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Introdution

Optimization has various appliations in natural sienes and eonomy. The development

of appropriate models for (real life) problems an be a hallenging and diÆult task. But

the appliation of this model may lead to further problems. Missing model parameter data

has to be determined (parameter estimation). Some data should be hosen in order to

get optimal solutions like a minimal drag or a maximal output (optimal ontrol or proess

optimization).

This thesis is a part of a projet within the Sonderforshungsbereih 359 'Reative Flow,

Di�usion and Transport' with researh by several work groups. In this projet one �nal

aim is to optimize the following Chemial Vapour Deposition (CVD) experiment:

�����
�����
�����
�����G_J

substrate

The experiment leads to arti�ial prodution of diamond on a substrate ('Substrathalter' in

above experiment Figure). The methyl radial CH

3

is asribed playing a ruial role in the

prodution of the diamond. So one possible optimization riterion is that the onentration

of CH

3

should be maximized in an appropriate region G

J

:

max

1

G

J

Z

G

J

C

CH

3

:

The problem an be given either in Cartesian oordinates or in ylindrial polar oordinates.

Contributions from mathematis, omputer siene, physis and hemistry are neessary

in order to solve this problem modeled by reative ow. The aim of this thesis is to provide

mathematial tehniques whih will enable to solve the optimization problem. Therefore,

the following systemati struture for developing appropriate optimization methods was

hosen:

� Optimization governed by the Poisson equation. The optimization problem is derived

in a very detailed way in Setions 1.1, 1.2, and 1.3. Numerial results are given in

Setion 1.6.
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� Optimization governed by the linear state equation ��u + u = 0 as an exemplary

problem. The developed tehniques will be explained. The problem formulation and

the numerial results are presented in Setion 2.13.

� Optimization governed by the nonlinear state equation ��u + u

3

� u = f . It is

used in Ginzburg-Landau models in superondutivity for semiondutors. Boundary

ontrol problems on Neumann boundaries on several domains will be onsidered.

The optimization riteria are retrieval of presribed solutions either on the domain

or on parts of it (distributed or boundary observation). The optimization problem

formulation is given in Setion 4.2. Numerial results will be presented in Setions

4.4, 4.5, 2.12, 4.6, and 4.7.

� Optimization governed by the Navier-Stokes equations modeling ow ('laminar ow

around an objet'). Boundary ontrol problems on Dirihlet boundaries on more

ompliated domains will be solved. The optimization riteria are minimal drag

oeÆients on boundaries of an objet in the domain. The problem formulation is in

Setion 5.5. The numerial results an be found in Setion 5.7.

� Optimization governed by the Navier-Stokes equations modeling ow with tempera-

ture by the Boussinesq model. Boundary ontrol problems on Dirihlet boundaries

on more ompliated domains will be solved. The optimization riteria are maximal

temperature in a ertain region. The problem formulation and the numerial results

are presented in Setion 5.8.

In these examples, optimization may lead to unexpeted solutions e.g. for the state

equation. We have to keep in mind that the optimization is based on the presented mathe-

matial models and may not neessarily be for the original physial optimization problems.

Furthermore, the real sensitivities in optimization problems an also lead to solutions whih

are di�erent from expeted solutions ('we an learn from optimization').

Various methods have been developed to solve optimization problems. Two main

streams are 'blak-box optimization' and 'simultaneous optimization' leading to a oupled

system. Blak-box optimization takes a given simulation with the possibility to hoose

some model data. The simulation is the blak box. The optimization proess hanges the

model data suh that the simulation ful�lls in some way presribed riteria. The simulta-

neous optimization approah tries to solve the whole problem in one equation system. The

simulation is a more or less integrated part of the system.

The presented approah utilizes the lassial Lagrangian framework for reformulating

the optimal ontrol problem as a boundary value problem for stationary solutions of the

assoiated �rst-order neessary optimality onditions. By di�erentiation of the ontinu-

ous Lagrangian funtional, the �rst order neessary onditions of a onstraint optimization

problem are derived. This leads to a oupled system for the equations of the variables. In

eah step, the whole equation system is solved (simultaneous optimization). A standard

�nite element method is used for disretizing this saddle-point problem whih then results

in �nite dimensional problems. As long as the disretization proedure uses a pure Galerkin

approah, the disrete problem atually orresponds to a formulation of the original min-

imization problem on the disrete state spae. Sine disretization in partial di�erential

equations is expensive, at least for hallenging appliations, the question of how this \model
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redution" a�ets the quality of the optimization result is ruial for a ost-eÆient om-

putation. The need for a posteriori error ontrol is therefore evident.

The disretization of the state equation generally leads to approximate solutions, whih

are not admissible in the strit sense for the original ontinuous onstrained optimization

problem. If numerial omputation with ontrolled auray should be performed, the

notion of an \admissible solution" must be substituted by an error estimate for the state

equation. Of ourse, the distane between the numerial and the exat solution should be

measured with respet to the spei� needs of the optimization problem, i.e. its e�et on

the funtional to be minimized. This asks for a sensitivity analysis of the optimization

problem with respet to perturbations in the state equation, partiularly perturbations

resulting from disretization. In this sense, the a posteriori error estimation aims to on-

trol the error due to replaing the in�nite dimensional problem by its �nite dimensional

analogue. The ruial question is now whih quality measure is appropriate for ontrolling

the disretization error. In general, foring this error to be small uniformly in the whole

omputational domain, as is often required in ODE and DAE models, is not feasible for

partial di�erential equations. Therefore, it seems to be neessary to develop ontrol of

the disretization error in aordane with the sensitivity properties of the optimization

problem.

Little researh has been done on adaptivity and error estimation for optimization prob-

lems governed by partial di�erential equations. Habitually, this adaptivity is based on

riteria onsidering simulation. One main idea of this thesis is that the adaptivity is ob-

tained by error estimation riteria really originating in the optimization problem. The

equation system for the error estimation problem is derived analytially. The saling of

the terms of the error estimator is done naturally by analytially derived weights. These

weights involve dual solutions of the optimization problem. They desribe the dependene

of the error on variations of the loal residuals, i.e. on the loal mesh size. In general,

the developed a posteriori error estimate has to be approximated by numerially solving

the dual problem. This results in a feed-bak proess for generating suessively more and

more aurate error bounds and solution-adapted meshes. In applying this approah to

saddle-point problems arising from optimal ontrol problems, a natural hoie for the error

funtional results. It is the (disretization) error in the ost funtional. Applying this

tehnique, the mesh re�nement reets the optimization problem. Some numerial results

illustrate the main features of the adaptive algorithm partiularly in omparison to more

onventional methods based on global error ontrol for the state equation.

The developed methods merge onepts from numeris of partial di�erential equations,

(a posteriori) error estimation theory and nonlinear optimization. The error estimation

theory is valid for the ase of nonlinear state equation and nonlinear ost funtional. Good

analyti riteria for model redution or disretization in optimization with partial di�er-

ential equations are derived based on the theory for dual-weighted error estimators for

numerial solutions of partial di�erential equations developed by R. Beker and R. Ran-

naher. Small disrete optimization problems result with good auray with respet to the

optimization problem. This model redution proess is driven by developed dual-weighted

error estimators. The aim was to develop a general method whih an be applied to various

families of optimization problems. Good numerial results are obtained for the presented

optimization problems. Furthermore, the value of the developed weighted error estimator



10 CONTENTS

an be a good estimator for error in the disrete optimization problems. An eÆient and

simple method for error estimation results. Adaptivity is obtained with very low additional

osts. This results from a new interpretation of the (disrete) Lagrangian multiplier. It is

used for the error estimation as dual solution for the primal variables. A mutual weighting

for u and � in the error estimator is derived analytially. The hosen formulation of the

optimization problem inluding boundaries leads to a speial property of the developed

dual-weighted error estimator for optimization: By these weights depending on dual solu-

tions and �, a loal ontrol of sensitivities in the optimization problem is provided. An

automati and natural hoie of the saling in the error estimator results. In the original

error estimation theory, these weights enable loal stability ontrol and loal error prop-

agation (whih is of ourse also valid for the presented error estimator). In Setion 2.5

it will be shown that the approah is not restrited to optimization problems. A general

nonlinear error estimator theory is derived. An eÆient method for error estimation in

several appliations is presented.

It may be seen as a drawbak that in this approah the auray in the disretization

of the state equation is only ontrolled with respet to its e�et on the ost funtional.

This an lead to disrete models whih approximate the original optimization problem

with minimal ost but the obtained disrete states and ontrols are \admissible" only in

a very weak sense, possibly insuÆient for partiular appliations. If satisfation of the

state equation is desired in a stronger sense, the method an be ombined with traditional

\energy-error ontrol" or with other neessary riteria of the problem.

The approah to disretization is relevant for good numerial solutions of systems with

partial di�erential equations. Using the wrong disretization may lead to disrete solutions

whih are very di�erent from the original ontinuous solution. This was observed for the

presented optimization problems, espeially with Navier-Stokes equations in Chapter 5.

Criteria for good auray should be based on the whole optimization problem.

To avoid misunderstandings easily arising in this �eld onneting error estimation and

optimization, there will be the following notation: The dual problem is the problem stated

for solving the error estimation problem. Whereas the adjoint problem is the problem

arising from the Lagrangian approah to solve the optimization problem.

The optimization problems may not ful�ll Hadamard's postulates of well-posedness.

For this reason, regularization methods are applied. Possible reasons for ill-posed problems

are:

� no solution in the strit sense for all admissible data,

� solutions might not be unique for all admissible data,

� solutions might not depend ontinuously on the data.

By the disretization, non-uniqueness of the obtained disrete (numerial) solutions an be

introdued.

Due to a new tehnique for Dirihlet boundary ontrol (DBC), the regularization param-

eter � for the optimization problems governed by inompressible Navier-Stokes equations

ould be redued from around 80 to 10

�5

or even lower. By means of this tehnique, the

omputed ontrol q is less restrited by the given regularization pro�le.
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The error estimator is derived from the full analytial Fr�ehet di�erentiations of the

optimization problem resulting in the �rst order neessary onditions. These full analytial

systems will be given for optimization governed by Poisson equation, Ginzburg-Landau

models in superondutivity and Navier-Stokes equations. These equation systems will

be solved by applying a Newton-type method. To get a better searh diretion in the

Newton method, a globalization method whih exploits the seond order ondition of the

optimization problem is developed. The seond order information an also be used to

determine if the stationary point is a (loal) maximum, minimum or saddle point.

The numerial solution methods will be desribed in Chapter 6. The solver is based on a

GMRES method with multi-grid preonditioning. The robustness of the solver is obtained

from GMRES. The aeleration of the onvergene rate results from multi-grid tehniques.

Due to the simultaneous optimization approah, a multi saddle point struture results.

This leads to the requirement of an appropriate preonditioner and other speial numerial

solution methods. The multi-grid tehniques have to be adapted for optimization problems.

The developed methods lead to a onvergene even for the 'pure' Newton method.

The implementation of the optimization ode is based on the DEAL library ([8℄). This

library was developed to ompute numerial solutions of partial di�erential equations. In

this projet, optimization was added. Now, optimization features like globalization and

speial numerial solution methods are provided. A new lass in C++ for speial boundary

handling was designed inluding boundary ontrol and boundary observation. There is

a distintion in Neumann and Dirihlet boundaries. It should be noted that boundary

handling is more diÆult for optimization problems than for normal partial di�erential

equation simulations. For example the hoie of priority of boundary onditions is striter

beause adjoint solution, ontrol and observation have additionally to be onsidered.

Several odes have been developed in order to solve the optimization problems as men-

tioned. They all use a similar basi struture, but have di�erent appliations and features.

Numerial results for iteration to the limit on eah disretization level (odes 'bkr', 'of' and

'oft') and for a less rigorous diagonal version (ode 'rhopton') are provided.

This thesis is organized in the following way: In Chapter 1 the new approah for

solving optimization problems governed by partial di�erential equations will be presented

in detail. In Chapter 2 the developed error estimation tehnique is derived and explained.

Chapter 3 ontains onsiderations on globalization methods for the presented optimization

problems. Chapter 4 gives results for the optimization problems governed by the nonlinear

Ginzburg-Landau equations. Chapter 5 onsiders the optimization problems governed by

Navier-Stokes equations. In Chapter 6 basi ideas on the developed numerial solutions

methods are ontained. And in appendix A results obtained with blak box optimization

are given.



Notations


: domain

�

Q

;�

C

: ontrol boundary

�

O

: observation boundary

�

o

: outow boundary

�

w

: wall boundary

�

S

: substrate boundary

�

s

: symmetry boundary (ylindrial polar oordinates)

�

F

: �x inow boundary

�

J

: region of evaluation of ost funtional

T

h

: triangulation (of the domain 
)

V : Hilbert spae (for state and o-state variables)

Q: Hilbert spae (for ontrol variables)

H: Hilbert spae (for observations)

H

1

(
): �rst-order Sobolev Hilbert-spae on 
 (in the standard notation)

L

2

(�): Lebesgue Hilbert-spae on � � 


(:; :)




: L

2

dual produts over 


(:; :)

�


: L

2

dual produts over �


(:; :): dual produt

K

�

: adjoint of K (8x; y : (Kx; y) = (x;K

�

y))

obs: part of domain, where objetive funtion is evaluated ('observe') (
 or �

O

)

 : V ! H (bounded linear) observation operator

q: boundary ontrol variable (2 Q or 2 L

2

(�

C

))

u: solution of the state equations (2 V or 2 H

1

(
))

v = (u;w): veloities (2 V or 2 H

1

(
)

2

)

p: pressure (2 V or 2 L

2

(
)=IR)

t: temperature (2 V or 2 H

1

(
))

�: Lagrangian multiplier (2 V

0

or 2 H

1

(
)

0

)

L: Lagrangian funtion

H: Hessian matrix (seond order di�erentiation of L)

J : ost funtional

J(:); E

h

: (value of) error funtional

F : simulation or model or forward problem

!(z): dual weights (in the error estimator)



D

: drag oeÆient

�: regularization fator

�: perentage of re�nement in adaptive step (�xed fration strategy)
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Chapter 1

Basi priniples for optimization

with PDE models

In this hapter, a new approah for solving optimization problems governed by partial

di�erential equations will be presented in Setion 1.1. The developed method will be

explained for an exemplary optimization problem whih is governed by the Poisson equation

in the following Setions. In Setion 1.8, relations to other approahes in optimization

theory for problems governed by partial di�erential equations is given. Di�erentiation and

stabilization play an important role in the presented approahes and will be analyzed in a

general way for the given ases in Setions 1.9 and 1.10.

1.1 A new approah for solving an optimization problem

governed by PDE

Let V ,W andQ be Hilbert spaes. Although the following approah is rather general, it will

be presented in the general framework of models ontaining partial di�erential equations.

The following type of optimization problems will be onsidered in the sequel for u 2 V and

q 2 Q:

min

u;q

J(u; q); (1.1)

s.t. F (u; q) = 0: (1.2)

In this dissertation, the optimization variable q will denote a boundary ontrol variable.

The primal solution whih orresponds to the solution of the simulation will be denoted by

the state variable u. The objetive funtion or ost funtion J is de�ned as:

J : V � Q ! IR: (1.3)

For onvex ost funtionals J , it is shown in [34℄ that the presented optimization problems

are well-de�ned. As indiated, the funtional J an be evaluated on the whole domain 


(distributed observation) or on the boundary of 
 or parts of it (boundary observation). The

equality onditions F will always ontain a simulation from partial di�erential equations:

F : V �Q ! W � V

0

: (1.4)

13
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For the onstraints, inequalities will not be onsidered.

For nonlinear state equations ontained in F there may be a non uniqueness of the

solutions. The developed theory is still valid in that ase (see [34, p. 1004, remark℄). In

this ase, there an be several stationary points (e.g. loal minima).

In the �rst desriptive step, the problems onsidered have the form

J(u; q) ! min!; A(u) = f +B(q); (1.5)

where A is an ellipti di�erential operator, B an impat operator and J is the ost

funtional. The onstraints are in this ase F (u; q) := A(u)� f �B(q).

The developed approah is based on the weak formulation of system by requiring

(F (u; q); �) = 0 8� 2 V:

The Lagrangian formalism is applied in order to solve the onstraint optimization prob-

lem. The Lagrangian funtion is introdued

L(u; q; �) := J(u; q) + (�; F (u; q)) (1.6)

involving a Lagrangian multiplier � 2 H

�1

(
) required by the de�nition of the dual produt

(:; :). It should be mentioned that H

�1

(
)

�

=

H

1

(
) as shown in [17, p. 54, (2.4.6)℄. This

fat will also be important for the orret hoie of the test spaes in the weak formulation.

Stationary points of L are sought whih are andidates for optimal solutions,

�L(u; q; �)

�(u; q; �)

= 0:

This is a boundary value problem for triples fu; q; �g 2 H

1

(
)� L

2

(�

C

)�H

1

(
),

(J

0

u

(u; q);  ) + (�; F

0

u

(u; q) ) = 0 8 2 H

1

(
); (1.7)

(J

0

q

(u; q); �) + (�; F

0

q

(u; q)�) = 0 8� 2 L

2

(�

C

); (1.8)

(F (u; q); �) = 0 8� 2 H

1

(
): (1.9)

To get the solution of this equation system, a Newton type method on the ontinuous

level is applied. Denoting by H(u; q; �) the Hessian matrix of L(u; q; �), eah Newton step

amounts to solving a linear system

H(u; q; �)(Æu; Æq; Æ�) = �

�L(u; q; �)

�(u; q; �)

; (1.10)

for the inrements fÆu; Æq; Æ�g of fu; q; �g. The right hand side of (1.10) will further on be

alled Newton residual. There are di�erent ways to solve the linear systems ourring in the

Newton method. In order to redue osts, we evaluate the produt H(u; q; �)(Æu; Æq; Æ�) as

the seond-order di�erentiation in the diretion of the inrements fÆu, Æq, Æ�g.

This system has the struture of a saddle point problem whih, beause of its indef-

initeness, requires speial are in the numerial solution. In the present examples, the

di�erentials J

0

u

; J

0

q

; F

0

u

; F

0

q

;H are derived analytially (see Setion 1.9).

For the onsidered optimal ontrol problems, one of the main properties is the type

of boundary ontrol, i.e. Neumann or Dirihlet boundary ontrol depending if there is a
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Neumann (NBC) or a Dirihlet (DBC) boundary ondition on the ontrol boundary. The

funtional F : V � Q ! V

0

takes a di�erent form for (NBC) or (DBC). There will be

di�erent boundary integrals in the derived equation systems depending on the type of the

ontrol boundary.

1.2 Exemplary optimization problem: Poisson equation as

simulation

The goal of this and the following setions is to give an introdution to some basi priniples

underlying the applied methods. The �rst and exemplary optimization problem will be

governed by the Poisson equation:

A(u) := ��u = f in 
 (1.11)

In the presented appliations, the state variables u are taken in H

1

(
) and the Lagrangian

multiplier � in its dual spaeH

1

(
)

0

. The Poisson equation will be onsidered with di�erent

boundary values for the ontrol boundary �

C

. The boundary ontrol variables q are in

L

2

(�

C

). The ost funtional an be evaluated on the observation boundary �

O

or on

subdomains 


0

� 
. The equation system is formulated in Cartesian oordinates. The

following two types of boundary onditions are onsidered with �

w

= �
 n (�

C

[ �

O

):

Neumann boundary ontrol (NBC): �

n

u = q on �

C

;

u = 0 on �

w

; (1.12)

�

n

u = 0 on �

O

:

Dirihlet boundary ontrol (DBC): u = q on �

C

;

u = 0 on �

w

; (1.13)

�

n

u = 0 on �

O

:

The state equation (1.11) and the boundary onditions (1.12) or (1.13) will be the on-

straints F .

For simpliity, the exemplary ase of a retangular domain 
 in Figure 1.1 is hosen.

The mathematial theory whih will be developed in the following setions is independent

of the speial hoie of the presented domain.
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observation �

O

ontrol �

C

wall �

w

wall �

w

Figure 1.1: Domain for Cartesian oordinates

For (DBC), after onsidering the boundary onditions, the weak formulation of the

simulation takes the form with appropriate test funtions �:

(F (u; q); �) = (ru;r�)




� (�

n

q; �)

�

C

� (f; �)




= 0 8�:

Keep in mind that u = q on �

C

, whih will be important in the formulation of the equation

system whih will be solved.

For (NBC), the boundary ontrol ondition �

n

u = q on �

C

are onsidered in the term

(��

n

u; �)

�


. We get for (NBC) the following weak formulation of the simulation with

appropriate test funtions �:

(F (u; q); �) = (ru;r�)




� (q; �)

�

C

� (f; �)




= 0 8�:

The following optimal ontrol problem for the Poisson equation is onsidered: For a

presribed pro�le u

d

the boundary ontrol variable q is sought to minimize the distane

between u and u

d

(Dirihlet observation). This pro�le may be given on sub-domains 


0

� 


or on parts of the boundary �

O

. The orresponding objetive funtion J : H

1

(
) �

L

2

(�

C

) ! IR is

J(u; q) =

1

2

ku� u

d

k

2

obs

:

The index 'obs' indiates an evaluation only in that part of the domain, where the objetive

funtion is evaluated ('observe'). In the onsidered ases this is a sub-domain 


0

� 
 or

an observation boundary �

O

.

To enhane the stability of the optimization problem, the objetive funtion is aug-

mented by a regularization term. In Setion 1.8, a short motivation for regularization in

optimization problems will be given. For (NBC), the following regularization is used (see

[41℄ and [34℄):

J(u; q) =

1

2

ku� u

d

k

2

obs

+

�

2

kq � q

0

k

2

�

C

; (1.14)

where q

0

is a suitable referene value. For (DBC), Gunzburger and Hou propose in [34℄ the

following regularization:

J(u; q) =

1

2

ku� u

d

k

2

obs

+

�

2

kq � q

0

k

2

�

C

+

�

2

kr

s

qk

2

�

C

; (1.15)
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where r

s

denotes the surfae gradient. With this latter regularization, the ontrol q an be

taken inH

1

2

(�

C

). For more theoretial details see [34, p. 1033℄. This regularization hanges

the setting sine the original optimization problem is not solved. There are theoretial

onsiderations (for details see [41℄) as well as pratial experienes whih indiate that in

this ase, alulations are also possible without regularization.

For this ase it has been shown in [34℄ and [41℄, that the orresponding optimization

method is well-posed.

1.3 Equation systems for optimization with Poisson equa-

tion

The optimization problem of Setion 1.2 leads to the following Lagrangian funtion with

the notation of equation (1.5):

L(u; q; �) = ku� u

d

k

2

+

1

2

n(q; q) +A(u; �) � (f; �)�B(q; �)

The operator n(:; :) denotes the regularization of the ost funtional. For nonlinear A, the

term A(u; �) an be replaed by A(u)(�). The general setting will be desribed in a more

detailed way in Setion 2.2. This operator inludes the state equations with boundary

onditions. The boundary ontrol operator B(q; �) is either (q; �) for (NBC) or (�

n

q; �) for

(DBC). The �rst order neessary onditions of the onstrained optimization problem are

obtained by di�erentiation w.r.t. the variables u; q; �.

For (NBC), the �rst order neessary onditions are:

(u� u

d

;  )

obs

+ (r ;r�)




= 0 8 2 H

1

(
); (1.16)

�(q; �)

�

C

� �(q

0

; �)

�

C

� (�; �)

�

C

= 0 8� 2 L

2

(�

C

); (1.17)

(ru;r�)




� (f; �)




� (q; �)

�

C

= 0 8� 2 H

1

(
): (1.18)

For this equation system, the following form on the left hand side of (1.10) for (NBC)

is obtained:

H(u; q; �)(Æu; Æq; Æ�)( ; �; �) =

0

�

(Æu;  )

obs

+ (r ;rÆ�)




�(Æq; �)

�

C

� (�; Æ�)

�

C

(rÆu;r�)




+ (Æq; �)

�

C

1

A

: (1.19)

It should be pointed out that for (NBC) there are no di�erentials needed in the equation

on the boundary �

C

resulting from the di�erentiation w.r.t. q. This will be di�erent for

(DBC), and there will be the problem of hoosing the orret formulation of the di�erentials

on �

C

in order to get a numerially stable solution proess.

For (DBC), the boundary ondition u = q has to be onsidered in the formulation of

the equation system. In order to get symmetry of the equation system, the term (�

n

�; �)

�

C

is transformed to �(�; �

n

�)

�

C

by partial integration.

(u� u

d

;  )

obs

+ (r ;r�)




= 0 8 2 H

1

(
); (1.20)

�(q � q

0

; �)

�

C

+ �(r

s

q;r

s

�)

�

C

� (�

n

�; �)

�

C

= 0 8� 2 L

2

(�

C

); (1.21)

(ru;r�)




� (�

n

u; �)

�


� (f; �)




= 0 8� 2 H

1

(
): (1.22)
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Applying the Newton method on the ontinuous level, the following form of the left hand

side of (1.10) results for (DBC):

H(u; q; �)(Æu; Æq; Æ�)( ; �; �) =

0

�

(Æu;  )

obs

+ (r ;rÆ�)




�(Æq; �)

�

C

+ �(r

s

Æq;r

s

�)

�

C

� (�

n

Æ�; �)

�

C

(rÆu;r�)




� (�

n

Æu; �)

�


1

A

: (1.23)

In the stated equations, the ontrol q is obtained by a weak equation system on the

boundary. Whereas the boundary onditions for the variables u and � are a mixture of

strong boundary onditions and weak boundary onditions obtained by the equation system

derived above.

It should be mentioned that there are ompatibility onditions valid for the ontrol q by

its relation with the state variable u. Only those q are allowed whih lead to a u ful�lling

its state equations.

So far, only the �rst order neessary onditions of an optimization problem with on-

straints are onsidered. The seond order ondition for optimization problems will be used

later on to develop trust region-like modi�ed Newton methods in Chapter 3.

1.4 Choie of boundary onditions

In this setion, a theoretial derivation of the boundary onditions for the Lagrangian

multiplier should be given. Later on, the Lagrangian multiplier � will be in relation with

the dual solution arising from the error estimation problem. A detailed derivation of these

equation systems will be given in Chapter 2. The duality an easily be seen by the following

fat: � is the solution of the equations attained by the di�erentiation of the Lagrangian

funtion w.r.t. u. And u is obtained by the di�erentiation of the Lagrangian funtion w.r.t.

�.

The notation of the boundaries is the same as in the last setion. The example in this

hapter is the Laplae equation

��u = 0 in 
:

For Neumann boundary ontrol (NBC), the derivation leads to the same boundary on-

ditions for u and � on the boundaries. For the Dirihlet boundary ontrol (DBC), only

the observation and ontrol boundary will be onsidered. We have the following boundary

onditions for u:

u = q on �

C

; �

n

u = 0 on �

O

:

For the other boundaries, the boundary onditions are normally obvious and are in general

the same boundary onditions as u. They have a natural Dirihlet or natural Neumann

boundary ondition.

Let the ost funtional J(u; q) be

J(u; q) =

1

2

ku� u

d

k

2

�

O

+

�

2

kqk

2

�

C

+

�

2

kr

s

qk

2

�

C

+



2

kqk

2

H

1=2

(�

C

)

+

�

2

kruk

2
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In this formulation, several regularization methods are ontained. The appropriate spae

for q depends now on the hosen regularization. For � = 0, q 2 H

1=2

(�

C

) with qj

��

C

= 0,

the boundary ondition for u whih is also valid for q. This means that q must be at least

in the spae of the traes of H

1

-funtions. For � 6= 0, q 2 H

1

(�

C

) again with qj

��

C

= 0.

Let now L := J(u; q) + (r�;ru)




be the Lagrangian funtion of the optimization

problem of the previous setion (without expliit boundary onditions). The variable u is

in q+H

1

(�;
) and � is in H

1

(�;
), the dual spae. Di�erentiation of L w.r.t. � leads to:

�L

��

= (rÆ�;ru)




= 0 8Æ� ) �u = 0 �

n

uj

�

O

= 0:

The above boundary onditions for u an be stated.

Di�erentiation of L w.r.t. u leads then to the equation system for �:

�L

�u

= (u� u

d

; Æu)

�

O

+ (r�;rÆu)




= 0 8Æu

) ��� = 0 �

n

�j

�

O

= u� u

d

:

The latter boundary integral results from partial integration. The boundary ondition on

the ontrol boundary �

C

is obtained by the error ondition from the dual problem u�u

h

= 0

with the disrete variable u

h

of u. This means that there is no error on �

C

. Otherwise,

also the Galerkin orthogonality (see Setions 2.2 and 2.4) would not be true. Hene, the

following equations result for �:

��� = 0 �j

�

C

= 0 �

n

�j

�

O

= u� u

d

:

For � 6= 0, the term

�

2

(ru;r )




an be eliminated by partial integration. The resulting

terms (�u; Æu)




and (�

n

u; Æu)

�


are equal to 0.

The derivation of L by the ontrol q underlines the above hoie for some ritial

boundary onditions:

�L

�q

=

d

dt

L(u; q + t�; �)j

t=0

:

Let � be the harmoni prolongation of � on 
, i.e. �j

�

C

= � ; �� = 0. It is not used

expliitely, but for theoretial reasons it must be de�ned. Hene,

d

dt

L(u; q + t�; �)j

t=0

=

1

2

d

dt

J(u+ t�; q + t�) + (r�;r(u+ t�))




;

with u+ t� 2 (q + t�) +H

1

0

= (u� u

d

; �)

�

O

+ �(q; �)

�

C

+ �(r

s

q;r

s

�)

�

C

+ (q; �)

�

C

+�(r�;ru)




+ (r�;r�)




= (u� u

d

; �)

�

O

+ �(q; �)

�

C

+ �(r

s

q;r

s

�)

�

C

+ (q; �)

�

C

+�(r�;ru)




� (��; �)




+ (�

n

�; �)

�

C

+ (�

n

�; �)

�

O

= 0 8�

) u� u

d

= �

n

� on �

O

for � = � =  = � = 0 : �

n

� = 0 on �

C

:

The ritial reformulation of the equation is done by partial integration. The last equation

is equation (1.21) for (DBC).
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On the boundary �

C

, we an now state the following equation:

��q + ��

s

q � �

1=2

s

q + ��

n

u+ �

n

�j

�

C

= 0: (1.24)

For  = � = 0, the following equation is obtained:

��q + ��

s

q + �

n

�j

�

C

= 0: (1.25)

This is the equation whih results from the regularization of the previous setion.

Whereas for  = � = 0, the following equation is obtained:

��q + ��

n

u+ �

n

�j

�

C

= 0: (1.26)

The latter equation with the di�erential of u was taken for (DBC). It enabled good om-

putations.

By the above derivation, u and � have always Dirihlet or Neumann boundary onditions

on the same boundaries. If u has an inhomogeneous Dirihlet boundary ondition, then

� has a homogeneous Dirihlet boundary ondition. Hene, the same test funtions an

be used for u and �. These test funtions have the same boundary onditions as u and

�. They an also be interpreted as test funtions of eah other. This is important for a

good formulation of the error equations. The problem with weak and strong formulations

of boundary onditions is eliminated by this hoie.

The boundary ondition u � u

d

= 0 on �

O

is not true for all ases. The boundary

ondition �

n

uj

�

O

= 0 need not be ful�lled for u

d

. The data u

d

is a given pro�le. Otherwise,

the hoie u� u

d

= 0 on �

O

seems to be orret.

The boundary ondition u � u

h

= 0 on �

C

need not be valid. There an be some

additional errors in the equation system like the interpolation error or the linearization

error. By the above derivation, it is lear that there is a Dirihlet boundary ondition

on �

C

. The question is whih (Dirihlet) value should be assigned. Negleting the other

errors, the hoie u� u

h

= 0 on �

C

seems to be orret.

If there is no regularization and u � u

d

on �

O

, then � = 0 in the optimal solution.

(Also L = 0).

The boundary onditions for the inrements are desribed in Setion 6.4.

1.5 Galerkin method

The Galerkin �nite element disretization of the saddle-point problem resulting from the

Lagrangian formulation of the optimization problem uses subspaes V

h

� V of pieewise

polynomial funtions de�ned on regular deompositions T

h

= [

T2T

h

fTg of the domain


 into ells T (triangles or quadrilaterals); see Brenner and Sott [17℄. The applied

disretization is based on standard �nite element Galerkin tehniques.

The following well-known (and generalized) preis of the Ritz-Galerkin method given in

[17℄ should be indiated. Let V be the ontinuous spae in whih we solve the ontinuous

problem. In the weak formulation, the solution u of the optimization problem an be

haraterized by �nding

u 2 V suh that a(u; v) = (f; v) 8v 2 V: (1.27)
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Let V

h

;W

h

� V be any (�nite dimensional) subspaes of the ontinuous spae V . Then

the disrete sheme for approximating (1.27) an be stated as

u

h

2 V

h

suh that a(u

h

; v) = (f; v) 8v 2W

h

: (1.28)

The Ritz-Galerkin method (V

h

=W

h

) an be haraterized by solving

KU = F: (1.29)

The matrix K = (K

ij

) and the vetors U = (U

j

) and F = (F

i

) an be stated in the

following way: u

h

=

P

n

j=1

U

j

�

j

, K

ij

= a(�

j

; �

i

) and F

i

= (f; �

i

). f�

i

j1 � i � ng is a basis

of V

h

and n is the dimension of V

h

.

1.6 Numerial results for the Poisson equation for artesian

oordinates

In this setion, some numerial results for the equation systems in Cartesian oordinates

derived above will be presented.

The resulting linear systems in the Newton iteration will be solved by an adaptive �nite

element sheme.

The disretization of this equation system is based on a �nite element Galerkin method

with Q

1

-elements. The meshes ful�ll the usual regularity onditions. Hanging nodes are

allowed and failitate loal mesh re�nement, but at most one hanging node per edge:

P

P

P

P

P

P

P�

�

�

�

�

�

�

(

(

(

(

(

(

(

K

t t t t

t

t

t

t

t

t

d

The orresponding degrees of freedom are eliminated by interpolation in order to keep the

disretization onforming. For the state and adjoint variables, pieewise polynomial shape

funtions are taken. For the ontrol variables, the traes of the above shape funtions on �

C

are used. This hoie is not neessary but simpli�es notation. In order to avoid unneessary

ompliations due to urved boundaries, the domain 
 is supposed to be polygonal. The

disretization is realized using the DEAL library ([8℄).

There is a ruial di�erene between (NBC)-systems and (DBC)-systems. (NBC)-

systems for the presented ase do not need di�erentiation on the ontrol boundary �

C

.

The alulation of the boundary ontrol values is therefore easier. One needs a possibility

to handle boundary integrals.

(DBC)-systems have not only the problem mentioned in Setion 1.4 that the values

from the ontrol q to the state variable u have to be assigned. The appropriate hoie

of the test spaes results from this fat. Additionally, there is di�erentiation information

needed on the ontrol boundary �

C

. With the boundary onditions from Setion 1.4, one
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an not avoid to take information from the integration on the domain next to the boundary

to get the neessary di�erentiation information. The di�erentiation values on the boundary

�

C

are omputed for the presented version of (DBC) by the ell (in this ase a retangle)

next to the boundary element, or, in fat, the �nite element whih ontains the boundary

element as desribed in Setion 6.6. These values are transformed to the boundary (hoie

of onveniene).

Due to the alulation of q and the boundary onditions for u on �

C

leading to a

hange of u by q, onvergene in one Newton iteration is not neessarily obtained. For this

onsideration, the ontrol q an be taken as a 'perturbation', deelerating the solution (and

onvergene) proess.

In the test problem in Figure 1.1, the observation is u

d

= 0 on �

O

. Thus one solution

would be with a state equation whih is u = 0 in 
. But also other solution whih are

harmoni funtions with u = 0 on �

O

and ful�lling the boundary onditions u = 0 on the

wall �

w

are possible. The starting value for u is 10 and for q is 4. Therefore, one expets

a onvergene to 0 of u and q. Espeially q should be a paraboloid beause of the strong

e�et of the boundary onditions u = 0 on �

w

. This behavior was observed. There were

other starting values tested for q (0 and -5), both leading to similar results.

The following table shows numerial results. In this numerial examples, � is equal

to 1. The ontrol boundary type, observation boundary type, number of ells, Newton

residual and Newton inrement are denoted by 'ontrol', 'obs', '#ells', 'n res' and 'n inr',

respetively:

ontrol obs #ells n res n inr CPU-seonds

(DBC) D 256 2 � 10

�6

5:4 � 10

�6

20.3

(DBC) N 256 10

�8

1:1 � 10

�8

1.5

(NBC) D quadrati onvergene

256 2 � 10

�7

3 � 10

�7

25

1024 5:7 � 10

�7

2 � 10

�6

92.8

(NBC) N quadrati onvergene

256 2 � 10

�7

3 � 10

�7

29

1024 5:7 � 10

�7

2 � 10

�6

103

For the presented version of (DBC), the solutions are obtained faster than for (NBC)

in all test ases. Espeially (DBC) with Neumann observations, the solution is found in

only 4 Newton iterations. The optimization problems governed by the Poisson equation

an be solved in a satisfatory way even on rather oarse meshes. The obtained residuals

and inrements are suÆiently small.

As we will see later on, the solutions of the optimization problem depend of the value

of the regularization fator �. Big � lead to faster onvergene, but do also hange the

original optimization problem and therefore the attained solution in a stronger way. See

Setion 2.13 for numerial examples.
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1.7 Optimization for the Poisson equation in ylindrial po-

lar oordinates

In this setion, the equation system for optimization in ylindrial polar oordinates for

salar solution of the Poisson equation u is onsidered. As mentioned in the introdution,

important future appliations like the CVD experiment an also be formulated in ylindrial

polar oordinates. There is an additional integral

R




u

r

r

2

� d
 for the Poisson equation

omparing the previous formulation in Cartesian oordinates with the ylindrial polar

oordinates. Note that the following integrals are the same:

R




u

r

r

2

� d
 =

R




u

r

r

� dr dz.

The theoretial derivation of this additional integral and general information on ylindrial

polar oordinates an be found in [5℄, [54℄ or [63℄.

Due to the formulation in ylindrial polar oordinates, there are di�erent boundary

onditions than in the Cartesian ase. Additionally, there is a symmetry boundary �

s

,

whih is the axis of rotation (see Figure 1.2).

observation �

O

ontrol �

C

wall �

w

symmetry �

s

Figure 1.2: Domain for ylindrial polar oordinates

The following boundary onditions are stated for u and � for the presented problem in

ylindrial polar oordinates and domain as in Figure 1.2:

(NBC): �

n

u = q and �

n

� = 0 on �

C

;

u = 0 and � = 0 on �

w

;

�

n

u = 0 and �

n

� = 0 on �

s

;

�

n

u = 0 and �

n

� = 0 on �

O

:

For the Dirihlet boundary ontrol, we have a Dirihlet boundary on �

C

:

(DBC): u = q and � = 0 on �

C

;

u = 0 and � = 0 on �

w

;

�

n

u = 0 and �

n

� = 0 on �

s

;

�

n

u = 0 and �

n

� = 0 on �

O

:
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For (NBC), the weak formulation of the Poisson equation an be stated as:

(F (u; q); �) = (ru;r�)




+ (u

r

r

�1

; �)




� (q; �)

�

C

� (f; �)




:

Therefore, the �rst order neessary ondition of this optimization problem reads:

(u;  )

obs

� (u

d

;  )

obs

+ (r ;r�)




+ (�

r

r

�1

;  

r

)




� (�

n

�;  )

(�
n�

C

)

= 0;

�(q; �)

�

C

� �(q

0

; �)

�

C

� (�; �)

�

C

= 0;

(ru;r�)




+ (u

r

r

�1

; �

r

)




� (f; �)




� (q; �)

�

C

� (�

n

u; �)

(�
n�

C

)

= 0:

The left hand side of (1.10) for (NBC) is:

0

�

(Æu;  )

obs

+ (r ;rÆ�)




+ (Æ�

r

r

�1

;  

r

)




� (�

n

Æ�;  )

(�
n�

C

)

�(Æq; �)

�

C

� (�; Æ�)

�

C

(rÆu;r�)




+ (Æu

r

r

�1

; �

r

)




� (Æq; �)

�

C

� (�

n

Æu; �)

(�
n�

C

)

1

A

:

For (NBC) in the test ase of Figure 1.2, onvergene is stated.

Also for (DBC), the di�erene to the formulation in Cartesian oordinates is the in-

tegral

R




u

r

r

�2

� d
 and the additional boundary ondition on the boundary for r = 0

(symmetry). The weak formulation of the Poisson equation an be stated as:

(F (u; q); �) = (ru;r�)




+ (u

r

r

�1

; �)




� (�

n

u; �)

�


� (f; �)




:

The �rst order neessary ondition of this optimization problem for (DBC) reads:

(u;  )

obs

� (u

d

;  )

obs

+ (r ;r�)




+ (�

r
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�1
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r
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n

�;  )

(�
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C
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= 0;

�(q; �)

�

C

� �(q

0

; �)

�

C

� (�

n

�; �)

�

C

= 0;

(ru;r�)




+ (u

r

r

�1

; �

r

)




� (�

n

u; �)

(�
n�

C

)

� (f; �)




= 0:

The left hand side of (1.10) for (DBC) is:

0

�

(Æu;  )

obs

+ (r ;rÆ�)




+ (Æ�

r

r

�1

;  

r
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� (�

n

Æ�;  )

(�
n�

C

)

�(Æq; �)

�

C

� (�

n

Æ�; �)

�

C

(rÆu;r�)




+ (Æu
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r

�1

; �
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� (�

n

Æu; �)

(�
n�

C

)

1

A

:

For (DBC) in the test ase of Figure 1.2, onvergene an be stated. If the solution of

the optimization problem is taken as starting value for the iterations, the ode terminates

immediately deteting that the optimum is already obtained.

1.8 Optimization theory with PDE simulation

In this setion, a fundamental outline on optimization theory of systems governed by partial

di�erential equations with respet to the presented optimization problems should be given.

The outline is mainly based on a paper of Gunzburger and Hou [34℄ and on a book of Lions

[48℄.

For optimal ontrol theory of systems governed by ellipti partial di�erential equations,

the general and abstrat derivation of the equations of an optimal ontrol problem an

be found in [48, hapter II℄. For the ontrol, there is a distintion between distributed
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ontrol and boundary ontrol. Distributed ontrol means that the ontrol is distributed

over the domain 
. An alternative de�nition would be that the 'ontrol is e�eted through

a soure term in the governing partial di�erential equations'([34℄). Whereas boundary

ontrol means that the ontrol is a funtion de�ned only on (a part of) the boundary of


. The same de�nitions are applied for the observations. The hardest ase is boundary

ontrol and boundary observation. For distributed observation, the observation represents

the anonial injetion  : H

1

(
) ! L

2

(
). Whereas for boundary observation, the

observation leads to a trae operator  : H

1

(
) ! L

2

(�

O

). But also the sensitivities

of the ontrol from the observations seem to be better. For distributed observation, the

transmission of model information from 'obs' de�ned on the whole domain to �

C

is learly

easier. Furthermore, there is a distintion between Neumann and Dirihlet problems, both

implying di�erent diÆulties. Some stated diÆulties in the formulas derived above are

not given in Lions [48℄. Also pointwise ontrol and observation are onsidered ([48, setion

5.4℄). Furthermore, existene results for optimal ontrols are proved ([48, setion 7℄).

The derivation of the optimal ontrol theory for systems governed by paraboli and

hyperboli partial di�erential equations an also be found in [48℄.

An introdution in optimization for ow problems an be found in [33℄.

In [34℄, an abstrat framework for the analysis and approximation of a lass of nonlinear

optimization problems is given. Both onstraints and objetive funtional an be nonlinear.

Existene results of optimal solutions and of the Lagrangian multipliers are given. By

this, an optimization system is derived whih leads to the optimal states and ontrols.

The approximation is done by �nite element methods as in this thesis. Two appliations

are Ginzburg-Landau equations of superondutivity and the Navier-Stokes equations for

inompressible, visous ow. Both will be analyzed later on. A main step is that there

must be the existene of a solution for the simulation. Then the existene of a solution

for the optimization problem an be attained. But the restritions for the solutions of the

simulation will somehow our in the solution of the optimization problem.

In many ases of optimization with partial di�erential equation models, regularization

terms for the optimization problem are neessary. Regularization tehniques usually are

applied in order to get stability of the optimization problem. Additionally, if there is no

existene of a solution of the optimization problem in the lassial sense, regularization

methods are used to obtain well-posedness. The regularization terms are originally not

introdued for disretization reasons. A general introdution in regularization tehniques

for optimization problems, mainly for inverse problems, an be found in [26℄: 'In general

terms, regularization is the approximation of an ill-posed problem by a family of neigh-

boring well-posed problems'. 'All that a regularization method an do is to reover partial

information about the solution as stably as possible. The "art" of applying regularization

methods will always be to �nd the right ompromise between auray and stability'. Many

onrete examples are given therein. Some very elaborated regularization methods like the

Tikhonov regularization (minimizing Tikhonov funtional x! kTx�y

Æ

k

2

+�kxk

2

) do not

seem to be appliable for the presented ontext in the moment for the evaluation of the

operators seems to beome too ompliated and too ostly. Therefore, the regularization

methods published in [34℄ have been used. Depending on the type of ontrol, there are sev-

eral regularization methods: for distributed ontrol on page 1017 (

R




q

2

d
), for (NBC) on

page 1024 (

R

�

q

2

d�) and for (DBC) on page 1032 (

R

�

(jr

s

qj

2

+ jqj

2

)d� whereas r

s

denotes
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the surfae gradient). These regularization methods are motivated by theoretial optimiza-

tion riteria, e.g. proofs on existene of the optimization problems. The main reasons for

regularization are:

� enhane the stability of the optimization problem

� avoid ill-posedness of the optimization problem

� improve onditioning

� enable rigorous mathematial analysis under less restritive assumptions

� enable ontrol on the optimization variable whih guarantees solvability and onver-

gene of approximations

The regularization hanges the original optimization problem leading to (a family of) better-

posed problems. Nevertheless, the regularizations an inuene the solution of the opti-

mization problem in a strong way. See Setion 2.13 for numerial examples. Above reg-

ularization tehniques were used with an appliation-dependent regularization fator (not

neessarily equal to 1).

1.9 Possible hoies for the di�erentiation operators

The presented equation systems (1.10) are obtained by applying the exat Fr�ehet di�er-

entiation on the ontinuous level. More preisely, it is the formal di�erentiation on the

di�erential equation level. For optimization with partial di�erential equations this strategy

seems more appropriate than other tehniques like external numerial di�erentiation (END)

or internal numerial di�erentiation (IND) ([15℄). For optimization with partial di�erential

equations, the disretization an lead to a large number of disrete variables. Therefore,

the funtion evaluations are very expensive. Additionally, high auray is needed in the

solution proess. Numerial di�erentiation tehniques lead to additional errors, whih are

muh higher for huge systems arising from the disretization of the solutions of the partial

di�erential equations and the whole optimization problem. Furthermore, in the ontext of

error estimation for solutions of optimization problems with simulations from partial di�er-

ential equations, the error by END or IND would be an additional error to be onsidered.

There are also alternative omputation strategies for the Hessian matrix. One example

are the approximations BFGS or DFP updates (see [31℄). The Fr�ehet di�erentiation has

the advantage that the analytial system for the Newton method is taken. Again, the

exat system is onsidered, not an approximate one, reduing the total error of the system.

Nevertheless, one advantage of the BFGS formula would be that, under ertain onditions,

to Hessian matries are positive de�nite. Additionally, reent researh in [47℄, [53℄ indiates

that the optimal solution attained by exat Hessian matries are loser to the ontinuous

one or the results in experiments (at least for ODE and DAE models).

A good survey on a omparison on di�erent methods to ompute the sensitivities for

optimization with partial di�erential equation models, mainly for ow problems, is given in

[3℄. It also supports the hosen approah whih should even be better then methods using

automati di�erentiation tehniques. The latter omparison was done by J.R. Appel and

M.D. Gunzburger with ADIFOR.
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1.10 Stabilization of the optimization problem

In this thesis, by 'stabilization' a stability of the disretization should be obtained. The

presented method uses the stabilization of the simulation for the whole optimization prob-

lem. For the stabilization of the Navier-Stokes equations, a Shur omplement tehnique

using the LBB ondition and the Rayleigh quotient to redue the e�et of the saddle point

struture is desribed in [6, p. 53℄. The zero entry on the diagonal of the matrix is replaed

to get a stable formulation of the simulation. By symmetry, this method an as desribed

be applied to the dual solution. The advantage of this approah is that a stable simulation

is suÆient for the stabilization of the primal and dual problem. With additional tehniques

for the 'pure' optimization part, a solution for the optimization problem an be attained.

Another method would be to onstrut the stabilization for the dual solution separately.

This would lead to additional e�ort for the additional stabilization. For this method, expert

knowledge for the formulation of stabilization of the dual solution would be required.

Depending on the optimization problem, the diagonal of the matrix of the di�erential of

seond order of the Lagrangian funtion an have several zero entries.

�

2

L

��

2

is always equal

to 0 beause the Lagrangian multiplier is only linear in our equation systems.

�

2

L

�q

2

depends

on the regularization, espeially on the regularization fator � in the hosen regularization.

�

2

L

�u

2

depends strongly on the kind of optimization problem. For example, in the ase of

parameter estimation problems, this diagonal entry an also tend to 0 (and should do so

for the global minimum, if the data is not perturbed). Also for the zero entries resulting

from the optimization part, a stabilization for example by Shur omplement methods for

the appearing saddle points would be needed. This ould lead to a better onvergene

and behavior of the equation system. The whole problem ould also be stabilized without

onsidering speial parts like the simulation separately. Anyway, it would need muh e�ort

for every new optimization problem and also for every new formulation of it. To avoid a

new derivation of the stabilization for eah optimization problem, the presented tehnique

based on the stabilization of the simulation was developed.

Furthermore, stabilization depends always on the norm in whih it is onsidered. For

example, if the onsidered problem is stable in the L

2

-norm ((u; v)

L

2 =

R




u(x)v(x)dx), it

need not be stable in the H

1

-norm ((u; v)

H

1 =

R




u(x)v(x)dx +

R




ru(x)rv(x)dx). The

additional integral with the di�erentials of the funtions may lead to an unstable behavior.

This e�etuates various disussions on appropriate norms for optimization problems. One

problem is that the alulation of the residual and the inrement in the H

1

-norm is not easy

for the determination of the di�erentials of the residuals and inrements is not obvious.





Chapter 2

Error estimation and adaptivity in

optimization with partial

di�erential equations

Error estimation for optimization problems di�ers from error estimation for a lassial sim-

ulation (forward solution). For an optimization problem, both the ost funtional and the

ontrol (for optimal ontrol problems) have to be onsidered. The error estimator in [13℄

is extended to optimization problems. First steps and omparison with some heuristi er-

ror estimators an be found in [9℄. The theoretial approah for the linear ase and some

of the presented results are published in [10℄ and [11℄. A residual-based a posteriori er-

ror estimator will be developed for the Lagrangian approah of a nonlinear optimization

problem (exploiting the struture given by the �rst order neessary onditions). Duality

arguments are applied to get information on the global error propagation. This approah

enables to bypass the problem of the determination of the (global) stability error onstant

arising in error estimation. Additionally for loal mesh re�nement, the loal information

from the weights seems more appropriate then the global information from the stability

onstant. Furthermore these loal weights enable a loal sensitivity ontrol of the opti-

mization problem. For the developed approah, the dual solutions are diretly onneted

to the Lagrangian multiplier tehnique in optimization. There are two dual problems: One

dual problem orresponds to the adjoint problem in the optimization approah. The se-

ond dual problem enables error estimation of a given funtional. The omputed state and

o-state variables an be used as sensitivity fators multiplying the loal ell residuals in

the error estimator. An other essential new feature is a natural hoie of the error fun-

tional by whih the quality of the disretization of the optimization problem is measured.

The presented approah also gives an automati and natural hoie of the saling of the

terms (espeially those arising from boundary ontrol and boundary observation) in the

developed error estimator.

The approah to adaptivity in optimization problems will be developed within a general

setting in order to abstrat from inessential tehnialities. Numerial results will be given in

the following hapters for optimization problems with a partial di�erential equation-simula-

tion from superondutivity (Ginzburg-Landau equations) and from ow problems (Navier-

29
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Stokes equations). The adaptive mesh re�nement for the �nite element disretization is

driven by the developed error estimator. This new error estimator will be ompared to a

simple energy error estimator for the state equations.

One main advantage of the presented error estimation theory is that no additional dual

problem has to be built. The resulting adaptive mesh re�nement is therefore almost with

no additional osts (see Setion 2.2).

The presented error estimation tehniques have two prinipal points: The �rst aim is

mesh design for eonomial omputation (qualitative error estimation). The solution of the

disrete system should be as lose as possible to the solution of the underlying ontinuous

problem. This an be ahieved with the least number of disretization elements whih is

possible for a given auray. Or, for a given quantity of disretization elements, the to the

ontinuous solution losest disrete solution should be obtained (in the measure given by

the optimization problem).

The seond aim is to know how lose the solution of the disrete system is to the

solution of the underlying ontinuous system (quantitative error estimation). This gives an

evaluation of the quality of the solution of the disrete optimization problem by the value

of the error estimator. The duality arguments are espeially valuable for this appliation of

the error estimator, beause the error onstants an so far not analytially be determined

for all ases in a sharp sense. The e�etivity index I

eff

will be used for lassi�ation of the

obtained values of the error estimators.

The developed error estimator 'measures' the error between the solution of the ontinu-

ous optimization problem and the solution of the disrete optimization problem (disretiza-

tion error). For nonlinear problems additionally the linearization error may be important.

This does not diretly mean that it 'measures' the error between the omputed disrete

solution and given data like observations. This latter error an be seen in the proposed dual

solutions (whih are an important part of the developed residual based error estimator).

This di�erene is not only of theoretial interest. If the alulations are done on a too

oarse grid, the resulting numerial solutions may be very di�erent from the underlying

ontinuous solution. This will be stated in hapters 4 and 5. The auray of the numerial

solution depends on its proposed reliability.

It will be shown that the onepts of error estimation theory for optimization prob-

lems are also valid for the nonlinear ase. A generalized version for the ase of arbitrary

funtionals will be derived in setion 2.5.

The indiret approah to solve an optimization problem an be viewed as more ap-

propriate for the presented methods in error estimation than the diret approah. The

indiret approah seems to be loser to the idea of approximating the underlying ontin-

uous problem by disrete problems. But if the (Newton) iteration is done to the limit on

eah disretization level, this di�erene disappears by the reasoning in setion 2.2.

The disretization of the equation system may also be viewed as a perturbation of the

ontinuous equation system. So the lassial theorems for perturbation theory as e.g. in

Bok [14℄ and Lions [48℄ ould be applied.
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2.1 Interpretation of �

This setion is dediated to the interpretation of the Lagrange multiplier introdued in the

formulation of the Lagrangian approah. The standard interpretation (see [49℄) should be

indiated as well as the interpretation in the ontext of error estimation for optimization

problems.

The gradient of the onstraints is a linear ombination of the gradient of the obje-

tive funtion by the Lagrange multipliers from the �rst order neessary onditions of an

optimization problem for regular points, rJ(x

�

) = ��

t

rF (x

�

).

From sensitivity analysis, the Lagrange multipliers assoiated with a onstrained min-

imization problem an be understood as pries, similar to the pries assoiated with on-

straints in linear programming. In the nonlinear ase the Lagrange multipliers are assoi-

ated with the partiular solution point and orrespond to inremental or marginal pries,

that is, pries assoiated with small variations in the onstraint requirements. They are

the inremental pries of the onstraint requirements measured in units of the objetive

funtion (r



J(x())j

=0

= ��

t

).

In general, the Lagrangian multipliers are not onsidered to be funtions. In this on-

text, a 'natural' interpretation of � as a dual solution in the optimization problem is

obtained. In this ase, the Lagrangian multipliers are funtions.

Eah Lagrangian multiplier is assoiated to one onstraint. Some of these onstraints are

equations from the simulation. The solutions of these equations are primal variables. The

equation for alulating this type of Lagrangian multiplier is obtained by di�erentiation of

the Lagrangian funtion w.r.t. a primal variable. This points out that we get the sensitivities

for the solutions of the belonging equation by the Lagrangian multiplier. Stritly speaking,

eah Lagrangian multiplier whih belongs to a state equation gives the sensitivity of this

state equation with respet to the ost funtional J . So also the sensitivity of the primal

variable derived as solution of this state equation is obtained.

To ompute the values for a Lagrangian multiplier implies that we use the values of other

Lagrangian multipliers. Therefore, if the values of one Lagrangian multiplier beome too

large, this an have an e�et on the other Lagrangian multipliers. This was one problem

observed during the researh for this thesis, espeially in omputations with ylindrial

polar oordinates.

A general way to alulate the Lagrangian multiplier is �

T

= J

x

1

F

�1

x

1

, whereas J is

objetive funtion and F are the onstraints as above. F is a vetor and F

x

1

is the regular

part of the matrix F

x

with x

1

a sub-vetor of x. This formula an be derived from the

proof of the neessary onditions for an optimal point. This formula was already used in

the last preeding paragraph. The di�erentiation w.r.t. a primal variable leads to a regular

part in the matrix F

x

. Stritly speaking, this formula is only valid in the optimal point x

�

by de�nition.

Normally, for eah variable in the optimization problem (u; q; �) a dual variable (z

u

; z

�

; z

q

)

would have to be introdued. This leads to the double amount of variables. In the presented

approah, the Lagrangian multiplier an be viewed as the dual solution of the solution of

the equation for whih the Lagrangian multiplier is introdued (���

h

= z

u

). The formulas

are given in setion 2.6 with the derivation of the weighted error estimator. This redues

the equation system for error estimation with an optimization problem remarkably. There



32 CHAPTER 2. ERROR ESTIMATION AND ADAPTIVITY

are no additional variables and no additional equation systems have to be solved. For the

omputation, the solution of the simulation and the Lagrangian multiplier an be adopted

for the error estimation. So there are not muh additional osts for the error estimation

with the presented approah.

As already indiated, � an be onsidered as dual solution of the optimization problem.

The derivation of this fat will be given below with the derivation of the weighted error

estimator. One motivation is that

�L

��

= 0 leads to the equation system for the primal

variables u, whereas

�L

�u

= 0 gives the equations system for the Lagrangian multipliers.

One main interpretation in the ontext of error estimation is that the Lagrangian mul-

tiplier enables to measure the loal error propagation. This means that the in setion 2.6

derived weighted error estimator the weights !(z) desribe the dependene of the error

funtional J(e) on variations of the residuals �(u; �; q). Therefore, for eah ell T of the

triangulation T

h

the relation

�J(e)

��

T

(u;�;q)

� h

k

T

!

T

(z) with k depending on the �nite element,

the error indiator and the error funtional J(e) an be stated, as generally indiated in [7℄

and [51℄. In setion 2.6 the relation between the primal variables (u; �; q) and dual variables

z = (z

u

; z

�

; z

q

) will be stated with the already mentioned ���

h

= z

u

. A motivation for this

is that the dual problem is an inverse problem and its solution is the bakward solution.

The error e is here the error from the di�erene between the solutions of the ontinuous

and the disrete optimization problem. It is mainly the disretization error, but also the

linearization error may ome into play.

In the error estimation approah, the Lagrangian multiplier arises in its ontinuous

formulation. For the used error estimator, the dual problem is replaed by the linearized

dual problem. For the evaluation of the error estimator, the disrete values are taken

as desribed in setion 2.6. Therefore, problems may appear for omputations on oarse

grids where the used disrete Lagrangian multiplier an be 'far away' from the ontinuous

Lagrangian multiplier. The sensitivity for the auray of the alulation of the Lagrangian

multiplier is given in the developed alulus by u � u

h

. The loal auray hek of the

alulation of the Lagrangian multiplier is also driven by the weighted error estimator

developed in setion 2.6, as shown in setion 2.6.2.

2.2 General model formulation for nonlinear problems

A linear version of this setion an be found in [10℄. The following abstrat setting for

optimal ontrol will be onsidered: Let Q , V and H be Hilbert spaes for the ontrol

variable q 2 Q , the state variable u 2 V , and given observations u

d

2 H . The inner

produt and norm of H are (�; �) and k � k, respetively. The state equation is given in

the form

a(u; �) + b(q; �) = (f; �) 8� 2 V; (2.1)

where the semi-linear form a(�; �) (linear in its seond argument) represents an (ellipti)

operator and the bilinear form b(�; �) expresses the ation of the ontrol. The goal is to

minimize the ost funtional

J(u(q); q) =

1

2

ku(q) � u

d

k

2

+

1

2

n(q; q); (2.2)
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where  : V ! H is a linear bounded observation operator. It is assumed that eah q 2 Q

de�nes a unique solution u = u(q) 2 V of (2.1) and that the resulting funtional J(�)

has the appropriate ontinuity and oerivity properties in order to apply the alulus of

variations. For presented appliations, this guarantees the existene of a unique solution

of the optimal ontrol problem and the lassial regularity theory for ellipti equations

applies (see, e.g., [48℄). For nonlinear state equations there may be a non uniqueness of

the solutions. The developed theory is still valid (see [34, p. 1004℄). In this ase, there

an be several stationary points (e.g. loal minima). The operator n(�; �) will denote the

regularization of the ost funtional. It is mainly determined by the ontrol, for example

to ahieve the neessary oerivity properties for the optimization problem. For simpliity,

we suppose that a(�; �) and n(�; �) indue norms denoted by k � k

a

and k � k

n

on the spaes

V and Q , respetively, whih will be used in the following.

Introduing a Lagrangian parameter � 2 V and the orresponding Lagrangian funtion

L(u; q; �) , the �rst order neessary onditions (Euler-Lagrange equations) of the optimiza-

tion problem reads

a

0

(u; v; �) + (u� u

d

; v) = 0 8v 2 V;

a(u;�) + b(q; �) = (f; �) 8� 2 V; (2.3)

�b(r; �) + n(q; r) = 0 8r 2 Q:

The �rst equation results from

�L

�u

= 0, the seond from

�L

��

= 0 and the third from

�L

�q

= 0

as already desribed in setion 1.1. The simulation equation is a(u; �) + b(q; �) = (f; �).

The operator b(:; �) results from the optimal ontrol. It is generally analyzed in setions 1.1

and 1.2. For (NBC) it is just (:; �)

�

Q

. Whereas for (DBC), the strong boundary ondition

u = q on �

Q

is stated. The operator n(:; r) represents the regularization of the objetive

funtion J . The nonlinearity an be in the operator a(:; :) (whih is linear in the seond

argument, the test funtion) and in the objetive funtion J .

This system leads to a non-symmetri saddle point struture

(u; v) + a

0

(u; v; �) = (u

d

; v) 8v 2 V;

a(u;�) + b(q; �) = (f; �) 8� 2 V; (2.4)

b(r; �) � n(q; r) = 0 8r 2 Q:

For the resulting Hessian matrix (see setions 1.1 and 6.2), a symmetri saddle point stru-

ture is obtained.

For appliations with linear operator a(�; �) , the symmetri saddle point struture is

already obtained for the �rst order neessary ondition, beause a

0

(u; v; �) = a(�; v).

For all linear problems and problems with speial nonlinearities like in the Ginzburg-

Landau equations (hapter 4) or in the Navier-Stokes equations (hapter 5), the following

matrix form an be stated. Introduing operators A;A

0

,B,C,N whih represent the or-

responding bilinear or nonlinear forms, system (2.4) an also be written in matrix form

as

2

4

C A

0

0

A 0 B

0 B

T

�N

3

5

2

4

u

�

q

3

5

=

2

4

u

d

f

0

3

5

: (2.5)
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The matrix will be in the following denoted by M .

To illustrate the following theoretial onsiderations, the (linear) example of the �rst

hapter will be used. For simpliity, (NBC) is taken. Let 
 � IR

2

be an open bounded

domain with Lipshitz boundary �
 whih is deomposed into a Dirihlet part �

D

and a

ontrol part �

Q

on whih the ontrol ats,

��u = f in 
; (2.6)

u = 0 on �

D

; �

n

u = q on �

Q

:

The observations are given on a part �

O

of the boundary and the assoiated ost funtional

is

J(u; q) =

1

2

ku� u

d

k

2

�

O

+

1

2

�kqk

2

�

Q

: (2.7)

with a regularization parameter � � 0. In this ase the natural funtion spaes are V =

fv 2 H

1

(
) : v = 0 on�

D

g , H = L

2

(�

O

) and Q = L

2

(�

Q

), whereas the operator 

orresponds to the trae operator. V is the �rst-order Sobolev Hilbert-spae over 
. H

and Q are the usual Lebesgue Hilbert-spaes over �

O

and �

Q

. The bilinear forms a(�; �) ,

b(�; �) and n(�; �) are given by

a(u; v) = (ru;rv)




+ (u; v)




; b(q; v) = (q; v)

�

Q

; n(q; r) = �(q; r)

�

Q

;

where (�; �)

�

denotes the L

2

-inner produt on �.

The main issue of the rest of this setion will be the disussion of the diret and indiret

approah for solving an optimization problem in the presented ontext of partial di�erential

equations with adaptive �nite element Galerkin disretization (see Setion 1.5).

The indiret approah takes the ontinuous formulation of the optimization problem.

The disretization is done after the equation system (1.10) is derived. Whereas in the

diret approah the disretization is done before these equations are derived. The latter

means that equation (1.10) is derived for the disrete system. Therefore, the optimization

problem is the one of the disrete formulation. In both ases, the same original optimization

problem is onsidered. Only the disretization is done at another point of the derivation

of the equations of the optimization system. So it an be questioned, whih inuene this

has on the solution of the whole optimization problem and its numerial solution.

The applied disretization is based on standard �nite element Galerkin tehniques. So

the di�erene between the diret and indiret Galerkin methods has to be analyzed.

In the diret Galerkin approah, an operator a

h

and a matrix K

h

is derived from the

disretized optimization problem (see Setion 1.5). For the indiret approah, this operator

and this matrix are denoted by a and K, respetively. For the Galerkin approah, it is

obvious that there is no di�erene to the equations of the indiret Galerkin approah, i.e.

a(u

h

; v) = a

h

(u

h

; v) and f = f

h

. Conerning the �nite element formulation, also the same

equations result beause, again, K = K

h

.

From the stated equations, it is obvious that there is no di�erene between the diret

and the indiret Galerkin approah. The resulting equations are the same for the two

approahes. This is even valid for the �nite element formulation.

A di�erene between the diret and the indiret approah an arise in the numerial

evaluation on the �nite elements. On this level, it is possible to notie a di�erene between
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the ontinuous operator of the indiret approah and the disrete operator of the diret

approah.

2.3 A priori error estimate

This setion is dediated to state a priori error estimates for the presented appliations.

These are related to the operator A(:) introdued in the last setion. A(:) will be linear,

resulting from the Ginzburg-Landau equations (hapter 4) or from the Navier-Stokes equa-

tions (hapter 5). The following reasoning an be developed for the general linear ase for

A(:). If A(:) is nonlinear, the estimates have to be derived for ertain lasses of problems

or even for only one problem, depending on the diÆulty of the problem. Until now, there

is no general proof in the nonlinear ase known to the author.

For simpliity of notation, we introdue the spae X = V � V � Q, with elements of

the form x = fu; �; qg whih is equipped with the produt-spae norm

kxk

X

:=

�

kuk

2

V

+ k�k

2

V

+ kqk

2

Q

�

1=2

:

Furthermore, M(�; �) on X representing the �rst order neessary onditions of the opti-

mization problem is de�ned by

M(x; y) =M(fu; �; qg; fv; �; rg) :=

(u; �) + a(u; v) � b(q; v) + a

0

(u;�; �)� b(r; �) � n(q; r):

Using this notation, system (2.4) an be written in ompat form as

M(x; y) = F (y) 8y 2 X; (2.8)

with the linear funtional F (�) de�ned by

F (y) = F (fv; �; rg) := (u

d

; �) + (f; v):

For a linear operator a(:), the following a priori error estimates an be derived as

desribed in [10℄. In order to simplify the analysis, we impose the following onditions,

jM(x; y)j � 

M

kxk

X

kyk

X

; (2.9)

jb(r; v)j � 

b

krk

n

kvk

a

: (2.10)

The seond ondition, whih relies on the regularization term n(�; �) (requiring that � > 0),

is rather strong. It an be substituted by an 'inf-sup'-ondition for b(�; �) under whih the

regularization ould be omitted. M(�; �) satis�es the following stability ondition:

Proposition 2.3.1. Under the assumptions (2.9) and (2.10) there exists a onstant  suh

that

inf

x2X

sup

y2X

M(x; y)

kxk

X

kyk

X

�  > 0: (2.11)
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Proof. For any �xed x = fu; �; qg , we hoose the test triple y = fv; �; rg := fu; �;�qg , in

order to obtain

M(x; y) = kuk

2

+ kuk

2

a

+ k�k

2

a

+ kqk

2

n

� b(q; �)� b(q; u)

� kuk

2

+ kuk

2

a

+ k�k

2

a

+ kqk

2

n

�

1

4

kqk

2

n

�

3

4

k�k

2

a

�

1

4

kqk

2

n

�

3

4

kuk

2

a

� kuk

2

+

1

4

kuk

2

a

+

1

4

k�k

2

a

+

1

2

kqk

2

n

:

We onlude the asserted estimate by noting that kyk = kxk.

We onsider the disretization of the variational equation (2.8) by a standard Galerkin

method using trial spaes X

h

:= V

h

� V

h

� Q

h

� X . For eah x 2 X , there shall exist

an \interpolation" i

h

x 2 X

h

, suh that kx� i

h

xk

X

! 0 (h! 0) . The disrete problem

reads

x

h

2 X

h

: M(x

h

; y

h

) = F (y

h

) 8y

h

2 X

h

: (2.12)

This disretization is automatially stable sine a disrete analogue of (2.11) is ful�lled by

the same argument as used above,

inf

x

h

2X

h

sup

y

h

2X

h

M(x

h

; y

h

)

kx

h

k

X

ky

h

k

X

�  > 0: (2.13)

Combining equations (2.12) and (2.8), we get the Galerkin orthogonality

M(x� x

h

; y

h

) = 0; y

h

2 X

h

: (2.14)

This leads us to the following abstrat a priori error estimate.

Proposition 2.3.2. For the Galerkin approximation on spaes X

h

� X, there holds

ku� u

h

k

a

+k�� �

h

k

a

+ kq � q

h

k

n

(2.15)

� 

�

inf

v

h

2V

h

ku� v

h

k

a

+ inf

v

h

2V

h

k�� v

h

k

a

+ inf

p

h

2Q

h

kq � p

h

k

n

�

:

Proof. The stability estimate (2.13) implies that

ki

h

x� x

h

k � sup

y

h

2X

h

M(i

h

x� x

h

; y

h

)

ky

h

k

X

= sup

y

h

2X

h

M(i

h

x� x; y

h

)

ky

h

k

X

� 

M

ki

h

x� xk

X

:

Here, we have used the Galerkin relation (2.14) and the ontinuity estimate (2.9).

Of ourse, more preise error estimates an be given using re�ned arguments, whih

exploit the struture of the underlying problem. For instane, it would be interesting

to equip the spae Q with a di�erent norm than the one indued by n(�; �) in order

to get robustness with respet to the regularization. This a�ords replaing (2.10) by an

appropriate (weaker) inf-sup-ondition like

inf

q2Q

�

sup

v2V

b(q; v)

kvk

a

�

� � > 0:
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It should be noted that for the model example with boundary ontrol and boundary ob-

servations given above the onditions (2.9) and (2.10) are satis�ed.

For nonlinear A, theoretial results already stated in [34℄ are used. In fat, the searhed

a priori error estimates an be found therein. A general theorem for a priori error estimates

is theorem 3.5 on page 1013. Here some abstrat results are stated for a ertain lass of

optimization problems. For the Ginzburg-Landau equations the a priori error estimates

are given in theorem 4.7 on page 1030. And for the Navier-Stokes equations they an be

found in theorem 4.10 on page 1041.

2.4 Motivation: Poisson equation

The a posteriori error estimator for optimization problem whih will be derived in the

following setions an be motivated starting from already known fats in error estimation for

the Poisson equation ([12℄,[13℄). Taking the Poisson equation as an optimization problem,

will lead to the lassial a posteriori error estimator for solutions of partial di�erential

equations.

The motivation is for the Poisson problem

��u = f in 
; uj

�


= 0:

Let (:; :)




; k:k




denote the L

2

-inner produt and norm. Then the variational form seeks

u 2 V := H

1

0

(
) suh that (ru;r�)




= (f; �)




8� 2 V:

Let T

h

be a triangulation of 
. We de�ne the subspae V

h

� V as

V

h

= f� 2 V : �j

K

2 Q

1

(K) 8K 2 T

h

g:

This leads to the following �nite element Galerkin approximation for the above variational

form:

u

h

2 V

h

: (ru

h

;r�

h

)




= (f; �

h

)




8�

h

2 V

h

:

De�ning the error e = u�u

h

, the Galerkin orthogonality an be stated (whih is an essential

feature):

(re;r�

h

)




= 0 8�

h

2 V

h

:

The a posteriori error estimation is done with respet to the (linear) funtional output

jJ(u)� J(u

h

)j � TOL:

The orresponding dual problem is:

z 2 V : (r�;rz)




= J(�) 8� 2 V: (2.16)



38 CHAPTER 2. ERROR ESTIMATION AND ADAPTIVITY

Taking the error representation for the test funtion equal to the error (� = e) and using

the Galerkin orthogonality and ell wise integration by parts leads to

J(e) = (re;rz)




= (re;r(z � z

h

))




= (f; z � z

h

)




� (ru

h

;r(z � z

h

))




=

X

K2T

h

f(f +�u; z � z

h

)

K

�

1

2

([�

n

u

h

℄; z � z

h

)

�K

g (2.17)

�

X

K2T

h

fkf +�uk

K

kz � z

h

k

K

+

1

2

k[�

n

u

h

℄k

�K

kz � z

h

k

�K

g

�

X

K2T

h

fkf +�uk

K

kz � z

h

k

K

+

1

2

�

K

(u

h

)!

K

(z)g:

when taking only the dominant terms after the inequality. The jump over the ell K is

denoted by [:℄. The ell residuals

�

K

(u

h

) =

1

2

h

1

2

K

k[�

n

u

h

℄k

�K

an be interpreted as smoothness measure of the solution. Whereas the weights

!

K

(z) � C

i

h

K

kr

2

zk

K

� h

1

2

K

k[�

n

z

h

℄k

�K

represent sensitivity fators of J(e). The full a posteriori error estimate would be by

equation (2.17):

jJ(e)j � �(u

h

) :=

X

K2T

h

h

2

K

�

�

(u)

K

!

(z)

K

+ �

(u)

�K

!

(z)

�K

	

; (2.18)

with the ell residuals and weights

�

(u)

K

:= h

�1

K

kf +�u

h

k

K

; �

(u)

�K

:=

1

2

h

�3=2

K

kn�[ru

h

℄k

�Kn�


;

!

(z)

K

:= h

�1

K

kz � z

h

k

K

; !

(z)

�K

:= h

�1=2

K

kz � z

h

k

�Kn�


:

In view of the loal approximation properties of �nite elements, there holds

!

(z)

K

+ !

(z)

�K

� 

I

h

2

K

max

K

jr

2

zj : (2.19)

In pratie the weights !

(z)

K

; !

(z)

�K

have to be determined omputationally. Let z

h

2 H

h

be the Galerkin approximation of z de�ned by

(r�

h

;rz

h

)




= J(�

h

) 8�

h

2 V

h

: (2.20)

In view of the estimate (2.19), we an approximate

!

(z)

K

+ !

(z)

�K

� 

I

h

2

K

max

K

jr

2

h

z

h

j; (2.21)
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where r

h

z

h

is a suitable di�erene quotient approximating r

2

z. The interpolation on-

stant is usually in the range 

I

� 0:1 to 1 and an be determined by alibration. Alterna-

tively, we may onstrut from z

h

2 H

h

a path wise bi-quadrati extrapolation I

2

h

z

h

and

replae z � �

h

in the weights by I

2

h

z

h

� z

h

. This gives an approximation whih is free

of any interpolation onstant. The quality of these approximations for the model problem

has been analyzed in [13℄.

This derivation an be reformulated as an optimization problem. The results an be seen

as a motivation for the following setions on error estimation for optimization problems.

Let the weak formulation of the Poisson equation be the funtional to be minimized (i.e.

the ost funtional of the optimization problem):

min

u2V=H

1

0

(
)

F (u) :=

1

2

kruk

2




� (f; u)




:

Considering the error e := u� u

h

results

F (u)� F (u

h

) =

1

2

kruk

2




� (f; u)




�

1

2

kru

h

k

2




+ (f; u

h

)




= �

1

2

kruk

2




�

1

2

kru

h

k

2




+ (ru;ru

h

)




= �

1

2

krek

2




:

In this ase, energy-error ontrol means error ontrol with respet to the 'ost funtional'

F . Exploiting the Galerkin orthogonality for the �rst equation leads to a motivation for

the error funtional

G(e) := �

1

2

krek

2




= �

1

2

(re;ru)




= F (u)� F (u

h

):

By the de�nition of the dual problem (2.16), we get

(rz;r�)




= �

1

2

(re;r�)




leading to the dual solution

z = �

1

2

e:

The general a posteriori error estimate (2.18) takes the partiular form

krek

2




�

X

K2T

h

h

2

K

�

�

(u)

K

!

(u)

K

+ �

(u)

�K

!

(u)

�K

	

; (2.22)

with the weights !

(u)

K

= h

�1

K

ku� �

h

k

K

and !

(u)

�K

= h

�1=2

K

ku� �

h

k

�Kn�


. Then, using the

loal approximation estimate

inf

�

h

2H

h

�

X

K2T

h

�

h

�2

K

ku� �

h

k

2

K

+ h

�1

K

ku� �

h

k

2

�K

	

�

1=2

� 

I

krek




; (2.23)

it an be onluded from (2.22) that

krek

2




� 

I

�

X

K2T

h

h

4

K

�

�

(u)2

K

+ �

(u)2

�K

	

�

1=2

krek




:
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This implies the standard residual{based energy-norm a posteriori error estimate (see, e.g.

Verf�urth [62℄):

jF (u)� F (u

h

)j =

1

2

krek

2




�

1

2



2

I

X

K2T

h

h

4

K

�

�

(u)2

K

+ �

(u)2

�K

	

: (2.24)

Below, it will be shown that the peuliar relation z = �

1

2

e for the dual solution orre-

sponding to the \energy funtional" F (�) follows from a general priniple whih an be

used also for the disretization of the optimal ontrol problem desribed above.

2.5 General approah to a posteriori error analysis

In this setion, two abstrat and general approahes to a posteriori error analysis are

presented. Applying these approahes to optimization problems leads to the presented dual-

weighted a posteriori error estimator. Both approahes are not restrited to optimization

problems. Starting from a (possibly nonlinear) funtional, the desribed mehanism an

be applied. The �rst version has been published in [11℄. For linear or quadrati problems,

the error estimate an be exat. Otherwise, there is an additional error. This error will be

given in the seond version in this setion by the remainder R (see [10℄).

Let L(u) be a twie di�erentiable funtional on some Hilbert spae V , e.g. the energy

funtional related to the Poisson problem or the Lagrangian funtional de�ned for the

Ginzburg-Landau model. For its �rst and seond di�erentials at u , the notation L

0

(u; �)

and L

00

(u; �; �), respetively, is used. Notie that L

00

(u; �; �) is symmetri. Stationary points

u 2 V of L(�) are searhed,

L

0

(u;�) = 0 8� 2 V: (2.25)

For an optimization problem, this equation is the �rst order neessary ondition of the

underlying original ontinuous optimization problem, i.e. the equation whih has to be

solved. Corresponding approximations u

h

2 V

h

are de�ned in �nite dimensional subspaes

V

h

� V by the Galerkin equations

L

0

(u

h

;�

h

) = 0 8�

h

2 V

h

: (2.26)

Let J(�) be a funtional hosen for measuring the error e = u� u

h

. Then,

J(u)� J(u

h

) =

Z

1

0

J

0

(u

h

+ te; e) dt; (2.27)

L

0

(u; �) � L

0

(u

h

; �) =

Z

1

0

L

00

(u

h

+ te; e; �) dt; (2.28)

leads to onsider the \dual problem"

Z

1

0

L

00

(u

h

+ te;�; z) dt =

Z

1

0

J

0

(u

h

+ te;�) dt 8� 2 V; (2.29)
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whih is assumed to have a solution z 2 V . Then, taking � = e in (2.29) and using the

Galerkin equation (2.26) results in the error identity

J(u)� J(u

h

) = L

0

(u; z)� L

0

(u

h

; z) = �L

0

(u

h

; z � �

h

); (2.30)

with arbitrary �

h

2 V

h

. In general, this error representation annot be evaluated sine

the left-hand side as well as the right-hand side in the dual problem (2.29) depend on the

unknown ontinuous solution u . The simplest way of approximation is to replae u by

u

h

, whih yields the perturbed dual problem

L

00

(u

h

;�; ~z) = J

0

(u

h

;�) 8� 2 V: (2.31)

Controlling the e�et of this perturbation on the auray of the resulting error estimate

may be a deliate task and depends strongly on the partiular problem under onsideration.

Experienes from di�erent types of appliations (e.g. the Navier-Stokes equations) indiate

that this problem is not ritial as long as the solution to be omputed is stable. The

ruial problem is the approximation of the perturbed dual solution by solving a disrete

dual problem

L

00

(u

h

;�

h

; ~z

h

) = J

0

(u

h

;�

h

) 8�

h

2 V

h

: (2.32)

So far, the derivation of the error representation (2.30) did not use that the variational

equation (2.25) stems from an \energy funtional". In fat it an be used for muh more

general situations; see the surveys given in Eriksson, et al. [27℄, and in [51℄. It seems

natural to ontrol the error e = u�u

h

with respet to the given \energy" funtional L(�) .

Observing that L

0

(u;�) = 0 , it follows by integration by parts that

Z

1

0

L

0

(u

h

+ te;�) dt = �

Z

1

0

L

00

(u

h

+ te; e; �)t dt = �

Z

1

0

L

00

(u

h

+ te;�; e)t dt:

Hene, in this ase the dual problem (2.29) takes the speial form

Z

1

0

L

00

(u

h

+ te;�; z) dt = �

Z

1

0

L

00

(u

h

+ te;�; e)t dt 8� 2 V: (2.33)

If the funtional L(�) is quadrati or in the general ase by linearization u ! u

h

, the

following perturbed dual problem is obtained

L

00

(u

h

;�; ~z) = �

1

2

L

00

(u

h

;�; e) 8� 2 V; (2.34)

with the solution ~z = �

1

2

e . The resulting a posteriori error estimate has the form

jL(u)� L(u

h

)j � inf

�

h

2V

h

jL

0

(u

h

; ~z � �

h

)j = inf

�

h

2V

h

1

2

jL

0

(u

h

; ~u� �

h

)j: (2.35)

In the ideal ase of a quadrati funtional L(�) linearization is not required and this error

bound beomes exat. Here, again the quantity

~z � �

h

= �

1

2

e� �

h

=

1

2

(u�  

h

)
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has to be approximated as desribed above by using the omputed solution u

h

2 H

h

.

It should be emphasized that in this partiular ase the evaluation of the a posteriori

error estimate with respet to the \energy funtional" does not require the expliit solution

of the dual problem. This abstrat reasoning an be taken as guide-line for systematially

deriving a posteriori error estimates in onrete situations, for example for optimization

problems in the following hapters.

Remark 2.5.1. The fator �

1

2

results from the di�erene between the �rst and the seond

order of di�erentiation. Alternatively, it an be found in the Taylor approximation in

equation (2.51). It ould be eliminated by a multipliation of the ost funtional with fator

2. The standard notation in optimization theory is the �rst one.

Following the formalism of this and the previous hapter, the estimation of the error e =

fe

u

; e

�

; e

q

g with respet to the Lagrangian funtional L(�) is searhed. The orresponding

linearized dual problem

L

00

(u

h

;�; ~z) = �

1

2

L

00

(u

h

;�; e) 8� 2 V; (2.36)

then has the solution ~z = �

1

2

fe

u

; e

�

; e

q

g . Hene, this dual problem has not to be built (nor

extra work for solving it has to be spent). The following result is also true for nonlinear

state equations as for example shown in hapter 4.

Theorem 2.5.1. For the �nite element disretization of the variational equation (1.7) -

(1.9) for the onsidered optimization problem, there holds the a posteriori error relation

jJ(u; q) � J(u

h

; q

h

)j � �

!

(u

h

; �

h

; q

h

) =

X

K2T

h

�

K

(u

h

; �

h

; q

h

); (2.37)

with the loal error indiators

�

K

(u

h

; �

h

; q

h

) := �

(u)

K

!

(�)

K

+ �

(u)

�K

!

(�)

�K

+ �

(�)

K

!

(u)

K

+ �

(�)

�K

!

(u)

�K

+ �

(q)

�K

!

(q)

�K

:

and the ell-wise residuals and weights

�

(u)

K

:= kR

(u)

h

k

K

; !

(�)

K

:= k�� i

h

�k

K

;

�

(u)

�K

:= kr

(u)

h

k

�K

; !

(�)

�K

:= k�� i

h

�k

�K

;

�

(�)

K

:= kR

(�)

h

k

K

; !

(u)

K

:= ku� i

h

uk

K

;

�

(�)

�K

:= kr

(�)

h

k

�K

; !

(u)

�K

:= ku� i

h

uk

�K

;

�

(q)

�K

:= kr

(q)

h

k

�K\�

C

; !

(q)

�K

:= kq � j

h

qk

�K\�

C

;

The \ell residuals" R

(u)

h

; R

(�)

h

, and the \edge residuals" r

(u)

h

; r

(�)

h

; r

(q)

h

, are on ells K

and ell edges � de�ned by

R

(u)

hjK

:= ��u

h

+ u

h

� f; R

(�)

hjK

:= ���

h

+ �

h

; r

(q)

hj�

:= �q

h

� �

h

; if � � �

C

;

r

(u)

hj�

:=

8

>

<

>

:

1

2

h

�1=2

�

[�

n

�

h

℄; if ���K n �
;

h

�1=2

�

�

n

u

h

; if ���
n�

C

;

h

�1=2

�

(�

n

u

h

� q

h

); if ���

C

;

r

(�)

hj�

:=

8

>

<

>

:

1

2

h

�1=2

�

[�

n

�

h

℄; if ���K n �
;

h

�1=2

�

�

n

�

h

; if ���
n�

O

;

h

�1=2

�

(

0

� u

h

+ �

n

�

h

); if ���

O

:
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Here, [�

n

�

h

℄ denotes the jump of the normal derivative of �

h

aross the inter-element

edges �, the boundary omponents �

C

, �

O

are the ontrol and observation boundary,

respetively, and i

h

, j

h

denote some loal interpolation operators into the �nite element

spaes.

If the Lagrangian funtional L(�) is quadrati this error relation yields a true upper

bound.

Proof. In the present ase, there holds

L(v)� L(v

h

) = J(u; q) + (ru;r�)




� (f; �)




� (q; �)

�

C

� J(u

h

; q

h

)� (ru

h

;r�

h

)




+ (f; �

h

)




+ (q

h

; �

h

)

�

C

= J(u; q) � J(u

h

; q

h

);

sine fu; �; qg and fu

h

; �

h

; q

h

g satisfy the ontinuous and disrete version of equation

(1.9). Hene, error ontrol with respet to the Lagrangian funtional L(�) and the ost

funtional J(�) is equivalent. Now, the general error identity (2.35) implies that

jJ(u; q)� J(u

h

; q

h

)j � inf

�

h

2V

h

jL

0

(v

h

; v � �

h

)j; (2.38)

where v

h

= fu

h

; �

h

; q

h

g and v = fu; �; qg . Notie that this relation is an identity if the

funtional J(�) is quadrati. From the disrete version of (1.7) - (1.9), it results that

L

0

(v

h

; v � �

h

) = (u

h

� u

O

; u�  

h

)

�

O

+ (r(u�  

h

);r�

h

)




+ (u�  

h

; �

h

)




+ (ru

h

;r(�� �

h

))




� (f; �� �

h

)




� (q

h

; �� �

h

)

�

C

+ (�

h

� �q

h

; q � �

h

)

�

C

:

Splitting the global integrals into the ontributions from eah single ell K 2 T

h

and eah

ell edge � � �
 , respetively, and integrating loally by parts yields

L

0

(v

h

; v � �

h

) =

X

���

O

(u

h

� u

O

+ �

n

�

h

; u�  

h

)

�

+

X

���
n�

O

(�

n

�

h

; u�  

h

)

�

+

X

���

C

(�

n

u

h

� q

h

; �� �

h

)

�

+

X

���
n�

C

(�

n

u

h

; �� �

h

)

�

+

X

���

C

(�

h

� �q

h

; q � �

h

)

�

+

X

K2T

h

�

(��u

h

� f; �� �

h

)

K

+

1

2

(n�[ru

h

℄; �� �

h

)

�Kn�


	

+

X

K2T

h

�

(u�  

h

;���

h

+ �

h

)

K

+

1

2

(u�  

h

; n�[r�

h

℄)

�Kn�


	

:

From this the asserted relation follows by applying the H�older inequality.

The linearization error an be given in an expliit form. In the rest of this setion this

will be shown.

The a posteriori error estimation in the ase of a nonlinear state equation follows the

same pattern as in the linear ase. First, an abstrat result is stated.
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Proposition 2.5.1. For the Galerkin �nite element approximation of the abstrat model

problem (2.3) with nonlinear state equation and quadrati ost funtional there holds

J(u; q)� J(u

h

; q

h

) =

1

2

rL(x

h

)(x� i

h

x) +R(x; x

h

) ; (2.39)

where the remainder term R(x; x

h

) an be estimated by

jR(x; x

h

)j � sup

x̂2[x

h

;x℄

jr

3

L(x̂)(x� x

h

; x� x

h

; x� x

h

)j: (2.40)

Proof. The Galerkin orthogonality relation now reads

r

2

L(xx

h

)(x� x

h

; �

h

) = rL(x)(�

h

)�rL(x

h

)(�

h

) = 0; �

h

2 X

h

; (2.41)

with the abbreviating notation

L(xx

h

) :=

Z

1

0

L(x+ t(x

h

� x)) dt:

Sine the solutions u and u

h

satisfy the orresponding state equations there holds again

J(u; q)� J(u

h

; q

h

) = L(x)�L(x

h

):

By Taylor expansion, there holds

L(x)�L(x

h

) = rL(x)(x� x

h

)�

1

2

r

2

L(x)(x� x

h

; x� x

h

)

+

1

6

r

3

L(~x)(x� x

h

; x� x

h

; x� x

h

);

where ~x lies between x and x

h

. Sine x is a stationary point of L , the �rst term on

the right vanishes. In order to relate the seond term to the Galerkin relation (2.41), again

Taylor expansion is used:

r

2

L(x)(x� x

h

; x� x

h

) = r

2

L(xx

h

)(x� x

h

; x� x

h

)

+r

3

L(x̂)(x� x

h

; x� x

h

; x� x

h

);

where x̂ is another point between x and x

h

. In view of the identity

r

2

L(xx

h

)(x� x

h

; �) = rL(x)(�)�rL(x

h

)(�) = �rL(x

h

)(�);

and the Galerkin relation (2.41), it an be onluded that

L(x)�L(x

h

) = �

1

2

r

2

L(xx

h

)(x� x

h

; x� x

h

) +R(x; x

h

)

= �

1

2

r

2

L(xx

h

)(x� x

h

; x� x

h

� �

h

) +R(x; x

h

)

=

1

2

rL(x

h

)(x� x

h

� �

h

) +R(x; x

h

);

with an arbitrary �

h

2 X

h

, and the remainder term

R(x; x

h

) = r

3

L(x̂)(x� x

h

; x� x

h

; x� x

h

) +

1

6

r

3

L(~x)(x� x

h

; x� x

h

; x� x

h

):

Taking here �

h

= i

h

x� x

h

, eventually results in

L(x)�L(x

h

) =

1

2

rL(x

h

)(x� i

h

x) +R(x; x

h

);

whih ompletes the proof.
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It should be noted that, if the ost funtional J(�) is quadrati and the ontrol form

b(�; �) bilinear, then the only non-zero terms in r

3

L are

�

3

L

���

2

u

(x) = a

00

(u)(�; �; �);

�

3

L

�

3

u

(x) = a

000

(u)(�; �; �; �):

Further, if additionally the state equation is linear, then the remainder term R(x; x

h

)

vanishes.

This abstrat result will be applied for a nonlinear problem of optimal ontrol in the

\Ginzburg-Landau model" of superondutivity in semiondutors in hapter 4. It has the

same struture as the model problem onsidered above,

��u+ s(u) = f in 
; (2.42)

�

n

u = 0 on �

N

; �

n

u = q on �

C

;

with the nonlinearity s(u) := u

3

� u , and the quadrati ost funtional

J(u; q) =

1

2

ku� 

0

k

2

�

O

+

�

2

kqk

2

�

C

:

The orresponding �rst-order neessary ondition (2.3) uses the notation

a(u)(v) = (ru;rv)




+ (s(u); v)




; b(q; v) = (q; v)

�

C

; n(q; r) = �(q; r)

�

C

;

and is approximated by the Galerkin �nite element approximation of the sheme (2.3). The

well-posedness of this optimization problem, the existene of the adjoint variable �, as well

as a priori error estimates for its disretization have been disussed by Gunzburger and

Hou [34℄. From Proposition 2.5.1, we onlude the following a posteriori result.

Proposition 2.5.2. For error ontrol with respet to the ost funtional J , there holds

the weighted a posteriori error estimate

jJ(u; q)� J(u

h

; q

h

)j � �

!

(u

h

; �

h

; q

h

) +R(fu; �; qg; fu

h

; �

h

; q

h

g); (2.43)

where the loal error indiators �

K

(u

h

; �

h

; q

h

) in the linearized error estimator

�

!

(u

h

; �

h

; q

h

) :=

X

K2T

h

�

K

(u

h

; �

h

; q

h

) (2.44)

are de�ned as in the linear ase, here with the \ell residuals"

R

(u)

hjK

:= ��u

h

+ s(u

h

)� f; R

(�)

hjK

:= ���

h

+ s

0

(u

h

)�

h

;

r

(q)

hj�

:= �q

h

� �

h

; if � � �

C

: (2.45)

For the remainder term, there holds the a priori estimate

�

�

R(fu; �; qg; fu

h

; �

h

; q

h

g)

�

�

� 6

Z




n

maxfjuj; ju

h

jgju� u

h

j

3

+ ju� u

h

j

2

j�� �

h

j

o

dx: (2.46)
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As in the linear ase, the weights are evaluated numerially using the approximations

fu

h

; �

h

; q

h

g, but now the weighted error estimator ontains an additional linearization

error represented by the remainder R . Theory as well as pratial experiene show that,

in the present ase, this additional error is of higher order on well-adapted meshes and an

therefore be negleted. In fat, assuming suÆient smoothness of the solution fu; �; qg ,

there holds

�

�

R(fu; �; qg; fu

h

; �

h

; q

h

g)

�

�

� (u; u

h

)h

6

max

; (2.47)

with the maximum step size h

max

of the mesh. The proof of this order-optimal estimate

employing tehniques from L

1

-error analysis of �nite elements ould be given by known

tehniques whih are beyond the topi of this thesis. In view of this observation, the

remainder term in the a posteriori error estimate (2.43) is negleted and base the mesh

adaptation on its main part �

!

(u

h

; �

h

; q

h

) .

The disrete problems of (2.3) are solved by a quasi-Newton iteration whih is derived

from a orresponding sheme formulated on the ontinuous level. On eah disrete level

the Newton iteration is arried to the limit before the error estimator is applied for mesh

re�nement. The results of this proess may signi�antly di�er from those obtained if eah

Newton step is disretized separately mixing iteration and disretization errors together;

see the publiation [9℄ for the latter approah.

2.6 Derivation of the dual weighted error estimator for op-

timization problems

In the last setion, the dual-weighted error estimator was derived. In setion, some addi-

tional remarks for the ase of optimization problems should be given.

As already stated, the primal optimization problem in the weak formulation reads

y 2 X := V � V

0

�Q : M(y; v) = F (v) 8v 2 X; (2.48)

leading to a primal solution y = (u; �; q) of the optimization problem. Following the

general theory for dual problems, a dual problem �tting to the error estimation problem

y � y

h

= (u � u

h

; � � �

h

; q � q

h

) an be onstruted. Let G(:) be a general linear error

funtional G(�) = fG

u

(�); G

�

(�); G

q

(�)g de�ned on X . G(:) is linear in the error y � y

h

,

but not neessarily in the variables y. In order to obtain an a posteriori error estimator for

G(y � y

h

) , the following orresponding dual problem has to be onsidered:

z 2 X : M

t

(z; x) = G(x) 8x 2 X (2.49)

with the dual solution z = (z

u

; z

�

; z

q

) of the optimization problem. In equation (2.49), x

is an arbitrary test funtion of X. It will later on be set to the error y � y

h

.

For the speial ase of G(x) = J(y)�J(y

h

) with J being the objetive funtional of the

optimization problem, the following approah an be derived: The Lagrangian funtional

L(y) = J(u; q)+hAu�Bq; �i is stationary at the ontinuous solution y = fu; �; qg and the

disrete solution y

h

. This leads for the di�erene between the ontinuous and the disrete
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version to

J(u; q) � J(u

h

; q

h

) = L(u; �; q)�L(u

h

; �

h

; q

h

) (2.50)

= rL(y)(y � y

h

) +

1

2

r

2

L(y)(y � y

h

)

2

+O(ky � y

h

k

3

X

)

=

1

2

r

2

L(y)(y � y

h

)

2

+O(ky � y

h

k

3

X

): (2.51)

A(:) an be nonlinear. The ontinuous and disrete state equations must be equal to 0 for

equation (2.50). In equation (2.51), the �rst order neessary ondition for the Lagrange

funtion L is used. Until now, only the primal optimization problem has been exploited.

With the hoie G(x) = J(y)� J(y

h

), an interpretation of equation (2.51) by the dual

problem an be found, leading to an error estimate. The above matrix M is the matrix

of the �rst order neessary onditions. Thus it ontains the �rst order di�erential of L.

This matrix M is not symmetri for nonlinear A. But the seond order di�erential of L is

symmetri. So the matrix r

2

L an also be interpreted as an equation by the dual problem

M

t

. Taking G(x) = J(y) � J(y

h

), an equation for the estimation of the error funtional

G(:) was derived. The variable x is now the error y � y

h

, so this test funtion is taken.

Now, also the relation between the primal and the dual solutions an be derived. The

dual variable of � is z

�

= u � u

h

beause u; u

h

appear in the error funtional J(u; q) �

J(u

h

; q

h

) and the onsidered (dual) problem is M

t

and not M . By the same argument,

z

u

= �� �

h

an be stated. This means that the dual variable z an be expressed in terms

of the primal variable y. Hene no extra dual variables need not be generated for the

omputation. This redues the system on the half of the variables of the whole system for

adaptivity. And error estimation is almost \for free".

Remark 2.6.1. In theorem 2.5.1 an error estimate similar to the linear will be derived for

the general ase. The derived estimate is an approximation and will be an upper bound in

(the given) ase of a quadrati ost funtional.

Remark 2.6.2. In the a posteriori error estimate (2.37), the residual of the state equa-

tion is weighted by terms involving the Lagrangian multiplier � from the original equation

(2.4). This has a natural interpretation as it is well-known from sensitivity analysis that

the Lagrangian multiplier measures the inuene of perturbations on the ost funtional.

Sine disretization an be interpreted as a speial perturbation, the appearane of � in

the estimator is not surprising. The speial form of the weights involving the interpolation

i

h

z is a harateristi feature of the Galerkin disretization (orthogonality of residuals with

respet to the test spae).

Remark 2.6.3. The a posteriori error estimate (2.37) is derived from the �rst-order op-

timality ondition whih is a system of partial di�erential equations. An interpretation

in terms of the original minimization problem an be very illuminative. Indeed, the dis-

retization of the state equation leads to numerial solutions whih are not admissible (in

the strit sense) for the original onstrained minimization problem. The situation an be

summarized as follows: Let s : Q ! V denote the (linear) solution operator whih asso-

iates the state variable to a given ontrol funtion. The optimal ontrol then minimizes the

funtional j(q) := J(s(q); q) without onstraints over the spae Q. Sine the disretization

hanges the state equation, not only the spae of possible ontrols is hanged, but also the

funtional. Denoting by s

h

: Q ! V

h

the disrete solution operator, the disrete optimal
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ontrol q

h

minimizes the funtional j

h

(q) := J(s

h

(q); q) over the spae Q

h

. If numerial

omputation is performed, the notion of \admissible" solution has to be substituted by an

error estimate for the state equation. Of ourse, the distane between the numerial and the

ontinuous state should be measured with respet to the spei� needs of the optimization

problem, i.e., the inuene on the funtional to be minimized. This is exatly what the a

posteriori estimator derived above is designed for.

2.6.1 Error funtional for optimization problems

In the general approah in setion 2.6, the error funtional G(:) is not fored to be related

to the ost funtional J(:) of the optimization problem. For speial optimization problems,

there may exist good error funtionals whih are not related to the ost funtional J(:).

The prinipal point of this approah is that a general approah for error estimation of

optimization problems should be developed. Furthermore, the presented error funtional

results from the analyti derivation of the dual-weighted error estimate.

The sometimes for optimization problems applied strategy that the ost funtional is

mainly used as regularization to get a well-stated state equation is not onsidered. For this

setion, the ost funtional J(:) is really the funtion whih gives the quality of the obtained

solution of the ontinuous and disretized optimization problem. The error funtional G(:)

shows the quality of the disrete solution of the (disretized) optimization problem. These

two qualities are very lose. So it an be onsidered as a natural hoie to searh for a

relation between G(:) and J(:). By the analytial derivation of the weighted error estimator

in equation (2.51), this natural hoie an be stated. The proposed relation is that the

error funtional G(:) shows the e�et of the disretization on the ost funtional J(:). As

already stated, the disretization an be interpreted as a perturbation of the optimization

problem. For this interpretation, G(:) is the di�erene of the ontinuous and disretized

ost funtional G(x; x

h

) := J(x)� J(x

h

), where x is the ontinuous solution (u; �; q).

If the global minimum �ts to the data or measurements u

d

(e.g. no perturbations of

the measurements) and this global minimum is the solution of the optimization problem,

then u � u

d

= 0. Therefore, J(x) � J(x

h

) =

1

2

(u � u

d

)

2

�

1

2

(u

h

� u

d

)

2

=

1

2

(u

h

� u

d

)

2

.

This is equivalent to the right hand side of the equation

�L

�u

= 0 in �rst order neessary

ondition of the optimization problem, whih is the equation for the determination of the

dual solution �. Hene, in some ases, G(x; x

h

) =

�J

�x

j

x

h

an be taken. It is an integral on

the observation boundary or on the domain 
.

By the equations of the error estimator and numerial results, it an be observed that

the sensitivities of the optimization problem show up by this approah. The dependenies

of the observation, of the ontrol and of the primal solutions an be stated.

It should be noted that the term 'error funtional' is not the one really known in

traditional error estimation theory. Here, the error funtional is de�ned as the di�erene

of two solutions. A term like 'output funtional' ould be more appropriate for this fat.

Nevertheless, the traditional term is taken in order to simplify the understanding of the

developed theory.
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2.6.2 Interpretation of weighted error estimator for optimization prob-

lems

In this setion, some riteria for heuristi error estimation for optimization problems with

partial di�erential equation models should be disussed. It will be shown that these are

ful�lled for the analytially derived weighted error estimator in setion 2.6.

The main idea is that the important properties of the original and underlying ontin-

uous optimization problem must be valid in the disrete optimization problem in a ertain

auray. Therefore, the following question arises: Where plaing how many disretiza-

tion elements in the disrete optimization problem? This is a multidimensional problem

depending on the domain 
.

The following points an be seen as heuristi riteria for a good disrete optimization

problem in the indiated ontext:

1. The evaluation of ost funtional J . J provides the riterion for the quality of the

solution of optimization problem. It is the funtion whih is to be minimized. By

setion 2.6.1, J leads to a hoie of error funtional for adaptivity whih enables to

measure this quality.

2. The sensitivities with respet to J in optimization problems. These sensitivities arise

for example by the �rst order neessary onditions of the onstraint optimization

problem. They are derivations of the Lagrangian funtion. So the optimization pro-

ess inludes automatially the sensitivities. By standard interpretation (see setion

2.1), the Lagrangian multipliers � show sensitivities in optimization problem. Fur-

thermore, sensitivities an also be motivated by variation of (input) data. Taking the

whole alulation as a blak box, hanges in the input data an ause other output

values like for the ost funtional J .

3. Loal ontrol of these sensitivities with respet to J . The e�et of perturbation at

disrete points on evaluation of J is studied. If this perturbation has a big e�et on

the evaluation, a high sensitivity is stated. Hene, a higher evaluation auray is

neessary. In other words: An inappropriate disretization will automatially lead to

large values of the weights, whih in turn will indue loal mesh re�nement. This has

also a ontribution to the question: where plaing the disretization elements?

These points an be stated for the developed error estimator. The evaluation of J is

inluded by the hoie of the error funtional G = J � J

h

.

The sensitivity analysis is ontained by the derivation of the weighted error estimator

from the �rst order neessary onditions of the onstraint optimization problem. Further-

more, the Lagrangian multipliers � play an important role in the weighted error estimator.

The loal ontrol of the sensitivities is done by the weights arising from the duality.

These weights have for optimization two interpretations: The standard interpretation is a

ontrol of the loal stability (see setion 2.9). It is used for treating the error propagation.

The new interpretation is the loal ontrol of the sensitivities in the optimization problem in

ombination with the duality theory from optimization. The new property arises from the

merge of the weights and the interpretation of the Lagrangian multiplier �. A motivation
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is the greater value of the weights in ase of a bad disretization. The appropriate term in

the weighted error estimator is then more important.

Another point ould be that the disrete stationary point is as lose as possible to the

stationary point of the underlying ontinuous problem. By the above reasoning, this is only

partially true. In regions, whih are not important for the optimization problem, the two

stationary points an be far away from eah other for some appliations.

For the above mentioned interpretation, an appropriate formulation of the optimization

problem is neessary. For other formulations, the appliation of the weighted a posteriori

error estimation theory in [12℄ and [13℄ may not be as straight forward as presented. From

the presented formulation, all dependenies and salings in the error estimator are somehow

natural. In this formulation, also the additional parts for optimization instead of only the

forward solution are ontained. This means, that the onsidered mehanisms and depen-

denies of the optimization problem an be found in the �rst order neessary onditions of

the onstrained optimization problem. This inludes also the applied regularization meth-

ods. Whereas some optimization features like the globalization part an not be found here,

see hapter 3.

2.7 Heuristi error indiators

The presented heuristi error estimates are developed for the appliations of the Poisson

equation (hapter 1, s(:) = 0) and of the Ginzburg-Landau equations (hapter 4).

In the following error indiator, the equation for the Lagrangian multiplier is not on-

sidered. It an therefore be interpreted as error indiator with 'frozen' �. The general

approah in [10℄ led to the following a posteriori error estimate

jJ(u)� J(u

h

)j � j < J

0

u

(u); u � u

h

> j � �

weight

(u

h

; q

h

); (2.52)

where

�

weight

(u

h

; q

h

) :=

X

K2T

h

n

�

K

(u

h

; q

h

) !

K

(z

h

) + �

�K

(u

h

; q

h

) !

�K

(z

h

)

o

(2.53)

with the residual terms

�

K

(u

h

; q

h

) = kf +�u

h

� s(u

h

)k

K

+

1

2

h

�

1

2

K

k[�

n

u

h

℄k

�K

;

�

�K

(u

h

; q

h

) = kq

h

+ �

n

u

h

k

�K\�

2

;

and the weights

!

K

(z

h

) = C

i

h

2

K

kD

2

h

�

h

k

K

; !

�K

(z

h

) = C

i

h

3=2

�

2

kD

2

h

�

h

k

�K\�

2

:

By [�

n

u

h

℄ the jump of �

n

u

h

aross the element boundary is denoted. This error indiator

is derived in [10℄. It will be named 'opt1' in the numerial tests presented below.

The following error indiator ontains the o-state equations for �. But not all boundary

integrals of the optimization problem are ontained. The above mentioned (heuristially
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motivated) alternative for an error indiator for optimization problems by augmenting the

residual terms in (2.53) an be obtained as follows:

�

K

(u

h

; q

h

) = k�u

h

� s(u

h

) + fk

K

+ k��

h

+ s

0

(u)�k

K

;

while the boundary terms �

�K

are kept unhanged. This error indiator ontains the

residuals of the full equation system (1.7)-(1.9) and will be named 'opt2' in the numerial

tests presented below.

The weighted a posteriori error indiators and estimators will be ompared against

a more traditional energy error indiator whih links the mesh adaptation to the loal

residuals of the omputed solution with respet to the equation of state alone (for a survey

of this type of error indiators see, e.g., [62℄). In this ase there is no duality information

used. Furthermore, the optimization problem is not onsidered in an appropriate way. Suh

an error indiator has the form

�

energy

(u

h

; q

h

) =

�

X

K2T

h

h

2

K

�

K

(u

h

)

2

�

1

2

; �

K

(u

h

) := h

�

1

2

K

k[�

n

u

h

℄k

�K

:

The residual terms are omitted beause the jump terms will dominate the residual terms

([13℄).

There is just a ontrol of the error in the \energy norm" of the state equation alone.

Alternatively, the energy error indiator an be formulated by

�

E

(u

h

) := 

I

X

K2T

h

h

3

K

�

(u)2

�K

+ 

I

X

���


h

3

�

�

(u)2

�

; (2.54)

with the ell residuals �

(u)

�K

and �

(u)

�

. This version also inludes the boundary terms of the

problem (and not only ell boundaries). Furthermore, inorporating error ontrol for the

adjoint equation results in

�

E

(u

h

; �

h

) := 

I

X

K2T

h

h

3

K

�

�

(u)2

�K

+ �

(�)2

�K

	

+ 

I

X

���


h

3

�

�

�

(u)2

�

+ �

(�)2

�

	

: (2.55)

Both ad-ho riteria aim at satisfying the state equation and the adjoint equation uniformly

with good auray. However, this onept seems questionable sine it does not take

into aount the sensitivity of the ost funtional with respet to the loal perturbations

introdued by disretization. Capturing these dependenies is the partiular feature of the

presented approah.

In some ases it may be interesting to onsider a ombination of the weighted error

estimator and the energy error estimator. An appliation an be if one needs a ertain ex-

atness of the state equation. This ombination an be done as follows: �

!;E

(u

h

; �

h

; q

h

) :=

�

!

(u

h

; �

h

; q

h

) + ��

E

(u

h

) , with a suitable weighting fator � � 0 .

2.8 Algorithmi realization

The main issue in the solution approah is the appropriate design of the omputational

mesh by using adaptivity. To get lose to the ontinuous solution of the optimization prob-

lem, alulations on �ne grids have to be done. There are various ways to design the grid



52 CHAPTER 2. ERROR ESTIMATION AND ADAPTIVITY

for the alulations. One possibility is to take equidistant grids leading to very expensive

alulations. To redue the osts of the alulation, one an use adaptively onstruted

meshes, i.e., the meshes are re�ned only where it is neessary for ahieving suÆient a-

uray. In this ase, the omputations are done on a series of loally re�ned meshes. The

riterion for mesh re�nement has to be hosen in aordane with the partiular needs of

the problem onsidered. For the presented approah, the mesh re�nement is based on a

posteriori error estimates for the disrete solution derived by duality arguments.

In designing the solution method for the optimization problem (see setion 2.2), the

method tries to stay as long as possible within the ontext of the ontinuous formulation.

Aordingly, the Newton iteration for solving the boundary value problem (1.7)-(1.9) is

applied on the ontinuous level while disretization takes plae independently for eah

linear sub-step. This approah �ts better with the presented onept of mesh adaptivity

whih is based on a omputational sensitivity analysis for the ontinuous problem.

There are several possibilities for ombining adaptive disretization with the optimiza-

tion proess. The approah tries to stay lose to the ontinuous problem in order to exploit

the inherent partial di�erential equation struture. Alternatively, one ould disretize at

�rst and then use optimization strategies for the disrete problem. In this ase, there

would be less diÆulties in determining appropriate searh diretions for the disrete New-

ton method. In the ontinuous approah it may happen that the searh diretions obtained

after disretization are not very good for the underlying ontinuous Newton iteration. How-

ever, this potential diÆulty seems to be less ritial in the present situation provided that

good globalization strategies are used if neessary, partiularly on oarser meshes.

Sine in the presented approah Newton iteration and disretization is nested it is not

so lear when to apply mesh adaptivity at best. The theory is oriented at the disretiza-

tion error for the boundary value problem (1.7)-(1.9). Two possibilities for mesh adaptivity

have been tried: 1) The adaptive mesh re�nement is done after at most a maximal number

of Newton iterations on eah disretization level. The Newton system is therefore not ne-

essarily in the limit of the Newton iteration on the disretization levels when re�nement is

done. In order to save osts in the model omputations, optimization and the mesh adap-

tation proess is mixed, yet rigorous justi�ation is laking. Furthermore, an aeleration

of the onvergene an be stated for some examples. The results presented below indiate

that this 'diagonal' iteration is suÆiently robust and eÆient. For the Ginzburg-Landau

equations presented in hapter 4 this version is implemented in the ode 'rhopton'.

2) The re�nement is always done in the limit of the Newton iteration on the dis-

retization levels. In this ase, the theory an be applied in a more rigorous way. The

error estimates are then really estimates and not only heuristi error indiators. For the

Ginzburg-Landau equations this version is implemented in the ode 'bkr'.

The adaptive mesh re�nement itself is organized as follows: From the global error

estimator, loal 'error indiators' are extrated by whih the mesh adaptation is driven:

� :=

X

T2T

h

�

T

; (2.56)

with ertain ell indiators, e.g. �

T

:= h

3

T

�(u

h

)

�T

�(�

h

)

�T

. We aim at ahieving a pre-

sribed tolerane TOL for the quantity J(u) and the number of mesh ells N whih

measures the omplexity of the omputational model. Usually the admissible omplexity is
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onstrained by some maximum value N

max

. Here, a version of the so alled �xed fration

strategy as desribed in [13℄ is adopted. In eah adaptation yle the mesh ells are ordered

in aordane to the size of the value of their loal error indiators. Then, those elements

with the largest values in the ordered list are re�ned until a ertain perentage of the total

error bound (say 30%) is reahed. This leads to a gradual re�nement of the (too) oarse

starting grid.

For good quantitative error estimation, the value of the (weighted) error estimator is

used as stopping riterion for the adaptive mesh re�nement proess. The stopping value

depends strongly on the appliation. Main ideas are auray of measurements, formulation

of the ost funtional, exatness of the solution of the ode and last but not least the model

itself.

On eah mesh, the Euler-Lagrange equations are disretized by the Galerkin �nite

element method as desribed above using pieewise bilinear shape funtions for both the

state and adjoint variables u and � , while the traes on �

C

of the bilinear shape funtions

form the ontrol spae Q

h

. Then, the resulting disrete systems are solved iteratively and

new meshes are generated on the basis of a posteriori error estimators. In all ases, the

weights are evaluated by using di�erene approximation as desribed in the previous setion

with interpolation onstants set to appropriate values like C

I

= 0:1 .

2.9 Comparison of di�erent error indiators

In this setion, a omparison of several applied error indiators should be given.

An important feature of the presented approah in error estimation is that the error

funtional has to be taken suh that the mesh re�nement is organized in aordane to

the partiular needs of the optimization proess. In ontrast to the standard energy-error

estimator ommonly used in stati ellipti problems, error ontrol in optimization problems

has to follow di�erent strategies. The most natural hoie appears, as already desribed in

setion 2.6.1, to relate the error funtional for driving the mesh re�nement with the ost

funtional of the optimization problem.

The numerial tests presented below on�rm that the philosophy underlying the pre-

sented approah to adaptivity in optimization is valid: The disretization of the problem

should be adapted in aordane to the sensitivity of the optimization problem and not

merely to the auray requirements of the partial di�erential equation (equation of state).

Consequently it may happen that some of the onstraints do not need to be ful�lled with

high auray in some parts of the domain while still allowing a good approximation of the

optimization proess.

The energy error estimator from setion 2.7 just onsiders the state equation. It will

be therefore not appropriate for optimization problems in whih the state equation is not

the sole important determining riterion.

If the diagonal version desribed in setion 2.8 is applied, an additional error is esti-

mated: The error arising from the Newton method. This results from the fat that we are

not in the limit of the Newton iteration.
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Traditional a posteriori error estimates like the one derived in [13℄

kr

1�r

ek � C

s

C

i

�

X

T2T

h

h

2r

T

�

2

T

�

(2.57)

have a bound in the energy norm for r = 0 and in the L

2

-norm for r = 1. It depends on the

interpolation onstant C

i

and the stability onstant C

s

. C

i

is usually of size 0:1 � C

i

� 1.

C

s

measures the stability properties of the dual problem z 2 X :M

t

(z; y) = G(y) 8y 2 X in

terms of the global a priori estimate kr

1+r

zk � C

s

kr

1�r

ek. The a posteriori error estimate

(2.57) ontains information about the mehanism of error propagation only through the

global stability onstant C

s

. To overome this de�ieny, the loal weights !

T

have been

introdued as fators to the loal residuals �

T

. They have been proposed by R. Beker

and R. Rannaher for a posteriori error estimators for the forward solution in [12℄. These

weights ontain all information about the loal approximation properties of the spaes X

h

,

as well as the loal stability properties of the underlying ontinuous problem. The stability

onstant C

s

is replaed by this weights. So the mehanism of error propagation is now

also aptured by loal information. Hene the approah gets independent of C

s

whih is

diÆult to ompute for advaned appliations, espeially in a sharp sense. In general, C

s

has to be determined by numerial omputation.

The weighted residual based a posteriori error estimates developed by R. Beker and

R. Rannaher (see for example in [12℄ and [13℄) take the following speial form:

jG(e)j � C

i

X

K2T

h

�

K

!

K

(z

h

):

The residual terms �

K

are 'weighted' with the loal weights !

K

(z

h

) mentioned above. They

replae the global stability onstant C

s

. For loal mesh re�nement, the loal information

from the weights seems more appropriate then the global stability onstant C

s

. The error

estimators are used to onstrut good grids. They give riteria for a good disretization.

The estimation of the (speial) error funtional G(e) is a onsequene of this.

In the literature exist one error estimation approah for optimization problems known

to the author. The approah in [34℄ is of theoretial importane. It provides a priori error

estimates. Therefore, only estimation of the variables of the optimization problem is given.

No error funtional is provided. So not the whole optimization problem is onsidered.

Furthermore, no loal stability ontrol and no loal sensitivity ontrol is provided. Only

an abstrat error onstant independent of the mesh size h is given. There are no numer-

ial omputations done (whih are not possible for the estimates ontaining (unknown)

ontinuous information).

It should be mentioned that it is theoretially possible with the presented approah to

ompute for eah ontinuous variable an own grid representing the speial properties just

of this variable. This leads to split error estimates for the variables. The present version of

the approah alulates one grid whih represents all important information of the whole

optimization problem on one grid whih is the bases for the grids of all variables. The grids

for the boundary variables like the ontrol are just a part of this base grid.

The error due to the linearization of the nonlinear optimization problem an ause

additional strategies for mesh re�nement. One solution is the development of hybrid error

estimates �rst reduing the linearization error and then the disretization error.
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2.10 Comparison to model redution approahes

The presented approah an be interpreted in the well-known sheme of model redution

as desribed in [44℄.

Nonlinear ontinuous optimization problems like the one stated above generally annot

be solved analytially. They have to be approximated by disretization. For the presented

approah, the model redution is disretization of the problem. This means the redution

of an originally in�nite dimensional problem to a �nite dimensional problem whih an be

solved on the omputer. The question is, how an this redued model be onstruted as

appropriate as possible? The riteria are heap solution and good auray.

The model redution has to follow riteria whih respet the original optimization prob-

lem partiularly the sensitivities of the ost funtional J . Aordingly, the strategy for

arranging the omputational mesh should take into aount these sensitivities. Further the

important properties of the underlying ontinuous model must be preserved with a ertain

auray. This leads to the heuristi motivation of setion 2.6.2.

Considering the struture of the above optimization problem, riteria like the following

an be derived: The value of the ost funtional J shows the quality of an approximate

solution of the optimization problem. Hene, the quality of the evaluation of the ost

funtional J is one possible heuristi riterion. Other riteria result from the sensitivities

inherent to the optimization problem whih are represented by the Lagrangian multiplier

�. Further, the e�et of variations of the ontrol funtion on the state variable should

be inluded. Therefore, loal ontrol of all these sensitivities is neessary. A big e�et

means a high sensitivity. So a higher evaluation auray is neessary. This leads again to

the question of how to turn these qualitative arguments into quantitative riteria for mesh

arrangement.

The presented analyti approah in setions 2.6 and 2.5 leads to a model redution for

the system. These riteria should not only provide information about \where the mesh

ells have to be plaed", but also quantitative information about \how many mesh ells

have to be plaed in ertain areas". The too oarse model is re�ned (or enrihed) gradually

by the error estimator until the disrete problem is lose enough to the original ontinuous

model.

2.11 Quantitative error estimation

This setion should provide a measure to ompare the error of the disrete system (in

omparison with the underlying ontinuous problem) with the value of the error indiator.

This is alled quantitative error estimation.

The e�etivity index I

e�

:=

error

�(u

h

;q

h

;�

h

)

provides the measure mentioned above. In the

literature, also the inverse an be found as e�etivity index. The presented version seems

better for the presented problems beause �(u

h

; q

h

; �

h

) > error. Asymptoti sharpness is

stated for lim

TOL!0

I

e�

= 1. If the e�etivity index I

e�

is lose to 1, the value of the error

indiator is lose to the error of the disrete system. If I

e�

< 1, the error is overestimated

(�(u

h

; q

h

; �

h

) > error). This shape of the quotient I

e�

is used for the error an more easily

be equal to 0 than the value of the applied error indiators (see for example upper bound

in error inequality and parameter estimation problems).
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If there is a good onnetion between error of the disrete system and value of the error

indiator, the latter an be used as a stopping riterion the the grid adaptivity proess.

The speial hoie of the stopping value depends on the appliation. It has very often a

onnetion with (the evaluation of) the ost funtional.

2.12 Example: A \forward" test ase

In this setion, the di�erene between traditional \energy error ontrol" and our funtional-

oriented \dual-weighted error ontrol" by onsidering the following linear primal test ex-

ample should be illustrated:

��u+ u = 0 on 
; (2.58)

�

n

u = q on �

C

; �

n

u = 0 on �
 n �

C

:

The domain 
 for the test in this setion is the following Con�guration 2. The two on�g-

urations di�er in the hoie of the observation boundary. The two on�gurations will be

used in the next setion for the numerial tests of the error indiators for an optimization

problem. The numerial results are obtained with the ode 'bkr' (whih re�nes in the limit

of the Newton iteration of the disretization levels).

Figure: Con�guration of the boundary ontrol model problem on a T-domain (Ginzburg-Landau

model): Con�guration 1 (left), Con�guration 2 (right).

The boundary ontrol is frozen as q � 0:0503455 (taken from an optimization result).

The orresponding disrete equations read

(ru

h

;r 

h

)




+ (u

h

;  

h

)




= (q;  

h

)

�

C

8 

h

2 V

h

: (2.59)

The error e = u� u

h

with respet to the quadrati observation funtional

J(u) =

1

2

ku� u

O

k

2

�

O

should be ontrolled.
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The orresponding dual solution z 2 V is obtained by solving the orresponding system

(4.3) - (4.5) with frozen boundary funtion q and linearized right-hand side J

0

(u

h

; ) . The

resulting a posteriori error bound is

jJ(u)� J(u

h

)j � �

!

(u

h

) :=

X

T2T

h

h

2

T

�

�

(u)

T

!

(z)

T

+ �

(u)

�T

!

(z)

�T

	

+

X

�2�


h

2

�

�

(u)

�

!

(z)

�

; (2.60)

with ell residuals and weights de�ned as above. The asymptoti orretness of this error

estimator is demonstrated in the following table. It shows e�etivity index I

eff

of the

dual{weighted error estimator �

!

(u

h

) applied to the linear primal model problem, i.e.

E(u

h

) := jJ(u)� J(u

h

)j .

N 1376 5840 22544 57104 84368

E(u

h

) 1.64e-05 4.17e-06 1.01e-06 3.5e-07 2.49e-07

I

eff

0.81 0.91 0.92 0.95 0.88

The dual{weighted error estimator should be ompared with the traditional energy-norm

error estimator whih in this ase reads as follows:

krek

2




� �

E

(u

h

) := 

I

X

T2T

h

h

4

T

�

�

(u)2

T

+ �

(u)2

�T

	

+ 

I

X

�2�


h

4

�

�

(u)2

�

; (2.61)

with the notation as introdued above. Clearly, small krek




implies small E(u

h

) , but

not vie versa. Hene, mesh adaptation based on the energy-error estimator may result in

overly re�ned meshes. This is learly seen in the following �gures. They ontain results on

meshes obtained by the error estimators �

E

(u

h

) (left) and �

!

(u

h

) (right) with N � 5000

ells in both ases. The graph of the solution is strongly saled up.

The eÆieny of the omputed meshes generated by the error estimators �

E

(u

h

) (solid line)

and �

!

(u

h

) (dashed line), and by uniform re�nement (rosses) is shown in the following

�gure. The values are in log=log sale.
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1e-07

1e-06

1e-05

1000 10000 100000

E
(V

_
h
)

Number of elements N

"energy"
"dual_weighted"

"uniform"

The referene value J(e)

ref

=1.990239068196715 is alulated on a very �ne grid. It an be

stated that this value seems to be good also if it is ompared to the values given by the

equidistant re�nement in the following table. By the �gure omparing the eÆieny of the

omputed meshes, the meshes by the equidistant re�nement are the worse for �ner grids.

From the omputed data, also for these meshes a gradual onvergene to the referene value

is obvious.

N 8192 32768 131072 524288

J(e) 1.99023622 1.99023762 1.99023840 1.99023876

E(u

h

) 2.8e-06 1.4e-06 6.7e-07 3.0e-07

Obviously, the energy-error estimator puts too muh emphasis on re�ning at the reentrant

orners whih is obviously less important for ahieving good auray along the observation

boundary �

O

. In ontrast to that, the dual{weighted error estimator provides a better

balane between resolving the orner singularities and the neighborhood of �

O

. This

results in a higher mesh eonomy as shown by the orresponding error plots in the above

�gure. This demonstrates the value of apturing the sensitivities inherent to the problem

under onsideration. This e�et will beome even more pronouned in solving the optimal

ontrol problem.

2.13 Example: A linear test ase

A �rst example of the theory developed above should be provided by the following opti-

mization problem with linear state equation. It has already been onsidered in [10℄. In

this setion some additional numerial data will also be provided. In this example the on-

trol ats along the lower boundary �

C

, whereas the observation is taken along the upper

boundary �

O

.
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observation �

O

ontrol �

Q

��u + u = 0 in 
; (2.62)

�

n

u = 0 on �
 n �

Q

;

�

n

u = q on �

Q

:

The ost funtional is hosen as

J(u; q) :=

1

2

ku� 

0

k

2

�

O

+

�

2

kqk

2

�

C

;

with 

0

� 1 and � = 1. In this ase, the regularization term

�

2

kqk

2

�

C

may be viewed as

part of the ost funtional with its own physial meaning. Computations on a series of

loally re�ned meshes are performed. On eah mesh, the system of the �rst-order nees-

sary ondition is disretized by the Galerkin �nite element method desribed above. The

resulting disrete saddle-point problems are solved iteratively by a GMRES method with

multi-grid pre-onditioning. The adaptive mesh re�nement is based on an a posteriori error

estimator already desribed in the previous setions. The weights in the error estimator

(2.37) are evaluated with an interpolation onstant set to C

I

= 0:1 . The mesh re�nement

uses the \Fixed-Fration Strategy" desribed above.

Table 2.1 shows the quality of the error estimator (2.37) for quantitative error ontrol.

The e�etivity index is de�ned by I

eff

:= E

h

=�

h

, where E

h

:= jJ(u; q) � J(u

h

; q

h

)j is

the error in the ost funtional and �

h

:= �(u

h

; q

h

) the value of the error estimator used.

The referene value is obtained on a mesh with more than 200; 000 ells. We ompare the

weighted error estimator with a simple ad ho approah based on the already presented

standard energy-error estimator for the state equation. Figure 2.1 shows the omputed

\optimal" states over the meshes generated by the two di�erent error estimators.

The two meshes are quite di�erent: The energy-error estimator over-emphasizes the steep

gradients near the ontrol boundary and it leaves the mesh too oarse along the observation

boundary. The more seletive weighted error estimator onentrates the mesh ells where

they are needed for the optimization proess. The quantitative e�ets on the mesh eÆieny

of these two di�erent re�nement riteria is shown in Figure 2.2 (E

h

versus N in log/log-

sale).

Finally, how the approximation fu

h

; �

h

; q

h

g obtained by the weighted error estimator

(2.37) atually satis�es the state equation is heked; for this the global energy-error es-

timator is taken as quality measure. Table 2.2 shows a omparison of the two sequenes

of meshes generated by the weighted error estimator �

!

= �

!

(u

h

; �

h

; q

h

) (\!-meshes")

and the energy-error estimator �

E

= �

E

(u

h

) (\E-meshes"). The �rst and seond olumns

ontain the values of �

!

and �

E

on !-meshes, while the third and fourth olumns ontain

the values of �

!

and �

E

on E-meshes.

The energy-norm error bound �

E

for the state equation on the !-meshes is slightly larger

than on the E-meshes. This is not surprising sine the !-meshes are not so muh re�ned in

the regions where the state variable has a steep gradient. The ells are rather onentrated

along the ontrol and observation boundaries whih seems to be more e�etive for the opti-

mization proess. Indeed, the approximate solution fu

h

; �

h

; q

h

g obtained by the weighted
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error estimator �

!

ahieves a muh smaller value (fator � 0:1 ) of the ost funtional.

However, for other data, e.g., 

0

= os(2x) and � = 0:0001 , the disrepany between the

two kinds of meshes with respet to the satisfation of the state equation may be more

signi�ant.

Regularization an inuene the solution of the optimization system. If the regular-

ization fator � is hosen too big, the solution of the optimization problem an be (very)

di�erent from the solution of the original optimization problem. In other words: The solu-

tion of the optimization problem an be dominated by the regularization for big �. For the

optimization problem of this setion an example should be given with the following data:

The domain is the same as in the previous alulations. The starting values for u is 100, for

� is 0.1 and for q is 0. The observation is os(3x) and the regularization pro�le is q

0

= 0.

Figure 2.3 shows the primal solution and the Lagrangian multiplier obtained with regu-

larization fator � = 0:01. Whereas Figure 2.4 shows the same with � = 0:00001. These

results show that the solution with � = 0:00001 seems to be lose to the solution of the

original optimization problem. The solution with � = 0:01 learly shows the (too) strong

inuene of the regularization espeially on the ontrol funtion. The speial struture of

the boundary regularization may ause the e�et that in some ases this inuene of the

regularization on the grid re�nement is almost without transition (see setion 5.7).
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Table 2.1: Linear test (Con�guration 1): EÆieny of the weighted error estimator.

N 320 1376 4616 11816 23624 48716

E

h

1:0e � 3 3:5e � 4 3:2e � 5 1:6e� 5 6:4e � 6 2:8e � 6

I

eff

1.1 0.7 0.7 1.0 0.8 0.7

Figure 2.1: Linear test: Comparison of disrete solutions obtained by the weighted error estimator

(left,N � 1600 ells) and the energy-error estimator (right,N � 1700 ells).
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lo
g
(e

rr
)

log(N)

Figure 2.2: Linear test (Con�guration 1): Comparison of the eÆieny of the meshes generated

by the the weighted error estimator (symbol 2 ) and the energy -error estimator (symbol � ) in

log = log sale.
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Table 2.2: Linear test (Con�guration 1): Values of the two error estimators �

!

and �

E

obtained

on \!-meshes" and on \E-meshes".

N � �

!

on !-meshes �

E

on !-meshes �

!

on E-meshes �

E

on E-meshes

140 0.0040205 0.0193270 0.0043245 0.0162589

300 0.0022030 0.0157156 0.0026536 0.0112183

750 0.0008330 0.0092718 0.0020437 0.0074801

3700 0.0001660 0.0049598 0.0004870 0.0034197

11000 0.0000532 0.0026208 0.0002199 0.0019036

21000 0.0000317 0.0020740 0.0001189 0.0014285

28000 0.0000239 0.0016294 0.0001088 0.0012403

48000 0.0000108 0.0013373 0.0000722 0.0009399

145000 0.0000037 0.0006950 0.0000328 0.0005466

Figure 2.3: Linear test: Disrete primal solutions (left) and Lagrangian multiplier (right) obtained

by the weighted error estimator with � = 0:01.

Figure 2.4: Linear test: Disrete primal solutions (left) and Lagrangian multiplier (right) obtained

by the weighted error estimator with � = 0:00001.



Chapter 3

Globalization tehniques

In our ontext, one main problem involved with the appliation of a Newton method is

that its onvergene depends on the starting values. The robustness of the developed

Newton method an not be assured. Muh e�ort is spent in optimization theory to develop

appropriate methods in order to improve the range of onvergene. These tehniques

are known as globalization methods. In the presented ontext, the globalization must

work with adaptivity and error estimation, espeially the original underlying ontinuous

optimization problem should still play a deisive role. Furthermore it should not be too

ostly. Funtion and di�erentiation evaluations are very expensive for partial di�erential

equations, espeially for large and oupled systems as in the presented ase.

The prinipal goal of this thesis is to develop optimization and adaptivity tehniques

for partial di�erential equations. This is the �rst step. Globalization will be the seond

step. Some standard methods have been tested for the presented appliations. Certain

new developments are skethed. Promising results will be given in setions 4.5 and 4.7

and hapter 5. Further researh would be neessary to develop as tuned strategies as for

optimization governed by ODE and DAE systems. However, this is beyond the topi of

this thesis.

Two main streams an be skethed as globalization tehniques: reduing the step size

and hanging the searh diretion of the Newton method. Various tehniques and mixtures

have been developed in the last deades. The appliation of these methods on optimiza-

tion governed by partial di�erential equations is not yet satisfatory solved, espeially, if

error estimation is inluded. For the searh diretion, a prinipal problem is the di�er-

ene between the diretion from the disrete optimization problems and the diretion from

the underlying ontinuous optimization problem. The omputations are for the disrete

problems but the ontinuous optimization problem originally has to be solved.

A modi�ed Newton method will be developed in setion 3.3. The seond order on-

ditions of a onstraint optimization problem are exploited for a orretion of the searh

diretion of the Newton method. A hek of these seond order onditions and the deter-

mination of the stationary point as minimum, maximum or saddle point results additionally

by this tehnique as shown in setion 3.3.

It is well-known that Newton methods with full step length lead to quadrati onver-

gene rates in the neighborhood of the solutions in ase of onvergene. Normally, the

globalized methods do not reah suh an onvergene rate. For example, gradient methods

63
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just have linear onvergene. Quasi-Newton methods like the presented tehnique normally

reah normally super-linear onvergene.

3.1 Damped Newton methods

Damped Newton methods redue the step length of the Newton inrement by a �xed fator

until the value of the residual is redued with respet to the former iteration. This heap

method is not elaborated but it may help in many ases. It is applied in the developed

odes as additional means if the full step length leads to divergene.

3.2 Line searh methods

Line searh is one standard method for a good redution of the step length of the searh

diretion of the Newton method. An often applied version is the Armijo-Goldstein priniple

([31, p. 100℄). By this method, normally a larger range of onvergene an be ahieved. For

ODE and DAE systems, line searh methods are applied suessfully. For the presented

ontext of adaptivity in partial di�erential equations with �nite element disretization, line

searh methods may fae other types of problems. In setion 4.5, good results with a

slight modi�ation of the Armijo-Goldstein line searh will be presented. In some ases,

the values of the Newton residuals are bad and the resulting primal and dual solutions are

not satisfatory. An explanation may be the fat that step length redution has a di�erent

e�et on eah of the ells. A good redution for one ell an be a bad redution for an other

one. The numerial results indiate that these methods in the present formulation are not

appropriate for the presented nonlinear appliations and solution methods (see hapter 6).

Additionally, a yli behavior (Maratos e�et) and divergene was stated for some test

ases (examples from the optimization problems presented in hapter 4). For this reason,

also a wath-dog line searh method was tested ([19℄, [38℄ and [39℄). It prevents standard

problems like a yli behavior of the iterations by its speial algorithmi struture and

relaxed riteria for the trial step-length aeptane. Baktrak apabilities allow the pro-

gram to abandon a nonprodutive orretion step and reover a base step. Furthermore, it

uses seond-order orretion methods. Some algorithms even apply bypass onditions: Use

seond-order orretion methods when they will improve performane; otherwise do not

use them. One main problem for optimization governed by partial di�erential equations is

that the storage of the base steps needs muh memory - espeially on �ne grids. Numerial

results showed that a simpli�ed version of this tehnique does not lead to an appropri-

ate globalization method for optimization governed by partial di�erential equations. The

reasons are again that the step length redution has a di�erent e�et on eah ell.

One possibility to use these methods is to apply them in the beginning until the sta-

tionary point is 'lose enough'. Then, a pure Newton method is used. This method was

already tested suessfully.
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3.3 Trust region like modi�ed Newton method

A very simple and eÆient method was developed together with G.H. Bok and J. Shl�oder

to adapt the searh diretion of the Newton method. Additional information is attained

by exploiting the seond order onditions of a onstraint optimization problem:

The Hessian matrix H = r

2

L(x

�

; q; �) must be positive semide�nite in a minimum. For

equality onstraints F (x

�

) = 0 in the optimal solution x

�

this means:

P

T

r

2

L(x

�

; q; �) P � 0 8P 2 T (x

�

);

with

T (z) := fP j rF (z)

T

P = 0g:

As above L denotes the Lagrangian funtion. If the seond order suÆient onditions of a

onstraint optimization problem

P

T

r

2

L(x

�

; q; �) P > 0 8P 2 T (x

�

)

are ful�lled, then x

�

is a strit loal minimum.

The above ondition ensures that the stationary point is a minimum. If this ondition

is not ful�lled, the method may onverge to a maximum, a saddle point or may even lead

to divergene.

Proposition 3.3.1. If the Hessian matrix is positive de�nite, the presented Newton method

onverges to a minimum.

Proof. Let � be the following merit funtion:

�(t) := L(x

k

+ t4x

k

):

Then derivation w.r.t. parameter t leads to:

�

0

(t)j

t=0

= rL(x

k

)

T

4x

k

= �rL(x

k

)

T

r

2

L(x

k

)

�1

rL(x

k

) < 0

if the symmetri Hessian matrix is positive de�nite (whih means that also its inverse

matrix r

2

L(x

k

)

�1

is positive de�nite beause the eigenvalues of the inverse matrix are the

inverse eigenvalues of the original matrix). The latter equality results from the Newton

step. This means that a Newton method leads to a desent diretion for a positive de�nite

Hessian matrix.

This idea leads to the appliation of the Levenberg-Marquardt approah ([31℄). The Hessian

matrix is updated with a non-negative multiple of the identity matrix:

(r

2

L(x

k

) + �

k

I)x

k

= rL(x

k

):

A traditional hoie for the Levenberg-Marquardt parameter �

k

is the absolute value of the

smallest eigenvalue of the Hessian matrix (if this smallest eigenvalue is negative). Then

the updated Hessian matrix is positive de�nite. The omputation of this eigenvalue an be

very expensive espeially for large systems often arising in adaptive �nite element methods.
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Therefore, the Levenberg-Marquardt parameter �

k

is omputed by the following approah:

If the Hessian matrix is positive de�nite, then

4x

k

r

2

L(x

k

)

�1

4x

k

> 0:

Otherwise, this value is� 0. In the latter ase, the absolute value of it is taken as Levenberg-

Marquardt parameter:

�

k

:= j4x

k

r

2

L(x

k

)

�1

4x

k

j+ 

k

if 4x

k

r

2

L(x

k

)

�1

4x

k

� 0:

Small 

k

e�etuate a better numerial behavior as alulation without 

k

. For optimization

governed by Ginzburg-Landau models in superondutivity and by Navier-Stokes equations,



k

= 0:001 was hosen.

Again the updated Hessian matrix is positive de�nite but with muh less osts. If the

original Hessian matrix is already positive de�nite, the pure Newton method is applied. So

a relatively heap globalization method based on seond order information is derived. This

modi�ed Newton method is a Quasi-Newton method.

Several additional advantages are obtained by this tehnique: It an be determined by

the update fator if the stationary point is a minimum, a maximum or a saddle point.

For this modi�ed Newton method, promising results will be presented in setion 4.7 and

in hapter 5. In general, Quasi-Newton methods lead to a deeleration of the onvergene

ompared with pure Newton methods in a neighborhood of the solution. This an be

derived analytially and was also on�rmed by numerial examples (see [31, 4.5.2.3.℄).

There is a onnetion between trust region, modi�ed Newton, Levenberg-Marquardt

and regularization methods. In [26℄, setion 11.2, this onnetion is skethed: 'The key

idea of any Newton type method onsists in repeatedly linearizing the operator equation

F (x) = y around some approximate solution x

Æ

k

, and then solving the linearized problem

: : : for x

Æ

k+1

'

F

0

(x

Æ

k

)(x

Æ

k+1

� x

Æ

k

) = y

Æ

� F (x

Æ

k

): (3.1)

The Levenberg-Marquardt method

x

Æ

k+1

= x

Æ

k

+ (F

0

(x

Æ

k

)

�

F

0

(x

Æ

k

) + �

k

I)

�1

F

0

(x

Æ

k

)

�

(y

Æ

� F (x

Æ

k

)) (3.2)

an be interpreted as a (nonlinear) Tikhonov regularization (by linearizing F ):

ky

Æ

� F (x

Æ

k

)� F

0

(x

Æ

k

)(x

Æ

k+1

� x

Æ

k

)k

2

+ �

k

kx

Æ

k+1

� x

Æ

k

k

2

(3.3)

when minimizing this quadrati funtional for x

Æ

k+1

. The appropriate hoie of the regular-

ization parameters �

k

in (3.2) is a ruial question. The original idea behind the Levenberg-

Marquardt approah is to minimize ky

Æ

�F (x

Æ

k

)k within a trust region kx�x

Æ

k

k � h

k

. This

gives a relation to trust region methods.

The presented modi�ed Newton method an by the same kind of argument also be inter-

preted as a regularization method. An alternative and very less expensive way for hoosing

the regularization parameters �

k

is given. It is just an other regularized approximation of

the solution of the above optimization problem (3.1).



Chapter 4

Optimization for nonlinear

Ginzburg-Landau models

In this hapter, the above developed theory will be applied to the model of nonlinear

Ginzburg-Landau equations desribing superondutivity in semiondutors. The ontrol

will always be a Neumann boundary ontrol (NBC). The observations are both distributed

or boundary observations. The systems are derived by analytial di�erentiation as desribed

in setion 1.9. The obtained numerial results, espeially those with the dual-weighted error

estimator, are the �rst hallenging appliation for the developed theory. The important

results an mainly be found in the last setions. Many results of this hapter have already

been published in [9℄, [10℄, [11℄ and [44℄.

4.1 Superondutivity

The purpose of this setion is a motivation for the presented equations for superondutiv-

ity. Only some basi fats will be given. Further details should be searhed in literature

for this is beyond the purpose of this thesis.

Superondutivity was disovered 1911 by H. Kamerlingh Onnes in Leiden. It is de�ned

as 'eletrial resistane of various metals disappears ompletely in a small temperature range

at a ritial temperature T



'([60℄). It is a harateristi of metals like merury, lead, tin.

There are two prinipal points onneted with superondutivity: The �rst aim is perfet

ondutivity, whih means that the magneti �eld is exluded from a superondutor. The

seond aim is perfet diamagnetism disovered by Meissner and Ohsenfeld. The latter

means that the magneti �eld is expelled from an originally normal sample. Appliations

are high-urrent transmission lines and high �eld magnets.

There are three main models: The London equations, the BCS theory and the Ginzburg-

Landau theory. A desription of these theories an be found in [60℄.

'A superondutor with a perfet Meissner e�et : : : is the ideal superondutor with a

onstant density of superonduting harge-arriers and an exluded magneti �eld' ([24℄).

In the ase of a perfet Meissner e�et, the Ginzburg-Landau equations redue to the

onsidered system version (see [24℄): They result in a model of partial di�erential equa-

tions de�ning a omplex pseudo-wave funtion u. Negleting internal magneti �elds, the

67
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simpli�ed Ginzburg-Landau model takes the form (for details see [60℄):

��u + s(u) = f in 
;

�

n

u = 0 on �
n�

C

; (4.1)

�

n

u = q on �

C

:

The nonlinearity s(u) may be hosen for example as u

3

� u and the right hand side is

usually f = 0.

The Neumann boundary ontrol q an be interpreted as external magneti �elds whih

have an impat on the domain 
.

4.2 General optimization problem

The weak formulation of system (4.1) in whih a state variable u 2 H

1

(
) and a ontrol

funtion q 2 L

2

(�

C

) is determined by requiring

(F (u; q); �) = 0 8� 2 H

1

(
):

Here, the funtional F : H

1

(
) � L

2

(�

C

) ! H

1

(
)

0

is de�ned by

(F (u; q); �) = (ru;r�)




+ (s(u); �)




� (f; �)




� (q; �)

�

C

;

where (:; :)




and (:; :)

�

C

denote the L

2

inner produts over 
 and �

C

, respetively.

We onsider an optimal ontrol problem for the simpli�ed Ginzburg-Landau model. For

a presribed pro�le u

d

the boundary ontrol variable q is sought to minimize the distane

between u and u

d

. This pro�le may be given on the whole domain or on parts of its

boundary. The orresponding objetive funtion J : H

1

(
) � L

2

(�

C

) ! IR is

J(u; q) =

1

2

ku� u

d

k

2

obs

:

The index 'obs' indiates an evaluation only in that part of the domain, where we evaluate

the objetive funtion ('observe'). In this ase the ontrol variable q may be viewed as

modeling the e�et of an external magneti �eld.

To enhane the stability of the optimization problem, we augment the objetive funtion

by a regularization term,

J(u; q) =

1

2

ku� u

d

k

2

obs

+

�

2

kq � q

0

k

2

�

C

; (4.2)

where q

0

is a suitable referene value. Besides avoiding ill-posedness and improving ondi-

tioning, regularization makes rigorous mathematial analysis possible under less restritive

assumptions. Partiularly, in the ontext of partial di�erential equations the regularization

gives ontrol on the optimization variable whih guarantees solvability and onvergene of

approximations (see setion 1.8). As we an see, this regularization hanges our setting as

we do not solve the original optimization problem (see e.g. Figures 2.3 and 2.4). There

are theoretial onsiderations (for details see [41℄) as well as pratial experienes whih

indiate that alulations are also possible without regularization in this ase.



4.3. WEIGHTED A POSTERIORI ERROR ESTIMATOR 69

Sine the alulations were stable, there was no need to use a stabilization besides the

regularization in the ost funtional.

The optimization problem is well-posed by [41℄ and [34℄.

The �rst order neessary onditions for this (NBC) optimization problem is

(u;  )

obs

� (u

d

;  )

obs

+ (r ;r�)




+ (s

0

(u)  ; �)




= 0; (4.3)

�(q; �)

�

2

� �(q

0

; �)

�

2

� (�; �)

�

2

= 0; (4.4)

(ru;r�)




+ (s(u); �)




� (f; �)




� (q; �)

�

2

= 0: (4.5)

For the disrete optimization problem, the �rst order neessary onditions for this (NBC)

optimization problem reads

(u

h

;  

h

)

obs

� (u

d

;  

h

)

obs

+ (r 

h

;r�

h

)




+ (s

0

(u

h

)  

h

; �

h

)




= 0; (4.6)

�(q

h

; �

h

)

�

2

� �(q

0

; �

h

)

�

2

� (�

h

; �

h

)

�

2

= 0; (4.7)

(ru

h

;r�

h

)




+ (s(u

h

); �

h

)




� (f

h

; �

h

)




� (q

h

; �

h

)

�

2

= 0: (4.8)

The resulting disrete solutions are the alulated solutions.

The left hand side in the Newton method (1.10) is

0

�

(Æu;  )

obs

+ (s

00

(u) Æu; �)




+ (r ;rÆ�)




+ (s

0

(u) ; Æ�)




�(Æq; �)

�

2

� (�; Æ�)

�

2

(rÆu;r�)




+ (s

0

(u)Æu; �)




� (Æq; �)

�

2

1

A

: (4.9)

The disretization of this equation system is done by a �nite element Galerkin method

with Q

1

-elements. The meshes ful�ll the usual regularity onditions. 'Hanging nodes' are

allowed and failitate loal mesh re�nement, but at most one 'hanging node' per edge. For

the state and adjoint variables, pieewise polynomial (linear or bilinear) shape funtions

are taken. For the ontrol variables, the traes of the above shape funtions on �

C

are

used. The disretization is realized by using the DEAL library ([8℄).

4.3 Weighted a posteriori error estimator

Proposition 4.3.1. For ontrol of the given ost funtional J(�), there holds the weighted

a posteriori error estimate

jJ(u; q) � J(u

h

; q

h

)j �

X

���


h

2

�

�

�

(�)

�

!

(u)

�

+ �

(u)

�

!

(�)

�

	

+

X

���

C

h

2

�

�

(q)

�

!

(q)

�

(4.10)

+

X

T2T

h

h

2

T

�

�

(u)

T

!

(�)

T

+ �

(u)

�T

!

(�)

�T

+ �

(�)

T

!

(u)

T

+ �

(�)

�T

!

(u)

�T

	

;
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with the ell residuals and weights

�

(�)

�

= h

�3=2

�

ku

h

� u

O

+ �

n

�

h

k

�

; ���
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h

k

�
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�

(�)
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�
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n
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k

�

; ���
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O

;

�
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n

u

h

� q

h

k

�
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C
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�
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k

�
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�
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h
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h
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T

; !

(�)

T
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�1

T

k�� �

h

k

T

;

�

(u)
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1

2

h
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T
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�T

= h

�1=2

T

k�� �

h

k

�Tn�


;

�

(�)

T

= h

�1

T

k��

h
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(u

h

)�
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k

T

; !

(u)

T

= h

�1

T
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h
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T
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�

(�)
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=

1
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h
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T
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℄k
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; !

(u)
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�1=2

T

ku�  
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Proof. In the present ase, there holds

L(v)� L(v

h

) = J(u; q) + (ru;r�)




+ (s(u)� f; �)




� (q; �)

�

C

� J(u

h

; q

h

)� (ru

h

;r�

h

)




� (s(u

h

)� f; �

h

)




+ (q

h

; �

h

)

�

C

= J(u; q) � J(u

h

; q

h

);

sine fu; �; qg and fu

h

; �

h

; q

h

g satisfy the equations (4.5) and (4.8), respetively. Hene,

error ontrol with respet to the Lagrangian funtional L(�) and the ost funtional J(�)

is equivalent. Now, the general error identity (2.35) implies that

jJ(u; q) � J(u

h

; q

h

)j = inf

�

h

2V

h

jL

0

(v

h

; v � �

h

)j; (4.11)

where v

h

= fu

h

; �

h

; q

h

g and v = fu; �; qg . From (4.6) - (4.8), we see that

L

0
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) = (u
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O
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O
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+ (s(u

h

)� f; �� �
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� (q
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; �� �

h

)

�

C

+ (�

h

� �q

h

; q � �

h

)

�

C

:

Splitting the global integrals into the ontributions from eah single ell T 2 T

h

and eah

ell edge � � �
 , respetively, and integrating loally by parts yields
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From this the asserted relation follows by applying the H�older inequality.

4.4 Comparison to other approahes

In this setion, some numerial results will be presented, whih have been obtained with

the ode 'rhopton'. The adaptive mesh re�nement is done after some Newton iterations

on the disretization level. The Newton system is therefore not neessarily in the limit of

the Newton iteration. The main purpose is to demonstrate that our solution approah is

apable to reprodue solutions of ertain test problems obtained by other authors.

The presented appliation to superondutivity was already onsidered in a paper of Ito

and Kunish [41℄. These authors applied an augmented Lagrangian approah for stabilizing

the saddle point problem. This was disretized by the usual �ve-point di�erene operator on

an equidistant grid without adaptivity. From [41℄ we reall the following test on�guration

('Run1' in [41℄):


 = [0; 1℄ � [0; 2℄; �

C

= �
; obs = 
;

s = u

3

� u; f = 0;

J(u; q) =

1

2

Z




ju� u

d

j

2

+

�

2

Z

�

C

(q � q

0

)

2

;

u

0

= 3 ; �

0

= 0 ; q

0

= 0 ; u

d

= 3:

The regularization fator has the value � = 10

�3

. We note that in this ase, the ode also

allows alulations without regularization. If we start with u

0

= 3 as proposed in [41℄, the

solver immediately terminates sine we are too lose to an optimum. Therefore, we hose

other starting values for the omparison. In the tables of this setion the following notation

is used:

� The starting value for u is 'u

0

'.

� The regularization parameter is '�'.

� '#iter' is the number of Newton iterations required to reah a ertain presribed level

for the the norm of the algebrai Newton residual. We note that on the disrete level

our iteration orresponds only to an approximate Newton method.

� The value of the objetive funtion for the omputed approximation is 'J(u

h

; q

h

)'.

� The Newton residual and the Newton inrement both measured in the disrete Eu-

lidean norm are denoted by 'res

Newton

' and 'inr

Newton

', respetively.

� The alulation time in CPU seonds is 'time'.

� L is the maximal number of Newton steps whih are performed between two re�ne-

ment yles.

The following tables show the results of some alulations by our ode for the present

test ase. In the �rst test, we �x the number of Newton iterations to L = 8 and ompare

the e�et of varying u

0

and �.
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u

0

� #iter J(u

h

; q

h

) res

Newton

inr

Newton

time

100. 0.0 48 6.26262e-6 0.0020208 0.0019185 1554

100. 0.01 42 6.28279e-6 0.0019931 0.0017035 �800

0.0 0.001 47 0.0743429 0.0050597 0.0051517 �2500

The values obtained for the objetive funtion show that, in the �rst two ases, we reah a

global minimum while in the third ase apparently only a loal minimum is obtained. The

global minimum and the orresponding mesh is shown in Figure 1.

Fig 1: Run1 - lose to the global minimum

If only L = 4 Newton steps are performed between two re�nement yles, we get the

following result:

u

0

� #iter J(u

h

; q

h

) res

Newton

inr

Newton

time

0.0 0.001 23 0.0739137 0.0058241 0.0056670 �650

This orresponds to a loal minimum shown in Figure 2 whih was obtained in [41℄. This

test demonstrates that mesh adaptivity may have a strong inuene on the optimization

proess. Further, we see that in the ase of onvergene the pure Newton method an give

very good results even without regularization as demonstrated in the following table:

u

0

� #iter J(u

h

; q

h

) res

Newton

inr

Newton

time

100. 0.0 15 2.73916 0.001741 5.82511e-8 61

150. 0.0 16 2.73916 0.0017416 4.73266e-8 56

-100. 0.0 32 2.73917 0.0001957 5.22385e-8 569

-7.0 0.0 14 2.73915 0.0003929 1.79801e-8 105

-17007. 0.0 47 2.73916 3.64664e-5 1.55469e-8 34060
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In this ase, L = 4 Newton steps are performed between mesh adaptation yles. However,

for all starting values, we do not reah a global minimum. The obtained loal minimum is

shown in Figure 3.

Fig 2: Run1 - a loal minimum Fig 3: Run1 - pure Newton method

Finally, we onsider a non homogeneous right hand side, f = 100

3

� 100. Using again

L = 4 Newton steps per re�nement yle the following results are obtained, showing that

again only a loal minimum is reahed:

u

0

� #iter J(u

h

; q

h

) res

Newton

inr

Newton

time

0.0 0.001 24 0.0739041 0.0056094 0.0057108 753

0.0 0.0 24 0.0739037 0.0056095 0.0057108 753

For the other test ases in [41℄, our ode has produed similar results. We omit further

details. For these �rst tests the mesh adaptation has been driven by the simple energy error

indiator mentioned above. In the next setion we will ompare this approah against our

new weighted error estimator.

4.5 Numerial results for heuristi error estimators

In this setion, we ompare the performane of the di�erent error indiators 'opt1', 'opt2',

and 'energy' de�ned in hapter 2 at the following test problem. The presented two versions

of the error indiator 'opt1', whih will be named 'opt1 2' and 'opt1', di�er only in the

presene of the residual term in �

K

(u

h

; q

h

) in addition to the normal-jump terms. For the

error estimator 'opt1', we onsider only the jump terms. This di�erene is motivated by the

observation that, for linear �nite elements in the ase of smooth f , 'the ontribution of the

normal jump terms asymptotially dominates that of the domain residuals, and the latter

may therefore be negleted' (see [13℄). The results are obtained with the ode 'rhopton',

so the re�nement is not neessarily done in the limit of the Newton iterations on eah

disretization level.
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��

��

singularity

only on this boundary

ontrol and observations

�

C

= obs � �


s = u

3

� u

f = 0

J(u; q) =

1

2

R

�

C

�

ju� u

d

j

2

+ �(q � q

0

)

2

	

ds

u

0

= 5 ; �

0

= 0 ; q

0

= 0

� = 0

u

d

(x; y) =

8

>

>

<

>

>

:

1

jy�0:5j

,

for y < 0:45 or y � 0:55;

�(y � 0:5)

2

+ 25:00025,

for 0:45 � y < 0:55 .

Using the energy error indiator, the adaptive mesh re�nement leads to the result (grid

and solution) shown in Figure 4, while those obtained with 'opt1' and 'opt2' are shown in

Figures 5 and 6, respetively. Comparing the grids, we see that the energy indiator tends

to over re�ne at the orner singularity whih is insigni�ant for the optimization proess

while the other two indiators orretly ause re�nement along the ontrol/observation

boundary. Of ourse, all three estimators yield stronger re�nement in the areas of larger

variations of the state variable.

Fig 4: Energy error indiator

Fig 5: Error indiator opt1
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Fig 6: Error indiator opt2

Figures 7 and 8 show the orresponding Lagrangian multiplier � and ontrol variable q

for the indiator 'opt1', respetively. Clearly, q ful�lls the ondition that the trae of the

Lagrangian multiplier must be equal to the ontrol.

Fig 7: Adjoint variable � Fig 8: Control q

The following Figures 9 and 10 show the onvergene history for the several error in-

diators and the orresponding values of the objetive funtion of our solution method in
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the ase that the Newton method is used without globalization.
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Fig 9: Values error indiators
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Fig 10: Values objetive funtion

The results for 'opt1' and 'energy' are very lose to eah other sine both indiators use

essentially smoothness information, while 'opt2' also measures the Newton iteration error

whih apparently yields muh better results. The algebrai Newton residual shows a similar

behavior for all three indiators, see Figure 11.
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Fig 11: Disrete Newton residual

Using a modi�ed Armijo-Goldstein line searh strategy in the Newton iteration, we

observe quite di�erent onvergene behavior for error indiators and orresponding values

for the objetive funtion as shown in Figures 12 and 13.
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Fig 12: Values error indiators
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Fig 13: Values objetive funtion

Again the Newton residual and Newton inrement exhibit a similar development for all

three indiators shown in Figures 14 and 15.
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Fig 14: Disrete Newton residual
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Fig 15: Disrete Newton inrement

We summarize that in both ases, plain Newton and globalized Newton, the values of

the error indiators and the orresponding values of the objetive funtion show a similar

development. However, for the plain Newton method, the values of the objetive funtion

are smaller. This is due to the fat that the plain Newton method has a higher onvergene

rate than the globalized Newton method. This e�et an also be seen by the values for the

Newton residual. For the globalized Newton method, we have a larger di�erene between

'opt2' and the other two error indiators than for the plain Newton method. This reets

the fat that 'opt2' also measures the size of the Newton residual whih auses di�erenes

if we are still far away from the limit point.
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4.6 Numerial results for weighted error estimator

The equations of state are again the nonlinear Ginzburg-Landau equations

��u+ s(u) = f on 
; (4.12)

�

n

u = q on �

C

; �

n

u = 0 on �
 n �

C

;

with s(u) = u

3

� u and right hand side f = 0. The orresponding �rst-order neessary

ondition to be solved are the equations (4.3)-(4.5).

By the nonlinear situation, the derivation of the dual-weighted error estimator intro-

dues an additional linearization error in the duality argument. Theory as well as pratial

experiene show that, in the present ase, this additional error is of higher order on well-

adapted meshes and an therefore be negleted. The a posteriori error estimate derived in

(4.10) is applied. The disretization is the same as in the previous setions ombined with

linearization by a Newton iteration. We note that the Newton iteration is always arried

to the limit before the error estimator is applied for mesh re�nement. The omputations

are done with the ode 'bkr'. The results of this proess may signi�antly di�er from those

obtained if disretization and iteration error are mixed together (see the preeding setions

4.4 and 4.5).

We again ompare the dual-weighted error estimator with a simple ad ho energy-error

estimator. We onsider two di�erent hoies for the boundaries of ontrol and observation.

First, the extreme situation is taken that ontrol and observation are on the same boundary,

�

C

= �

O

(lower boundary of the T-shaped domain). This is Con�guration 1 on page 56.

In this ase, we have the main parts of the optimization problem at one boundary. Hene,

we do not expet any need for indued stronger mesh re�nement 'far away' from this

boundary if we only want to deal with the optimization problem. In the seond ase, we

take the ontrol and the observation on opposite boundaries, �

C

\ �

O

= ; (lower and

upper boundary of the T-shaped domain). This is Con�guration 2 on page 56. In this

ase, we expet better results for the energy-error estimator beause the information must

pass from the ontrol to the observation boundary and the orner singularities will have a

stronger e�et on the mesh re�nement. Therefore, the simulation will play a more deisive

role for mesh re�nement.

Test ase 1: The observations for Con�guration 1 are taken as u

d

(x) = sin(0:19x). The

following table shows the quality of the dual-weighted error estimator for quantitative error

ontrol for this �rst nonlinear test ase for � = 0. This means that there is no regularization

and the original optimization problem is solved.

N 596 1616 5084 8648 15512

E

h

2.56e-04 2.38e-04 8.22e-05 4.21e-05 3.99e-05

I

eff

0.34 0.81 0.46 0.29 0.43

The referene value J(u; q) for the objetive funtion is omputed on a re�ned mesh with

about 131000 ells. Due to the speial hoie �

C

= �

O

, the dual solution equals zero

almost everywhere away from �

C

, and the error indiators �

�

�

;� � �

O

in (4.10) dominate

all the other terms in the estimator. The dual-weighted error estimator onsiders only

the neighborhood of the ontrol boundary, whereas the energy-error estimators reet too
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muh the singularity in primal solution at the reentrant orners (see Figure 4.2). The

distributions of the values for the error estimators �

E

(u

h

), �

E

(u

h

; �

h

) and �

w

(u

h

; �

h

; q

h

)

are given in Figure 4.1. It should be mentioned that the oupling between the ontrol and

the observation is by omputation on the whole domain 
 and not only by assignment on

the boundary �

C

= �

O

.

In Figure 4.3, we ompare the eÆieny of the meshes generated by the two estimators in

the �rst nonlinear ase with � = 0. We see that in this "extreme" boundary layer example,

we an approximate the solution of the optimization problem on a grid with muh less ells

using the dual-weighted error estimator. In this example it is possible to get the same

auray with the dual-weighted error estimator on 3500 elements ompared to the energy

estimator on 100000 elements. This means that the heuristi energy-error indiator produe

ineÆient meshes in this example.

Whih values do the several terms of the dual-weighted error estimator have? For

test ase 1, the main part of the optimization problem is foused on the 'optimization

boundary' �

C

= �

O

. It seems therefore onsequential that the dominant integrals lie on

this boundary. The following table shows the detailed information for the dual-weighted

error estimator. The whole value of the integrals on the ells are split in their several parts.

The notation is the one of proposition 4.3.1:

N 1616 15512 81536

P

�

w

0.0032855 0.000827338 0.000421932

P

�

T

9.1e-11 1.1e-10 1 e-10

P

�

�

�

;� � �

O

0.00328542 0.000827337 0.000421932

P

�

u

�

;� 2 �

C

8.2e-08 6.3e-10 7.2e-11

P

�

q

�

2.7e-10 1.1e-10 5.3e-11

This is an explanation for the big gain whih an be ahieved by the dual-weighted error

estimator. The heuristi energy-error indiator does not use this important information on

the boundary in an appropriate way and therefore it leads to ineÆient meshes. Suh an

extreme behavior an normally be expeted if the boundary indiators are dominant over

the interior indiators.

Test ase 2: For Con�guration 2, the observations are taken as u

d

� 1 and the regulariza-

tion fator � is set to 0:1 or 1. Now, depending on the nonlinearity s(u), there exist several

stationary points of L(u; q; �). By varying the starting values for the Newton iteration,

these solutions an be approximated. One solution orresponds to onstant u � u

d

, whih

is atually the global minimum. For this stationary point, we get an objetive funtion

value equal to zero (up to round-o� error). Aordingly, we math these observations with

our numerial solution already on a rather oarse mesh with N = 512 ells. The orre-

sponding Newton residual and Newton inrement are both onverged to zero. We do not

show the trivial results of these omputations.

The other two obtained stationary points are symmetri to eah other with respet to

the plane fx = 0g in this ase. These omputed solutions orrespond to a loal minimum

and a loal maximum by seond order information of the optimization problem. The

following table shows the quality of the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) for

error ontrol of one of these stationary points (the seond one) for test ase 2 with � = 0:1.

The referene value 0:04888934625::: for the objetive funtion is obtained on an adaptive
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mesh with N = 545216 ells orresponding more than 10

6

unknowns.

N 512 15368 27800 57632 197408

E

h

9.29e-05 8.14e-07 4.86e-07 2.31e-07 4.58e-08

I

eff

1.32 0.56 0.35 0.42 0.32

The numerial results demonstrate the orret qualitative behavior of the dual-weighted

error estimator. The e�etivity index indiates also a relatively good quantitative auray

(with interpolation onstant C

I

= 0:1), although the values produed are still too big. This

defet is aused by taking the absolute signs under the sums thereby suppressing possible

error anellation. Furthermore, the error E

h

is very small for � = 0:1. In the ase � = 1 ,

we get better results as shown in the following table for the seond stationary point.

N 512 8120 25544 42608 126284

E

h

2.08e-03 4.35e-05 9.26e-06 5.95e-06 8.94e-07

I

eff

0.52 0.73 0.88 1.21 0.98

Next, Figure 4.4 shows the distribution of loal ell indiators for the three error estimators

in the ritial ase � = 0:1. Figure 4.5 shows the orresponding omputed disrete solu-

tions. Obviously, the dual-weighted error estimator indues a muh stronger re�nement

along the observation and ontrol boundaries whih seems more relevant for the optimiza-

tion proess than resolving the orner singularities. Whereas the energy-error estimator

emphasizes the orner singularities.

In Figure 4.6, a faster onvergene to the solution of the ontinuous problem with the

dual-weighted error estimator an be stated. Espeially interesting is that the values of

�

E

(u

h

; �

h

) are worse than those of �

E

(u

h

). Normally, one would expet a better behavior

(as in Figure 4.3) beause of the additional dual information whih is used. This shows

that the energy-error indiators are just based on heuristi riteria. The observed jumps in

the plotted results an be explained by the hanging nodes. There are some hanging nodes

introdued at ritial points. This deteriorates the obtained results.

Finally, for the third stationary point, we indiate the eÆieny of the generated meshes.

As seen from the e�etivity index in the following table for the third stationary point,

the quantitative behavior of the dual-weighted estimator is very good in this ase (with

interpolation onstant C

I

= 0:1).

N 1784 4544 15452 29096 77096

E

h

1.663e-05 6.02e-06 1.54e-06 7.43e-07 2.73e-07

I

eff

0.91 0.97 0.97 0.82 0.84

For test ase 2, the dominant parts of the error estimator are di�erent from those in

test ase 1. The total ontribution of the interior ell indiators is dominant over that of

the boundary indiators. The following table will show this split in several parts of the

values of the ell indiators for the seond stationary point. The notation is again the one

of proposition 4.3.1:
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N 8120 77096 283016

P

�

w

0.000566207 5.162e-05 1.289e-05

P

�

T

0.000498468 4.857e-05 1.181e-05

P

�

�

�

;� � �

O

3.3e-05 1.50e-06 5.3e-07

P

�

u

�

;� 2 �

C

3.4e-05 1.54e-06 5.5e-07

P

�

q

�

9.8e-15 2 e-14 1.3e-13

This gives another explanation why the gain in test ase 2 is not so big as for test ase

1. The interior loal ell indiators play a muh more important role than in test ase 1.

This means that the error is muh bigger in the interior than on the boundaries. Hene

the energy-error indiators an get the true error of the optimization problem in a better

way than in test ase 1.

It should be mentioned that alulations with up to 1.4 million variables on 700 000

grid points have been done for the presented appliation with this ode 'bkr'.

By the above results it an be onluded that it is possible to derive good riteria in

an analyti way for model redution in optimization with the presented Ginzburg-Landau

model. The model redution proess is driven by the error indiators leading to small

disrete optimization models. The qualitative error estimation with the dual-weighted

error estimator enables to get good numerial results. The important properties of the

original ontinuous optimization problem are preserved by redued models in a ertain

auray.

The quantitative error estimation is also suessful. This is not instantly lear beause

the oupling of the di�erent equations and salings an lead to many problems. By the

numerial results, the value of the developed dual-weighted error estimator is a good esti-

mator for the error in the disrete optimization problem. The error ontrol is solely based

on the omputed primal solution of the variables u

h

; q

h

; �

h

and is therefore relatively heap.

4.7 Modi�ed Newton method

The modi�ed Newton method of setion 3.3 will be applied to the problem of setion 4.6.

Globalization methods may deelerate the onvergene in omparison with onvergene

of the pure Newton method. But one advantage is a larger range of onvergene of the

globalized Newton method. Furthermore, this modi�ed Newton method leads only to

stationary points whih are minima as shown below. The starting values of the variables

deide whih minimum is obtained.

By the seond order information it an be stated that in the alulations of setion

4.6, test ase 2, the global minimum is really a minimum, the seond stationary point is a

loal maximum and the third stationary point is a loal minimum (whih ould have been

imagined by the fat that the latter two saddle points lie symmetrially to eah other).

Several tests were done with the on�guration of setion 4.6, test ase 2. The initial

values of u were hanged in order to test the range of onvergene. Results are shown in

the tables below. The following notation is used:

� N : the number of ells,
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� 'JJ': the value of the ost funtional in the limit of the Newton iteration on the

disrete level,

� '#orr': the number of neessary updates by the modi�ed Newton methods (orre-

tions),

� 'max TRfator': the maximal value of a fator for the update of the Hessian for the

modi�ed Newton method on this disrete level,

� 'min TRfator': the minimal value of a fator for the update of the Hessian for the

modi�ed Newton method on this disrete level,

� 'CPU seonds TR': the CPU seonds of the modi�ed Newton method neessary to

reah the limit,

� 'CPU seonds pure': the CPU seonds of the pure Newton method neessary to reah

the limit.

The regularization fator in all tests is � = 1.

Test1: Starting value of u in the iterations is �200. Both methods lead to the third

stationary point whih is a loal minimum. The starting value of the ost funtional is

JJ=90395:7:

N 128 632 1160 1784

JJ 8.015748 7.997655 7.997659 7.997657

#orr 9 0 1 0

max TRfator 3 � 10

7

0 0.001 0

min TRfator 25.1 0 0.001 0

CPU seonds TR 124.55 314.21 713.35 894.98

CPU seonds pure 59.64 196.36 417.94 564.31

Test2: Starting value of u in the iterations is 1100. The modi�ed Newton method leads

to the global minimum. The pure Newton method leads to the loal maximum. Therefore a

omparison of the CPU seonds is omitted. The pure Newton method needs more iterations

due to the more diÆult struture of the stationary point. The starting value of the ost

funtional is JJ=107526224:8.

Test3: Even for a starting value u = 951100000000 in the iterations, the modi�ed

Newton method leads to the global minimum. The starting value of the ost funtional is

JJ=8:04 � 10

23

.

The following table shows numerial results for test2 and test3 for the last disretization

level in eah test ase:

test test2 test3

N 512 728

JJ 7 � 10

�11

8:36 � 10

�28

#orr 1 2

max TRfator 0.368645 2.02635

min TRfator 0.368645 0.135268

CPU seonds TR 297.67 1568.95
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Figure 4.1: Nonlinear test 1 (� = 0): Distributions of loal error indiators in the energy-error

estimator �

E

(u

h

) (left), the energy-error estimator �

E

(u

h

; �

h

) (right) and the dual-weighted error

estimator �

w

(u

h

; �

h

; q

h

) (bottom).
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Figure 4.2: Nonlinear test 1 (� = 0): Comparison of disrete solutions obtained by the energy-

error estimator �

E

(u

h

) (leftN � 4800 ells), the energy-error estimator �

E

(u

h

; �

h

) (rightN � 5700

ells) and the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (bottomN � 5000 ells).
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Figure 4.3: Nonlinear test 1 (� = 0): Comparison of eÆieny of meshes generated by the error

estimators �

E
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) (solid line), �

E

(u

h
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h

) (rosses) and �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log sale.
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Figure 4.4: Nonlinear test 2: Distributions of loal ell indiators in the energy-error estimator
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Figure 4.5: Nonlinear test 2: Comparison of disrete solutions obtained by the energy-error esti-

mator �

E

(u

h

) (left, N � 3300 ells), the energy-error estimator �

E

(u

h

; �

h

) (right, N � 3100 ells)

and the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (bottom, N � 3000 ells).
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Figure 4.6: Con�guration 2: Comparison of eÆieny of meshes generated by the error indiators
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