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Summary 
 

The Golgi is a membranous organelle that forms a hub of the 

secretory pathway in eukaryotic cells. The materials synthesized in ER are 

transported to the Golgi where they processed further and sorted to their 

cellular destinations including endosomes, lysosomes and plasma 

membrane or secreted to the extracellular space. In lower eukaryotes the 

Golgi is found as disk-shaped cisternae, which can be combined to a 

ministack. In higher eukaryotes like mammalian cells the Golgi ministacks 

fuse with each other to form a single complex called the Golgi ribbon, 

which often localizes to the pericentrosomal area. The Golgi matrix 

proteins, the centrosome and the microtubule cytoskeleton have a critical 

role in the assembly and integrity of the Golgi ribbon and this 

pericentrosomal positioning. The ribbon organization and positioning of the 

Golgi are important in many cellular processes including cell migration, 

polarization and differentiation and subject to dynamic regulation. 

However, the molecular mechanism of dynamic regulation of the Golgi 

organization and positioning is not well understood. 

In this study we performed an RNAi screen to find new candidates 

that would enable us to understand the regulation of Golgi organization 

and positioning. The screen targeted 680 genes that encode for peripheral 

proteins. Visual analysis of the Golgi phenotypes revealed 70 genes 

whose depletion affected Golgi morphology and positioning. Depletion of 

one of the screening hits, a centrosomal protein named RPGRIP1, lead to 

an elongated and uncondensed Golgi ribbon organization. 

Characterization of RPGRIP1 revealed that RPGRIP1 depletion leads to 

decreased centrosomal nucleation of microtubules and increased 
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microtubule stability, and we showed that Golgi reorganization is due to 

this increased microtubule stabilization. High-resolution imaging revealed 

that the Golgi ribbon is bound to stable microtubule protofilaments. Our 

experiments also show that ectopic microtubule stabilization leads to a loss 

of compact organization and pericentrosomal positioning of the Golgi.  

In summary, we propose a new model in which Golgi ribbon 

organization and positioning is regulated by stable microtubules. We also 

show for the first time the role of RPGRIP1 in microtubule dynamics in 

addition to its scaffolding role in organizing the primary cilium. 
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Zusammenfassung 
 

Der Golgi ist ein membranumgebenes, zelluläres Organell das einen 

Knotenpunkt im sekretorischen Transportweg von eukaryotischen Zellen 

einnimmt. Von dem ER aus, in welchem das Material synthetisiert wird, 

erfolgt anschließend der Transport zu dem Golgi Komplex. Dort wird das 

Material weiter bearbeitet und anschließend zu den zellulären Zielorten wie 

Endosomen, Lysosomen und die Plasmamembrane transportiert oder in 

den extrazellulären Raum sekretiert. In niederen Eukaryoten existiert der 

Golgi als einzelne Membran–Zisternen, oder als Ministack aus mehereren 

Zisternen die übereinander gelagert sind. In Säugetieren dagegen 

verschmelzen die Golgi Ministacks miteinander, um einen einzigen 

Komplex, denGolgi-Apparat, auszubilden, deroft im perizentrosomalen 

Bereich der Zelle lokalisiert ist. Die Golgi Matrix Proteine, das Zentrosom 

und das Mikrotubuli-Zytoskelett haben entscheidende Rollen bei der 

Montage und der Integrität des Golgi-Apparats und dessen 

perizentrosomalen Positionierung. Die dynamische Regelung der 

Organisation und Positionierung des Golgi ist in vielen zellulären 

Prozessen, einschließlich der Zellmigration, der Polarisierung und der 

Differenzierung wichtig. Allerdings ist der molekulare Mechanismus der 

dynamischen Regelung der Golgi-Organisation und -Positionierung noch 

unklar. 

In dieser Arbeit wurde ein  RNAi-Screen durchgeführt, um neue 

Kandidaten zu finden, die die Regulierung der Golgi-Organisation und –

Positionierung beeinflussen, um diese besser zu verstehen.. Es wurden  

680 Gene, die für periphäre Membranporteine kodieren, nach deren 

„knock-down“ auf einen Effekt auf die Golgi-Organisation getestet.Nach 

visueller Analyse der Golgi- Phänotypen wurden 70 Kandidatengene 

identifiziert deren Depletion die Golgi- Morphologie und Positionierung 
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stark veränderten. Die Depletion von einem der Kandidaten, einem 

zentrosomalen Protein namens RPGRIP1, führte zu einer länglichen und 

nicht kondensierten Ausbreitung des Golgi in der Zelle Die weitere 

funktionale Charakterisierung von RPGRIP1 ergab, daß RPGRIP1-

Depletion zu einer verminderten zentrosomalen Nukleation und erhöhten 

Stabilität von Mikrotubuli führt. Außerdem konnte gezeigt werden, daß die 

beobachtete Golgi Re-Organisation aufgrund der erhöhten Stabilisierung 

von Mikrotubuli zu Stande kommt. Weitere Experimente zeigten,, daß der 

Golgi-Apparat an stabile Mikrotubuli-Protofilamenten gebunden ist und daß 

auch eine ektopische Stabilisierung von Mikrotubuli zum Verlust der 

kompakten Organisation und perizentrosomalen Positionierung des Golgi 

führen kann. eEs wird somit ein neues Modell der Regulation der Golgi-

Organisation und –Positionierung vorgeschlagen, das hauptsächlich durch 

stabile Mikrotubuli bestimmt wird. Zudem wird in dieser Arbeitzum ersten 

Mal die Rolle des Proteins RPGRIP1 in der Regulation der Mikrotubuli-

Dynamik und der Golgi-Organisation beschrieben. 
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1 Introduction 
 

 

 

1.1 The Golgi apparatus is the central organelle of secretory pathway  
 

1.1.1 The role of the Golgi apparatus in the secretory pathway 
 The Golgi apparatus is an evolutionary conserved, membrane-

bound organelle that plays a key role in the secretory pathway of all 

eukaryotic cells (Figure 1). Newly synthesized proteins that have to be 

secreted or localized along the secretory pathway are first synthesized and 

translocated into the endoplasmic reticulum (ER). The primary role of the 

ER lumen is to provide an environment that facilitates protein folding and 

this is achieved by post-translational modifications and abundant 

chaperones. Once folded, nascent proteins are packaged into COPII 

coated vesicles at specialized ER domains called ER exit sites (ERES) to 

be delivered to the Golgi complex (Barlowe, 1994). As the secretory cargo 

proteins pass through the Golgi, most proteins are subjected to post-

translational modifications such as glycosylation, phosphorylation and 

sulfation, as well as proteolytic cleavage (Mellman & Simons, 1992). These 

modifications are essential for protein folding, sorting and functioning of the 

protein. Detailed mechanism of intra-Golgi transport of cargo is not well 

understood and two main models have been proposed: cisternal 

maturation and vesicular transport. Cisternal maturation model proposes 

that the Golgi cisternae are transient compartments and move from cis to 
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trans whereas the second model proposes that cisternae are stable 

compartments and the cargo move via vesicles (Balch et al., 1984; Glick & 

Malhotra, 1998; Orci et al., 1986; Pelham, 1998; Rothman & Wieland, 

1996). The proteins transiting the Golgi are destined to different 

destinations and an important function of the Golgi is to sort proteins in 

order to deliver them to their final destinations including endosomes, 

lysosomes and plasma membrane. Unlike the ER, where different domains 

fuse to form one continuous compartment, the Golgi is composed of 

multiple, physically separated sub-compartments (Dunphy & Rothman, 

1985). This membrane-bounded sub-compartmentalization has been 

conserved during evolution and this structural organization appears to be 

critical for its function (Mollenhauer & Morré, 1991).  
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Figure 1: Scheme of secretory pathway in mammalian cells 

Proteins are synthesized in the endoplasmic reticulum and are transported to the 

Golgi apparatus. In Golgi apparatus they are post-translationally modified in a 

successive manner and sorted further to different destinations including plasma 

membrane, endosomes and lysosomes.  Figure adapted from (Xu & Esko, 2009). 
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1.1.2 Organization and Evolution of the Golgi Architecture 

 The structural unit of the Golgi complex (GC) is a disc-like 

membrane-bounded structure called Golgi cisterna. Golgi cisternae in 

lower eukaryotes are often dispersed throughout the cytoplasm and 

function independently (Preuss et al., 1992). In higher eukaryotes, 

however, they are arranged in ordered stacks of 4-8 cisternae to form a 

Golgi stack (Figure 2) (Ladinsky et al., 1999; Rambourg et al., 1996). The 

Golgi stack is polarized with a cis-side which is primarily exchanging 

proteins and lipids with the endoplasmic reticulum (ER), whereas the trans-

side is interfacing with the plasma membrane and compartments of the 

endocytic pathway (Dunphy & Rothman, 1985; Farquhar, 1985). Different 

Golgi resident enzymes that function in post-translational modification of 

the cargo protein display preferential localization to particular sub-

compartment of the Golgi stack (cis, medial or trans) and this is essential 

for sequential step-wise modification of the cargo proteins (Bard & 

Malhotra, 2006; De Matteis & Luini, 2008). In flies, plants and fungi the 

stacks are dispersed throughout the cytoplasm. In vertebrates, in contrast, 

the Golgi stacks are connected laterally by tubules to form a ribbon-like 

structure, which has a juxta-nuclear localization (Ladinsky et al., 1999; 

Rambourg & Clermont, 1990). 

 Joining the Golgi cisternae into single connected ribbon, introduces 

another level of complexity in regulation: its overall architecture and 

localization. The Golgi matrix, a detergent insoluble network of proteins, is 

thought to form the skeleton of the Golgi complex (Slusarewicz et al., 

1994). A number of components of the Golgi matrix proteins have been 

identified and localized to the cis-, medial-, and trans-cisternae of the Golgi 

ribbon (Figure 2). The core Golgi matrix proteins are represented by golgin 

and GRASP family proteins and are thought to regulate final function and 

architecture of the GC which include: vesicle tethering in anterograde and 
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retrograde trafficking in the ER-Golgi system, stacking of Golgi cisternae, 

interactions with the cytoskeleton, maintenance of structure and 

connectivity of the Golgi ribbon (Dippold et al., 2009; Gillingham & Munro, 

2003; Ramirez & Lowe, 2009; Short et al., 2002).  

 

 

         

 

Figure 2: The Golgi ministack and preferential localization of different 
Golgins 

The Golgi ministack is composed of stacked Golgi cisternae that are polarized 

into cis-Golgi, medial-Golgi and trans-Golgi. Many golgins and GRASP protein 

have been identified at the Golgi and they show preferential localization to cis-, 

medial- or trans-region. Figure adapted from (Goud & Gleeson, 2010). 

 

 Golgins are long coiled-coil proteins that form homo-dimers and 

attach to the Golgi membranes via the carboxy-terminus (Munro, 2011). 

Coiled-coil domains form long rod-like structures that can protrude to 

distally located compartments (Hayes et al., 2009; Sinka et al., 2008). 

Golgin proteins are found on the cis-face of the Golgi, around the rims of 

the stack and on the trans-face of the Golgi. Canonical cis-Golgi golgins 

include GM130, GMAP210 and Golgin-160. As the cis-Golgi is at the 

interface with the ER, cis-Golgi golgins are implicated in tethering of ER-
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derived transport vesicles to the Golgi (Cao et al., 1998; Nakamuraet al., 

1997; Rios et al., 1994; Satoh & Warren, 2008; Striegl et al., 2010) as well 

as in attaching the Golgi membranes to microtubules and the centrosome 

(Infante et al., 1999). Three golgins, namely Giantin, Golgin-84 and CASP, 

were reported to have a trans-membrane domain. They are localized on 

the rims of the Golgi stack and on COPI coated vesicles (Bascom et al., 

1999; Gillingham et al., 2002; Renna et al., 2005). Lastly, GRIP domain 

golgins (golgin-97, RanBP2α, Imh1p, andp230/golgin-245) are found 

predominantly on the trans-Golgi. RNAi studies revealed that down-

regulation of these proteins leads to Golgi fragmentation and inhibition of 

retrograde transport from endosomes to Golgi suggesting a structural and 

a trafficking role at the trans-Golgi  (Barr, 1999; Kjer-Nielsen et al., 1999; S 

Munro & Nichols, 1999) . 

 Other proteins that have important function at the Golgi are 

GRASP55 and GRASP65 (Golgi reassembly stacking proteins). GRASPs 

are membrane inserted proteins and were shown to homodimerize via the 

GRASP domain (Barr et al.,1997). This finding lead to the suggestion that 

GRASPs might be involved in stacking of the Golgi cisternae and lateral 

linking of the Golgi stacks. GRASP65 (predominantly found on the cis-

side) localization to Golgi depends on a myristoylation domain and its 

ability to bind the cis-Golgin GM130 (Dippold et al., 2009; Gillingham & 

Munro, 2003; Ramirez & Lowe, 2009; Short et al., 2005; Shorter & Warren, 

2002). GRASP55 (predominantly on the medial- to trans-side) localization 

also depends on the myristoylation domain and its ability to bind to 

med/trans Golgi proteins, including golgin-45 (Short et al., 2001) . 

 On the ultra-structural level, the precise role of the individual Golgi 

matrix components remain unclear, however, functional studies hint to the 

redundant roles of individual golgin proteins. In Drosophila, knockdown of 

dGRASP partially unlinks the Golgi whereas co-depletion of dGRASP and 
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dGM130 results in a complete loss of Golgi stacking (Kondylis et al.,, 

2005). Redundant roles of Golgi matrix proteins, namely GM130, Golgin45, 

GRASP65 and GRASP55, were also reported when assessing the relative 

contribution of golgins and GRASPs in cisternal adhesion in mammalian 

cells (Lee et al., 2014). Even though the Golgi matrix proteins are thought 

to form the ‘skeleton’ of the GC, they are not sufficient to maintain the 

Golgi ribbon organization and highly depend on the microtubule 

cytoskeleton. As both depolymerization and stabilization of the microtubule 

cytoskeleton result in loss of the Golgi ribbon organization, the dynamic 

nature of the microtubule cytoskeleton apparently holds the major key for 

the regulation of Golgi organization (Pavelka & Ellinger, 1983; Rogalski & 

Singer, 1984; Thyberg & Moskalewski, 1985; Turner & Tartakoff, 1989) 

 

1.2 Microtubules form a dynamic cytoskeleton 
 

 Microtubules are dynamic cytoskeletal structures composed of 13 

protofilaments that form the wall of the hollow tube of the microtubule. α/β-

tubulin heterodimers are the structural unit of the microtubules and by 

polymerization form protofilaments of the microtubules (Nogales et al., 

1998; Nogales et al., 2006). When bound to GDP, the tubulin dimer is in a 

bent conformation, which fits poorly into the straight wall of the 

microtubule. Exchanging GDP by GTP into its active site straightens the 

dimer and facilitates incorporation into the microtubule thus promoting 

polymerization (Figure 3) (Buey et al., 2006; Wang & Nogales, 2005). 

Dimer addition triggers the hydrolysis of GTP to GDP and enables the 

dimer to revert to a bent conformation, which highly favors the dissociation 

of GDP-tubulin and drives microtubule depolymerization (Dogterom et al., 

2005).  
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Figure 3: Dynamic instability of microtubules 

Three states of microtubule protofilaments are shown: growing, intermediate and 

shrinking state. Tubulin dimers bound to GTP drive polymerization of the 

microtubules. GTP is hydrolyzed to GDP when the dimer is incorporated into the 

protofilament. GDP hydrolysis changes the conformation of the dimer and this 

favors depolymerization of the protofilament forcing the microtubule to alternate 

between growing and shrinking phases. Figure adapted from (Akhmanova & 

Steinmetz, 2008). 
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 In vitro, microtubules alternate between growth and shrinking 

phases, a behavior referred to as dynamic instability (Mitchison et al., 

1984)(Mitchison 1984).  However, in vivo the dynamics of the microtubule 

cytoskeleton is under tight regulation. Microtubules nucleate from different 

microtubule organizing centers (MTOCs), the centrosome being the major 

one mammalian cells, and often minus-end of the microtubule 

protofilament remain anchored to the MTOC. Spatial and temporal 

coordination of microtubule-associated proteins (MAPs) and microtubule-

interacting proteins further regulate microtubule stabilization and spatial 

organization of microtubules thus generating different pools of 

microtubules. Early comparative studies on biochemical properties of 

dynamic and long-lived, stable pools of microtubules revealed distinct post-

translational modifications (PTMs). Stable microtubules preferentially 

accumulate PTMs including acetylation (at lysine-40 residue of alpha-

tubulin), de-tyrosination (removal of C-terminal tyrosine) and 

polyglutamylation (at gulatamate residue near the C-terminus) and confer 

novel functions to microtubules  (Bulinski et al., 1991; Schulze et al., 1987; 

Webster et al., 1989). Indeed, differential regulation of microtubules and 

subsequent changes in physical and biochemical properties are found to 

be critical for fundamental processes including mitosis, cell division and 

differentiation, intracellular transport, cell motility and polarization 

(Westermann et al., 2003).  

 

1.2.1 Different mechanisms of microtubule dynamics regulation 

 MAPs modulate microtubule dynamics in diverse ways including 

stabilization and destabilization of the microtubule lattice, sequestering of 

free tubulin and stabilization or destabilization of the ends of microtubules 

(Akhmanova et al., 2008). The roles of microtubule lattice stabilizing MAPs 
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are evident and commonly studied in neuronal cells. Malfunctioning of 

MAPs in neurons have been linked to many neurodegenerative disorders 

including Parkinson’s disease, Huntington’s disease and Alzheimer’s 

disease. Tau proteins, often mutated in neurodegenerative diseases, 

reduce microtubule dynamics by stabilizing the microtubule lattice (Drubin 

et al., 1986). Overexpression of tau proteins induce microtubule bundling, 

indicating that they can also cross-link parallel microtubules (Kanai et al., 

1989). Similar stabilizing roles have been attributed to other MAPs such as 

MAP2 and MAP4, which are generally expressed in neuronal and non-

neuronal tissues, respectively (Dehmelt et al., 2004). 

 Microtubule severing factors employ various mechanisms to 

destabilize microtubules. Katanin is a microtubule severing protein that 

localizes to the centrosome (Gee et al., 1997). It has been demonstrated 

that katanin is responsible for the majority of M-phase severing activity in 

Xenopus eggs (McNally et al., 1996), and that it is essential for releasing 

microtubules from the neuronal centrosome. On the other hand, MT 

destabilizing factors, such as stathmins induce microtubule catastrophe 

events by sequestering tubulin heterodimers (Howell et al., 1999).  

 Microtubules can grow and shrink via their minus- or plus-ends in 

vitro. However, in vivo minus-ends of microtubules are often anchored and 

stabilized. Therefore, the plus-end of the microtubule is the important site 

that determines the fate of the microtubule in cells. Plus-end tracking 

proteins (+TIP) are specialized MAPs that are conserved in all eukaryotes 

and specifically accumulate at growing microtubule plus ends (Schuyler et 

al., 2001).   
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1.2.2 Regulation of microtubule dynamics by +TIP network 

 MT plus-end-tracking proteins (+TIPs) constitute a structurally 

diverse group of MAPs (Figure 4). By binding to the MT ends, +TIPs can 

modulate the MT’s structure and accessibility for interaction with other 

proteins and thus can transmit antagonistic effects on microtubule 

dynamics (Akhmanova et al., 2008). The main mammalian +TIPs can be 

grouped into three subgroups according to their plus-end targeting 

domains. 

 

             

 

Figure 4: Microtubule +TIP network. 

Dynamic interactions between main components of microtubule +TIP network are 

schematically shown. Solid and dashed lines represent inter-molecular and intra-

molecular interactions, respectively. EB1 directly interacts many proteins of the 

network and plays a key role in regulation of the microtubule dynamics. Figure 

adapted from (Akhmanova et al., 2008). 
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 End-binding (EB) proteins are characterized by a conserved N-

terminal microtubule targeting domain and a C-terminal oligomerization 

domain (Lansbergen et al., 2006). End-binding protein 1 (EB1) stabilizes 

microtubules by localizing to the plus-tip and facilitating cortical capture of 

the microtubules. EB1, together with adenomatous polyposis coli (APC), at 

the cell cortex binds to mDia1, a downstream component of the Rho 

signaling, and suppresses microtubule catastrophe events and leads to 

microtubule stabilization (Lansbergen et al., 2006; Wen et al., 2004). 

Indeed, depletion or over-expression of EB1 leads to loss or increase of 

the stable pool of microtubules, respectively (Wen et al., 2004).  

 The members of the CLIP family act as rescue factors that help to 

convert shrinking microtubules into growing ones (Komarova et al.,2002). 

CLIP170 supports microtubule stabilization by forming a tripartite complex 

with Rac1 and IQGAP1 in response to Cdc42 signaling. IQGAP1 localizes 

to cell-to-cell contact sites and at the leading edge and by interacting with 

CLIP170 retains microtubule growing-ends at the cell cortex (Galjart, 

2005). There are also evidences that CLIP family members can interact 

with the dynein-dynactin complex at the cell cortex and contribute to 

microtubule stabilization (Lansbergen et al., 2004).  

 Other important +TIP network components including above 

mentioned APC, microtubule-actin cross-linking family 7 (MACF) and 

CLIP-associating proteins (CLASPs) contain extensive stretches of basic 

and Serin residues. Similar to CLIPs, this group of proteins also retain 

microtubule plus ends in the peripheral cortical region, where microtubules 

are pausing or alternate between short polymerization/depolymerization 

phases (Drabek et al., 2006; Lansbergen et al., 2006; Mimori-Kiyosue et 

al., 2005; Wu et al., 2008). Overexpression of CLASP1 and CLASP2 lead 

to accumulation of EB1 along the MTs (Mimori-Kiyosue et al., 2005) 

suggesting a downstream pathway that involves EB1 mediated 
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stabilization. CLASPs are also involved in maintenance of perinuclear 

microtubule stabilization by anchoring MTs at the Golgi (Efimov et al., 

2007).  

 These comprehensive networks of MAPs at the microtubule lattice 

and plus-ends in addition to dynamic instability of microtubules enable fast 

and fine modulation of microtubule dynamics. The microtubule 

cytoskeleton adapts quickly to various extracellular and intracellular stimuli 

and it has an essential role in the organization and positioning of the Golgi 

In the following, different existing models will be discussed on how 

microtubules regulate Golgi organization. 

 

1.3 Existing models of Golgi ribbon positioning 

  

 The Golgi ribbon organization and localization is dynamically 

regulated despite its complex organization. In certain processes the Golgi 

is subject to dramatic changes and acquires various morphologies. In cell 

division the Golgi goes through extensive fragmentation and – depending 

on the proposed model - (at least some of) the Golgi localized proteins are 

recycled to the ER. However, upon mitotic exit with the resumption of 

secretion from the ER, the Golgi vesicles assemble into ministacks 

throughout the cell and subsequently fuse to form the Golgi ribbon (Bevis 

et al., 2002; Miles et al., 2001; Pelletier et al., 2002; Ward et al., 2001; Zaal 

et al., 1999). Furthermore, the canonical Golgi ribbon organization is also 

lost during muscle cell differentiation where one subset of Golgi 

membranes relocates to the nuclear envelope and the other subset lose 

perinuclear localization (Lu et al., 2001). This organization was shown to 

be important to organize the microtubule network as the Golgi acts as a 

MTOC (Oddoux et al., 2013). In addition, the Golgi ribbon fragments and 
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reassembles during its dynamic polarization in cell migration and inhibition 

of fragmentation was reported to interfere with polarization (Bisel et al., 

2008). During neuronal differentiation, one of the neurite outgrowth 

branches becomes an axon and the Golgi is preferentially found at the 

base of axons in neurons. The Golgi relocation to neurite outgrowth site 

was reported to precede and define axon formation (de Anda et al., 2005; 

Zmuda et al., 1998). These observations highlight the dynamic nature of 

the GC, which exists despite its complex architecture and is apparently 

controlled by tight regulatory elements controlling both the short-term and 

long-term GC organization. 

 The Golgi targeted vesicles are formed throughout the cell including 

the ER, at endosomes and lysosomes and even at areas close to the 

plasma membrane. Centripetal movement of Golgi targeted vesicles is well 

characterized and is thought to be a dynein mediated process (Harada et 

al., 1998; Roghi & Allan, 1999; Vaisberg et al., 1996). In agreement, 

inhibition of dynein (the major microtubule minus-end targeted motor 

protein) by RNAi or by overexpression of the p50 subunit, or treatment of 

cells with various microtubule network disrupting drugs lead to extensive 

fragmentation of the Golgi apparatus (Echeverri et al., 1996; Presley et al., 

1997). Besides being implicated in Golgi ribbon maintenance, the golgin 

proteins are also accepted to contribute to Golgi positioning. GMAP210 

and Golgin-160 are cis-Golgi protein and each is required for minus-end 

movement (Ríos et al., 2004; Yadav et al., 2009). However, once Golgi 

membranes accumulate in the pericentrosomal area, it’s not clear how the 

Golgi maintains its pericentrosomal localization. The positioning of the 

Golgi apparatus has been largely attributed to cell cytoskeleton and motor 

proteins. Depending on the cellular model, either microtubules or actin 

filaments have the greater influence, whereas the impact of intermediate 
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filaments is very limited (Gao & Sztul, 2001; Gao et al.,  2002; Toivola et 

al., 2005).  

 

1.3.1 Regulation of Golgi positioning by the actin cytoskeleton 

 The actin cytoskeleton has an established role in organization and 

regulation of the secretory pathway (Lanzetti, 2007). In addition, 

perturbations of the actin cytoskeleton were reported to give rise to 

alterations in Golgi architecture. Interference of actin cytoskeleton 

dynamics using depolymerizing actin toxins (cytochalasin D, latrunculin B, 

mycalolide B) or stabilizing drug (jasplakinolide) invariably leads to 

compaction of the Golgi complex at the centrosomal area (Babiá et al., 

1999; Valderrama et al., 1998, 2001). These observations later lead to 

studies that revealed a whole machinery of actin cytoskeleton regulators at 

the Golgi membranes. The mammalian Golgi hosts dozens of actin 

filaments components, effectors and regulators which are in turn involved 

in vesicle transport (beta/gamma-actin, short actin filaments, Syne 1B, 

Tropomyosin isoform Tm5NM-2, Drebrin, Syndapins, Dynamin2, mAbp1, 

Cdc42, Coronin 7, TC10), cell polarity (Scar2, Arp2/3, 

Cdc42/Par6/alphaPKC, LIMK1) and the maintenance and positioning of 

the Golgi (Ankyrins, Spectrin beta III, ARP1, WHAMM, MACF1b, 

Scar2/Arp2/3, AKAP350, conventional and unconventional myosin (Egea 

et al., 2006; Ikonen et al., 1997; Montes de Oca et al., 1997). Interestingly, 

depletion or constitutive activation of actin nucleators like the formin family 

member mDia (mammalian Diaphanus) or the formin-like 1/FMNL1 and 

INF2 results in Golgi ribbon fragmentation, indicating an important role 

actin of dynamics in regulation of Golgi ribbon positioning (Colón-Franco et 

al., 2011; Zilberman et al., 2011). Another important component of the 

actin machinery at the Golgi are spectrins, which commonly assemble into 
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planar cytoskeletal sheets composed of spectrin molecules cross-linked by 

short actin filaments and were originally found to provide flat shape in 

erythrocytes (Beck, 2005; Bennett & Chen, 2001). Later, certain variants of 

spectrin, spectrin beta III, and Syne-1 were shown to localize to the Golgi 

and to form a skeleton stabilized by actin filaments that binds to the Golgi 

surface via peripheral proteins, ankyrins, thus forming stable cytoskeletal 

structure (Gough et al., 2003; Holleran et al., 2001, Stankewich et al.,  

2001). The spectrin-ankyrin based skeleton was implicated in flat 

organization of the Golgi cisternae. These observations indicate that ribbon 

deformations of the Golgi most probably are consequences of 

ultrastructural defects. Consistently, electron microscopy analysis of the 

Golgi phenotypes upon treatment with actin toxins revealed deformation in 

cisternal stacking (Egea et al., 2006). However, the active role of the actin 

cytoskeleton in dynamic ribbon organization of the Golgi and positioning 

needs to be investigated further. 

 

1.3.2 Regulation of Golgi positioning by the centrosome 

 The partnership between the Golgi apparatus and the centrosome, a 

major microtubule organizing center (MTOC) in cells, is very well studied. 

In interphase cells, the Golgi and the centrosome are often found in close 

spatial proximity and this relationship is important for cell polarization, as 

well as a prerequisite for cell migration (Sütterlin & Colanzi, 2010). 

Interestingly, certain proteins were shown to localize to both the 

centrosome and the Golgi apparatus. These proteins with dual localization 

then lead to speculations about existence of direct linkers between the two 

organelles. AKAP450 is a large coiled-coil domain containing protein that 

can localize to both the centrosome and the Golgi via two distinct domains 

(Shanks et al., 2002; Larocca, et al., 2002). As the centrosome targeting 
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(C-terminus) and the Golgi targeting domains (N-terminus) of AKAP450 

were found on two different termini of the coiled-coil domain, it was 

suggested that AKAP450 might play an anchoring role for Golgi 

membranes to the centrosome. Indeed, the expression of the Golgi 

targeting domain alone resulted in loss of pericentrosomal localization of 

the GC (Hurtado et al., 2011).  

 A similar bridging function was attributed to GMAP210, a golgin 

protein localized preferentially on the cis-Golgi. GMAP210 was shown to 

bind to the Golgi via its N-terminus while its C-terminus can bind to the 

minus-ends of the microtubules, which are often anchored to the 

centrosome (Infante et al., 1999). Additionally, GMAP210 can also bind to 

gamma-tubulin, which interacts with pericentriolar material (Ríos et al., 

2004). Active involvement of GMAP210 in maintenance of the GA 

pericentrosomal localization was proven by ectopically targeting GMAP210 

to mitochondria that lead to clustering of mitochondria around the 

centrosome (Rios et al., 2004). The discovery of several other proteins, 

such as TBCCD1 and Hook3, that exhibit dual localization and whose 

depletion showed detachment of the Golgi from the centrosome, indicated 

that these linker proteins function in redundant pathways. Yet the 

contribution of each proteins is nevertheless required for GC 

pericentrosomal positioning (Gonçalves et al., 2010; Walenta et al., 2001).  

 

1.3.3 Regulation of Golgi positioning by the concerted effort of 

centrosomal and Golgi derived microtubules 
 In a recent study it was suggested that the Golgi complex depends 

on the centrosome only during early Golgi biogenesis:  laser ablation of the 

centrosome did not have any effect on maintenance and function of the 

already-assembled Golgi complex, MT array organization, cell polarization 
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and motility (Vinogradova et al., 2012). However, when the Golgi is 

assembled in the absence of the centrosome the cell is incapable of 

polarized cell migration (Vinogradova et al., 2012). Additionally, the Golgi 

was shown to nucleate a subset of microtubules in a CLASP-dependent 

manner and are also required for proper Golgi ribbon assembly and 

continuity (Miller et al., 2009). The absence of Golgi-derived MTs lead to 

the formation of a circular Golgi ribbon whereas in their presence the Golgi 

displayed a rather tangential oval Golgi organization (Miller et al., 2009). 

These results lead to a two stage model of Golgi ribbon assembly where in 

the first stage (also called g-stage), the Golgi membranes self-assemble 

peripherally via Golgi derived CLASP dependent microtubules and in a 

second stage (also called c-stage) the assembled Golgi membranes move 

to the center via centrosomal microtubules. It is thought that the main role 

of Golgi derived microtubules is to pre-merge Golgi ministacks that are 

captured more easily by centrosomal microtubules. Thus, Golgi nucleated 

microtubules cluster the Golgi stacks and contribute to the ribbon integrity 

whereas centrosomal microtubules provide spatial cues only early during 

biogenesis. Once the Golgi ribbon is formed, the function of centrosome 

for Golgi ribbon maintenance and polarization is dispensable (Miller et al., 

2009).  

 

1.3.4 Regulation of Golgi positioning by stable microtubules 

 Even though the Golgi positioning is maintained upon centrosome 

ablation, microtubule depolymerization by treatment with nocodazole leads 

to extensive Golgi fragmentation (Sandoval et al., 1984). This indicates 

that the major function of the centrosome for Golgi biogenesis would be to 

provide spatial cues for Golgi ribbon formation by generating a radial array 

of microtubules. Upon nocodazole washout, peripheral Golgi fragments 
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move along the radial of microtubules towards the center and display high 

colocalization with the stable pool of microtubules (Kreis, 1987; Marsh et 

al., 2004; Skoufias et al., 1990; Thyberg & Moskalewski, 1989). 

Interestingly, the pericentrosomal accumulation of the Golgi membranes 

precedes microtubule de-tyrosination, suggesting that the Golgi might 

induce MT stabilization upon fragment centralization (Skoufias et al., 1990; 

Kreis, 1987). Golgi nucleated microtubules go through early stabilization 

and are γ-tubulin dependent (Chabin-Brion et al., 2001). In several studies 

it was reported that stable microtubules might be important for the 

maintenance of the Golgi structure and its localization (Cao et al., 1998; 

Nakamura et al., 1997; Rios et al., 1994; Satoh & Warren, 2008; Striegl et 

al., 2010). Indeed it was found that the loss of the stable pool of 

microtubules resulted in fragmentation and loss of pericentrosomal 

localization of the Golgi apparatus (Koegler et al., 2010; Ryan et al., 2012). 

CLASP and GMAP210 were shown to have a dual binding role between 

Golgi and MTs and could function as linker between these two 

compartments. Functional studies using RNAi correlated the loss of stable 

microtubules and concomitant fragmentation of the Golgi apparatus. 

CAP350, like AKAP450, possesses dual binding ability to both 

pericentrosomal microtubules and the GA. Depletion of CAP350 leads to 

loss of stable microtubules and thus leads to Golgi fragmentation 

(Hoppeler-Lebel et al., 2007). It was suggested that CAP350 accumulates 

at microtubule minus ends and maintains a pericentrosomal stable subset 

of microtubules (Hoppeler-Lebel et al., 2007). This pool was found to play 

a role in maintenance and integrity of the Golgi (Hoppeler-Lebel et al., 

2007). Dystonin-a2 isoform, a nuclear membrane protein, mediates 

perinuclear MT stability by interacting with MAP1B. Loss of MT stability 

and acetylation lead to a fragmentation of the Golgi. Rescue of the MT 

acetylation by Trichostatin A (TSA), a drug that inhibits a major microtubule 
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deacetylase Histone deacetylase 6, or by overexpression of MAP1B 

rescued the Golgi ribbon organization as well (Ryan et al., 2012). These 

high associations suggest that stable microtubules could enforce ribbon 

formation by providing stable tracks for Golgi membranes and facilitate 

efficient merging of ministacks. Additionally, as stable microtubules 

locations in the cell dynamically change in response to various processes, 

such as cell polarization, it could provide a consistent mechanism for 

regulation of Golgi localization. Indeed, stabilization of the microtubules by 

Taxol, leads to relocation of the Golgi membranes to the periphery (Rios et 

al., 2004).  
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2 Aim of Study 
 

 Given the increasing number of factors implicated in organization of 

the Golgi, it is still unclear how its organization and pericentrosomal 

positioning are regulated. The questions that need to be addressed include 

whether pericentrosomal localization of the Golgi membranes is 

maintained by anchoring to the centrosome or by continuous accumulation 

of Golgi material that is achieved by the growing and shrinking of 

microtubules? Then how do the changes in microtubule dynamics affect 

the Golgi organization? Is it due to subsequent accumulation of PTMs on 

the microtubules and the resulting change in biochemical properties? As 

the Golgi membranes do not just accumulate in pericentrosomal area, but 

rather assemble into one unified and polarized structure, it’s also important 

to elucidate the composition and the nature of the Golgi ribbon ‘skeleton’. 

 

 In order to identify new regulators of Golgi ribbon organization and 

answer the posed questions, the specific objectives of this thesis were: 

 

i. Identify new genes by siRNA-mediated screening which influence 

Golgi organization and positioning in mammalian cells 

ii. Characterize the molecular function of the obtained candidate(s) 

iii. Integrate the findings with the known components (cytoskeleton, 

centrosome) regulating Golgi organization 
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3 Results 
 

3.1 RNAi screen to identify novel regulators of the Golgi complex 
 

 To identify novel regulators of the Golgi organization and positioning, 

siRNA screen was performed. The RNAi library was designed in the 

Pepperkok Group (by Vibor Laketa) and targeted 680 peripheral 

membrane proteins that possess PH, PX, C1, C2, FYVE, ENTH, ANTH, 

BAR, FERM or PDZ domains (Staehelin et al., 2008). Images of Hela cells 

stably expressing a GFP-tagged Golgi marker (GalNAc-T2 or GalT) after 

RNAi transfection had also been already acquired (Christian Schuberth; 

see Methods for details of the screening).  

 Manual quantification of these images acquired after 72h of RNAi 

transfection revealed various Golgi phenotypes (Figure 5). In total 4 

images, resulting from 2 siRNA treatments, were analyzed per gene and 

each image was scored as following: 0 – if <10%; 0.5 – if 10%-30%; and 1 

– if >30% of the cells possessed Golgi with abnormal phenotypes. An 

overall gene score was calculated by summing up the scores of the 

individual images and genes with 3 or higher score were classified as 

candidate hits. The quantification revealed 70 genes (Supplementary 

Table 1) as potential Golgi regulators, most of which were previously 

implicated in the context of membrane trafficking, lipid signaling and cell-

to-cell and/or cell-to-matrix interactions before (Supplementary Table 1).  

3.2 RPGRIP1 depletion leads to Golgi ribbon reorganization 
 

 Among the 70 candidate hits, we found a centrosomal protein 

RPGRIP1 that upon siRNA-mediated depletion leads to an uncondensed 
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and extended Golgi organization (32% increased in Golgi area) (Figure 6A, 

C) as compared to control treatment at the light microscopy level with no 

significant effect on Golgi fragmentation (Figure 6B). Immunostaining for 

Golgi matrix components, GM130, Giantin and Golgin84 upon RPGRIP1 

depletion showed co-localization of these markers along the extended 

stretches of the ribbon, indicating that morphological changes are due to 

the ribbon reorganization and were not a GalNAc-T2 or GalT specific re-

localization (Figure 6A). Consistently, an ultra-structural analysis of the 

Golgi organization by correlative light-electron microscopy (CLEM) 

revealed Golgi stacks in extended arms of the Golgi with no significant 

stacking defect (Figure 7).  

 In earlier studies, RPGRIP1 was attributed a scaffolding role in 

centrosome and in primary cilium organization of ciliated cells (Roepman 

et al., 2005). In a recent report, increased microtubule acetylation was 

observed in retina of Rpgrip1 deficient mice (Patil et al., 2012). Mass-spec 

analysis with RPGRIP1 showed interaction with IQGAP1, a potent 

microtubule stabilizing protein at the cell cortex, and many tubulin isoforms 

(Coene et al., 2011). In fractionation studies, RPGRIP1 was found 

predominantly in the cytoskeletal fraction of wild-type mice (Patil et al., 

2012). These accumulating observations about RPGRIP1 suggest that it 

might also have a function in regulation of microtubule dynamics in 

addition to a scaffolding role in the centrosome. In this study, in RNAi 

screen we found that RPGRIP1 depletion leads to loss of compact, 

pericentrosomal Golgi positioning and shape of the Golgi ribbon acquires 

elongated, uncondensed architecture (Figure 6A). To our knowledge, 

RPGRIP1 had previously never been linked to the secretory pathway. So 

far mainly the centrosome and the microtubule cytoskeleton have been 

implicated in the Golgi positioning. As RPGRIP1 is a centrosomal protein 

with possible function in microtubule dynamics with effects on the Golgi 
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positioning and architecture, it was a good candidate to investigate in 

detail. To elucidate how RPGRIP1 depletion is leading to an elongated 

Golgi ribbon we set out to characterize the cellular function of the protein. 

As earlier studies focusing on the role of RPGRIP1 in cultured cells were 

carried in RPE1 cells and RPGRIP1 depletion also shows Golgi 

reorganization upon RPGRIP1 depletion in RPE1 cells, we decided to use 

both Hela and RPE1 cell lines for our further experiments. 

3.3 Isoform specific expression of RPGRIP1 

3.3.1 Organization and Localization of RPGRIP1 isoforms 
 

 The RPGRIP1 locus contains 25 exons and transcripts undergo 

extensive alternative splicing. The NCBI gene database lists 7 predicted 

isoforms and 9 isoforms submitted from different studies for the RPGRIP1 

locus [http://www.ncbi.nlm.nih.gov/gene/57096]. The most studied longest 

isoform has N-terminal coiled-coil, tandem C2 domains in the middle and 

C-terminal RPGR interacting domain (Figure 8A). C2 domains, encoded by 

exons 14-16, were shown to be important for its scaffolding function 

(Roepman et al., 2005) however some isoforms do not possess this 

domain (Figure 8B, 8C). In addition, RPGRIP1 isoforms display species 

specific and tissue specific expression however no isoform specific 

function has been reported (Schu et al., 2005, Lu et al., 2005, Koenekoop 

et al., 2005).  

 

Table 1: Grouping of RPGRIP1 isoforms 

Group&name& Isoforms&

RPGRIP16FL& NM_020366.3)

AJ417067)
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RPGRIP16E10& XM_006720208.1)

XM_005267879.1))

XM_005267879.1)

AF260257)

RPGRIP16E12& XM_005267881.1)

AF227257)

RPGRIP16E14& AF265666)

AF265667)

BX571740)

RPGRIP16NoC2& XM_006720209.1)

AK301780)

BC039089)

RPGRIP16E15& )

XM_006720210.1)

 

  To check for isoform specific localization that can provide a hint for 

isoform specific functions, we first grouped isoforms into 6 groups 

according to similarity of their exon organization and gave simplified 

names as indicated in Table 1. Then we cloned one construct from each 

group into GFP vector and expressed RPE1 cells. Except for the longest 

isoform, RPGRIP1-FL, all other isoforms displayed cytoplasmic, nuclear or 

both localizations (Figure 9). RPGRIP1-FL isoform showed cytoplasmic 

and punctuate localization throughout the cell. As we couldn’t observe the 

previously reported centrosomal localization, we tagged the RPGRIP1-FL 

isoform with smaller epitope tags than GFP, i.e. myc and flag and 

observed mild accumulation in the centrosomal area (Figure 10). However, 

this was not observed in all transfected cells. As RPGRIP1 localization was 

claimed to be cell type dependent (Lu et al.,2005), we expressed the 

RPGRIP1-FL in ARPE19 cells and observed clear centrosomal staining 
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(Figure 11). From this we concluded that the RPGRIP1-FL does localize to 

the centrosome however its enrichment at the centrosome is cell type 

dependent and sensitive to protein tags. The localizations of other isoforms 

need to be tested again in ARPE19 cells and preferentially with smaller 

tags to be conclusive. 

 

3.3.2 70kDa RPGRIP1 isoform is expressed in RPE1 
 

 To find which isoform(s) is/(are) expressed in RPE1 and Hela cells, 

we treated cells with anti-RPGRIP1 siRNAs and performed western blot 

with rabbit polyclonal anti-RPGRIP1 antibody (abRPGRIP1, see Methods 

for details) raised against ‘BC039089.1’ isoform which has 70kDa size. All 

3 siRNAs against RPGRIP1 depleted the 70kDa band in RPE1 cells with 

strongest depletion using siRPGRIP1_5, which was then used in our 

further experiments (Figure 12). There are several other isoforms, both 

predicted (XM_006720209) and reported (AF265666, AF265667, 

AK301780) with an approximate size of 70kDa.  A similar sized band was 

observed with abRPGRIP1 antibody in Hela and ARPE19 cells, where 

RPGRIP1 was claimed to be expressed in other studies (Shu et al, 2005). 

However, no depletion was detected with 3 different siRNAs against 

RPGRIP1 (Figure 13A). It’s possible that isoforms in Hela and APRE19 

cells are not recognized by abRPGRIP1 antibody. So we generated 

anoather polyclonal antibody against RPGRIP1 (gs-abRPGRIP1) and this 

antibody recognized several bands. However, none of the bands displayed 

significant decrease in response to 3 different siRNAs against RPGRIP1 in 

Hela and ARPE19, suggesting that this antibody was not specific (Figure 

13B). So we conclude that 70kDa is expressed in RPE1 cells however in 

Hela and ARPE19 cells it still needs to be investigated to identify which 
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isoforms are expressed. We also currently don’t know which of the 70kDa 

isoforms is expressed in RPE1 and where it localizes. As the 

overexpression of RPGRIP1 constructs often lead to cell death, we 

decided to concentrate in the following work on characterizing the loss of 

RPGRIP1 function. 
 

3.4 RPGRIP1 depletion leads to increased microtubule stabilization 
 

3.4.1 RPGRIP1 depletion reduces microtubule nucleation and amount 
of polymerized tubulin 
 
 As mentioned in the Introduction (Section 1.3.2) some centrosomal 

proteins are implicated in pericentrosomal localization of the Golgi 

membranes by interacting with the Golgi matrix proteins. To find out how 

RPGRIP1 depletion is leading to the loss of compact pericentrosomal 

positioning of the Golgi, we hypothesized that RPGRIP1 might bind to 

Golgi membranes peripherally via its C2 domain. A structural modeling 

study of the RPGRIP1 C2 domain suggested that it would function in a 

calcium independent manner (Roepman et al., 2005). To test whether the 

RPGRIP1 C2 domain would bind to Golgi membranes, we cloned it into a 

mammalian RFP expression vector and expressed it in Hela cells. The 

sequence of the RPGRIP1 C2 domain was taken from another study  

(Roepman et al., 2005). However, the RPGRIP1 C2 domains displayed 

cytoplasmic and nuclear localization with no particular enrichment to any 

membranous compartment (Figure 14A, 14B). RPGRIP1 paralog 

RPGRIP1L that shows 29% amino acid identity in sequence also has C2 

domains where sequence similarity is highest (52% identity)  (Arts et al., 

2007). Expression of RPGRIP1L C2 domain also displayed cytoplasmic 
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and nuclear localization similar to RPGRIP1 C2 domain (Figure 14C). The 

sequence of the RPGRIP1L C2 domain was taken from another study 

(Roepman et al., 2005). As the full-length construct also did not show Golgi 

localization, we concluded that RPGRIP1 probably does not have 

centrosome bridging function in Golgi positioning. 

 Next we hypothesized that the Golgi uncondensation upon 

RPGRIP1 depletion might be due to defects in centrosome organization 

and/or function. However, we could not detect any difference in 

organization of the centrosome both in Hela and RPE1 cells as seen by 

immunostaining and quantification of protein amount (as inferred from 

intensity) for two centrosome components after RPGRIP1 depletion: 

pericentrin and gamma-Tubulin and by number of centrosomal foci per 

cell, suggesting a rather minor role of RPGRIP1 in centrosome 

organization (Figure 15). 

 As the centrosome functions as a major microtubule-organizing 

center (MTOC) in mammalian cells, we asked whether microtubule 

nucleation was affected. To address this we treated Hela cells with siRNAs 

against RPGRIP1 for 72h and cooled the cells on ice for 1h to 

depolymerize microtubules. Then cells were warmed to 37°C and fixed 

after 0, 45 or 90 seconds. After immunostaining for tubulin and EB1, we 

classified cells into one of three classes depending on the nucleation 

stage: ‘No Growth’, ‘Moderate Growth’ and ‘Extensive Growth’ (Figure 

16A). Depletion of CLASP lead to increased fraction of cells with 

‘Extensive Growth’ after 45 and 90 seconds in consistent with reports 

where CLASP depletion lead fast microtubule growth (Mimori-Kiyosue et 

al., 2005) (Figure 16B). In contrary, depletion of RPGRIP1 lead to 

increased fraction of cells with ‘No Growth’ after 45 and 90 seconds 

suggesting that microtubule nucleation from centrosome is delayed upon 

RPGRIP1 depletion (Figure 16B). Then we asked if delayed microtubule 
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nucleation from the centrosome affects the amount of polymerized tubulin. 

Hela cells were treated with control and anti-RPGRIP1 siRNA and 

immunostained for polymerized tubulin after methanol fixation. 

Quantification of the polymerized tubulin upon RGPRIP1 depletion also 

revealed decreased amount of polymerized microtubules, however no 

major alterations in overall organization of microtubules were observed 

(Figure 17). Thus, we conclude that RPGRIP1 might regulate the 

microtubule nucleation capacity of the centrosome and could be involved 

in regulation of the microtubule cytoskeleton. 

 

3.4.2 RPGRIP1 depletion leads to increased microtubule acetylation 
 

 As microtubule cytoskeleton acts as a substrate for various motor 

proteins, amount of polymerized tubulin is critical in many cellular 

processes including membrane trafficking, mitosis and cell migration. Many 

factors have been implicated in regulation of the microtubule dynamics that 

ultimately lead to stabilization or destabilization of the microtubule 

protofilament (Section 1.2.1). As we observed decreased amount of 

polymerized microtubules, we decided to measure how stability of these 

decreased pool of microtubules has changed upon RPGRIP1 depletion. 

Many reports have shown positive correlation between microtubule stability 

and its acetylation level (Piperno et al., 1987). Thus we also first measured 

microtubule acetylation level to infer about microtubule stabilization 

change. To test for microtubule acetylation change upon RPGRIP1 

depletion, Hela and RPE1 cells were treated with anti-RPGRIP1 siRNA for 

72h and analyzed both by immunofluorescence and western blot against 

acetylated tubulin. Our quantification of western blot results revealed 1.86 

and 1.77 times increase in acetylated microtubules in Hela and RPE1 cells 
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respectively (Figure 18). This is consistent with a recent report where 

increased microtubule acetylation in the cell body was observed in retinal 

tissues of mice with Rpgrip1 -/- genotype (Patil et al., 2012). RPGRIP1 and 

RPGRIP1L have overlapping functions in primary cilium maintenance  

(Coene et al., 2011), however we didn’t see any change in microtubule 

acetylation upon RPGRIP1L depletion (Figure 19).  

 Besides increased microtubule stabilization, increased activity of 

microtubule acetyltransferases, enzymes that acetylate microtubules, or 

decreased activity of microtubule deacetylases could also lead to 

increased microtubule acetylation (Akella et al., 2010; Hubbert et al., 

2002). To rule out the possibility of increased activity of microtubule 

acetyltransferases we decided to measure kinetics of microtubule 

acetylation upon RPGRIP1 depletion. To measure microtubule acetylation, 

we treated cells with siRNAs for 72h and monitored the amount of 

acetylated microtubules at various time points after adding the drug 

Trichostatin A (TSA). TSA blocks the activity of the major microtubule 

deacetylase HDAC6 and rules out microtubule deacetylation reaction thus 

our measurements will directly show the kinetics of microtubule acetylation 

(Hubbert et al., 2002). We tested several TSA concentrations and different 

time points and found that 1µM TSA concentration is sufficient to 

completely block HDAC6 activity (Figure 20A) and fastest microtubule 

acetylation occurs within 5h of TSA administrations (Figure 20B). 

Quantification of acetylated microtubules by western blot at various time 

points revealed no significant change in kinetics of microtubule acetylation 

upon RPGRIP1 depletion but it was strongly reduced upon ATAT1 

depletion, a major microtubule acetyltransferase (Figure 20C) (Akella et 

al., 2010).  Next to rule out possibility of decreased microtubule 

deacetylation reaction upon RPGRIP1 depletion, we treated cells with anti-

RPGRIP1 siRNA for 72h and TSA for 24h. Treatment of cells with TSA for 
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24h blocks the activity of HDAC6 and cells become saturated with 

acetylated microtubules. Then we washed away TSA and measured 

amount of acetylated microtubules at various time points by western blot. 

Our quantification of acetylated tubulin revealed fast deacetylation reaction 

(almost instant) in control and siRPGRIP1 treated cells but it was 

dramatically reduced upon HDAC6 depletion control (Figure 20D). Thus, 

we concluded that increased microtubule acetylation upon RPGRIP1 

depletion is not due to change in activity of enzymes responsible for 

microtubule deacetylation or acetylation and most probably increased 

acetylation of microtubules is due increased microtubule stabilization. 

 

3.4.3 RPGRIP1 depletion leads to increased microtubule stabilization 
 

 The acetylation level of microtubules correlates with the stable 

nature of the microtubules; however, it does not per se confer stability 

(Zilberman et al., 2009). Thus, to test if increased acetylated microtubules 

represent increased microtubule stabilization directly, RPGRIP1 depleted 

cells were treated with the microtubule depolymerizing drug nocodazole, 

and fixed after 0, 8, 20 minutes. Cells were stained for tubulin and the 

amount of polymerized tubulin after drug treatment was measured (See 

Methods for details of quantification). Consistent with the acetylation 

marker, microtubules in RPGRIP1 depleted cells were more resistant to 

nocodazole (Figure 21) and lead to increased microtubule stabilization. On 

the contrary, CLASP was shown to stabilize microtubules and its depletion 

removed the nocodazole resistant pool of microtubules, consistent with 

previously reported data (Figure 21) (Mimori-Kiyosue et al., 2005). This 

indicates that RPGRIP1 might have a more general function in the 

regulation of microtubule dynamics. 
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3.4.4 RPGRIP1 depletion leads to inefficient plus tip complex 
formation 
 

 Microtubule plus end tip dynamics have an important role in 

microtubule turnover and their organization is another distinguishing 

feature of stable versus dynamic microtubules. Fast-growing microtubules 

display longer plus-end tip ‘comets’ than slow growing microtubules, as 

one can observe when staining for EB1 (Bieling et al., 2007). As a 

consequence, overexpression of proteins that stabilize microtubules and 

decrease their polymerization speed (e.g. CLASP and CAP350), leading to 

the formation of short and rounded plus-end comets (Mimori-Kiyosue et al., 

2005; Hoppeler-Lebel et al., 2007). In contrast, their depletion leads to 

faster microtubule growth speed and therefore longer plus-end comet size 

(Mimori-Kiyosue, 2005). Using this data as a basis, we tested whether EB1 

comet shape is affected upon RPGRIP1 depletion in RPE1 cells. Cells 

were treated with anti-RPGRIP1 siRNA and immunostained for EB1 and 

tubulin. Major axis and minor axis of EB1 comets were measured as 

described in Methods and comets were classified into 3 groups according 

to ratio of comet major axis length to minor axis length as following: ‘Non-

growing’ if ratio < 1.5, ‘Intermediate’ if ratio 1.5 < ratios < 4.5 and ‘Growing’ 

if ratio > 4.5. Quantification of distribution of different classes of EB1 

commet revealed increased fraction of ‘Non-growing’ EB1 comets upon 

RPGRIP1 depletion (Figure 22).  

 In pull-down and mass-spectrometry experiments a well-known 

microtubule stabilizing protein, IQGAP1, was detected as novel interacting 

partner for RPGRIP1  (Coene et al., 2011). IQGAP1 localizes to cell-cell 

contact sites and to the leading edge and captures microtubule plus-ends 

at the cell cortex by interacting with CLIP170. So we hypothesized that 

RPGRIP1 depletion causes increased IQGAP1 accumulation at the 
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plasma membrane and thus leads to increased microtubule stabilization. 

However, immunostaining experiments did not reveal any association in 

microtubule stabilization and IQGAP1 accumulation. So the mechanism of 

RPGRIP1 depletion mediated microtubule stabilization still remains to be 

further investigated. Nevertheless, as microtubule dynamics have a critical 

role in positioning of the Golgi, the increased microtubule acetylation 

and/or increased stabilization caused by RPGRIP1 depletion is likely to be 

the cause of the loss of pericentrosomal positioning of the Golgi in these 

cells. 

 

3.4.5 Effect of RPGRIP1 isoforms on microtubule stabilization 
 
 Up to now, functional studies on RPGRIP1 focused on 

characterization and importance of the C2 domain (Roepman et al, 2005; 

Fernandez-Martinez et al., 2011; Coene et al., 2011; Schu et al., 2005), 

however some isoforms (i.e. isoforms within the RPGRIP1-NoC2 group) do 

not possess this domain. This motivated us to test if role of RPGRIP1 in 

microtubule dynamics is specific to a particular isoform. As we didn’t have 

RPGRIP1 isoform specific siRNAs, we measured microtubule acetylation 

by overexpressing different RPGRIP1 isoforms. Immunostaining and 

quantification of acetylated tubulin in transfected cells did not show a 

significant change as compared to GFP transfected cells (Figure 23). This 

result suggests that there is no gain of function upon overexpression of 

RPGRIP1. Next we tested whether overexpression of these constructs can 

complement increase of microtubule acetylation, as it would be very 

interesting to dissect the function of the different RPGRIP1 isoforms. 

However both the depletion of RPGRIP1 and overexpression of RPGRIP1 
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isoforms lead to increased cell death, so we were so far unable to attribute 

function of RPGRIP1 in microtubule dynamics to any particular isoform. 

 

3.5 Golgi reorganization upon RPGRIP1 depletion is due to increased 
microtubule stabilization 
 

 The importance of microtubule acetylation in pericentrosomal 

localization of the Golgi was reported in several other studies, but the 

molecular mechanism is unknown. Increase of microtubule acetylation 

after treatment of cells with HDAC6 inhibitors such as Trichostatin A (TSA) 

or Tubacin leads to compaction of the Golgi ribbon around the centrosome  

(Ryan et al., 2012). On the other hand, kinesins are plus-end directed 

motors and transport vesicles away from the pericentrosomal area and 

they were reported to have increased affinity towards the acetylated pool 

of microtubules (Reed et al., 2006). Additionally, treatment of cells with 

Taxol, a potent microtubule-stabilizing drug, leads to increased microtubule 

stabilization and acetylation and to subsequent fragmentation and 

peripheral relocation of the Golgi vesicles (Rios et al., 2004). These 

observations indicate that, even though microtubule acetylation and 

stabilization are highly associated with each other, they might exert 

different and independent effects on the positioning of Golgi. Since 

RPGRIP1 depletion leads to both increase in acetylation and stabilization, 

we set out to identify which of these changes were responsible for the loss 

of compact organization and pericentrosomal positioning of the Golgi 

ribbon.  
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3.5.1 The Golgi reorganization is due to increased microtubule 
stabilization 
 
 To address whether the Golgi reorganization upon RPGRIP1 

depletion is due to increased microtubule acetylation or stabilization, we 

decided to generate following three conditions: (1) increased stabilization + 

increased acetylation; (2) increased stabilization + decreased acetylation; 

(3) decreased stabilization + decreased acetylation and analyze Golgi 

organization. RPGRIP1 depletion was enough to generate condition (1) as 

described in previous experiments. To generate condition (2) we depleted 

ATAT1, a major alpha-tubulin acetyltransferase in mammalian cells (Akella 

2010). Depletion of ATAT1 was shown to result in loss of microtubule 

acetylation and increased microtubule stabilization (Kalebic et al., 2013). 

Finally we depleted CLASP, a microtubule stabilizing protein, to generate 

condition (3) (Mimori-Kiyosue et al., 2005). Immunostaining revealed the 

decreased microtubule acetylation upon depletion of both CLASP and 

ATAT1 and increased acetylation upon RPGRIP1 depletion (Figure 24A, 

24B, 24C). However, ATAT1 and CLASP depletions had opposing effects 

on the Golgi morphology, where increased Golgi uncondensation occurred 

upon ATAT1 similar to RPGRIP1 depletion but not upon CLASP depletions 

(Figure 24A, 24B, 24C). The Golgi reorganization was not observed upon 

co-depletion of RPGRIP1 with CLASP however it was pronounced upon 

co-depletion of RPGRIP1 with ATAT1. Additionally, overexpression of 

ATAT1 lead to an increased amount of acetylated microtubules but did not 

result in a significant change in Golgi organization and compaction (Figure 

25). This result suggests that, the loss of compact organization of the Golgi 

upon RPGRIP1 depletion is due to increased microtubule stabilization 

rather than the increased acetylation.  
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3.5.2 The Golgi ribbon tracks align with stable microtubule tracks 
 
 In the previous section we described that increased microtubule 

stabilization caused increased Golgi uncondensation. Careful analysis of 

the images showed high association of the Golgi ribbon and stable 

microtubules. To confirm the Golgi and stable microtubule association, we 

performed high-resolution imaging in control and RPGRIP1 depleted cells 

immunostained against acetylated tubulin and Golgin84. RPGRIP1 

depletion was used because this treatment provides well-resolved Golgi 

and acetylated microtubule tracks at the cell periphery. This revealed 

extensive colocalization of stable microtubule tracks with the Golgi ribbon 

arms in both control and RPGRIP1 depleted cells (Figure 26). 

Colocalization was more obvious in RPGRIP1 depleted cells where 

peripheral individual tracks of the acetylated microtubules and the Golgi 

ribbon are more resolved by the microscope. Spread of the Golgi following 

increased microtubule stabilization and high colocalization of the Golgi with 

stable microtubules suggest that stable microtubules might act as the 

skeleton of the Golgi ribbon. Role of GM130 and GRASP65 is very well 

established in maintenance of the Golgi ribbon organization. Depletion of 

GM130 (Puthenveedu et al., 2006) and GRASP65 (Barr, 1997; Wang et 

al., 2005) lead to inefficient merging of the ministacks and ultimately lead 

to fragmentation of the Golgi ribbon. So then we tested whether 

fragmentation of the Golgi upon depletion of GM130 or GRASP65 can be 

rescued by increased microtubule stabilization. Depletion of GRASP65 and 

GM130 alone resulted in fragmentation of the Golgi in consistent with 

previous reports (Figure 27A, 27C). Interestingly, co-depletion of RPGRIP1 

with GRASP65 or GM130 increased the microtubule acetylation and 

concomitantly lead to decreased Golgi fragmentation and bigger Golgi 

elements indicating increased merging of the ministacks (Figure 27). This 
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result suggests that function of GM130 and GRASP65 to link the Golgi 

stacks together in assembly of the Golgi ribbon might be dispensable when 

an increased amount of stable microtubules is available. Taken together, 

our results suggest that the stable microtubules act as anchoring site and 

facilitate the assembly of the Golgi ministacks into ribbon organization. 

3.5.3 The Golgi positioning is dictated by stable microtubules 
positioning 
 
 During cell migration both the Golgi complex (Bisel et al., 2008) and 

stable microtubules  (Wittmann et al., 2003) are preferentially found on the 

leading edge. It’s likely that stable microtubules not only are important for 

maintenance of pericentrosomal localization of the Golgi but also might be 

responsible for the dynamic positioning of the Golgi in response to various 

external stimuli. To test this hypothesis we asked whether ectopic 

microtubule stabilization could reposition the Golgi complex. To generate 

ectopic microtubule stabilization we treated cells with Taxol and, consistent 

with other reports, we observed an accumulation of microtubule bundles at 

the cell periphery. Live-imaging of the Golgi upon taxol treatment showed 

that the Golgi repositioned away from the perinuclear area and co-

localized with microtubule bundles close to the periphery (Figure 28). The 

ability of stable microtubules to reposition the Golgi suggests that cells can 

regulate the Golgi positioning during processes such as polarization and 

migration by regulating the microtubule cytoskeleton. As mentioned in the 

introduction (Section 1.2.2), microtubules +TIPs facilitate capture of 

microtubules at the leading edge thus stabilizing the microtubule. This 

polarization of the microtubules might then result in polarization of the 

Golgi complex. 
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Figure 5: Different Golgi phenotypes observed in RNAi screen.  
 
The Golgi morphology upon siRNA mediated knock down of three candidate 
genes: PHF12, KIF1A and NOS1 is shown. Arrows indicate typical Golgi 
morphologies for different treatments. Scale bar - 5µm.  
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Figure 6: Effect of RPRGRIP1 depletion on Golgi organization.  
 
A. Hela cells treated with control (siNEG9) and anti-RPGRIP1 (siRPGRIP1) 

siRNAs are immunostained against 3 different Golgi complex markers: GM130, 

Giantin and Golgin84. Colocalization of all Golgi markers in elongated arms of 

uncondensed Golgi (arrows) indicates uncondensation of the ribbon and not a 

reorganization of specific marker. Scale bar - 5μm. B. Quantification of Golgi 

fragmentation upon control and anti-RPGRIP1 siRNA treatment is shown. 

Number of Golgi fragments per cell was counted and pooled together from 4 

different experiments and distributions are plotted with boxplot. Comparison of 

the medians did not shown significant difference between control and siRPGRIP1 

treated cells. C.  Quantification of Golgi area upon control and anti-RPGRIP1 

siRNA treatment is shown. Golgi areas are quantified as described in Methods 

(check ‘BigGolgiBlob’) and normalized to control means. Comparison of the 

distributions shows increase (32%) in Golgi areas upon RPGRIP1 depletion (n=4, 

t-test, p-value < 0.01). Error bars represent standard error of the mean, ‘***’ 

indicates 99% significance level. 

  

C B 



 56 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Effect of RPRGRIP1 depletion on Golgi stacking.  
 
Fluorescence images of the control and siRPGRIP1 treated cells selected for 

CLEM (left panel). Scale bar – 5µm. Gridded MatTek dishes with coordinates 

were used to find back cells imaged with light microscopy in EM imaging. 

Electron tomograph sections of the cells corresponding to the stretched part of 

the Golgi apparatus are shown and canonical stacked organization of the Golgi 

cisternae is preserved (arrows, right panel).  
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Figure 8: Organization of RPGRIP1 isoforms.  
 
A. Domain organization of longest RPGRIP1 isoform (NM_020366.3). Adapted 
from (Roepman et al., 2005). B. Exon organization of predicted isoforms of 
RPGRIP1 is shown. C2 domains are encoded by exons 14-16. C. Exon 
organization of RPGRIP1 isoforms detected in previous studies.   
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Figure 9: Localization of RPGRIP1 isoforms.  
 
Predicted and submitted isoforms of RPGRIP1 were grouped into 6 groups 
according to their similarity in exon organization. One from each group is tagged 
N-terminally with GFP and expressed in RPE1 cells. RPGRIP1-FL isoform mainly 
localized to cytoplasm. All other isoforms displayed both nuclear and cytoplasmic 
localization. RPGRIP1-E12 isoform displayed dotty structures in nucleus in 
addition to perinuclear aggregates (Scale bar - 5µm). 
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Figure 10: Localization of Myc and Flag tagged RPGRIP1.  
 
Confocal slices of overexpressed Myc and Flag tagged RPGRIP1-FL isoform in 
Hela cells with anti-Pericentrin immunostaining is shown. No centrosomal 
staining is visible by MYC-RPGRIP1. Mild or clear centrosomal staining was 
observed in some cells but not all using FLAG-RPGRIP1 and RPGRIP1-MYC 
constructs. Scale bar - 5µm. 
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Figure 11: Localizaiton of RPGRIP1-FL in ARPE19 cells.  
 
Maximum projection images of N-terminal GFP tagged RPGRIP1-FL expressed 
in ARPE19 cells with anti-pericentrin immunostaining is shown. Clear 
centrosomal localization was observed. Scale bar - 5µm. 
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Figure 12: Isoform specific expression of RPGRIP1 in RPE1.  
 
A. Western blot analysis of RPE1 cells using abRPGRIP1 antibody upon three 
different siRNAs against RPGRIP1. B. 70kDa band was depleted up to 90% with 
siRPGRIP1-5. Bar heights represent means of the three different experiments (n 
= 3, Error bar, +SD). 
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Figure 13: RPGRIP1 expression analysis in Hela and ARPE19 cells.  
 
A. Western blot analysis of Hela cells treated with three different siRNAs against 
RPGRIP1 using gs-abRPGRIP1 antibody. Antibody recognizes several bands 
and quantifications of intensities are shown in bar chart with corresponding band 
size labeled in title. None of the bands display specific depletion with three 
different siRNAs (Error bar, +/- SD). B. Western blot analysis of Hela and 
ARPE19 cell lysates treated with three different siRNAs using abRPGRIP1 
antibody (WB staining for only Hela cell lysate is shown). 70kDa band is visible 
when stained with abRPGRIP1 antibody. Quantification of the band intensities 
does not show any depletion upon anti-RPGRIP1 siRNA treatment. 
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Figure 14: Localization of C2 domains of RPGRIP1 and RPGRIP1L.  
 
N-terminal (A) and C-terminal (B) RFP tagged C2 domains of RPGRIP1 and N-
terminal C2 domain of RPGRIP1L (C) expressed in Hela cells are shown. 
Subcloning of C2 domains was done as described in (Roepman et al., 2005).  All 
constructs display cytoplasmic localization. Scale bar - 10µm.  
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Figure 15: Effect of RPGRIP1 depletion on centrosome organization.   
 
A. Hela and RPE1 cells were treated with control and anti-RPGRIP1 siRNA and 
immunostained against pericentrin and gamma-tubulin. Scale bar - 5µm. B. 
Counting of number of centrosomal foci per cell revealed no difference between 
control and siRPGRIP1 treated cells. Cells were pooled from two different 
experiments and 500-600 cells were counted in total. Quantification of gamma-
tubulin (C) and pericentrin (D) intensities also revealed no significant differences 
between control and siRPGRIP1 treated cells in Hela and RPE1 cells (Bar 
heights: relative mean integrated intensities at the centrosome; Error bars, + 
SEM). 
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Figure 16: Effect of RPGRIP1 depletion on microtubule nucleation.  
 
A. Hela cells were treated with control, siRPGRIP1 and siCLASP siRNAs for 72h. 
Cells were then cooled on ice for 1h to depolymerize microtubules and warmed 
up again to 37°C to initiate microtubule nucleation. Cells were fixed at 0, 45 and 
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90 seconds after warm up and stained with DAPI, EB1 and Tubulin antibodies. 
Cells were then classified into three different groups according to the microtubule 
nucleation stage. Scale bar - 10µm. B. Quantification of fraction of cells at 
different stages of microtubule nucleation is shown. RPGRIP1 depletion leads to 
delayed microtubule nucleation whereas CLASP depletion extensive microtubule 
growth as compared to control (Bar heights correspond to fraction means. Error 
bar, +SD or –SD). 
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Figure 17: Effect of RPGRIP1 depletion on polymerized tubulin amount.  
 
A. Control and siRPGRIP1 treated cells were methanol fixed and immunostained 
against tubulin. Cells were then imaged with confocal microscopy. Images of 
confocal slices are processed with ImageJ tubeness plugin to further increase 
intensities of tubular structures. Later processed images were thresholded and 
sum projected. Sum projected image of example cells are shown with intensity 
dependent ‘Fire’ lookup table of ImageJ. Scale bar - 10µm B. Integrated 
intensities of tubulin staining per cell in sum-projected images are quantified. 
Mean of median of 3 different experiments is shown and siRPGRIP1 treated cells 
show about 40% decrease in polymerized tubulin amount (Error bar, +SD).   
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Figure 18: Effect of RPGRIP1 depletion on microtubule acetylation.  
 
A. Control and siRPGRIP1 treated RPE1 (top panel) and Hela (bottom panel) 
cells are stained for acetylated tubulin (left column) and total tubulin (middle 
column). Scale bar: 10µm for RPE1 cells, 5µm for Hela cells. B. Western blot 
analysis of microtubule acetylation in Hela and RPE1 cells. For Hela cells 
siNEG9 and siRPGRIP1 lanes are cropped from the same membrane and 
stitched together. C. Quantification of western blot upon RPGRIP1 depletion 
shows 1.86 and 1.77 times increase acetylated microtubules in Hela and RPE1 
cells respectively (Error bar, +/- SD). 
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Figure 19: Effect of RPGRIP1L depletion on microtubule acetylation.  
 
A. GFP tagged RPGRIP1L construct is expressed in Hela cells and 
immunostained against pericentrin. Clear colocalization was observed. Scale bar 
- 5µm. B. Hela cells treated with control and 2 anti-RPGRIP1L siRNAs are 
analyzed by western blot for acetylated tubulin. C. Quantification of acetylated 
tubulin by western blot revealed no significant difference in control and 
siRPGRIP1L treated cells (Error bar, +SD). 
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Figure 20: Effect of RPGRIP1 depletion on activity of microtubule 
acetyltransferases and deacetylases.  
 
A. RPE1 cells were treated with various concentrations of TSA for 24h and 
analyzed by western blot with acetylated tubulin staining to find minimal 
concentration that completely blocks HDAC6 activity. 1µM concentration was 



3 Results 

 75 

selected. B. RPE1 cells were treated with 1µM TSA for various time points and 
analyzed by western blot with acetylated tubulin staining to find a time points 
where change is the fastest. The fastest change was observed within 5h. C. 
RPE1 cells pretreated with control, siRPGRIP1 and siATAT1 are treated with 
1µM TSA and analyzed by western blot every 90min for 270min. No delay upon 
RPGRIP1 depletion was observed however ATAT1 depletion significantly slowed 
down rate of microtubule acetylation (Error bar, +/- SD). D. RPE1 cells pretreated 
with control, siRPGRIP1 and siHDAC6 for 48h are treated with 1µM of TSA for 
24h and then TSA was washed away again. Cells were analyzed by western blot 
every 45min after washout. Quantification of acetylated tubulin revealed no 
difference in speed of microtubule deacetylation however it was significantly 
delayed upon HDAC6 depletion (Error bar, +/- SD). 
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Figure 21: Effect of RPGRIP1 depletion on microtubule stability.   
 
A. Hela cells are treated with nocodazole for 0min, 8min or 20min upon RNAi 
with control siRNA, siRPGRIP1 or siCLASP. Cells were fixed and immunostained 
against tubulin. Scale bar - 5μm. B. For each cell, integrated density of 
polymerized tubulin was quantified and plotted. CLASP depletion was used as a 
negative control for microtubule stabilization and its depletion subsequently lead 
to loss of stable pool of microtubules. In contrary, RPGRIP1 depletion resulted in 
increased pool of nocodazole resistant microtubules (Data points, mean of 3 
replicates. Error bar, +SEM).  
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Figure 22: Effect of RPGRIP1 depletion on EB1 comet shape.  
 
A. RPE1 cells are stained for EB1 and tubulin upon RPGRIP1 depletion. Part of image 
in EB1 image marked by yellow rectangles is enlarged in the bottom panel. Scale bar - 
10µm - top 3 panels, 3µm – lowest panel. B. Quantification of effect of RPGRIP1 on 
EB1 comet shape distribution. EB1 comets were classified into three groups according 
to ratio of comet major axis to its minor axis as following: ‘Non-growing’ if ratio < 1.5, 
‘Intermediate’ if 1.5 < ratio < 4.5 and ‘Growing’ if ratio < 4.5. Test of Equal Proportions 
with count data revealed 5% increase (p-value < 0.05) in ‘Non-growing’ fraction of EB1 
comets.  

A B 
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Figure 23: Effect of overexpression of RPGRIP1 isoforms on microtubule 
acetylation. 
  
Cellular integrated intensity of acetylated microtubules in RPE1 cells expressing 
different RPGRIP1 isoforms is measured and plotted. No significant change 
microtubule acetylation was observed with any of the isoform overexpression 
(Bar heights: Error bar, +SEM). 
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Figure 24: Effect of microtubule acetylation/stability regulators on Golgi 
organization.  
 
A. Hela cells were stained for acetylated tubulin and Golgin84 upon siRPGRIP1, 
siATAT1, siCLASP single or upon siRPGRIP1 + siATAT1 and siRPGRIP1 + 
siCLASP double knockdowns. Scale bar - 5µm. B. Integrated intensity of 
acetylated tubulin per cell was measured after background thresholding. 
Intensities were then normalized against cell area (3-4 replicates).  Both ATAT1 
and CLASP depletion lead to significant decrease (t-test) as compared to control 
(siNEG9). Co-depletion of RPGRIP1 with ATAT1 rescued microtubule acetylation 
to control level, however co-depletion of RPGRIP1 and CLASP did not (t-test). 
Error bars represent standard error of the mean. C. Area of the Golgi objects are 
measured as described in Methods (see Quantification of ‘BigGolgiBlob’) and 
were normalized against Golgi area in control treatment (siNEG9). Single or co-
depletion of RPGRIP1 and ATAT1 increased (t-test) the Golgi area. Depletion of 
CLASP alone or co-depletion with RPGRIP1 did not have any effect on Golgi 
area. The Golgi uncondensation occurred upon ATAT1 and RPGRIP1 single or 
double depletions even though they showed opposing phenotypes on 
microtubule acetylation level. Error bars represent standard error of the mean, ‘**’ 
and ‘***’ signs indicate 95% and 99% significance level, respectively. 
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Figure 25: Effect of ATAT1 overexpression on Golgi organization in Hela 
cells. 
  
A. YFP tagged ATAT1 construct is overexpressed in Hela cells and 
immunostained for acetylated tubulin and Golgin84. Scale bar - 10µm. B. Visual 
analysis of Golgi phenotypes revealed no significant change. 70-80 cells counted 
for each treatment (p-value > 0.5 with test for proportions). 
  



3 Results 

 83 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 84 

Figure 26: Spatial association of stable microtubules and the Golgi ribbon.  
 
Control and siRPGRIP1 treated Hela cells were immunostained against 
acetylated tubulin and the Golgin84. Cells were imaged on confocal high-
resolution microscope and images were deconvolved. Part of merged image 
marked by white rectangle is enlarged in lower panels and right column. Images 
show extensive association (arrows) of acetylated microtubules and the Golgi. 
Scale bar – 5μm. 
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Figure 27: Effect of RPGRIP1 depletion on Golgi fragmentation.  
 
A. Hela cells are treated with siGM130 and siGRASP65 alone or combined with 
siRPGRIP1. Cells were then immunostained for Golgin84 and acetylated tubulin 
(Scale bar, 5um) B. Integrated intensities of acetylated tubulin per cell are 
measured and normalized against cell area (3-4 replicates). Cell intensities are 
then normalized to mean of control treatment (siNEG9). Co-depletion of 
RPGRIP1 with GM130 or GRASP65 increased acetylated microtubule level as 
compared to single knock-downs of GM130 and GRASP65 (t-test). Error bars 
represent standard error of the mean. C. Number of Golgi objects per cell is 
quantified and pooled together form 3-4 replicates and shown in boxplots. 
Depletions of GM130 or GRASP65 alone lead to fragmentation of the Golgi 
ribbon. However, fragmentation was decreased when RPGRIP1 was co-depleted 
together with GM130 or GRASP65. D.  Area of the Golgi objects is measured as 
described in Methods section (See quantification of ‘BigGolgiBlob’) and 
normalized against control treatment (3-4 replicates). Depletions of GM130 or 
GRASP65 alone lead to accumulation of small sized Golgi elements, whereas 
co-depletion of RGPRIP1 with GM130 or GRASP65 increased Golgi object areas 
(t-test). Error bars represent standard error of the mean. ‘**’ and ‘***’ signs 
indicate 95%  and 99% significance levels respectively. 
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Figure 28: Golgi positioning upon microtubule stabilization.   
 
A. Hela cells stably expressing GalNacT2-GFP are treated with 100nM Taxol and 
imaged every 15min for 75min. B. Cells were fixed at the end of live-imaging and 
immunostained for tubulin. The Golgi membranes re-position and accumulate at 
the cell periphery (arrows) upon microtubule stabilization. Scale bar - 5µm. 
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4 Discussion 
 

4.1 RNAi screen and candidate hits 
 

 In this study we performed an RNAi screen to find new proteins that 

could provide new hints to understand and elucidate regulation and 

maintenance of Golgi organization and positioning. The screen targeted 

680 peripheral genes that encode for membrane binding proteins. Visual 

quantification of the Golgi phenotypes in siRNA treated cells revealed 70 

genes whose depletion lead to abnormal Golgi organization and 

positioning. Our literature analysis about candidate hits revealed that many 

of the genes were implicated in membrane trafficking, lipid signaling and in 

cell-to-cell and cell-to-matrix interactions. Candidate hits with already 

known functions in membrane trafficking underlined once more that the 

Golgi architecture is intimately associated to its function in vesicle 

trafficking. Consistently more than 15 of 60 known Rabs, which are 

regulators of the early secretory pathway and endosomal compartment, 

have been shown to localize to and function at the Golgi (Goud & Gleeson, 

2010). The Golgi membranes are also distinguished by particular lipid 

composition and within the Golgi stack the lipid composition is also 

polarized from cis to trans cisternae (Holthuis et al., 2003; van Meer et al., 

2008). For example, GOLPH3 is a phosphatidylinositol-4-phosphate (PI4P) 

effector and it localizes to the trans-Golgi by binding to PI4P. GOLPH3, by 

interacting with actin cytoskeleton and motor proteins, can stretch the 

Golgi cisternae and contribute to vesicle budding and trafficking (Dippold et 

al., 2009). In this screen we found other components of the 

phosphoinositide signaling pathway such as DGKD, DGKK, PIK3CG, 
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PIP5K3 and PLCG2 further supporting the importance of lipid homeostasis 

and dynamics on Golgi organization.  

 Our exploratory analysis about a priori functions of the candidates 

also revealed new pathways that might have a role in Golgi organization 

and vesicle trafficking. Increasing number of components of different 

signaling pathways are being implicated in organization of the Golgi, 

highlighting the critical function of regulating Golgi organization in the cell. 

Among the candidate hit list we also found a component of the nitric oxide 

signaling pathway nitric oxide synthase 1 (NOS1) whose depletion lead to 

fragmentation of the Golgi.  Nitric oxide is a signaling molecule and plays a 

key role in cardiovascular homeostasis, pulmonary disease, and 

angiogenesis (Knowles & Moncada, 1994; Zhou & Zhu, 2009). 

Characterization of the effect of NOS1 on the Golgi organization might 

reveal new concepts on the regulation of the nitric oxide signaling pathway. 

 Depletion of two related proteins, PDLIM1 and PDLIM3 lead to an  

increased ER retention of the marker Golgi enzymes suggesting an 

inhibition of the early secretory pathway. PDLIM proteins are PDZ (at the 

N-terminus) and LIM (at the C-terminus) domain containing proteins and 

are thought to act as scaffold proteins and recruit different LIM domain 

interacting kinases to actin cytoskeleton (Zheng & Zhao, 2007). A recent 

report highlighted the role of PDLIM1 in breast cancer invasion pointing to 

a very interesting link between cancer cell migration and regulation of the 

early secretory pathway (Liu et al., 2014). As polarized and continuous 

secretion is required to maintain cell migration, identification and 

characterization of kinases that link early secretory pathway to PDLIM1 

might provide new tools for cancer therapies. 
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4.2 Characterization of RPGRIP1  
 

 Among many Golgi phenotypes observed in the screen, RPGRIP1 

depletion had a very interesting effect on the Golgi organization and 

positioning. Its depletion affected the Golgi in a particular way: the Golgi 

ribbon did not fragment but lost its compact organization and instead 

acquired a stretched and uncondensed architecture. We did not observe 

any difference in the distribution of Golgi markers upon RPGRIP1 

depletion compared to control cells.  This is consistent with the work by 

Simpson et al where RPGRIP1 depletion had no effect on VSVG transport 

(Simpson et al., 2012). This indicates that the observed RPGRIP1 

depletion effect on the Golgi probably is not due to defects in membrane 

trafficking. Until now RPGRIP1 was thought to be a centrosomal protein 

and has been studied in the context of primary cilium organization and to 

our best knowledge, it has not been implicated in organization of the 

secretory pathway so far. As the understanding of the change in Golgi 

morphology occurring upon RPGRIP1 depletion will provide insight into the 

assembly and maintenance of the Golgi organization and positioning we 

decided to characterize in detail the function of RPGRIP1 outside of 

primary cilium context. 

 

4.2.1 Isoform specific expression of RPGRIP1 
 

 The RPGRIP1 locus goes through extensive alternative splicing and 

isoforms display tissue-specific and species-specific expression and 

localization (Koenekoop, 2005; Lu & Ferreira, 2005; Shu et al., 2005). To 

understand how RPGRIP1 depletion is affecting the Golgi, we decided to 

first identify which isoform is expressed in Hela and RPE1 cells. Here in 
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this study we show that the 70kDa RGRIP1 isoform is expressed in RPE1 

cells. There are several isoforms, both predicted (XM_006720209) and 

reported (AF265666, AF265667, AK301780, BC039089) with an 

approximate size of 70kDa. We observed a similar sized protein band 

using Hela cell lysates but no depletion was observed with three different 

siRNAs against RPGRIP1. We raised an antibody against RPGRIP1 where 

we saw several bands but none of them showed depletion upon anti-

RPGRIP1 siRNAs. Shu et al. showed expression of RPGRIP1 in Hela cells 

with custom-made antibodies (Schu et al., 2005). So it still needs to be 

identified which isoform/isoforms is/are expressed in Hela cells. It is also 

possible that the 70kDa isoform is not the only isoform expressed in RPE1 

cells. 

 

4.2.2 Localization of C2 domains of RPGRIP1 
 

 As mentioned in the Introduction, some centrosomal proteins can 

bind to Golgi apparatus components and are thought to contribute to its 

pericentrosomal positioning. As RPGRIP1 was shown to have a C2 

domain, a commonly found domain in peripheral proteins, we first 

hypothesized that it might bind to Golgi membranes, which are often 

localized close to the centrosome, and thus might be important for 

pericentrosomal retention of the Golgi membranes. But we didn’t see any 

Golgi-like localization when we overexpressed full-length protein or C2 

domain alone indicating Golgi uncondensation is not due to loss of a 

physical bridge between Golgi membranes and the centrosome.   

 

4.2.3 Effect of RPGRIP1 on microtubule dynamics 
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 We also did not observe any centrosomal organization defect upon 

RPGRIP1 depletion suggesting that it might not be involved in centrosome 

assembly. However, we noticed that the tubulin staining appeared reduced 

in RPGRIP1 knock-down cells compared to control stainings when we 

fixed cells with methanol, a procedure which extracts a large fraction of 

unpolymerized, free tubulin from cells (Lansbergen et al., 2006). Indeed 

our quantification of the respective microtubule stainings showed 

decreased density of polymerized tubulin in RPGRIP1 knock-down cells, 

which we speculate could probably be due to a decreased microtubule 

nucleation from the centrosome. We also show that these polymerized 

microtubules display increased acetylation levels and that this is not due 

altered enzymatic acetylation/deacetylation activities, but due to an 

increase in stabilization of microtubules, suggesting role of RPGRIP1 in 

microtubule dynamics. This is consistent with in-vivo studies where 

Rpgrip1 knock-out mice display increased levels of acetylated 

microtubules (Patil et al., 2012). In mass-spec studies RPGRIP1 was 

shown to interact with IQGAP1, Nek4 and many tubulin isoforms (Coene et 

al., 2011). RPGRIP1 was also found predominantly in the cytoskeletal 

fraction of bovine (Castagnet et al., 2003) and mouse (Patil et al., 2012) 

retinas of wild-type mice. Altogether, these observations are consistent 

with our observations and further strengthen the hypothesis of RPGRIP1 

playing a role in microtubule dynamics.  

 In earlier studies, mutations in RPGRIP1 were discovered to lead to 

the autosomal recessive neuroretinopathy, Leber congenital amaurosis 

(LCA), in humans (Dryja et al., 2001; Gerber et al., 2001). LCA is the most 

severe form of all retinal dysplasias and with the earliest onset from birth 

(Castagnet et al., 2003). The molecular basis for the extreme severity of 

LCA caused by mutations in RPGRIP1 (and other genes) is so far not 

understood except that they lead to the degeneration of light sensitive, 
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modified primary cilium in rod and cones. In later studies RPGRIP1 was 

attributed a scaffolding role for the centrosome and the primary cilium of 

the ciliated cells and responsible for recruitment of NPHP4, SDCCAG8 and 

RPGR and to the cilium (Roepman et al., 2005). However, no isoform 

specific functions have been reported so far and it remains unclear if the 

RPGRIP1 scaffolding role is generalizable for all its isoforms as certain 

shorter isoforms do not a possess the C2 domain required for its 

interaction with NPHP4.  

 

4.2.4 Localization of the different RPGRIP1 isoforms 
 

 Localization of the isoforms can provide important clues for isoform 

specific functions. Various localizations were shown for RPGRIP1 however 

no specific localization has been attributed to a particular isoform. In 

bovine and human retina, endogenous RPGRIP1 localized to outer-

segments (Roepman et al., 2000) whereas in murine tissue it localized to 

the connecting cilium of photoreceptors (Hong et al., 2001). In addition 

localization of the isoforms differ from cell to cell. Various localizations 

were reported in cultured cells. In amacrine cells and the transformed 

murine photoreceptor line, 661W (Castagnet et al., 2003) RPGRIP1 

localized to the nuclear envelope. In non-ciliated cell lines, such as Hela, 

HEK293, COS7, NIH3T3, and ARPE-19, RPGRIP1 localized to the 

centrosome and to the basal body in ciliated cells (Schu et al., 2005). 

However no centrosomal or basal body localization is reported so far with 

ectopic expression. In COS cells, a full-length overexpression construct 

localizes to the cytoplasm (Zhao et al., 2003). Overexpression of bovine 

RPGRIP1 (bRPGRIP1) and RPGRIP1b (bRPGRIP1b), the latter lacking 

the C2 domain, displayed either nuclear or cytoplasmic localization (Lu & 
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Ferreira, 2005). In some studies, overexpressed YFP-RPGRIP1alpha 

formed perinuclear aggregates (Patil et al., 2012). The fact that no 

centrosomal or ciliary localization was observed when ectopically 

expressed suggests that the epitope tags used might interfere with the 

centrosomal targeting sites of RPGRIP1. In this study we show 

centrosomal localization of full-length RPGRIP1 isoform in ARPE19, Hela 

and RPE1 cells, however, in the latter two cases the localization was not 

strong and it was only possible with small tags such as myc or flag and not 

all transfected cells showed centrosomal accumulation of RPGRIP1. For 

shorter isoforms, no centrosomal localization was detected with GFP tag, 

however they could still be tested with the smaller tags. Technical 

difficulties with overexpressed versions and their cell type dependency 

make it difficult to dissect isoform specific functions. Since this protein acts 

as a scaffold and interacts with many critical proteins its mis-localization, 

as seen with overexpression of tagged versions of the protein in this study, 

might deplete away its interacting partners causing unpredictable effects. 

This way, it will be impossible to see complementary effect when the 

construct is expressed in RPGRIP1 depleted cells to proof the specificity 

and attribute specific function to specific isoforms. For shorter isoforms, 

cytoplasmic and nuclear localizations were observed, nuclear localization 

being stronger shorter the isoform. As no specific localization was 

observed to any particular compartment, GFP-tag-based localizations 

remain uninformative to dissect isoform specific functions. As RPGRIP1 

depletion increased microtubule stabilization, we overexpressed different 

isoforms and measured if any of the isoform could have complementary 

effects that might reveal isoform specific differences. Quantification of 

microtubule acetylation revealed no significant difference between cells 

transfected with the different RPGRIP1 isoforms tested in this work. 

However, we also noticed that ectopic expression of the isoforms caused 
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increased cell stress and subsequently cell death thus we failed to attribute 

any of the isoform to have a role in microtubule dynamics. This also 

hindered us to rule out role of RPGRIP1 in microtubule dynamics as 

possible off-target effect of RPGRIP1 siRNAs. However, we believe it’s 

unlikely as we observed increased microtubule acetylation with two 

independent siRNAs. As listed above RPGRIP1 was already implicated in 

context of microtubule cytoskeleton before and a recent report from a 

study with Rpgrip1 deficient mouse showed increased microtubule 

acetylation in retinal tissue further strengthening specific role of RPGRIP1 

in microtubule dynamics. 

 

4.2.5.  Novel function of RPGRIP1 in microtubule dynamics 
 

 In this study we propose for the first time a more general role of 

RPGRIP1 in microtubule dynamics in addition to a scaffolding role at the 

centrosome and primary cilium. There are several mechanisms known to 

achieve microtubule stabilization (Section 1.2.1). As the stable 

microtubules we observed do not form thick microtubule bundles around 

the nucleus, which is typically observed upon overexpression of 

microtubule bundling proteins such as Tau, we don’t think microtubule 

stabilization upon RPGRIP1 depletion is induced by bundling. We also did 

not observe an increased accumulation of EB1 at microtubule plus ends, a 

common microtubule stabilization mechanism by plus end TIP network 

components (Akhmanova & Steinmetz, 2008). However, double knock 

down of RPGRIP1 and CLASP inhibited stabilization of the microtubules. 

CLASP (CLASP1 and CLASP2) proteins can localize to microtubule plus 

ends and lock the microtubules at a paused state and thus are a potent 

microtubule stabilizer (Mimori-Kiyosue et al., 2005; Sousa et al., 2007). We 
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speculate that RPGRIP1 might interfere with microtubule targeting of 

CLASP proteins however direct experiments need to be performed 

whether for example RPGRIP1 depletion leads to accumulation of CLASP 

at plus ends. The new role of RPGRIP1 in microtubule dynamics could 

also provide insight into the molecular mechanism of LCA. In LCA patients 

primary cilia, where microtubules are highly stabilized, rod and cones are 

rapidly lost and RPGRIP1 might function by locally coordinating the 

microtubule dynamics at the interface between the cytoplasm and lumen of 

primary cilium.  Our results imply that RPGRIP1 functions to inhibit the 

microtubule stabilization as its depletion stabilizes microtubules. 

Interestingly, mild nocodazole treatment of cells, which destabilizes 

microtubules were shown to induce primary cilium growth (Sharma et al., 

2011). It is possible that RPGRIP1 contributes to primary cilium growth and 

maintenance also by destabilizing microtubules.  

  

4.3. The Golgi reorganization upon RPGRIP1 depletion 
 

4.3.1 Effect of stable microtubules on the Golgi organization 
 

 As microtubules are heavily implicated in the regulating Golgi 

organization and positioning we suspected that the Golgi reorganization 

seen upon RPGRIP1 depletion is due to increased microtubule 

stabilization. We observed that after RPGRIP1 depletion in some cells, the 

increased pool of stable microtubules is highly polarized to one side of the 

cells and the Golgi is extended towards that direction. In addition CLASP is 

a known microtubule stabilizing protein and co-depletion of CLASP and 

RPGRIP1 did not lead to uncondensation of the Golgi, further pointing to 

an involvement of increased microtubule stabilization in Golgi 
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reorganization. Interestingly, high-resolution imaging revealed that the 

Golgi ribbon extends along the acetylated microtubules. This is observed 

not only in RPGRIP1 depleted cells but also in control cells when the Golgi 

is localized in the pericentrosomal region.  

 

4.3.2 Interchangeable role of the Golgi matrix proteins and stable 
microtubules 
 

 GM130 and GRASP65 are well-known Golgi matrix proteins and 

result in Golgi fragmentation when depleted from cells (Barr et al., 1997; 

Puthenveedu et al., 2006; Wang et al., 2005). GM130 is also required for 

nucleation of the microtubules from the Golgi and these microtubules are 

thought to mediate homotypic fusion of ministacks to form a continuous 

Golgi ribbon (Nakamura et al., 1995; Puthenveedu et al., 2006). These 

Golgi derived microtubules then undergo stabilization in a CLASP 

dependent manner (Chabin-Brion et al., 2001). Our results do not support 

the idea that increased stabilization upon RPGRIP1 depletion is due to 

increased Golgi derived microtubule nucleation, as the co-depletion of 

GM130 and RPGRIP1 still results in increased microtubule stabilization. 

But interestingly, co-depletion of RPGRIP1 with GM130 and GRASP65 

increased the microtubule acetylation level and concomitantly rescued 

integral Golgi ribbon organization and the Golgi ribbon is aligned along the 

convoluted acetylated microtubule protofilaments. This result further 

strengthens the role of acetylated microtubules as skeleton of the Golgi 

ribbon where in addition to act as skeleton, it might promote efficient 

assembly of the Golgi ministacks into a continuous ribbon.  

 



4 Discussion 

 99 

4.3.3 Effect of microtubule post-translational modifications on the 
Golgi organization 
 

 Increased microtubule stabilization is often followed by increased 

acetylation. Treatments of cells with microtubule deacetylase inhibitors 

such as TSA and Tubacin lead to increased microtubule acetylation and 

the Golgi ribbon reorganization independent of microtubule stabilization 

(Koegler et al., 2010; Rivero et al., 2009; Ryan et al., 2012). This lead to a 

formulation of a model that features microtubule post-translational 

modification (PTM) based regulation of the Golgi ribbon organization and 

positioning. Recently, the major microtubule acetyltransferase, ATAT1 has 

been described in mammalians (Akella et al., 2010). In 2012 Kalebic et al 

reported that ATAT1 also destabilizes microtubules independent of its 

acetyltransferase activity and depletion of ATAT1 results in increased 

microtubule stabilization (Kalebic et al., 2013). Thus siRNAs targeting 

ATAT1 provide a great tool to uncouple increased microtubule stabilization 

from acetylation. Very interestingly, we observed a loss of perinuclear 

Golgi localization similar to RPGRIP1 depletion upon depletion of ATAT1 

and the observed Golgi uncondensation phenotype was even potentiated 

when RPGRIP1 and ATAT1 depletion were combined. This result 

suggests that the Golgi reorganization observed here is not due to 

increased microtubule acetylation but due to increased microtubule 

stabilization. As both RPGRIP1 and ATAT1 depletion lead to increased 

microtubule stabilization and loss of Golgi compaction - with opposing 

outcomes on acetylated microtubules! – we conclude that the dynamics of 

the microtubules is the dominant factor in determining Golgi organization 

and positioning as opposed to PTMs. 
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4.4. Dynamic regulation of the Golgi organization and positioning 
 

 Our results favor stable microtubule mediated regulation of the Golgi 

positioning over centrosomal dictated Golgi positioning. Increase or loss of 

stable microtubules can lead to uncondensed or compact Golgi 

morphology, respectively. The fact that Golgi membranes do not form a 

ring around the centrosome and are not organized into radial conformation, 

as seen with microtubules that are anchored to the centrosome, indicates 

that the contribution of centrosome-Golgi linkers is not significant. This is 

consistent with the literature where laser ablation of the centrosome did not 

affect the Golgi organization and positioning (Vinogradova et al., 2012). 

One way how the centrosome might contribute to pericentrosomal 

accumulation is by generating a radial array of dynamic microtubules 

during early biogenesis of the Golgi. However, in Golgi biogenesis 

experiments where the Golgi and centrosome are removed by laser nano-

surgery, the Golgi ribbon reformation preceded the reformation of the 

centrosome challenging the importance of centrosomal function in Golgi 

biogenesis even more in doubt (Tängemo et al., 2011). In differentiated 

epithelial cells, the centrosome and microtubules are detached form each 

other and the Golgi co-localizes with the microtubule cytoskeleton where 

they form parallel arrays at the cell cortex (Hehnly et al., 2010). Here we 

show for the first time with high-resolution imaging that the Golgi ribbon 

stretches are in fact aligned along the acetylated stable microtubule tracks 

and that they define the organization and positioning of the Golgi by acting 

as the skeleton of the ribbon. 

 Since the Golgi displays a high spatial correlation with stable 

microtubules, we hypothesized that the ectopic microtubule stabilization 

can displace the Golgi. Total stabilization of the microtubule cytoskeleton 

by Taxol lead to a concomitant repositioning of the Golgi. This result 
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provides an important clue on the dynamic regulation of the Golgi 

positioning during certain processes like cell migration where the Golgi is 

positioned towards the leading edge. During cell migration, the microtubule 

cytoskeleton is polarized in a way that microtubules at the leading edge 

are preferentially stabilized (Wittmann et al., 2003). Plus end TIPs facilitate 

cortical capture of the microtubule plus ends at the leading edge, which 

results in an increased number of stable microtubules directed towards the 

leading edge (Akhmanova & Hoogenraad, 2005). Even though the 

mechanisms of microtubule stabilization in leading edge are well 

described, the mechanism of polarization of the Golgi that facilitates 

increased trafficking of new proteins and lipids to the leading edge, is 

largely unknown. We can now propose a model for the regulation of the 

dynamic positioning of the Golgi ribbon. The Golgi membranes are actively 

targeted to the centrosomal area via dynamic microtubules in a dynein 

mediated manner in a ‘search-and-capture’ type mechanism (Vaughan, 

2005).  As the microtubule cytoskeleton is polarized, stable microtubules 

will not contribute to an active centripetal movement of the Golgi vesicles. 

In contrary, stable microtubules have much longer half-lives, they serve as 

much more stable substrates for plus-end directed kinesins (Reed et al., 

2006), which also display higher affinity towards acetylated pool of 

microtubules. On the basis of our findings that the Golgi is bound and 

stretched along stable microtubules, the Golgi positioning might be 

regulated in a tug-of-war type of model. In this model dynamic 

microtubules actively position the Golgi membranes in pericentrosomal 

area in a dynein-mediated fashion, whereas the stable microtubules 

provide a stable substrate where the Golgi membranes can grip on and 

polymerize into the Golgi ribbon.  
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5 Outlook 
 

In this study we identified many interesting proteins with a potential 

role in Golgi organization. In addition to morphological changes of the 

Golgi, the Golgi marker used in the screen (GalT or GalNAcT) also 

revealed factors that might have a role in early secretory pathway. 

Consequently, we found that two related proteins, PDLIM1 and PDLIM3, 

affect the trafficking of the Golgi markers from ER to Golgi suggesting a 

role in early secretory pathway. PDLIM1 and PDLIM3 proteins are thought 

to function at the plasma membrane and PDLIM1 was shown to have a 

role in cell migration. Characterization of effect of PDLIM1 and PDLIM3 

proteins on secretion from ER might reveal interesting cross-regulatory 

network between late and early secretory compartments.  

 We further focused on characterization of RPGRIP1 and its effect on 

the Golgi morphology. Our experiments unfolded interesting role of 

RPGRIP1 in microtubule dynamics. However, RPGRIP1 locus in the 

genome undergoes extensive alternative splicing and at the moment we 

cannot attribute this function to any particular isoform. To resolve isoform 

specific functions, a mass-spec analysis can be performed to explore 

abundance of different isoforms and this can be combined with isoform 

specific siRNAs followed by quantification of microtubule stabilization. 

Another feasible approach is to develop isoform specific antibodies and 

study subcellular localization of different isoforms that can potentially 

provide clues about isoform specific function. Then once the isoform is 

identified with a role in microtubule dynamics the next challenge is tackle 

the detailed mechanism on how it regulates microtubule dynamics. Live 

imaging that allows measurement of microtubule dynamics and 
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quantification of different parameters of microtubule dynamics might shed 

light on detailed mechanism of microtubule stabilization upon RPGRIP1 

isoform depletion or destabilization upon overexpression. 

 Characterization of effect of RPGRIP1 depletion on the Golgi 

morphology has revealed that the stable microtubule form the skeleton of 

the Golgi ribbon. However it would be interesting to find the molecular 

linkers of the Golgi ribbon and the stable microtubules. Small scale RNAi 

screen can be performed and look for candidates that lead to Golgi ribbon 

compaction. Once potential linkers have been identified, it would be 

interesting to see dynamics of the Golgi polarization in response to 

polarized microtubule stabilization. This can be tackled by inducing 

polarized microtubule stabilization. For instance photoactivatable Taxol 

has been used in some studies to induce polarized microtubule 

stabilization can serve as a great tool. 

In earlier studies the Golgi is considered to be transient organelle 

and colocalizes with ER exit sites (ERES). In contrast, a recent publication 

from our group shows the existence of a positive feedback loop between 

the Golgi elements and the ERES such that a close spatial association 

between the Golgi element and ERES promotes activity of the ERES. As 

the Golgi and ERES display high colocalization in resting cells it’s difficult 

to dissect the nature of positive feedback loop. However fast Golgi 

repositioning by artificially induced microtubule stabilization followed by 

localization and functional studies on ERES can provide better ideas about 

the nature of feedback loop between the Golgi and ERES. 
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6 Materials and Methods 
 
 

6.1. Molecular Biology 
 

6.1.1 Heat shock transformation 
Competent DH5alpha cells are thawed on ice. 10-100ng of DNA is 

added to 50ul of competent cells and incubated on ice for 30min. Cells 

were exposed to heat shock for 45 seconds and incubated on ice for 2min. 

LB or SOC medium was added and incubated at 37°C for 1h on shaker. 

Finally cells are plated on agar plates with appropriate selection pressure. 

 

6.1.2 Isolation and purification of plasmids 
Bacterial stains are inoculated in 3ml LB medium with appropriate 

selection pressure O.N. at 37°C on a shaker. Next day bacterial culture is 

harvested by centrifugation at 12000 rpm for 1min. QIAGEN miniprep kit 

(Cat No: 27106) is used to isolate and purify DNA from harvested cells. 

 

6.1.3 Subcloning of DNAs 
All subcloning of constructs performed in this study including 

taggings are achieved by first amplifying the constructs with PCR using 

primers that generate >15bp of overlapping overhangs. Then amplicons 

are cleaned, checked by agarose gel for right size and recombined into 

final construct using Genscript CloneEZ PCR Cloning Kit (Cat. No: 

L00339). Then clones were verified by sequencing for absence of point 

mutations. 
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6.1.4 Handling of siRNAs 
siRNAs were delivered either in lyophilized (Qiagen, Life 

Technologies) or in concentrated (Dharmacon) form. Lyophilized siRNAs 

were diluted in RNAase free water. All siRNAs are diluted and kept at 

30uM solution stock at -20C. 

 

6.2. Biochemistry 
 

6.2.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) 
Cell lysates were washed once with PBS and lysed in 5X SDS loading 

buffer and boiled at 95°C for 5min. After cooling to RT, Benzonase 

nuclease (Sigma, Cat. No: E1014-5KU) was added in 1:100 v/v ratios and 

incubated for 20-30 min. Then sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) was used to separate proteins by size. 5-

15ul of sample was loaded on a precast 4% - 12% NuPage 

Electrophoresis. Gels run at 60V for 20 min and for another 90 min – 120 

min in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer. 

6.2.2 Western Blotting 
To quantify protein concentration in lysates proteins were first separated 

by SDS-PAGE as described above. Then proteins were transferred into 

nitrocellulose membrane using transfer buffer at 100V for 70min. 

Membranes were blocked for 2h at RT or ON at 4°C with PBS containing 

0.1% Tween 20 (PBS-T) and 5% milk powder. Then primary antibody 

staining was done in PBS-T buffer for 60-120min or ON. Membranes were 

washed 3 times with PBS-T for 10 min. Secondary antibody staining was 
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done in PBS-T buffer for 60-120min. Membranes were washed 2 times 

with PBS-T for 10 min and final wash was done in PBS buffer for 10 min. 

Depending on the secondary antibody used, visualization of the bands was 

performed using AmershamTM ECLTM Western Blotting Detecting Reagents 

Kit or using LI-COR OdysseyR fluorescence imager systems. 

 

6.3. Cell Biology 
 

6.3.1 Mammalian cell culture 

 

6.3.1.1 Maintenance of cells 
All cells were incubated at 37°C, 5% CO2  and >95% humidity. Cells 

were split 1:5 or 1:10 dilution every 48 or 72h in 10cm (Nunc) dishes when 

they reached about 80% confluency. For passaging, cells were washed 

once with 2ml trypsing-EDTA and detached from the dishes by adding 

another 2ml of trypsin-EDTA for 5 min. Hela cells were maintained in 

DMEM 1g/l glucose (Cat. No: 11885) supplemented with 10% fetal calf 

serum (FCS) and 2mM glutamine whereas RPE1 and ARPE19 cells were 

maintained DMEM/F12 (Cat. No: 21331) supplemented with 10% FCS and 

2mM glutamine. For experiments, cells between passage 3 – 20 were 

used. For RNAi experiments, confluent dishes were split 24h before at 1:2 

dilution and seeded accordingly. 

 

6.3.1.2 Freezing and thawing of cells 
For freezing, confluent cells were seeded 24h before into 5-6 

different 10cm dishes. One dish was kept for mycoplasma test. Rest of the 

cells were trypsinized as described above and precipitated at 300g for 5 
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min. Then cell were resuspended in freezing solution containing 20% FCS 

and 10% DMSO and transferred into cryotubes and kept at -80°C. Once 

mycoplasma test was negative, cryotubes were transferred to -160°C with 

liquid nitrogen tanks.  

For thawing, cryotubes were first warmed up to 37°C. Then cells 

were precipitated at 300g for 5min. Freezing solution was removed away 

and cells were resuspended in growth medium and maintained as 

described above. 

 

6.3.2 Transfection of mammalian cells 
 

6.3.2.1 siRNA Transfections 
 All siRNA tranfections were performed using Oligofectamine 

acquired from Life Technologies (Cat. No: 12252-011). siRNAs and 

Oligofectamine were first diluted in Opti-MEM medium. Then two mixtures 

were mixed and incubated for 20 min at RT to allow complex formation. 

Final tranfection mix were added to pre-washed cells in appropriate growth 

medium with 0% FCS. After 4 hours 1/3 of the volume with 30% was 

added. siRNA concentrations were 3 nM for Life Technologies  siRNA, 3 

uM for Qiagen siRNAs. 

 

6.3.2.2 cDNA Transfections 
 All cDNA tranfections were performed using Lipofectamine 2000 

(Life Technologies, Cat. No: 11668-019). Plasmids and Lipofectamine 

were first diluted in Opti-MEM. Then two mixtures were mixed and 

incubated for another 10 min for transfection complexes to form. 

Transfection mix was then added to cells in appropriate growth medium.  
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Typically 2ug/ml of plasmids was used with 2.5ul/ml Lipofectamine 

solution. 

 

6.3.2.3 Immunofluorescence and fluorescence microscopy 

6.3.2.3.1 Immunostaining  
Cells were either fixed with methanol or paraformaldehyde solution 

(PFA). For methanol fixation, cells were first washed with PBS and 

incubated in cold methanol for 4min at -20°C. Then cells were washed 

again in PBS and kept in PBS for immunostaining. For PFA fixation, cells 

were incubated in 4% PFA solution for 20min at RT. 30mM glycine solution 

was added to block the left over PFA subsequently and incubate for 

another 10min. Permeabilization of the cells was performed either in 

0.02% Triton-X-100 or 0.2% Saponin solution for 10min. 

 Primary antibody staining was performed either in PBS for methanol 

fixed samples or in PBS containing permeabilization solution for PFA fixed 

samples. Antibodies were diluted in appropriate concentrations and 

incubated typically for 40min. Then cells were washed three times with 

PBS solution. All secondary antibody stainings were performed in PBS 

containing Hoechst solution (1:2000 dilution) and typically cells were 

incubated for 30-40min. Cells were then washed three times in PBS and 

mounted on glass slides in 5ul Mowiol. 

 

6.3.2.3.2 Wide-field microscopy 
Wide field microscopy was done on Olympus Scan^R system using 

CellR software. Depending on the experiment LUCPlanFLN 20x/0.45 Ph1, 

or LUCPlanFLN 40x/0.60 RC3 objectives were used. 
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6.3.2.3.3 Confocal microscopy 
 For confocal microscopy either PerkinElmer Ultraview ERS spinning 

disc or Leica TCS SP5 confocal microscopes were used. Depending on 

the experiment, typically ZEISS EC Plan-Neofluar 40x/1.30 Oil, ZEISS 

Plan-APOCHROMAT 63x/1.4 Oil DIC, or Leica PL APO HCX 63x / NA 

1.40 – 0.60 objectives were used. For live-imaging experiments, 

microscope incubator was maintained at 5% CO2, 37°C with ~60-70 

humidity. 

6.3.2.3.4 High-throughput microscopy 
High-throughput microscopy was done on Olympus ScanR system 

using software developed at EMBL in collaboration with Olympus. Imaging 

was done using LUCPlanFLN 20x/0.45 Ph1 objective with autofocus. 

 

6.3.2.3.5 Correlative Light –Electron Microscopy 
Correlative light electron microscopy was done using Leica SP5 

confocal system followed by Transmission Electron Microscope system at 

EMBL Electron Microscopy facility by Anna Steyer. GalNAcT2 cells were 

grown on a 3 cm culture dish with a coordinate system on the bottom 

(MatTek cooperation, P35G-2-14-CGRD). Cells were prefixed with 0.5% 

glutaraldehyde/4 % paraformaldehyde/ 0.05% malachite green in 0.1 M 

PHEM buffer (200 mM Pipes, 100 mM Hepes, 8 mM MgCl2, 40 mM EGTA) 

in a microwave-assisted tissue processing (Ted Pella Inc.) with 100 W for 

14 min at 20 °C. The cells were quenched with 150 mM glycine in 0.1 M 

PHEM buffer for 40 sec with 250 W at 20 °C in the microwave followed by 

rinsing with buffer and another round of quenching. Afterwards the cells 

were washed multiple times with buffer. The nuclei were stained with 

Hoechst, 1:1000 for 30 min. Later on confocal microscope, representative 

3-4 cells were selected manually and stage coordinates were saved. Later 
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cells were imaged with HCX PL Apo 63x/1.4 oil Ph3 objective typically 

with 200 nm confocal slices. Once imaging was done, same coordinates 

were imaged again with HC PL Apo 10x/0.4 Ph1 air objective with 

transmission light to save coordinates of the cells on the grid. After 

confocal imaging, the cells were fixed again with 0.5% glutaraldehyde/4 % 

paraformaldehyde/ 0.05% malachite green in 0.1 M PHEM buffer in a 

microwave-assisted tissue processing with 100 W for 14 min at 20 °C. 

Followed by postfixation in 0.8% K3Fe(CN)6 / 1 % OsO4 in 0.1 M PHEM for 

14 min at 100 W at 20 °C. The cells were then stained with 1 % tannic acid 

for 7 min using 150 W followed by 1 % uranyl acetate for 7 min at 150 W at 

20 °C. After dehydration in ethanol (7 steps from 25 %- 100 % ethanol, 

each 40 sec using 250 W) the cells were embedded in hard/very hard 

EPON. The EPON blocks were then either cut with a diamond knife (70 or 

300 nm sections) and imaged with a Biotwin CM120 (Philips) or a TECNAI 

F30 (FEI) or imaged with a Auriga 060 (Zeiss). 

 

6.3.2.4 Nocodazole assay 
 For measuring microtubule stability cells were incubated in 10 uM 

nocodazole containing medium. Cells were fixed with methanol as 

described above either after 8 min or after 20min.  

 

6.3.2.5 Microtubule nucleation assay 
For microtubule nucleation assay, cells were incubated on ice for 

60min to depolymerize microtubules. Cells were then fixed with methanol 

as described above after 45, 90 or 150 seconds and processed further for 

immunostaining. 
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6.4. Computational Biology 
 

6.4.1 ImageJ 
ImageJ software (http://www.imagej.nih.gov/ij/) was used for 

visualization and pre-processing of the images. For pre-processing of the 

confocal images, following ‘confocal_preprocessor_script’ was used: 
!

Confocal_preprocessor_script:0

//0Get0root0folder0

var0rootFolder00=0getDirectory("Choose0Source0Directory");0

//0Traverse0through0the0folders0

traverseFolders(rootFolder,0rootFolder);0

function0traverseFolders(currentFolder,0rootFolder){0

00//0get0all0subfolders0

00list0=0getFileList(currentFolder);000

00for0(i=0;0i<list.length;0i++)0{00

000 showProgress(i,0list.length);000

000 if0(endsWith(list[i],0"/")){0

0 0 traverseFolders(""0+0currentFolder0+0list[i],0rootFolder);00

0 }0000000

000 else0if0(endsWith(list[i],0".ics")){0

000000 0 0//0this0is0an0image0file,0it0should0be0processed0

000000 0 0processImage(currentFolder,00list[i]);0

0 0 //print(currentFolder0+0list[i]);0

000 }000

00}0

}0

function0processImage(folderPath,0imageName){00 0

0 //0sample0image0name0

0 //0Pos001_S001_z00_ch00.ics0

0 delimiter1="_";00

0 parts1=split(imageName,0delimiter1);0

0 var0imageNumber0=0parts1[0];0

0 print("imageNo:0"0+0imageNumber);0

0 //0for0debug0

0 print("Image0number0detected:0"0+0imageNumber);0

0 //open0DAPI0image0

0 print("Reading0image:0"0+0imageName);0

run("BioXFormats0Importer",0"open=["0+0folderPath0+0"\\"0+0imageName0+0"]0autoscale0color_mode=Default0

split_channels0view=[Standard0ImageJ]0stack_order=Default");0

0 //0wait0until0image0is0read0

0 print("Number0of0open0images:0"0+0nImages);0

0 while0(nImages0!=04)0{00

000000000 0 wait(100);0

0 }00

0 print("constructing0image0names..");0

0 getDimensions(width,0height,0channels,0slices,0frames);0

0 //construct0stack0image0names0

0 var0DAPI0=0imageName0+0"0X0C=0";0

0 var0Golgin840=0imageName0+0"0X0C=1";0

0 var0AceTub0=0imageName0+0"0X0C=2";0
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0 var0Tubulin0=0imageName0+0"0X0C=3";0

0 //0get0stack0size0

0 selectWindow(DAPI);0

0 getDimensions(width,0height,0channels,0slices,0frames);0

//0run0max0and0sum0projections0of0all0channels0 0

selectWindow(DAPI);0

0 run("Z0Project...",0"start=10stop="0+0slices+0"0projection=[Max0Intensity]");0

0 selectWindow(AceTub);0

0 run("Z0Project...",0"start=10stop="0+0slices+0"0projection=[Max0Intensity]");0

0 selectWindow(Golgin84);0

0 run("Z0Project...",0"start=10stop="0+0slices+0"0projection=[Max0Intensity]");0

0 selectWindow(Tubulin);0

0 run("Z0Project...",0"start=10stop="0+0slices+0"0projection=[Max0Intensity]");0

0 selectWindow(AceTub);0

0 run("Z0Project...",0"start=10stop="0+0slices+0"0projection=[Sum0Slices]");0

0 selectWindow(Tubulin);0

0 run("Z0Project...",0"start=10stop="0+0slices+0"0projection=[Sum0Slices]");0

0 selectWindow(Golgin84);0

0 run("Z0Project...",0"start=10stop="0+0slices+0"0projection=[Sum0Slices]");0

0 while0(nImages0!=011)0{00

0 00000000wait(100);0//0wait0until0all0projections0are0done0

0 }00

0 //0construct0max0projected0image0names0

0 //0sample0image0name:0MAX_XY0point01.ics0X0C=20

0 var0max_DAPI0=0"MAX_"0+0DAPI;0

0 var0max_AceTub0=0"MAX_"0+0AceTub;0

0 var0max_Tubulin0=0"MAX_"0+0Tubulin;0

0 var0max_0Golgin840=0"MAX_"0+0Golgin84;0

0 var0sum_AceTub0=0"SUM_"0+0AceTub;0

0 var0sum_Tubulin0=0"SUM_"0+0Tubulin;0

0 var0sum_0Golgin840=0"SUM_"0+0Golgin84;0

0

0 //0setting0brightness0for0DAPI0channel0

0 selectWindow(max_DAPI);0

0 setMinAndMax(500,05000);0

0

0 //0setting0brightness0for0AceTub0channel0

0 selectWindow(max_AceTub);0

0 setMinAndMax(600,012000);0

0

0 //0setting0brightness0for0Golgi0channel0

0 selectWindow(max_0Golgin84);0

0 setMinAndMax(500,08000);0

0

0 //0setting0brightness0for0Tubulin0channel0

0 selectWindow(max_Tubulin);0

0 setMinAndMax(500,06000);0 0

0

//0save0max0projected0images0

selectWindow(max_DAPI);0

0 saveAs("Tiff",0folderPath0+0"/"0+0imageNumber0+0"_MAX_DAPI");0

selectWindow(max_AceTub);0

0 saveAs("Tiff",0folderPath0+0"/"0+0imageNumber0+0"_MAX_AceTub");0

selectWindow(max_Tubulin);0

0 saveAs("Tiff",0folderPath0+0"/"0+0imageNumber0+0"_MAX_Tubulin");0 0

selectWindow(max_Golgin84);0

0 saveAs("Tiff",0folderPath0+0"/"0+0imageNumber0+0"_MAX_Golgin84");0

0
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//0save0sum0projected0images0

0 selectWindow(sum_AceTub);0

0 saveAs("Tiff",0folderPath0+0"/"0+0imageNumber0+0"_SUM_AceTub");0

0 selectWindow(sum_Tubulin);0

0 saveAs("Tiff",0folderPath0+0"/"0+0imageNumber0+0"_SUM_Tubulin");0

0 selectWindow(sum_Golgin84);0

0 saveAs("Tiff",0folderPath0+0"/"0+0imageNumber0+0"_SUM_Golgin84");0

0 0

0 //0close0all0images0

0 while0(nImages>0)0{00

00000 00000000selectImage(nImages);00

00000000close();0

0 }0 0

}0

 

 

Preprocessing of confocal slices for quantification of the polymerized 

tubulin following procedure was followed: 

1. Enhance for tubular structures each slice of image with Tubulin 

staining using ‘Tubeness’ plugin 

2. Determine best threshold value to separate free tubulin signal 

from polymerized tubulin signal and apply this threshold for all 

images. 

3. Sum slices and quantify integrated intensity of Tubulin per cell 

 

6.4.2 Cell Profiler 
Cell Profiler software (http://www.cellprofiler.org/) was used for 

quantification of effect of RPGRIP1 on centrosome organization, EB1 

comet shape distribution and Golgi organization. 

 

6.4.2.1 Quantification of centrosome organization 
 Acquired confocal images were first pre-processed using 

confocal_preprocessore_script as described above as Cell Profile version 

does not yet support 3D stacks. Then following Cell Profiler pipeline was 
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used to quantify intensities of gamma tubulin and pericentrin at the 

centrosome and number of pericentrin dots per cell: 

Module&Name& Parameters&

Input&Modules& )

Images& Image&path&

Metadata& Necessary&metadata&to& identify& images& is&already&mentioned&in& file&

name&or&path.&Following&metadata&are&extracted:&

• Date&of&the&experiment&

• Treatment&

• ImageID&

• Channel&

NamesAndTypes& Following& images& were& loaded:& MAX_DAPI,& MAX_TUBG,&

MAX_Pericentrin,& SUM_TUBG,& SUM_Pericentrin,&

IlluminationCorrectionFunction&

Analysis&Modules& &

RescaleIntensity& MAX_DAPI,&Stretch&each&image&to&use&the&full&intensity&range&

RescaleIntensity& MAX_TUBG,&Stretch&each&image&to&use&the&full&intensity&range&

RescaleIntensity& MAX_Pericentrin,&Stretch&each&image&to&use&the&full&intensity&range&

RescaleIntensity& SUM_TUBG,&Stretch&each&image&to&use&the&full&intensity&range&

RescaleIntensity& SUM_Pericentrin,&Stretch&each&image&to&use&the&full&intensity&range&

CorrectIlluminationApply& For) PerkinElmer) Ultraview) ERS) spinning) disc) images) following)

illumination)correction)was)applied:)
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)))))))))))))) )

Morph& MAX_DAPI;&&Operation&1&=&‘Open’;&Kernel&=&‘Disc’&kernel;&Scale&=&3;&;&&

Operation&2&=&‘Close’;&Kernel&=&‘Disc’&kernel;&Scale&=10;&

&

*&First&operation&is&required&to&separate&nuclei&touching&each&other,&

while& second& operation& is& required& to& fill& holes& and& make& nuclei&

intensity&uniform&

IdentifyPrimaryObjects& ‘Otsu’&algorithm&was&used&for&segmentation&of&nuclei:&

&&&&&&& & &
*&Segmented&nuclei&are&color&coded&&
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IdentifySecondaryObjects& Cells&borders&were&estimated&by&expanding&the&nuclei:&

&&&&&&&&&&&&&&&&&&&&&&&&&&&& &
*&Estimated&cell&borders&is&shown&with&red&lines&

Crop& Crop&out&part&of&MAX_Pericentin&image&not&covered&by&‘Cells’&

IdentifyPrimaryObjects& ‘Otsu’&algorithm&was&used&to&segment&pericentrin:&

&&& & &
*&Segmented&pericentrin&objects&are&color&coded&

*&Image&not&scaled&same&as&before&

IdentifySecondaryObjects& Pericentrin& object& areas& are& enlarged& for& 7& pixels& and& named& as&

‘Pericentrin_area’.& Pericentrin& segmentation& sometimes& only&

segments& brightest& spot& but& this& can& be& solved& by& enlarging& their&

area&

RelateObjects& Assign&‘nuclei’&objects&to&‘cells’&obejcts&as&child.&This&allows&access&for&

perZcell&measurements&and&counts.&

RelateObjects& Assign&‘pericentrin’&objects&to&‘cells’&objects&as&child.&&



 118 

RelateObjects& Assign&‘Pericentrin_area’&objects&to&‘cells’&objects&as&child.&

MeasureObjectsIntensity& Intensities& of& ‘Pericentrin’& and& ‘Pericentrin_area’& objects& are&

measured& in& SUM_Pericentrin,& SUM_TUBG,& MAX_Pericentrin,&

MAX_TUBG&images.&

MeasureObjectsSizeShape& Sizes&and& shapes&of& ‘Pericentrin’& and& ‘Pericentrin_area’& obejcts&are&

measured.&

OverlayOutlines& This&is&done&to&later&verify&quality&of&Pericentrin&segmentation.&

ExportToSpreadsheet& Export&all&the&measurements&

 

Once analysis was done, either Microsoft Excel or R software was used for 

visualization and quantification. 

 

6.4.2.2 Quantification of the EB1 comet shape 
 Acquired confocal images were first pre-processed using 

confocal_preprocessore_script as described above. Later following Cell 

Profiler pipeline was used to quantify EB1 comet shapes: 

Module&Name& Parameters&

Input&modules& )

Images& Image&path)

Metadata& Necessary&metadata&to& identify& images& is&already&mentioned&in& file&

name&or&path.&Following&metadata&are&extracted:&

• Date&of&the&experiment&

• Treatment&

• ImageID&

• Channel)

NamesAndTypes& Following&images&are&loaded:&MAX_TUBG,&SUM_TUBG,&

IlluminationCorrectionFunction)

Analysis&module& )
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RescaleIntensity& MAX_TUBG,&Stretch&each&image&to&use&the&full&intensity&range)

RescaleIntensity& SUM_TUBG,&Stretch&each&image&to&use&the&full&intensity&range)

CorrectIlluminationApply& As&described&in&first&pipeline.&

EnhanceOrSuppressFeatures& Image=’MAX_TUBG’;&Operation=’Enhance’;&Type=’Neurites’;&

Methods=’Tubeness’;&Scale&=&1.1;&

& &
*&Images&before(left)&and&after(right)&

EnhanceOrSuppressFeatures& Image=’SUM_TUBG’;&Operation=’Enhance’;&Type=’Neurites’;&

Methods=’Tubeness’;&Scale&=&1.1;)

IdentifyPrimaryObjects& ‘Otsu’&algorithm&was&used&for&comet&segmentation:&

&&&&& & &
*&Segmented&comets&are&color&coded&

MeasureObjectSizeShape& Measure&intensities&of&all&comets&detected.&

ExportToSpreadsheet& Export&all&measurements&
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After analysis is done, measurement results using R software environment. 

EB1 comets major axis and minor axis measurement from different 

experiments are combined into two single data frames, first for control and 

second for siRPGRIP1 measurements. Then in each comet data frames 

were further classified into 3 subgroups: non-growing (if 

MajorAxisLength/MinorAxisLength < 1.5), intermediate (if 1.5 < 

MajorAxisLength/MinorAxisLength < 4.5), growing (if 

MajorAxisLength/MinorAxisLength > 4.5). Finally, test for proportion 

(prop.test) was used to check whether the difference observed between 

non-growing fraction in control and siRPGRIP1 treated cells is significant. 

 

6.4.2.3 Quantification of Golgi phenotype 
 

Acquired confocal images were first pre-processed using 

confocal_preprocessore_script as described above. Later following Cell 

Profiler pipeline was used to quantify Golgi phenotypes and acetylated 

tubulin intensity: 

 

& &

Input&modules& )

Images& Image&path)

Metadata& Necessary&metadata&to& identify& images& is&already&mentioned&in& file&

name&or&path.&Following&metadata&are&extracted:&

• Date&of&the&experiment&

• Treatment&

• ImageID&

• Channel)

NamesAndTypes& Following&images&were&loaded:&MAX_DAPI,&SUM_AcetylatedTubulin,&



6 Materials and Methods 

 121 

SUM_Tubulin,&SUM_Golgin84&

Analysis&modules& &

RescaleIntensity& MAX_DAPI,&Stretch&each&image&to&use&the&full&intensity&range&

RescaleIntensity& SUM_AcetylatedTubulin,&Stretch&each&image&to&use&the&full&intensity&

range&

RescaleIntensity& SUM_Tubulin,&Stretch&each&image&to&use&the&full&intensity&range&

RescaleIntensity& SUM_Golgin84,&Stretch&each&image&to&use&the&full&intensity&range&

Morph& MAX_DAPI;&&Operation&1&=&‘Open’;&Kernel&=&‘Disc’&kernel;&Scale&=&3;&;&&

Operation&2&=&‘Close’;&Kernel&=&‘Disc’&kernel;&Scale&=10;&

*&First&operation&is&required&to&separate&nuclei&touching&each&other,&

while& second& operation& is& required& to& fill& holes& and& make& nuclei&

intensity&uniform&

CorrectIlluminationApply& As&described&in&first&pipeline.&

IdentifyPrimaryObjects& As&described&in&first&pipeline.&

IdentifySecondaryObjects& Cell&segmentation&was&performed&using&SUM_Tubulin&channel:&

&&&&&&&&&&&&&&&&&&&&&&&&& &
*&Estimated&cell&borders&are&shown&in&red,&nuclei&borders&in&green&

Crop& Parts& of& SUM_Golgin84& image& not& covered& by& ‘Cells’& were& cropped&

out.&

Morph& SUM_Golgin84;&Operation=’Close’;&Scale=’10’&

This&operation& fills& the&holes& inside& the&Golgi&and& it& is& required& for&

proper&segmentation&of&the&Golgi&object:&



 122 

) )

*&Images&before(left)&and&after(right)&

IdentifyPrimaryObjects& The& Golgi& elements& were& segmented& using& ‘RobustBackground’&

algorithm.&Identified&objects&were&named&as&‘Golgi’&&objects.&

& & &
*&Segmented&Golgi&objects&is&encircled&with&green&line&

*&Segmented&Golgi&elements&were&used&for&quantification&of&number&

of&Golgi&elements&per&cell&

Morph& ‘Close’&operation&performed&on&Golgi&images&where&holes&inside&the&

Golgi&are&filled&



6 Materials and Methods 

 123 

& & &
*&Image&before(left)&and&after(right)&processing&

IdentifyPrimaryObjects& ‘Otsu’& algorithm&was& used& for& segmentation& of& the& Golgi& elements.&

Segmented&Golgi&obejcts&were&named&‘AllGolgiBlob’.&

& & &
*&Segmented&Golgi&objects&are&encircled&with&green&line&

MeasureObjectSizeShape& Size&and&shapes&of&the&‘Golgi’&objects&are&measured.&

FilterObjects& The&Golgi&objects&with&area&of&smaller&than&150&(pixel&to&pixel)&were&

selected.&Objects&selected&were&named&as&‘SmallGolgiElements’&
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&&&&&&&&&&&&&&&&&&&&&& &
*&The&Golgi&objects&matching&the&parameters&shown&in&green,&rest&in&

red&

IdentifySecondaryObjects& SmallGolgiElements&were&enlarged&by&2px&to&capture&and&named&is&

SmallGolgiElements_area.& This& is& required& to& solve& incomplete&

segmentation.&

&&&&&&&&&&&&&&&&&&&&&&& &
*&Enlarged&areas&are&encircled&with&red&line&

MaskImage& The& Golgi& objects& within& the& SmallGolgiElements_area& were&

removed&away&by&masking.&

Morph& ‘Close’& operation&was& performed& in&Golgi& images&where& small& dots&

are&filtered&out.&
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& &
*&Image&before(left)&and&after(right)&processing&

IdentifyPrimaryObjects& ‘Otsu’& algorithm& was& used& for& segmentation& of& Golgi& objects.&

Segmented&objects&were&named&as&’BigGolgiBlob’:&

& &
*&Segmented&objects&are&encircled&with&green&line.&

ApplyThreshold& SUM_AcetylatedTubulin&images&were&thresholded.&Threshold&values&

were&first&determined&by&‘Automatic’.&Then&this&value&were&used&for&

all&images&in&‘Manual’&mode.&

RelateObjects& Assign&‘Golgi’&objects&to&‘Cells’&obejcts&as&child.&This&allows&access&for&

perZcell&measurements&and&counts.&

RelateObjects& Assign&‘AllGolgiBlob’&objects&to&‘Cells’&obejcts&as&child.&

RelateObjects& Assign&‘BigGolgiBlob’&objects&to&‘Cells’&obejcts&as&child.&

MeasureObjectIntensity& Intensities& of& ‘Golgi’,& ‘AllGolgiBlob’& and& ‘BigGolgiBlob’& objects&were&

measured.&
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MeasureObjectSizeShape& Sizes&and&shapes&of& ‘Golgi’,& ‘AllGolgiBlob’&and&‘BigGolgiBlob’&objects&

were&measured.&

OverlayOutlines& Outlines& of& ‘Golgi’,& ‘AllGolgiBlob’& and& ‘BigGolgiBlob’& objects& were&

overlayed&on&top&of&SUM_Golgin84&image.&

SaveImages& Overlayed&images&were&saved&for&verification&of&the&parameters&for&

segmentation.&

ExportToSpreadsheet& All&measurements&were&exported&

 

Once analysis was done, Microsoft Excel or R software was used to 

quantify number of Golgi objects per cell, area of AllGolgiBlob and 

BigGolgiBlob, intengrated intensity of acetylated tubulin staining per cell for 

control and treated cells. 

 

 

6.4.3 Western Blot 
Quantification of the western blot bands was done using 

ImageStudiLite software 

(http://www.licor.com/bio/products/software/image_studio_lite/) provided by 

LI-COR. First bands to be quantified were selected manually by assigning 

rectangular shapes around the bands. Then shapes were further enlared 

vertically for another 10% and median of the of this enlarged was used for 

estimated of the background. Later this median value was used a 

threshold value and subtracted out from every pixel in corresponding 

rectangles. Then total intensity of each rectangle was recorded as an 

amount of protein. 
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6.5. Reagents 

 

6.5.1 Antibodies and Dyes 
Details of all antibodies in this study is depicted in the following 

table: 

 

Target& Concentration& Vendor& Catalog&number&

Alpha6Tubulin& MeOH/PFA)IF:)

1:500)WB)1:10)

000))

)

Neomarkers) MS581)

Beta6Tubulin& 1:100)MeOH,)

1:3000)WB)))

Abcam) ab6046)

Acetylated&tubulin& MeOH)1:2000))

)

Sigma)

)

T7451)

)

EB1& MeOH)1:300) BD)Bioscience) 610534)

)

Gamma6tubulin& MeOH)1:750)

)

Sigma)

)

T6557)

)

Pericentrin& PFA)1:4000)

)

Abcam)

)

ab4448)

)

RPGRIP1&

(abRPGRIP1)&

WB)1:1000) Proteintech) 13214Z1ZAP)

)

RPGRIP1& (gs6

abRPGRIP1)&

1:1000) Custom) NA)

Golgin84& 1:500) Martin)Lowe) NA)

GM130& MeOH/)PFA)

1:500)

BD)Bioscience)

)

610822)

)

Giantin& PFA,)1:2000) abcam) ab24586)

GRASP65& 1:3000)MeOH/)

PFA)

Martin)Lowe)

)

NA)

Hoechst& ) ) )
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6.5.2 siRNAs 
All siRNAs used in this study (siRNAs used in the screen are not 

included)  

Target& Vendor& Catalog&Number&

RPGRIP1& QIAGEN) SI00125902 

RPGRIP1& QIAGEN) SI00125923 

RPGRIP1& QIAGEN) SI03035480 

RPGRIP1L& QIAGEN) SI04319763 

RPGRIP1L& QIAGEN) SI04329710 

RPGR& Life)Technologies) s12124)

)

RPGR& Life)Technologies) s12125)

)

ATAT1& Dharmacon) LZ014510Z02)

CLASP1& Life)Technologies) s23581)

)

CLASP1& Life)Technologies) s23582)

)

CLASP2& Life)Technologies) s223572)

)

CLASP2& Life)Technologies) s223573)

)

GM130& Life)Technologies) s5942)

)

GRASP65& Life)Technologies) s34819)

)
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6.5.3 Plasmids 
Details of all plasmids used in this study are listed in the following 

table: 

Plasmid&Name& Insert& Source&

pGFP6RPGRIP1& NM_020366.3) isoform) of)

RPGRIP1)

Origene)(Cat.)No:)

SC304750) 

pAF_265666& AF_265666) isoform) of)

RPGRIP1)

This)study)

pXM_006720208& XM_006720208)isoform)of)

RPGRIP1)

This)study)

pXM_006720209& XM_006720209)isoform)of)

RPGRIP1)

This)study)

pXM_006720210& XM_006720210)isoform)of)

RPGRIP1)

This)study)

pXM_005267881& XM_005267881)isoform)of)

RPGRIP1)

This)study)

pGFP6RPGRIP1L& RPGRIP1) Kazusa)cDNA)Collection)

pYFP6ATAT1& ATAT1) Kindly)provided)by)Dr.)

Kalebic,)Heppenstall)

group)
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Supplementary Table 1: RNAi screening candidate hits 
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