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Abstract

Subject of this thesis is the development of adaptive techniques for multiple shooting methods. The
focus is on the application to optimal control problems governed by parabolic partial differential
equations. In order to retain as much freedom as possible in the later choice of discretization
schemes, the details of both direct and indirect multiple shooting variants are worked out on an
abstract function space level. Therefore, shooting techniques do not constitute a way of discretizing a
problem. A thorough examination of the connections between the approaches provides an overview
of different shooting formulations and enables their comparison for both linear and nonlinear
problems.

We extend current research by considering additional constraints on the control variable in the
multiple shooting context. An optimization problem is developed which includes so-called box
constraints in the multiple shooting context. Several modern algorithms treating control constraints
are adapted to the requirements of shooting methods. The modified algorithms permit an extended
comparison of the different shooting approaches.

The efficiency of numerical methods can often be increased by developing grid adaptation techniques.
While adaptive discretization schemes can be readily transferred to the multiple shooting context,
questions of conditioning and stability make it difficult to develop adaptive features for shooting
point distribution in multiple shooting processes. We concentrate on the design and comparison
of two different approaches to shooting grid adaptation in the framework of ordinary differential
equations. A residual-based adaptive algorithm is transferred to parabolic optimization problems
with control constraints.

The presented concepts and methods are verified by means of several examples, whereby theoretical
results are numerically confirmed. We choose the test problems so that the simple shooting method
becomes unstable and therefore a genuine multiple shooting technique is required.

Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung adaptiver Techniken für Mehrfachschießmethoden.
Im Fokus liegt hierbei die Anwendung auf Optimalsteuerungsprobleme, welche durch parabolische
partielle Differentialgleichungen beschränkt sind. Um möglichst viel Freiheit bei der späteren
Wahl von Diskretisierungsschemata zu bewahren, werden die Details von direkten wie indirekten
Verfahrensvarianten im abstrakten Funktionenraum ausgearbeitet. Schießverfahren stellen daher
keine Diskretisierungsmethode dar. Eine eingehende Untersuchung der Zusammenhänge zwischen
den Ansätzen liefert eine Übersicht der verschiedenen Verfahrensformulierungen und ermöglicht
ihren Vergleich im Rahmen von linearen wie nichtlinearen Problemstellungen.

Wir erweitern den aktuellen Forschungsstand, indem wir zusätzliche Beschränkungen an die Steuer-
variable im Kontext von Mehrfachschießverfahren betrachten. Unter Einbezug sogenannter Box-
Schranken wird zunächst ein Optimierungsproblem im Rahmen von Mehrfachschießmethoden
entwickelt. Mehrere moderne Algorithmen zur Behandlung von Steuerungsbeschränkungen werden
an die Bedürfnisse der Schießverfahren angepasst. Für die modifizierten Verfahren wird dann ein
erweiterter Vergleich der unterschiedlichen Schießverfahren vorgenommen.

Vielfach lässt sich die Effizienz numerischer Verfahren durch Entwicklung von Techniken zur Gitter-
adaption steigern. Während sich adaptive Diskretisierungsschemata ohne Weiteres in den Kontext



von Schießverfahren einbetten lassen, wird die adaptive Steuerung der Schießpunkte bei Mehrfach-
schießprozessen durch Konditionierungs- und Stabilitätsfragen erschwert. Wir konzentrieren uns
auf die Entwicklung und den Vergleich zweier verschiedener Ansätze zur Schießgitteradaption im
Kontext gewöhnlicher Differentialgleichungen. Ein residuenbasierter adaptiver Algorithmus wird
auf Optimierungsprobleme mit parabolischen Nebenbedingungen und beschränkten Steuervariablen
übertragen.

Die vorgestellten Konzepte und Methoden werden anhand mehrerer Testbeispiele überprüft, und
theoretische Resultate werden so numerisch bestätigt. Dabei werden insbesondere Probleme gewählt,
für die das Einfachschießverfahren instabil ist und die daher ein echtes Mehrfachschießverfahren
erfordern.
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1 Introduction

Within the general framework of current research on optimization with partial differential
equations (PDE), this thesis focusses on the application of multiple shooting methods to
parabolic optimal control problems (OCP). Although shooting methods are a standard
solution routine for boundary value problems (BVP) and optimization problems governed
by ordinary differential equations (ODE), their employment in the PDE context is still in
the early stages.
A suggestive way of applying multiple shooting to nonstationary PDE is to discretize the
PDE by a method of lines (MOL) approach. The semidiscretization in space leads to a large
system of ODE which is then solved by standard routines. It is straightforward to include
multiple shooting methods into this extended ODE framework. However, the development
of appropriate solvers for the discretized problems is then a delicate matter (see, e. g.,
the work of Potschka [94]). As an alternative, we propose to develop a multiple shooting
reformulation of a given nonstationary PDE problem on the abstract function space level.
This leaves more freedom for the later choice of discretization schemes, particularly for using
adaptive discretization concepts in the framework of Rothe’s method. Adaptive features of
this kind are crucial for complex (e. g., spatially three-dimensional) computations.
Extending prior work by Hesse [52], we examine nonlinear Helmholtz and reaction-diffusion
type test problems and particularly focus on examples that lead to a failure of simple
shooting, necessitating the employment of a genuine multiple shooting method.

Different shooting approaches. In optimal control theory, there is a dichotomy of
indirect and direct solution methods stemming from the underlying calculus of variations.
Shooting methods for ODE control problems reflect this classification. Originally, multiple
shooting for OCP was based on the maximum principle, which placed it among the indirect
approaches. The direct variants developed later were able to cope with complex problem
structures more efficiently and are widely accepted as a state-of-the-art solution approach.
As this distinction deeply influenced our understanding of multiple shooting, we revisit the
issue at several points throughout this work.
Our focus is on OCP governed by parabolic PDE, which are abstractly given as

min
(q,u)

J(q, u) subject to e(q, u) = 0. (1.1)

Almost all existing contributions for suchlike problems involving shooting type methods
concentrate on direct variants. The first mentioning of indirect multiple shooting (IMS) we
are aware of in the PDE context is the previously mentioned work of Hesse who developed an
indirect approach opposing the existing direct methods. Due to its structural resemblance
to multiple shooting for BVP, indirect shooting is intuitively comprehensible. In contrast,
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1 Introduction

the direct multiple shooting (DMS) method presented by Hesse and the classical one based
on the work of Bock (see, e.g., [11–14]) in the ODE context are considerably different.
In this thesis, we provide a thorough presentation of both IMS and DMS and we elaborate
the connection between the different DMS formulations. Both direct and indirect shooting
variants are identified as solvers for two different decompositions of the optimality system
of the original OCP. Furthermore, the different DMS formulations can be interpreted as
a reduced and a non-reduced approach for solving the same underlying decomposition of
the optimality system, following an abstract perspective which is common in modern PDE
optimization. These results have been submitted as a contribution to an anthology in the
following article [21]:

T. Carraro, M. Geiger: Direct and indirect multiple shooting for parabolic optimal control
problems, to appear in: Multiple Shooting and Time Domain Decomposition Methods,
Springer, 2015.

Control constrained problems. OCP solved by multiple shooting in the ODE framework
are often complex and involve additional constraints on the control and/or state variables.
Although in the past decade, much research effort was spent on the treatment of such
constraints in the PDE optimization framework, no one has combined constrained parabolic
OCP with multiple shooting yet. In this thesis, we design a suitable formulation of the
constrained OCP enabling the use of shooting methods. We hereby concentrate on box
constraints on the control, meaning that problem (1.1) is complemented by the condition

q−(x, t) ≤ q(x, t) ≤ q+(x, t) (1.2)

almost everywhere in the space-time solution domain. Projected gradient and projected
Newton methods are two widely used techniques coping with such constraints and we apply
them to the multiple shooting problem formulation. Moreover, we combine the modern
primal-dual active set strategies with the shooting algorithm. For the IMS case, the results
achieved with these approaches have been published in the article [22]:

T. Carraro, M. Geiger, R. Rannacher: Indirect multiple shooting for nonlinear parabolic
optimal control problems with control constraints, SIAM J. Sci. Comput. (36), 2014, pp.
A452-A481.

Beyond the scope of the article, this thesis provides a comparison of IMS and DMS for
both the unconstrained and the control constrained parabolic OCP framework.

Adaptivity. The original intention of extending simple shooting for BVP to multiple
shooting by splitting the solution interval was to stabilize the solver. Common stability
estimates in the ODE framework take the form

‖u(t; s1)− u(t; s2)‖ ≤ et−t0‖s1 − s2‖, (1.3)

meaning that a difference in the initial values s is exponentially increased over the time
interval. Shortening the interval results in smaller stability constants. However, several
numerical test examples, presented throughout this work, suggest that multiple shooting
solvers are most efficient when only few shooting intervals are used. Particularly in the
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PDE case where the space discretization must be accounted for, an increasing number of
shooting intervals entails ever larger linear systems, which leads to a high computational
effort due to a deteriorated conditioning. Thus, there is a trade-off between stability
requiring as many shooting intervals as necessary and computational efficiency permitting
as few shooting intervals as possible.
In order to find a suitable shooting grid for a given problem, we design an adaptive shooting
approach. For temporal or spatial discretizations of ODE or PDE, adaptivity is by now a
standard numerical feature that provides optimized time grids or spatial meshes. However,
the existing literature contains almost no results on optimal shooting grids, not even for
ODE based BVP and OCP.
Driven by the mentioned numerical examples, we develop two different extensions of the
multiple shooting algorithm in the ODE context which achieve an automatic and problem-
oriented choice of the respective shooting grids. A sensitivity-based technique which is
inspired by an idea of Mattheij & Staarink [83] seeks appropriate shooting points in each
shooting iteration without any prior knowledge. Although it yields adaptive splittings of
the interval, the solution process is slowed down by a computational overhead required by
the process.
As an alternative, we present a residual-based adaptive algorithm that starts from a given
equidistant shooting grid and successively inserts (respectively removes) shooting points
wherever necessary (respectively possible). It turns out that the number of shooting
intervals originally prescribed is usually reduced during the iterative process.
Both adaptive mechanism are based on existing ideas but constitute original work. In
particular, employment in the PDE context is novel. As the residual-based approach
is more efficient in all considered ODE examples, we choose to only transfer this latter
adaptive algorithm to the PDE framework. It is then applied to parabolic OCP, and finally
also to PDE examples with additional control constraints.

Outline. We conclude this introduction presenting a short chapter-wise overview of the
remainder of this thesis.

Chapter 2. We repeat the concept of shooting methods for boundary value problems in the
ODE context. After a brief historical survey in Section 2.1, we present the basic algorithm
as well as conditioning and stability issues in Section 2.2. Multiple shooting is embedded in
the ODE optimal control framework in Section 2.3, where we introduce direct and indirect
shooting methods. As a connection to the PDE context, multiple shooting is applied to
nonstationary PDE initial boundary value problems (IBVP) in the final Section 2.4.

Chapter 3. We present OCP with parabolic PDE side conditions in their functional
analytic context in Section 3.1. The required classical results on existence and uniqueness
of solutions are recapitulated in Section 3.2, and optimality conditions and derivative
generation are addressed in Section 3.3. The concluding Section 3.4 transfers the former
results to the generalized situation of an extended OCP required in the multiple shooting
context.

Chapter 4. In Section 4.1, the temporal and spatial discretization schemes employed in the
practical implementation are briefly presented. Sections 4.2 and 4.3 contain introductions
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1 Introduction

to iterative solvers for linear systems, especially Krylov subspace methods, as well as to
Newton type methods for nonlinear problems, respectively.

Chapter 5. This chapter formulates the direct and indirect shooting approaches in the
nomenclature of modern PDE optimization. Both variants are closely connected on an
abstract function space level. Sections 5.1 and 5.2 discuss IMS and DMS, respectively. The
presented DMS method differs from the DMS approach common in ODE optimal control.
Section 5.3 illustrates that the latter is based on a reduced formulation of the extended
OCP and can be transferred into the DMS approach from Section 5.2. Further aspects
of IMS and DMS are presented in Section 5.4. The final Section 5.5 substantiates the
theoretical results by several numerical tests.

Chapter 6. The results of the previous chapter are extended to parabolic OCP with
additional constraints. Exemplarily, box constraints on the control variable are considered.
The OCP formulation is adapted in Section 6.1. Modern algorithms for constrained PDE
optimization are tailored to the multiple shooting framework in Section 6.2, both for IMS
and for DMS. The numerical tests displayed in Section 6.3 illustrate the theoretical results
and enable an extended comparison of IMS and DMS in Section 6.4.

Chapter 7. This chapter deals with adaptivity in the multiple shooting context. As the
examples from former chapters suggest, a problem-oriented choice of both number and
position of subinterval endpoints enables a reduction of the computational effort. The
literature lacks results on this topic even in the ODE context. A sensitivity-based approach
to distributing the shooting points is presented in Section 7.1. This approach works only
for linear BVP. We extend it to the nonlinear ODE case in Section 7.2. Furthermore,
we develop a different, residual-based method for shooting grid adaptation. The transfer
to the PDE framework raises additional difficulties, which result in our focussing on the
residual-based adaptive shooting method. In Section 7.3 we apply this adaptive technique
to parabolic OCP including control constrained problems. Each section contains several
numerical tests illustrating the performance of the adaptive processes.

Chapter 8. The final chapter resumes the achieved results and develops ideas to extend
our research presented in this thesis. This concerns the potential of shooting methods for
parallel computing, state constraints for parabolic OCP in the shooting context, as well as
further aspects of adaptivity.

4



2 Background of Multiple Shooting
Methods

This chapter introduces different problem classes that can be treated by means of multiple
shooting. After giving an overview on the historical development of shooting methods in
Section 2.1, the subsequent sections cover boundary value problems (BVP) and optimal
control problems (OCP) in the ODE context. We repeat the basic features of simple and
multiple shooting in a context where these methods are established as standard solution
routines. Our intention is to facilitate the understanding of the technically more complex
multiple shooting methods in the PDE optimal control framework that are developed in
Chapter 5. Both the theory and examples presented in Sections 2.2 and 2.3 raise the
question of how to find good shooting grids for a given problem; this is answered in Chapter
7. We conclude the current chapter with a brief presentation of PDE initial boundary
value problems (IBVP) in Section 2.4, illustrating how shooting methods can be applied in
this context. This last section leads over to the PDE framework, as the remainder of this
thesis is mainly concerned with parabolic OCP.

2.1 Brief historical overview

The origins of multiple shooting. First attempts to solve BVP in the ODE framework
by shooting-like methods date back to the 1950s (see, e. g., Goodman & Lance [45]). The
notion of multiple shooting was developed in an article by Morrison et al. [88]. Nievergelt
[89] applied a similar procedure to an ODE initial value problem (IVP), aiming at solving
the subinterval problems in parallel. By the 1970s, multiple shooting was well established
as a BVP solver, see Osborne [92] or, later on, Keller [64].

Shooting methods for BVP. The development of shooting methods was originally
motivated by BVP comprising a system of ODE and a set of boundary conditions that
may both be nonlinear. Shooting methods for such problems turn the BVP into a sequence
of simpler IVP. This transfer induces new problems. Even for well-conditioned BVP, the
corresponding IVP are often ill-conditioned, and it is known for a wide range of BVP that
simple shooting is unstable. The employment of multiple shooting, i. e., the decomposition
of the solution interval into smaller subintervals, stabilizes the solution process.
From the early 1970s, Bulirsch and others provided important contributions to the analysis
and application of shooting methods. Convergence of multiple shooting usually means
convergence of Newton’s method for the shooting system. The latter was studied in the
multiple shooting context, e. g., by Weiss [114] who observed that increasing the number of
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2 Background of Multiple Shooting Methods

shooting intervals often enlarges the domain of suitable starting values for Newton’s method.
Both Deuflhard (see [32] or[33]) and Lory [77] suggested homotopy or continuation methods
to enlarge the domain of convergence of Newton’s method in the context of shooting
techniques. The textbook by Deuflhard [34] gives a survey of general results on Newton
type methods with special consideration of multiple shooting.
Further convergence results concern the convergence orders for the discrete subinterval
solutions. If an IVP solver of order O(∆tm) is used for linear BVP, then the shooting
solution also converges of order O(∆tm) (∆t denoting the timestep length). Nonlinear
BVP are discussed in Jankowski [61] or Hieu [56], but general results do not exist and the
topic is not treated in standard textbooks such as Ascher et al. [2].
In the 1980s, the interrelations between BVP conditioning and the stability of shooting
methods were examined. First results were achieved by George & Gunderson [44], and the
most important contributions originate from Mattheij and co-workers (see, e. g., [31, 70,
71, 81, 82]), who were mostly concerned with linear BVP. Mattheij’s work is discussed in
Section 2.2, and his approach to finding optimal shooting grids is extended in Chapter 7.

Shooting methods for ODE optimal control problems. Bulirsch [19] introduced
shooting methods to the class of optimal control problems (OCP). His approach (see also
[20]) is known as indirect multiple shooting (IMS). It is intuitive as it applies multiple
shooting to the system of first order optimality conditions of such OCP. This optimality
system constitutes the basis of most solution algorithms and is structurally similar to BVP.
The IMS method is an example for a ‘first-optimize-then-discretize’ approach.
In the 1980s, an alternative shooting approach was developed which is known as direct
multiple shooting (DMS). The most influential publications in this context originated
from Bock and his co-workers (see, e.g., [11–15]). DMS is based on a discretization of the
solution variables leading to a finite-dimensional optimization problem and is therefore
a ‘first-discretize-then-optimize’ approach. The finite-dimensional problem is solved by
suitable methods for nonlinear programming problems (NLP), e. g., sequential quadratic
programming (SQP). A detailed description of DMS is given in Leineweber [73]. Further
publications focussing on applications of DMS are Diehl et al. [35], Leineweber et al. [74]
or Potschka [93].
Current research on ODE optimization concerns, e. g., the employment of multiple shooting
in the field of ODE optimal experimental design (see Körkel et al. [69]). Furthermore, OCP
with parabolic PDE constraints can be discretized by means of the method of lines (MOL),
i. e., a spatial mesh is fixed before the temporal variable is discretized. The PDE is thus
transcribed into a large ODE system, which requires algorithms for computing large-scale
optimization problems (cf. the PhD theses of Albersmeyer [1] and Potschka [94]).
Details of IMS and DMS are discussed in Section 2.3 for ODE control problems and in
Chapter 5 for PDE control problems. The classification into IMS and DMS reflects a
general dichotomy of direct and indirect methods known from the calculus of variations
(see, e. g., Dacorogna [29]).

Shooting methods for PDE governed OCP. The analytical and numerical study of
PDE constrained optimization problems has experienced intense research in the past two
decades. Theoretical foundations were laid earlier (cf. Lions [75]), but the numerical
treatment was difficult due to lacking computing power and memory capacity. Control
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2.2 Shooting methods for boundary value problems (BVP)

problems with parabolic side conditions constitute the focus of this thesis. Up to now,
shooting methods are rarely used in the PDE context. With the exception of the mentioned
MOL approach toward parabolic OCP, only few contributions deal explicitly with multiple
shooting.
Serban et al. (cf. [105]) proposed a structured adaptive mesh refinement (SAMR) approach
toward space grid adaptation. Comas [26] and Heinkenschloss [50] studied preconditioners
for parabolic optimization problems solved by time domain decomposition methods, thereby
selecting multiple shooting as a representative example method. Hesse [52] first studied
different multiple shooting techniques for PDE based problems. This raised one of our
central questions, namely how IMS and DMS variants and different DMS formulations
are interrelated (see Chapter 5). So far, the only IMS based publication in PDE optimal
control is Hesse & Kanschat [53]. However, a thorough examination of the IMS method
itself is omitted in favor of error estimation techniques and spatial mesh adaptation. The
other mentioned publications in the PDE context deal exclusively with variants of DMS.

2.2 Shooting methods for boundary value problems (BVP)

Shooting methods reduce BVP to initial value problems, which enables the usage of IVP
integrators in order to solve the more complex BVP. However, even for well-conditioned
BVP this transfer often induces a strong sensitivity on the (parameterized) initial data
and thus ill-conditioning of the corresponding IVP. This phenomenon was explained by
Mattheij [82] and is briefly discussed below.
It is reasonable to first consider ODE BVP because the application of shooting methods to
OCP is based on the fact that the first order necessary optimality conditions (the so-called
Karush-Kuhn-Tucker or KKT system) can usually be interpreted as a coupled BVP with
separated boundary conditions. Therefore, the class of BVP is briefly recapitulated, and
a first variant of the multiple shooting algorithm is sketched. Despite the simplicity of
the discussed problems, they bring up questions that are up to now not answered in a
satisfactory way; their solution will be addressed in later chapters.
The type of BVP considered here is given by

u̇(t) = f(t, u(t)), t ∈ [a, b],
0 = r(u(a), u(b)).

(2.1)

Remark 2.1. Whenever referring to ODE problems, we denote differentiation of the solution
function u(t) w. r. t. the time variable t by an overdot, i. e. d

dtu(t) =: u̇(t), whereas
differentiation for a parameter, e. g. d

dsu(t; s), is denoted by u′s(t; s).

The function u ∈ C1[a, b]d, d ≥ 1, denoted in (2.1) should fulfil both the differential equation
and the boundary condition. Furthermore, both f(t, ·) and r(·, ·) may be nonlinear and
are assumed to be at least twice continuously differentiable in each component on the time
interval I = [a, b].
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2 Background of Multiple Shooting Methods

Remark 2.2. Equation (2.1) describes the general BVP. An important subclass of BVP
comprises problems where both the differential equation and the boundary conditions are
linear:

u̇(t) = A(t)u(t) + b(t), t ∈ [a, b],
0 = Bau(a) +Bbu(b)− g.

(2.2)

Here, A(·) : I → Rd×d and b(·) : I → Rd are continuous real-valued matrix and vector
functions, respectively, Ba, Bb ∈ Rd×d are given constant matrices, and g ∈ Rd is a given
vector. We note that, even if the differential equation in problem (2.1) is nonlinear, often
the imposed boundary conditions are linear as in the second equation of (2.2).

The idea behind simple shooting is to replace the initial value u(a) by a parameter s and
solve the initial value problem

u̇(t) = f(t, u(t)), t ∈ [a, b],
u(a) = s,

(2.3)

thereby computing s in a way that the right boundary value u(b; s) is matched. We obtain
a solution u(t; s) to the underlying BVP if the additional condition

r(s, u(b; s)) = 0 (2.4)

is fulfilled. The determination of s can for instance be carried out by applying Newton’s
method to the function F (s) := r(s, u(b; s)), i. e. by iteratively solving the system

si+1 = si − [F ′s(si)]−1F (si), (2.5)

where, in general, the starting point s0 has to be chosen carefully in order to guarantee
convergence. For this purpose, we have to compute the derivative (obtained by means of
the chain rule)

F ′s(s) = r′x(s, u(b; s)) + r′y(s, u(b; s))u′s(b; s). (2.6)

Here, differentiating r(·, ·) w. r. t. its arguments poses no problem, but the computation
of u′s(b; s) involves the solution of an additional linearized IVP, the so-called variational
or sensitivity equation (for a detailed presentation and proof, see, e. g., Coddington &
Levinson [25]):

Ġ(t; s) = f ′x(t, u(t; s))G(t; s), t ∈ [a, b],
G(a; s) = Id.

(2.7)

This problem constitutes a matrix ODE, where G(t; s) := u′s(t; s), and Id denotes the
d × d identity matrix. The repetitive process of solving the IVP (2.3) with initial value
si, evaluating F (si), then solving the variational equation (2.7), evaluating F ′s(si), and
iterating this process until ‖F (si)‖2 falls below a given tolerance constitutes the simple
shooting algorithm for ODE BVP.
This method has a severe drawback being displayed in an example further below: Even
for linear and autonomous BVP (2.2), the corresponding IVP (2.3) may react sensitively
to small perturbations in the boundary data, especially for long time intervals. This is
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2.2 Shooting methods for boundary value problems (BVP)

caused by a dichotomy relying on a splitting of the fundamental solution of problem 2.2
into exponentially increasing and decreasing components that are controlled by boundary
conditions at the right and left solution interval endpoint, respectively (see Mattheij and
co-workers, e. g., [31], [70] or [82]). Here, the fundamental solution is a d×d matrix function
Φ(t) solving the ODE problem

Φ̇(t) = A(t)Φ(t), (2.8)
which describes the homogeneous part of (2.2) and, in the linear case, corresponds to the
variational differential equation (2.7). The following considerations concern the BVP and
are not linked to a specified solution routine such as simple or multiple shooting. Let
(Φk(t))dk=1 be the columns of the fundamental solution Φ(t) (which is uniquely determined
only up to additional initial values at the left interval endpoint a). Assume further that i, j
are integers with 0 ≤ i+ j ≤ d, that λ > 0 and µ < 0 are real numbers and that c1, c2 and
c3 are positive constants, so that for all t1, t2 ∈ [a, b] with t1 ≤ t2 the following relations
hold (where ‖ · ‖ is a natural matrix norm):

‖Φk(t1)‖ ≤ c1e
−λ(t2−t1)‖Φk(t2)‖ (k ≤ j),

‖Φk(t2)‖ ≤ c2e
µ(t2−t1)‖Φk(t1)‖ (k ≥ n− i+ 1),

‖Φk(t2)‖ ≤ c3‖Φk(t1)‖ (j + 1 ≤ k ≤ n− i).

(2.9)

The first relation describes exponentially increasing solution components, the second one
components that decrease exponentially, and the third one comprises essentially constant
components.

Remark 2.3. In the autonomous case, i. e., A(t) ≡ A, the number j counts those eigenvalues
with positive real part, whereas i corresponds to the number of eigenvalues with negative
real part.

This classification of solution components is known as the dichotomic structure of linear
BVP. It was first described in the 1970s (see, e. g., the article and book by Coppel [27],
[28]), but only Mattheij clarified the connection between this dichotomy, the prescribed
boundary conditions and the conditioning of the BVP in [82]. We now explain these
interrelations and illustrate them further below by means of an example.
As initial value for the variational ODE (2.8), Φ(a) ≡ I (the d × d identity matrix) is
chosen, which is common in the context of shooting methods (note, however, the scaling of
the fundamental solution postulated below). The conditioning of a problem class is often
described by so-called condition numbers (e. g., cond2(A) is the spectral condition number
of a linear equation system with matrix A). Mattheij proposed, based both on examples
and on theoretical considerations, the following definition of a BVP condition number:

condBV P := max
t∈[a,b]

‖Φ(t)[BaΦ(a) +BbΦ(b)]−1‖ = max
t∈[a,b]

‖Φ(t)[Ba +BbΦ(b)]−1‖. (2.10)

It is well-known that the BVP (2.2) is uniquely solvable if and only if the matrix Q :=
Ba +BbΦ(b) is regular, which is also crucial for the definition of condBV P . As the quantity
(2.10) is difficult to handle, Mattheij suggested a further estimate:

condBV P ≤ max
t∈[a,b]

‖Φ(t)‖‖[Ba +BbΦ(b)]−1‖. (2.11)
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2 Background of Multiple Shooting Methods

In order to avoid the dependence on the fundamental solution Φ(t) (which is not uniquely
determined), he proposed to scale the fundamental solution so that maxt∈[a,b] ‖Φ(t)‖ = 1,
neglect the factor and consider the approximation

condBV P ≈ κ := ‖[Ba +BbΦ(b)]−1‖. (2.12)

Mattheij was able to show that, with a function c(t) based on a further diagonal scaling of
Φ(t), the actual condition number can be estimated as follows:

c(t)κ ≤ condBV P ≤ κ. (2.13)

Based on this quantity κ, Mattheij called a BVP well-conditioned if κ = O(1) and ill-
conditioned if κ = o(1), where O(·) and o(·) are the Landau functions. In this thesis we call
a BVP, differently from Mattheij, well-conditioned in case that κ ≈ 1, and ill-conditioned
if κ� 1.
Mattheij was able to prove several statements on ill-conditioning of BVP, see [82]. His
results suggest that, in terms of (2.9), exponentially increasing solution components should
be controlled at the right interval boundary, whereas exponentially decreasing ones require
conditions at the left interval boundary. This dichotomic structure is usually violated
by turning the problem into an IVP, which causes ill-conditioning and entails a highly
sensitive dependence on perturbations in the initial values. The latter is grounded in
stability estimates of the form

‖u(t; s1)− u(t; s2)‖2 ≤ eL(t−a)‖s1 − s2‖2, (2.14)

which show that the error in the initial value s affects the solution exponentially with
increasing time t (L is the Lipschitz constant of the righthand side function f(t, ·)). This
phenomenon renders the application of simple shooting practically impossible in many
problem configurations. However, this drawback may be overcome by solving the IVP on
shorter time intervals, which is the main idea of the multiple shooting method.

Remark 2.4. It is important to distinguish whether a given problem itself is ill-conditioned,
which naturally leads to instabilities in the simple shooting algorithm, or whether these
instabilities are only induced by using an IVP method for the possibly well-conditioned
BVP, thus disturbing the dichotomic structure.

The first step toward multiple shooting is a decomposition

I = {τ0} ∪
M−1⋃
j=0

(τj , τj+1], a =: τ0 < τ1 < · · · < τM := b (2.15)

of the time domain I into smaller subintervals Ij := (τj , τj+1] (in the following called
shooting intervals). Next, we impose parameters sj as artificial initial values at the time-
points τj (denoted as shooting points), which results in the following set of IVP (for
j = 0, . . . ,M − 1):

u̇j(t) = f(t, uj(t)), t ∈ Ij ,
uj(τj) = sj

(2.16)
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Due to the arbitrarily chosen shooting variables sj , we cannot expect to obtain a globally
continuous solution from the intervalwise IVP solutions. Instead, jumps will occur at
the shooting points, which contradicts the above request for a globally continuously
differentiable solution u(t) to our BVP. Therefore, we have to assure that the mentioned
jumps vanish. This can be done in a way similar to fulfilling the boundary conditions
in (2.4). We have to introduce a system of matching conditions, forcing the boundary
condition as well as the jumps to converge simultaneously to zero by applying Newton’s
method. These continuity conditions are given as follows:

uj(τj+1; sj)− sj+1 = 0, j = 0, . . . ,M − 2,
r(s0, uM−1(τM ; sM−1)) = 0.

(2.17)

By defining a vector s̄ := (s0, s1, . . . , sM−1)>, we can abbreviate equations (2.17) and
simply write F (s̄) = 0, analogously to equation (2.4), and can again apply Newton’s
method to solve the matching conditions. As before, derivatives Gj(t; sj) := uj′

sj
(t; sj) of

the intervalwise solution functions w. r. t. their respective initial values sj are required,
being obtained by solving intervalwise variational equations

Ġj(t; sj) = f ′x(t, uj(t; sj))Gj(t; sj), t ∈ Ij ,
Gj(τj ; sj) = I.

(2.18)

The Jacobian of the system of matching conditions is given as

F ′s(s̄k) =



G0(τ1) −I 0 · · · 0
0 G1(τ2) −I · · · 0
... . . . ...
0 · · · 0 GM−2(τM−1) −I
A 0 · · · 0 B


, (2.19)

with the matrices A = r′x(s0, uM−1(τM ; sM−1)) and B = r′y(s0, uM−1(τM ; sM−1))GM−1(τM )
in the last row.
At this point, the multiple shooting procedure has already become rather complex, and in
order to keep track, we formulate it as a whole in Algorithm 2.1.

Algorithm 2.1 Multiple shooting for nonlinear boundary value problems
Require: Decomposition I = {τ0} ∪

⋃M−1
j=0 (τj , τj+1], shooting variables s0

1: Set k = 0, prescribe tolerance TOL
2: while ‖F (s̄k)‖2 > TOL do
3: Solve initial value problems (2.16), evaluate residual −F (s̄k) computing (2.17)
4: Solve variational initial value problems (2.18), evaluate F ′s(s̄k) as given in (2.19)
5: Solve shooting system F ′s(s̄k)δs̄k = −F (s̄k)
6: Compute update s̄k+1 = s̄k + δs̄k, set k ← k + 1
7: end while
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2 Background of Multiple Shooting Methods

Remark 2.5. The multiple shooting method for linear BVP as derived in detail in the
textbook of Bulirsch & Stoer [20] is a special case of the above Algorithm 2.1. In the
linear case, Newton’s method converges in one iteration step, and convergence is largely
independent of the starting value s̄0, which is therefore chosen as s̄0 ≡ 0 for the sake of
convenience.

The following example illustrates most of the features of shooting methods mentioned so
far. Due to its simplicity, this example is an appropriate test case for several aspects of
our work, and we will repeatedly reconsider variants of this example, especially in Chapter
7 (cf. also Remark 2.6 at the end of this section). The implementation has been carried
out in MATLAB.

Example 2.1. Consider the (fully linear) BVP(
u̇1(t)
u̇2(t)

)
=
(

0 1
c 1

)(
u1(t)
u2(t)

)
,

(
1 0
0 0

)(
u1(0)
u2(0)

)
+
(

0 0
1 0

)(
u1(10)
u2(10)

)
=
(

1
1

)
.

This BVP is defined on I = [0, 10] and depends on a parameter c. The exact solution —
with constants a = 1

2 −
√
c+ 1

4 and b = 1
2 +

√
c+ 1

4 — is obtained as

u1(t) = e10b − 1
e10b − e10a e

at + 1− e10a

e10b − e10a e
bt, u2(t) = a

e10b − 1
e10b − e10a e

at + b
1− e10a

e10b − e10a e
bt.

This problem is (for large c) very sensitive to perturbations of the boundary values. For
c = 110 and the prescribed boundary conditions, u1(0) = 1 and u1(10) = 1, the exact
initial value in the second component is u2(0) ≈ −10 + 3.5 · 10−47. A perturbation to
u2(0) = −10 + 10−9 (i. e. a perturbation of size ≈ 10−9) leads to the value u1(10) ≈ 1037.
The above theory yields two reasons why this problem cannot be solved in a straightforward
way. First, a corresponding fundamental solution is given by

Φ(t) =
(
e11t e−10t

11e11t −10e−10t

)
where e ≈ 2.71828 is the Euler constant. Thus, the matrix Q := B0 + B10Φ(10) and its
inverse are given by

Q =
(

1 0
e110 e−100

)
, Q−1 =

(
1 0
−e210 e100

)
.

In this case, the condition number condBV P defined in (2.10), measured in the ‖ · ‖∞ norm,
is condBV P ≈ 5.9 · 1047, and the approximate condition number κ from (2.12) is given by
κ ≈ 1.6 · 1091. Even scaling the fundamental solution so that maxt∈[a,b] ‖Φ(t)‖ ≈ 1 still
yields κ ≈ 3.0 · 1044. This renders the problem extremely ill-conditioned. Second, the
problem itself has one exponentially increasing solution component, u1 = c1e

11t, and one
exponentially decreasing solution component, u2 = c2e

−10t. The latter should be controlled
at the right interval boundary b = 10, which is not the case in the problem configuration;
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2.2 Shooting methods for boundary value problems (BVP)

Table 2.1. Example 2.1: The minimum number of shooting intervals (SI) needed
for solving the BVP as a function of the parameter c. Data: TOL =
10−8, 8! = 5040 timesteps (ts) equally distributed to the SI.

c #SI #ts/SI ‖F (s0)‖2 ‖F (s1)‖2
1 1 5040 7.7 · 105 3.1 · 10−9

2 2 2520 3.6 · 103 6.1 · 10−11

10 3 1680 7.3 · 104 3.0 · 10−10

22 4 1260 2.4 · 105 1.7 · 10−9

43 5 1008 1.1 · 106 3.7 · 10−9

67 6 840 2.1 · 106 2.5 · 10−9

95 7 720 3.1 · 106 3.8 · 10−9

110 8 630 1.4 · 106 4.1 · 10−9

therefore, the boundary conditions do not fit the dichotomic structure of the problem.
Table 2.1 states that increasing the value of the parameter c necessitates an increasing
amount of (equidistantly distributed) shooting intervals; here, the selected values of c mark
thresholds where the (minimum) number of shooting intervals must be incremented. Figure
2.1 displays the computed solution for c = 110 and M = 8 shooting intervals. Before
convergence, the typical exponential growth of the single solution arcs can be observed,
whereas after convergence a globally continuous solution is obtained.
Furthermore, the minimum number of shooting intervals to solve the above problem for a
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Figure 2.1. Example 2.1: Multiple shooting solution before (left) and after
(right) convergence.

given fixed value of c can be read from Table 2.1. Indeed, one can choose more shooting
intervals than indicated in the table (up to the extreme case where the distribution of
shooting intervals matches the time discretization, i. e. there is only one time step per
shooting interval). Increasing the number of shooting intervals at first renders the problem
more stable (due to estimates such as (2.14)). As a measure for this, the condition number of

13



2 Background of Multiple Shooting Methods

the solution G(t) of the variational equation (2.18) is considered. We choose the maximum
value of the spectral condition on the solution interval I, i. e., maxt cond2(G(t)), for Table
2.2 and Figure 2.2, thus preparing further work presented in Chapter 7. However, using
too many shooting intervals leads to higher computational costs, as the Newton system
corresponding to (2.5) grows larger and its condition number increases (again, we choose
the spectral condition cond2(F ′(s))).
In Table 2.2, we observe this trade-off between local and global conditioning. The increase

Table 2.2. Example 2.1: The maximum local condition number of the solution
G(t) of the variational equation, the global condition number of F ′s(s),
and the computing time (in seconds); comparison of the parameter
values c = 1 and c = 10.

c = 1 c = 10
#SI #ts/SI cond2(G) cond2(F ′) time(s) cond2(G) cond2(F ′) time(s)
3 1680 1.73 · 103 2.67 · 102 1.93 5.53 · 109 1.13 · 106 1.65
6 840 4.15 · 101 2.34 · 101 1.94 1.28 · 105 2.38 · 103 1.66
10 504 9.36 · 100 1.22 · 101 1.93 1.79 · 103 2.04 · 102 1.67
20 252 3.06 · 100 1.13 · 101 1.95 6.93 · 101 3.60 · 101 1.65
40 126 1.75 · 100 1.62 · 101 1.97 1.13 · 101 2.10 · 101 1.69
80 63 1.32 · 100 2.78 · 101 1.97 3.74 · 100 2.47 · 101 1.67
630 8 1.04 · 100 1.94 · 102 2.12 1.19 · 100 1.35 · 102 1.84
1260 4 1.02 · 100 3.84 · 102 2.96 1.09 · 100 2.64 · 102 2.67

in the global condition number entails higher computing times. In this simple example, the
growth of memory requirement and computing time is negligible, but we will encounter
examples in the context of PDE governed optimal control where an increase in computing
time by a factor of two already has a large impact (see Chapter 5).
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Figure 2.2. Example 2.1: Local and global condition numbers for c = 1 (left)
and c = 10 (right); linear growth of the conditioning of the Newton
matrix.
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2.3 Ordinary differential equations (ODE) based control problems

Remark 2.6. Example 2.1 suggests that a criterion allowing to determine the number of
shooting intervals (as well as possibly their distribution in the solution interval) for a
given problem in advance might be desirable. This becomes even more worthwile if the
parameter c is time-dependent and takes on large values within a short subinterval, but
is otherwise small. In the context of linear ODE BVP, Mattheij and his co-workers (see
[82] or [83]) proposed a method to achieve this. Their approach will be presented in detail
in Chapter 7, where we discuss its drawbacks and try to overcome them. Subsequently it
will be extended to the nonlinear case, and both cases will also be transferred to the PDE
context.

2.3 Ordinary differential equations (ODE) based control
problems

Next, ODE optimal control problems (OCP) of the following form are considered on a
finite solution interval I = [t0, tf ]:

min
(q,u)

J(q, u) s. t. F (t;u(t), u̇(t), q(t)) = 0. (2.20)

The general notation for OCP will be explained in detail in Chapter 3 where all theoretical
results on optimal control required in this work are collected. The abstract framework
presented there comprises both ODE and parabolic PDE control problems. Here, we
constrain ourselves to the following brief explanations. In (2.20), the cost (or objective)
functional J(q, u) is the quantity to be minimized given by

J(q, u) = 1
2

∫
I

[Φ(t, u(t)) + Ψ(q(t))] dt, (2.21)

where Φ is assumed as a tracking-type function ‖u(t)− ū(t)‖2 of the state variable u, and
the regularization term Ψ(q(t)) as α‖q(t) − q̄(t)‖2 with q denoting the control variable.
Here, ū and q̄ are given functions to be fitted as close as possible in the Lš sense through
the optimization process. F (t;u, u̇, q) in (2.20) is called the side condition and may be a
nonlinear ODE system. It is commonly concretized as an explicit ODE system defined on
I = [t0, tf ], and in the current section only the following special case of an IVP with linear
dependence on q is treated:

u̇(t) = f(t, u(t)) + cq(t), u(t0) = u0. (2.22)

This simple problem may be generalized in several ways; Leineweber [73] provides a
summary of different generalizations w. r. t. functional types and side conditions, additional
control or state constraints, or problems depending on further parameters. As the goal
of this section is to prepare the tools for the PDE optimal control case, we do not cover
the most general ODE examples. Instead, OCP of the special type (2.21) – (2.22) are
used in order to explain the basic difference between direct (DMS) and indirect multiple
shooting (IMS) methods. These two classes of shooting techniques appear only in the
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2 Background of Multiple Shooting Methods

optimal control framework and mirror the general dichotomy between direct and indirect
solution methods for control problems. We return to ODE governed OCP in Chapter 7
where strategies for choosing the shooting intervals adaptively are provided in the ODE
case before transferring them to the more complicated PDE framework.
Subsection 2.3.1 clarifies the relation between BVP and OCP via the Lagrange functional
L(q, u, z) and the system of first order optimality conditions (KKT system) consisting of
the derivatives of L. This leads to the formulation of IMS. Afterwards, DMS is derived
in Subsection 2.3.2 following a different approach. However, both shooting variants are
closely connected, which is shown in Chapter 5 in the PDE context.
The employment of shooting methods in ODE optimal control is still a research topic
despite three decades of experience. Some related areas where these methods are in the
focus of current developments are, e. g., the field of optimal experimental design aiming at
optimizing expensive experiment configurations in real world applications and the industrial
sector by conducting accurate simulations (see, e. g., Körkel et al. [69]), or parameter
estimation which becomes more and more important in biological applications and where
multiple shooting is efficiently applied (cf. Bock et al. [16]). Other recent applications,
especially of direct shooting variants, can be found in Diehl et al. [35] or Leineweber et
al. [74]. Furthermore, the treatment of PDE problems by ODE methods in the method
of lines (MOL) framework is a subject of current research (see, e. g., Albersmeyer [1] or
Potschka [94]) to which we refer back in Section 2.4.

2.3.1 Indirect approach

The IMS method for the above OCP resembles the shooting method originally developed for
ODE boundary value problems. We therefore transform the above problem (2.21)–(2.22)
into a BVP by differentiating the Lagrange functional

L(q, u, z) := J(q, u) +
∫
I

(u̇(t)− f(t, u(t))− cq(t), z(t)) dt+ (u(t0)− u0, z(t0)) (2.23)

with respect to its arguments, where the Lagrange multiplier z acts as an adjoint variable.
The derivatives of L(q, u, z) form the first order necessary optimality conditions (the
so-called Karush-Kuhn-Tucker or KKT system). With ξ := (q, u, z), they read:

L′z(ξ)(ϕ) =
∫
I

(u̇(t)− f(t, u(t))− cq(t), ϕ(t)) dt+ (u(t0)− u0, ϕ(t0)) != 0, (2.17a)

L′u(ξ)(ψ) = J ′u(q, u)(ψ)−
∫
I

(ż(t) + f ′u(t, u(t)), ψ(t)) dt+ (z(tf ), ψ(tf )) != 0, (2.17b)

L′q(ξ)(χ) = J ′q(q, u)(χ)−
∫
I

(cz(t), χ(t)) dt != 0. (2.17c)

Each stationary point of these KKT conditions is a solution candidate for the original
control problem. With Ψ(q(t)) = α‖q(t)‖2 from (2.21), one can reformulate the control or
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gradient equation (2.17c) as follows:∫
I

(αq(t)− cz(t), χ(t)) dt != 0.

Dividing by the regularization parameter α > 0 yields an expression for q in terms of the
adjoint variable z: ∫

I

(q(t), χ(t)) dt = 1
α

∫
I

(cz(t), χ(t)) dt. (2.25)

In addition, the state u, adjoint z and control q are assumed to be elements of the same
function space, i. e. the test functions ϕ,ψ and χ in (2.17a)–(2.17c) can also be chosen
from the same space. In the ODE case where it holds u, z ∈ C1(I) ⊂ C0(I), this is not
restrictive, and the assumption q ∈ C0(I) is justified; on the discrete level, we can discretize
q analogously to u and z (see Chapter 4). Therefore, q(t) in (2.17a) can be replaced by
the expression c

αz(t) from (2.25), and we obtain the following system (where, for brevity,
the argument t in the integral terms is neglected):∫

I

(
u̇− f(t, u)− c2

α
z, ϕ

)
dt+ (u(t0)− u0, ϕ(t0)) = 0, (2.17a∗)

J ′u(q, u)(ψ)−
∫
I

(ż + f ′u(t, u), ψ) dt+ (z(tf ), ψ(tf )) = 0. (2.17b∗)

These two equations constitute an ODE boundary value problem (BVP) with separated
boundary conditions u(t0) = u0 and z(tf ) = 0. Here, the adjoint equation runs backward
in time, which can be seen from the negative sign of the time derivative as well as the
initial condition prescribed at the final time point tf .

Remark 2.7. The cost functional J(q, u) contains a tracking-type term for the state u.
An alternative term φ(u(tf )) at the final time-point would result in a different boundary
condition in the adjoint equation (2.17b∗), i. e., z(tf ) 6= 0.

Remark 2.8. The above assumption (u, z and q contained in the same space) enables a
reduction of the system of solution variables to u and z, whereas q may simply be evaluated
via (2.25). It is already quite restrictive in the ODE case, where u and z have to be at
least in C1(I), whereas q often is not even required to be continuous (as an example,
consider optimization problems with bang-bang control). Thus, the above decoupling of
the control cannot be performed in general. Here, the focus is on problems where the
described replacements are possible, but later on in the PDE context, we will introduce an
alternative approach and thus avoid this system reduction to u and z.

While the weak formulation (2.17a∗)–(2.17b∗) of the problem constitutes the natural
environment for problems that are solved by variational methods, the BVP structure
becomes more obvious from the strong formulation

u̇ = f(t, u) + c2

α
z, u(t0) = u0, (2.17a∗∗)

ż = −f ′u(t, u)− j′u(q, u), z(tf ) = 0, (2.17b∗∗)
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2 Background of Multiple Shooting Methods

where j′u(q, u) represents the strong form of the term J ′u(q, u)(ψ) from (2.17b∗) (in case of
a tracking-type term, this means j′u(q, u) = u− u with a tracking function u).
We now replace the boundary value at the final time by an additional parameterized initial
value z(t0) = s, solve both components of problem (2.17a∗∗)–(2.17b∗∗) forward in time and
end up with the additional nonlinear equation z(tf ; s) = 0 to be solved at the final time
tf . By this, the BVP is transformed into an IVP, which is the aim of the simple shooting
algorithm introduced in the previous section. However, it has already been shown that this
method is often very sensitive to perturbations in the data and thus constitutes an unstable
algorithm. We therefore proceed to the multiple shooting technique, which overcomes the
mentioned drawback and has improved stability properties. This relies again upon the
interval decomposition (2.15) with the intermediate points t0 = τ0 < τ1 < · · · < τM = tf .
In this way, the local exponential stability factors eL(τj+1−τj) in (2.14) are of moderate size
and the problem is stabilized (see Example 2.1). However, the BVP (2.17a∗∗)–(2.17b∗∗)
has to be solved locally on the subintervals Ij , which requires adequate initial values on
each subinterval. As the exact solution values in τj are unknown and there usually is no
appropriate starting value, we have to prescribe artificial parameterized values sj = (sju, sjz).
To receive a uniform algorithm on all subintervals, therefore the value u0 has to be replaced
by a parameter s0

u. The local solutions (uj(t; sj), zj(t; sj)) depend on the erroneous initial
values and yield incorrect values (uj(τj+1; sj), zj(τj+1; sj)). This induces jumps in the
global solution at the points τj which have to be removed in order to obtain the correct
globally continuous solution of the original problem. In the case of multiple shooting,
we thus have to fulfil the boundary conditions as well as additional matching conditions,
together forming the following system:

s0
u − u0

!= 0,

sj+1
u − uj(τj+1; sju, sjz)

!= 0, (j = 0, · · · ,M − 1)

sj+1
z − zj(τj+1; sju, sjz)

!= 0, (j = 0, · · · ,M − 1)

zM−1(τM ; sM−1
u , sM−1

z ) != 0

(2.26)

(compare this to (2.17) in Section 2.2). This system is abbreviated by F (s) != 0 where
s = ((sju, sjz)M−1

j=0 ), and for solving this equation, Newton’s method is employed. Therefore,
we need the derivative F ′s(s), and thus the local derivatives uj′

sju
, uj′

sjz
, zj′
sju

and zj′
sjz
, each

evaluated in τj+1. The simplest way to get these derivatives is to solve additional local
problems on the subintervals Ij , the so-called variational or sensitivity equations obtained
by linearizing the local system corresponding to (2.17a∗∗)–(2.17b∗∗) w. r. t. (sju, sjz). Thus,
the sensitivity equation consists of a matrix ODEu̇j′sju u̇j′

sjz

żj′
sju

żj′
sjz

 =
(

f ′u(t, uj) c2

α
−f ′′uu(t, uj)− j′′uu(qj , uj) 0

)uj′sju uj′
sjz

zj′
sju

zj′
sjz

 , (2.27)

and the initial value on each subinterval is given by the identity matrix of corresponding
dimension. This matrix ODE corresponds to (2.18). Taking the results together, the
indirect multiple shooting algorithm (Algorithm 2.2) for problem (2.21)–(2.22) can now be
formulated.
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Algorithm 2.2 Indirect multiple shooting for ODE governed OCP

Require: Initial control q0 = ((qj0)M−1
j=0 ), decomposition I = {τ0} ∪

⋃M−1
j=0 (τj , τj+1]

1: Set ν = 0
2: while J(qjν , ujν) 6= min do
3: Replace qjν in the local KKT system using (2.25), obtain local BVP for ujν and zjν
4: Prescribe tolerance TOL2 and initial shooting variables sν,0, set k = 0
5: while ‖F (sν,k)‖2 > TOL2 do
6: Solve local IVP corresponding to (2.17a∗)–(2.17b∗), evaluate J(qjν , ujν) and residual

−F (sν,k)
7: Solve variational initial value problems (2.27), evaluate F ′s(sν,k)
8: Solve shooting system F ′s(sν,k)δsν,k = −F (sν,k)
9: Compute update sν,k+1 = sν,k + δsν,k, set k ← k + 1

10: end while
11: Compute update qjν+1 using zjν from the local IVP via (2.25)
12: end while

Remark 2.9. Due to the small size of the ODE side condition in (2.20) (in such context,
even 100 − 500 ODE are considered as a small system) we can compute the Jacobian
matrix F ′s in each Newton step and use direct solvers. For PDE problems where (due to
spatial discretization) one often has to deal with millions of degrees of freedom, direct
solvers are prohibitive. This leads to using inexact Newton methods (for a description of
Krylov-Newton methods and their application, see Chapters 4 and 5).

2.3.2 Direct approach

We now turn to the second, more common shooting approach, the direct multiple shooting
(DMS) method, which was originally applied to the ODE optimal control framework by
Bock and his co-workers (see, e. g., [10] –[13] and [15]). The basic ideas are only briefly
resumed; detailed presentations can be found in the literature (see, e. g., Leineweber [73],
on which the following overview is based, or the corresponding sections in Potschka [93]).
The development of a direct simple shooting method is skipped here, because this essentially
confronts the same stability issues already discussed above. We want to solve problem
(2.20), but instead of setting up the KKT system (2.17a)–(2.17c) and applying a shooting
technique to the (modified) state and adjoint equations (2.17a∗) and (2.17b∗), the local
state variable uj is now replaced by a function of an artificial initial value sj and the
control variable qj , where the subintervals are determined by the decomposition (2.15).
With s̄ = (sj)Mj=0 and q̄ = (qj)M−1

j=0 , the reformulated problem reads as follows:

min
(s̄,q̄)

J(s̄, q̄) =
M−1∑
j=0

J j(qj , uj(sj , qj)) =
M−1∑
j=0

∫
Ij

[Φ(t, uj(t; sj , qj(t))) + Ψ(qj(t))] dt (2.28)
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2 Background of Multiple Shooting Methods

subject to the continuity conditions

s0 − u0
!= 0,

sj+1 − uj(τj+1; sj , qj(t)) != 0, (j = 0, · · · ,M − 1)
(2.29)

where uj is the solution of the following IVP on subinterval Ij for j = 0, . . . ,M − 1:

u̇j(t; sj , qj(t)) = f(t, uj(t; sj , qj(t))) + cqj(t),
uj(τj , sj) = sj .

(2.30)

This setup corresponds to (2.17) in Section 2.2, except for the additional control variable
in (2.29).

For problem (2.28)–(2.29) we obtain the Lagrange functional

L((sj , λj)Mj=0, (qj)M−1
j=0 ) =

M−1∑
j=0

J j(qj , uj(sj , qj)) + (s0 − u0, λ
0)

+
M−1∑
j=0

(sj+1 − uj(τj+1; sj , qj(τj+1)), λj+1)
(2.31)

where the λj(j = 0, · · · ,M) are Lagrange multipliers corresponding to the constraints (2.29).
Differentiating (2.31) w. r. t. its arguments yields the following optimality conditions

L′λj (δλ) = (sj − g1(u0, u
j), δλ) != 0, (2.25a)

L′sj (δs) = (λj − g2(uj′s ), δs) != 0, (2.25b)

L′qj (δq) = J j′q (δq) + J j′u (uj′q (δq))− (λj+1, uj′q (τj+1)(δq)) != 0, (2.25c)

where

g1(u0, u
j) :=

{
u0 for j = 0,
uj(τj+1; sj , qj(t)) for j > 0, g2(uj′s ) :=

{
uj′s (τj+1) for j < M.
0 for j = M.

The stationary points of (2.25a)–(2.25c) are solution candidates of the optimization problem
(2.28)–(2.29). Note that differentiation of L w. r. t. sj and qj requires the solution of
additional sensitivity problems similar to (2.27) in order to compute the quantities uj′s and
uj′q . These variational or sensitivity equations have the form

u̇j′s (t) = f ′u(t, uj(t; sj , qj(t)))uj′s (t), uj′s (τj , sj) = δs (2.33)

for the sensitivity w. r. t. the initial values and

u̇j′q (t) = f ′u(t, uj(t; sj , qj(t)))uj′q (t) + cδq(t), uj′q (τj , sj) = 0 (2.34)

for the sensitivity w. r. t. the control. These linear equations are obtained by differentiation
of the state equation (2.30) w. r. t. sj and qj in directions δs and δq, respectively.
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2.3 Ordinary differential equations (ODE) based control problems

There are several ways to proceed from here; in the following, first the ideas underlying the
implementation carried out for this thesis are presented. This works for the problem class
(2.20) but is not designed to incorporate control or state constraints or differential algebraic
equations (DAE) as side conditions. Afterwards, the outline of a widely used sequential
quadratic programming (SQP) approach is sketched that can handle all the mentioned
problem extensions. However, the latter is handled abstractly, because a detailed discussion
is beyond the scope of this work and can be found in numerous articles and textbooks, for
example Geiger & Kanzow [43], Nocedal & Wright [90] and Ulbrich & Ulbrich [109].

Remark 2.10. The presentation of an alternative approach is postponed to Chapter 5,
because it is more suitable in the PDE context due to its potential for matrix-free com-
putations (cf. Remark 2.9 above). While in the current situation, IMS and DMS might
appear as different methods, we will show in the framework of PDE governed OCP that
they are, in fact, very closely connected.

In the MATLAB implementation of DMS used for the results in Subsection 2.3.4, first the
intervalwise state IVP (2.30) are solved for given initial values sj and controls qj , which
enables the evaluation of the continuity conditions (2.29) of the reduced problem. As the
aim is to solve the reduced KKT system by Newton’s method, also the remaining equations
(2.25b) and (2.25c) have to be evaluated, which necessitates the solution of equations (2.33)
and (2.34). Furthermore, we need the Jacobian matrix of the KKT system (which is the
Hessian of the Lagrange functional (2.31)). Without discussing this issue further, we state
that here this matrix is explicitly assembled (requiring the solution of additional variational
equations of type (2.34) for a whole basis of the discrete control space). This corresponds
to the sensitivity approach discussed in Section 3.3, which cannot be employed in the PDE
case where large-scale OCP occur. Even for large ODE problems, adjoint methods have
been employed recently to increase the efficiency of multiple shooting (see, e. g., the theses
of Albersmeyer [1], Beigel [8] and Potschka [94]). This alternative is pursued further in
Chapter 5. Furthermore, we solve the Newton equation for our KKT system by a direct
linear solver, which is also prohibitive in the PDE framework. Alternative solution routines
are discussed in Chapters 4 and 5. Our proceeding for DMS implementation in the current
ODE setting can be summarized by the following Algorithm 2.3:

As already mentioned above, SQP methods constitute a widely used alternative to our
Newton approach. Leineweber [73] describes in detail the software package MUSCOD
where SQP variants are implemented that can handle more complex problems than (2.20).
Here, only the main ideas behind SQP methods are recalled, and we refer to the previously
cited literature for details. For brevity, we define y := ((sj)Mj=0, (qj)M−1

j=0 ) and λ := (λj)Mj=0.
In this notation, the system (2.29) can be written as F (y) != 0, and the derivatives of (2.31)
w. r. t. y and λ yield the following abstract formulation of the KKT system (2.25a)–(2.25c):

∇yL(y, λ) != 0,

F (y) != 0.
(2.35)

The mentioned SQP approaches reduce the original problem to a sequence of approximating
quadratic programming (QP) problems. In fact, one can show that the solution of one QP
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Algorithm 2.3 Direct multiple shooting for ODE governed OCP

Require: Initial control q0 = ((qj0)M−1
j=0 ), initial shooting values s0 = ((sj0)Mj=0), decomposi-

tion I = {τ0} ∪
⋃M−1
j=0 (τj , τj+1]

1: Set ν = 0
2: while J(qjν , uj(sjν , qjν)) 6= min do
3: Solve the IVP (2.30) on the Ij
4: Solve the variational equations (2.33) and (2.34) and evaluate ∇L
5: Compute additional sensitivities as solutions of further variational equations and

assemble the Hessian matrix ∇2L
6: Solve the Newton equation for the KKT system (2.25a)–(2.25c)
7: Compute updates sjν+1 = sjν + ∆s, λjν+1 = λjν + ∆λ and qjν+1 = qjν + ∆q, and set

ν ← ν + 1
8: Evaluate J(qjν+1, u

j(sjν+1, q
j
ν+1))

9: end while

corresponds to one step of our Newton iteration. Within these QP, one starts from a point
y0 and computes a sequence of iterates

yk+1 = yk + αkpk. (2.36)

In each iteration step, a descent direction pk and a steplength αk are searched. The latter
is usually determined by a line search or trust region algorithm. We focus on the search
direction pk, which is the solution of an appropriate quadratic approximation of (2.35)
in a neighborhood of the current iterate yk. With the abbreviation Lk := L(yk, λk), the
quadratic approximation Q is obtained by a Taylor expansion of L around yk:

Q(yk + p, λk) = Lk +∇yLkp+ 1
2p
>∇2

yLkp. (2.37)

In each step of the SQP algorithm, we minimize such a quadratic problem w. r. t. the
direction p and subject to a linearization

Fk +∇Fkp (2.38)

of the original side condition (2.29). For this linear-quadratic optimization problem, the
existence of a minimizer can be shown, and due to the convexity of the problem, it is
sufficient to consider first order optimality conditions (see Section 3.2 for details). The
minimum is denoted by pk, and after applying one of the mentioned globalization strategies
the updating step (2.36) can be performed. Having obtained an update yk+1, still an
update λk+1 for the Lagrange multiplier is required. In the course of solving the quadratic
problem (2.37), we need a different Lagrange multiplier λ̃ for the linearized side condition
(2.38). The latter is determined by λ̃ = λk+1 − λk, from which an update for λk+1 is
directly obtained.
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2.3 Ordinary differential equations (ODE) based control problems

2.3.3 Computational aspects

In the following, techniques are discussed that contribute to the high efficiency of the DMS
algorithm for ODE optimal control problems, namely the topics of control parameterization,
condensing techniques for the Newton or SQP system, and sensitivity generation.

Control parameterization. In the reformulation (2.28)–(2.30) of the original OCP
underlying the DMS Algorithm 2.3, the local control variable qj(t) is a function of time t.
However, in the DMS context the control is usually interpreted as a piecewise polynomial
of order p ≤ 3 on the subintervals Ij , i. e.

qj ≡ qj(qj0, · · · , qjp) (2.39)

(e. g., p = 0 in the case of bang-bang control). Here, we fit the parameters qj0, · · · , qjp on the
shooting interval Ij and interpolate them instead of computing a temporally distributed
control function.

Remark 2.11. Approximating the function qj(t) by a low order interpolant qj(qj0, · · · , qjp) is
not part of the discretization to be discussed later on (see Chapter 4). The parameterization
can already be performed within the current function space setting and has to be combined
with interpolation techniques on the discrete level.

The main advantage of control parameterization is the saving of computing time and
storage. In fact, the parameterization (2.39) on the shooting interval Ij with p small is
to be compared with a discretization of qj(t) using the same time grid as for uj (which
usually amounts to ≥ 100 time steps on Ij , see Chapter 4). Updating the control within
the Newton or SQP algorithm applied to (2.35) requires the solution of the sensitivity
equations (2.34) to obtain the derivatives uj′q . With an underlying control discretization
of 100 time steps on the subinterval Ij , the sensitivity equation has to be solved 100
times within the above described SQP algorithm in order to get an update for qj . In
contrast, with a control parameterization (2.39) where p = 2, we only have to compute
two sensitivities, i. e. the sensitivity equation has to be solved only twice. Example 2.2
illustrates the gain in efficiency of control parameterization.
However, parameterizing the control results in obtaining a suboptimal state solution
(belonging to the coarse control approximation) can be optained. This implies a trade-off
between efficiency and accuracy as provided in Example 2.3 below. In the PDE framework,
a suitable parameterization is difficult to determine without losing structural information on
q(x, t), which is discussed in Subsection 4.1.3. A similar concept to control parameterization
being introduced in this later subsection may easily be applied in the IMS framework.

Condensing techniques. We now turn our attention to so-called condensing techniques
for multiple shooting methods which aim at reducing the size of Newton’s system for
updating the shooting variables. They are given by s in the BVP case, by s and λ in the
IMS approach for OCP, and by s, q and λ in the DMS method. In the optimal control
context, they are frequently employed in combination with parameterized controls; we will
see that they are less efficient with fully discretized qj(t). To clarify this conjecture, the
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BVP case is briefly discussed. For the extension to OCP, we refer to the relevant literature.
Recalling the definition of the block matrices Gj(τj+1; sj), A and B from Section 2.2,
Newton’s equation

F ′(s̄k)δs̄k = −F (s̄k) (2.40)

with F ′(s̄) as in (2.6) and F (s̄) denoting the system (2.17) may be written explicitly as

G0(τ1)δs0 − δs1 = −F 0,

G1(τ2)δs1 − δs2 = −F 1,

...
GM−2(τM−1)δsM−2 − δsM−1 = −FM−2,

Aδs0 +BδsM−1 = −FM−1.

(2.41)

Now, these equations can be rearranged in the following manner: Solve the first equation
for δs1 and insert the resulting expression into the second equation, then solve the second
equation for δs2 and insert the result into the third one and so on. This results in the
system

δs1 = G0(τ1)δs0 + F 0,

δs2 = G1(τ2)δs1 + F 1 = G1(τ2)[G0(τ1)δs0 + F 0] + F 1,

...

δsM =

M−1∏
k=1

GM−k−1

 δs0 +
M−2∑
j=0

M−j−2∏
k=1

GM−k−1

F j .
By inserting this into the last equation

Aδs0 +BδsM = −FM

of system (2.41), we obtainA+B

M−1∏
k=1

GM−k−1


 δs0 = −FM −B

M−2∑
j=0

M−j−2∏
k=1

GM−k−1

F j
 .

This last system (which is of the size of the dimension of the shooting variables sj , i. e.
n) is now solved instead of (2.40) (which is of size n(M + 1)). Afterwards, the remaining
update blocks are computed by sweeping through the system (2.41) in a forward manner.
A similar but more complex concept is provided by Leineweber [73] for DMS in the ODE
optimal control context. This approach has later been transferred to the PDE framework
in the thesis of Hesse [52]. The author reduces the Newton system of DMS to the control
variables; however, if we do not employ parameterization techniques, the reduction is
not efficient, because the shooting variables sj eliminated from Newton’s equation by the
condensing technique constitute only a small fraction of the Newton update vector in case
of distributed control.
Exemplarily, an OCP with scalar ODE side condition is considered, which is split into 4
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shooting intervals each discretized by 100 time steps. The uncondensed Newton system
is of size 4 · 100 + 4 = 404, whereas the condensed one is reduced to the control (i. e., a
size of 4 · 100 = 400). In this case, the condensing is inefficient. However, if we assume a
piecewise linear control on each shooting interval (this corresponds to p = 2 in the above
framework), the original system is of size 4 · 2 + 4 = 12, whereas the condensed one is of
size 4 · 2 = 8, which corresponds to a system reduction by one third.
This particular issue is revisited in the PDE discretization context in Chapter 4, where the
mentioned condensing approach by Hesse is discussed more thoroughly.

Sensitivity generation. Multiple shooting methods for both BVP and OCP require not
only to solve the actual ODE system at hand, but also further linearized ODE systems
providing the sensitivities w. r. t. parameters and certain arguments.
There are two different ways to obtain these sensitivities. The first ’analytical’ one is
based on actually solving the variational equations. In PDE optimal control, there are
several paradigms on the kind of additional equations that should be solved in order
to generate first and second order derivatives efficiently; these paradigms are known in
the optimal control literature as the sensitivity respectively adjoint approaches toward
derivative generation and are discussed in detail in Section 3.3.
In what follows, a more ’numerical’ approach toward sensitivity generation is sketched. The
basic feature of the following discussion is numerical differentiation. The approximation
of the derivative u′s(t; s) of the state solution u(t; s) w. r. t. the (parameterized) initial
value s is discussed (for simplicity, we choose a simple shooting framework). In the k-th
component of u we may approximate the derivative w. r. t. the i-th component si of s by a
difference quotient (cf. Bulirsch & Stoer [20])

uk′si(t; s) ≈
uk(t; s+ δs · ei)− uk(t; s)

δs
,

using the i-th unit vector ei. However, it can be shown that if the nominal solution u(t; s)
is determined with accuracy ε, then the difference quotient approximation yields derivatives
that are accurate only up to

√
ε. Furthermore, working with difference quotients makes

the use of variable time step size or varying ODE solvers more difficult.
An alternative first developed by Bock [11] is based on differentiating the numerical
integration scheme used for solving the nominal ODE and employing the resulting integrator
for computing the derivatives. Although the details on this so-called internal numerical
differentiation (IND) approach are omitted, it is noteworthy that this proceeding yields the
same accuracy ε as for the nominal solution. Moreover, it enables adaptive time stepping
and choice of integrators, and it is equivalent to solving the variational equations.
Over the past years an extension of IND from one-step integrators to linear multistep
methods (LMM), especially backward differentiation formulae (BDF), has been derived in
the context of nonstationary PDE solution via ODE methods. Similarly, adjoint schemes
(again, see the theses by Albersmeyer [1] and Beigel [8]), where IND is often combined
with methods of automatic differentiation, have been provided.
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2.3.4 Examples and comparison

In Subsections 2.3.1 and 2.3.2 the IMS and DMS methods were presented. Several aspects
make them appear unrelated, the main one being the absence of any adjoint equation in
DMS. In Chapter 5 this structural distinction is thoroughly discussed, and DMS will be
rewritten in a manner that reveals its close relation to IMS.
The current subsection, however, is dedicated to two numerical examples illustrating the
discussed results on IMS and DMS. The first example is a linear ODE control problem
which shows the difference between DMS without and with control parameterization.

Example 2.2. Consider the following problem:

min
(q,u)

J(q, u) = 1
2

2∫
0

[(u(t)− ū(t))2 + (q(t)− q̄(t))2] dt

s. t. u̇(t) = u(t) + q(t)− g(t), u(0) = 1,

where the data functions ū(t), q̄(t) and g(t) are given as

ū(t) = exp(2t)− 1
2 cos(2t) + sin(2t) + 1

2 cos(4),

q̄(t) = sin(t)− 1
2 cos(2t) + 1

2 cos(4),

g(t) = sin(t)− exp(2t).

The exact solution is then given by u(t) = exp(2t) and q(t) = sin(t).

We employ two DMS variants to solve this problem on four equidistantly distributed
shooting intervals each discretized by 250 time steps of equal length. The computation is
stopped if the absolute value of the distance between two successive functional values is
smaller than 10−5. All occurring ODE are solved by the Crank-Nicolson method. The first
DMS variant operates with a full control discretization (DMSu), resulting in 250 values q(ti)
per shooting interval. In contrast, a parameterization with piecewise linear control (DMSp)
is considered, i. e., only two control values q0 and q1 per shooting interval. This leads to a
suboptimal solution, although the state curve shown in Figure 2.4 below does not differ
largely from the one depicted in Figure 2.3 that was obtained by DMSu. Table 2.3 shows

Table 2.3. Example 2.2: DMSu and DMSp; the computations are performed on
4 equidistant shooting intervals, each discretized by 250 time steps.
For DMSp, a piecewise linear control parameterization is used.

#iter time(s) Jfinal ‖F‖2
DMSu 2 20.8 0.467219 1.3·10−14

DMSp 2 0.56 0.467272 8.2·10−15

that both DMS variants result in equally good functional values; besides, they both yield
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shooting residuals close to zero, indicating a valid solution of the shooting system. A large
amount of computing time is saved by applying DMSp, as only three linearized problems
(sensitivities w. r. t. s, q0 and q1) have to be solved on each shooting interval, opposed to
251 sensitivities (one for s and one for each q(ti)) in the unparameterized case.
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Figure 2.3. Example 2.2: DMS solution without control parameterization: state
u (left) and control q (right).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50

60

Time t

S
ta

te
 u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

Time t

C
on

tr
ol

 q

Figure 2.4. Example 2.2: DMS solution with control parameterization: state u
(left) and control q (right).

Figures 2.3 and 2.4 display the state and control components after convergence. The
structure of the exact solution is achieved for both cases; the state u does not seem to
be affected by the control parameterization, whereas the control itself has kinks at the
shooting interval transitions and is piecewise linear. The second example constitutes a
sensitive optimal control problem that has been discussed in detail in Rao & Mease [97]
and has been included in a benchmark collection for optimization with MATLAB (see Edvall
& Rutquist [99]). It is suitable for illustrating the differences between IMS and DMS.
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2 Background of Multiple Shooting Methods

Example 2.3 (PROPT: Benchmark 51). Consider the problem

min
(q,u)

J(q, u) =
10∫
0

(u2(t) + q2(t)) dt

s. t. u̇(t) = −u3(t) + q(t), u(0) = 1, u(10) = 3
2 .

Here, the side condition is given by a nonlinear boundary value problem. The benchmark
minimum value for J(q, u) stated in Edvall & Rutquist [99] was computed by a collocation
method and amounts to Jmin = 6.723925.

The problem is solved by the two multiple shooting approaches (IMS and DMS) on 50
equidistantly distributed shooting intervals with a time discretization of 100 timesteps per
shooting interval. The solution process is stopped as soon as the computed functional
value differs from the benchmark value less than TOL = 10−3. Furthermore, the DMS
method is again applied without and with piecewise linear parameterization of q on the
subintervals Ij .

Table 2.4. Example 2.3: IMS and DMS; both computations are based on 100
equidistant shooting intervals each discretized by 100 timesteps. In
the DMS case, a piecewise linear control parameterization is used.
The reference value is Jmin = 6.723925.

#iter time(s) Jcalc |e| ‖F‖2
IMS 8 6.80 6.724074 1.5·10−4 4.6·10−5

DMSu 5 247 6.723468 4.6·10−4 7.5·10−2

DMSp 16 0.54 6.723061 8.7·10−4 3.9·10−1

From the data given in Table 2.4 we infer that the parameterized DMS approach is faster
than IMS. In contrast, the unparameterized DMS method is comparatively slow. This is
due to the huge amount of additionally solved linearized problems. IMS yields the most
accurate results and fulfils the continuity conditions with higher accuracy (measured by
‖F‖2) than DMS. In Figures 2.5 and 2.6, the solutions of IMS and DMS are provided for
the first shooting iteration and after convergence, respectively. The jumps that occur in
the global solution at the beginning are distinguishable in the respective left subfigures,
whereas from the right ones it is obvious that both approaches yield the same solution. In
the DMS case, the adjoint component is missing; this issue is discussed in more detail in
Chapter 5.

28



2.4 Shooting methods for BVP in partial differential equations (PDE)

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

40

Time t

IM
S

 s
ol

ut
io

n 
co

m
po

ne
nt

s

IMS solution before convergence

 

 

IMS state
IMS adjoint
IMS control

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

Time t

IMS solution after convergence

 

 

IMS state
IMS adjoint
IMS control

Figure 2.5. Example 2.3: IMS solution; state u, adjoint z and control q before
(left) and after convergence (right).
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Figure 2.6. Example 2.3: DMSu solution; state u and control q before (left) and
after convergence (right).

2.4 Shooting methods for BVP in partial differential equations
(PDE)

To conclude the review of multiple shooting methods for different problem classes, we
present some basic parabolic PDE problems and discuss how to employ multiple shooting
to solve them. However, this section merely communicates some basic impressions, e. g.,
obvious differences to the ODE case; the theoretical background is explained in Chapter 3,
and algorithmic details are postponed to Chapter 5.
In the following, variants of the heat equation

∂tu(x, t)−∆u(x, t) = f(x, t) (2.42)
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2 Background of Multiple Shooting Methods

are considered on a space-time cylinder Ω × I. The spatial domain is the two-dimensional
unit square [0, 1]2, and the time interval is chosen as [0, T ] with T < ∞. A well-posed
parabolic problem requires the specification of boundary values on ∂Ω × I and an initial
condition in Ω×{0} at the starting time. If these demands are met, the problem is called an
initial-boundary value problem (IBVP). The part (∂Ω × I)∪ (Ω × {0}) of the boundary of
the computational domain (the bottom and envelope of the space-time cylinder) constitutes
the parabolic boundary. However, the notion of a PDE boundary value problem does not
refer to the boundary conditions on ∂Ω × I.

Agreement. Speaking of a PDE boundary value problem refers to boundary values on
the two temporal boundaries Ω × {0} and Ω × {T} at the initial and final time points,
respectively. If necessary for distinction, this is called a temporal parabolic BVP.

This kind of PDE boundary value problem evokes the notion of ODE BVP discussed in
Section 2.2. The different settings of an IBVP and a temporal BVP are illustrated in
Figure 2.7. In fact, if such a temporal parabolic BVP is discretized by the method of lines
(i. e., the spatial variables x are discretized before the time variable t), on the semidiscrete
level we end up with a system of ODE which might be high-dimensional due to a fine
resolution of the spatial mesh. This approach has been pursued in Potschka [94].

Figure 2.7. The parabolic boundary (bottom face: Ω×{0}, vertical axis: t)(left);
the temporal boundary (bottom and top faces: Ω × {0} and Ω ×
{T})(right).

Similarly to the ODE case, we consider this type of PDE boundary value problem as it occurs
in the context of parabolic optimal control as part of the system of optimality conditions.
In this light, see Section 3.3, especially Remark 3.8. In the following, two concrete examples
with different features are discussed, namely a time-periodic one-component problem and
a two-component system with separated temporal boundary values.

A time-periodic one-component problem. The first problem to be considered is given
by Example 2.4. It constitutes a single parabolic equation with periodic temporal boundary
values.

Example 2.4. Consider the following IBVP, with a periodicity condition that links the
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2.4 Shooting methods for BVP in partial differential equations (PDE)

solution profiles at the initial and final timepoints instead of a fixed initial condition:

∂tu(x, t)−∆(u(x, t))− ωu(x, t) + µu(x, t)3 = f(x, t) in Ω × I, (2.43a)
u(x, t) = 0 on ∂Ω × I, (2.43b)
u(x, 0) = u(x, T ) in Ω. (2.43c)

The parameter µ ∈ {0, 1} switches the nonlinearity on and off, and the parameter ω ∈ N0
is responsible for a destabilization of parabolic OCP with a Helmholtz type side condition
(see also Section 3.1). In the simplest case, µ = ω = 0, (2.43a) corresponds to the heat
equation 2.42. Furthermore, in the computations below, we adapt the righthand side f(x, t)
such that the exact solution is given by

u(x, t) =


1
4

(
1 + cos

(
π
r0
‖x− x̃‖2

))
if ‖x− x̃‖2 < r0,

0 else.

where x̃1 := 1
2 + 1

4 cos(2πt) and x̃2 := 1
2 −

1
4 sin(2πt).

Figure 2.8. Example 2.4: Solution at t = 1
2 with two consecutive timesteps

before multiple shooting is converged; final timestep of first shooting
interval (left); first timestep of second shooting interval (right).
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2 Background of Multiple Shooting Methods

Figure 2.9. Example 2.4: Solution at t = 1
2 with two consecutive timesteps

after multiple shooting is converged; final timestep of first shooting
interval (left); first timestep of second shooting interval (right).

On the unit square Ω = [0, 1]2 and the time interval I = [0, 1] this function describes a
bump of maximum height 0.5 which rotates on a circle with radius 0.25 around the center
(0.5, 0.5). The bump itself has a circular base area of radius r0.
In order to illustrate how multiple shooting works in the PDE framework, we compute the
example (2.43) with µ = ω = 0 on two shooting intervals of length 0.5, each discretized by
250 timesteps on a spatial mesh of 4096 cells. The shooting variables in the PDE case are
spatially distributed functions on Ω, which we choose on each shooting interval initially as
s(0)(x) = sin(4πx1) sin(2πx2); they describe a landscape with 4 mountains and 4 valleys on
Ω and are chosen arbitrarily. Figure 2.8 displays the jump at the transition between the
two shooting intervals; from the bump in timestep 249 shown in the left panel (i. e., at the
end of the first shooting interval), the solution jumps to the initial value function s(0)(x)
in timestep 250 at the beginning of the second shooting interval. A presentation of the
complete solution over time, in analogy to the examples of Sections 2.2 and 2.3, is possible
e. g. by creating a movie out of a sequence of timestep solutions. Alternatively, one could
consider the temporal development of one fixed point in the spatial domain. Examples
for this are provided in Chapter 5. In Figure 2.9, the situation after multiple shooting
convergence is depicted; the jump vanishes, and the update s(1)(x) of the shooting variable
coincides with the exact solution.
The results for different choices of µ and ω presented in Table 2.4 underline that one
should use as few shooting intervals as possible. This finding corresponds to the previously
discussed ODE context. In Example 2.4, one shooting interval is sufficient to solve the
problem, i. e., simple shooting is stable. Although we can work with finer decompositions of
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the solution interval, the table shows that an increase in the number of shooting intervals
leads to a larger amount of iterations of the inexact Newton solver (here we use GMRES,
see Chapter 4). Furthermore, the increase in computing time to reach the same accuracy
is inacceptable.

Table 2.5. Example 2.4: Three different cases: the heat equation, the Helmholtz
equation and a nonlinear equation (from left to right).

#SI µ = 0, ω = 0 µ = 0, ω = 7 µ = 1, ω = 0
#it ‖F‖ time(s) #it ‖F‖ time(s) #it ‖F‖ time(s)

1 2 3.0·10−11 46 2 1.4·10−10 46 2 3.0·10−11 61
2 4 1.7·10−10 52 5 3.6·10−10 57 4 2.4·10−09 68
4 9 7.9·10−10 70 12 1.1·10−09 81 12 6.0·10−07 96
5 20 1.2·10−09 109 20 1.8·10−09 108 20 1.8·10−06 125
10 87 8.7·10−12 371 104 1.3·10−11 414 118 1.8·10−05 475

A two-component system with separated temporal boundary values. This kind
of problem acts as a blueprint for later optimal control problems, where the two equations
constitute the state and adjoint problems, respectively.

Example 2.5. The second problem resembles the BVP presented in Section 2.2 in the
ODE context; we are confronted with a two-component system where the initial values of
the first component are imposed at t = 0; those of the other component are prescribed at
t = T . The concrete problem reads:

∂tu1(x, t)−∆(u1(x, t)) + u1(x, t)2 = f(x, t) in Ω × I, (2.44a)
u1(x, t) = 0 on ∂Ω × I, (2.44b)
u1(x, 0) = u0

1(x) in Ω, (2.44c)
−∂tu2(x, t)−∆(u2(x, t)) + 2u1(x, t)u2(x, t) = g(x, t) in Ω × I, (2.44d)

u2(x, t) = 0 on ∂Ω × I, (2.44e)
u2(x, T ) = uT2 (x) in Ω. (2.44f)

Systems of this kind generalize the ODE boundary value problem (2.1) to the PDE case,
where the ODE boundary values u(a) and u(b) are replaced by the functions u0

1(x) and
uT2 (x), respectively. However, the system (2.44) does not reflect the most general case. It is
not fully coupled, as the first equation does not depend on u2. Furthermore, the boundary
conditions are separated, i. e. each solution variable (u1 resp. u2) is fixed at exactly one
temporal boundary. Suchlike problems constitute the core of the optimal control problems
discussed in the remainder of this thesis, compare equations (3.32a)–(3.32b) or (3.48a)–
(3.48b). Important features of such systems are the independence of the first equation on
the second solution variable u2 and the linearity as well as the backward-in-time structure
of the second equation.
In the OCP framework, the two components are denoted by the terms state and adjoint
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equation as in Section 2.3. However, there is an important difference between ODE and
PDE problems bearing such a structure; in Subsection 2.3.1 we ignored the backward
direction of the adjoint equation and solved it forward with a parameterized initial value
(see (2.17a∗∗)–(2.17b∗∗)), which picks up the original idea of shooting methods to transform
BVP into simpler IVP. However, this is not possible in the PDE framework. Hence, solving
a parabolic problem backward in time, i. e., starting from the given final state at t = T and
searching a belonging initial state at t = 0, is a severely ill-posed inverse problem. In the
book of Engl et al. [37], the authors explain the abstract background of this ill-posedness
and illustrate it by concretely discussing the backward heat equation. From their reasoning
it becomes clear that this difficulty cannot be circumvented, i. e., the second component
(2.44d) – (2.44f) has to be actually solved backward in time. The algorithms achieving this
are discussed in the more specific OCP context in Sections 5.1 and 5.2.
In Figures 2.10 and 2.11, we show the results of Example 2.44, being concretized as follows:
The computational domain is again given as Ω × I = [0, 1]2 × [0, 1]; the data for the first
component, f(x, t) and u0

1(x), are chosen such that u1(x, t) = (t− t2) sin(4πx1) sin(2πx2)
is the exact solution (the structure is described and depicted in the context of Example
2.4). For the second component, we choose g(x, t) ≡ 0 and uT2 (x) = sin(πx1) sin(πx2). The
solution is computed on two shooting intervals, where the shooting variables of the first
component are initially given as s(0)(x) = 1

2 min{x1, 1− x1}min{x2, 1− x2}. Those of the
second component are given as λ(0)(x) = −2 min{x1, 1− x1}min{x2, 1− x2}. Figure 2.10
displays the first component at t = 1

2 (timestep 250) before and after shooting. Figure
2.11 depicts the boundary value for t = 1 (timestep 500) in the same setting. The solver
requires one inexact Newton iteration with 3 GMRES steps, which takes 521 seconds.

Figure 2.10. Example 2.5: Primal solution u1(x, t) at t = 1
2 ; timestep 250 before

convergence (artificial value)(left); timestep 250 after convergence
(correct value up to tolerance)(right).
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Figure 2.11. Example 2.5: Dual solution u2(x, t) at t = 1 ; timestep 500 before
convergence (artificial value)(left); timestep 500 after convergence
(correct value up to tolerance)(right).
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This thesis focusses on optimal control problems (OCP) subject to parabolic PDE side
conditions and in particular on their numerical solution by means of multiple shooting
methods. The present chapter is devoted to a brief presentation of the general OCP. We
inroduce the notation for an abstract OCP governed by parabolic side conditions in Section
3.1 and present examples that are discussed throughout the rest of the thesis in a modular
manner. General results on existence and uniqueness for parabolic OCP are provided
and applied to an example in Section 3.2. Section 3.3 is concerned with well-known
optimality conditions on which our later algorithms are based; as they involve first and
second order derivatives of certain operators, the optimality conditions are complemented
by a presentation of ways to generate derivative information. In the final Section 3.4, we
introduce non-standard modifications of the previously discussed OCP that are necessary
for an embedding into the multiple shooting context. Under certain assumptions, we show
the equivalence to the original control problems. Additional control constraints are covered
by the theory in Section 3.2 but will be first considered in Chapter 6.

3.1 An abstract optimal control problem (OCP)

A general OCP consists in the minimization of a given functional,

min
(q,u)

J(q, u), (3.1)

subject to a differential equation
e(q, u) = 0. (3.2)

The minimum is sought in a set of functions u that fulfil a given side condition which
depends on a control quantity q. The special case of an ODE side condition,

u̇(t) = f(t, u(t), q(t)), u(t0) = u0,

on a solution interval I = [t0, tf ] has been discussed in Section 2.3. Here, u : I → D ⊂ Rn

and q : I → D̂ ⊂ Rp, and if f ∈ C(I ×D × D̂), which is a common regularity requirement
that guarantees the existence of a solution (Peano existence theorem), then the classical
spaces of continuously differentiable functions up to a certain order provide a sufficient
background.

37



3 Optimal Control Theory

Remark 3.1. In the literature, there exists a notational inconsistency concerning the state
and control variables. In the optimal control community, the control is denoted by u, the
state by y, and the adjoint by p or λ. In numerical analysis of PDE, in contrast, one
denotes the control by q and uses u and z for the state and the adjoint, respectively. As
provided in Chapter 2, the numerical analysis nomenclature is supported throughout this
thesis.

If (3.2) denotes a PDE, solving the optimization problem becomes more complicated.
Depending on the given differential operator, suitable regularity assumptions have to be
identified. The parabolic OCP that will dominate the remainder of this thesis reads:

min
(q,u)

κ1
2 J1(u) + κ2

2 J2(u(T )) + α

2 ‖q‖
2
Q (3.3)

subject to the initial boundary value problem

∂tu(x, t) +A(u(x, t)) + B(q(x, t)) = f(x, t),
u(x, 0) = u0(x).

(3.4)

The computational domain of the problem is a space-time cylinder Ω × I, where Ω ⊂ Rd

(for d ∈ {1, 2}) is a bounded convex polygonal spatial domain (i. e. Ω has a Lipschitz
boundary Γ ) and I = (0, T ] is a finite time interval.
Next, we introduce the abstract function spaces suitable for problem (3.3)–(3.4). Let V
and H be real Hilbert spaces of functions on Ω with a continuous and dense embedding
i : V ↪→ H. H may be identified with its dual spaceH∗ via the Riesz representation theorem,
which provides, together with the dual space V ∗ of V , a Gelfand triple V ↪→ H ∼= H∗ ↪→ V ∗

on Ω. These function spaces enable an accurate description of the state u(t) at a fixed
timepoint t. The duality product in V ∗ × V is denoted by 〈·, ·〉V ∗×V . The mentioned
embedding i : V ↪→ H and its adjoint, the embedding i∗ : H∗ ↪→ V ∗, permits the
identification 〈i∗(h), v〉V ∗×V = (h, i(v))H for v ∈ V, h ∈ H. In this regard, we may
consider the duality product as a continuous continuation of the scalar product (·, ·)H .
This interpretation is explained in detail by Lions [75] or Wloka [115]. We assume further
that the control q(t) at a fixed timepoint t lies in a Banach space R.
The full function spaces (including the time dependence) for state and control variables
are usually Bochner spaces of the type W (I;Y ) where the time variable t is mapped
into a Banach (or Hilbert) space Y . The natural setting for the parabolic PDE is the
following: For given q(x, t) ∈ Q := L2(I;R) and righthand side f(x, t) ∈ L2(I;V ∗), find a
state function u(x, t) that satisfies (3.4) and obeys additionally imposed suitable boundary
conditions. Under these structural assumptions, the solution space for u(x, t),

X := {v(x, t) ∈ L2(I;V ) | ∂tv(x, t) ∈ L2(I;V ∗)}, (3.5)

is known to be continuously embedded into the space C(I;H) of temporally continuous
functions with values in H (see, e. g., Dautray & Lions [30]). Thus, an initial condition
u0(x) ∈ H is well-defined.
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Remark 3.2. More generally, one may take X̃ as the space of functions v(x, t) ∈ Lp(I;V )
with time derivative ∂tv(x, t) ∈ Lp

′(I;V ∗), where p and p′ are conjugate indices, i. e.
1
p + 1

p′ = 1. The embedding X̃ ↪→ C(I;H) still holds in this case.

The most important constituents of the PDE side condition are the operators. The partial
derivative w. r. t. time, ∂t : L2(I;V ) → L2(I;V ∗), is linear. The differential operator
A : X → L2(I;V ∗) acting on the state u(x, t) is unrestricted, whereas the operator
B : Q → L2(I;V ∗) acting on the control q(x, t) is always linear in our examples. If
R ↪→ V ∗, one assumes B to be an injection operator.
In the discrete setting introduced in Section 4.1, we employ projection type methods (more
precisely, Galerkin finite element methods). As the strong form of the PDE given in (3.4)
is not appropriate in this context, a weak or variational formulation is derived. Therefore,
need some preparatory definitions are required. We consider Ā : V → V ∗ and B̄ : R→ V ∗

as pointwise-in-time operators corresponding to A and B, respectively, and assume that
the elliptic operator Ā is coercive. Then the following scalar products and semilinear forms
can be defined:

((u, ϕ))I :=
∫
I

(u(t), φ)H dt, aI(u)(ϕ) :=
∫
I

〈Ā(u(t)), φ〉V ∗×V dt,

bI(q)(ϕ) :=
∫
I

〈B̄(q(t)), φ〉V ∗×V dt.

Here, the test functions φ ∈ V , corresponding to the pointwise-in-time operators, are
distiguished from the temporally distributed test functions ϕ ∈ X. The index I denotes
the integration interval (which may later on be a shooting interval or a discrete time step
interval). The explicit indexing is omitted if it is evident from the context. After these
notational preparations, the weak formulation of (3.4) reads: Find u ∈ X, such that for all
ϕ ∈ X

((∂tu, ϕ)) + a(u)(ϕ) + b(q)(ϕ) + (u(0), ϕ(0)) = ((f, ϕ)) + (u0, ϕ(0)), (3.6)

where the initial condition is weakly included.
To complete the discussion of the parabolic OCP, we finally explain the details of the
objective (or cost) functional J(q, u). As provided by (3.3), it comprises three terms: J1(u)
is assumed to be of tracking type, i. e.

∫
I ‖u(t)− û(t)‖2 dt (where û ∈ X is a given function

to be matched). The end-time term J2(u(T )) := ‖u(T )− ûT ‖2 similarly aims at matching
a given function ûT ∈ V . Finally, the term α

2 ‖q‖
2
Q serves as a regularization term, where

α ≥ 0 is the usual regularization parameter. In the optimal control context, it is also often
regarded as measuring the costs of the control q.

Remark 3.3. In the multiple shooting framework laid out in Section 3.4, it is important
that the distributed part J1(u) of the objective functional can be localized to contributions
from the subintervals of a decomposition of I. Our tracking type structure ensures this
property.

By imposing the conditions κi ∈ {0, 1}, κ1 6= κ2,usually either the distributed or the
end-time matching term is cancelled out. In Section 2.3, for instance, we exclusively treated
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distributed functionals; in the ODE context the different functional types are known
as Lagrange (distributed), Mayer (end-time) or Bolza (both distributed and end-time,
excluded by our conditions on κi) terms and can be transformed into one another. In
later chapters, theoretical statements will refer to the case κ1 6= 0, with the required
modifications for end-time matching functionals being considered in remarks.
Concluding this section, the concrete control problems that serve as examples in the later
Chapters 5 – 7 are presented in a modular way. In order to test the multiple shooting method
and its adaptations, simple examples suitable for highlighting certain characteristics are
considered. The three main modules are the computational domain Ω ⊂ R2, the differential
operator A acting on the state variable u, and the objective functional J(q, u). We discuss
these three modules separately and list their concretizations. Certain headwords referring
to the respective configuration are displayed in boldface.

The computational domain Ω. The following simple subsets of R2 are used as spatial
domains. They are illustrated in Figure 3.1.

a) the square [−1, 1]× [−1, 1],

b) the rectangle [−1, 3]× [−1, 1].

(1,−1)

(−1,1) (1,1)

(−1,−1)

(−1,1)

(−1,−1)

(3,1)

(3,−1)

Figure 3.1. The computational domains for PDE examples in Chapters 5 – 7:
the square (left) and the rectangle (right) .

The parabolic side condition (in particular, the differential operator A). All
parabolic side conditions for the OCP can be viewed as the heat equation, complemented
by additional terms. These modifications often lead to a different behavior of the solution
u(x, t). We describe the most important modifications, discussing the respective appropriate
framework (function spaces, conditions for existence and uniqueness of solutions, etc.). As
starting point, the general parabolic problem is stated:

∂tu(x, t) +A(u(x, t)) = f(x, t) in Ω × I,
β1u(x, t) + β2∂nu(x, t) = g(x, t) on Γ × I,

u(x, 0) = u0(x) in Ω.
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In the configurations below, the control enters the parabolic PDE always via the righthand
side, where q(x, t) replaces f(x, t) in Ω × I. This kind of problem is denoted as distributed
control problem. Linear control terms are considered exclusively. In detail, the following
problems are focussed:

a) The heat equation:

∂tu(x, t)−∆u(x, t) = f(x, t) in Ω × I. (3.7)

Here, A(u(x, t)) = −∆u(x, t) is the Laplace operator. In case of homogeneous
Dirichlet boundary values, V = H1

0 (Ω) (i. e., the boundary condition is built into
the function space), H = L2(Ω) and V ∗ = H−1(Ω) (the dual space of H1

0 (Ω)). It
can then be shown that, for f ∈ L2(I;H−1(Ω)) and u0 ∈ L2(Ω), the heat equation
(3.7) has a unique solution in the space X from (3.5) (see, e. g., Wloka [115] or, for a
slightly different configuration, Evans [39]). These issues are revisited in Section 3.2.

b) The nonstationary Helmholtz equation:

∂tu(x, t)−∆u(x, t)− ωu(x, t) = f(x, t) in Ω × I. (3.8)

This linear equation can be regarded as part of a system of reaction-diffusion equations.
It is based on the stationary Helmholtz equation −∆u(x, t) = ωu(x, t) with ω ≥ 0
which is, on the one hand, important for examining the wave equation (and other
nonstationary PDE) by the method of separation of variables; the wave equation
∂ttu(x, t) −∆u(x, t) = f(x, t) can be split into a (stationary) Helmholtz equation
and a second order ODE; this is not pursued any further. On the other hand, the
Helmholtz equation describes the eigenvalue problem of the Laplace operator, which
will become important in Chapter 5.
The same configuration is the same as for the heat equation, i. e., V = H1

0 (Ω) in the
case of distributed control, together with the respectively suitable spaces H and V ∗
as defined above. Unique solvability is ensured by the results in Section 3.2.

c) The nonstationary Helmholtz equation with nonlinearity:

∂tu(x, t)−∆u(x, t)− ωu(x, t) + h(u(x, t)) = f(x, t) in Ω × I. (3.9)

The operator A(u(x, t)) from the nonstationary Helmholtz equation is now comple-
mented by a nonlinear term h(u(x, t)), i. e. A(u) = −∆u − ωu + h(u). For ω < 0,
the result can be regarded as part of a system of nonlinear reaction-diffusion equa-
tions. The nonlinearity h(u) has to fulfil additional conditions in order to guarantee
solvability (uniqueness is not to be expected in the nonlinear case); we consider
polynomial nonlinearities, e. g., h(u) = u3. The space configuration can again be
chosen identically to the former two examples, which will be discussed in detail below
(see the end of Section 3.2).

Depending on the sign of the parameter ω, these equations can be viewed as simple
prototypes for general systems of either Helmholtz type equations or reaction-diffusion
equations which appear in chemical applications. The FitzHugh-Nagumo equations for
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3 Optimal Control Theory

modelling the dynamics of activation and deactivation of neurons, especially the impulse
conduction in the axon, are another generalization of the third example.

The objective functional J(q, u). In addition to the choice between a distributed and
an end-time tracking term, the functional may involve only a part Ω̃ ⊂ Ω of the domain or
of the boundary, Γ̃ ⊂ Γ . The regularization term α

2 ‖q‖
2
Q is influenced by the choice of the

regularization parameter α. Thus, the following configurations are obtained:

a) The distributed tracking functional (κ1 = 1, κ2 = 0)

J(u, q) = 1
2

∫
I

∫
Ω

(
u(x, t)− û(x, t)

)2 dxdt+ α

2 ‖q‖
2
Q.

In this case, homogeneous Dirichlet boundary conditions (β2 ≡ 0, g(x, t) ≡ 0) are
imposed to the PDE constraint. Thus, V = H1

0 (Ω) is appropriate, which together
with H = L2(Ω) and V ∗ = H−1(Ω) constitutes a Gelfand triple.

b) The end-time matching functional (κ1 = 0, κ2 = 1)

J(u, q) = 1
2

∫
Ω

(
u(x, T )− ûT (x)

)2 dx+ α

2 ‖q‖
2
Q.

Although it can be combined with arbitrary boundary conditions, this functional
type will be used in the framework of distributed control and homogeneous Dirichlet
boundary data.

3.2 Existence and uniqueness of solutions

This section provides a discussion of (unique) solvability of OCP such as (3.1) – (3.2). The
literature yields several approaches that rely on different sets of assumptions. The most
important classification concerns reduced vs. non-reduced methods. Although the reduced
framework plays a prominent role in later chapters, here the non-reduced approach is
focussed. This enables more general existence results that comprise all the above examples.
The alternative approaches are set into relation. The proofs within this section are based
on Fursikov [40].
The section comprises three parts, two abstract theorems for OCP subject to linear and
nonlinear side conditions (3.2), respectively, and a concrete result that is tailored to the
above mentioned nonlinear Helmholtz equation of reaction-diffusion type.

Preparations. Before starting with the linear case, the basic framework is developped.
We consider the abstract extremal problem

min
y

J(y) subject to F (y) = 0, y ∈ D ⊂ Y. (3.10)

Y is a normed vector space, D ⊂ Y is a closed and convex subset (i.e., for each two
y1, y2 ∈ D, the connecting line segment {y | y = λy1 + (1 − λ)y2, λ ∈ (0, 1)} is fully
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contained in D). Furthermore, the functional J : D → R is assumed as weakly lower
semi-continuous, i. e.,

lim inf
n→∞

J(yn) ≥ J(y) (yn ⇀ y),

(the symbol ⇀ denoting, as usual, weak convergence), and as bounded from below, i. e.,
for all y ∈ D there is c ∈ R with

c ≤ J(y) ≤ ∞.

The operator F : Ŷ → Z from the side condition is assumed to be continuous. Here, Ŷ
is a reflexive Banach space which is continuously embedded into Y , and Z is a normed
vector space.

Definition 3.1. An element y ∈ Ŷ is called admissible for problem (3.10) if F (y) = 0, y ∈
D and J(y) <∞. The set of all admissible elements is denoted by Ŷad.

The following two assumptions conclude the preparation.

Assumption 3.1. (i) The admissible set Ŷad ⊂ Ŷ is nonempty. (ii) For each κ > 0 the
set {y ∈ Ŷad | J(y) < κ} is bounded in Ŷ .

Remark 3.4. The condition y ∈ D, where D ⊂ Y is closed and convex, is sufficiently
general to comprise the case of additional control or state constraints. This case is revisited
in Chapter 6. In the current framework, D = Y is assumed.

The linear case. The operator F : Ŷ → Z is given as F (y) = Ly + F0 with a linear
continuous operator L : Ŷ → Z and an element F0 ∈ Z. Then the following theorem holds.
As the proof makes use of some notions that are important in the optimization context, we
present it as well. This also simplifies the verification of certain assumptions in concrete
examples.

Theorem 3.1. Let the assumptions and conditions of the preparatory subsection hold, and
let F : Ŷ → Z be an affine linear operator. Then problem (3.10) has a solution ŷ ∈ Ŷ .
If, in addition, the functional J : D → R is strictly convex, i. e. if for all y1, y2 ∈ D with
y1 6= y2 and for all λ ∈ (0, 1)

J
(
λy1 + (1− λ)y2

)
< λJ(y1) + (1− λ)J(y2),

then the solution of (3.10) is unique.

Proof. By Assumption 3.1 (i) Ŷad is nonempty, thus there exists a minimizing sequence
(yn)n∈N ⊂ Ŷad with limn→∞ J(yn) = infy∈Ŷad J(y). The convergent sequence (J(yn))n∈N ⊂
R is then bounded, i. e., J(yn) ≤ κ < ∞ holds uniformly. Assumption 3.1 (ii) yields
the boundedness of (yn)n∈N in Ŷad. From the latter the existence of a weakly convergent
subsequence (ynk)k∈N ⊂ Ŷad with limit ŷ is obtained. Due to the continuous embedding
Ŷ ↪→ Y , and recalling the definition of weak convergence, the weak convergence ynk ⇀ ŷ can
be inferred also in Y . Since D ⊂ Y is closed and convex, it is also weakly sequentially closed
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which implies ŷ ∈ D. Using the adjoint operator L∗ : Z∗ → Ŷ ∗, the weak convergence
(ynk)k∈N ⊂ Ŷad entails for all v ∈ Z∗:

〈v, Lynk〉Z∗×Z = 〈L∗v, ynk〉Ŷ ∗×Ŷ → 〈L
∗v, ŷ〉Ŷ ∗×Ŷ = 〈v, Lŷ〉Z∗×Z .

Due to (ynk)k∈N ⊂ Ŷad, Lynk + F0 = 0 holds, from which Lŷ + F0 = 0 can be inferred.
By assumption, J is weakly lower semicontinuous, and therefore the weak convergence
ynk ⇀ ŷ in Y yields J(ŷ) ≤ lim infk→∞ J(ynk). This means ŷ ∈ Ŷad, thus ŷ solves problem
(3.10).
Assume strict convexity of J and let y1 and y2 be two different solutions. As Ŷad is convex,
the line segment between y1 and y2 is contained in Ŷad, specifically the point y1+y2

2 . Strict
convexity of J yields J(y1+y2

2 ) < 1
2J(y1) + 1

2J(y2), and thus neither y1 nor y2 can be a
minimizer.

This abstract result on general extremal problems may be concretized to problem (3.1) –
(3.2) as follows. The abstract space Y from above is replaced by Q×X with X as in (3.5)
and Q ⊂ L2(I;R) the control space. Note that the range space V and its dual V ∗ in the
definition of X are chosen according to the type of prescribed boundary condition. As Q×X
is a Banach space, we may assume that Ŷ ≡ Y in our concrete configuration. Consider
further a closed convex subset Qad ⊂ Q (until Chapter 6, we take Qad = Q, see Remark
3.4), and let the objective functional J(q, u) be defined on Ŷad ≡ Yad := Qad ×X. Section
3.3 states that in this framework J (as defined in (3.3)) fulfils the abstract assumptions
of continuity, boundedness from below, and strict convexity. Furthermore, the abstract
affine linear operator Ly + F0 is given by the linear parabolic PDE e(q, u) = 0 (e. g. the
heat equation or the nonstationary Helmholtz equation) which comprises the affine part F0
as a potential non-homogeneous righthand side f . Here, e : Qad ×X → L2(I;V ∗), where
the range space is a concrete instantiation of Z. The admissible set Yad consists of all
(q, u) ∈ Qad ×X that fulfil e(q, u) = 0 and J(q, u) <∞. By applying Assumption 3.1 in
this context, we obtain:

Corollary 3.2. Problem (3.1) – (3.2) has a unique solution (q̂, û) ∈ Qad ×X.

Remark 3.5. In the introduction to this section, the reduced approach was mentioned; it
interprets the state u as a function of the control q. For the sake of completeness, we state
that in the reduced framework, classical existence theorems from variational calculus (see,
e. g., Dacorogna [29]) can be applied. However, to obtain the relationship u = u(q), unique
solvability of the parabolic side condition e(q, u(q)) = 0 has to be guaranteed, which implies
the existence of a solution operator S : Q → X. In the linear framework, this is easily
obtained (see, e. g., Wloka [115]), but for nonlinear examples, the uniqueness condition
on the PDE solution is not satisfiable in general; due to the resulting lack of a solution
operator, the reduced approach will not work in this case.

The nonlinear case. In addition to the assumptions of the preparatory subsection, a
normed vector space Y ∗ is considered for which the following embeddings hold:

Y ↪→ Y ∗ (continuous embedding), Ŷ ↪→↪→ Y ∗ (compact embedding).
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Furthermore, F : Ŷ → Z is assumed to be a nonlinear continuous operator which fulfils
the following

Assumption 3.2. Let there be an everywhere dense subset S ⊂ Z∗ so that, for each v ∈ S,
the continuous continuation of the functional y 7→ 〈v, F (y)〉Z∗×Z from Ŷ to Y ∗ exists.

The extremal problem (3.10) is nonlinear in this case, but the admissible set Ŷad is given as
in Definition 3.1. Let the Assumptions 3.1 and 3.2 and the other prerequisites be fulfilled,
then one can show

Theorem 3.3. There is a solution ŷ ∈ Ŷ of the nonlinear problem (3.10).

Proof. This formulation is based on Fursikov [40], where the proof is included.

Note that Theorem 3.3 comprises no statement on the uniqueness of the solution, which
is to be expected in the general nonlinear case. Furthermore, the additional conditions,
especially the required embeddings, have to be verified in each concrete example.
This section is concluded by recapitulating an existence result for a distributed tracking
functional subject to the nonstationary nonlinear Helmholtz equation, thereby formulating
conditions on the nonlinearity.

A concrete existence result for a nonlinear problem. In the following, conditions
on the term h(u) from the nonlinear example above are discussed, some basic estimates are
repeated, and a concrete existence result is stated. Instead of presenting the proofs (which
can be found in Fursikov [40]) the results are compared to Hinze et al. [59] or Tröltzsch
[108]. It can be seen from our presentation and the cited literature that even for simple
semilinear parabolic equations, the theory behind is nontrivial.
Consider the problem

∂tu(x, t)−∆u(x, t) + h(u(x, t)) = q(x, t) in Ω × I,
u(x, t) = 0 on Γ × I,
u(x, 0) = u0(x) in Ω.

(3.11)

Later on, the following conditions are required to be fulfilled, which is the case for many
standard nonlinearities such as polynomials h(u) = ±un (n ∈ N), exponential functions
h(u) = ±e±u, or the trigonometric functions h(u) = sin(u) and h(u) = cos(u).

Assumption 3.3. (i) Let one of the following conditions hold: supu≥1

∣∣∣h(u)
u

∣∣∣ < ∞ or

limu→∞
∣∣∣h(u)
u

∣∣∣ =∞. If h(u)
u → −∞ for u→∞, then there are constants C1 > 0, C2 > 0

so that for u > 0 the following inequality holds:

Φ(u) :=
u∫

0

h(λ) dλ ≥
(
C1 −

1
2

) ∣∣∣∣∣h(u)
u

∣∣∣∣∣− C2.

(ii) Let one of the following conditions hold: supu≤−1

∣∣∣h(u)
u

∣∣∣ <∞ or limu→−∞
∣∣∣h(u)
u

∣∣∣ =∞.
If h(u)

u →∞ for u→ −∞, then there are constants C1 > 0, C2 > 0 so that for u < 0 the
inequality for Φ(u) holds.
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The assumption is checked only for the case h(u) = u3 which is the standard nonlinearity in
later chapters. We have limu→∞

∣∣∣u3

u

∣∣∣ = limu→∞ u
2 =∞ and limu→−∞

∣∣∣u3

u

∣∣∣ = limu→∞ u
2 =

∞. Due to the second limit and according to Assumption 3.3 (ii), the inequality for Φ has
to be checked in the case u < 0. This results in

Φ(u) =
u∫

0

h(λ) dλ = −
0∫
u

λ3 dλ =
[
−1

4λ
4
]0

u
= 1

4u
4 ≥ 1

4u
2 − 1.

Thus, the inequality for Φ holds with C1 = 3
4 and C2 = 1.

For the existence result of Theorem 3.4, the following definition of the space X2,1 is required.

Remark 3.6. The solution space X for the parabolic problems (see (3.5)) is a Hilbert space,
which is proved, e. g., by Wloka [115]. As the continuous embedding X ↪→ C(Ī;H) holds,
we can infer that X is a subspace of L2(I;H).

Definition 3.2. We consider the subspace X2,1 of L2(I;L2(Ω)):

X2,1 = {u(x, t) ∈ L2(I;L2(Ω)) | ‖u‖2X2,1 <∞} (3.12)

where the norm ‖u‖X2,1 is defined as

‖u‖X2,1 :=
√√√√∫

I

∫
Ω

[(∂tu(x, t))2(T − t)2 + |∇u(x, t)|2(T − t)] dxdt.

The nontriviality of the admissible set postulated in Assumption 3.1 (i) reads in the current
context: There is a pair (q, u) ∈ Qad ×X2,1 fulfilling (3.11), so that in addition∫

I

∫
Ω

(T − t)|h(u)u| dxdt <∞. (3.13)

The central result on OCP with semilinear parabolic side conditions unfolds as:

Theorem 3.4. There is a solution (q̂, û) ∈ Qad ×X2,1 to the problem

min
q,u

J(q, u) := 1
2‖u− ū‖

2
X + α

2 ‖q‖
2
Q s. t. (3.11),

and (3.13) is fulfilled for û.

Proof. The proof relies on an a priori estimate for functions u ∈ X2,1 that fulfil (3.13).
Both the estimate and the proof can be found in Fursikov [40].

Remark 3.7. The important feature of the presented configuration is that X2,1 is a subset
of L2(I;L2(Ω)). In all examples discussed in Section 3.1, the Hilbert space H is chosen as
L2(Ω), which results in X2,1 ⊂ L2(I;H). Thus, regarding Remark 3.6, the same function
spaces can be used as for the linear examples if only the conditions of the current subsection
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3.3 Optimality conditions and derivative generation

are fulfilled, which enables a unified treatment of all our examples. Sometimes, a more
restrictive alternative is used where q(x, t) has to lie in Lr(I;Lr(Ω)) with r > d

2 + 1. In our
two-dimensional examples (d = 2), this would necessitate r > 2, whereas in three spatial
dimensions, r would have to be chosen even larger than 5

2 . A similar restriction is made
also for the Neumann boundary control case; for these alternative configurations, see the
textbooks of Hinze et al. [59] or Tröltzsch [108].

3.3 Optimality conditions and derivative generation

As a basis for the solution methods presented in later chapters, now necessary and sufficient
optimality conditions for OCP are discussed. As most algorithms are formulated in terms
of reduced optimal control, these properties are derived in the reduced framework. The
optimality conditions involve derivatives of the objective functional as well as the PDE
differential operators. Therefore, the most important notions concerning differentiation
in function space are recalled. The last part of this section deals with methods for
actually computing the first and second order derivatives that are needed for evaluating
the optimality conditions.

Preparations. In the reduced approach, the set of independent variables of the OCP
(given by the control q and the state u in problem (3.1) – (3.2)) is reduced to the control
variable. Therefore, the existence of a solution operator S : Q→ X for (3.2) is postulated
that maps a given control to the corresponding state. This holds if the state u can be
expressed in a unique fashion as a function of the control q, i. e. u = u(q). In the following,
both notations S(q) and u(q) will be used on an equal footing. The dependence on q is
characterized by the following reformulation of the weak PDE (3.6):

((∂tu(q), ϕ)) + a(u(q))(ϕ) + b(q)(ϕ) + (u(q)(0), ϕ(0)) = ((f, ϕ)) + (u0, ϕ(0)). (3.14)

The OCP (3.1) subject to (3.14) can now be expressed in the following form:

min
q
Ĵ(q) := J(q, u(q)). (3.15)

Note that this OCP is unconstrained on Q, i. e., the side condition (3.14) is regarded as
solved. The functional Ĵ(q) is called the reduced objective functional. This concept can
be extended to more general situations with additional control or state constraints (see
Chapter 6), and in Chapter 5 a modified reduction strategy will be encountered in the
context of direct multiple shooting (DMS).

The formulation of the optimality conditions for the reduced problem (3.15) involves
directional derivatives, as well as differentials of the functional Ĵ . Therefore, we need the
following concepts from functional analysis, which can be found in Hinze et al. [59] and
Tröltzsch [108]. Let U and V be real Banach spaces, U an open subset of U and f : U → V
a mapping.
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Definition 3.3. If for given u ∈ U and h ∈ U the limit

δf(u)(h) := lim
t↘0

f(u+ th)− f(u)
t

exists as an element of V , then it is called the directional derivative of f in u in direction
h. If the limits exists for all directions h ∈ U then f is called directionally differentiable in
u and the mapping h 7→ δf(u)(h) is called the first variation of f in u.

This generalizes the concept of directional differentiability known from the finite dimensional
Euclidean space. A mapping which is directionally differentiable in u is not necessarily
continuous in u, and the first variation does not have to be a linear mapping.

Definition 3.4. If the first variation δf(u)(h) in u exists and coincides with a linear
continuous operator A : U → V , i. e. δf(u)(h) = Ah for all h ∈ U , then f is called
Gâteaux differentiable in u, and A is the Gâteaux derivative of f in u, in short A = f ′(u).

The Gâteaux derivative may be computed as a directional derivative. If f is Gâteaux
differentiable in u, the f ′(u) is an element of the dual space U∗.

Definition 3.5. The mapping f : U → V is called Fréchet differentiable in u ∈ U if there
is a linear continuous operator A : U → V and a mapping r(u, ·) : U → V so that for all
h ∈ U with u+ h ∈ U , it holds

f(u+ h) = f(u) +Ah+ r(u, h) with lim
‖h‖U→0

‖r(u, h)‖V
‖h‖U

= 0.

The linear operator A is called the Fréchet derivative of f in u, in short A = f ′(u).

Fréchet differentiability of a mapping f in u implies Gâteaux differentiability of f in u;
it is a generalization of the finite dimensional concept of total differentiability to Banach
spaces. All differentiability concepts are local but hold on the subset U ⊂ U if they hold in
every single point u ∈ U . The chain rule holds for Fréchet and Gâteaux derivatives, and
the concepts can be transferred to higher order derivatives.

Agreement. Further on, the objective functional J : Q × X → R and the differential
operator e : Q × X → L2(I;V ∗) are assumed to be sufficiently regular, which means at
least twice continuously Fréchet differentiable. This has to be checked anew for each specific
problem.

Optimality conditions. While the existence results of Section 3.2 have a global character
(they simply confirm existence of a solution), the following results are based on a more local
point of view. As stated before, one cannot always expect a unique optimum, but there
may be several solutions to a given OCP, each of which is an optimum possibly only within
a certain neighborhood. Only under additional restrictive assumptions, a local optimum is
also known to be global. A point q̂ is said to be a local solution of the reduced problem
(3.15) if there is a neighborhood D ⊂ Q of q̂ so that Ĵ(q̂) ≤ Ĵ(q) for all q ∈ D.
The following constitutes an important first order optimality condition for problem (3.15).
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Theorem 3.5. (a) Let the reduced objective functional Ĵ be Gâteaux differentiable within
an open set D ⊂ Q. If q̂ ∈ D is a local optimum of problem (3.15), then it holds

Ĵ ′q(q̂)(δq) = 0 ∀ δq ∈ Q. (3.16)

(b) If Ĵ is convex, then each q̂ fulfilling (3.16) is a local minimum of Ĵ .
Proof. (a) Let q̂ be a minimum and δq be an arbitrary direction. As D is open, there
is α ∈ R so that q̂ ± αδq are both in D. As q̂ is an optimal solution, one obtains
α−1(Ĵ(q̂ + αδq)− Ĵ(q̂)) ≥ 0 and α−1(Ĵ(q̂ − αδq)− Ĵ(q̂)) ≥ 0. Passing to the limit α→ 0,
this yields both Ĵ ′q(q̂)(δq) ≥ 0 and −Ĵ ′q(q̂)(δq) ≥ 0, from which the result immediately
follows.
(b) By a standard argument, the convexity of Ĵ implies Ĵ(q)− Ĵ(q̂)− Ĵ ′q(q̂)(δq) > 0. By
(3.16), this results in Ĵ(q) ≥ Ĵ(q̂).

If D is assumed as convex and closed, the equation (3.16) turns into the variational
inequality Ĵ ′q(q̂)(q̂ − δq) ≥ 0 for all δq ∈ D. This will be discussed in Chapter 6.
The next theorem contains a second order necessary optimality condition for problem
(3.15).
Theorem 3.6. If the reduced objective functional Ĵ is twice continuously Fréchet differen-
tiable within an open set D ⊂ Q, and if q̂ ∈ D is a local minimum of problem (3.15), then
it holds

Ĵ ′′qq(q̂)(δq, δq) ≥ 0 ∀ δq ∈ Q. (3.17)
Proof. As D is open, there is α ∈ R so that q̂ + αδq is in D. By Taylor expansion, one
obtains due to the optimality of q̂

0 ≤ Ĵ(q̂ + αδq)− Ĵ(q̂) = αĴ ′q(q̂)(δq) + α2

2 Ĵ ′′qq(q̂)(δq, δq) +R(αδq),

where the remainder term R(αδq) is of third order in αδq. Due to the optimality of q̂,
the first order necessary condition holds and division by α2/2 yields 0 ≤ Ĵ ′′qq(q̂)(δq, δq) +
2/α2R(δq). When passing to the limit α→ 0, the remainder term vanishes and the stated
resultis achieved.

Finally, a second order sufficient optimality condition is quoted. The proof relies again on
Taylor expansion and is omitted (see, e. g., Hinze et al. [59] for details).
Theorem 3.7. Let the reduced objective functional Ĵ be twice continuously Fréchet dif-
ferentiable within an open neighborhood D ⊂ Q of q. Further, let q fulfil the first order
necessary condition (3.16). Assume there is γ > 0, such that the second order sufficient
condition

Ĵ ′′qq(q)(δq, δq) ≥ γ‖δq‖2Q (3.18)
holds for all δq ∈ D. Then there are r > 0 and σ > 0, so that the quadratic growth
condition

Ĵ(q + δq) ≥ Ĵ(q) + σ‖δq‖2Q

holds for all δq ∈ Br(q) ⊂ D. The latter is a reformulation of the optimality of q.
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A method for sensitivity computation. Common optimality conditions are based
on differentiability properties of the reduced objective functional. Therefore, computable
representations of the first and second order derivatives of Ĵ given by Ĵ ′q(q) and Ĵ ′′qq(q) are
required. We present a way of computing these derivatives by solving certain additional
equations; the formulation is done in a function space setting, but a discrete analogue is
provided in Chapter 4.
There are two main methods for derivative computation, the sensitivity approach and the
adjoint approach, which are both applicable for first as well as second order derivatives. As
our further discussion shows, the sensitivity approach is not efficient in the parabolic OCP
context; therefore, the focus is on the adjoint method, which also underlies all practical
PDE examples presented in this thesis. Besides an explicit derivation, it will also be shown
how to embed the adjoint method into the Lagrange formalism context which becomes
important for later developments. The presentation is mainly influenced by Hinze et al.
[59] and Meidner [84], where detailed presentations of the sensitivity approach are included
as well.

For convenience, the OCP under consideration is restated in an abstract form which is
tailored to the following discussion:

min
q

Ĵ(q) := J(q, u(q)) (3.19)

where the weak parabolic side condition (the state equation)

e(q, u(q);ϕ) = 0 (3.20)

has already been solved and u(q) is the state belonging to the given control q, which can
be expressed by means of the solution operator S : Q → X, q 7→ S(q) ≡ u(q). The first
order directional derivative of Ĵ at the point q ∈ Q in direction δq ∈ Q is then given by

Ĵ ′q(q)(δq) = J ′q(q, u(q))(δq) + J ′u(q, u(q))(u′q(δq))
= 〈J ′q, δq〉Q∗×Q + 〈J ′u, u′q(δq)〉X∗×X
= 〈J ′q, δq〉Q∗×Q + 〈(u′q)∗(J ′u), δq〉Q∗×Q.

(3.21)

The operator u′q : Q → X is linear and continuous; its application u′q(δq) to a direction
δq ∈ Q is abbreviated by δu and called the sensitivity of u w. r. t. q. In the last abstract
representations, the arguments (q, u(q)) were omitted, and the adjoint operator (u′q)∗ :
X∗ → Q∗ was used. The sensitivity δu is obtained abstractly as the solution of a linearized
state equation

e′u(δu) + e′q(δq) = 0. (3.22)

Assuming that the operator e′u has a bounded inverse, the linear operator u′q may be
expressed as

u′q(δq) = −(e′u)−1[e′q(δq)]. (3.23)

We omit the argument δq to obtain the following expressions:

u′q = −(e′u)−1 ◦ e′q ⇐⇒ u′
∗
q = −e′∗q ◦ (e′u)−∗. (3.24)
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3.3 Optimality conditions and derivative generation

Inserting the last expression into (3.21)results in

Ĵ ′q(q)(δq) = 〈J ′q, δq〉Q∗×Q − 〈[e′
∗
q ◦ (e′u)−∗](J ′u), δq〉Q∗×Q. (3.25)

Now an adjoint variable z := (e′u)−∗(−J ′u) can be defined which is equivalent to z solving
the equation

e′
∗
u (z) + J ′u = 0. (3.26)

The latter equation is the so-called adjoint equation in its abstract version. The process
for computing and evaluating Ĵ ′q(q)(δq) can now be resumed as follows:

1. Solve the state equation e(q, u) = 0 (equation (3.20)) for u = u(q) ∈ X.

2. Solve the adjoint equation e′∗u (z) = −J ′u (equation (3.26)) for z = z(u(q)) ∈ X.

3. Evaluate 〈J ′q, δq〉Q∗×Q + 〈e′∗q (z), δq〉Q∗×Q which is an expression for Ĵ ′q(q)(δq).

(?)

As in concrete situations the quantities u and z have to be actually computed, we briefly
discuss the concrete equations. The state equation (3.20) corresponds to the side condition
(3.6):

((∂tu, ϕ)) + a(u)(ϕ) + b(q)(ϕ) + (u(0), ϕ(0)) = ((f, ϕ)) + (u0, ϕ(0)).

The reformulation (3.14) shows how to compute δu = u′q(δq), namely by solving the
linearized equation

((∂tδu, ϕ)) + a′u(u)(δu, ϕ) + (δu(0), ϕ(0)) = −b′q(q)(δq, ϕ), (3.27)

which is obtained by differentiating (3.14) w. r. t. q in direction δq. This corresponds to
(3.22). The general adjoint equation of (3.27) is given by

−((∂tδu∗, ψ)) + a′u(u)(δu∗, ψ) + (δu∗(T ), ψ(T )) = rhs(ψ). (3.28)

The righthand side term is given by the u-derivative of the objective functional which leads
to the concrete adjoint equation

−((∂tz, ψ)) + a′u(u)(z, ψ) + (z(T ), ψ(T )) = −J ′u(q, u)(ψ). (3.29)

This is (3.26) in our example. After solving (3.29), the resulting expression for Ĵ ′q(q)(χ)
which is given by

Ĵ ′q(q)(χ) = α((q, χ)) + b′q(q)(z, χ) (3.30)

can be evaluated. In Chapter 5, the same abstract technique will be used to show the
equivalence between two seemingly different approaches to direct multiple shooting. In
fact, the two DMS variants will turn out as a non-reduced and a reduced variant, and the
reduction will be established by a technically more difficult version of the above abstract
argument. We next present an alternative derivation of the adjoint equation which enables
us to represent the second derivative of Ĵ by solving additional linear problems.
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The solution of the OCP is known to be among the stationary points of the Lagrange
functional

L(q, u, z) = J(q, u) + e(q, u; z)
= J(q, u) + ((∂tu, z)) + a(u)(z) + b(q)(z)− ((f, z)) + (u(0)− u0, z(0))

(3.31)

which is the sum of the objective functional and the weakly formulated PDE side condition
(3.6). For theoretical background, consult the textbooks by Ito & Kunisch [60] or Luenberger
[78]. The Lagrange multiplier z denotes the solution of the equation L′u(ξ)(ψ) = 0 which
arises as part of the following optimality conditions (for brevity, ξ := (q, u, z)):

L′z(ξ)(ϕ) = ((∂tu, ϕ)) + a(u)(ϕ) + b(q)(ϕ)− ((f, ϕ)) + (u(0)− u0, ϕ(0)) = 0, (3.32a)
L′u(ξ)(ψ) = J ′u(q, u)(ψ)− ((∂tz, ψ)) + a′u(u)(ψ, z) + (z(T ), ψ(T )) = 0, (3.32b)

L′q(ξ)(χ) = J ′q(q, u)(χ) + b′q(q)(χ, z) = 0. (3.32c)

This KKT system consists of the derivatives of (3.31) and reveals the correspondency of
(3.6) and (3.32a), of (3.29) and (3.32b), and finally of (3.30) and (3.32c).

Remark 3.8. As predicted in Section 2.4, this system of optimality conditions has the
structure of a temporal parabolic BVP. Equation (3.32a) is the state equation to be solved
forward in time, and (3.32b) is the adjoint equation to be solved backward in time. The
initial values for both components are prescribed at t = 0 and t = T , respectively. Both
equations are additionally coupled by the control equation (3.32c).

It is now explained how the Lagrange formalism can be used to evaluate Ĵ ′q(q)(χ) via the
adjoint method. If u = u(q), i. e., the side condition has been solved for given q, then we
receive the equalities

Ĵ(q) = J(q, u) = L(ξ). (3.33)

For the derivative Ĵ ′q(q)(δq) this means

Ĵ ′q(q)(δq) = L′q(ξ)(δq) + L′u(ξ)(δu) + L′z(ξ)(δz), (3.34)

where, by the chain rule, δu := u′q(δq) and δz := z′q(δq). By assumption, the state equation
has already been solved, thus L′z(ξ)(δz) = 0 for all δz ∈ X. If now the adjoint equation is
solved (i. e., L′u(ξ)(δu) = 0 for all δu ∈ X), then (3.34) can be written as

Ĵ ′q(q)(δq) = L′q(q, u(q), z(q))(δq) = α((q, δq)) + b′q(q)(δq, z(q)).

Note that the same steps as in (?) have been carried out. It is straightforward to develop
a method for computing the second order directional derivative Ĵ ′′qq(q)(δq2, δq1), using the
relation (3.33). Equation (3.34) is differentiated to obtain

Ĵ ′′qq(q)(δq2, δq1) = L′′qq(ξ)(δq2, δq1) + L′′qu(ξ)(δq2, δu1) + L′′qz(ξ)(δq2, δz1)
+ L′′uq(ξ)(δu2, δq1) + L′′uu(ξ)(δu2, δu1) + L′′uz(ξ)(δu2, δz1)
+ L′′zq(ξ)(δz2, δq1) + L′′zu(ξ)(δz2, δu1) + L′′zz(ξ)(δz2, δz1)
+ L′u(ξ)(δu12) + L′z(ξ)(δz12).

(3.35)
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Again, the abbreviations δui = u′q(δqi) and δzi = z′q(δqi) are used, and in the nonlinear
case also δuji = u′′qq(δqj , δqi) and δzji = z′′qq(δqj , δqi) are required.

Remark 3.9. Whenever higher order derivatives are involved, the differentiation order has
to be read from right to left. For instance, L′′qu(ξ)(δq2, δu1) means that L(ξ) was first
differentiated w. r. t. u in direction δu1, and then L′u(ξ)(δu1) was differentiated w. r. t. q in
direction δq2.

Concerning the representation (3.35) of the second order derivative, the differentiation
order commutes as sufficient regularity was assumed for J(q, u) and e(q, u). Furthermore,
L′′zz(ξ)(·, ·) ≡ 0 as L′z(ξ)(·) is the state equation which does not depend on z. In the linear
case, the last two terms on the righthand side of (3.35) vanish, and in the nonlinear case,
they constitute the adjoint and state equations that are assumed as already solved. Thus,
only the first eight terms remain to be discussed. Again, there are two approaches to
evaluating Ĵ ′′qq(q)(δq2, δq1) that can be classified as a sensitivity and an adjoint method.
As before, only the adjoint approach is presented, which reflects the implementation of the
later examples; Meidner [84] provides a comparative presentation of both approaches.
For given δq, the following equation is solved to obtain δu:

L′′qz(ξ)(δq, ϕ) + L′′uz(ξ)(δu, ϕ) = 0 ∀ϕ ∈ X. (3.36)

Once δu is computed, it is used to solve the equation

L′′qu(ξ)(δq, ψ) + L′′uu(ξ)(δu, ψ) + L′′zu(ξ)(δz, ψ) = 0 ∀ψ ∈ X. (3.37)

for δz. Then the remaining terms of (3.35) constitute an evaluable expression for
Ĵ ′′qq(q)(δq, χ):

Ĵ ′′qq(q)(δq, χ) = L′′qq(ξ)(δq, χ) + L′′uq(ξ)(δu, χ) + L′′zq(ξ)(δz, χ). (3.38)

Equations (3.36) and (3.37) are called the tangent and the extra adjoint equations, respec-
tively. They both have to be solved in order to evaluate Ĵ ′′qq(q) via (3.38). As above for
the first order derivative, we state the concrete versions of the tangent and extra adjoint
equations in the framework of problem (3.3) subject to (3.6). The tangent equation is
given as

((∂tδu, ϕ)) + a′u(u)(δu, ϕ) + b′q(q)(δq, ϕ) + (δu(0), ϕ(0)) = 0, (3.39)

the extra adjoint equation reads

−((∂tδz, ψ))+a′u(u)(ψ, δz)+a′′uu(u)(δu, ψ, z)+J ′′uu(q, u)(δu, ψ)+(δz(T ), ψ(T )) = 0, (3.40)

and the Hessian of the reduced functional is then evaluated as

b′q(q)(χ, δz) + b′′qq(q)(δq, χ, z) + J ′′qq(q, u)(δq, χ). (3.41)

For a linear operator B and belonging form b(·)(·), the term b′′qq(·)(·, ·, ·) vanishes.
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3.4 PDE based OCP and multiple shooting

So far, the solvability as well as conditions for minimal solutions of the OCP (3.3) subject
to (3.6) have been discussed. In subsequent chapters, OCP of this type are solved by
multiple shooting methods similar to the ones presented in Chapter 2, and therefore the
OCP has to be modified. The following reformulation, especially the proof of equivalence,
is included in Carraro & Geiger [21]. It relies on a decomposition of the closure Ī of the
interval I = (0, T ) (cf. (2.15) in the ODE case)

Ī = {τ0} ∪
M−1⋃
j=0

Ij , Ij = (τj , τj+1]. (3.42)

Here, τ0 = 0 and τM = T , and the following redefinition (3.43) of the OCP is done in
terms of local control and state functions qj , uj on the subintervals Ij . They lie in the
intervalwise defined spaces Qj := L2(Ij ;R) and Xj := {v ∈ L2(Ij ;V ) | ∂tv ∈ L2(Ij ;V ∗)},
respectively. Sometimes, a more global view on these intervalwise problems is required,
and therefore the compositions u = ((uj)M−1

j=0 ) and q = ((qj)M−1
j=0 ) of the intervalwise states

and controls are defined as well as the corresponding spaces

X :=
M−1×
j=0

Xj , Q :=
M−1×
j=0

Qj .

The cross product means that X = {v ∈ L2(I;V ) | v|Ij ∈ Xj} and Q = {q ∈ L2(I;R) | q|Ij ∈
Qj} are function spaces on (0, T ) consisting of compositions of intervalwise defined func-
tions; for instance, u ∈ X and q ∈ Q. This implies X ( X and Q = Q, where X and
Q are the spaces defined in Section 3.1 for problem (3.3) subject to (3.6). With these
notations, the modified (non-reduced) control problem reads:

min
(q,u)

J̄(q,u):=
M−1∑
j=0

J j(qj , uj) = κ1
2

M−1∑
j=0

∫
Ij

‖uj − û|Ij‖2V dt

+κ2
2 ‖u

M−1(τM )− ûT ‖2H + α

2

M−1∑
j=0

∫
Ij

‖qj‖2Q dt (3.43a)

s. t. ((∂tuj , ϕ)) + a(uj)(ϕ) + b(qj)(ϕ)− ((f |Ij , ϕ))
+ (uj(τj)− sj , ϕ(τj)) = 0 for j ∈ {0, . . . ,M − 1}. (3.43b)

In this formulation, it becomes obvious why J1(u) has to be decomposable (cf. Remark
3.3). The equations (3.43b) constitute IVP on the subintervals Ij the exact initial values
u(τj) of which are unknown. Therefore, artificial initial values s = (sj)Mj=0 ∈ HM+1 have
to be imposed, which leads to jumps in the global solution u composed of the interval
solutions uj (i. e. u|Ij ≡ uj). Thus, problem (3.43) cannot be equivalent to the original
OCP, because u 6∈ C(Ī;H), whereas the solution u ∈ X of the global OCP has to be
continuous on I due to the embedding X ↪→ C(Ī;H) mentioned in Section 3.1. From
this it can be seen that the original solution space X is in fact a proper subset of X, as
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3.4 PDE based OCP and multiple shooting

postulated above. In order to establish equivalence of our modified OCP to the original
one, the global continuity of the solution u of (3.43) has to be enforced by imposing the
following additional continuity conditions:

(s0 − u0, φ) = 0 ∀φ ∈ H, (3.44a)
(sj+1 − uj(τj+1), φ) = 0 ∀φ ∈ H, j ∈ {0, . . . ,M − 1}. (3.44b)

In order to prove the equivalence of the original OCP (3.3) subject to (3.6) and the extended
problem (3.43)–(3.44), the following preparatory lemma is required.

Lemma 3.8. The objective functionals J(q, u) and J̄(q,u) coincide for u = ((uj)M−1
j=0 )

with uj = u|Ij , i. e. for globally continuous intervalwise defined functions u.

Proof. Making use of the additivity of integration on subintervals results in

J(q, u) = κ1
2

∫
I

‖u(t)− û(t)‖2V dt+ κ2
2 ‖u(T )− ûT ‖2H + α

2

∫
I

‖q(t)‖2R dt

= κ1
2

M−1∑
j=0

∫
Ij

‖uj(t)− û|Ij (t)‖2V dt+ κ2
2 ‖u

M−1(τM )− ûT ‖2H + α

2

M−1∑
j=0

∫
Ij

‖qj(t)‖2R dt.

The latter corresponds to J̄(q,u) =
∑M−1
j=0 J j(qj , uj).

Everything is prepared to state the equivalence of the original and the modified OCP
unfolding in the following theorem:

Theorem 3.9. (a) Let (q, u) ∈ Q × X be a solution to the original OCP (3.3) subject
to (3.6). Then (q,u) ∈ Q ×X, defined by qj := q|Ij and uj := u|Ij , is a solution to the
modified OCP (3.43)–(3.44).
(b) Let (q,u) ∈ Q×X solve the modified problem (3.43)–(3.44). If we define q by q|Ij := qj

and u by u|Ij := uj, then (q, u) ∈ Q×X solves the original OCP (3.3) subject to (3.6).

Proof. (a) Since u ∈ X is globally continuous in time, we have s0 = u0 as well as
sj+1 = uj+1(τj+1) = u(τj+1) and uj(τj+1) = u(τj+1), which means in turn sj+1 = uj(τj+1).
Thus, the matching conditions (3.44) are fulfilled. Let now (q̃, ũ) = ((q̃j , ũj)M−1

j=0 ) ∈ Q×X
be given so that J̄(q̃, ũ) < J̄(q,u) and the continuity conditions (3.44) are fulfilled. The
latter assumption immediately implies ũ ∈ X, i. e. (q̃, ũ) := (q̃, ũ) ∈ Q×X due to Q = Q.
Lemma 3.8 now yields

J(q̃, ũ) = J̄(q̃, ũ) < J̄(q,u) = J(q, u)

which is a contradiction to the assumed optimality of (q, u).
(b) Since u is part of a solution of the modified OCP, especially (3.44), the initial values are
s0 = u0 and sj+1 = uj(τj+1). The initial value sj+1 on Ij+1 clearly fulfils sj+1 = uj+1(τj+1).
From u ∈ X it is known that uj ∈ C(Īj ;H), and together with the global continuity
u ∈ C(Ī;H) is guaranteed. Considering ∂tu

j ∈ L2(Ij ;V ∗), the corresponding global
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property ∂tu ∈ L2(I;V ∗) directly follows. This means that u, defined by u|Ij := uj , lies
in X, and together with q (analogously defined by q|Ij := qj) one obtains (q, u) ∈ Q×X.
Assuming that there is (q̃, ũ) ∈ Q×X with J(q̃, ũ) < J(q, u), the contradiction

J̄(q̃, ũ) = J(q̃, ũ) < J(q, u) = J̄(q,u)

to the optimality of (q,u) is obtained by Lemma 3.8.

The reformulated problem (3.43)–(3.44) is a suitable starting point for the multiple shooting
algorithms that are presented in detail in Chapter 5. As stated in Section 3.3, solution
algorithms for OCP are often based on first and second order optimality conditions. Thus,
to present the indirect and direct multiple shooting methods properly, we have to derive
at least the first order necessary optimality conditions of the modified OCP. Therefore,
the corresponding Lagrange functional is defined, which is an extended version of (3.31)
where the additional equality constraints (3.44) are taken into account. This extended
Lagrangian is given as follows:

L̄
(
(qj , uj , zj)M−1

j=0 , (sj , λj)Mj=0

)
:=

M−1∑
j=0

J j(qj , uj)

+
M−1∑
j=0

[
((∂tuj , zj)) + a(uj)(zj) + b(qj)(zj)− ((f |Ij , zj))

]
(3.47)

+
M−1∑
j=0

(uj(τj)− sj , zj(τj)) +
M−1∑
j=0

(sj+1 − uj(τj+1), λj+1) + (s0 − u0, λ
0).

The first line of (3.47) contains the modified cost functional (3.43a) which has been
rearranged in an intervalwise fashion. In the second line, the intervalwise parabolic side
conditions (3.43b) are included without the initial conditions. They, together with the
continuity conditions (3.44), form the third line of (3.47), where all terms containing the
variables sj are gathered. There are two kinds of Lagrange multipliers: the adjoint variables
z = ((zj)M−1

j=0 ) ∈ X corresponding to the intervalwise PDE side condition, and the spatial
functions λ = (λj)Mj=0 ∈ HM+1 as multipliers for the equality constraints (3.44). Now
the first order optimality conditions, or KKT system, can be derived by differentiating
the above Lagrangian w. r. t. all its arguments. This yields, with the abbreviation ξ =
((qj , uj , zj)M−1

j=0 , (sj , λj)Mj=0), for all test functions (δz, δu, δq, δλ, δs) ∈ Xj×Xj×Qj×H×H
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and for all j ∈ {0, · · · ,M − 1}, the intervalwise equations

L̄′zj (ξ)(δz) = ((∂tuj , δz)) + a(uj)(δz) + b(qj)(δz)
−((f |Ij , δz)) + (uj(τj)− sj , δz(τj)) = 0, (3.48a)

L̄′uj (ξ)(δu) = J j′u (qj , uj)(δu)− ((∂tzj , δu)) + a′u(uj)(δu, zj)
+(zj(τj+1)− λj+1, δu(τj+1)) = 0, (3.48b)

L̄′qj (ξ)(δq) = J j′q (qj , uj)(δq) + b′q(qj)(δq, zj) = 0, (3.48c)
L̄′λ0(ξ)(δλ) = (s0 − u0, δλ) = 0, (3.48d)

L̄′λj (ξ)(δλ) = (sj+1 − uj(τj+1), δλ) = 0, (3.48e)
L̄′sj (ξ)(δs) = (λj − zj(τj), δs) = 0, (3.48f)

L̄′sM (ξ)(δs) = (λM , δs) = 0. (3.48g)

Remark 3.10. For the KKT system, the cases κ1 = 1, κ2 = 0 and κ1 = 0, κ2 = 1 have
to be distinguished. In the above notation, this does only affect the adjoint equation
(3.48b). In case of a distributed objective functional, all subintervals can be treated equally,
and it holds J j′u (qj , uj)(δu) = ((uj − û|Ij , δu)) for all j ∈ {0, · · · ,M − 1}. In case of an
end-time functional term, one obtains J j′u (qj , uj)(δu) ≡ 0 for j ∈ {0, · · · ,M − 2}, and
JM−1′
u (qM−1, uM−1)(δu) = (uM−1(τM )− ûT , δu(τM )).

Agreement. If not specified differently, further on κ1 = 1 and κ2 = 0 is assumed for the
theoretical considerations, corresponding to a distributed objective functional. In this case,
the presentation is uniform on all subintervals and the necessary modifications in case of
an end-time functional are straightforward.

This system of equations can be split into two parts. The first one, equations (3.48a)–
(3.48c), corresponds to the KKT system of the original problem (3.3) subject to (3.6),
but restricted to a subinterval Ij (compare these equations to (3.32)). The corresponding
unknowns uj , zj and qj are functions depending on spatial variables and time. The second
part consists of equations (3.48d)–(3.48g) and appears in the modified problem (3.43)–
(3.44). The unknowns sj and λj are spatial functions at the isolated time-points τj and do
not depend on time t.
Stationary points of the Lagrangian, i. e., solutions of (3.48), are solution candidates
for the modified OCP. The KKT system constitutes a root-finding problem which can
be handled by Newton’s method. For this purpose, the second order derivatives of the
extended Lagrange functional (3.47) are required which constitute the Jacobian of the
optimality conditions (3.48). Although the algorithmic details are explained later (for a
presentation of Newton’s method, see Section 4.3, whereas details of the different multiple
shooting processes are explained in Sections 5.1 and 5.2), we conclude the current chapter
by providing the background for these later discussions. Therefore, it is briefly recalled that
Newton’s method for solving a nonlinear but continuously differentiable problem f(x) = 0
consists in the iteration

xk+1 = xk − Jf (xk)−1f(xk),
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initialized by a suitable starting point x0. To avoid the expensive explicit inversion of the
Jacobian Jf , this is usually written in the two-step form

Jf (xk)δx = −f(xk), (3.49a)
xk+1 = xk + δx. (3.49b)

The linear system displayed in the following is a formal representation of (3.49a) transferred
to our context. The equations (3.48) are rearranged in a way that facilitates the illustration
of IMS and DMS concepts in Chapter 5 (for instance, equations (3.48d) and (3.48e) as
well as (3.48f) and (3.48g) have been resumed symbolically as L̄′λ and L̄′s, respectively).
The resulting system reads

0 L̄′′uz L̄′′qz L̄′′sz 0
L̄′′zu L̄′′uu 0 0 L̄′′λu
L̄′′zq 0 L̄′′qq 0 0
L̄′′zs 0 0 0 L̄′′λs
0 L̄′′uλ 0 L̄′′sλ 0




δz
δu
δq
δs
δλ

 = −


L̄′z
L̄′u
L̄′q
L̄′s
L̄′λ

 . (3.50)

The righthand side of (3.50) consists of block vectors. The components of L̄′z, e. g., are
the subinterval state equations, i. e., L̄′z = (L̄′z0 , · · · , L̄′zM−1)>. Analogously, each of the
sensitivity (or solution) variables is a block vector consisting of subinterval sensitivities
(e. g., δq = (δq(0), · · · , δq(M−1))>). The blocks of the matrix are either zero submatrices
in case the equation to be differentiated does not depend on the variable with respect to
which we differentiate, or they are sparse (often diagonal) matrices due to the decoupling
of the component equations of (3.48) between different subintervals. In the context of
parabolic OCP this system is never assembled explicitly due to its size. The different
multiple shooting techniques rely on different splittings of system (3.50) which reduce its
size significantly. Nevertheless, the corresponding smaller matrices are still not assembled.
Instead, Krylov-Newton methods are employed that allow to solve the respective Newton
equations in a matrix-free manner (see Sections 4.2 and 4.3 for details).

Remark 3.11. For a discussion of the size of system (3.50), we exemplarily describe the
matrix in more detail. The upper left 3× 3 block consists of nine quadratic M ×M blocks,
whereas the lower right 2×2 block comprises four (M +1)× (M +1) blocks. The remaining
submatrices are rectangular matrices of appropriate dimension. Summarizing, the Newton
matrix is of size (5M + 2)× (5M + 2). Assuming the number M of subintervals Ij to be of
moderate size (from M = 1 in the case of simple shooting up to multiple shooting with
M ≈ 10− 100), the system appears to be small. However, system (3.50) still describes a
function space environment, i. e., neither time nor space discretization are considered so
far. Chapters 4 and 5 demonstrate that especially the discretization of the spatial variables
leads to a huge enlargement of the systems that have to be solved numerically.
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4 Discretization and Solvers

In the previous chapter, the theoretical framework of parabolic OCP was presented and
adapted to the multiple shooting context. The aim of the current chapter is to present
numerical tools in order to prepare the numerical tests for the methods developed in
Chapters 5–7 which confirm the theoretical findings. By that, details of implementation
are discussed which enlighten the numerical results presented in Chapter 2 in the ODE
context.
We address three main topics: In Section 4.1, several discretization schemes for the
temporal, the spatial, and the control variables are discussed and their most important
numerical properties are recapitulated. Section 4.2 is concerned with iterative solution
schemes for linear equation systems. The conjugate gradient and generalized minimum
residual algorithms are introduced, thereby emphasizing their matrix-free realization. These
linear solvers constitute an essential part of the implementation underlying the numerical
examples in later chapters. Finally, an overview on some variants of Newton’s method is
presented in Section 4.3, as this method appears in several forms throughout this thesis.
Inexact Newton approaches, especially Krylov-Newton algorithms, are covered that are
intertwined with the iterative linear solvers from Section 4.2.

4.1 Discretization

There are three types of variables to be discretized in the framework of nonstationary
PDE governed optimal control problems. First, the discretization of the time interval
I = (0, T ], respectively the multiple shooting subintervals Ij = (τj , τj+1] (see (2.15)),
is performed either by one-step difference schemes or by a discontinuous or continuous
Galerkin method. Both concepts and their connection are presented in Subsection 4.1.1.
Second, the discretization of the spatial domain Ω ⊂ Rd is carried out by a conforming finite
element method; the details are given in Subsection 4.1.2. Lastly, possible discretization
approaches for the control variable are presented in Subsection 4.1.3. The topic of control
parameterization is revisited and complemented with a justification why, in the PDE case,
a full discretization is preferred.

4.1.1 Discretization of the time variable

It is important to point out the difference between time discretization methods presented
in this section and time domain decomposition methods based on the splitting (3.42) of the
solution interval I. In Section 3.4, the latter led to an extended problem formulation that
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4 Discretization and Solvers

is fully equivalent to the original one. In contrast, the following discretization methods
modify the given continuous problem. They aim at producing a series of finite dimensional
problems that approximate the original problem, so that the discrete solutions converge to
the continuous solution as a given discretization parameter converges to zero. Time domain
decomposition methods, such as multiple shooting, can be formulated on the continuous
level within an abstract function space setting.

The time semi-discretization relies on partitioning the closed shooting intervals I j =
{τj} ∪ (τj , τj+1] given in (3.42) into smaller subintervals Ijn = (tjn−1, t

j
n] of length kjn with

left and right end points

τj = tj0 < tj1 < · · · < tjNj = τj+1. (4.1)

The temporally semi-discrete variables are indicated by a subscript k (e. g., the semi-
discrete state and adjoint on Ij read ujk and zjk, respectively). This refers to a piecewise
constant step-size function k(t) defined by k|

Ijn
:= kjn. For simplicity of notation, the forms

((·, ·))n, an(·)(·) and bn(·)(·) are always defined on the subintervals Ijn as can be seen by
their respective arguments.

Difference methods. One-step difference methods aim at computing the approximative
solution value ujk,n ≈ uj(tjn) from the preceding value ujk,n−1; the initial value ujk,0 has
to be prescribed. They can be derived by approximating temporal derivatives by means
of difference quotients. In the practical implementation, standard instantiations of the
θ-method

ujk,n = ujk,n−1 + kjn

(
θF (tjn) + (1− θ)F (tjn−1)

)
(4.2)

are employed. The term F (t̄) comprises the evaluation of all problem parts except the
time derivative at the fixed timepoint t̄. The choice θ = 1 yields the backward Euler
method which is implicit and therefore involves the solution of a nonlinear equation per
time step. The backward Euler scheme is of first order, i. e., |u(t) − uk(t)|2 = O(k).
Taking θ = 0.5 leads to the semi-implicit Crank-Nicolson scheme, which is of second
order, i. e., |u(t) − uk(t)|2 = O(k2). The Crank-Nicolson scheme is used for discretizing
the ODE examples in Chapters 2 and 7, whereas in the PDE context later on, the
backward Euler scheme is applied exclusively. Although this method is only of first order,
it is straightforward to implement and has further advantages included in the discussion
below.

Remark 4.1. In the ODE context, and for PDE governed control problems in the method
of lines (MOL) framework, linear multistep methods are a widely used alternative (see,
e. g., Beigel [8] and the references therein). The implicit backward difference formulae
(BDF) are suitable for solving stiff problems. The simplest BDF method coincides with
the backward Euler scheme.

Galerkin methods. In contrast to the difference schemes, Galerkin methods are based
on the variational problem formulation (see (3.6) or the intervalwise formulation (3.43b)).
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4.1 Discretization

To introduce the discontinuous Galerkin method of order r ≥ 0 (in short: ‘dG(r) method’),
the semi-discrete space

Xr
k(Ij) := {vjk ∈ L

2(Ij , H) | vjk(t
j
0) ∈ H, vjk|Ijn ∈ Pr(I

j
n, V ), n = 1, . . . , Nj}, (4.3)

is introduced, where Pr is the space of polynomials up to degree r defined on the intervals
Ijn. Accordingly, Xr

k(Ij) denotes the space of piecewise polynomial functions on Ij , in
general discontinuous between two intervals Ijn of the time discretization. The following
standard notation is required to formulate the weak formulation of the problems:

vj,+k,n = lim
t→0+

vk(tjn + t), vj,−k,n = lim
t→0−

vk(tjn + t), [vjk]n = vj,+k,n − v
j,−
k,n .

Then, the semi-discretization in time of the state equation (3.48a) seeks ujk ∈ Xr
k(Ij) and

sj ∈ H, for j = 0, . . . ,M − 1, such that

Nj∑
n=1

[
((∂tujk, δzk))n + an(ujk)(δzk) + bn(qj)(δzk)− ((f |

Ijn
, δzk))n

]

+
Nj∑
n=2

([ujk]n−1, δz
+
k,n−1)) + (ujk(τj)− s

j , δzk(τj)) = 0

(4.4)

holds for all δzk ∈ Xr
k(Ij). Analogously, the semi-discretization of the adjoint equation

(3.48b) seeks ujk, z
j
k ∈ Xr

k(Ij) and λj+1 ∈ H, for j = 0, . . . ,M − 1, such that

J j′
uj

(qj , ujk)(δuk)−
Nj∑
n=1

[
((∂tzjk, δuk))n − a

′
n,uj (u

j
k)(δuk, z

j
k)
]

−
Nj−1∑
n=1

([zjk]n, δu
−
k,n)) + (zjk(τj+1)− λj+1, δuk(τj+1)) = 0

(4.5)

holds for all δuk ∈ Xr
k(Ij). Thereby, a distributed functional J j(qj , uj) is assumed, and

necessary modifications in case of an end-time functional are accounted for.

Equivalently to the discretization of the state and adjoint equations, one needs to discretize
the tangent and the additional adjoint equations, respectively. These are not presented
here, and we refer to Becker, Meidner & Vexler [7] for further details on this topic in
the context of optimal control without multiple shooting. The relevant changes of these
discretizations in the multiple shooting context are similar to the ones shown above for the
state and adjoint equations.

Remark 4.2. For r = 0 the dG(0) method can be interpreted as the classical backward
Euler time-stepping method if the occurring time integrals are evaluated by the box rule,
i. e.,

∫ b
a f(t)dt ≈ (b − a)f(b). From this equivalence it can be inferred that the dG(0)

method converges with order one.

Although it is not used in our implementation, we comment on the continuous Galerkin
method of order r ≥ 1, as it is equivalent to the Crank-Nicolson method in the case r = 1
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4 Discretization and Solvers

(see Remark 4.3 below). It uses continuous trial functions of polynomial degree r and
discontinuous test functions of polynomial degree r − 1. The test functions are taken from
a space of type (4.3), while for the trial functions, the space

Y r
k (Ij) := {vjk ∈ C(I j , H) | vjk|Ijn ∈ Pr(I

j
n, V ), n = 1, . . . , Nj},

is appropriate, where here Pr is the space of polynomials up to degree r ≥ 1 defined on the
intervals Ijn. Then, the discrete state equation is formulated as follows: For j = 0, . . . ,M−1
find a state ujk ∈ Y r

k (Ij) such that

Nj∑
n=1

[
((∂tujk, δzk))n + an(ujk)(δzk) + bn(qj)(δzk)− ((f |

Ijn
, δzk))n

]
+ (ujk(τj)− s

j , δzk(τj)) = 0

holds for all δzk ∈ Xr−1
k (Ij). Analogously, the adjoint problem reads: For j = 0, . . . ,M − 1

find an adjoint state zjk ∈ X
r−1
k (Ij) such that

J j′
uj

(qj , ujk)(δuk)−
Nj∑
n=1

[
((∂tzjk, δuk))n − a

′
n,uj (u

j
k)(δuk, z

j
k)
]

−
Nj−1∑
n=1

([zjk]n, δu
−
k,n)) + (zjk(τj+1)− λj+1, δuk(τj+1)) = 0

holds for all δuk ∈ Y r
k (Ij). Note that the adjoint equation comprises jump terms, as its

solution variable zjk comes from a space of globally discontinuous functions.

Remark 4.3. The choice r = 1 and the trapezoidal rule as quadrature rule (i. e.,
∫ b
a f(t)dt ≈

(b − a)/2 [f(a) + f(b)]) lead to the Crank-Nicolson method, which is the time-stepping
method corresponding to the cG(1) scheme. Thus, the cG(1) scheme is quadratically
convergent.

Remark 4.4. Although the Galerkin methods introduced in this subsection are more com-
plicated compared to the corresponding difference schemes, they are advantageous in
two important respects. Their employment guarantees equivalence of ‘discretize-then-
optimize’ and ‘optimize-then-discretize’ (see Meidner [84]) and they facilitate the formula-
tion of a temporally adaptive dual weighted residual (DWR) method. Thus, even if the
corresponding one-step difference methods are preferred in the implementation, theoretical
issues on the discrete level are mostly presented in the Galerkin framework. Moreover, this
allows to treat temporal and spatial discretization similarly.

4.1.2 Discretization of the spatial variables

The temporally discrete formulation is still continuous w. r. t. the spatial variables x, i. e.,
elements ujk of the space Xr

k(Ij) still map time t into the continuous space V . Henceforth,
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4.1 Discretization

dG(r) methods are in the focus. The spatial discretization by means of the finite element
method (FEM) replaces V by a discrete function space Vh; we always work with conforming
finite elements, i. e., Vh ⊂ V is further on assumed. More details on the following
presentation as well as alternative approaches are presented in the textbooks of Braess
[17], Brenner & Scott [18] or Ciarlet [24].
In the examples, the spatial domain Ω is a two-dimensional polygonal set; curved boundaries
are handled in the mentioned literature, and the extension to three space dimensions is
straightforward. A partition of Ω into open quadrilaterals K, the so-called cells, is
considered. The diameters hK of the cells define a piecewise constant mesh-size function
h(x) defined by h|K := hK . Sometimes, an ambiguous notation is used and h is interpreted
as the maximum diameter, h = maxK hK . The resulting triangulation is denoted by Th; in
general, quantities related to the discretization are denoted by a subscript h. The boundary
of each cell K consists of straight line segments, the so-called edges.

Definition 4.1. A triangulation Th = {K} is regular if the following conditions hold:

(i) Ω̄ =
⋃
K∈Th K̄,

(ii) different cells do not overlap, i. e., for i 6= j it holds Ki ∩Kj = ∅,

(iii) the intersection of two different closed cells K̄i and K̄j is either empty, or it consists
of a corner point of both K̄i and K̄j or a whole edge belonging to both K̄i and K̄j.

On the regular mesh Th, the conforming finite element space V s
h ⊂ V is defined as a finite

dimensional space of piecewise polynomial functions,

V s
h := {vh ∈ V ∩ C(Ω̄) | vh|K ∈ Q

s(K),K ∈ Th}. (4.6)

In order to specify the set Qs(K) with s ∈ N as a space of polynomial-like functions
on K ∈ Th, the space Q̂s(K̂) of polynomial functions is defined on the reference cell
K̂ := (0, 1)2. It holds

Q̂s(K̂) := span
{
xα1

1 xα2
2 | αi ∈ {0, 1, . . . , s}

}
. (4.7)

From this, the space Qs(K) = {v : K → R | v ◦ TK ∈ Q̂s(K̂)} is obtained by means of the
transformations TK : K̂ → K. If the transformation TK is of the same polynomial type
as the functions on the reference cell, the resulting finite element is called isoparametric.
Following this, the function space for the full space-time discretization is defined as:

Xs,r
h,k(Ij) := {vjhk ∈ L

2(Ij , H) | vjhk(t
j
0) ∈ V s

h , v
j
hk|Ijn ∈ Pr(I

j
n, V

s
h ), n = 1, . . . , Nj}. (4.8)

Due to the conformity of V s
h ⊂ V , the inclusion Xs,r

h,k(Ij) ⊂ Xr
k(Ij) holds. The fully

discrete functions vhk are provided with a double subscript indicating that both space and
time variables are discretized. The resulting method is known in the literature (see, e. g.,
Eriksson et al. [38]) as the cG(s)dG(r) method, where the first part denotes the continuous
spatial discretization and the second part refers to the discontinuous time discretization
scheme. In later examples, the cG(1)dG(0) method is employed.
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4 Discretization and Solvers

The full space-time discretization for the state equation seeks ujhk ∈ X
s,r
h,k(Ij) and sjh ∈ V s

h ,
for j = 0, . . . ,M − 1, such that

Nj∑
n=1

[
((∂tujhk, δzhk))n + an(ujhk)(δzhk) + bn(qj)(δzhk)− ((f |I jn , δzhk))n

]

+
Nj∑
n=2

([ujhk]n−1, δz
+
hk,n−1)) + (ujhk(τj)− s

j
h, δzhk(τj)) = 0

(4.9)

holds for all δzhk ∈ Xs,r
h,k(Ij). Analogously, the full discretization of the adjoint equation

seeks ujhk, z
j
hk ∈ X

s,r
h,k(Ij) and λj+1

h ∈ V s
h , for j = 0, . . . ,M − 1, such that

J j′
uj

(qj , ujhk)(δuhk)−
Nj∑
n=1

[
((∂tzjhk, δuhk))n − a

′
n,uj (u

j
hk)(δuhk, z

j
hk)
]

−
Nj−1∑
n=1

([zjhk]n, δu
−
hk,n)) + (zjhk(τj+1)− λj+1

h , δuhk(τj+1)) = 0

(4.10)

holds for all δuhk ∈ Xs,r
h,k(Ij). Apart from the additional subscript h in the fully discrete

case, both formulations (4.4)–(4.5) and (4.9)–(4.10) are identical. Thus, the fully discrete
formulation (4.9)–(4.10) constitutes a finite dimensional system of equations, whereas the
semi-discrete equations (4.4)–(4.5) are still infinite dimensional. In both formulations, the
intervalwise control qj is left unchanged, i. e., the control is not discretized yet; concepts of
control discretization are briefly discussed below in Subsection 4.1.4.

4.1.3 Static and dynamic discretization

In the following, the interplay between temporal and spatial discretizationis discussed and
the concepts of static, piecewise static and dynamic discretization are introduced. These
concepts become important in the framework of adaptive mesh refinement. The case of
dynamic spatial meshes is thoroughly examined in Schmich [103] and Schmich & Vexler
[104] and employed in Meidner [84], whereas the idea of piecewise static spatial meshes
appears in Hesse & Kanschat [53]. In all cases described below, the time grid is fixed before
discretizing the spatial variables. This reflects the above proceeding of discretizing first in
time and then in space and corresponds to Rothe’s method (in contrast to the method of
lines (MOL) which discretizes in reverse order).

Static space discretization. A fixed spatial mesh is chosen and used in every time step.
Usually this static mesh is a globally refined standard mesh consisting of congruent square
cells, but in principle one could also employ a locally refined mesh as long as it does not
change over time. This approach is easy to implement, but prohibits any adaptation of
the spatial mesh to dynamically changing features of the solution. Nevertheless, the static
approach is used in the numerical examples of Chapters 5–7.

Piecewise static space discretization. It is suggestive to think of a piecewise static
approach in the context of multiple shooting. Using the structure given by the time domain

64



4.1 Discretization

decomposition (3.42), a different spatial mesh can be prescribed on each shooting interval.
Within the shooting interval, this spatial mesh is kept fixed over time. In contrast to the
globally static approach, dynamic changes of the solution can be accounted for at least at
the shooting points τj .
This idea is also realized outside a multiple shooting framework by freezing one spatial
mesh for a given number of time steps and then replacing it by a different one. Note that
at timepoints where the spatial mesh changes, the computability of the corresponding
solution functions has to be guaranteed. This is usually done by merging both adjacent
meshes and considering finite element spaces on the common refinement (see, e. g., Schmich
[103]); the latter presumes that all spatial meshes can be derived from some common basic
mesh, i. e., hierarchical meshes are considered.

Dynamic space discretization. The fully discrete problem formulation of Subsection
4.1.2, especially the definition of the discrete space Xs,r

h,k(Ij) in (4.8), is tailored to the
static space discretization, as the conforming finite element space V s

h is chosen for a fixed
spatial mesh Th. To capture dynamic changes of the solution in Ω, one can choose a
corresponding spatial mesh T nh and belonging discrete spaces V s,n

h for each timepoint tjn.
Then the definition of the cG(s)dG(r) trial and test space is modified to

Xs,r
h,k(Ij) := {vjhk ∈ L

2(Ij , H) | vjhk(t
j
0) ∈ V s,0

h , vjhk|Ijn ∈ Pr(I
j
n, V

s,n
h ), n = 1, . . . , Nj}.

(4.11)

The rest of the problem formulation remains unchanged, especially equations (4.9)–(4.10)
can be directly adopted. For dynamic space discretization, the process of merging two
successive spatial meshes and working with a common refinement has to be performed at
every timepoint, which makes the implementation harder and the computation more costly.
Notably, for cG(r) time discretization, the dynamic space discretization becomes more
difficult, since then the global temporal continuity across the different spatial meshes has
to be ensured; details can be found in Meidner [84].

4.1.4 Control discretization

So far, the control functions are undiscretized (cf. (4.9)–(4.10)). The control space has
been introduced in Section 3.1 as Q = L2(I;R) with a spatial Banach space R. Later,
the analogous intervalwise spaces Qj = L2(Ij ;R) and their product Q have been defined,
and it was proved that Q ≡ Q (cf. Section 3.4). There are several ways of discretizing qj ;
judged by implementational simplicity, the most suitable one is to choose the same time
grids and the same spatial meshes for the control and the state and adjoint variables. In
this case, no additional interpolation or grid transfer is necessary and the discrete control
qjhk is as finely resolved as the solution variables ujhk and zjhk. This is the discretization
chosen in later chapters, and the corresponding discrete control space is denoted by Qjd.
Hesse [52] suggests on the continuous level a choice of intervalwise constant controls, i. e.,
qj ≡ qjhk = cj with temporally constant functions cj ∈ R. This choice of Q amounts to a
special case of control parameterization. In Subsection 2.3.3 (cf. also Example 2.2), this
was shown to lead to suboptimal solutions; in ODE optimal control, parameterized controls
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often yield remarkable results. However, in the PDE framework, parameterization of this
kind leads to an information loss on the spatial development of qj over time. Therefore,
the concept of parameterized controls is not pursued any further.
Another reduction of the control space is sketched by Meidner [84]; the idea is briefly
described as it marks a trade-off between the full discretization and the rejected parame-
terization concept.
Let u and z be discretized by a cG(s)dG(r) method on a time grid Ik = {tn}Nn=0 and a
spatial mesh Th. For discretizing q, one can select a different time grid or spatial mesh;
they can be chosen independently from Ik and Th. As this requires a sophisticated mesh
management, one often simply chooses hierarchical coarsenings I2k or T2h of the original
discretizations. Alternatively, keeping Ik and Th, one could work with Galerkin methods
of lower order for the control, i. e., if s̃ < s and r̃ < r, the control could be discretized by a
cG(s̃)dG(r̃) method. This resembles the usual treatment of variables in fluid mechanics,
where the pressure p is often discretized by a lower order finite element than the velocity
v, as equal-order finite elements lack the crucial property of inf-sup stability.
Remark 4.5. All suggested concepts discretize the control explicitly, i. e., partitions of both
Ij and Ω as well as belonging function spaces for qj are given in advance. Hinze [58]
introduces an implicit control discretization, which relies on the relation between adjoint
state and control given by the first order optimality conditions. He shows optimal order
convergence in the case of linear-quadratic elliptic OCP with and without additional control
constraints. This approach is also presented in detail in the textbook by Hinze et al. [59].

Let us finally state the fully discrete OCP with multiple shooting. With the above suggested
discrete control space Qjd ⊂ Qj , the spaces

Xs,r
h,k :=

M−1×
j=0

Xs,r
h,k(Ij), Qd :=

M−1×
j=0

Qjd

are defined, leading to the following discrete problem (where ϕhk ∈ Xs,r
h,k):

min
qhk∈Qd,uhk∈Xs,r

h,k

J̄(qhk,uhk)

s. t.
Nj∑
n=1

[
((∂tujhk, ϕhk))n + an(ujhk)(ϕhk) + bn(qjhk)(ϕhk)− ((f |I jn , ϕhk))n

]

+
Nj∑
n=2

([ujhk]n−1, ϕ
+
hk,n−1)) + (ujhk(τj)− s

j
h, ϕhk(τj)) = 0 ∀ j ∈ {0, . . . ,M − 1}.

(4.12)

Here, the discrete cost functional J̄(qhk,uhk) is defined analogously as in Section 3.4 with
uhk = ((ujhk)

M−1
j=0 ) and qhk = ((qjhk)

M−1
j=0 ). The additional continuity conditions occurring

in the shooting framework have to be also given in a discrete version:
(s0
h − u0, φh) = 0 ∀φh ∈ V s

h ,

(sj+1
h − ujhk(τj+1), φh) = 0 ∀φh ∈ V s

h ∀ j ∈ {0, . . . ,M − 1}.
(4.13)

This fully discrete problem is to be compared to its continuous counterpart (3.43)–(3.44).
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4.2 Iterative solvers for linear equations

All solution algorithms for complex problems such as the OCP (3.3)–(3.4) or the extended
OCP (3.43)–(3.44) consist of basic steps, among the most important of which is solving
linear and nonlinear equations or systems.
As an example, Algorithms 2.2 for IMS and 2.3 for DMS are revisited. Step 6 in Algorithm
2.2 (and, correspondingly, Step 3 in Algorithm 2.3) consists of solving certain IVP, which
amounts to solving a linear or nonlinear equation in each time step. Analogously, IMS
Step 7 (resp. DMS Step 4) requires the solution of variational equations, which means
solving a linear equation system per time step. The third part is IMS Step 8 (DMS Step
6), the solution of the respective shooting system, which is again a linear system. The
multiple shooting algorithms for parabolic OCP in Chapter 5 consist of almost the same
basic steps; there, applications of all methods discussed in the following are given.
This section treats solvers that are commonly used for linear equation systems of the form

Ax = b, where A ∈ Rn×n, b ∈ Rn. (4.14)

In the PDE context of Chapter 5, fine discretizations of parabolic OCP lead to so-called
large-scale optimization problems, which prohibits the use of direct methods and necessitates
iterative linear solvers. In the following, the focus is on methods that can actually be
used in the implementation of PDE governed OCP. Important classes of iterative linear
solvers are splitting-based ones (like Jacobi, Gauss-Seidel or SSOR) and Krylov subspace
methods (e. g., minimum residual methods and projection methods). We concentrate on two
specific Krylov subspace methods, one for symmetric positive definite and one for general
regular linear systems, whereas splitting-based methods are addressed in the context of
preconditioning. The Krylov subspace of dimension k, generated by r0, is denoted by the
symbol Kk(r0, A). It holds

Kk(r0, A) = span{r0, Ar0, · · · , Ak−1r0}.

Detailed derivations of the presented solvers can be found in the literature (see, e. g., the
textbooks by Kanzow [62], Meister [87] or Saad [100]).

The conjugate gradient (CG) method. The first example for an iterative solver, the
conjugate gradient (CG) algorithm, can be interpreted both as a minimum residual method
and as a Galerkin projection method; details on these topics are presented in Kanzow [62].
It is motivated by the following consideration: For a symmetric and positive definite (spd)
matrix A ∈ Rn and a vector b ∈ Rn, the solution of (4.14) is equivalent to solving the
minimization problem

min
x∈Rn

f(x) = 1
2(Ax, x)2 + (b, x)2. (4.15)

An spd matrix defines a scalar product (·, ·)A := (A·, ·)2; vectors {ri}n−1
i=0 are called A-

orthogonal if (ri, rj)A = 0 for all i, j = 0, · · · , n − 1 with i 6= j. In order to obtain an
A-orthogonal basis of Rn, the Gram-Schmidt algorithm can be used.
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Lemma 4.1. Assume A and b as above and x0 as a starting vector. Let {ri}n−1
i=0 be an

A-orthogonal basis. Then the sequence

xk+1 = xk + λkr
k,

where λk solves the one-dimensional minimization problem in direction rk,

f(xk + λkr
k) = min

λ∈R
f(xk + λrk),

yields a minimum of f(x) in (4.15) after at most n iterations.

Using basic linear algebra, from this lemma the following CG algorithm 4.1 is obtained
that has been developed by Hestenes & Stiefel [55]. As a by-product, the A-orthogonal
basis is constructed during the computation and does not have to be specified in advance.
This method is used later on to solve the linear systems (or, in the nonlinear case, the
linearized Newton equation) that arise in each time step of the intervalwise BVP or IVP (see
Chapter 5, Algorithms 5.1 (Step 4) and 5.4 (Step 4)). A variant for large-scale optimization
problems required in the IMS context is discussed in the next subsection.

Algorithm 4.1 Conjugate gradient (CG) method by Hestenes & Stiefel [55]
Require: Starting value x0 ∈ Rn.

1: Set p0 = b−Ax0, r0 = p0 and α0 = ‖r0‖22; choose tolerance TOL.
2: for k = 0, · · · , n− 1 do
3: if αk < TOL then
4: STOP.
5: else
6: vk = Apk, λk = αk

(vk,pk)2

7: xk+1 = xk + λkp
k

8: rk+1 = rk − λkvk
9: αk+1 = ‖rk+1‖22

10: pk+1 = rk+1 + αk+1
αk

pk

11: end if
12: end for

Remark 4.6. Even if this algorithm theoretically produces the exact solution x∗ of (4.14)
after at most n iterations (see Lemma 4.1) and can thus be viewed as a direct solution
method, it is usually counted among the iterative linear solvers for several reasons:

(i) accumulated round-off errors perturb the A-orthogonality of {ri}n−1
i=0 ,

(ii) for a large amount of iterations (i. e., a high-dimensional linear system) usually a
good approximation to x∗ is already found after far less than n iterations,

(iii) large linear systems often result from discretizations; if, with the iterative linear
solver, one reaches the level of the discretization error, further iterations do not yield
further progress, thus one is not interested in solving the linear system exactly.
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The generalized minimum residual (GMRES) method. This second iterative solver
can also be derived as a minimum residual scheme, i. e., it is based on the idea of minimizing
the Euclidean norm ‖b−Ax‖2 of the residual of (4.14). As it is designed for general regular
linear systems, the belonging matrix does not define a scalar product, which complicates
the proceeding. For a thorough and comprehensible presentation, we refer to Meister
[87]. Here, the main parts of the GMRES Algorithm 4.2 are discussed. The first part of

Algorithm 4.2 Generalized minimum residual (GMRES) method by Saad & Schultz [101]
Require: Starting value x0 ∈ Rn.

1: Set r0 = b−Ax0, β = ‖r0‖2, v1 = r0
β , z1 = β and k = 1, choose tolerance TOL.

2: while |zk|β > TOL do
3: wk = Avk

4: for l = 1 : 1 : k do
5: hlk = (vl, wk)2
6: wk = wk − hlkvl
7: end for
8: hk+1,k = ‖wk‖2
9: vk+1 = wk

hk+1,k
10: for l = 1 : 1 : k − 1 do
11: hlk = clhlk + slhl+1,k
12: hl+1,k = −slhlk + clhl+1,k
13: end for
14: τ = |hkk|+ |hk+1,k|
15: ν = τ

√
(hkkτ )2 + (hk+1,k

τ )2

16: ck = hkk
ν , sk = hk+1,k

ν
17: hkk = ν; hk+1,k = 0
18: zk+1 = −skzk; zk = ckzk
19: k ← k + 1
20: end while
21: yk = zk

hkk
22: for l = k − 1 : −1 : 1 do
23: yl =

zl−
∑k

j=l+1 hljyj

hll
24: end for
25: xk = x0 +

∑k
l=1 ylv

l

the algorithm comprises the orthogonalization process which yields an orthogonal basis
{vk}nk=1; this is achieved by a Gram-Schmidt-like Arnoldi algorithm in Steps 3–9. It can be
shown that the matrix Hk, consisting of the numbers {hij}ki,j=1, which may be expressed
in short by

Hk = V >k AVk,

is in fact an upper Hessenberg matrix (here, the columns of the matrix Vk are the basis
vectors vk). The second part of the GMRES algorithm (Steps 10–19) aims at reducing the
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original minimum residual problem

min
x
‖b−Ax‖2

to a simpler and lower-dimensional Gaussian equalization problem. The essential step is
a transformation of the matrix Hk, which is most easily done by Givens rotations (Steps
11–12; alternatively, Householder reflections could be employed). In Steps 21–24, the
coefficients yk are determined which are necessary to express the approximation xk as
a linear combination of the orthogonal basis vectors vk of the current Krylov subspace
Kk(r0, A) (Step 25).
The GMRES method is employed in Chapter 5 to solve the system of shooting conditions
in both IMS and DMS (see Algorithms 5.3 (Step 5) and 5.5 (Step 5)). However, as it is
common in practical realizations to save memory, a restarted GMRES method is used,
which means that after a fixed number, say m, of iterations, the iterate xm is computed
and taken as a starting vector for a new run of the GMRES algorithm.

Preconditioning. As already indicated above, the convergence behavior of the CG
method is well examined. The following result illustrates the necessity of preconditioning
techniques. Examples are discussed below.

Theorem 4.2. Let A ∈ Rn×n be a symmetric and positive definite matrix, and let {xk}k∈N0

be the sequence of approximate solutions to (4.14) generated by the CG method (see
Algorithm 4.1). It holds:

‖xk − x∗‖A ≤ 2
(√

cond2(A)− 1√
cond2(A)− 1

)k
‖x0 − x∗‖A. (4.16)

Here, x∗ is the exact solution of (4.14), and cond2(A) denotes the spectral condition of the
matrix A, defined as cond2(A) = |λmax|

|λmin| .

Proof. The proof uses Tchebychev polynomials and can be found in Meister [87].

The relation (4.16) implies that the CG method has a superlinear convergence behavior,
as the quotient (

√
cond2(A)− 1)/(

√
cond2(A)− 1) is always smaller than 1 and thus the

sequence {ck}k∈N with

ck = 2
(√

cond2(A)− 1√
cond2(A)− 1

)k
converges to zero. However, this convergence may become arbitrarily slow if the condition
number cond2(A) is large enough. Thus, for ill-conditioned problems, the CG method is
inefficient, and it is advisable to use preconditioning techniques.

Remark 4.7. For the GMRES method, there are similar convergence results as the one
presented in Theorem 4.2 for the CG algorithm for a symmetric and positive definite
system matrix (see Meister [87]). Therefore, the following discussion of preconditioners
holds also for GMRES, except for the type of preconditioners to be chosen.

70



4.3 Solvers for nonlinear equations

The concept of preconditioning relies on modifying the system matrix A in such a way
that the condition number cond(Ã) of the modified system matrix Ã is of moderate size.
It holds

Ã = P−1A or, to preserve symmetry, Ã = P−1AP−>,

where in the latter case the solution variable becomes y = P>x, a linear system which
has to be solved in addition. From the above representations of Ã, two aspects should be
considered: first, the preconditioning matrix P should be chosen so that Ã is close to the
identity (in order to guarantee an optimal reduction of the condition number). Second,
the additional linear system should be easily solvable. These objectives are, however,
antagonizing, which can be seen from the two extreme choices P = I (which renders the
additional linear system trivial) and P = A (which is the optimal choice for reducing the
condition number). In practice, all preconditioners yield a trade-off between these two
objectives.
As this work does not focus on the development of good preconditioners, further discussions
are skipped; see Meister [87] for details. There are several classes of preconditioners, e. g.,
the splitting-based ones like Jacobi, Gauss-Seidel or SSOR preconditioners. Other standard
preconditioners use incomplete Cholesky (IC) or LU decompositions (ILU) of the system
matrix. It is important that, for symmetric methods such as CG, the preconditioning
matrix P preserves symmetry and the method can still be applied to the modified system
with matrix Ã.
The last paragraph of Subsection 5.1.2 contains a detailed discussion of a symmetric
Gauss-Seidel preconditioner for solving the IMS shooting system with a Newton-GMRES
method.

4.3 Solvers for nonlinear equations

Important variants of Newton’s method. When, in Section 3.4, the extended optimal
control formulation was discussed from which the different multiple shooting methods for
PDE optimization are derived in Chapter 5, we already hinted at the classical Newton’s
method as the typical solver for nonlinear equations. The following Algorithm 4.3 for the
solution of the general nonlinear equation

F (x) = 0 with F : Rn → Rn (4.17)

recalls the two-step formulation (3.49) which was presented for solving the system (3.50).
As we always deal with finite-dimensional problems in practice (e. g., systems arising
from discretized PDE), the method is formulated in finite dimensions. Note, however,
that it can be formulated and analyzed on a function space level as well. Despite its
good theoretical properties (local second-order convergence under certain regularization
assumptions) Newton’s method is rarely applied in this basic form. Nevertheless, there are
lots of variants which make it an essential tool for solving nonlinear equations. There are
simple variants like the damped Newton method which does not use the full step for the
update (i. e., Step 4 in Algorithm 4.3 is replaced by xk+1 = xk +λδx for a factor λ ∈ (0, 1)).
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Algorithm 4.3 Newton’s method as a defect correction iterative solver.
Require: Starting value x0 ∈ Rn.

1: Set counter k = 0, choose tolerance TOL.
2: while ‖F (xk)‖ > TOL do
3: Solve the system ∇F (xk)δx = −F (xk).
4: Compute xk+1 = xk + δx.
5: k ← k + 1
6: end while

But there are also sophisticated concepts like inexact Newton methods; the latter comprise
again several subclasses, e. g., quasi-Newton methods (which are neglected in this thesis
but remain important in the context of SQP algorithms). We concentrate on a type of
inexact Newton methods where Step 3 of Algorithm 4.3 is solved by an iterative method,
e. g., one of the solvers mentioned in Section 4.2.

Krylov-Newton methods and globalization techniques. Algorithm 4.4 describes
the solution of the Newton system by an iterative solver. For the latter, one of the Krylov
subspace algorithms (CG resp. GMRES) presented in the last section is chosen. They are
referred to as Krylov-Newton methods.

Algorithm 4.4 Variant of Newton’s method with iterative linear solver.
Require: Starting value x0 ∈ Rn.

1: Set counter k = 0, choose tolerance TOL1.
2: while ‖F (xk)‖ > TOL1 do
3: Set counter i = 0, choose starting vector δx0 and tolerance TOL2.
4: while ‖∇F (xk)δxi + F (xk)‖ > TOL2 do
5: Carry out one step of the linear iterative solver.
6: i← i+ 1
7: end while
8: Compute xk+1 = xk + δxend.
9: k ← k + 1

10: end while

A Krylov-Newton method that is used for solving the reduced optimal control problems
on the shooting subintervals is Steihaug’s classical modification of the CG algorithm. It
combines the CG method with a trust region globalization technique and is designed for
unconstrained OCP of the form

min
q

j(q)

that lead to large-scale optimization problems. The first order necessary optimality
condition can be assembled from directional derivatives such as

j′(q)(τq) = 0.
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As usual, this root-finding problem may be treated by Newton’s method. In each iteration,
a linear system of of the type

j′′(q)(δq, τq) = −j′(q)(τq) (4.18)

has to be solved. For many optimization methods relying on quadratic approximations
(like the class of sequential quadratic programming (SQP) algorithms) it is an important
observation that (4.18) can also be considered as the first order optimality condition of the
quadratic problem

min
δq

m(δq) = j(q) + j′(q)(δq) + 1
2j
′′(q)(δq, δq). (4.19)

The reduced gradient and Hessian can be assembled from directional derivatives, and from
(4.18) the linear system

∇2j(q)δq = −∇j(q) (4.20)

arises, which is a concrete instantiation of (4.14) with A = ∇2j(q), x = δq and b = −∇j(q).
Now an additional constraint, a so-called trust region radius µ, is added to the quadratic
approximation problem (4.19), leading to the constrained problem

min
δq

m(δq) s. t. ‖δq‖ ≤ µ. (4.21)

In the following this problem is solved by Steihaug’s modified CG method (see Algorithm
4.5). As the original problem (4.20) constitutes a Newton equation, this algorithm is an
example for a Krylov-Newton method. A similar Newton-GMRES method is used in the
algorithms of Chapter 5. A distinguishing feature of Algorithm 4.5 is the presence of three
different stopping mechanisms. A minimizer of the quadratic subproblem (4.19) is sought
on a circular set with radius µj (the index j already hints at the iterative character of
the method, i. e., also the trust region radius will be updated during the process). The
algorithm terminates if

(i) the quantity γk, describing the curvature of the direction gk, becomes negative. This
case represents an extension of the original CG algorithm for matrices A that are not
necessarily positive definite; if this happens, we either move to the boundary (Steps
6–7) or accept the previous iterate (Step 10).

(ii) the norm ‖pk+1‖ exceeds the current trust region radius, because in this case the
new iterate lies outside the trust region; if this happens, we move along the direction
of pk+1 until trust region boundary is reached (Steps 17–18).

(iii) the original Newton step is approximated well enough; in this case, the current iterate
is accepted (Step 23).

Furthermore, a comparison of Algorithms 4.1 and 4.5 shows that, with a modified nomen-
clature, the steps are equivalent in both variants (e. g., Step 8 of Algorithm 4.1 corresponds
to Step 21 of Algorithm 4.5, and Step 10 corresponds to Steps 26–27).
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Algorithm 4.5 The modified conjugate gradient method by Steihaug [106].
1: Set p0 = 0, r0 = b, g0 = r0 and counter k = 0, choose tolerance TOL.
2: loop
3: Set γk = (Agk, gk).
4: if γk ≤ 0 then
5: if µj <∞ then
6: Compute τ > 0 so that ‖pk + τgk‖ = µj .
7: Set x = pk + τgk.
8: break (negative curvature)
9: else

10: Set x = pk−1 (resp. x = p0 if k = 0).
11: break (negative curvature)
12: end if
13: end if
14: Compute α = ‖rk‖2

γk
.

15: Set pk+1 = pk + αgk.
16: if ‖pk+1‖ > µj then
17: Compute τ > 0 so that ‖pk + τgk‖ = µj .
18: Set x = pk + τgk.
19: break (norm of approximation too large)
20: end if
21: Compute rk+1 = rk − αAgk.
22: if ‖r

k+1‖
‖r0‖ < TOL then

23: Set x = pk+1.
24: break (approximation sufficiently good)
25: end if
26: Compute β = ‖rk+1‖2

‖rk‖2 .
27: Set gk+1 = rk+1 + βgk.
28: k ← k + 1
29: end loop

Matrix-free computation. The presented algorithms require the system matrix A and
the righthand side b as input and yield the solution x or at least an approximation x̃ of
predetermined quality as output. However, in large-scale optimization, it is often impossible
to assemble the system matrix due to the numerical costs.
In this last paragraph of Chapter 4 the concept of matrix-free computation is discussed
in an abstract manner and for the simplest example. Concrete possibilities for avoiding
explicit matrix assemblation are encountered in Chapter 5 (see, e. g., equations (5.13) or
(5.24)). Here, the following case of a two-dimensional system is considered:

(
a11 a12
a21 a22

)(
x1
x2

)
=
(
b1
b2

)
. (4.22)
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This system can be transformed into

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2.

Now, with y1 = a11x1 + a12x2 and y2 = a21x1 + a22x2, the resulting vector y is called a
matrix-vector product. Assume that a CG or GMRES method is employed to solve (4.22).
If y1 and y2 can be expressed, e. g., by solving certain additional equations (which will be
the case in Chapter 5), then all the expressions Apk, Avk and Agk in Algorithms 4.1, 4.2
and 4.5 can be replaced by yk, which is then iteratively updated by the respective method
(CG or GMRES).
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5 Multiple Shooting Approaches for PDE
Constrained OCP

The current chapter deals with several multiple shooting variants for parabolic OCP. The
presentation of ODE optimal control problems and their numerical solution by means
of shooting methods in Section 2.3 introduced two different formulations of the multiple
shooting method. These two approaches reflect the more general distinction between direct
and indirect methods for OCP (see Rao [96] for an overview). Therefore, they are called
direct multiple shooting (DMS) and indirect multiple shooting (IMS), respectively. This
chapter describes both formulations in detail for PDE governed OCP. Hesse [52] stated
an equivalence of DMS and IMS in an abstract setting (compare also Hesse & Rannacher
[54]) which is not obvious from the algorithms presented in Section 2.3. Hesse’s DMS
formulation consists of the same components as IMS, but it deviates significantly from the
well-established DMS solution routine presented in Section 2.3 in the ODE case. We provide
a comprehensible presentation of the interrelations between the shooting variants and
formulations. Sections 5.1 and 5.2 derive IMS and DMS from the same underlying problem.
The discussion reveals the similar structure of both approaches but, in their algorithmic
realization, we recognize important differences. In Section 5.3, the DMS formulation from
Section 5.2 and the one commonly used in ODE optimal control (cf. Subsection 2.3.2)
are proven to be identical. The latter one is interpreted as a reduced formulation of the
former one. Further aspects of both shooting variants are presented in Section 5.4. By
means of numerical tests, the theoretical results are substantiated in the concluding Section
5.5. Central parts of this chapter have already been submitted as a contribution to an
anthology in Carraro & Geiger [21].

5.1 Indirect multiple shooting (IMS)

The first variant of multiple shooting, the IMS method, has not been employed much in
the PDE optimal control framework. Unlike its more widely used direct counterpart, it
does not reduce the OCP boundary value problem to a series of initial value problems,
but splits the original BVP (see Remark 3.8) into a sequence of identical problems on the
shooting subintervals (3.42). IMS is introduced by Hesse [52] and first published in Hesse
& Kanschat [53], where the authors’ focus lies on the application of error estimators in
the multiple shooting context. A thorough presentation of the method itself is omitted.
Therefore, we develop the main ideas and the overall structure of IMS in Subsection 5.1.1.
Subsequently, the implementational details of the IMS method are presented in Subsection
5.1.2, where concrete algorithms for several subproblems are proposed.
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5.1.1 Structure of IMS

In order to create a suitable framework for multiple shooting methods as solvers for
parabolic OCP of type (3.3)–(3.4), the problem has to be modified by including additional
continuity conditions. The first order optimality conditions of the resulting extended OCP
(3.43)–(3.44) lead to the formal Newton system (3.50). Recall that this high-dimensional
linear system (respectively, its discrete counterpart) is neither assembled nor solved in
practice but serves for illustratory purposes. The derivation of IMS is based on a splitting
of (3.50) into two parts; the current subsection describes this splitting, which provides
IMS with the structure of a two-step fixed-point iteration.
Remember that in system (3.50), the abbreviatory matrix and vector entries have to be
interpreted componentwise, e. g., L̄′u stands for (L̄′u0 , · · · , L̄′uM−1)>. It is important that
all variables δuj , δzj , δqj , δsj and δλj are independent. They are regrouped according to
the following scheme:

0 L̄′′uz L̄′′qz L̄′′sz 0
L̄′′zu L̄′′uu 0 0 L̄′′λu
L̄′′zq 0 L̄′′qq 0 0
L̄′′zs 0 0 0 L̄′′λs
0 L̄′′uλ 0 L̄′′sλ 0




δz
δu
δq

δs
δλ

 = −



L̄′z
L̄′u
L̄′q
L̄′s
L̄′λ


. (5.1)

Now we deal with two subsets of variables. On the one hand, δuj , δzj , δqj , which are the
intervalwise counterparts of the corresponding update variables of the global problem. On
the other hand, δsj , δλj , which comprise all artificially introduced additional variables of
the extended OCP (3.43)–(3.44). Successive solution of the corresponding two subsystems
of (5.1) introduces inherent dependencies between the variables. In a first solution step,
s = (sj)Mj=0 and λ = (λj)Mj=0 are fixed to solve the intervalwise boundary value problems

((∂tuj , δz)) + a(uj)(δz) + b(qj)(δz)− ((f |Ij , δz)) + (uj(τj)− sj , δz(τj)) = 0, (5.2a)
J j′u (qj , uj)(δu)− ((∂tzj , δu)) + a′u(uj)(δu, zj) + (zj(τj+1)− λj+1, δu(τj+1)) = 0, (5.2b)

J j′q (qj , uj)(δq) + b′q(qj)(δq, zj) = 0. (5.2c)

Remark 5.1. As there is no need to fit given values at the end time τM for the global
state variable and at the initial time τ0 for the global adjoint variable, the corresponding
variables sM and λ0 are redundant. They are skipped to decrease the size of the shooting
system. Furthermore, the variables s0 and λM could be replaced by the known initial
values s0 ≡ u0 and λM ≡ 0, or λM ≡ ûT in case of an end-time functional. The main
reason for keeping them in the system is the resulting simplification in the implementation
of the method. By this, all shooting intervals can be treated in an identical manner.

The equations (5.2) correspond to L̄′zj (ξ)(δz) = 0, L̄′uj (ξ)(δu) = 0 and L̄′qj (ξ)(δq) = 0 in
(3.48). The variables uj , zj and qj now depend on sj and λj+1. The BVP character of
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the intervalwise KKT systems results from the forward-backward structure and the full
coupling of the state and adjoint equations. The parameter sj is the initial value for uj
at τj , and λj+1 is the initial value for zj at the subinterval endpoint τj+1. The states
uj(sj , λj+1) and zj(sj , λj+1) are coupled via the control equation (5.2c). Note that, in the
ODE case in Subsection 2.3.1, the control equation has been solved for qj and the result
was inserted into the state equation. This left us with a two-component BVP in uj and zj ,
and the control was computed performing a simple update step. In Remark 2.8, it was
claimed that this reduction is not possible in general, which is why the three-component
BVP (5.2) is left unaltered in the PDE case.

Remark 5.2. The initial choice of the parameters sj and λj+1 is essential, as its quality
influences the convergence of Newton’s method. For ODE problems, there exist several
suggestions; e. g., additional information on the solution, if available, could improve the
initial guesses (for an example, see Bulirsch & Stoer [20]), or alternatively, one could employ
homotopy methods as in Lory [77]. This question has potential for further research but is
not considered here.

Together the three equations (5.2) bear the same structure on each shooting subinterval as
the global KKT system (3.32). However, as the intervalwise solutions do not fit together
at the subinterval endpoints, the solution is globally discontinuous due to the artificially
chosen initial values sj and λj+1. As pointed out in Section 3.4, this contradicts the
embedding X ↪→ C(I;H). Therefore, the local solutions uj(sj , λj+1), zj(sj , λj+1) and
qj(sj , λj+1) are used to update sj and λj+1 in the second solution step for (5.1), which
consists of solving the following system (corresponding to L̄′λj (ξ)(δλ) = 0, L̄′sj (ξ)(δs) = 0):

(s0 − u0, δλ) = 0,[
(λj − zj(τj ; sj , λj+1), δs) = 0

(sj − uj−1(τj ; sj−1, λj), δλ) = 0

]
, (j = 1, . . . ,M − 1),

(λM , δs) = 0.

(5.3)

These equations constitute the shooting system, which is the part of (3.48) actually solved
by Newton’s method. Abbreviating the above shooting equations (5.3) by F (s,λ) = 0, we
have to solve

∇(s,λ)F (s,λ)
(
δs
δλ

)
= −F (s,λ) (5.4)

instead of the whole system (3.50). This results in improved values

snew = s + δs, λnew = λ+ δλ,

with which step one described above is restarted. The asserted structure of a two-step
fixed-point iteration, alternating between computing (uj , zj , qj) and updating (sj , λj), is
evident. The whole process is resumed in the following Algorithm 5.1.
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Algorithm 5.1 Indirect multiple shooting for PDE governed OCP

Require: Decomposition I = {τ0} ∪
⋃M−1
j=0 (τj , τj+1], initial values {(sj0, λ

j+1
0 )M−1

j=0 }.
1: Set k = 1.
2: while Shooting conditions (5.3) not fulfilled do
3: for j = 0 to M − 1 do
4: Solve intervalwise boundary value problems (5.2).
5: end for
6: Solve (5.4), compute update {(sjk, λ

j+1
k )M−1

j=0 } of initial values, set k ← k + 1.
7: end while

5.1.2 Algorithmic description

We now focus on steps 4 and 6 of Algorithm 5.1, namely the solution of the intervalwise
BVP (5.2) (the first part of our two stage fixed-point problem) and the solution of the
shooting system (5.4) (the second part, correspondingly).

The intervalwise OCP. As the intervalwise BVP (5.2) are smaller copies of the corre-
sponding global problem (3.48), strategies that have been proved and tested in the global
context are now applied to the intervalwise problems. Furthermore, these problems can be
solved independently which allows for parallelization of the multiple shooting code. There
are two main approaches to solving a problem such as (5.2). The all-at-once approach
solves (5.2) as a whole, treating uj , zj and qj as independent variables. Well-known variants
are, e. g., the Schur complement method (for details, see Choi et al. [23] and the references
therein) and the nullspace method which has, e. g., been described by Vicente [113]. Note
that for all-at-once strategies, one usually has to find suitable preconditioners, as the saddle
point problems resulting from the KKT conditions are usually ill-conditioned. Keller,
Gould & Wathen [63] suggested a preconditioner which works well within a GMRES solver
environment.
Instead of going into the details of all-at-once solution strategies, a reduced approach is
presented which has already been sketched in Section 3.3 for the global OCP and has also
been implemented for our numerical examples. Its important feature is the reduction of
the set of independent variables from (qj , uj) to the control qj . Hence, the interval state
uj = uj(qj) is interpreted in terms of the interval control by means of a local solution
operator Sj : Qj → Xj . This procedure is described in a similar way in Meidner & Vexler
[85], and a detailed presentation can also be found in the textbook Hinze et al. [59]. To
clarify the notation used in Algorithm 5.2 below, the reduced cost functional on subinterval
Ij is defined as

Ĵ(qj) := J j(qj , uj(qj)). (5.5)

Following the proceeding of Section 3.3, we find expressions for the intervalwise reduced
first order and second order directional derivatives. These are given by Ĵ ′q(qj)(δq) and
Ĵ ′′qq(qj)(δq2, δq1), which should be compared to (3.34) and (3.35), respectively. After solving
the intervalwise state and adjoint equations (5.2a) and (5.2b) (for the latter, local solution
operators Tj : Qj → Xj are introduced), we obtain in analogy to (3.34) and the discussion

80



5.1 Indirect multiple shooting (IMS)

thereafter
Ĵ ′q(qj)(δq) = L̄′q(ξ)(δq) = α((qj , δq)) + b′q(qj)(δq, zj). (5.6)

For given δqj , the intervalwise tangent equation (cf. (3.39))

((∂tδuj , ϕ)) + a′u(uj)(δuj , ϕ) + b′q(qj)(δqj , ϕ) + (δuj(τj), ϕ(τj)) = 0 (5.7)

is solved for δuj . Then the intervalwise extra adjoint equation (cf. (3.40))

−((∂tδzj , ψ)) + a′u(uj)(ψ, δzj) + a′′uu(uj)(δuj , ψ, zj)
+ ((δuj , ψ)) + (δzj(τj+1), ψ(τj+1)) = 0

(5.8)

is solved for δzj . These solutions permit the representation (cf. (3.41))

Ĵ ′′qq(qj)(δqj , χ) = b′q(qj)(χ, δzj) + b′′qq(qj)(δqj , χ, zj) + α((δqj , χ)) (5.9)

of the second order directional derivative of the reduced objective functional. As agreed
in Section 3.4, a distributed functional structure is assumed, i. e., κ1 = 1, κ2 = 0. Further
modifications are necessary in case of an end-time functional. In order to evaluate the
second order directional derivative (5.9), the solution δzj of the extra adjoint equation is
required. To solve the latter, the solution δuj of the tangent equation has to be known.
Thus, to evaluate one second order directional derivative of Ĵ(qj), two additional linear
equations have to be solved.
In principle, the reduced Hessian ∇2Ĵ(qj) could be assembled by determining all second
order directional derivatives for a whole basis {δqi}dimQj

i=1 (this is described in detail in
Meidner [84]), but this is very expensive for high-dimensional control spaces. In fact, we
then have to solve 2 · dimQj additional linear problems. It is more efficient to employ a
Newton-CG method as described in Section 4.3. This permits a matrix-free computation,
and one evaluation of (5.9) replaces a matrix-vector product of the form ∇2Ĵ(qj) · δq. One
then has to solve two additional linear problems per CG iteration.
The following algorithm can now replace step 4 in the overall Algorithm 5.1:

In Section 5.3, the concept of reduced control problems is revisited in a more complicated
form in the context of different DMS techniques.

The shooting system. The solution of (5.4) by Newton’s method involves the Jacobian
matrix ∇(s,λ)F (s,λ) of the shooting conditions (5.3). Despite having substantially reduced
the size of the Newton system (in this regard, (5.4) must be compared to (3.50)), the effort
for explicitly assembling this Jacobian is still not manageable. Therefore, a matrix-free
method is employed to solve (5.4), in our case a Newton-GMRES approach. Algorithm 5.3
below comprises the essential steps.
The explicit form of system (5.4) which underlies the implementation of the examples
presented in Section 5.5.1 reads

A B0 · · · 0

C0 A
...

. . .
... A BM−2
0 · · · CM−2 A





δy0

δy1

...
δyM−2

δyM−1


= −



F0
F1
...

FM−2
FM−1


. (5.10)

81



5 Multiple Shooting Approaches for PDE Constrained OCP

Algorithm 5.2 Solution of the intervalwise BVP (reduced approach)

Require: Set k = 0, prescribe tolerance TOL1 and initial control qj0.
1: while ‖∇Ĵ(qjk)‖ > TOL1 do
2: Solve state equation (5.2a).
3: Solve adjoint equation (5.2b).
4: Compute gradient ∇Ĵ(qjk) of reduced cost functional.
5: Set i = 0, prescribe tolerance TOL2 and δqjk,0.
6: while ‖δqjk,i+1 − δq

j
k,i‖ > TOL2 do

7: Compute matrix-vector product ∇2Ĵ(qjk)δq
j
k,i.

8: Solve system ∇2Ĵ(qjk)δq
j
k,i = −∇Ĵ(qjk) by a Newton-CG method (this requires

solving the tangent equation (5.7) and extra adjoint equation (5.8) in each iteration;
they are obtained by linearization of (5.2a) and (5.2b), respectively).

9: end while
10: Set k ← k + 1 and qjk+1 = qjk + δqjk,end.
11: end while

For j = 0, . . . ,M − 1, the solution subvectors are explicitly given as δyj := (δsj , δλj+1)>.
Furthermore, the submatrices are

A =
[
I 0
0 I

]
, Bj =

[
0 0

−zj+1′
s (τj+1) −zj+1′

λ (τj+1)

]
, Cj =

[
−uj′s (τj+1) −uj′λ (τj+1)

0 0

]

for j = 0, . . . ,M − 2, and the righthand side subvectors are given by

Fj =
[

sj − uj−1(τj ; sj−1, λj)
λj+1 − zj+1(τj+1; sj+1, λj+2)

]
, (j = 1, . . . ,M − 2),

F0 =
[

s0 − u0
λ1 − z1(τ1; s1, λ2)

]
, FM−1 =

[
sM−1 − uM−2(τM−1; sM−2, λM−1)

λM

]
.

The Jacobian in (5.10) has a block tridiagonal structure. The diagonal blocks are identity
matrices of twice the size of the spatial dimension, i. e., in the discretized case they have
dimension 2R× 2R, where R = dimV s

h in (4.6). The blocks on the first upper and lower
diagonals comprise two R×R zero submatrices and two matrices of the same size given as
derivatives of the intervalwise OCP solutions uj and zj with respect to their initial values
sj and λj+1, respectively. Thus, the whole Jacobian ∇F is of size 2RM × 2RM , where M
is the number of shooting intervals.
The derivatives uj′s and zj′s are obtained as solutions of the system

((∂tuj′s , ϕ)) + a′u(uj)(uj′s , ϕ) + b′q(qj)(qj′s , ϕ) + (uj′s (τj)− δsj , ϕ(τj)) = 0 ∀ϕ ∈ Xj ,

J j′′uu(uj)(uj′s , ψ)− ((∂tzj′s , ψ)) + a′′uu(uj)(uj′s , ψ, zj)
+ a′u(uj)(ψ, zj′s ) + (zj′s (τj+1), ψ(τj+1)) = 0 ∀ψ ∈ Xj ,

J j′′qq (qj)(qj′s , χ)− b′′qq(qj)(qj′s , χ, zj)− b′q(qj)(χ, zj′s ) = 0 ∀χ ∈ Qj .

(5.11)
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This system is the derivative of the intervalwise optimality conditions (5.2) with respect to
sj in direction δsj . Analogously, to compute uj′λ and zj′λ , the corresponding system

((∂tuj′λ , ϕ)) + a′u(uj)(uj′λ , ϕ) + b′q(qj)(q
j′
λ , ϕ) + (uj′λ (τj), ϕ(τj)) = 0 ∀ϕ ∈ Xj ,

J j′′uu(uj)(uj′λ , ψ)− ((∂tzj′λ , ψ)) + a′′uu(uj)(uj′λ , ψ, z
j)

+ a′u(uj)(ψ, zj′λ ) + (zj′λ (τj+1)− δλj+1, ψ(τj+1)) = 0 ∀ψ ∈ Xj ,

J j′′qq (qj)(qj′λ , χ)− b′′qq(qj)(q
j′
λ , χ, z

j)− b′q(qj)(χ, z
j′
λ ) = 0 ∀χ ∈ Qj ,

(5.12)

has to be solved which is the derivative of (5.2) with respect to λj+1 in direction δλj+1.
Solving the systems (5.11) and (5.12) yields the directional derivatives uj′s (t; δsj), zj′s (t; δsj),
uj′λ (t; δλj+1), and zj′λ (t; δλj+1). In the examples of Section 5.5, both systems are solved by
a fixed-point iteration. Now, the matrix-vector product can be written in the following
form:

∇(s,λ)F (s,λ)
(
δs
δλ

)
=



δs0

δλ1 − z1′
s (τ1; δs1)− z1′

λ (τ1; δλ2)
δs1 − u0′

s (τ1; δs0)− u0′
λ (τ1; δλ1)

δλ2 − z2′
s (τ2; δs2)− z2′

λ (τ2; δλ3)
...

δsM−2 − uM−3′
s (τM−2; δsM−3)− uM−3′

λ (τM−2; δλM−2)
δλM−1 − zM−1′

s (τM−1; δsM−1)− zM−1′
λ (τM−1; δλM )

δsM−1 − uM−2′
s (τM−1; δsM−2)− uM−2′

λ (τM−1; δλM−1)
δλM − J ′′(uM−1′

s (τM ; δsM−1))− J ′′(uM−1′
λ (τM ; δλM ))



. (5.13)

Computation of the whole Jacobian ∇F with the sensitivity method (see, e. g., Hinze et al.
[59]) requires for each pair of derivatives uj′s , zj′s and uj′λ , z

j′
λ the solution of equations (5.11)

or (5.12) for δsj and δλj+1. For these directions, a complete set of basis functions of the
discrete space V s

h defined in Subsection 4.1.2 has to be run through. This means that one
2R× 2R block Bj or Cj requires the solution of 2R linear boundary value problems, which
amounts to a total number of 2R(M − 1) linear boundary value problems for the whole
Jacobian. This is costly on highly refined spatial meshes. To avoid this, (5.4) is solved by
a matrix-free approach similar to step 8 of Algorithm 5.2. For the latter, a Newton-CG
method has been chosen, which requires the solution of two additional problems (5.7) and
(5.8) in each iteration. Similarly, for the solution of (5.4), we employ a Newton-GMRES
iterative method. As the matrix in (5.10) is not symmetric, a CG approach is not expected
to work for the shooting system. In this framework, equations (5.11) and (5.12) have to
be solved in addition once per iteration of the Newton-GMRES method. This approach
resembles the adjoint approach for solving reduced optimal control problems (cf. again
Hinze et al. [59]). The corresponding Algorithm 5.3 can now substitute step 6 in Algorithm
5.1.

Preconditioned IMS. Example 2.1 suggests that the condition of the Jacobian ∇F
deteriorates with an increasing number of shooting intervals. Thus the use of a precon-
ditioner becomes necessary. In Section 4.2 the concept of preconditioning was briefly
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Algorithm 5.3 Solution of the IMS shooting system (matrix-free approach)
Require: Shooting variables (sk,λk), intervalwise OCP solutions uj , zj

1: Build up residual −F (sk,λk).
2: Set i = 0, prescribe tolerance TOL and choose (δs(0)

k , δλ
(0)
k ).

3: while ‖∇F (sk,λk)(δs
(i)
k , δλ

(i)
k ) + F (sk,λk)‖ > TOL do

4: Compute matrix-vector product ∇F (sk,λk)(δs
(i)
k , δλ

(i)
k ).

5: Solve system ∇F (sk,λk)(δs
(i)
k , δλ

(i)
k ) = −F (sk,λk) by a Newton-GMRES type

method (this requires the solution of two additional BVP, the linearizations (5.11)
and (5.12) of (5.2) w. r. t. s resp. λ, in each iteration).

6: end while
7: Set k ← k + 1 and sk+1 = sk + δsendk ,λk+1 = λk + δλendk .

discussed, which is now concretized in the context of the Newton-GMRES solver (see Step
5 of Algorithm 5.3) for the IMS continuity conditions (5.3). These conditions lead to the
shooting system (5.4), abstractly rewritten as

Kδx = b. (5.14)

Our presentation follows Hesse [52] who tested different preconditioners, following the work
by Heinkenschloss [50] on preconditioned DMS (cf. the last paragraph of Subsection 5.2.2).
The focus lies on a symmetric Gauss-Seidel (SGS) preconditioner which is easily imple-
mented. Its structure is presented, a matrix-free variant is dicussed, and its performance is
described. Numerical results are presented in Subsection 5.5.1.
Splitting-based iterative methods rely on an additive decomposition of the given system
matrix into a subdiagonal, diagonal and superdiagonal part. In the case of (5.14), the
system matrix K resolves into three matrices, denoted from left to right by L,D and U ,
which contain each only one nonzero block diagonal:

K =



0 0 · · · 0

C0 0
...

. . .
... CM−1 0 0
0 · · · CM−2 0


+



A 0 · · · 0

0 A
...

. . .
... A 0
0 · · · 0 A


+



0 B0 · · · 0

0 0 B1
...

. . .
... 0 BM−2
0 · · · 0 0


.

The prefactor matrix P for the SGS preconditioner is then given by

P = (D + L)D−1(D + U). (5.15)

Due to the structure of Krylov subspace iterative algorithms (see, e. g., the GMRES method
in Algorithm 4.2), the preconditioner must be applied to the residual Kδx− b or a similarly
structured equation. Then the objective is to compute an expression of the form

P−1(Kδx− b) =: w
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in each GMRES step. If we denote the residual by r and recall the structure of P , where
the matrix D and its inverse D−1 are both given by the identity matrix, the resulting
system is given by

(D + U)−1(D + L)−1r = w.

This system is solved in two steps, namely

(D + L)v = r,

(D + U)w = v.
(5.16)

Recall that the block matrix L essentially comprises derivatives of the intervalwise state
solution uj with respect to sj and λj+1 (and the entries of the block matrix U are
analogously given by derivatives of zj with respect to sj and λj+1). It follows that solving
the systems (5.16) in a matrix-free manner is equivalent to the solution of two additional
linear boundary value problems of the type (5.11) and (5.12) per shooting interval, but
with different righthand sides. To illustrate this, the first system is written explicitly as

r0
r1
r2
...

rM−2
rM−1


=



v0
v1 − C0v0
v2 − C1v1

...
vM−2 − CM−3vM−3
vM−1 − CM−2vM−2


where, again exemplarily, the j-th equation (for j > 0) corresponds to

r
(1)
j = δsj − uj−1

s (τj ; δsj−1)− uj−1
λ (τj ; δλj),

r
(2)
j = δλj+1.

As the use of this SGS preconditioner necessitates two additional linear BVP solves per
GMRES step, the number of linear BVP of type (5.11) or (5.12) to be solved per GMRES
iteration is doubled by the preconditioner. For an efficient preconditioning, the number of
GMRES steps must be reduced drastically. In Subsection 5.5.1, several numerical results
are presented. As these examples illustrate that the SGS preconditioner is not efficient, for
the remainder of our thesis, most computations are carried out without preconditioning.
We have not been able to detect the same positive effects of the SGS preconditioner as
Hesse [52].

5.2 Direct multiple shooting (DMS)

As mentioned in Section 2.1, the majority of the literature on multiple shooting for PDE
governed OCP concentrates on DMS methods (see, e. g., Heinkenschloss [50], Serban et al.
[105] or Ulbrich [110]). In the following, a variant of direct shooting is introduced which is
based on a similar concept as IMS in the last section. Again, the overall structure of the
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DMS approach is discussed first in Subsection 5.2.1 before presenting algorithmic details
in Subsection 5.2.2. The introduced DMS method is similar to the IMS approach from
Section 5.1, but it deviates substantially from the ‘classical’ DMS scheme known from
ODE optimal control (see also Subsection 2.3.2). The latter has been established by Bock
and his co-workers (see, e. g., [11, 13, 15]), and many algorithmic and implementational
details can be found in Leineweber [73]. This alternative DMS approach is transferred to
the PDE framework in Section 5.3, where it is also shown that the two seemingly different
DMS variants are nevertheless equivalent.

5.2.1 Structure of DMS

In contrast to the ODE framework, DMS is derived similarly to IMS by splitting the
solution process of system (3.50) into two parts. However, DMS relies on a different
regrouping of the variables which is illustrated by the following scheme:

0 L̄′′uz L̄′′qz L̄′′sz 0
L̄′′zu L̄′′uu 0 0 L̄′′λu
L̄′′zq 0 L̄′′qq 0 0
L̄′′zs 0 0 0 L̄′′λs
0 L̄′′uλ 0 L̄′′sλ 0




δz
δu

δq
δs
δλ

 = −



L̄′z
L̄′u
L̄′q
L̄′s
L̄′λ


. (5.17)

In the IMS framework, the first solution step consists of fixing sj and λj+1 and then solving
the remaining interval BVP (5.2). In contrast, the system (5.17) suggests to fix sj , λj+1,
as well as the controls qj . In a first solution step only the state and adjoint variables
uj = uj(sj , qj) and zj(sj , qj , λj+1) are computed, which become dependent variables. Note
that uj does not depend on zj and therefore is independent of λj+1. This proceeding
results in the following intervalwise IVP:

((∂tuj , δz)) + a(uj)(δz) + b(qj)(δz)− ((f |Ij , δz)) + (uj(τj)− sj , δz(τj)) = 0, (5.18a)
J j′u (qj , uj)(δu)− ((∂tzj , δu)) + a′u(uj)(δu, zj) + (zj(τj+1)− λj+1, δu(τj+1)) = 0. (5.18b)

Equivalently to the IMS case, these equations appear to generate a BVP structure with
separated boundary values, as the state equation (5.18a) runs forward and the adjoint
equation (5.18b) runs backward in time. In the IMS system (5.2), the three equations are
strongly coupled, i. e., after solving the state and adjoint equations, the control equation
provides a feedback for the state, thus starting an iterative solution process. In contrast,
system (5.18) can be considered as two successive IVP. The equations are only weakly
coupled and constitute no optimal control problems, due to the missing intervalwise control
equations. Therefore, the state solutions uj(sj , qj) can be computed first and then used to
compute the adjoint solutions zj(uj(sj , qj);λj+1), where the latter has to be carried out
backward in time. In the DMS context, this IVP formulation ia a suitable starting point.
The two local IVP (5.18) correspond to the first two equation blocks of (3.48), L̄′zj = 0
and L̄′uj = 0.
After performing the first step, we still have to solve the matching conditions L̄′sj =
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0, L̄′λj = 0 and the control equations L̄′qj = 0, which together constitute the second
solution step. The resulting system that has to be solved by Newton’s method reads

(s0 − u0, δλ) = 0, (5.19a)
J0′
q (q0, u0)(δq) + b′q(q0)(δq, z0(τj ; s0, q0, λ1)) = 0, (5.19b)

(λj − zj(τj ; sj , qj , λj+1), δs) = 0, (5.19c)
(sj − uj−1(τj ; sj−1, qj−1), δλ) = 0, (5.19d)

J j′q (qj , uj)(δq) + b′q(qj)(δq, zj(τj ; sj , qj , λj+1)) = 0, (5.19e)
(λM , δs) = 0. (5.19f)

As in system (5.3), equations (5.19c) – (5.19e) should be treated as a block for each
j = 1, . . . ,M − 1. Again, the size of the original Newton system (3.50) is reduced, although
in the current situation it remains larger than in the IMS framework. This stems from the
presence of the intervalwise controls that are distributed both in space and time (see also
Remark 5.3 below). Abbreviating (5.19) by F (s,q,λ) = 0 results in Newton’s equation

∇(s,q,λ)F (s,q,λ) ·

δsδq
δλ

 = −F (s,q,λ). (5.20)

Altogether, the structure of DMS is again a two-step fixed-point iteration, where the
controls and initial values are fixed in the first step for computing (uj , zj) before updating
(sj , qj , λj+1) in the second step. The solution process is resumed in the following Algorithm
5.4.

Algorithm 5.4 Direct multiple shooting for PDE governed OCP
Require: Decomposition I = {τ0} ∪

⋃M−1
j=0 (τj , τj+1], initial values and controls

{(sj0, q
j
0, λ

j+1
0 )M−1

j=0 }.
1: Set k = 1.
2: while Shooting conditions (5.19) not fulfilled do
3: for j = 0 to M − 1 do
4: Solve intervalwise initial value problems (5.18).
5: end for
6: Solve (5.20), compute the update {(sjk, q

j
k, λ

j+1
k )M−1

j=0 } of initial values and controls,
set k ← k + 1.

7: end while

Remark 5.3. Before discussing the algorithmic details of DMS, it is important to emphasize
that neither of the two approaches is preferable so far. Although the structure of the
intervalwise IVP (5.18) is less complex than that of the intervalwise OCP (5.2) and
presumably takes less computational effort, the Newton system (5.20) of DMS is larger
than the corresponding IMS counterpart (5.4). A comparative example is presented in
Section 5.4.
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5.2.2 Algorithmic description

In contrast to the IMS case, where the details of the solution of both the intervalwise BVP
(5.2) and the system (5.4) of shooting conditions have been presented, the focus is here on
step 6 of Algorithm 5.4, i. e., the realization of Newton’s method. The solution of the IVP in
step 4 is straightforward. It includes solving the state equation on each subinterval because
uj is needed for solving the adjoint equation, which is subsequently solved backward in
time. Given this restriction, we turn our attention to Newton’s system (5.20). The solution
of is similar to the corresponding system in IMS. For better comparability, the following
presentation is elaborated in detail.

The shooting system. In Subsection 5.1.2, it is stated that the application of a matrix-
free Krylov-Newton method is desirable due to the size of problem (5.4). As the system
(5.20) is usually larger than (5.4) due to the presence of the control variables, assembling the
matrix is even less advisable in the DMS context. Below, a Newton-GMRES method similar
to the one presented in the IMS context is discussed. The main steps are summarized in
Algorithm 5.5.
As it is essential for the structure of the implementation, the details of Newton’s system
(5.20) are presented first. It is more complex than its IMS counterpart, and its explicit
form is developed in several steps. Abstractly, it reads



A0 B0 · · · 0

C0 A1 B1
...

C1
. . .

... AM−2 BM−2
0 · · · CM−2 AM−1





δy0

δy1

...
δyM−2

δyM−1


= −



F0
F1
...

FM−2
FM−1


, (5.21)

which appears to be similar to (5.10). For j = 0, . . . ,M − 1, the solution subvectors are
given as δyj := (δsj , δqj , δλj+1)>, and on the function space level, the submatrices are
given as

Aj =

 I 0 0
b′q(qj)(·, zj′s ) J ′′qq(qj , uj)(·) + b′q(qj)(·, zj′q ) + b′′qq(qj)(·, zj) b′q(qj)(·, z

j′
λ )

0 0 I

 ,

Bj =

 0 0 0
0 0 0

−zj+1′
s (τj+1) −zj+1′

q (τj+1) −zj+1′
λ (τj+1)

 , Cj =

−uj′s (τj+1) −uj′q (τj+1) 0
0 0 0
0 0 0

 .
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The righthand side subvectors are explicitly written in the form

F0 =

 s0 − u0
J ′q(q0, u0)(·) + b′q(q0)(·, z0(s0, q0, λ1))

λ1 − z1(τ1; s1, λ2)

 ,
Fj =

 sj − uj−1(τj ; sj−1, qj−1)
J ′q(qj , uj)(·) + b′q(qj)(·, zj(sj , qj , λj+1))
λj+1 − zj+1(τj+1; sj+1, qj+1, λj+2)

 , (j = 1, . . . ,M − 2),

FM−1 =

 sM−1 − uM−2(τM−1; sM−2, λM−1)
J ′q(qM−1, uM−1)(·) + b′q(qM−1)(·, zM−1(sM−1, qM−1, λM ))

λM

 .

The Jacobian ∇(s,q,λ)F (s,q,λ) of (5.19) involves derivatives uj′s , uj′q of uj w. r. t. sj and
qj as well as derivatives zj′s , z

j′
λ , z

j′
q of zj w. r. t. sj , λj+1 and qj . These derivatives, the

so-called sensitivities, are obtained by solving five additional (linearized) IVP, the sensitivity
or variational equations, for j ∈ {0, . . . ,M − 1}. First, (5.18a) where uj = uj(sj , qj) is
differentiated with respect to sj in direction δs and with respect to qj in direction δq to
obtain the equations

((∂tuj′s , ϕ)) + a′u(uj)(uj′s , ϕ) + (uj′s (τj)− δsj , ϕ(τj)) = 0, (5.22a)
((∂tuj′q , ϕ)) + a′u(uj)(uj′q , ϕ) + b′q(qj)(δqj , ϕ) + (uj′q (τj), ϕ(τj)) = 0, (5.22b)

which have to hold for all ϕ ∈ Xj . Solving these problems for given initial data δsj,0 and
δqj,0 results in uj′s , u

j′
q . These sensitivities can be inserted into the following three IVP

obtained by differentiating the adjoint equation (5.18b) with respect to all its arguments
in corresponding directions. The following equations must hold for all ψ ∈ Xj :

J j′′uu(qj , uj)(uj′s , ψ)− ((∂tzj′s , ψ)) + a′′uu(uj)(uj′s , ψ, zj)
+a′u(uj)(ψ, zj′s ) + (zj′s (τj+1), ψ(τj+1)) = 0, (5.23a)

J j′′uu(qj , uj)(uj′q , ψ)− ((∂tzj′q , ψ)) + a′′uu(uj)(uj′q , ψ, zj)
+a′u(uj)(ψ, zj′q ) + (zj′q (τj+1), ψ(τj+1)) = 0, (5.23b)

−((∂tzj′λ , ψ)) + a′u(uj)(ψ, zj′λ ) + (zj′λ (τj+1)− δλj+1, ψ(τj+1)) = 0. (5.23c)

Solving these problems with initial data δλj+1,0 results in a complete set of sensitivities,
but only with respect to the chosen initial values (δsj,0, δqj,0, δλj+1,0). In order to assemble
∇(s,q,λ)F explicitly, the sensitivity equations have to be solved for a complete basis of⋃M−1
j=0 [H×Qj×H], which is numerically expensive for fine temporal or spatial discretizations.

Therefore, we choose a matrix-free approach where we handle Newton’s system (5.20) with
an iterative solver, for which we choose in our case, due to the asymmetric structure of the
matrix, a GMRES method. We then have to solve the sensitivity equations only once per
GMRES iteration. The adjoint approach thus avoids assembling the Jacobian and operates
on the matrix-vector product ∇(s,q,λ)F (s,q,λ) · (δs, δq, δλ)> instead.
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This matrix-vector product, the left-hand side of (5.20), has the concrete form

∇(s,q,λ)F (s,q,λ) ·

δsδq
δλ

 =



δs0

J0′′
qq (q0, u0)(δq0) + b′′qq(q0)(δq0, z0)

+b′q(q0)[z0′
s (δs0) + z0′

q (δq0) + z0′
λ (δλ0)]

δλj − zj′s (τj ; δsj)− zj′q (τj ; δqj)− zj′λ (τj ; δλj+1)
δsj − uj−1′

s (τj ; δsj−1)− uj−1′
λ (τj ; δλj)

J j′′qq (qj , uj)(δqj) + b′′qq(qj)(δqj , zj)
+b′q(qj)[zj′s (δsj) + zj′q (δqj) + zj′λ (δλj)]

δλM



, (5.24)

where the middle part has to be interpreted for j = 1, . . . ,M − 1 (cf. equations (5.19)).
This enables the formulation of the following Algorithm 5.5 which yields the details of step
6 of the above DMS algorithm:

Algorithm 5.5 Solution of the DMS shooting system (matrix-free approach)
Require: Shooting variables (sk,λk) and controls qk, intervalwise OCP solutions uj , zj

1: Build up residual −F (sk,qk,λk).
2: Set i = 0, prescribe tolerance TOL and choose (δs(0)

k , δq(0)
k , δλ

(0)
k ).

3: while ‖∇F (sk,qk,λk)(δs
(i)
k , δq

(i)
k , δλ

(i)
k ) + F (sk,qk,λk)‖ > TOL do

4: Compute matrix-vector product ∇F (sk,qk,λk)(δs(i)
k , δq

(i)
k , δλ

(i)
k ) by solving the state

and adjoint sensitivity equations (5.22) and (5.23).
5: Solve system ∇F (sk,qk,λk)(δs

(i)
k , δq

(i)
k , δλ

(i)
k ) = −F (sk,qk,λk) by a Newton-

GMRES method. This requires the renewed solution of (5.22) and (5.23) in each
iteration.

6: end while
7: Set k ← k + 1 and sk+1 = sk + δsendk ,qk+1 = qk + δqendk ,λk+1 = λk + δλendk .

Remark 5.4. In the presentation of the substructures of the linear system (5.21) above, it
is emphasized that all subvectors and -matrices are formulated on the continuous (function
space) level. In the IMS case in Subsection 5.1.2, none of the shooting variables sj and
λj+1 is distributed in the time variable. Hence, a distinction between the continuous and
the temporally discrete cases is not necessary. In the DMS framework, the controls qj are
part of the shooting system, and they are usually time-dependent and therefore have to
be temporally discretized (see the discussion in Subsection 4.1.4). As the description of
the matrices Aj , Bj and Cj on the continuous level subsequent to (5.21) can easily lead to
a misestimation of their dimensionality, this subsection concludes with a presentation of
their temporally discrete counterpart. Therefore, we assume Īj = {τj} ∪ (τj , τj+1] to be
decomposed as in (4.1). For simplicity, the number N of time steps is assumed the same
on all shooting intervals. Differentiation of uj and zj w. r. t. sj , qj and λj+1 results in the
need to solve additional linearized IVP, as seen above in (5.22) and (5.23). The controls,
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as well as all sensitivity solutions, are spatially distributed functions in each timepoint tji .
For the following presentation, the control part of the functional on Ij is given as usual
by α((qj , qj)). Furthermore, the control operator b(qj)(zj) is linear and given as the scalar
product ((qj , zj)). This leads to the following concrete block matrices:

Aj =



I 0 0 0 · · · 0 0
zj′
sj

(tj0) αI + zj′
qj

(tj0) 0 0 · · · 0 zj′
λj+1(tj0)

zj′
sj

(tj1) 0 αI + zj′
qj

(tj1) 0 · · · 0 zj′
λj+1(tj1)

... . . . ...
zj′
sj

(tjN ) 0 0 0 · · · αI + zj′
qj

(tjN ) zj′
λj+1(tjN )

0 0 0 0 · · · 0 I



constitute the diagonal blocks, whereas the blocks on the two secondary diagonals are
given by

Bj =



0 0 0 · · · 0 0
0 0 0 · · · 0 0
... . . . ...
0 0 0 · · · 0 0

−zj+1′
sj+1 (τj+1) −zj+1′

qj+1 (τj+1) 0 · · · 0 −zj+1′
λj+2(τj+1)


,

Cj =



−uj′
sj

(τj+1) 0 0 · · · −uj′
qj

(τj+1) 0
0 0 0 · · · 0 0
... . . . ...
0 0 0 · · · 0 0
0 0 0 · · · 0 0


.

Each entry of one such block matrix stands for an R × R block matrix itself, where
R = dimV s

h . Analogously, one block vector of the righthand side is given by

Fj =



sj − uj−1(τj ; sj−1, qj−1)
αqj(tj0) + zj(tj0; sj , qj , λj+1)
αqj(tj1) + zj(tj1; sj , qj , λj+1)

...
αqj(tjN ) + zj(tjN ; sj , qj , λj+1)

λj+1 − zj+1(τj+1; sj+1, qj+1, λj+2)


.

Note that for the matrices, the relation tjN = τj+1 = tj+1
0 is implicitly used, and a function

qj on the temporally discrete level stands for a vector (qj(tj0), qj(tj1), · · · , qj(tjN )). Thus,
the whole Jacobian ∇(s,q,λ)F (s,q,λ) in the DMS case has dimension [(N + 3)MR]× [(N +
3)MR], whereN is the number of time steps per shooting interval. Recall that the dimension
of the corresponding Jacobian ∇(s,λ)F (s,λ) in the IMS framework is 2MR× 2MR.
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Preconditioned DMS. As provided in Subsection 5.1.2, for an increasing number of
shooting intervals the conditioning of the Newton system for solving the continuity con-
ditions deteriorates. In particular, the condition number of the respective Jacobian ∇F
grows (cf. the discussion of Example 2.1 in Section 2.2). The discussion of a symmetric
Gauss-Seidel type preconditioner in the IMS framework followed Hesse [52]. The idea
is originally based on former considerations of Comas [26] and Heinkenschloss [50]. The
latter authors already design different preconditioning approaches for DMS methods (or,
more generally, time domain decomposition methods). Their DMS symmetric Gauss-Seidel
preconditioner is similar to the IMS case in Subsection 5.1.2, but is more complicated
because the diagonal blocks Aj are now different from the identity and have to be inverted.
We omit the details and instead content ourselves with referring to the literature. Observing
the current state of research in time domain decomposition preconditioning, there always
seems to be a trade-off between efficient preconditioning and parallelizability. Efficient
preconditioners often corrupt the potential of time domain decomposition methods for
parallel computing, whereas preconditioners that respect parallelization are usually far less
efficient. Therefore, this research field still has promising perspectives.

5.3 Two variants of DMS

The separating line between direct and indirect methods for OCP is not clearly defined. In
the optimal control community, the following may be regarded as a common denominator:
In direct methods, the problem is first discretized (the result of which is often called a
nonlinear programming problem (NLP)), and the optimization follows on the discrete level
(‘first discretize then optimize’). In contrast, indirect methods are based on the derivation
of the equations forming the first order optimality conditions which are discretized only
afterwards (‘first optimize then discretize’). For a more detailed presentation of these two
techniques, see, e. g., the textbook by Hinze et al. [59], as well as the introductions of both
Albersmeyer [1] and Rao [96]. The distinction reflects a paradigm known from the calculus
of variations. There, indirect methods are based on Pontryagin’s maximum principle. A
detailed presentation of direct approaches is found in the textbook of Dacorogna [29].
Classical multiple shooting methods for OCP as presented in Section 2.3 are classified
as direct or indirect according to the above general criterion. In this regard, the DMS
method derived in Section 5.2 seems to be rather an indirect method, as it is based on
the KKT system (3.48), i. e., the optimality conditions have been stated before shooting
comes into play. In addition, the whole discussion of Section 5.2 is done on the continuous
function space level, whereas the above classification requires a discretization in case of a
direct method. A third indicator is the presence of an adjoint equation in the presented
DMS algorithm, which has for a long time been regarded as artificial from the viewpoint
of direct methods (see, however, the recent work by Albersmeyer [1] and Beigel [8]).
This section explains why, although the method from Section 5.2 does not fit into the usual
framework of direct methods, it is nevertheless denoted as a direct multiple shooting method.
In Subsection 5.3.1, the ‘classical’ DMS approach is tailored to the parabolic situation.
Then Subsection 5.3.2 illustrates that this approach, relying on a reduced formulation of
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the extended optimal control problem (3.43) – (3.44), is equivalent to the variant of DMS
presented in the previous section. The difference between the two DMS methods is a more
complicated example for the well-known dichotomy of sensitivity approaches and adjoint
approaches that are used to generate derivatives of a reduced cost functional. The principle
is already known from Section 3.3. For a thorough discussion of this dichotomy, see Hinze
et al. [59] for the global OCP (3.3) – (3.4).

5.3.1 DMS based on a reduced form of the extended OCP

The DMS method which was developed in the 1980s by Bock and his co-workers [11, 13, 15])
is now embedded into the context of parabolic OCP. In Leineweber [73], a detailed summary
of the overall solution process for ODE control problems is presented, discussing all involved
algorithms and proposing alternatives. More recently developed techniques that allow for
handling parabolic PDE in the method of lines (MOL) framework can be found in the
work of Potschka [94].
DMS methods for problem (3.43) – (3.44) are usually based on a reformulation of this
extended OCP in terms of the primal shooting variables sj and the intervalwise controls
qj . Therefore, it yields uj = uj(qj , sj), but in contrast to Section 5.2, where the system of
optimality conditions is split into two parts according to (5.17), these dependencies are
now induced from the very beginning, i. e., before the optimization process has taken place.
Pursuing this strategy, the minimization problem results in

min
(q,s)

J(q, s) :=
M−1∑
j=0

J j(qj , uj(qj , sj)) (5.25a)

s. t. s0 − u0 = 0, (5.25b)
sj+1 − uj(τj+1; qj , sj) = 0, (5.25c)

where (5.25c) comprises the continuity conditions for j = 0, . . . ,M − 1. System (5.25) is
called a reduced formulation of the extended OCP (3.43) – (3.44). Reduced approaches
are, as provided in Section 3.3, a common technique in OCP. In fact, a reduced approach
has been applied in Algorithm 5.2 for solving the subinterval BVP. A detailed description
is also given in the textbook by Hinze et al. [59]. In Section 3.3, the variable u in (3.3)
– (3.4) is assumed to depend on q by using the implicit function theorem. Here, we deal
with an extended set of variables, meaning that the problem is reduced to (q, s) rather
than to q only. Problem (5.25) is formulated in terms of these independent variables and
relies upon the IVP

ej(qj , sj , uj(qj , sj)) =
(
∂tu

j(qj , sj) +A(uj(qj , sj)) + B(qj)− f |Ij
uj(τj ; qj , sj)− sj

)
=
(

0
0

)
(5.26)

having been solved on all subintervals Ij for j = 0, . . . ,M−1. We assume unique solvability
of the subinterval problems which implies the existence of a solution operator mapping
Qj ×H to Xj . In (5.26), ej(qj , sj , uj(qj , sj)) is an intervalwise counterpart of the abstract
side condition (3.2) which is, in contrast to the preceding sections, again strongly formulated.
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This abstract notation helps us to keep the proof of the equivalence result stated in the
next subsection short.

Remark 5.5. In the reformulation (5.25) – (5.26) of the extended OCP, the local control
variable qj(x, t) is a function of both spatial variables x and time t. As provided in
Subsection 2.3.3 on DMS methods for ODE control problems depending only on t, the
control is usually interpreted as a piecewise polynomial of order p ≤ 3 on the subintervals
Ij , i. e., qj ≡ qj(qj0, · · · , qjp). Example 2.2 shows that this parameterization of the control
saves a large amount of computing time and storage. There, a small set of control
parameters per shooting interval Ij is opposed to a number of control values on each Ij
determined by the control discretization, which is usually much finer than the mentioned
parameterization. Furthermore, so-called condensing techniques which reduce the shooting
system to the control variables are frequently employed. However, they are not efficient
if q is discretized on a similarly fine level as the state u. Reducing the control to smaller
spaces by parameterization leads to suboptimal solutions of the given control problems,
as local features of the control cannot be resolved on coarse grids. Furthermore, in the
PDE case where control functions q(x, t) are generally distributed in space and time,
we usually cannot determine a meaningful parameterization without losing important
structural information on q.

The Lagrange functional for the reduced problem (5.25), introducing a Lagrange multiplier
λ = (λj)Mj=0 ∈ HM+1, is given by

L(q, s,λ) = J(q, s) + (s0 − u0, λ
0) +

M−1∑
j=0

(sj+1 − uj(τj+1; qj , sj), λj+1). (5.27)

Differentiating this functional as usual with respect to its arguments (q, s,λ), we obtain
the (reduced) optimality system (where j ∈ {0, . . . ,M − 1} in equations (5.28b), (5.28c)
and (5.28e)):

L′λ0(δλ) = (s0 − u0, δλ), (5.28a)
L′λj (δλ) = (sj+1 − uj(τj+1; qj , sj), δλ), (5.28b)
L′sj (δs) = 〈J j′u , uj′s (δs)〉Xj∗×Xj + (λj , δs)− (λj+1, uj′s [τj+1](δs)), (5.28c)
L′sM (δs) = (λM , δs), (5.28d)
L′qj (δq) = 〈J j′q , δq〉Qj∗×Qj + 〈J j′u , uj′q (δq)〉Xj∗×Xj − (λj+1, uj′q [τj+1](δq)). (5.28e)

Here, the notation uj′q/s[τj+1] states that the respective solution obtained by application
of the operator uj′q/s is evaluated at time-point τj+1. The classical DMS method consists
in the solution of system (5.28). In the framework of ODE optimal control, Leineweber
[73] gives a detailed description of SQP methods that solve (5.28) without employing an
adjoint equation. Therefore, either the Newton matrix has to be assembled, or additional
sophisticated algorithms are needed to circumvent this matrix assembly. An alternative
matrix-free SQP approach has been proposed by Ulbrich [110]. This procedure corresponds
to the sensitivity approach for generating derivative information that is needed during the
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solution process. In PDE optimal control, the sensitivity approach which was introduced
in Section 3.3 is usually too expensive, because one has to solve an additional linearized
problem for each basis vector δq of the (discrete) control space (see Hinze et al. [59] or
Meidner [84]).

5.3.2 Equivalence of the two DMS approaches

If we compare the two DMS variants presented in Section 5.2 and Subsection 5.3.1, a
central distinction that strongly influences the structure of the solution process becomes
obvious. The DMS variant discussed in Section 5.2 is, equal to the IMS approach of Section
5.1, based on the full optimality system (3.48), including the adjoint part. In the classical
DMS method from Subsection 5.3.1, no adjoint problem occurs. Therefore, it is a priori not
clear whether Subsection 5.2 describes a DMS method in the ’classical’ sense of Subsection
5.3.1.

Remark 5.6. Generally, modern implementations of DMS for ODE optimal control prob-
lems, which are capable of handling parabolic OCP by transforming the PDE side condition
into a huge ODE system via the MOL approach, make use of adjoint methods for sensitivity
generation. These constitute a suitable alternative to the above described adjoint-free ap-
proach (see, e. g., Albersmeyer [1] or Beigel [8]). They often compute the adjoint equations
by automatic differentiation (which may be difficult to derive by hand in case of large and
highly nonlinear ODE systems).

The following theorem states the main result of this section, showing the equivalence of the
two DMS approaches. Moreover, the proof reveals that the seemingly different DMS variant
of Subsection 5.2 is a reformulation of classical DMS by means of an adjoint approach for
sensitivity generation. It is performed in an abstract function space setting, ensuring that
the argumentation is not affected by discretization.

Theorem 5.1. The solution of the reduced formulation (5.25) of the modified OCP (3.43) –
(3.44) by an adjoint approach leads to the non-classical DMS method introduced in Subsection
5.2.

The following outline prepares the proof of Theorem 5.1 (as the interrelations in terms
of the equations might be confusing, we illustrate them again in Figure 5.1). Classical
DMS for problem (5.25) relies upon the solution of (5.26) and necessitates solving (5.28).
Analogously, the DMS approach from Subsection 5.2 for problem (3.43) – (3.44) relies
upon the solution of (5.18) and necessitates solving (5.19). Comparing the two settings,
the following correspondencies are evident: (5.26) is the strong formulation of (5.18a), and
(5.28a), (5.28b) and (5.28d) are identical to (5.19a), (5.19d) and (5.19f), respectively. It is
thus our goal to derive the adjoint equation (5.18b), the belonging continuity conditions
(5.19c) and the control equations (5.19b) and (5.19e) from (5.28c) and (5.28e). To achieve
this, the ideas and techniques of Section 1.6 from the book of Hinze et al. [59] are extended
to the more complex multiple shooting situation.

95



5 Multiple Shooting Approaches for PDE Constrained OCP

Figure 5.1. Illustration of the relationship between non-classical and classical
direct multiple shooting.

Proof. In the following discussion, we make use of adjoint operators uj′∗q : Xj∗ → Qj
∗

and uj′
∗

s : Xj∗ → H∗ ≡ H as well as their evaluations at the subinterval endpoint,
uj′
∗

q [τj+1] : H ≡ H∗ → Qj
∗ and uj′∗s [τj+1] : H ≡ H∗ → H∗ ≡ H. The adjoint operators

correspond to the differential operators uj′q : Qj → Xj and uj′s : H → Xj . By means
of these adjoint operators, equations (5.28c) and (5.28e) can be rewritten in an abstract
adjoint form:

L′sj (δs) = (uj′∗s (J j′u ), δs) + (λj , δs)− (uj′∗s [τj+1](λj+1), δs), (5.27c∗)
L′qj (δq) = 〈J j′q , δq〉Qj∗×Qj + 〈uj′∗q (J j′u ), δq〉Qj∗×Qj

− 〈uj′∗q [τj+1](λj+1), δq〉Qj∗×Qj . (5.27e∗)

Now the adjoint operators are discussed on an abstract level, which enables a clear
presentation of the formal framework. Differentiation of the interval state equations (5.26)
w. r. t. qj in direction δq and w. r. t. sj in direction δs yields (for brevity, the arguments
(qj , sj , uj(qj , sj)) are omitted)

ej′u (δuq) = −ej′q (δq), ej′u (δus) = −ej′s (δs). (5.29)
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As usual, the abbreviations δuq and δus for the sensitivities uj′q (δq) and uj′s (δs) are used,
respectively. It is a standard assumption that ej′u has a bounded inverse, which permits
application of the implicit function theorem to obtain

uj′q = −(ej′u )−1 ◦ ej′q , uj′s = −(ej′u )−1 ◦ ej′s .

The definition and calculation rules of adjoint operators give us the following abstract
representation, where the inverse of the adjoint is denoted by the superscript −∗:

uj′
∗

q = −ej′∗q ◦ (ej′u )−∗, uj′
∗

s = −ej′∗s ◦ (ej′u )−∗.

Inserting these expressions for uj′∗s and uj′∗q into the corresponding terms of (5.27c∗) and
(5.27e∗) results in

(uj′∗s (J j′u ), δs) = −(ej′∗s ((ej′u )−∗(J j′u )), δs), (5.30a)
(uj′∗s [τj+1](λj+1), δs) = −(ej′∗s ((ej′u )−∗[τj+1](λj+1)), δs), (5.30b)
〈uj′∗q (J j′u ), δq〉Qj∗×Qj = −〈ej′∗q ((ej′u )−∗(J j′u )), δq〉Qj∗×Qj , (5.30c)

〈uj′∗q [τj+1](λj+1), δq〉Qj∗×Qj = −〈ej′∗q ((ej′u )−∗[τj+1](λj+1)), δq〉Qj∗×Qj . (5.30d)

It is now important that we apply both operators ej′∗s and ej′
∗

q to the same argument
(ej′u )−∗(J j′u ) in (5.30a) and (5.30c). This also holds true for (ej′u )−∗[τj+1](λj+1) in (5.30b)
and (5.30d). We are now in a position to define the variables zjJ := −(ej′u )−∗(J j′u ) and
zjλ := (ej′u )−∗[τj+1](λj+1), which fulfil the following equations, respectively:

ej′
∗

u (zjJ) = −J j′u , ej′
∗

u [τj+1](zjλ) = λj+1. (5.31)

These are the formal adjoint equations; below it becomes clear that, due to the linearity of
the operator ej′∗u and a superposition principle, they can be combined into one equation.
Therefore, zjJ is interpreted as a solution to a problem with homogeneous initial value and
non-homogeneous right-hand side −J j′u , and z

j
λ as a solution to a problem with homogeneous

right-hand side and non-homogeneous initial value λj+1.
The starting point for further investigations is the weak formulation of (5.26), given as

((∂tuj , ϕ)) + a(uj)(ϕ) + b(qj)(ϕ)− ((f |Ij , ϕ)) + (uj(τj)− sj , ϕ(τj)) = 0. (5.32)

The differential operator uj′q : Qj → Xj mentioned above is at the same time the solution
operator of the following linearized equation (the so-called sensitivity or tangent equation
which is the derivative of (5.32) with respect to qj in direction δq):

((∂tδuq, ϕ)) + a′u(uj)(δuq, ϕ) + (δuq(τj), ϕ(τj)) = −b′q(qj)(δq, ϕ). (5.33)

In complete analogy, uj′s : H → Xj is the solution operator of a second sensitivity equation,
given as the derivative of (5.32) w. r. t. sj in direction δs:

((∂tδus, ϕ)) + a′u(uj)(δus, ϕ) + (δus(τj), ϕ(τj)) = (δs, ϕ(τj)). (5.34)
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Here, the respective solution variables of both sensitivity equations are denoted by δuq
and δus. They correspond to the formal equations (5.29).
Now the formal adjoint equations (5.31) can be concretized. As provided above, the
application of the adjoint operators uj′∗q or uj′∗s to a functional J j′u ∈ Xj∗ (or of the
timepoint evaluation operators uj′∗q [τj+1] or uj′∗s [τj+1] to the shooting variables λj+1)
corresponds to carrying out the following two steps:

1. Solve the adjoint equation ej′∗u (zjJ) = −J j′u (or ej′∗u [τj+1](zjλ) = λj+1).

2. Apply the adjoint operators ej′∗q and ej′∗s to the solution zjJ (or zjλ).

We obtain that the first step leads to the adjoint equation (5.18b), whereas the second
step yields the continuity conditions for the adjoint equation and the control equations
(remember that it is the objective of the proceeding to derive these equations from (5.28c)
and (5.28e)). The general form of the adjoint equation, corresponding to both (5.33) and
(5.34), is given by

−((∂tδu∗q/s, ψ)) + a′u(uj)(δu∗q/s, ψ) + (δu∗q/s(τj+1), ψ(τj+1)) = rhs(ψ). (5.35)

Here, the term rhs(ψ) which determines the dynamics of the linearized equation represents
either a distributed source term or an initial condition prescribed at the subinterval
endpoint. The abstract situation comprises the following two adjoint equations (where the
abstract adjoint variables δu∗q and δu∗s have been suitably replaced by zjJ and zjλ):

− ((∂tzjJ , ψ)) + a′u(uj)(zjJ , ψ) + (zjJ(τj+1), ψ(τj+1)) = −J j′u (qj , uj)(ψ), (5.36a)
−((∂tzjλ, ψ)) + a′u(uj)(zjλ, ψ) + (zjλ(τj+1), ψ(τj+1)) = (λj+1, ψ(τj+1)). (5.36b)

Obviously, both components of (5.36) are fully linear, because only the derivatives of
the nonlinear operators a(·)(·) and J j(·) enter the equations. Thus equations (5.36a) and
(5.36b) can be merged into one single equation by defining zj := zjJ−z

j
λ, i. e., by subtraction

of the equations. The resulting final adjoint equation reads

J j′u (qj , uj)(ψ)− ((∂tzj , ψ)) + a′u(uj)(zj , ψ)
+(zj(τj+1)− λj+1, ψ(τj+1)) = 0. (5.37)

A comparison of (5.18b) and (5.37) shows that, by substituting δu by the test function ψ,
our first objective is achieved. It consists in the introduction of the adjoint equation into
the reduced DMS method by means of an adjoint approach to sensitivity generation.
Finally, the second step of the above proceeding is explained in detail. Using the described
superposition zj := zjJ − z

j
λ, system (5.30) is reduced to

(uj′∗s (J j′u )− uj′∗s [τj+1](λj+1), δs) = −(ej′∗s (zj), δs), (5.38a)
〈uj′∗q (J j′u )− uj′∗q [τj+1](λj+1), δq〉Qj∗×Qj = −〈ej′∗q (zj), δq〉Qj∗×Qj , (5.38b)
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where the right-hand side terms contain the adjoint solutions. Since the right-hand sides of
the second equation of (5.29) and of (5.34) coincide, the following equalities are obtained
using the weak form ej′s (δs)(ϕ) := (ej′s (δs), ϕ):

(δs, ej′∗s (zj)) = (ej′s (δs), zj) = ej′s (δs)(zj) = (δs, zj(τj)).

Thus, replacing the adjoint terms in (5.27c∗) by the corresponding term in (5.38a) for all
j ∈ {0, . . . ,M − 1} and using the last equality results in

L′sj (δs) = (λj , δs)− (zj(τj), δs).

This is exactly the adjoint continuity condition (5.19c). Analogously, equation (5.38b) can
be exploited to get (5.19b) and (5.19e). The right-hand sides of the first equation of (5.29)
and of (5.33) coincide, which leaves us with

〈ej′∗q (zj), δq〉Qj∗×Qj = 〈ej′q (δq), zj〉Xj∗×Xj = ej′q (δq)(zj) = −b′q(qj)(δq, zj).

Here, we utilize the definition 〈ej′q (δq), ϕ〉Xj∗×Xj := ej′q (δq)(ϕ). Now, the adjoint terms
in (5.27e∗) can be replaced by the corresponding term in (5.38b). Then, use of the last
equality for all j ∈ {0, . . . ,M − 1} results in

L′qj (δq) = 〈J j′q , δq〉Qj∗×Qj + b′q(qj)(δq, zj).

Since the last equation is identical to (5.19e) (and, for j = 0, to (5.19b)), this completes
the proof.

5.4 Summary and further aspects of IMS and DMS

The presentation of the IMS and DMS methods in Sections 5.1 and 5.2 shows that the two
shooting approaches are closely related. Both methods solve the same system of equations,
namely the extended KKT conditions (3.48). The affinity of both methods is underlined by
the almost identical structure of Algorithms 5.1 and 5.4. Usually, DMS is used in a variant
that was denoted as classical in Section 5.3. This classical DMS lacks an explicit occurrence
of adjoint equations or adjoint continuity conditions, which obscures the relations between
DMS and IMS. In the last section, the equivalence between this classical DMS approach
and a new one, presented in Section 5.2, has been proved. From the non-classical DMS
method, the relation to IMS can be directly deduced (see Figure 5.2). The differences
between the approaches result from the different ways of splitting system (3.50). The
splittings (5.1) and (5.17) induce different internal dependencies of the arguments of the
common starting point, the extended OCP (3.43) – (3.44).

Remark 5.7. There are further possibilities of splitting the set of arguments of the extended
Lagrangian (3.47). This could be a topic of further research, although it is not clear whether
these splittings result in actually executable algorithms.
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Subsections 5.1.2 and 5.2.2, where the main algorithmic steps of the shooting methods are
discussed, focus on the solution of the shooting systems (5.4) resp. (5.20) by Newton’s
method. This may a priori lead to the impression that DMS is more expensive, because the
shooting system to be solved comprises the temporally and spatially distributed discretized
controls. However, we have seen that both IMS and DMS can be regarded as two-step
fixed point iterations, and the solution of the shooting systems constitutes only the second
step of the respective two-step method. If the shooting approaches are judged only by this
criterion, IMS is unsurprisingly superior.

Figure 5.2. Illustration of the relationship between indirect and direct multiple
shooting.

To obtain a complete picture, the whole shooting process in both approaches must be
taken into account. In the DMS framework, the first part of the two-step fixed point
iteration consists in solving a (nonlinear) IVP (5.18) on each subinterval, and the additional
sensitivity equations are intervalwise (linear) IVP. The solution of IVP is straightforward,
and a detailed description in Subsection 5.2.2 was skipped. In contrast, the corresponding
IMS counterpart requires the solution of (nonlinear) subinterval BVP (5.2) that are smaller
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versions of the original OCP. These intervalwise OCP are iteratively solved by a Newton-
CG method, which makes the first step in IMS more expensive than its DMS equivalent.
Moreover, the corresponding (linear) sensitivity problems (5.11) and (5.12) for the Newton-
GMRES method, which constitute linear BVP, necessitate greater effort than their DMS
counterpart. Summarizing, in IMS the first solution step is more expensive than in DMS,
whereas for the second step of the respective two-step fixed-point methods the contrary
holds true. Altogether, it is so far not clear whether one of the two approaches (IMS or
DMS) should be preferred. The following abstract setting exemplifies the issues discussed
so far.

Comparative example. Assume a distributed objective functional that is to be minimized
subject to a linear parabolic PDE. Linearity ensures the solvability of all involved Newton
methods within one Newton step. The solution interval is decomposed into M = 10
shooting intervals each discretized with K = 100 timesteps, and the spatial mesh comprises
N = 1000 degrees of freedom. We further assume that all iterative methods in the solution
process, such as Newton-CG or Newton-GMRES, need five iterations (which is, for simple
examples, a realistic estimate). Table 5.1 below displays a contrasting juxtaposition of the
numerical effort of both methods, concerning the number of BVP/IVP to be solved on the
one hand and the size of the respective shooting system on the other hand.

Table 5.1. Comparative example: numerical effort for IMS and DMS in the
framework of a simple linear-quadratic parabolic OCP.

IMS DMS

first
step

solving interval OCP yields (twice):
10 state eqs., 10 adjoint eqs.
5 Newton-CG iterations each yield:
10 tangent eqs., 10 extra adjoint eqs.
————————————————
in total: 240 linear problems

solving interval IVP yields (twice):
10 state eqs., 10 adjoint eqs.
———————————————
in total: 40 linear problems

second
step

system size: 2 ·M ·N = 20000
(shooting conditions)
————————————————
matrix-free:
5 Newton-GMRES steps each yield:
2 linear BVP, update of length 20000

system size: (K + 2) ·M ·N = 1020000
(shooting conditions + controls)
————————————————
matrix-free:
5 Newton-GMRES steps each yield:
5 linear IVP, update of length 1020000

Both IMS and DMS still comprise a variety of algorithms, depending on how the subinterval
problems are solved (reduced approach as above vs. all-at-once approach), on how Newton’s
system is solved (matrix-free solver as above vs. explicit matrix assembling, inclusion of
globalization techniques or of an SQP-like inexact Newton method), on how the sensitivity
equations are solved (fixed-point method as above or more sophisticated approaches) etc. In
order to judge both shooting approaches justly, more numerical tests have to be carried out,
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taking into account the mentioned algorithmic variations and comparing their performance
for a variety of different problems.

There is one more topic that has not been mentioned so far. In the optimal control
literature, one frequently encounters a distinction between feasible and infeasible methods.
We first state what is meant by feasibility (see also the textbooks by Geiger & Kanzow
[43] or Nocedal & Wright [90]).

Definition 5.1. A pair of functions (q, u) is called feasible for an OCP of type (3.3) –
(3.4) if and only if it fulfils the PDE side condition including boundary and initial values.
Analogously, pairs of intervalwise functions (qj , uj)M−1

j=0 are called feasible for the OCP
(3.43) – (3.44) if and only if they fulfil both the intervalwise PDE side condition and the
continuity conditions.

Note that this definition generalizes the notion of a feasible point (known from finite-
dimensional optimization theory), but does not clarify what a feasible method is. As all
methods for OCP usually involve iterative sub-algorithms, in solving an OCP we always
end up with an approximating sequence {(qk, uk)}k∈N or {(qjk, u

j
k)
M−1
j=0 }k∈N. This leads to

the following definition.

Definition 5.2. An iterative method for solving OCP is called feasible if and only if the
iterates (qk, uk) resp. (qjk, u

j
k)
M−1
j=0 follow a so-called feasible path, i. e., each single iterate

is a feasible point (and thus fulfils all the side conditions of the OCP). Methods that do not
necessarily yield feasible iterates are called infeasible.

Judged by this criterion, both IMS and DMS constitute infeasible methods for the OCP
(3.43) – (3.44). For DMS, a sequence of iterates {(qk, uk)}k∈N is generated for any given
set (s, q, λ) of initial shooting variables. However, only the last iterate fulfils the continuity
conditions with sufficient accuracy and can therefore be interpreted as feasible. The
same is true for IMS, but here at least the local subinterval solutions are always feasible
points for the local OCP. They constitute correct solutions to subinterval OCP which are
parameterized with boundary values that are ill-chosen with respect to the global problem.
Thus, IMS is infeasible for the global OCP (3.43) – (3.44) but produces feasible partial
solutions on all shooting intervals.

5.5 Numerical tests

In this section, the theoretical discussions and results from Sections 5.1 to 5.4 are illustrated
by numerical examples. The framework of these examples has been presented at the end of
Section 3.1. Subsection 5.5.1 starts with results for a linear and a nonlinear example in the
IMS framework. We observe the stabilizing effect of multiple shooting. In addition, the
symmetric Gauss-Seidel preconditioner from Subsection 5.1.2 is applied, and a comparison
of results achieved both with and without the preconditioner justifies why we abstain from
using it any further. Subsection 5.5.2 focusses on the DMS method presented in Section
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5.2. However, as this work is not concerned with numerical linear algebra, and after the
experience in the IMS case, the use of a preconditioner is skipped from the beginning, as it
is harder to implement than its IMS counterpart. Further results for additional examples
are presented in Subsection 5.5.3. Finally, in Subsection 5.5.4, some results are summarized
that motivate our examination of adaptive shooting processes in Chapter 7. Similar results
have been presented in Example 2.1 in the ODE framework. As holds for all PDE examples
in this thesis, the computations in the current section have been carried out using the finite
element software deal.ii; they rely upon the discretization routines presented in Section
4.1. Furthermore, as we often compare different approaches in terms of computing time, it
is important to note that all computations were carried out on the same computer.

5.5.1 Results for IMS

Linear example. The first test example is a linear-quadratic OCP where the side
condition depends on a parameter ω. For certain concrete choices of this parameter, the
problem becomes unstable, which prevents the use of simple shooting and makes a splitting
into several shooting intervals necessary. Several aspects that have been theoretically
discussed in previous sections can be illustrated by this simple linear framework; our results
highlight the stabilizing effect of multiple shooting methods including the examination of
the symmetric Gauss-seidel preconditioner. Furthermore, this example is used to raise the
question of a reasonable choice of the shooting point distribution (3.42).

Example 5.1. Consider the following linear-quadratic OCP, which has already been treated
by Hesse&Kanschat [53] under different aspects:

min
(q,u)

J(q, u) = 1
2‖u(x, T )− û(x, T )‖2L2(Ω) + α

2

T∫
0

‖q(x, t)‖2L2(Ω) dt,

subject to the nonstationary Helmholtz equation

∂tu(x, t)−∆u(x, t)− ωu(x, t) = q(x, t) in Ω × (0, T ],
u(x, t) = 0 on ∂Ω × [0, T ],

u(x, 0) = cos
(π

2x1
)

cos
(π

2x2
)

in Ω.

The computational domain is Ω = (−1, 1)2 (the variable x always stands for (x1, x2)), the
final time T = 5, and the regularization parameter α = 10−2. The Helmholtz parameter
(reaction rate) ω runs through a set of integer values, usually 3 ≤ ω ≤ 10. In our setting,
the initial value u0(x) is the eigenfunction corresponding to the smallest frequency of the
Laplacian on the domain Ω, and the associated eigenvalue is π2/2 ≈ 4.9348. Note that
both eigenvalues and -functions depend on the domain Ω. The goal is to fit the constant
function û(x, 5) ≡ 0.5 at the final time T = 5. In Figure 5.3, we see (for ω = 7) that
in this case the state variable obviously matches this prescribed value at the final time,
but develops a boundary layer due to the homogeneous Dirichlet boundary data that are
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Figure 5.3. Example 5.1: State variable (left) and adjoint variable (right) for
ω = 7 at end time T = 5.

not compatible with the constant tracking function. The adjoint solution resembles a
regularized line Dirac function along ∂Ω.

The following results are obtained on a four times globally refined spatial mesh of 256 cells
and with 500 uniform time steps, equally distributed to the shooting intervals in case of
multiple shooting. The stopping criterion for the shooting process is reached if the size of
the shooting residual falls below the tolerance value TOL = 1.0 · 10−05.
The example illustrates the benefit of multiple shooting in order to overcome possible
instabilities in the problem. In fact, for values of ω that exceed the smallest eigenvalue of
−∆, instabilities are expected to occur in the state equation. Consequently, the behavior
of the solution algorithm on only one shooting interval (so-called indirect simple shooting,
abbreviated by ISS) deteriorates at about ω = 5. This effect is illustrated in Table 5.2,
where simple shooting is compared to a state-of-the-art solution algorithm for parabolic
optimization problems described by Becker et al. [7]. The latter method (denoted by SotA)
solves the problem directly, i. e., without any time domain decomposition, by employing a
Newton-CG algorithm, whereas simple shooting treats the problem as a BVP and uses
Newton’s method to solve the shooting system (5.4). The comparison is carried out with
respect to the number of Newton-CG or Newton-GMRES steps needed for achieving the
same accuracy in the optimal value of J(q, u), and with respect to computing time. Table
5.2 reveals that ISS as well as the SotA algorithm both break down if the parameter ω
is increased beyond the threshold ω = 5. Furthermore we observe that simple shooting
is more expensive than the shooting-free alternative method in terms of computing time.
This is due to the matching conditions that have to be solved in addition.
In order to confirm that indirect simple shooting breaks down due to lacking stability in
the state equation, the problem is solved for different end times T ∈ {1, 2, 3, 4, 5, 6}. As
a result, for ω ∈ {6, 7, 8} indirect simple shooting is not able to integrate over long time
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Table 5.2. Example 5.1: Comparison of a state-of-the-art algorithm (SotA) and
indirect simple shooting (ISS) for different values of ω.

SotA ISS
ω #CG J(q, u) t(s) #GMRES J(q, u) ‖F‖ t(s)
3 10 0.0938 41 20 0.0938 9.2·10−12 145
4 10 0.0863 42 20 0.0863 3.4·10−11 149
5 12 0.0794 48 20 0.0794 8.4·10−10 151
6 – – – 22 0.0884 2.5·10−06 165
7 – – – – – – –

intervals. The results in Table 5.3 show that the time interval for the solution decreases
with increasing values of ω. For the computations underlying Table 5.3, we used 100 · T
time steps.

Table 5.3. Example 5.1: Time integration with indirect simple shooting for
varying ω and time intervals of increasing length.

T ω = 5 ω = 6 ω = 7 ω = 8
#GMRES J(q, u) #GMRES J(q, u) #GMRES J(q, u) #GMRES J(q, u)

1 20 0.0795 21 0.0842 22 0.0935 22 0.1037
2 20 0.0794 21 0.0867 22 0.0967 22 0.1057
3 20 0.0794 21 0.0878 22 0.0971 – –
4 20 0.0794 22 0.0883 – – – –
5 20 0.0794 22 0.0884 – – – –
6 20 0.0794 – – – – – –

As provided, indirect simple shooting becomes unstable if the time interval is too long or if
the parameter ω becomes too large. Therefore, we focus on the multiple shooting algorithm
from Section 5.1. If a fixed number of shooting intervals is chosen, there supposedly exists
a new threshold for the parameter ω beyond which the computations break down. This
supposition is used to compare the IMS algorithm without preconditioner to a modified
IMS algorithm that was described at the end of Section 5.1 and involves a symmetric
Gauss-Seidel (SGS) preconditioner. In Table 5.4, the results for five equidistant shooting
intervals are presented. For ω ≤ 5, IMS yields equally good results as the SotA and ISS
algorithms but takes more time (compare Table 5.2). However, while SotA and ISS fail
for ω > 5, the IMS method still works if ω is further increased. The unpreconditioned
IMS works up to ω = 11 (where two outer Newton-type iterations are needed), while
the IMS method with SGS preconditioning already fails for ω = 9. For ω ≥ 12 without
preconditioner, respectively ω ≥ 9, using five shooting intervals is no longer sufficient for
solving the problem. Although the number of GMRES iterations is reduced by up to 50%,
we observe another disadvantage of the preconditioner: the computing time is significantly
larger than for the unpreconditioned IMS algorithm. As provided in Section 5.1, the SGS
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preconditioner only pays off if the number of GMRES iterations can be reduced by at least
two thirds. This is not supported by our example.

Table 5.4. Example 5.1: Indirect multiple shooting on 5 shooting intervals (IMS5)
with and without SGS preconditioner for different values of ω.

with preconditioner without preconditioner
ω #GMRES J(q, u) ‖F‖ t(s) #GMRES J(q, u) ‖F‖ t(s)
3 22 0.0938 5.5·10−11 450 25 0.0938 3.5·10−11 189
4 22 0.0863 6.7·10−11 437 28 0.0863 9.5·10−11 208
5 25 0.0794 4.3·10−10 497 43 0.0794 1.7·10−11 302
6 25 0.0884 1.1·10−09 499 43 0.0884 5.1·10−11 307
7 26 0.0972 4.6·10−09 527 44 0.0972 3.1·10−10 315
8 27 0.1058 1.1·10−06 1014 45 0.1058 1.5·10−09 321
9 – – – – 46 0.1142 7.1·10−09 321
10 – – – – 48 0.1225 5.9·10−08 338
11 – – – – 51+50 0.1307 3.1·10−07 669
12 – – – – – – – –

However, the advantage of a preconditioner might only become observable for larger systems.
In fact, Table 5.5 shows some results in this regard. We therefore split the solution interval
into different numbers of shooting intervals (SI) and observe that, if this decomposition is
too fine, the unpreconditioned IMS does not work, while IMS with the SGS preconditioner
still yields results. However, we maintain that it is advisable not to use the preconditioner
in order to save computing time for a small number of shooting intervals.

Table 5.5. Example 5.1: IMS with and without SGS preconditioner for ω = 7
(where J(q, u) = 0.0972) and different equidistant shooting decompo-
sitions.

with preconditioner without preconditioner
#SI #GMRES ‖F‖ t(s) #GMRES ‖F‖ t(s)
2 23 1.4·10−07 457 25 4.1·10−06 185
5 26 4.6·10−09 527 44 3.1·10−10 315
10 45 3.6·10−11 888 108 2.7·10−11 702
20 111 1.8·10−11 2120 – – –

Another important aspect resulting from Table 5.5 is the growing number of GMRES
iterations in the preconditioned case. Hesse [52] claims that with SGS preconditioning,
the number of GMRES iterations required in the solution process remains constant for
increasing shooting systems. She draws this conclusion from only one example. Such a
property is not observed by Comas [26] or Heinkenschloss [50], who were the first to apply
SGS preconditioners in the multiple shooting context. Table 5.6 presents the attempt to
replicate Hesse’s results. As diplayed, we are not able to reproduce her findings. On the

106



5.5 Numerical tests

contrary the table illustrates that, even with SGS preconditioning, the number of GMRES
iterations increases with the system size. Furthermore, in this example there is almost no
reduction in the number of GMRES iterations, and therefore the SGS preconditioned IMS
method performs worse than the unpreconditioned one with respect to computing time.

Table 5.6. Example 5.1: IMS with and without SGS preconditioner for ω = 0
(the heat equation) and different equidistant shooting decompositions.

with preconditioner without preconditioner
#SI #GMRES ‖F‖ t(s) #GMRES ‖F‖ t(s)
5 21 3.5·10−07 494 21 3.5·10−07 189
10 23 4.0·10−06 551 24 4.0·10−06 209
15 27 8.8·10−06 628 35 8.8·10−06 293
20 36 3.8·10−06 837 38 3.8·10−06 315
25 41 6.0·10−06 944 46 6.0·10−06 373
30 45 8.0·10−06 1068 49 8.0·10−06 396

Nonlinear example. We now extend the first example by introducing the additional
nonlinear reaction term u3 to the constraining Helmholtz equation. Furthermore, our goal
in Example 5.2 below is to match a function û(x, t) on the whole time interval, i. e., the
functional is now of distributed tracking type.

Example 5.2. We consider the problem

min
(q,u)

J(q, u) = 1
2

T∫
0

‖u(x, t)− û(x, t)‖2L2(Ω) dt+ α

2

T∫
0

‖q(x, t)‖2L2(Ω) dt,

subject to the nonstationary nonlinear Helmholtz problem

∂tu(x, t)−∆u(x, t)− ωu(x, t) + u3(x, t) = q(x, t) in Ω × (0, T ],
u(x, t) = 0 on ∂Ω × [0, T ],
u(x, 0) = u0(x) in Ω.

The computational domain is Ω = (−1, 1)2, and the end time is T = 5. We fix the
regularization parameter α = 0.5 and the Helmholtz parameter ω = 7 at a value for which
simple shooting is expected to fail. Furthermore, the tracking function is chosen as

û(x, t) :=


2
5 t ·

(
1− x12

1

)(
1− x12

2

)
, t ≤ 5

2 ,(
2
5 t− 2

)
·
(
1− x12

1

)(
1− x12

2

)
, t > 5

2 ,

with zero boundary conditions and a maximum absolute value at the center (0, 0) of Ω.
The function û(x, t) evolves linearly in time and has a jump at the midpoint of the time
interval. The initial function u0(x) ≡ 0 is chosen such that it fits the value û(x, 0). Our
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Figure 5.4. Example 5.2: The state u(0, 0, t) at different IMS cycles.

Table 5.7. Example 5.2: IMS with and without SGS preconditioner; the comput-
ing time was 12300 sec. with and 7438 sec. without preconditioning.

with preconditioner without preconditioner
Newton it. #GMRES ‖F‖ J(q, u) #GMRES ‖F‖ J(q, u)

0 – 4.0·10−00 2.262 – 4.0·10−00 2.262
1 12 2.2·10−01 2.301 25 2.2·10−01 2.301
2 11 4.3·10−03 2.179 24 4.4·10−03 2.179
3 10 2.0·10−05 2.180 24 1.4·10−05 2.180

computations are again carried out on the same space mesh, but this time we choose 10
equally distributed shooting intervals each of which comprises 50 interior time steps. We
stop the computation as soon as the shooting residual ‖F‖ (where F is given by (5.3))
becomes smaller than TOL = 1.0 · 10−03. Figure 5.4 shows the temporal development of
the state variable u(0, 0, t) by evaluating the solution at the center of the spatial domain
in different cycles of the multiple shooting procedure. The corresponding controls are
displayed in Figure 5.5. In the first iteration with arbitrary initial values (dotted curves),
we can clearly distinguish the 10 shooting intervals. Jumps are visualized by vertical
lines. The second shooting cycle (dashed curves) is already close to convergence, but more
shooting cycles are needed to reach the prescribed tolerance (solid curves). In Table 5.7 we
present the development of the solution and confirm that the SGS preconditioner is not
efficient for multiple shooting algorithms.
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Figure 5.5. Example 5.2: The control q(0, 0, t) at different IMS cycles.

5.5.2 Results for DMS

Linear example. The results presented in this subsection were achieved with the DMS
method from Section 5.2. For the sake of comparability, the same two problems are
considered as in Subsection 5.5.1, i. e., a linear and a nonlinear example.
First, Example 5.1 is reconsidered with the same domain, discretization and tolerances.
Again, the aim is to detect the threshold for the Helmholtz parameter, ω ≈ 5, in the direct
simple shooting (DSS) framework. This unstable behavior necessitates multiple shooting,
and we consider again five equidistantly distributed shooting intervals.

Table 5.8. Example 5.1: Direct simple (DSS) and multiple shooting (DMS5) for
different values of ω.

DSS DMS5
ω #GMRES J(q, u) ‖F‖ t(s) #GMRES J(q, u) ‖F‖ t(s)
3 54 0.0938 3.4·10−10 303 62 0.0938 3.2·10−10 367
4 56 0.0863 5.6·10−10 322 70 0.0863 3.5·10−10 405
5 56 0.0794 1.3·10−09 324 98 0.0794 3.5·10−10 556
6 56 0.0884 2.1·10−08 324 102 0.0884 4.1·10−10 586
7 – – – – 102 0.0972 9.0·10−10 585
8 – – – – 106 0.1058 1.7·10−09 606
9 – – – – 110 0.1142 3.4·10−09 631
10 – – – – 112 0.1225 1.1·10−08 652
11 – – – – – – – –

Table 5.8 shows the corresponding results. The DSS block on the left should be compared
to the right block of Table 5.2, whereas the DMS5 block on the right corresponds to the
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right block of Table 5.4. In both cases direct shooting is more expensive than indirect
shooting in terms of computing time.

Nonlinear example. For the nonlinear example, we revisit Example 5.2. The aim is to
confirm that the state and control solutions coincide with those from the IMS approach
after convergence, despite the control being computed in a different way as part of the
shooting system. In Figure 5.6, the temporal evolution of the DMS state u(0, 0, t) at the
center of the spatial domain Ω is presented. This corresponds to Figure 5.4. Comparing
the solid lines, i. e., the state solution after multiple shooting is converged, the results of
IMS and DMS coincide.
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Figure 5.6. Example 5.2: The state u(0, 0, t) at different DMS cycles.

Comparing the results of Table 5.9, achieved on a shooting grid of 10 equidistant shooting
intervals, to those displayed in Table 5.7 shows that IMS and DMS finally yield the same
functional value despite their different feasibility properties (see Section 5.4).

Table 5.9. Example 5.2: DMS for a nonlinear example; the computing time was
2437 sec.

Newton it. #GMRES ‖F‖ J(q, u)
0 – 2.1·10+01 2.261
1 53 5.1·10−01 2.194
2 53 5.4·10−03 2.181
3 53 1.0·10−06 2.180

As a final result of this subsection, we briefly discuss how the results depend on the
regularization parameter α. Although the comparison of Figures 5.4 and 5.6 shows that
both shooting approaches yield equally good results, the actual quality of these results is
dubitable when compared to the tracking function û. The temporal development of û at
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the origin (0, 0) of the spatial domain Ω is a piecewise linear function with a jump of height
2 at t = 2.5 which first connects the points (t, û(0, 0, t)) = (0, 0) and (t, û(0, 0, t)) = (2.5, 1)
and then the points (t, û(0, 0, t)) = (2.5,−1) and (t, û(0, 0, t)) = (0, 0). The state solution u
as in Figures 5.4 and 5.6 is a bad match for û(0, 0, t). A first major deviation is the range
of function values, which is about [−0.48; 0.36] rather than [−1, 1]; the second mismatch is
the behavior of u(0, 0, t) towards the end of the interval, where the values decrease further
instead of approaching the correct value û(0, 0, 5) = 0.

Table 5.10. Example 5.2: Dependence of the functional value on the regulariza-
tion parameter α.

α #Newton #GMRESmin /max ‖F‖ J(q, u) t(s)
1 3 53/53 3.5·10−07 2.354 2466
0.5 3 53/53 1.0·10−06 2.180 2437
0.1 4 72/76 3.3·10−05 1.478 4559
0.05 4 80/83 3.8·10−04 1.172 4979
0.01 5 103/106 4.2·10−07 0.718 8012
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Figure 5.7. Example 5.2: Quality of the match depending on the regularization
parameter α.

Closing this subsection, we confirm that these major deviations are due to our large
choice α = 0.5 of the regularization parameter. Better matches for û are expected if the
influence of the cost term is reduced by choosing smaller values of α. Table 5.10 and
Figure 5.7 confirm this: the smaller we choose α, the smaller the functional value becomes
after convergence. Figure 5.7 displays the corresponding evolution curves of u(0, 0, t); the
improvement of the matching with decreasing α is illustrated.
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5.5.3 Comparison of IMS and DMS

In the two previous subsections, examples for IMS and DMS were presented separately.
We now consider further examples to draw a direct comparison between the two shooting
approaches.

Linear example. The linear-quadratic OCP is considered on the rectangular space-time
domain Ω×I =

(
[−1; 3]× [−1, 1]

)
× [0, 1] and aims at matching a given state profile û(x, T )

at the time interval endpoint T = 1.

Example 5.3. We consider the problem

min
(q,u)

J(q, u) = 1
2‖u(x, T )− û(x, T )‖2L2(Ω) + α

2

T∫
0

‖q(x, t)‖2L2(Ω) dt, (5.39)

subject to the nonstationary linear Helmholtz equation

∂tu(x, t)−∆u(x, t)− ωu(x, t) = q(x, t) in Ω × (0, T ],
u(x, t) = 0 on ∂Ω × [0, T ],

u(x, 0) = max
{

0, cos
(π

2x1
)

cos
(π

2x2
)}

on Ω.

The profile to be tracked at T = 1 is chosen as û(x, 1) = min
{

0, cos
(
π
2x1

)
cos

(
π
2x2

)}
.

Thus, we expect the state solution to be a cosine bump moving from the left half to the
right half of the spatial domain over time, thereby changing its sign.
We compute solutions of this problem for different values of the parameter ω and for
α = 0.01 by means of IMS and DMS. We use a four times globally refined spatial mesh (512
cells) and five equidistant shooting intervals, each discretized by 100 time steps. The results
are shown in Table 5.11: The columns from left to right display the number of GMRES
iterations, the functional value, the residual of the respective shooting system (which also
serves as stopping criterion), and the computing time in seconds. As the problem is linear,
we need only one Newton step for solving the system of shooting conditions.

Table 5.11. Example 5.3: Comparison of IMS and DMS for varying ω (required:
‖F‖ < 5.0 · 10−5) in a linear framework.

IMS DMS
ω #GMRES J(q, u) ‖F‖ t(s) #GMRES J(q, u) ‖F‖ t(s)
0 52 0.0446 1.6 · 10−11 1497 110 0.0446 1.9 · 10−10 2507
1 64 0.0367 1.8 · 10−11 1825 128 0.0367 2.2 · 10−10 2909
2 76 0.0290 2.1 · 10−11 2149 156 0.0290 2.3 · 10−10 3531
3 83 0.0218 2.4 · 10−11 2347 192 0.0218 2.3 · 10−10 4360
4 130 0.0163 2.6 · 10−11 3601 248 0.0163 2.6 · 10−10 5586
5 165 0.0148 2.9 · 10−11 4571 416 0.0148 2.8 · 10−10 9423

112



5.5 Numerical tests

Both methods have been implemented as described in Sections 5.1 and 5.2 and do not include
additional tuning (such as condensing, reduction of control spaces etc.). Furthermore, they
are used without preconditioning. For increasing ω the number of inner GMRES iterations
grows in both cases, reflecting the deterioration of the conditioning of the respective
problems. With DMS, more GMRES steps are required than with IMS, which is due to the
larger linear shooting system entailing a higher condition number. The functional values
J(q, u) coincide for both methods, and the shooting residual ‖F‖ is of comparable size.
However, the DMS algorithm takes longer (by a factor of 1.5 up to 2) than IMS to solve
the problem with the same accuracy. Finally, in Figure 5.8 we see that after convergence
of IMS the expected wandering and inversion of the cosine bump is reproduced.

Figure 5.8. Example 5.3: Contour plot of the IMS solution on 5 shooting
intervals after convergence: initial solution at time T = 0 (left), final
solution at time T = 1 (right).

Nonlinear examples. The first nonlinear example is a modification of Example 5.2. In
the following, the distributed tracking term is replaced by an end-time tracking term (with
tracking function ûT ≡ 0.5), the regularization parameter is fixed as α = 0.05, and the
initial condition is u0(x) = cos

(
π
2x1

)
cos

(
π
2x2

)
, as in the linear Example 5.1.

Example 5.4. Consider the problem

min
(q,u)

J(q, u) = 1
2‖u(x, T )− ûT ‖2L2(Ω) + α

2

T∫
0

‖q(x, t)‖2L2(Ω) dt

on Ω = (−1, 1)2 and with end-time T = 5, subject to the nonstationary nonlinear Helmholtz
equation

∂tu(x, t)−∆u(x, t)− ωu(x, t) + u(x, t)3 = q(x, t) in Ω × I,
u(x, t) = 0 on ∂Ω × I,
u(x, 0) = u0(x) in Ω.

Table 5.12 displays the results for this example on 10 shooting intervals and for varying
values of the Helmholtz parameter ω. As the functional values for IMS and DMS coincide,
they are presented only once. Analogously to Example 5.3 above, DMS requires more
GMRES iterations per Newton step. Nevertheless, IMS is slower than DMS by a factor
2–3 in this nonlinear example.
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Table 5.12. Example 5.4: Comparison of IMS (left) and DMS (right) on 10
intervals for varying values of ω (required: ‖F‖ < 5.0 · 10−05).

IMS DMS
ω J(q, u) #Newt(GMRES) ‖F‖ t(s) #Newt(GMRES) ‖F‖ t(s)
3 0.171 3 (26) 8.0 · 10−6 3243 3 (45) 9.6 · 10−9 1994
4 0.146 3 (42) 1.2 · 10−5 5410 3 (56) 1.6 · 10−6 2396
5 0.115 4 (44) 1.9 · 10−5 9492 5 (92) 6.6 · 10−10 4961
6 0.149 4 (53) 1.5 · 10−5 14876 4 (115) 3.3 · 10−6 6718
7 0.198 5 (54) 4.9 · 10−5 22367 4 (134) 8.4 · 10−8 7324

At the beginning of the shooting iteration, we are far from the solution, as the arbitrarily
chosen starting values for the shooting variables lead to solution iterates that are not
continuous. It is therefore not necessary to carry out the first shooting iterations on a fine
spatial mesh. Instead, in order to save computational effort we can start on a coarse mesh,
i. e., only 4 cells in Example 5.4, and carry out one Newton step to obtain an update for the
shooting variables. The updated shooting variables are expected to better approximate the
actual solution in the shooting points. Therefore, we refine the mesh globally, interpolate
the updated shooting variables and carry out the next Newton step on the refined mesh
which yields an even better approximation. This process is repeated until a maximally
refined mesh is reached, i. e., the four times refined mesh with 256 cells, on which the
remaining iterations until convergence are carried out. This global refinement process is
illustrated in Figure 5.9.

Figure 5.9. Example 5.4: Three consecutive globally refined meshes.

The results of IMS and DMS with the global refinement process included are displayed in
Table 5.13. The number of GMRES iterations per Newton step varies due to the different
spacial refinement levels. While on coarse meshes, few GMRES iterations are required,
their number increases with mesh refinement, i. e., with increasing number of degrees of
freedom in space and thus increasing size of the shooting system. For both IMS and DMS,
a reduction in computing time of 20–50% is observed when compared to the results of
Table 5.12 where the computations were carried out completely on the finest mesh.
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Table 5.13. Example 5.4: Comparison of IMS (left) and DMS (right) on 10
intervals for varying values of ω (required: ‖F‖ < 5.0 · 10−05).
Approximation of the shooting variables performed on successively
refined grids. The respective third columns indicate the reduction
of computing time in % compared to Table 5.12.

IMS DMS
ω J(q, u) #Newt(GMRES) ‖F‖ % #Newt(GMRES) ‖F‖ %
3 0.171 4 (19/26) 1.5 · 10−5 59.6 5 (21/45) 1.2 · 10−10 20.4
4 0.146 5 (20/28) 2.3 · 10−5 43.6 5 (21/53) 4.2 · 10−9 22.2
5 0.115 5 (20/44) 5.6 · 10−6 45.8 5 (21/73) 1.3 · 10−6 52.8
6 0.149 4 (26/53) 2.0 · 10−5 40.8 5 (56/112) 3.2 · 10−9 18.6
7 0.198 5 (20/54) 3.5 · 10−5 53.2 5 (21/112) 2.9 · 10−7 47.0

The second nonlinear problem is a modification of Example 5.3 consisting in the choice of
a different regularization parameter α = 0.05 and in an additional polynomial nonlinearity
in the PDE side condition.

Example 5.5. Consider the following problem: Minimize the functional (5.39), subject to
the semilinear Helmhotz-type equation

∂tu(x, t)−∆u(x, t)− ωu(x, t) + u(x, t)3 = q(x, t) in Ω × (0, T ].

The initial condition, the boundary values and the computational domain are chosen as in
the configuration of Example 5.3.

Table 5.14. Example 5.5: Comparison of IMS and DMS for varying ω (required:
‖F‖ < 1.0 · 10−3) in a nonlinear framework.

IMS DMS
ω #GMRES J(q, u) ‖F‖ t(s) #GMRES J(q, u) ‖F‖ t(s)
0 24/51 0.1639 3.1 · 10−6 2530 28/53 0.1639 3.1 · 10−5 2088
1 26/52 0.1420 6.4 · 10−6 2795 38/62 0.1420 1.5 · 10−5 2427
2 28/56 0.1187 2.5 · 10−6 3118 43/74 0.1187 9.0 · 10−5 2926
3 28/75 0.0948 3.9 · 10−6 4201 51/84 0.0948 1.4 · 10−4 3280
4 28/79 0.0735 5.6 · 10−6 4713 68/108 0.0735 2.1 · 10−4 4201
5 28/94 0.0645 1.2 · 10−5 5658 80/139 0.0645 2.6 · 10−4 5376

For all results presented in Table 5.14, i. e., IMS and DMS with an arbitrary parameter ω,
four Newton iterations were required. Again, the global refinement strategy described for
Example 5.4 was employed. Table 5.14 shows the results of this approach; the IMS and
DMS methods provide equally good minimum functional values and shooting residuals and
take roughly the same computing time.
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Remark 5.8. The global refinement technique cannot be applied to linear examples, where
the first Newton iteration already yields the converged solution. Thus, in the linear
case we start on the most refined level. The computing times given in Tables 5.11 and
5.14 reflect this difference in the implementation. Even though the linear example takes
more computing time than the corresponding nonlinear one, we emphasize that the direct
comparison is not fair. If we included the global refinement process into the linear framework
artificially, enforcing it to take several shooting iterations, then we could again benefit
from the described refinement strategy.

5.5.4 Choice of the shooting intervals

Indirect shooting. The results in Table 5.4 raise the question of how many shooting
intervals are at least needed, depending on the Helmholtz parameter ω, to solve the linear
problem from Example 5.1 with only one outer Newton iteration. Table 5.15 gives a
corresponding answer for values 5 ≤ ω ≤ 10 and illustrates that for increasing ω , the
least number of shooting intervals also increases. In turn the problems get more and
more ill-conditioned. For even larger values of ω, the problems are no longer solvable.
Either the number of shooting intervals is too small, or the systems to be solved are too
ill-conditioned. Therefore, employing a suitable preconditioner as discussed at the end of
Subsection 5.1.2 becomes indispensable. Note, however, that our results were obtained

Table 5.15. Example 5.1: Minimum number of shooting intervals (SI) for IMS
depending on ω.

ω #GMRES #SI J(q, u) ‖F‖
5 20 1 0.0794 3.5·10−09

6 24 2 0.0884 4.9·10−07

7 26 3 0.0972 2.7·10−07

8 28 4 0.1058 2.1·10−06

9 48 5 0.1142 9.1·10−08

10 49 5 0.1225 5.0·10−07

without any preconditioning. Finally, from Table 5.16, we see that the minimum total
number of shooting intervals that still yields a solution by performing one single outer step
is the most efficient one. This results from an increase in computing time with a growing
number of shooting intervals.

Direct shooting. We reconsider Example 5.1, for direct multiple shooting and our
objective is again to find how many shooting intervals are needed to solve this linear
problem with only one outer Newton iteration. The results are presented in Table 5.17
which states that, as in the IMS case above, an increase of ω leads to an increasing number
of shooting intervals. Similarly, Table 5.18 confirms the results of Table 5.1 for the DMS
case. We conclude that it is advisable to work with as few shooting intervals as possible to
be maximally efficient.
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Table 5.16. Example 5.1: Computing time for IMS depending on the number of
shooting intervals (SI).

ω = 7 ω = 8
#SI #Newton #GMRES t(s) ‖F‖ #Newton #GMRES t(s) ‖F‖
2 – – – – – – – –
3 1 26 412 2.7·10−07 – – – –
4 1 28 434 3.0·10−08 1 28 437 2.1·10−06

5 1 46 685 2.2·10−09 1 45 683 1.6·10−08

6 1 48 718 1.1·10−09 1 49 733 5.7·10−09

7 1 52 776 6.8·10−10 1 53 781 2.5·10−09

8 1 56 826 4.2·10−10 1 56 835 1.5·10−09

9 1 72 1061 3.0·10−10 1 79 1172 9.3·10−10

10 1 103 1492 2.2·10−10 1 109 1572 6.5·10−10

Table 5.17. Example 5.1: Minimum number of shooting intervals (SI) for DMS
depending on ω.

ω #GMRES #SI J(q, u) ‖F‖
5 50 1 0.0794 4.3·10−10

6 52 1 0.0884 2.5·10−08

7 56 2 0.0972 2.2·10−08

8 72 3 0.1057 1.5·10−08

9 82 4 0.1142 1.1·10−08

10 104 5 0.1225 1.2·10−08

From Tables 5.4, 5.8 or 5.11, the IMS method appears in general more efficient than its
DMS counterpart when considering linear-quadratic OCP. This is further confirmed by the
computing times given in Tables 5.16 and 5.18.

Interpretation of results. The numerical results from Tables 5.15 – 5.18, were achieved
by a trial and error process. In order to avoid this time-consuming proceeding, criteria
are desirable for adaptively determining the optimal total number as well as the optimal
position of shooting points. This proper choice of shooting points τj is a critical issue
especially in the PDE context, since with an increasing number of shooting points the
dimension of the shooting system (5.4) resp. (5.20) grows ever larger. This deteriorates
the conditioning of the shooting system, which in turn leads to a significant increase in
computational effort. Therefore, an adaptive determination process for the shooting points
is crucial for the efficient solution of problems that respond sensitively to perturbations in
the data or modifications of certain parameter values.
However, even for ODE-governed BVP with solution y(t; s), there are only few results
concerning this question. Maier [80] developed a method that starts from a given shooting
point distribution and automatically discards or inserts shooting points whenever necessary.
The main drawback of his approach is its limitation to a certain problem class, namely
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Table 5.18. Example 5.1: Computing time for DMS depending on the number
of shooting intervals (SI)

ω = 7 ω = 8
#SI #Newton #GMRES t(s) ‖F‖ #Newton #GMRES t(s) ‖F‖
2 1 56 672 2.2·10−08 – – – –
3 1 70 840 4.4·10−09 1 72 866 1.5·10−08

4 1 80 970 2.1·10−09 1 82 969 4.7·10−09

5 1 100 1193 1.5·10−09 1 102 1211 2.4·10−09

6 1 106 1250 1.2·10−09 1 110 1297 1.5·10−09

7 1 132 1554 9.6·10−10 1 134 1565 1.2·10−09

8 1 164 1948 8.0·10−10 1 166 1963 1.0·10−09

9 1 214 2537 6.8·10−10 1 248 2933 8.0·10−10

10 1 298 3504 6.0·10−10 1 308 3621 6.4·10−10

singularly perturbed ODE BVP. Alternatively, based on prior work of Mattheij on the
conditioning of linear BVP (see [81],[82]), Mattheij&Staarink [83] suggested to impose a
bound for the growth of the sensitivities G(t) := d

dsy(t; s) (see Subsection 2.2). Proceeding
forward in time, whenever ‖G(t)‖ exceeds a pre-chosen threshold value C (‖ · ‖ being
an arbitrary matrix norm), the current time-point ti is taken as a new shooting point
τj . This method has some major drawbacks which render the process rather heuristic.
More importantly, the approach does not work for nonlinear problems, for in the nonlinear
case G(t) = G(t; s) and τj = τj(s), where sensitivities and shooting points depend on the
shooting variables s. This enforces a redistribution of the shooting points in each iteration
of the Newton-type solver for the shooting conditions. Furthermore, the transfer of the
method to the PDE context is neither clear in the linear case.
The necessity of matrix-free computation has been emphasized in Subsections 5.1.2 and
5.2.2, meaning that the sensitivity matrices are not available. Instead, we only have
directional derivatives us, uλ, zs, zλ (solutions of the sensitivity problems (5.11) and (5.12)
resp. (5.22) and (5.23)). Choosing a norm of the sensitivities as bounding constant C is
thus not feasible in the PDE case. As many questions remain unanswered even for the
linear ODE case, we did not present nonlinear examples here. Chapter 7 deals with these
problems, and important questions on the subject of adaptivity are addressed. Thereby,
we pursue the approaches of both Maier and Mattheij and contribute novel aspects and
solution approaches to the issue of adaptive multiple shooting.
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6 Problems with Control Constraints

Goal of the previous chapter was not only to transfer the two main shooting approaches
known from ODE optimal control to the parabolic PDE context and discuss the additional
difficulties arising in this new framework, but also to enlighten the relationship between
IMS and DMS in an abstract optimization environment. Up to now, only problems without
any constraints besides the governing PDE were considered. In many cases, as is known
from ODE optimal control, there are additional conditions to be fulfilled by the control
or even the state variables. These extra requirements often render the problem at hand
much more difficult. Special techniques have to be employed due to, e. g., lacking regularity
properties. This chapter is dealing with control constrained problems and our intention is to
compare IMS and DMS in the presence of such constraints. In Section 6.1, the formulation
of the global OCP is extended to the case of control box constraints and afterwards the
problem is decomposed and tailored to the multiple shooting framework. Section 6.2 is
concerned with both IMS, where the corresponding results have been published in our
article, Carraro et al. [22], and DMS in the control constrained context. The considered
box constraints, i. e., functions which constitute an upper and/or lower bound for the
control, are an important class of control constraints. They are particularly suitable for a
multiple shooting formulation due to their localizability. Numerical tests similar to those
from Chapter 5 are displayed in Section 6.3 for both IMS and DMS, which enables a final
comparison between the indirect and direct shooting approaches in Section 6.4.

6.1 Problem reformulation

So far, OCP of the following form were considered:

min
(q,u)

J(q, u), (6.1)

subject to the parabolic PDE constraint

∂tu(x, t) +A(u)(x, t) + B(q)(x, t) = f(x, t) in Ω × I,
u(x, 0) = u0(x) in Ω,

(6.2)

with suitable boundary conditions on ∂Ω × I. Now, we consider a more general case where
additional constraints are imposed on the control variable q(x, t). An important type of
constraints occurring in many applications is given by so-called ‘box constraints’:

q−(x, t) ≤ q(x, t) ≤ q+(x, t). (6.3)
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6 Problems with Control Constraints

Here, q−(x, t) and q+(x, t) are functions in L2(I;L2(Ω)); if they are constant functions,
the control is forced to remain between two constant bounds. This reminds of a rectangle
or cuboid, where the notion of box constraints stems from. However, q−(x, t) and q+(x, t)
may constitute more general functions. Figure 6.1 illustrates the idea of constant box
constraints.

upper constraint

lower constraint

control without

constraints

sets where constraints

are violated

upper constraint

lower constraint

constrained control

Figure 6.1. The unconstrained control variable and sets where the upper or
lower constraint is violated (left); the constrained control variable
after projection onto the admissible set (right).

Remark 6.1. From the literature, other types of control constraints such as∫
Ω×I

q(x, t) dx dt ≤ c,

(i. e., a constraint on the average of the control) are known. We do not consider such
constraints in this work. As such global constraints cannot be easily localized to the
shooting intervals, their treatment in the multiple shooting framework is more difficult
than that of box constraints.

Imposing the additional control constraints (6.3) leads to a restricted set of feasible control
functions. These potential control solutions are called ‘admissible’ for the problem and
the set of admissible control functions is given by

Qad = {q ∈ Q | q−(x, t) ≤ q(x, t) ≤ q+(x, t)}, (6.4)

where the inequalities have to hold for almost all (x, t) ∈ Ω × I and q−, q+ ∈ Q are given
functions satisfying q− < q+. As there holds

q− = λq− + (1− λ)q− < λq− + (1− λ)q+ < λq+ + (1− λ)q+ = q+ for λ ∈ (0, 1),

every convex combination of q− and q+ is in Qad and thus, the admissible set is a convex
subset of Q. In compact form, our constrained OCP thus reads

min
q∈Qad,u∈X

J(q, u) subject to the weak formulation of (6.2). (6.5)
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6.1 Problem reformulation

Results on existence and uniqueness of problems such as (6.5) can be found, e. g., in the
textbooks of Hinze et al. [59] or Tröltzsch [108]. The discussion of these theoretical issues
is kept shorter than in the unconstrained case which was covered in Chapter 3, as part
of the theory in Section 3.2 already covers the case of constrained controls. The unique
solvability of the side condition (6.2) is always assumed, which enables to define a solution
operator S : Qad → X,S(q) = u. This in turn permits the definition of a reduced cost
functional

Ĵ(q) := J(q, S(q)), (6.6)

which allows for the formulation of an unconstrained control problem on Qad:

min
q∈Qad

Ĵ(q). (6.7)

This reduced problem enables to transfer the results from Chapters 3 and 5 to the control
constrained case. It is revisited in the formulation of concrete shooting algorithms in
Section 6.2.
In the presence of constraints of the form (6.3), the control equation L′q(q, u, z)(δq) = 0,
concretized by (5.2c), has to be replaced by the variational inequality

L′q(q, u, z)(δq − q) ≥ 0 ∀δq ∈ Qad. (6.8)

The convexity of the set Qad is crucial. As a minimizer can lie on the boundary of Qad,
the variational inequality (6.8) postulates the nonnegativity of all directional derivatives
pointing into the set of admissible controls. If the minimizer lies in the interior of Qad, the
variational inequality coincides with the original control equation, as then all directional
derivatives and hence the complete gradient have to vanish. The state and adjoint equations
remain the same as in system (5.2), thus the KKT system of (6.1) – (6.3) is given by

((∂tu, δz)) + a(u)(δz) + b(q)(δz)− ((f, δz)) + (u(0)− u0, δz(0)) = 0, (6.9a)
J ′u(q, u)(δu)− ((∂tz, δu)) + a′u(u)(δu, z) + (z(T ), δu(T )) = 0, (6.9b)

J ′q(q, u)(δq − q) + b′q(q)(δq − q, z) ≥ 0. (6.9c)

The treatment of the control inequality is not straightforward and makes the optimality
system (6.9) more complicated. Methods that deal with variational inequalities are
introduced in Section 6.2, but first the problem (6.1) – (6.3) is reformulated in terms
that enable the application of a multiple shooting technique. In several steps, the control
inequality (6.8) is transferred into a set of equations, which prepares the active set strategies
presented in Section 6.2.
We define the sets A− and A+ as

A− := {(x, t) ∈ Ω × I | q(x, t) = q−(x, t)},
A+ := {(x, t) ∈ Ω × I | q(x, t) = q+(x, t)}.

(6.10)

The optimal control q coincides with either the lower or the upper constraint function on
these sets. The respective constraint is then said to be ‘active’. The subset of the domain
Ω × I where neither constraint is active is called the inactive set,

I := (Ω × I) \ {A− ∪ A+}. (6.11)
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6 Problems with Control Constraints

As Q is a Hilbert space and L′q(q, u, z)(·) : Q → R is a linear functional, the Riesz
representation theorem enables the following identification:

((µ, δq)) := −b′q(q)(δq, z)− J ′q(q, u)(δq) = −L′q(q, u, z)(δq) ∀δq ∈ Q. (6.12)

This yields an additional Lagrange multiplier µ(x, t) ∈ Q. The following conditions
constitute an equivalent reformulation of inequality (6.8) which can be proven by means of
a case-by-case analysis:

µ(x, t) < 0 for a. e. (x, t) ∈ A−,
µ(x, t) > 0 for a. e. (x, t) ∈ A+,

µ(x, t) = 0 for a. e. (x, t) ∈ I.
(6.13)

This means that if q is a minimizer and thus (6.8) is fulfilled, then µ is negative where the
lower constraint is active, µ is positive where the upper constraint is active, and µ vanishes
on the inactive set. After defining the negative and positive parts of µ,

µ−(x, t) := −min{µ(x, t), 0}, µ+(x, t) := max{µ(x, t), 0}, (6.14)

the Lagrange functional L(·, ·, ·) can be complemented by two additional terms, the so-
called complementarity conditions. The resulting expression constitutes a suitable extension
of the Lagrangian for the control constrained OCP and is given by

L(q, u, z, µ−, µ+) := J(q, u) + ((∂tu, z)) + a(u)(z) + b(q)(z)
+ (u(0)− u0, z(0))− ((f, z)) + ((µ−, q− − q)) + ((µ+, q − q+)).

(6.15)

The max{·} and min{·} functions are not differentiable in the classical sense. Therefore,
deriving the KKT system by differentiating the extended Lagrangian (6.15) requires addi-
tional preparation. A suitable framework is given by the notion of Newton differentiability.
We explain this concept in detail in the framework of primal-dual active set strategies in
Section 6.2. In this generalized differentiability context, the Lagrange functional (6.15)
can be differentiated with respect to all its arguments, resulting in the following first-order
necessary optimality conditions for the control constrained case:

((∂tu, δz)) + a(u)(δz) + b(q)(δz)− ((f, δz)) + (u(0)− u0, δz(0)) = 0, (6.16a)
J ′u(q, u)(δu)− ((∂tz, δu)) + a′u(u)(δu, z)− (z(T ), δu(T )) = 0, (6.16b)

J ′q(q, u)(δq) + b′q(q)(δq, z)− ((µ−, δq)) + ((µ+, δq)) = 0, (6.16c)
((q− − q, δµ−)) = 0, (6.16d)
((q − q+, δµ+)) = 0, (6.16e)

µ−, µ+ ≥ 0. (6.16f)

These equations have to hold for all variations δu, δz ∈ X, δq ∈ Q, δµ− ∈ Q− and
δµ+ ∈ Q+, where Q− and Q+ are the following two subsets of the control space :

Q− := {q ∈ Q | q = 0 for a. e. (x, t) ∈ Ω \ A−},
Q+ := {q ∈ Q | q = 0 for a. e. (x, t) ∈ Ω \ A+}.
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6.1 Problem reformulation

The last two inequalities (6.16f) must be fulfilled in almost every point (x, t) ∈ Ω × I.
The system (6.16) has the structure of a BVP with separated boundary conditions, equiv-
alently to the unconstrained case (cf. equation (3.32)). Therefore, it can be treated by
means of multiple shooting, which is now discussed in a function space setting.
Building a suitable framework for multiple shooting methods for problems with control box
constraints is similar to the proceeding in Section 3.4. Starting from the full Lagrangian
(6.15), the same steps have to be taken as in the unconstrained case. The constraint
functions q−, q+ ∈ Q have to be split up to the subintervals Ij :

Qj 3 qj− := q−|Ij , Qj 3 qj+ := q+|Ij .

Similarly, this splitting is repeated for the Lagrange multiplier µ ∈ Q defined in (6.12) as
well as for its positive and negative parts given by (6.14). The introduction of corresponding
intervalwise variables µj , µj−, and µ

j
+ serves to rewrite the occurring intervalwise variational

inequalities
L′qj (q

j , uj , zj)(δq − qj) ≥ 0 ∀δq ∈ Qjad

as equivalent sets of equations. With these preparatory definitions, and using the functions
sj and λj as state and adjoint shooting variables as before in Section 3.4, the extension of
the full Lagrangian, denoted by L, can be formulated as follows:

L((qj , uj , zj , µj−, µ
j
+)M−1

j=0 , (sj , λj)Mj=0) := κ1

M−1∑
j=0

J1(uj) + κ2J2(uM−1(τM ))

+ α

2

M−1∑
j=0

∫
Ij

‖qj‖2 dt+
M−1∑
j=0

[
((∂tuj , zj)) + a(uj)(zj) + b(qj)(zj)− ((f |Ij , zj))

]

+
M−1∑
j=0

(uj(τj)− sj , zj(τj)) +
M−1∑
j=0

(sj+1 − uj(τj+1), λj+1) + (s0 − u0, λ
0)

+
M−1∑
j=0

[
((µj−, q

j
− − qj)) + ((µj+, qj − q

j
+))
]
.

(6.17)

This is the Lagrangian associated with the OCP given by (3.43) – (3.44) and the additional
intervalwise box constraints

qj−(x, t) ≤ qj(x, t) ≤ qj+(x, t). (6.18)

Differentiation of L with respect to zj , uj , and qj in the directions (δz, δu, δq) ∈
Xj ×Xj ×Qj leads to the intervalwise BVP (3.48a) – (3.48c), where the control equation
has to be slightly modified as follows:

α((qj , δq)) + b′qj (q
j)(δq, zj)− ((µj−, δq)) + ((µj+, δq)) = 0. (6.19)

Furthermore, differentiating L with respect to the shooting variables sj and λj results in
the system of equations (3.48d) – (3.48g), which is exactly the same as in the unconstrained
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case. The main difference compared to the unconstrained case consists in the equations
resulting from the differentiation of L with respect to µj− and µj+:

((qj− − qj , δµ−)) = 0, ((qj − qj+, δµ+)) = 0, µj−, µ
j
+ ≥ 0. (6.20)

These conditions correspond to (6.16d) – (6.16f).
With this preparatory reformulation of the control constrained OCP in the multiple shooting
framework, we are able to state two pseudo-algorithms for IMS and DMS. They are the
respective starting points for Subsections 6.2.1 and 6.2.2 (see Algorithms 6.1 and 6.4).

6.2 Multiple shooting for control constrained problems

There are different methods for treating control constrained PDE control problems; clas-
sical approaches are often based on projections of the unconstrained controls onto the
admissible set Qad, whereas modern strategies rely on the concepts of active sets or Newton
differentiability. This section introduces both classes of methods, but embeds them at
once into the multiple shooting framework. Subsection 6.2.1 is concerned with IMS, where
we provide a detailed presentation of the different approaches. In Subsection 6.2.2 the
DMS case is covered, and the presentation stresses the differences to the IMS case and is
otherwise kept short.

6.2.1 IMS for problems with control box constraints

This subsection describes the treatment of control constraints such as (6.3), extending
different methods to the IMS framework which requires a splitting of the constraints as
in (6.18). A brief survey of methods for control-constrained optimal control problems
(including the ones presented here) can be found in Herzog&Kunisch [51].

Algorithm 6.1 IMS for optimal control problems with control constraints

Require: Decomposition I = {0} ∪
⋃M−1
j=0 Ij , initial values {(sj0, λ

j+1
0 )M−1

j=0 }.
1: Set k = 1.
2: while Shooting conditions (3.48d) – (3.48g) not fulfilled do
3: for j = 0 to M − 1 do
4: Solve intervalwise BVP (3.48a) – (3.48c).
5: if Control constraints imposed then
6: Account for (6.19) and conditions (6.20), i. e., compute constrained controls q̃jk.
7: end if
8: end for
9: Solve (3.48d) – (3.48g), compute initial value update {(sjk, λ

j+1
k )M−1

j=0 }, set k ← k+ 1.
10: end while
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6.2 Multiple shooting for control constrained problems

The control constrained OCP has been adapted to the requirements of multiple shooting,
enabling us to start from Algorithm 6.1 which is an extension of Algorithm 5.1. Then,
both projection methods and the modern primal-dual active set strategy are discussed.

Gradient projection method. If intervalwise box constraints of type (6.18) are imposed
on the subinterval OCPs, Algorithm 5.2 may produce iterates qjk of the control that violate
the constraints, i. e., qjk 6∈ Q

j
ad. In this case, it must be ensured that the algorithm corrects

this deficiency. This is done most easily by projecting non-admissible iterates onto the set
Qjad using the projection operator defined by

P
Qjad

(qjk) = P[qj
k,−,q

j
k,+](q

j
k) = max{qjk,−,min{qjk, q

j
k,+}}. (6.21)

Algorithm 5.2 is then extended by the projected gradient algorithm in its following form:

Algorithm 6.2 Projection of nonadmissible control iterates onto Qjad

Require: Set k = 0, initial control qj0 ∈ Q
j
ad.

1: Perform algorithm 5.2.
2: if qjk+1 in step 10 of algorithm 5.2 is 6∈ Qjad then
3: Determine a step length σ such that Ĵ(P

Qjad
(qjk+1 − σ∇Ĵ(qjk+1))) < Ĵ(qjk+1).

4: Set q̃jk+1 = P
Qjad

(qjk+1 − σ∇Ĵ(qjk+1)).
5: end if

Steps 4–7 of Algorithm 6.1 can now be replaced by Algorithm 6.2 for control constrained
problems. Usually the determination of the step size in step 3 is carried out by applying a
projected Armijo rule (for details, see Hinze et al. [59]). The projected gradient method is
globally convergent but only with a linear rate which was shown, e. g., by Dunn [36].

Remark 6.2. The definition of q̃jk+1 as in step 4 of Algorithm 6.2 could be replaced by the
more general

q̃jk+1 = P
Qj
ad

(qjk+1 − σH
−1∇j(qjk+1)). (6.22)

This reminds of a Newton-type method, where H is the reduced Hessian ∇2j(qjk+1) or an
approximation of it. Note that, if H is chosen as the identity, the original variant from
Algorithm 6.2 is restored. Methods based on the concept (6.22), using the Hessian with
modifications in those blocks corresponding to degrees of freedom where the constraints are
active, are known as ‘projected Newton methods’ and are applied to solve control problems
in practice (see, e. g., Kelley&Sachs [66]). Although they often display a superlinear
convergence behavior and therefore outperform the above projected gradient method, it is
known that they are not generally convergent. A counterexample is given by Kelley [65].
Therefore, they cannot always be applied.

The implementation of the control constrained examples presented in Section 6.3 below
is based on projection methods. Nevertheless, we elaborate the primal-dual active set
strategy in the context of multiple shooting methods as well.
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Primal-dual active set strategy. In the past fifteen years active set strategies involving
both state and adjoint variables have been thoroughly examined as solution techniques
for constrained OCP. They have been first described by Bergounioux et al. [9] for elliptic
OCP and were applied, e. g., by Griesse & Vexler [46] and Vexler & Wollner [112]. In
the parabolic case, a similar procedure has been suggested by Kunisch & Rösch [72] and
was used, e. g., by Griesse & Vexler [46] and Griesse & Volkwein [47]. The primal-dual
active set strategy, which is equivalent to a semi-smooth Newton method, constitutes an
alternative to projected gradient or Newton methods. As Remark 6.2 indicates, one has to
be careful when employing projection methods. We state below that semi-smooth Newton
methods display a superlinear convergence behavior (cf. Hintermüller et al. [57]). Using
the notation introduced in the previous section, we present an active set strategy in its
semi-smooth Newton formulation.

The easiest way to derive a primal-dual active set algorithm starts from the system of
conditions (6.13) on the additional Lagrange multiplier µ. As µ(x, t) < 0 almost everywhere
on A−, we infer that

µ(x, t) + cq(x, t) = µ(x, t) + cq−(x, t) < cq−(x, t) (6.23)

for all constants c > 0 and almost all (x, t) ∈ A−. An analogous lower bound on µ+ cq is
valid on A+. Therefore, the active sets (6.10) can be expressed in the following alternative
form:

A− = {(x, t) ∈ Ω × I | cq(x, t) + µ(x, t) ≤ cq−(x, t)},
A+ = {(x, t) ∈ Ω × I | cq(x, t) + µ(x, t) ≥ cq+(x, t)}.

(6.24)

First, we interpret equations (6.16c)–(6.16f) including the reduced gradient and the com-
plementarity conditions in an intervalwise manner:

J ′q(qj , uj)(δq) + b′q(qj)(δq, zj)− ((µj−, δq)) + ((µj+, δq)) = 0, (6.25a)

((qj− − qj , δµ−)) = 0, ((qj − qj+, δµ+)) = 0, µj−, µ
j
+ ≥ 0. (6.25b)

Here, superscripts j indicate restrictions of global functions to the subinterval Ij . The
equalities in (6.25b) are equivalent to the complementarity conditions

((qj− − qj , µ
j
−)) = 0, ((qj − qj+, µ

j
+)) = 0. (6.26)

To avoid dealing with inequalities, we use the concept of complementarity functions.

Definition 6.1. A function ϕ : R2 → R is called a complementarity function if the
following condition holds:

ϕ(a, b) = 0 ⇐⇒ a ≤ 0, b ≤ 0, a · b = 0.

As ϕ(a, b) = max{a, b} is an example for a complementarity function, and with the equality
max{a, b} = a+ max{0, b− a}, the complementarity conditions (6.26) can be reformulated
as a system of two equations,

J ′q(qj , uj)(δq) + b′q(qj)(δq, zj) + ((µj , δq)) = 0, (6.27a)

µj −max{0, µj + c(qj − qj+)} −min{0, µj + c(qj − qj−)} = 0, (6.27b)
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where we used the notation µj := µj+ − µ
j
− as well as transformations of the min /max

functions. The system (6.27) includes the box constraints and is equivalent to (6.25) for all
c > 0. Below in Algorithm 6.3, after the state and adjoint equations are solved and uj and
zj are therefore known, we will abbreviate (6.27) by G(qj , µj) = 0. With these equations,
the subinterval KKT system is completely reformulated as a system of equations, and the
original inequalities are expressed by the min /max functions:

((∂tuj , δz)) + a(uj)(δz) + b(qj)(δz)− ((f |Ij , δz)) + (uj(τj)− sj , δz(τj)) = 0, (6.28a)
J ′u(qj , uj)(δu)− ((∂tzj , δu)) + a′u(uj)(δu, zj)− (zj(τj+1), δu(τj+1)) = 0, (6.28b)

J ′q(qj , uj)(δq) + b′q(qj)(δq, zj)− ((µj−, δq)) + ((µj+, δq)) = 0, (6.28c)

µj −max{0, µj + c(qj − qj+)} −min{0, µj + c(qj − qj−)} = 0. (6.28d)

Application of Newton’s method to solve the KKT conditions is tempting. However, the
min /max functions are not differentiable in the classical sense. Therefore, we have to use
the more general concept of slant (or Newton) differentiability which applies to min /max
(see Hintermüller, Ito&Kunisch [57] or Ito&Kunisch [60]).

Definition 6.2. Let X and Y be Banach spaces. A mapping F : D ⊂ X → Y is called
Newton differentiable on a set U ⊂ D if there is a family of mappings F ′ : U → L(X,Y )
such that for each x ∈ U it holds

lim
h→0

‖F (x+ h)− F (x)− F ′(x+ h)h‖Y
‖h‖X

= 0

The family of functions F ′ is called the Newton derivative of F .

Newton differentiability is no pointwise differentiabilty concept and the Newton derivative
is generally not unique. This differentiability notion enables the definition of semismooth
functions:

Definition 6.3. Let X and Y be Banach spaces. A function F : D ⊂ X → Y on an open
set D is called semismooth in a point x if F is Newton differentiable in x with Newton
derivative F ′ and if the limit limt↘0 F

′(x+ th)h exists uniformly in h with ‖h‖ = 1.

These notions enable the definition of a variant of Newton’s method for semismooth
functions. A root x∗ of the semismooth function F (x) can be approximated iteratively by
choosing a starting point x0 and applying the semismooth Newton formula

F ′(xn)xn+1 = F ′(xn)xn − F (xn).

This variant of Newton’s method displays a superlinear convergence behavior. In the
following, we derive the primal-dual active set strategy based on a semismooth Newton
approach for a reduced formulation of the control constrained problem. Therefore, we
define local active sets in analogy to (6.24) as well as local inactive sets on the shooting
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intervals Ij :

Aj− := {(x, t) ∈ Ω × Ij | µj(x, t) + c(qj(x, t)− qj−(x, t)) > 0},
Aj+ := {(x, t) ∈ Ω × Ij | µj(x, t) + c(q(x, t)j − qj+(x, t)) < 0},
Aj := Aj− ∪ A

j
+, Ij := (Ω × Ij) \ Aj .

(6.29)

The sets Aj+ and Aj− describe the subdomains of Ω × Ij where the max and min of
(6.27b) are attained, respectively. These sets are required because the Jacobian of (6.27)
depends on them via their characteristic functions χAj , χIj , which can be seen from the
following formulation of the Newton system at a given iterate (qjk, µ

j
k)>:∇2Ĵ(qjk) I

cχAj
k

−χIj
k

[δq
δµ

]
= −

 ∇Ĵ(qjk) + µjk
cχAj

k,+
(qjk − q

j
+) + cχAj

k,−
(qjk − q

j
−)− χIj

k
µjk

 . (6.30)

Recall that in terms of the reduced problem,

Ĵ ′q(qj)(δq) = J ′q(qj , uj)(δq) + b′q(qj)(δq, zj)

due to (3.30), which is the connection to (6.27). As before, we want to solve (6.30) in a
matrix-free way. To achieve this, we simply have to go through step 8 of Algorithm 5.2 for
the left upper block of the Jacobian in (6.30), while the remaining blocks can be treated
easily thanks to their simple structure. Now we have everything at hand to formulate the
primal-dual active set strategy in its semismooth Newton variant for the reduced problem.
Again, we can replace steps 4–7 of Algorithm 6.1 by the following Algorithm 6.3.

Algorithm 6.3 Active set resp. semi-smooth Newton algorithm for reduced problem

Require: Set k = 0, prescribe tolerance TOL1 and initial values qj0, µ
j
0.

1: while ‖G(qjk, µ
j
k)‖ > TOL1 do

2: Solve state equation (3.48a).
3: Solve adjoint equation (3.48b).
4: Compute G(qjk, µ

j
k).

5: Determine active sets (6.29).
6: Set i = 0, prescribe tolerance TOL2 and δqjk,0.
7: while ‖(δqjk,i+1, δµ

j
k,i+1)> − (δqjk,i, δµ

j
k,i)>‖ > TOL2 do

8: Solve system (6.30) by a matrix-free method.
9: end while

10: Set k ← k + 1 and compute updates qjk+1 = qjk + δqjk,end, µ
j
k+1 = µjk + δµjk,end.

11: end while

Remark 6.3. In step 1 of Algorithm 6.3, we choose a stopping criterion similar to the
corresponding one in Algorithm 6.1. Instead, one could terminate the algorithm when
the active sets in two subsequent iterations coincide, i. e., when Ajk,+ ≡ A

j
k+1,+ and

Ajk,− ≡ A
j
k+1,−. This latter criterion is commonly used in the description of active set

methods.
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6.2 Multiple shooting for control constrained problems

6.2.2 DMS for problems with control box constraints

In contrast to the IMS approach, in the DMS case the control is part of the shooting
system and therefore the control constraints are accounted for only after this system is
solved. Analogously to Algorithm 6.1 in the previous subsection, we provide a draft of the
proceeding in Algorithm 6.4. Then we adapt the projection method introduced in the IMS
context in order to concretize steps 7–9 of this algorithm.

Algorithm 6.4 DMS for optimal control problems with control constraints

Require: Decomposition I = {0} ∪
⋃M−1
j=0 Ij , initial values {(sj0, q

j
0, λ

j+1
0 )M−1

j=0 }.
1: Set k = 1.
2: while Shooting conditions (3.48c) – (3.48g) not fulfilled do
3: for j = 0 to M − 1 do
4: Solve intervalwise IVP (3.48a) – (3.48b).
5: end for
6: Solve (3.48c) – (3.48g), compute initial value update {(sjk, q

j
k, λ

j+1
k )M−1

j=0 }, set k ←
k + 1.

7: if Control constraints imposed then
8: Account for (6.19) and conditions (6.20), i. e., compute constrained controls q̃jk.
9: end if

10: end while

The application of a projected gradient method within the original DMS Algorithm 5.4
is straightforward and displayed in the following Algorithm 6.5. Note that the control
function qk comprises all subinterval controls qjk and can be interpreted as a global control
function. However, Algorithm 6.5 could be formulated equivalently for the controls on the
different shooting intervals.

Algorithm 6.5 Projection of nonadmissible control updates onto Qad

1: Perform Algorithm 5.4, replacing step 6 by Algorithm 5.5 for solving the shooting
system.

2: if qk+1 in step 7 of Algorithm 5.5 is 6∈ Qad then
3: Determine a step length σ such that Ĵ(PQad(qk+1 − σ∇Ĵ(qk+1))) < Ĵ(qk+1).
4: Set q̃k+1 = PQad(qk+1 − σ∇Ĵ(qk+1)).
5: end if

Remark 6.4. In the DMS framework, the projection of the intervalwise controls qjk onto
the set Qad of admissible controls is carried out after the shooting system has been solved.
It is therefore possible to interpret the combination of all subinterval control functions as
one global function qk on the complete solution interval I. In principle, DMS does not
require the localizability of the control constraints which is crucial for the IMS method.
As the control constraints can be imposed globally, DMS is presumably better suited to
handle constraints of a more global type such as the mean value constraints introduced in
Remark 6.1. Although this issue is not further elaborated in this thesis, we suppose that
techniques for global constraints can be applied in the DMS context.
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6 Problems with Control Constraints

6.3 Numerical tests

This section serves to verify the theoretical results achieved in Sections 6.1 and 6.2 by means
of a numerical example. Therefore, some of the test problems already discussed in Section
5.5 are complemented by additional control box constraints. We do not reconsider linear
problems in this context, but display only results for nonlinear examples. The tests enable
an extended comparison of IMS and DMS presented in the next section. Furthermore, the
results again motivate the development of shooting grid adaptation techniques in Chapter
7. In programming the code for the examples, projection methods are realized; although
they are less efficient than the modern active set strategies, they are easier to implement.
The computations are based on the discretization concepts from Section 4.1; again, the
finite element software deal.ii was used to obtain them. In order to provide meaningful
results on computing times, we emphasize again that all computations were carried out on
the same computer.

6.3.1 Results for IMS

We reconsider Example 5.2 which is now complemented with control box constraints. The
problem consists of a distributed tracking-type functional subject to a nonlinear PDE. The
latter depends on a parameter ω and it was shown in Section 5.5 for a corresponding linear
problem that for certain choices of this parameter, simple shooting becomes unstable.

Example 6.1. We consider the problem

min
(q,u)

J(q, u) = 1
2

T∫
0

‖u(x, t)− û(x, t)‖2L2(Ω) dt+ α

2

T∫
0

‖q(x, t)‖2L2(Ω) dt,

subject to the nonstationary nonlinear Helmholtz problem

∂tu(x, t)−∆u(x, t)− ωu(x, t) + u3(x, t) = q(x, t) in Ω × (0, T ],
u(x, t) = 0 on ∂Ω × [0, T ],
u(x, 0) = u0(x) in Ω

and the constant box constraints

−0.5 ≤ q(x, t) ≤ 0.5 a. e. in Ω × [0, T ].

The computational domain Ω = (−1, 1)2 and the end time T = 5 are as before. The
regularization parameter is fixed at α = 0.5, and the Helmholtz parameter is varied,
ω ∈ {3, 4, 5, 6, 7}. Furthermore, the tracking function is again given by

û(x, t) :=


2
5 t ·

(
1− x12

1

)(
1− x12

2

)
, t ≤ 5

2 ,(
2
5 t− 2

)
·
(
1− x12

1

)(
1− x12

2

)
, t > 5

2 .
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6.3 Numerical tests

The control box constraints lead to the set Qad of admissible controls,

Qad =
{
q(x, t) ∈ Q = L2(I;L2(Ω)) | − 0.5 ≤ q(x, t) ≤ 0.5

}
. (6.31)

For simplicity, we choose constant box constraints, but without difficulty it is possible
to replace the constant bounds in (6.31) by general L2-functions q−(x, t) and q+(x, t),
respectively. In Table 6.1, we illustrate the shooting iterates of IMS for Example 6.1.

Table 6.1. Example 6.1: Development of IMS solution on 10 equidistant shooting
intervals without (left) and with global refinement (right) for ω = 7
(required: ‖F‖ < 1.0 · 10−3). The computing times are 14737 seconds
without and 7800 seconds with global refinement, corresponding to a
time saving of 47.1%.

without refinement with refinement
Newton step #GMRES J(q, u) ‖F‖ #GMRES J(q, u) ‖F‖

1 – 2.190 4.3 · 1000 – 1.436 1.6 · 1000

2 26 1.811 5.9 · 10−01 19 1.338 8.0 · 10−01

3 25 2.270 1.9 · 10−01 25 2.239 3.3 · 10−01

4 25 2.158 6.9 · 10−02 25 2.193 6.7 · 10−02

5 25 2.197 6.4 · 10−03 25 2.200 9.0 · 10−03

6 25 2.193 2.6 · 10−03 25 2.194 2.0 · 10−03

7 25 2.195 4.2 · 10−04 25 2.195 3.0 · 10−04

The difference in the number of GMRES iterations per Newton step is not large. This
holds irrespectively of whether the solution process is carried out completely on the finest
spatial mesh or if the global refinement strategy proposed in Subsection 5.5.3 is included.
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Figure 6.2. Example 6.1: The state variable u(0, 0, t) at different IMS cycles in
the control constrained case.

Both approaches provide the same functional value after the shooting residual is sufficiently
reduced. However, the refinement strategy saves almost half the computing time. Figure
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6 Problems with Control Constraints

6.2 displays the state variable at different multiple shooting iterations. It is noteworthy
that in the control constrained case, the number of Newton iterations until convergence
of the shooting process is almost doubled in comparison to the unconstrained case (see
Figure 5.4). We remark that the computations were carried out without preconditioning,
as the SGS preconditioner proposed in Subsection 5.1.2 turned out to be even less efficient
than in the unconstrained case.
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Figure 6.3. Example 6.1: The control q(0, 0, t) at different IMS cycles in the
control constrained case.

Figure 6.4. Example 6.1: The control variable at different timepoints: at t = 2,
the lower constraint q− is active; at t = 4, the upper constraint q+
is active (see also Figure 6.3).
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6.3 Numerical tests

The control variable at different shooting cycles is depicted in Figure 6.3. The control
constraints (6.31) are fulfilled except for the first shooting iteration. The first iteration is
carried out on a coarse mesh of 4 cells, meaning there is only one spatial degree of freedom
at (0, 0, t). Therefore, the control cannot be appropriately projected onto the constraints.
Apart from this difference in the control variable, a comparison of Figures 5.4 and 6.2,
respectively Figures 5.5 and 6.3, provides only minor deviations in the state variable. In
Figure 6.4, the constrained control at two concrete timepoints is displayed; for t = 2, which
corresponds to timestep no. 200, the lower constraint q− = −0.5 is active, whereas for
t = 4, corresponding to timestep no. 400, the upper constraint q+ = 0.5 is active.
The following results concern two aspects of multiple shooting that were already examined in
Section 5.5 in the unconstrained case. Table 6.2 states the minimum number of equidistant
shooting intervals required to solve the problem from Example 6.1 for each value of the
Helmholtz parameter ω.

Table 6.2. Example 6.1: The minimum number of shooting intervals (SI) required
for different values of the parameter ω. The number of timesteps
per SI is chosen so that the total number of timesteps is as close as
possible to 500 (required: ‖F‖ < 1.0 · 10−3).

ω #SI #ts/SI #Newton #GMRES J(q, u) ‖F‖ t(s)
3 1 500 4 2–8 2.210 5.7·10−07 1275
4 3 167 4 5–10 1.997 9.7·10−04 4322
5 6 84 7 11–16 1.827 4.8·10−04 9063
6 8 63 6 15–21 1.943 8.0·10−04 6975
7 10 50 6 19–25 2.915 3.0·10−04 7800

While the problem is solvable by means of indirect simple shooting for ω = 3, the value
ω = 7 requires 10 equidistant shooting intervals (cf. the results of Table 6.1). While the
other computations were carried out with 500 timesteps equally distributed to the shooting
intervals, some results of Table 6.2 require a deviation from this total number of timesteps.
However, this deviation is kept as small as possible.

Finally, Table 6.3 confirms the results of Subsection 5.5.4, where we stated that in PDE
governed OCP it is best to choose as few shooting intervals as possible, at least in terms of
computing time. As this minimum number of shooting intervals is not known in advance,
this raises the question of how to find a suitable number and distribution of shooting points
adaptively in order to avoid time-consuming trial and error computations. We address this
problem in Chapter 7.

6.3.2 Results for DMS

This subsection is structured similarly to the previous one on IMS in order to facilitate
comparisons between the two shooting approaches. As the global refinement strategy
proposed in Subsection 5.5.3 accelerates all previous computations, we employ it throughout
this subsection. Furthermore, the following results have been achieved by using a damped
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Table 6.3. Example 6.1: IMS with and without global refinement strategy for ω =
3. Comparison of different numbers of shooting intervals (required:
‖F‖ < 1.0 · 10−3). The last column gives the saving in terms of
computing time as compared to IMS without refinement strategy.

without refinement with refinement
#SI #Newton(it) J(q, u) ‖F‖ t(s) #Newton(it) J(q, u) ‖F‖ %
1 2 (9) 2.210 1.1 · 10−7 1817 4 (2–8) 2.210 5.7 · 10−7 29.8
2 3 (9) 2.208 8.2 · 10−5 2710 4 (3–8) 2.207 8.5 · 10−4 53.2
4 3 (12) 2.208 1.1 · 10−4 2712 4 (7–11) 2.207 9.0 · 10−4 52.3
5 3 (13) 2.208 2.2 · 10−4 2712 4 (9–13) 2.208 7.7 · 10−4 51.2
10 3 (21) 2.208 3.5 · 10−4 2868 5 (17–21) 2.208 1.2 · 10−4 20.4
20 3 (48) 2.213 5.1 · 10−4 4493 5 (41–48) 2.208 2.3 · 10−4 21.9

Newton-GMRES method for the shooting system. The Newton update strategy is given as
follows:

sk+1 = sk + ν · δsendk ,

qk+1 = qk + ν · δqendk ,

λk+1 = λk + ν · δλendk .

(6.32)

The damping parameter is chosen as ν = 0.5 as long as the residual norm is ‖F‖ > 1 and
set to ν = 1 (i. e., undamped Newton) after ‖F‖ falls below this threshold.
We revisit Example 6.1 in the DMS context. Table 6.4 provides analogous results as
Table 6.1 in the IMS framework. While requiring more shooting cycles as well as twice as

Table 6.4. Example 6.1: DMS for ω = 7 on 10 shooting intervals discretized by
50 timesteps each. The solution involves global space mesh refinement
and a damped Newton strategy for the shooting system (required:
‖F‖ ≤ 10−3). The total computing time is 4953 seconds.

ref. level #Newton #GMRES J(q, u) ‖F‖
1 1 – 1.765 6.1·1000

1 2 28 1.503 8.1·1000

2 3 49 1.827 4.7·1000

3 4 49 1.981 3.0·1000

4 5 50 2.064 1.8·1000

4 6 50 2.115 1.1·1000

4 7 50 2.147 6.3·10−01

4 8 50 2.188 1.0·10−01

4 9 50 2.195 6.9·10−03

4 10 50 2.195 4.4·10−04

many GMRES iterations per shooting cycle than IMS, the solution process is nevertheless

134



6.3 Numerical tests

significantly faster (4953 seconds as compared to 7800 seconds, which corresponds to a
saving of 36.5%). Supposedly, this is due to the necessity in the IMS framework to solve a
smaller variant of the original OCP on each shooting interval, which is computationally
expensive. The corresponding solution of state and adjoint IVP in the DMS approach is
comparably cheap.
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Figure 6.5. Example 6.1: The state variable u(0, 0, t) at different DMS cycles in
the control constrained case for ω = 7 and α = 0.5.

Figures 6.5 and 6.6 display the development of state u(0, 0, t) and control q(0, 0, t) over
time at the origin of the spatial domain Ω for several shooting iterations. The initial
control is chosen as q0 ≡ 0 and from the second shooting iteration the control obeys the
imposed constraints. Comparing these two figures to the corresponding Figures 6.2 and
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Figure 6.6. Example 6.1: The control q(0, 0, t) at different DMS cycles in the
control constrained case for ω = 7 and α = 0.5.
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6.3 shows the coincidence of IMS and DMS solutions after convergence.

For the IMS approach, Table 6.3 provides an argument why the choice of a minimum
number of shooting intervals is sensible for solving a given problem. The same holds
true in the DMS framework, as can be inferred from Table 6.5. Again, we see that the
computational effort required for solving the shooting problem increases with a growing
number of shooting intervals.

Table 6.5. Example 6.1: DMS for ω = 3 and different equidistant shooting
decompositions.

#SI #Newton #GMRES J(q, u) ‖F‖ t(s)
1 10 10-12 2.208 4.1·10−06 1501
2 9 12-15 2.208 3.1·10−10 1588
4 8 15-19 2.208 2.7·10−11 1651
5 8 17-20 2.208 2.7·10−11 1730
10 7 22-28 2.208 2.7·10−11 1913
20 6 35-53 2.208 2.7·10−11 2702

This section concludes with an examination of the quality of solutions depending on the
regularization parameter α. A similar proceeding in the unconstrained case (cf. Table
5.10 and Figure 5.7) reveals that a sequence of decreasing values of α leads to improved
approximations of the minimum functional value and improves matchings of the tracking
function û(x, t).

Table 6.6. Example 6.1: Dependence of the functional value on the regularization
parameter α.

α #Newton #GMRESmin /max ‖F‖ J(q, u) t(s)
1 6 26/50 1.5·10−04 2.354 2599
0.5 9 28/50 4.4·10−04 2.195 4953
0.1 16 54/56 7.3·10−04 1.869 11413
0.05 26 66/74 8.4·10−04 1.798 25292

Table 6.6 illustrates that the optimal value of J(q, u) decreases with the regularization
parameter. However, small parameter values entail a significant increase of computing time
required for solving the OCP.
Finally, Figures 6.7 and 6.8 depict the development of the state solution u(0, 0, t) and the
control q(0, 0, t) at the center of the spatial domain Ω over time for different values of the
regularization parameter α. The improvement in the state solution for decreasing α is
smaller than in the corresponding unconstrained case (compare Figure 5.7). Moreover,
the parts of the solution interval I where the control constraints are active increase with
decreasing values of α.
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Figure 6.7. Example 6.1: Quality of the match of the state u(0, 0, t) to the
tracking function û(0, 0, t) depending on the regularization parameter
α in the control constrained case.
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Figure 6.8. Example 6.1: The dependence of the control q(0, 0, t) on the reg-
ularization parameter α at different DMS cycles in the control
constrained case.
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6.4 Comparison of IMS and DMS

This section finally provides a comparison of direct and indirect shooting variants for
PDE governed OCP. In the ODE optimal control framework, direct shooting methods are
nowadays preferred over indirect ones, as they are more flexible in dealing with additional
conditions such as control or state constraints which render control problems more complex.
In the following, we set different perceptions of direct versus indirect methods in relation.
Then the numerical results of Sections 5.5 and 6.3 are summarized.

In the ODE context direct shooting methods are often described as a ‘first-discretize-then-
optimize’ concept. In the framework of classical DMS as described in Section 5.3, this
means that in problem (5.25) both the controls qj and the states uj(qj , sj) are discretized
and the Lagrangian (5.27) is formulated on the discrete level. The resulting KKT system
constitutes a large-scale nonlinear programming problem (NLP). So far, the proceeding is
straightforward, but the solution of the NLP, e. g., by sequential quadratic programming
(SQP) methods, requires delicate technical fine-tuning (see Potschka [94]).
However, the DMS concept is not necessarily based on an underlying discretization.
There are problems, e. g., in ODE mixed integer programming, where discretizing the
variables before the optimization process leads to erroneous results or even to unsolvable
discrete problems. Thus, classical DMS can also be viewed as a ‘first-optimize-then-
discretize’ approach, which corresponds to its presentation in Section 5.3. Our concept
of DMS is derived from the same system of optimality conditions as IMS in Section 5.2.
On the function space level, it constitutes a re-interpretation of classical DMS for PDE
governed OCP.

In all numerical tests, the IMS and DMS approaches from Sections 5.1 and 5.2 are contrasted.
We choose problem configurations for which simple shooting methods are unstable and a
decomposition of the solution interval into several shooting subintervals is required.
In the following enumeration, we formulate some main conclusions drawn from the numerical
results. They are confirmed by further similar tests not displayed in this work, which
permits to generalize them for the considered problem classes.

1. Due to the often large shooting systems, employing a suitable preconditioner is
important, particularly for fine shooting grids with a large number of shooting
intervals. However, the results of a symmetric Gauss-Seidel preconditioner proposed
by Comas [26], Heinkenschloss [50] and Hesse [52] remain unsatisfactory. The design
of alternative preconditioners for shooting methods is crucial for future applications.

2. An increasing number of equidistant shooting intervals entails a growing number of
Newton-GMRES iterations for the shooting system (cf. Table 5.6 as well as Tables
5.16 and 5.18). This leads to increasing CPU times for both IMS and DMS, see also
Tables 6.3 and 6.5. The use of a global refinement strategy as proposed in Subsection
5.5.3 enhances the efficiency of both shooting approaches with respect to the number of
GMRES iterations as well as to CPU time. Decreasing the regularization parameter α
improves the tracking process triggered by the objective functional. These statements
are valid both for unconstrained and control constrained examples.

138



6.4 Comparison of IMS and DMS

3. Both IMS and DMS constitute two-step fixed-point iterations for the extended OCP
(3.43) – (3.44), possibly complemented by the constraints (6.18). In IMS, the first
step consists in the solution of subinterval BVP, which are replaced by intervalwise
IVP in DMS. In both approaches, the second step is the solution of the respective
shooting system. The discussion in Section 5.4, particularly the abstract example
examined in Table 5.1, predicts larger shooting systems for DMS. As a consequence,
the number of Newton-GMRES iterations in DMS is often twice as large as in IMS.
This is confirmed by the corresponding tables in Sections 5.5 and 6.3.

4. In general, IMS and DMS provide equally good results with respect to convergence
of the functional values and shooting residuals. For linear test examples, IMS often
performs better than DMS, as displayed in the right panels of Tables 5.4 and 5.8 as
well as in Table 5.11. However, for nonlinear examples the DMS method is far more
efficient than IMS with respect to CPU time, although it requires almost twice as
many iterations for solving the shooting system. This is confirmed by Tables 5.7 as
compared to 5.9, as well as by Tables 5.12, 5.13, and 5.14. The superiority of DMS
is further proven in the nonlinear case with control box constraints, as displayed
in Tables 6.1 and 6.4. For the latter results, the performance is remarkable, as the
DMS shooting system is solved by a damped Newton-GMRES method, which usually
reduces the convergence rate of Newton’s method.

In summary, the observations in Chapters 5 and 6 show that, although IMS performs
better in solving simple linear examples, for complex problems direct shooting methods are
often superior to indirect ones. This supports the preference of DMS in the ODE optimal
control context over the past decades.

So far, all results were obtained on equidistant shooting grids. Several test examples both
in the ODE and the PDE context suggest the use of an adaptive shooting technique. As
there are no satisfactory adaptive multiple shooting methods in the literature, the next
chapter is concerned with developing two novel approaches in this regard.
Indirect shooting methods for OCP are similar to the original shooting concept for BVP, as
the corresponding splitting (5.1) of the optimality conditions leads to a set of intervalwise
OCP that display a BVP structure. Therefore, the development of adaptive shooting
techniques, which is first performed for ODE BVP, concentrates on IMS in the optimal
control framework.
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After completing the comparative investigation of direct and indirect shooting methods,
this final chapter brings the topic of adaptivity into focus. The importance of handling
the choice of shooting intervals in a problem-oriented manner has occurred several times
before in our work (see, in particular, Chapters 2, 5 and 6).
First, we clarify the understanding of an adaptive shooting method. When adaptivity
is connected to multiple shooting in the literature, this is mostly a matter of adapting
the temporal or spatial discretization within the shooting intervals (for a recent example,
see Hesse & Kanschat [53]). Distributing the shooting points themselves adaptively is,
on the other hand, rarely considered. These approaches employ techniques developed
independently from shooting methods, e. g., they compute shooting solutions on a fixed
shooting grid but with adaptive mesh refinement on the single shooting intervals. In this
chapter, we elaborate two approaches toward adaptively modifying the shooting grid. Up
to now, little is known about how to design adaptive multiple shooting methods in the
latter sense. Hence, we extend previous work by Mattheij & Staarink [83]. Our second
approach is connected to an idea by Maier [80].
The mentioned work of Mattheij et al. discusses a way of distributing the shooting points
adaptively due to the needs of the given problem. However, the authors only consider linear
ODE boundary value problems, and there occur difficulties in transferring their approach
to nonlinear problems. We summarize their ideas in Section 7.1 and develop an extension
to nonlinear BVP and OCP in Section 7.2. Therefore, we return to problem classes from
Chapter 2. In Section 7.3 our approach is applied to OCP governed by parabolic PDE,
both without and with control box constraints. We thoroughly discuss the additional
difficulties occurring in the PDE context. In each section we present numerical results
within the respective problem classes which have been implemented in MATLAB or deal.ii
and all results were achieved on the same computer.

7.1 Optimal choice of shooting intervals (SI) for linear BVP –
the bounding approach

The general linear BVP reads as follows:

u̇(t) = A(t)u(t) + b(t), t ∈ [a, b]
Bau(a) +Bbu(b) = g.

(7.1)

Again, A(·) : I → Rd×d and b(·) : I → Rd are continuous real-valued matrix and vector
functions, Ba, Bb ∈ Rd×d are given constant matrices, and g ∈ Rd is a given vector.
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7 Adaptive Multiple Shooting

As shown in Chapter 2, solving such BVP with shooting methods, i. e., turning the BVP
into an IVP with parameterized initial values, often invokes problems concerning the
stability of the solution method. This holds even when the original BVP is well-conditioned
and follows from stability estimates which depend exponentially on the length of the
solution interval I (cf. (2.14)). A decomposition of I, leading from simple to multiple
shooting, renders the solution process stable, because the size of the exponential stability
factor depending on the interval length can then be controlled.
In this section, the fixed equidistant shooting grids are replaced by adaptively chosen grids.
The discussion of Example 2.1 in Section 2.2 showed that the a priori chosen number of
(equidistant) shooting intervals influences both the subinterval sensitivities Gi(t) and the
shooting matrix F ′s(s) (see Table 2.2). This confirms that the number and distribution
of shooting intervals is connected to the conditioning of the problem and to the stability
of the shooting algorithm, as the sensitivities play a major role in BVP conditioning (see
(2.10)). Assuming that the influence is mutual, it is suggestive to base the shooting point
distribution on a control of the sensitivities Gi(t). We recapitulate the multiple shooting
system explicitly, thus recalling the required notation:

G0 −I 0 · · · 0
0 G1 −I · · · 0
... . . . ...
0 · · · 0 GM−2 −I
A 0 · · · 0 B





δs0

δs1

...
δsM−2

δsM−1


= −



u0(τ1; s0)− s1

u1(τ2; s1)− s2

...
uM−2(τM−1; sM−2)− sM−1

r(s0, uM−1(τM ; sM−1))


(7.2)

For the linear problem (7.1), the matrix blocks in the last row of (7.2) are given by A = Ba
and B = BbG

M−1. It is crucial for the following that the sensitivities Gi(t) are independent
of the shooting variables si in the case of a linear BVP.
The basic proposition of Mattheij & Staarink (see [83]) is to bound the growth of the
sensitivities in some matrix norm ‖ · ‖ by a constant Csens. This is why we call the resulting
adaptive shooting scheme the bounding approach. The idea originally arose from analyzing
the global error ε accumulated during the solution process. After discussing different error
contributions, Mattheij & Staarink suggested the following upper bound for the sensitivity
growth:

‖Gi(t)‖ ≤ Csens .
ε

κMεmach
. (7.3)

Here, ε is the global error, κ describes the conditioning of the BVP (see (2.12)), M is the
number of shooting intervals and εmach ≈ 10−16 is the machine precision. Note that, if
the problem at hand exhibits an exponential dichotomy, the factor M can be suppressed
(see Mattheij [82]). The choice of shooting points is then performed as follows: During a
simultaneous forward solution of the parameterized IVP (2.3) and the belonging sensitivity
equation (2.7), whenever the norm G(tj) surmounts the prescribed constant Csens, the
current timepoint tj is chosen as a new shooting point τi. Then the solution process is
restarted with a parameter si as the new initial value. After the shooting intervals have
been fixed, the shooting system (7.2) is solved. We test this proceeding by means of an
example taken from the original article [83].
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7.1 Optimal choice of shooting intervals (SI) for linear BVP – the bounding approach

Remark 7.1. For all numerical examples in Sections 7.1 and 7.2, the Crank-Nicolson method
is chosen as an ODE integrator (see Subsection 4.1.1). Both equidistant and adaptive
computations are always carried out on a discretization of the respective solution intervals
with 10000 timesteps.

Example 7.1. The following BVP corresponds to Example 2.3 in Mattheij & Staarink
[83] and is solved on the time interval I = [0, π].u̇1(t)
u̇2(t)
u̇3(t)

 =

 1− 19 cos(2t) 0 1 + 19 sin(2t)
0 19 0

−1 + 19 sin(2t) 0 1 + 19 cos(2t)


u1(t)
u2(t)
u3(t)

−
2− 19 cos(2t) + 19 sin(2t)

19
19 cos(2t) + 19 sin(2t)


The boundary matrices B0 and Bπ are both given by the 3× 3 identity matrix. The exact
solution is given by the componentwise constant function u(t) ≡ (1, 1, 1)>.

This problem shows an exponentially dichotomic behavior, hence, in (7.3) the factor M can
be neglected. Furthermore, the BVP is well-conditioned, i. e., κ ≈ 1. Therefore, equation
(7.3) yields an upper bound Csens . 1016ε. The global error tolerance is ε = 10−8, which
finally requires Csens ≤ 108. In Table 7.1, we obtain a reproduction of the results from the

Table 7.1. Example 7.1: Number of shooting intervals depending on the spectral
norm of the sensitivity matrices (stopping criterion for the shooting
residual: ‖F (s)‖2 < 10−8).

Csens 101 102 103 104 105 106

‖(u− uh)(π)‖2 1.6·10−15 5.5·10−15 1.4·10−14 1.0·10−11 4.8·10−13 7.9·10−13

‖F (s)‖2 1.9·10−14 7.0·10−14 8.3·10−12 3.0·10−11 3.0·10−10 4.0·10−09

#SI 28 14 10 7 6 5

original article concerning the correlation between the number of shooting intervals and
the sensitivity size measured in the spectral norm.

Table 7.2. Example 7.1: Position of the shooting points obtained by bounding
the sensitivity growth; length of the resulting shooting intervals as
distance between consecutive points.

‖G(t)‖2 ≤ 104 ‖G(t)‖2 ≤ 106

shooting point position distance shooting point position distance
1 0 0.4593 1 0 0.6886
2 0.4593 0.4593 2 0.6886 0.6886
3 0.9186 0.4593 3 1.3773 0.6886
4 1.3779 0.4593 4 2.0659 0.6886
5 1.8372 0.4593 5 2.7545 0.3870
6 2.2965 0.4593 6 3.1416
7 2.7558 0.3858
8 3.1416
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7 Adaptive Multiple Shooting

As expected for a linear problem, the norm ‖F (s)‖2 of the shooting residual falls below the
prescribed tolerance ε within one shooting iteration. Table 7.2 illustrates that the choice
of shooting intervals leads to an equidistant shooting point distribution. An exception is
the last interval being shorter than the previous ones. We conjecture that this equidistant
shooting point distribution results from the uniform boundedness of the entries of the
BVP’s system matrix. In Example 7.1, all entries are bounded by the constant K = 20 on
the time interval I = [0, π]. A similar behavior is expected for autonomous BVP, where
the system matrices have constant entries. But this does not hold if the system matrix
coefficients vary strongly over time or cannot be uniformly bounded. We confirm this issue
by further examples below.
Although Example 7.1 supports the upper bound (7.3) postulated by Mattheij & Staarink,
there are several critical matters of discussion:

1. The presence of the number M of shooting intervals is contradictory in an estimate
which should enable an adaptive choice of shooting points. M is not known a priori,
but it is the objective to find an appropriate number of shooting intervals.

2. Example 7.1 shows that the upper bound for Csens depends proportionally on the
prescribed global error bound ε, i. e., decreasing ε leads to equally decreasing sensitiv-
ity bounds. This appears questionable for linear problems, where the first shooting
iteration already drives error components near the machine precision, independently
of the number of shooting intervals. Table 7.1 shows that choosing ε within the
interval [10−9, 10−4] leads to different values of Csens but does not change the results.

3. The dependence on the condition number κ of the continuous BVP indicated in (7.3)
is not realistic, as the discussion of Example 7.2 below illustrates.

Even though it is plausible to postulate a relation between the conditioning of the problem,
the stability of the shooting algorithm, and the adaptive optimal choice of shooting points,
these objections clearly question an upper bound for the sensitivity constant Csens in the
spirit of (7.3). Lacking a confirmable alternative criterion, in the following examples we
choose sensitivity constants Csens ∈ [103, 107]. The adaptive process described and applied
in this chapter therefore remains partly heuristic. As a basis for further examinations, the
proceeding suggested by Mattheij & Staarink is summarized in Algorithm 7.1. Steps 6–11
represent standard multiple shooting known from Algorithm 2.1.

In the following, Example 2.1 is reconsidered. The aim is twofold: The example justifies
skipping the bounding criterion (7.3), and it confirms the conjecture on adaptively detected
equidistant shooting grids.

Example 7.2. Consider the linear BVP(
u̇1(t)
u̇2(t)

)
=
(

0 1
c 1

)(
u1(t)
u2(t)

)
,

(
1 0
0 0

)(
u1(0)
u2(0)

)
+
(

0 0
1 0

)(
u1(10)
u2(10)

)
=
(

1
1

)
.

As in Section 2.2, increasing the value of the parameter c entails both ill-conditioning of the
BVP and instability of the shooting algorithm. For c = 110, the condition number κ from
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7.1 Optimal choice of shooting intervals (SI) for linear BVP – the bounding approach

Algorithm 7.1 The approach of Mattheij & Staarink [83] in algorithmic form.
Require: Shooting variable s, bound Csens

1: Prescribe tolerance TOL
2: Solve the initial value problem u̇(t) = A(t)u(t) + b(t), u(a) = s and the variational

equation Ġ(t) = A(t)G(t), G(a) = Id
3: if ‖G(tj)‖ > Csens then
4: Take the timepoint tj as shooting point τi, restart solving with u(τi) = s, G(τi) = Id
5: end if
6: while ‖F (s)‖ > TOL do
7: Solve the subinterval IVP and evaluate the residual −F (s)
8: Solve the subinterval variational IVP and evaluate F ′s(s)
9: Solve shooting system F ′s(s)δs = −F (s)

10: Compute update snew = s+ δs, resolve the subinterval IVP
11: end while

(2.12), which is the one proposed by Mattheij [82], is given as κ ≈ 1044. Thus, the criterion
(7.3) requires that Csens . 10−8

1044·10−16 = 10−36 for a chosen tolerance ε = 10−8 for the global
error. This is impossible to achieve. Referring back to Table 2.1, we see that M ≈ 8
shooting intervals are the optimal choice, which is obtained by choosing Csens ≈ 106 − 107.
Furthermore, the system matrix in Example 7.2 has constant entries regardless of the value
of the parameter c. According to our above conjecture, Algorithm 7.1 should result in
equidistant shooting grids (only the last shooting interval may be shorter, as it contains
the remainder that is left when dividing the length of the solution interval by the length of
the detected adaptive shooting intervals). This behavior is confirmed by Figure 7.1. It is
obvious that more shooting intervals are required for larger values of c. This matches the
results of Section 2.2. Note also that, in case c = 1, the adaptive process results in simple
shooting.
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Figure 7.1. Example 7.2: The equidistant shooting grid found by Algorithm 7.1
(left: c = 43, right: c = 95); the last shooting interval comprises the
remainder of the solution interval and is therefore shorter.
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7 Adaptive Multiple Shooting

The observations presented in the current section substantiate the close connection between
the number of shooting intervals and the ’size’ of the sensitivity matrices that was postulated
in Section 2.2 (see Table 2.1). So far, it is not clear how to measure this size best and
we always bounded the spectral norm of the sensitivities, i. e., ‖G(t)‖2. In the following,
two variants of Example 7.2 are considered to test several approaches to measure the
sensitivities.
In the first variant of Example 7.2, the system matrix entries are piecewise constant on the
solution interval and therefore still uniformly bounded. However, their size varies strongly
over time and they exhibit discontinuities. Besides testing different strategies to measuring
the size of G(t) and choosing the shooting points, we observe a nonequidistant shooting
point distribution.

Example 7.3. Consider once again the BVP(
u̇1(t)
u̇2(t)

)
=
(

0 1
c 1

)(
u1(t)
u2(t)

)
,

(
1 0
0 0

)(
u1(0)
u2(0)

)
+
(

0 0
1 0

)(
u1(10)
u2(10)

)
=
(

1
1

)
on the time interval I = [0, 10]. The matrix entry c is now chosen as a piecewise constant
function:

c(t) =

110 (t ≤ 2 ∨ t ≥ 8),
1 (2 < t < 8).

Table 7.3 presents the results obtained by testing different quantities measuring the size of
the sensitivities G(t). As in Table 7.1 above different upper bounds for the sensitivities
are tested (here, Csens ∈ [103, 106]). The growth of G(t) is bounded in the most common
matrix norms, i. e., the ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ norms, as well as in the spectral radius
ρ(·), which is computed from the eigenvalue with largest modulus and is, in general, not a
norm. The table illustrates that all quantities work almost equally well for determining
the shooting grid with the spectral radius criterion resulting in less shooting points but
simultaneously yielding a slightly larger shooting residual.

Table 7.3. Example 7.3: Number of shooting intervals and shooting residual
for different sensitivity bounds and different strategies for measur-
ing the sensitivity size (stopping criterion for the shooting residual:
‖F (s)‖2 < 10−8).

Csens 103 104 105 106

strategy #SI ‖F‖2 #SI ‖F‖2 #SI ‖F‖2 #SI ‖F‖2
‖G‖1 11 5.8 · 10−13 7 1.3 · 10−12 6 1.8 · 10−11 5 8.8 · 10−11

‖G‖2 11 2.0 · 10−13 7 5.5 · 10−12 6 5.1 · 10−11 5 6.1 · 10−10

‖G‖∞ 11 6.0 · 10−13 7 2.2 · 10−12 6 1.6 · 10−11 5 6.4 · 10−10

ρ(G) 9 2.2 · 10−12 7 3.8 · 10−11 5 3.1 · 10−10 5 1.7 · 10−09

Next, in Table 7.4 we take a closer look at the shooting point distibutions resulting from
the different quantities. The first three columns show that the choice of different matrix
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7.1 Optimal choice of shooting intervals (SI) for linear BVP – the bounding approach

norms leads to almost the same distributions; there are several shooting points in the
subintervals [0, 2] and [8, 10] where the parameter c = 110, but no additional shooting
point occurs in the center where c = 1. The choice of the spectral radius, however, results
in a different distribution as there is an additional shooting point in the center. Otherwise,
the distribution is similar. In all cases, the first two shooting intervals are of equal length,
and the second-to-last interval is also equally long.

Table 7.4. Example 7.3: Position of the shooting points obtained by bounding
the sensitivity growth; comparison of different strategies for measuring
the sensitivity size.

shooting point ‖G(t)‖1 ≤ 104 ‖G(t)‖2 ≤ 104 ‖G(t)‖∞ ≤ 104 ρ(G(t)) ≤ 104

1 0 0 0 0
2 0.6760 0.6830 0.6750 0.8330
3 1.3520 1.3660 1.3500 1.6660
4 2.1610 2.3850 2.2280 4.7560
5 7.7520 8.0020 7.8190 8.2620
6 8.6690 8.6850 8.6550 9.0950
7 9.3450 9.3680 9.3300 9.9280
8 10 10 10 10

Finally, Figure 7.2 shows the adapted shooting grid in the case ρ(G(t)) ≤ 104, corresponding
to the last column of Table 7.4, as well as the continuous solution obtained after one
shooting iteration.
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Figure 7.2. Example 7.3: The shooting solution found by Algorithm 7.1 (left:
before convergence, right: after convergence); shooting points are
mainly in regions where c is large (criterion: ρ(G(t)) ≤ 104).

The last problem is a further variant of Example 7.2, where the parameter c is replaced by
a linear function c(t) = 11t.

147



7 Adaptive Multiple Shooting

Example 7.4. The BVP to be solved reads(
u̇1(t)
u̇2(t)

)
=
(

0 1
11t 1

)(
u1(t)
u2(t)

)
,

(
1 0
0 0

)(
u1(0)
u2(0)

)
+
(

0 0
1 0

)(
u1(10)
u2(10)

)
=
(

1
1

)
,

and the solution interval is again I = [0, 10]. The exact solution is given by

u1(t) = c1e
t
2 Ai(a(t)) + c2e

t
2 Bi(a(t)),

u2(t) = c1

(1
2e
t
2 Ai(a(t)) + 3√11e

t
2 Ai′(a(t))

)
+ c2

(1
2e
t
2 Bi(a(t)) + 3√11e

t
2 Bi′(a(t))

)
where a(t) = 11t+ 1

4
3√112 , c1, c2 are constants, and Ai(·),Ai′(·) and Bi(·),Bi′(·) are the so-

called Airy functions and their first derivatives. We note that Ai(·) and Bi(·) are linearly
independent solutions of the Airy differential equation

u′′(t)− tu(t) = 0;

they occur in different areas of physics like optics, electromagnetics and quantum mechanics.
For more information, see the compendium by Olver [91].

As in Example 7.3 above, we first test several ways of bounding the sensitivity growth.
Table 7.5 displays the results for Example 7.4, which confirm that any of the chosen matrix
norms as well as the spectral radius are suitable quantities for measuring the sensitivity
size. As before, the spectral radius yields a minor improvement w. r. t. the number of
shooting intervals.

Table 7.5. Example 7.4: Number of shooting intervals and shooting residuals
for different sensitivity bounds and different strategies for measuring
the sensitivity size.

Csens 103 104 105 106

strategy #SI ‖F‖2 #SI ‖F‖2 #SI ‖F‖2 #SI ‖F‖2
‖G‖1 14 3.0 · 10−13 10 4.0 · 10−12 8 1.5 · 10−11 7 1.2 · 10−10

‖G‖2 14 4.0 · 10−13 10 2.1 · 10−12 8 5.0 · 10−11 6 6.8 · 10−10

‖G‖∞ 14 2.1 · 10−13 10 4.0 · 10−12 8 2.6 · 10−11 7 1.3 · 10−10

ρ(G) 11 6.9 · 10−13 9 3.8 · 10−12 7 6.7 · 10−10 6 6.8 · 10−10

In Example 7.4, the system matrix entries are no longer uniformly bounded, but increase
linearly with the time variable. Therefore, the shooting intervals should become smaller
with increasing time. In Figure 7.3, this assumption is confirmed both for the spectral
norm ‖G(t)‖2 and the spectral radius ρ(G(t)) in case that Csens = 105.

So far, the determination of shooting points was aligned with the size of the sensitivities,
which is based on the ideas by Mattheij [82] and Mattheij & Staarink [83]. This proceeding
is motivated by a theoretical connection between the conditioning of the given BVP, the
stability of the shooting algorithm, and the sensitivity growth. Although this connection
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Figure 7.3. Example 7.4: The shooting solution found by Algorithm 7.1 (left:
‖G(t)‖2 ≤ 105, right: ρ(G(t)) ≤ 105).

is observed in examples (see Section 2.2), it is difficult to quantify it appropriately. A
different and simpler approach consists in bounding the shooting solution itself. As Figures
7.1 – 7.3 illustrate, the subinterval shooting solutions u1 and u2 increase exponentially over
time, meaning that the exponential growth behavior is not restricted to the sensitivities.
Table 7.6 compares the numbers of shooting intervals and the shooting residuals detected
by the adaptive Algorithm 7.1 based on bounding the solution, ‖u(t)‖2, or the sensitivities,
‖G(t)‖2, in the Euclidean respectively the spectral norm. The results suggest that bounding
the solution u to determine the shooting grid works equally well as bounding the sensitivity
growth. It even results in a slightly smaller number of adaptively detected shooting intervals.
This behavior has been confirmed by several further examples, among them Examples 7.1 –
7.3.

Table 7.6. Example 7.4: Number of shooting intervals and shooting residual
for different bounding strategies, i. e., ‖u(t)‖2 ≤ Csens respectively
‖G(t)‖2 ≤ Csens, and different bounds.

Csens 103 104 105 106

strategy #SI ‖F‖2 #SI ‖F‖2 #SI ‖F‖2 #SI ‖F‖2
‖u‖2 10 2.9 · 10−12 8 1.6 · 10−11 7 1.1 · 10−10 6 2.5 · 10−09

‖G‖2 14 4.0 · 10−13 10 2.1 · 10−12 8 5.0 · 10−11 6 6.8 · 10−10

Table 7.7 reveals that the shooting grids achieved by the two different approaches are very
close to one another. The distribution displayed in the first column results from bounding
the solution of the original problem, whereas the one in the third column relies on the
solution of the variational equation. We presume that the similarity is grounded in the
identical structure of both problems which is due to the linearity of the original BVP. We
will test the approach of bounding ‖u(t)‖2 in Section 7.2 for nonlinear examples, where we
expect its performance to deteriorate.
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7 Adaptive Multiple Shooting

Table 7.7. Example 7.4: Position of the shooting points obtained by bounding
the growth of the solution resp. of the sensitivities; length of the
resulting shooting intervals as distance between consecutive points.

‖u(t)‖2 ≤ 105 ‖G(t)‖2 ≤ 105

shooting point position distance shooting point position distance
1 0 2.9770 1 0 2.6590
2 2.9770 1.7770 2 2.6590 1.5610
3 4.7540 1.4880 3 4.2200 1.3040
4 6.2420 1.3260 4 5.5240 1.1600
5 7.5680 1.2160 5 6.6840 1.0630
6 8.7840 1.1350 6 7.7470 0.9920
7 9.9190 0.0810 7 8.7390 0.9360
8 10 8 9.6750 0.3250

9 10

Each of the criteria introduced in this section will be re-examined in the nonlinear context,
see Subsection 7.2.1.

In conclusion, a brief overview summarizes the advantages and drawbacks of the described
adaptive approach for choosing the shooting points in linear BVP. The essential advantages
in comparison with a fixed equidistant shooting grid are:

1. Given an upper bound Csens for the growth of the sensitivities ‖G(t)‖, the shooting
intervals are chosen automatically.

2. If Csens is chosen adequately, the minimum number of shooting points necessary
for solving the given BVP as well as the corresponding optimal choice of shooting
intervals is detected.

3. Whenever possible, Algorithm 7.1 leads to simple shooting. This was observed, e. g.,
for the case c = 1 in Example 7.2.

However, there are several disadvantages of the adaptive procedure displayed in the following
list:

1. Due to the independence of ‖G(t)‖ on the shooting variable s, the adaptive process
ends up with an equidistant shooting point distribution if the BVP system matrix
has uniformly bounded entries.

2. There exists no rule by which to choose the sensitivity bound Csens, which renders
the adaptive process partly heuristic.

3. In nonlinear problems, the sensitivities depend on the shooting variables s, i. e.,
G(t) = G(t; s). This entails a dependence of the shooting grid on s, and therefore
Algorithm 7.1 is not applicable to nonlinear BVP.
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4. Algorithm 7.1 runs contrary to the potential of multiple shooting for computing the
subinterval solutions in parallel. In order to detect the shooting points, the BVP has
to be solved forward sequentially. Only afterwards multiple shooting can be applied
in parallel on the sequentially determined shooting grid.

As we neglect the parallelization property of multiple shooting, we are mainly concerned
with transferring the adaptive procedure to the nonlinear case. This is the main objective
of the next section.

Remark 7.2. A different approach to adaptively distributing the shooting points was
introduced by Maier [80] for singularly perturbed BVP. It is designed for handling nonlinear
problems and is independent of stability theory, which allows to avoid heuristic criteria. It
is not meaningful for linear problems as they usually converge in one shooting iteration
and is therefore postponed to Subsection 7.2.2. There, we propose a concept similar to
Maier’s that is applicable to general ODE problems.

7.2 Optimal choice of SI for nonlinear BVP and ODE governed
OCP

The strategy of Mattheij & Staarink [83] for adaptively determining the shooting grid
discussed in the last section remains unsatisfactory in the following regard: As the solu-
tion process in linear examples converges within one shooting iteration, no genuine grid
adaptation can be observed. The shooting grid is once fixed according to a given criterion,
but afterwards not altered.
The current section deals with more advanced nonlinear problems. In Subsection 7.2.1,
we are concerned with transferring Algorithm 7.1 to the nonlinear case. It turns out that
additional precautions are necessary, which is justified in several steps. After the algorithm
is adapted to nonlinear problems, several numerical examples illustrate its performance.
Among them are nonlinear problems with linear boundary conditions, fully nonlinear BVP
(i. e., both ODE and boundary conditions are nonlinear) and nonlinear OCP.
In Subsection 7.2.2, an alternative and independent approach toward adaptivity is dis-
cussed. Similar to a method proposed by Maier [80] for singularly perturbed BVP, the
shooting process is started with a given very finely resolved shooting grid. In the following
iterations, the grid is successively thinned out, i. e., unnecessary shooting intervals are
removed. We also consider the possibility of inserting additional shooting points where
this is necessary.

7.2.1 Extension of the bounding approach to nonlinear BVP

The approach to automatic shooting point distribution from Algorithm 7.1 cannot be
expected to work for nonlinear BVP. This is plausible from the following observation. The
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7 Adaptive Multiple Shooting

sensitivity or variational equation of the parameterized IVP

u̇(t; s) = A(t)u(t; s) + b(t), u(a; s) = s

(corresponding to the linear BVP (7.1)) is given by

Ġ(t) = A(t)G(t), G(a) = Id.

This sensitivity equation does not depend on the shooting parameter s, and therefore the
multiple shooting grid detected by Algorithm 7.1, relying on bounding the sensitivities G(t),
is also independent of s. Furthermore, in the linear setting, only one shooting iteration
has to be carried out, resulting in a fixed shooting grid. In contrast, the general nonlinear
parameterized IVP,

u̇(t; s) = f(t, u(t; s)), u(a; s) = s,

leads to the sensitivity equation

Ġ(t; s) = f ′x(t, u(t; s))G(t; s), G(a; s) = Id.

The Jacobian f ′x(t, x) depends on s, which then transfers to the sensitivity solution
G(t) ≡ G(t; s). Thus, the sensitivity bounding approach leads to shooting grids depending
on s. We expect a different shooting grid in each iteration as in each shooting cycle, the
parameter vector s = (s0, s1, . . . , sM−1) is updated. Therefore, the approach from Section
7.1 must be modified in order to allow for changing grids. It is briefly summarized in the
following pseudo-algorithm.

1: Distribute shooting points due to Mattheij’s criterion of bounding the growth of ‖G(t)‖
2: while ‖F (s)‖ > TOL do
3: Solve the multiple shooting problem
4: end while

The obvious modification takes the distribution step inside the loop, so that the shooting
points are redistributed in each shooting iteration. The current shooting grid is then
determined by bounding the sensitivities that are computed on the basis of the respective
last update of s. Instead of fixed quantities that were sufficient in the equidistant framework,
the implementation now has to deal with quantities of varying size for the shooting points,
shooting variables, shooting solutions etc. The modified pseudo-algorithm reads

1: while ‖F (s)‖ > TOL do
2: Distribute shooting points based on bounding the growth of ‖G(t; s)‖
3: Carry out one multiple shooting iteration
4: end while

The problem after modification is illustrated in Figure 7.4 in a simplified way. Assume
that in the i-th shooting iteration, we have shooting variables si = (s0

i , s
1
i , . . . , s

Mi−1
i ) and

a corresponding shooting grid Ti (the upper part of the figure). Now one multiple shooting
iteration is carried out, resulting in an update si+1 = (s0

i+1, s
1
i+1, . . . , s

Mi−1
i+1 ) of the shooting
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7.2 Optimal choice of SI for nonlinear BVP and ODE governed OCP

variables. Based on si+1, a new shooting grid Ti+1 is determined, on which the next
multiple shooting iteration must be carried out. Here the following problem arises: The
solution of the original IVP as well as the sensitivity equations must be computed on the
new grid Ti+1, but as initial values only si+1 are available, which have been computed on
the old grid Ti (see the lower part of Figure 7.4). Indeed, the modified algorithm does not

upper bound

shooting

variable
sensitivity

new

sensitivity
new shooting variable

Figure 7.4. The adaptive multiple shooting process; upper part: shooting vari-
ables s (denoted by ‘×’ ) and corresponding sensitivity growth
(curved dashed lines); lower part: new shooting variables (denoted
by ‘◦’ ) and new sensitivity norms (curved dashed lines). Problem:
In the lower part, shooting variables and intervals do not fit.

work in practice. In most cases the quantities comprising the shooting points τ (i+1) and the
shooting variables si+1 are of different length, because in the new shooting grid Ti+1, either
shooting points from Ti have been removed or additional ones have been inserted. Before
carrying out a new multiple shooting iteration, the shooting variables si+1 have to be
matched to the new grid Ti+1. The obvious way to achieve this matching is to interpolate

interpolated shooting variable

Figure 7.5. Interpolation of the shooting variables si+1 (here: piecewise linear
interpolation) and evaluation of the interpolant in the shooting
points of the new grid Ti+1 provides appropriate initial values for
the multiple shooting iteration (denoted by ‘•’ ).

the shooting values si+1 and evaluate the interpolant at the gridpoints of Ti+1, yielding
suitable initial values sint

i+1 for the solution of original IVP. Figure 7.5 illustrates this idea
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7 Adaptive Multiple Shooting

with piecewise linear interpolation. We continue to employ this in the examples below
because it has turned out to work well in practice. Altogether, the modified procedure can
be written in the following pseudo-algorithmic form:

1: while ‖F (s)‖ > TOL do
2: Distribute shooting points based on bounding the growth of ‖G(t; s)‖
3: Interpolate the shooting variables and take the values of the interpolant as new

initial values on the subintervals
4: Carry out one multiple shooting iteration
5: end while

The steps enabling the transfer of the adaptive bounding approach to nonlinear BVP are
presented in detail in the following Algorithm 7.2. The additional features can be easily
included into existing implementations of multiple shooting algorithms. For OCP, the
modification of indirect shooting methods is straightforward and is reconsidered below.

Algorithm 7.2 The bounding approach to adaptive multiple shooting for nonlinear
problems (an extension of Algorithm 7.1).
Require: Shooting variable s, bound Csens

1: Prescribe tolerance TOL
2: while ‖F (s)‖ > TOL do
3: Solve the initial value problem u̇(t; s) = f(t;u(t; s)), u(a; s) = s and the variational

equation Ġ(t; s) = f ′x(t;u(t; s))G(t; s), G(a; s) = Id
4: if ‖G(tj ; s)‖ > Csens then
5: Take the timepoint tj as shooting point τi
6: Compute a piecewise interpolant y of the shooting variables s
7: Restart solving with u(τi; s) = s, G(τi; s) = Id in the first iteration, u(τi; s) = y(τi),

G(τi; s) = Id in subsequent iterations (where y is the interpolant from step 6)
8: end if
9: Solve the subinterval IVP and evaluate the residual −F (s)

10: Solve the subinterval variational IVP and evaluate F ′s(s)
11: Solve shooting system F ′s(s)δs = −F (s)
12: Compute update snew = s+ δs
13: end while

The remainder of this subsection presents two examples for this adaptive shooting method.
First, a nonlinear BVP is considered; besides the functionality of the adaptive mechanism,
an influence on the domain of convergence of Newton’s method for the shooting system
is observed. The second example is a nonlinear OCP which is adaptively solved by IMS
(as introduced in Section 2.3). The different criteria for determining the shooting points
discussed in Section 7.1 are tested in the nonlinear framework. To the best of our knowledge
there exists no similar adaptive mechanism in the literature.
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7.2 Optimal choice of SI for nonlinear BVP and ODE governed OCP

Example 7.5. Consider the nonlinear BVP

ü(t) = 3
2u(t)2, u(0) = 4, u(10) = 4

121

with linear boundary conditions on the interval [0, 10]. This problem is a modification of a
BVP taken from Bulirsch & Stoer [20]. Its exact solution is given by u(t) = 4

(1+t)2 . We
rewrite it as a two-component first order BVP in the form(

u̇1(t)
u̇2(t)

)
=
(

0 1
1 0

)(
3
2u

1(t)2

u2(t)

)
,

(
1 0
0 0

)(
u1(0)
u2(0)

)
+
(

0 0
1 0

)(
u1(10)
u2(10)

)
=
(

4
4

121

)
.

In Table 7.8, the adaptive development of the multiple shooting process for Example 7.5 is
illustrated. The number of shooting intervals needed per iteration successively decreases
until only two shooting intervals are required in the last few shooting cycles. From the
last column, an increase in convergence order can be observed at the end of the solution
process.

Table 7.8. Example 7.5: Number of shooting intervals in different shooting cycles,
minimum and maximum length |Ij | of the detected shooting intervals,
and size ‖F‖2 of the corresponding shooting residual (initial shooting
variable s = (−9,

√
23)>, criteria ρ(G(t)) ≤ 102, ‖F‖2 < 10−8).

iteration #SI min |Ij | max |Ij | ‖F‖2
5 47 0.1950 0.6070 8.5 · 1004

10 27 0.1300 0.9970 1.1 · 1004

15 15 0.4840 1.5290 1.6 · 1003

20 9 0.2120 2.1080 2.2 · 1002

25 5 1.5370 2.4750 2.6 · 1001

30 3 2.5950 4.0670 2.0 · 1000

35 2 2.6130 7.3870 5.0 · 10−02

38 2 2.6140 7.3860 5.8 · 10−10

Figure 7.6 depicts the adaptive behavior of the multiple shooting solver. Shooting intervals
of different length as well as changing shooting grids are clearly recognizable. Note also
the labelling of the y axes indicating the improvement of the shooting solutions. Table
7.9 presents a comparison of the equidistant multiple shooting method and the adaptive
procedure for two different pairs of initial values. The criterion for adapting the shooting
grid is to bound the spectral radius of the sensitivity matrix by Csens = 102. It is a
general observation confirmed by several examples that Csens has to be chosen smaller
in the nonlinear framework than for linear problems. Summarizing the results of Table
7.9, the adaptive process is not only faster than equidistant multiple shooting, it also
takes less shooting intervals, and it converges for initial parameters s for which equidistant
shooting fails completely. For s = (−9,

√
23)>, the inner Newton method for solving the

implicit time steps needs more than maxit = 500 iterations; the inner Newton method is
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Figure 7.6. Example 7.5: The shooting solution found by the modified adaptive
procedure (upper left: 5th shooting cycle, upper right: 15th shooting
cycle, lower left: 25th shooting cycle, lower right: 38th shooting cycle
(convergence)); the adaptive process successively reduces the number
of shooting intervals (initial shooting variable s = (−9,

√
23)>,

criteria: ρ(G(t)) ≤ 102, ‖F‖2 < 10−8).

then stopped, and the subinterval solutions cannot be computed. The latter observation
suggests a positive impact of the adaptive shooting process on the domain of convergence
of Newton’s method. Although a thorough analysis of the domain of convergence is a hard
task and has not been carried out, Figure 7.7 confirms this conjecture. The domain of
convergence of the adaptive process (displayed in the left panel, where the observation is
restricted to integer pairs in the domain [−5, 5]2) comprises the upper left quadrant of the
coordinate system, for which the equidistant shooting method (with 100 shooting intervals)
fails to converge. A similar behavior has been observed with several nonlinear examples.

Remark 7.3. We emphasize that the domains of convergence for equidistant and adaptive
multiple shooting depicted in Figure 7.7 have been obtained for Newton’s method without
any damping strategy. A suitably chosen damping parameter will presumably enlarge
the convergence domain of Newton’s method, both for equidistant shooting and for the
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7.2 Optimal choice of SI for nonlinear BVP and ODE governed OCP

Table 7.9. Example 7.5: Comparison of equidistant and adaptive shooting for
different initial shooting variables. Adaptive shooting is faster and has
a larger convergence domain (criteria: ρ(G(t)) ≤ 102, ‖F‖2 < 10−8).
The notation ‘–(x)’ means that the inner Newton method for the
implicit ODE solver failed in shooting step x, needing more than 500
Newton iterates.

s = (0.1,−0.1)> s = (−9,
√

23)>
strategy #SI #Newton time(s) #SI #Newton time(s)

equidistant 5 –(3) – 5 –(2) –
10 –(4) – 10 –(3) –
20 >100 >128 20 –(4) –
50 >100 >129 50 –(6) –
100 >100 >130 100 –(6) –
200 >100 >130 200 –(7) –
500 >100 >134 500 –(8) –

adaptive 2–9 24 62 2–58 38 102

sensitivity bounding strategy. However, the quadratic convergence observed in the last
Newton iterate usually deteriorates if Newton’s method is damped.

Finally, in Table 7.10, the different strategies for distributing the shooting points discussed
in Section 7.1 are compared in the nonlinear context. Bounding different sensitivity norms

Table 7.10. Example 7.5: Number of shooting intervals and iterations, shooting
residual and computing time for different strategies of measuring the
sensitivity size (data: s = (−9,

√
23)>, Csens = 102, ‖F‖2 ≤ 10−8).

strategy #SI #Newton ‖F‖2 time(s)
‖G‖1 2-112 30 2.0 · 10−11 77
‖G‖2 2-99 30 1.4 · 10−09 79
‖G‖∞ 2-118 30 1.8 · 10−13 78
ρ(G) 2-58 38 5.8 · 10−10 102
‖u‖2 1-22 58 6.2 · 10−12 164

yields equally good results, whereas the process becomes slightly slower when the spectral
radius is bounded. Bounding the solution itself is not competitive in this example, and is
expected to fail for nonlinear problems that are not finally solved on one shooting interval,
as the solution u always grows on the first shooting interval until the bound Csens is reached.
We therefore exclude this strategy from further observations.
The second example in this subsection is a nonlinear OCP known from Chapter 2. It is
part of the benchmark problem collection PROPT by Edvall & Rutquist [99] and is briefly
repeated for the reader’s convenience:
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7 Adaptive Multiple Shooting

Figure 7.7. Example 7.5: The domains of convergence of Newton’s method
for the shooting system depending on the initial shooting value
s = (s1, s2)> (exemplarily the square [−5, 5]2): adaptive multiple
shooting (left), equidistant multiple shooting (right). The adaptive
procedure has a larger domain of convergence (‘•’ means convergence,
‘×’ means failure).

Example 7.6 (PROPT: Benchmark 51). Consider the nonlinear optimization prob-
lem

min
(q,u)

J(q, u) =
10∫
0

(u2(t) + q2(t)) dt

s. t. u̇(t) = −u3(t) + q(t), u(0) = 1, u(10) = 3
2 .

with an ODE boundary value problem as side condition. According to Rao & Mease [97],
this problem is very sensitive to perturbations and therefore suited for multiple shooting
solvers. The benchmark functional value is given as Jmin = 6.723925.

In Chapter 2 both IMS and DMS were applied to this problem. From a structural point
of view, IMS is more similar to the shooting algorithm for BVP, as it exploits the BVP
structure of the KKT system. In particular, the IMS Algorithm 2.2 requires the solution
of an additional sensitivity equation, whereas in the DMS variant introduced in the ODE
context the computation of sensitivities is concealed. In order to employ the adaptive
shooting procedure without modification, we constrain ourselves to the indirect shooting
variant in the following discussion. Table 7.11 shows a comparison between the equidistant
and the adaptive multiple shooting method for Example 7.6.
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Table 7.11. Example 7.6: Comparison of equidistant and adaptive multi-
ple shooting for two different initial shooting variables (criteria:
ρ(G(t)) ≤ 102, ‖F‖2 < 10−8). The notation ‘–(x)’ means that the
inner Newton method for the implicit ODE solver failed in shooting
step x, needing more than 500 Newton iterates.

s = (0.1,−0.1)> s = (−25,−25)>
strategy #SI #Newt J(q, u) time(s) #SI #Newt J(q, u) time(s)

equidistant 5 –(2) – – 5 –(1) – –
10 8 6.724 14 10 –(1) – –
20 6 6.724 10 20 –(1) – –
50 6 6.724 10 50 –(1) – –
100 6 6.724 10 100 –(1) – –
200 6 6.724 10 200 –(1) – –
500 6 6.724 11 500 –(7) – –
1000 6 6.724 13 1000 13 6.724 29

adaptive 3–10 33 6.750 85 3–770 64 6.750 172

As in the nonlinear BVP, we see that it is not possible to predict a priori whether the
equidistant approach works for a given pair of initial shooting variables and a given fixed
number of shooting intervals. In the case s = (−25,−25)> displayed on the right, less
than 500 equidistantly distributed shooting intervals lead to convergence failure. The
adaptive shooting algorithm, on the other hand, finds the required number and distribution
of shooting points during the computation. Although the adaptive process is slower than
the equidistant approach, we emphasize that it runs automatically, whereas the equidis-
tant counterpart is a trial and error approach. However, the optimal functional value is
less well approximated by the adaptive shooting method, because the stopping criterion
‖F‖2 < 10−8 is fulfilled before the minimum is reached.

Table 7.12. Example 7.6: Number of shooting intervals, functional value J(q, u),
and size ‖F‖2 of the corresponding shooting residual in different
shooting cycles (initial shooting variable s = (0.1,−0.1)>, criteria
ρ(G(t)) ≤ 102, ‖F‖2 < 10−8).

ρ(G) ≤ 101 ρ(G) ≤ 102

iteration #SI J(q, u) ‖F‖2 iteration #SI J(q, u) ‖F‖2
3 8 13.48 7.1 · 100 5 7 54.75 4.7 · 101

6 7 12.14 8.8 · 100 10 5 23.59 2.5 · 101

9 6 8.27 3.1 · 100 15 5 39.15 5.0 · 101

12 6 6.85 2.3 · 10−1 20 4 20.31 3.4 · 101

14 6 6.76 6.6 · 10−10 25 3 14.78 1.9 · 101

30 3 6.99 4.5 · 10−1

33 3 6.75 1.2 · 10−13
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7 Adaptive Multiple Shooting

In Table 7.12, details of the adaptive shooting solutions are illustrated for two different
values of the sensitivity bound Csens. We observe that the number of shooting intervals
decreases in the course of the iteration, while the functional value and the shooting residual
both converge. Again, a higher convergence order for the shooting residual is observed in
the last iterations.
Finally, Figure 7.8 depicts the results of the left part of Table 7.12. Different shooting grids
achieved by the successive iterations as well as nonequidistant shooting point distributions
within the single grids are observed. The behavior of the presented adaptive algorithm will
be shown in the context of further examples in the next subsection, where the results are
compared to those obtained by a different adaptive approach.
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Figure 7.8. Example 7.6: The state u (blue), adjoint (green) and control (red)
found by the adaptive procedure (upper left: 1st shooting cycle,
upper right: 2nd shooting cycle, lower left: 5th shooting cycle, lower
right: 14th shooting cycle (initial shooting variable s = (0.1,−0.1)>,
criteria: ρ(G(t)) ≤ 101, ‖F‖2 < 10−8).

Remark 7.4. Although Table 7.10 suggests that bounding the spectral radius, ρ(G) ≤ Csens,
is less efficient than bounding a sensitivity norm, we chose the spectral radius criterion for
the problems in this and the subsequent subsections. If the adaptive bounding approach is
transferred to PDE problems, bounding sensitivity norms is impossible as the sensitivity
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7.2 Optimal choice of SI for nonlinear BVP and ODE governed OCP

matrices are not assembled. There are, however, matrix-free approaches (similar to
the matrix-free Krylov-Newton methods discussed in Section 4.3) to approximate single
eigenvalues of matrices that are not explicitly known. Thus, in the PDE framework the
spectral radius criterion is more appropriate.

7.2.2 Successive reduction of the number of SI – the thinning approach

The main idea of this subsection is inspired by an adaptive multiple shooting method
proposed by Maier [80]. The article is concerned with singularly perturbed BVP which
depend on small parameters often leading to boundary layers of the solution. This
means that the solution exhibits rapid variations near the interval boundaries but behaves
otherwise regularly. Employing a multiple shooting method for solving such problems, one
expects that near the boundaries many short shooting intervals are required, whereas the
interior of the interval can be covered by one single shooting interval. Maier’s approach
consists in prescribing an initial shooting grid which accounts for this problem structure,
i. e., there are initially several shooting intervals in the boundary layers but only few in
the interior. In each shooting iteration, shooting points are inserted or removed according
to certain estimates of eigenvalues of the Jacobian of the respective problem. As we have
no particular interest in singularly perturbed BVP, we skip a detailed discussion of these
eigenvalue criteria. Maier’s approach lacks a theoretical justification but is shown to work
in practical examples in [80].
The idea of adapting a given shooting grid step by step to the structure of the given problem
inspired the following considerations. Starting with an initial grid (which is usually chosen
equidistantly for lack of knowledge on the solution structure but could also incorporate
given information), in each shooting iteration either additional shooting points are inserted
or dispensable shooting points are removed. As the objective of multiple shooting is to
achieve F (s) < TOL, it is suggestive to modify the shooting grid according to the size of
local residual contributions. This leads to a residual-based adaptive process.
The further presentation is based on a shooting grid T = {τj}Mj=0 and the corresponding
old shooting variables s = (s0, . . . , sM−1)> and update snew = (s0

new, . . . , s
M−1
new )>. The

shooting residual F (s) consists of several components:

F (s) = (F1(s0, s1), F2(s1, s2), . . . , FM−1(sM−2, sM−1), FM (s0, sM−1))>.

Each component describes either the jump in a shooting point or the prescribed boundary
condition:

Fj(sj−1, sj) = sj − uj−1(τj , sj−1), (j = 1, . . . ,M − 1),
FM (s0, sM−1) = r(s0, uM−1(τM , sM−1)).

In order to obtain local residual quantities, we measure the norms ‖Fj(sj−1, sj)‖2, and for
the grid adaptation process, we require the mean component size, Fmean, as well as the
maximal distance between any two component norms, Fmax

dist . They are given as follows:

Fmean :=
∑M
k=1 ‖Fk‖2
M

, Fmax
dist := max

j
‖Fj‖2 −min

j
‖Fj‖2.
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7 Adaptive Multiple Shooting

By means of these quantities, we modify the shooting grid as follows. If the local residual
‖Fj‖2 exceeds the mean component residual Fmean by more than a fixed fraction of Fmax

dist ,
i. e.,

‖Fj‖2 ≥ Fmean + αupF
max
dist ,

then we insert an additional shooting point into the grid, namely τ−j = τj−1+τj
2 which lies

between the current and the previous one. Note that no additional point is inserted to
the right of the current shooting point, as the size of the local residual depends only on
previous timepoints but not on successive ones. If, on the other hand, ‖Fj‖2 falls below
Fmean by more than a certain fraction of the maximal distance Fmax

dist , i. e.,

‖Fj‖2 ≤ Fmean − αlowF
max
dist ,

then we remove the corresponding shooting point τj from the grid. Residual components
Fj with

Fmean − αlowF
max
dist ≤ ‖Fj‖2 ≤ Fmean + αupF

max
dist

do not contribute to the grid adaptation. In the first case, additional shooting variables at
the inserted grid points are required for the next shooting iteration. They are obtained by
linear interpolation of the original neighboring shooting variables, i. e., sj,−new = sj−1

new+sjnew
2

at the new shooting point τ−j . In the second case, we remove the shooting variable sjnew
corresponding to the dispensable shooting point τj from the set of shooting variables.

Algorithm 7.3 Residual-based grid adaptation procedure within the thinning approach.
Require: Shooting grid T , shooting variables s, update snew and coarsening and refinement

constants αlow and αup
1: Evaluate the norms ‖Fj‖2 of the local residual contributions for j = 1, . . . ,M
2: Compute the mean residual component size, Fmean, and the maximal distance between

local residual components, Fmax
dist

3: if ‖Fj‖2 ≥ Fmean + αupF
max
dist then

4: Insert the shooting point τ−j = τj−1+τj
2 into the grid T

5: end if
6: if ‖Fj‖2 ≤ Fmean − αlowF

max
dist then

7: Remove the shooting point τj from the grid T
8: end if
9: For each inserted shooting point τ−j , prescribe the mean value sj,−new = sj−1

new+sjnew
2 of the

neighboring shooting variables as additional shooting variables
10: For each removed shooting point τj , remove the corresponding shooting variable sjnew

from the set of shooting variables

Before summarizing the grid adaptation process in Algorithm 7.4, we discuss some pe-
culiarities. First, the interval endpoints τ0 and τM have to be treated separately. To
avoid changing the solution interval, they cannot be removed from the shooting grid.
Furthermore, at the left endpoint no additional shooting point can be inserted. These
issues have to be accounted for in the implementation.
As the convergence of equidistant multiple shooting depends both on the initially chosen

162



7.2 Optimal choice of SI for nonlinear BVP and ODE governed OCP

shooting variables and on the number of equidistant shooting intervals prescribed at the
beginning (see Tables 7.9 and 7.11 in the previous subsection as well as 7.14 below), it
is advisable to start with a fine shooting grid of 50 to 500 shooting intervals. Hence, we
expect the adaptive process to coarsen the shooting grid rather than further refine it. The
examples below confirm that, after a possible shooting grid refinement in the first iterations,
the coarsening prevails in the long run. Thus, shooting points are rather removed than
inserted and the grid is thinned out. This is why we call the resulting residual-based
adaptive shooting scheme the thinning approach. A variant of this thinning approach used
later in the PDE context does not permit insertion of new points but only removal of
current ones.
Algorithm 7.3 presents the adaptive process in an implementable manner. The complete
adaptive shooting process is then given by Algorithm 7.4.

Algorithm 7.4 Thinning approach to adaptive multiple shooting for nonlinear problems.
Require: Initial decomposition I = {τ0} ∪

⋃M−1
j=0 (τj , τj+1], shooting variable s

1: Prescribe tolerance TOL
2: while ‖F (s)‖ > TOL do
3: Solve the subinterval IVP on the current shooting grid, evaluate the residual −F (s)
4: Solve the subinterval variational IVP on the current shooting grid, evaluate F ′s(s)
5: Solve shooting system F ′s(s)δs = −F (s)
6: Compute update snew = s+ δs
7: Adapt the shooting grid and the shooting variables according to Algorithm 7.3
8: end while

The first example in this subsection, Example 7.7, is a fully nonlinear BVP, i. e., both
the differential equation and the boundary conditions are nonlinear. Besides testing the
adaptive thinning approach, the problems are additionally solved by both the equidistant
and the adaptive bounding approach from Subsection 7.2.1 to enable a comparison between
all methods.

Example 7.7. Consider the nonlinear BVP

u̇(t) = −4u(t)
3
2 + 24t2u(t)2

on the interval I = [0, 5] together with the nonlinear boundary conditions

sin(u(0)) = sin((1 +
√

2)−2) ≈ 1.707 · 10−1, sin(u(5)) = sin((26 +
√

2)−2) ≈ 1.331 · 10−3.

One solution is given by u(t) = (t2 + 1 +
√

2)−2 but it is not unique due to the periodicity
of the nonlinear boundary conditions. The numerical computations rely on the formulation(

u̇1(t)
u̇2(t)

)
=
(

0 1
1 0

)(
−4u1(t)

3
2 + 24t2u1(t)2

u2(t)

)
,(

1 0
0 0

)(
sin(u1(0))
u2(0)

)
+
(

0 0
1 0

)(
sin(u1(5))
u2(5)

)
=
(

1.707 · 10−1

1.331 · 10−3

)
.
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7 Adaptive Multiple Shooting

Table 7.13. Example 7.7: Number of shooting intervals in different shooting
cycles, minimum and maximum shooting interval length |Ij |, and
size ‖F‖2 of the shooting residual (initial shooting variable s =
(0.8, 0.8)>, criteria: αlow = 1

8 , αup = 7
8 , ‖F‖2 < 10−8).

iteration #SI min |Ij | max |Ij | ‖F‖2
1 100 0.05 0.05 1.2 · 102

3 64 0.05 0.20 9.8 · 100

5 42 0.05 0.80 7.8 · 10−1

7 36 0.05 1.60 6.0 · 10−2

9 34 0.05 2.20 2.4 · 10−3

11 27 0.05 2.55 2.2 · 10−5

13 20 0.05 3.55 2.1 · 10−10

Table 7.13 illustrates several features of the thinning approach. The solution process
was started with M = 100 shooting intervals of equal length |Ij | = 0.05, and the grid
was not further refined (the minimum interval length remains constant). Although for
some nonlinear BVP, a refinement of the shooting grid is observed in the first shooting
iterations, the final grids are always coarser than the initially chosen equidistant shooting
point distribution. This depends on the initial number of shooting intervals.

Table 7.14. Example 7.7: Comparison of equidistant shooting and the two
adaptive approaches for s = (0.8, 0.8)> (criteria for the bounding
approach: ρ(G(t)) ≤ 101, ‖F‖2 < 10−8; criteria for the thinning
approach: αlow = 1

8 , αup = 7
8 , ‖F‖2 < 10−8). The notation ‘–(x)’

means that the Newton method for the implicit ODE solver failed
in shooting step x, needing more than 500 Newton iterates.

strategy #SI #Newton ‖F‖2 time(s)
equidistant 5 –(1) – –

10 –(1) – –
20 –(1) – –
50 15 8.5 · 10−14 25
100 13 1.8 · 10−10 22
200 13 1.2 · 10−10 22
500 13 7.6 · 10−11 23

adaptive (bounding) 3–40 17 1.6 · 10−10 56
adaptive (thinning) 20–100 13 2.1 · 10−10 22

In Example 7.7, the total amount of shooting intervals is successively reduced. Similarly
to the adaptive bounding approach (cf. Tables 7.8 and 7.12), an increased convergence
order for the shooting residual norm ‖F‖2 is observed in the last solution steps, although
the Newton system changes from one iteration to the next. In Table 7.14, the adaptive
thinning approach is compared to different equidistant shooting grids as well as the adaptive
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7.2 Optimal choice of SI for nonlinear BVP and ODE governed OCP

bounding approach.
Equidistant multiple shooting is as fast as the thinning method from Algorithm 7.4 but the
latter provides a suitable sequence of adapted shooting grids automatically. In contrast, the
equidistant approach fails when the grid is chosen too coarse. Compared to the adaptive
thinning method, the bounding approach from Subsection 7.2.1 is significantly slower. We
presume that this is due to the structure of the bounding approach, where in each shooting
iteration the subinterval problems have to be solved twice: the first solution sweep detects
the shooting points and cannot be performed in parallel, and the second solution sweep is
required after the shooting values have been transferred from the old grid to the new one
via interpolation. The thinning approach avoids this double solve by determining the new
shooting grid and distributing appropriate shooting variables simultaneously.

Remark 7.5. The results from Table 7.14, while providing an argument for rejecting the
bounding approach, can also make the thinning approach appear questionable. If there
is no improvement in comparison to equidistant shooting, and as one has to also start
on a fine shooting grid, it could be argued that there is no benefit in using the thinning
approach instead of a fine equidistant shooting grid. However, in the PDE case presented
in Section 7.3, the thinning approach is combined with the global space mesh refinement
strategy from Subsection 5.5.3. In this context, it is shown to outperform equidistant
multiple shooting.

Example 7.7 exhibits another interesting feature; as the boundary conditions are given
by nonlinear periodic functions, the solution of the problem is not uniquely determined.
This is confirmed by Figure 7.9; the solution achieved by multiple shooting depends on the
initially chosen shooting variables.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time t

S
ho

ot
in

g 
so

lu
tio

n 
u

Shooting iteration 13

 

 

first component
second component

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−20

−10

0

10

20

30

40

Time t

S
ho

ot
in

g 
so

lu
tio

n 
u

Shooting iteration 14

 

 

first component
second component

Figure 7.9. Example 7.7: Two different solutions; initial shooting value s =
(0.8, 0.8)> leading to u1(0) = 0.1715729, u1(5) = 0.0013306 and
boundary values sin(u1(0)) = 1.707 · 10−1, sin(u1(5)) = 1.331 · 10−3

(left); initial shooting value s = (8,−0.2)> leading to u1(0) =
12.7379435, u1(5) = 6.2845159 and boundary values sin(u1(0)) =
1.707 · 10−1, sin(u1(5)) = 1.331 · 10−3 (right).
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7 Adaptive Multiple Shooting

Table 7.15. Example 7.5: Comparison of the two adaptive approaches. The
adaptive thinning process takes more shooting intervals but is faster
(criteria for the bounding approach: ρ(G(t)) ≤ 102, ‖F‖2 < 10−8;
for the thinning approach: αlow = 1

8 , αup = 7
8 , ‖F‖2 < 10−8).

strategy #SI #Newton ‖F‖2 time(s)
bounding 2–58 38 5.8 · 10−10 102
thinning 18–100 11 4.7 · 10−10 13

Before moving to a second example, we revisit the examples from Subsection 7.2.1 and
examine whether they exhibit the same behavior as depicted in Table 7.14. The results are
summarized in Tables 7.15 and 7.16. In both cases, the thinning approach is considerably
faster than the adaptive bounding approach. Table 7.16 further demonstrates that the
thinning approach works also for OCP and yields comparably good results as the adaptive
bounding approach from Subsection 7.2.1. Note that, in the OCP example, no grid
refinement was allowed; instead, the adaptive process was concentrated on coarsening the
shooting grid.

Table 7.16. Example 7.6: Comparison of the two adaptive approaches. The
adaptive thinning process takes more shooting intervals but is faster
(criteria for the bounding approach: ρ(G(t)) ≤ 102, ‖F‖2 < 10−8;
for the thinning approach: αlow = 1

8 , ‖F‖2 < 10−8). The thinning
approach was carried out without grid refinement; therefore αup is
not specified.

strategy #SI #Newton J(q, u) ‖F‖2 time(s)
bounding 3–10 33 6.750 1.2 · 10−13 85
thinning 10–100 6 6.751 5.3 · 10−14 10

Example 7.8. Consider the nonlinear BVP

u̇(t) = u(t)2 + 2π2 cos(2πt)− sin(πt)4

on the interval I = [0, 4] together with linear boundary conditions u(0) = 0 and u(4) = 0.
The exact solution is given by u(t) = sin(πt)2. For the implementation, we reformulate the
problem as a first order system(

u̇1(t)
u̇2(t)

)
=
(

0 1
1 0

)(
u1(t)2

u2(t)

)
+
(

2π2 cos(2πt)− sin(πt)4

0

)
,(

1 0
0 0

)(
u1(0)
u2(0)

)
+
(

0 0
1 0

)(
u1(4)
u2(4)

)
=
(

0
0

)
.

This second problem is chosen to illustrate that the adaptive thinning approach is superior
to the bounding approach from Subsection 7.2.1. Up to now, several examples attested that
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7.2 Optimal choice of SI for nonlinear BVP and ODE governed OCP

thinning is faster than bounding, which is again confirmed by Table 7.17. Furthermore,
this table displays the maximum error maxt ‖e(t)‖2 between the exact solution uex and the
computed approximation u. On the given solution interval, the bounding approach yields
maxt ‖e(t)‖2 ≈ 2.1, whereas the error obtained by the thinning approach with different
initial shooting grids is smaller by about three orders of magnitude. The large error with

Table 7.17. Example 7.8: Comparison of the two adaptive approaches for the
initial shooting value s = (2,−2.5)>. The adaptive thinning process
is tested for M ∈ {10, 25, 100} initial shooting intervals (criteria
for the bounding approach: ρ(G(t)) ≤ 102, ‖F‖2 < 10−8; for the
thinning approach: αlow = 1

8 , αup = 7
8 , ‖F‖2 < 10−8).

strategy #SI #Newton ‖F‖2 maxt ‖e(t)‖2 time(s)
bounding 2–6 9 8.9 · 10−15 2.1 · 100 11
thinning10 1–10 7 2.4 · 10−13 9.5 · 10−3 5
thinning25 3–25 6 1.8 · 10−09 9.5 · 10−3 4
thinning100 38–100 6 2.1 · 10−10 9.5 · 10−3 4

the adaptive bounding method suggests a deviation from the exact solution, which is
confirmed by Figure 7.10. On the other hand, the thinning solution is depicted in Figure
7.11. The solution after convergence of the multiple shooting process coincides with the
exact solution. Finally, Table 7.18 shows that on the short solution interval I = [0, 2], the
two approaches yield equally good results. On the interval I = [0, 10], however, the adaptive
thinning approach is still able to solve the problem, whereas the bounding approach fails
completely. However, we note that with increasing interval length, the thinning procedure
takes more computing time. On I = [0, 10] the results of Table 7.18 were achieved within
11 seconds.
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Figure 7.10. Example 7.8: The shooting solution found by the modified adaptive
procedure from Subsection 7.2.1 (left: 2nd shooting cycle, right:
9th shooting cycle (convergence)); in this case, the adaptive process
results in a wrong solution.
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Figure 7.11. Example 7.8: The shooting solution found by the adaptive thin-
ning procedure (left: 1st shooting cycle, right: 6th shooting cycle
(convergence)); the thinning approach yields the correct solution.

Table 7.18. Example 7.8: Comparison of the two adaptive approaches for the
initial shooting value s = (2,−2.5)> and for several solution intervals
of different length (criteria prescribed for the bounding approach:
ρ(G(t)) ≤ 102, ‖F‖2 < 10−8; for the thinning approach: αlow = 1

8 ,
αup = 7

8 , ‖F‖2 < 10−8).

I = [0, 2] I = [0, 4] I = [0, 10]
strategy #SI maxt ‖e(t)‖2 #SI maxt ‖e(t)‖2 #SI maxt ‖e(t)‖2
bounding 2–4 1.1 · 10−5 2–6 2.1 · 100 – –
thinning100 42–100 9.5 · 10−3 38–100 9.5 · 10−3 15–100 9.5 · 10−3

7.3 Optimal choice of SI for parabolic OCP

Implementing the sensitivity based adaptive method from Subsection 7.2.1 for PDE
examples, one is confronted with an additional problem. As provided in Chapter 5, the
multiple shooting solvers in PDE optimal control are realized in a matrix-free manner.
Therefore, the sensitivity matrices G(t; s) on the subintervals are not available, i. e., their
norm is difficult to evaluate. Therefore, we tested the spectral radius ρ(G(t; s)) of the
sensitivities as a criterion for determining new shooting points in Subsection 7.2.1, as the
computation of single eigenvalues of the sensitivities can be achieved in principle by means
of a matrix-free Arnoldi algorithm. However, as the numerical tests in the ODE case
revealed a superiority of the residual-based thinning over the sensitivity based bounding
approach, the latter is not tested for PDE examples.
Instead, we concentrate on transferring the residual-based adaptive multiple shooting
approach from Subsection 7.2.2 to the PDE optimal control framework. Its employment
in the PDE context is straightforward. Nevertheless, in the practical realization a minor
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7.3 Optimal choice of SI for parabolic OCP

modification is made. As we are interested in removing shooting points from the original
grid in order to decrease the size of the shooting system, insertion of additional points
is not permitted in the PDE case. This leads to the following Algorithm 7.5 which is a
simpler variant of Algorithm 7.3:

Algorithm 7.5 Residual-based grid coarsening procedure within the thinning approach.
Require: Shooting grid T , shooting variables s, update snew, and coarsening constant

αlow
1: Evaluate the norms ‖Fj‖2 of the local residual contributions for j = 1, . . . ,M
2: Compute the mean residual component size, Fmean, and the maximal distance between

local residual components, Fmax
dist

3: if ‖Fj‖2 ≤ Fmean − αlowF
max
dist then

4: Remove the shooting point τj from the grid T
5: end if
6: For each removed shooting point τj , remove the corresponding shooting variable sjnew

from the set of shooting variables

As before in the ODE case, αlow is a heuristically chosen parameter that influences the
decision whether a shooting point is removed or not.
In this section, the adaptive process is started on an equidistant shooting grid comprising
more shooting intervals than necessary for solving the problem. However, it cannot be
chosen as fine as in the ODE case, as the conditioning of the shooting system deteriorates
with an increasing number of shooting intervals. An initial shooting grid of 50 or more
equidistant shooting intervals would require a suitable preconditioner. In Chapter 5, a
symmetric Gauss-Seidel preconditioner was examined for linear problems. Although it
was rejected due to its lack in efficiency, we found that for a large number of shooting
points preconditioning is indispensable (see, e. g., Table 5.5). Thus, for the examples of
this section, initial shooting grids with 10 equidistant subintervals are prescribed.
The goal of this section is twofold: first, we compare the adaptive shooting approach to
the equidistant one, similar to the proceeding in Subsection 7.2.2. Second, it is verified
whether employing the adaptive thinning approach in addition to global mesh refinement
further improves the efficiency of IMS. The intention is to refine the spatial mesh while
simultaneously removing shooting points that are not required.

Example 7.9. Consider the problem

min
(q,u)

J(q, u) = 1
2‖u(x, T )− ûT ‖2L2(Ω) + α

2

T∫
0

‖q(x, t)‖2L2(Ω) dt

on Ω = (−1, 1)2 and with end-time T = 5, subject to the nonstationary nonlinear Helmholtz
equation

∂tu(x, t)−∆u(x, t)− ωu(x, t) + u(x, t)3 = q(x, t) in Ω × I,
u(x, t) = 0 on ∂Ω × I,
u(x, 0) = u0(x) in Ω.
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7 Adaptive Multiple Shooting

As multiple shooting converges within one single iteration for linear examples and the
effect of the thinning approach is observable only over several iterations, two nonlinear
problems are chosen in the following. In the first test case, Example 5.4 is revisited, where
a given function at the final time has to be matched. In this example the heuristic shooting

Table 7.19. Example 7.9: IMS on 10 equidistant shooting intervals without (left)
and with global refinement (right) as proposed in Subsection 5.5.3;
number of GMRES iterations, development of functional values and
shooting residual, CPU time (criterion: ‖F‖2 < 5 · 10−5).

without refinement with refinement
iter. #it J(q, u) ‖F‖2 t(s) ref. #it J(q, u) ‖F‖2 t(s)
0 – 2.37 3.8 · 100 – 1 – 0.281 1.2 · 100 –
1 51 0.117 2.1 · 10−1 1150 2 20 0.0658 5.0 · 10−1 13
2 28 0.115 4.8 · 10−3 1754 3 25 0.0918 3.6 · 10−1 67
3 28 0.115 1.6 · 10−4 2359 4 27 0.114 2.6 · 10−1 224
4 39 0.115 4.8 · 10−5 4310 4 28 0.115 4.4 · 10−4 829
5 4 39 0.115 3.1 · 10−5 2770

grid coarsening parameter is fixed at αlow = 7
8 . Four different indirect shooting variants

are contrasted. The plain IMS is complemented first by global space mesh refinement,
then separately by the adaptive thinning mechanism, and finally by a combination of both.
From the numerical results in Chapters 5 and 6 it is recommendable to use a spatial mesh
refinement strategy, as it accelerates numerical computations significantly while obtaining
equally good values for both objective functionals and shooting residuals. Table 7.19
provides the results of equidistant IMS on 10 shooting intervals both without and with
global space mesh refinement. Although the solution with refinement requires an additional

Table 7.20. Example 7.9: Residual-based adaptive IMS without (left) and with
global refinement (right) as proposed in Subsection 5.5.3; the refine-
ment levels are the same as in Table 7.19. In addition, the number
of shooting intervals (SI) is displayed (criterion: ‖F‖2 < 5 · 10−5).

without refinement with refinement
iter. #SI #it J(q, u) ‖F‖2 t(s) #SI #it J(q, u) ‖F‖2 t(s)
0 10 – 2.37 3.8 · 100 – 10 – 0.281 1.2 · 100 –
1 10 51 0.117 2.1 · 10−1 1145 10 20 0.0658 5.0 · 10−1 14
2 10 28 0.115 5.5 · 10−3 1751 10 25 0.0918 3.6 · 10−1 68
3 8 24 0.115 1.8 · 10−4 2327 8 23 0.114 2.6 · 10−1 217
4 6 21 0.115 2.1 · 10−5 3699 8 24 0.115 3.3 · 10−4 787
5 8 24 0.115 2.6 · 10−5 2142

shooting cycle, it takes less GMRES iterations per Newton step and less CPU time, as
the first four shooting cycles need as much time as the first cycle without refinement.
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7.3 Optimal choice of SI for parabolic OCP

Furthermore, finer spatial meshes lead to a slight increase of GMRES iterations if the
global refinement strategy is applied. These observations hold also for the case where the
adaptive thinning method is included into the shooting process. The corresponding results
are displayed in Table 7.20, which also contains information on the number of shooting
intervals in the different shooting cycles.
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Figure 7.12. Example 7.9: Number of GMRES iterations for four different
solution approaches: without refinement nor adaptivity, with adap-
tivity only, with refinement only, and with both refinement and
adaptivity.

Figures 7.12 and 7.13 illustrate the most important results from the above tables. The
total number of GMRES iterations required during the shooting process is depicted in
Figure 7.12. As the adaptive approaches start on the same equidistant shooting grid, the
curves for IMS and adaptive IMS respectively for refined IMS and adaptive refined IMS
coincide for the first shooting iterations. When the thinning mechanism takes effect, the
curves begin to differ and the adaptive approaches require less GMRES iterations due to
the diminished shooting system.
In Figure 7.13 the CPU times taken by the different IMS variants are compared. As a
result, the adaptive IMS approach converges faster than the unmodified IMS method, but
adaptivity by itself is less efficient than the global mesh refinement strategy. However, the
combination of global refinement and adaptivity displays the fastest convergence while
providing the same accuracy with respect to both objective functional values and shooting
residuals.
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Figure 7.13. Example 7.9: CPU time for four different solution approaches:
without refinement nor adaptivity, with adaptivity only, with re-
finement only, and with both refinement and adaptivity.

The second test problem revisits Example 6.1 from Section 6.3. The main differences in
comparison to Example 7.9 are the distributed tracking type functional and the presence
of additional control box constraints.

Example 7.10. Consider the problem

min
(q,u)

J(q, u) = 1
2

T∫
0

‖u(x, t)− û(x, t)‖2L2(Ω) dt+ α

2

T∫
0

‖q(x, t)‖2L2(Ω) dt,

subject to the nonstationary nonlinear Helmholtz problem

∂tu(x, t)−∆u(x, t)− ωu(x, t) + u3(x, t) = q(x, t) in Ω × (0, T ],
u(x, t) = 0 on ∂Ω × [0, T ],
u(x, 0) = u0(x) in Ω

and the constant box constraints

−0.5 ≤ q(x, t) ≤ 0.5 a. e. in Ω × [0, T ].

In this example, the heuristic selection parameter for removing shooting points from
the grid is fixed at αlow = 1

10 . As before, four different indirect shooting variants are
compared. The indirect shooting method is used without any additional features, then it
is complemented by global space mesh refinement, by the adaptive thinning strategy, and
finally by a combination of both. In contrast to Example 7.9, if spatial mesh refinement is
used we perform two shooting cycles on each refinement level.
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Table 7.21. Example 7.10: IMS on 10 equidistant shooting intervals without
(left) and with global refinement (right) as proposed in Subsection
5.5.3; number of GMRES iterations, development of functional
values and shooting residual, CPU time (criterion: ‖F‖2 < 10−3).

without refinement with refinement
iter. #it J(q, u) ‖F‖2 t(s) ref. #it J(q, u) ‖F‖2 t(s)
0 – 2.391 3.9 · 100 – 1 – 1.582 9.8 · 10−1 –
1 22 1.618 2.4 · 10−1 901 2 19 1.508 4.9 · 10−1 29
2 21 1.758 7.6 · 10−2 1773 2 21 1.693 2.1 · 10−1 106
3 24 1.801 2.7 · 10−2 3670 3 21 1.790 5.8 · 10−2 325
4 24 1.817 9.5 · 10−3 5594 3 24 1.817 1.1 · 10−2 2230
5 24 1.823 3.5 · 10−3 7521 4 24 1.824 2.9 · 10−3 4135
6 24 1.825 1.7 · 10−3 9446 4 24 1.825 1.1 · 10−3 6016
7 24 1.826 4.6 · 10−4 11373 4 24 1.826 3.8 · 10−4 7923

As in Example 7.9, the results are summarized in two tables comparing equidistant IMS
with and without spatial mesh refinement as well as residual-based adaptive IMS, also
with and without employing the global mesh refinement strategy. Table 7.21 presents the
results for equidistant shooting on 10 intervals. Note that, due to Table 6.2, at least six
intervals are required for solving the problem. The table confirms that the employment
of the spatial mesh refinement increases numerical efficiency. In the first shooting cycles,
slightly less GMRES iterations are performed than in the IMS method without refinement,
and there is a saving of CPU time of one third.
Table 7.22 displays the corresponding results for IMS with the adaptive thinning strategy.
In contrast to the previous example, the adaptive approach requires more numerical effort in
terms of CPU time than the original IMS method, even though the shooting grid is reduced
to the optimal number of six intervals that are, however, not equidistantly distributed.
The shooting grid is reduced from the initial

[0; 0.5; 1; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5]

to the grid

[0; 1; 1.5; 2.5; 3; 4; 5]

in the third shooting cycle. Presumably, this new shooting point distribution worsens the
instability of the shooting algorithm. Thus, the solution of the linearized BVP (5.11) and
(5.12) takes longer than on an equidistant shooting grid of six intervals. This constitutes a
basic problem of the thinning mechanism, as it does not take the conditioning or stability of
the underlying problem into account, although it reduces the number of shooting intervals
and leads to a significant decrease in GMRES iterations.
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Table 7.22. Example 7.10: Residual-based adaptive IMS without (left) and
with global refinement (right) as proposed in Subsection 5.5.3; the
refinement levels are the same as in Table 7.21. The number of
shooting intervals (SI) is also displayed (criterion: ‖F‖2 < 10−3).

without refinement with refinement
iter. #SI #it J(q, u) ‖F‖2 t(s) #SI #it J(q, u) ‖F‖2 t(s)
0 10 – 2.391 3.9 · 100 – 10 – 1.582 9.8 · 10−1 –
1 10 21 1.618 2.4 · 10−1 865 10 19 1.508 4.9 · 10−1 28
2 10 21 1.750 8.3 · 10−2 1713 10 20 1.440 1.6 · 10−1 103
3 6 13 1.796 3.2 · 10−2 4149 9 18 1.756 1.1 · 10−1 183
4 6 13 1.815 1.3 · 10−2 6522 9 19 1.748 4.0 · 10−2 446
5 6 13 1.822 5.2 · 10−3 8872 8 17 1.824 1.4 · 10−2 1025
6 6 14 1.825 2.0 · 10−3 11292 8 17 1.825 3.1 · 10−3 4247
7 6 14 1.826 7.4 · 10−4 13708 8 17 1.829 8.8 · 10−4 7139

The combination of the thinning mechanism with global space mesh refinement displayed
in the right panel of Table 7.22 provides better results with respect to CPU time. The
number of shooting intervals does not decrease largely during the process, but the smaller
shooting system entails a noticeable reduction of the number of GMRES iterations. The
combined method takes slightly less CPU time until the tolerance of 10−3 is reached as
compared to the pure spatial mesh refinement strategy.
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Figure 7.14. Example 7.10: Number of GMRES iterations for four different
solution approaches: without refinement nor adaptivity, with adap-
tivity only, with refinement only, and with both refinement and
adaptivity.
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7.3 Optimal choice of SI for parabolic OCP

As in Example 7.9, both the total number of GMRES iterations taken by the different
IMS variant and the corresponding CPU times are illustrated in Figures 7.14 and 7.15,
respectively.
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Figure 7.15. Example 7.10: CPU time for four different solution approaches:
without refinement nor adaptivity, with adaptivity only, with re-
finement only, and with both refinement and adaptivity.

Finally, we give a brief summary of this section. In Example 7.9 where no additional
constraints were imposed on the control, we observed that the thinning approach led to
a decrease of numerical effort in terms of Newton-GMRES iterations for the shooting
system as well as to a decrease in CPU time. This effect is more pronounced if the
adaptive shooting technique is combined with the global space mesh refinement proposed
in Subsection 5.5.3.

Remark 7.6. The solution of the considered example displays no special structure in the
computational domain Ω × I but is spatially and temporally distributed. For solutions
with a special structure such as a rotating bump with a small support as in Example 2.4,
the global refinement strategy might be unable to resolve the solution adequately. In this
case, local mesh refinement, e. g., based on a dual weighted residual (DWR) approach as
proposed by Becker & Rannacher [5] is advisable.
Furthermore, in the example only one Newton-GMRES iteration is carried out on each
mesh refinement level. A procedure capable of balancing the shooting residual (and by
this the shooting grid adaptation) and the space mesh refinement might further improve
the results.

In the second Example 7.10 additional constant box constraints were prescribed. The
residual-based adaptive shooting approach led to a significant decrease of the number of
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7 Adaptive Multiple Shooting

Newton-GMRES iterations in later shooting cycles where the shooting grid was reduced.
However, the adaptive method proved slightly less efficient than equidistant multiple
shooting with respect to CPU time. The global space mesh refinement provided an increase
in computational efficiency, as was already observed for all nonlinear examples in Chapters
5 and 6. The combination of adaptivity and spatial mesh refinement provided a similar
result as the global refinement strategy alone.
In summary, the examples of this section suggest that there is a computational benefit in
using the adaptive thinning strategy for unconstrained parabolic OCP. A combination of
global space mesh refinement and the adaptive thinning approach is computationally most
efficient. In the control constrained case, this benefit has not been observed. However, in
all cases the use of refinement strategies for the spatial mesh increases the computational
efficiency both with respect to the number of Newton-GMRES iterations and with respect
to CPU time.
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8 Conclusion and Outlook

Conclusion. This thesis provides a thorough examination of existing multiple shooting
approaches for parabolic OCP as well as extensions of the method in several directions.
Both indirect and direct shooting variants are formulated within a common abstract
framework, enabling their efficient application to complex problems. We adapt different
modern techniques for coping with control constraints to the multiple shooting context.
Results for nonlinear constrained control problems indicate a superiority of direct shooting
methods. The development of two different adaptive shooting techniques constitutes a
novelty even for ODE problems. In the PDE case, we combine the residual-based adaptive
approach with a global mesh refinement strategy, which improves the computational
efficiency of the indirect shooting method significantly.

Different shooting methods. The first main issue of this work, providing the basis for all
further developments, was to enhance several existing multiple shooting approaches for
solving BVP and OCP governed by parabolic PDE and to elaborate their interdependencies.
By extending the abstract control problem on the function space level, we provided a
common framework for both direct and indirect shooting methods. These approaches are
based on different splittings of the first order optimality system of the extended OCP.
Furthermore, we demonstrated that a classical DMS variant which is common in ODE
optimal control constitutes a reduced formulation of our DMS approach. These results
are contained in Chapter 5 and provide a detailed survey of different multiple shooting
approaches. Our abstract presentation is complemented by concrete algorithmic realizations
of the IMS and DMS methods. These algorithms could be further enhanced, e. g., by
suitable preconditioners for the shooting system, by condensing techniques, or by employing
different discretizations for the state and control variables as proposed in Chapter 4.

Control constrained problems. Both IMS and DMS methods were applied to parabolic
OCP with additional constraints on the control variable in Chapter 6. Therefore, we
reformulated the OCP in a way that makes it accessible to multiple shooting techniques.
We employed projection methods to cope with the constraints, but also adapted modern
primal-dual active set strategies to the shooting framework.
Our numerical results for both unconstrained and control constrained OCP showed that in
most cases DMS is more efficient than IMS, particularly for nonlinear constrained problems.
Our experience confirms the preference of direct over indirect shooting methods that can
be observed in ODE optimal control. As global constraints, e. g., on the control mean-value,
are usually not localizable, they are difficult to include into the multiple shooting context.
Therefore, they were not treated in this work.
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8 Conclusion and Outlook

Adaptive shooting. Numerical results for both ODE and PDE test cases led to the conjecture
that shooting grids can be optimized by choosing the number and position of shooting
points appropriately. Of course, a large number of equidistant shooting intervals usually
leads to a stable algorithm; however, with an increasing number of shooting points the
numerical effort grows significantly in the PDE framework. To avoid costly trial and error
computations, adaptive techniques for determining the shooting grid are necessary, but
they have to take the mentioned trade-off into account.
There are only few results on adaptive shooting methods; therefore, we focussed on
developing two different approaches in Chapter 7. The first one is based on bounding
the sensitivities of the problem and involves no a priori information on the shooting
grid. The second one is residual-based and starts from a fine shooting grid which is then
successively thinned out. We tested both methods for ODE boundary value and control
problems. As the residual-based approach proved more efficient and has both theoretical
and implementational advantages over the sensitivity based one, we decided to skip the
latter in the PDE framework.
The residual-based adaptive method was transferred to PDE control problems, including
additional control constraints. As in the PDE context, fine shooting grids are prohibitive due
to their large computational costs, the approach is combined with global mesh refinement.
The computation starts with many shooting intervals but on a coarse space mesh, and as
the number of shooting intervals is decreased, the space mesh is refined. Several research
opportunities concerning further adaptive features in the multiple shooting framework are
addressed in the corresponding part of the outlook below.

Outlook. Finally, we provide an outlook to subjects that are related to our work and raise
interesting questions that could enhance future research. We motivate them by connecting
them to the topics treated in this thesis.

Parallelization. An important feature of multiple shooting methods that we covered in sev-
eral remarks throughout the thesis is their potential for time parallel computing. Although
there are some earlier publications on the subject (cf. Nievergelt [89], Kramer & Mattheij
[71] or Kiehl [67]), it has gained much attention only after Lions et al. [76] proposed the
so-called ‘parareal’ method. The latter has been employed for ODE problems by Guibert
& Tromeur-Dervout [48], for PDE governed OCP by Maday & Turinici [79], and for several
application problems by Bal and co-authors [3, 4]. Gander & Vandewalle [41] established
the connection to multiple shooting. In recent years, the parareal method was also used
as a preconditioner by Ulbrich [110, 111]. A historical survey of parallel time domain
decomposition methods is provided by Gander [42].
Domain decomposition methods for parallel computing in the spatial variables have been
thoroughly examined (see, e. g., Toselli & Widlund [107]), but complex nonstationary appli-
cations such as three-dimensional models in biology or medicine also require parallelization
in time. Multiple shooting is a promising technique in this regard.
Therefore, the parallelizability of the features developed in this thesis was one of our
concerns. This contributed to our rejection of the sensitivity based adaptive approach in
Chapter 7. Instead we focussed on the residual-based technique in the PDE framework as
it can be parallelized.

178



State constraints. Constraints on the state variable or the gradient of the state constitute
another possible extension of our research. For elliptic OCP, Schiela & Wollner [102]
proposed barrier methods to cope with constrained state gradients. A modification of their
approach for parabolic OCP could be adapted to the needs of multiple shooting, thereby
extending our shooting algorithms from Chapter 6.

Further adaptive features. We combined our residual-based adaptive shooting algorithm
with global space mesh refinement in Chapter 7 in order to improve its computational
efficiency. To better resolve structural features of a given problem, one might use local
mesh adaptation techniques instead. Hesse & Kanschat [53] proposed a dual weighted
residual (DWR) based adaptive approach on equidistant shooting grids, where additional
projection errors occur at the shooting points. However, their algorithm adapts the space
mesh only after the multiple shooting process is converged; local mesh refinement in each
shooting cycle might improve the efficiency of the method.
A second application of DWR strategies in the multiple shooting framework relies on
results by Meidner et al. [86] and Rannacher & Vihharev [95]. Extending previous work of
Becker et al. [6] on iterative multigrid solvers, they showed a way to balance discretization
and iteration errors for linear and nonlinear iterative solution methods via DWR error
estimators. Their algorithms provide efficient stopping criteria for iterative solvers which
avoid unnecessary iterations when the discretization error becomes dominant. As the
multiple shooting algorithms from Chapter 5 include several iterative processes (e. g., the
Newton-CG solver for subinterval OCP or the Newton-GMRES solver for the shooting
system), efficient stopping criteria are desirable to avoid computational overhead. However,
the multiple shooting method is not of Galerkin type, which is crucial for employing DWR
techniques. This is a challenging topic for future research.

Applications. Finally, the numerical examples considered in this thesis are test cases for our
theoretical developments. We treated both linear and nonlinear problems, thereby including
control constraints and performing adaptive shooting techniques. An important topic for
future research is the employment of the developed methods in real-world applications. In
this regard, recent articles by Richter & Wick [98], Hasegawa [49] or Klinger [68] open up
new perspectives of how to apply multiple shooting to fluid structure interaction problems,
turbulent flow problems, and image processing problems, respectively. Both parallelization
and adaptivity are desirable features for complex applications, e. g., three-dimensional
computations on highly resolved meshes.
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