
Chapter 5

Optimization with Navier-Stokes

equations

In this hapter, the optimization problem will be governed by the inompressible Navier-

Stokes equations. General information about uid mehanis and Navier-Stokes equations

an be found for example in Temam [59℄, Ward-Smith [64℄ and White [65℄.

In Setion 5.8 ow with temperature will be onsidered. The Boussinesq model will be

used for the temperature.

In this hapter, Dirihlet boundary ontrol (DBC) is applied. The developed methods

and a posteriori error estimates show again good results. The new dual-weighted error

estimator is more appropriate for grid design of optimization problems than the energy-

error estimator. For the same target funtional values, the dual-weighted error estimator

needs less elements than the energy-error estimator. The re�nement by the dual-weighted

error estimator shows the sensitivities in the optimization problem. Another result is that

the omputations with the developed dual-weighted error estimator are more stable than

with the energy-error estimator for the appliations in this hapter.

Due to a new tehnique for the formulation and omputation of (DBC), the regular-

ization parameter � an be redued onsiderably. This enables to get ontrols q whih are

not too strongly restrited by the given regularization pro�le. The resulting optimization

problem is then less dominated by the regularization.

The oupled systems resulting from the appliations in this hapter led to numerial

problems. The solver developed in Setion 6.1 enabled to solve the presented equation

systems as desribed therein. It provided the neessary robustness. The preonditioner in

setion 6.2 led to a neessary aeleration of the solver.

Computations for both L

2

and H

1

-regularization were performed as proposed in Gunz-

burger and Hou [34℄ (see setion 1.8). The numerial results showed no onsiderable dif-

ferene between the two versions in the test ases.

The globalization methods developed in setion 3.3 have been used for some of the

presented examples.
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5.1 Navier-Stokes equations for ow simulation

The following version of the inompressible Navier-Stokes equations posed on a domain


 � IR

d

; d = 2; in Cartesian oordinates are onsidered: First the two equations resulting

from the momentum equation, leading to a onservation of momentum:

� �

|{z}
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The two veloity omponents are denoted by v = (u;w). The visosity is denoted by �, the

pressure by p and

~

f = (f

1

; f

2
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denotes a wall boundary ondition. S

i

is a suitable stabilization de�ned below.

The ontinuity equation, leading to onservation of mass, takes the form:

r:v = 0: (5.2)

The weak formulation is

F



= (r:v; �)




+ S



= 0 8� 2 T: (5.3)

S



is a suitable stabilization de�ned below.

Sine this formulation is not stable for the applied Q

1

=Q

1

-elements for the FEM dis-

retization of v and p, the stabilization tehnique desribed in Beker [6℄ is used. The main

diÆulties for a stable disretization are the onvetion dominated behavior of the ow

(small �) and the veloity-pressure oupling. A standard �nite element tehnique for the

�rst diÆulty is the streamline di�usion method, see also Johnson [42℄. Both diÆulties an

be treated simultaneously through a so-alled Galerkin-least-squares approah desribed in

Beker [6, Chapters 5 and 6℄. This tehniques lead to the following stabilization: For the

momentum equation we obtain

S

i

= (v � rv +rp; � v � r )




:

And the ontinuity equation is stabilized by

S



= (v � rv +rp; � r�)




:

The weighting parameter � = �

K

is alulated on eah ell K of the �nite element

disretization. By [6℄ and [29℄, �

K

an be hosen approximately as h

K

max(

h

K

k�k

K;1

� �; 0)

leading to a stable FEM disretization. In this ase, � = u an be a �xed veloity �eld, for
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example the one from a previous step of a �x point iteration. And h

K

is the diameter of

the ell K.

If h

K

! 0, then �

K

! 0. The LBB ondition of the stabilized system

inf
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n
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with weighted Laplaian (p; r) = �(rp;rr) leads to a stable alulability of the pressure

for the Stokes equation.

5.2 Stokes and Navier-Stokes - Poiseuille ow

As �rst test ase for the equations derived in setion 5.1, simulation alulations for

Poiseuille ow are done on the domain presented in Figure Fig 1.1 in hapter 1 (see White

[65, setion 3-3.1, p. 116-118℄ and Ward-Smith [64, setion C1, p. 135-137℄). For Poiseuille

ow, the transport term v �rv disappears beause the ow is parallel to the axis. Therefore,

there is no di�erene between Stokes and Navier-Stokes equations.

For test purposes, the numerial results obtained with the ode 'of' show that the

implemented system leads to the expeted solutions. In the following table, the values

of the residuals R(:) are given for ertain numbers N of ells. The results are from the

omputation with the Stokes equations.

N R(u) R(w) R(p)

256 2:6 � 10

�12

3:7 � 10

�11

6:5 � 10

�11

1024 5:4 � 10

�14

5:7 � 10

�13

6:6 � 10

�13

4096 1:2 � 10

�15

1:6 � 10

�14

1:4 � 10

�14

16384 1:5 � 10

�15

1:4 � 10

�14

5:3 � 10

�15

5.3 Bifuration for pure simulation

For the ase of omputation on the domain on page 90, the following problem ould be

stated for the pure simulation: For a Reynolds number smaller than 70, a onvergene to a

stationary solution an be stated. At Reynolds number 80, the solution is non-stationary.

But for Reynolds number 90 and 100, again the former stationary solution is observed.

It is well-known that for small data there is a stationary solution of the mathematial

model Navier-Stokes equations. A detailed survey an be found in Heywood, Rannaher

and Turek [37℄. But from Reynolds number 70, an additional non-stationary solution exists.

This is the solution whih an be stated for some Reynolds numbers between 70 and 80.

Here bifurations an happen, i.e. both solutions an our as solutions of the Navier-Stokes

equations. For Reynolds number 90 and 100, the stationary 'base' solution was obtained

whih is physially unstable.

5.4 Lagrangian funtion and its di�erentials

In this setion, the equation system for optimization with the inompressible Navier-Stokes

equations as appliation is derived. The presented terms are only those terms whih re-
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sult diretly from the inompressible Navier-Stokes equations. Terms resulting from other

parts of the optimization system like the ost funtional, ontrol terms or other boundary

onditions must be added in orrespondene with the speial optimization problem.

The Lagrangian funtion for Cartesian oordinates an be stated as usual:

L(v; p; q; �; �

2

) := J(v; p; q) + (�

2

; F



(v; p; q)) + (�; F

i

(; p; q)): (5.4)

The derived equations do not ontain stabilization. A detailed version of this equation

system with stabilization is given in appendix B.

The �rst order neessary onditions of the onstraint optimization problem are for the

weak formulation of the Navier-Stokes equations omitting possible boundary integrals from

the optimization problem:

�L

�v

= (� � rv � v � r�;  )




� (�r�;r )




� (r:�

2

; �)




= 0 8 8� (5.5)

�L

�p

= �(�;r: ) = 0 8 (5.6)

The di�erentials

�L

��

and

�L

��

2

lead to the state equations F

i

= 0 and F



= 0, respetively.

The possible boundary integrals from the optimization problem depend on the speial prob-

lem and will therefore be onsidered separately for eah presented optimization problem.

The seond-order di�erentials are obtained as in Setion 4.2 by seond-order di�erentiation

in the diretion of the inrements (see remarks on equation (1.10)). The detailed Hessian

operator is given in appendix B. The di�erentials of L with stabilization are muh bigger

due to the nonlinearities and produts in the stabilization S

i

and S



.

5.5 A drag oeÆient optimization problem

The following basi grid will be used for the presented drag optimization problem of this

setion:

outow �

o

substrate �

S

ontrol boundary �

Q

�x inow �

F

wall

wall

wall �

w

wall �

w

wall �

w
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The drag oeÆient 

D

is alulated in the following way:



D

=

2F

D

�U

2

L

with uid density �, mean veloity U , 'length' L of substrate �

S

and the drag fore F

D

as

follows:

F

D

=

Z

S

(��

�

�n

v

t

n

y

� Pn

x

)dS

with normal vetor n on S with x-omponent n

x

and y-omponent n

y

, tangential veloity

v

t

on S and tangent vetor t = (n

y

;�n

x

). There are two possibilities for the below given

domain: The boundary line whih is the border of S is perpendiular to the ow diretion.

Then,

v

t

= u )

�

�n

v

t

= �

y

u:

Otherwise, boundary line whih is the border of S is in the ow diretion. Then,

v

t

= w )

�

�n

v

t

= �

x

w:

For the alulated problem, the following values were used: The kinemati visosity

� = 10

�3

m

2

s

and the uid density � = 1

kg

m

3

.

A �rst test ase is to take simply J(u; q) = 

D

as ost funtional. This lead to an ill-

posed problem beause 

D

is not lower bounded. Therefore, ondition (H1) in Gunzburger

and Hou [34℄, setion 2.2. on page 1003, is not ful�lled. The numerial results showed this

problem. The ontrol funtion diverged with minimal value ! �1, as expeted.

The optimization problem with

J(u; q) = 

2

D

as ost funtional leads to better results. By [34℄, setion 2.2. on page 1003, this op-

timization problem is well-posed beause the onditions (H1)-(H9) are ful�lled. For this

ost funtional J , the theoretial minimum is 

2

D

= 0. This value is taken as referene

value J

ref

in the omputations and results of this setion. It results from J

ref

= 0 that

E

h

= J(u

h

; q

h

)� J

ref

= J(u

h

; q

h

).

OPTDRAG: The alulations were done on the following domain or basi grid: There

is one �xed inow �

F

(bottom, at left). Next to it is the ontrol boundary �

Q

(bottom,

at right). The drag is evaluated on the boundary of the substrate �

S

in the middle. The

outow �

o

is at the top.

The following boundary onditions are onsidered: On the �xed inow �

F

there is

u = 0; w(x; y) = �4(x�

1

2

)

2

+ 1 (paraboli pro�le). On the ontrol boundary �

Q

there is

u = 0; w = q (DBC). On the wall �

w

there is u = w = �

u

= �

w

= 0. At the outow �

o

there is the free outow ondition for u;w proposed in Beker [6℄ whih is also transformed

to �

u

; �

w

. The substrate �

S

takes the same boundary onditions as the wall �

w

.
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Remark 5.5.1. For a Reynolds number greater than 46 on the domain on page 90, the

above equation system for Navier-Stokes leads to osillations in the solution with the devel-

oped solution method. In order to get a more stable solution for the Navier-Stokes equations,

the following tehnique is applied: One reason for problems in omputation of solutions for

Navier-Stokes equations results from Newton linearization of the transport term v �rv. This

term an is split in two terms, the onvetion term and the reation term. The reation

term vru, where u means that u is �xed for this iteration (or the value from the previous

iteration), is the main soure for problems. This term an ause problems e.g. for vorties.

It is negleted in the equation system.

5.6 Dual-weighted a posteriori error estimates

The a priori error estimates for optimization problems governed by inompressible Navier-

Stokes equations an be found in Gunzburger and Hou [34, theorem 4.10℄.

For the ase of pure simulation, a posteriori error estimates for inompressible Navier-

Stokes equations are given in Beker [6, theorem 4.2℄.

The following version of the dual-weighted a posteriori error estimate for optimization

problems is a general version for the domain integrals (T 2 T

h

). The integrals on �
 and on

�

Q

depend on the speial optimization problem (and will be evident from the formulation

of eah optimization problem). Later on, the ost funtional will be evaluated on a part of

the domain. This will hange slightly the error estimator.

Proposition 5.6.1. For optimization problems governed by inompressible Navier-Stokes

equations, there holds the following dual-weighted a posteriori error estimate for (DBC) (on

the boundary �

Q

) and ost funtional minJ = 

2

D

with drag oeÆient 

D

on the boundary

�

S

as in OPTDRAG:
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h

; �
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; �
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h
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(u)

h

; �

(w)

h

; �

(p)

h

; �

(p)

h

) are arbitrary test funtions in the

disrete spaes. The ell residuals obtained from the �rst order neessary onditions are

omitted beause the jump terms will dominate the residual terms ([13℄).

Proof. See theorem 2.5.1, and proposition 2.5.2.

The energy error estimator is built as in Setion 2.7. In this appliation we have several

state equations.

�

E

(u

h

) := 

I

X

K2T

h

h

3

K

(�

(u)2

�K

+ �

(w)2

�K

+ �

(p)2

�K

) + 

I

X

���


h

3

�

(�

(u)2

�

+ �

(w)2

�

+ �

(p)2

�

); (5.8)

with the ell residuals �

(:)

�K

and �

(:)

�

.

5.7 Numerial results for the drag oeÆient optimization

problem

There are 2 possibilities to ahieve the value 

2

D

= 0 in optimization problemOPTDRAG:

One is that all inow on �

F

is suked o� by an outow on the ontrol boundary �

C

(negative

inow). The result is that there is no ow near �

S

and 

2

D

= 0. This solution is obtained

by the optimization problem governed by the Stokes equation in Figure 5.2. The other

possibility for 

2

D

= 0 is that the drag on �

S

is 0 by mutual elimination of the non-zero

parts. This enables to have ow near �

S

. It fores a hange of diretion in the ow. This

solution is obtained by the optimization problem governed by the Navier-Stokes equation in

Figure 5.8. The di�erene in the solutions results from the additional nonlinear transport

term in the Navier-Stokes equations.

The ost funtional

J(e) = E

h

= 

2

D

ontains the square of the drag oeÆient 

D

. This means that in the presented results, the

drag oeÆient values in the optimization problems an be retrieved by taking the square

root of J .

Remark 5.7.1. The value of the eÆieny index has with this setting at least to weak-

nesses: Some residual terms in the error estimator are negleted. And the regularization is

not added to the ost funtional. The latter has the advantage that J gives the value of 

D

.
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The numerial results are obtained either with the pure Newton method or with the

modi�ed Newton method.

Example 1: First, this optimization problem is governed by the Stokes equations. The

starting values for (u;w; p); (�

u

; �

w

; �

p

) and q are (0:2;�0:3; 2); (0; 0; 0:1) and �0:3, respe-

tively. The alulations were done with the dual-weighted and the energy-error estimator.

The regularization parameter � is 0:01. Divergene was deteted with � lower than 10

�8

.

Without the (DBC)-tehnique of setion 6.6 � has to be taken greater than 80 in order to

obtain onvergene. The interpolation onstant is C

I

= 0:1. The following table shows the

value of the error funtional E

h

and the eÆieny index I

eff

for ertain disrete solutions

with N ells of the results obtained with the dual-weighted error estimator:

N 964 2020

E

h

1:2 � 10

�5

1:59 � 10

�6

I

eff

1.26 0.41

For these disrete solutions, the parts of the dual-weighted error estimator have the follow-

ing values in the notation of proposition 5.6.1:

N 964 2020

P

�

�

!

�

;� � �

S

8:1 � 10

�6

1:3 � 10

�6

P

�

�

!

�

;� � �

Q

9 � 10

�9

6 � 10

�8

P

�

�T

!

�T

1:4 � 10

�6

3:8 � 10

�5

In the error estimator given in proposition 5.6.1, many terms from the domain integral

are negleted. This leads to the observed values of the eÆieny index I

eff

. Nevertheless,

the generated grids are quite eÆient as shown in the omparison with the energy-error

estimator. In Figure 5.1, a faster onvergene to the solution of the underlying ontinuous

problem an be stated. This is due to the more adequate re�nement for the optimization

problem by the dual-weighted error estimator as presented in the following grids. They

show that the energy-error estimator fouses mainly on the �x inow where the gradient

has great values. The obtained grids by dual-weighted (left) [

2

D

= 1:588�10

�6

℄ and energy

(right) [

2

D

= 0:000145284℄ error estimator both on 2000 elements for � = 0:01 are
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The drag value 1:59�10

�6

for the dual-weighted error estimate shows that the theoretial

minimum 

2

D

= 0 an almost be ahieved with the dual-weighted error estimator. In this

linear ase for the simulation, the ontrol tries to eliminate the ow next to the observation

whih is the evaluation of the drag. This is one possibility to fore the drag to be lose

to 0. An other possibility is ahieved with the Navier-Stokes equations in the following

examples.

Remark 5.7.2. Small hanges in the ontrol q an lead to remarkable gains in the ost

funtional J . So for some appliations, the di�erene in the ontrols may not to visible

beause it is very small. On oarser grids the di�erene of the obtained ontrols are often

more visible beause the dual-weighted error estimator leads faster to the optimal ontrol

than the energy-error estimator. Furthermore not only the ontrol is important but also to

obtain a grid whih enables to get a ertain auray of J with the least number of ells.

In the following Figure, we observe remarkable di�erenes in the ontrols due to the

fat that the mesh re�nement by the energy-error estimator is near the �x inow boundary

�

F

and not near the ontrol boundary �

Q

. Therefore, the energy-error estimator does not

lead to the optimal ontrol obtained by the dual-weighted error estimator. This is a reason

for the worse values for 

2

D

on the grids designed by the energy-error estimator (see Figure

5.1).

Figure: Drag optimization problem governed by Stokes equations: Obtained ontrols

by dual-weighted (above) and energy (below) error estimator on N=200, 2000, and 2300

elements, with minimal values = -0.3, -1.17, -0.3, respetively, for � = 0:01 (note the

di�erent saling of the �rst and third ontrol).
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Example 2: The next step is the optimization problem governed by the Navier-Stokes

equations. The data is the same as for the alulations with the Stokes equations. Numer-

ial results for �

�1

= 15; 20; 70 will be presented. The presented results for E

h

in Figures

5.3, 5.4, 5.5, 5.6 and 5.7 show that the dual-weighted error estimator is muh more appro-

priate for grid design of optimization problems. The energy-error estimator does not really

onsider the optimization problem and therefore the resulting re�nement is ineÆient. For

example, in Figure 5.5 the ost funtion value 0.000167 an be obtained with the dual-

weighted error estimator on 7000 elements whereas the energy-error estimator needs 66000

elements.

The following tables show the value of the error funtional E

h

and the eÆieny index

I

eff

for ertain disrete solutions withN ells of the results obtained with the dual-weighted

error estimator. For �

�1

= 20, � = 0:01 we get:

N 832 9076 92812

E

h

0:00043345 8:305 � 10

�5

1:647 � 10

�5

I

eff

1.2 0.99 0.8

For �

�1

= 70, � = 0:007 we obtain:

N 2044 9652 48376

E

h

0:000353775 6:592 � 10

�5

1:132 � 10

�5

In the latter table, the values of I

eff

are omitted beause the showed bad values. Here,

remark 5.7.1 may be appliable. In the ase �

�1

= 70, the e�et of the negleted residual

terms are learly observed by the resulting numerial values. Due to the greater Reynolds

number, the ow may have a stronger inuene on the whole equation system. For �

�1

= 20,

the values of the dual-weighted error estimator are lose to the error.

The notation of the terms in the following two tables is as in proposition 5.6.1. For

these disrete solutions, the parts of the dual-weighted error estimator have the following

values for �

�1

= 20, � = 0:01:

N 832 9076 92812

P

�

�

!

�

;� � �

S

1:921 � 10

�6

1:736 � 10

�7

1:1 � 10

�9

P

�

�

!

�

;� � �

Q

1:42 � 10

�7

1:27 � 10

�8

2:9 � 10

�9

P

�

�T

!

�T

0:00034254 8:3381 � 10

�5

2:0525 � 10

�5

And for �

�1

= 70, � = 0:007 we get:

N 2044 9652 48376

P

�

�

!

�

;� � �

S

7:086 � 10

�7

3:552 � 10

�7

7:3 � 10

�9

P

�

�

!

�

;� � �

Q

4:064 � 10

�8

2:53523 � 10

�7

5:213 � 10

�8

P

�

�T

!

�T

0:00386682 0:00574349 0:00250141

For �

�1

= 70, the error estimator is dominated by �

�T

!

�T

. The values are greater as for

the ase �

�1

= 20. This leads to the bad values for I

eff

in ombination with the negleted

residual terms.

The behavior of the dual-weighted error estimator and the energy-error estimator for the

di�erent versions of the drag optimization problem governed by Navier-Stokes equations an
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be seen in the resulting grids. The obtained grids by dual-weighted (left) [

2

D

= 8:305�10

�5

,

10000 elements℄ and energy (right) [

2

D

= 0:00034999, 20000 elements℄ error estimator for

�

�1

= 20 and � = 0:01 are

Whereas the obtained grids by dual-weighted (left) [

2

D

= 6:488 � 10

�5

, 14000 elements℄

and energy (right) [

2

D

= 0:00031092, 10000 elements℄ error estimator for �

�1

= 15 and

� = 0:007 are

The obtained grids by dual-weighted (left) [

2

D

= 8:051�10

�5

, 6000 elements℄ and energy

(right) [

2

D

= 0:00036091, 11000 elements℄ error estimator for �

�1

= 70 and � = 0:007 are
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Sequenes showing the grid design for several disretization levels for the dual-weighted

and the energy-error estimator an be found in �gures 5.11 and 5.12, respetively.

For �ne grids, the di�erenes in the ontrols are very small for this appliation (see

Remark 5.7.2). The ontrol an be obtained from the Figures for the veloity by the

Dirihlet boundary ondition u = q on �

Q

.

The mesh re�nement in the middle part of the grid by the dual-weighted error estimator

in the presented grids for �

�1

= 15, 20 and 70 an be explained by the neessity of hange

of the ow diretion in order to obtain 

2

D

= 0. This leads to a sensitivity to the evaluation

of the ost funtional.

The energy-error estimator leads to a re�nement in mainly by the orner singularities

(grids for �

�1

= 15) or by the ow (grids for �

�1

= 70).

For greater Reynolds numbers, the impat of the ow on the optimization problems is

getting stronger. This an also be seen in the resulting grids for �

�1

= 70.

The grids learly show that the regularization has an impat on the grid design. Larger

values for � lead to a too strong dominane of the regularization whih an be seen also

in the mesh re�nement. This an be seen by omparison of grids for �

�1

= 20 and grids

for �

�1

= 15 for whih di�erent values of � were used. The hoie of an appropriate �

is ruial for a good solution of the optimization problem. If � is too big, the obtained

solution is dominated by the regularization. The resulting solution is in this ase not the

solution sought in the original optimization problem. The extreme ase would be that there

will be a ontrol q � 0 for very big values of �. But if � is too small, the well-de�nedness

of the optimization problem may be lost and no good onvergene of the solution method

would result. For omparison, the following two grids are the same on�guration as for the

last grid for the dual-weighted error estimator. Again, �

�1

= 70 in the drag optimization

problem. But the regularization fator � is 0.0085 (left, 

2

D

= 8:8 � 10

�5

) and 0.01 (right,



2

D

= 10

�4

) both with 6000 ells as above:
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Clearly, the e�et of the inreasing regularization fators � not only on the region next to

the ontrol boundary an be seen.

The veloities for ow with �xed ontrol q = 0 is given in Figure 5.9 for the ase of

�

�1

= 70 and � = 0:007. This solution orresponds to the solutions in Figure 5.8. It shows

the e�et of the ontrol on the ow. A omparison of the belonging numerial solutions of

the pressure is shown in Figure 5.10. Again, the impat of the ontrol due to the suking

o� on the ontrol boundary �

Q

is obvious.

The largest omputation done with the Navier-Stokes equations in this appliation was

with 2 million variables for the solutions obtained with the dual-weighted error estima-

tor. With the energy-error estimator suh large amounts of variables were not obtained

beause the alulations were muh slower. This results from ineÆient re�nement and a

numerially less stable behavior.

For all presented examples, the ells representing 30 perent of the error were re�ned

in eah re�nement step (starting with the largest error values).

5.8 Optimization governed by ow with temperature trans-

port for zero gravitation

The next appliation of the developed tehniques is optimization governed by Navier-Stokes

equations with temperature. For the temperature, the Boussinesq visosity model in White

[65, p. 482℄ and Griebel, Dornseifer, and Neunhoe�er [32, p. 125℄ is used. The gravitation

is negleted. Hene the temperature is used as a traer. The solution of the following

equation represents the temperature omponent:

�(rT;r�) + (v � rT; �) = 0: (5.9)

For the assoiated Lagrangian multiplier �

t

is determined by the equation

�(r�

T

;r�)� (v � r�

T

; �) = 0: (5.10)
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For stability reasons, only the terms

(v � rÆT; �); (v � rÆ�

T

; �) (5.11)

are taken in the seond order derivation. This tehnique is similarly already desribed in

remark 5.5.1.

The stabilization is failitated by the term

�

T

(v � rT; v � r�): (5.12)

The fator �

t

an be hosen in at least two ways. The �rst possibility only inludes infor-

mation of the veloity:

�

T

=

1

2

h

jvj

L

2

: (5.13)

The seond possibility takes more information and is lose to the � of the Navier-Stokes

equations:

�

T

=

1

70 �

�

h

2

+

jvj

L

2

h

: (5.14)

The presented results are ahieved with the seond version of �

T

.

All numerial results are obtained with the pure Newton method.

OPTTEMP: For this appliation, the optimization problem is as follows: The temper-

ature T in the region �

J

next to the substrate �

S

should be maximized. The alulations

were done on the following domain or basi grid:

�

J

outow �

o

substrate �

S

�x inow �

F

ontrol �

Q

wall �

w

wall �

w

wall �

w

wall �

w

wall �

w

There is one �xed inow �

F

(bottom, at left). Next to it is the ontrol boundary �

Q

(bottom, at right). The 'outow' �

o

is at the top.
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The following boundary onditions are onsidered: On the �xed inow �

F

there is

u = 0; w(x; y) = �4(x �

1

2

)

2

+ 1 (paraboli pro�le). On the ontrol boundary �

Q

there

is u = 0; w = q (DBC). On the wall �

w

there is u = w = �

u

= �

w

= 0. At the

outow �

o

there is the free outow ondition for u;w proposed in Beker [6℄ whih is also

transformed to �

u

; �

w

. The substrate �

S

takes the same boundary onditions as the wall

�

w

. The boundary onditions for the solution of the Boussinesq equation temperature

T are Dirihlet boundary onditions on all boundaries. These Dirihlet values for T are

the same on all boundaries with exeption of the boundary �

F

. On boundary �

F

there

is a greater value than on the other boundaries. Therefore, there are Dirihlet boundary

onditions with value 0 for �

T

on all boundaries.

This optimization problem is lose to the optimization problem of the appliation men-

tioned in the introdution.

The dual-weighted error estimates are as follows for OPTTEMP: For optimization

problems governed by inompressible Navier-Stokes equations and Boussinesq temperature

equation, there holds the following dual-weighted a posteriori error estimate for (DBC) (on

the boundary �

Q

) and ost funtional max J =

R

�

J

Tdx as in OPTTEMP: In the notation

of proposition 5.6.1,

jJ(u; q) � J(u

h

; q

h

)j �

X

���


h

2

�

�

(w)

�

!

(w)

�

+

X

���

Q

h

2

�

�

(q)

�

!

(q)

�

+

X

���


h

2

�

�

(p)

�

!

(p)

�

+

X

���

J

h

2

�

�

(T )

�

!

(T )

�

(5.15)

+

X

K2T

h

h

2

K

�

�

(u)

�K

!

(�

(0)

)

�K

+ �

(w)

�K

!

(�

(1)

)

�K

+ �

(p)

�K

!

(�

(2)

)

�K

+ �

(T )

�K

!

(�

(3)

)

�K

	

+

X

K2T

h

h

2

K

�

�

(�

(0)

)

�K

!

(u)

�K

+ �

(�

(1)

)

�K

!

(w)

�K

+ �

(�

(2)

)

�K

!

(p)

�K

+ �

(�

(3)

)

�K

!

(T )

�K

	

;

with the additional ell residuals and weights

�

(T )

�

=

1

2

h

�3=2

K

knk

�

; ���

J

�
; !

(�

(3)

)

�

= h

�1=2

K

k�

(3)

� �

(T )

h

k

�

; (5.16)

�

(T )

�K

=

1

2

h

�3=2

K

kn� [T

h

℄k

�Kn�


; !

(�

(3)

)

�K

= h

�1=2

K

k�

(3)

� �

(T )

h

k

�Kn�


; (5.17)

�

(�

(3)

)

�K

=

1

2

h

�3=2

K

kn� [�

(3)

h

℄k

�Kn�


; !

(T )

�K

= h

�1=2

K

kT �  

(T )

h

k

�Kn�


: (5.18)

In addition to proposition 5.6.1,  

(T )

h

; �

(T )

h

are appropriate test funtions.

For the presented optimization problem, obtained disrete numerial solutions are

shown in Figure 5.13. The ontrol of the veloity on �

Q

leads to a suking o�. So the

original outow gets to an inow. The reason is that with this ow the temperature in

the region �

J

an be maximized as formulated by the optimization problem. Due to the

hange of the diretion of the veloity, the temperature is not suked o� by the ow but

is onentrated in the region �

J

. There is then more higher temperature staying in the

region �

J

. The strange shape of the pressure p is due to the suking o� by the omputed

ontrol on �

Q

. The temperature T is as expeted for this ow. The assoiated Lagrangian
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multiplier �

T

shows the searhed duality to T and �ts very well in the developed onept

of error estimation.

On �ne grids, the di�erene in the ontrols on the grids obtained by the dual-weighted

error estimator and the energy-error estimator are not visible for this appliation (see re-

mark 5.7.2). In the following Figure, a di�erene an be stated beause the grids are still

oarse. The belonging values of J are in Figures 5.17 and 5.18.

Figure: Temperature optimization problem governed by Boussinesq ow: Obtained on-

trols by dual-weighted (left) and energy (right) error estimator on N=1300 and 1500 ells,

with minimal values = -0.098 and -0.087, respetively, for � = 0:01 and � = 0:5.

In the following, a omparison of the grids obtained by the dual-weighted and the

energy-error estimator is given. All omputations are done with � = 0:01 and pure Newton

method. The grids depend on the value � of the error whih should be redued in eah

re�nement (applying the �xed fration strategy, see setion 2.8). � = 1 means uniform

re�nement. First, the obtained grids by dual-weighted (left) [J = 306:75, 1580 elements℄

and energy (right) [J = 70:19, 1340 elements℄ error estimator for � = 0:01 and � = 0:3 with

pure Newton method are presented. The energy error estimator is rather unstable beause

re�nement ours only near the inow at orner singularities and steep gradients due to the

'inow'. For the energy-error estimator divergene starts on 1700 ells. The dual-weighted

error estimator behaves muh more stable. Convergene up to 6700 ells was stated.

With � = 0:5, the omputations are also not very stable. The obtained grids by dual-
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weighted (left) [J = 256:74, 1300 elements℄ and energy (right) [J = 70:31, 1500 elements℄

error estimator are

With � = 0:8, the energy-error estimator behaves more stable. Computations up to

3800 ells are possible with the energy-error estimator. The dual-weighted error estimator

reahed 190000 ells. The obtained grids by dual-weighted (left) [J = 1559:91, 5000 ele-

ments℄ and energy (right) [J = 282:38, 3800 elements℄ error estimator are

For � = 0:9, even omputations on 8300 ells an be done in a stable way with the

energy-error estimator. For the the grids designed by the dual-weighted error estimator,

204000 ells were reahed without any divergene. Afterwards, the omputations were too

big for the used work stations. The obtained grids by dual-weighted (left) [J = 2600, 7700
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elements℄ and energy (right) [J = 1007:83, 8300 elements℄ error estimator are

For � = 0:95, stable omputations on 15800 ells are possible with the energy-error esti-

mator. For the the grids designed by the dual-weighted error estimator, the omputations

showed no divergene. The omputations were too big for the used work stations. The

obtained grids by dual-weighted (left) [J = 4016:97, 10000 elements℄ and energy (right)

[J = 893:76, 6500 elements℄ error estimator are

The omputations with grids designed by the energy-error estimator were all muh

more unstable than those designed by the dual-weighted error estimator. In all ases,

omputations with muh more ells were possible with the dual-weighted error estimator.
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The energy-error estimator tends to re�nement at orner singularities and steep gradi-

ents due to the 'inow' on �

F

and �

Q

. Whereas the dual-weighted error estimator onsiders

the optimization problem in its re�nement. The designed grids show the sensitivities of

the optimization problem. Therefore, the omputed values for the ost funtional to be

maximized are higher with the obtained disrete solution ompared to the ost funtional

values of the energy-error estimator grids with the same number of ells.

The value in the �rst iteration of the ost funtional J was 17.46 on 224 ells (in all

ases on a uniform re�ned basi grid). The obtained maximal value for J was 74776.57

(by the dual-weighted error estimator with � = 0:9 on 204572 ells leading to 1.7 million

variables).

In this optimization problem, the temperature in the region �

J

has to be maximized.

The main riterion for the evaluation of the error estimation and the thereby designed

grids is therefore the (maximization of the) value of the ost funtional J . In this spirit,

the alulus of orientation at the value for E

h

has to be replaed by the maximization of

the value of J . For � = 0:95, the values of the ost funtional J in the limit of the Newton

iteration on eah disrete level for the dual-weighted and energy-error estimator are shown

in Figure 5.14. All lines are plotted up to divergene of the omputation or the line ends

at the box of the graphis. The values of J are learly greater for the grids designed by

the dual-weighted error estimator. Compared to the uniform mesh re�nement, the dual-

weighted error estimator enables to redue the number of ells by a fator of 6 in order to

obtain the same value of the ost funtional J . This behavior is also stated by the results

obtained with � = 0:9 and 0:8 in Figures 5.15 and 5.16, respetively.

Figure 5.17 shows a omparison of the values obtained with the energy-error estimator.

The strong dependene of divergene and � is espeially signi�ant ompared with the

dual-weighted error estimator in Figure 5.18. Again, all lines are plotted up to divergene

of the omputation or the line ends at the box of the graphis (besides mesh re�nement

whih got too big i.e. for 'dual weighted0.95'). For all onsidered �, the omputations with

the dual-weighted error estimator were far more stable than those with the energy-error

estimator. The energy error estimator plaes many verties at the wrong regions of the

domain. Furthermore these verties are onentrated in a few regions by the energy-error

estimator. This makes the omputations more unstable as for the dual-weighted error

estimator.

The di�erent error values in the suessful dual-weighted error estimator an be seen

in the following tables. For � = 0:95, these values are in the notation of proposition 5.6.1:

N 1448 32684 111572

�

�

!

�

;� � �

Q

8:87062 � 10

�6

2:79328 � 10

�7

5:59577 � 10

�8

�

�K

!

�K

0:404636 0:0123389 0:00388003

For � = 0:9, these values are in the notation of proposition 5.6.1:

N 1304 22940 69944

�

�

!

�

;� � �

Q

9:72007 � 10

�6

3:27651 � 10

�7

1:12613 � 10

�7

�

�K

!

�K

0:444177 0:0160497 0:00551704

For � = 0:8, these values are in the notation of proposition 5.6.1:
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N 1208 11960 80492

�

�

!

�

;� � �

Q

8:31925 � 10

�6

6:53136 � 10

�7

1:62319 � 10

�7

�

�K

!

�K

0:492626 0:0270697 0:00431046

The results show a redution of the values from step to step. The terms on the whole

domain are learly dominant. This is also due to the fat that the domain 
 in this ase is

larger than in the previous examples. And for the mesh re�nement, the value on eah ell

is important. The grids and the thereby obtained values for J show that the dual-weighted

error estimator leads to a very good method for the plaing of the verties. Keep in mind

that in this appliation J is not alulated by a boundary integral as in the previous ases.

So the dominane of the domain integral has also a positive e�et on the evaluation of J .



5.8. OPTIMIZATION GOVERNED BY THE BOUSSINESQ MODEL 107

1e-06

1e-05

0.0001

0.001

1000

E
_
h

Number of elements N

"energy"
"dual_weighted"

Figure 5.1: Drag optimization problem governed by Stokes equations: Comparison of eÆieny

of meshes generated by the energy-error estimator �

E

(u

h

) (solid line) and the dual-weighted error

estimator �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log sale.

Figure 5.2: Drag optimization problem governed by Stokes equations: Obtained solutions for

veloities w and u on 13000 ells.
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Figure 5.3: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 15:

Comparison of eÆieny of meshes generated by the energy-error estimator �

E

(u

h

) (solid line) and

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log sale (� = 0:01).
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Figure 5.4: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 20:

Comparison of eÆieny of meshes generated by the energy-error estimator �

E

(u

h

) (solid line) and

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log sale (� = 0:01).
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Figure 5.5: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 20:

Comparison of eÆieny of meshes generated by the energy-error estimator �

E
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h

) (solid line) and

the dual-weighted error estimator �

w
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) (dashed line) in log = log sale (� = 0:01).
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Figure 5.6: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 15:

Comparison of eÆieny of meshes generated by the energy-error estimator �

E
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h

) (solid line) and

the dual-weighted error estimator �

w
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h
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) (dashed line) in log = log sale (� = 0:007).
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Figure 5.7: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 70:

Comparison of eÆieny of meshes generated by the energy-error estimator �

E
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) (solid line),

the dual-weighted error estimator �

w
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h
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h
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) (dashed line) and uniform re�nement (rosses) in

log = log sale (� = 0:007).



5.8. OPTIMIZATION GOVERNED BY THE BOUSSINESQ MODEL 111

Figure 5.8: Drag optimization problem governed by Navier-Stokes equations: Numerial solutions

for veloities u;w and orresponding Lagrangian multipliers �

u

; �

w

(�

�1

= 70; � = 0:007).
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Figure 5.9: Drag optimization problem governed by Navier-Stokes equations: Numerial solutions

for veloities u;w for �xed ontrol (q = 0) (�

�1

= 70; � = 0:007).
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Figure 5.10: Drag optimization problem governed by Navier-Stokes equations: Comparison of

pressure p for ontrolled ow and �xed ontrol (q = 0) (�

�1

= 70; � = 0:007).
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Figure 5.11: Drag optimization problem governed by Navier-Stokes equations: Sequene of ob-

tained grids by dual-weighted error estimator for N = 200; 1000; 1500; 2000; 3200; 6600 ells for

�

�1

= 70 and � = 0:007.
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Figure 5.12: Drag optimization problem governed by Navier-Stokes equations: Sequene of ob-

tained grids by energy-error estimator for N = 200; 1000; 1300; 1800; 3200; 7000 ells for �

�1

= 70

and � = 0:007.
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Figure 5.13: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Obtained solutions for veloities, pressure p (above), temperature T and assoiated �

T

(below)

with dual-weighted error estimator for �

�1

= 15 and � = 0:01, pure Newton method.
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Figure 5.14: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Comparison of eÆieny of meshes generated by the energy error estimator �

E

(u

h

) (solid line),

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) and uniform re�nement (rosses) for

� = 0:95 in log = log sale (� = 0:01).
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Figure 5.15: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Comparison of eÆieny of meshes generated by the energy error estimator �

E

(u

h

) (solid line),

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) and uniform re�nement (rosses) for

� = 0:9 in log = log sale (� = 0:01).
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Figure 5.16: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Comparison of eÆieny of meshes generated by the energy error estimator �

E

(u

h

) (solid line),

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) and uniform re�nement (rosses) for

� = 0:8 in log = log sale (� = 0:01).
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Figure 5.17: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Comparison of eÆieny of meshes generated by the energy error estimator �

E

(u

h

) for � =

0.3, 0.5, 0.8, 0.9, 0.95 and uniform mesh re�nement (rosses) in log = log sale (� = 0:01).
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Figure 5.18: Temperature optimization problem governed by Navier-Stokes and Boussinesq

equations: Comparison of eÆieny of meshes generated by the dual-weighted error estimator
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) for � = 0.3, 0.5, 0.8, 0.9, 0.95 and uniform mesh re�nement (rosses) in log = log

sale (� = 0:01).



Chapter 6

Numerial solution methods

In this hapter, some of the applied numerial tehniques for solving the presented equations

systems are desribed.

6.1 Solver

As desribed in setion 1.1, the presented approah for solving an optimization problem

governed by partial di�erential equations with adaptive �nite element disretization results

in algebrai systems. These equations are obtained by a Newton method approah (1.10)

for all presented examples. The problem is to �nd a solver whih is appropriate for the

presented kind of problems. As desribed in setion 6.2, this problem may involve several

saddle points. Also the speial struture from the �nite element approah and the loal

mesh re�nement has to be onsidered. There may be hanging nodes from the adaptive mesh

re�nement. Some methods have been tested like ordinary onjugate gradient, onjugate

residual and several GMRES methods. The best results have been observed with GMRES.

In some ases it was hard to get onvergene at all.

The applied solver is a preonditioned GMRES method. The robustness of the solver

is obtained from the GMRES while the aeleration of the onvergene rate results from

multi-grid.

This solver is onstruted for linear problems. Hene, there must be a linearization of the

derivation of the equation system. The linearization is done by the Newton-iteration on the

ontinuous level. So already the ontinuous equation system is linearized. Therefore, the

linearization problem is exluded from the derivation of the error estimator. Nevertheless,

the linearization error an still emerge in the solution proess. It is an independent error

whih may ause problems.

The presented globalization in Setion 3.3 has several advantages. It enables a global-

ization of the Newton method. Furthermore, it provides a regularization as desribed in

Setion 3.3.

One of our developed odes is 'rhopton'. In this ode exists the possibility to enable

optimization without adaptivity if a ertain exatness in the disrete system is obtained.

By this, the optimization part an be disonneted from the adaptivity part. But for the

odes 'bkr' and 'of' this is not neessary beause the iteration is done to the limit of the

120
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Newton iteration on eah disrete level.

The auray level in the GMRES part an also be hosen with respet to the dis-

retization level, espeially depending on the number of verties.

6.2 Preonditioner

For the applied GMRES method, a good preonditioner is neessary to aelerate the so-

lution proess. Multi-grid tehniques have already been suessfully applied with GMRES.

The developed preonditioning tehnique uses information of the optimization problem.

Calulation results show that this method is very suessful. The onvergene is getting

muh faster by this method.

Suppose, the optimization matrix has the following form

0

�

C

1

C

2

P

T

C

3

C

4

B

T

P B 0

1

A

:

For the Ginzburg-Landau models in Chapter 4, we get the following oeÆients (already

applied on the variables as in Setion 4.2):

C

1

= (Æu;  )

obs

+ (s

00

(u) Æu; �)




C

2

= 0

C

3

= 0

C

4

= �(Æq; �)

�

2

P = (rÆu;r�)




+ (s

0

(u)Æu; �)




B = �(Æq; �)

�

2

The oeÆients build the matrix of the salar produts of the base funtions.

For ontrollability the term u � u

d

tends to zero. This means for the Hessian matrix,

that the oeÆient for

�

2

L

�u

2

on the diagonal may lead to a numerial unstable preonditioner,

beause preonditioners often use the inverse of a matrix.

The diagonal entry for

�

2

L

�q

2

an also lead to numerially unstable preonditioners. With

regularization fator � = 0, we get the original optimization problem. Choosing � > 0

hanges this problem. For � = 0, the diagonal entry is zero for above derived problems. If

� is small, we an also get some numerial problems with preonditioners.

The diagonal entry for

�

2

L

��

2

is always zero, beause � is only linear in our equation

system.

For these reasons, it seems better to hoose an preonditioner whih is based on the

oeÆient P . Here we get a well de�ned inverse if the simulation is well posed.

For the above optimization matrix, we get a preondition matrix like

0

�

0 0 P

�1

0 0 0

P

�T

0 0

1

A

: (6.1)
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Several tests on�rm that if we take only the simulation and the dual solution for the

preondition matries P , we do not get a very good onvergene. There is a progress to the

simple hoie of the whole optimization matrix beause there are no zero-in�nity entries

on the diagonal, at least after using some stabilization tehniques.

A better preonditioner is obtained by taking the �rst order di�erentiation of the simu-

lation and the dual solution for the preondition matries P . So we take the sensitivities of

the simulation and the dual solution. Espeially for an optimization problem, this hoie

an also be maintained for optimization fouses on these sensitivities. With this matrix,

we perform a multi-grid step u = P

�1

� and vie versa. This preonditioner leads to very

good onvergene results even for Navier-Stokes equations as simulation.

It should be mentioned that this preondition tehnique is also very suessful for pure

simulation by numerial results for Navier-Stokes equations.

For the Poisson equation as simulation, the following matrix P an be stated:

P =

�

(r�;r )

�

:

And for the Ginzburg-Landau equations in superondutivity as simulation, the matrix P

results in:

P =

�

(r�;r ) + (s

0

(u) � �; )

�

:

If the simulation are the Navier-Stokes equations, this matrix P has more entries whih

are also more ompliated. This matrix an easily be derived from the given equations,

beause P is just the �rst order diretional di�erentiation of the simulation or the part of

the Hessian matrix of the Lagrange funtion whih is indiated in (6.1).

For alulations with ylindrial polar oordinates, additional integrals motivated by

the additional integrals arising from these oordinates an lead to an aeleration of the

solution proess. For example, the following integral is added:

Z




v

r

�

r

drdz:

The boundary onditions are derived in setion 6.4.

6.3 Symmetri disrete Hessian matrix

In the proof of Proposition 3.3.1 for the desent diretion of a Newton method, the positive

de�niteness as well as the symmetry is used. This symmetry of the disretized Hessian

matrix is not trivial. It depends on the hosen test and ansatz spaes. The presented

approah in setion 1.1 leads to an symmetri Hessian matrix of this type. The ontinuous

primal and dual problems must be hosen as in setions 1.1 - 1.4 (i.e. some analytial

subproblems are adjoint or transposed to eah other) and the test and ansatz spaes must

�t together as presented. It is muh easier if the unknowns u; q; � are alulated on the

same grid. For a alulation on di�erent grids, Petrov-Galerkin methods may be neessary.

But in this ase, an appropriate relation between the di�erent grids has to be guaranteed.

Otherwise, one looses symmetry and in some ases one will get some problems with the

desent diretion in the solution proess of the optimization problem. The system matrix

must be symmetrial. This is guaranteed due to a orret hoie of the boundary onditions

and the hoie of the same bases in the test and ansatz spaes.
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6.4 Calulation of the boundary onditions of the inrements

For some solution methods, the boundary onditions of the inrements are neessary. One

example is the multi-grid whih is applied in the preonditioner desribed in setion 6.2.

For an optimal ontrol problem, there are not only the inrements of the simulation

variables but also the inrements of the Lagrangian multiplier and the ontrol. As already

mentioned in Setion 1.4, there are relations between the boundary onditions of these

variables. These relations will be used to alulate the boundary onditions. The boundary

onditions follow automatially from the alulus developed in Setion 1.4.

On the ontrol boundary, the proper hoie of the boundary ondition of the inrement

of the variable Æu would be Æu

n

= u

n

�u

�

where u

n

is the value of u in iteration n and u

�

is

the value of u in the optimum. The problem is that u

�

is unknown, otherwise the optimal

ontrol problem would have already been solved. Therefore, the boundary ondition for

Æu

n

= q

n

� u

n

in an iterative method is proposed where q

n

is the value of the ontrol q in

iteration n. The motivation for this boundary onditions is: The boundary ondition of u

for (DBC) on the ontrol boundary is u = q. Hene, the di�erene (whih is Æu) is u � q.

In ase of onvergene we get u = q and therefore Æu = 0.

The boundary ondition of the inrement of the Lagrangian multiplier Æ� on the ontrol

boundary is derived as follows: As above, the boundary ondition is in general Æ�

n

= �

n

��

�

where �

n

is the value of � in iteration n and �

�

is the value of � in the optimum. From

the boundary ondition � = 0, it an be onluded that �

�

= 0. Hene, Æ�

n

= �

n

. This is

the di�erene between the atual value and the value in the optimum.

On the observation boundary, there are natural Neumann boundary ondition for u and

�. This applies to Æu and Æ�.

Remark for the DEAL library: It should be noted for the ode that due to re-

quirements of the DEAL library the Dirihlet and Neumann boundary onditions need not

only be indiated in the funtion `void CELL::set_boundary_line() onst' in the �le

`line.', but also in the �le `vertex.'. The funtions `USERVertex::set_boundary'

and `USERVertex::reset_boundary' the boundary onditions of the inrements must be

set. This is aused by a speial �lter tehnique desribed in [58℄.

6.5 Calulation of Newton residuals and Newton inrements

There are various ways to ompute the values of the Newton residual and the Newton

inrements. The hosen evaluation is the value obtained by inserting the omputed values

of the disrete solution in the weak formulation of the Newton residual. These ell values

are weighted by the Jaobi determinants on eah ell. This determinant is the determinant

of the transformation on the referene element. The weighting is therefore with geometri

data. All is based on the weak formulations of the equations on the ells obtained from the

adaptive �nite element disretization.

The Newton inrement is hosen in the same way.

In the whole optimization problem with adaptive �nite element disretization, there

are several residuals, whih have to be evaluated to get good numerial results. Examples

are the above Newton residuals or the residual from the solver GMRES. It is espeially

important that these residuals are weighted in an appropriate way. Otherwise the saling



124 CHAPTER 6. NUMERICAL SOLUTION METHODS

of quantities in the algorithm is not balaned. For some residuals it is important to weight

the values of the residual on eah ell with the value of the Jaobi determinant of this

ell. The general term 'residual' for several di�erent terms appearing in suh a ompliated

ombination of methods may lead easily to misinterpretations and misunderstandings.

6.6 Calulation of di�erentials on the boundary

In this setion, the hosen way of omputing the values of the di�erentials on the boundary

should be explained. This is espeially important for (DBC), where this di�erential is a

ruial part of the equation system of the ontrol. An example is equation (1.21) in hapter

1. But this is also true for (DBC) in optimization for the Navier-Stokes equations.

The di�erentiation on the boundary in the diretion of the domain is not well de�ned

for variables de�ned only on the boundary like the ontrol q. But for (DBC), the relation

u = q an be used. So u an be seen as a prolongation of q. Therefore one an transform

ertain properties of u to q, i.e. that u is well-de�ned.

The alulation of the value of the di�erential on the boundary in the diretion of the

domain for the ontrol q uses the same idea. The value of the di�erential of u on the ell

for whih the ontrol boundary is a part of the ell boundary is taken as the value of the

di�erential of q. Important is that the weighting fator in the �nite element alulation for

the verties on the ontrol boundary is 0.25 due to the transformation of the value from

the domain ell (alulated on a retangular ell with 4 verties).

This version of the alulation was the most stable. It enables an easy possibility to

onnet the values on the domain with the values on the boundary. Furthermore it is very

heap beause this value already exists.

The presented method also onnets the state equations with the (DBC) ontrol q. By

the translated di�erentiation information from u to q, also all onditions whih are ful�lled

by the state variable u are translated to the ontrol q.

6.7 Implementation details

The ode used in the test omputations has been developed on the bases of the DEAL

library (see Beker, Kanshat, and Suttmeier [6℄, [8℄, [43℄, [58℄). DEAL is an objet-

orientated lass library written in C++ whih provides tools for the numerial solution

of partial di�erential equations by adaptive �nite element methods inluding multi-grid

tehniques. The developed odes 'rhopton', 'bkr' and 'of' are shortly organized as follows:

� Coarse grid onstrution: The struture of the ode allows various possibilities for

this basi oarse grid.

� Main loop of the program: Here, the adaptive mesh re�nement already desribed in

hapter 2 takes plae. An adaptive mesh re�nement is performed if a residual is small

enough or after a maximal number of iterations. This loop is terminated if the value

of the error indiator is smaller than a given tolerane TOL. For the odes 'rhopton'

and 'bkr', a pure optimization part without adaptivity is possible afterwards.
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� Seletion of error indiators: For the adaptive mesh re�nement part there exist several

error indiators, whih an easily be exhanged. This provides the possibility of

e�etive omparisons between these indiators.

� Disretization level loop: The Newton method whih is formally de�ned on the on-

tinuous level is evaluated on the disrete levels. In eah Newton step a preonditioning

by inversion of the state and dual state equations is applied (see setion 6.2). This

ruial step is done by GMRES whih is aelerated by multi-grid.

For the globalization of the Newton method, there exist trust region methods or line

searhes as desribed in hapter 3. There are several types of line searhes for the global-

ization of the Newton method, based on the Armijo-Goldstein priniple or on modi�ations

of it. Additionally, several merit funtions for these line searhes have been implemented.

The methods have been developed for the speial situation of optimization with partial

di�erential equations and adaptive mesh re�nement. We an also perform the pure New-

ton method without any globalization, whih an lead to very good onvergene rates for

starting values lose enough to the solution.

The ode is designed to enable also alulations without regularization for the optimiza-

tion problem, i.e., for � = 0. This is done by alulating the inremental values for q by

solving diretly the equations for q in the full nonlinear system (1.7)-(1.9). Alternatively,

for (NBC) in the appliations Poisson equation and Ginzburg-Landau models, one may

generate q from the trae of the Lagrangian multiplier, �j

�

C

= �q. However, regularization

was neessary in more ompliated appliations, e.g. optimization in ow problems.

Eah ode is splitted in several �les grouping parts of the C++ ode whih belong

to eah other (respeting the objet orientated lass hierarhy). The main �les are the

following:

� The �le 'delta.h' ontains the basi struture of the ode.

� The C++ main program and some basi initializations are in 'main.'.

� The �le 'numeri.' enables the management of some basi funtions (invoking

other funtions with respet to the objet orientated lass hierarhy).

� The parts handling the boundaries are found in the �le 'line.'.

� Whereas the handling of the domain integrals are in 'quad.'. Only retangulars

are used for the disretization of the �nite elements in the domain.

� In the �le 'g_vetor.h' the information on the struture for the GMRES solver is

ontained.

� The �le 'numgv.' gives some funtions allowing the management of some funtions

onneted to GMRES on the �nite elements. They invoke several funtions on the

ells and lines.

� And the �le 'dgmres.h' ontains this solver (originally ontained in the DEAL library

and slightly modi�ed for optimization problems).
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� The globalization of the Newton method desribed in the hapter 3 is prinipally

done in the �le 'global.'.

� The �le 'user.' ontains speial funtions for the problem formulation of the op-

timization problem. Examples are the (boundary) observations or regularization

funtions.

� In the �le 'vertex.' the handling of the verties is organized. Here the interpolation

funtions or boundary values are de�ned.

� The funtions for the gra� output are in 'grafi.'.

Altogether, the for this thesis developed odes 'rhopton', 'bkr' and 'of' ontain more

than 7700, 7100 and 10000 lines, respetively (without the odes from the deal library).

The used ompilers were the GNU ompilers 'g' and 'g++'.

The presented graphial output is generated using CNOM, a graphi software developed

by S. Kr}omker at the SFB 359 in Heidelberg [46℄.



Appendix A

Nagopt - blak box optimization

ode (for ow problems)

Blak box optimization odes are ommonly used for optimization. One standard library

for blak box optimization is the NAG library. Mark 14 and 15 in the Fortran version

were used. Based on this library, the blak box optimization ode 'Nagopt' was developed

by the author. It enables to use a given simulation ode in C++, C or FORTRAN for

optimization with almost no amendments.

The developed basi program 'Nagopt' is written in C++ and Fortran. By this ode,

the blak box optimization algorithms of the NAG library are invoked. The applied NAG

library routines are E04FCF, E04FDF, E04JBF, E04UCF and E04UPF. These NAG library

funtions are written in Fortran. The whole handling of data and funtions is done by the

basi program. The ode is split in several �les whih are strutured by their funtionalities.

The developed basi program 'Nagopt' ontains more than 2000 lines.

The developed ode will be applied to inompressible, laminar ow. The simulation

ode was provided by C. Waguet ([63℄). The original 3D model was redued to a 2D model

by means of the rotational symmetry in the original 3D model. The obtained 2D ow tube

has a reentrant orner.

The Navier-Stokes equations are formulated in ylindrial polar oordinates. This leads

to the three omponents radial veloity u, axial veloity w and pressure p. The boundary

onditions for the veloity are Dirihlet at the inow and at the wall, on the other boundaries

we have free boundary onditions (Neumann). Whereas for the pressure p, we require free

boundary onditions on all boundaries.

The solution methods of the simulation are based on adaptive �nite element methods

using the weak formulation of the Navier-Stokes equations. For the nonlinear part, �x-point

iteration is applied. The solver BiCGSTAB is aelerated by a multigrid preonditioning.

The implementation is based on the DEAL ode.

Calulations with Reynolds numbers Re in the range of 0:0001 � Re � 100 are possible.

The paraboli inlet pro�le for the axial veloity is

1

16

(x+ 4)(x� 4).

Considering the optimization, there were two degrees of liberty in the problem:

1. Parameter estimation with respet to the Reynolds number Re or the visosity �.

2. Parameterization of the paraboli inlet pro�le.
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The referene values for the parameter estimation are taken on the base grid.

Some information on the applied adaptivity: Normally, we have one or two adaptive

re�nements of the grid. For example, in level 0 we have 151 verties and 120 ells. This is

the starting grid. In level 1 we have 490 verties and 429 ells. And in level 2 there an

be 1506 verties and 1377 ells. We use for eah optimization step the same starting grid.

The parameter estimation part was performed with blak box algorithms from the NAG

library.

The �rst onsidered optimization problem is NAGOPT1: Parameter estimation by

hoie of the visosity or Reynolds number should be done. The referene values were

obtained with �

�1

= 10. There are 3 di�erent sets of referene values, one with and two

without adaptivity. All data points for the parameter estimation were already on the initial

grid.

As starting values for �

�1

, 0.01 and 30 were used. The alulations were made both

with and without adaptivity in the �nite element part.

This leads to a least squares problem. Two blak box algorithms for the NAG library

were applied: The Gauss Newton method E04FCF and the Quasi-Newton method E04JBF.

In the �rst table, the auray in the parameter �

�1

was XTOL = 0.000001. The value

of the objetive funtion is given in the olumn '�nal value'. The number of optimization

iterations and simulation evaluations is denoted by '#iter' and '#sim', respetively.

algor adaptiv start v

�1

�nal �

�1

�nal value #iter #sim

e04ff - 1 no 0.01 9.99999 3.51e-16 3 12

e04ff - 2 no 0.01 9.99999954 1.01e-16 3 12

e04ff 0.01 0.01 10.00000 1.71e-14 2 10

e04ff - 1 no 30 9.99999 3.51e-16 3 28

e04ff - 2 no 30 9.99999956 1.62e-14 3 12

e04ff 0.01 30 10.00000 1.71e-14 3 10

e04jbf - 1 no 0.01 9.99998807 3.53e-16 5 49

e04jbf - 2 no 0.01 9.99999800 1.63e-14 6 28

e04jbf 0.01 0.01 9.99999864 1.71e-14 7 30

e04jbf - 1 no 30 9.99998748 3.55e-16 4 56

e04jbf - 2 no 30 9.999999421 1.62e-14 6 48

e04jbf 0.01 30 9.99999835 1.71e-14 3 49

For larger XTOL no signi�ant hange was observed.

The Gauss Newton method E04FCF shows a muh better behavior than the Quasi-

Newton method E04JBF. The latter needs more iterations and more simulation evaluations.

This leads to a slower solution proess.

The seond onsidered optimization problem is NAGOPT2: For this parameter esti-

mation problem, we have the parameters visosity/Reynolds number and the inlet fator

for the inow pro�le. The referene values were obtained with �

�1

= 10 and inlet-fator 1.

As above, there are 3 di�erent sets of referene values, one with and two without adaptivity.

All data point for the parameter estimation were already on the initial grid.

This leads to a least squares problem. Three blak box algorithms for the NAG library
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were applied: The Gauss Newton method E04FCF, the Quasi-Newton method E04JBF

and the SQP method E04UCF.

In the following table, the auray in the parameter �

�1

and in the inlet fator was

XTOL = 0.000001.

algor adaptiv start �

�1

start I �nal value #iter #sim

e04ff - 2 no 0.01 10.0 1.61e-14 8 30

e04ff 0.01 0.01 10.0 1.68e-14 7 44

e04jbf - 2 no 0.01 10.0 1.61e-14 23 141

e04jbf 0.01 0.01 10.0 1.69e-14 20 124

e04uf - 1 no 15.0 0.7 2.45e-15 18 24

e04uf 0.01 15.0 0.7 1.84e-14 16 31

e04uf - 1 no 0.9 4.0 5.35e-15 24 37

e04uf - 2 no 0.01 10.0 1.62e-14 27 42

No onvergene was stated for e04ff-1, e04jbf-1 and e04uf-1 for the starting values

�

�1

= 0.01 and I = 10.

Again, the Gauss Newton method E04FCF shows a muh better behavior than the

Quasi-Newton method E04JBF. But the SQP method E04UCF is even better.

The stated divergene in some ases shows that blak box odes an not avoid diÆulties

whih appear also for the developed methods in the main part of this thesis. But the latter

allow a better treatment of these diÆulties beause more information of the simulation

an be used in the optimization part due to the oupled system.

In general, the solution proess is slower for the blak box optimization odes. Every

simulation needs a full solution of the forward system inluding its own adaptive mesh

re�nement. The di�erentiations are done by �nite di�erenes and are very expensive,

espeially for systems on �ne grids. In the oupled system, this di�erentiation information

is obtained diretly from the system; it is therefore muh heaper.

Furthermore, no error estimates for the optimization problem an be developed with

the blak box version beause the possible re�nement in the simulation ode an only be

based on the simulation information. And the adaptivity must only be done one time for

the developed method with oupled systems. For blak box, adaptivity must be done in

every simulation evaluation.





Appendix B

Equation system for optimization

governed by the Navier-Stokes

equations

In this appendix, the detailed equation system for optimization governed by the inom-

pressible Navier-Stokes equations as appliation is derived. The presented terms are only

those terms whih result diretly from the inompressible Navier-Stokes equations. Terms

resulting from other parts of the optimization system like the ost funtional, ontrol terms

or other boundary onditions must be added in orrespondene with the speial optimiza-

tion problem.

The signs '+=' and '{=' mean adding or subtrating to the former value of the variable

on the left hand side as used in omputer siene. N denotes the test funtions.

The presented equations ontain stabilization. For this reason the resulting di�erentials

will lead to very large equation systems. The fator � enables to hange the weighting of

the transport term in the Navier-Stokes equations. Setting � = 0 eliminates the transport

term. (In the ode 'of' � is TRAP.)

For the �rst order neessary onditions of the optimization problem, the following equa-

tions result (for the Newton residual): From the ontinuity equation the following terms

are obtained:
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From the �rst momentum equation (u) the following terms are obtained:
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From the seond momentum equation (w) the following terms are obtained:
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The ontinuity equation is obtained by di�erentiation w.r.t. �

(2)
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The seond momentum equation is obtained by di�erentiation w.r.t. �

(1)

:
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For the Hessian matrix, the following terms an be stated. The fator

^
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weighting of the reation term in the transport term of the Navier-Stokes equations. (In

the ode 'of'
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� is TRAPREACT.)
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From momentum equation 2 (w):
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From momentum equation 2 (w):
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Errata

The following errata are added for the eletroni publiation. These are not ontained in

the version submitted to the Naturwissenshaftlihen - Mathematishen Gesamtfakult�at

der Rupreht - Karls - Universit�at Heidelberg in April/May 2000.

Page 13, line 5: delete

"

, in Setion 1.1\

Page 19, line 7: replae

"

H

1

(�;
)\ by

"

H

1

(�;
)

0

\

Page 19, line 21: replae

"

derivation\ by

"

di�erentiation\

Page 26, line 33: replae

"

to Hessian\ by

"

the Hessian\

Page 30, line 6: replae

"

Setion 2.2\ by

"

Setion 2.5\

Page 31, line 35-36: replae

"

in the last preeding paragraph\ by

"

above\

Page 34, line 6: replae

"

��u\ by ��u+ u\

Page 35, line 1: delete \ontinuous\ and

"

disrete\

Page 42, line 29: add after

"

; r

(q)

h

\:

"

are the residuals obtained from the given funtional

onsidered in (2.6) and (2.7), these \

Page 46, line 21: replae

"

In setion\ by

"

In this setion\

Page 47, line 19: replae

"

not \ by

"

to\

Page 49, line 37: repae

"

optimization\ by

"

error estimation\

Page 56, line 2: replae

"

the\ by

"

of\

Page 64, line 2: delete

"

normally\

Page 65, line 30: replae seond

"

x

k

\ by

"

~x

k

\

Page 66, line 3 and 6: replae

"

4x

k

r

2

L(x

k

)

�1

\ by

"

4x

T

k

r

2

L(x

k

)

�1

\

Page 90, line 18: replae

"

bigger\ by

"

more omplex\

Page 92, line 6: delete

"

an\

Page 93, line 31: replae

"

to\ by

"

two\

Page 98, line 11: delete

"

in\

Page 99, last line: replae

"

�\ by

"

 

"

Page 100, line 2: in seond term: replae

"

�\ by

"

 

"
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