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Zusammenfassung

Unterschiedliche Kerneffekte in atomaren Systemen und in einer speziellen Klasse von Fest-
korpern, in unkonventionellen Supraleitern, werden untersucht. Der erste betrachtete Prozess,
innere Paarkonversion in Schwerionen, kann eine wichtige Rolle in zahlreichen Streuprozessen
spielen, die mit existierenden oder zukiinftigen hochenergetischen Schwerionen-Beschleuniger-
anlagen untersucht werden. Es wurde festgestellt, dass die Kernanregungsrate und damit die An-
zahl der erzeugten Paare stark durch planare Gitterfiihrung der Ionen durch einen Kristall erhoht
wird. Der zeitinvertierte Prozess zur Paarkonversion, resonante Kernanregung durch Positro-
nenannihilation, ist ein alternativer Mechanismus in der Wechselwirkung von Positronen mit
Materie, und stellt einen zustandsselektiven Weg der Kernanregung dar, der komplementér zu
Photo- und Coulomb-Anregung ist. Weiterhin werden Effekte der schwachen Wechselwirkung
im Zusammenhang mit Parititsverletzung in unkonventionellen p-Wellen-Supraleitern unter-
sucht. Wir schlagen Schemata zur effizienten Erhohung des Effekts vor, so dass dieser zukiinftig
experimentell untersucht werden kann. Die betrachteten Effekte stellen neue Phanomene an der
Schnittstelle von Atom- und Kernphysik und Quantenelektrodynamik dar, und bieten effektive
Moglichkeiten zur Untersuchung von fundamentalen Wechselwirkungen.

Abstract

Various nuclear effects in atomic systems and in a particular type of solids, namely, in
unconventional superconductors, are investigated. The first process considered, internal pair
conversion in heavy ions, can play an important role in numerous scattering processes to be
examined at existing or upcoming high-energy heavy-ion-accelerator facilities. The rate of
nuclear excitation and thus the number of created pairs is found here to be strongly increased by
ion planar channeling through a crystal. The time-reversed process of pair conversion, nuclear
excitation by resonant positron annihilation, provides an alternative mechanism of positron-
matter interaction and constitutes a state-selective way to excite nuclei which is complementary
to photo- and Coulomb excitation. Furthermore, weak-interaction effects are examined in the
context of parity violation in unconventional p-wave superconductors. We suggest schemes
to efficiently enhance the effect and to enable its future experimental study. The considered
effects represent new phenomena at the interface of atomic and nuclear physics and quantum
electrodynamics, and provide effective ways to investigate fundamental interactions.
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Introduction

Historically, the theory of the atomic nucleus has been developed separately from other phys-
ical theories [6]. This is mostly caused by the presence of non-electromagnetic interactions,
binding nucleons together in a compound system. For the description of the nucleus one needs
to also account for the weak and strong interactions of the Standard Model. This explains the
complexity of nuclear models. Furthermore, nuclei are usually studied not separately, but as a
part of some system, for instance, an atom or a crystal.

In a basic approximation, these systems can be described as containing point-like nuclei,
which are characterized by their composite charge, and interact with electrons and other nuclei
by the Coulomb force; effects associated with the nuclear structure are, therefore, neglected.
This simple model explains a plethora of different phenomena in atomic and solid-state physics.
The internal nuclear configuration typically produces only small corrections to the description
of atomic and solid-state systems [6]. However, these deviations can in certain cases carry
significant information about both nuclear structure and the properties of the fundamental inter-
actions.

§ 1 Nuclear effects in atoms

Several nuclear effects are well-known in atomic physics. These fundamental processes can be
categorized as follows:

Static effects

Firstly, the main contributions to the atomic spectrum stemming from the nucleus are provided
by effects known since the early 1930s. The basic fundamental phenomena of this kind are: the
spectral shifts caused by finite nuclear size and finite nuclear mass [7,8]; the influence of the
nuclear spin on electron spectra [9]; the nuclear contribution to the hyperfine structure [10,(11];
and the Zeeman effect of the hyperfine structure [[12]. All these phenomena are rather well un-
derstood nowadays, therefore, for a detailed description one can refer to any textbook on atomic
physics, for instance, Ref. [[13]]. These hyperfine effects are however strongly enhanced in heavy
highly charged ions. Modern experiments with ions such us hydrogenlike or lithiumlike Bi and
Ho provide insight into nuclear structure via the nuclear magnetic moment, and also allow tests
of quantum electrodynamics in the strongest electric fields available [[14]].

Modern atomic structure calculations involving quantum electrodynamic corrections give
very precise results, which can be experimentally tested to ultimate accuracy. Therefore, it is
crucial for some of these calculations to take nuclear properties into account. As an exam-
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ple, one may consider the theoretical and experimental investigation of the electron mass [[15].
In this work, an extremely accurate measurement of the magnetic moment of a hydrogenlike
carbon ion is combined with a g-factor calculation in the framework of bound-state quantum
electrodynamics, to yield the atomic mass of the electron with a 107!! relative precision. At this
level, even the otherwise minor nuclear effects contribute significantly.

Dynamical effects

Another group of nuclear effects in atoms is connected with nuclear processes dynamically
involving atomic electrons. The most fundamental effect of this type is internal conversion, i.e.,
deexcitation of an atomic nucleus by transfer of its excitation energy to the ionization of one
of the bound electrons [16]. The inverse process, i.e. nuclear excitation by electron capture,
has also been predicted, however, it has not been observed yet (see e. g. Ref. [17]). Nuclear
deexcitation by S-decay can initiate processes in atomic shells: for instance, in proton-rich
nuclear systems having sufficient energy for the 8 decay one can also observe nuclear decay
by electron capture, i.e. a process in which a nuclear proton absorbs an inner atomic electron,
thereby producing a neutron and causing the simultaneous emission of an electron neutrino. For
the first experimental observation of electron capture one can refer to Ref. [18].

It is possible to examine further processes such as bound-free internal pair conversion, where
an atomic nucleus produces within its deexcitation an electron-positron pair with the electron
in a bound state of the same atom. The study of nuclear transitions involving atomic electrons
is relevant as it allows to improve our understanding of both atomic and nuclear structure, as
well as the transfer of energy between these subsystems. This can also lead to several practical
applications, directly related to the interactions of matter with charged particles, ranging from
electrons and positrons to heavy ions.

§ 2 Parity violation as a nuclear effect in atoms and in solid
state

The next phenomenon considered in this work is the electroweak interaction between the nu-
cleus and electrons. The main observable effect in this case is provided by the parity-violating
terms of the weak interaction, since they change the parity of electronic states and can be ob-
served on the strong background of electromagnetic forces. The observation of this effect is
appealing for both atomic and solid-state physics.

The parity violation has been firstly detected experimentally in the beta decay of cobalt-
60 in 1957 by C. S. Wu and collaborators [19]]. Later many other experimental schemes for
its observation and investigation have been realized. For instance, in atomic physics, parity-
violation experiments have been performed by the observation of the forbidden M1 transition
7512 — 651/, in cesium, which possesses a symmetry-breaking admixture of the 6p;, electron
state with its neighboring state 7s;,, (Ref. [20]).

In solid-state physics, the parity-violating terms of the electroweak interaction between elec-
trons and nuclei of the crystal lattice can have a slight influence on conducting and supercon-
ducting properties of the material [21]. One of the solid-state systems where one can propose to
measure the symmetry-breaking contribution is an unconventional superconductor. The main
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advantage of the investigation of parity violation in superconductors is the compact size of the
experimental setup in comparison to modern accelerator-based experimental techniques. It is
also of academic interest to see whether such a microscopic effect can manifest itself on the
macroscopic scale.

§ 3 Nuclear effects investigated in the present work

This work presents an investigation of several not yet fully studied nuclear contributions in
atomic physics, as well as in a special solid-state system, namely, in unconventional super-
conductors. The atomic effects considered in this work are: internal pair conversion with the
creation of a free or bound electron; internal pair conversion following Coulomb excitation;
pair creation in heavy ion channeling; pair production in muonic atoms; and nuclear excita-
tion by resonance positron annihilation. Finally, we discuss parity violation in unconventional
superconductors.

The first considered process is internal pair conversion in heavy ions. A considerable variety
of particles can be produced in nucleus-nucleus collisions involving heavy ions. Among these
particles one may observe outgoing positrons in coincidence with the change of the charge
of the target ion. They can be created either in direct electron-positron pair production by
a virtual photon with simultaneous capture of an electron to an atomic bound state [22], or
through a nuclear excitation, followed by bound-free nuclear pair conversion. In the second
case, the positrons created are monochromatic, i.e. their kinetic energy is well defined by energy
conservation. These fundamental schemes can play an important role in numerous processes
which are going to be examined at the Facility for Antiproton and Ion Research (FAIR) in
the nearest future [23]]. In the framework of FAIR experiments it will be possible to consider
the bound-free and free-free pair production in the Coulomb field of heavy ions within their
collision. Therefore, it is important to investigate the pair conversion process itself, as well
as in a combination with the Coulomb excitation of the nucleus, as a mechanism to populate
nuclear levels with MeV energies.

Furthermore, we investigate whether the rate of excited nuclei or the number of created pairs
can be increased by the implementation of ion planar channeling through a crystal at certain
resonance conditions [24]. In this case, after multiple interfering interactions, the nucleus is
excited with a significantly enhanced probability, therefore, we expect that the rate of pairs
created by the corresponding deexcitation also increases. This technique for the enhancement
of pair production is also investigated in the present work.

Generally, pair creation in strong electromagnetic fields, such the Coulomb fields of heavy
colliding ions combined for a short time or the crystal field in channeling, provide alternatives to
pair production in optical or X-ray lasers fields [25]. Therefore, the study of such mechanisms
is of significance in fundamental research in quantum electrodynamics, connected with fermion
production in strong electromagnetic fields (see, e. g. Ref. [26-29]).

The pair-creation process can also be studied in a more exotic system, namely, in muonic
atoms. The muonic atom is a system consisting of a nucleus, bound electrons, and at least
one muon in a bound atomic state. The investigation of muonic atoms is of importance for
several applications. For instance, muonic hydrogen has been used in precise experiments for
the determination of the proton radius [[30], exploiting the much higher overlap of bound muons
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with the nucleus, as compared to bound electrons. Usually, muonic atoms are created with a
muon occupying a highly excited state, causing a cascade transition of the muon to the lowest-
possible state [31]. Having an approximately 200 times larger mass than an electron, in heavier
atoms, a muon can produce a pair of an electron and a positron within its transition between
low-lying bound atomic states. Therefore, the investigation of the pair production with both
a bound or a free electron created is relevant for muonic cascade studies. This deexcitation
mechanism is also studied in this work.

The time-reversed process of internal pair conversion can play a role in the interaction
of positrons with matter. Positron collisions with atomic matter lead to a number of pro-
cesses [[32-36], among which annihilation with shell electrons is one of the most prominent
effects. Typically, annihilation leads to the emission of gamma rays. Alternatively, the same
nucleus may resonantly absorb the whole energy of the annihilating particles and become ex-
cited. This single-step process is termed Nuclear Excitation by Resonant Positron Annihilation
(NERPA). NERPA constitutes a way to excite nuclei which is alternative to photo- and Coulomb
excitation. The great advantage of photo-excitation is the monochromacity of the X- or y-ray
beam and the resonant character of the excitation. The accessible transitions are, however, of
electric dipole (E1) type. On the other hand, Coulomb excitation, i.e. the excitation by the
inelastic scattering of massive charged particles, may induce transitions of arbitrary multipolar-
ities, however, without any selectivity of the nuclear energy levels. NERPA has an attractive
combination of the above advantages: the resonant character of the excitation and a signifi-
cant cross section regardless of the multipolarity. In particular, NERPA can resonantly induce
monopole transitions. A possibility to excite such transitions is particularly important for stud-
ies of deformed nuclei. Another important application is a collective nuclear excitation, the
giant monopole resonance [|37,38]. In the case of giant nuclear resonances of any multipolarity,
NERPA bears all the above-mentioned advantages of Coulomb excitation.

Weak interaction effects are discussed in the present work by focusing on parity violation
phenomena in superconductors. The idea that parity violation effects can appear in supercon-
ductors was proposed by A.L. Vainstein and I.B. Khriplovich in 1974 [21]. It has been shown
in that work that this electroweak contribution is negligibly small in conventional s-wave su-
perconductors. The theoretical treatment of this effect in unconventional p-wave ferromagnetic
superconductor is presented in this work. In these materials superconducting and ferromagnetic
phases may coexist, which helps to improve the effect. Our calculation shows that the parity vi-
olation effect is significantly stronger in our systems than for the s-wave case. We also suggest
novel methods for the measurement and control of the effect, yielding further enhancements.

To cover all the mentioned phenomena, this thesis is organized as follows. In Chapter
the pair conversion mechanism in ions is discussed. Here, the main analytical formulas are
derived, which are used in most of the following parts of this work. Two cases of internal
pair conversion , namely, the cases when a free or a bound electron is created, are compared
in different atoms and energy regions. In order to perform quantitative investigations, the pair
conversion coefficients have been introduced. They are defined as the ratio of the probability of
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a certain type of pair conversion to the probability of v emission in the same nuclear transition.
Certain mathematical derivations related to this Chapter are given in Appendix A.

Chapter |l is devoted to pair production in muonic atoms. Here, we also have to take into
account the nuclear size contribution in the wave functions of the bound muon. The main im-
provement of our theoretical description is required by the presence of vacuum polarization
corrections, which are described in this work in terms of the Uehling potential [39]. The results
of corresponding numerical investigations show very similar dependencies of the pair produc-
tion rates on energy and nuclear charge as in the nuclear internal conversion case.

Chapter [III| contains the investigation of nuclear excitation by resonance positron annihi-
lation. On the one hand, from the point of view of analytical derivations, the description of
this process does not differ much from that of internal pair conversion. On the other hand, it
is promising for possible applications, therefore, it is rather relevant to find special situations
where the contribution of NERPA is significant. Such cases with corresponding numerical in-
vestigations are discussed in Chapter III, with some derivations presented in Appendix B.

Chapter [[V|describes pair production following Coulomb excitation and Chapter |V|demon-
strates the significant increase of the corresponding rate of the nuclear excitation by the imple-
mentation of ion planar channeling through a crystal. The nuclear excitation is described in this
case in terms of the interaction with equivalent photons in the crystal. For the deexcitation step
the results for internal pair conversion received in Chapter [ are incorporated.

The final Chapter [VI presents the investigation of parity violation properties of the weak
interaction. This property is studied in unconventional superconductors. Therefore, the corre-
sponding theory is formulated in Chapter VI and in Appendix C.






Chapter I

Internal pair conversion

§ 4 Introduction to internal pair conversion

The creation of particle-antiparticle pairs from vacuum [40] is one of the most intriguing fea-
tures of quantum field theory. A broad variety of pair creation mechanisms have been pre-
dicted and experimentally observed, e.g., in intense optical or X-ray fields [25,41-51], in ion-
ion [52-56], ion-photon [22] and ion-electron [S7] collisions, in tokamak plasmas [58]], as well
as in astrophysical environments such as, e.g., pulsars [59]. In projected experiments at the
Facility for Antiproton and Ion Research (FAIR), it will be possible to study pair creation in the
Coulomb field of heavy ions during their collision [23].

The study of an alternative mechanism of electron-positron pair creation, the bound-free
internal electron-positron pair creation is put forward in this Chapter [see Fig.d.T]|. This process
presents a new channel of nuclear deexcitation by the creation of an electron-positron pair with
the electron occupying a discrete atomic state in the same atom, while the positron, due to
its positive charge, is created in a free (unbound) state. The corresponding free-free process
with both fermions created as free has been described for the first time in the work of Rose and
Uhlenbeck [60]] and has been experimentally observed by Bloom [61]. A complete theory of the
free-free process has been introduced by Soff, Schliiter and Greiner for nuclear transitions with
angular momenta L > 0 [62] and for electric monopole (EO) transitions [63]]. The second case
is of interest since it relates to a radiationless transition, i.e. only internal conversion and the
pair conversion process are allowed. Furthermore, in the case of a bare ion in absence of atomic
electrons, even internal conversion is forbidden and bound-free and free-free pair production
are the only possible electromagnetic decay channels.

It has been noticed by Soff and coworkers [63] that the bound-free process is naturaly rare,
since it requires a vacant bound electron state with a large overlap with the nucleus. The situa-
tion can be changed in the case of a bare heavy ion or in a heavy ion with the vacant 1s; ,-state
for the created electron. Therefore, the calculations are provided in the present Chapter for
heavy ions. The cases when the bound-free process can be comparable to or even can have a
greater contribution than the free-free process are also discussed here. These cases are relevant
for different applications in atomic physics and astrophysics, to be discussed later in Chapter I11.

In this Chapter the theoretical description of the bound-free internal pair conversion process
is presented. This theoretical study is accompanied by results of numerical calculations. Some
suitable nuclear transitions are shown correspondingly where bound-free pair conversion has a
significant contribution.
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(a) (b)
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Figure 4.1 — (a) The illustration of internal pair conversion by the corresponding nuclear and
fermionic level schemes. mc? is the rest energy of the electron, and N* (N) denotes
the nuclear initial (final) state. (b) The leading Feynman diagram of internal pair
conversion. Thick lines denote nuclear states, double lines denote fermions in
the Coulomb field of the nucleus, and the wave line represents a virtual photon
exchanged between the nucleus and the electron-positron field. Here, the electron
created may be bound or unbound.

§ 5 Probability of the process

Let us consider the electromagnetic Hamiltonian for an atomic system consisting of the nu-
cleus and fermions (electrons and positrons) as a sum of the unperturbed (H) and perturbation
(interaction, H;) parts,

H=H,+ H,. (5.1)

It is possible to construct the S -matrix, which connects the initial and final states of the system:
|f) =t = +00) = S|t = —o0) = S1i), (5.2)

where the initial (/) and final (f) wave functions are eigenfunctions of the free Hamiltonian H.
As follows from the S -matrix theory, this matrix is defined by the equation [64]:

S =T [e—ifd“xH,(x)]’ (5.3)

where T is the Wick time-ordering operator, x is a 4-dimensional Minkovsky-space vector. With
the help of the Wick theorem [64]], written for some functional S y(¢y, .., ¢,,) of the quantum
fields ¢y, .., ¢,, participating in the considered process, one can reduce 7-ordering to normal
N-ordering:

T [eiSV(¢l-.-¢/11):| — N [61/2 Zi,j %,-Aif&eiSv(‘ﬁl...(ﬁm) X (5.4)

In this equation the convolution operator is A;; = {f|T[¢;¢;]]i).

For our case of interest — the description of the nuclear-electron interaction — one operates
with 3 quantum fields: W(x) for the nucleus, ¥(x) for fermions, and A(x) for photons. Fur-
thermore, only the convolutions between fields with the same nature appear to be non-zero. In
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common notations, these non-zero convolutions are [[64]:

Ay(x1, %) = (fITPx)P)]li), (5.5)
Ay(xi,x) = (FITIY D), (5.6)
Ny (xi,x0) = (fITTA* () A (x)1li). (.7

Here, x; and x, are also 4-dimensional vectors. The bar over the field operators’ symbols
means the complex conjugate. The interaction part of the Hamiltonian is [65]]:

Hi(x) = er(x)y,ab (A" (x) + ¥ (x)y, P(0)A* (x), (5.8)

where e is the unit charge and y* are the Dirac matrices [64] with u = 0, 1, 2, 3. For Greek
indexes, the Einstein summation convention is assumed here. The first nonzero contribution
to the S-matrix appears to be of second order. The present calculation is restricted to this
contribution. One can derive the second order of the S -matrix using Eqgs. (5.3}{5.8). Here, only
the contributions containing all 3 fields are presented:

2

§@ = % (N [T(xlm‘l’(xl)s?(h)w (x2)] + N[Ay(xy, Xz)?’ul// (xl)%z(xz)%]

+NIA (2, x0T (1), P (02)] + A1, x2) A2, X1y Y,i ) (5.9)
X (NIA* (DA ()] + A (31, x2))

Furthermore, since we consider the a situation with external nuclear and fermionic lines, and a
virtual photon mediating the electromagnetic interaction, the only term of S @ that survives is

2
§@ — TN [\P(xl)yﬂ‘{’(xl)w(xz)va(xz)] A (x1, x2). (5.10)
It contains the photon propagator of the form [64]:
l‘gﬂ" . e tk(x1=x2)
Ap(xy,x2) = — d'k———F—, 5.11
A(x1, x2) 2ny f 2170 (5.11)

where g is the metric tensor, and the integration is performed over the 4-momentum k of the
photon. The small imaginary part +i - 0 defines the integration contour within the integration
of this function near its pole. The fermion part becomes a product of nuclear and electronic
3-currents, and the time-dependent part contains electron, positron and nuclear decay energies
(E, E’ and w, correspondingly). Therefore, the S ®-matrix element has the form [62]):

Sy = (+2w)4 f dr, f dF. ju(7) jelF2) (5.12)

% fdkelk(ﬁ, 7)fdk fdleei(E+E/+k0)tefdtne_i(w+k0)t'l.
W—%—m

The last two integrals evaluate to Dirac o-functions, therefore, after integration over k(, one can
obtain [[62]:

lk(rn re)
§@ r
s (MyjﬁmjﬁQMmmﬂafﬁk S(E +E - w). (5.13)

2 —w? -0
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The evaluation of the integral over the photon momentum leads to [62]

S?i) = —ZyriUﬁ)(S(E +E +w), (5.14)
> 5 . 5 X 5 eiwml_?el
Uﬁ) = _afdrnfdi’ejn(i”n)h(’”e)m, (5.15)

where « is the fine-structure constant. Therefore, the transition probability is given as a sum
over the magnetic quantum numbers of initial and final nuclear states, as well as over the Dirac
angular momentum quantum numbers «, k* of the created electron and positron, and over their
magnetic quantum numbers [|62]:

Ji i i J
Peet 2Ji+1MZ_ 2 _Z 2. W (5.16)

W = 27UDI6(E + E' - w).

Here, J; and J; are the angular momenta of the nuclear initial and final states and j and j" are
angular momenta of the electron and positron states.

§ 6 Multipole transitions (L > 0)

As has been noticed in Ref. [62], the derivations of the free-free pair conversion equations
are different for the cases when the nuclear transition momentum L is equal or non-equal to
zero. The same is valid in the bound-free case. In analogy with the free-free pair conversion
coeflicient for the case L > 0: By = P,..+/Py [62] — ratio of the pair production probability and
the gamma emission probability — the bound-free pair conversion coefficient can be defined as:

Bot = Pe}:ef*/P)u (6.1)

The equation for By can be derived in a similar way to B¢ [62], with the substitution of
a bound wave function for the created electron instead of one belonging to the continuous
spectrum. We provide our derivation in the zero nuclear radius assumption with the help of
Refs. [22,162,65]. First of all, due to the theoretical achievements of the last section [see
Eq.[5.16]}, the bound-free pair production probability is:

Jr K=+00 K’ =+00 J

—4 ) Ji J
Peo = 2J,~7:-Ci ooy > 6.2)

Mi=—J; My=—J¢ K=—00 K = —oco H=TJH="J
k#0 K #0

exp za)lrn |
The integrations are performed over electron and nuclear coordinates. J-function determines

the energy relation between the electron (E£”), the positron (E) and the photon (w), emitted by
the nucleus.

drn dre]n(rn)]e e) 5(E + E - (U)

|7
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13

By substituting 4-currents by 3-currents and charge densities, one can rewrite the integrals

in Eq. (6.2) similarly

“a [ dn, [ dn(poupdi) - LE1G)
0 0

with

Ut =

U" =

U’ =

to Ref. [62] as:
exp iw|7, — 7|
| rn — ?el

L
Z (U™L, M) + UL, M)) + U°,

1 M=-L

Mg

~
1l
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T=e,l

driaw [

[ [ anias @i

T=e¢,l

f ar, f A7 o) LT Yy Yo BV (P Y M G, )
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f d?nf d’_)epn(?n)hL(w’_}n)Y£4*(ﬁrn)pe(?e)]L(w?e)Yg/[(ﬁre))’
0 0
47Ticw)( f dr, f A7, Ju (AN (i) [ B (W)
0 n

f ar, f daﬁ(mBLMW(wﬂ)ﬁ(ﬁ)Aﬁ“m(wa)),
0 0

0 n 1 1
—a f d?n f d?epn(?n)pe(?e) (_ - _) 5
0 0 n  Fe

(6.3)

(6.4)

(6.5)

(6.6)

where j; and h; = h(Ll) are the Bessel and Hankel spherical functions [66], Yé” are spherical
harmonics, 7i, = 7/r denotes the angular part of the vector 7, and the following notations have

been introduced [62]]:

A 2’1 @ (wP)
Bf(” (wP)
) (L. wP)
)" )

Y71, ()

= /L, wh),
= C,(h, wP),

L
= - m{LH(W”)YLLH(ﬁr) +
= L (wn)Y} (i),

_ L+Mmz(_# M;ﬂ _’;M) YU GDE.,

where the spherical unit vectors are:

é:O = €y

(i = ¢%(€xiiey).

(6.7)
(6.8)

1
1§L—1(wV)YLL—1(ﬁr), (6.9)

(6.10)

6.11)

(6.12)
(6.13)
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Following Eq. (6.6) it is important to stress that one has to assume some nuclear model (e. g.
the nuclear drop model) for the nuclear charge distribution and performe an integration for the
calculation of the internal pair production coefficient in the case of electrical monopole (EO)
nuclear transitions.

However, the further derivation of U¢ and U™ involves a splitting of the double integral
over nuclear and fermionic coordinates into a product of nuclear and fermionic parts. This can
be performed in the non-penetration approximation, where the overlap integral of the bound-
electron wave function within the nuclear volume is neglected. This simplification is generally
used in the calculation of quantities related to the interaction of shell electrons with the nucleus
[62,63./67,68|]. The full description of this procedure can be found in [[62], thus this procedure
is shown in the present work on the simple example of U™ only. The equation for U™ can
be rewritten in the following way [62]:

Um" = 47ricw)( fo dr, fo d7, Ju(PYAY ™ (wF,) J(R)BY ™ (wh,) (6.14)
- f dr, f d7, Ju(PIAY ™ (wF,) J(7)BY ™ (wF,)
0 0
+ f 7, f Az, ju (BB ™ (i) je(RIA] ™ (wF,) |
0 0

In Eq. (6.14), the two last terms are neglected due to the non-penetration assumption. The

first term can be written as the product of nuclear and electronic parts [62]:
U™ = 4niawV,, M". (6.15)

The nuclear part disappears in the bound-free pair conversion coeflicient Sy after dividing by P,
[see Eq. (6.1)]. Therefore, only the electronic matrix element M™ has to be calculated and the
pair conversion coefficient is independent on the nuclear model. A similar result with Eq. (6.15)
can be received for electrical transitions (i.e. for U¢).

The next step is the calculation of the fermionic matrix elements in all equations above. The
wave functions for the bound electron and the free positron are written in the form [65]:

_ gK(r)Q 'lm(gv ¢)
W jin(r, 6, §) = ( Q0. ) ) , (6.16)

where
Qun(0,¢) = > (L1/2 = mny|jm)¥ynm, (6, )im,- (6.17)

my=x1/2

Here, the y,,, are the spinors defined as [65]]

1
X%:(O) and/\/_éz((l)). (6.18)

These are coupled using the Clebsch-Gordan coefficients (L1/2 — mgm;|jm) with the spherical
harmonics to form spherical spinors Q j;,,, which are eigenstates of the total angular momentum
Jj. For the Dirac angular momentum quantum numbers it holds: xk = F(J + 1/2)and L’ = L + 1
forJ=L+1/2.
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In contarast to free-free internal pair production [62], the bound-free case operates with
bound radial functions f and g; other issues are the same. Thus, following the derivations
of [62], one arrives to an expression for the pair conversion coeflicient with the new functions

fand g:

draw

ﬁbf(EL) = A mlkkll X |(K — K’)(R:; + R4) + L(R] + R2 + R'; — R4)|2O', (619)
draw , , )

Pos(ML) = Z mh« | X |(k + k")(Rs + Ro)|" 0, (6.20)

where a short-hand notation for a squared 3 j-symbol [[69] was introduced:
.y 2
a:(1 J 16) (6.21)
2 T2

This 3 j-symbol embodies the transition selection rules, i.e. it is non-zero when

lj-L< j <j+L, (6.22)
or (6.23)
k| =Kl < L <|«l+ k|- 1. (6.24)

The radial integrals in Egs. (6.19H6.20)) are

R, = j;mgkgk/hL(wr)rzdr, (6.25)
R, = Ow fofohi(wr)ridr, (6.26)
Ry = fo ) fegwhi_1(wr)ridr, (6.27)
R, = j;mgkfk/hL_l(wr)rzdr, (6.28)
Rs = fo ) fegwhi(wr)ridr, (6.29)
Ry = f ) gefohi(wr)ridr. (6.30)

' (6.31)

The analytical evaluation of these integrals in the point-nucleus approximation is presented
in Appendix [A] Alternatively, the radial integrals can be calculated assumping a finite nuclear
radius. This calculation has to be provided with wave functions obtained from a numerical
solution of the Dirac equation containing the potential of an extended nucleus. Computer codes
used for our evaluation of such functions can be found in [70]. The results of zero and finite
nuclear radius calculations and their comparison are presented in the following sections.
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§ 7 Monopole transitions (L = 0)

Gamma emission is forbidden for the case of electric-monopole (E0) nuclear transitions, there-
fore, the coefficient 8 cannot be introduced as in the previous Section. However, the ratios
between probabilities for the bound-free pair production (Pys), the free-free process (Pg) and
internal conversion (P,) can be used for the characterization of this process. Therefore, the
following 4 ratios can be introduced:

n = Pg/P,, (7.1)
01 = Py/P,, (7.2)
0, = Pu/Pyg, (7.3)

Pyt
03 = ———. 7.4
3 be + Pff + Pe ( )

The coefficient  has been introduced by Soff et al. in Ref. [63]]. The other three coefficients
are introduced in this work for the first time. All these coefficients have to be calculated in
a certain assumption of the nuclear charge distribution in Eq. (6.6). The first coefficient 5
has been calculated employing the nuclear drop model in [63]. The other coefficients ¢,—03,
which describe the strength of the bound-free pair conversion process, can be also derived in
the same assumption. It is natural after considering derivations for the EL and ML cases that the
internal pair conversion in the EQ case provides similar formulas as in the case of free-free pair
conversion, however, containing the bound wave functions for the electron produced. These
results for pair conversion probabilities have the form

2
T« _

Py = T|M|2R4y *Dyel?, (7.5)
dPg R iy 2
— = —IMI'R” | Do ()7, (7.6)
E o 2,

2
P. = TIMPRVDP, (7.7)

where M is the nuclear transition matrix element, R is the nuclear radius in the liquid nuclear
drop model. The summation in the free-free case is taken over the positron’s Dirac angular
momentum quantum number k. The modulus square of the electron matrix elements D are
given as

Dk = +DI? = |lim ::ff_fz : (7.8)
Dik ==DP = [lim f;ffz : (7.9)
Dy’ = [lim rg;f:'; : (7.10)
DF = fim S5 (7.11)




§ 8. Numerical results 17

where ¥ = +/k? — (aZ)? for positrons. One can see that the formulas for matrix elements |Dy|*
and |D,|* are similar, however, different wave functions are included in them. Subindexes f and
b refer to free or bound cases of created electron (f’” and g’), positron (f and g), as well as
incoming bound electron (f” and g”’) for the case of electron conversion. Using the equations
for the bound (for 1s;,, state) and free wave functions , one can receive the final equation
for |Dbf|2:

2

2py e (a + 1 1
avErTe e @t Dl ayeie | LEY o

|Dyel* = >
\rpl'(b) 22y + 1)

, (7.12)

where all abbreviations are similar with the L # 0 case. Here,a = y+iB, b = 2y + 1,
e~ = _Ky:ig = B = “ZI;’E P = VE? — 1, where E is the positron energy in relativistic units. I'(x)
stands for the gamma function [[66].

Using, for instance, the equation for |D,|* from [63]:

1{y+1\ (4aZp)?e® —p
D = - = [(y + iB)| 2aZ(w + 2y), 7.13
D, | ﬂ( 5 )p(r(zr+1)>3|(7 iB)| 20Z(w +2y) (7.13)
where
7 = VE -1, (7.15)
— ZE
B = 2= (7.16)
p
one obtains for ¢; that it is given as the ratio of squared fermionic matrix elements,
| Dye|?
= . 7.17
V= D.P (7.17)

The others -coeflicients can be calculated using Eq. (7.12)) and results from Ref. [63]]. Note
that the result [63]]

i (7 ¥ 1)2 2(4pp )Ny + iB)PIT(y + iB)P(EE’ ) (7.18)

D 12 = — ,
Pil =212 pp' T2y + 1))

due to Eq. can be only used for the calculation of the d, and 65 values after integration
over all possible positron energies.

§ 8 Numerical results

As the pair conversion process is an important building block of processes investigated in the
further Chapters, it is important to analyze the dependence of the pair conversion coefficient
on different system parameters. Therefore, the current Section provides numerical results for
the internal pair conversion process. The calculation of the bound-free pair-conversion coef-
ficients By for different multipolarities of nuclear transitions on an example of 2%Pb leads to
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Figure 8.1 — The bound-free pair conversion coefficient, calculated for nuclear transitions with
different multipolarities in égSPb.
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Figure 8.2 — The comparison of the transition energy dependence of the bound-free and free-
free pair conversion coefficients, calculated for E2 and M2 transitions in égng.
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Figure 8.3 — The bound-free pair conversion coefficient as a function of the transition energy
E for E1 nuclear transitions, calculated at energies about 2me* ~ 1.022MeV in
203pp,
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Figure 8.4 — The bound-free pair conversion coeflicient, calculated for different atomic shells
and E1 nuclear transition in égng.
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Figure 8.5 — The dependence of the bound-free pair conversion coefficient at the main peak on
the nuclear charge Z for E1, E2 and M1 nuclear transitions.

dependencies shown in Fig. One can see in this figure that that By exhibits a maximum at
transition (virtual photon) energies about 2 MeV for all transition multipolarities. This behavior
is analogous to the energy dependence of the bound-free pair creation cross section in heavy ion
collisions [[71]]. Also the figure shows that the pair conversion coefficient is on the same order
of magnitude for all transition multipolarities.

For heavy ions the situation appears when the free-free effect is weaker than the bound-free
effect in the vicinity of the maximum of the latter (see Fig. [8.2)). Furthermore, even at energies
below the usual pair-creation threshold of 2mc? one can observe the bound-free process in
certain cases (Fig.[8.3)). This region is energetically forbidden for the creation of free electrons,
which makes it interesting for experimental investigations of the bound-free process.

Fig. [8.4]illustrates that in the bound-free case in most situations it is sufficient to consider
conversion into the 1s;/, atomic shell only, as it provides the largest contribution. One can also
observe that the lower binding energies of the higher electronic shells shift the peak maxima to
lower transition energies. The dependence of § at the main peak on the nuclear charge can be
found in Fig. One can see here that § fastly grows with the increase of the nuclear charge,
making the case of heavy ions more prominent for experimental investigations.

Using the numerical solution of the Dirac equation one can analyze the difference between
calculations of the bound-free coefficient in zero- and finite-nuclear-radius assumptions. The
numerical solution used in the present work employs fermionic wave functions calculated with
a spherical nucleus model with the radius of R = 1.2 A'/3 fm, where A is the total number of
nucleons. The shift caused by the finite-nuclear-radius assumption (Fig.[8.6) appears to be small
at present level of theoretical accuracy and can be, therefore, neglected in comparison with the
contribution of other atomic levels for a bound electron presented in Fig.
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Figure 8.6 — The comparison of zero and finite nuclear radius calculations for the Bound-Free
Pair Conversion Coefficient By for E1 nuclear transitions in %gng.
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Figure 8.7 — The 0,-coefficient (see text for notations) for EQ nuclear transitions in ‘2‘8Ca as a
function of the transition energy E.
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Figure 8.8 — The n-coefficient (see text for notation) for EQ nuclear transitions in 52;314P0 as a
function of the transition energy E.

In Figs. and the results for the coefficients 7, d1, 6, and &5 are presented
in the case of EOQ transitions in Ca and Po. Here, firstly, one can see that the contribution of the

bound-free process for heavy Po is more significant than for the light element Ca. In Po, our
bound-free pair conversion process can be as much as 3 orders of magnitude stronger than the
free-free one. Secondly, the main bound-free contribution interval is situated at low energies
for both cases.

Summarizing the numerical results of this Section, one can come to a conclusion that the
contribution of the investigated bound-free process is most significant:
(i) for high nuclear charges;
(ii) at transition energies about 2mc?, i.e. below or just above the free-free pair production
threshold;
(iii) around the peaks for EL and ML nuclear transitions with L > 0;
(iv) at low energies for EO transitions.

Having understood these features, the last task in the investigation of internal pair conversion
is to present nuclei and transitions which fulfill the mentioned conditions. These cases are
provided in the following Section.

§ 9 Suitable nuclear transitions

EO case

The free-free pair conversion has been investigated experimentally in Refs. [72] and [73] on
nuclear EO transitions in different elements. In these experiments, the excited 0" states have
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Figure 8.9 — The §;-coefficient (see text for definition) for EO nuclear transitions in %}L“Po as a
function of the transition energy E.
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been populated in the (p, p’) reaction [72] or by S-decay [73]]. In the EO transitions 0* — 0%,
the internal conversion and the free-free pair conversion have been studied, and their probability
ratio has been measured. The comparison of the theoretical value of the n-coefficient with
these and other experiment data for EO is introduced in [|63]] for different transitions in several
elements. We provide the calculation of the ¢ ratios of bound-free and free-free processes for
the same transitions. It appeares that the best transition for the experimental investigation of
the bound-free process is the 0* — 0% transition in g;*Po with an energy of 1.416 MeV. The
lifetime of the excited state is 99 ps. The coefficients for this transitions are evaluated to be
n = 0.0026, 6; = 0.49, 6, = 212.7 and 65 = 0.33. Such significant ratios, especially the
outstanding ¢,-value, open the possibility for an experimental investigation of the bound-free
pair conversion.

Table 9.1 — The comparison of SBg (experimental and theoretical values [74]) and calculated
value of By for E1 and M1 nuclear transitions in Pb.

Nucleus  Transition Level wkeV)  Bg-10*  Bg-10* By - 10*
multipolarity scheme experiment theory  theory
- Pb El 5 - 4* 1719 3.26 34 33
25/ Pb Ml 7/2- —>5/2= 1770 2.73 3.1 2.1

Table 9.2 — Suitable transitions with w < 2mc?. Data are taken from the Nuclear Database [73].

Nucleus  Transition Level w (keV)  Bpr- 10°
multipolarity scheme
§32Pb E2 2 — 0 960.7 0.010
égSPb E2 9/2= —» 5/2° 987.5 0.091
§g7Bi E2 13/2= > 9/2= 931.8 1.5-107°
éggBi E3 100 - 7+ 921.0 2.34-107"
§é3Ra E2 9/2= - 5/2=  1062.5 1.46

E1 and M1 transitions

One can also consider other suitable cases with non-zero multipolarity, L > 0. In Ref. [[74] free-
free pair conversion in nuclear E1 and M1 transitions in Pb (lead) have been experimentally
investigated. The initial states of 2°2%7Pb nuclei have been populated by electron capture decay
of 206207Bj, respectively. The 5~ level of 2Pb at 3403 keV has been populated with a 90%
probability, the 7/2~ state (2339 keV) of 2’Pb with a probability of 7%. The 5~ state decays
by an El transition to 4%, the 7/2~ level by a M1 transition to 5/27. Having the energies in
the region of the maximum of Sy, these two transitions (see Tab. can be also suggested for
experimental studies of bound-free pair conversion.
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Low energies

For the interesting case of nuclear energies less than 2mc?, when the free-free pair conversion
channel is closed, one can also introduce suitable bound-free transitions. This is due to the
fact that the electron created is bound, i.e. for its production less energy is needed than for the
production of a free particle. Examples are given in Tab. For transitions with w < 2mc?, the
free-free process is forbidden, therefore, the bound-free process may be investigated without
the disturbing background of free-free pair conversion.

One may consider different mechanisms for the population of initial states to observe the
bound-free pair conversion effect. For the 0* excited state in 21“Po this may be the beta decay
of 2Bi [73,/76]]. For the 5~ state in 2°°Pb it is the electron capture decay of 2°°Bi or more than
10 other possible production channels [77]]. The same is valid for the 7/2~ state in 2’Pb [78].
Initial states for transitions, presented in Tab. can be also populated in different reactions (1
to 10 reactions for each element) [78-82].

The estimation of the probability of the total process for a certain case is briefly concluding
this Section. For example, the 2" level in 2*>Pb (see Tab. 2) has a lifetime about 7 ~ 0.1 ns.
Since the E2 transition 2* — 07 is the only way for this state to decay, the y-emission probability
in this case is P, = 1/7 ~ 10% s™'. The bound-free pair conversion coefficient is found to be
Bor = 2+ 1075, thus the total bound-free process probability in this decay is P ~ 200s7". The
same procedure for the 10~ — 7+ E3 transition in 2**Bi gives us Pi% ~ 0.3 s7!. The quantities
P = Bui P, present the order of magnitude of typical rates of internal pair conversion.

The theory and numerical calculations of this Chapter are provided in an assumption that
the final state of the system is not split due to the electron-nucleus coupling, i.e. the hyperfine
splitting is negligible. However, this is completely true only for the 0-spin nuclear states (0").
For other cases one has to consider the transitions between hyperfine levels of the total system.
However, in the absence of a sufficiently high resolution to see the influence of this splitting in
an experiment, these hyperfine sublevel contributions will sum up into one contribution of an
unresolved state. Our results for the transition rates assuming a spinless nucleus are equivalent
to this unresolved-state contribution. Therefore, in this Chapter we do not consider hyperfine
splitting even in the case of the 9/2~ final state in 2°’Bi, i.e., the nuclear state with the highest
spin.

§ 10 Discussion

In this Chapter analytical and numerical results for the bound-free pair creation process have
been received. Numerical calculations have been provided for different EL. and ML nuclear
transitions with the transition momentum L > 0, as well as for EO nuclear transitions. At
some transition energies for heavy ions it appeared that this coefficient is greater than or com-
parable to that of the free-free case. The results for EO transitions are rather interesting since
these transitions are radiationless, and the bound-free, free-free and internal conversion chan-
nels constitute the only possible electromagnetic decay processes. These findings are relevant
for possible future experimental investigations.

It has been also shown that nuclear transitions corresponding to the cases when the bound-
free and free-free processes are comparable in strength can be found for several elements and
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can be experimentally investigated. All these results may be relevant for the later Chapters and
for applications in atomic physics and astrophysics, as discussed later.

The free-free and bound-free pair conversion processes can take place when the energy of
the corresponding nuclear transition is above some certain energy threshold. Another atomic
system which has sufficient energy to deexcite by pair conversion is a muonic atom. A muon
having an approximately 200 times larger mass than an electron is able to produce a pair of
electron and positron within its transition between two bound atomic states. Therefore, the
investigation of pair production with both bound and free electron creation is of interest for
studies of muonic cascades. The study of this deexcitation mechanism is considered in the next
Chapter.
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Pair creation in muonic atoms

§ 11 Introduction to pair creation in muonic atoms

The pair conversion process in a more exotic system, namely, in muonic atoms, is considered in
the present Chapter. The muonic atom is a system consisting of a nucleus, bound electrons, and
at least one muon in a bound atomic state. The moun decays via weak interaction, therefore, the
muonic atom has a short overall lifetime. The investigation of muonic atoms is of importance for
several applications. For instance, muonic hydrogen has been used in precise laser spectroscopic
experiments for measuring the proton radius [30]]. Interestingly, it was found that the proton
radius determined by this method is smaller than the previously established value.

Usually, muonic atoms are created with a muon captured into a highly excited state, causing
cascade transitions of the muon to the lowest-lying state [31]. A muon having an approximately
200 times larger mass than an electron can produce an electron-positron pair within its transition
between some low-lying bound atomic states [see Fig. [[T.1]]. Therefore, the investigation of the
pair production with both a bound or a free electron is crucial for the studies of muonic cascades.

Grotch and Kazes [83]] theoretically investigated the free-free pair production process for
2s — s transitions in muonic atoms. They derived pair creation rates in the non-relativistic
approximation in the and high-Z regime. These results are improved in the present thesis, the
case of the bound-free process is also considered in this Chapter.

The bound-free and free-free electron-positron pair creation accompanying muonic transi-
tions between atomic levels are rather similar processes to internal pair conversion accompany-
ing nuclear decay, described in the previous Chapter. From the technical point of view the main
difference is that single-muon wave functions are much easier to handle than the many-body
states of nuclei, therefore, the non-penetration approximation does not have to be applied in the
case of muonic atoms. However, one has to take into account quantum electrodynamic (QED)
corrections to muonic wave functions, since muons have large intersection with the atomic nu-
cleus, i.e. with the region where the strongest electric fields prevail. As in the previous Chapter,
some theoretical derivations from Soff, Schliiter and Greiner. [[62, 63| are used in order to pro-
vide a precise.
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€

Fhi H
Figure 11.1 — The leading Feynman diagram of pair creation in a bound-bound muonic tran-
sition. Here, again, double black lines denote an electron or a positron in the

nuclear Coulomb field, while the double blue lines stand for bound states of a
negative muon. The electron created may be bound or unbound.

§ 12 Pair creation coefficient for muonic atoms

To characterize the pair creation process in monic atoms one can introduce the same quantity as
in the case of the nuclear pair conversion, namely, the ratio of the probability of a certain type
of pair creation to the photon emission probability in the same muonic transition:

By = P[P, (12.1)
By = PPy (12.2)

b 6t

These quantities are called pair creation coefficients. The required probabilities can be derived
in a way similar to the derivation of the previous Chapter, with the only difference being in
the use of the non-penetration approximation. One does not need to make this assumption for
the muonic case, since the theory here does not operate with nuclear structure. Therefore, in
equation in equation (6.14) for the matrix element U,, and in the corresponding equations for
U, and U, one can keep all the terms and evaluate them in analogy to the calculation of matrix
elements of photon exchange between two electrons. This can be done because muons are also
Dirac fermions. Using the results of Ref. [84], one may write all integrals of Bessel functions
in a clear way:

US(L,M) = J(L,M)(=1)*Cr(u,+)Cy(e,+) (12.3)
L+1 [~ 0
X 2L:—3£ dxﬁ dy(2L+3)iij+l(wx<)hL+l(wx>)Q,u(x)Qe(y)
L 00 (o)
Y7 1f dxf dy2L — Diwjr-1(wx)hp 1 (wxs)P(X)P.(y) |,
—1Jo 0
UML) = J(LMY=DCn -ICaten ) Z(Kf)iKJ = (12.4)
L+1 [~ 0
X 2Lj-3f(; dxf(; dyQL + Diw jr(wx)h(wxs)V,(x)V,(y),
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where the angular coefficients are given with 3 j-symbols as

sy = Yy BB 0 E T, (125)
Cr(u,c) = (_1)1f+1/2\/(2.]i+1)(2Jf+])( lj/iz 16 _{;2 )H(li,lf,L,c), (12.6)
Cile,c) = (—l)j/+1/2\/(2j’+1)(2j+1)( 1;2 16 _{,/2)H(l,l’,L,c), (12.7)

and the parity relations are

1, if 1 +L+1; is even and c¢ = +;
1, if 1 +L+1 is odd and c¢=—;
0, if [ +L+I; is even and ¢ = —;
0, if 1 +L+1 is odd and c=+.

II(ly, b, I3, ¢) = (12.8)

J; and J; are the angular momenta of initial and final muonic states and j and ;" are angular
momenta of electron and positron states, respectively. Dirac quantum numbers are «, «” for the
light fermions and «,, K;l for initial and final muonic states. Furthermore, the following radial
functions have been introduced:

l

P,r) = U(r)+K 7 V(r) (12.9)
P(r) = Ue(r)+K_KVe(r), (12.10)
Ou(r) = —U(r)+ V(r) (12.11)
Q.(r) = —Ue(r)+L lVe(r), (12.12)
Un = 8yfi, =80l (12.13)
Ue = gkf;(_gk.ﬁ(’ (1214)
Vi = g fh + 8t (12.15)
Ve = gkﬁ(+gkﬁ<’ (1216)

where the f and g are the radial components of the corresponding Dirac wave functions.
These matrix elements enter the calculation of the pair creation probabilities Pege; and Pyt
For the calculation of the rates Bys and B¢ one also has to derive the probability of gamma

emission,
8raw
P, = V.12 12.17
4 2Ji+lw,;|7| ( )

where the photon emission by the muonic transition current ]7‘ is characterized by the matrix
element

V, = f AR, JU(B)AY O (wR,). (12.18)
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Note that in these formulas the subscript u labels quantities associated with the muon, and it is
not a 4-vector index. Substituting into this expression the Bessel functions (see Eq. (6.7)), for
the photon emission one has:

v, = f drrsz(a)r)(Kﬂ + K, (UML) (g’,jﬂflﬁf +f1e ), (12.19)
0 u 1 Ky
where we introduce the notation

WMD) = Z(_l)zjf_v,ﬂ/z \/(21,-+1)(2Jf+1)(2L+1) (12.20)
— dr

Ji Jf L J,' Jf L
v —v M\ =12 12 0 )

All integrals can be numerically evaluated with a certain form of the Dirac wave functions.

§ 13 A comment concerning free-free pair creation

In the case of free-free pair production, the electron and positron wave functions posses high-
frequent fluctuations at distances far from the mounic core, causing some problems in the in-
tegration of the matrix elements. Therefore, an additional cut-off procedure has to be applied.
Here, this method is introduced for the case of a neutral atom assumption. The radial integral
can be split into two parts:

f dx f dy jL (@XM (@x)V(D)Ve(y) = (13.1)

0 0

= f dx f dy jL(@x Iy (@)V(D)Ve(y) + f dx ju(wx)V,(x) f dyhi(wy)Ve(y).
0 0 0 r

This has to be evaluated for r larger than the characteristic size of the muonic wave function.
The first part of the integral can be calculated without any problems. However, some difficulties
appear in the evaluation of the electronic integral in the second term. The case of the neutral
atom requires free wave functions, therefore, one can rewrite this integral as

0 "(E" + 1 E-1
f dxhy () \/” ( = )\/” ( - ) K o)) (13.2)

[«
"(E" -1 E+1)«
JEEZD JrEED L
m b rd

where [ = |k +1/2|—1/2 and [ = |k —1/2| = 1/2. To calculate this, one has to evaluate integrals
of the type

f ) dxh;(wx)V,(x)

b

f dxhy (x) ji, (A%) ], (v), (13.3)

which can be provided in the large-r approximation by means of trigonometric functions [66].
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§ 14 Numerical results

Bound-free case

All calculations within this Chapter have been evaluated with the help of numerical Dirac wave
functions provided by numerical procedures described in [70]. These wave functions are eval-
uated for the muonic case in the assumption of a finite nuclear size effects and for the case
of the electron and positron in the point-nucleus approximation. In the muonic potential an
additional term has been used, representing the vacuum polarization correction by means of
the Uehling potential. This is the dominant quantum electrodynamic contribution in muonic
atoms [39]. However, this QED effect together with finite nuclear effects appeared to yield
minor corrections to the pair creation coeflicients obtained. This work presents results of nu-
merical calculations of the bound-free pair production process in different muonic transitions in
different ions having initially only one muon and no electrons. In these calculations the created
electron is assumed to be produced in the 1s atomic state.

The left subfigures in Fig.[14.1|present the bound-free pair production coefficient for 2 differ-
ent muonic transitions in different bare muonic ions which, for simplicity, do not contain bound
electrons initially. The right subfigure of Fig. displays the energies of the muonic transi-
tions. In the case of the 3p — 2s muonic transition, the pair production coefficient possesses a
maximum at the nuclear charge Z = 75, with the muonic transition energy being £ = 2.5 MeV.
This approximately corresponds to the maximum of the pair conversion coefficient in the case
of nuclear pair conversion presented in the previous Chapter.

Free-free case

In the free-free case, numerical procedures of Ref. [[7/0] have been used to calculate the relativis-
tic muonic wave functions in the field of the finite-size nucleus, again with the implementation
of the Uehling potential in order to include the vacuum polarization effect. The wave functions
of free fermions have been calculated separately in regions near and far from the muonic core,
according to the comment above [see Eqs. (I3.IHI3.3)]. The first integral in Eq. (I3.1]) has been
evaluated with numerically constructed functions, the second one with analytical free-particle
Dirac wave functions [85,86]] in spherical coordinates.

The results of these numerical investigations of the free-free pair production are presented in
Fig. There one can find again the pair production coefficient in dependence on the nuclear
charge Z for different muonic transitions, together with the corresponding transition energies.
One can see on Fig. [14.2] that the behavior of the free-free pair production coeflicient is very
similar to that of nuclear pair conversion. The same can be noticed about the order of magnitude
of the received values of the pair creation coeflicients.

Further results

As already mentioned, the above results have been obtained in the assumption that the created
electron occupies the 1s atomic state. However, it is also interesting to see the contributions
of another electronic states. Tab. contains these contributions up to the electron principal
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Figure 14.1 — (left) Bound-free pair creation coefficients for 2 different muonic transitions
in different bare muonic atoms and (right) the corresponding energies of the
muonic transition. The total nucleon numberis A = 2.5 Z.

quantum number n = 4. This table shows that the 1s final states indeed possesses the the largest
creation rates, however, higher s-states still have significant contributions.

The last issue to be discussed in this Section is the charge state of the atom. The muonic
atom is usually created by muon capture into some high-lying atomic level. It is followed by
a muon cascade, causing multiple electron emissions from the atom. Therefore, by the time
when the muon reaches the state suitable for pair production, the atom is not neutral any more.
However, there are still some bound electrons in it (for details, see [[87]). Their amount depends
on the certain experimental situation, and it certanly influences our pair creation rates. Fig.
shows the dependence of the pair production coefficient on the number of the rest electrons in
the atom. This curve is obtained in an assumption of an effective nuclear charge which is ’felt”
by the created electron and positron. One can see that this dependence possesses a significant
increase of the total rate with the increase of the number of the rest electrons, i.e. the more
neutral the atom is, the higher the pair creation rate.

110
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Figure 14.2 — (left) The free-free pair production coefficient for different muonic transitions
in different bare muonic atoms and (right) the corresponding energies of the
muonic transition. The total nucleon number is A = 2.5 Z.
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Table 14.1 — Bound-free partial pair production coefficients for different electron states for
an E1 muonic transition (5p1;2 — 3s1/2) in 33°U with the photon energy w =
1.976 MeV. A summation over all possible positron states is performed. The total

pair production coefficient for all presented electron states is 8 = 0.10160 - 1073.

Electron state Positron energy, MeV By (partial)

Lsi)2 1.594 0.79948 - 107*
281 1.498 0.12396 - 107*
2p1/2 1.498 0.14195 - 10_5
2p3/2 1.494 0.22033 - 10_7
3512 1.479 0.35890 - 1073
3pin 1.479 0.48730-107°
3p3p 1.478 0.91905 - 1078
3ds)2 1.478 0.11756 - 1078
3ds), 1.478 0.36390 - 10717
4s1)2 1.473 0.77666 - 107’
4pi 1.473 0.13268 - 107
4ps)2 1.472 0.27341-107¢
4ds ), 1.472 0.16598 - 107
4ds ), 1.472 0.36877 - 107°
4fs)n 1.472 0.18431- 107’
41112 1.472 0.12314 - 1078

§ 15 Discussion

In this Chapter the results for the bound-free and free-free cases of pair production in muonic
atoms are presented and compared with the results of the previous Chapter on nuclear pair
conversion. It has been discussed in the previous Chapter that in some cases, mostly in heavier
elements and at low deexcitation energies around 2 MeV, the bound-free process contribution
appears to be larger than the free-free one. From Figs. and[14.2] one can see that a similar
situation is repeated in the case of muonic atoms.

It is impossible for the muonic case to select an element and a transition and vary the tran-
sition energy, as has been done in the previous Chapter. However, even here it is possible to
observe some behaviors similar to the case of the nuclear pair conversion. For instance, the max-
imum of bound-free pair production coeflicient appears at some low energy in the 3p;» — 2512
transition (Fig. [14.1).

As already mentioned, the main technical difference between problems solved here and in
the previous Chapter is in the implementation of the non-penetration approximation for the
calculation of the matrix elements. This assumption has been used for the case of nuclear pair
conversion for simplicity, but it is not necessary here. Therefore, the the results for pair creation
in muonic atoms opens a way to check the non-penetration approximation. Our numerical
calculations have demonstrated that it is quite a reasonable assumption in the muonic case, and
therefore, since the extent of the nucleus is even smaller than the size of muonic orbitals, it is
even more applicable for the nuclear process.
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Figure 14.3 — The dependence of the pair creation coefficient Sy on the number of the rest
electrons in the atom (*38U) in the assumption that there are no electrons in the K-
shell after the muonic cascade. The muon undergoes a 5py/2 — 3512 transition.

At last let us discuss an application of such studies with muonic atoms. The transition de-
cay width of the pair creation process is, in accordance with the Cutkosky rules, the imaginary
part of a mixed two-loop vacuum polarization self-energy correction to the binding energy of
the bound muonic state. Therefore, a measurement of pair creation rates and their comparison
to theory provides an additional benchmark for the correctness of the QED theory of bound
muons, which was also employed to the determination of the proton radius via muonic hydro-
gen spectroscopy. The mentioned two-loop correction can be tested separately. Pair creation
measurements could therefore provide a contribution to the solution of the proton radius puzzle.
At the higher nuclear charges where pair creation occurs, the QED terms are even larger than
for hydrogen, thus such tests via pair creation measurements would be particularly sensitive to
possible deviations.
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Nuclear excitation by resonance positron
annihilation

§ 16 Introduction to nuclear excitation by resonance positron
annihilation

Positron collisions with atomic matter lead to a number of processes [32-36], among which
annihilation with shell electrons is one of the most prominent effects. The annihilation of a
free electron-positron pair leads to the emission of two gamma rays. The single gamma-ray
emission is possible only in the vicinity of an atomic nucleus due to the momentum recoil of
the latter [88]]. This process of single gamma-ray emission was examined before [89] and is
well understood. Alternatively, one can investigate the case when the same nucleus resonantly
absorbs the whole energy of the annihilating particles and becomes excited. This single-step
process, termed nuclear excitation by resonant positron annihilation (NERPA), is represented
in Fig. [16.1a) by the level schemes of the atomic electron shells and the nucleus. This figure
demonstrates that the threshold energy w for a possible nuclear excitation is decreased from the
double electron mass by the electron binding energy EY , i.e. w = 2mc* — E{ . The process was
first introduced by Present and Chen [90)]].

Generally, NERPA may be followed by different nuclear deexcitation processes leading to
a nuclear ground or excited state. In the important case of non-exotic nuclei, where the nuclear
state excited by NERPA is situated about 1-2 MeV above the threshold energy, the main channel
of the nuclear deexcitation is the radiative decay. The leading diagram of this two-step process,
labeled as NERPA-y, is illustrated in Fig. [I6.1]b).

NERPA constitutes a way to excite nuclei which is alternative to other channels, such as
photo- and Coulomb excitation. Photo-excitation experiments are conventionally done with
bremsstrahlung, synchrotron or inverse Compton sources. X-ray free electron lasers, providing
the highest photon intensities, are presently limited to the keV photon energy regime [91,92].
The great advantage of photo-excitation is the monochromaticity of the X- or gamma-ray beam
and the resonant character of the nuclear excitation. In recent theoretical studies, significant
possible energy increase for photo-excitation has been predicted by the use of zepto-second
laser pulses [93]]. The transitions predominantly accessible this way are, however, limited by
electric-dipole (E1) type. On the other hand, Coulomb excitation, i.e. excitation by the inelas-



38 Chapter Ill. Nuclear excitation by resonance positron annihilation

(a) (b)
mc’ ot
N >
@
6ljound Y
-mc’ I
N
O

Figure 16.1 — (a) The illustration of positron annihilation via nuclear excitation by the cor-
responding fermionic and nuclear level schemes. mc? is the rest energy of the
electron, and N (N*) stands for the nuclear initial (excited) state. (b) The lowest-
order Feynman diagram of the NERPA process followed by nuclear deexcitation
by emission of a photon. Thick lines denote nuclear states, double lines denote
fermions in the Coulomb field of the nucleus, and wave lines represent real or
virtual photons.

tic scattering of massive charged particles may induce transitions of arbitrary multipolarities,
although without any selectivity of the nuclear energy levels. We have shown [1] that NERPA
has an attractive combination of both of these advantages: it carries a resonant character of
excitation and provides a significant excitation cross section regardless of the multipolarity.
Furthermore, it has been found, as discussed later, that in certain cases the NERPA cross sec-
tion can be comparable to or an order of magnitude higher than that of Coulomb excitation. The
present Chapter contains a complete theoretical description of NERPA, together with numerical
results for a broad spectrum of elements, and the discussion of numerous practical applications
of NERPA.

As it has been already mentioned, NERPA can be used for an excitation of nuclear states
regardless of the multipolarity. In particular, NERPA can resonantly induce monopole transi-
tions. A possibility to effectively excite such transitions is particularly important for studies of
deformed nuclei. Another important NERPA application is the investigation of the collective
nuclear excitation, the giant monopole resonance [37,38]]. This mode of nuclear excitation is
termed “breathing” mode as it involves oscillation of the nuclear volume, which is the only
way known for the experimental study of nuclear compressibility [94]]. In the case of giant
nuclear resonances of any multipolarity, NERPA appeared to be a novel method bearing all the
above-mentioned advantages of Coulomb excitation.

Another direction for the applications of NERPA is the induction of nuclear excitations with
high multipolarity. For instance, octupole deformations have been recently investigated, pro-
ducing octupole transitions by Coulomb excitation in collisions with lighter nuclei, and moni-
toring the subsequent y decay [95]. NERPA may be complementarily employed in future for
such studies, relevant for benchmarking nuclear structure models. A further property of NERPA
is that experiments may even be performed with neutral atoms, e.g. solid targets, without the
necessity of stripping off the atomic electrons or accelerating the nuclei.
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Recently, intense positron jets with MeV energies or above have been generated in laser-
plasma interactions [41,44,96.97]], with a quasi-monoenergetic spectrum, and with positron
numbers reaching 10'%/shot [44]. This powerful method opens a variety of potential applica-
tions in the field of positron-matter interaction. Therefore, we put forward the indirect laser ex-
citation of nuclei via NERPA, utilizing positrons produced by strong laser pulses. This scheme
is complementary to excitation by gamma photons generated via Compton backscattering as
planned, e.g. for the ELI facility [25,98]], and to other direct or indirect nuclear excitation
mechanisms utilizing optical [43},99-103] or X-ray light sources [104-109].

Attempts to observe NERPA have not been conclusive so far. Only an upper bound of its
cross section has been determined in the latest experiment [110]] (see also [111]), therefore, the
present theoretical study and future experimental work is anticipated to provide an unambiguous
identification of the process and a determination of its true cross section.

Besides offering an alternative technique for nuclear spectroscopy, the theoretical and exper-
imental investigation of NERPA is relevant for practical applications connected with positron-
matter interaction. Firstly, the NERPA process may be relevant for cosmic ray studies with
positron interacting with atoms in atmosphere (see e.g. [33|]). Furthermore, in experimental
investigations of nuclear reactors, NERPA may influence the dynamics of chain reactions in-
volving B* emitters. A similar situation may occur in stellar evolution simulations [34]]. The
positron interacts in both cases with heavy atoms or ions. It is shown in the present work, that
the transition rate of the NERPA process increases with the nuclear charge, thus the strength of
this channel is boosted in high-Z elements.

The main aim of the present Chapter is to introduce the theory of NERPA, to provide a broad
spectrum of numerical results and to discuss the possible situations allowing one to observe
and experimentally investigate the process. To cover these goals, the Chapter is organized as
follows: in the theory of nuclear excitation by positron annihilation is formulated in
general terms; |§ 18|illustrates one of the suitable variants of the nuclear level scheme which can
be used for the experimental investigation of the process. Finally, in numerical results for
the NERPA effect in different elements are presented and discussed.

§ 17 Calculation of excitation rates

Non-monopole nuclear transitions

The NERPA process can be considered as the time reversed process of the electron-positron
internal pair conversion with a bound electron accompanying the decay of an excited nucleus,
described in Chapter I. In analogy with that derivation, the transition rate (probability per unit

time) of NERPA is given by
lwlrn rfl
fdrnfdrf]n(rn)]f(rf)| ey (I7.1)

Ri-EESD 5 3 S S
757l M=y M= fi=—j =
Here, again, j and ;" are the total angular momentum quantum numbers of the ¢* and e~ states,
respectively, J; and J% are angular momenta of the nuclear initial and final states, and the M-s
and p-s are the associated magnetic quantum numbers. Furthermore, « is the fine-structure con-
stant, 7, and 7’y denote nuclear and fermionic coordinates. E and E’ are the positron and electron




40 Chapter Ill. Nuclear excitation by resonance positron annihilation

1.0

0.8

0.6

By -10*

0.4

0.2

0.0

w, MeV

Figure 17.1 — The NERPA coefficient ﬁl{;’j for E2 nuclear transition between 1/2+ and 5/2+
nuclear states vs. the photon energy w for Z = 50 (!'3Sn). Blue solid line: the
case of j = L — 1/2, brown dashed line: j = L+ 1/2.

energies, respectively, and, just as before, j, and j are nuclear and fermionic 4-currents [88].
Also, the notation [ji, ..., jx] = Hf‘ (2j; + 1) has been introduced for brevity. In the non-
penetration approx1mat10n introduced in Chapter I, it is again possible to factorize the NERPA
transition rate as Pj o/ ,8{\1 /P, where P, is the rate for the state reached by NERPA to decay
by vy emission into the initial state. One can provide this factorization for nuclear transitions of
any multipolarity, with the exception of EOQ.

For the coefficient ﬁg’j one may obtain expressions for any electric (1 = E) or magnetic (1 =
M) nuclear transition multipolarity, i.e. for any (non-zero) values of the angular momentum L
of the virtual photon:

» [Js] dnaw
J 5 AL) = E / 5 17.2
ﬁN ( ) [Jia j’9j] P L(L+ 1)S|KK |p/l ( )

where the radial part for the A = E case is pg = |(k — K)(R3 + Ry) + L(R; + R, + R3 — R)[?, and

for the 1 = M case py = |(k + K')(Rs + Rg)|>. We have also introduced the following notation
., 2
in terms of a 3 j-symbol [69]: s = ( { _]l é
2 72
defined as in Appendix [A] with the analytical form of the radial Coulomb-Dirac wave functions
for bound and free particles. All results are obtained here for the 1s;,, electron orbital, yielding

the highest rate of NERPA.

Fig. shows as an example the calculated dependence of the NERPA coefficient ,B{;’j
for an electric-quadrupole (E2) nuclear transition between 1/2+ and 5/2+ states on the virtual
photon energy w in 3Sn. Curves are shown for two different possible positron angular mo-
menta j = L + 1/2. Both values ﬁ{\;’Lil/ ? have to be taken into account in the calculation of
the total cross section. One can see that nuclear transitions with energies about 2 MeV, which
corresponds to the maximum of these curves, are preferred. It is also important to note here that
the By values are fast increasing with rise in the atomic number, therefore, cross sections are
largest in heavy atoms.

. The radial integrals R,, a € {1,...,6} are
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Monopole nuclear transitions

The case of electric monopole (EO) nuclear transitions excited by the NERPA process is sepa-
rately discussed here. These 0" — 0* transitions are important for the investigation of the spec-
trum of deformed nuclei, since 0* states in heavy deformed nuclei are formed by a superposition
of many oscillation modes and are objects of interest for microscopic nuclear models [|112]].

The direct one-photon nuclear excitation is forbidden in this case, therefore we compare the
first (nuclear) step of the NERPA process to the dominant allowed nuclear decay channel of
0" — 0* nuclear transitions, namely, internal conversion (IC). The ratio 65’1 of the probabilities
of the NERPA process and IC in the non-penetration approximation can be written as

Pl = 617 Pyc. (17.3)

Transition rates for the EO case can be derived with the help of, e.g., Ref. [63]] in a way similar
to the derivation of Chapter I. The transition probabilities of the NERPA and IC processes are
given by:

.. 1 ma? Al
Px(j, ) = G719 IMPRY D, (17.4)
2
na _
Pic = T|M|2R47 ‘I Dicl. (17.5)

Both expressions include the same matrix element M, the nuclear radius R and the individual
radial parts:

KK . 8«8k
Dy P = [tim S, (17.6)
. 8« 8k
D = fiim 282 (17.7)

The radial functions g, and g, are the same as in the L > 0 case with Dirac quantum numbers
for the free positron « and the bound electron «’ in the case of NERPA as well as for initially
bound «” and finel free «” electron in the case of IC. Substituting the radial functions yields

2

, (17.8)

2p) e ™M + 1 1
pVEr T at Dl gy | _14Y i

IDnI* = >
\7pl'(b) A2y + 1)

where all abbreviations are the same as in the L # 0 case of IC (see, e.g., Appendix A). For D¢
one obtains, in accordance with [[63]]:

1{y+1\ (4aZp)?e® —
IDicl” = — (7 : ) ﬁ(mllf T IC(y +iB)| 2aZ(w +2y), (17.9)

where E=y+ w,p = v E - 1,B= % The sought-after ratio then is given by

KK 12
sii = DN I (17.10)
N 4Dy
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Figure 18.1 — Nuclear level scheme put forward for the observation of NERPA. Level 0 denotes
the initial state, level 1 is the state populated by NERPA, and level 2 is the final
metastable state. The resonance widths are assumed to satisfy I's < {I';,I2}.

§ 18 Proposed schemes for an experimental observation

Non-monopole nuclear transitions

A strightforward approach to observe the NERPA process is to detect the photons emitted by
the decaying nuclei, but this is a comparably weak effect superimposed on the background
of other photon emission processes in the studied system. To circumvent this problem, as in
Refs. [90L|113], it is possible to consider nuclei with a long-living state, which can be populated
by some radiative transition from the state excited by NERPA. The decay of this metastable
state is the signature of the NERPA process, which may be measured with some time delay
after the excitation takes place. The level scheme of the nucleus may be the one presented on
Fig.[18.2](a). Within this scheme, the state labeled as 2 is metastable, meaning that for its decay
width holds: T's < {I';, I',}, where the I'-s denote transition widths as in Fig.[18.2)(a). I'y stands
for the resonance width of the NERPA transition, which is related to the y emission width as

In = > LBy T. (18.1)
J

The cross section of the total process in dependence on the positron kinetic energy E (and
corresponding momentum p = VE? — 1) is given by the expression

2w I] Tu/Cm)
p2 Iﬂnucl (E - Eres)2 + 1"2

tot

ony(E) = Iy, (18.2)

/4

where E, is the resonance energy, I'} is the resonance width of the y decay of the final NERPA
state to the metastable state. This width is connected to the internal conversion coeflicient a;c
through Fg = IL/(1 + aic). Tha = %/t is the total width of the considered nuclear level,
expressed in terms of its lifetime 7. For a derivation of cross sections of nuclear-resonant pro-
cesses, see Appendix [B] It follows from this relation that the total resonance line width is given
as the sum of the nuclear and atomic K-shell widths [[114]]: 't = I'nuea + ['x. The nuclear ex-
citation cross section oy can be obtained from the above formula by substituting the branching
ratio I") /T'nyq by 1.
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Table 18.1 — Data for different elements which suit the nuclear level scheme in Fig. (a).
Notations are as defined there and in the text. The symmetry (“symm.”) of the
nuclear levels involved — total angular momentum, parity — is given. Nuclear data
are taken from Ref. [75]].

Element 2Ge 4Hf 158n T
E.. (keV) 456 281 430 90
level 0 symm. 0* 0* 1/2* 9/2*

level 1 (keV); symm. 1464; 2" 1227; 2 1417;5/2% 1078;5/2*
level 2 (keV); symm.  691; 0" 91; 2% 613;7/2* 336;1/2F

lifetime of level 2, 7, 444 ns 1.66 ns 3.26 us 45h
Iy (eV) 1.8-10° 9.00-10* 1.39-102 554-10~*
I (eV) 1.7-1077  4.04-10* 99-10° 1.05-107*
I3 (eV) 1.5-107° 3.965-1077 2.02-107'% 4.06-1072°

BN 27-107°  7.6-107 4.1-107 1.9-10°¢
e (V) 1.5-10* 1.83-107% 1.88-10° 6.6-10™
Ik (eV) 1.37 33.0 7.9 7.3
ON(Es) (b) 43-10°  1.1-10™ 1.5-10™ 1.7-1073

ONy(Eres) (b) 3.1-10°  6.1-107° 3.1-10°° 1.1-107°

In Tab. [18.1]results for 4 different elements are presented, namely, for *Ge, '7*Hf, ''Sn, and
15Tn, All these elements possess the level scheme presented in Fig. and an E2 nuclear
transition for the NERPA process. For 7Hf, the cross section oy, is the largest. However,
here, the metastable level has a comparably short lifetime 7,, which may not be sufficient for
an experimental differentiation of the signal from the direct electron-positron photoannihilation
process. The comparably large value of the cross section together with the lifetime 7, for the
case of ''>Sn and '"In are most suitable for a possible measurement. The NERPA process is
significantly enhanced for some elements such as e.g. 7*Hf and ''°Sn. Besides the increase
of the S coeflicient with Z, it is also because for these isotopes, the nuclear transition energy
renders S nearly maximal (see Fig. . In the case of '"In, it is rather the small resonant
positron kinetic energy that boosts the total NERPA cross section due to the pre-factor oc 1/p?

in Eq. (I8.2).

Monopole nuclear transitions

The case of electric monopole (EO) nuclear transitions excited by the NERPA process has to be
separately discussed. As mentioned in the previous section, the case of electric monopole nu-
clear transitions excited by the NERPA process is of relevance for the investigation of the spec-
trum of deformed nuclei, since 0" states in heavy deformed nuclei are formed by a superposition
of many oscillation modes and are objects of interest for microscopic nuclear models [112].
EO NERPA excitations can be useful for the investigation of 0" level cascades in heavy
deformed nuclei. 'S®Er is a typical example of such nuclei, having a 0* ground state and a
0" excited state at an energy of 1.217 MeV, which can decay by E2 gamma emission to a
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Figure 18.2 — The lowest 0* and 2* nuclear levels in égSEr. See text for details.

metastable 2" level at an energy of 79.8 keV with a lifetime of 1.853 ns (see Fig. [I8.2). Here,
the y-decay of the metastable level follows the NERPA process. In principle, one may also find
several other 0" levels with higher energies, however, for EO NERPA excitation it is better to
consider low energies just above the pair production threshold. For the described level scheme,
the lifetime of the excited 0" level and the intensity of the 0¥ — 07 transition are unknown,
however, it is possible to calculate the rate of IC transition between these levels, for instance
following Ref. [115]], and then, with the help of the ¢ coeflicient, the rate and width of the
NERPA transition. Then one can obtain the cross section of the total NERPA process depending
on the probability of the 0 — 2* deexcitation via E2 y decay. As a result, the expression for
the NERPA cross section at resonance can be received:

4 FN
Ewe) = 55—, 18.
ONy(Eres) 2T, (18.3)
where (in SI units) [[116]

I, =0.123-10"-#(E,) - Bg, . (18.4)

Here, Bp; is the reduced transition probability of the 0* — 2* deexcitation [in units of (fmY)],
I’y and E, are expressed in MeV, 71 in MeV's.

In the case of the first excited O state in '*®Er, the values are the following: I'c = 7.08-107'2
MeV, § = 0.17, Ty = 1.19 - 1072 MeV, yielding

o(E = E,.;)[b] = 1.12- 107"/ Bp,. (18.5)

The cross section of the total NERPA process may be determined experimentally. This mea-
surement allows one to obtain the reduced E?2 transition probability for the second step of the
NERPA process. This quantity is connected with the nuclear deformation parameter, thus the
latter can be inferred from NERPA measurements and may be used to benchmark nuclear struc-
ture models.

§ 19 Numerical results for different elements

Several elements over the whole range of the periodic table may feature significant NERPA
cross sections. Numerical results for some important cases are listed in Tabs. and The
light elements such as C, N, O and Fe (see Tab.|19.1])) typically occur in biological environments
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Table 19.1 — Results for a range of light elements. AE denotes the energy of the excited nuclear
state, Iy, and Iy are its radiative and total decay width, respectively. See text for
further details. Nuclear data are taken from Ref. [[75]].

Element C AN 50 SFe

AE (keV) 4439 2313 6917 2958

E.. (keV) 3418 1289 5899 1947
Multipolarities 2% 53 0* 150+ or 32+ o 52¢
Bx 21-10% 9.1-10° 9.1-107 32-10°

[N (€V) 1.08-102 9.7-10° 1.4-107" 24.107
I, (eV) 1.08-10% 9.7-10° 1.4-107" 51-107*

I'k (V) 20-102 3.6-107% 6.0-107 6.1-107"
ox (b) 1.1-10° 22-10° 2.1-10* 2.1-1073
oc (b) 6.7 0.039 9.4 2.1

and in solar plasmas. In addition, Fe is present in large quantities in the radiation zone of
the Sun. The results for these light atoms are also of importance in cosmic ray studies and
in medical positron tomography research. Table [19.1] summarizes widths and resonance cross
sections for the one-step NERPA process for these elements. For Fe, the NERPA cross section
o is even larger then in the case of ''*Sn and !'*In (see Tab.[18.1)). However, oy compared with
the corresponding cross sections for Coulomb excitation with high-energy protons (or positrons)
appears to be not so strong.

Further results for elements with different Z can be seen from the Tab. In several
cases, for instance, **K and for the 2101-keV transition in '8F, NERPA is up to an order of
magnitude stronger than the Coulomb excitation. For other elements, such as '*N and ' Ne, the
cross sections are comparable. Separately, the case of the excitation of nuclear giant resonances

should be stressed. The data for the giant dipole resonance (in >®*Pb and 'Sn) and for the
quadrupole resonance in ''Sn can be found in Tab.|19.3).

The strongest NERPA excitation so far has been identified for a 13.5-MeV giant dipole res-
onance (GDR) in 2%8Pb. Since for such resonances the nuclear level width is in the MeV range,
these resonances also feature the highest integrated NERPA cross sections. For instance, the
estimation of the NERPA cross section integrated with the effective resonance width reaches
[oN(E)YIE = 3.4 - 10* b-eV for the mentioned GDR in *®Pb, exceeding previous values for
e.g. '"In by 8 orders of magnitude. GDRs can be efficiently excited even with a broadband
positron source generated in laser-plasma interactions by existing novel methods [41,97]. E.g.,
for a positron beam with a 0.5-MeV width, Coulomb excitation of the GDR is not significant,
since it requires positron kinetic energies higher by approximately 2mc? than NERPA. There-
fore, exciting GDRs with laser-generated positron beams may be a viable alternative to observe
NERPA, circumventing the difficulties caused by the low nuclear line width in elements such
as '"In [110]. Furthermore, NERPA can be used for the excitation of a certain energy region
of a giant resonance, enabling the investigation of the thermal evolution of the GDR width and
structure. Normally such studies are done by Coulomb excitation [117,|118] which does not
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Table 19.2 — Results for a range of medium-Z elements. AE denotes the energy of the excited
nuclear state, I', and I'yy are its radiative and total decay width, respectively. See
text for further details. Nuclear data are taken from Ref. [75].

Element BK 4N I8 3 2INe
AE (keV) 2646 5601 1081 2101 2788
Ere. (keV) 1629 4670 60 1080 1767

Multipolarities 3* 54~ 1" 51~ 1*50 152 32+ 510
Bx 32-10° 1.2-107 2.1-10% 53-107  22-107

[Nua (€V) 6.7-1077 6.0-102 34-10° 19-10 8.1-10°°
I, (eV) 6.6-1077 22-10% 34-10° 7.1-107° 1.4-107°
I'k (eV) 1.8-102 3.6-107 9.5-10° 95-107° 1.4-1072
ox (b) 26-1077 42-10° 12-10° 4.5-107° 2.4-1077
oc (b) 24-10% 71-107° 1.9-10° 5.3-10° 421078

Table 19.3 — Results for giant resonances in 2°*Pb and ''°Sn. AE denotes the energy of the ex-
cited nuclear state, Iy and 'y are its radiative and total decay width, respectively.
See text for further details. Nuclear data are taken from Ref. [[75]].

Element 208pp 110§ 110gy
AE (keV) 13500 14800 29000
E.s (keV) 12600 13800 28000

Multipolarities 0* Er o581 o082

By 9.6-10° 3.2-10° 3.0-107
Couat (€V) 4.10° 8- 10° 8- 10°
T, (eV) 4.10° 8-10° 8- 10°
Tk (eV) 55-100  79-10° 7.9-10°
ox (b) 55-102 15-102 39.10™
oc (b) 6.3-10> 99-10> 2.0-10°

allow a selective excitation but only an energy-selective detection of subsequent y decays. The
problem of the theoretical description of the excitation of the certain part of the GDR is caused
by the complicated resonance structure consisting of the superposition of the several nuclear
states. To calculate the integrated excitation cross section in this case one has to use some
model for the GDR strength function. For instance, it can be the double-Lorentzian model of
the strength function [[119}/120] for the case of the wide incoming positron distribution or some
more precise model, e.g. [[121].

Another application of giant resonances where the energy selectivity of NERPA due to its
resonance structure is beneficial is the feeding of highly deformed states by the low-energy
GDR component [[122]. This feeding effect is relevant for the investigation of the low-energy
limit of the radiative dipole strength [[123]], which, in turn, has consequences in astrophysical
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simulations of the r-process nucleosynthesis of exotic nuclei [[124].

§ 20 Discussion

In summary, positron annihilation with a shell electron is put forward as an alternative way to
induce transitions in nuclei at the MeV level. This channel combines advantages of processes
typically used to excite nuclei, namely, Coulomb- and photo-excitation. NERPA provides a
resonant character of the excitation together with a significant cross section for any multipolarity
of the excited nuclear transition.

Nowadays laser-produced positron beams may provide sufficient flux for efficient indirect
nuclear excitation. This work shows that cross sections are largest in medium-Z and heavy ele-
ments with the nuclear transition energy near the maximum of the cross section about 2 MeV.
In elements satisfying these properties and also possessing a metastable state populated by
NERPA, the slow y decay may provide appropriate time gating for the observation of the reac-
tion. The NERPA process is, furthermore, potentially relevant in numerous applications con-
nected with positron-matter interaction, and is also anticipated to provide one with a novel
means for the investigation of the structure of deformed nuclei and for nuclear model tests.






Chapter 1V

Internal pair conversion following
Coulomb excitation

§ 21 Introduction to internal pair conversion following Coulomb
excitation

A large amount of different particles are produced in nucleus-nucleus collisions involving heavy
ions. In the framework of FAIR experiments in the near future it will be possible to observe
the bound-free and free-free pair production in the in the combined electromagnetic field of
two colliding nuclei, which becomes supercritical for a short amount of time during the colli-
sion [23]].

This Chapter introduces a new mechanism of pair production which can take place in ion-
ion collisions. Here, the target nucleus is excited by a Coulomb collision with the projectile,
and it subsequently deexcites by internal pair conversion. Here, both bound-free and free-free
internal pair conversion may happen.

The theory of this nuclear-resonant electron-positron pair creation in heavy ion collisions
can be constructed by considering two steps. In the first step, the projectile nucleus, which is
supposed to be light compared to the target one, excites the heavy, completely ionized target
via Coulomb excitation. Then, the target nucleus within its deexcitation produces an electron-
positron pair with the electron bound in the same ion. The second part of this process is already
described above in Chapter [Il Therefore, we can use corresponding results concerning the in-
ternal pair conversion coefficient 5. The present Chapter considers mostly the first step of this
process, as well as the cross section of the final 2-step process.

This Chapter is organized as follows. In the derivation of the Coulomb excitation
cross section is presented for our purposes in the non-relativistic approximation. Then, in [§]
[23] the cross section of the 2-step process is discussed. [§ 24| contains numerical results for
the described processes in the non-relativistic case. A comparison to the relativistic case is
given in Finally, in a comparison to the non-resonant, direct pair creation process is
provided.
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§ 22 Coulomb excitation cross section in a non-relativistic ap-
proach

The T-matrix of the Coulomb excitation of the heavy ion from an initial state « to a final state
B in the non-relativistic case has the following form as an expansion by 2/-pole momenta [[125]]:

T = Y (=D"R"(BIsMsIQ o My, (22.1)
Im

m 4nZ,Z, (=) Y'(Q) (+) N

R = T+ 1 ffb (7)?{;(7)0'& (22.2)

where J,, and Jp are initial and final nuclear angular momenta, M, and My are the corresponding
projections, Q)" is a component of the 2!-pole moment operator with a projection taking values
m = —I,..., +I, and Z; and Z, are the charges of the target and the projectile, respectively.
denotes the angular coordinates of the outgoing projectile. The initial and final wave functions
of the incident particle have the form of a Coulomb wave function [125]:

4r 7 ' o s

() = o ) TE G Y 0.0y (@), (22.3)
a I'm’

_ 47[ J7 _ mu* m// ’

G k_rzzl F xy, YR (@)Y (Q), (22.4)
b

"m”

where k, and k;, are momenta of the incident particle before and after collision, ¥;" is a spherical
function, Q' denotes the angular part of 7 and the Coulomb function is [[125]]:

FPk,r) = WZZ,M/k kr), (22.5)
2le™2I0(1 + 1 + in)| )
w®m, Fle=ie Fy(L+ 1 + in: 21 + 2: F2ip), 22.6
- (1m,0) ri+2) o e P F( in *2ip) (22.6)
MM,

with the reduced mass M =

ETAL where M, and Mp are masses of the target and projectile,

and I' is a gamma function as defined in Ref. [66]. After integration over )" one obtains for
R [125]]
!

R" = (4n)Z,2, Nk, ky, Q) (22.7)
l 2(2l+1)\/7_1'kakb 1 as b ) .

’ e 1
Q) Y (=D V2 + 1Y (@) f dr—r Frka, 1)k ). (22.8)
l/ O

N[m(k(u kb7 Q)

The last radial integral contains highly oscillating function as integrand, which can cause some
problems in a direct numerical evaluation. Nevertheless, this integral can be calculated by the
change of the integration order of the main integral and in of the integral representations of the
hypergeometric functions | F;. For instance, in the calculation of the integral

I = f dz7 e 2 F(ay, b, =2iki2) Fi(ay, b, 2iky7), (22.9)
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one can rewrite it as

_ I'(b) I'(b)
I — d l itki+k2)z 2210
f we T(a)T(b — ay) T(a)T(b — ay) (22.10)

1 1
f dﬂul—l(l _ t)b—al—le—Ziklztf du . uaz—l(l _ u)b—az—le+2ikzzu
0 0

I(b) I(b)
= 22.11
[(aDl'(b — a1) T(a)I'(b — az) @210

1 1
f dl,f dutal—l(l _ t)b—al]—luaz—l(l _ u)b—uz—l fdzzle—i(k1z+kzz+2ik1 t—2ikyu)z
0 0

= re) ['®) (—(1+1)
= T@Tb—an @b —ay ¢+ (22.12)

1 1
f dtf dut™ ' (1= 0" N (1= )" ky + ko + 2ki 1 = 2kou) ™D,
0 0

X

X

X

The last double integral does not contain an oscillating integrand and can be easily calculated
numerically.

Following [123]], it is possible to write the differential Coulomb excitation cross section as:

dr 1 1
aQ ~ 2J, +1210+147r2h4

—[(BIQ" I’ Z LA (22.13)

with the reduced quadrupole moment [{3]|Q"||a)|, where [, is the smallest possible value of L. v,
and v, denote projectile velocities before and after the interaction with the target.

The reduced quadrupole moment (B]|Q"||a@) can be extracted from the expression for the
probability of the corresponding y-process in the same nucleus. This probability is given by
[165]:

pr 27+ DH(j + 1)w2j+1
i J2j+ DIN? 205+ 1

Ko jMamlIsMp)P[(BIQ I}, (22.14)

where w is the nuclear transition energy, and the Clebsch-Gordan coefficients are taken in the
form introduced by Edmonds [126]. For the reduced quadrupole moment one has as a result

_ (@) + D1 I

A2 w Qg+ 1 :
KB Nle)l” = 122+ D(j + ]) ( P ); |<J(1]Mam|J,3M,3>|2

(22.15)
One can write the final expression for the Coulomb cross section by substituting here the

obtained equation for the quadrupole moment:

do—Coulomb — 2-],6 +1 1 l()((ZZ() + 1)”)2
dQ 2Jo + 1206+ 12Q2L + )(lp + 1)

M?y 1
@G+ = b b P
4n2hit, Z' of Z KToloMom|JgMpg)2 ™ 1o

(22.16)

X
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§ 23 Cross section of the 2-step process

The derivation of the cross section of the described 2-step process is similar to the derivation
of the cross section of the 2-step NERPA-y process described in Chapter III and Appendix B.
Therefore, one can write an expression for the total cross section as

2 2T " FIPC
o(E) = A (E), (23.1)
p Lot

a

where p, is the projectile moment, I'couomp 1S the width of the Coulomb excitation process, I“B;C
is the width of the nuclear deexcitation by bound-free pair creation, 'y is the total natural width
of the excited nuclear state, and the Lorentz profile is:

ot/ (2
A(E) = — /0 (23.2)
(E-w)+T3,/4
with E being the energy transferred to the target during the collision.
The width of the Coulomb excitation may be written as [[127,(128]]:
(2Ja + l)rtot f do—Coulomb/dQ
[coutomp = 15, (2)dQ2, 23.3
Cotond = 201 ) dorrupenmatdr ™Y (233

where doRymerfora/d€2 1s the Rutherford scattering cross section [[129], 1,,,(€2)d€2 is the intensity
of outgoing projectile particles per incoming particle in the solid angle element dQ2. The last
quantity is given by

d oulom dQ
Lo (Q)dQ = ——T Coutomb/ . (23.4)
[(dorcoutoms /dQ)dQ
Finally, for the width ['coyiomp, We can write:

I 2J, + 1 Ao coutomp/dQ)?
Feoions = tot ( ) dQ( O Coulomb/d€2) . (23.5)

[(docouomp/dQ)dQ (2J5 + 1) doRutherford / dQ

For a compact description of our results we use the following notation:

o(E,E') = X(E', E)[yi T" Au(E), (23.6)

where w is the nuclear excitation energy, E’ is the initial projectile energy, I is the width of
the corresponding photo-excitation process and A’ is a newly introduced coefficient, having the
dimension of cross section per energy.

The strength function for this process is defined as

S(E") = deO'(E, E'). (23.7)
We then define a new coefficient A as

AE) = de/l’(E',E)A,,,t(E), (23.8)
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and assuming a narrow nuclear line we get the result

AE) = V(E,w), (23.9)
and
S(E") = A(E’)F{)?CFV. (23.10)
The final analytical expression for A(E”) reads:
2 2J, + 1 o(Q
AE) == 2Jo+ D el 23.11)
Pa(2Jg + 1) [dQLc(Q) Zr(Q)
where
d oulom dQ
fo(Q) = S Couomb/ ‘Fyb/ : (23.12)
do—Rutherford
Q) = ——. 23.13
{r(€2) 0 ( )

In the next Section numerical results for A(E”") will be presented.
The width of bound-free pair conversion can be written in terms of the bound-free pair
production coefficient B¢ introduced in Chapter I:

¢ = Byl (23.14)

As it has been shown in Chapter I, this dimensionless coefficient can reach values up to 10~
for nuclear transition energies just above the pair production threshold in nuclear transitions in
heavy elements.

The total strength is then given by

S(E") = AENBy (7Y, (23.15)
where f3,; has been considered in details in Chapter [ and A(E’) is investigated in the following
sections.

§ 24 Numerical results in a non-relativistic approach

The following numbers have been used for the description of the £1 nuclear Coulomb excitation
(from 0% to 17) in 2%®Pb at energy w = 4.84146MeV by a light particle [130]:

Ztarget = 82 (24.1)
Myeer = 208 -931.49406 MeV - 16.8529 MeV; (24.2)
Mpgjeciie = N -931.49406 MeV + 7.288971 MeV, (24.3)

where Z and N are the charge and the mass number of the projectile. Here and later the nuclear
masses are taken from [[130]. For instance, for a proton the projectile energy is

E = Mprojectile + Nprojecti]e X 5[MeV] + w, (24.4)
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Figure 24.1 — The dependence of the A coefficient on the incident proton energy for low proton
energies.

Table 24.1 — Numerical data for different projectiles. The projectile energy is assumed to be-
have as E’ = Mpojeciite + N - 5[MeV] + w. See notations in the text.

Z N A, barn-MeV!' S, barn-MeV Sg, barn-MeV

'H 1 1 0.59-10*2 1.7-10712 1.0-107"
‘He 2 4 4.72 - 10*2 1.3-1071 8.0-107!
‘He 2 3 3.28-10% 9.2-10712 5.6-107
Be 4 9 5.94-10%2 1.7-1071 1.0- 10710
2C 6 12 4.22-10%2 1.2-1071 7.2-1071
°C 6 6 2.66 - 1072 7.4-107" 4.5-1071
PNa 11 23 1.45-10%2 4.1-107" 2.5-1071

and the numerical value of the A coefficient is A(E’) = 58.8 barn - MeV~!. For this certain
1= — 0" y-transition, the lifetime is 7 = 0.068 fs, which gives IV = i/t = 9.7 - 107 MeV.
Following the equations of Chapter I it is possible to calculate the bound-free pair production
coefficient for this case: Bpr(w) = 3 - 107*. Therefore, the total strength of the two-step Coulomb
excitation — bound-free pair production deexcitation process is

Su(E) =1.7-10"" barn - MeV. (24.5)

For the corresponding free-free pair production process, the pair conversion coefficient is Sg(w) =
1.8 - 1073, thus the strength of the resonance is

S#(E’) =1.0-10"" barn - MeV. (24.6)

The dependence of the A coefficient on the incident proton energy is shown in Fig. and
Fig. For heavier projectiles the results are presented in Table [24.1
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Figure 24.2 — The dependence of the A coefficient on the incident proton energy for high proton
energies.

§ 25 Coulomb cross section and the cross section of the 2-step
process in a relativistic approach

One may apply the theoretical results of Ref. [131] for the description of the Coulomb excitation
in the relativistic case. The equation of the Coulomb excitation rate is [131]:

RCoulomb = l—‘Coulomb/ Ftot =0 Coulomb/ O Rutherford (25 1)

i.e. it is the ratio of the Coulomb excitation and Rutherford scattering cross sections, and

O Rutherford = ﬂpﬁ, (25.2)
200y
a = f s 25.3
P wMev] (253)
1
y = (25.4)

V1 2

and in the case of EL nuclear excitation, the Coulomb cross section is

nR*n(L), (25.5)

ZProjf:ctilee2 )2 B(EL)

U Coulomb =
hic e*R*L

where (L) = 2In(p,/R) for L = 1 and (L) = (L—1)"! for L < 1. R is the radius of the target nu-
cleus (e.g. R = 1.2 A" fm for spherical nuclei such as Pb), and B(EL) is the reduced transition
probability. For instance, for the E'1 nuclear transition we obtain the following values [[116]:

B(E1,0" - 17) = 6.288-107"°wP(E1,0" - 17) (25.6)
= 6.288- 10w 3P (E1,17 — 0),

where w is the transition energy in units of MeV, and P, (E1,17 — 07) = %FV. Therefore,
the width of Coulomb excitation, I'coyomp, 1S proportional to the width of the corresponding
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photo-excitation, I['7, and it can be written in a similar way as in the non-relativistic case with
the newly introduced coeflicient X:

Icoutomb = XTI (25.7)

Here, X depends on the energy and multipolarity of the nuclear transition to be excited. Then,
the total cross section takes the same form as in the non-relativistic case, namely,

, PR DY W g
o(E,E) = X(E', E)—F———Au(E), (25.8)
tot
with the new definition of the coeflicient
2 2
V(E'E) = ZX. (25.9)
Da
The strength of this process is given again by:
S(E") = AE"By(E')I7). (25.10)

For instance, for the nuclear transition presented in the previous Section one obtains at the
incident proton energy E’ = 10 GeV the following numerical value for the strength:

S =2.7-107""barn - MeV. (25.11)
This compares well to the non-relativistic value for the same proton energy, which is
S =9-107" barn - MeV. (25.12)

The comparison of the relativistic and non-relativistic results for the coefficient A is pre-
sented in Fig. One can observe here a similar behavior of these coefficients. The difference
at high energies, however, is significant. Therefore, one should operate with both approxima-
tions to compare these theoretical results with future experimental investigations.

§ 26 Comparison to the non-resonant process

The described two-step process consisting of nuclear Coulomb excitation and bound-free pair
conversion yields monochromatic positrons as an output. These monochromatic positrons rep-
resent a resonance on the background of positrons produced in the direct bound-free oder free-
free pair production processes. Considering the bound-free pair production, one can calculate
the relativistic value for the cross section at the resonance energy which can be obtained from
Eq. For instance, at the proton energy £’ = 10 GeV this important quantity is

Ores = 1.1 - 1071 barn. (26.1)

It can be compared with the result of Ref. [132], where the authors received for the nonres-
onance pair production (i.e. pair production proceeding without the involvement of nuclear
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Figure 25.1 — The dependence of the A coefficient on the incident proton energy in the relativis-
tic (brown line) and non-relativistic (blue line) case.

excitation) at the positron energy E, = w — E?, corresponding to our nuclear excitation energy
w and the binding energy of the K-shell electron state E? the approximate value

do—nonr €S

T 5.9 - 1073 barn/mc>. (26.2)

p

Therefore, one may conclude that at high outgoing positron energy resolution, e.g. at an energy
resolution about mc?/10° = 0.5 eV, the nuclear-resonant pair creation process gives a significant
contribution, and, therefore, can be observed.

In summary, our theoretical results presented in the current Chapter show the possibility of
the identification of nuclear-resonant pair creation in ion-ion collisions on the background of
nonresonant pair production, which is going to be investigated in heavy ion scattering experi-
ments at FAIR in the near future.






Chapter V

Pair creation in heavy ion channeling

§ 27 Introduction to pair creation in heavy ion channeling

The internal pair creation process has been investigated in the previous Chapters of this thesis.
It has been considered as an alternative mechanism of electron-positron pair creation. In the
present Chapter we discuss how this mechanism can be significantly improved by inducing pair
creation in ion planar channeling through a crystal [see Fig.[27.1(a)]. In the reference frame of
the traveling ions, the electromagnetic field of the periodic crystal structure may be regarded as
a field of virtual photons with well-defined, equidistantly spaced discrete frequencies. For fast
ions, these frequencies may extend into the MeV range, surpassing the pair creation threshold.
In a direct channeling pair creation process, at all photon energies above this threshold value,
a free-free or bound-free pair can be created; in the latter case, the electron is immediately
captured into a bound state of the ion. In addition, when the virtual-photon frequency matches
a nuclear transition in the channeling ion, a two-step resonant process may occur, in which first
the nucleus is excited, then it decays by internal pair conversion. After multiple interfering
periodic interactions of the channeling heavy ion with the crystal sites, pair creation occurs
with significantly enhanced probability as compared to the collision of single ions, discussed
in the previous Chapter. Pair creation with channeling ions may also be regarded as a feasible
alternative to photo-production with an intense coherent gamma-ray source, which, however,
does not exist yet.

Atomic and nuclear resonant excitations in axial channeling were firstly described by Oko-
rokov [24}/133]]. Recently, resonant coherent excitation (RCE) of the electron shell of ions was
experimentally investigated [134-140], with ions as heavy as >*3U%* [134] and transition ener-
gies as high as 6.7 keV [135]]. These experiments are planned to be extended to the 100-keV
ls — 2p electronic excitation of hydrogenlike 2*U°'* [134,/141], therefore, it is reasonable to
anticipate that further developments will reach the MeV regime of pair creation. A general for-
malism for atomic excitations is presented in, e.g., Refs. [[142-144], while in Refs. [145]146], a
framework suitable for describing nuclear excitation in channeling has been developed. Crystal-
assisted pair creation by synchrotron radiation gamma photons has been theoretically formu-
lated in [[147]. In this process, only free leptons can be produced, thus one cannot exploit the
advantage of resonances in the virtual-photon density of the crystal.
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Figure 27.1 — (a) Schematic view of pair production in heavy ion channeling. (b) Typical vir-
tual photon spectrum of the crystal, i.e. photon spectrum density c% as a function
of the virtual photon frequency w in units of keV. Diagrams for (c) direct pair cre-
ation by an equivalent photon and (d) pair production proceeding through nuclear
excitation.

§ 28 Virtual photons in ion channeling

The two cases of direct and nuclear-resonant pair creation are schematically presented in
Fig.[27.1fc) and (d), respectively. Electromagnetic processes in ion channeling can be described
by the presence of virtual photons of the crystal field (see, e.g., [146]). The spectral density of
virtual (equivalent) photons of frequency w can be derived [145] by the help of the classical
Weizsicker-Williams method [[148]. This approximation is valid in the ultrarelativistic case, i.e.
when the Lorentz factor satisfies]

1
y=——=> 10, (28.1)

with v being the ion velocity and c the speed of light, and yields the spectral density

dn(% CL)) _ 12((1)) Sinz (aéa;/]j)e_(;f)z + 12((1)) (11((,()) _ e_(;)f)z)
do  VEiwQ2n)* gin? (5)_) viw2r)* \ L(w) '
yv

(28.2)

Here, 7 stands for the reduced Planck constant, N is the number of atoms in a crystal channel,
a denotes the lattice constant, and ¢ stands for the amplitude of thermal oscillations [[145]. The
integrals I; and [, are given by

I(w)

72
f ALY

L(w) f SRRV exp™i, (28.3)

"'We note that in the present Chapter we use S.I. units in contrast to the previous Chapters of the thesis.
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Table 29.1 — Cross sections (in barn) for the direct bound-free/free-free pair production by a
bare ion with a charge Z, and vy corresponding to the energy w’ for n = 6 and
N =100. ' (in MeV) is the maximum of the direct bound-free pair production
cross section, following Ref. [22]]. The notation a[b] stands for a X 10°.

’ chan coll
Z w 0% O b Ope Opc

1 32 123 83[-6]/1.1[3] 8.3[-8]/1.2[1] 2.8[-10]/7.6[-10]
25 3.1 119 4.5[1)/7.0[5] 4.5[-1)/7.2[3] 1.3[-3]/3.4[-3]
50 3.1 119 1.0[3)/2.8[6] 1.0[1]/2.9[4] 2.6[-2]/6.8[-2]
75 1.5 593  49[3]/5.7[6] 4.9[1]/5.8[4] 1.7[-11/7.5[-2]
92 1.5 593 1.3[4]/8.6[6] 1.3[2]/8.7[4] 4.6[-1]/2.1[-1]

2
with the 2-dimensional transverse wave vector 123 =2 - (%) , and V; being the Fourier trans-

form of a single atom’s potential in the crystal. It follows from Eq. that at the energies
w, = 2nnyv/a, n € [1,2,3,...], the virtual photon spectrum exhibits maxima proportional
to N? [see Fig. b)]. The photon energies w, can be experimentally tuned by choosing
the proper y of the ions. Due to restrictions caused by thermal vibrations of the lattice atoms,
typically harmonics with n < 10 are used [[149].

§ 29 Direct pair creation process

In this process, illustrated in Fig. [27.1|(c), the outgoing positrons possess a continuous spectrum
for free-free pair creation, and a monochromatic energy in the bound-free case. The cross
section (ng‘“ of pair creation via channeling following [145]] is defined as the convolution of the

virtual photon density with the cross section opc of pair creation by a real photon:

. dn(y,
o (y) = f dwopc(w) ngww), (29.1)

where opc(w) can either represent the cross section of bound-free (bf) or free-free (ff) pair
creation by a real photon of frequency w. The number of pairs created in unit time can be
expressed as Np* = S @kt /q?, with S being the cross sectional area of the ion beam and
® its flux. The cross section for bound-free pair creation in the Coulomb nuclear field by an

external photon is [22]]

2
’

2>
opcpr(w) = 5 . Z Z Mo, (@) (29.2)

A JLMM,

where « is the fine-structure constant, A- denotes the electrons Compton wavelength, 4 = +1 is
the helicity of the photon, My, is the magnetic quantum number of the created bound electron,
and the quantum numbers J, L and M correspond to the partial waves of the free-positron wave
function. The matrix element is given as [22]

Mo (@) = f ) (@ 8] () (29.3)
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where ;1 1s the positron partial wave in the Coulomb field of the nucleus, ¥, is the bound-
electron wave function, and & is the 3-vector of alpha matrices [65]]. Formulas for free-free pair
creation may be similarly derived, involving an additional summation over the partial waves
of the free electron. This approach, neglecting the interaction of the created particles with the
periodic field, can be employed because, for the high frequencies present here, the classical
nonlinearity parameter &, = ;—i [43]], written in terms of the crystals electric field strength E in
the framework of the ion and the unit charge e, is much less than unity. opcps has an energy
threshold at 2mc? — E,, with E, being the binding energy of the created electron. After this
threshold, opc ¢ increases with energy up to a given maximal value, whose position and value
depend on the nuclear charge. This behavior is analogous to the energy dependence of the
bound-free pair conversion coefficient Sy, as shown in Fig.

In Tab. the cross-section values are presented for direct pair creation for different
charges Z of the ion channeling in an Au crystal, at energy «’, corresponding to the maxi-
mum of the direct bound-free pair creation cross section. It is choosen to match the energy of
the 6th harmonic of the virtual photon density (28.2). The advantage of using heavy ions is
justified by the following scaling low: the cross section opc scales with the charge number as
~ 7°7¢ 0 < € < 1[22], and the Z-scaling of Uf,hcan is given by that of opc [see Eq. ].
At high virtual photon energies, the pair creation cross section decreases and vanishes asymp-
totically. The cross section 05" is compared to the cross section 0'}‘,0C“ of the pair creation
in the single Coulomb collision process (estimated from the channeling cross section with the
substitution of N = 1), and with the cross section opc of pair photo-production in the nuclear
Coulomb field [22]]. In both cases, one can see a significant increase. The cross sections can be
translated to pair creation rates, assuming e.g. an ion beam cross section of S = 1 cm? and flux

® = 10'%/(cm?s), yielding Nlﬁl(‘fgf =600/s, 2900/s and 7800/s, for Z =50, 75 and 92, respectively.

A ratio R(y) of the cross section of the coherent interaction with N atoms to the incoherent
one can be defined as follows: R(y) = oo&™(y)/ (NO']C;)CH()/)). This parameter measures the
coherence in the channeling process. For the cases shown in Tab. R is practically equal
to unity, showing that there is no enhancement due to coherence for direct pair creation via
channeling. This is explained by the broadness of the continuous spectrum of photons which
can create a pair, as compared to the width 2yv/(aN) of a photon density peak. In other words,
the coherence length of photo-production is much shorter than the Lorentz-contracted crystal

length aN/y.

High ion kinetic energies are needed to meet the resonance conditions for the virtual-photon
energies required for direct pair creation by ion channeling. Such energies can be reached,
for instance, by the projected FAIR accelerators [23]] or in the Large Hadron Collider [150]].
Laser-accelerated ion beams, anticipated to eventually reach the GeV regime [151}|152], may
also provide a viable alternative in future. One possible way to reduce the required ion kinetic
energy is to use higher crystal-field harmonics. This may be more feasible at high ion energies
than at the low energies of the RCE experiments performed thus far [134-140], because fast
ions interact less with the crystal electrons, suppressing decoherence.
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Figure 30.1 — (a) The preferred 3-level scheme and (b) the level scheme for one of the possible
elements, '°Er. The nuclear data are taken from Ref. [75]].

§ 30 Pair creation proceeding via nuclear resonances

The cross section of the first step of the process shown on Fig. [27.1(d), namely, the RCE of the
nucleus passing through the crystal, can be given as [145]/146]

dn(y, w
o320 = [ doory@) 2 (30.1)
w
with the cross section of nuclear excitation with a real photon of frequency w,
2 I
oN() = g =3 (302)

W (W= wy? +T2/4°

where wy is the nuclear excitation energy. The statistical factor g = (2/;+1)(21;+ 1) depends on
the angular momenta I; (/5) of the initial (final) nuclear states, I" is the total width of the excited
nuclear level, and I';,4 is its radiative width. To obtain the cross section for the total two-step
process of ion excitation—deexcitation by pair creation, O'CNha“ is multiplied by the coefficient of
pair conversion. This coefficient By is introduced in Chapter I for the bound-free case to be
the ratio of the transition probabilities of pair creation and radiative decay: Byt = Pyf/Prag- In
dependence of the corresponding nuclear transition multipolarity (i.e., the angular momentum

L’ and parity of the transition), the following expressions can be obtained for this quantity:

4

Bor(EL) = Z %W'H(K — )Ry +Ry) + 'R, + R, + Ry —R)P,  (30.3)
, drraw , ,

Bo(ML') = > ———slc/ll(k + K)(Rs + Ry)P,

L +1

KK’

where s is introduced in terms of a 3 j-symbol

s = ( 1 J
3 =

Here, again, « and «’ are Dirac angular momentum quantum numbers. The radial integrals
Ry, ..., R¢ are defined in Appendix A with the analytical form of the fermionic Coulomb wave
functions for bound and free particles. All results are obtained for the 1s electron orbital having

~

2
L
0 ) . (30.4)

=
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Table 30.1 — Nuclear data [[75]] for different elements corresponding to the level scheme intro-
duced at Fig.[30.T(a). Energies are given in units of keV.

5= 2Ge 55,
Ey, 1094 691.4 612.8
Ey, 1542 1464 1416.9
Ey, 79.8 0 0
w1 447.6 772.6 807.1
W, 1462 1464 1416.9
T 109ns 444ns  3.26 us
I' (meV) 0.082 0.15 1.88
PN,—Ns 0.0058 0.124 0.739
,8,‘2,2_),\,3 -10* 9.3 0.55 2.0

By, .y, - 10* 077 0.74 0.52

a maximal overlap with the nucleus. Equation (30.3) can be adopted to the free-free case (B¢)
in a straightforward manner.

The cross section of the two-step nuclear excitation-pair conversion (NEPC) process for
channeling ions can be written as

h h

oxepc(Y) = ox""(V)BB, (30.5)

where B is the branching ratio of the gamma decay corresponding to the pair creation transition,

and B = Byt or Bg. One can see in Eq. (30.5) that the cross section for the excitation o and

the rate for the deexcitation 8 are independent and, in principle, may correspond to different
transitions to/from some excited nuclear state N,. The total cross section can be rewritten as

Ixpe(@ w0y ) = o W) T )BT Bwy ). (30.6)
The levels Ny, N, and Nj are depicted on the three-level scheme of Fig. [30.1(a). The energy

culzvz_’N3 has to exceed the bound-free pair creation threshold 2mc? — E.. . The excitation

energy wjlv 1=M2 i not restricted, and from an experimental point of view it is preferable to utilize
a transition with a lower energy. It is more advantageous for level N; to be metastable, in
order to be able to prepare the nuclei in this state before injecting them into the crystal. One
of the possible elements is '®*Er, with its level scheme shown in Fig. b). Results for the
pair conversion coefficients S for this isotope, together with data for other potentially suitable
elements, ’Ge and !'>Sn, are given in Tab.

Once the nuclear transitions involved and the type of crystal are fixed, the only variable
parameters are the thickness of the crystal determined by N, and the harmonic order n. The
dependence of the ion kinetic energy, connected with vy, and of the excitation cross section
o™ on n at certain value of N is presented in Tab. The largest cross section is reached
at the fundamental frequency, however, the cross section decreases slowly with increasing n,
therefore, it is again preferable to tune the Lorentz factor y to higher harmonics. Values of the
coherent enhancement factor R are also given in Tab. R(y) only weakly depends on the
element and the transition, and is mostly influenced by the harmonic order n, and by N. The
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Table 30.2 — The dependence of the ion’s y factor and the excitation cross section o-f\?a“ (in
barn) on the harmonic order n at certain value of N = 100 for different w;. The
last column gives the ratio R, depending on n only and not on the atomic properties
for all narrow transitions (i.e. those with a line width below the bandwidth of the
virtual photon spectrum).

168Er 72(}e IISSn
wi= 447.6keV  T772.6keV  807.1 keV
n y O_CNhan y O_Ic\?an % o_cNhan R
1 104 82 180 0.023 188 1.8 69
2 52 72 90 0.020 94 1.6 66
4 26 62 45 0018 47 13 63
6 17 57 30 0016 31 12 61
8 13 53 22 0015 23 1.1 59
10 10 50 18 0.014 19 1.1 57

dependence of R on vy is shown in Fig. for the case of the 447.6-keV transition in '®Er. The
figure shows that, for a crystal as thin as 1000 atoms, which is the typical order of magnitude
used in experiments [[134]], one can achieve a coherent pair creation enhancement by 3 orders
of magnitude. By the help of high-energy ion beams (up to 33 GeV/u or y=35) provided by the
FAIR facility in the near future [23]], one can investigate all elements in Tab.

The first two lines of the Tab. [31.1ldemonstrate the behavior of the nuclear excitation cross
section 0';}“3“ on N, the number of ion sites along the channel. One can observe a significant —
quadratic — enhancement of the cross section with increase of N. Employing a thicker crystal
with higher N is experimentally limited by restrictions due to deviations from a straight ion
trajectory in the crystal. One may perform more realistic Monte-Carlo simulations to model
the ion trajectories, if it is necessary to increase the crystal thickness even further. The total
cross section of the two-step process NEPC can be calculated by Eq. (30.6), using data from
Tables [30.1)and [30.2] In Tab. [31.1] (last 4 rows) results are presented for this cross section for
different thicknesses of the crystal (N = 100, 1000) with a fixed harmonic number (n = 6). The
rate of created pairs is also proportional to N2.

§ 31 Discussion

We found that direct pair creation and pair creation via nuclear excitation in heavy ion collisions
can be significantly enhanced by multiple periodic collisions in a crystal channeling experiment.
The direct process is associated with high creation rates increasing approximately linearly with
the number of crystal sites in the channel. As for pair creation proceeding via nuclear reso-
nances, which typically have lower probabilities, the coherent nature of the excitation process
yields a quadratic scaling with the number of collisions, resulting in observable pair creation
rates. These studies complement the investigation of pair creation by different strong electro-
magnetic fields such as optical or X-ray lasers [25]]. The ion kinetic energies required for such
investigations can be reached by present and upcoming experimental facilities, such as, e.g.,
FAIR. Laser-accelerated ions may also be considered in future for such studies.
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Table 31.1 — The cross section (in barn) of bound-free and free-free pair creation via nuclear
resonances and the coherence parameter R, for different crystal thicknesses (N =
100, 1000) with a fixed harmonic order (n = 6). a[b] stands for a x 10°.

N 168Er 72Ge IISSn

oN 100 5.7[0] 1.6[-2]  1.2[0]
1000  5.6[2] 1.6[0] 1.2[2]

R(y) 100 60.5 60.6 60.5
1000 601 604 602

ot 100 3.1[-5] 1.1[-7]  1.8[-4]
1000  3.0[-3] 1.1[-5] 1.8[-2]

ol 100  2.5[-6] 1.4[-7] 4.7[-5]
1000 2.5[-4] 1.4[-5] 4.6[-3]

500(

100}
50¢

R(y)

)]

10.440 10.445 10.450 10.455 10.460 10.465

Y

Figure 31.1 — The coherence parameter R(y) for the case of 447.6-keV transition in an '$®Er
nucleus. Here, N=1000, and n=10.



Chapter VI

Parity violation in unconventional
superconductors

§ 32 Introduction to parity violation in unconventional su-
perconductors

The electroweak theory, combining two fundamental interactions — the electromagnetic and
weak forces — was introduced by Salam, Glashow and Weinberg in the 1960s [153-1535]]. It
explains the nuclear beta-decay and weak effects in high-energy physics. One of the most
prominent properties of the electroweak theory is the spatial parity violation (PV). This unique
phenomenon distinguishes the weak interaction from the electromagnetic one, therefore, it helps
to investigate weak properties on an electromagnetic background. Firstly, PV was experimen-
tally detected in the beta decay of °Co by Wu [19] and collaborators. Later, many other novel
experiments for the PV observation have been proposed and performed. Low-energy PV exper-
iments in atomic physics were carried out with Cs atoms (see e.g. [20,1564]157]). The PV effect
has been theoretically predicted to have a measurable influence on the vibrational spectrum of
molecules in Ref. [[158]]. Investigations of PV effects enable tests of the standard model of ele-
mentary particle physics and impose constraints on physics beyond this model. The search for
new efficient ways to re-examine and investigate the PV phenomenon is an ongoing research
activity (see, for instance, [[159-162]).

Another physical situation where PV effects can play a noticeable role is the interaction of
electrons with the crystal lattice of nuclei in the solid state [21,/163|]. While the relative contri-
bution of the PV effect is lower in comparison to other investigation methods, PV experiments
with solids are of interest because of the compact size of the experimental equipment. Possible
solid-state systems where one may study the PV contribution are superconductors (SC). Such
systems would enable to study the macroscopic manifestation of a quantum effect such as the
electroweak interaction. The idea that PV effects can appear in SCs has been suggested by
Vainstein and Khriplovich [21]. They have realized that the electroweak contribution is immea-
surably small in conventional s-wave SCs. However, it was predicted [[164], that the effect can
be increased by using SCs of other types, e.g. p-wave SCs. Nowadays different unconventional
SCs can be created and are well understood (see, e.g. [165]). Therefore, in the present study
this effect is estimated to be observable in p-wave ferromagnetic SCs. Furthermore, a novel
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Figure 32.1 — Circular Josephson junction with two insulations, placed into a magnetic field.

method is put forward for the observation and control of the effect. The calculations presented
in this Chapter yield a relative contribution of PV enhanced by several orders of magnitude
as compared to the s-wave case, and open a way for a further improvement and experimental
observation of the effect.

The SC system for studying PV considered for these purposes is a circular Josephson junc-
tion in an external magnetic field. This system is described, e.g., in Ref. [[166] and consists of
a circular SC with two insulating junctions (see Fig. [32.1). If the circular Josephson junction is
placed in an external magnetic field, the maximal value of the SC current depends periodically
on the magnetic flux through the ring. This dependence is symmetric under the reflection of the
direction of the magnetic flux. However, the presence of the PV terms in the electron-nucleus
interaction breaks this symmetry. This effect is investigated in the case of unconventional p-
wave SCs.

This Chapter is organized as follows. [§ 33| contains the description of the PV effect in solid
state, and discusses a possible superconducting system, namely, a circular Josephson junction.
In[§ 34] a method for the possible observation and control of the PV effect is developed, and the
magnitude of the PV effect for a certain SC, namely, uranium digermanide, UGe,, is evaluated.
[§ 35 discusses a scheme for the further improvement of the measurement technique, which can
lead to a significant enhancement of the effect. Finally, a quantitative prediction of the PV effect
in the considered system is provided in [§ 36|
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§ 33 Parity violation in superconductors

Weak odd-parity interaction in superconductors

The weak odd-parity interaction in a crystal is given by the operator [21]]
W) = —— 3 (2g 5~ R) + kil po(F — R) + il x 21— B)) . (33.)
V2m 4

where G is the Fermi constant [167]], Z is the nuclear charge of crystal ions, m stands for the
electron mass, ¢ is the weak charge, and j denotes the 3-momentum of a Cooper pair. Fur-
thermore, /; stands for the nuclear spin, «; is the pre-factor of the weak interaction of electrons
with nuclear spins [21]]. The summation goes over the crystal sites, determined by the position
vectors R;. It is obvious from this equation that if the pair spin is zero, o = 0 (s- or d-wave),
only the second term is non-vanishing. This case has been investigated before in Ref. [164]. In
the p-wave case [168]], the first term is also nonzero, and its approximate magnitude is Z-times
larger than that of the other terms.

Now, the case of interest (oo = 1) is described in analogy to the o = 0 case [164]. The first
term of the effective interaction is [[164]

wh = GZ3(]RN 5 5

o =5 mP (332)
where the weak charge is
A-Z
q=Kip+ Tkln , (33.3)
expressed with the factors «;, = %(1 — 4sin® 6c) and Ky, = —%, where the Cabibbo weak mixing

angle [169] is given by sin® e = 0.22529. In the above equation, N and A are the density and
mass number of nuclei, respectively, and

2-2y
R=4 /r 2y +1 33.4
(2Z Ro) Qy+1) (33.4)
is the enhancement factor of relativistic effects at small distances [[164], where y = /1 — a2Z2/2,
Ry ~ 1.2 - A'3 fm is the nuclear radius, ag denotes the Bohr radius, and I' denotes the gamma
function of real argument. R is on the order of 10 for heavy elements. The effective term (33.2)
has to be added to the standard electromagnetic Lagrangian:

L:—m\/l—v2+eA_)\7—e¢—ng),

(33.5)
where relativistic units are used. For the canonical momentum of an electron one obtains
- 3IL rni? - (;253 I?pJ
P="= + eA — el ikl

o V1 -2 V22m

where m* is the effective mass of the electron. The mass ratio ’% can exceed 10%. The above
weak modification of the electron momentum is equivalent to the substitution

L, . GZ%RNm
oA — ok - 2L o (33.7)

2m* &, (33.6)

V2 o m
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to be performed in all equations. This substitution is applied in the theoretical description of a
superconducting ring.

Considering the case when the external magnetic field does not penetrate into the SC, one
can obtain the following expression for the magnetic flux in the superconducting ring:

2e® — 2ed — f, (33.8)
with @ = § d7A and
f= \/§GZ3qRN% 56 7. (33.9)

This result can be used in any applications and for any SC systems. In the following Section this
is applied for the circular Josephson junction. Let us discuss now the loop integral in Eq.
In the case of p-waves, the pairing spin is o = 1. However, the integral

5651?5-(7) (33.10)

is non-zero only if the mean spin vector (averaged over the whole SC loop) is non-zero. There-
fore, it is advisable to use an unconventional SC, which possesses a superconducting phase in
coexistence with the ferromagnetic phase. This allows to control the effect by inducing magneti-
zation in the SC. Furthermore, because of the Z* scaling of the weak flux £, it is advantageous to
employ heavy-element SCs. A possible material with these properties is uranium digermanide,
UGe, [1704172].

Circular Josephson junction

The suggested experimental setup for the observation of the PV effect in SC is a circular Joseph-
son junction (JJ). A linear JJ is created by two SCs, separated by a thin insulator material. It was
predicted by Josephson [173]] that the insulator does not prevent the appearance of a supercon-
ducting current, however, the properties of the current depend on the thickness and material of
this insulator. Nowadays JJs, being able to detect rather weak magnetic fields, have a wide spec-
trum of applications connected with atomic physics measurements and quantum optics [174]].
In the following the point-contact limit of the JJ is considered, i.e. the insulator is assumed to
be infinitely thin. However, all derivations presented here can be easily extended for other JJ
models, since the PV effect breaks the symmetry in any case.
The current in the JJ in the point-contact approximation is given by the expression [175]]

tanh (% \/ 1-D sin2(¢/2))
J($) = JoA

sing, (33.11)

\/ 1 — Dsin’(¢/2)

where D is the angle-averaged transmission probability, and A stands for the gap parameter.
The phase is defined by

¢ =00+ ZefAds, (33.12)
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Figure 33.1 — The dependence of the maximal current Jy,x (in units of Jy) on the magnetic flux
e® (in units of ), with values A = 100 and D = 0.5. Jyax is calculated according
to Eq. (33.14). Both energy and temperature are measured in units of Kelvin.

where the integral is to be taken across the junction [166] and ¢ is an unknown constant phase.
This expression is valid both in the clean and dirty limits of the SC.

If one now constructs a circular JJ by two identical JJ, junction a and junction b connected
in parallel (see Fig. [32.1), only the following phase difference between these junctions is ob-
servable:

O0p — 0, = ZeggAds, (33.13)

where the circular integral is to be taken along the loop, and thus 6, — 6, = 2e®. As noted above,
one can only control the phase difference, thus one can write, following Ref. [166]: 6, = ¢+ e®
and 0, = ¢y — e®. The total current in the circular JJ as a function of the magnetic flux is then
given by the expression

tanh (£ /1 - Dsin’((8 + e®)/2))

Joot(@) = JoA sin(6g + e®) (33.14)

V1 = Dsin?((6y + e®)/2)

tanh (£ /1 — Dsin’((6) — e®)/2))
+ sin(dy — ed)
V1 = Dsin?((8y — e®)/2)

This expression still depends on the arbitrary phase ;. However, it is possible to determine
the maximal value of the current J,,,x. The behavior of the maximal current can be calculated
numerically for a certain gap parameter A and a diffusion parameter D. The dependence of Jp.x
on e® is shown in Fig. [33.1]for the values A = 100 (in units of temperature) and D = 0.5.

The dependence of Jy,,x on @ is invariant under the change of the sign of ®@. Due to the pres-
ence of the weak odd-parity interaction, as shown in the previous Section, one has to substitute

® in all equations as
2eD — 2ed — f, (33.15)

where f is the positive admixture of the weak parity-violating term. Thus the real dependence

of the maximal current on the magnetic flux is given by

T (@) = T (e® = £/2), (33.16)

max

and it is not symmetric with respect to the change of the sign of ®. The main purpose of this
Chapter is to present the case in which this asymmetry can be measured. In the following
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Figure 34.1 — The periodic dependence Jy.x(wt) without the inclusion of the weak interaction.

Sections the calculations will be discussed and a possible measurement method for determining
the value of f will be presented.

§ 34 Possible method for the measurement of the f-parameter

Measurement method employing a time-periodic magnetic field

It can be challenging to directly observe the small asymmetry of the dependence of J™ on e®,
therefore, one may suggest to employ a time-periodic magnetic field instead of a static one. As
mentioned before, it is possible to calculate the phase-independent maximal Josephson current
Jmax(e®@). Let e® be the first positive root of this expression. If one now introduces a periodic

component to the magnetic field,
ed(r) = ey + 5 sinowr, (34.1)

Jmax(wt) also depends periodically on time with the period T = 27/w, where w is the angular
frequency of the oscillating field. Roots of this function are reached every half of the period, i.e.
with a /w periodicity. The typical shape of this function, calculated for the case of Jiax(e®)
shown on Fig. is presented on Fig.

Let us now incorporate the weak interaction into this system. The weak interaction can
be controlled (“switched on/off”’) by introducing the magnetization in the SC ferromagnetic
circular JJ, since the PV contribution is proportional to the average spin of the Cooper pairs [see
the integral of the spin over a circle in Eq. (33.9)]. The periodic field coefficient a is chosen to
be greater than the weak factor f, however, it is comparable to it: a = xf, x X 1.

Now the roots of Jy.x(wt) are not exactly m/w-periodic any more. This behavior is shown
on Fig.[34.2] Furthermore, in the limit x — 1, the roots become almost 27/w - periodic. This
non-periodic behavior of roots can be observed experimentally, since it can be dynamically
controlled by the periodic magnetic field.

As an alternative, one may also do the measurement at some certain phase dy rather than at a
maximal Josephson current. Here one can introduce again the oscillations of the magnetic field
around the first root e®, of the total current Ji,(d¢, e®). In this case, the current changes its sign
during the total period 7 = 2n/w. If one takes a = f after switching on the weak interaction,
with magnetization being present in the SC, the total current function will be always of the same

sign, as it is shown on Fig.



§ 34. Possible method for the measurement of the f-parameter 73
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Figure 34.2 — The periodic dependence J.x(wf) with the weak interaction included, for the
parameters a = xf, x =1.5, 1.1, 1.01, respectively.

Estimation of the effect

In the present Section the value of the admixture f to the magnetic flux through the JJ ring is
evaluated [see Eqgs. (33.8), (33.9)] to provide a realible estimate of the magnitude of the PV
effect in SCs.

In the case of a ferromagnetic SC one can assume that pairs are polarized along the loop,
therefore, their polarization can have two different opposite directions. This assumption yields

for the loop integral
9541?0*'(?) =7 9§dr, (34.2)

with the mean spin value n, which has to be determined by a self-consistent solution of the
equations for superconductivity and ferromagnetism in this material. This is performed in Ap-
pendix C.

In the following part of the present Section an estimation of the PV effect is presented. The
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Figure 34.3 — The periodic dependence Ji(dg, wf). The first plot shows the case when the weak

interaction is not included, and the next two plots are for the case when the weak
interaction is included, with the parameters a = xf, x = 1.5, 1.1, respectively.

PV admixture f is expressed with the mean spin 7 as
f=V262°RgN" 56 dr. (34.3)
m

Assuming a round JJ, the loop integral simply yields § dr = 2rL, the mean spin value 7 is to
be calculated in the next Section, and the remaining factors are known: ﬂ% =107, 7 = 92.
The relativistic enhancement parameter is R ~ 11, the value of the effective mass at the ambient
pressure is in the interval [176] ’”7 = 2.3...25, thus one may assume ’”W = 25. The density of

nuclei is [177,[178] N = 0.25 - 10 cm™!. Then the final value of f is
f=27-69-10"Ly, (34.4)

where the length L is measured in units of cm. This result is 3 orders of magnitude larger than
the value of the admixture factor in the case of an s-wave heavy SC [164]. To observe this
effect one may use the method with the oscillating magnetic field, as described in the previous
Section.
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Since the flux, in units of 7, is given by

enl?

® =
¢ 7

B, (34.5)

the time-dependent part of the magnetic field is

a . L? .
e®y + 3 sint = - (Bg + B;sint). (34.6)
In case of a % f, the expression for the amplitude B, in units of Tesla is [cf. Eq. (33.15))]

f

0.152 - 10*°L*B, 2 > (34.7)

where L is given in cm. Inserting the presented estimate for f [see Eq. (34.4)], it follows:
B,=45- 10—23% [T]. (34.8)

As an example, for a typical size of L = 0.1 um, the result is B, = 4.5 - 10735 [T]. The fact
that 7 can indeed reach its maximal value, .« = 1 is discussed in the Appendix C. Therefore,
B, = 4.5-107!8 [T]. This result is discussed in the concluding Section of the present Chapter.

§ 35 Possible experimental setup to increase the parity viola-
tion effect

It is assumed in the previous derivations that the induced magnetic field is constant along the

loop. However, the required periodic component of the magnetic field can be increased if the

magnetic field is only present in the region around the Josephson junctions (see Fig. [36.1)). To
make this statement clear, one can rewrite Eq. (34.6) as

fde%(Bo+B,sint)

S
= %(BO +B,sing), (35.1)

a .
e®, + Esmt

where § is the effective area (part of the loop area, see Fig. [36.1), where the field is given by
(By + B, sint). Therefore, in the limit a — f+, the expression for the periodic component of the
magnetic field is

L
B =14. 10-22% [T]. (35.2)

This expression explains why the localization of the magnetic field by the decrease of the total
flux increases the required magnetic field. By choosing a large ratio L/S one may reach condi-
tions satisfying the restrictions of existing experimental techniques. A large value of the ratio
may be archived, e.g., by implementing a superconducting solenoid at the field-free part of the
loop (i.e. at the right side of Fig. [36.1)). Furthermore, the ratio B,/B, ~ L, therefore, the large
size of the loop provides also an improvement of the effect.
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L2

Figure 36.1 — The circular Josephson junction with an external magnetic field present in the
effective area S in the vicinity of the SIS junctions only.

§ 36 Discussion

It is shown in Appendix C that the maximal mean spin value can be equal to unity, = 1,
for Cooper pairs in the unconventional ferromagnetic SC at some certain conditions, namely,
in the region where the critical temperature for superconductivity 7. is much smaller than the
Curie temperature T¢. Thus one can finally obtain the amplitude of the periodic magnetic field
required for the estimation presented in[§ 34| [cf. Eq. (34.8)]:

1
B, =45- 10-23Z, (36.1)

where L is given in units of cm and B, in units of Tesla. As an example, for the size of the
circular Josephson junction a L = 0.1 um, one obtains the value

B, =45-1078[T]. (36.2)

Thus, the PV effect is 3 orders of magnitude stronger than in the case of the earlier theoretical
works [21,{163]]. These magnetic fields are close to the range of Superconducting QUantum
Interference Devices (SQUIDs, see e.g. Ref. [179]).

Furthermore, the effect can be significantly improved by employing the experimental scheme
described in @ For instance, without the implementation of this model, the magnetic field is

L
B, = 14. 10-22% [T] (36.3)
= 45 10_18 [T]lq:l,L:O.lum,S:an >

then, by increasing the length of the loop to L = 1 mm at an unchanged effective surface S, B,
is augmented by 4 orders of magnitude:

By =45 107 [Tl 1oty swrtz. Lo=0.1m - (36.4)
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Therefore, the PV effect is now 7 orders of magnitude larger than in the case of the earlier
proposals [21},|163]]. As a result, the PV effects in SC are anticipated to be observed in future.
Such measurements will open the way to investigate the PV phenomenon by relatively compact
experimental setups, and allow one to observe electroweak effects in a macroscopic system.






Summary and outlook

This thesis contains the investigation of several nuclear effects in atoms as well as in solid-state
systems:

Internal pair conversion

The first process considered in this thesis is internal pair conversion in heavy atoms or
ions. This is an alternative mechanism of electron-positron pair creation. Fundamental issues
of the pair conversion process itself and its combination with initial Coulomb excitation of the
nucleus can play an important role in numerous processes which are going to be examined at the
FAIR facility in the near future [23]]. In the framework of FAIR experiments it will be possible
to observe bound-free and free-free pair production in the supercritical combined Coulomb
field of two heavy colliding ions. Alternatively, pair creation via nuclear resonance may occur,
therefore, in the present work this process has been investigated analytically and numerically.
Numerical calculations have been provided for different EL and ML nuclear transitions with
angular momenta L > 0, as well as for EO (monopole) nuclear transitions. It appeared for
heavy bare ions that in some energy regions, the rate of the bound-free pair conversion process
can be greater than or comparable to the already experimentally investigated free-free case.
We have found suitable experimental situations for the effective observation of the bound-free
pair conversion process. Furthermore, we identified cases when pair conversion is dominant
electromagnetic channel for the nucleus to decay. The present theoretical study can be useful for
upcoming experimental investigations. The corresponding results are included in Refs. [[1,3,4]].

Pair conversion in muonic atoms

The pair production process in the decay of muonic atoms between discrete muonic energy
levels is relevant for different applications of muonic atoms. For instance, muonic hydrogen
has been used in precision experiments for determining the proton radius [30]. A surprising
finding of these experiments was that the proton radius obtained is significantly smaller than
the previously established value. A possible explanation of this puzzle might be some possible
shortcoming of the quantum electrodynamic theory [30] of the bound muon, which relates the
measured transition energies to the proton’s size. Experiments on pair creation accompanying
bound muonic decay in heavy atoms can provide an additional benchmark of this theoretical
framework. It is also necessary to improve our understanding of muonic cascades in atoms,
to investigate theoretically and experimentally the spectrum of particles created within muonic
transitions from some highly excited state to the ground state. For this purpose, the present
study introduces bound-free and free-free internal electron-positron pair creation accompany-
ing muonic transitions between atomic levels. It turned out to be possible to observe in muonic
atoms some behaviors similar to those in nuclear pair conversion. For instance, the pair produc-
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tion with a bound electron possesses a maximum in the low-energy energy region. Conversely,
when both the electron and positron are created as free, the probability monotonically increases
as a function of the transition energy of the muon. The magnitude of the received numbers is
also, surprisingly, the same as in the case of nuclear pair conversion. The corresponding results
are included in Ref. [5]].

Nuclear excitation by resonant positron annihilation

The time-reversed process of internal pair conversion, nuclear excitation by resonant positron
annihilation (NERPA), can play an important role in the interactions of positrons with matter.
NERPA constitutes a way to excite nuclei which is alternative to photo- and Coulomb excita-
tion. In particular, NERPA can resonantly induce monopole transitions. NERPA is potentially
relevant in numerous applications connected with positron-matter interaction and is also antic-
ipated to provide novel means for the investigation of the structure of deformed nuclei and for
nuclear model tests, as it can energy-selectively excite transitions of any multipolarity.

We conclude that the NERPA transition rate is the largest in medium-Z and heavy elements
with the nuclear transition energy near the maximum of the cross section at about 2 MeV. In the
elements satisfying these properties and possessing a metastable state populated by NERPA,
the slow subsequent y-decay may provide appropriate time gating for the observation of the
reaction. Because of their cross section, together with their lifetime, !'3Sn and ''°In were found
to be most suitable for possible measurements. The NERPA process is significantly enhanced
for some elements such as e.g. ''>Sn.

We identified the strongest NERPA excitation so far for a 13.5-MeV giant dipole resonance
(GDR) in 2%Pb. Since for such resonances the total nuclear level width is in the MeV range,
these resonances are associated with the highest integrated NERPA cross sections. For instance,
the estimation of the NERPA cross section integrated with the effective resonance width reaches
3.4 - 10* b-eV for the mentioned GDR, exceeding previous values for, e.g., '"In [[110,/111] by
8 orders of magnitude. GDRs can be efficiently excited even with a broadband positron beam
generated in laser-plasma interactions by existing novel methods [41,/97]. For instance, for a
positron beam with a 0.5-MeV width, Coulomb excitation of the GDR is strongly suppressed,
since it requires positron kinetic energies higher by 2mc* than NERPA. Therefore, exciting
GDRs with laser-generated positron beams may be a viable alternative to observe NERPA,
circumventing the difficulties caused by the low nuclear line width in the elements studied so
far [[110,111]]. Furthermore, NERPA may be utilized for a selective excitation of a certain energy
region of a giant resonance, enabling the investigation of the thermal evolution of the GDR
width and structure. Normally such studies are done by Coulomb excitation experiments [117,
118]] which does not allow a selective excitation but only an energy-selective detection of the
subsequent y decays. For the corresponding results one can refer to Refs. [1,4]

Internal pair conversion following Coulomb excitation

In collision experiments at heavy ion accelerators it will be possible to observe bound-free
and free-free pair production in the Coulomb field of heavy ions during their collision [23].
A new mechanism for pair production has been introduced in this work, i.e., nuclear-resonant
electron-positron pair creation in heavy ion collisions.

The first theoretical results, presented in Chapter I'V, show that at a sufficiently high experi-
mental positron energy resolution it is possible to identify this process on the background of the
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non-resonant pair production, which is going to be investigated in the mentioned experiments at
FAIR. Therefore, upcoming experimental investigations are anticipated to bring fruitful results.

Pair creation in heavy ion channeling

We have shown that pair conversion via nuclear excitation in heavy ion collisions can be
significantly enhanced by multiple periodic collisions in a crystal channeling experiment. This
promising technique has been also investigated in the present work. In the reference frame of
the traveling ions, the electromagnetic field of the periodic crystal structure may be regarded
as a field of virtual photons with well-defined, equidistantly spaced discrete frequencies. For
sufficiently fast ions, these frequencies are boosted into the MeV range, surpassing the pair
creation threshold. In a direct channeling pair creation process, at photon energies above this
threshold value, a free-free or bound-free pair can be created. In addition, when the virtual-
photon frequency equals to the frequency of a nuclear transition in the channeling ion, a two-
step resonant process occurs. In this channel the nucleus is excited, then it decays by internal
pair conversion. As it has been shown, due to the coherent nature of the excitation, pair creation
proceeding via nuclear resonances yields a quadratic scaling with the number of collisions,
resulting in observable pair conversion rates.

Pair creation with channeling ions may also be regarded as a feasible alternative to photo-
production, since such intense coherent gamma-ray sources do not exist yet. These studies
complement pair conversion by different strong electromagnetic fields such as optical or X-
ray lasers [25]. The ion kinetic energies required for such investigations can be reached by
present and upcoming experimental facilities, such as, e.g., FAIR. The kinetic energies of laser-
generated ion beams have been constantly increasing in recent years (see, e.g., Ref. [43]]), there-
fore, such ion beams may also be considered in the future for pair creation studies via channel-
ing. Our results in this field can be found in Ref. [3]].

Parity violation in unconventional superconductors

Weak-interaction effects have been investigated in this thesis on the example of parity viola-
tion phenomena in unconventional p-wave superconductors like UGe,, where superconducting
and ferromagnetic phases coexist. The presented calculation shows that the effect can be 3 or-
ders of magnitude stronger than for the s-wave case which has been investigated before [164]].
The required magnetic fields can be presently generated.

For instance, the amplitude of the periodic magnetic field required for the measurement with
a characteristic size of the circular Josephson junction of L = 0.1 umis B, = 4.5 - 107"* T . The
magnitude of these magnetic fields are close to that which can be generated with present-day
Superconducting QUantum Interference Devices (SQUIDs, see e.g. Ref. [179]).

The effect can be further improved by employing the experimental scheme of For
instance, for the system treated in the parity violation effect appeared to be 7 orders of
magnitude stronger than in the case of the earlier proposals [21}163]]. Therefore, parity violation
effects in superconductors are anticipated to be measurable in future experimental studies. This
kind of measurements opens the way to investigate parity violation phenomena in relatively
compact experimental setups. These results can be found in Ref. [2].
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Outlook

In the present work several nuclear effects in atomic and solid-state physics have been in-
vestigated. However, these studies may be extended and there are some related processes which
may be investigated subsequently.

Firstly, the discussed internal pair conversion process with a free or bound created electron
can be considered as a second step of different mechanisms of nuclear excitation, which leads
to numerous practical applications. For instance, in analogy to the investigated internal pair
conversion after nuclear Coulomb excitation in heavy ion collisions, one can consider pair cre-
ation following nuclear photo-excitation by y-rays with MeV energies. This can be of relevance
for applications in material investigation, as it allows to detect certain nuclear transitions in
compound materials.

Furthermore, one may consider the related process of photoionization via nuclear excitation,
i.e. a scheme in which the nucleus is first excited by a photon, then the excited nuclear state
formed this way decays by internal conversion. This process constitutes a competing channel
of the well-known photoionization of atoms, however, with the active involvement of nuclear
degrees of freedom. In contrast to pair production, here, the exciting photon may have lower
energies in the X-ray regime. In this range of the electromagnetic spectrum, intense sources
are readily available or are being built [43,91,92]. It would be interesting to study quantum
interference effects between the direct and the nuclear-resonant photoionization amplitudes,
which lead to Fano-type asymmetries [|13]] of the spectral lines.

The investigation of the NERPA process can be extended to benchmark certain nuclear
models by measuring the structure of nuclear excitations. This may include, e. g., scanning the
sublevels within giant resonances, or the level structure of complex nuclei.

Our studies on pair creation in nucleus-nucleus collisions included cases when a light nu-
cleus is scattered on a heavy one. As the results show, the monochromatic positron line may be
observed if the positron detectors resolution is high enough. Therefore, it would be desirable to
extend our description to the case when both colliding partners are heavy ions.

One of the most promising effects for future extensions is pair production by ion planar
channeling. Two possible reactions have been introduced in the present work, namely, direct
pair production and pair creation via nuclear resonant excitation. One can consider also nonlin-
ear direct pair production by two or more equivalent photons in the strong field of the crystal.
Transition rates of these pair creation mechanisms may turn out to be significant, and thus lower
ion kinetic energies would be needed to perform the channeling experiments.

As for parity non-conservation in superconductors, further schemes could be used to im-
prove its observability. This work mostly discussed the improvement of the effect caused by
the use of unconventional superconductors in the region of coexistence of superconducting and
ferromagnetic phases. An additional method for an enlargement of the effect due to realization
of a more complicated superconducting loop has been also introduced. However, one may also
develop other geometries of the supposed experiment, or a significant enhancement may ap-
pear by the utilization of a different superconducting material. The formalism developed in the
present thesis is general enough to allow for the treatment of further superconductors.



Appendix A

Evaluation of the radial integrals of the
internal pair conversion matrix elements

This Appendix contains the evaluation of integrals containing the radial components of the wave
functions for a bound electron and a free positron in the central Coulomb field of dimensionless
nucleus with a charge Z,. These radial integrals are defined as follows:

Ry = f gkgk’hL(wr)rzdr’ (Al)
0

R, f fofohi(wr)ridr,
0

R3

f fegehi(wr)rdr,
0

Ry = f gefrhi-1(wr)rdr,

0

Rs = fngK'hL(w’”)”zdr,
0

Ry = f gefohr(wr)rdr.

0

The radial part of the wave function for a free particle with a negative energy (e = —E < —1)
and the Dirac angular momentum quantum number « (i.e. the annihilating positron) is known
analytically [62]:

fr) = VE+IN[G(r) - e "G ()], (A2)

g(r) = iVE + IN[G\(r) + e "G (1], (A.3)
where the functions

G.(r) = e’ Fi(a;b;-2ipr), (A4)

G.(r) = ry_leiprlFl(a+1;b;—2ipr), (A.5)

are given in terms of the hypergeometric functions | F'; [66], the normalization constant is given
by
_ @pye™PIla+ 1)

N )
2 AL (b)

(A.6)
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and the further introduced quantities are:

: +iB
y = k- (aZpy; em=-YT2 . (A.7)

—k +iBJE’

Z0E
p = VEE-1: B=""2,

p
a = y+iB; b=2y+1.

For a bound particle with energy E’ and principal quantum number rn, the bound-state Dirac
quantum number «” (i.e. for the annihilated bound electron), the radial part of the wave function
has the form [65]):

ge(r) = N1+ ENg’ e (A.8)
T ]
X (n E,y _K/) lFl(_n/’zy/+ I,ZPO”)_”/ lFl(l —n’,27/+ 1’2170”) )
fo(r) = V1—ENy” e ror (A.9)
T _
X (n E,y _K/) lFl(_n/’zy/+ 1,2POV)+n/ lF‘l(1 _n’92y/+ 1,2]70’”) 5
where
No = (2]90)7'“/2 A+ENQy +n+1) (A.10)
0~ Iy +1) V4wl (' +v)/E" — k)W +y')]E’ ’ ’

with the bound Sommerfeld energy eigenvalues:
2 -1/2
E =1+ __(Z) , (A.11)
(n—=IKl+vy)

with the definitions po = V1 — E, 0’ = n— || and Yy’ = \/«k? — (aZp)>.
Inserting these wave functions into the expressions for the radial integrals following [62]],
one arrives to:
L+1

Ri=iVE-IN ) % (7 + L), (A.12)
e

Ry= VE+IN ) = (L - "T})
lzl Y

Ry = VE+IN ) TLII (1 -e21)
=1

L
Re=iNE=IN Y (I + 20T
=1

L+1

Ry= VE+IN Y “8 (T~ o2
=1

L+1

Rs = i\/ﬁNZ % (7 +e)
=1
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(=)E2 (@+-D)!

where Hy; = — T and the radial integrals are:
I~i = f:o GK(r)gK/(r)rz_lei“’rdr, (A.13)
fé = j(; ) G (Nge(rre“dr,
i_é = fom G (1) fo(rr* e dr,
I:ll = f:o G fo(rre“ dr.

The four integrals ff can be calculated separately in an analytical form for different bound states.
For instance, in the case of the 15/, bound state, one can have following results:

- I'y+y -1+1 2
I = O(p (Yi(piw))mzmzﬂ(a,7+7’—l+h&ﬁ), (A.14)
0~ 0
o I'y+y -1+1 2
L = Ny O +y D Flastyey —141:0—22 ). (A15)
(po — i(p + w))r =1+l p+w+ipg

and

- 1-E".
I = \/HE,IL (A.16)

- 1-FE.
I = - E,IQ, (A.17)
where the normalization constant is
, 1+
No = Qazy' *1? |—2 7 (A.18)

22y + 1)






Appendix B

Cross section for a two-step process

The present Appendix contains the derivation of the total cross section for the two-step NERPA-
v process, i.e. NERPA followed by a radiative decay of the nucleus. This derivation is done
with the extension of the formalism developed in Refs. [[17,67,/180]]. In those works, the authors
describe nuclear excitation by electron capture, also followed by y-emission.

Let us describe the initial state of the system consisting of the nucleus, the bound electron
and the free positron by the state function

Y5 = INoj» ® |7)x ®0), @ 10)e, (B.1)

which is written as a direct product of the state functions for the nucleus, the pair to be annihi-
lated (7, electron+positron), the vacuum state of the photon field |0), and the remaining bound
electrons |0).. In analogy, one can also write the state function of the intermediate state (final
state of NERPA):

) = IND» ©10)z ©10), ®0)., (B.2)

and of the final state of NERPA-y
1¥/) = [N3)u ® [0)x ® ko), ® [0). . (B.3)

where |1?0'), describes the state of the created photon. k is the wave vector of this photon and
o describes its polarization state. We also take into account an additional possible type of
intermediate states in which the nucleus is in an excited state, together with an excitation of
other bound electrons:

[¥s) = N2 ®10): ®10), ® ey )., (B.4)

where |e; ), describes some excitations of one or more bound electrons. All these four wave
functions are mutually orthogonal, and one can construct projector operators projecting on all
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of these four sub-spaces:

1= )i, (B.5)

~
Il
g
>
=

FI

DAL

for the set of initial states (basis |i) = |N;), ® |1;), ® |0), ® |0), — some nuclear and pair state
with the absence of photons and bound electron excitations), the set of intermediate states (basis
Im) = |N,u), ®10), ®]0), ®|0), — some nuclear state with the absence of photons, pairs and bound
electron excitations), the set of final states (basis [f) = [Ny), ® [0); ® Ik;()'f), ® |0), — some
nuclear and photon state with the absence of pairs and bound electron excitations) and the set
of additional states (basis |f") = IN}),, ® |0}, ® |0), ® lef). — some nuclear and bound electron
excitations with the absence of pairs and photons). Here, and in what follows, the summation
over the i, m, f and f” indexes means the summation over discrete states and integration over
continuum states of all subsystems involved. Neglecting two- or more-photon states, one can
write the approximate completeness relation for the projectors as

I+M+F+F =1, (B.6)

with 1 being the unity operator.
The total Hamiltonian consists of four independent parts for nuclear (n), electron-positron
(7), photon (r) and bound electrons (e), and of three interactions:

H=H,+H,+H.+H, +H,+H, +H, +H,, +H,,+ H,. (B.7)

The specific form of these Hamiltonians is not relevant for the present derivation. Most of
them can be found in Ref. [[17]. With the help of the projection operators one can split this
Hamiltonian into a sum of zero-order and perturbation parts as

H=Hy+V, (B.8)

where the zero-order Hamiltonian consists of parts of H which is diagonal in the subspaces,

Hy=1HI + MHM + FHF + F'HF’, (B.9)
and the perturbation is
V = H-H, (B.10)
= [HM +IHF + MHI + MHF
+ FHI+FHM +IHF' + MHF’

FHF' + F'HI + FFHM + F'HF .

+
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Here, MHI accounts for the NERPA process in the lowest order.
Now we introduce the transition operator [[129]:

T(z)=V+VG»V, (B.11)
where the Green operator of the system is [[129]
G(x)=(@z-H)", (B.12)

and z is a complex energy variable. The differential cross section for the process going between
its initial and final states, following Fermi’s golden rule, is defined in terms of the transition

operator as [[181]
dois 2r . . 2
Jo, (B) =T lim (04 T(E +i0M)Fpy (B.13)
where € is the angle of the emitted photon, F; is the flux of incoming positrons and p; denotes
the density of the final photonic states.
Using the Lippmann-Schwinger equation, one can write the Born-type series for the transi-

tion operator with the zero-order Green operator Gy = (z — Hy)™! as [[129]
T(z) =V +VGy)V+ VGy(2)VGy()V + .... (B.14)

Since the initial and final states of these process belong to well-defined subspaces, one may
consider the following projection of the transition operator only:

FTI = FVI+ FVGy\VI+ FVGy\VGyVI + ... (B.15)

Here, the first term does not give any contribution to the NERPA process, it corresponds to
direct photo-annihilation of the pair. The second term (second order in V) yields

<\Pf|Hnr|m><m|Hmr|lPi>
7—EY

WAFTONY) = )

m

) (B.16)

where E? denotes the unperturbed energy eigenvalue of the state |m).

When continuing the perturbation expansion of the F'7'/ in an assumption that in the first step
one has ¥; — ¥, transition (NERPA process) and on the last step one has ¥,, — ¥ transition
(y-photon emission), one may notice that the third order in V does not give any contribution to
the total two-step process. The fourth order in V yields two terms with the proper initial and
final states:

FVGyVGy\VGyVI = FH,MGyM B.17)
x (H, FGyFH,, + H,;1GyIH,, + H,.,F'GyF'H,,)MGyMH,,I .

The first term describes emission and re-absorption of a virtual photon, the second one the
creation and annihilation of a virtual electron-positron pair, and the third one a forward and
backward gamma exchange between the nucleus and some bound electron.

The first term can be rewritten as

FH, MGyMH,, FGo,FH,,MGoMH,,I = Z FH,, MGo|m)m|H,, FGoF H,,|m’}m'|GoMH, I .

(B.18)
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The diagonal matrix element in the equation above is

H, | ) fIH,m)
7- E‘;

b

(mlH,, FGoF H,m) = o
f

where the eigenvalue equation Hy|f) = E?I /) holds. Using the equality

. 1
lim -
e—0+ X + 1€

= P(i) —imd(x), (B.19)

where the P(i) denotes the principal value, one can decompose the diagonal matrix element
expression into

Hnr Hnr ]
E +ie— E° 2
f f
where the nuclear self-energy correction is
Hi’lr Hnr
AESE = p " AN i) B21)
E +ie — E°
f f
and the radiative decay width of the nuclear state m is
L =in Z |(mlH,,, fO)P. (B.22)
fﬂ

In a similar manner, the radiative decay of the hole in the electron shell can be accounted for.
The second and the third terms in Eq. (B.18) can be decomposed in a similar way. Using
the same abbreviations for the corresponding diagonal matrix element one can write:

(M| H IGol Hylm) = AEF — %rgf, (B.23)
where AEY” is a vacuum polarization-self-energy correction to the nuclear state m and """ is its
internal pair conversion width. In analogy for the other diagonal matrix elements holds:

(m|H,F'GoF’' Hyolmy = AEN® — érm (B.24)

with AEN? being the nuclear polarization correction to the nuclear states m, and I is its internal
conversion width.

Now the matrix elements of three terms in Eq. (B.18) for the fourth order in V can be
rewritten as

(m|H ;GoH jim’Y(m'|H ;G H jim)

(mIH GoH GoH GoH lm) = —
ql

m

b

where the index j stands for nr, nm and ne. In analogy to Refs. [17,/67]], one can adopt the so-
called isolated resonances approximation by taking only a given m’ state into account instead
of a summation. This approximation is valid if the energy difference between neighboring
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resonances is large compared to their total natural widths, which holds true for the considered
nuclear transitions.

Higher even-order terms (6-th order, 8-th order, etc.) can be taken into account by a sum-
mation of the geometric series

[Se]

1 . 11
z—Eg,kZ:(;x_z—Egl—x’ (B.25)

where the dimensionless variable x denotes

X = ((mlHanGOFHnr|m> + <m|Hn7rIGOIHmr|m> + <m|HneF,GOF,Hne|m> (B26)

0
z—E,

+ <m|HerFGOFHer|m>) .

Therefore, one obtains

1 v 1
X = . . . — .
- E) Z 2— EY — AEYP — AENSE — AENP — AEESE 4 LTm 4 fnr 4 LTve 4 LTer
(B.27)
It is now possible to write the final equation for the total process amplitude as

<\Pf|Hnr|m><m|Hmr|lPi>
z—EQ - AE +il,,’

(WAFTONW) = >

m

(B.28)

where the total energy correction is AEY = AEY? + AENSE + AENP + AEESE and the total natural
width of the excited state is defined as I',,, = I"" + IV + I')¢ + I'e7. This expression helps us to
obtain the result for the angular-differential cross section:

dO'i 2 |<lP |I—Inr|\Pm>|2
—LE = =~ 1 (B.29)
dQy Fi(E-E,)? +1ir2

X |<\Pm|Hnn|\P1>|2pf s

where the corrected energy is E,, = E? — AEC.

By integrating over the photon emission solid angle € and averaging over the magnetic
quantum numbers of leptons, nuclear states and positron directions, one receives the following
expression for the total cross section of a given channel i - m — f:

27> Inereal’y
iy (E) = Fr—sz(E —Epn). (B.30)

Where p = VE? — m?c¢* is the modulus of the initial positron momentum. Here, the following
notations are used:

I_‘NERPA = Fi—>m9 (B31)
Il = T, (B.32)
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with
2n
1—‘iam = dQ eO rO ,1-0 nN*Hman ﬂOrOezi,
4(2,i+1)M_Mme f {01 @ (01 ® (01 @ (N} [HynlNo)alm)10), 10}
271' 7 * * 2
1ﬁm—)f Zlm +1 Z fko|e<0| ® r<k0-| ®7T<O| ®n<N2|Hnﬂ|N1 >n|0>n|0>r|0>e| pf .

MfaMWho-

Here, the summation is performed: over projections of nuclear-angular momenta M;, M,, and
M for nuclear states Ny, Ni and N; correspondingly; over angular momenta of annihilated elec-
tron (m,) and positron (m,,); over polarizations of emitted photon (¢-). For positron momentum,
flux, and state density holds [129]:

p* = Qn)’Fipi, (B.33)

and the normalized Lorentz profile describing the resonance line shape is

1 FITL

Lm E - Em =5 .
( )= R E-E+T2/a

(B.34)

Expression (B.30) can be used for the description of the considered two-step NERPA-y
process, when using for E,, and I',, to the energy and the total width of the intermediate state
excited by NERPA.



Appendix C

Mean spin value

In this Appendix we provide the calculation of the mean spin value of the Cooper pair in a
p-wave unconventional superconductor in the case of the coexistence of superconducting and
ferromagnetic phases.

In the present work, the model for the coexistence of superconductivity and ferromagnetism
described in Ref. [182] for the case of an isotropic material is used. This formalism is extended
here for anisotropic materials. In this model, the Hamiltonian is given as

1
H =€~ oM)xt,ci - 5 D VUK, e (C.1)
ko

kk' o0’

where o = =1 indexes denote single-particle spin states, k is the single-particle momentum, €
denotes the non-magnetic part of the quasi-particle energy, and ¢ and ¢y, are quasi-particle
creation and annihilation operators, respectively. Furthermore, i is the chemical potential, v is
the sample volume, V stands for the pairing potential, and the magnetization is M = U(n, —
n_)/2, defined in terms of the Stoner parameter U and number of pairs with the spin in the
direction of the magnetization (n,) and in the opposite direction (n_). The Stoner parameter
depends on the pressure, but it is independent of the temperature. In the ferromagnetic phase,
only the pairs with spins parallel to the field can exist. One has to introduce two gap parameters
A. for spins in the direction of magnetization (+) and in the opposite direction (—).

In Ref. [|182], the Matsubara Green’s functions [|183]] for this Hamiltonian are constructed,
and, after summation over Matsubara frequencies, the equations are obtained for the magne-
tization, number of particles and gap parameters. By replacing all summations by continuum
integrals in dimensionless energy units, rescaled by the factor Zh_nj*’ one receives the equations

00 g 21
M o= U f de, f d@f b sin(0) Ve (E_ tanh(E_/2T) & tanh(E+/2T)) (C2)
0 0 0

643 E_ E.
1% €y tWy T 21 sin3 0

[ f de f do f d¢(‘/e_°—tanh(E+/2T)), (C3)
647T €F+—Wy 0 0 E+

174 €F_+w_ T 27 € sin3 0
1 = 3‘[ deof d@f d¢(\/_0— tanh(E_/ZT)) , (C.4)
647'[" €F—w- 0 0 E_
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27
= 32H3f deof d@f d¢ sin(0) Ve (C.5)
(2 e tanh(E_/2T) e, tanh(E, /2T))

E_ E,

where the following quantities have been introduced:

€r+ = pEM, (C.6)
€. = €— €ps, (C.7
E. = /e +sin’6A2, (C.8)
w, = 0.0lep,. (C.9

The integration over variables ¢, 8 and ¢ corresponds to the integration over the three-dimensional
momentum of the pair. Equation (C.2) is the expression for the magnetization in the ferromag-
netic superconductor. Eq. (C.3), together with Eq. (C.4), presents the gap equation for pairs
polarized in or opposite to the direction of the magnetization. Finally, Eq. (C.5)) expresses the
conservation of the number of pairs.

In an isotropic case, considered before in Ref. [182]], the relation € = ¢ holds. However,
for anisotropic materials, during the change of the summation over k to three dimensional in-
tegration, the angular integrals in spherical coordinates remain the same, however, the radial
variables are changed:

s of(C . G Y C R 2
ke = ko( (— sin @ cos ¢) + (Z sin @ sin gb) + (— cos 0) ), (C.10)
a c

with a, b, c being the crystal cell parameters. Thus, one has 3 integrals over ky, 6 and ¢, which
change to integrals over ¢, 6 and ¢, and the energy in all equations depends on the angles:

c 2 (c 2 (c 2

€= eo( (— sin 6 cos ¢) + (— sin@sinqﬁ) + (— cos 9) ) (C.11)

a b c
Finally, one arrives to 4 equations, Eqs. (C.2HC.5)), for 4 the variables M, A, u, with U, V and T
as parameters. These equations have to be solved self-consistently. The sought-after mean spin
value is given by n = 2M/U. The Stoner parameter U is determined by the Curie temperature
Tc at a certain pressure [[184]]. It is possible to obtain it by a self-consistent solution of Egs.
and with 6 = 0 and assuming the condition that the magnetization appears at temperatures
T < Tc only. The method of this solution is similar to the method for the calculation of n
presented below. The pairing parameter V is determined by the condition that at temperatures
below the critical SC temperature, T < T, the following should hold: A # 0, and at T > T
there is no superconductivity (A = 0).

The following algorithm can be used for the self-consistent solution of the full set of equa-
tions [Egs. (C.2)-(C.5)] to evaluate n for certain values of U and V (parameters of the SC):

(i) With the help of Eq. (C.3) [or Eq. (C.4)] one can construct the function A(k) in such a
way that A, = A(u=+M). Itis possible to do so since both equations depend on the combinations
u = M only.

(ii) By Egs. and one can construct the equations

M = Tr%W(piM), (C.12)
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0 5 10 15
p (kbar)

Figure C.1 — The p—T phase diagram for UGe; [185]]. The lower curve 10X T.(p) corresponds
to the critical temperature of superconductivity, the upper one to the Curie critical
temperature of ferromagnetism, Tc(p).

where

Wk)=1-

1 o0 ” 2 . €, tanh(E,/2T)
16ﬂ3f0 deofo d@fo d¢\/e_osm9(l— A ) (C.13)

(1i1) Let us take x = u — M, yielding two simple equations, namely:
M = %W(x), M = —%W(x+ 2M), (C.14)
which deliver the final equation for x,
W(x)=-W(kx+UW(x)). (C.15)

(iv) From x one can obtain the values of all parameters as follows:

M = %W(x) (C.16)

u = x+M, (C.17)
A = Ax) (C.18)
A, = A(x+2M). (C.19)

Let us note that these equations have a solution with M # 0 in the case when U > U, only. U,
is the critical value of the Stoner parameter and it depends on 7.

Using this numerical algorithm one can perform the calculations for the cell parameters
of UGe,, namely, a = 14.928 pm, b = 4.116 pm, ¢ = 4.036 pm [177]]. In this work these
calculations have been performed for different pressures and temperatures both in the region
of the coexistence of ferromagnetic and superconductive phases [185] as well as in the pure
ferromagnetic region (see Fig. [C.I). It appears (see Fig. [C.2) that at all pressures between
approximately 9 and 12 kbar, the value of 7 is almost unity for all temperatures 7' < Ty,
however, above 12 kbar, n decrees with the increase of the pressure. These numerical results
show that at some pressures in the region of interest where T is much larger than T, and 7 is
equal to unity.
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Log(T (K))

Figure C.2 — The dependence of the mean spin 77 on the pressure and temperature in the regions
T < Ty (below the first red curve) and Ty < T < T¢ (between the red curves).
The data on T.(p) and Tc(p) are taken from Ref. [185].
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