1) for the problem of finding the ensemble phase-space probability density P(x).
But this is a much easier task if we only constrain the system to have certain values
for some macroscopic observables. The very foundation of all further considerations
is now the following assumption.

1 hy is some discretization constant in order to make phase-space states countable.



2.2 GIVING UP EQUILIBRIUM

Basic postulate of equilibrium statistical physics: An isolated system conforming to
the constraints of consisting of N particles, which occupy the volume V and whose degrees
of freedom contain the energy E = H, may be represented by a micro-canonical ensemble of
systems under the same constraints. If the phase-space probability density P of this ensemble
is equally distributed initially it is constant in time. This means that averages (A) do not
change with time and thus the system is in equilibrium. The probability density is given by

—bp(H(x) ~E), (2.4

where Q) (E) is the accessible phase space volume defined by

Q(E) = /dr(sD(H(x) _E). (2.5)
For such a system it holds that
(A) = Q<1E) [ dr A do(H(x) — E) = lim Ar (2.6)

In this language of a phase-space probability density it is easy to make the con-
ceptual step from the micro-canonical to the so-called canonical ensemble. Instead of
requiring the system to have a set energy we only want to constrain it to have a
certain mean energy per degree of freedom, i.e. a certain temperature. This can be
achieved by exchanging the Dirac delta distribution in (2.4) for a Boltzmann factor

P(x) xexp(=pH(x)) , (27)

where B = k]%T' Since the Hamiltonian gives the total energy of the collection of the N
particles, the Boltzmann factor compares the exact total energy #(x) of some phase-
space state x against the mean energy scale kgT of the system. The larger this ratio
gets, the less probable one deems that particular state to be. The canonical partition
function Z¢ is then simply the normalisation factor of this probability density.

Zc = /dF exp(—BH(x)) (2.8)

It is a very useful quantity because rather than always using the probability density to
calculate their averages, values for most macroscopic observables can be obtained by
taking appropriate derivatives of the free energy F = —kgT In Z¢. Our field theoretical
approach will rely on a very similar concept for calculating averages of collective
quantities.

2.2 GIVING UP EQUILIBRIUM

The big conceptual difference of the new field theory approach is to give up the re-
quirement that the system is in equilibrium. We thus must allow for the macroscopic
observables of the system to evolve over time and we consequently introduce two
global points in time, the initial time t; and final time ¢;. This will force us to imple-
ment the full time evolution according to (2.1) into our theoretical description. The

17
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initial state x(!) however is still assumed to be impossible to determine due to the com-
plexity of the system. We can circumvent this problem with the ensemble approach
by treating the initial state probabilistically. This is feasible if the evolution of our
system up to the initial time has been ergodic in the sense that over its entire lifespan
up to t; it had had the possibility to reach a large enough portion of its phase-space
so that it becomes reasonable to attach a continuous probability density P (x(!)) to the
initial state. In the ensemble sense this again corresponds to an idealized set of copies
of the system all prepared to have some set of macroscopic or collective properties
that are sufficient to specify P (x(!)).

The time evolution of the ensemble is then contained in the joint probability density
P (x), x)) which gives the probability that the system was in the initial state x(!) and
ends up in the final state x(f). The ensemble average of any observable A at the final
time t¢ is consequently given by

(A) (t) = / dry / dr; A(x®) p(x®,x) . (2.9)
Assuming we know P (x()), we can use the law of conditional probabilities to write
P(xH,x0) = P(xD|xD) p(xD) . (2.10)

For a classical deterministic system in a clearly defined initial state x¥), its state x(f)
at the final time must be the solution xd(tf;x(i)) of the equations of motion (2.1).
We have to translate this deterministic relation into a conditional probability density
which immediately suggests the use of a Dirac delta distribution leading to

P(X(f) |x(1)) — (SD(X(f) — Xcl(tf; X(l))) . (2'11)

This basic concept is illustrated in Fig. 1. Each point in an equal-time slice repre-
sents one possible phase-space configuration of the entire system of N particles.
The lower colored area represents the phase-space probability distribution P (x(!))
at the initial time t;. Each point x!) within it is transported forward through time
to some other phase-space point x(f) at the final time by means of the classical tra-
jectory xq(t;x("). This transforms the initial distribution into the final distribution
P(x\0)) = [ dr; P(xH),x) represented by the upper colored area. The analogue to
the canonical partition function of equilibrium statistical physics is again the norma-
lisation of this probability density

Zc = /dFi /de P(xW) op(x — xg(t;;xD)) . (2.12)

We still call this a canonical partition function since we consider a fixed number of
particles N in a fixed volume V. From a conceptual point of view this was all that
had to be done in order to include non-equilibrium systems into the description. The
big advantage is of course that we may now in principle choose the initial probability
density P (x()) freely. Equilibrium statistics is included as the special case of an initial
Boltzmann distribution.

One should also notice that the actual value of Zc only depends on the normalisa-
tion of the initial probability density P (x(!)) since the integration over the final state
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time t

Xd(i;x(i))

traj ector 'y

position q

Figure 1: The phase-space evolution of a statistical system made up of N particles.

formally just gives a factor of unity. So if one chooses a properly normalised P (x(V)
the partition function will evaluate to unity in contrast to standard equilibrium statis-
tics where the ‘physics’ is contained in this non-unity normalisation factor. However,
due to the way average quantities are calculated in the field theoretical approach it
will be preferable to use a properly normalised initial phase-space probability den-
sity.

2.3 PATH INTEGRAL FORMULATION

The above expression (2.12) very nicely expresses the concept behind the theory when
compared to standard equilibrium statistical physics. In its present form it is however
not very helpful for doing actual calculations since one would still need to know the
general solution of the equations of motion (2.1). We will thus use what is often
called the Martin-Siggia-Rose formalism (MSR) in order to express our generating
functional as a path integral. While the principal ideas were originally developed in
Martin et al. [36] with applications to statistical systems in mind, it was shown in
e.g. Gozzi et al. [26] or Penco and Mauro [45] that path integrals can be used to
describe any kind of classical system in this formalism. The great advantage of doing
this lies in the fact that it opens up the very formidable toolbox of mathematical
techniques developed in QFT to treat interacting systems both in perturbative and
non-pertubative ways. Readers unfamiliar with QFT have a wide array of textbooks
to choose from. A good introduction focusing directly on the path integral formalism
can be found in Srednicki [53] and a more thorough “classical” introduction in Peskin
and Schroeder [46].
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2.3.1  Linking initial and final states

The idea of the path integral approach in normal quantum mechanics is that as a
particle moves through space we move along with it and at every point in time assign
a complex-valued weight factor to any possible position and add up these weights.
In the standard case, this weight factor is given by exp {45}, where S is the classical
action. Since classical trajectories extremise S, the weight factor will vary by the least
amount between points that are close to such a classical trajectory. For points far away
it will fluctuate wildly, effectively canceling contributions from neighbouring points.
In this way one obtains a transition amplitude (g, t¢|gi, ti) where most of the weight
is centered on classical trajectories. We illustrate this idea in Fig. 2.

position g

Figure 2: A quantum mechanical particle moving through space from g(t;) to q(t). The ar-
rows next to the particle positions at the instances of time ¢; indicate the value of the

weight factor e#S at that position as a unity length vector in the comlex plane. The
middle trajectory is the classical one for which most of the vectors point in the same
direction and thus add up to a substantial weight. For the other two trajectories the
vectors fluctuate a lot more and thus cancel each other out to a large degree when
summed up.

We now want to apply the same reasoning to our conditional transition probability
P(xH|x). For our ensemble of particles this of course means that we follow the
evolution of the phase-space coordinates of all N particles and at each point in time
we assign a weight factor to every possible phase-space configuration x(t) and add
them up. However, we already stated that for a classical deterministic system the only
possible phase-space configuration x(t) at any time is the solution xq(t;x)) of the
equations of motion (2.1). So instead of spreading out the weight around the classical
trajectory like in quantum mechanics we have to concentrate the entire weight onto
it which again leads us to use a Dirac delta distribution®.

2 One can show that this is actually the limit 77 — 0 of the Quantum Mechanics (QM) path integral.
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In mathematical terms we start by slicing up the time interval [t;, t¢] into M + 1
intervals of length At = (t; — t;)/M and define t,, = t; + mAt such that ty = t; and
tm = tg. At every t,, we insert a factor of

[ dx(t) dp(x(t) = xa(tuix)) = 1 (2.13)
into the expression for the conditional transition probability

P (xOxW) = op(x(tr) — xa(tsxV))

= a(x(t) — xaltx)) [T [ dx(tu) do(x(tn) — xaltix®)
m=1

M-1 M .
- (H / dx(tm>> (H b (x(t) —xd<tm,-x<l>>>> . 219
m=1 m=1

In the limit M — oo of an infinitesimal time grid stepsize, this discretisised expression
will go over into a continuous functional integral over all possible phase trajectories
that link x{) and x(), hence the term path integral.

M-1 f
li dx(tm) = | Dx(t) , .
im [T [ dx(on) / x(t (215)

M—o0

where the boundaries signal that initial and final states are held fixed and are thus
excluded from the functional integration. The Dirac delta distributions go over into

M—o0

M
lim (H op(x(tn) — xd(tm;x(i)))> = dp[x(t) — xa(5xD)], (2.16)
m=1

where the square brackets mark this as a functional Dirac delta distribution, which
always has to be understood in the above limit sense, just like the path integral
(2.15). We may now rewrite our canonical partition function (2.12) as the path integral
expression

f
Zc = /dx(ti)P(x(i)) /dX(tf) /Dx(t) So[x(£) — xa (£ x)]
- /dx(ti) P(x) /Dx(t) op[x(t) — xa(txD)]

— / Dx(t) P(xD) 6 [x(t) — xa (£;x0)] . (2.17)

We listed the various notations for the path integral®> we may use throughout this
work. This quantity clearly maps functions into a number, i.e. it is a functional. For
reasons that will become apparent soon, we will from now on call it the canonical
generating functional.

Notice that we no longer use the notation dI” for the integration measure. This is equivalent to setting
hgp = 1. The reason is that the field theory approach does not rely on counting states and as such we
can take phase-space to be completely continuous.
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2.3.2  The ‘other’ classical action

Formulating our generating functional in terms of a path integral has brought us
closer to the usual field theory formulation but we still lack a quantity that takes the
role of the ‘action” of our field theory. As a first step towards such a quantity we now
use the following transformation property of the functional Dirac delta distribution
which is just the functional analogue of the transformation behaviour of the normal
Dirac delta distribution under change of variables. Let ¢* be the components of some
vector valued field and F some functional that maps from the space of such vector
fields into the real numbers, then it holds that

5ol — 1) = o0[Flg") et 2212

. al _
q)“—(pg] if Flgp] =0. (2.18)
In our case the role of the vector field is taken by the phase-space coordinates of the
particles, i.e. ¢* = x?(t) where the index a runs over all 2dN components. The role of
the functional is consequently taken by the equations of motion (2.1) which we can
reformulate in a component notation as

d

0x" — J9yH = E[x"] where 9, = R

(2.19)

The role of the kernel ¢ of the functional is thus taken by the classical solution x7,

with £[x4] = 0. The functional Dirac delta distribution in (2.17) may thus be rewritten
into

op[x(t) — xq(x1)] = 6p[E[x(1)]] det [6f 3 — T 0.0, H] . (2.20)

The crucial result that the above functional determinant is equal to unity was shown
in Gozzi et al. [26]. The proof relies on the causal nature of the Hamiltonian dynamics
and the antisymmetry of 7%’. We stress here that if one wants to be on the safe side in
terms of strict mathematics one should always start from a Hamiltonian formulation
of the dynamics, no matter which kind of classical system one wants to describe with
this path integral approach. If one wants to use non-canonical equations of motion
that cannot be derived from a Hamiltonian one must take care of either showing that
the above determinant is a constant or incorporate it into theory.

Expressing the requirement that the phase-space trajectories which receive the en-
tire weight in our path integral are the solutions of the classical equations of motion
in terms of these equations themselves has one decisive advantage. In contrast to the
actual trajectories they can easily be split into a free and an interacting part. Before
we see how to do this, we complete the connection to non-equilibrium QFT by ex-
pressing the functional Dirac delta distribution by a functional Fourier transform in
analogy to the normal Dirac delta distribution as

solEx(n)]] = [ Dx(tyexp i [ dt (x(t), EX(D]) ¢, (2.21)
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where we had to introduce a new auxiliary field* or rather a collection of functions
Xi(t) = ()_(’;](t), )_(’;j(t))T in the process. In order to make the argument of the expo-
nential dimensionless, these functions must have the inverse dimension of units of
their respective phase-space counterparts. In the MSR formalism this auxiliary field is
usually associated with a statistical noise contribution to the otherwise deterministic
equations of motion. We will soon see that in the approach of Das and Mazenko this
field can also be associated with the system’s response to interactions between the
particles. If we now define our “action” to be

SIx(0),x(0)] = [ dt (0, EXO) = [ at (xl0), (aix() = TVH)) , (222

we can finally write our canonical generating functional in a form that very closely
resembles non-equilibrium QFT

Ze = / Dx(t) / D (t) P(xV) SKOX 0] (2.23)

Notice that we can reobtain the classical equations of motion from the action by
demanding that its functional derivative w.r.t. the auxiliary field vanishes

SS[x(t), x ()]
ox(t)
which can be seen as the analogue of the Euler-Lagrange equations for this kind of
theory. We now give credibility to the term generating functional by following standard
QFT procedure and introduce sources for both the phase-space trajectories and the
auxiliary field

Zell K| = [ Dx(t) [ Dx(t) P exp (i (SIx(t), x(1)] +] - x+ K- x)} - (2:25)

The central dot stands for both the scalar product and integration over time, so ex-
plicitly we have

=0 — Ex(B]=0, (2.24)

tg
Jox = /dt J(t),x(t)) and thus el = x(t) el (2.26)
ti

o
1] (t)
where the second relation allows us to exchange instances of x inside the path inte-
grals for appropriate functional derivatives. These derivatives can then be taken out-
side the path integrals, a fact that will be very beneficial later on. The same of course
holds likewise for K and x. At this point the theory is in principle complete and ex-
act since all the information about the time evolution of the microscopic phase-space
coordinates is contained in (2.25). Their expectation values at some time t; < t < f;
are now readily available by taking functional derivatives and turning off the sources

)
x(t)) = ——= 2 K . 2.2
< ( >> 1(5](t) C[Jl H]:K:O ( 7)
We use the term ‘auxiliary field” since its common in most of the literature surrounding the MSR formal-
ism.
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One may easily confirm this relation by using (2.26) and then going backwards
through the previous calculations until one again arrives at (2.17). Of course the same
holds for K and x. This then allows us to generalize (2.9) for the expectation value of
some observable A, expressible in terms of the microscopic phase-space coordinates
as A(x), leading to

)
Ax(0) = 4 (55557 ) 20Ky (229
The fact that we can now obtain averages at arbitrary times #; < t < f; is another
benefit of the path integral approach since it gives us access to the intermediate
states of the time evolution of the system.

2.4 INTERACTIONS AND COLLECTIVE FIELDS

The basic obstacle to directly calculating (2.25) is the fact that this is still equivalent
to solving the full equations of motion with all interactions included. However, the
non-interacting equations of motion can usually be solved analytically, so one would
naturally like to set up some kind of perturbation theory around this free solution
where the effects of particle interactions are treated in an approximate manner. Fortu-
nately, the path integral approach excels at treating exactly this kind of problem. One
of the conceptual achievements accomplished in Mazenko [39] and Das and Mazenko
[22] was the scheme how one should treat the ‘free” and the ‘interacting” part of the
theory.

¢ The free part of the theory is governed by the non-interacting part of the equa-
tions of motion. Here the individual particles are decoupled and one can give
a general solution for their trajectories. It thus seems natural to treat the free
theory on the basis of individual particles.

* In stark contrast, in the interacting part of the theory each particle is connected
to all other particles by the interaction. Thus, one cannot treat particle trajecto-
ries individually and it seems much more feasible to express the effects of all
particle interactions as an interaction between collective quantities which are
composed from the individual phase-space coordinates.

2.4.1 Rewriting the interaction

We have to demand that we can write this separation in terms of the Hamiltonian as
H = Ho + H;. The first part must lead to the ‘free and linear’> equations of motion
while the second part must contain the interactions between the various degrees of
freedom. Consequently the equations of motion can be separated as

Ex| = (0x—TVHo) — (TVH) = Eolx] + E1]x] . (2.29)

More precisely, one must be able to solve the equations of motion obtained from only H, analytically.
Being linear and not describing any interactions is just the most common case for physical systems
composed of classical particles.
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Since our action S depends linearly on the equations of motion, we may therefore
also separate S = Sy 4+ S; where we of course have

S0= [ dt (x(t), Eox(1)]) - (230)

We assume that the interaction Hamiltonian is given by a potential V' (7, t). This allows
us to explicitly write down the interacting part of the action as

5 = / dt (x(t),—(J @In)(V; @ &)V(q,1))

te
= /dt <X(t),— ( vpj > V(ﬁ,t) ®é}> (2.31)
_vq;

We can remove the gradient from the potential with the help of the relation

quV(E/’,t) = qu(ﬁzt)|§:,7j(t) =- /dé’ (Vq op(q — El'](t))) V(dt), (2.32)

where in the second step we first replaced the condition § = g;(t) by introducing
the integration over the Dirac delta distribution and then integrating by parts to shift
the gradient over to it. Since we assume that the particles are confined to some finite
volume the boundary terms with a Dirac delta distribution vanish. We may thus
continue from (2.31) with

si= [ at <x<t>,— [ 4 (Voo0(@-3(1) V(@) ( (1) ) ®a>

tf
—— [t [ es@n V@, (233)
t

where we have defined the so called response field ®p, which in terms of individual
particles reads

N
Pp(7,t) = Y Xp, (1) Vo (d — (1)) . (2.34)

Furthermore, for a closed system in the absence of external forces® the potential
V(g,t) felt by some particle at position 7 at the time t must be the superposition of
the single particle potentials of all particles in the system which can be written as

N
V() =) v(@t). (2:35)
=1

We now introduce some assumptions about the form of these single particle poten-
tials.

External forces with a given potential V are already described by (2.33). They are however not of interest
for the purposes of our work.
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¢ All particles are considered identical regarding their interactions which means
that the functional form of all v; is the same.

e The potential only depends on the positions of the source particle at ;(t) and
the test particle at (7, 1).

* This also directly implies that the force acts instantaneously.

The prime example is the Newtonian gravitational potential of a collection of N par-
ticles with equal mass m which we will investigate in the second part in the context
of cosmology. If these assumptions hold we may rewrite the total potential as

N
Zv 7.3t /dq o(3,7") Y. on(@' — 5 (1))
j=1

= / dq'v(7,4") @,(7', 1), (2.36)

where in the last line we have defined the particle number density field as the sum

N
=) (7 —q;(t) . (2.37)
=

We use the notation @, instead of simply p in order to clearly mark this field as a
collective field which is distributionally valued. It only turns into a continuous macro-
scopic observable due to the integration over the initial phase-space conditions once
we calculate its expectation value. The above definition of the total potential implic-
itly assumes that particles have no self-interaction which means that we demand

o(q,q )]4 7= = 0. The interacting part of the action can thus be formulated purely in

terms of collective fields and the single particle potential as

/ dt [ a7 [ 47 ®u(d1)0(7,7) 2,7 1) (2.38)

This expression makes the naming of ®p as a ‘response field” more transparent since
it describes how the particles at (§,t) respond to an interaction with the density field
at (§',t) by deviating from their free trajectories. We will see in section 2.5.1 that the
auxialiary fields X; or rather their conjugate source terms K can be associated with
such deviations. For notational ease we collect these two collective fields into a single
two-component vector

O(1) = @(q1,t1) = ( zpi??i ) , (2.39)
s(q1, 1

where we remind the reader that 4; as a field argument is not the trajectory of an
explicit particle but some arbitrary position. If we define the following interaction
matrix

0(1,2) = —v(q1,72) op(t — t2) < (1) (1) ) , (2.40)
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we can then rewrite (2.38) in the very compact and symmetric form

S; = ;/dl /d2<DT(1)0(1,2)q)(2)
1

= 2 (q)PlUPleq)Bz + ®BlaBlp2q)P2)
1 1
= ECID,Xl(rWQCI)a62 = EQDVUW(DV . (2.41)

In the second and third line we used all the different versions of our field theory
notation in order to give the unexperienced reader an easy example. Remember that
« runs over both field types p and B, the subindex stands for the spacetime argument
or ‘label’” of the field and if there is no subindex the space-time argument is implicitly
contained in the greek index and integrated over for repeated instances.

2.4.2  Collective sources and correlators

In order to easily generate averages of these collective fields we introduce a new
source field vector

_ [ H(1) Ao
H(1) := ( H;(l) ) (2.42)

into our theory and couple it to the collective fields
H-®= /dl HY'(1)®(1) = Hy, P, . (2.43)

We can now write our canonical generating functional with a clear separation into a
free part formulated in terms of microscopic phase-space coordinates and an inter-
acting part formulated in terms of collective fields.

Ze[H, 1K) = [ Dx [ DXPD)exp {i(Solx,x] - x+ K- x + Si[®] + H- @)} .

(2.44)

The n-point correlators of the collective fields are now easily obtained by calculating
0 0

<CI)0(1 e ®‘Xn> - i(SHle e EZC [H, J, K] ‘H:J:KZO . (245)

Notice that we have left out the usual normalisation factor of Z~ ! since we assume
our generating functional to be normalized to unity at vanishing sources as we al-
ready discussed in section 2.2. Connected correlators, i.e. cumulants, can be calcu-
lated with

) )
Go,,..®,, = BH. " H. InZc[H,],K] ‘H:]:K:O : (2.46)
As is usual in QFT we define
WelH,J, K] =InZc[H,], K] (247)

as the canonical cumulant generating functional.
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2.4.3 Collective fields as operators

The form of the generating functional (2.44) is only the first step towards a perturba-
tive treatment. At this point we could just switch off the collective part of the expres-
sion and solve the free theory. But then the question would be how to reintroduce
the interaction into the theory in a systematic way. In order to solve this problem
Das and Mazenko took inspiration from QFT and expressed the collective quantities
as functional derivatives. As a first step we define an interaction operator in terms of
these derivatives as

A 1 ) )
== 1 [d2 48
5173 / d / i0Hy, “1%i5H,, ’ (2.48)
which because of (2.41) satisfies
Sretl® = 5, ei"®  and thus elSrelfl® — iSigiH-® (2.49)

This ‘eigenvalue’ relation has the very desirable effect that it expresses the entire
interaction as an operator $; which no longer depends on the microscopic quantities
x and x of the individual particles. Consequently, we may take the interaction out in
front of the path integrals in (2.44) and write the canonical generating functional as

Zc[H,J,K] = eig’/Dx /DxP(x(i)) exp {i(So[x,x] +J-x+ K- x) +1iH - &}
= &1 ZcoH 1, K], (2.50)

where in the second line we have implicitly defined the free generating functional
with collective sources H as Zc[H, J, K]. Before we try to carry out the path integrals,
we also want to move the collective source term out in front of the path integrals. We
draw inspiration from (2.28) and make the dependence of the collective fields on the
microscopic phase-space coordinates explicit by writing ®(1) = ®(§1, x(t1), x(t1)).
Since the Dirac delta distribution showing up in the definitions (2.34), (2.37) may be
represented in terms of analytic functions, for example by using its Fourier transform
as we will do later on, we may employ the relation (2.26) and rewrite

. 5 5 .
z i(Jx+Kx) — = i(J-x+K-x)
O(q1,x(t1), x(t1)) e P <Q1, i&](tl)’iéK(t1)> e - (2.51)

If we now define the collective field operator in exactly this way by
. 0 o
= |7
00 = (3 gy )

N o _ 0

_ ( (1) ) _ LU (252)
dr(1 N 5 > 5

B( ) ijl iJKﬂj(tl)vql(SD n iﬁ@j(h))

we again have a very nice ‘eigenvalue relation’

Cb(l) el x+Kx) Cb(l) el x+Kx) eiH-@D el x+Kx) — (IH-® Li(J-x+K-x) (2.53)
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We rewrite (2.50) once more to arrive at the final form for the canonical generating
functional

Zc[H,],K] = el it ® / Dx /Dx P(x(i)) exp {i(So[x,x] +J - x+K-x)}
— % eiH'éZC,o J,K]. (2.54)

We have defined the free generating functional Z¢[J, K| without collective sources
H and all microscopic quantities completely decoupled, making its computation a
relatively easy task.

2.4.4 The general form of canonical perturbation theory

The above relation (2.54) is indeed quite powerful. It tells us that any n-point cor-
relator of the collective field ® can in principle be calculated to arbitrary order in
the single particle interaction potential o o« v once the free generating functional
Zco[J, K] is known. To see this we first define the free correlators in accordance with

(2.45) as

0 Y iH-&
<¢a1 e @an>0 - i&Hal e i&Ha (el ZC,O [J/ K]) ‘H:]:K:O
= q’\)txl thXn ZCO J K ‘J K=0 * (255)

The full correlator with all interactions included is in our operator notation defined

_ 9 iS; ( JiH-®
= iéHal . i(SHan e (e ZC,O U/ K]) ‘H:]:KZO

= by, ... Dy (eiH"T’ZCO[] K])

(Dyy .- D)

‘H:]:K:O
= d,, ... D, 51?7 ], K] Ij—x—o - (2.56)

where we have used that derivatives w.r.t. H commute and defined a different form
of the interaction operator

1 . .
= / d1 / 42 4, 0410, By (2.57)

which follows in a straightforward way from (2.49) if we replace the collective field
with its corresponding operator. One can now express (2.56) in terms of the free corre-
lators by expanding the exponential function. Each order of the expansion generates
two more collective field operators ® which are then contracted with the interaction
matrix o.

o
2
©

A 2 i A
(P, ... Dy,) = D, (ZW@MV@V) >zc0] K]|;_x_q

. q)lxn q)Pl UP] By (DBl s q)anUP;an(DBrn ZC,O [J’ K] ’J:K:O

I
e
= %
;eo

|
ngk:

=

<<I)D¢1 q)tx,,qulq)Bl [ q)qu)Bm>0 UplBl .. UPmBm , (258)
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where we have used the symmetry of the interaction matrix (2.40) in the second
line. From this one can see that there are in principle only two ingredients in this
perturbation theory. First there are the free correlators which are determined by the
free equations of motion £y[x] and the initial phase-space probability density P (x®).
Whether one can give exact or approximate expressions for these correlators will
naturally depend on the complexity of the initial conditions. The free equations of
motion in contrast should always be chosen such that they describe that particular
part of the physical problem one can solve analytically. The second ingredient is the
two-particle interaction potential o which will usually be rather simple.

Finding the general analogue of (2.58) for cumulants is a somewhat more compli-
cated problem. In Appendix B we will show how to derive the perturbative expres-
sions for one-point and two-point cumulants up to second order in ¢ and already
in this case the combinatorial effort will be considerable. It will be one big advan-
tage of the grand canonical approach that it automatically generates the cumulant
perturbation series with much less effort than the canonical approach.

2.5 SOLUTION FOR THE FREE THEORY

With the structure of perturbation theory clarified, the only missing piece is the free
generating functional Z¢ ([J, K] which one needs in order to calculate the free correla-
tors. We first give its general solution in terms of the Green’s function or propagator
of the free equations of motion and then show how to calculate this propagator for
equations of motion of the Hamiltonian type.

2.5.1 The explicit free generating functional

We can read off the definition of the free generating functional by combining (2.30)
and (2.54) into

tg
Zcpl) K] = /DX /Dx P(xV)exp (i /dt (x(t), Eo[x(D)]) +T - x+ K- x
t
(2.59)
We now execute the path integral over x and obtain

Zcol), K] = /dx(i) P(xV) /Dx op [Eo[x(t)] + K] T, (2.60)

where we have separated the integration over the initial state from the remaining
path integral. Since we are dealing with a Hamiltonian equation of motion, it must
be possible to write it as a linear differential operator

ffox =0 with 80 = ((Cjo ®IN) and (cjo f] =0, (2.61)
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where & has the form of a 2d x 2d matrix. The Dirac delta now tells us that we have
to evaluate the system on trajectories which are the solutions to the free equations of
motion enhanced by the inhomogeneous source term K as

Eox=—-K. (2.62)

Let us assume that we know the solution and call it x(¢). The Dirac delta can be

rewritten using (2.18) as
op [Sox + } 1 ———dp[x—x]|. (2.63)
det[&]

Due to the linearity of the equation the functional determinant is a constant of no

further consequence and can be absorbed into the normalisation of the path integral.

The free generating functional is now trivial to calculate and we find
Zcol), K /dx P (x) /Dx Sp[x — x| el x = /dFi ellx, (2.64)

where we have introduced the shorthand notation

/dfi = /dx(i)P(x(i)) (2.65)

for the weighted integration over the initial state. Let us furthermore assume that
we know the Green’s function G for the linear differential operator £,. We can then
write down the solution to (2.62) for the initial state x(V) as

t
x(H) = Gt 1) xV — / dr (L K(H) . (2.66)

With the help of this result we can write down our final expression for the free
generating functional as

Zcol), K] = e SkUKI [ dr; ex dt G(t,H)x) L, (2.67)
p

where we have defined
te t

Sk]J, K] :/dt/dt/ (), G K(H)) (2.68)
£ i

While the second exponential in (2.67) describes how particles move freely starting
out from their initial state x), the Sk term allows us to generate deviations from
these free trajectories by acting with operators that contain functional derivatives
w.r.t. the source K. We have already shown in (2.52) that these derivatives show
up in interactions through the response field ®p. We will soon see that we can also
express the effects of momentum correlations in the initial phase space probability
distribution in terms of these derivatives.
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2.5.2  Green's function for the free Hamiltonian equations

Given a linear differential operator L(¥) with 7 € R", the general definition for its
Green’s function is given by

L(¥) G(7¥,5) = dp(7 —5) . (2.69)

While this definition allows a general approach to finding G with the help of integral
transforms, it does not define G in a unique way since one has to impose initial or
boundary conditions by hand. In our case of a non-interacting Hamiltonian system
it is more advantageous to directly solve the equations of motion and then identify
the Green’s function by comparison with (2.66). The Lagrange function of such a
non-interacting system will typically only depend on position and velocity up to
quadratic order” and for a collection of N particles the Hamiltonian equations of
motion of individual particles decouple from one another. Thus, for a single particle
j we can cast them into the following form augmented by a source term

E0Xj = (0:Tra + K(1) X = —K; . (2.70)

The 2d x 2d-matrix K is called the force matrix which originates from the phase-space
gradient acting on the non-interacting Hamiltonian in (2.29). The above equation
constitutes a linear system of ordinary differential equations. There are different ways
to solve these kinds of systems, but the most convenient approach for our purposes
uses matrix exponentials. It is understood most easily if we first consider the one-
dimensional case

(dex+a(t)x) =g(t), (2.71)

where we have the inhomogeneity g(t) on the RHS since we want to solve (2.62) in the
end. Obtaining the retarded solution to the homogeneous equation is straightforward
and gives

(@x+a(t)x) =0 = atlnx:—a(t)

t
N /dt/ 9y Inx() = Inx(t /dt a

= x(t) =exp] — /dt'a(t/) x(#) (2.72)

We will denote the initial condition as x; = x(¢;). A particular solution to the inhomo-
geneous problem can be found using the variation of constants. We modify the solu-
tion to the homogeneous problem by allowing the parameter x; to be time-dependent
as xij — xi(t). The time derivative of this solution then reads

t
dix(t) = | drexp —/dt/a(t’) xi(t) + exp /dt’ t') » Orxi(t)

7 The most typical examples are free particles as in our case or the harmonic oscillator.
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= —a(t) x(t) +exp { /dt/”(f')} 9rxi(t) - (2.73)

We insert this back into the inhomogeneous equation (2.71) and find

exp { /dt a }atxl( )=g(t) = oxi(t) = g(t)exp {/tdt'a(t/)}
= x;(t /dt”g t") exp{]”dt a }
— xi(t) = x;(t +/dt”g t") exp{ /dt’ } : (2.74)

We insert this solution back into (2.72) to obtain the general solution to the inhomo-
geneous problem with initial condition x;(¢;) = x; as

t//

— exp { / dt’a(t’)} () + / dt" exp { / dt’a(t’)} 2(t"),  (275)

t//

t
—|—exp{/dt a }/dt” t” exp{ /dt’ }

where we have combined the two integrals inside the exponential functions in the last
line. One can easily check by inserting the solution back into (2.71) that its validity
relies only on two facts:

¢ The fundamental theorem of calculus
o 9efl! Do,f(t)

We now replace x — Xj, ¢ — —Kj and a(t) — K(t). The fundamental theorem of
calculus is of course unaffected. The exponential of the matrix A is defined by the
series expansion of the exponential function as

2 (2.76)
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Let us now assume that the force matrix commutes as KC(t1)/KC(t2) = K(t2)K(t1) for
arbitrary instances #1, t; in time. Two important special cases of this are constant and
nilpotent matrices. We can then show that

o exp {/tdt’lC(t’)} l| (/dtl (H ) (/tdtnlC(tn))

i (/tdtllc t ) (/tdtnllC(tnl)>

n=1 £ ti

© 1 £ p
DY o (t/dtllC(tl)) (t/dtnlC(tn))
= K(t) exp {/dt’lC(t/)} . (2.77)

ti

In the second line we have used the commutation property of K(¢) to take the matrix
on whose integral the derivative has acted out in front. In cases where K (t) does not
commute with itself at different times one needs to employ a so called Magnus series,
but this will not concern us in this work. With the above equation we now see that
the solution to (2.70) is given by

t t
Z(t) = exp{ /dt K(t } J?j(i) —/dt” exp {/dt’lC(t’)} Ki(t"). (2.78)
ti t"

Comparing this equation with (2.66) we can directly read off the Green’s function or,
in more physical terms, the single-particle phase-space propagator as

Gg(tt') = exp{ /dt” K" } and thus G(t,t')=G(tt)RIn. (2.79)

Since K is a 2d x 2d-matrix so will be G. For all our applications it will be possible to
divide it into four d x d submatrices as

G(tt) = ( gqq(t/t/) 14 gqp(t,t’) Ty ) , (2.80)
gpa(tt) Lo gpp(t,t') Iy

where the g,; and so on are scalar functions.
2.6 COMPARISON WITH STANDARD KINETIC THEORY
So far we have focused on pointing out how SFTCP relates to the quantities familiar

from standard equilibrium statistical mechanics. We now argue that it can also be
understood as a different formulation of kinetic theory, which is the standard tool for
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the investigation of non-equilibrium statistical systems. Its central quantity is the N-
particle phase-space distribution function or phase-space density f(N)(x,..., Xy, t)
which gives the probability to find a system with 2dN generalised coordinates and
momenta ¥; = ((TJT , ﬁ]T)T somewhere in the phase space cell d¥;...dXy around the

phase-space point (¥, ...,Xy) at the time t. The time evolution of f(N) is governed
by the Liouville equation

0 (N) N = =
J;t +Y (qj : Vq/.f(N) + 7 Vp/f(N)) =0. (2.81)
j=1

This states that the phase-space density is constant along the phase-space flow ¥; of
the system. Let the Hamiltonian be of the form

N 15’]2 N

H= Z m + UeXt(ﬁj) + Z vii(7i,4;) | (2.82)
j= i=1
i#]

where U®" is a potential describing an external force and v;; are the pair potentials
between the particles which lead to collisions. The Liouville equation then reads

af () N B (N) ext Vo (N)
e ER AR LA R B

j=1 i=1
i7]

Due to the typically high dimensionality 2dN of phase-space solving this partial
differential equation is a very hard task, often impossible for realistic systems. To
overcome this obstacle one integrates out the information of most of the phase-space
coordinates from the Liouville equation. For n < N, one defines the n-particle phase-
space distribution functions by

FOR), . Ry ) = / dZpet ... / din fN(F, ..., Fot) - (2.84)

and then applies the same kind of integrals to (2.83) itself. This leads to an enormous
set of coupled partial differential equations commonly known as the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy (BBGKY) hierarchy (cf. [58, 14, 15, 29, 30]). Its
defining feature is that the evolution of f(*) is always coupled to the next higher func-
tion f("+1) The full set of equations still contains the same amount of information as
the Liouville equation and is thus equally hard to solve. This forces us to truncate the
hierarchy at some level, which means we necessarily have to give up the phase-space
information we integrated out. Consider for example the n = 1 equation
ofV(F1,t) P

ot + %1 ’ vrlf(l)(fll t) - v‘h uet . vIﬂlf(l)(fl’ t)

= (N-1) / 4%, Vg 01 - Vi, fO (R, B, ) - (2.85)

Assuming that the two-particle distribution function factorises as f?) =~ f(1) f(1) this
equation can be decoupled from the hierarchy and then turns into the Boltzmann
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equation, which we will encounter later in part ii of this thesis. For a thorough deriva-
tion of this result see LifSic and Pitaevskij [35]. Although we have closed the hierarchy,
we have lost all the information about correlations contained in the higher order dis-
tribution functions. Together with the assumption that the mean free path of particles
is negligibly small against the desired macroscopic resolution, the Boltzmann equa-
tion is often used as the starting point for the development of hydrodynamics, which
derives equations of motion which directly apply to macroscopic observables like
density and momentum.

The link between SFTCP and kinetic theory can be made formal by introducing the
single particle phase-space distribution as the collective field

M=

N
(%, t) = 2513(55— Xj(t)) = ) op(d —§j(t)) op(P — Fj(t)) , (2.86)
i=

j=1

which is just the extension of the collective density field ®, to all of phase-space.
Viermann et al. [55] derived the BBGKY hierarchy for the correlation functions of this
collective field, thereby establishing the correspondence (®y, ... P, ) > f (") with
the addition of a self-consistent truncation criterion depending on the order of two-
particle interaction one is willing to consider. In the same paper it was also shown
that if we define the momentum density field

™=z

Sri(fu, 1) = ) Fi(t) oo (G- (1)), (2:87)

J

I
—

then it is straightforward to derive the continuity and Euler’s equation for a colli-
sionless gas, expressing conservation of particle number or mass and momentum
respectively. In summary, we can now make the following observations.

e The phase-space distribution function f(N) encodes the same information as the
quantity

f
Px) = [ Dx(t) P(x) dolx() — xatix)] (288)

of our SFTCP approach and thus we may identify the two. Both distributions
are represented by the coloured areas of equal time slices in Fig. 1 and contain
the full statistical information about the system and can be used to obtain the
expectation values of macroscopic observables.

¢ Kinetic theory aims at solving the very complex Liouville equation (2.81) in
order to describe the time evolution of the system, i.e. f(N) is itself the main
dynamic variable in the equation of motion. Looking at Fig. 1, this means that
it concentrates on describing how with time the entire coloured area moves
through phase-space.

¢ In contrast, SFTCP concentrates on following only the motion of individual
points in Fig. 1 along the classical trajectory. Evolving one of these points from a
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clearly defined starting position in phase-space is equivalent to calculating the
time evolution of the purely distributional valued ®¢(¥,t) of (2.86), i.e. solving
the Klimontovic [31] equation (9; + X - V) Of(%,t) = 0.

® Only after we have nominally obtained a general solution for this problem
do we actually assemble the coloured area in Fig. 1 at the final time by av-
eraging the general solution over its initial conditions with a continuous prob-
ability density P(x()). So while SFTCP in the end provides the same coarse
grained, i. e. smoothed macroscopic information as does the Liouville equation
or equivalently the BBGKY hierarchy, its inner dynamical structure is related to
the Klimontovic equation.

¢ This means that we only need to solve the equations of motion (2.1) for the
phase-space coordinates of the particles. While this is technically still impossi-
ble, these ordinary differential equations are considerably easier to handle than
the Liouville equation. As we saw, they can easily be split into a non-interacting
and interacting part, with the former leading to simple solutions that can often
be obtained analytically, allowing us to set up a perturbation theory around the
these ‘free” phase-space trajectories in orders of the particle interaction.

¢ This perturbation theory is formulated directly in terms of the correlation func-
tions of the macroscopic observables, in which we are ultimately interested in,
and a response field. The important point we want to stress is that no phase-space
information has been integrated out in order to write down the perturbative expan-
sion. Summing up all terms of the perturbative expansion is thus equivalent
to calculating the expectation values of macroscopic observables with the full
solution of the Liouville equation (2.81), thereby retaining all the information
about the correlations between the microscopic degrees of freedom.

We see this as a quite remarkable result. The task of solving a very complex partial
differential equation can be reduced to the calculation of normal integrals which then
have to be summed up according to (2.58).






INITIAL CONDITIONS

In the previous chapter 2 we defined all core elements of SFTCP. Implementing the
dynamics by finding the free propagator and the interaction potential is usually a
rather straightforward exercise due to the Hamiltonian nature of the equations of
motion. This is more complicated in traditional formulations of kinetic theory like
hydrodynamics, where the equations of motion are directly formulated in terms of
the macroscopic fields and thus take the form of partial differential equations instead
of the ordinary type found in Hamiltonian mechanics. In contrast, the problem of
initial conditions is easier to handle in these macroscopic approaches since naturally
one has only information about these macroscopic observables and not the actual mi-
croscopic phase-space coordinates of the constituting particles. As already explained
in section 2.2, we will thus need to set up the initial phase-space probability density
P(x1) in such a way that if we reconstruct some macroscopic variable A(x) from
the microscopic phase-space information of the theory, their expectation value at the
initial time agrees with the known or observed value as

(Al,) = / ax P(x0) AxD) £ 4% (3.1)
In the language of statistics we would require that the A(x) are unbiased estimators
of the initial data. In this chapter we will show how one can construct P(x(V) in
the case of point-like particles. Much of our effort will be devoted to treating the
case where the only initial information we have are the correlations of a combined
density-velocity Gaussian random field.

3.1 POISSON SAMPLING

We will assume that at the initial time we know the macroscopic mass density field
pl(qlq)(LT) and the momentum field T1% () of some total mass M distributed over the
volume V. We want to sample this distribution with N identical particles of equal
mass m confined to this volume V. We are free to choose N and m to our liking as
long as we fullfill the constraint Nm = M. We define the macroscopic particle number
density field pV)(7) = m_lpr(fl) (4). We can construct an initial phase-space probability
density P(x1)) for these particles such that (3.1) holds for o) and TI%). To achieve
this we go through all particles and place them randomly somewhere in the volume
V and then assign to their momentum the value of the momentum field at that point.

The positioning of each particle is considered a statistically independent random
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experiment with the probability to place the particle j in the infinitesimal volume
dfij(l) around the point (7].(1)
thus

being proportional to the density field at that point and

~(i)y q=( 1
P dg = < p¥ (@) a7 (32)

From this we see that the probability to find a certain particle j inside some subvol-
ume AV of V is

P(particle j in AV) / dg W o) =p (3-3)

and thus the same for all particles. Because of this the probability to find an amount
k of the N particles inside AV must be given by a binomial distribution

P(k particles in AV) = <I]\J> pF(1—p)NFk. (3-4)

If we make the volume AV very small p will tend to zero. If at the same time we make
the number of particles N very large such that the expectation value (k) = Np stays
constant, then the above binomial distribution will turn into a Poisson distribution.
This is the reason why this process is often called Poisson sampling.

Since we want the particle j at § j(i)
to the full phase-space coordinates

to have the momentum I10) (7 j(i)) we extend (3.2)

7)(9—6]‘(1)) dfj(l) — 73(‘7]'(1)/ ﬁj(l)) dq’j(l)dr—;j(l)
1 4,26 G) (i) ~() =0
= PG oo — 119 dg N dp (3:5)

Because we assumed that all particles are placed independently we find for the phase-
space probability density of all particles

P(x HP U5 a7 ap) (36)

We now want to confirm (3.1) for the density and momentum fields. We need that

/ 47" (7) = N . (3-7)

This was already used to normalise (3.5) and thus (3.6). The density field was defined
in (2.37). We therefore find

. . ; . i
@u(7,1)) = [ ax P(x) @y (,8) = [da¥ P(a) Y- dn(7 7"
j=1

N
- (i - o 1 i) /=(
=Y [diVen@-7") 507"
=

@Y~ =r"@) (38)

=1



3.2 POISSON SAMPLING OF CORRELATED RANDOM FIELDS

The expectation value of the macroscopic momentum density field (2.87) at the initial
time is found to be

=1

. . — R . . N S . NG
<q>n(q', ti)> — /dx(l) P(X(l))q)n(q, H) = /dx(‘) 'P(x(‘)) Z pj( ) op(7 — ”/j( ))
]
N

. — /- N : = (i
— o0 () 119 (7) Y N = oW (7) T10(7) . (3.9)

(3.10)

We thus have shown the relation (3.1) to hold for both the macroscopic density and
momentum fields if we use the Poisson sampling method to set up P (x()). While the
simplicity of the approach is appealing one should be aware of the fact that there are
situations which it cannot describe correctly. One such example would be particles
which have a ‘hard core” which means that each of them has a spherical region of
radius ro around their position g; that may not be entered by any other particle. A
sampling process for this kind of particles would need to make sure that the distance
between the positions of two particles is at least 2r¢ and this is clearly not the case
for the independent Poisson sampling.

3.2 POISSON SAMPLING OF CORRELATED RANDOM FIELDS

So far we have assumed that we know the actual initial mass density and momentum
fields. There are however many cases where we do not have such information and
must consider both these fields as random. We may know the full probability density

for these fields or only some of their connected correlation functions, i. e. cumulants.

The question is how we can imprint these correlations onto the initial phase-space
distribution P (x(V). A straightforward way can be found in Peebles [44]. Consider a
random initial density field with mean

(P (@) = n@) (3.11)
and an initial autocorrelation function &V defined by
(p(@)p(@2) ) = (@) (@) (1480, 3)) - (3.12)

It is important to note that the averages in this case are taken over realisations of the
random density field p(). We now pick one such realisation and perform a Poisson
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sampling of it. For two particles a2 and b, the joint probability to be at positions E/’a(i)

and 17151) is then according to (3.6) proportional to

PG, 7)o« pV(GD) 00 (70) a7V ag, " . (3.13)

We now average this over the realisations of the random field and obtain a mean
probability density for the particle positions

P, a0 «n@) @) (1+¢9@0,q")) i dg” . (3.14)

We see that due to this averaging the correlations of the random density field have
been imprinted onto the probability density of the particle ensemble. We now want to
make this approach more general. Fig. 3 shows the two-step structure how the canon-
ical ensemble is set up such that it represents systems which are initially described
by a combined random density-momentum field (o, T11)).

Random field P (o, T11)

Pick realisations

Realisation

Realisation
(p(i), H(i))n

Realisation
(p(i), H(i))1

Poisson sampling
of realisations
@1, Of.,0

Xp; Xty

(i) (i) (i)

X11 Xl, le ................

1.,
le Ji Jm

o]..[0

Members of the ensemble

Figure 3: The two-step sampling process defining the canonical ensemble at the initial time.
The continuous average [dx(®) [ddP(x(),d) = [dI; corresponds to the limit
n,m —» co.

We introduce the shorthand notation

P]@ = P(i)@j(i)) and ﬁj(i) = ﬁ(i)(_’j(i)) . (3.15)
Every particle is now assigned an initial data vector
A )
di = ﬁ](i) = d=4d;0¢, (3.16)
j

which is again collected into an initial data tensor d with obvious reductions to the
oW and TI® subspaces. The probability density for the initial data random field
(o, I1() to be realised with the values of the above data tensor is then assumed to
be given as P(d). Taking an average over the ensemble members then corresponds to
taking an average over the combined probability density P (x), d). Using conditional
probabilities, we can take the average over the second level of Fig. 3 as

P(x) = / ddP(x,d) = / ddP(xV|d)P (d) , (3.17)
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where we dropped the bar on P on the LHS since we only used it to signal the
averaging in (3.14). Note that this also includes the case where one or both of the
fields are known deterministically if we fix them with Dirac delta distributions in
P(d). With regards to normalisation we see that if the sampling probability P (x| d)
conditioned on a single random field realisation is normalised in the sense of

/ dx® P(x¥| d) = 1 (3.18)

and if P(d) is also normalised, then P (x)) in (3.17) is normalised. Note that the con-
ditioned sampling probability does not necessarily need to be chosen as the Poisson
sampling in (3.6). However, if we choose Poisson sampling we find

i o A R W R
~ [ap [an® (H 01 oo —n§>>> P(d)
i=1

= [dpt ( p]) [ an® o (e — 1) P(p0, 1)

= <H/dpj('i) NP]('i)) P, pY). (3.19)
j=1

This is a properly normalised phase-space probability density if we use a normalised
P(d), since (3.6) obeys (3.18). We now have a very general result. We can for exam-
ple describe the initial state of our system as an ideal gas if we use a uniform mean
particle number density p in configuration space and a Maxwell-Boltzmann distri-
bution Py,, i.e. an uncorrelated centered Gaussian distribution, in momentum space
with the momentum dispersion ¢, = 0,,(T) set by the temperature T. The initial data
probability then reads

P(p®,p") =TT oo} - p) P, (5" (3.:20)
j=1
and the resulting phase-space probability density is

H / aol” <o oolp) — ) P (5)

( > H V‘NH , (3.21)

where we used that p = N/V in a canonical ensemble. This example obviously
does not involve any kind of correlation. We will now move on to similar but more
complicated initial conditions which do include correlations and will be used for the
remainder of this thesis.

3.2.1  Phase-space probability density for Gaussian random fields

An n-component Gaussian random field f (7) is the generalisation of the multivariate
Gaussian distribution to fields and is defined as follows. For any number of points
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71,...,7y in the domain space of the field, the joint probability that the field takes on
values f(71),..., f(7m) is given by

PUE) oo flF) = i ep {5 (= BTC MG -D ) 22
with tensors
f= if(?i) ®¢ and f= if(?i) ®€;, (3-23)
i=1 i

where é'j in this case has m components. This distribution is fully defined by its mean
field

5

(f@) = f) (3.24)
and its covariance matrix

C=((E-DHeE-D). (3.25)

We will limit ourselves to homogeneous and isotropic Gaussian random fields. For

these the mean field is constant in the domain space, i.e. f(§) = f and any submatri-
ces of C describing the covariance of the field between two points §; and 4> may only
depend on the distance

((Fr) = F) o (F7) — F)) = Ca(fi 7). (5.26)

We will take the combined density-momentum field to be a homogeneous and iso-
tropic Gaussian random field with configuration space as the domain space of the
field. This might seem a rather arbitrary choice at this point. It is however a natural
choice for cosmological structure formation as we will explain in part ii of this thesis.
But even aside from this physical motivation the Gaussian distribution is often used
as the zeroth order starting point for perturbative approximations to the unknown
distribution of some random variable where one only knows a few cumulants, with
the Edgeworth series being a prime example. Having an exact solution to the Gaus-
sian problem should thus be of some general value. Due to homogeneity, the mean
of the density field is the mean particle number density

(V@) =p=7. (327)

This allows us to rewrite the density field in terms of the mean particle number
density and a particle number density contrast

oV@ =p (1+69@)  with  (s9(9) =0. (3.28)

The second property follows directly from (3.27) and the normalisation of the Gaus-
sian distribution. Conservation of mass also directly implies

M= [dgoll@ =mpv — [da7s@) =0. (3.29)
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We can now describe the initial conditions of our system in terms of pairs

) 50 o
dj = ( ) ) with o =50(7"), (330)

which get collected into the tensor d as shown in (3.16). Due to isotropy there may
be no preferred direction for the momenta of particles, i.e. no macroscopic overall
particle flow, in the system and we thus have a centered Gaussian random field with
respective mean and convariance matrix

(d)=0, C=(dwd)=C(q"). (3-31)

Although the initial data vector (3.30) contains the initial momenta, the covariance
matrix will only depend on the initial positions q(i), since due to (3.15) and (3.19) one
must read (3.30) with g ].(i)
(3.19) now takes the form

_14T~-1
< /d5] 1 1+(5(1))> exp{ 7d*C d}
j=1

\/ ()N detC

N i i ex —lchild
—yN (H/d&}) (1+5}))) p{> b (3.32)
=1

\/(Zn)(‘”l)N detC

=19 (g ].(i)) in mind. The phase-space probability density

It will prove a lot more convenient to work with the Fourier transform of the Gaussian
probability density, which is also called the characteristic function

—1d'cld
\/(@m)@DN detC

where the Fourier conjugate t can naturally also be separated as

- . o ts.
t= t]' ®e]' with t]‘ = ( ?/ ) ’ (334)
Pj

with obvious restricted quantities t; and t,. Using the inverse Fourier transform (1.25)
we can rewrite (3.32) as

Px) = v~ /2n e (H/dé 1+(51)>exp{—;tTCt} . (3.35)

With the covariance matrix no longer appearing as its inverse in the exponential func-
tion we can now easily split it up into contributions from the §() and V) subspaces.
We start with

C= <(o?j®e7)®(5}<®€k)><( ff((i:) ) ®< f’g(i:) >>®(Ej®€k)

pi Pr
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(i) 5@
[ §ana) < > oE,
(s f
j
Css, CF
= 2 T e Ejx = Cix ® Ejx . (3:36)
CP]'(51< CP/Pk

>T'/.:\
\/
PSS

-Gl

W‘A
\/

Observe that Cy 4, is a scalar whereas Cp,, is a d X d-matrix. We can give some general
statements on the entries of Cj; due to the homogeneity and isotropy of the Gaussian
random field.

. (_f(;],pk = 0 for j = k. If the momentum of a particle was correlated with the
density at its position, there would be a preferred direction for the momentum
field contradicting isotropy.

* (Cpp)av = 0 for a # b, else it would be possible that for example ina d = 3
dimensional space, particle j having a certain momentum in x-direction makes
it more or less likely for particle k having a certain momentum in y-direction.
This again would lead to a preferred direction in the initial momentum field.

* Due to the homogeneity expressed in (3.26) and the previous two arguments,
for j = k both Cp, and Cj must be diagonal matrices which are spatially
constant. Isotropy then further dictates that Cpip; = 0';; T4 with some constant
velocity dispersion o,.

The next step is to write out the argument of the exponential function in (3.35) as
— — T — -
t'ct= (Foa) (CroE) Hod) = Fod) ((Ch) o (E@)
= (E'Cyhi) (&' Epar) - (3.37)
With the help of (1.3) we find
(@ Ex@) = (84i(60j00k)001) = Gij0u (338)
and thus
t'Ct = (?iTCjk?l) 51']‘51(1
= ETCixt = t5,Cys,ts, + ts,Copy - Fpe + By - Cote, + fy Copilp,

- = >T N
= t(sjc(sj(sktg;k +2 tg;],C,;jpk . tpk + tijPijth , (3,39)

where we have used (_fp],(;k = éékpj and exchanged the summation indices in the last
line. In analogy to (3.36) we now introduce the matrices

Cos = Cojo ® Ej Cop = éafpk ® Ej Cop = Cpine @ Ejik (3-40)
and can then express (3.39) in our tensor notation as

t'Ct = t; Costs + 2t Copty + £, Cppt - (3.41)
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We insert this back into (3.35) and rewrite
. dt : Q) 1
i —-N P i(ty, T
’P(X( )) =V / (27-L—>dN e <t;7 P >exp {_thcpptp} X
/ (27T)N exp {—2t5 C(s(st(; — t5 C§ptp X

N . . -
(T s (1) ") 642
j=1

We will now solve the integrals in this expression line by line starting with the third
one. We find

. N . ) ) ;
( /dé 1 Jr(5(1)> ol(tsd) _ H/Cw](l) <1 +(5](1)> elt5j5;>
j=1 i=1

e /dzj(—i)aaeitéfzi

dp(ts;) (3-43)

where no Einstein convention is applied in this calculation. We substituted zj = 1+

0 }i)) in the second line and introduced the tensor 1 = ij\il 1 ® ¢; in the last line. We
use this result to write down the integral in the second line of (3.42) as

dts Lt T - NH
AN N N d 1 T T :
= (—1) (—1) /dt5 (5[)(115) | | % exp _Et(S Cssts — t5 C(Sptp —1 <t5,1>
i j

(3-44)

ts=0

In the second line we performed N integrations by parts to move all derivatives
from the Dirac delta distributions over to the exponential factor. The boundary terms
vanish due to the Dirac delta distributions only picking out contributions at t; =
0. In order to see how we can systematically evaluate the derivatives in (3.44) we
abbreviate the argument of the exponential as A and look at the effect of the first
three derivatives which we also abbreviate as d1,d>, d3. We then have

192938 = 919, (eA(agA)> = (eA (9,A)(3;4) + eA(8263A)>
= (eA (alA)(azA)@gA)) + (eA (8182A)(83A)> + (eA(azA)(alagA))
+ <eA(81A)(8283A)> + (eA(alazagA)) . (3.45)



48 INITIAL CONDITIONS

However, we know that A depends on the {5 only up to quadratic order, so any of
its third order derivatives vanish. We will thus only need to consider

d

1 T T . . =4 —
yéj <_2t5 Cssts — t; C&ptp —1 <t(51 1>> —1(1 — 1C5jpn . tpn) , (346)

t;=0

= —Csq, = (—i)zcéjak - (3.47)

Jd 0 1 .
—_— <—th55t§ — th5ptp —1 <t5,1>>
t5=0

Ay oty, \ 2

From these two equations we see that every derivative leads to a factor of —i and since
every term in (3.44) consists of N derivatives the prefactor iV is canceled. Starting
from (3.45) we find by induction that the entire expression (3.44) takes the form of
the polynomial

N9 1 .
C(tp) = (H a) {—Ztgclglgt(s — th(;ptp —1 <t5, 1>}
1

ts=0

N N
= H 2 Oupm tlf’m + E C5i5j H I—i 2 C51Pm th
m;zén

=1 {ijy  {ny m=1
N = —
T E Co5;Cara H I—i Z Copu " tpu | +--- (3-48)
HijrAklry {n}’ ;1”17:&111

The fact that in every term of C each particle index that originates from one of the
derivatives may only appear once has numerous consequences. The first is that the
sum ) ; iy runs over all distinct pairs of particle indices. For example {1,2} and {2,1}
are not distinct and thus only one of them appears in the sum. Which one is used
is arbitrary due to the symmetry of Cysy,. On the other hand, {1,2} and {1,3} are
distinct. The second consequence is encoded in the prime on the index {n}’ of the
product in the second term. It means that the indices i,j of the preceding sum are
excluded from the product for every term of the sum. The restriction n # m on the in-
ner sum is in contrast the consequence of éénpn = 0. In the second line we now have a
sum over the distinct 2-tupels of distinct pairs. We call n-tupels {{i1,j1},...,{in, ju}}
of pairs distinct in the sense that for the example of the 2-tupel, {{1,2},{3,4}} and
{{4,3},{2,1}} are not distinct, while {{1,2},{3,4}} and {{1,3},{2,4}} are. Since
any particle index may appear only once no particle index may be shared between
any two pairs of an n-tupel, i.e. {{1,2},{2,3}} does not occur. This is again encoded
by the prime on the tupel. The prime on the product index now means that for every
term of the sum over tupels of pairs all four indices i, j,k,[ in the union of the pairs
are excluded. This scheme continues until there are | N/2] factors of Cy,g;.
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We stress that C(t,) is a quantity that is purely polynomial in the Fp]. and conse-
quently also in t,. If we now insert C(t,) into (3.42) for the last two lines, we can
rewrite the initial phase-space probability density as

. _ dt it pd 1
PxV)y=v N/ (zﬂ)pdN el(tp >C’(tp) exp {—2tgcpptp}

_ dt J : (i) 1
_y-N 4 i(t, T
=V / (27r)N (C <iap(i)) el >> P {_thC”Pt”}

_ 0 dt . () 1
— N p 1<t P > 4T
voe <iap(i)> / 2™ ¢ eXp{ 2tPCP’”t’”}
7N . .
= ‘;N ¢ <iaa(i)> exp {—;P(‘)TCEJ P(I)} : (3-49)
(2m)4N det Cpp p

This is our final and exact result for the initial phase-space probability density of a
canonical ensemble of N particles in a volume V representing a combined density-
momentum field which is a Gaussian random field. If we compare this with our
result (3.21) for the ideal gas we can make some interesting observations.

* The uncorrelated Maxwell-Boltzmann distribution P, for individual particles
has been replaced by a joint multivariate Gaussian distribution containing cor-
relations between the momenta of all particles. If we turn off the momentum
correlations between different particles, i.e. Cpp, = 0 for j # k, then according
to the arguments following (3.36) we reduce to the Maxwell-Boltzmann case.

¢ The uniform distribution of the particles in configuration space has been re-
placed by a statistically homogeneous distribution with correlations between
particle positions encoded in the density correlations Cy,, which appear in the
polynomial C. This polynomial also contains the cross-correlations between po-
sitions and momenta of different particles encoded by the density-momentum
correlations 651. Pe

e The derivative d/9p!) always appears together with the cross correlations and
takes down factors of pure momentum correlations. This allows for density cor-
relations between two particle positions to be mitigated through momentum
correlations between intermediate positions. If we turn off all correlations in-
volving density in addition to the momentum cross correlations we fall back to
the ideal gas case.

3.3 GENERATING FUNCTIONAL FOR A GAUSSTAN RANDOM FIELD

We now want to insert our result (3.49) for the initial phase-space probability density
describing a Gaussian random density-momentum field into the canonical generating
functional (2.54). As a first step we will show that the generating functional can be
brought into a form where the effects of initial correlations are expressed as operators
acting on the generating functional of an ideal gas. In order to organise the various
terms in these operators more easily we will introduce a simple yet very effective
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diagrammatic language. After that we will combine these diagrams with a technique
called the Mayer cluster expansion which allows us to treat the combinatorics of the N
correlated particles in a systematic way. The result of the cluster expansion will be
crucial for calculating the grand canonical generating functional later on.

3.3.1 Initial correlations as operators

We first write down the full canonical generating functional

A . 0 1 T .
_ i iH-® () y/—N _ i) c14(0)
Zc[H,J, K| = e¥le /dx VN, C (iap(i)> exp{ 5P C,pp }

< [ Dx [ Dxexp {i(Solxx] +J-x+ K20}, (3.50)

where we defined the normalisation factor for the Gaussian momentum distribution
as

1 .
Ny = = N,(q). (3.51)
(27r)4N det Cpy

In order to make any progress we need the explicit dependence of the second line in
(3.50) on the initial phase-space coordinates. We obtained this solution in (2.67) and
we remind the reader that

215, = [ Dx [ Dxcexp {iSobxxd +7-x+K X))

= exp {i/dt <J(t),g(t, K) x(i)> —i/dt /dt’ (1), 6(t, t’)K(t’)>}

ook
(3.52)
is an exact equality for the purely dynamical and unaveraged part of the free N-

particle generating functional. For the following calculations it will be convenient to
define the ‘time-averaged’ sources

te tf
o= [dIOTG(t) Py and T, = [dtIOTG(E) Py, 65
t; £
where the projection operators
7z
Py = “1®ZIy and P, = i ®In (3-54)
04 1,

take care of selecting either the position or the momentum subspace. With these we
can rewrite

te
Jat (30,9(t6)x7) = (J,.a%) + (3, p®) - (355)
ti
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The generating functional then takes the form

Zc[H,J,K] = eiSAIeiH'é/dq(i) /dp(i) ﬁf,c <iai(i)> exp {—;p() Cppp()}
X exp { <Jq, > +i <]p, > —1iSk]J, K]} . (3.56)

Our first step is to perform the appropriate number of integrations by parts to move
all derivatives w.r. t. the initial momenta p(!) in the polynomial C from the Gaussian
exponential containing erpl over to the phase factor containing J,. For each instance

of p) we pick up a minus sign in the process. All boundary terms are taken at
infinite momenta and vanish becuase C;p] is positive definite and so must be all of
its two-point submatrices, since all of them define Gaussian random fields. On the
boundaries, the Gaussian exponential will thus always tend to zero faster than any

divergent term in the polynomial C and the phase factor ¢{"?") has an absolute
value of unity. Once all derivatives have been transferred we may execute them to

find
/dp(i) exp {i<jp, >},/\/ C (18§()>exp{_;p() Cppp()}
_/dp (-1p) exp{ <]p, >}N exp{ Zp() Cpplp(i)}

:C(_jp) eXP{—ZﬁCppjp} . (3-57)

In the last line we performed a Fourier transform. This has two convenient conse-
quences. We get rid of the normalisation factor ), and the momentum covariance
matrix Cp, now appears linearly in the exponential. In the N dimensional space of
particle indices, we now split this matrix into its diagonal and off-diagonal part as

6= (LAL)onomi= (GL) et Lamem. G
j=k  j#k j#k
We define the momentum cross-correlation matrix
Cpp = ;{ Cpime @ Ejk (3-59)
]

and rewrite the Gaussian exponential

1. . 1y T
exp{—zﬁ;cpp]p} :exp{_ J};C;plp}exp{_zj}; (Ui%Id@IN)JP} - (3:60)

For the second factor containing the diagonal part, we now reverse the Fourier trans-

form
(1) (1)
1 eXp { <p 2(712 > } L (1)
exp{ 2] (0’ TiR®IN ]p} /dp 27[02)011\1 exp {1 <]p,p >}

= / dp® Py, (pW) exp {i<7p,p“)>} . (360)
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We have identified the Maxwell-Boltzmann distribution Py, This should not be a sur-
prise since we started from a Gaussian random momentum field and just separated
off the diagonal part which in the homogeneous and isotropic case is unaffected by
correlations and must thus reduce to the special case of a Maxwell-Boltzmann distri-
bution. Reversing the Fourier transform might seem to be a step backwards since it
reintroduces an integration we already got rid of. We will see in a moment why this
is desirable. Let us first write down the complete generating functional in its present
state

LA g A _ 1.
ZC[H,J,K] _ e151e1H.‘DC (_Jp) exp {—];1; ]p} /dq /dp NPUP p())

X exp{ <JIJI > +1<Jpr > _ISK[]/K]} . (362)
For the final step we first need to recognize that
) . y
0K, (1 )exp{—lsk[] K]} = (5K exp{l/dt/dt (J(t) )>}

= (i/dt /dt’](t)Tg(t,t’) Py op (t’ti))
X exp {1/ dt /dt’ (J(1), 6t tl)K(t/)>}

= —Jyexp {—iSx[J, K]} , (3.63)

and we can consequently write

- 1. -
¢ (T exp { =55 G Ty pexp {-iul1. K]}

¢ () e {4 () o () oo o020
(3.64)

where the hat on C signals that we now have an operator expressing correlations. We
define a total correlation operator

and can now rewrite the generating functional as
ZC [H, J/ K] — ei§1e1H~<i> / dq(l) / dp(l) C,\totviNPap (p(l))

xexp {i (Tp,a®) +i(Jpp®) -8 K] }

_ eiS:,eiH-ﬁ)CAtot/dq(i) /dp(i) VfNPap(p(i))

X /Dx /Dxexp {i(So[x,x] +J - x+K-x)} . (3.66)
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We have used (3.55) and then (3.52) to reintroduce the path integrals. It is at this
point that reversing the Fourier transform in (3.61) pays off. Without it we could not
have reobtained the second expression since we would be missing the integral over
initial momenta and the corresponding phase factor. The advantage of the second ex-
pression is that we may now again freely exchange functional derivatives w.r.t. the
sources J,K with x, x. This has been used implicitly to pull the correlation operator
out in front of the integrals over initial phase-space coordinates. To do so we have
assumed that all three two-point correlation quantities C(gigj,é(sipj,cgmj are analytic
functions and replaced their dependence on the initial positions by functional deriva-
tives as

i) -G A J 4

C515‘(7'( )/ Ei( )) — C(Siﬁ' s A ’ (367)
e "\ 107 (1) 1§]qj(ti)

turning all three of them into operators in the process. In contrast, when perform-

ing the Mayer cluster expansion later it will be convenient to express everything in

terms of x, x and turn off the sources J, K temporarily. We now define the canonical

generating functional of an ideal gas as

ZE(H,J, K] = e / dx® VNP, (p) / Dx / Dxexp {i(So[x, x] +J - x+K-x)}

(3.68)

and can thus write the canonical generating functional of an interacting gas whose
initial density and momentum field is a homogeneous and isotropic Gaussian ran-
dom field in the very concise form

ZC[HI]/ K] == ei§1 étot ZICd[H/JI K] . (369)
With this very nice result in hand, a few remarks are in order:

e The fact that the covariance matrix (3.36) and all correlations therein do not
depend on the momenta of the particles but only on their position was crucial
in deriving the above result, especially for the steps in (3.57). As mentioned
before this relates to the fact that we assume to know the initial momentum
field of the system. If it is not possible to describe the initial state of the system
in such a way, finding an analogue of (3.69) is potentially much more difficult.

¢ In treating the initial correlations we repeated the same logic that we used for
the interactions between the particles: Identify the source dependent generating
functional of a system that we can treat exactly and obtain the case we are
actually interested in by acting with operators which induce the corrections to
the exact case. By identifying some ordering parameter we can then also treat
the initial correlations in a perturbative manner.

¢ Note that we could have included the self-correlation of the particle momenta
into Cot. The exact case would then be a collection of particles uniformly dis-
tributed in space but without any momentum since we would need to replace
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the Maxwell-Boltzmann distribution as Pap(p(i)) — op(p). We did not do so
because the ideal gas is the standard starting point in perturbative approaches
to treating the exact dynamics of a collection of particles. Furthermore it elim-
inates any self-correlations from Ciot which will be convenient for formulating
our diagrammatic language for the initial correlations.

* We already mentioned in section 2.5.1 that the source K allows us to generate
deviations from the free trajectories of the particles. It is thus not surprising that
Ciot is defined in terms of functional derivatives w.r. t. K, since for an isolated
system any initial correlations involving the momenta of particles must come
from earlier interactions between the particles.

3.3.2 A diagrammatic language for initial correlations

When calculating correlators or cumulants of collective fields we still have to treat
the initial correlation operator Ciot on the level of all the individual particles for
each of its terms. While one can identify certain configurations of the three differ-
ent correlation quantities defined in (3.36) that will give the same contribution due
to the integration over the initial positions of all particles, it quickly becomes so cum-
bersome to identify and count these configurations by actually writing them down
that it just is impractical to do so for higher order correlations. We will thus intro-
duce diagrams representing the three different kinds of correlations Cs,,, (_f‘;jpk, Cp,p
and deduce rules how we may combine them from the form of Ciot. The resulting
compound diagrams will make it much easier to identify equivalent configurations
visually and count them using topological arguments. We start with the Gaussian
exponential part in (3.65). We rewrite it in terms of individual particles as

oL () 5 ()

T
0 A )
=T [1+ [exp —<_,> C <_,> -1 . (3.70)
{jk} l(SKpj(ti) PiPk l(Ska(ti)

We used (3.59) in the second line and the symmetry Cp,, = Cp,p, in the third line.
The pairs {j, k} are again those which are distinct in the same sense as explained
following (3.48). In the last line we inserted a zero into every factor of the product.
We now define our first diagram as the operator valued quantity

T
A 0 A o
Cp.p = €X — | —==—— CX, — — 1= e-—-e | 71
PiPk p (15Kp](t1)> PjPk (HSka(tl)) ] k (3 7 )
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The dashed line represents the general form of the operator and the dots represent
those particles with their indices for which this general operator form is evaluated.
Next we write out the last line of (3.70)

Il (1 + Cpipj> =1+ ) Gt Y CopCon
{ij} {ij} HijbAkI}
+ B Crip Coep Cppn + -+ (3.72)
i Ak 1} {mn} 3

This way of rewriting the Gaussian exponential is actually the first step in performing
the Mayer cluster expansion discussed in the next section. Just like for the correlation
polynomial defined in (3.48) we again encounter sums over distinct n-tupels of dis-
tinct pairs. The only difference is that we have another, less restrictive exclusion rule
encoded in the star on the tupel. It means that only equivalent pairs are excluded. For
example, in (3.72) there are terms like éP1pzép2P3 but a comparable term Cs,s,Cs,s,
does not appear in (3.48). In our diagrammatic language we would write (3.72) as

[T{14 o= ] =14) e+ ) eme x o
{m‘}( i ) T S T3 w3} S A B

+ oomme X emme X eem-e (3.

{{i,j},{k%{m,n}}* gk b men o7
We now want to rewrite the somewhat inconvenient sums over n-tupels of particle
pairs into sums over distinct m-tupels {iy, ..., i, } of particles. We thus need to make
explicit how many particles are actually present in each term of the sums. This can
be done by going through all possibilities how indices of the different two-particle
lines can be identified with each other. In the diagram language this means that we
have to collect all possibilities how we can glue the two-particle lines together. For
the double sum in the first line of (3.73) we have to distinguish three principal cases
of topology:

k
oo X eme = Ty, eoece X eeee = SN
iy Tk ko
i
k.1
*-----0 X o&----eo — . .
e (3-74)
i

Note that for the third case we implicitly understand a product sign to be present
between the two disconnected parts of the diagram on the RHS. The rule encoded in
the stars in (3.73) excludes equal pairs of particles and thus the corresponding first
subdiagram in (3.74) may not appear in any term. We formulate this as a general rule
for drawing any kind of diagram involving the line type defined in (3.71).

p-LINE RULE : Any pair of distinct particles i and j may at most be connected by

one C pipj = o0 line. This means that the subdiagram g(:m), is forbidden.
i j i
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The complete double sum can then be written as

e----e X e&----e — Z ,/I \\\ + // + \\‘
RC 203 COL D A SR 1y S0 P A ARG

Ik Ik Ik
*---=--0 ? ? .\\ ,,.

+ + i i + :"\’ s
O e T R
L L] L]

(3-75)

where the sums over three-tupels {i, j, k} and four-tupels {i, j, k, I} run over all distinct
tupels in the same sense as for pairs. For example {1,2,3} and {2,1,3} are not distinct
while {1,2,3} and {1, 2,4} are. Taking the sums only over distinct tupels has the effect
that we have to draw diagrams that are topolocally equivalent in order to include
all possible cases for a certain n-tupel. This might seem cumbersome but it has the
advantage of making the combinatorics directly visible. We now also see why we
did not include momentum self-correlations since these would result in lines starting
and ending at the same particle, i.e. ‘*. This would inflate the number of diagrams
we need to draw considerably. For the triple sum in (3.73) we have to distinguish the
following topological cases:

k
I’\
eose X eeeoe X eeeeme = S
i gk ki N
i
l k
-y
----—-9 X o----9 X e----e — i
i ] j k k [ —d
i
l k
* i
T I T
i j i l i k Yo
i
k m
I.\ T
*-----o X *-----o X e----e — I/' ‘\‘ H
ik ko1 m N
i il
J 1 n
v
-0 X &-——-0 X e--——e — | I 1 76
R R R R S 570
i km
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Of course there are more possibilities but they are all forbidden by the p-line rule.

Just like for the double sum (3.75) we would now draw all possible ways to achieve

the above topologies and then sum over the respective distinct n-tupels of particles.

This process has to be repeated for any order of correlation lines up to LN / ZJ. By
combining the results from all those cascaded sums one finally finds

S
I1 <1+ .*----*.) =14+ ) ee k) | SN+ S+
{i} P L R R (775 B S A
L L L
k Ik Ik Ik
/" *-----9 T T o /o
+ /N [+ Y +i 4
foocv | {ijkl} | eeeme 4 b6
Lo L L] L]
Ik 1 k Ik Ik 1 k
o B e JUNE e SN S BN N
+ e + i
o—————-i l i l—————-o l—————-i i \i
i j i ] i j i j i j
l k l k l k l k l k
e S T S N
+ 0t + + 0 N
Ik’ i ‘I—,———-o o————\—\b IU-’—,———-Q o-———\—\ii
i ] i ] i j i ] i ]
Ik 1 k Ik Ik 1 k
i BENE B s SN S B
T AT B N
O S S O G S (A S A
i j i j i j i j i j
Ik 1 k Ik Ik 1 k
o B v TN MU BN S
LR B I AN e + N
A SO . S N S
i j i j i j i j i j
l k l k l k l k l k
S AR i B A N T
NS S e e N R D G IR ¢
SN S ZA S G S 2V N
i ] i ] i j i ] i ]
Ik 1 k Ik
AT A
LI G i i G A i aRRR (3.77)
N 0N o
i j i j i j

While this expression is quite extensive we wrote it down explicitly up to 4-tupels
since it shows us that we can in principle obtain it by using the following simple
recipe: We go through all numbers 1 < n < N of particles and for each of them draw
all diagrams compatible with the above p-line rule and then sum over the respective

57



58

INITIAL CONDITIONS

distinct n-tupels of particles. Writing down the momentum correlations in this way
has the advantage that we immediately see the number of particle momenta that are
actually correlated with each other in any term, whereas the double sum in (3.72)
and (3.73) for example contains terms with three and four correlated momenta.

In much the same way we can now treat the correlation operator C in (3.65) in
terms of diagrams. For this we define two more line types

Coa = T (3.78)
A 5 )
Copp = —iCop ——— = (3-79)

0K, (k) ]k

We now want to rewrite (3.48) in the same way as (3.77), i. e. ordered by the number
of particles that are correlated. We first look at both types of correlations separately.
If we only consider density correlations we have

) Czsiaj =) o—r, (3-80)
{ij} iyt
Z CA(s,v(stA(skzs, = E > » X 1 ]
(i} k1Y ijp ey b ]

I k1 k1 k

=y + I I + >< (3-81)
S e I
g

and so on for higher orders. No topologies with connections between more than two
particles are possible due to the exclusion rules encoded in the primes. We can thus
formulate our next rule for general diagrams.

RULE 1 : No (f(gl.(;]. = e——e may be connected to another. All subdiagrams with
i
k
topology i are forbidden.
g

Note that although we never excluded them explicitly, density self-correlations Cj;,
for a single particle do not enter into the initial correlations due to the derivative

structure in (3.44). As for the momenta there is thus no Q subdiagram. For the
density-momentum correlations we need to consider

i "

=1 ! J
i

1=

—-e [ =1+
1t i
1

I
—_
—
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+... (3.82)

The linear term is slightly different from the linear terms of e-----+ and e——. The
sum runs over all pairs of particles with ordering of the particles taken into account,
i.e. both {1,2} and {2,1} are summed over. The reason is that the diagram is not
symmetric like the other two. We can still write it as a sum over distinct pairs by
adding both possible diagrams

% N oy <._ N _.> _ (3-83)

i—=1 7 G\t ]
VEall

Notice that we again have no self-correlation subdiagrams G, because they actually
vanish due to statistical homogeneity and isotropy of the system as explained in
section 3.2.1 For the quadratic term we must keep in mind that the indices on the
solid é-line only appear once in the product and thus we again have to sum over
distinct pairs {7, k}. The following topological cases are possible:

k
A ek S A N AVAY
i
k Ik
IR\ e~
— -0 X o—--0o — ! , —--0 X ¢&—--0o — . .8
k7 kO /N P kT (3:84)
i i

All topologies where two solid é-lines meet at a point are excluded due to summing
over distinct pairs, leading to yet another rule for drawing general diagrams:

RULE 2 : No ééipj = e—--« may be connected to another with the solid J-end. All
l J

k
»
subdiagrams with topology L/ are forbidden.

L
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With this rule in mind we write down the quadratic term ordered by the number of
particles involved

N N
—--0 X o&—--o
I
j#i 17k
P AL A
=Y >+ S+ N+ SN+ S+ 0\
{ZZ]} 1 \—)] {1,];(} ‘I———o. o‘———\b / \ z——o o———‘b‘
poojo1 i i g i ]
l’c\ /k /15 k |k 1k
+ /N + / o+ N+ N\ |+ +
/ \b. e é \ .——X {i,jk,1} ——-o o--——o
1 ] 1 ] 1 ] 1 i j i j
Lk Lk Lok L Lk L
+ + +1 0+ T +
VRO Y T S T A T
P b g b

k
» LY
N >< + N\ +>< . (3-85)
AT

Due to the less restrictive exclusion rules and the non-symmetric nature of the e—--e¢
diagram there are quite a few more composed diagrams to consider when compared
to the other two line types. Since for the cubic term the number of different topologies
is already quite extensive we will abstain from listing them. It should by now be
clear that we can find the complete expression for (3.82) in the same way as for (3.73),
i.e. go through all particle numbers 1 < n < N, draw all diagrams compatible with
Rule 2 and sum over all distinct n-tupels of particles.

Next we have to multiply each term of the sort (3.80),(3.81) and their higher order
equivalents with (3.82) with the rule encoded by the prime on the product index in
(3.48). For each term in the sums of (3.80),(3.81) it excludes all indices present in that
term from the product. For the product with the linear term (3.80) we thus have

N
— I+) o

(E ._.) 1+Z§1};—--;+ ﬁ% ];_";Xn.i_"ﬁ +...

b
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N

= Z ;_. + ;—0 X ]O<———o
{i.j} I ARy = J
N N
+ *~— X &—--0 X e—--

N = kK 17 m n
Ui dom}y =1 il J

and analogous expressions for the product with (3.81) and all higher order terms.
From this we directly see that this last exclusion rule can be transformed into another
rule for general diagrams:

~—~

T (3.86)

RULE 3 : No égl.p]. = e—--¢ may be connected to a Cgl.(;]. = e—— with its solid
L L
5
d-line. All subdiagrams with topology i/ are forbidden.
g
We may thus for example write the quadratic term in (3.86) as

N

——o X o—--o

wiryig © 4k

/k k\ k k k k
= /+ N\ + + /N + + /
P g i i

Ik Lk Lk Ik I k I k
k1) — e e I A
1 ] 1 ] 1 ] 1 ] 1 ] 1 ]
l k l k l k l k I k ! k
i N »
T I*T I+/<+>/+>\+\< : (3.87)
A A A ; i H j

We now may write down the correlation operator (3.48) in diagram form as

k

C=1+ s f e f e+ (> |+ / + .
{%(l Joor 7t ] l—)]> {i,JZJ;} —
L]
k k k k
+ / + .0+ / + .o+ / + .0+ /‘ +oo |+
i i 1] L

(3.88)
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To arrive at this expression we have written out all terms in (3.86) as in (3.87), done the
same for products with higher order terms like (3.81) and added (3.82) with every
term written out in the same way as shown (3.85). The dots behind the diagrams
stand for all diagrams with the same topology, for example the first dots stand for
the diagrams in the second line (3.87). We again see that we can obtain this expression
by going through all particle numbers 1 < n < N and summing all possible diagrams,
only this time using both line types «—— and e—--¢ and obeying the Rules 1,2,3
which combine into the

J-LINE RULE : No particle may have more than one solid J-line attached to it. All
subdiagrams with topology / are forbidden.

We now have expressed both factors in the total correlation operator Ciot Of (3.65) as
sums of diagrams which run over distinct tupels of increasing particle numbers. Both
these expansions have the form

C=1+ Y (s, o)

J-RULE
[T{1+ e ) =1+ ) (o), (3-89)
{i,i} 1 ] P-RULE

where the sums run over all possible diagrams for all particle numbers 1 < n < N
that can be constructed with the respective line type subject to their rules. The total
correlation operator Ciot is just the product of these two without any additional rules
so we find in a schematic sense

Ciot = C x H <1 + o )

{i,j} L

I
=
—_
+
g
~
X
—
—_
+
g
0
;
~

0-RULE, p-RULE

=1+ Z (._.’ —--o, o————--') . (390)

0-RULE, p-RULE

The total correlation operator is thus given by summing up all diagrams that can be
constructed from all three line types subject to both the é-line rule and the p-line rule.
To illustrate this we write it out for up to three particles:

Ciot =1+ s + e 4 e | e 4
0{%}<111711111‘)}

+O+(‘)+('3+5—))
Al B = 7

e =7 i i
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k k k

+ ) / + ...+ / + ...+ / + ...

{Liky | —e - e
i i i
k k k k
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& f.« i.« f;
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VAN A : L
i i i i

k k k k
+7 o SN+ )+
I¥———o 6/———\¥ I¥,———o (’———p
i j i j i ] i
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+‘,(/_ + +(/‘ xS AN
k k k k

+ \ +o L N+ S+
[ SR ———-e [ SR —
] ] ] =7

k k k k
. 2 2 »

+ +...+ SN+t SN +...+é_
A /____‘ /____‘_) >
= = 3

+ {5lines} + {6lines}> + Y ... (3.91)

{ijk 1}

The two-particle sum should be fairly obvious. The three particle sum is already a lot
more complicated. In the first two rows we have shown the individual three-particle
sums of (3.77) and (3.88). The third row then shows those mixed diagrams which
arise by gluing together the respective two-particle sums of (3.77) and (3.88) at one
particle dot in every allowed way. The remaining diagrams can then be obtained by
adding any number of lines to the diagrams of the first three rows while obeying
both rules until at six lines they forbid to add any more lines.
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3.3.3 Mayer cluster expansion of initial correlations

The Mayer cluster expansion [38] is usually used to reorganize the partition sum of
an interacting system in equilibrium statistical physics. Suppose that we have a gas
of N interacting particles in thermal equilibrium with canonical partition sum

2= (1100 fan )owd -5 (£ 5+ £ o la-5
:[H/dp]exp{ /sqf}] (H/dq]>exp ﬁ{%}vﬂ( — Zox1.

(3-92)

In the above expression Zj is the free partition sum of an ideal gas which can be
computed exactly, in contrast to the configuration integral I which contains the inter-
action potentials vj; between the particles. The basic trick of the cluster expansion is
now to rewrite this configuration integral in the same way we already did in (3.70)
for the momentum correlations. That is one introduces the so-called ‘Mayer functions’

fie=ePr—1 (3.93)

and obtains the same expansion for these as we found for Cp]-pk in (3.72). One then
hopes that with rising number of particles taking part in the interactions the terms
are of less and less importance and one thus only needs to calculate some lower
particle number terms to get a good approximation for the partition function. One
can also obtain the virial expansion of the equation of state of the interacting gas,
i.e. an expansion in powers of the mean density, from the Mayer cluster expansion
and directly obtain explicit expressions for its coefficients (cf. Landau and Lifschitz
[33])- .

It is possible to treat the interaction operator e’ in the same way which of course
leads to operator valued Mayer functions fjk. If one then introduces a new line type
one can treat both interactions and correlations together in one diagrammatic lan-
guage. This was done to first order in Kozlikin et al. [32]. While this approach might
allow for easier insight into the physical processes on the per particle level one has to
give up the interaction being formulated as acting between fields and not individual
particles. Since this latter feature is partly responsible for the self-consistent treatment
of the interaction in the grand-canonical ensemble we will not pursue this approach
any further.

The cluster expansion can be done in a very systematic way by introducing a dia-
grammatic language for the different terms just like we did in the last chapter for the
initial correlations. This is well described in Becker [11] and as such we will follow
the argumentation and notation used therein closely. For the purposes of this section
it will be more convenient to apply the operators Cio¢ and el ® to the generating
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functional of the ideal gas and thus again replace all functional derivatives present
in these two as
4 (i) g = (i)
T g and S g (3.94)
We now understand all diagrams to represent their respective non-operator coun-
terparts under the above substitutions. For example ._I.c now just means ng(;k
]

instead of its operator version defined in (3.67). Since no more functional derivatives
w.r.t. J,K are left over we can turn off these sources for now, since they are not
needed for the following steps. They will be reintroduced at the end of this section.
The free canonical generating functional then reads

ZcolH) = / dxD v=Np, (p@) / Dx / Dx Cror(q, X)) S0+ H®) - (5.95)

Our aim is now to factorise this expression as much as possible. The motivation be-
hind this is that factors which have the same ‘correlation structure’, i.e. the same
topology when expressed as diagrams, all give the same contribution to the gen-
erating functional due to the integration over the entire phase-space evolution. We
immediately recognize that with the exception of Ci all other quantities can easily
be separated into single particle contributions. For the various integral measures this
is of course holds by definition

N . .
dx(l) — I_Jlidq'](l)dr—j](l) , Dx= H’ij , Dx= HDX] . (3.96)
j=

The initial conditions of the ideal gas can also be separated in a straightforward
fashion as

_{p) p0) 7(0)2
N i B i . S O T
VR, (p™) =1 =TTV P, (5") . Gon)
j=1

VN /(@2raZ)iN =1V, /(2mo3)d

Finally we see from the respective definitions of the free action Sy in (2.30), (2.61) and
the collective fields in (2.34), (2.37) that we can also separate them as

N N
exp{i(So+ H-®)} =exp {i Z (So,j+ H - (,b]-)} = Hexp {i(Soj+H -¢;)} (3.98)

j=1 j

where we have the single particle quantities

te
S, = / dt /(1) &oF; (3.99)
ti

and

= [ P ) _ ( ép (71 — 4j(t)) ) “
it ( ¢s,(1) X (1) Vg 60 (1 — G;(h)) ‘ (3.100)

65



66

INITIAL CONDITIONS

We now define a trace operation
Trj = /dﬁ(i) /dﬁ(i) V’ll’ap(ﬁj(i))/l?fj /DX“jeXP {i(Soj+H-¢j)} . (3.101)

which contains all the ideal gas contributions for a single particle and allows us to
write down the free generating functional in the very concise form

N -
Zco[H] = (HTfj> Ctot(q(l)/Xé)) : (3.102)
j=1

We need to consider how terms in Cy factorize once we apply the trace operators.
It is obvious that one can factorize parts of a diagram if they are not connected
by correlation lines. For the example of some four particles which we label 1,2,3,4
without loss of generality, there is a term

4 3
Tri{Tro Tra T = | TriTry e—— | X | Tr3Try o---—-- . .10
r1Tro Tr3Try (rlrzl 2) <r3r43 4) (3.103)

*>—=e

For this particular term all other particles 5,6, ..., N are not correlated. We thus rep-
resent them as isolated dots with unity value, i.e. we have to understand all our
diagrams in the following sense

. = . H . (3.104)
! J l ] ki k

with obvious extension to higher correlation order diagrams. We now adopt the no-
tion that if any number ¢ of particles are connected in any allowed way by the three
types of correlation lines they form an ¢-cluster. For now we forget about the actual
lines furnishing the clusters and only care about the grouping of particles. We first
introduce the notion of a clustering configuration which is a set {m,} of numbers,
where m, is the number of clusters of size £. This does not specify which particles are
in which cluster. In our diagrammatic language we represent such a configuration
by visually grouping unlabeled particle dots with a clear spatial separation between
clusters. We could for example have

{m =N-=5my=1m3=1} = . *, (3.105)

where there are of course N — 5 isolated 1-particle clusters at the end. Any cluster
size not mentioned in {m,} is taken to be zero. We call this visual representation of
a clustering configuration a clustering pattern. Since there are only N particles any
clustering configuration must of course obey the constraint

N
Y ¢-my=N. (3.106)
=1
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Any clustering configuration {m,} has many different clustering realisations, where
each particle index is clearly assigned to one of the dots of the clustering pattern. We
denote these as [[1; c/1,...,Com,], Where ¢y is the jth cluster of size £ and so on. In
order to make this assigment unique we arrange the particle indices in a certain order
and this sequence then stands for a particular realisation. We then fix a bijective map-
ping between this sequence of indices and the clustering pattern. For the clustering
configuration in (3.105) we could for example have

3 :
(1,2,3), (4,5),(6),..., (N)] =

1 2 i

NI (3.107)

O\e

Once all particles are assigned we call the pattern fixed because exchanging any two
particles would correspond to another sequence of indices and thus to another clus-
tering realisation. For example [(2,1,3),(4,5), (6),...,(N)] is considered to be a dif-
ferent realisation. Each diagrammatic term in (3.91) can now be identified as belong-
ing to a clustering realisation. For example the following three terms all belong to

[(1,2,3),(4,5),(6),---,(N)]
3 5 3 5
I. N .\ N
X I x J]-. X N .
‘:————-o j=6 ] o—————\-¥ j=6 ]
1 2 4 1 2 4
3 5
I.\ N
AN X I X H . . (3.108)
i N i=6 1
1 2 4
We may combine these three into
3 3 3 5
I. .\ I.\ N
// + \\‘ + // \\‘ < X H ° (3109)
J:————-o o—————\-¥ ‘l \ ]:6 ]
12 1 2 1 2 4

We now take this to its logical conclusion and sum all appropriate terms in (3.91)
such that we obtain the sum over all connected diagrams for the particles 1,2,3 in
the ¢ = 3-cluster. Since there are no disconnected 3-particle diagrams we actually
can see this sum directly in (3.91). Then we apply the trace operators for the three
particles. For a general ¢-cluster we now define the connected (-particle free generating
functional

1 {
Zo[H] = 5 (HTr,-) Con (3.110)
A

where CC(Q1 is the sum of all the connected /-particle diagrams. It is important to note

that due to the trace operators this quantity has the same value for any /-cluster, no
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matter which particles actually form it. Because of this we defined it with a set of
representative particles 1,..., /. Having summed all diagrams for the three-cluster of
the specific realisation [(1,2,3), (4,5),(6),...,(N)], there are now terms like

3 N ? N
31X X x J]e, 3% x + x J]-
=6 1 ‘ =61
4 4
5 5
] N N
3% x ¢+ x []e., 3% x T x - (3.111)
l i=6 ] . i=6 ]
4 4
in the expansion (3.91) of Ciot. We also combine these as
5 5 5 5
L] H N
313 X + 0+ o+ I X . . (3.112)
é l . i=6 1
4 4 4 4

We again complete the process by summing all appropriate remaining diagrams such
that we obtain the sum of all connected two particle diagrams for the ¢ = 2-cluster. If
we further recognize that X;[H| = Tre we can write the entire contribution from the
clustering realisation [(1,2,3), (4,5), (6),...,(N)] to (3.102) as

N
3153 x 2% x [ 115 . (3.113)
j=6

It is now clear that we can write the contribution from any general clustering realisa-
tion [Ty ¢z, ..., Com,] Of a clustering configuration {m,} to (3.102) as

N

[Teez)me. (3.114)

(=1

Due to the arguments given following (3.110) this contribution is the same for any
clustering realisation. It is thus possible to rewrite the free generating functional
as a sum over clustering configurations {m,}. In order to do so we need to know
which clustering realisations are actually present in (3.102) for any given configu-
ration. Once we fixed the bijective mapping between the sequence of numbers in
[TT¢ cos- -+, Com,) and the clustering pattern it is clear that there are N! different re-
alisations of any configuration. However, once all possible diagrams are summed up
for all these realisations some of them lead to identical contributions even prior to
the application of the trace operators. There are two classes of transformations of the

sequence [[T; c¢1,---,Cem,] Which leave the corresponding product T, CC(Q\(CM) X
S X cc(ﬁﬂl(c&m ,) invariant.

¢ If we exchange the order of particles inside a cluster, the sum over all connected
diagrams for this cluster is invariant. This is most easily seen by first picking
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a diagram with a certain topology and then pairwise exchanging the positions
of particles in the clustering pattern, which corresponds to a reordering of the
sequence of particle indices defining the clustering realisation. This leads to a
transformation of the diagram and a simple example for this is

3 2\ /2

VAN 243 13

— — .
1/ \2 ‘,:__.

1 3 3 1

Note that this is the same term which only appears once in (3.102), but re-
alised as different diagrams in different clustering realisations. Since we need
to make sure that we always describe the same term when transforming di-
agrams, i.e. the lines must still connect the same indices in the same way as
before, the topology of diagrams is invariant under such transformations. In
consequence, sums of all topological equivalent diagrams are invariant in a di-
agrammatic sense, i.e. they look the same after applying a transformation as
described above. For our simple example we would have

Ao A N
l \ 12 FAN

+ + o\ | B + +
1/ \2 o———‘b / \ d——

1 2 1 2 2 1 2 1

We see that we would get the exact same sum wether we have (1,2,3) or (2,1, 3)
somewhere in the sequence of the clustering realisation. Since the sum over all
connected diagrams of a ¢-particle cluster can be broken down into sums over
all diagrams of all possible topologies we conclude that it must also be invari-
ant in the diagrammatic sense when subjected to transformations as described
above. For a certain configuration {m,}, we thus have to divide out all cluster-
ing realisations which can be transformed into one another by a sequence of
pairwise exchanges of particle order inside any cluster. There are ¢! permuta-
tions of the ordering of particles inside a cluster and m, clusters of size ¢ which
leads to

N
[Tem
=1

equivalent realisations.

The second class of transformations is exchanging all particles between two
clusters of equal size. Again the same reasoning applies where we first look at
specific topologies only. A simple example would be

— -0 N
_|_
—eo--—o N
X
We—--0o
_|_
QWe--—e
Weoe—--0o
_|_
We--——e
X
— -0 N
+
—--——e N
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Since this transformation again leaves sums over topologies diagrammatically
invariant this also holds for the sum over all possible connected diagrams. Ex-
changing all particles between two clusters is the same as exchanging the order
of the two clusters in the sequence [T, ¢/1,...,csm,] Of the clustering realisa-
tion. Since there are m, clusters of size ¢ we have m,! permutations of their
ordering.

All together we thus find that we can rewrite the free generating functional of (3.102)
as a sum over clustering configurations

N N my
ZeolH = Y [0 H)™ = N Y Hwﬂ, (3.115)
{m}* ’

N ,
gy Tlo= (1) ™emg! 75 =1 M

where the asteriks in {m,}* encodes the constraint (3.106). The main advantage of
writing the free canonical generating functional in this maximally factorised form is
that it will allow us to derive the grand canonical generating functional in an exact
way. However, along the way we also discovered the diagrammatic invariance of
sums of topological equivalent diagrams. Since the same combinatorial arguments
hold for these as for the sum over all connected diagrams this gives us a systematic
way to derive the multiplicity of a certain topology of correlations. Take for example
the two dashed épip; connecting the three cluster in (3.109). We want to know which
contribution this topology alone gives to the generating functional. We can identify

N
I/I + \\\ + I/I \\\ >< .‘
’ AY _ 4 ]

(3.116)
‘:————-o o—————\-¥ d » j

as a member of the clustering configuration {m; = N — 3,m3 = 1}. After applying
all trace operators we thus find the contribution from this topology to be

N' /I. .\\ /I.\\
N3N —3)1) x (3 el o

S
1 2 1 2 1 2

N
X HTI‘] L]
=4 ]

3
N(N—-1)(N-2 N
- M ) ) TryTeoTes |3 /N | <[] Trje
6 i N =4 ]
1 2
N3 /0\ N
~ > SN X HTr]- .. (3.117)
PR =4 ]
1 2

In the second line we used that due to the trace operators all diagrams will give
the same result and in the last line we used N > 1. This scheme of combining
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diagrams of equal topology will also be used later when we calculate the cumulants
of collective fields in the grand canonical ensemble. It is also interesting to see that
in the free theory the scaling of terms with the particle number N and thus with the
mean particle number density p is solely controlled by the correlation structure.

As a last step we need to reintroduce the single-particle sources J, K back into the
theory. Without them we are unable to rewrite the collective fields as operators and
thus cannot execute the path integrals to obtain the free theory solution. We do this
by modifying the trace operators as

tg
Tr; — Trjexp i/ dt <T](t) - Xi(t) + Kj(t) -)‘(}-(1&)) . (3.118)
t

Note that in a strict mathematical sense these are different from the sources we turned
off at the beginning of this chapter. Each of those pertained to one specific particle
of the N particles in the system. The quantities X, however are now defined for a
representative set of ¢ particles which may stand for any subset of ¢ particles chosen
from the overall N particles and the above new sources pertain to the particles of this
representative set. We can define such a representative set since all actual ¢-particle
subsets give the same result for X, which was a crucial point in our reasoning for
obtaining (3.115). This would no longer be true if we still had had the original sources
J, K remaining in the theory, since they could in principle lead to different X, for
different subsets. By deriving everything without the help of these two sources we
circumvented this problem.

With the single particle sources reintroduced as in (3.118) we may then rewrite
the connected ¢-particle generating functional X,[H,J, K] in the familiar way, i.e. we
express the collective fields as operators &, only that they are now defined with the
particles of the representative set used to define X,[H,J, K]. We can also express the

sum of connected /-particle diagrams CC(Ql as an operator by reversing the second re-

placement in (3.94), only now with the representative source K. As such we understand
diagrams to represent their respective operators with the quantities Cy,s, Cg;p;, C
appearing as simple functions of the initial positions § ].(1)
ticles. We thus have

X
pipj
of the ¢ representative par-

iH® i P (p(l)) 5 0
Xy[H,],K] :qu’/dx() U”Vg 0 (

(0)
Ceon l‘SKP(tl)> Zy J, K] (3-119)

where of course all bold tensorial quantities are now defined w.r.t. the ¢ representa-

tive particles and Zég) is the /-particle version of (3.52). We also absorbed the factor
of £!=1 in (3.110) into the operator C%Ql
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So far we have managed to set up all the basic building blocks of the field theory,
that is the solution (2.67) to the non-interacting theory, the interaction matrix (2.40)
and the corresponding operator (2.48) and the phase-space probability density (3.49)
describing the initial state. We then combined both the free theory and a diagram-
matic approach to the initial conditions to find a maximally factorised form of the
free generating functional in (3.115). One could in principle now proceed and obtain
corrections to the correlators or cumulants of the free theory by calculating higher
and higher orders in the perturbation scheme of the canonical ensemble. However, at
least for systems which obey statistical homogeneity and isotropy the field theoretical
description can be translated into the analogue of the grand canonical ensemble of
standard equilibrium statistical physics. In the course of this chapter we will see that
this has two distinct advantages over the canonical approach:

¢ Obtaining the free cumulants of the theory is a straightforward process and can
be done in a structured scheme. Most of the combinatorial effort has already
been taken care of by the Mayer cluster expansion. Furthermore, the free cu-
mulants naturally appear as one of the basic building blocks of perturbation
theory.

¢ Perturbation theory is no longer formulated as a simple series of integrals of
the interaction potential and the free correlators but in terms of self-consistent
integral equations involving the potential, the free and full cumulants. We will
show that this amounts to summing up subclasses of infinitely many terms in
the canonical perturbation series even at linear order of the grand canonical
perturbation theory.

In this chapter we will first define what we understand to be our grand canonical
ensemble and how it is connected to the canonical one. We develop the entire scheme
for obtaining explicit expressions for the free cumulants of the collective fields. We
then derive the main perturbation equations for the interacting one- and two-point
cumulants. We will see which kind of terms in the canonical perturbation series are
summed up at the first order of the grand canonical perturbation series and how
this can be understood as including a whole class of physical interaction processes
with arbitrary numbers of participating particles taken into account. In contrast, for
the canonical case (2.58) the number of particles participating in any such process is
directly linked to the order of interactions considered.
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4.1 THE GRAND CANONICAL GENERATING FUNCTIONAL

We first have to accurately define what we mean by writing down a generating func-
tional for a system described by a grand canonical ensemble. For this we again take
a look at standard equilibrium statistical physics. The principle difference w.r.t. to
the canonical ensemble is that one no longer fixes the number of particles N in the
system, but rather a so-called chemical potential y which gives the necessary energy
associated with adding a single particle to the system. The Boltzmann factor is then
modified as

P(x) o exp {~BH(x)} — P(x,N) exp {~fH(x) — puN} , (4.1

which means that one compares the energy uN necessary for adding N particles
to the system to the mean thermal energy kgT = B~! in the system. The grand
canonical partition sum is then obtained by first integrating over phase space with a
fixed general particle number N and then summing over all possible particle numbers
leading to

Zac= Y. [drexp{~pH() — BN} , (42)
N=0

where T’ is again the appropriate phase-space measure. In a more general sense one
introduces some probability distribution P(N) for the number of particles. In our
case we thus have to modify our transition probability from initial to final state

P(x,x) — P(x®,xV,N) = P(x?,xP|N) P(N) . “3)

Furthermore, we know the transition probability conditioned on a fixed particle num-
ber since this is the case described by the canonical ensemble. Using (2.17) we conse-
quently have the following expression for the grand canonical generating functional

Zoc= Y /de(N)P(x(”MD[X(f) —xa(txW)]. (4-4)
N=0

The difficulty now lies in specifying P (N ). Defining a chemical potential seems prob-
lematic at best since the energy for adding a particle to the system may in principle
depend on the entire instanteneous phase-space state x(t) and thus on the full inter-
action of all particles. In contrast to the equilibrium case there is also no easy choice
for an energy scale that we could compare the chemical potential with.

However, for our case of a system satisfying statistical homogeneity and isotropy
the solution is straightforward. For this we use a well-known textbook approach and
imagine our system Sgc described by the grand canonical ensemble as being embed-
ded into a much larger system Sc which is described by a canonical ensemble. The
latter has a fixed particle number N¢ and volume Vi while the former only has fixed
volume Vgc. Particles can freely be exchanged between Sgc and its complement in
Sc. All particles may interact across the boundary defining Sgc. We illustrate this
situation in Fig. 4. Since the system is statistically homogeneous and isotropic any
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NC7 ‘/;Z . . . .
° Ng(?7 ‘/g(‘, . .
. Sgc .
. SC

Figure 4: The physical situation of the grand canonical system Sgc embedded into the larger
canonical system S¢ used in the derivation of the particle number probability in the
grand canonical ensemble.

statistical quantity must be invariant under translation and rotation at all times. Con-
sequently, this must also hold for the probability to find any particle of the system
Sc somewhere in the volume V¢, regardless of any particle interactions or correla-
tions. Since this probability is a scalar quantity and is invariant under translation it
must be a constant and proper normalisation tells us that it must be 1/ V. It is then
straightforward to see that the probability to find this particle in the volume of the
grand canonical subsystem is given by

_ Voc
P= Ve (4.5)

This constitutes Nc independent Bernoulli experiments each with a random variable
X; which is 1 if the particle is in V¢ with probability P(X; = 1) = p. The sum of all
Nc random variables X is then binomially distributed

Nc
Ngc =) X;j = Ngc ~ B(Ng, p) . (4.6)
=1

We now assume Sc to be in the ‘thermodynamic’ limit of a very large volume Vi — o0
and particle number Nc — oo, but we still keep the mean particle number density

p = Nc/Vc constant. The probability p will tend to zero in this limit, i.e. p — 0.
Since the expectation value

\% _
(Ngc) = Ncp = NC% = pVac (4.7)
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is constant in this limit the binomial distribution will tend towards a Poisson distri-
bution as

Poi . .
B (Nc, p) VN OIS ({Nac)) (4-8)
p:Nc/VC:COHSt

We thus find that the probability density for the number of particles in the grand
canonical ensemble is
- N -
_ {Nae)™ ey _ PYVEE ey — VY )

if we want to fix the mean particle number density p at all times. In the last step we
dropped the GC-suffix since we now forget about the surrounding canonical system.
We insert our result back into (4.4) and find
N VN ) .

=) (x) 3 x(£) — xq(t; X))

ZGC = / dx

NvN

= ef /dXP ( ) - xcl(t;x(i))]
E

NvN )

(4.10)

(N)

In the last step we identified the N-particle canonical generating functional Z-"’ per-
taining to our grand canonical system with volume V. The normalisation factor e~ (V)
can be absorbed into one of the path integrals. It is of no consequence since we will
only take derivatives of the logarithm of Zgc later on. If we recall the definition (3.49)
of the initial phase space probability density P(x(!)) we see that it had an overall
factor of VN, This cancels against the above prefactor pN V¥ such that we have to
exchange 1/V — p in the definition (3.101) of the trace and thus in the definition
(3.119) of the connected free /-particle generating functional. After this there are no
explicit instances of the volume V present in the generating functional. We will also
never encounter expressions of the form (1.27) when working in the grand canoni-
cal ensemble. Considering the statistics of our system to be characterised solely by
fixing the mean particle number density p and the initial phase-space probability dis-
tribution P (x®) with 1/V — § we can thus safely take the limit where we push the
volume V — co. We can now insert our final result (3.115) from the previous chapter
to obtain

=1 ol NS Hm X [H]™
ZaclH] = E NI SIN‘{; 11—[ ! = el ZO{Xi H !
my * f— my * =1 4
- ﬁfznzﬁ - lsfnzzf
{me} 0 =0 ;=0

= el Hexp {Z/[H]} = el exp { Y. % [H]} : (4.11)
(=0 =0
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In the first line we have used the fact that the interaction operator is independent of
the particle number to pull it out in front of the sum over N. In the second line we
first used that taking the sum over all clustering configurations {m,} subject to the
constraint (3.106) and then taking the sum over all particle numbers is the same as
taking the sum over all clustering configurations without the constraint. The prime
on / in the product means that it runs over all cluster sizes present in the clustering
configuration of the previous sum. In the next step we reordered the sum in terms
of the cluster size ¢ and then used the series definition of the exponential function
in the last line. In the non-interacting regime the above result can be schematically
summarised as

Zaco = E diagrams = exp {Zconnected diagrams} . (4.12)

Readers familiar with QFT will recognize this structure immediately since it appears
in the same way for the Feynman diagrams which encode the dynamic correlation
function of fields which arise due to the self-interaction of and interactions between
fields. In our case, we encoded the instantaneous initial correlations between the
phase-space coordinates of classical particles in the diagrams. The topological prin-
ciple at work behind the Mayer cluster expansion and the so-called exponentiation of
disconnected diagrams in QFT is however the same, which is why we obtain the same
structure of the generating functional. As we already mentioned, we could also have
included the interaction into this diagram picture, which would make the analogy
complete.

4.2 NON-INTERACTING CUMULANTS
4.2.1  Definition

Just like in the canonical ensemble we define the generating functional of connected
correlation functions or cumulants by

Wec[H] = InZgc[H] (4.13)
and consequently a general n-point cumulant of the collective fields is obtained by

1) 1)
Go,, .. @, = 6H, i(SHMWGC[H]‘O , (4.14)

where we introduced the shorthand notation |y to indicate that all source terms
should be set to zero once all functional derivatives w.r.t. them have been executed.
In the non-interacting regime with 5; = 0 the cumulant generating functional reads

WacolH] =InZgcp = Inexp {Z Zg[H]} = Z Xy[H] . (4.15)
=0 £=0

It is this simple form as a sum that makes calculating the free cumulants much easier
when compared to the canonical ensemble. Evaluating the cumulants in the Fourier
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space conjugate to position space will be much more convenient. We thus use (1.28)
to reinterpret the collective source term as

tg
e on ] i / dt / d7H(F, )T 0(F,t)
£

t -
= exp i/dt /(zic)dH(—%,t)TqD(%,t) . (4.16)
t

If we then understand functional derivatives as
s 0
i(SHl’él i (ﬁHa(_%lztl))

(4-.17)

they will take down factors of the Fourier transformed collective fields ®(ky, t;).
Hence we will from now on understand all collective fields ®,, to be defined in
Fourier space with labels 1 = (ky, t1). We can write down the free cumulants as

o -2 ° [y 5H),K
Cou -0 = 5H, " 6H,, (ZZ(;) ([H,J. K] ‘0

5 5
~ /i6H, " i6H,,

_y ) +p (o)) A0 s S0 &0 (0
E/dx P Py (P) Coon (i&KM))q)”‘l - Pa 2o U'K]‘

8 [ ax e, (p0) Cloh 2411, K|

o (0,0
- Z Gé)al)...éan ’ (4.18)
(=0

where we made it explicit that for every X, the collective field operators ®(*) in
Fourier space depend only on the respective ¢ representative particles by using the
(¢) superscript. One might now think that this is not a very practical expression since
it contains an infinite sum over particle numbers. There are however two effects that
lead to a truncation of this series. First, if the initial correlations of the system are
weak in the sense that higher order diagrams give less and less significant contribu-
tions then one may specify a maximum number m of correlation functions to be taken
into account. Since this translates into a maximum number of correlation lines one
can draw and one needs at least £ — 1 lines to connect ¢ particles together, one would
then automatically truncate the series in (4.18) at £ = m + 1 particles. Furthermore,
we will later see that for some specific cumulant which contains r insertions of the
density field ®, the summation is automatically truncated at £ = r.
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4.2.2  Fourier space collective operators

In order to evaluate the collective field operators acting on Z [] K] we need their

explicit form in Fourier space. We start with the full N -part1cle density field ®,(g, ).

Its Fourier transform is easily found to be

e k’j Z‘Pp] k t (419)

'MZ

Il
—_

N
D, (k,t) = /dé’e_‘q'k op (7 —q;(t)) =
=

]

where we defined the 1-particle density contributions ¢, in Fourier space in the last
step. These are of course the Fourier conjugates of (3.100). With the help of (1.29), the
transform of the ®p-field is also straightforward

T N N T o=
o(h,) = [ age L0 Vido (7-(1) = L% (9Fe #90
N —
j=1

Their ¢-particle operator form is obtained by restricting the sum to the representative

particle set and performing the same substitution (2.51) as in configuration space. We
thus find

S (0) 7 S L -
q)ff)(k,t) = Z‘PP;‘ (k,t) with Po; (k t) = exp {—1k' ST(f) (4.21)
=1 1 Iqj( )
S0 7 ST Lo o o e LS
Sy (kt) =) ¢p(kt) =) bi(kt) gy, (k,t) with bj(k,t) = ik- 3K 0
j=1 j=1 10Rp;
(4.22)

Consider now a general /-particle cumulant like in (4.18). With the above result for
the collective field operators it takes on the form

{
Gg),xf Dy, T /dx ZP(TP con (Z 47111 ) oo <Z (f?,i?) Z(()g) [J, K]‘O . (423)
j=1

Multiplying out the sums of single particle operators we see that we get a sum of
{" terms, each being the product of n single particle operators. Since we can split
up the Pp-field single particle operators 433’. into a product of the density operator
(ﬁpj and the B]- operator and we may rearrange the operators in any order we like,
we opt to put all 4391 to the right and execute them first. This means that for any
particle number ¢ and any general n-point cumulant we first calculate the density-
only cumulant. After that we apply the B]' operators in the appropriate way to get
mixed cumulants. In each operator product term each external label 1,...,n coming
from the arguments of the fields in the cumulant appears exactly once. We will adopt
the notion that such an external label is carried by the particle j if the label appears in
a density operator q3pj belonging to that particle. In physical terms, for the external
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label 1 this means that the particle j contributes the phase exp {—i%l . E]'j(tl)} to the

mode %1 of the density field at time #;. With the help of the /-particle version of (2.66),
the effect of the operator on Z(()Z) is straightforward to calculate

43pj(1)z(§4>[],1<]:exp{—i%1 A }exp{ / dt ( }
:exp{—iEl AT }exp{ /d )}

o158 ) 50 }{ /w 0}

exp{/t << op (t—t) (})@Ej),x(t)>}x

eXp{ /tfdt J(f),i(t)>} (4-24)

In the case where the particle j carries not only one but a subset {s}; of all external
labels 1, ..., n, i.e. multiple operators ([3‘0/. are applied, we get the appropriate product
of prefactors of the sort shown in (4.24). If we define the shift tensor

ol

O WA EREE 425

s€{s};

we can write the effect of multiple operators as a shift of the J source

( I;I} 4),,] ) J, K] = exp{ /dt (Lj(r), x(t }exp {i/dt <](t),x(t)>}

exp{/dto )+ L >>-<<>>}

0 O+ L;K]. (4.26)

The effect of all density operators in any term of (4.23) is then given by adding the
shift tensors for all particles as

J4 4
(H ( I1 43p](s>) ) zO0K =20+ Y L), K = 2T+ L K] . (4.27)

j=1 \s€{s};
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We now know the effect of density operators. The effect of the b operators is then
very easy to derive. They only contain derivatives w.r.t. to the K, source. We thus
need the following derivative

15Kpj(t1) I(SKpj(tl)

=—G(t,H) ( 0 ) ® & (4.28)

and with this result we find

bi(1)zy I +1L,K] = (—1/dt< )g(t,t1)<£ >®€j>) zZV I+ K]
1

(4-29)

We see that the b operators do not lead to any new instances of the source K or shifts
of J and thus applying multiple operators of this type just takes down factors of the
above form. After executing all b operators in any term of (4.23) the only functional
derlvatlves left are those w.r.t. K, (t;) in the connected /-particle correlation operator

Con. Just like the b operators they will not lead to an additional shift of the sources in

Z(()[) but just take down a factor very similar to that in (4.29). Hence, we can for now
assume that we executed these derivatives and set all sources to zero. The unaveraged
generating functional will then reduce to

o'+ LK ‘O = 7§"L,0] = exp {ifdt <L(t),g(t, ) x(i>>}

L\ T
exp{l/dt Z (5D (t—t5) < % ) G(t ) —*j(i)}

;i j= 1s€{s}]

s€{s};

‘ 7.z % g
=[Jexpq—i) (gqq(ts/ti)ks'c_fj + 8op (£, 1) ks - ) :
=1

(4.30)

The factors resulting from the application of the b operators also simplify significantly

into
1):= (i/dt <J(t)+L(t>,G<t,t1) (; )®EJ‘>) ‘0
1
o\ T
_1/dt 5D t—ts)<lis> g(t/tl)( >
; s€{s}; 0

= ik - Z ks gap(ts, t1) - (4.31)

s€{s};

oy
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From this we see that of the four submatrices making up the single particle prop-
agator shown in (2.80) only two actually show up in the cumulants. This fact is
unchanged by the correlation operator CAC(({; since as already mentioned it will have
factors very similar to (4.29). In any physically sensible theory gy, (t,t;) = ©(t — t;),
since this function encodes how the initial position of a freely moving particle influ-
ences its momentary position. Furthermore, since we only consider times t > t; we
can set ggq(t,t;) = 1. The function gg,(t,t') describes how the position of a freely
moving particle changes between times ¢ and t due to its momentum. For ease of
notation we introduce the shorthand notation

g12 = gop(t, t2) and g1 == gyp(t1, t) . (4-32)

The fact that also g1, « ©(t; — t2) and g11 = 0 due to causality allows us to derive a

very general theorem for the terms making up (4.23).

Theorem 1. If in a term contributing to some Gg) ) o. @ particle ’j" carries only external
ap - Fap

labels belonging to Pp-fields, then the term vanishes.

Proof. This is best done in an inductive fashion. We begin with a particle j carrying
only a single ®p-field external label 1. Then the set of external labels is {s}; = {1} and
with (4.31) we immediately find bj(1) = ik} g1 = 0. For two ®p-fields ®p(1), Pp(2)
carried by the particle j the set of external labels is {s}; = {1,2} and we have

bj(1) b;(2) = (ia : (El g +k gn)) (iﬁz' @1 g1+ k2 gzz))
— (iEl e g21) (iEz-El g12) <Ot — 1) Ot — 1) .

The only possibility for both Heaviside functions not to vanish would be t; = t,. But
this leads to factors gi1 = go» = 0.

In the general case of n Pp-fields it is advantageous to use a diagrammatic argu-
ment. Picture every time coordinate included in the external labels as a point. Due to
(4.31) a factor b;(1) can be seen as a sum of lines between t; and all other n — 1 time
coordinates t; representing the g;;.

b](l) X ... X b](n) — (me{zzn} t'—>—°1 L ) e (me“;n_l} t._)_.n L )

The product b;(1) bj(2) ...b;(n) then results in a sum of (n —1)" terms each contain-
ing n lines connecting all n instances in time. The only restriction on the topology is
that there may never be more than one line pointing away from any point since these
endpoints show up only once in the above product. As in the case n = 2, any pair of
points connected by two lines, i.e. a closed loop contributes zero. The argument for a
two-point loop is easily extended to a general m-point loop as
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O, —t;,) O(t;, — tiy) ... O(t ti,) O(ti, —tiy) = ti, >ty > t, > ... >t

i im-1 im im
Again this can only be satisfied if all time coordinates are identical which leads to
vanishing propagators. If we connect n dots representing instances of time with n — 1
lines in any way we always get a tree-like structure. Take for example 6 points and

thus 5 lines then we could have:

If we add only one more line in the above example we would always get a closed
loop. One possible example for this would be:

It is clear that this also holds for the general case of adding one more line to a tree-like
structure of n — 1 lines connecting n instances in time. Thus, there is no possibility of
connecting n instances in time with n lines without creating a closed loop. Since this
is the situation for the product b;(1) b;(2) ...bj(n) all of its terms vanish. O

A straightforward corollary that we can immediately derive from this theorem is the
following:
Corollary 2. Any non-interacting ®p-field-only cumulant vanishes: Gg)j;?“ oy = 0.

n

In a physical sense Theorem 1 is a consequence of the theory respecting the causal-

. . . . 0,0
ity of interactions. Consider a term of a general cumulant G0 where
Dy, Pp, Pay ... Puyy

both fields ®,(1) and ®p(2) are carried by the same particle j. This then leads to a
bj(2) = i%z . El g12 factor which describes how a particle j, which at time ¢, contributes
a phase factor as shown in (4.19) to the mode ky of the density field, will deviate from
its former free trajectory due to a two-particle interaction it took part in at time £,
and then again propagate freely forward in time with g, to contribute to the mode
k1 of the density field at time t;. If we exchange D, (1) — Pp(1) we would describe
how interactions of the same particle j at times ¢; and ¢, influence the density field at
the respective other time. This is represented by the closed loops of arrow lines above.
Since we assume our theory to respect causality by using a retarded propagator we
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must be able to establish a clear order of how interactions propagate through time
and thus terms representing such contradictatory situations must not contribute.

4.2.3  Effects of correlation operators

We now assume to have applied all collective field operators present in a general
cumulant as shown in (4.23). Since the b operators do not generate any new factors of

K, the connected correlation operator CAC(Q\, which only contains functional derivatives

w.r.t. K, will solely act on the shifted Z(()é). We can assemble the effect of any of these
operators if we know the effect of the operators represented by the three line types.
For the solid density correlation line this is easy since
¢ ~(1) =)y (¢
— z0+ LK = Ca (77,7") 21 + L K] (433)
is just a simple multiplication. Moving on to the density-momentum cross correlation
we have

(0) A =) 20) 0 (0)
—--e 7 +L K| =—-iCs,.(q."",3"" ) ——— Z +L,K|. .
i ] 0 [J ] 1 §1P/<qz q] ) i(SKpj(ti) 0 [] ] (4 34)

This is basically the same derivative we had to take for the b operators and we there-
fore get the results of (4.28) and (4.29) only with t; — t; and ik; — —ié&ipj. This also

means that again these derivatives do not generate new factors of K, and thus all

individual e—--e lines of any diagram only act on the shifted Z(()f) and thus generate

factors

CM,(z/w<uw+Lu»wam<c£m)®%>)o

t LT .
:—i/dt y (SD(t—ts)(%s) g(t,q)( N >

t; SE{S}]' 5ipf

= —iCsp,@",5") - ¥ Koggp(ts t)

se{s};
— _ils (W 20y
1 (51,;,1(6]1» ,q] ) {s}; - (435)
In the last line we implicitly defined the transport vector
T{s}j = 2 Es gqp(ts/ ti) = Z Es s s (4.36)
se{s}; se{s};

which encodes how the deviation of the trajectory of particle j due to initial correla-
tions Cy,p, travels forward through time to influence the contribution of particle j to

the various modes ES of the density field at times ¢;. The remaining momentum cor-



4.2 NON-INTERACTING CUMULANTS
relation line e----+ can be evaluated in a very similar way. With the above reasoning

we find

(0)
e Z L K

T
o 0 ()
=|e =) C)p. | ———— -11Z +L,K
Xp (15Kpl(t1)> pipj (15Kp](t1)> 0 [] ]‘0

T
- N ¢
= [exp —< Y ksgqp(ts,ti)) Cry Y Keggp(tst) p —1| Z[L,0].

se{s}; s€{s};
(4-37)

If we again use the transport vector we can define
Cpip; = €Xp {—TE}iC;pjT{s}j} —-1. (4-38)

Once all lines in a CAC(Ql have been evaluated in this fashion it becomes again a simple

(0)

function chn defined individually for each term in (4.23) coming from the product
of single-particle operators ¢(*). For each such cl) all diagram lines are now under-
stood to represent the functions Cgi(s],, Copir Cpip; defined with the sets {s} j of external
labels that define the shift vectors L; of the respective term.

Just like for the b operators, knowing the exact form of the results of the application
of the correlation operators allows us to derive a helpful theorem concerning the
individual terms arising from the product of collective field operators in a general
cumulant like (4.23).

Theorem 3. If in a term contributing to a general Gg’é) o. some particle j" carries no
oy - Fap

external labels, i.e. no ¢y, has been applied, then the term vanishes.

Proof. Since the particle j is involved in the cumulant it must be present in the corre-

lation operator CAC(Ql It must thus be connected with one of the three line types s——,

If the particle is ‘inside the diagram’, i. e. connected to more than one line, then the
d-line rule demands that at least one of the lines connects to j with a dashed p-side.
Thus either a factor of ¢, or ¢,p, is present. But since j carries no external labels the
set {s}; in the transport vector (4.36) is empty and thus c;,,, = 0 = c},p, and the term
vanishes.

If the particle is “at the boundary of the diagram’, i.e. connected to only one line,
then we need to distinguish three different cases.

¢ The particle is connected to a dashed p-type line and we thus can apply the
same argument as above.

e It is connected by a Cs 4, line. Since the set {s}; is empty we have

Z((f) [L0] cexp{ —i Y k- qj(i) =exp(0) =1.
se{s};
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Consequently the term has only one quantity left that depends on § @ which is

]
C5j5l.. This leaves us with

/dq*j(i) C5j5i _ </dl7j(i) 5(i)((7j(i)) (5(1)(L—i’i(i))> _

where we used (3.29).

¢ It is connected to the solid J-side of a égjpi. With the arguments from the previ-
ous case we have

[ g &, = < JE AR ﬁ<i><q7“>>> =0

Combining Theorems 1 and 3 we can derive yet another corollary.

(0.0)
Dp, . Dy, P, Py

Corollary 4. For all £ > n, the cumulant G =0.

Proof. We begin by first considering density-only cumulants Gé?p’onq)p whose princi-
pal form is given in (4.23). Each term coming from the product of collective operators

CTDy) is a product of n single particle operators such that each external label appears
exactly once in them. For ¢ > n, there will thus be at least one particle in each term
that will not carry an external label. According to Theorem 3 all terms must then van-
ish. Next we can add any number m of ®p-fields to the cumulant. This leads to terms
with n + m factors. But as ¢ > n for every term, we still have at least one particle
which either carries no external label which causes the term to vanish due to Theo-
rem 3 or it only carries ®p-field labels which also makes the term vanish according
to Theorem 1. ]

This corollary is the reason that the sum over representative particle numbers ¢ in
(4.18) truncates at the number of density fields present in the cumulant.

4.2.4 The combinatorial hierarchy of external labels

By now we know the effects of all operators that appear in a general free n-point /-
particle cumulant as shown in (4.23). Before we start to calculate any explicit density-
only cumulants it will be advantageous to find a way to organize the many terms
containing products of the single particle density operators q3pj. Their form will de-
termine the makeup of the subsets {s}; of external labels which in turn dictate the
form of all other parts of the cumulant. Our organisational scheme is a hierarchy of
three levels. From top to bottom they are:

LABEL DISTRIBUTION This category determines how many of the n external labels
each of the ¢ particles carries. We denote them by #]...|#,. Take for example
an (n = 4)-point (¢ = 3)-particle cumulant. A possible distribution would then
be 1|1|2. This means that two particles carry one label each and the third carries
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two labels. Note that we do not specify which particle carries which label. We
also do not specify which of the three particles carries two labels, all three
possibilities are in the same distribution.

LABEL GROUPING In this category we specify which labels are grouped together

into subsets {s} due to being carried by a single particle. We denote this by
({s}1;...;{s}m)- Note that we do not specify which exact particle carries which
subset {s};, i.e. here the numbers on the subsets in the grouping are not the
particle indices but just enumerate the subsets. Two examples of groupings for
an (n = 4)-point (¢ = 3)-particle cumulant would be (1;2;3,4) and (1;3;2,4).
Both of these belong to the 1|1|2 distribution.

LABELING This lowest level of the hierarchy represents one explicit term in (4.23).

Its notation is best explained in terms of an example. We again consider an
(n = 4)-point (¢ = 3)-particle cumulant with particles a, b, ¢ and external labels
1,2,3,4. Consider the grouping (2;3;1,4) in the distribution 1|1|2 with subsets
{sti = {2}, {s}2 = {3}, {s}s = {1,4}. The actual labelings or terms belonging
to this grouping are then denoted as a{s}ilb{s}izc{s}%, for example axbszci4 or
azcaby 4 and so on.

A visual representation of this hierarchy can be seen in Fig. 5. With this hierarchy es-

Distribution 1|1|2

OO0
O O

Groupings
(1) (2) (3,4) (1) (8) (2,4)
(1,2;3,4) (1;3;2,4)

(1) (3,4) (1) (2) (3,4) O @ e |
arbacs g bicaaza a1cab3 4
Labelings

Figure 5: The hierarchy of terms in an (1 = 4)-point (¢ = 3)-particle cumulant sorted by

external labels.

tablished we now have to realise that the result of the integral over initial momenta for
any cumulant will only depend on the grouping and not on the actual labeling, since
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the initial momenta only appear in the unaveraged generating functional Z(()é) [L,0]
of (4.30). This is yet another consequence of using a momentum field to specify the
initial momenta of particles, which makes the initial correlations only depend on the
initial positions of particles. The integral over initial momenta results in a Gaussian
damping factor which we define as

s€{s};

J4 . . N
ofsh-{sh) =11 [ a5 2o, (5 exp {i Y 5k gs}
b

. 0p 72
ZEGXP =5 Tisy (- (4-39)

We used the freedom afforded to us by the integrals over all momenta of the represen-
tative /-particle set to renumber the momenta such that their indices match with the
arbitrarily chosen enumeration of the grouping subsets. We can always do this since
any grouping with less than ¢ subsets has a particle not carrying an index and thus
all of its terms vanish due to Theorem 3. The physical interpretation of this damping
factor is obvious. The random free motion of particles set up by the ideal gas part
of the momentum distribution will wash out any kind of correlation over time. For
a given width ¢, of this distribution, due to the propagators g; this will happen the
sooner, the smaller the length scale 1/k; is that one considers.

With the common factor (4.39) for all terms of a grouping identified we can write
the general n-point /-particle cumulant of (4.23) as

/ () 7
§ — i 14 —iq;7 kygy,
Gg)al),__% =o' Y O({st.-{s}) X dq cioh TTe ™ ™, (440)
({s}t1--{s}r) labelings € j=1
({s}1.{s}e)
where we have introduced the sum of mode vectors over a set of external labels
carried by a particle j as

E{S}/ =Y k. (4.41)
sc{s};

It is now good practice to adopt the following strategy for calculating a general free
(0,0)

n-point /-particle density-only cumulant G<1>p1~-<1>pn:
e Find all possible label distributions #| ... |#;,, where all particles carry at least
one external label.

¢ For each of these distributions find all possible label groupings and then pick a
general representative grouping with general label sets ({s}1;...;{s}/}

* Go through all labelings belonging to this representative grouping and for each
labeling execute the integral over initial positions of the particles taking into
account the diagrams contained in Ceon up to some desired order. Gather the

results into a single function 7;(1?”‘ 4,- We obtain the contribution from any label

distributions #|...|#( by summing the respective 7;(1?‘ 8, evaluated with all
groupings ({s}1;...; {s},) belonging to that distribution.
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The general density-only cumulant will then be of the form

¢ ¢
G‘(Igm) Pop P Z Z 7;(1|.)..|#4({S}1?---?{5}Z) . (4-42)
#l...[# ({SL1~|~-{|S#}2) €
1|+ |Fp

This strategy has the clear advantage that for every cumulant we only have to cal-

culate a single function 7; .4, Once. When we calculate the general (¢ = 2)-particle
cumulants we will also see that deriving the mixed cumulants between the density
field @, and the response field ®p will become a straightforward task since the b;
factors of (4.31) also only depend on the grouping.

4.2.5 Initial correlations in Fourier space

In order to give explicit expressions for general cumulants we need to express the
initial two-point correlation functions in terms of their Fourier transforms. We start
with the density correlation and find

Css = (80(@") (@)

- <</ gg}leiﬁl'ﬁf“(s@)(ﬁn) </ élgd i 5()(h2)>>

_ [ .dn dly g +iiag? [ 56) 7 50) (7
_/(2”)d /(27r)de ] <‘S (1) (h2)>' (4-43)

Statistical homogeneity and isotropy now dictates that the two-point correlation of
the Fourier transform or power spectrum of the density contrast has the following form

<5<i> (1) 5(i>(ﬁz)> = (270)4 0p(h1 + ) Ps(h1) (4.44)

which means that it is determined by a function P; which only depends on the mod-
ulus of the mode h;. In cosmological structure formation it is conventional to call Ps
itself the power spectrum. Inserting this back into (4.43) we find

2 () ()
Cos; = / (2(175)‘1 (11 )P5(h) , (4-45)
where we renamed h; — h. In the general case we would repeat the same for éém;
and C;i-p,- leading to two additional powerspectra to consider. However, for the sake
of simplicity we will adopt the following scenario. The initial momentum field is
assumed to be irrotational such that we can express it as the gradient of some mo-
mentum potential field

—

0@ =vy(@ = TMh) =iryh), (4.46)

where we used (1.29) to translate this relation into Fourier space. With the help of the
continuity equation, we may then link this momentum potential to the initial density
contrast field as

s0(G) = —Vip@@) = sV (h) =ry(h). (4-47)
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We will motivate why this scenario is precisely the one we encounter in cosmological
structure formation in part ii. Both G, and C;ipj can now be expressed in terms of
Ps.

o dh o dhy g®eiing® [ B2
=/ e | g )

e 7 7 =) 7 () - e
:i/ dhy /(th el di +iheg; @(Zﬂ)d(sD(hl‘i‘hZ)P&(hl)

(2m)d J (2m)d h3
o dh g (a9_70) R
= _1/ @) e (3”3 )hZ Ps(h) . (4.48)

In the third line we have combined (4.46) and (4.47) in order to express the Fourier
transform of the momentum field in terms of the density contrast. In analogy we find

]

— / (dhl / dhy g+ 7 <ih15(i)(ﬁ1) ® ihz5(0@2)>

= (VG e OG)

2m)d ) (2m)d h3 h3
di (70§ h®h
= /We (q, U >h4P5(h> : (4-49)

Since all three correlation functions are now expressed as Fourier integrals involving
the power spectrum linearly, P; presents itself as a convenient order parameter for do-
ing perturbative expansions in the initial correlations. We will show this explicitly for
the two-particle and three-particle cumulants. Doing this is well justified especially
when the initial correlations are weak and the powerspectrum can thus be considered
to be small. We will clarify in section 8.1 how to quantify this statement.

4.2.6  One-particle cumulants

The one-particle cumulants Gg)a’l)_ @, can be written down directly to any desired
order in n. This was already shown in the original papers [22, 39] on this kind of
field theory. Initial correlations have no effect due to CAc(cl,% = 1 in (4.23). Since there
is only one particle, the only possible grouping of external labels is their entirety,
i.e. {s} = {1,...,n}. This means that integrating the spatial part of the non-averaged
/-particle generating functional (4.30) over the initial position of the single particle
gives

[ 47 pexp {—a‘@ P> ES} = p(2m)'ép (Z Es> - (4:50)

se{s}
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Combining this with the Gaussian cutoff, the one-particle contribution to the n-point
density-only cumulant is given by

n 5 0—2 n .
Gg);ll.).xbpn =0 (27)%ép (Z ks) exp {_zp Y & ks} : (4.51)
s=1 s=1

Any cross correlator between ®, and @3 is obtained by applying the appropriate
bj(s) = b(s) factor
0,1 0,1
Gfpm ) o0, =b(n+1)...b(n+m) Ggpl?._% . (4.52)

n+1'“q)3n+m

The most interesting cases are the one- and two-point cumulants

Gy, = p(2m)"ép (%1>~ Gy = 0. (4-53)

As expected the one-point cumulant of ®, just gives the mean particle density and
the one-point cumulant of the ®p-field vanishes according to Corollary 2.

Gl

2
(2 )5D(k1+k2)exp{ jpk(gl gZ)Z}

Go, @, =P

<1>plc1>,32 = (K- K1 g12) p (27)" dp (k1 + K2)D(1,2) = —iK 812 Gy,

Gy, = ( 2g21) ) 6p (K1 +F2)D(1,2) = =ik g1 Gy by

é?Bilpgz =0 (454)
We used the Dirac delta distribution to set Ez = —E1. The interpretation of the two-
point density cumulant as an exponentially damped shot-noise contribution will be

(01)

motivated in section 4.3.4. Following Theorem 1, we already argued why chp oy
1 2

and Gg)él)q,pz can be understood as propagators for the density field ®, in a statistical
sense. This will become clearer once we take a look at perturbation theory.

4.2.7  Two-particle cumulants

As in the one-particle case the two-particle cumulants can be written down to any
desired order of external labels n. The correlation function Cc((z,zl can be seen in its
diagrammatic form as the two-particle sum in (3.91). We now apply the reasoning
used in (3.117) that once the trace operators are applied diagrams of equal topology

give the same result to combine these and find
C(Z) — 1 o—o + —- + oe--—e |+ o----e | (—\
con ol b @ b a pa p ”\')k.i

=~

PO \HKJZ)
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1 -
:2<Zl_}.) —1—2&—--27 + E----z + f_){)

L 200+ ) (4.55)

Next we need to consider that the e-----+ line actually represents an exponential of the
momentum correlations according to (4.37) and thus through (4.49) contains arbitrary
orders of the initial power spectrum Ps. We thus have to truncate at some order of
P;s and for the sake of keeping the length of expressions managable we choose to
truncate at quadratic order. This means that the last diagram in (4.55) containing
three lines is excluded. The c;,, factors coming from any e----- are approximated
as

. . 1 /. L\2
~ T T
pun ~ =T, G T + 5 (T8, T ) - (4.56)

In terms of diagrams we write this as
@_1(. . —e & &0,
Ccon—2<a b+2ﬂ b+ﬂ b>
1 @ (1) 1)
- ey ey 2,1
ol e+ O+ £ 240y | =i e ()

where - means the first order contribution in (4.56) and so on. We now want to
calculate the general n-point density-only cumulant with the correlations shown in
(4.57). For this we implement the general strategy for organising the terms originating
from the product of single-particle density operators ¢, that we discussed in section
4.2.4. We have ¢ = 2 particles a and b and thus all non-vanishing label distributions
are given by m|(n —m) with 1 < m < |n/2|. All label groupings ({s1};{s2}) =
(i1, im;j1, -+, ju—m) only include two labelings a;, ;,bj,. j,_, and a;, i, bi ;.. We
pick such a general grouping ({s1};{s2}) and first calculate the damping function
coming from the integration over the initial momenta. With (4.39) we easily find

>
D({s1}; {s2}) = exp {—azp (T{Zs}l + T{i}) } : (4.58)

We now need to evaluate the second sum in (4.40) for the grouping we have chosen in

order to find the general 7; (511 [#(s}a function. Since we only include first and second
order effects in the power spectrum Ps we also define the 7 to these orders as

(i ) Tt ween, ({5137 {52})

(Z ) ({s1}; {s2}) x

@)z () 7 =) 7
/d / <CC(2 1) _1% k{ sh e 1‘1[7 k{s}z _|_C(2 1) *1% 'k{s}z e_lqb 'k{s}1>

(4-59)
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and analogously for the second order function. The role of the Dirac delta distribution
in front of the 7 function will become clear in a moment. We start evaluating the
simplest of all diagrams in (4.57), the e—— line. The integral over initial positions is

then
: : () 7 () 7 ) 7 () 7
% / dg,” / dg,” R <e“% Koh 70 Koy 4 @710 Kis)y @7 'k{s}1>
i i i) @)y —igV.k —ig W,
:1/0@(1) /d%(l)zcaaab(%(),qé))e i) Risyy iy Ky
- / 4l / 4z

(i T 7 d_‘(i) ,ﬂ(i) - -
_ (ZN)d/th5<l’l>/ (C;n)d elqa().(h—k{s}l)/ Ty h -(thk{S}l)

= (27‘[)d 5D(E{s}1 —I—E{S}z) P&(‘E{s}l‘) = (27T)d5D (ZES> P§(’E{S}1|) . (460)

In the first line we already used the fact that the diagram does not actually depend
on the sets of external labels {s}; and {s}, to pull it out in front of the two explicit
labeling terms. In the second line we used the symmetry of the diagram in order to
combine both terms by renaming the particles in the second term. We then inserted
(4.45) and used the relation (1.26) for the Fourier transform of the Dirac delta distri-
bution. In the last line we used that the union of both sets {s}; and {s}, must be the
entirety of all external labels. The fact that we find a Dirac delta distribution with
the sum of modes as its arguments is a clear sign that this is a connected contribution
to the correlation of the collective fields ®,, ...®,, in a statistically homogeneous
and isotropic system. Note that using this Dirac delta distribution we may always
exchange the argument of the power spectrum P; between k (s}, and k (s)o

The above calculation already shows most of the features that we encounter in the
calculation of all the other diagrams of (4.57). We will do the explicit calculation for
two more diagrams to show the remaining features. First up is the e—--¢ line.

3 [dal [ a2 gy e 0
L T e
= (—i)z/d%(i)/dﬁb(i)/ dh_ i (i~ ﬂﬁ))P(s(h) F Ty, e 10 Ky, =i Ko,

(i [ [ag? [ ) gy T i R R
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B S
= —(n)¢ [ dh Ps(h) hz{ 2 55 (1 — Fray,) Op (i + Fay,)
he-Try, o~ - Lo
— @) [ diiPy() =1 o0 (7 ~ K, 600 + Ky,

Es> Ps(|

2
ko),

k{s}l ) T{S}z
72
{sh

+P5(‘%{5}2’)

|

|

k{s}l ) T{S}l + k{S}_z’ ) T{S}z

72 2
ke, ko,

(4.61)

E{S}l ‘) (

We see that due to the «—--¢ line not being symmetric we have to consider both
labelings separately. In the first step we used both (4.35) and (4.48). The second step
is then just a repetition of the calculation in (4.59). In the last line we used the overall

Dirac delta distribution to exc

hange E{S}l and E{s}z in such a way as to simplify the

expression as much as possible.

1)

The last diagram we calculate explicitly is Q . Just like in the case of the e——
line, the symmetry of the diagram leads to both labelings giving the same contribu-
tion. We thus only calculate one of them and take a factor of 2 into account from the

beginning. With the help of (4.

e)]

29) we find

~

() 7 () 7
e Ya ks e Ky

2; [ai [ag) £
_ = (i) ~ (i) dﬁ1 (79 -59) = ﬁ1 ®ﬁ1 B
= — / dq, /dl]b / W Ps(hi)e™ ( b TES}l h‘% Ty, %
dﬁz iﬁ .(“(i)i—*(i)> _,ﬂ(i)% ) 7._a(i)% ‘
——= _Ps(h 2\ Fa 1, i kygy i, k()
/(zn)d 5(h2) e e le 2

dh dh S o > 7
=—(27T>2d/ (27r1)d / (27T§d Op(hn +he —ksy,) op (I + ha + ki), ) X
Tiv. - hy Tra, - T
Ps(h1) Ps(ha) {S}hlz {sZz
1 1
- n dh Tisy 1 Tisp, 1

_ y .

s=1

—(27‘[)d (51) (

)/

W Ps(h) P&(‘fl — E{S}l ‘) 12 W2 (4.62)

Going from the third and fourth to the last line we executed the integral over hy and
then renamed h; — h. All other steps should by now be familiar from the previous

two calculations. Note that as
thus a loop-like structure® we

soon as we have more than one correlation line and
retain one Fourier integral which we cannot perform

analytically. It mixes contributions of the power spectrum from different modes. This

2 .
1 Note that the <2 line actually stands for the loop like diagram «_ (1

second order line to clarify its origin.

a

)
;:). We have drawn it as single
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phenomenon is often called mode coupling. Once all diagrams of (4.57) have been eval-
uated for the general grouping under consideration, i.e. ({s}1;{s}2), we can write
down both the first and second order 7 functions.

) T e
Tt (1) 521) = D01} fs2) R {H“;z}}“
S5

T R, Tio R Tsgo k{s}z} _

(4.63)
72 72 72
ke, ko, Kot

#{sl}\#{sz}({sl} {s2}) =D({s1}, {s2}) /(Zd:)dP(s(h) Ps([kgs,y — 1))

—

T, T (Fin =) T -F Ty, -
hz (E{S}l B ’_/l,>2 h2 hZ
T (Fp 1) T (Ko, —F)

(k. )’ (k. )’
1T (E{s}l —E) Tisy, (k{s}l E)

Po(Rg-i) (B oR)
(4:6)

With these two functions the general n-point /-particle density-only cumulant up to
second order in the initial powerspectrum can then be written down as

X

1+

n [n/2]
, 5 7 2,
Gg)mz-)-vq’pn = p%(27)"ép <2k5> )y )3 Z 7;{:}\#{52} ({s1}:{s2}) - (4.65)
s=1 m=1 E{l},}{Sz} p=1
S1y=m
#{sz}l:n—m

Although both 7(?) functions might look somewhat intimidating due to their exten-
sive length, they reduce in size if we consider the most interesting cases of lower
n-point cumulants. For the (n = 1)-point case we can immediately infer from Theo-
rem 3 that

Gfppl) 0 and Gy ) —0. (4.66)

This is not very surprising since the mean density of a statistically homogeneous and
isotropic system must be spatially constant. Thus the correlations of two particles
may not influence it. Moving on to the (n = 2)-point case the only possible label
distribution is 1|1 and it trivially contains only the e grouping (1;2). The overall Dirac
delta distribution in (4.65) then allows us to set ko = —ki. The two T functions
have the explicit form

2

(21) % 22 2
71|1 (1;2) = Ps(k1) (1 + g1) (1+82)9XP{ 5 ki (g1+g2)} (4.67)
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(22) ‘Tz% 2,2, 2 dn 77
T 7 (1,2) = exp —7k1(g1+g2) /WP(;(\h—h])P(;(h)x

8182 (El f)z 1+ (g1 -h‘%z)kl.(kl_z>
h )
. . - 2 L. 2 (7. 7
g (B EAY) () (26
(kl - h) (kl — h)
(4.68)

We will comment on the physical meaning of these two terms in part ii. Completing
our discussion of (¢ = 2)-particle cumulants we will now show a general scheme
how one can easily derive mixed cumulants between the density field ®, and the
response field ®p once the density-only cumulants are known. In the (n = 2)-point
case Corollary 4 directly tells us that there are no mixed cumulants

Gay oy, = 0= Gy, - (4:69)

2

We must thus at least consider the (n = 3)-point cumulants. The only possible label

)

distribution is 1|2 and without specifying the Tl(é function the density-only cumulant

reads
(02) _ 52 d5F LTtk 2) (1. (2) (n. (2) (3.
Goh 0, = P27 8+ Ko+ o) (T3 (1,2,3) + 710 (2:1,3) + 7,3 (3:1,2)).
(4.70)
We now replace the @, field with a ®p, field. The only thing we have to change
is that each of the Tl(é) functions must now be multiplied with the appropriate b(3)

factor. Remember that these only depend on the grouping and not on the actual
labeling. With the help of (4.31) we easily find

Gg]f;fzppz oy, = 10°(27) "6 (k1 +K2 +s) (E3 Kagn T2 (1,2,3) + ks - K1 g Tl(é) (2; 1,3)) .
(4.71)

Note that the third term Tl(é) (3;1,2) vanishes due to Theorem 1 because here one of

the two particles only carries the ®p-field index 3. If we also exchange ®,, — ®p, the
same situation will hold for all three terms and thus Gg) ’2()13 o. = 0 as required by
1 By B3

Corollary 4. We now infer a general strategy for finding arbitrary mixed cumulants.

e First one calculates the 7(*) functions for the corresponding density-only cu-
mulant.

¢ Then one replaces density fields by response fields as desired. We then identify
those label groupings where we have particles that only carry ®p-field labels
and drop their 7“) functions.

e For the surviving 7(¥) functions we place the appropriate number of b factors
in front of them. The form of those b factors can be read off directly from the
label grouping.
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4.2.8 Three-particle cumulants

The one- and two-particle cumulants are unique in the sense that they are the only /-
particle contributions to a general non-interacting cumulant (4.18) where the number
of labelings /! per label grouping is still fairly manageable. We will confine ourselves
to the (n = 3)-case in order to give a quick example of how one should in principle
approch calculating cumulants for £ > 3 and to show an interesting consequence of
initial momentum correlations.

The correlation function cﬁf;% can be seen in its diagrammatic form as the three-
particle sum in (3.91) and consists of an enormous number of diagrams. Just like in
the (¢ = 2)-particle case we will only consider terms of quadratic order in Ps. This
reduces the number of diagrams down to 36 and once we combine those of equivalent
topology we are left with

o he A o
¢ = / N+ / 4+ SN+ SN+ e
o \. kS J \. / N AN
a p a p a p a p a p
c c
_|_ 1 II’\\ + 1 Sl,l.\\\ 6 (4 72)
3 / \ 3 0N
a b a b

In the (n = 3)-point case the only possible label distribution is trivially 1|1|1 which

contains the single grouping (1;2;3). The cumulant will thus consist of only one
’Eﬁﬁ) function. However, the grouping contains ¢! = 3! = 6 labelings which have to
be evaluated for each of the 7 diagrams. Thus, we still have to calculate 42 individual

contributions. In the end one finds that they can be combined into

o o L
71(&]?(1?2/’3) =exp {—zp <T12 + T3+ T32> } {Pé(kl) Ps(k2) (14 g1)(1+ g2) %

kT k - (ﬁl Ez)
T | =+ =
[ KoK Kok

where T3 = g3 ks is the special case of the transport vector for label sets containing
only one label. From Corollary 4 it immediately follows that the pure density cumu-
lant is the only non-vanishing (n = 3)-point (¢ = 3)-particle cumulant which reads

+ cyc. perm.} , (4.73)

03 - 7 7z 7 32
Gfpmzpﬁzq)f?s = p3 (27T)d Op(k1 + ko + k3) 7-1(|1|1) (1,2;3) . (4-74)

This cumulant is usually called the bispectrum. Note that since every diagram in
(4.72) involves some kind of momentum correlation the bispectrum vanishes for
ty = tp = t3 = t;, as is required by the Gaussianity of the initial density-momentum
random field. However, once the field evolves over time it will necessarily become
non-Gaussian even in the absence of interactions due to initial momentum correla-
tions.
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4.3 PERTURBATION THEORY

In this section we will show how one can obtain a perturbative expansion of the full
interacting cumulants in terms of the non-interacting ones and the interaction poten-
tial 0,,. We first derive what we call the exact master equation of perturbation theory
and then expand it in orders of the interaction. While this form of perturbation the-
ory will have desirable advantages over the canonical case (2.58), we will also argue
why it is problematic to use it in a consistent fashion. We then introduce another di-
agrammatic language different from that for the initial correlations in order to better
organize the terms of perturbation theory visually. This will allow us to make the
advantages of the grand canonical approach apparent more easily. Furthermore, we
will use the diagrammatic language to point out how one might cure the consistency
problems by identifying the first order solution for the G ¢, cumulant as the basic
building block of a propagator for the statistics of the density field ®,.

Since we will encounter equations containing many cumulants, we will stream-
line their notation by writing Go, ..®,, = Gu ..z, and using the reduced notation
explained at the end of section 1.2.2, where greek indices encode both the field type
and the external label, i.e. & = 7.

4.3.1  The master equation

We will derive the central or master equation of perturbation theory by basically re-
peating the calculations of Mazenko [39]. However, these were done for a system
without any initial correlations. In our case these correlations will introduce a seem-
ingly small deviation from Mazenko’s calculation, which nonetheless introduces a
whole new class of terms into the perturbation theory. It is this class of terms which
will make it hard to order the perturbation series in a consistent way.

The general definition of a full interacting cumulant G, . 4, can be found in (4.14).
In the following we will suppress the |0 and always assume that all sources are only
turned off once all functional derivatives have been executed. Since we have to deal
with a lot of functional derivatives w.r. t. to the collective source field H we introduce
the shorthand notation

- o

Huy = i6H,,
We begin by looking at the one-point cumulant. If we recall that the interaction opera-
tor (2.48) is defined in terms of the functional derivatives H, and that such derivatives
commute we find

Gy = HyIn (eiﬁl exp {i = [H] })
/=1
1 sl g 50 " 5l
i | (£ o) e { £ 20|

(4.75)

 Zac

1[H] el [ (i eV [H] el c1>§f')> exp { i ZJ(()() [H] }] . (4.76)
(=1

~ Zac
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We have used that the connected and free /-particle generating functional may be
written as

i ¢ ,
Z(()g) [H] = Tr®) [H] CC(QI with Tr(®) [H] = HTrj o« I—!eiH‘¢/ _ i@ , (477)
= =

where the single-particle trace is defined through the combination of (3.101) and
(3.118). We also made all dependences on H explicit. We now want to commute the
interaction operator through the first instance of H in the terms of the sum over
representative particle numbers which has been taken down from the exponential
function by the single H,. For this we remind ourselves that by definition

O L T S £ (P |
e I:Z ESI:Z E <2HV0-VVHV> . (478)

The commutation of a single S; operator with the source term contained in the Tr")
is given by

A A iH-0
Hyo,,H, e

= 0., H, (q,(vf) Qi@ | GiH-00 HV)
= O (cb,(f) o) L o [, 4 @) PV [, el FI;,HV)
iH-d0 l l 4 2 2 2
= ¢ (o) @lf) + 200, B, + Hoy L) (479)

where we have used the symmetry property 0, = 0, in the last line. Since this com-
mutation does not generate any new instances of H, we can perform it for each term
in the series of (4.78) and find the following commutation relation for the complete
interaction operator

& : - N ig® 0 e e
els,elH-qN) _ elH-<1><‘> e3P @y oi®y oy GiS; (4.80)

With the help of this relation the one-point cumulant now reads

1 - 0 0 100 0O\ 60 1 ig I
= el @ es®i' o ®”) @i oAy giStay X [H
o = oo L (TCm ok ) PiL T 1]
= S ([) (é) q)(é) iq)(f)o—}wq)s() 1 iq)M)UI‘VHUZ H
(;1 <TI' Ceon Py "€27 ) Zoo [H] et GC[ ] : (4.81)
Next we define the force term
F;(lg) = CI)I(,Z)U'W (4.82)

whose physical meaning will become clear shortly. Next we define another trace
operator as

~1/\N i o it .
Try V) [H] = (pz‘\;v) / dx / Dx(t) / D (t) eiSotIxHKx ol O (4.83)

99



100

THE GRAND CANONICAL ENSEMBLE

which is the N-particle equivalent of Trl") but without the phase-space probability
distribution of the ideal gas. We also wrote ®N) to explicitly mark the collective
field made up of all N particles of the canonical systems one averages over when
calculating the grand canonical generating functional as

& . i
Zeclt] = Y- 0 [H] P exp { 500l (454)
N=

From (4.83) it now follows easily that

(OF

e B N ) = TV [H] PO = TN [H 4 O] | (4.85)

It is important here to keep in mind that the microscopic phase-space coordinates on
which FP(/) depends through the collective field CI>1(,€) in (4.82) are not traced over by
Tr(()N) but by the Tr¥) in (4.81). If we combine this with (4.84), we can define

¢ 1 oo
AW el bl 7o M| =

1 oiF P
ZgclH]

ZoclH HnZ e [H]

(N)

Y TV [H + FO)P(x) o2 emet™
N=0

0Py

(©)
_ Zgc[H + FO] _ ehaclH+F } eWac[H+F]—Wec[H]
Zcc[H] eWeclH] '

(4.86)

The full one-point cumulant thus has the concise form
(0) ( ) (« )
Go = ZT Clon @3 @i cm®s AW (4.87)

This is our so-called master equation since one can now easily generate the full higher
order cumulants by taking additional functional derivatives w.r.t. H. A few com-
ments are in order at this point.

e First we like to point out the difference of our result when compared to the cal-
culation in Mazenko [39]. His original calculation concerned a system without
initial correlations. This case is contained in our result as the special case where
one sets cc(ﬁ; =0 for all ¢ > 2. With Cc(cl,% = 1 one then finds that (4.87) reduces
to

Ga = TrV Ve @i an@l AWD _ (1) (VAW (4.88)

We have used that our particles should have no self-interaction, i. e. we require
that the interaction potential satisfies* v(7,7")|;—7 = 0. From this it directly
follows that the ‘self-interaction” term evaluates to unity as

i (D) M
eiq)yl o ®y) _ 1. (4.89)

In our case this is no longer the case since we have to consider arbitrary repre-
sentative particle numbers ¢ and these particles may then of course interact.

2 To be more precise one also has to require V,v(, )|q 7 = 0, due to the gradient contained in the ®p
field.
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® One can also give a physical interpretation of (4.87). One picks some set of ¢
representative particles from the system which are grouped into a cluster due
to their connected initial correlations C(E_QI Considering interactions e%q)l(f)”l”q)y)
amongst the particles of the cluster one calculates their contribution to the one-
point cumulant. It is these ‘intra-cluster” interactions, where the potential ap-
pears together with quantities which are directly coupled to a specific number
of particles, that will lead to the perturbation series being generated in a non-
consistent way.

¢ The fact that this cluster of particles also interacts with the rest of the system
is expressed by the weight factor A" From (4.86) we see that it is given by
the ratio of the generating functional of the entire system under the effect of an
additional external force F;(,E) to that of the system without such a force. This
external force leads to an additional interaction term
(N)

e o — ol P o ®

(4.90)
as one can see from (4.85). Here we directly see that it contains the interactions
of the cluster particles with all other particles. To obtain the complete one-point
cumulant one then sums such contributions from clusters of all sizes ¢.

¢ We stress that (4.87) is exact. Up to this point no approximations have been
made. So far the sum over particle numbers is also in no way tied to the order
of interactions considered. Its truncation is only controlled by the order of initial
correlations one is willing to consider, as we explained following (4.18). How
and why this will change once we consider individual terms in the perturbation
series of certain order in the interaction ¢y, will be explained in the next section.

The quantity we are actually interested in is the two-point cumulant. As already men-
tioned, we obtain an exact expression for it by taking another functional derivative of
the master equation (4.87). We find

- [(HﬁTr([) [H]) Clon @Y BURS AN

i (0 A

O] LGy B0 04 ool g o
= i [Tr(f) [H] CC(Q_1 <I>§f) q)g) e%q’,ﬂwvyv@y)e/sw(f)

+ T [H] c{8) @) 3w Hg eAWq :
(4.91)

Mazenko [39] then rewrites this into a form that has the same structure as the so-
called Dyson equation known from QFT. For this we use the chain rule

N © 0G, ¢ ® ) ©
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If one then identifies the cluster self-correlation3

0 ig(0) (0) G
Gop = Y TO[H] Clh @) @) @i e W (4:93)
(=1
and
d ip0, O 0 %)
Zaf)/ = Z Tr(g) [H] CC(Q q),g) ezq)P TPy f eAW ! s (494)
(=1 v

then (4.91) would be written as

Gap = Gup + ZayGop - (4.95)

In comparison to the QFT case G,z has the same role as the so-called bare propagator
and X, is this theory’s version of the self-energy. In QFT the bare propagator describes
the propagation of a quantized contribution to the field, i. e. a particle, through space-
time without taking into account its interaction with its ‘vacuum’ environment. In
our theory for classical particles this role is taken by initially correlated clusters of
particles of all sizes which of course may interact inside the cluster. If we had no
initial correlations like in equilibrium QFT this would reduce to the trivial case of one-
particle clusters only. The interaction of a particle with the QFT vacuum is encoded in
the self-energy. In our case however the interaction of the cluster with the surround-
ing environment of all other particles is encoded in MW which appears in both G,z
and X, and thus the physical analogy breaks down at this point.

We will see in the next sections that while we can write the perturbation expansion
in a form that is structurally similar to QFT when expressed in diagrams, as is hinted
at by (4.95), it is however not generated in such a way that it is consistent in the orders
of the interaction ¢,,,. We also like to mention that the formulation of perturbation
theory in terms of integral equations is not confined to the grand-canonical ensem-
ble. In Appendix B we show that up to second order the same structure as found in
the next section emerges in the canonical ensemble, however purely in terms of free
cumulants and the interaction potential. Proving the canonical analogue (4.87) gen-
erally is somewhat hard, since the free generating functional (3.115) of the canonical
ensemble does not have the exponential form of its grand canonical counterpart.

4.3.2  Perturbation expansion up to second order

The main order parameter for doing perturbative expansions of both the one- and
two-point functions (4.87) and (4.91) is the interaction potential 0;,,. In both cases
there are two separate instances of the potential present which lead to different kinds
of expansions.

The first instance is the intra-cluster interaction contained in the et® % ® factors.
Since it is impossible to obtain the trajectories of even two interacting particles in a

3 This quantity must not be confused with the free phase-space propagator.
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non-parametric way our only option for performing explicit calculations is to expand
the exponential function and thus define the interacting ¢-particle cluster cumulant

i ) (0)
6, = T CH B @&?ez% ol

i ¢ J
—= Z T Tl'(e) CC(OB'I . H V?Z O—MWV”
RSN ()
=) < 2Jj! G gy Opavn = - O
]:
= (00
- Z 7 erl &np1B1...0;B; Tp1B; - UPJ'B/' ' (496)

In the last line we used the symmetry property o,p = 0p,. The second and more

important instance is the interaction potential contained in the force F, () which de-

flnes AW, Just like Mazenko we expand this into a functional Taylor series around
= 0 and find

AW = WIH + F9] — W[H]

PHOEO 8,8, WIH)| yy + - -

.0 H
= iE BWIH] |,y + 5 B

=ir"G +2'F( EG+ ..., (4-97)

where we have restricted ourselves to the second order since this will already suffice
to see all important features of the perturbation theory. If we insert this into the series

expansion of M we find again up to second order
e —144FG, + iP}PPﬁ“ (GuGu + G) + ... - (4.98)
We now insert this into our expression (4.87) for the one-point cumulant and find
Gu = ZTr 10 o ® <1+1Fg /G + 1221?5“)1:7(@ (GsG, +G5n,)) +...
- i (Gﬁf) +itr o oVe @ aw s Gy
(=1
+i22Tr(€)CI>,(X€)CI>((5E)q)§f)eiZZ w0l o (GG + Gm)> +
i ( +iGay 075G + 5 Gi(s))t‘fﬁﬁ‘TM (GpGy + Gﬁv)) e (4.99)

Since all dependences on the representative particle number ¢ can now be written
out in terms of non-interacting cumulants we can use (4.96) to define

o i’-‘r]

(o]
"‘1 &n Z ’Xl By T Z Z le txnplBl .0;B B.Yp1Bi - - 'O-Pij . (4-100)
(=1 j=0 (= 1/
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Here we used Corollary 4 to truncate the series over particle numbers, where 7 is the
number of p-labels in & ... a,. Since each order of the interaction adds another such
label to the cumulant it extends the range of possible cumulants. With this definition
we finally arrive at

2
Ge = G\ +iG905,Gy + =G

ap 5 Japy OBu0Oyv (Gva + G;w) +.... (4.101)

The second order expansion for G, can be derived in two different ways depending
on whether we start from (4.91) or (4.95). We first look at the former option. The first
of the two terms works exactly like the one-point case and can be obtained by just
adding another external label to (4.101). For the second term we need to calculate

2
Age™" = iF ApGy + S F R Ap (GuGy+ Gu) + .
2
= iR Gy + 5 FEY (2G,Gup + Gup) + - - (4.102)

If we insert this back into the second term of (4.91) and perform calculations ana-
loguous to (4.99) we find that the complete second order expansion of the two-point
cumulant is

2
. . 1
Gap = Gy +iGyg3, Gy +iGiid 0 Gup + 5 Gl 0urus (Go G + Go)

2
1
+ EG{)E‘C”)V OuyOys (ZG«,G(sﬂ + G'\y&ﬁ) + ... (4.103)

At this point we can now make some interesting observations.

* The expansion of the second instance of the interaction potential in M has
led to a self-consistent perturbation expansion where the full interacting cumu-
lants are defined in terms of themselves. In mathematical terms this means that
we no longer have a simple series expansion where we add more and more
independent terms, but non-linear integral equations. Once we introduce a dia-
grammatic language in section 4.3.5 it will be easy to see that this amounts to
the inclusion of whole infinite classes of terms found in the canonical perturba-
tion series (2.58) even at the first order expansion of AW Consequently, the
exact solution to this first order expansion will include effects of infinite orders
in oyy.

* Once we expand AW up to second order, n-point cumulants depend on all

cumulants up to (n 4 1)-point order. This is reminiscent of the BBGKY hierarchy.
However, as explained in section 2.6 in this hierarchy the evolution for the
n-point distribution function only depend on themselves and the (n + 1)-point
distribution function. By truncating the hierarchy at some n-point level it is thus
in principle possible to solve the problem going down level by level. This is no
longer possible in our case where one has to solve the equations for all n-point
cumulants present in the perturbation expansion at the same time. Especially
for non-linear integral equations this is a daunting task. One would like to be
able to disentangle the equations from one another.
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¢ The structure of the equations seems to suggest that the natural quantities in
which perturbation theory should be expressed are the full n-point cumulants

Ga,...a,, the interaction potential 0, and the quantities Go(ﬂu,x”, which themselves

can be expressed through ¢, and the non-interacting cumulants G,S(?t{)“n. This
is preferable to the canonical perturbation theory since we directly generate a
formulation in terms of quantities, which themselves cannot be factorized any
further.

¢ These seemingly natural quantities however make a consistent treatment of
the perturbation theory complicated. First, it is not in any way clear up to

()

which order in ¢, one should include terms in the G,,’ ,, depending on the
order of ¢, one has chosen for the expansion of M since these expansions
are completely different in nature as explained above. In the original papers

[22, 39, 40] this problem does not exist since the system under consideration

does not have initial correlations. Then ng?..an = Go(é?.)_‘an and the interaction

potential becomes a solid order parameter since it only appears in the expansion
(0)

of eV,

* Second, in order to apply methods known from QFT one would like to have a
formulation of perturbation theory in terms of a two-point correlator quantity
or ‘statistical field propagator” and (n > 2)-point vertices. Since 0y, is also a
two-point quantity it seems natural that it should be possible to incorporate all
its instances into this field propagator. One could then organize perturbation
theory in terms of loop orders just like in QFT. We will identify a candidate for
the field propagator in section 4.3.5.

We can partly disentangle the equations for the different n-point cumulants by in-
troducing the concept of an effective action I'. In QFT it is the quantum-mechanical
counterpart of the classical action in the sense that the equations of motion for the
expectation value of the fields can be derived from it by the principle of stationary
action. These equations of motion will include all quantum-mechanical corrections.
We can define it in just the same way as in QFT as the Legendre transform of the
cumulant generating functional

[[¢] = Woc[H] —iguHy , (4.104)

where we have defined the expectation value of the collective field in the presence of

the source H as
0
pulH] = EWGC [H] . (4.105)

From this one easily shows that

oT
Sy = —H, (4.106)

which at H = 0 can be seen as the equations of motion for the expectation value of the
collective field ® which incorporates both the effects of all particle interactions and
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the fluctuations which are due to the fact that the initial conditions have a statistical
distribution. Using the chain rule

i6H, 15H i6¢, (iéH,, i(SHVWGC[H])li(Sq)V = GM% (4.107)

we can take another functional derivative of (4.106) to find

o o
Gayys T =0,0D(1—2) =9, h Ty, = r. .108
w173+ 7362 aB YD ( ) nmp, Where H1v2 i(SqDy(l) i5§0u (2) (4 108)
This means that the second derivative of I is functionally inverse to the full two-point
cumulant. For the three-point cumulant we find

s 5 5 ,
szﬁ'y - EG B = G’Y‘SI (5(P rzxﬁ - IG’WF <1(5§D r ) FV,B
= _iGIX]lGﬁVG’)/5r]JV(5 . (4-109)

Doing this inductively for all higher n-point cumulants one sees that the effective
action I' is the generating functional of the so-called amputated Green’s functions which
are one-particle irreducible (1PI). If one expresses the perturbation expansion for the
correlation functions of a field theory in terms of diagrams, the term 1PI designates
those diagrams and subdiagrams which cannot be made into disconnected diagrams
by cutting only a single line. In terms of correlation functions this means that the
term represented by this subdiagram cannot be written into a form that schematically
looks like (1PI) x Gup x (1PI), where G,p would be the two-point propagator of that
particular theory.

The term amputated means that if in a general diagram we can identify a subdia-
gram which is connected to the rest of the overall diagram with n legs, we can cut off
these legs and consider this subdiagram individually. If it is 1PI, one can then show
that it is contained in the n-th derivative I'y, _,,. By organising all diagrams contribut-
ing to some n-point cumulant G, 4, in terms of these amputated 1Pl subdiagrams
and the contributions to the full two-point cumulant Gy, = I'; ;, connecting them,
one then sees that G, .., Will be written purely in terms of tree-level diagrams assem-
bled from G,n, and the I'y, . ,,. This is why the latter are often called effective vertices
since they allow the computation of arbitrary cumulants in terms of expressions like
(4.109) that have no loop-like integrals, i.e. all loop corrections to subdiagrams with
more than two external legs are contained in the I'y, 4,.

We now return to (4.95) and rederive the perturbation expansion for the two-point
function. From (4.94) we see that we need to compute

4 3 i2
EeAWW N <1 +iFGy + SEVEY (GuGy + Guw) + (9(03))
— il + ) FYENG, + ﬁF(@F,E“iGW . (4.110)
2 a 277 6G,
Since G, = ¢, in the presence of H we have
) o
~—Gu F 1 —iGsGualspy - (4.111)

0Gy 1(5g0
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The first term of (4.95) is exactly the same as the first term (4.91) and thus we find
the following expression for the two-point cumulant

2
. . 1
Gap = Gy +1Gyg, 0 G + 1615001 Gup + 5 Glih, Gn s (G1Gs + Go)

2
1 .
+ 5 Giih 0005 (21 Gsg — 16,0 GaTagw Gup) + O() - (4.112)

The same result would of course be found by inserting (4.109) into (4.103). This re-
solves the problem that we needed the three-point cumulant in order to calculate the
two-point cumulant. We payed for this with the introduction of a cubic term in Gug
and the effective three-point vertex I'q,,. Given some expression for I' the equations
(4.101) for the one-point and (4.112) for the two-point cumulant then again form a
closed system even at second order of the expansion of M In QFT formulae exist
for deriving approximations for I' from the classical action S. However, they cannot be
transferred directly to our theory in its present form since our action only describes
interactions in terms of the collective field ® but not the free dynamics. Another ap-
proach taken by Mazenko [40] is to use (4.108) with the non-interacting cumulants
to find a non-interacting approximation for the effective vertices. The necessary func-
tional inversion however has so far only been done analytically for Smoluchowski
dynamics, and seems impossible to be performed in a closed form for Newtonian dy-
namics, let alone for a system with initial correlations like ours. All in all, applying
the effective action approach to our theory in the present form does not provide any
significant advantages.

4.3.3 General form of the interaction potential

Before we progress further it will be very advantageous to have some more explicit
information about the form of the two-particle interaction potential v (g,7"), espe-
cially about its Fourier transform. Aside from the assumptions made in section 2.4.1,
we can make one more important statement in a system which is statistically homo-
geneous and isotropic. For such a system the interaction potential may only depend
on the modulus |7 — 7’| of the separation vector. If it would depend on the absolute
position of the two particles involved, then particle pairs at equal distance but in dif-
ferent subparts of the system would experience different forces in all members of the
ensemble. Consequently, even when we average over the ensemble we would always
find over- or underdensities in the system at the same positions, depending on the
sign of the interaction. This obviously violates statistical homogeneity. If the poten-
tial did depend not only on the modulus but also on the direction of the separation
vector this would lead to a preferred streaming direction of the particles across all
ensemble members. This would then break the statistical isotropy of the velocity field.
With this new information we find for the Fourier transform of the potential

ok F) = [dge T [ e TR o(|7-7))

= /dq’e’iﬁ/qu” e’i(7+A”7)'E/v(]Ar7‘)
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-

:/d ﬂqkﬁ /quemqk \Aq\
= 2m)?op(k+K) oK) = 2m) dp(k+ k) v(k) . (4.113)

We have defined A7 = §' — 7 in the second line. Consequently, the interaction matrix
in Fourier space reads

0(1,2) = — (1) 6o (R + F2) dp(tr — 12) ( v<21> ”“(;1)) . (4.119)

With the help of (1.28) any interaction term in Fourier space then reads as
q)y.lgylvzq)yz - @ﬂ(l)o—yy(_l, _2)¢V(2) — qDV(].)O—Vv(]., 2)@1/(2) - QﬂU]ﬂ/q)V ’ (4.115)

where we have used the form (4.114) in the third step. We thus do not have to take
any minus signs into account when writing down general interaction terms. We will
also demand that the potential v(g) drops off fast enough for 4 — co such that the
value of the Fourier transform at k = 0 is well defined in the sense of

- —idk 27'(”/2 7
k”k:oz/dqe T50(q) ],y = [(n/2) / qq"" (4.116)

From this we can conclude the identity
bp(K) K" o(k) =0 Vn>0. (4.117)

This identity is important because it allows us to drop all diagrams that contain a
‘tadpole’# of any order in the interaction connecting to a non-interacting cumulant.
For this we use that Gp = 0 to any order in the interaction (see Appendix A). This
leads to

ngc(l) Z)(x,, 1“na“;1HGH = G(O'Z) U-Banp . (4118)

Ky...&py—1 Bn

We also need that due to statistical homogeneity and isotropy any general n-point
cumulant has the following form in Fourier space

szl...a,, - (27T op <Z k) K1...0p (4.119)

j=1

For the one-point cumulant we thus have G, = (27)% ép(K) G, where G, must be
constant in E, because it must be constant in conﬁguration space. We thus find

0,0 - -

G‘il )0(,1 1B Bnpm ,Dm - 27-[ Zd/dn /dm Gﬂ(l &y,—1By (5 (km) Gp(tm)X
<5D(kn + k ) 5]) — tm >
/dtn Dé] 0(,1 an (%i’l) v(k”) GP<t”)

S (5D(kn) b(n) v(k,) o< 8p(kn) knv(ky) = 0. (4.120)

4 This is a common nomenclature for these kinds of terms in QFT. It will become more obvious once we

write these terms as diagrams.
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All other factors must be finite at k, = 0. The only possible source of any inverse pow-
ers of k, would be the non-interacting cumulant. If one goes through their derivation
in section 4.2, one finds that %n would need to be the sole mode put into the denomi-
nator of either C\(sip]. or CPin by a Dirac delta distribution. In order for this to happen
the external label 3 must be the only label carried by some particle. But since it is a
Pp-field label, Theorem 1 dictates that the cumulant vanishes due to causality in the
first place.

The two Dirac delta distributions in (4.114) also allow us to drop certain terms
from non-interacting cumulants whose fields are contracted with ¢;,,. These are the
quantities appearing in (4.96). The effect of a contraction is in general

G(S‘?f,f,),xnamaanam = —Z/dn Gi(l)’nf.)p”B_” v(ky) . (4.121)

Remember that —n = (—%n, t,). Now consider a label grouping where both external
labels that have been contracted are carried by the same particle, i. e. we now look at
the interaction between contributions to two different fields coming from the same
particle or simpler said a self-interaction of the particle. Since now

Kn +Km — kn —kn =0
gnkn + gukm — gn(kn — k) =0
Kngum — Kngun =0

Kngmn — —Kkngun =0, (4.122)

we see from (4.30) and (4.31) that the only remaining instance of k. left in the contri-
bution from this grouping is the leading factor in b(n). The contribution thus has an
overall factor

/(;7]?)(1 knv(k,) =0 (4.123)
due to the angular integration and can consequently be dropped. This shows that
the requirement of statistical homogeneity and isotropy automatically ensures that
particle self-interactions do not contribute to any kind of cumulant.

Another important feature of the potential is its scaling with the mean particle
number density p. Since the case of the gravitational potential of a collection of iden-
tical particles of mass m will be the relevant one in part ii we use it as an example here.
The potential v;(§) generated by the particle j is proportional to its mass. The phys-
ical system we are describing is some distribution of the total mass M distributed
over some volume V. As explained in section 3.1, the particles of our field theory
are just tracer particles whose number N and mass m we are free to choose as long
as we fulfil the constraint M = Nm. Since we also fix the volume, the quantity that
characterises our system is the mean mass density p,, = M/V. As long as we keep it
fixed, we are describing the same system, no matter what the number N of particles
is we use to represent it with. For the potential it thus follows that

. M MV  pn 1
0@ oem=n =L —Pmg L
PP
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Analoguous reasonings can be found for any interaction which is proportional to
some ‘charge’ property of the particles. We only require that the respective charge
density is fixed.

4.3.4 Shot-noise and relevance of terms

We just saw that the interaction potential scales with the inverse of the mean particle
number density p if we keep the characteristic ‘charge’ or mass density fixed. On
the other hand we also have for a general non-interacting cumulant G,g(?’_.é‘),xn o pg . Our
perturbation theory will thus produce a multitude of terms all scaling differently with
p due to the combination of factors coming from the two aforementioned sources. We
thus need to ask ourselves whether we actually need to consider all of them.

The statistical quantities we are ultimately interested in are n-point cumulants of a
continuous mass density field pm. The description in terms of particles is after all just
due to a discrete sampling of this continuous density field at the initial time. In the
end we only want to keep those terms that would also appear in a continuous field
description and we can identify those terms through their scaling with p.

Let us first consider a statistically homogeneous and isotropic mass density field
0m(7) = pm(1+46(7)) at some instant in time. In Fourier space we then have pp, (k) =
om(1+6(k1)) where 1 = (271)? 6p (k) is the Fourier transformed unity. Its two-point
cumulant is given by

(pm(F2) pm(k2) ) = (pun K1) ) (o (Ro)
= 2 (1241 (8(k2) ) +2 (8(R0) ) + (8(k)o (ko) )) — pai2
2 ) (4.125)

We have used that (6) = 0 in the third line and written the mass density in terms of
a particle mass m and particle number density p in the last line. We see that we only
have a term which scales as p?. It is not difficult to see from this simple example that
any n-point cumulant of the continuous field p,, will consist only of terms which
scale as p".

In contrast let us now consider our collective density field (4.19) made up of sin-
gle particle contributions in the canonical ensemble. For an instantaneous discrete
sampling of a Gaussian random density field one can easily obtain the joint proba-
bility for two particles i and j to be found at positions 7; and 7; by marginalizing the
phase-space probability density (3.49) over all momenta and the positions of all other
particles. One finds

- 1 -
P (7)) = 3z 1 +8(.4))) (4.126)

where ¢ is the two-point correlation function, the Fourier conjugate of the powerspec-
trum of the density field. The probability to find a single particle then is P(§;) = 1/V
and thus the one-point cumulant of the discrete density field is

- N o1 4. N - .
<q’p(k1>> = Z/d‘h e fii = V(Zﬂ)d op(k1) =p1. (4.127)
=
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We thus find for the instantaneous two-point cumulant of the discrete density field

N N, X
=Y ) <e_‘k1 fig~ik: q/> —p*12
i=1j=1
_ - 1 (k)G / - / S 1 . k1 —ika G
=L diy O g fan [ df g (2 @) (TR
—p*12
N N(N=1) (s [ o iba i
— V(Zn)d (SD(k] +k2) —|— ( V2 ) <12 + / dql /dq]g (%zﬂ) e kl qze kz q})
—p*12
= (2n)?op (k1 +k2) (5 + P*P(k1)) - (4.128)

In the third step we separated the double sum into those terms which come from
one and the same particle and those which come from truly different particles. In the
final step we used that N > 1. We see that due to the discrete particle nature of our
system the former case has led to a shot-noise term which scales with a smaller power
than n = 2. Just like in the continuous case one can easily convince oneself that for a
general n-point cumulant of ®, there will arise such shot-noise terms of all scalings
p" with 1 < m < n due to the identification of all possible numbers of particles. Only
from those terms where all n particles are actually distinct do we get a contribution
equivalent to the continuous case which scales as p". In the grand-canonical ensemble
we find the same structure even for non-instantaneous density-only cumulants if we
combine (4.18) with Corollary 4.

Let us now consider mixed cumulants between ®, and ®j at the same n-point
level. We start with the density-only cumulant and then replace one ®, with a ®p
field. Now Corollary 4 dictates that only terms with scaling up to p"~! are left and
for each additional @5 field we lose another power of p. The presence of the ®j field
thus leads to particles being identified. In light of the considerations we gave after
Theorem 1 this is not surprising as the ®p field encodes how effects of interactions
at one external label are transported forward to another label by single particles.

We now want to consider the ‘thermodynamic” limit where N — oo and thus also
p — oo. In this ‘infinite resolution” limit we have to recover the continuum case. But
to make sure that we describe the same physical system throughout we must keep
the mean mass density p, = mp fixed. Thus, we multiply (4.128) by m? to find

(50 () 0 () = (@3 ) (5, (B2)) = bl + o) g (5 -+ P00 )
(4.129)

where ®,, is now the discrete version of the mass density field. We see that in the
above ‘thermodynamic” limit the shot noise term will become irrelevant compared to
the actual power spectrum, which is the dominant p? term. We will thus just drop the
shot-noise term. Then we get the same result (4.125) as in the continuum case. It is
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straightforward to extend this argument to arbitrary n-point cumulants, i. e. we only
ever keep the leading order term in p.

In the case of perturbative expansions of some cumulant we first have to identify its
leading contribution in p. Then for each term in the perturbative expansion we gather
all factors of p coming either from free cumulants or the interaction potential and then
drop all terms which do not have the same scaling as the leading contribution.

4.3.5 Diagrammatic language for perturbation theory

With the general form of the interaction and the relevance of individual terms in the
perturbation series clarified, we now want to get into some more detailed calculations.
As in the case of managing the initial correlations, it will be a lot more convenient to
do this in terms of a diagram language. We will first introduce a top-level language
for the quantities G,i?nan, the full cumulants Gy, . 4, and the interaction potential oy, .
We define:
(c) ._ — e

G = y_@_v Gu = V_._V ioy, = W (4.130)
The extension to the generic n-point case is then obtained by appending the appropri-
ate number of lines to the circles. We use the solid line for both field types p and B at
this top-level and summation over both types is implied for internal lines. With this
language we can now easily write down both the second order one-point equation
(4.101) and two-point equation (4.103) as

—@® = —0O + —O—*x—0
o o« o

1 1
T34 T34 (4.131)
® = © + © ® + i
I v I v K v I3 v
! XA
+ © ® + 5

I3 v 2pu v
+1i;i+1 (4.132)
Zl/l v 2]/1 V' 4'3

Concerning the one-point equation we can now use our findings from section 4.3.3
to drop the second and third diagram since both of them contain fadpoles, i.e. full
one-point cumulants attached to some G(©). Since the latter are made up of G(*%)
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(4.120) also applies here. Furthermore, since we fixed the mean particle number den-
sity when we defined our grand canonical ensemble in the first place, we expect it to
be unchanged by interactions between the particles. We show in Appendix C that in-
deed all remaining contributions vanish if we consider only terms where oy appears
explicitly up to second order. A general proof of this seems hard at least in the grand
canonical formulation of perturbation theory due to its self-consistent form. We like
to mention that in [22, 39, 40] Das and Mazenko actually do find a correction to the
one-point cumulant, i.e. the mean density. How and why this comes about there is
also discussed in Appendix C. For the remainder of this work however, the one-point
cumulant will no longer be of any concern.

Dropping all tadpole diagrams also reduces the two-point equation as we may
drop the third, fourth and fifth diagram. In order to see which kind of diagram
structures found in the canonical perturbation series are ‘resummed’ as solutions
to integral equations in this self-consistent formulation we now restrict ourselves to
the remaining first order term coming from the expansion of A" This equation
now again looks similiar to the Dyson equation of QFT and can be formally solved
iteratively

i ® V:V © 1/+;4 © @ ”
:V © 1/4—}{ © © 7
+}4 © © © .
+]/l © © © © 1/+"" (4.133)

From this we see that the first order solution contains all straight line diagrams ob-
tained from gluing together the two-point quantity G}(fv) with the interaction matrix
0uv- In terms of the actual integral equation represented by these diagrams, this itera-
tive solution is just the corresponding Neumann series. The exact first order solution
to the self-consistent equation thus contains terms with arbitrary orders in the in-
teraction. If in addition, we take into account the sixth diagram of (4.132), i.e. the

simplest one-loop diagram, and again solve iteratively we also obtain all kinds of

()

one-loop corrections that can be built with the four-point quantity Goﬁazasa .

1
— o O il
T *— 5, .
- —— + —0 o— +1
H v H voo2Hu v
+ © © © =+ ... (turn page)
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1 £ 1
R © © + < + - +....  (4.134)

2 U v oou v 4 v

From this it becomes clear how to understand the grand canonical perturbation se-
ries. Taking into account higher orders in the expansion of A" Jeads to more com-
plex loop structures in the self-consistent perturbation expansion. Solving these self-
consistent equations iteratively we then get a series of diagrams of arbitrary loop
order built from those loop-subdiagrams found in the full self-consistent equation
but with the full cumulants exchanged for the G,Sﬁ?“an. For higher loop orders this
becomes cumbersome due to the coupling of the self-consistent equations between
different n-point levels, because one has to do the iterative expansion of all these
different equations at the same time.

It is in the above sense that the grand canonical perturbation theory resums classes
of diagrams of the canonical perturbation theory. However, as we mentioned several
times before, this way of organising the perturbation series has a serious drawback

O]

in the presence of initial correlations. It is obscure how to expand both €™ and

G,S‘f?“an in orders of 0y, consistently at the same time. The expansion of the G,,(g?“,xn is
not contained in the iterative solution to the self-consistent equations, rather it must
in principle be known to all orders of ¢, as input. We can easily see why this is the

case if we define a new diagram type

G = P‘_O_V ~ (4.135)

With this new diagram type we can expand G,g?”,xn as

R B R 1 ( ) 1 ‘
O = O T3 v tea -, Tt (4136)

If we compare this with (4.133) we see that the diagrams in the iterative solution can
be composed as multiple products of the same basic diagram ——@——. One can
see this as the functional analogue of a geometric series. No such thing is possible for
the above expansion in (4.136) where each new term needs a free cumulant G{Sé?.)“,xn two
n-point levels higher than the term before. Thus, this expansion cannot be phrased
as the iterative solution to a self-consistent equation.

From a purely diagrammatic perspective the terms in (4.136) look very similar
to the loop contributions in (4.134). This suggests that we should reorganise our
perturbative expansion in such a way that both of the terms are grouped together.
For this we need to identify some new two-point quantity that gives both types of

diagrams once we use it to build loop corrections with the free cumulants G,i??“,xn
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as vertices. For this purpose we now make our diagram language more explicit by
differentiating between ®, and @3 fields which we accomplish by

) ._ o) ._ ) o
GPle '_ 1_0_""2 ’ Gpypp = —O— 10p,B, = ﬁ ————— 5

again with obvious extensions to higher n-point cases. Since Gg’).). s = 0 according to

Corollary 2 there are no n-point diagrams of the above kind with only dashed legs.
The interaction matrix (2.40) has only off-diagonal entries, so it only has a mixed
diagram with one solid and one dashed line. We now consider the first order equation
for G,p with none of the loop corrections in (4.136) taken into account, i. e. we reduce

G,SC?_,,XH — G,g?,)”,xn. Using that Gpp = 0 (see Appendix A) we can solve the equation in
analogy to (4.133) to find

— @ = —O- + ——O @

1 2 1 2 1 2
= O + ——Ox—Oy
+ O OO
= 0, <5D(3—2)+ X0
OOy )
= —O0— <1+x—@2> . (4.138)

In the third step we factored out one instance of the free GL(B% cumulant. In the final
step we identified the infinite geometric series as the first order solution for G, 3,,
which we indicate by the 1 inside the circle, times one instance of 0p,. As we did in
the last step, we will from now on always omit the inner labels and understand the
integrations to be implicit as well as write unity for the Dirac delta distribution. We

now take a look at the corresponding first order G,,,, equation and find

I R R A T B A A
= —O0— + —O0—xC + —Ox—0—
O O—% O
+ OO —0—
+ O--- O--- O ----@ + ... (turn page)
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R T T T A
©--- O—----C
1 2
= <1+ 1 O--- > O (1 +—x——--®—2> (4-139)

In the second line we have inserted the first order solution for Gp,, which is obtained
iteratively in the same way as Gp and just gives the mirrored version of (4.138). We
then proceeded to solve the Gy, equation iteratively by using the first two diagrams
in the second line as the starting zeroth order solution and then identified two in-

stances of the infinite geometric series which defines the first order solution GSB) of
GpB-

At this point we clearly see in which way G,p plays the role of a propagator for the
statistics of the density field p. The quantity (1 + ——®---%—) can be seen as the
sum of all particle interaction processes which transport a mode k of the density field
contributing to the initial power spectrum Pj(k) forward through time in a linear
fashion, i.e. without any interaction with another mode of the density field.

¢ The simplest such process represented by the leading unity is that there is no
interaction and one particle carries the mode forward from the initial to the final
time by means of the free particle propagator g;, contained in Gé%z, which is
the result of the initial momentum correlations.

¢ The first interacting process is represented by the diagrammatic expression
0 _ 5O

1_0“">H2 = Gé%siagspz. Corollary 4 tells us that G, 5 0.8, 8lven in
(4-54), and combining this with (4.114) we directly conclude that G;(;?J)%iaBspz 1o

(5D(ic'1 — %2) g12. This process can thus be understood as the original particle
carrying the mode k> interacting with some other single particle at some in-
termediate time f,, which then takes over this mode due to the Dirac delta
distribution and transports it forward to the final time t; by virtue of gi5.

¢ The next higher process is then the same as the previous one, except that the
second particle also interacts with some third particle which then takes over the
propagation of the mode until the final time.

One can thus imagine the linear propagator quantity (1 + —@®----%—) as the
summation of all possible ‘bucket brigade” processes where the free propagation
of a mode is ‘handed over’ from particle to particle by means of the interaction
0p8- The Dirac delta distributions (5D(E]- - E]-,l) ensure linearity and the propagators
8j(j—1) & O(t; — tj_1) causality for each ‘handover interaction” from particle j — 1 to

particle j in the chain. Furthermore, we note that G,(()?}slg) 0UB,p, & p° holds for each term
in the geometric series and thus (1 + —@---%—) « p” as well. Hence, it leaves
the p-scaling of other quantities untouched reinforcing its interpretation as the linear

propagator of field statistics.



4.3 PERTURBATION THEORY

With the linear propagator on the level of density field statistics identified we can
finally turn to reorganising the loop structure of the perturbation expansion. For this
purpose we consider the G,p version of the self-consistent second order equation
(4.132) without tadpoles. We then identify all the one-loop diagrams which have the
same form as the second diagram in (4.136) and after canceling the symmetry factors
of 1/2 against the sums of different possibilities to draw the diagrams we find

2
\‘; '1’®§< >(®\<

In the second line we have inserted the first order solutions G(l) and G( )

Bo p:, . Letus a
define two new two-point quantities:

1 . . 1) .
1 & ""2 = Gp?%g = 10p,B, + 109, B3 GI(3317410'P432
= —--- + ——X--D—X----
< 1 2 1 2 >
_ loop . . (1) . __ ~loop ~(0) ~loop
1““'<>““é = G, "= 10819 Gpsp,10p,8, = G 5. Gp30, Gy, 5,

. . ) . ©0) (. : 1) .
= <IUBlp3 +10’Blp4Gp43510'35p3 GP3P6 108, —|—1(7P6B7GB7p81(7p832

ey ooy

1 21
. o,
g : J 1 A
— N +5 1—0 ----- e (4.142)

This suggests that we can reformulate our perturbation expansions in terms of the
linear field propagators appearing in (4.138), (4.139), the linear loop propagators of
(4.141) and the free n-point cumulants. The interaction potential ¢}, would then be
completely contained in the basic two-point quantities and the number of loops in
diagrams could serve as a clear-cut order parameter. Showing that this reformulation
is possible for every order of the self-consistent expansion would however be a very
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cumbersome task. A much better way to do this would be to reformulate the gener-
ating functional of the theory in such a way that this kind of perturbation expansion
is generated automatically.

A possible hint to what one has to achieve can be gleaned from (4.76). The problem
of the non-vanishing commutation (4.80) arises from the fact the collective fields used
to describe the interaction in the system are the same fields that are used to calculate
the free cumulants from the free motion of the individual particles. This suggests
that we somehow have to separate these two instances of the collective fields into
two separate classes when defining the generating functional, establishing a true
separation between interactions and free motion.

If the perturbation expansion can indeed be reorganised in the way we described,
the new generating functional would then need have a form completely analoguous
to standard QFT. This would then allow us to directly transfer perturbative techniques
from OFT, like e.g. Dyson resummation of the two-point cumulant with the 1PI-self-
energy, over to our theory. However, finding this reformulation of the generating
functional will be beyond the scope of this thesis.

4.3.6  First order solution for the statistical field propagator

With the solution of the first order self-consistent G,p-equation identified as the core
propagator quantity of the field theory, the question is in which cases we are able to
obtain it analytically. We will see that under certain assumptions and approximations
we can give a general closed form. We first write down the equation explicitly as

GlH(1,2) = 69V (1,2) + / d3 / d4G9"(1,3)i05,(3,4) GY (4.2) . (4.143)
We can make (4.119) more explicit for two-point cumulants

Gup(1,2) = (2m)4 8p (k1 +k2) Gap(ka, i, t2) - (4.144)

(
P
tion potential 0,5(1,2) given in (4.114) to simplify the integral

We use this as well as the explicit forms of G %’1) (1,2) given in (4.54) and the interac-

/d3 /d4 (~ipk g1s (27) op (K1 +Ks) D(1,3) ) x

(—i(zn)d 0p (k3 + Ka) 6p(ts — ta) v(k3)> ((27‘()d op(Ky +Kz) GUy (kay ts, tz))

te
= (27T>d 5])(%1 + %2) /dt3 (—p k% U(kl)) g13 @(1, (%2, t3)) Gl%) (k2, t3, t2)
ti
fq

= (27T>d oD (El + %2) /dtg (—p k% U(kl)) g13 @(k1, t1, t3) G_(()}B) (k1, t3, t2> . (4.145)

5]

In the last step we used that gi3 « ©(t; — t3) and G;}g)(kl,tg, tr) o« O(t3 — tp) in
order to change the integral boundaries, assuming of course that t; < t;,t, < tr. The
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causality of G_Sa) is a consequence of the fact that every factor in the geometric series

(4.138) obeys causality by itself. We abbreviate ©13 = D(ky, t1,t3). We see that all
terms in the integral equation have the same prefactor (277)% dp (ki + kz) which we
now drop to write

ty
Gf()g(kl, t1, tz) = —if) k% 212 D1+ /dtg (—f) k%?}(kl)) 213 D13 Gé?(kl, t3, tz) . (4.146)
b

With regard to this integral equation the modulus of the mode k; and the potential
v(ky) are just parameters. We now want to use the convolution theorem (1.36) of the
Laplace transform. For this we first need to assume that the free particle propagator
is invariant under time translation, i.e. g3 = g,ﬂ,(tl — t3). This will be true for most
physical systems. Furthermore, the same must hold true for the damping factor as
D13 = D(k1, t1 — t3). However, since the damping factor has the form

2
D (k1 t1,t3) = exp {—Upk2(g1 - 83)2} (4.147)
s b1y ) 1 , .

we consequently need ¢ — g3 = ggp(t1 — ti) — ggp(ts — ti) = f(t1 — t3), where f is
some function. This directly implies g; o (#; — t;). This is true for particles on inertial
trajectories. In other cases we can still progress by approximating the damping factor
by unity, i.e. ©13 ~ 1. The solution for Gé? (k1,t1,t2) is then of course only valid in

a certain range of values for (ki,t1,t2) one has to specify. We will see an example for
this in part ii. Under these assumptions we can define

g(ky, t1 — ) == —ip k3 g12 D1o
K(ki, t1 — t3) == (—pkio(k1)) g13 D13, (4.148)

where K designates the kernel of the integral equation and is not to be confused
with the source term K. We now define two new time variables by t = t; — t, and
t' = t3 — t, which allow us to write the integral equation as

t
Gé}g)(k1,t+ t 1) = g(ki, t) +/dt’1<(k1,t —t) Gé?(kl,t’ t ity to) . (4-149)
0

In this form we may now apply the Laplace transform L;_. to the equation and use
the convolution theorem (1.36) to find

Lins |Gl kit +t2,12) | = Liss [g(kn, b))
Lo (K1, £)] Los |Gl ki, 4t 12) |
(4.150)

Since the time variable which we transform is now just an integration variable, we
may rename ' — t in the second term on the RHS. We now use (1.35) to rewrite

Lio |Gkt + 12, 12)| = € Loy |G (kb 12) Ot — )] (4.151)
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Assuming that all transforms actually exist we can now solve this algebraic equation
easily to find

Lios[g(ky, 1))
1= Lo [K(ky, D] (4-152)

Lioss [GSB)(kl,t, b)) O(t — tz)} = =52

The full solution is then obtained by applying the inverse transform £, ! .. Restoring

the Dirac delta distribution prefactor we dropped earlier we have as our general
solution

Gl = (27) s (k1 + o) L]

p1B2 T t<s

—sty Lis [g(klf t)]
%tl—LHJMhﬁ]' (4-153)

From (1.34) we see that this solution will indeed respect causality, i.e. it will be
proportional to @(t; — t;). Furthermore, because v(k;) « p~! the kernel is constant

in the mean particle number density K « g’ and since g « § we see that also the

(

1 -
91332 o p, as one would expect.

solution scales as G



CONCLUSION ON PART I AND OUTLOOK

In the first part of this thesis we introduced a field-theoretical formulation of kinetic
theory, dubbed Statistical Field Theory for Classical Particles (SFTCP) by us, pioneered
in [39, 40, 22]. We went through the following steps:

¢ In chapter 2 we showed all the necessary steps that lead to the generating func-
tional of the field theory already found in Mazenko [39]. We did this in the con-
text of a system whose statistics are characterised by the number of particles N,
its volume V and a probability distribution P (x(!)) for the initial phase-space
coordinates of the particles, hence the denomination as a canonical statistical
ensemble. We tried to emphasize where parallels of the concepts and central
quantities of SFTCP can be found in standard equilibrium physics, but also how
the latter is only a special case of the former. The separation of the theory into
a ‘free’ and interacting part was discussed. We saw that the non-interacting free
part can easily be treated analytically in terms of the individual particles. Under
certain requirements on the Hamiltonian a general propagator for the motion
of particles can be given. The interacting part is best handled in terms of macro-
scopic, collective fields @ defined in terms of the phase-space coordinates of
all particles. The two core fields which are required are the density ®, and an
aptly defined response field ®p. Expressing these collective fields as operators
directly leads to a straightforward perturbation theory for their correlators.

¢ A comparison with the standard formulation of kinetic theory showed that
both approaches can indeed be understood as being based on the same core
quantity, the N-particle phase-space distribution function. However, we argued
that SFTCP posseses the advantage that actually applicable equations used for
calculating macroscopic observables nominally retain the full phase-space in-
formation if all orders in the interaction are considered. Since this can be traced
back to the use of the phase-space trajectories X; of the individual particles as
the basic variable of the field theory, we feel that it is an ingenius achievement
on the part of Das and Mazenko to have come up with this idea.

¢ In chapter 3 we developed a general approach for how to set up the initial con-
ditions P (x)) in terms of the phase-space coordinates of the N particles. We
did this by sampling the macroscopic information known about the system at
the initial time #; in such a way that ensemble averages of the corresponding
collective fields ® become unbiased estimators for the actual macroscopic fields.
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We looked at the simple example of Poisson sampling, but more complex sam-
pling methods like e.g. ‘hard-core” processes should also be compatible with
the theory and are worth investigating.

Building on top of this we allowed the initial macroscopic information to be
given in terms of correlated random fields. For the central example of a statisti-
cally homogeneous and isotropic Gaussian random combined density-velocity
field we then went on to derive the exact expression for P(x(). By combining
this with the explicit expression for the free generating functional we were able
to rewrite the initial correlations imprinted on the phase-space distribution by
this random field as an operator acting on the generating functional of an un-
correlated ideal gas. This operator was then analysed by introducing a diagram
language for its basic constituents, the two-point correlations of the random
tield. With the help of the method known as the ‘Mayer cluster expansion” we
could then achieve a factorisation of the free generating functional into those
terms which are ‘connected” in the sense of the initial correlation diagrams.
Since any probability distribution can formally be expanded around the Gaus-
sian distribution given its cumulants, we expect that it should be possible to
adapt the diagrammatic approach to arbitrary distributions.

Finally, in chapter 4 we translated SFTCP into the grand-canonical ensemble for
systems obeying statistical homogeneity and isotropy. This amounted to charac-
terising the statistics of the system by its volume V, the phase-space probability
distribution P (x(!)) for a fixed number N of particles and a probability distribu-
tion for finding N particles in the system, where the latter is only characterised
by a mean particle number density p. Using the result for the free generating
functional of the canonical ensemble describing a Gaussian random field we
could immediately show that its grand canonical counterpart is given by the ex-
ponentiated sum of those /-particle generating functionals which are connected
in the sense of the initial correlation diagrams. This result is very similar to QFT
and stems from the fact that there is no fixed particle number in the system. It
also establishes that free connected correlation functions or cumulants of any
collective field can be obtained by considering only terms which are connected
in the initial correlations, i.e. both conceptions are identical. Due to the sup-
posed generality of the diagrammatic approach this relation should hold for
initial random fields with arbitrary distributions and should be seen as one of
the major achievements of this work.

With a simple expression for the free generating functional found we calculated
the cumulants of the two core collective fields ®, and @3 for the case of the ini-
tial Gaussian random field. We were able to give a general scheme for manag-
ing the various combinations of external labels of collective fields in the many
terms contributing to the cumulants, which is helpful especially when consid-
ering high n-point orders or large numbers ¢ of connected particles. Together
with some general theorems we were able to derive for the free cumulants, the
scheme also helps in calculating terms in perturbation theory. We gave explicit
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examples for one-, two- and three-particle cumulants, some of which will be
used in ii.

* As a last step, we developed the self-consistent perturbation theory along the
same lines as Das and Mazenko, resulting in a system of coupled non-linear in-
tegral equations. We showed how the presence of initial correlations modified
the results of the original authors and led to the perturbation expansion suffer-
ing from an inconsistency problem. Introducing a diagrammatic language we
could show that the first-order solution for the cumulant G, could be under-
stood as the field propagator for the statistics of the collective fields and already
contained effects up to arbitrary order in the interaction. Using this first order
solution we analysed the one-loop structure of the theory to find clues that
hint at the possibility of reformulating the theory and thus the full generating
functional in such a way as to cure the inconsistency problem. This new gen-
erating functional would then lead to a perturbation theory that is structurally
equivalent to OFT, with the first order two-point solutions playing the role of
the bare tree-level propagator and the free cumulants those of tree-level vertices.
Under certain assumptions, we were able to give a general expression for the
first order solution GS; of the field propagator in terms of Laplace transforms.

Despite the problems found in perturbation theory, we feel that in terms of what
SFTCP is capable of, we only scratched the surface. There are certainly possibilities for
future work in many different directions beside cosmological structure formation we
would like to pursue. Without claim of completeness we list some of them here.

¢ The next big step is certainly finding the reformulation of the generating func-
tional alluded to above. Efforts in this direction are underway and look very
promising. This would effectively replace the complicated problem of the Liou-
ville equation with the well-known perturbation theory of QFT.

¢ Using general cumulant expansions of probability distributions we would like
to generalise the result (3.115) of the diagram based approach to initial condi-
tions. Moving on from this one could investigate how to define grand canonical
ensembles for general systems without the requirement of statistical homogene-
ity and isotropy. This should then allow us to find a general version of (4.11).

¢ Continuing on from the work done in Viermann et al. [55], it is worth investigat-
ing whether the SFTCP approach allows an easier investigation of fundamental
properties of statistical physics in comparison to standard kinetic theory. It is
especially interesting to see whether the equations of hydrodynamics can be
derived directly from the theory itself, without the need to resort to heuristic
arguments. The fact that in principle any macroscopic observable that can be
derived from the phase-space trajectories of particles may easily be introduced
into the theory by coupling the respective collective field to the collective source
vector H, could potentially be of help here. Another point that might prove in-
teresting in this regard is that dynamics containing statistical noise terms can
be described by SFTCP without problems [39, 22].
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* Having an operator that imprints the effects of initial correlations onto an ideal
gas opens up the possibility to study the effects of such correlations on thermo-
dynamical relations like equations of state. Kozlikin et al. [32] already found
corrections to the pressure induced by initial correlations which in certain situ-
ations can be larger than those due to first order particle interactions.
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APPLICATION TO COSMOLOGICAL STRUCTURE
FORMATION






STRUCTURE FORMATION IN STANDARD COSMOLOGY

Before we start to apply the field theory approach we developed in part i to the
problem of large scale structure (LSS) formation we first want to briefly set the stage.
We assume that the reader is familiar with the basic principles of general relativity
and cosmology in Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. A good
introduction can be found in Carroll [17], more in-depth treatments are available in
Straumann [54] and Weinberg [57]. We only introduce some basic equations common
in cosmology. We will briefly discuss the scenario in which LSS formation is usually
treated leading to the hydrodynamical picture of Standard Perturbation Theory (SPT).
Since it is assumed that this description is accurate at least for the early matter-
dominated phase of the universe we will use it to set up the initial conditions for
our system. We will however also point out the approximations going into SPT and
the shortcomings that result from this. We then argue why these problems should
not be present in our approach of SFTCP.

6.1 COSMOLOGICAL MODEL
6.1.1 FLRW universe

We will operate under the assumption that our universe is well described by the stan-
dard ACDM-model of cosmology. This entails that when averaged on large enough
scales the universe is homogeneous and isotropic and its spacetime geometry is de-
scribed by the FLRW line element

k™% sin (k%q) k>0

ds? = 2d#* — a*(t) (dg* + fE(q)dQ?)  with fi(q) =g k=0
k|~ sinh (\ky%q) k<0

(6.1)

where k is a constant encoding the curvature of three-dimensional spatial hypersur-
faces® which are described in terms of spherical comoving coordinates, where g is the
radial coordinate. These coordinates are constant in time for objects without peculiar
velocities, while the actual physical distances between such objects may change due

All results from part i we will use in this second part must thus be understood with the spatial dimen-
sion set to d = 3.
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to the expansion and contraction of the universe encoded in the scale factor a(t). Com-
bining this line element with Einstein’s field equations and the energy-momentum
tensor of a perfect fluid the dynamics of this spacetime reduces to Friedmann's equa-
tions, which describe the time evolution of a(t) by

P 3 P2 ts

i 4nG 3p A
i 3<P+C2>+3, (6.2)

<a>2 _ 811G k2 A

where p(t) is the mean energy density of the universe in units of a mass density, p(t)
the mean pressure and A the cosmological constant. The energy content is usually
split into non-relativistic matter and relativistic radiation as p(t) = pm(t) + px(t).
The matter density evolves as pm(t) = pmoa >(t) due to the expansion of volume
elements with the scale factor a. The constant pn, o relates to some arbitrary point
in time where a = 1 and this is usually chosen as the present cosmological epoch.
The radiation density evolves as p;(t) = proa *(t). The additional power of the scale
factor comes from the fact that due to the expansion of the universe the wavelength of
radiation gets stretched. Radiation emitted by some source at time . is thus observed
by an observer at time f, with a redshift of

_ Ao—Ae a(ty)

Ve
= —1=-°_1. 6.
Ae a(te) Vo (63)

Since the energy of radiation is related to its frequency by E = hv, where h is Planck’s
constant, we find the additional inverse scale factor. If we set a(t,) = 1 in (6.3) we
obtain the usual expression 2 = 1/(1 + z), which makes it convenient to use the
redshift as a time coordinate for past cosmological epochs. The first of Friedmann’s
equations in (6.2) is usually rewritten in parametric form. For this we introduce the
Hubble function®> H(t) = a(t)/a(t) and the critical density

2
pcrit(t) = 357_52 . (64)

The various ()-parameters are then defined as:

P (t) Pr(t) kc?
Qm(t) = , (1) = , O =——
( ) Pcrit(t) ( ) Pcrit(t) k
A 811G A A
~ 3H2(t) 3H2(t)87G  penit(t)

QA(t) (6.5)

where Hj is the Hubble function at the time where a = 1. In the second line, A has

the units of a mass density showing that it can be understood as a contribution to the

energy density of the universe. Friedmann’s first equation can now be written as
kc?

1=0m(t) +Qu(t) + Qalt) — —

AR (6.6)

2 The value of the Hubble function at the present time is often given as the reduced Hubble constant &

defined by H(ttoday) = hx100 NII(Pr’xCIS
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which clearly shows the meaning of the critical density. If the three energy density
contributions fulfil the condition Oy + Oy + QA = 1 at any point in time then k = 0
follows at all times and the universe must be flat. If we evaluate all ()-parameters at
the time where a = 1 we arrive at the more practical equation

H2(a) = H? (Qm,o a3+ Qa4+ Qng + O cfz) . 6.7)

The combination of many observations like measurements of the cosmic microwave
background (CMB) [28, 49] and LSS surveys [19, 18] have shown that if our universe
can indeed be described by FLRW metric then its spatial curvature cannot be distin-
guished from being zero and thus we take ()y = 0 to hold in all following consid-
erations. For the cosmological epochs after the age of recombination at z ~ 1100
the radiation content of the universe quickly becomes negligible and since structure
growth only starts in full earnest once matter comes to dominate we will assume that
O ~ 01in all our calculations. We thus have (0, g + Q4 9 = 1 and the time-dependent
parameters evolve in terms of the scale factor as

O (a) = 871G pmo _ 87G 1 _ Omo
T3 @ T 3HE ™ @ (Qmoa ? + Qag) | Qo + a3 (1— Q)
A A 1 1—0On
Qa(a) = ( 0) . (6.8)

T 3H2(t)  3HZ Omoa 2+ Qrg  Omoa 2+ (1— Omyp)

In the ACDM-model the matter content is further split between two components, the
baryonic matter with (., = 0.049 and dark matter with Qcpymo = 0.267 3. The lat-
ter is a form of matter which does not interact with baryonic matter in a significant
way other than through gravity+. It was originally proposed to explain a mismatch
between the visible and dynamical masses of galaxies and galaxy clusters. Obser-
vations of their rotation curves leads one to derive a much higher mass compared
to observations of the radiation emitted by them. By giving them additional mass
that does not take part in electromagnetic interactions this problem is fixed. While
a direct observation of dark matter particles has not succeeded so far, many other
astronomical observations have delivered strong evidence for its existence, like for
example the gravitational lensing of radiation due to the presence of galaxy clusters
between source and observer, the CMB, direct observations of the LSS in redshift sur-
veys of galaxies and the observed abundances of chemical elements in the universe.
The variant favoured by most observations is called cold dark matter (CDM) since
its constituents have a low velocity dispersion and thus allow for the ‘bottom-up’
formation of structure. What exactly it is composed of is so far unknown, the most
popular candidate being some new kind of elementary particle like bosonic axions or
fermionic weakly interacting massive particles (WIMP). Since dark matter makes up
nearly 85% of the matter content in the universe we will concentrate on describing
the evolution of a purely self-gravitating mass distribution for which the properties
of the actual constituents are unimportant at the level of detail of our theory.

Values taken from the 2013 results of the Planck mission (cf. Planck Collaboration et al. [49]).
It is often assumed that it also interacts through the weak force, but this is insignificant due to its
negligibly short range, especially compared to cosmological scales.
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6.1.2 Inflation and seeding of primordial structures

The formation of structure in our universe is described as a hierachical process. One
assumes that at the beginning of structure formation there a small perturbations in
the overall homogeneous matter distribution of the universe. Through gravitational
interaction overdense regions will attract more matter while underdense region have
matter drained away from them. The overdense regions will eventually attract each
other and merge into larger and larger structures, starting at galaxies, which then
merge into clusters and superclusters. The question is where these initial perturba-
tions came from. Today, their origin is usually explained in terms of a process called
‘inflation” originally proposed by Guth [27]. While it is in no way fully understood or
experimentally validated it has the appeal of solving several problems of cosmology.
We need the concept of the comoving Hubble radius xi = -5. Due to Hubble’s law
v = Hr which gives the recession velocity in terms of physical distance r, two points
which are at some time separated by r > a_7; recede from each other with v > ¢ and
are thus out of causal contact at that point in time. The time evolution of this radius
is governed by

d c dc cii

dfaH —dta ~  (aH)? (6.9)
According to the second of Friedmann’s equations (6.2), a universe dominated by ei-
ther matter or radiation will have negative acceleration and thus a growing comoving
Hubble radius. The reasoning is now as follows:

* Observations of the CMB have shown it to be homogeneous and isotropic to
a remarkable degree, i.e. the temperature of its radiation is nearly the same
in each direction. However, when we observe it we are looking at patches of
the universe with a comoving separation Ax that only entered the comoving
Hubble horizon after the release of the CMB, i.e. Ax < xg at some time fepter >
tcmp. If our universe is dominated by matter and radiation up to now, the
comoving Hubble radius was always growing and in consequence Ax > xy for
all times t < fenter- This means that these patches were never in causal contact
before the release of the CMB and could thus not interact in order to establish
thermal equilibrium. This is already the case for angular separation scales > 2°.

¢ This problem is solved by assuming that very early in the history of the uni-
verse (approximately from 10~%s to 10~%3s after the Big Bang) there was a short
epoch of rapid exponential expansion with i > 0 called inflation. During this
period, xg will shrink according to (6.9) and thus patches of the universe that
were in causal contact before inflation and could equilibrate are now moved out-
side of their relative comoving Hubble radius. After inflation ends, xy begins
to grow again and these patches of the universe will come into causal contact
again already in a state of thermal equilibrium.

¢ Friedmann’s second equation in (6.2) tells us that in order to drive inflation
we need some dominating contribution to the energy content of the universe
which has negative pressure below p < —pc?/3. A very simple model would be
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a scalar ‘inflaton field” ¢ that is slowly settling into the minimum of its potential,
i. e. its kinetic energy is much smaller than its potential energy as ¢* < V(¢)
during inflation.

¢ As a quantum field-theoretical object this inflaton field will undergo spatially
extended quantum fluctuations with some comoving length scale /. During
inflation the comoving Hubble radius will shrink fast enough to xy < £. Since
they now lack causal contact the microscopic fluctuations are ‘frozen in” and
inflated to macroscopic proportions. Inflation ends once the field enters a phase
where its energy is mostly stored in form of kinetic energy ¢? and its equation
of state approaches p = pc?. Through some poorly understood coupling this
energy then decays into the ‘ordinary’ constituents of the standard model of
particle physics. Since most of the energy is believed to decay into photons,
this process is also called reheating and starts the radiation dominated phase
of the universe. Through this coupling the inflated quantum fluctuations are
imprinted onto the distribution of the ordinary energy density.

¢ Since the resulting perturbations of the matter distribution are a superposition
of many statistically independent fluctuations of the inflaton field, they should
be Gaussian according to the central limit theorem. The latest measurements of
the CMB by the Planck satellite [49] have confirmed the presence of tiny fluc-
tuations in the temperature, with no indication of deviations from Gaussianity.
Before the release of the CMB, matter and density were strongly coupled and
one thus interprets these as echoes of small fluctuations in the matter density
which are then identified with those coming from the inflaton field. In this way
quantum fluctuations become the seeds for the formation of structure in the
universe.

6.1.3 Structure formation as a random process and the Newtonian approximation

A fully deterministic description of how the matter distribution in the universe has
evolved into its present state would require the exact knowledge of its initial configu-
ration. Acquiring this information is impossible due to the enormous and supposedly
infinite extension of the universe as well as the fact that due to the finite speed of light
we will only ever be able to observe a fraction of the whole universe, let alone the
actual limitations due to available technology and manpower. Instead of trying to
model a deterministic system one thus turns to a statistical description. Observations
clearly have shown matter to be distributed in a strongly clustered or ‘clumped” way,
but once these observations are averaged over large enough scales one indeed finds a
homogeneous and isotropic distribution which is the basis for the FLRW world model.
This has led to a system of assumptions which is sometimes collectively called the
Fair Sample Hypothesis (cf. Peebles [44], Bernardeau et al. [13]).

¢ The matter distribution in the universe is a single realisation of a very complex
random process. However, the fictitious random density field from which our
universe was drawn is statistically homogeneous and isotropic as well as ergodic.
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This means that any multi-point probability distribution defining the random
field can be discerned from a single realisation. Thus, averages over the fictitious
ensemble of field realisations can be exchanged for volume averages inside the
single realisation we have at our disposal.

e Sufficiently separated patches of the universe can be seen as statistically inde-
pendent realisations of this physical process.

* Our observable universe is a fair sample of the entire universe in the sense that
it is large enough to contain many such independent sample patches. These can
be taken to represent a statistical ensemble with which we can test the assump-
tion of homogeneity and ergodicity, i.e. the statistics obtained from observa-
tions of different well-separated regions in the sky can themselves be checked
for their statistical fluctuations.

One must make sure not to mix up the various levels of statistics involved when we
apply SFTCP to this problem.

* The dynamics of the ‘macroscopic’ combined density-momentum field in a sin-
gle patch of the universe are described by doing infinitely many Poisson sam-
plings of the initial field into collections of tracer particles as shown in section
3.1. These particles are then transported forward through time with the help of
their Hamiltonian equations of motion and the desired macroscopic informa-
tion is reconstructed from the final phase-space configuration of the particles.
The average over this ensemble of Poisson samplings, represented by all blocks
with the same index j in the lower level of Fig. 3, then gives the evolution of the
density-momentum field which at the “‘macroscopic” scale looks deterministic.

¢ In the light of cosmological structure formation we however have to consider
this macroscopic field in the patch itself as a random object. In order to describe
its statistics we thus need to average over all of its possible inital configurations
with some multi-point probability density P(d) as described in section 3.2. This
corresponds to averaging over the ensemble of circles in the mid level of Fig. 3.
It is this second averaging that imprints the initial correlations onto the density
field.

* The correlation functions we obtain from our theoretical description of one
patch are then nominally subject to their own statistics. This would correspond
to introducing yet another level on top of Fig. 3, leading to an ensemble of the
probability distributions P(d) for the initial random field represented by the el-
lipses. Under the assumption that the patches are uncorrelated we can however
understand our theory to use a mean (P), i.e. the probability distribution is
already assumed to be the average over the ensemble of independent patches.

The theory of inflation implies that the initial density field should be a statistically
homogeneous and isotropic Gaussian random field. As discussed in section 3.2.1, it
is thus completely defined by its two-point correlation function ¢(Ag) or its Fourier
space counterpart, the power spectrum Ps. We will soon see why also the momentum
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tield must then be assumed to be Gaussian and why P; is sufficient to describe the
combined density-momentum field.

With the relation between the statistics of SFTCP and those of the cosmological
density field established we still have to think about the actual particle dynamics. A
rigorous discussion of how the fluctuations evolve after the end of inflation would
need to employ the dynamical equations of general relativity, i.e. Einstein’s field
equations, which is a very hard task. However, if we consider a region of space
where observers or objects move with non-relativistic relative velocities < ¢ and the
metric perturbations are small enough in the sense that the gravitational potential
fullfills @ < c? (cf. Peebles [44]), then the common assumption is that at least in
the confines of the ACDM-model using Newtonian gravity is a good approximation
(cf. Adamek et al. [1]). Let L be the size of that region with a mean density p and thus
mass M =~ pL3. The second of the above conditions then is

D~ # = GpL2 < c? (6.10)
and according to Friedmann’s first equation we have roughly H ~ (Gp)% for a flat
universe so that we find

2

[’ < % = LK % ~ 3—4Gpc. (6.11)
If we combine this with Hubble’s law v = Hr and set r = L we automatically get
v < c. So for structures with extent smaller than the Hubble radius a Newtonian
description is admissable. Since the typical correlation length for galaxy clusters, the
largest gravitationally bound structures known today, found in the Sloan Digital Sky
Survey is roughly somewhere between 10Mpc/h and 20 Mpc/h (cf. Basilakos and
Plionis [10]) we will adopt this approximation for the rest of this work.

6.2 STANDARD PERTURBATION THEORY
6.2.1 Fluid description and single stream approximation

The next step is to decide which theoretical tool is used to implement Newtonian
dynamics and in SPT one chooses the hydrodynamic limit of kinetic theory. We again
stress that while this is a statistical theory, one must be aware that these statistics are
the theoretical tool used to describe the dynamics of macroscopic observables like
the density and velocity field of some mass distribution in terms of the dynamics of a
collection of particles representing this mass distribution. The statistics of the macro-
scopic observables must be introduced by averaging over their initial conditions. The
formal starting point is the Boltzmann equation> which reads

SCPL 5 9 f (5,0 + 5 Vof (75,0 = CLf) (6.12)

If one wants to describe only dark matter, the collisionless Boltzmann equation, sometimes also called
the Vlasov equation, without the the collision term C[f] may be used.
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The hydrodynamical equations describing the macroscopic observables of a fluid are
then derived by taking the momentum moments of this equation averaged over some
intermediate length {rjcro < fint < ¢macro Which is much larger than the microscopic
scale where we would see the particle nature of the matter content and much smaller
than the macroscopic scales of interest. If we can establish such a hierarchy, it is
assumed that the collision terms C|f] drop out if we take moments of particle number,
momentum and energy, which are assumed to be collisional invariants due to the
huge number of collisions included. Since the one-particle distribution function is
defined as the number

dN = f(7,p,t)drdp (6.13)

of particles in the phase space cell around 7, § we define the number density and the
velocity field by

n(7t) = / dp / dr’ W, (F — 7)) (7', B, t)

3, 1) = (n(7 1) " / dp / a7 W, (F— )7 (7, B 1), (6.14)
where W,  is some window function of length /;,;. We then assume that the many

different particle species which make up the cosmic fluid are strongly coupled to
each other by their gravitational interaction. The cosmic fluid can then effectively be
described as a single component fluid with some mean particle mass 7q,;q. During
the matter dominated epoch, dark matter is much more abundant than baryonic
matter and if dark matter is constituted of only one type of particle this should be
reasonable. With this mean particle mass we define the mass density field pm (7, t) =
Mguig 1(7, t). After taking the zero and first order momentum moments of (6.12) we
then arrive at the continuity and Euler’s equation

9t om(7,t) + Vi (om (7 ) T(7, 1)) =0
7 (pm(7, 1) (AU AV)) E;

0t (7, t) + (4(7,t) - V) T(7,t) + V, (7, t) + oD

=0.
(6.15)

The gravitational interaction of the particles has been expressed through an external
force given by the gradient of the gravitational potential which is linked to this system
of equations by Poisson’s equation

V20(7,t) = 471G pm (7, t) — A . (6.16)

We also have introduced the random velocity components Av' of particles on top
of the macroscopic velocity field (7, t) and the stress-energy tensor €' = (Av'Av/).
The latter thus characterizes how the macroscopic flow changes due to the motion
of individual particles deviating from the ‘single stream” defined by . In the next
step we assume that the evolution of the cosmological background described by the
FLRW-model is independent from the evolution of the perturbations on the scales
of interest smaller than the Hubble radius. We can thus substract the evolution of
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pure background quantities from the set of equations (6.15) and (6.16). For this we
transform to comoving coordinates § defined by 7 = a(t) 4. Since the velocity field 7(7, t)
gives the instantaneous change of position of a fluid element at 7 it must transform
as

O9(7,t) = 07 = 9 (af) = af+af=HT +aq = Opupbie(7,) + 2 pec(d, 1) , (6.17)

where we identified the Hubble flow and the peculiar comoving velocity field Tpec. We
further use that due to homogeneity the mass density field can be split into a spatially
constant mean density gm(t) and a density contrast as

om (7, 1) = pm(t) (14 6(4,1)) (6.18)

and identify p,, with the homogeneous density field of the background cosmology.
Last, we also split the gravitational potential as & = Py + ¢ such that ¢p is the
gravitational potential pertaining to the background. We will see in the next chapter
that if we choose @) = —1aiij? the perturbation potential ¢ is only sourced by the
density contrast. We insert these relations into (6.15), and then set the perturbations
to zero as 6 = 0 and Tpec = 0. The resultant background evolution equations can now
be substracted from the full equations and we arrive at the new set of equations for
the perturbations

0:0 + Vy ((1+0) Tpec) =0,
% V%‘ (5€ij€i)

91Tpec + 2H0pec + (Tpec - Vg) Tpec + Vig T 155 =0
3
vga% = SOnH%. (6.19)

In order to close the system of equations we need an ansatz for the stress-energy
tensor €'/, If we wanted to treat this term exactly, we would need the information
contained in the two-particle phase-space correlation function f(?), or under the ap-
proximation f?) ~ f(1) (1) in the one-particle version f(1). Standard considerations
of fluid dynamics lead to a tensor containing a pressure term and viscosity terms
written in terms of Tpec (cf. Bernardeau et al. [13]).

Note that with this ansatz we assumed that the macroscopic motion of matter
can at all times t be completely described at every point § by the ‘single stream’
Upec(§,t) which has an unambigious value. This means that at no time will macro-
scopic streams of matter cross each other. This is sometimes called the single-stream
approximation (SSA). It will break down in the non-linear regime of § > 1 where
matter coalesces into structures where virilisation and thus crossing of streams can
take place. Since these structures will grow in size over time, the SSA will successively
break down on larger and larger scales.

Another problem is the inverse density contrast multiplying the stress-energy ten-
sor gradient. A formal expansion into a geometric series would add non-linear terms
of arbitrary order in the density contrast. Any finite truncation of this series will also
necessarily loose its validity in the non-linear regime of 6 > 1.

To circumvent the mathematical problems posed by the stress-energy tensor term,
one usually assumes that CDM at least at the beginning of structure formation does
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not have significant random velocities on top of its macroscopic flow, i.e. its initial
velocity dispersion is low enough such that CDM particles do not move over large
distances compared to the scales of interest before they start moving with the macro-
scopic flow 77pec. It is then a sensible approximation to set €'l ~ 0, which solves both
problems of hierarchy closure and the inverse J. Note that one still operates under
the SSA since velocities are only described by the single macroscopic flow Tpec. Since
the virilisation of matter will lead to the creation of velocity dispersion this approxi-
mation will break down in the non-linear regime just like the SSA.

6.2.2  The linear regime of SPT

In the early stages of structure formation the perturbations around the background
are assumed to be small in the sense of 6 < 1 and |Tpec| < 1. One may thus linearise
the evolution equations (6.19) down to

at(5+vq'5peczoz

Bpec + 2Hpec + vqa% —0. (6.20)
In this limit we can give an analytical solution for the density contrast. For this pur-
pose we take another time derivative of the continuity equation, insert Euler’s equa-

tion and then use Poisson’s equation to find

3

EQmHzé where '—i (6.21)

6+2Hé = ==.
" ot

Transforming this equation into Fourier space we see that each mode evolves inde-

pendently as 6" (k,t) = D(t) 6(k, t;) and with the same time behaviour given by the

function D(t) which is defined by the differential equation

D+2HD = %QMHZD . (6.22)

The function D(t) is called the linear growth factor. Since it follows a second order
ordinary differential equation it has two solutions. In a simple Einstein de-Sitter (EdS)
universe where (), = 1 and Q) = 0 at all times one finds the solutions D(t) =
(a(t)/a(t;))" with n = 1,—3/2, i.e. one growing and one decaying solution. For all
further purposes we only consider the growing solutions. In the general case of a
flat ACDM universe we have to solve (6.22) numerically. For cosmologies where the
dark energy density (), is solely supplied by a cosmological constant, there however
exists the excellent approximation formula

D(a) = gaﬂm(a) <Qm(zz)4/7 —Qp(a) + <1 + sz(a)> (1 + Q;(()a)>)_l , (6.23)

which can be found in Bernardeau et al. [13]. The linear solution has been shown
to accurately describe structure formation on large enough scales (depending on the
cosmological epoch) by both observations and N-body simulations.
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The linear equations (6.20) also allow the justification of another common approx-
imation of SPT, which is that one assumes the velocity field to be irrotational, i. e. it
has no vorticity V; X Gpec = 0. Taking the curl of the linearized version of Euler’s
equations one directly sees that if there is any initial vortitcity, it will be washed out
by the cosmological expansion with o a~!. Since the early evolution of structure is
well described by the linear equations it is thus justified to assume that there is no
initial vorticity if one places the initial time such that enough time has passed for
it to be drained away. Furthermore, if there is no initial vorticity and one assumes
€'l = 0, vorticity cannot be produced by the dynamics [13]. However, for €7/ # 0 terms
in Euler’s equation can produce vorticity in the non-linear regime of § > 1 which
further restricts the validity of SPT on small scales.

We now define the logarithmic derivative of the growth factor as

dinD 1dD D D

f=4dme ~pia —mp ~ b (624

We define a new time coordinate and see that the relation between its derivative and
that w.r. t. to the cosmological time is given by

T:=InD(t) = dr=dInD(t) = dhld?u)dt: %dt:Hfdt. (6.25)

We redefine our velocity field with respect to this new time coordinate

poo— 97 _ 1df_ 15

tpec = i Hfa = H—fvpec . (6.26)

We now return to the linearised continuity equation and use both the above relations
and the linear solution for the density contrast to find

o (D(t)6(4, 1)) + Hf V- tlpec(q,t) =0
. . D L
D(t)6(q,t) + D Vg - thpec(d,t) =0
D(t)6(q,ti) + Vg - ilpec(7,£) = 0. (6.27)

Under our assumption that the initial velocity field is irrotational we can write it as
the gradient iipec (4, ;) = V41p(§) of some velocity potential. If we then normalise our
growth factor such that D(t;) = 1 we find

8(d,t) = = Vip(q) - (6.28)

In the next chapter we will define the momentum variable of our field theory ap-
proach such that it coincides with the definition (6.26) of the velocity field. We already
argued why the initial density perturbations are assumed to be a Gaussian random
field. Due to the linearity of the Fourier transform, every derivative and integral of
Gaussian random field is again such field (cf. Bardeen et al. [2]). The above equation
(6.28) establishes such a relation between the initial density field and the initial ve-
locity potential and in consequence justifies setting up the initial correlations of the
combined density-momentum field as described in section 4.2.5.
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6.2.3 Path integral formulation of SPT

If we knew to full solution & (E, t) to the system of equations (6.19) we could use it
to calculate the evolution of the initial power spectrum P; up to the present day. The
simplest approximation to this is to use the solution to the linearised set of equations
(6.20) which leads to the linear power spectrum

<5(E1,t1)5(zz,t2)> ~ <(slin(k’1,t1)5ﬁn(%2, t2)>
= (2m)3 6p(ky + k2) D(t1) D(t2) Ps(ky) . (6.29)

The principal idea of SPT is to expand the full solution as a power series in the linear
solution. From the above equation we directly see that this will lead to an expansion
of the “full” power spectrum in powers of the linear and thus the initial power spec-
trum P;. This can be put into the same path integral based MSR framework as SFTCP
as shown in Matarrese and Pietroni [37]. For this purpose we adopt €’/ = 0, transform
the set of five equations (6.19) to the time coordinate T and consider only the diver-
gence 0 == V - ﬁpec of the velocity field, since we assume that it is vorticity-free as
discussed above. Taking the divergence of Euler’s equation and inserting Poisson’s
equation we reduce to two equations which we then transform into Fourier space.
We define the field vector

¥ b) = ( f;’(‘kt)t) ) (6.30)

and may then write the evolution equations in the compact form

dk, /dkz (K, =K1, —K2)¥p (Ko, T)¥e (K3, T) . (6.31)

((StlbaT + wab) Yy (E/ T) = / (27_[)3 (27_()3 Aabe

The linear evolution is encoded in the matrix

0 —1
= 6.
Wa ( _a/2 1/2 ) (6.32)

and the vertex tensor has three non-zero entries
b o o o | EH—E)'E
Mua(k, k1, ko) = Aoi(k, ko, ki) = (27)° 6p(k + k1 + k2) R
2
- 2\2 /o o
(kl + kz) (kl 'kz)

Ao (K k1, k2) = (27)% p (K + k1 + K2) 2
172

(6.33)

Observe that the linear part of this equation contains the full gravitational interaction
of the fluid encoded by the Poisson equation. The non-linear vertex terms describe
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kinematic effects. The linear solution to this system is given in terms of the Green’s
function or linear propagator

ga(1,2) = (2m)3 op(ky +k2) O(T1 — )

e (3 2 e3m-m) (2 9
_|_
5 3 2 5 -3 3

= (2m)%dp (k1 + k2) gav (11, T2) - (6.34)

In complete analogy to SFTCP one can then define a generating functional for correla-
tion functions of the field ¥,(k, t) by introducing an auxiliary field x,(k, t) and with
the equation of motion (6.31) abbreviated as &,(kq, 71) writing

/D‘I’ /D)(gexp{—/dl /dZ‘I’ a1, 2)%(2)}

exp {i ([ a1 @m0+ L) ¥) +Ku(1)xa(1)>} ©639)

where [, K are the usual source terms and C;(l,Z) the inverse initial covariance
matrix of the field ¥,. Writing the interaction part in terms of functional derivatives
one can then solve the path integrals in the free generating functional to find

ZIJ.K _eXp{ /dl /dz/dB ok, (1) aee(l =2 =3) 1515(2) ié]f(s)}
exp - [a1 [ <2Ja<1>P;m<1 2) 1(2) + (1) g1, 2 Ko(2) ) }

(636)
where we defined the linear powerspectrum
PI(1,2) = [ d3 [ ddgucl1,3) 20a(2,4) (27) on(Fs + Ka)
11
op(73 — 7) op(Ta — 7) Ps(ks) ( . )
3 - g 1 1
= (211)° 0p (k1 + k2) Qac (11, T) S0a (T2, Ti) Ps (k1) 11
3 T T\ aT—T o T2—T 11
= (2r1)° op(ky + ko) ™ T e T Py(kq) < - ) , (6.37)

where the form of the matrix follows from (6.28). Expanding both exponentials in
(6.36) then leads to a perturbation expansion of the same form as in standard QFT.
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When expressed in terms of Feynman diagrams any term is build from three basic
‘tree-level” diagrams which are

w0 o S0y P TR
¥p(2)

Xa(1) ------ =1Aume(1,2,3) . (6.38)
¥.(3)

Having a diagram language for SPT will make it easier to compare it against SFTCP
later.

6.2.4 Advantages of SFTCP over SPT

As we saw in the last sections, setting up a generating functional for SPT can in
principle be done with muss less effort when compared with SFTCP. This however
comes at the price of some serious drawbacks. In section 2.6 we already elaborated on
the loss of phase-space information one has to take when using the BBGKY hierarchy
truncated at any finite level. We again stress that the problem is the unfortunate
choice of variables for which one attempts to solve an evolution equation. We thus
expect that at comparable levels in perturbation theory SFTCP will be able to include
more effects of the underlying particle dynamics than SPT. This will become obvious
once we solved the first order perturbation theory for both the field propagator G,z
and the power spectrum G,. Throughout the derivation of the generating functional
(6.35) numerous approximations had to be made.

* First we had to assume that one can establish a scale hierarchy that allowed
the use of the fluid approximation. Considering the scales of interest in LSS
formation this is not really a problem, but we still like to point out that this
particular scale hierarchy is not needed in SFTCP since we directly work in terms
of the particle dynamics.

* In terms of the BBGKY hierarchy the SSA can be seen as a truncation at the
one-point level. We argued that in physical terms one can understand it as the
assumption that streams in the matter fluid do not cross each other. Since this
is expected to happen once structure formation enters the non-linear regime,
the validity of SPT on small scales at late times is severely limited. With SFTCP
using the phase-space trajectories of individual particles as the basic dynamic
quantities it can describe the crossing of streams without the need for approxi-
mations to the dynamical equations of motion and should thus be valid over a
much wider range of scales.

¢ In order to have a simple set of equations of motion, SPT assumes that the veloc-
ity or momentum field is irrotational throughout its entire evolution and this
is only consistent with the equations of motion under the assumption €’ = 0.
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No such assumption is made in SFTCP and by including the momentum field
as a collective field into the description the statistics of both its divergence and
vorticity should be accessible. We only adopted the assumption of vanishing ini-
tial vorticity in order to make writing down explicit expressions for the initial
density-momentum and momentum correlations easier. While this approxima-
tion is well founded, it is in no way necessary and could be given up if one is
willing to introduce additional powerspectra for the initial correlations.

Regarding perturbation theory we like to point out that using the density contrast ¢
as an expansion parameter is actually a bad choice. This is immediately clear once we
consider that one aims at evolving the system into the non-linear regime where § > 1
at the late stages of structure formation. Any non-resummed form of perturbation
theory to a finite order must thus necessarily break down at those scales which have
had enough time to evolve into the non-linear regime. On the other hand, SFTCP can
describe large density contrasts even with small perturbations of its fundamental
quantities which are the phase-space trajectories of particles. We illustrate this in
Fig. 6.
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Figure 6: Schematic illustration of large density contrasts from small perturbations of particle
trajectories. The dotted lines are the unperturbed free trajectories of the particles
starting from a spatial configuration which corresponds to a small density contrast.
The solid lines are the slightly perturbed trajectories due gravitational interaction
which nonetheless lead to a large density contrast given enough time has passed.

Another problem of the naive version of SPT shown in section 6.2.3 is that indi-
vidual loop-terms in the perturbative expansion of cumulants can exhibit both UV
and IR divergences for certain forms of the initial power spectrum P;. It was shown
that IR divergences should be canceled out by combining contributions from differ-
ent terms (cf. Bernardeau et al. [13]). Whether similar effects are present in SFTCP is
unclear at the moment and will be investigated in future work.

For regularizing the UV divergences in the case of general initial spectra various
methods have been investigated. One prominent example is the variant of SPT called
Resummed Perturbation Theory which was pioneered in Crocce and Scoccimarro
[20, 21]. It leads to a resummed field propagator with a Gaussian cutoff very similar
to that found for the free cumulants of SFTCP in section 4.2. The derivation is quite in-
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volved and requires the by-hand resummation of an infinite sub-class of Feynman di-
agrams. A shorter derivation using Renormalisation Group techniques can be found
in Matarrese and Pietroni [37]. It is yet another advantage of SFTCP that these cutoffs
naturally appear already in the non-interacting theory due to the fact that the initial
velocity dispersion of particles is correctly included.

Another benefit is that the time dependence of these damping factors is given by
the free particle propagators g;,, which must be bounded from above in an expand-
ing spacetime as we will see in the next chapter (also cf. Bartelmann [4]). In contrast,
the damping factor in the resummed propagator found in [21, 37] will evolve with the
unbounded linear growth factor D(t). They consequently lead to damping on much
larger scales for late times which will reduce the generation of non-linear power at
comparable levels of perturbation theory.



PARTICLE DYNAMICS IN STANDARD COSMOLOGY

Our goal is to set up the scenario that is usually explored in N-body simulations.
We have a distribution of CDM mass over some volume V. Its mean mass density
Pm is taken to be the mean mass density of the decoupled background which is the
standard flat ACDM-model of cosmology in the matter dominated epoch. The mass
distribution is then sampled by tracer particles whose mass m and number N can be

chosen freely, but under the constraint %N = mp - Pm- Since the typical correlation
length of galaxy clusters at the present day is two to three orders of magnitude
smaller than the Hubble radius we can safely use the infinite volume limit of the
grand canonical ensemble with fixed p and still apply the Newtonian approximation
for the dynamics. We will derive the equations of motion for the particles starting
from a Lagrange function. The general scheme of this calculation was taken from
Peebles [44]. We will however adapt it to a different time coordinate which at the end
will contain all effects of the background cosmology, making the resulting equations
of motion very easy to work with.

7.1 THE HAMILTONIAN EQUATIONS OF MOTIONS

We start with the following standard Lagrange function for the Newtonian dynamics
of a particle of mass m in a gravitational field with potential ¢

L= %?2 —m®(7,t) . (7.1)
We use the dot notation for the total derivative % w.r.t. to the cosmological time and
describe the position of the particle with physical coordinates 7. The gravitational
potential is defined in terms of Poisson’s equation (6.16) sourced by the mass density
field pm. We introduce comoving coordinates ¥ = a(t) § where the cosmological scale
factor a(t) obeys Friedmann’s equation in the form

i 4G A

=T+ 5

p 3 (7.2)

since for the dominating non-relativistc matter the pressure only gives negligible
contributions to the energy density compared to the rest mass energy. The Lagrange
function now has the form

m . N\ 2 —
L= (ag+ag)” —m®(g,t). (7.3)

143



144

PARTICLE DYNAMICS IN STANDARD COSMOLOGY

Next we apply a gauge transformation L — L — Cé—lf which leaves the Euler-Lagrange
equations and thus the dynamics invariant. We choose ¢ = %a4g? and find

L= % (4242 + 2a0 - G+ a%52) — % (4242 + adg? + 2aaf - §) — m®(F,t)
m 5. R 1 ..
— Eazqz —m <<D(q,t) - 2aaq2> : (7.4)

-

=0(7,t)

Poisson’s equation for the newly defined potential ¢ can be obtained from combining
(6.16) with (7.2) to find

Vi t) = a>Vio(q,t) + aqu i
= 471G a*om(§,t) — a*A + 3aii
= 471G a’om (§,t) — a®A — 471G a*pm (t) + a*A

G
= T o 1) ~ ), (7.5)

where we used that V, = a1V, In the last line we also changed from densities de-
fined w.r.t. volume elements dV, in physical space to densities defined w.r.t. volume
elements of comoving space which are related to the former by dV, = a—3dV,. Note
that the comoving mean mass density pm is now a constant in both space and time
and coincides with the initial physical mean mass density gm(ti). The above equation
shows that in comoving coordinates the force acting on particles is only sourced by
the density contrast. We now want to change to the time coordinate T = InD(t),
defined in (6.25). Note that this new time coordinate is dimensionless. The Euler-
Lagrange equations are form-invariant under this change of time coordinate if the
action S is invariant. We thus have

S—/dtL /dT—L r) . (7.6)

—,_/
L

Our new Lagrange function is then found to be

) o
I- & (’” (H7GL) ~motd r)) = 2eng (8) e 6
We now make the standard transition to Hamiltonian mechanics with the help of a
Legendre transformation. We first define the canonical momentum
)
Pcan 5 ( %)

and then easily find the Hamiltonian to be given by

dq
— 2
=ma"Hf ar (7.8)

dg T can m
. Fon_ M)

ar ' 2marmy T HFOT (7.9)

H= ﬁcan :
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The resulting Hamiltonian equations of motion are then
di  JoH 1

At OPan  malHf P
dﬁcan o 87'[ m o
dr - aq vaq(P(‘% T) : (7‘10)
We now insert these into our field theory. If we normalise the growth factor such that
itis D(t;) = 1 at the initial time, we have 7; = InD(#;) = 0. The field theory action
then has the form

T - T =/ I S
5 ‘N 5 = i /dr ( ﬁXq;(T) ) ( #qj(r) ety Peanj(7) ) ()

chan,j (T) pc/an,j(T) + Hﬂqu]q)(qf T)

We stress again that it is important to use this canonical form of the equations of
motion derived from the Hamiltonian to define the action and thus the generating
functional of the field theory. Otherwise there might be a non-constant functional
determinant one has to take into account (see section 2.3.2).

7.2 THE FREE PARTICLE PROPAGATOR

Before we attempt to use our findings in section 2.5.2 we will try to simplify the
equations of motion such that no explicitly time dependent quantities are present
besides the phase-space coordinates. We can easily achieve this for the equation of
motion for the positions of the particles by defining a new momentum

1 qu] Ly .13)

Pi= ma2H f Peanj = maZHf dt Hf 7
This is a time dependent rescaling of the canonical momentum as well as of the actual
peculiar velocity and simply has the dimension of a length. The velocity-momentum

relation now has the very simple form ﬁj’ — pj = 0. The equation of motion for this
new momentum is then

SeMPHIP) + V00,7

d
= (@Hf) P+ 4 qu, ¢(d,7) . (7:13)

We need to execute the T-derivative in the second term. Using (6.24), (6.25) and the
differential equation (6.22) defining the growth factor we find

dg;
— 2 j
=ma"Hf e +m

4 ean—nmrd el 2ip Ll db
ac WHf) = Hf gz + (Hf) dt HfdtD
- aHf D D2
:2a2H+a2;f <3Q H* — Hzf—H2f2>

= a’Hf (3(;2 — 1) . (7.14)
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The first two terms of the equation of motion (7.13) now have a common prefactor of
ma?Hf. If we redefine the momentum part of the auxiliary field ¥; of every particle
as

=~ . Drrie
Xp, (T) = ma”Hf X, (T) , (7.15)
then we can write the action (7.11) in terms of our new quantities as

T

S = d A
Z/ ‘ Xp,(T) %ﬁ](T) + (%% - 1) pi(T) + aszchVqJGD(q, )
(7.16)

In terms of the entire generating functional we also need to rescale the corresponding
path integral measures as

Dpcan,; = DP; (masz) and D)‘(’p,. = D)_(pjmalef ) (7.17)
As we see, these two factors cancel exactly. The single particle sources J and K can
be chosen freely and may thus be defined directly w.r.t. to the new momentum and
and the new auxiliary field. In the following we will drop the tildes and only work
with these new quantities.

Regarding the initial conditions we can observe that our new momenta (7.12) at
the initial time are precisely those that we obtain from the Poisson sampling process
described in section 3.2 if we choose the initial momentum field to be given by the
peculiar velocity field of (6.26) at the initial time, i.e. TI!)(7) = #ipec(§, 7). We argued
in section 6.2.2 why this peculiar velocity field can be assumed to be irrotational and
thus we arrive again at the situation shown in (4.46).

We now consider the free theory by neglecting the potential term in the equation
of motion for the momentum. The only term preventing us from giving an analytic
solution for the free particle propagator is the time dependent factor 2. In an Eds
universe with (), = 1 the growth factor is given by D = a4 and thus f = 1 and we
do not have a problem. However, it also holds true for the more general flat ACDM
case with O, + QO = 1, that % ~ 1 throughout the matter dominated phase up to
redshift z = 0 in very good approximation (cf. Bernardeau et al. [13]). We will thus
set this factor to unity throughout our calculations. The action for the free theory

then is
N U
R 03 —7 R
-y [arxl @) (afzﬁ( : 3))%)]
=15 03 EIB

N U
_ Z/ 7T (1) [(0:Ts + K) Fi(1)] - (7.18)
j=1 0




7.2 THE FREE PARTICLE PROPAGATOR

In the second step we identified the ‘force matrix” K in analogy to (2.70). Using (2.79)
we obtain the free particle propagator

G(t,v) =exp {/dT”IC} =exp{-K(t—-7)}

(t—1)"K". (7.19)

It is straightforward to show that

_p-1 —p—(n=1)
2= (0% 21 — =% 2 L) (7.20)
03 2*2 _’[3 induction 03 2—n _’Z3
The gp submatrix of G is then given by
> n+1 nn __ - (_1)11 IAY/]
8ap(T,T) E nlnl -7) _2_22) S (T T)
n=1 n=
=2 (1 e )> (7.21)

and the pp submatrix by

ad —1 n D P
gpp(T/T/) _ E (znn)' (T— T/)n —e 53 (1=1) )
n=1

(7-22)

The complete propagator then is given by

G(r, ') = (g%( )L g, ’)Ia>
gPQ( )IE’) gpp( )Ig,

T
( ( f %TT>I3)@(TT,). (7.23)

e (r T)Ig

We see that due to the expanding background spacetime the initial momentum is

exponentially drained away. In consequence particles on the trajectories §(t) = 7@ +

2 (1 — e_%> 7 travel only a finite distance even over arbitrarily long times. Since
the linear evolution of the power spectrum (4.67) in the non-interacting regime of
SFICP is only quadratic in g;,, this cannot reproduce the linear growth behaviour
we see in (6.37). This is not surprising, since the linear solution for the evolution of
the density contrast in SPT already includes the full gravitational interaction. Rather,
linear growth will occur once we apply the linear statistical field propagator to the
non-interacting power spectrum as we will see in chapter 8. The upper bound on g,
will actually be useful when we calculate this linear field propagator.
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7.3 THE INTERACTION POTENTIAL

With the linear propagator found, we still need to determine the interaction potential
in order to start doing perturbation theory. The general solution to Poisson’s equation
(7.5) is given in terms of a Green’s function as

~7 Pm T
o(d /d/p (@, ‘p . (7:24)

The force resulting from this potential is given by

. G [ . . N
~Viod ) = —— [ 47" (om(7’, T) = pm) |;_ ;,‘3

G / -/ - 7_7/ =/ = E]w

=—— | [d7" om(§', T) —— +/dq Pm—,
a ( 74" 7"

Y i—q'

=—— [df om(F",T) —— - (7.25)

a 74"

In the second step we shifted the integration variable to §” = §— 7’ and then ex-
ecuted the integration over angles first to find that the mean density does not con-
tribute to the force on any particle’. We may thus neglect the mean mass density
in further calculations. The next step is to sample the mass density field with the
collective number density field of our field theory such that we have

N
om(@7) =m Y 50 (7'~ (1)) = m®y(7',7) (7.26)

j=1

The potential term in the action (7.16) then has the form

Vo (~ s [ 47 e @) 727)
from which we read off the two-particle interaction potential as
"07) = SRR 7] a5, 38 P
—~— ——~
P (£) 1/ perie(£)
:_3_%414 :_3_414 , (7.28)

8mp f2 |44’ 87p |§—q'|

where we have again used the very good approximation 2 = 1 in the second line.
We have also used that we fix the mean particle number density p of our grand
canonical system to fulfil the constraint p,, = mp. In this form the equations of
motion are now only implicitly dependent on the background cosmology through

our choice for the time variable T = In D.

1 One should note that for this symmetry argument to hold one must consider a flat mass distribution
with infinite spatial extension. Since pn, is identified with the homogeneous density of cosmological
background model we can always extend the integration range in order to achieve this.



7.3 THE INTERACTION POTENTIAL

As a last step we need the Fourier transform of the two-particle potential. This
is in principle a fairly simple calculation as we saw in (4.113). However, the infinite
range of the gravitational potential or rather the fact that it does not drop off fast
enough for A7 = |§ — §'| — oo leads to a divergent oscillating integral. To amend this
problem we regularize the Fourier integral by introducing a temporary Yukawa-like
long-range cutoff

3 1

_3 —ke|7—7'| (
————e , 7.29)
87p |§—q'|

v(7,7") —

where k. is the inverse cutoff scale. With this regularization in place we can now
execute the Fourier integral to find

o 1
3 S _ifag 1 —k.|AG 67 _ i
Z)(k) = _787'[@ /que kAqu ke|Agl _877-[p /quAqe kch/d‘ue ukAq
0 -1

b i “keAq ((a—ikDg _ ikAg) 67T 1 1
~ i8npk O/que (e ) = iSrpk \ik+ ke ik — ke

6w 2ik (3 1 (30
~i8mpk \ (ik)2—k2)  \ 2pk2+K2) 7-30

For all our purposes we want to work with this potential in the limit where we push
the cutoff scale to infinity and thus the inverse scale to k. — 0. Since the potential is
finite for all modes k # 0 this is usually not a problem. Only when we evaluate terms
at k = 0 we have to remember to take limits in such an order that

w0, (7.31)

in order to retain the important property (4.117). Keeping this in mind we define the
interaction matrix as

L. 31 0 1
v = —(271)36p(ky + ko) & — - . :
Ty, (27)” ép (k1 + k2) ép (1 Tz)( 2pk§> (1 0) (7.32)
A/_/

(k1)
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LINEAR AND SLIGHTLY NON-LINEAR GROWTH OF THE
POWER SPECTRUM

In this chapter we will combine all our findings in order to show that we can repro-
duce the linear growth of the power spectrum purely from particle dynamics. For
this purpose we first calculate the linear statistical field propagator G,%) employing
the free particle propagators and the interaction potential derived in the previous
chapter. With this propagator we then calculate the first order solution for the power
spectrum taking into account both its non-interacting contributions which are linear

and quadratic in the initial power spectrum.

8.1 THE LINEAR FIELD PROPAGATOR

1)
0B
findings for g,, and v(k) from the previous chapter into (4.148) and then use (4.153).

Since our particles do not move on inertial trajectories the damping factor ®1, is not
invariant under time translation. We thus have to approximate it as unity. This is a
good approximation as long as the modulus of its argument fullfills

In order to find the linear statistical field propagator G,; we only have to insert our

2

0
Tpk%(gl —g;)P <1, (8.1)
We can now notice that the free particle propagators are bounded from above as
g1 < 2 and as such the above condition in the worst case |(g1 — g2)| = 2 is only a
condition
1
k < (8.2)
207

on the modulus k; and thus on the range of spatial scales we can describe in good
approximation. Since we are only interested in the linear evolution of the power
spectrum we will not need to integrate over the mode of the field propagator and
the above restriction is not too much of a problem. Furthermore, we will consider a
starting time very early in the cosmological evolution when the power spectrum is
‘small” in the sense that

1 1 di Ps(h)
2 4 [
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and thus the range of values for k; is fairly large. The above relation is derived

in Appendix D. With ©1, — 1 the inhomogeneity and kernel of the GSB) integral

equation according to the combination of (4.148), (7.21) and (7.32) are given by
gk, T) = —ipk32(1—e 27)

3 1 711— 711—

Since the time-dependent part has the same functional form in both cases, the only
Laplace transform we need to compute is

(-] - (2-) ®5)

where we used (1.32). The argument of the inverse Laplace transform in (4.153) is

then
(-2)
efsfz ‘CT_>5 [g(klf T)] — _lp k% efStz 2 s 5t3
1 — L5 [K(ky, T)] 1-3 (% — S%)
2
s+31—s
= —ipkie S22 2
P s(s+3)—3(s+3—5s)
1
— —kZ e 2 -
P 24+ 35s—5—3
1
= —ipkle 2 — —
P (s—1)(s+3)
2 1 1
= —ipkie S22 - : :
tefre 5(5—1 s+§) ®.6)
If we use (1.33) together with (1.34) we find
1 . > o 2 . _ 1 1
Gﬁ(’l)Bz = —1p (27‘[)3 5D(k1 +k2) k% g ‘CrlLS [e ST (S — _ " g)
- o 2
= —ip (27)3 op (ki + ko) K3 = (e“*TZ — e*%(ﬁ*“)) Ot —1n). (8.7)

Interestingly, the time dependent part is the same as the density-velocity-component
of the linear propagator (6.34) in SPT. This makes sense if we recall our interpreta-
tion of the linear field propagator as the sum of all possible ‘bucket brigade” pro-
cesses, that we gave after (4.139). It contains all processes where a mode of the initial
power spectrum is amplified or drained away in time by the piecewise free motion
of particles through space. Between these sections of free motion, particles interact
instantaneously and due to momentum conservation ‘hand over” the propagation of
the mode without any mode coupling taking place. Whether a mode is amplified or
drained away depends on the initial conditions, but in our case we set them up such
that only amplification will take place.



8.2 THE LINEAR POWER SPECTRUM

8.2 THE LINEAR POWER SPECTRUM

With our result (8.7) for the linear field propagator in hand we can now attempt to
calculate the first order solution (4.139) for the power spectrum which reads

Ghib, = (00(1=3) + Gl 0,0, ) Gty (90(5 = 2) +i0psp,Gly, ) - (8.8)
We first look at the non-interacting power spectrum which can be separated as
G2 = Goup: + Gonor
= en)o (ki +k) (p9(1,2) +0° (T L2 + 777 (12))) . (89)
where we used (4.54) for the one-particle contribution and (4.65) for the two-particle
contribution. As argued in section 4.3.4 the one-particle contribution is just a shot-

noise term due to its scaling with p! and can thus be dropped. We see from (4.67)
and (4.68) that both 7-functions are proportional to the damping factor

02
D(1;2) = exp {—;k? (81 +g%)} : (8.10)
In order to be able to carry out the calculations in an easy analytical way we will again
restrict ourselves to the range of wave numbers k; where we can safely approximate
the damping factor by unity. With g;,g> < 2 we find the condition

(8.11)
2

which is somewhat more restrictive than (8.2). We will later compare our analytical

results against exact numerical ones to check the validity of this range. The 7’1(&’1)
term represents the non-interacting and linear evolution of the power spectrum and
we will concentrate on this term for now. First, we calculate

G,lggaio'BWZ = /d3 <—iﬁ(27‘[)3

o9

ol + ) K 2 (0 - e imm)

O(n — T3)> —i(271)%0p (k3 + k2) 0p(13 — T2) (—;p k12>>
3
= (2m)%dp k1 g (eTl e 2@ TZ)) Ot —n)
= (2n)%op(k1 — ko) (11 — ) O(T1 — 1) . (8.12)

By straightforward calculations one shows that

/dTZf(Tl — ) =f(u)+e i1 -1,
0

/dTQf(T] —T) e 2% — el —f(m) — e 27 (8.13)
0
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and by combining these we find

/Tld*czf(rl —T)g = /Tldef(Tl —1)2 (1 . e—%TZ>
0 0
=2 (f(Tl) +e i —1—e" 4 f(1) +e_%n)

—2(2f(n) = 3f(m) ) g1 = () —51. (8.14)

Combining this again with (8.13) we finally find
: 2
3
[dnfn -+ g) = f(m) +eF -1+ 2f(n) - g

f( 1) +e 3T — (1+g)
=e"—(1+g). (8.15)

With these relations we can now calculate the first order evolution of the contribution
to the power spectrum which is linear in the initial power spectrum P; to be

G = [ 3 [ a4 (601 =3) + (27 dp(ks —s) f(ri — 1) O(m ~ 3)) x
((sD(z —4)+ (271)%0p (ko — Ka) (T2 — 1) O(T2 — T4)) X

(7% (27) o0 (Ks + Ks) (14 g3) (1 +g4) P(k3) )

= p2(27'[)3 (SD(El —|—E2) Pg(kl) ((1 +g1) + /dTg,f(Tl — T3) (1 + gg,)) X
0

(1+g2) + / dri f(r — ) (1+ g@)

p*(2)° dp (k1 + kz) €™ €™ Ps(k1)

= p*(27)% 6p (k1 + k2) D(t1) D(t2) Ps(ky) , (8.16)
where we used that iy, p, G](g?pz = Gg;%i‘Tng]- This is exactly the same linear growth

behaviour one also finds in SPT. It is very reassuring that our theory reproduces this
well-known result. In order to show the validity of this result we compare it against
the numerical solution for the following system of linear Volterra equations of the
second kind

G — GV 4 g0, G

Bipz Bip2 Bips Bypr 7
i 0,2),1i , 1),li
G.gh)ﬂz N = Gf(hpz) "+ Gf(71p3) i0p;B 4GI(3 )pz + G( ) UB3p4 Gf(74()72 " (8.17)

We used a simple ‘forward-stepping’ algorithm that can be found in Press et al. [51].
The background ACDM-cosmology is fixed by the reduced Hubble constant 1 = 0.7
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and O today = 0.3. The initial power spectrum P; is taken to be at redshift z; = 100
with a normalisation of g = 0.8 and then evolved to the present day at redshift z = 0
which translates to Tioqay = 4.364. The necessary linear growth factor is calculated
by combining (6.23) with (6.8) and using a = 1/(1 + z). The calculation of Pj is
explained in Appendix D. The momentum dispersion of the initial power spectrum
is a% = 0.0054 which means we should see the analytical solution starting to differ
substantially from the exact numerical one somewhere around k ~ 5 —7h/Mpc
according to (8.11) and this matches well with the result shown in Fig. 7.
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Figure 7: The initial power spectrum (dotted blue line) and its evolution up to redshift z = 0.
The non-interacting evolution (red dashed line) and the first order evolution ob-
tained from the analytic result (8.16) without damping (green dash-dotted line)
and from numerical solutions (solid black line) of the integral equations (8.17) are
shown.

83 FIRST CORRECTION TO THE LINEAR POWER SPECTRUM

Let us return to (8.9) and concentrate on the 7'1(&"2) term. It describes all initial corre-
lation effects between two particles which are of quadratic order in the initial power
spectrum P; and thus lead to the coupling of modes. The contribution of this mode
coupling at the initial time is then transported forward by the free motion of the two
particles. All these correlation effects must involve the momenta of both particles ac-
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cording to (4.57) and thus the contribution vanishes at the initial time since the effects
of momentum correlations need time evolution to have any effect.

We now want to apply the linear field propagator to this contribution as dictated
by (8.8). For this purpose we state that

op(1—-2)+ G;()H?3i‘733pz = (2n)*dp(k1 —k2) (bp(11 — ) + f(11 — 12) O(11 — )

(8.18)
according to (8.12). Combining this with (8.13) and (8.14) we find
/drz (6p(ti— 1) + f(1i — 1) Ot — 1)) = f(T) +e 37
0
/dT2 (5[)(1’1 — Tz) —|—f(’f1 — Tz) @(Tl — Tz)) g2 = %f("fl) . (819)
0

Notice that we pushed the global final time to 7z — oo for convenience, because then
we do not always have to state explicitly that all times in the external labels of the
fields are earlier than 7;. We also encounter squares of the free particle propagator
which we can rewrite as

& = (gn(m,0) = (2 (1 40))’
—4 (1 S L e*ﬁ) —4((g1—1)+e ™). (8.20)

By straightforward calculation one finds
! 3 3
/drz fln—m)e 2= 5 el —2f(ny) — 5 e 1 (8.21)
0

and consequently also

/drz (bp(t— )+ f(u — 1) Ot — 1)) &
0

= 4/d12 (bp(ti—m)+f(r—1)O(t1 — 1)) ((g2—1) +e ?)
0

—4(3rtm) - (m) e i) 4 Sen - 2f(m) - e

— _Z T _ =37 1 o 1 -1
_4< 3f(T1)+<e e 2 >+2e 5e
8 2 3
— T _ _ - - = _ T _ o512
=2e 3f(T1) 2e 3f(T1) 2 (e e 2 > : (8.22)

One can easily check that this result is positive definite for 77 > 0. The negative
second term has a maximum value of —8/27 ~ —0.3 at 7 = 2*1In(3/2) ~ 0.8 and
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then quickly goes to zero. For 7y > 1 the above result will thus nearly behave as
%f(1), which is the density-velocity-component of the linear propagator (6.34) of SPT
as we discussed earlier. We define

X(n) =X = %f(n) = % (eTl — e’%“) = gs0(7,0) (8.23)
and rewrite our result from (8.24) as

’ . s 2 (effl — e*iTZ)

gﬂn)—z@ 1—e22):Xj 1— pro — X1 A . (8.24)

The A; function quantifies the difference to the normal linear growth and quickly
goes to unity for 7y > 0 as we have just discussed. Combining the above equations
with (8.8), (8.9) and (4.68) we find that the first order evolution of the power spectrum
contribution coming from terms quadratic in the initial power spectrum Ps in the
range specified in (8.11) is given by

&zm(m—m>mmw

1),quad _ o R
G/gll)ﬂzq = p*(2n)* bp(kr + ko) X1 X, / (2m)3

(8.25)

From this we see that apart from the initial deviation due to the A; and A, functions
this contribution to the power spectrum evolves purely with the square of the density-

velocity propagator of SPT. This is not to surprising, since in contrast to the 712|’11

contribution there are no terms containing only density correlations in 712|’12. In fact,
from (6.37) we see that in SPT one must take into account contributions from both the
density-density and the density-velocity component of the linear propagator in order
to achieve the linear growth behaviour we found in (8.16). The result in (8.25) may
thus be understood as an instantaneous mode coupling of momentum correlations at
the initial time which are amplified by the linear streaming processes of interacting
particles encoded in the field propagator ng)gz. We again compare our analytic result
(8.25) against the numerical one with all damping factors present in Fig. 8 and find
very good agreement up to k = 5 —7h/Mpc. The numerical results are obtained
from solving the integral equations (8.17) with G((,(l)bzz)’hn — Gé?;i)’quad exchanged. In
Fig. 9, we also compare the analytic result (8.16) corresponding to SPT against the
solution of the integral equations with only linear as well as linear and quadratic
initial correlations taken into account. We see that the contribution from quadratic
initial correlations do not contribute to any non-linear growth of the power spectrum
compared to the linear SPT result. Rather, it reduces the damping effect due to the
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LINEAR AND SLIGHTLY NON-LINEAR GROWTH OF THE POWER SPECTRUM
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Figure 8: First-order evolution of the power spectrum contributions quadratic in P; up to
redshift z = 0. The undamped first order evolution of the power spectrum (black
solid line) is shown for comparison. The analytic result (8.25) (red dashed line)
agrees perfectly with the numerical result (green dashed line) as long as the no-
damping approximation is valid.
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random motion of the particles by a very small amount. In consequence, it slightly
extends the range of scales where the analytic result (8.16) is a good approximation to
the actual result for the power spectrum. It is an interesting question for future work
whether the same holds for contributions of cubic and higher order in the initial
correlations and if taking into account arbitrarily high orders of them would in effect
restore the linear growth of sPT. This would then justify using (8.16) for calculating
loop corrections like those shown in (4.142), which we expect to contain the first
non-linear corrections relative to the linear growth of SPT.
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Figure g: First-order evolution of the power spectrum up to redshift z = 0. The undamped
first order evolution (8.16) of the power spectrum (black solid line) is shown for com-
parison. The numerical first order solution including only linear initial correlations
(green dashdotted line) and additionally including quadratic initial correlations (red
dashed line) only differ slightly.






CONCLUSIONS ON PART II AND OUTLOOK

In the second part of this work we briefly introduced the standard ACDM-model
of cosmology based on the assumption of statistical homogeneity and isotropy on
large scales. We discussed why the initial conditions for the formation of structure
might have their origin in the quantum fluctuations of some primordial field and in
which sense a statistical approach to the study of structure formation is admissible.
We then continued by introducing the Standard Perturbation Theory (SPT) of struc-
ture formation and pointed out the various drawbacks of this approach compared
to SFTCP. Some of these drawbacks arise from approximations to the equations of
motion necessary for obtaining an analytic solution which can serve as the starting
point of perturbation theory, others are rooted in an unfortunate choice of dynamical
variables. We then finally applied SFTCP in its grand canonical version to the problem
of structure formation.

¢ We first calculated the first order solution for the statistical field propagator
Gpp and found that in the regime where the damping due to initial velocity
dispersion can be neglected we obtain the same result as found for the density-
velocity component g of the linear propagator (6.34) in SPT.

¢ Using this result we calculated the first order solution for the power spectrum
Gpp and found that if we consider only initial correlations which are linear in
the initial power spectrum P; we obtain the same linear growth behaviour (6.37)
as in SPT.

¢ Contributions coming from those terms in the non-interacting power spectrum
G[gg,z) which are quadratic in the initial correlations will evolve with gss (6.34)
and at the present state of investigation seem to have no counterpart in SPT.
While their contribution to the evolved power spectrum is negligible once all
damping terms are considered, it was shown in Bartelmann et al. [7] that they
become a lot more important if one uses unbounded free particle propagators
like those of the Zel'dovich approximation. This suggests that these kinds of
terms warrant further investigation to exactly see which approximation is re-

sponsible for the fact that they do not appear in SPT.

For all three of these quantities the analytic results were checked against the nu-
meric solution of the respective linear integral equations and were found to be in
excellent agreement in the specified ranges of validity where the damping factors
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can be approximated by unity. Based on these results we can establish an interesting
correspondence between SFTCP and SPT.

* On the level of two-point cumulants the first order solution of SFTCP appears to
be the equivalent of the the tree-level (6.38) of the path integral formulation of
SPT.

¢ As we already mentioned in part i, the structure of SFTCP perturbation theory
as investigated in section 4.3.5 points to a reformulation of the generating func-
tional in such a way that the first order solution becomes the tree-level with the
non-interacting cumulants acting as vertices.

¢ It should thus be possible to directly compare the diagrammatic structure of
the two theories. In this case we see that SFTCP contains much more informa-
tion about the system since even at tree-level there are infinitely many non-
interacting cumulants and thus vertices of arbitrary n-point order as opposed
to only one three-point vertex in SPT. In this way one would be able to connect
the truncation of the BBGKY-hierarchy at the core of SPT and the subsequent loss
of phase-space information to the structure of perturbation theory.

This again gives credit to our claim that SFTCP should be a valid tool for the investi-
gation of the non-linear statistics of density perturbations in the universe. Once the
reformulation of the theory has been achieved a multitude of avenues are open for
future pursuit:

¢ The most obvious task is to calculate the one-loop corrections to the density
power spectrum and compare them with SPT. It will be interesting to see if the
contributions from loop diagrams of the general form

()
N

built from the respective theories three-point vertices are the same or whether
SFTCP can already improve non-linear growth at this level. We however expect
an improvement over SPT once loop diagrams of the general form

O

are included since four-point vertices are unique to SFTCP at tree-level. In Bartel-
mann et al. [8] it was already shown that a combination of early linear evolution
due to the Zel’dovich approximation and a subsequent one-loop calculation in-
volving the free particle propagators and the interaction to first order leads to
impressive results that mimick the power spectrum behaviour found in N-body
simulations deep into the non-linear regime even at reshift z = 0. Since the re-
formulated perturbation theory would include the linear growth behaviour we
are hopeful to achieve similar results with a one-loop calculation that describes
the time evolution with a bare propagator valid at all times.
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¢ Since the reformulated perturbation theory of SFTCP should have the same struc-
ture as standard QFT it should be possible to perform Dyson resummation with
the amputated one-loop diagrams as the lowest order contributions to the 1PI-
self-energy.

* Going further, the application of Renormalisation Group techniques presents
itself as a natural next step in order to probe the non-linear regime. This is
especially true for the application of SFTCP to the evolution of self-gravitating
dark matter haloes where the investigation of scaling laws and meta-stable con-
figurations due to virilisation is of utmost interest. This could lead to insight
into how one can explain the appearance of universal density profiles like for
example the Navarro-Frenk-White profile (Navarro et al. [43]) on a large range
of scales in numerical N-body simulations.

¢ The diagrammatic approach to the initial conditions described in chapter 3
should allow a generalisation to non-Gaussian random fields and thus for in-
vestigations into the effects of primordial non-Gaussianity on the present day
statistics of the matter distribution in the universe.

All in all this work can only be the seen as laying the necessary foundations. We
feel that having a theory at hand that practically needs no approximations to the
underlying dynamical equations of motion will lead to new findings that can improve
our understanding of structure formation in cosmology.
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APPENDIX






VANISHING OF PURE RESPONSE FIELD CUMULANTS

We will show that correlators containing only the collective response field ®p vanish
even if all interactions are considered. We will do this in the canonical ensemble. Since
pure ®p cumulants are defined in terms of pure ®p correlators, the vanishing of the
latter automatically implies the vanishing of the former. Since the grand canonical
generating functional is defined in terms of the canonical one, the vanishing of the
canonical cumulants implies that the grand canonical ones vanish as well. We will
proceed in an inductive way and start with the one-point correlator. Using (4.20), its
basic definition in Fourier space is given by

N 7 —
<CDB]> = /dl”l /DX /DX <Zl)_€p](tl) 'kl eikl"ij(h)) %
i j=1
exp {ix - €[x] +1iJ - x+iK- x} ‘J:K:O

- N 5 a7
— [ dr; / Dx (i} —— -k e—lkl'%“l)) opE[x] + K] (A.1)
/ / ( ]Z; 15Kpj(t1) ‘Kfo

We used the notation defined in (2.65) for the integral over initial conditions. In the
second line we have replaced the auxiliary ‘fields’ X, by functional derivatives and
then executed the path integral over them. The term in the Dirac delta distribution
now defines new equations of motion augmented by the source term K

ox—JVH+K=0. (A.2)
We can absorb the source term into the Hamiltonian by defining
H=H-K'Tx. (A.3)

This shows that the augmented equations of motion can still be derived entirely from
an Hamiltonian and we may thus rewrite the Dirac delta distribution according to
the arguments given in section 2.3.2 as

op[orx — TVH + K] = dp[x — x(t,K)], (A.g)

where x(t, K) is the solution to (A.2). If we assume that we can split the Hamiltonian
as in (2.29), with the interaction part given by a potential, then the equation of motion
can be written as

Eolx| = TVV(j,t) — K. (A.5)
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Given the linear propagator that solves this equation without the inhomogeneities on
the RHS we can write the formal solution to the full equation as

x(t,K) = G(t, 1) x +/dt G(tt") (TVV(Gt)—K())

1

Il
Pl
—

— /dt’ gt tK(). (A.6)
We can thus execute the path integral over the phase-space coordinates to find

N
L
<<I>B):i/dF- Fl—
' 1]; 16Ky, (1)

i
exp {iﬁl- (f?j(tl) —P;/ df'g(tlft/)lzj(t/)) } =0
b

N — — — —
- —i/dri Y k- (gqp(tl,tl)kl) exp {—ik1 -q‘j(tl)} —0, (A7)
j=1

where P, is the projection operator defined in (3.54). We see that the correlator van-
ishes due to g;,(t1,t1) = 0, which is a purely causal argument. We move on to the
two-point correlator. We can repeat the calculation from the one-point case to find

) - )
qDB CI)B =1 /dF (kl ) (kz : _,> X
P X% ]Z 10Ky, (1) 16Ky, (t2)

5]
exp {1%1 : (671'(1‘1) — P;/dt/ Q(tl, tl) Ki(t/)) } X
t

)
exp {iﬁz' (qj(tZ) _Pr;r/dt/g(b/ t') Ej(t/)) } ’KZO
£

gap(t1, h) + i F2 Ot — tl)gqp(tz,tl))) X
dij k1 ©(t — t2) gap(ti, t2) + ka gap(t2, fz)))

I\
—_
~.
Il
—_

/\/—\

<
-
B (it R 0)}

(El . Ez)z @(tl — t2> @(tz - t1> gqp(tlr tz) gqp(tZI tl) =0. (A8)

We again see that the correlator vanishes due to a causality argument which is exactly
the same as the one employed in the proof of Theorem 1. This will also hold for all
higher n-point cases, so that we can finally state

<®Bl e CDB,1> =0 = G‘DB]--QBn =0. (A9)



CUMULANT PERTURBATION EXPANSION IN THE
CANONICAL ENSEMBLE

Working in the canonical ensemble, our goal is to find the cumulant analogue of the
correlator perturbation expansion (2.58) in the one and two-point case up to second
order in the interaction potential. Our starting point is the general definition (2.46) of
the cumulants. We use the various shorthand notations employed throughout section
4.3. We can define non-interacting cumulants by

G, = Huy ... Hy, WOIH,J, K], (B.1)
where we have the relation
WOH,J,K] = InZco[H,],K] = Zco[H,J K] =" HIK (B2)

Note that it also holds that Zco[H,J, K]| o = 1 as long as the initial phase-space
probability density P (x()) is normalised properly. In the following calculations we
will encounter many functional derivatives of W(%). For the sake of easier notation we
break with our custom of using greek letters for field labels and use latin characters
instead, but still understand all other notational principles described in section 1.2.2
to apply. Derivatives will be denoted as

Hal e Hun W(O) [H/ J/ K] = WLS?.)..LI" = Wa(lo.)..an 0 ng?.)..a,, . (83)

We start with the one-point cumulant. Combining (2.46) with (B.1) we have

1 - 8,
Zc[O] H, (eS ZC,O[H/JIK]> }0

&~ WO i 0
= e, eV | =e (W,Z(O) eV )) o
+

G, = H,InZc[H, ], K]|, =

oy A, H.) (i04.H;A ©

(iopcHpH.) (iogeHaH,) + .. ) (Wa(O) WO ) -
(B.4)

We also note at this point that in the second line one could in principle apply the

same reasoning that leads to the self-consistent perturbation theory of the grand-
canonical ensemble, i.e. one would try to commute the interaction operator with

Wa(o) in order to reobtain the full generating functional on the RHS. While this must
lead to the same result, it would however be a somewhat more complicated affair to
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do this calculation explicitly since in the canonical ensemble we do not have a simple
expression for W(© like its grand canonical counterpart (4.15). We thus have chosen
to take the route employed in (2.58) and expand the interaction operator in orders
of the potential oy,.. As they always occur together we absorb the imaginary units
into the potential icj,. — 3. The first term just gives the non-interacting one-point
cumulant

(WO ) |, = G0 ®5

The second term is already more involved and gives

% (e AyHe) (W ) | = %%Hc (W) +wOw ) e |
= Lo (WO 4 WOWD 4 WOWE + WOWD + WOWOWO ) &),
- %Gégi Te + %Gﬁo)Gé?% + Gy one G + %cg%g%bccgm
= %GSSZ Ohe + Gy oGt (E6)

In the third line we have used the symmetry o}, = 0, in order to combine terms. In
the last line we have used that GéO)UbCGgo) = ZGE?)
that Gé(c))(fbc = Gé%zapl B, = 0 due to causality. With the help of the second line of (B.6)
the second order term is obtained as

0, BZG,(;;) = 0 since G)(B?) = 0 and

1 ~ A A
= (0w HyH,) (04.HaHe) (Wa(O) ew<0>> }

8 0
1 .
= 5 (cacHafle) o [ (WS + WEOWS + WEWS + Wi WS
0)147(0) 147(0 (0)
WO WOWO) e |
1
— Lovcu [ (Wi + W + W WO W+ WO

+WOWO L wIWD + wOWO - wOWOWP L W w oW
+WOWOWO + wOWOIWD L wOWOIWD 4 wOWO W
+W§O)W£O)W£O)W§O)) ew<0>] - (B.7)

We stop at this point because executing the last derivative will inflate the entire ex-
pression to an enormous extent. On the other hand we can already see a general
pattern emerging in the above calculation. At the m-th interaction order we need to
consider all ways how we can distribute the 2m internal field labels and the one ex-
ternal label a over products of cumulants of all n-point orders between 1 and m. It
will thus be easier to just group the various possible ‘topologies” of terms and con-
sider representatives for each of them. For example WLES )WC(O)Wéo) and Wb(S)Wa(O) Wéo)

are topologically equivalent while Wa(l? ) Wc(g) is topologically distinct from them. One
then has to consider all possible ways how one can contract labels of these expres-
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sions with the interaction matrix and assign symmetry factors. If we do this for the
second order term we finally find

) i) (0 |

1
8
1

cde a

0) 5(0 0) 5(0) 5(0)
06 +46%c"¢c

cde

0) ~(0 0) ~(0) (
0 GO 466" +4G

a

146!

a

0) ~(0) ~(0 0) ~(0) ~(0 (
066" 426696 +86

a

0 0 0 0 0 0) ~(0)
(138)

We already dropped terms that contained factors of the same form already dropped
in (C.6). We can now drop a few more terms. First off we have
0 0
GISC;eUbCUdE =14 Gé1?32P3340—91320'p3B4 =0 (B.g)
due to causality. Both B, and B4 need other fields to whose time argument they can
direct their time flow contained in their b factors (see (4.31)). But the Dirac delta
distributions w.r.t. time in the potentials have reduced all time arguments to either

ty or ty. With only B field time arguments remaining we can use the arguments
presented in Theorem 1. The same argument also holds for

Gég) GCEUbCUde =2 GF(I?;S3G§32‘)K)4UP1320-B3P4 =0
(0)

0 0
Gy 0cGeieae = 2 Gy, G5, Gy 5, Oy =0, (B.10)

where we have again used Gl(go) = 0 in the second equation. This also leads to

GG G004 = Gy G Gt Oy 0yp, = 0, (B.11)

since Ggg = 0. We can now write down the perturbation expansion of the one-point
cumulant up to second order in the interaction as

1 1
G = G+ 5 Gupee + g Gupea e

+G!

a

1
Do (6 + 1+ Gl

1 1 1
+ EGu(gzd O-bco-deGé()) + EGLE(Z; U'bco'dch(O) GB(O) + EG,E(;; O-bco-deGgg) . (B-Iz)

If we would restrict the equation only to first order terms we find

1
G,gl) = Géo) + EG(O) Ope + G(g)chGEO) (B.13)

abc a
and we immediately recognize this as the expression in parentheses in the second line
of (B.12). We can furthermore identify its first line with the second order expansion
of G() which we denote as

1 1
67 = 69 + L6l o+ L6y ®19
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and can then write the second order expansion of G, as
1
6 =6 1 et + Lol
1 1
+ 5 G O0e0ae G G+ 5 Gl e G (B.15)

a

0) (0
bed YbcVde Ge )

Let us now promote terms in the following way. On the LHS we replace Géz) — Gg. In

the second term of the RHS we promote Ggl) — G¢ and in the third term GE(O) — Ge.

In the same way we promote GSO) — G, and Ge(o) — G, in the fourth term as well as

Gc(g N G, in the fifth term. We then find

Ga = G + (Gl + G

a a

(c)gb Ucd) OpcGe + %Gég)d Opc0aeGeGe + %Gigzi OpcTeGee -

(B.16)
In the second term we can now identify the first order expansion GLEZ’U. If we further-
more identify the remaining non-interacting cumulants as the zeroth order expansion
of the respective G(°) functions and then promote all G() expansions to the full quan-
tity we finally have

Gy = Gt§C) =+ GF(,;)(Tchc + %Géz,)j Opc03eGeGe + %Gigj Tpc0eGee - (B-17)
This is precisely the same as the perturbation expansion (4.101) we found in the
grand canonical ensemble. The second order expansion (B.12) can also be obtained
by solving (4.101) iteratively but only keeping terms which contain no more than
two orders of the interaction when one writes them out explicitly. This demonstrates
that the perturbative expansion of cumulants contains the same terms in both ap-
proaches and that one must thus be able to find the same self-consistent form in the
canonical ensemble. The fact that this would nonetheless be more cumbersome in the
canonical ensemble due to the reasons given after (B.4) highlights again that the main
advantage of the grand canonical approach is the simple form of the free generating
functional and the consequent reduction of combinatorial complexity in calculating
the free cumulants.

We now also want to calculate the second order expansion of the two-point cumu-
lant. We again start with its definition

N ~ 1 6.0 wo
Gay = H,HyIn Zc[H,],K]|, = H, (Zcels’sz JeW > o
T g (w0 )70 WO
= 7 (W) + wOW) e

— (ch[O])Z (eigl W;O)ew(o)) (eigl ngo)ew(o))

We alread know the second term from (B.12). We expand the first term

0

]0 . (B.18)

1, o 1, -
<1 + 5 (owaHeHy) + 5 (0uaHHy) (o HeHy) +) (W) +wiw®) ™) |,

a
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(B.19)

The zeroth order contribution from this together with the zeroth order contribution
from the second term is

(Wél?) + WéO)W£O)> WO ’0 _ (Wéo)eww)) (ngo)ew(o)> ‘0 _ Gig) ' (520
The first order contribution from (B.19) is
1.0 ©
oeaHcHy ((w§b> +W( WO e |,
() WD 5 W5 W+ WO W) 5
(B.21)

At this point we can just read off the result from (B.7) and together with the first

order contribution from the second term in (B.18) which we can directly take from
(B.6) we find

1

Lo (Gl + 17610+ 1764
0) ~(0) ~(0 0) ~(0) ~(0 0 1 0 0) ~(0

+2617606Y +26 GG ) - 6o <2Gl§c3, +GG} >>

— 6%, <1G<o> ey ng)

D ~acd
1
= 3G e + Gl 0aaGY + GGl (B.22)

+2G6960 1266l

The first order expansion thus has the form

Gl =G+ ;cgbg 10+ GV 04GY + GG . (B.23)
The second order contribution can in principle be obtained by applying yet another
instance of the interaction operator to (B.21). However, the calculation again becomes
cumbersome to such an extent that it will be more sensible to employ the same strat-
egy described for the second order contribution in the one-point case. Substracting
the second order contribution from the second term in (B.18) we finally arrvive at

1

@ _ g0, 10 (0)
Gab - G + ZGabcd Ued + 8Gabcdef TcdOef

+ Gébi Ocd <G£(10) + EGc(i[e)} ef + Ga(i(e)) Oef G}O)) + Gibgde Ocd0cf Gj(f !

1
+ G0y (fo;) + 5Glets %er + G 02 Gly + Gy aefcff’))

1
+5 GLEC()iE OcdOef GJ(’b)

1 1 1
+ 0ua0f <G(O) Gaf + 5Gune Gy G + 5Gice Gygy + Giee G}O)G§2)> :

2 abce 2
(B.24)
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Just like in the one-point case we can identify first order terms, namely the first order
result (B.13) for the one-point function as the parentheses in the second line and the
first order two-point function (B.23) as the parentheses in the third line. The first line

(c2)

is the second order expansion G, and we thus find

1
08 = G + Ol + 6

+ GGl + 56, iy Gy

1 1
+ OcqOef <2G1522e G! f) +5 Gébze G( )Gj(rO) + EGé(c)g Gg(z?f)b + G§83 Gj((o) Gtgg)) :
(B.25)

Let us again do the same promotions as in the one-point case.

¢ On the LHS we promote Géi) — Ggp-

¢ In the first line, we promote G{gl) — G4 and G}O) — Gy.

(1) (0)

* In the second line, we analogously promote G, — Gg, and G  — G-

(0)

abce
and all other cumulants in a term to its full counterpart as e. g. Go(i f) — Gy in
the first term.

(c0)

abce

¢ In the last line we then promote every first cumulant in a term as G,’ — G’

With these promotions we arrive at

Gy = G( 2) + G( )achd + Gé?’l)ffchdb

abc

abce abce

1
+ > 0tCrs <G( OGas +GEVGyGs+ = Géce)cdfﬁcéce)cfcdb) . (B.26)

If we then promote all G(¢") to their full counterpart we finally find

Gup = Gib) +GY9 0.aGg + Ggﬁ) 0edGap

abc

1 _(c
+ Géble 0ea0es (Gas + GaGy) + EGL(Icg 0eaef (Gapp +2G¢Ggp) ,  (B.27)

which we recognize as the second order self-consistent equation (4.103). Just like in
the one-point case we could go the other way by solving (4.103) iteratively and then
only keeping terms which are explicitly second order in o,.



ON THE MEAN DENSITY

We want to show that in our case of a statistically homogeneous and isotropic system
the mean particle number density p is not affected by interactions, i.e. G, = Gf()o).
A general proof is complicated in the self-consistent form of the perturbation the-
ory because we need to make assumptions about the full cumulants. It seems more
promising to find the reformulation of perturbation theory alluded to in section 4.3.5.
There, both the basic propagator and vertices in form of non-interacting cumulants
should be known exactly and one can then hope to find a general argument why di-
agrams of arbitrary loop order with only one external leg must vanish. Nonetheless
we will show that any contribution to G, in the self-consistent perturbation expan-
sion up to second order vanishes, showing that our claim is at least justified. We start
with the full second order equation with all tadpole terms set to zero
© o
Gp, = Gy, + EGPWV 0ua0vpGag - (C.1)

Expanding the first term up to second order we find with the help of Corollary 4

(C) P (011) 1 (0/1) (012)
G = Gp, i (GP1P233 + GPleBa) Up2Bs
i2 /01 (02) (0,3)
+ D (GP1P233P435 + GP1P233P435 + GP1P233P435> Tp2B3Up4Bs

i2

_ ~(01) . ~(0,2)
- GPl + IGplszgaPZBB + 2 (G

In the second step we used that all contractions of one-particle cumulants will lead
to self-interactions in the sense of (4.123) and must thus vanish. Let us look at the
second term in the above last line. In the language of section 4.2.4 there are only two
non-vanishing label groupings here. The first is (1;2,3) which leads to self-interaction
of the particle carrying labels 2 and 3 and thus vanishes in the sense of (4.123). The
second grouping is (2;1,3) which has the overall prefactor

b(2, 1,3) = Eg, . El 813 (C3)

(0,2)
0102B3p4B5

(0,3)
+ GPIP2BSP4BS UpyB30p4Bs - (C.2)

due to the label 3 coming from a @ field. But we also have

G‘l()(l);)zz)Ba(TPZB3 fo'e /d2 /d3 (27‘[)d 5]3(%1 + Ez =+ E’g) (27‘[)d 5])(%2 + E3) Z)(kz) X

boltz — t3) G2
= /dz (27)" ép (k1) v(k>) G;()?})Zz)&z
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— pz/dz (27r)¢ (513(%1) v(ky) (—Ez -k g12> Tl(é) (2;1,3)
=0, (C.4)
=(0,6)

where G, 4, is to be understood in the sense of (4.119). By analoguous calculations
we also find that the two remaining terms in (C.2) have an overall prefactor dp (k7).
Consequently we only have to investigate the structure of the b factors of the individ-

ual groupings to show that they vanish. For the GF()1 o )B 404B; tETT th.ere are again only
two groupings that do not vanish due to self-interaction or causality in the sense of

Theorem 1. For these two we find

op(k1)b(1,3,4;2,5) = op (ki) (Ea : (El g3+ ks g43>) (Es -k g25)
= (SD(%l) (%3 'E4 g43> @5 'Ez g25) gi—;i (ﬁz 'E4>2 842 824 = 0
(C5)

due to causality and similarly

op(k1)b(1,2,5;3,4) = op (ki) (%5 : (El g15 + ka g25)> (%3 Ky g43)

= p(ky) (k5 ks g25> (Ea ks g43) = (Ez 'h)z 842 824
=0. (C.6)

(03) . . .
For the G, * 5, 5, term things become even easier. We now have only three groupings

that do not vanish after taking into account self-interaction and Theorem 1. The first
of them vanishes purely due to causality as

b - - - 32:2 — - 2
b(1;2,5;3,4) = (k5 ko g25> <k3 kg g43) = (kz 'k4) gugn =0, (C.7)
the second due to homogeneity as
5]3(%1) b(Z, 1,5; 3,4) = 5]:)(%1) (%5 . %1 g15> (%3 . E4 g43) =0. (C8)

The third grouping is (4;2,5;1,3) and vanishes analogously to (C.8). We thus have

shown that Géc) = Gf(yo’l) up to second order in the interaction. The second term in
(C.1) can be written out as

0 0
Géf;waya%ﬁ Gup = Gp(n %?ZB3 OByp4OB3p5 Gpsps 2 G£127283UP234‘733P5 GByps / (C.9)

where we have used Gpp = 0 (see Appendix A) and since we only consider terms

up to second order in ¢, we have set G,(,f)w, — G‘[()?‘Lv- Corollary 4 leads to Gé%z& =

Ggl)’Blz)B3 and using (4.119) we find for the first term
01 = .
G(Ele)Bgo-BC”pf) 0305 — /d2 /dt3 277 (5D ) Gé 32)33 (kZ)z GP—zP—a
= p/dZ /dt3 (271)4 5p(k7) (kz (kl g12 + ks g32)>

<E3 . (El g13 + 7€'2 gza)) U(k2)2 GP—ZP—S
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= p/dz /dtg (27) op (k1) (Ez'ﬁa g32> (Es k2 gza) X
U(kz)z G_sz,073

=0 (C.10)
due to causality. For the second term we infer from Corollary 4 that G,l(7(1)f)72 By, = G£?£2)33 +

G’(J?;i )Ba' Causality also dictates that at every order in the interaction Gp,,, « @(t2 —t1).

The principal structure of the term is the same as in (C.10) and as such we only look
at the combination of the surviving Dirac delta distribution, the Heaviside function
coming from the full Gp, and the b factors. For the one-particle contribution we have

(5])(%1) @(tg — t2) b(1,2,3) = 5])(%1) @(tg, — tz) Eg, . (El g13 +E2 gzg,) =0 P (C.Il)

where the first term vanishes because of to the Dirac delta distribution and thus due
to homogeneity and the second because of the Heaviside function and thus due to
causality. For the two-particle function we have two groupings that do not already
vanish according to Theorem 1 and for those we find

5D(E1) @(tg — tz) b(l, 2, 3) = 5]3(
O (k1) ©(ts — t2) b(2;1,3) = op(k1) O(ts — ta) k3 - k1 813 =0 . (C.12)
Up to second order in the interaction we thus see that the one-loop term vanishes
and we have in total

Go, = Gy, = p (270)" bp () (C.13)

as one would expect for a statistically homogeneous and isotropic system.

We now want to comment on why Das and Mazenko find a first order correction
to the mean density. In [22], they also considered a statistically homogeneous and
isotropic system which however explicitly obeys Newtonian mechanics and which is
in equilibrium at the initial time £;, i. e. the initial phase-space probability density is
given by

. ) N [ 5(i)? .
P(xV) o exp {—ﬁ?—l(x(l))} = exp {—ﬁ Z{ <pZm + V(ﬁj(l),t)> } , (C.14)
i=

where B = kBLT' There are no initial correlations. One can move the potential part of
the above initial condition into the interaction matrix which then obtains the element

Ooipr = (271)? p (k1 + k2) dp(t — 1) dp(ta — 1) v(k1) . (C.15)

In this form of the theory one finds that the free cumulants obey time translation
invariance (TTI), i.e. at the two-point level they only depend on (t; — t). This in-
variance of the statistics is broken once corrections with the interaction matrix oy,
are computed due to the initial time t; appearing in (C.15). In order to retain both
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TTI and equilibrium Das and Mazenko [22] adopt what they call the ‘field theory’
protocol in [39]. They require a fluctuation-dissipation theorem (FDT) to hold for the
two-point cumulants and push the initial time #; — —oco wherever it appears as an
integral boundary. To correct for this they introduce counterterms and with the help
of the FDT they can then show that at first order in the self-consistent perturbation
theory these exactly cancel against those terms coming from the initial condition c,,.
One thus can describe a system in equilibrium by requiring the FDT to hold and using
the initial time t; — —oco whilst ignoring ¢,,. This however has consequences for the
first order correction to the mean density. It is given by

0 0
GP1 = Gf(h) + G£1%32032P3 GPa . (C.16)

We assume the system to be in a static situation where G,, does not depend on time
and we thus have

Gy, = (21)"dp(k1) G, (C.17)
(0)

with some constant G,. The non-interacting G o5 cumulant is given in [22] as

G = p(2n) op(ky +Fa) O(t; — 1) _k (t — b)) ex —ki(t —1))?
0B, — P D(K1 T k2 1~ 12 ) (i~ R2)exp 2pmt .
(C.18)

The second term of (C.16) then reads
L. K2
Gé?%;ZO'Bsz‘gg) = /dZﬁ (27T)d 5D(k1 + kz) @(tl — t2) <—n1> (tl — tz) X

K2 5 R
o~ 2 (h=ta)” /d3 (27)" dp (k2 + K3) dp(t2 — t3) (—v(ka)) X
(27)* 5p(k3) G,

t , .
- (Zﬂ)d(sD@l)U(kl)ﬁGP/dtz (_ﬁk’w (t — tp) e~ (112’
ti

(C.19)
We focus on the remaining time integral and define f(k;) = —g—i and t = t; — .
With dt = —dt, the integral can be solved exactly as
f—t;
/ dt f(ky) ted/)t / ar2 _ edflk)(h-t) _ 1 (C.20)

0

Since f(k) < 0, the above exponential will tend to zero as t; — —oo. The complete
first order equation in this limit is then

Go, = Giy +pBolkn) (27 op(R1) G, ) = G+ pBolk) Gy

G
=G, = — P . (C.21)
o 1-ppo(k)
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One can understand this entire scheme such that the system is in some state out of
equilibrium at t; = —oo and is then driven into equilibrium by the ‘noise’ that comes
from the particle interactions over an infinite amount of time. Since the mean particle
number density p now pertains to the non-interacting system out of equilibrium it
may receive corrections in order to fullfill an equation of state for the equilibrium the
system relaxes into.

We want to point out that the appearance of this correction strongly depends on
the TTI of the statistics and taking limits in the appropriate order. If we do not have
the t; — —oo limit in (C.20) we see that taking the k1 — 0 limit due to the leading
Dirac delta distribution from (C.19) will put the integral to zero and we do not find a
correction to the mean density. For the kind of systems we describe in this work these
conditions are no longer met. Since we explicitly force the system to have a specific

correlation structure at some initial time #; with a fixed p, the statistics cannot obey TTI.

This can for example be seen in the time dependence of the two-particle contributions
to the non-interacting two-point cumulant shown in (4.67) and (4.68). These are not
invariant under time translation no matter the actual form of the particle propagator
ggp since they do not depend solely on the difference g; — g». If we consider our
application to cosmology we even do not have TTI for the free dynamics since the
Hubble expansion drains away the initial momentum of particles and we thus do not
have g; — g» &« 71 — 1. It is thus not surprising that for our system the mean density
is unaffected by interactions.
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TRANSFER FUNCTION FOR THE INITIAL POWER SPECTRUM

The initial power spectrum P;s that serves as the input parameter for the calculation of
general n-point density cumulants in any theory of structure formation must be ob-
tained by following the linear evolution of density perturbations seeded by inflation
through the radiation dominated epoch of the universe and the decoupling of matter
from radiation thereafter. Since relativistic effects are important in this case one needs
to employ numerical Boltzmann codes (cf. Bernardeau et al. [13] for references). The
principal form one finds is

Ps(k) = Ax k™ T%(k), (D.1)

where n; is the primordial spectral index, T (k) is the transfer function and A is the
amplitude. A primordial spectral index of unity corresponds to scale-independent
fluctuations in the gravitational potential as predicted by inflationary models. Recent
observations of the CMB by the Planck mission [49] have lead to n; ~ 0.96, and we
thus adopt ns; = 1 for simplicity. The transfer function is the actual result of the
numerical Boltzmann codes. A collection of transfer function fits for different dark
matter models can be found in Bardeen et al. [2], from which we take the following
fitting formula valid for the case where there is much more dark matter than baryonic
matter:

In(1 +2.34 4
T(k) = W (1 +3.897 + (16.19)% + (5.469)% + (6.71q)4> (D.2)

where the the dependence on k is contained in
B k
oo ()

Qgh? (i )

The mode k is understood to have dimensions #/Mpc in the above formula. Finally,
the amplitude A is fixed by requiring that when one evolves the initial powerspec-
trum to the present day with the linear growth factor D(t) its variance filtered on a
scale of / = 8 Mpc/h is given by

q (D.3)

1 (D(z=0)\" dk
o5 < (D(_Z)) (47) [ Gy Bl WER) (D.4)

for which the Planck mission [49] found values around og ~ 0.83. We use cg = 0.8
for simplicity. In the above formula W? (k) is the Fourier transform of some window
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function with typical length scale L. We use a top-hat filter W;(§) = ©(L — |7]) in
real space which leads to the Fourier transform

Wy (k) = 3 (sin(kL) a{g?) cos(kL)) . (D.5)




VELOCITY DISPERSION FROM INITIAL POWERSPECTRUM

We start with (4.49) and set Efi(i) =q ].(i) to find

di heh
Cpips :/(27.[)3;1213‘5(;1)

o0 2 21 1 ps(h) sin 6 cos ¢ sin 6 cos ¢
= /dh 2np /dqo /dCOS@(;T sinfsing | ® | sinfsing

0 0 -1 cos 0 cos 6
) oodh By(h) 2nd 1d ; sin® § cos? @ B 0' 2 0
_/ (27t)3./ go/ cos 0 sin” 0 sin” ¢ 0

0 0 -1 0 0 cos? 0

(E.1)

We can now use

271

27
/dqosinz(p:/dgocosz(p:n,
0 0

1 1
/dcos@ sin® 0 = /dcos@(l—cosze) :g’
-1 -1

1
2
/dcos@ cos® 0 = 3 (E.2)
-1
to find that
T P(h)y4an_ 1 dh Py(h) .
Cppp, = /dh Gf 3 B 5/ oy i B=ah (E.3)
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