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Introduction

At first unwittingly, but for the last couple of decades in full conscience, mankind

has been substantially altering the climate by emitting greenhouse gases (GHG), mostly

carbon dioxide. Due to the high inertia of the climate system, the warming effect of

past emissions has only partly unfolded. A drastic cut of GHG emissions, yet currently

at an all-time high, would thus be needed to at least curb global warming (IPCC 2013).

Further aggravating the matter, the climate response from GHG concentrations to tem-

peratures – though being only one link in the causal chain – is characterized by sub-

stantive uncertainty (Meinshausen et al. 2009), implying that the projections for global

warming vary greatly. For instance, the likely range for the global mean surface temper-

ature increase at the end of the 21st century under the RCP 6.0 concentration scenario

extends from 1.4◦C to 3.1◦C (IPCC 2013). In addition, there are arguments that low

probability scenarios of ’catastrophic’ climate change with temperature increases well

beyond the upper bound of the range deserve more attention (Weitzman 2011; Pindyck

2011; Nordhaus 2011).

Policy inaction and the outlook of climate change entailing substantial damages

(IPCC 2014), potentially ’catastrophic’, have spurred discussions about solar radiation

management (SRM), a set of technologies potentially capable of quickly reducing global

temperatures by “decreasing the amount of absorbed solar radiation through an increase

in albedo”(Keith 2000). The most popular SRM proposal at present is ’stratospheric

aerosol injection’ with sulfur (Crutzen 2006; Keith 2013). Justifications for seriously con-

sidering SRM follow either a ’buying time’ or a ’last resort’ narrative (Gardiner 2011).

In the ’buying time’ narrative (Keith 2013), SRM stabilizes temperatures for a transfor-

mation to a low-emission economy by rebuilding the energy sector. Optimally managing

the system may also involve to complement SRM deployment with the reduction of at-

mospheric GHG concentrations by means of carbon dioxide removal (CDR) techniques,

besides SRM the second branch of climate engineering (CE) technologies. In the other

justification, the ’last resort’ narrative, the merit of SRM lies in the option to quickly

respond to a ’climate emergency’ that may result from an unlikely, yet devastating sharp

temperature rise (Crutzen 2006; Victor et al. 2009; Weitzman 2011).

Despite possible unknowns unknowns from their deployment and already foreseeable,

yet currently hard to quantifiable side-effects on precipitation patterns and stratosphe-

rioc ozone (Shepherd 2009), it seems uncontroversial that “SRM methods, if realiz-

able, have the potential to substantially offset a global temperature rise” (IPCC 2013).
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Introduction

Whether SRM is realizable is unclear at present; but even if so, costly and multi-year

research and development (R&D) would be needed to make SRM available (Klepper

and Rickels 2012; Keith 2013). It is against this background of potential benefits of

SRM remaining inaccessible without a long and costly development process that voices

urge small-scale outdoor experiments as the next research steps (Parson and Keith 2013;

Parker 2014; Keith et al. 2014).

For coming to a fair assessment on whether R&D into SRM should proceed, one

should bear in mind that both narratives favoring SRM rely on strong consistency as-

sumptions. The ’buying time’ narrative is based on a social planner who can commit to

a specific SRM deployment profile stretching across decades, furthermore complemented

by ambitious efforts in abatement and energy innovations (Barrett et al. 2014). The

’last resort’ narrative relies on similar preconditions. Essential in this idea, current gen-

eration ’arms the future’ with the ’lesser evil’ option SRM (Gardiner 2010), only to be

deployed in case of a ’climate emergency’. In so doing, the ’last resort’ narrative silently

rests on the assumption that a precise definition of a climate emergency is possible and

persistent over time (Gardiner 2011; Markusson et al. 2014).

In light of these stark preconditions, various concerns have been raised with regard

to SRM deployment profiles and its repercussions on other policy options. One concern

is whether the sustained use of SRM can be guaranteed (Barrett et al. 2014). The failure

to do so would cause temperature to rise rapidly, a harmful scenario as many climate

damages are associated with the rate of temperature change rather than absolute tem-

perature values (IPCC 2013). The probably best-known concern surrounding SRM runs

under the slightly misleading label ’moral hazard’. In this concern, the prospect of a

’quick-fix’ technology might create a perception of insurance and hence reduce the in-

centives for costly GHG mitigation (Shepherd 2009; Hale 2012; Morrow 2014; Gardiner

2010; Reynolds 2014; Betz 2012). Other concerns revolve around the deployment profile

of SRM. Highlighting the possibility of irrational technology use, the American Meteoro-

logical Society (2009) is worried of “short-sighted and unwise” deployment. Similar, and

closely related to the ’last resort’ narrative, the definition of a ’climate emergency’ is not

unambiguous; rather, it can be re-defined and used rhetorically (Markusson et al. 2014).

Other authors challenge the social planner perspective and emphasize that SRM would

be used in a world with international actors and heterogeneous motives, thus stressing

the potential of deployment conflicts (Robock 2008; Weitzman 2012).

In summary, society is confronted with pressing questions surrounding SRM. Does

the prospect of a technology offering to temporarily stabilize temperatures and to stand

by as a quick emergency measure justify considerable R&D expenditures, and, if yes,

how should the R&D process proceed? And to what extent does this assessment of such

an ideal technology change in light of the above mentioned concerns?

To contribute to this fascinating and important research field, environmental eco-

nomics can rely on a rich toolkit including a vast literature on climate economics
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(Nordhaus 1994; Stern 2006; Weitzman 2009), environmental innovation (Popp 2010;

Goeschl and Perino 2007; Barrett 2006; Hall and Helmers 2013), and the rigorous game-

theoretical analysis of strategic interaction in the presence of environmental externalities

(Barrett 1994, 2013; Missfeldt 1999; Wagner 2001). Equipped with these general insights

and tools, authors have made specific contributions to climate engineering and SRM in

particular. Goes et al. (2011) analyze the danger of intermittent SRM and provide a

framework for conducting a cost-benefit test of SRM. Bickel and Agrawal (2013) identify

factors that crucially shape whether SRM passes such a cost-benefit test. Moreno-Cruz

and Keith (2012) focus on the value of SRM as a last resort option under different as-

sumptions on learning. The interplay of SRM and GHG mitigation has been analyzed

in a portfolio set-up (Kousky et al. 2009), in intertemporal settings (Moreno-Cruz and

Keith 2012), and along the international dimension (Moreno-Cruz 2010; Manoussi and

Xepapadeas 2014). Strategic deployment conflicts have been the focus of contributions

by Moreno-Cruz (2010) and Weitzman (2012).

The present literature on environmental technologies in general, and climate engi-

neering in particular, however misses a relevant angle. What has received hardly any

attention is a positive analysis of innovation incentives when actors anticipate that a tech-

nology they are about to develop would be prone to strategically induced deployment

profiles. This constitutes an important research gap since, as was demonstrated above,

current discussions about SRM are characterized by the joint presence of considerable

concerns regarding technology deployment and the need for making consequential R&D

decisions in the near future. The first two articles of this dissertation aim at filling this

gap. They focus on two strategic problems about SRM – one of them intergenerational,

the other intragenerational – and analyze the repercussion of these strategic conflicts

for the incentives to undertake costly R&D. Both articles establish novel findings and

thus contribute to an improved understanding of environmental innovation. A short

summary of the articles in this dissertation can be found at the end of this introduction.

In order to put the strategic interplay of deployment and innovation of climate engi-

neering center stage, the first two articles of this dissertation deliberately abstracted

from a couple of issues, most notably uncertainty. Climate uncertainty, one of the main

justifications for considering SRM in the first place, has been incorporated – if at all –

only in the crudest form. This may have been justified in order to focus on the strategic

dimension, but it has obviously left aside important normative questions surrounding

SRM. Being a novel technology and thus, almost by definition, not well-understood,

SRM deployment itself would add substantial uncertainty. Thus to prevent harm, a

’precautionary’ case against deployment (Long and Winickoff 2010) or large-scale test-

ing (Robock 2012) can be made. On the other hand, and in stark contrast, the idea of

precaution can also be invoked for the development of SRM in order to be prepared for

a ’climate emergency’ (Hartzell-Nichols 2012) and, in light of possible climate tipping
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points that might be crossed, even for precautionary SRM deployment (Barrett et al.

2014).

The ambivalent nature of SRM reveals, in a nutshell, some of the challenges modern

society is confronted with. Potential risks are pervasive both in decisions related to com-

plex systems like climate change, food safety, pandemics and biodiversity (Maslin and

Austin 2012; May 2001) and in choices surrounding novel substances or technologies like

asbestos, drugs, pesticides or climate engineering (Jasanoff 2007; Sunstein 2002; Wiener

et al. 2013). The complexity of the system or the novelty of the interaction, or both, give

rise to a fundamentally different uncertainty than standard risk (Randall 2011). It is

this context of fundamental uncertainty and consequential societal decision in which the

Precautionary Principle (PP) emerged. Lacking a clear and unique definition (Cooney

2004), but being intrinsically tied to the presence of fundamental uncertainty, the PP

has emerged over the last decades and by now plays an important, yet controversial role

in today’s regulation, mostly in Europe (Wiener et al. 2013; Zander 2010).

The PP appears to comprise two notions with slightly different focus. The first

notion of the PP, often referred to as ’better safe than sorry’, urges the decision-maker

to build up a ’margin of safety’ or to impose ’safe minimum standards’ against potential

and uncertain harm (Ciriacy-Wantrup 1952; Pielke 2002). The second notion, referred

to in the literature as ’look before you leap’ or ’precautionary learning’, emphasizes

the importance of information and learning in decisions characterized by fundamental

uncertainty (Doremus 2007; Bourg and Whiteside 2009). Closely connected to each

other, the ’better safe than sorry’ notion focuses more on how to make a decision under

some static level of uncertainty in which learning already occurred or is not possible. In

contrast, the ’look before you leap’ notion of the PP puts potential improvements in the

state of knowledge, maybe by active information acquisition, center stage.

Many commentators are critical of the PP and challenge its importance for risk reg-

ulation. Widely raised arguments are that the PP stifles innovation, privileges irrational

fears and is inherently inconsistent (Graham 2004; Sunstein 2005; Peterson 2006). Op-

ponents of the PP argue that there already exists a well-established practice of risk man-

agement. This ’ordinary risk management’ (ORM, Randall 2011) rests on cost-benefit

analysis (CBA) and incorporates uncertainty by probabilities based on objective risk as-

sessments. Through these features, the ORM claims to avoid biases in decision-making,

to uphold incentives for innovation, and to maximize overall welfare.

But there are a couple of issues with ORM. The first problem is that standard cost-

benefit approaches often fail to give a full account of the options available to a decision-

maker; as a consequence, ORM tends to ignore irreversibilities, leading to a biased

assessment of investment and conservation decisions (Dixit and Pindyck 1994; Arrow and

Fisher 1974; Henry 1974; Krutilla 1967; Bishop 1982). The other concerns about ORM

specifically refer to the type of uncertainty that is present in the regulation of complex

and novel risks. The first line of criticism holds that ORM is, due to its foundation
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on expected utility theory, incapable of meaningfully compare unlikely events with high

impacts, for instance climate related damages under very high temperature increases

(Tol 2003; Chichilnisky 2010). A second and related line of criticism is that complex

and novel risks, by definition, preclude the kind of precise description of uncertainty that

is required in ORM (May et al. 2008; Betz 2007; Meinshausen et al. 2009).

Environmental economics has contributed to the discussion about the appropriate

risk regulation and the PP in various ways. The first line of research keeps the basic

premises of the ORM, in particular the expected utility assumption, and extends it into

different directions. Gollier et al. (2000) and Gollier and Treich (2003) analyze sequen-

tial decision-making characterized by irreversibility and uncertainty in the tradition of

Arrow and Fisher (1974) and Henry (1974), but with partial resolution of uncertainty

and thus Bayesian learning. The ’precautionary effects’ identified by Gollier et al. (2000)

and Gollier and Treich (2003) consist of a reduction in an irreversible action, i.e. less

consumption of a toxic product, when there is the prospect of learning by ’waiting for

better information’. Their settings thus give rise to behavior consistent with the ’precau-

tionary learning’ notion of the PP. In a different approach, Naevdal and Oppenheimer

(2007) and Margolis and Naevdal (2007) allow for the possibility of thresholds. They

demonstrate that the presence of thresholds of unknown location induces a precaution-

ary behavior of less economic activity, consistent with the ’better safe than sorry’ notion

of the PP. Similar, Weitzman (2013) shows that the existence of heavy tails in the proba-

bility distribution for adverse events may induce cautious behavior. These contributions

are important extensions of the standard ORM framework and explore its relation with

the PP. It is important to note that the precautionary behavior that emerges in these

set-ups, as Randall (2011) puts it, is not ’principled’ but ’circumstantial’. It is a specific

behavior of an ORM decision-maker that results because of the underlying structure of

the problem, not because the decision-maker adopted the PP.

The second line of research in environmental economics takes a different approach

and directly associates the PP with the underlying principles of decision-making. In

so doing, this strand of the literature goes beyond the expected utility framework. It

describes scientific uncertainty with ’ambiguity’, also known as ’Knightian uncertainty’,

and operationalizes the PP, according to the ’margin of safety’ interpretation, as an

ambiguity averse decision rule (Asano 2010; Athanassoglou and Xepapadeas 2012; Mill-

ner et al. 2013; Lemoine and Traeger 2012; Vardas and Xepapadeas 2010; Treich et al.

2013). The best-known decision rule in this context is maxmin expected utility (meu),

axiomatized by Gilboa and Schmeidler (1989). Scientific uncertainty is described by a

set of probability distributions, and the decision-maker selects the decision that maxi-

mizes expected utility under the worst probability distribution. It is this focus on the

worst probability scenario that makes meu, in close connection to the idea safe mini-

mum standards, “a conceptual framework for designing management rules which adhere

to the PP” (Vardas and Xepapadeas 2010). The meu approach has been used in bio-
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diversity settings (Vardas and Xepapadeas 2010) and stock pollutant problems (Asano

2010; Athanassoglou and Xepapadeas 2012). The findings support the precautionary

interpretation of meu. The meu decision-maker is more conservative, sooner adopts

environmental policies, and invests more in damage control.

What is underrepresented in the present literature is the possibility of active informa-

tion acquisition. If the papers cited above incorporate learning, it is of the passive form;

neither the timing nor the extent of learning can be influenced by the decision-maker.

The possibility to actively shape the learning process, however, is a standard regulatory

task: Prior to consequential decisions surrounding novel substances and technologies,

regulators typically undertake (costly) research to inform their decision-making. This

active information acquisition is much broader than the ’wait to learn’ specification in

Gollier et al. (2000) and Gollier and Treich (2003). The underrepresentation of active

research choices and a joint analysis of the two notions of the PP thus constitute an

important research gap in the theory of regulation. This dissertation makes the first

steps into addressing these issues. It follows the literature by modeling the PP as meu.

Then, based on a definition of the value of information under meu (the third article)

and making sure that learning dynamics under meu are still compatible with ambiguity

aversion (the fourth article), the fifth article focuses the implications of meu for active

learning and thus analyzes whether the ’better safe than sorry’ notion of the PP trans-

lates into the ’precautionary learning’ notion. As we will see, the answer is in general

negative.

Synopsis

The first article ”The Intergenerational Transfer of Solar Radiation Manage-

ment Capabilities and Atmospheric Carbon Stocks” (with Timo Goeschl and

Juan Moreno-Cruz), in content almost identical with Goeschl et al. (2013), published in

Environmental and Resource Economics, focuses on the intergenerational conflict that

arises because the donor of the technological capability cannot stipulate its use by the

recipient. An important contribution of the paper is to test existing narratives about

the impact of SRM on abatement for their internal consistency.

The model features two non-overlapping generations. Current generation decides

about abatement (quadratic abatement costs), and whether to develop SRM (a binary

decision with fixed development costs) and thus to ’arm’ future generation against severe

climate change (Gardiner 2010; Betz 2012). Altruism of current generation towards the

future is a prerequisite because both investments, abatement and technology provision,

only pay-off to the future generation. If current generation developed the technology,

future generation can decide on the SRM level in order to partially compensate exces-

sive radiative forcing by the GHG stock, however incurring SRM side-effect damages

(linear in the level of deployment). How much SRM future generation undertakes de-
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pends on three things. First, the level of abatement by current generation (in other

words the size of the atmospheric carbon stock), secondly the climate sensitivity that

resolves in an intermediate stage (with two possible values and initially known proba-

bility distribution), and finally – a central component of the model – a bias parameter

that captures to what extent future generation underestimates the damages of SRM

deployment. There are various justifications for assuming such a biased view on SRM:

in a behavioral dimension, future generation may be irrationally over-willing to stop a

climate emergency; in a political economy dimension, capacity building for SRM may

cause interest groups eager to promote technology deployment. Whatever the reason

for the biased view on SRM damages, it gives rise to an intergenerational conflict about

the use of the technology. Current generation, unable to stipulate a certain deployment

profile, exerts influence on future generation’s behavior by adjusting the R&D decision

and/or the level of abatement. The solution of this intergenerational game is derived by

means of subgame perfectness.

We find a couple of possible equilibria. As a useful reference point, we first ana-

lyze the case of an unbiased damage assessment without the intergenerational conflict.

The benchmark is calibrated such that current generation develops the technology as

an emergency measure for the high climate sensitivity outcome; due to the absence of

a bias, this specific deployment profile is consistent with the deployment incentives of

future generation. Unsurprisingly, and a simple consequence of the substitutability of

costly abatement with technology deployment, the abatement level in the benchmark

equilibrium is lower than in the absence of the SRM option. This equilibrium then

serves as a benchmark for the equilibria with a non-vanishing bias. We find technology

provision equilibria as well as equilibria in which current generation decides to deny fu-

ture generation the technological option; this technology denial gets more plausible the

higher the bias in the damage assessment and the higher the costs of R&D. Intriguingly,

and demonstrating the inconsistency of some narratives in the SRM literature, we do not

find any equilibrium involving a decrease in abatement relative to the benchmark. In-

stead, an increase in abatement together with technology provision is a possible outcome

of this intergenerational game. The deeper reason is that current generation is altruistic

towards its successor. In this line of thinking, increasing abatement is a strategic tool

for current generation to partially correct for the anticipated SRM over-deployment in

the future.

The second article, entitled ”Strategic Conflicts on the Horizon: R&D In-

centives for Environmental Technologies”, puts intragenerational conflicts about

climate engineering center stage. The focus is on the question how anticipated deploy-

ment conflicts impact on innovation incentives. The contribution of my article is to

provide a framework for analyzing this interplay and to demonstrate that the antici-

pated strategic conflicts surrounding deployment essentially carries forward to the R&D

decision.
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The model is a simple two-country setting with two decision stages. In the first

stage, the countries non-cooperatively choose their R&D contributions. If the sum of

contributions fails to exceed a commonly known threshold, no country can use the tech-

nology; otherwise the technology is available to both countries and they choose their

technology deployment levels non-cooperatively in period 2. The quadratic deployment

costs are fully private while the benefits, as usual in the public good literature, depend

on the sum of technology contributions. This structure embraces CDR as well as SRM

technologies: No country can be excluded from the reduced temperatures that result

from removing greenhouse gases or adding reflective particles, but the costs of undertak-

ing climate engineering fully fall on the deploying country. The benefit function is also

quadratic (inverse U-shaped), reflecting the fact that excessive cooling is detrimental.

A key feature of my model is to allow for heterogeneity in the preferred level of climate

engineering deployment.

The first insight is that the technology deployment game in the second stage is

not only able to produce standard free-riding equilibria, but also free-driving behav-

ior (Weitzman 2012). In this only recently appreciated possibility, the country with the

smaller preference for SRM cooling, not being able to exclude itself from the high deploy-

ment of the other country, does not contribute in equilibrium. Whether the technology

deployment game is a free-rider or a free-driver game is determined by the the cost

parameter. This comprehensive description of different climate engineering technologies

within one framework is one of the deliverables of my paper.

The second insight is that the model offers a parsimonious, yet highly functional

framework for analyzing the repercussion of deployment conflicts on R&D incentives:

Because a threshold public good game in general, and the first period R&D game in

particular, suffers in equilibrium neither from over- nor underprovision, any deviation

from a social optimal R&D outcome can be fully attributed to the outlook of suboptimal

technology deployment patterns. Indeed, I find that the prospect of free-riding for high

cost technologies like CDR weakens R&D incentives, implying the existence of parameter

constellations for which a CDR technology ought to be developed but remains undevel-

oped due to weak incentives. Less obvious is the outcome for low cost technologies like

SRM charcterized by free-driving. Even though the country with the smaller preference

for global cooling anticipates to be dominated by the other country’s high deployment,

it may still be better off than without the technology. In other words, the willingness to

pay for R&D can still be positive and high; for small costs and high heterogeneity across

countries, however, the picture inevitably changes and the country’s willingness for R&D

turns negative, demonstrating that the anticipated conflict about the right SRM level

may carry forward to the innovation stage. The flipside of this is that, with the lure

of low deployment costs, the incentives of the other free-driver country to develop the

technology may be so strong that technologies are developed even though it is against

the global best.
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In the following, the focus of the dissertation shifts away from the strategic aspects

of climate engineering and turns to environmental regulation under fundamental un-

certainty. The fifth and main article revolves around the value of research under the

Precautionary Principle (PP). Bringing these two topics together not only establishes a

novel angle in the literature on environmental regulation; also also on the fundamental

decision-theoretic level, the interplay of ambiguity aversion, learning, and value of learn-

ing has not received adequate attention. Accordingly, the third and fourth article of this

dissertation contribute to the decision-theoretic foundation of learning under ambiguity.

To appreciate the relevance of the third article ”Informativeness of Experiments

for MEU – A Recursive Definition” (with Boris Wiesenfarth), in content almost

identical with Heyen and Wiesenfarth (2015), forthcoming in the Journal of Mathemat-

ical Economics, some background on the theory of decision-making under uncertainty

may prove helpful. The basic formulation of the decision-problem under uncertainty

involves a decision-maker without knowledge which value in a set Θ is the true state of

the world θ. This uncertainty is economically relevant if the payoffs that result from the

decision-maker’s action a depend on the true state of world θ.

The first important extension of this basic framework is when the decision-maker can

learn. Learning means that, at some point in time prior to the decision, the decision-

maker gets information about the true state θ. This information is usually noisy, often

not precluding any state of the world, but rendering some more and others less likely.

This information, often called a signal, clearly has economic value as it enables the

decision-maker to improve her decisions. The literature on this value of information, in

more or less general settings, dates back to Blackwell (1953) with many applications in

all economic fields, including environmental economics (e.g. Fisher and Hanemann 1987;

Kolstad 1996; Gollier and Treich 2003; Karp and Zhang 2006).

The other extension of the simple decision-making under uncertainty framework re-

volves around the description of uncertainty. The traditional approach (Savage 1972),

also pervasive in the value of information literature cited above, captures uncertainty in a

unique probability distribution on Θ (for instance in the form (p, 1−p) when there are two

possible states of the world). This standard approach has been questioned for descrip-

tive and normative reasons: on descriptive grounds because Ellsberg (1961) has shown

that individual behavior is often inconsistent with such a unique probability distribu-

tion; on normative grounds because many decision situations are too poorly understood

(’Knightian uncertainty’ or ’ambiguity’) as to justify a unique probability distribution

(’risk’) (Knight 1921). Thus, and as an alternative to decision-making based on subjec-

tive expected utility theory (Savage 1972), ambiguity averse decision rules have emerged

(for a survey see Etner et al. 2012), often associated with the notion of precaution. As

mentioned before, a prominent example, and also the choice in this dissertation, is to

generalize the assumption of a unique probability distribution and model initial knowl-
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edge by a set of priors, and to choose as the decision-rule the ambiguity averse maxmin

expected utility meu.

Having now introduced the two components value of information and ambiguity

aversion, a natural question is about their interplay, namely the value of information

under ambiguity aversion. As mentioned earlier, the novel regulatory dimension of this

question is the interplay of two notions of the PP. The decision-theoretic significance

of this question also seems obvious in light of ambiguity as ’uncertainty aversion’ and

learning as a possibility to reduce uncertainty. Hence even more surprising is that this

interplay has received surprisingly little attention so far. The first attempt to give a

general definition of the value of information under meu preferences in the fundamental

Blackwell setting was Çelen (2012). His definition, however, violates dynamic consis-

tency, a central rationality criterion (Machina 1989). Dynamic consistency requires the

decision-maker to take into account all possible contingencies, form plans, and stick to

these plans if nothing unexpected happens. In that sense dynamic consistency is closely

related to the standard solution concept backward induction in dynamic decision-making

(Riedel 2009). In order to define a version of the value of information under meu that

respects this important rationality criterion, the third article in this dissertation takes

the dynamic consistent axiomatization of meu preferences by Epstein and Schneider

(2003), applies it to a standard Blackwell setting of decision-making under uncertainty,

and thus delivers a sound definition of the value of information und meu preferences.

What was not central in the definition of the value of information under meu was

a specification of how the set of initial priors, after observing the signal conveying in-

formation about the true state of the world, is updated to the set of posteriors. Any

economic application, in with particular multi-stage models, however makes it necessary

to clearly specify the learning dynamics. The important work in this context is Epstein

and Schneider (2007), embedding the dynamic consistent axiomatization of meu pref-

erences (Epstein and Schneider 2003) into a useful and simple to utilize intertemporal

decision-framework. Not surprisingly, the cornerstone of the learning dynamics in Ep-

stein and Schneider (2007) is to update every initial prior individually in the standard

way (i.e. Bayesian Updating, see Savage 1972). An additional and less obvious feature

of their model is to identify priors that have become implausible given the signal history

and remove them, thus slimming down the set of posteriors. It is this rejection of priors,

and the problematic consequences it entails, that is the focus of the fourth article, enti-

tled ”Learning under Ambiguity: A Note on the Belief Dynamics of Epstein

and Schneider (2007)”.

The motivation of Epstein and Schneider (2007) for incorporating the rejection of

beliefs into their framework, even making rejection mandatory, may have been that the

learning dynamics otherwise can be trivial. If a decision-maker initially holds the full

set of possible priors, including extreme cases1, then full Bayesian updating without

1For instance (1, 0) in the two states setting, reflecting subjective certainty that the first state is the
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the rejection of priors will preclude any form of learning. The set of posteriors will,

irrespective of the quality of the signal observed, remain the full set of beliefs forever.

Rejection of implausible priors indeed addresses this problem, but does so at a high price.

As my article demonstrates, the learning dynamics in Epstein and Schneider (2007) are

in conflict with ambiguity aversion. Irrespective of how ’modest’ the rejection of priors

is designed, there always exist conditions under which a decision-maker characterized by

the Epstein and Schneider (2007) learning dynamics, initially ambiguity averse, ex-post

prefers to bet on an urn with unknown composition rather than a known composition urn.

This is a clear contradiction to ambiguity aversion. This contradiction is particularly

noteworthy as it is the main purpose of Epstein and Schneider (2007) to provide a

tractable framework of intertemporal ambiguity averse preferences.

My article offers two modifications of the Epstein and Schneider (2007) framework

to ensure the compatibility of learning dynamics with ambiguity aversion. The first

modification still involves the rejection of priors, but makes sure that those priors ’es-

sential’ for ambiguity averse preferences are immune to the rejection procedure. The

second modification, which appears preferable on grounds of simplicity, is to stick with

full Bayesian updating and to abstain from the rejection of priors altogether. What is

needed to avoid the collapse of the learning dynamics mentioned above is just to preclude

the full set of priors as a possible prior set. I argue that this formal restriction is hardly

limiting the modeling purposes in applications because the full prior set together with

the focus on the worst prior inherent in meu is an extreme case of ambiguity aversion

hardly meaningful in applications anyway.

Finally, and building on these decision-theoretic foundations, the fifth article ”In-

formation Acquisition under Ambiguity – Why the Precautionary Principle

may Keep us Uninformed” (with Timo Goeschl and Boris Wiesenfarth) compares re-

search incentives under different regulatory mandates. Particular focus is on the question

whether meu, often associated with the precautionary notion ’better safe than sorry’, is

compatible with the notion of precautionary learning that urges better information in

order to reduce erroneous decisions.

At the center of the model is uncertainty about a payoff relevant state of the world

and the need for the decision-maker to choose among two actions, and none of the

actions dominating the other. Concrete regulatory examples we discuss in the paper are

(1) the European Food Safety Authority’s need to single out and ban from the market

the vegetable that caused a food-borne disease and (2) the Environmental Protection

Agency’s approval or non-approval decision on a novel pesticide. In both cases – and

this is a general feature of the regulation of complex and novel matters – the decision-

maker is confronted with the sort of fundamental scientific uncertainty that makes an

empirically substantiated risk assessment infeasible. Possible regulatory mandates are,

as explained above, to make the problem accessible to standard CBA by assuming a

true one

11
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’best guess’ probability distribution and, in sharp contrast, to adopt the PP. Decision

theoretic formalizations of these regulatory mandates are subjective expected utility

(Savage 1972) and maxmin expected utility (Gilboa and Schmeidler 1989).

Another common feature of the regulatory process is that the regulator can commis-

sion costly research to gain (incomplete) information about the true state of the world to

improve the final regulatory decision. This research is modeled as a noisy one-shot signal

with the learning dynamics, informed by the fourth article, assumed as full Bayesian up-

dating. The precision of this signal is a choice variable to the decision-maker, reflecting

the regulator’s possibility to shape the research process. Our model thus involves active

learning as a key component. Crucial in this context is the definition of the value of

information under meu. This definition is provided by the third article.

Our findings suggest that meu is in general not compatible with the notion of pre-

cautionary learning. While we were actually able to isolate a mechanism how the PP,

formalized as meu, increases the demand for research precision relative to a standard

CBA – an effect that we accordingly coin the ’Precautionary Learning Effect’ – we also

find a countervailing and thus research precision decreasing effect of meu. This ’Research

Pessimism Effect’ however often outweighs the Precautionary Learning Effect. Hence,

in total, PP regulation can in many settings be expected to decrease the regulator’s

information level. The article, informed by insights about the origin of the two counter-

vailing effects, sketches a possible regulatory set-up that may avoid the inconsistency of

meu with the notion of precautionary learning. Splitting up the regulatory mandate –

standard CBA for the research decision and PP for the final regulatory decision – would

avoid the Research Pessimism Effect and unambiguously improve the regulator’s state

of knowledge.
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Solar Radiation Management Capabilities and

Atmospheric Carbon Stocks ∗†

Timo Goeschl Daniel Heyen Juan Moreno-Cruz

Abstract

Solar radiation management (SRM) technologies are considered one of the likeli-
est forms of geoengineering. If developed, a future generation could deploy them
to limit the damages caused by the atmospheric carbon stock inherited from the
current generation, despite their negative side effects. Should the current gener-
ation develop these geoengineering capabilities for a future generation? And how
would a decision to develop SRM impact on the current generation’s abatement
efforts? Natural scientists, ethicists, and other scholars argue that future genera-
tions could be more sanguine about the side effects of SRM deployment than the
current generation. In this paper, we add economic rigor to this important debate
on the intergenerational transfer of technological capabilities and pollution stocks.
We identify three conjectures that constitute potentially rational courses of action
for current society, including a ban on the development of SRM. However, the same
premises that underpin these conjectures also allow for a novel possibility: If the de-
velopment of SRM capabilities is sufficiently cheap, the current generation may for
reasons of intergenerational strategy decide not just to develop SRM technologies,
but also to abate more than in the absence of SRM.
Keywords: Geoengineering; Climate Change; Intergenerational Issues; Strategic
Behavior.
JEL Codes: D9; O33; Q54; Q55.

1 Introduction

The economics of climate change have been emphasizing for a long time that concerns for

intergenerational equity imply that the current generation needs to reduce its greenhouse

gas (GHG) emissions. Such a reduction will benefit future generations by decreasing

the damages they are expected to suffer as a result of climate change (e.g. Stern 2006).

Consequently, a central concern of the literature on optimal climate policy is to determine

the optimal scale of abatement efforts vis-a-vis the business-as-usual scenario and thus

∗We are grateful to the associate editor and three anonymous referees whose advice and comments
have greatly improved the paper. We also owe thanks to audiences at the University of Kiel, the
University of Alberta, Heidelberg University, the AUROE 2011 workshop, the EAERE 2011 Annual
Conference, and the AERE 2012 Summer Conference. Funding for this research was provided through the
project “The Global Governance of Climate Engineering” at the Marsilius-Kolleg, Heidelberg University.
†An almost identical form of this article has been published 2013 in Environmental and Resource

Economics 56(1), doi: 10.1007/s10640-013-9647-x.
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to determine the optimal intertemporal trajectory of mitigation (Stern 2006; Nordhaus

2007; Tol 2001).

Recent developments have started to challenge the almost exclusive role of emis-

sions reductions in climate policy. Apart from progress on the economics of adapta-

tion to climate change (Agrawala and Fankhauser 2008), there is growing awareness

among economists of the increasing plausibility of so-called “climate engineering” (CE).

This term is a shorthand for deliberate large-scale interventions in the Earth’s climate

system with the aim of limiting the damages of excessive atmospheric carbon stocks

(Keith 2000). A variety of approaches run under the heading of “climate engineering”

or “geoengineering”. Most of the attention focuses—due to feasibility, effectiveness, and

cost—on solar radiation management (SRM) technologies.1 These technologies enable

an increase in the Earth’s albedo with respect to solar radiation, e.g. by the dispersal

of reflective aerosols in the stratosphere. This allows the Earth to tolerate higher atmo-

spheric carbon stocks while keeping global mean surface temperatures within acceptable

bounds. Merely a theoretical possibility decades ago (Fleming 2010), it is now consid-

ered feasible that an ambitious R&D program could deliver effective SRM technologies

within a few decades (Ridgwell et al. 2012).

A setting in which GHG emissions reductions are not the only option for addressing

climate change damages, but compete with or are complemented by investment in geo-

engineering capabilities raises an entirely new set of questions. Some early assessments

of climate engineering conclude that a future generation with access to such technologies

would be able to handle the damages associated with stock pollutants at a surprisingly

low direct variable cost (Klepper and Rickels 2012; Barrett 2008). However, these tech-

nologies are not understood to be “magic bullets”. The current consensus is that SRM

interventions will involve significant indirect costs through side effects, such as changes

in precipitation patterns, and that these side effects will themselves raise issues of how

benefits and costs are distributed (Klepper and Rickels 2012; Moreno-Cruz and Keith

2012; Ricke et al. 2010). As a result, a decision-maker will have to carefully weigh the so-

cial benefits of avoided carbon damages and the social costs of SRM-induced side effects

when making a decision on the deployment of geoengineering measures. Some papers

have started to establish the conditions under which the deployment of SRM may or

may not be meaningful (Bickel and Agrawal 2013; Goes et al. 2011; Moreno-Cruz and

Keith 2012), to consider the impacts of a geoengineering capability on international ne-

gotiations (Barrett 2008; Moreno-Cruz 2010) and how to regulate deployment (Barrett

2008; Victor 2008).

The starting point of this paper is the observation that at the present time, the

technological capabilities for a deployable SRM system do not exist. These capabilities

1The alternative to SRM technologies is geoengineering in the form of carbon dioxide removal (CDR),
for example by means of direct air capture (Keith 2009), ocean fertilization (Lampitt et al. 2008), or
enhanced weathering (Schuiling and Krijgsman 2006). See Klepper and Rickels (2012) for a comparative
economic assessment.
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would have to be created at a cost, and the costs of developing these capabilities are

considered substantial (Klepper and Rickels 2012). It would fall to the current generation

to devote some of its resources to investment into a R&D program that would make these

capabilities available, perhaps 30 years from now, to a future generation (Schelling 1996).

But is it a rational course of action for the current generation to develop these capabilities

for a future generation that can then decide on its use? And how would a decision to

develop such SRM capabilities impact on abatement efforts?

Despite agreement on the basic premises of the decision problem, the current lit-

erature offers at least five different conjectures regarding the rational course of action.

One conjecture, termed “arming the future” argues in favor of SRM R&D since the

technology would act as some type of insurance in the event that the sensitivity of the

climate system with respect to the carbon stock turns out to be high (Moreno-Cruz and

Keith 2012). This rationale of SRM R&D has been advanced by a number of commenta-

tors (Gardiner 2010; Schneider 1996) and enjoys considerable support. Some have even

gone so far as to claim that, since SRM is an imperfect substitute for emissions abate-

ment, a positive SRM R&D decision will not affect GHG emissions abatement (Bunzl

2009). This conjecture, which we dub “abatement invariance”, contrasts with a third

conjecture, namely that investment in SRM R&D detracts from mitigation and will lead

to less abatement effort (American Meteorological Society 2009; Shepherd 2009). This

possibility of a reduction in mitigation effort by the current generation has been char-

acterized as a manifestation of “moral hazard” that a rational course of action would

avoid (Shepherd 2009; Hale 2012).

In other conjectures, the concerns lie with the behavior of the future generation.

Future decision-makers may engage in climate engineering under circumstances and on

a scale that the current generation would not hold to be optimal. At least three mech-

anisms are thought to explain why future generations may deviate from the judicious

course of action. One is behavioral: Given the impression of an impending or immediate

“climate emergency”, there is a belief that decision-makers will succumb to emotional

factors that favor SRM deployment as a ’quick fix’ (e.g. Bodansky 1996).2 Similarly,

while sunk cost of its development should on rational grounds be immaterial to the de-

cision on whether to deploy SRM technology, there is ample historical experience that

use of a capability is often regarded as necessary to justify large sunk cost (Gardiner

2011). The second mechanism lies in the political economy of science and technology:

Researchers and industry funded to carry out research on certain technologies become

interest groups in favor of technology deployment, creating a vocal and influential lobby

for SRM use (Jamieson 1996).3 The final mechanism is the potential for a genuine

2The American Meteorological Society, for instance, believes that “[...]geoengineering technologies,
once developed, may enable short-sighted and unwise deployment decisions, with potentially serious
unforeseen consequences.” (American Meteorological Society 2009).

3This concern is also present among the general public. Mercer et al. (2011) report very strong
agreement on the statement that “Research will lead to a technology that will be used no matter what
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change of preferences regarding SRM once its availability has become a fact of life for a

future generation.4 Irrespective of the mechanism, a bias in favor of SRM interventions,

once those technological capabilities have been created, is the argument underpinning

two additional conjectures advanced in the literature. One is that the rational course

of action for today’s generation is to rule out research on geoengineering measures in

order to prevent the future generation from acting against its own best interests (Keith

et al. 2010).5 The fifth conjecture is a different interpretation of the “moral hazard”

argument by Bunzl (2009) and turns the logic on its head. It postulates that in the face

of a pro-CE bias among the future generation, the rational course of action is to offer

SRM as a backstop for a “climate emergency” and to abate less. The reason is that

in a world in which the future generation uses SRM indiscriminately, the carbon stock

damages imposed on the future generation are consistently lower than in the absence of

SRM capabilities. As a result, the current generation would be treated more equitably

if it allowed itself to emit more (Hale 2012).

Against this background of competing conjectures, this paper makes two contribu-

tions. The first is to extend the economic literature on the intergenerational aspects of

climate policy in the direction of technology transfers. To our knowledge, the transfer

of a mitigating technology, such as SRM, to a future generation that bears the damage

costs of a stock pollutant has not been explicitly considered before. The second con-

tribution is to demonstrate how simple economic analysis can provide a useful starting

point for discriminating between the different conjectures on the ’right’ course of action

regarding a portfolio of both mitigation and SRM R&D activities. We provide these

contributions by developing the simplest two-generations model that captures the four

joint premises that appear to underpin all conjectures. These common elements are (i)

that the current generation cares about the future generation sufficiently to be concerned

about the stock damages of atmospheric carbon, (ii) that there may be a pro-SRM bias

in the future, (iii) that both abatement and R&D involve a cost today and (iv) that both

determine, in an environment characterized by uncertainty about the damages associ-

ated with atmospheric carbon, the future generation’s carbon stock and technological

capabilities. Using this model, we study the subgame perfect behavior of the current

generation in order to determine which of the conjectures above can arise, and if so,

under which conditions.

Our results demonstrate that the possibility of transferring mitigating technologies

the public thinks.” among participants in a large-scale international survey of public perceptions of
climate engineering.

4Already in one of the early reports by the US National Academy of Sciences on climate change, the
authors raise the possibility that interest in CO2 may generate or reinforce a lasting interest in national
or international means of climate and weather modification; once generated, that interest may flourish
independent of whatever is done about CO2 (p. 470).

5Ruling out CE research could take the shape of the recent explicit ban on climate engineering R&D
that was declared at the Conference of the Parties of the U.N. Convention on Biological Diversity in
Nagoya in 2010.
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into the future both re-emphasizes important economic insights on climate policy and

raises important new issues. For example, even in the absence of a pro-SRM bias, the

presence of an SRM option offsets current abatement. Far from constituting an instance

of “moral hazard” (Bunzl 2009), this is simply a result of the partial substitutability

between abatement and SRM that a current generation will rationally want to exploit.

At the same time, the presence of a pro-SRM bias will constitute an important source

of potentially powerful strategic distortions between generations that support some of

the conjectures, but not all. A failure to carefully define those comparisons that are

meaningful may be to blame for some of the confusion. As the analysis makes clear, rising

R&D costs lead ceteris paribus always to ruling out SRM research for rational reasons.

The same holds for an increasing pro-SRM bias. However, providing no SRM R&D will

always be combined with higher abatement levels than if SRM was made available. At

the same time, we find no support for the conjecture that abatement weakens due to

a distortion between generations if R&D is undertaken. Quite the opposite: If SRM

is made available, abatement will never fall below the non-distortion benchmark but

increase the higher the distortion between generations. That abatement will increase

even if SRM is provided is a new finding that has not been discussed before. The

intuition is that an altruistic current generation can and will want to partially offset a

pro-SRM bias among the future generation by providing more abatement today, thus

reducing the incentives to deploy SRM in the future.

We proceed as follows. In the following section, we develop the simple two-generations

model that captures the salient components of the SRM R&D debate in the most par-

simonious and tractable fashion. In section 3, we provide a major step in the debate by

defining the meaningful comparison point by the way of a benchmark. Section 4 derives

the equilibria of the intergenerational game and establishes the main propositions. In

section 5, we conclude.

2 The Model

2.1 The setting

Here, we develop a setting that pares an intergenerational decision problem involving

both a stock pollutant and the development of an imperfect backstop technology down

to its very essentials. Figure 1 provides a graphical representation of the setting, which

features four periods. While the building blocks on stock pollution, abatement, and

damages are taken from the mainstream literature, the novel aspects are the inclusion

of the climate engineering option and the associated intergenerational issues so as to

capture the common narrative elements described in the introduction.

The basic set-up consists of two non-overlapping generations, termed “current” and

“future”. The current generation decides in period 1 on whether to invest in R&D for
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Figure 1: Timing of the game.

future SRM capabilities (Θ = 1) or not (Θ = 0) and chooses pollution abatement level A

in period 2.6 R&D of SRM involves technological as well as regulatory and institutional

costs that will allow the future generation to use the climate engineering technology.

These costs could be significant (Klepper and Rickels 2012). In period 3, nature resolves

the key scientific uncertainty about climate change (Roe and Baker 2007), namely the

climate sensitivity parameter λ that in turn determines the marginal damages associated

with the future global carbon stock. In period 4, the future generation decides whether

to deploy the SRM technology in order to counteract the damages T from the unabated

pollution stock. If it deploys SRM (D > 0), the future generation reduces damages from

the carbon stock, but suffers environmental damages G associated with the use of SRM,

e.g. in the form of disruptions of the hydrological cycle. If no SRM is used (D = 0),

future society faces the full temperature damages T .

As other tractable economic models of climate change, we specify the damages asso-

ciated with the global carbon stock as caused by increased temperatures above historical

averages. We employ the temperature damage function T by Moreno-Cruz and Keith

(2012) of the form

T = λ2 (R0 −A)2 . (1)

The damage function consists of two arguments: The first argument is the squared

carbon sensitivity of the climate to a doubling of CO2, λ. The second argument is the

square of the net deviation in the carbon stock from historical levels (R0 −A), which

consists of the business-as-usual increase in the carbon stock R0 minus the abatement

effort A.7 From the vantage point of the current generation, i.e. in periods 1 and 2, the

carbon sensitivity is a random variable with two possible realizations: a carbon-sensitive

value of λ̄ > 0 with probability p and a carbon-insensitive value λ (0 < λ < λ̄) with

probability (1− p). As expression (1) makes clear, abatement is productive as it reduces

the expected value of pollution damages associated with climate change. Along with all

moves {Θ, A}, the pollution damage function (1) is common knowledge.

6The sequentiality of the decisions on Θ and A is purely for ease of presentation. A simultaneous
choice of Θ and A leads to identical results.

7Temperature damages are assumed to be quadratic in temperature increases. The latter are assumed
to be linear in the pollutant stock change
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Abatement costs are usually assumed to be convex in abatement efforts. As a simple

approximation, we model the abatement cost function of the quadratic type

X = αA2 , (2)

with increasing marginal abatement cost 2αA. The R&D process is modeled in a de-

terministic fashion, following Goeschl and Perino (2007): R&D for a functioning SRM

technology requires payment of a fixed amount K in period 2 and delivers the climate

engineering technology by period 4. The cost of not providing the SRM technology

(Θ = 0) is zero.

The second option to counteract temperature damages, which can be combined with

abatement, is the deployment of SRM. Like the abatement level A, we measure the

amount D of deployed SRM in terms of compensated carbon stock (cf. Moreno-Cruz

and Keith 2012) such that temperature damages read T = λ2 (R0 −A−D)2. In that

sense, abatement and SRM are equivalent regarding temperature damage compensation.

They differ, however, in terms of timing and costs.

The use of SRM involves negligible direct costs (Barrett 2008), but causes collat-

eral damages because of unintended negative impacts. These negative impacts comprise

changes in the hydrological cycle and increase in air pollution, according to current

assessments (Ricke et al. 2010; Kravitz et al. 2009). The general form of the dam-

ages G from SRM is a higher-order polynomial involving the volume of aerosol injected

into the stratosphere (D), the net carbon stock increase (R0 −A), and various particle

characteristics (Bala et al. 2010; Caldeira and Wood 2008; Ricke et al. 2010). Recent

simulations with general circulation models have shown, however, that the changes in

temperature and precipitation are disproportionately driven by the linear term attached

to the volume of SRM (Ban-Weiss and Caldeira 2010; Moreno-Cruz et al. 2012). A first

approximation of the current generation’s assessment of SRM damages would therefore

specify an essentially linear relationship between damages and the amount D of SRM of

the form

G = ρD (3)

with ρ denoting the constant marginal value of SRM damages. An immediately obvious

economic viability condition for SRM is that ρ < 2αR0. Otherwise, the marginal cost

of even the last unit of abatement is lower than the marginal damage of SRM, implying

that SRM is never a competitive substitute for abatement.

The final component to make the setting reflect the current literature is a device that

captures the possible presence of a bias of the future generation in favor of SRM deploy-

ment. The bias implies that unit for unit, the future generation values SRM damages

generally less than the current generation for reasons of behavioral mechanisms, polit-

ical economy, or genuine preference shifts. As a shorthand for this divergence between

current and future generations, we introduce a bias parameter β ∈ [0, 1] such that from
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the future generation’s vantage point, damages are G̃ = (1 − β)ρD. If there is no bias

(β = 0), then the current and the future generation have an identical relative valuation

between temperature damages and SRM damages.

2.2 Objectives and equilibrium concept

Against this background, we now define the objective functions, payoffs, and strategies of

both generations. The future generation’s objective is to minimize the sum of pollution

damages and SRM damages, taking the choices of the current generation on abatement

and R&D and the realization of climate sensitivity λ as given. Given R&D on SRM, the

future generation can determine its optimal volume of SRM, D∗, that is how much of

the inherited carbon stock should be compensated for by means of SRM. The optimal

volume of SRM is a function of the abatement level A, the realized climate sensitivity λ

and the bias parameter β. The future generation’s problem is therefore

min
D∈[0,R0−A]

{
λ2(R0 −A−D)2 + (1− β)ρD

}
. (4)

It is both intuitively obvious and clear from the first-order conditions that use of SRM

requires that (1 − β)ρ < 2λ2(R0 − A), i.e. the marginal damage of the first unit of

SRM must be below the temperature damages thus avoided. Otherwise, the corner

solution D∗ = 0 is optimal. For D∗ > 0, the optimal amount is given by D∗(A, λ, β) =

R0 −A− (1−β)ρ
2λ2 .

From the vantage point of the current generation, the combination of the two possible

realizations of climate sensitivity λ and the conditions on corner and interior solutions

give rise to three possible deployment profiles. One profile, Dalways, implies use of SRM

by the future generation irrespective of whether the climate turns out to be sensitive

or insensitive to carbon. Another, Dnever, features no use of SRM, even if the climate

turns out to be sensitive to carbon. The third, Dcond, conditions the use of SRM on

the climate sensitivity, using SRM for a sensitive outcome and not using SRM for an

insensitive one. The profiles are defined by

Dalways =

R0 −A− (1−β)ρ

2λ̄2 if λ = λ̄

R0 −A− (1−β)ρ

2λ2 if λ = λ
, Dcond =

R0 −A− (1−β)ρ

2λ̄2 if λ = λ̄

0 if λ = λ

Dnever =

0 if λ = λ̄

0 if λ = λ .
(5)

Due to a decrease of perceived damages caused by SRM, an increase in the bias β

increases the SRM amount deployed. For β = 1, which refers to future generation at-

tributing no damages to the use of SRM, temperature damages will be fully compensated,

T = 0.
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A quick inspection of the deployment profiles shows that the current generation,

given its belief about the future generation’s β, determines which profile will be chosen

in the future through its choice of abatement A. More specifically, there is a lower and an

upper threshold on abatement, with A = R0 − (1−β)ρ

2λ2 and Ā = R0 − (1−β)ρ

2λ̄2 respectively,

such that

D∗ =


Dalways if A ≤ A ≤ Ā

Dcond if A ≤ A ≤ Ā

Dnever if A ≤ Ā ≤ A .

(6)

Through sufficiently high abatement, therefore, the current generation can ensure

that SRM will never be used. Conversely, by abating little, available SRM would always

be used at some positive level, even if the climate turns out to be relatively insensitive

to carbon stocks. Finally, abatement levels between the two critical thresholds give rise

to SRM deployment that is conditional on the realization of carbon sensitivity of the

climate. Here, SRM would only be used in the eventuality of a sensitive climate.8

The optimal choice of costly SRM R&D Θ in period 1 and abatement A in period

2 constitute the essence of the current generation’s problem. In its choice, the current

generation takes into account both the costs to itself (in the form of R&D and abatement

costs) and the costs borne by the future generation (in the form of damages). The

cost minimization objective requires that current and future costs need to be made

comparable through an appropriate discount factor δ. The objective function is then

given by

min
Θ,A

C(Θ, A |β) = min
Θ,A

{
ΘK + αA2+

δ(1− p)
(
λ2(R0 −A−D(A, λ, β))2 + ρD(A, λ, β)

)
+

δp
(
λ̄2(R0 −A−D(A, λ̄, β))2 + ρD(A, λ̄, β)

)}
. (7)

For ease of exposition, we set δ = 1 (no discounting). Also note that the objective

function of the current generation makes explicit reference to β since the bias deter-

mines profile and amount of SRM deployment. We thus analyze functions of the form

C(Θ, A |β) or, equivalently, the form C(Θ, A |D) where D denotes a certain deployment

profile.

The optimal abatement levels differ depending on whether there is R&D on SRM or

not. If no SRM R&D is carried out, Θ = 0, the future generation cannot deploy the

technology. This simplifies the objective function since D = 0 for all A, λ and β. The

8Note that the deployment profiles Dalways and Dcond become indistinguishable at the abatement
level A. The same holds for Dcond and Dnever at Ā.
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associated optimal abatement level is

ANoR&D =
pλ̄2 + (1− p)λ2

α+ pλ̄2 + (1− p)λ2R0 > 0 , (8)

which is a fraction of the business-as-usual increase in the carbon stock R0. In line

with intuition, abatement in the absence of SRM increases with a higher probabil-

ity of a carbon-sensitive climate ( ddpANoR&D > 0) and for higher levels of sensitivity

( d
dλ̄
ANoR&D > 0, d

dλANoR&D > 0). The higher marginal abatement costs (higher α), the

lower the abatement level: While costless abatement (α = 0) leads to full compensation,

ANoR&D = R0, abatement goes down to zero if marginal abatement costs tend to infinity.

If SRM R&D is carried out, Θ = 1, the choice of the optimal A is more intricate

because a change in A influences the future generation’s discrete decision which of the

three deployment profiles to choose. The objective function is therefore only piecewise

differentiable and the optimal abatement level in each segment is not necessarily an

interior solution. At the same time, note that the bias parameter β influences the choice

of A only through its impact on the deployment profile; within one profile β has no impact

on the abatement choice as d
dβ

(
d
dAD(A, λ, β)

)
= 0. This is an interesting property that

results from the dominance of the linear component in SRM damages and that will be

exploited in section 4.

From an abstract point of view, the model set-up and objectives that capture the nar-

ratives on whether the current generation should develop SRM capabilities for the future

generation define a sequential game with incomplete information. Its basic structure,

in particular the technology transfer decision, is a variant of the trust game by Kreps

(1990). However, the intergenerational decision problem here features two important

differences: One is the availability of the second instrument in the form of abatement,

the other the presence of exogenous uncertainty in the form of the random variable λ.

The proper solution concept for determining the equilibrium played by the current and

future generation is that of sub-game perfection (SP). The current generation, looking

forward, employs backward induction to solve problem (7): By determining the optimal

play of future generation (D∗|A, λ, β) in period 4 contingent on current generation’s

choices in periods 1 and 2 and nature’s move in period 3, it identifies its own optimal

play {Θ∗, A∗} in periods 1 and 2. However, it has to do so not knowing λ (see Figure

1). The equilibrium concept of SP will admit some combinations of abatement and

R&D choices but not others, and thus impose elementary consistency checks on current

society’s rational course of action.

3 The Benchmark

Using the framework presented above, the purpose of the following two sections is to ex-

plore the consistency of different conjectures regarding the current generation’s rational
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course of action.

We proceed by constructing and establishing, as the first building block, a suitable

benchmark case. Such a case is one in which (i) the bias of the future generation with

respect to damages from SRM is set to zero by assumption and (ii) where equilibrium

play features the current generation engaging in SRM R&D and the future generation

adopting a conditional deployment profile. This choice of a benchmark has three benefits:

The first is that in the comparisons in section 4 with situations involving a bias, the

strategic distortions introduced by the bias will be clearly identifiable. The second benefit

is that this benchmark case demonstrates the consistency of the “arming the future”

conjecture for a given parameter set and thus establishes one of the five conjectures

as a candidate for the rational course of action. Thirdly, the benchmark case also

demonstrates that even in the absence of the bias, the rational course of action involves

certain subtleties that the discussion on developing SRM technologies has so far failed

to identify.

In the spirit of keeping notation clutter to a minimum, we assign values to some

parameters. We restrict the level of abatement to the unit interval by setting R0 = 1.

Furthermore, marginal temperature and SRM damages will be regarded in terms of

abatement costs by assuming α = 1 such that abatement costs are simply A2. Finally,

we set λ = 1 such that λ̄ > 1 captures temperature damages for high carbon sensitivity,

relative to a fixed baseline. These restrictions preserve the relevant degrees of freedom

of the model and simplify the analysis substantially.

The benchmark case assumes the absence of a bias of the future generation with

respect to SRM damages, β = 0.9 To fix notation, equilibrium play in the benchmark

case is characterized by current generations SRM R&D decision Θ̂ and abatement level

Â as well as the future generation’s deployment profile D̂. For the conjecture of “arming

the future” to survive the consistency check then requires that equilibrium play can give

rise to a decision to conduct R&D on SRM, Θ̂ = 1, and an abatement level Â that

induces the future generation to choose the conditional deployment profile of the SRM

technology: D̂(Â, β = 0) = Dcond. Under these conditions, the current generation will

make SRM capabilities available to the future generation alongside an optimal abatement

effort to be determined, and the future generation will use SRM technologies only in case

that the climate system turns out to be carbon sensitive. The future generation, in other

words, will be “armed” against inadvertent outcomes in the climate system.

We begin the construction of the benchmark case with the convenient assumption

that the abatement level associated with equilibrium play in the “arming the future”

conjecture ought to be an interior solution. The interior solution to the current genera-

tion’s cost-minimization problem (7) assuming a conditional SRM deployment profile is

9In terms of interpretation, β = 0 could mean that the future generation has the same preferences as
current generation or that current generation is just ignorant of an existing asymmetry.
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given by

Acond =
2(1− p) + pρ

2(2− p)
. (9)

What parameter restrictions follow from designating Acond as our solution Â? These

parameter restrictions can be summarized as restrictions on the marginal damage from

SRM, ρ, and on the R&D cost of SRM, K. Note first that designating Acond as Â

requires that the abatement level Acond chosen by the current generation actually gives

rise to a conditional deployment profile by the future generation. Formally,

A(β = 0) < Acond < Ā(β = 0) . (10)

The level of abatement therefore has to lie in the middle segment defined in equation

(6). Designating Acond as Â therefore translates into a condition on the parameter ρ:

The marginal damages of SRM ρ have to fulfill that 1 < ρ < 2λ̄2

2+p(λ̄2−1)
. Together with

the economic viability condition for SRM ρ < 2αR0 = 2 (cf. section 2.1), this requires

that the marginal damages of SRM fulfill

ρ ∈
(

1 , min
{

2,
2λ̄2

2 + p(λ̄2 − 1)

})
(11)

in order for Acond to be feasible as Â. The intuition is straightforward: If ρ < 1,

SRM damages are too small to give rise to conditional deployment of SRM and an

unconditional deployment profile would be optimal instead. On the other hand, if ρ >
2λ̄2

2+p(λ̄2−1)
damages caused by SRM are too large and the optimal deployment profile

would be to never use the technology. In this last case the amount of abatement would

be larger than Ā.10

The restrictions on ρ ensure that the deployment profile chosen will indeed be con-

ditional on the realization of λ. Since these restriction cannot by themselves guarantee

that there is not some other abatement level that involves lower cost than Acond, restric-

tions on K are also required. To do so, we compare the total costs of the conditional

profile, and associated abatement level Acond, with the costs of the profile without SRM

deployment and the unconditional deployment profile (see section 2.2), with their re-

spective optimal abatement levels. First, the total costs of the conditional profile have

to be lower than those of the unconditional deployment profile. That is,

C(Θ = 1, Acond |Dcond) < C(Θ = 1, A |Dalways) , (12)

10It should not come as a surprise that the upper bound increases with λ̄; that is, if the climate system
is more climate sensitive, SRM damages can be larger and still allow for a conditional use profile. Less
obvious is the fact that the upper bound decreases with p. An increase in p makes the upper limit more
stringent because Acond increases with p, but Ā does not (whether the future generation deploys SRM
does not depend on ex-ante probabilities). As p increases, the current generation has an incentive to
increase Acond and minimize now higher expected future costs which in turn reduces the need for SRM
deployment.
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where C(Θ = 1, A |Dalways) are the minimum costs under the indiscriminate use of

SRM.11 This is equivalent12 to (ρ−1)2

2−p > 0, which is always satisfied. Restrictions on

K therefore need to come from the second comparison between the total costs of the

conditional profile and those of the no SRM deployment profile, taking into account that

conditional deployment requires investing in SRM R&D. For conditional deployment to

involve lower cost requires that

C(Θ = 1, Acond |Dcond) < C(Θ = 0, ANoR&D) |Dnever) . (13)

This requirement translates into a limit on how costly SRM R&D can be:

K < K̄ :=
p
(
ρ(2 + p(λ̄2 − 1))− 2λ̄2

)2
4(2− p)λ̄2(2 + p(λ̄2 − 1))

. (14)

Taking the above restrictions on ρ and K together, the parameter requirements for the

benchmark case are thus fully characterized. More importantly still, there is no evidence

of logical contradictions that would rule out equilibrium play according to the “arming

the future” conjecture if there is no bias among the future generation: There is nothing

inherently contradictory about the current generation providing both abatement and

SRM R&D to the future generation such that this technology can be used as a backstop

in the event of a carbon-sensitive climate.

Before exploring the impact of a bias regarding SRM use among the future gener-

ation, it is useful to point out two features of the benchmark equilibrium. One is the

abatement level: The abatement level Â = Acond is smaller than the abatement level

which would be optimal without SRM, Acond < ANoR&D. From an economic perspective,

this is not surprising: Since abatement is costly, the ability to counteract the adverse ef-

fects of a pollutant implies that a a higher pollution stock can be tolerated. Contrary to

the characterization as “moral hazard” (see introduction), this reduction in abatement

is therefore an optimal response. Whether the “moral hazard” argument has traction

in a setting in which there is a bias among generations is a key question of the fol-

lowing section: it is conceivable that strategic considerations may lead to a suboptimal

reduction on abatement, that is a level of abatement that is lower than Acond. The

second instructive feature of the benchmark are its comparative statics. The benchmark

abatement level Acond responds in a predictable fashion to an increasing likelihood of

a “climate emergency” as well as higher marginal damages of SRM. In both cases, we

11The function C(Θ, A |Dalways) is a convex quadratic function in A with first derivative −2(ρ − 1)
at A = A. This is negative due to the benchmark condition (4). This shows that A is the minimizer of
C(Θ = 1, A |Dalways) in [0, A].

12In this section, the cost functions simplify due to β = 0. For some β 6= 0, expression (7) evaluated at

the respective abatement levels yields C(Θ = 1, Acond |Dcond) = K+ 4(1−p)+pρ(4−pρ)
4(2−p) − pρ2

4λ̄2 (1−β2), C(Θ =

1, A |Dalways) = K+ 4−ρ(4−(2+p)ρ)
4

− pρ2

4λ̄2 −(ρ−1)ρβ+ (p+(2−p)λ̄2)ρ2

4λ̄2 β2 and C(Θ = 0, ANoR&D) |Dnever) =
1− 1

2+p(λ̄2−1)
.
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see higher levels of abatement since d
dpAcond > 0 and d

dρAcond > 0. The threshold level

of R&D costs also responds predictably to stronger climate damages (the willingness

to equip future generation with the technology increases) and higher marginal damages

of SRM (opposite effect) since K̄ reveal d
dλ̄
K̄ > 0 and d

dρK̄ < 0 where the inequalities

follow from (14). Its response to an increase in the probability of a “climate emergency”

is less intuitive, however: the sign of d
dpK̄ is ambiguous. Increases in p at small levels

of p tend to increase the threshold K̄ while the opposite is true at high levels of p. The

intuition behind this result is that if the “climate emergency” is a low-probability event,

the backstop characteristic of SRM dominates. An increase in the probability in this

region strengthens the incentives to provide SRM irrespective of R&D costs. It would

not make sense here to sacrifice too much in abatement cost but rather provide the

option to counteract climate damages if these turn out to be high. If, however, a cer-

tain threshold for p is reached the “climate emergency” is more prevalent and, in order

to minimize expected damages, the current generation draws larger levels of abatement.

But with higher abatement levels, the role for SRM is reduced and with it, the incentives

to pay for R&D. This intuition is reflected in ANoR&D being a concave function in p with

large increases for small p while Acond is convex in p, thus featuring higher increases for

higher levels of the p. The surprising result here is that there is no monotonic relation-

ship between the severity of the responsive climate and the willingness to develop the

technology. While the incentives to provide the future generation with SRM increase

in the marginal damages λ̄, that is not necessarily the case in terms of increases in the

likelihood p of the “climate emergency”.

4 Strategic distortions

Having established the benchmark equilibrium, we can now study how the rational

course of action is impacted when the current generation anticipates a bias of the future

generation when assessing SRM damages from geoengineering technologies relative to

temperature damages from the carbon stock. In particular, we are interested in the

effects on the current generation’s R&D decision and abatement choice {Θ̂, Â}. In the

interest of space, we immediately proceed to a full characterization of the intergener-

ational carbon stock and technology transfer game in β-K-space before providing the

analysis that underpins this characterization. We then relate this characterization to

the question of which of the five conjectures on current society’s rational course of ac-

tion survive the consistency test. We find that only some conjectures pass this test.

However, a sixth conjecture that has so far not been discussed in the literature emerges

as a candidate for how current society could rationally approach this intergenerational

decision.
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4.1 The full characterization

Figure 2 depicts the subgame perfect equilibria of the intergenerational carbon stock and

technology transfer game in β-K-space. The x-axis is defined by the bias parameter β,

which denotes the degree to which the future generation discounts SRM damages vis-a-

vis temperature damages relative to the current generation. The y-axis is defined by the

cost parameter K, which denotes how much the current generation has to sacrifice to

provide the future generation with SRM technologies. The upper bound of the x-axis,

β = 1, refers to a level of bias at which the future generation attaches no damages to

SRM deployment and therefore compensates temperature damages completely through

geoengineering. The upper bound of the y-axis, K̄, derives from expression (14) of

the benchmark case and is the level of R&D costs at which the current generation is

indifferent between providing the technology and not.

The benchmark case can be seen in Figure 2 as the line for which β = 0, the y-axis.

The area to the right of the benchmark consists of four distinct zones. The north-east of

the area is taken up by zone I in which no R&D is provided for the future generation, i.e.

Θ = 0. This zone is associated with a fixed abatement level ANoR&D irrespective of the

bias β because the future generation’s relative valuation of SRM damages is immaterial

when no SRM technology is provided. On the y-axis, the boundary of this zone, KBan,

naturally starts at K̄ for β = 0 (see above) and decreases as β increases. As a result,

zone I takes up an increasing amount of parameter space for higher levels of bias β. The

other three zones, namely zones II, III, and IV, are all associated with the provision of

R&D by the current generation, i.e. Θ = 1, but differ with respect to the abatement

levels chosen by the current and the deployment profiles chosen by the future generation.

The boundaries between zones II and III and zones III and IV are each defined by a

critical threshold condition on β and do not depend on K.

4.2 Equilibria under SRM R&D (Θ = 1)

With these basic features of Figure 2 established, we now proceed to explain how its

geometry depends on the bias parameter β and the cost of R&D, K. To do so, assume

for the moment that R&D is always carried out, i.e. Θ = 1.

Small bias (zone II) Then, starting from the benchmark case (β = 0), we can an-

alyze what happens to abatement and deployment as β increases. Recall that in the

benchmark case, equilibrium play consists of abatement of amount Â = Acond by the

current generation and of a conditional deployment profile Dcond by the future genera-

tion. Also recall from section 2.2 that as long as the conditional deployment profile is

the future generation’s best response, the current generation will find it optimal to stick

to the benchmark level of abatement Â even at higher levels of β.

Expression (6) in section 2 defined the conditions under which sticking to the condi-
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Figure 2: Equilibria in the intergenerational decision problem. The axes are the bias of the
future generation β and the costs of SRM R&D K.

tional deployment profile is no longer a best response for the future generation. These

conditions were set by two thresholds regarding the current generation’s abatement, A

and Ā. Observe now that both thresholds increase in β. As a result, the abatement

level Â that gave rise to conditional deployment at low levels of β can now give rise to

unconditional deployment as a best response. This is the case if β exceeds some critical

value β. The critical value is the level of β at which A(β) exceeds Â = Acond and is

given by

β :=
2(ρ− 1)

(2− p)ρ
. (15)

Formally, the best-response deployment profile follows

D∗(Â, β) =

Dcond 0 ≤ β ≤ β

Dalways β < β ≤ 1 .
(16)

A straightforward implication of (16) and the assumption of an interior equilibrium for

the benchmark case, which is associated with ρ > 1 in equation (11), is the existence of a

non-empty interval of β ∈ [0, β] for which the benchmark solution will be the equilibrium

play despite the presence of a bias. For the geometry of Figure 2, β defines the boundary

between zones II and III and implies that zone II always exists and that equilibrium play

within zone II follows the benchmark case.

Large bias (zone IV) Starting from the opposite end of the interval of bias, as

announced in the beginning of this section, we now examine optimal play for the case

of β = 1 when Θ = 1. Again, from expression (6) and (5) in section 2, it is clear that
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the future generation will always deploy SRM in a way to fully offset the temperature

damages. Deployment will therefore be D = 1 − A irrespective of λ. The current

generation’s best response to this is to choose abatement level Aalways = ρ
2 because

Aalways minimizes the total cost to the current generation in the face of unconditional

deployment in the future, given that R&D is carried out. This abatement level is strictly

greater than that which is optimal under conditional deployment, which reflects that it

is cheaper for the current generation to counteract the future generation’s “abuse” of

SRM technologies through increased abatement, and hence less SRM deployment. Just

as with the benchmark case, the question arises over what interval of β this equilibrium

play persists, now going in the opposite direction (decreasing β). In the benchmark

case, we observed that as long as conditional deployment remained the best response of

the future generation, the current generation did not adjust its abatement. The same

logic applies here: As long as unconditional deployment remains the best response of

the future generation, the current generation does not deviate from Aalways. How low

can β be for unconditional deployment to remain the best response to Aalways? Broadly

analogously to the previous case, the critical value now is the level of β at which A(β)

falls below Aalways and is given by

β̄ :=
2(ρ− 1)

ρ
. (17)

Casual inspection makes clear that there is always a non-empty interval of β ∈ [β̄, 1] for

which a combination of abatement at Aalways by the current generation and unconditional

deployment by the future generation will be the equilibrium play when Θ = 1. For the

geometry of Figure 2, β̄ defines the boundary between zones IV and III and implies that

zone IV always exists.

Medium bias - abatement as a strategic instrument (zone III) The strategi-

cally subtlest case arises for degrees of bias between the two boundaries β and β̄. This

is always a non-empty interval (except for the degenerate case that p = 1) as is obvious

from inspecting the boundary expressions. Zone III therefore exists. In order to under-

stand equilibrium play in this interval, recall that β denoted the threshold for values

of β above which Acond no longer induced conditional deployment as a best response

and that β̄ denoted the threshold for values of β below which Aalways no longer induced

unconditional deployment as a best response. To find the amount for abatement that is

both cost-minimizing and subgame-perfect in this interval, it is helpful to start from the

threshold A which separates those abatement levels that induce unconditional (to the

left of A) from those that induce conditional deployment (to the right of A). It should be

clear that for unconditional deployment, if subgame perfection was not a requirement,

the cost-minimizing level of abatement Aalways would lie to the right of A. Subgame

perfection in this β-zone, however, requires an abatement level not above A and thus
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smaller than Aalways. At A, marginal total costs are still decreasing. Therefore, A must

be the cost-minimizing subgame perfect choice of abatement if the current generation

wants to induce unconditional deployment.

The case of the current generation wanting to induce conditional deployment is a

mirror image of the case above: If subgame perfection was not a requirement, the cost-

minimizing level of abatement Acond would lie to the left of A. However, subgame

perfection in this zone requires an abatement level not below A and thus greater than

Acond. At A, marginal total costs are already increasing. Therefore, A must be the

cost-minimizing subgame perfect choice of abatement if the current generation wants

to induce conditional deployment. Taken together, A is the cost-minimizing subgame

perfect choice of abatement in zone III. At A, the conditional and unconditional deploy-

ment profiles become indistinguishable because the level of unconditional deployment in

the case of carbon-insensitive climate becomes zero. Note that in contrast to the cost-

minimizing subgame perfect abatement levels in zones II and IV which are independent

of β, equilibrium play in zone III features abatement that increases in β.

We now have a complete picture of equilibrium abatement and SRM deployment in

zones II, III, and IV, i.e. under the assumption that R&D is carried out by the current

generation.13 What remains to be shown is under what conditions the provision of

R&D indeed constitutes a rational course of action by the current generation. Given the

presence of strategic distortions in equilibrium play in zones II, III, and IV depending

on the degree of the bias β, not providing SRM technologies in the first place may be

the cost-minizing choice. The key determinant of this decision is the cost of R&D. To

this we turn now.

4.3 Equilibrium R&D decision (Θ = 0 vs. Θ = 1)

Recall from above that if no R&D is carried out (Θ = 0), then there is a unique abatement

level ANoR&D chosen by the current generation. The future generation is forced into never

deploying SRM. Therefore, D = 0. The expected total costs from this course of action

are C(Θ = 0, ANoR&D|Dnever). For equilibrium play under Θ = 1 to be selected as the

rational course of action, it needs to feature lower cost than C(Θ = 0, ANoR&D|Dnever)

despite involving R&D cost K. What is required therefore is to compare total expected

costs in each of the zones II, III, and IV with the total expected costs from not carrying

out R&D and to determine the condition on K for R&D still to be provided. The

13An interested reader might ask how the thresholds that separate zones II, III and IV, β and β̄,

depend on model parameters. We have d
dp
β > 0 and d

dρ
β > 0. Increasing technology damages and

likelihood of bad outcomes thus both expand the first region. The intuition is that both changes lead to
a higher benchmark level Â which is then more robust to deviations in SRM damage assessment β. The
second threshold, β̄, depends only on ρ. The derivative is d

dρ
β̄ > 0 and larger than d

dρ
β because higher

SRM damages reduce its desirability stronger if it is to be always deployed compared to conditional
deployment. Thus, increasing damages of the technology make region IV smaller and enlarge both
region II and region III.
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condition that results for each zone each constitutes a segment of the boundary KBan in

Figure 2 that separates the no-R&D zone I from the three R&D zones II, III, and IV.

We first compare the boundary between zone II and zone I. The costs we have to

compare are C(Θ = 1, Acond|Dcond) and C(Θ = 0, ANoR&D|Dnever). We are looking for

a condition under which no R&D involves lower cost than providing R&D together with

abatement of amount Acond. Simple algebraic operations translate this comparison into

a condition on K of the form

K > KBan
II (β) = K̄ − pρ2

4λ̄2
β2. (18)

The boundary between zone III and zone I involves a comparison of costs C(Θ =

1, A|Dcond), which are by the definition of A equal to C(Θ = 1, A|Dalways), and C(Θ =

0, ANoR&D|Dnever). For no R&D to be cost-minimizing requires that

K > KBan
III (β) = K̄III −

(
p+ (2− p)λ̄2

)
ρ2

4λ̄2
(β − βIII)2 (19)

with βIII = ρ−1
ρ

2λ̄2

2λ̄2−p(λ̄2−1)
and K̄III = K̄ − p(ρ−1)

(2−p)(2λ̄2−p(λ̄2−1))
. It is easy to show that

βIII ∈
[
0, β
]
.

The boundary between zone IV and zone I involves a comparison of costs C(Θ =

1, Aalways|Dalways) and C(Θ = 0, ANoR&D|Dnever). For no R&D to be cost-minimizing

requires that

K > KBan
IV (β) = K̄IV −

p+ (1− p)λ̄2

4λ̄2
β2 (20)

where K̄IV = K̄ + (1−p)(ρ−1)2

2−p .

Note that the segments derived above form a continuous boundary KBan since

KBan
II = KBan

III and KBan
III = KBan

IV at the relevant thresholds β and β̄, respectively. Also

note that KBan varies monotonously in the bias β since d
dβK

Ban
i < 0 for all segments i.

This confirms our earlier intuition that for the same level of R&D costs K, an increase

in the bias β renders not carrying out R&D a relative more attractive course of action

because the strategic distortions between the generations increase in β.14

14An interested reader might again ask how the boundary KBan depends on key model parameter.
While the comparative statics are algebraically messy, we can build on the continuity and monotonicity of
the boundary observed above using a simple trick. This trick involves examining the comparative statics
of point KBan

IV (β = 1), i.e. the point at which the boundary coincides with the upper bound on the bias
β. By continuity and monotonicity, the comparative statics of this point are qualititively the same as
the comparative statics of the entire boundary. The comparative statics are that d

dp
KBan
IV (β = 1) > 0,

d
dλ̄
KBan
IV (β = 1) > 0 and d

dρ
KBan
IV (β = 1) < 0. A greater likelihood or severity of a “climate emergency”

increase the relative size of those zones that involve R&D into SRM while higher SRM damages have
the opposite effect.
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4.4 Surviving conjectures

In this final substantive section of the paper, we relate the full characterization of the

intergenerational carbon stock and technology transfer game back to the conjectures

about the rational course of action for current society that appear in the current liter-

ature and that we reviewed in the introduction. Based on the preceding analysis, it is

now possible to make statements about the degree to which different conjectures can be

replicated in a simple model that captures the four common elements of (i) intergener-

ational altruism, (ii) possible pro-SRM bias, (iii) costly abatement and R&D, and (iv)

intergenerational transmission of carbon stocks and technology under uncertainty about

the climate system.

We identified five conjectures that share these common elements, yet differ markedly

in their conclusions. One conjecture termed “arming the future” postulates that current

society will find it rational to provide SRM technologies as a backstop for inadvertent

climate outcomes while providing significant abatement. We were able to replicate this

conjecture without problems and used it as the benchmark case for understanding the

strategic distortions introduced by anticipating a bias among the future generation that

implicitly favors the deployment of SRM. By contrast, the “abatement invariance” con-

jecture, namely that abatement should be unaffected by the decision to conduct R&D

into SRM (Bunzl 2009), does not pass the consistency check of our model. The common

elements that underpin all conjectures make it almost inevitable that abatement will

change as soon as a decision in favor of SRM is taken since both abatement and SRM

address the same problem, but feature different cost structures. We also fail to find

support for the hypothesis that the anticipation of a large bias among the future gener-

ation that favors SRM deployment leads to the current generation slashing abatement.

The reason is that if the current generation cares sufficiently for the future generation

to take abatement action today, then it will also care sufficiently to take into account

the negative side effects of large-scale geoengineering that would result from slashing

abatement.

On the same grounds that challenge the last two conjectures, the model generates

a much more upbeat view about the link between SRM R&D and abatement in the

presence of a bias. As zone II in Figure 2 illustrates, if the bias is sufficiently weak

(β < β), the benchmark abatement level Â will be maintained in equilibrium. In zone

III with β < β ≤ β̄, the bias is strong enough to render the initial abatement level Â

inconsistent with conditional use by future generation. Anticipating that the technology

will be used indiscriminately, current generation reacts by increasing abatement to the

level A(β) at which Dcond and Dalways merge. The larger the bias β, the larger the

necessary increase in abatement in order to induce the future generation into this specific

use of the SRM technology. Finally, in zone IV (β > β̄), a further increase of β has no

additional impact on the abatement level which remains at Aalways, irrespective of β.
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Interestingly, Aalways can be even higher than the technology denial abatement level

ANoR&D. We have

Aalways > ANoR&D if and only if ρ >
2 + 2p(λ̄2 − 1)

2 + p(λ̄2 − 1)
. (21)

This is, of course, only meaningful if this condition does not preclude technology pro-

vision equilibria with Θ = 1. We can actually find equilibria in zone IV that feature

“overabatement” relative to ANoR&D.15 Figure 3 summarizes the abatement level over

all equilibria.

Figure 3: Abatement in case of Θ = 1 as a function of the bias β. Whether Aalways is larger or
smaller than the optimal abatement level under no technology provision, ANoR&D, depends on
model parameter.

In addition to this new equilibrium with SRM R&D provision and abatement in-

creases, Figure 2 captures another consistent conjecture supported by the premises of

the model. This is that current society will rationally choose not to engage in SRM R&D

activities, i.e. a ban on SRM R&D is another course of action that our model confirms

in a robust fashion (zone I). This course of action becomes particularly relevant for a

large anticipated bias and for high development costs associated with SRM technologies.

We reserve a final comment on the conjecture that investment in SRM R&D will

reduce abatement and thus give rise to “moral hazard”. As we point out in section 3,

comparing abatement levels under positive and no R&D in the benchmark case shows

that abatement in the presence of SRM R&D is smaller. However, rather than consti-

tuting a situation where an economic party is imposing a risk burden on some other

15Even though ρ > 2+2p(λ̄2−1)

2+p(λ̄2−1)
implies that KBan

IV (β = 1) < 0 and thus a higher abatement level

Aalways > ANoR&D will not realize for β = 1, there are equilibria with β < 1. Take, for instance, p = 1
10

,
λ̄ = 2 and ρ = 1.15. This leads to Aalways > ANoR&D; at the same time KBan

IV (β̄) > 0, implying that the
proposed equilibrium with Θ = 1 and A = Aalways > ANoR&D exists in zone IV.
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party without proper compensation, this is an efficient decision that reflects a rational

readjustment of its abatement efforts by the current generation.

In sum, our model is able to successfully replicate three out of the five conjectures re-

viewed in the introduction. “Arming the future”, a R&D ban, and abatement reductions

relative to a situation with no SRM R&D all constitute courses of action for current soci-

ety that a model capturing the common elements among the conjectures can generate as

consistent conclusions. Two conjectures, one postulating ”abatement invariance” with

respect to SRM R&D decisions and one postulating a drastic abatement reduction by

current society, cannot be replicated and appear inconsistent with the basic premises in

the literature. At a minimum, this means that auxiliary hypotheses and assumptions are

necessary in order to demonstrate the consistency of these conjectures. At a maximum,

the conclusion is that these conjectures are erroneous. In addition to the replication test

of five existing conjectures, our model also shows that the same four common elements

that underpin these conjectures give rise to a novel conjecture: It can be a rational

course of action of current society to provide more abatement the higher the degree of

anticipated bias. In fact, it is possible for this optimal abatement level to even exceed

the level that society would rationally provide in the absence of SRM R&D.

5 Concluding discussion

If feasible, human interventions into the Earth’s climate system would represent a novel

method for future generations to limit the damages of the atmospheric carbon stock that

they will inherit from current society. Such interventions, running under the term of

”geoengineering” or ”climate engineering”, would create undesirable side effects of their

own, but could conceivably be considered a realistic option. Solar radiation management

(SRM) technologies are considered one of the likeliest forms of geoengineering to be

developed and deployed.

R&D into SRM raises the possibility of passing on to the next generation not just

abatement efforts in the form of a carbon stock that is below business-as-usual. In ad-

dition, or instead, the current generation could pass on a technology that can partially

remedy the damages of excessive atmospheric carbon stocks. Natural scientists, philoso-

phers, ethicists, and other scholars have started to develop several conjectures on how

current society should decide on the right combination of SRM R&D and abatement

efforts. By contrast, economists have so far not examined the intergenerational issues

implicit in this technological possibility. This is despite the fact that economics has the

potential to contribute substantially to the discussion thanks to its powerful conceptual

tools for the analysis of intergenerational transfers. It is also despite the fact that the

issue of intergenerational technology transfers to address the intergenerational transfer

of stock pollution has so far attracted little attention in economics, in contrast to other

types of intergenerational transfers.

38



Paper 1 · The Intergenerational Transfer of SRM Capabilities

The results of the present paper are a first step towards addressing the intergener-

ational issues of SRM R&D in the context of climate change. By developing a simple

analytical model that formalizes several common elements in the wider debate about the

correct course of action for the current generation in this intergenerational game, we har-

ness the powers of game theoretic analysis for the purpose of understanding more about

the problem. The comparison of the diverse conjectures about the rational course of ac-

tion to develop SRM capabilities and the attempts to replicate their logic in a tractable

model adds rigor to the debate and allows distinguishing between consistent conjectures

and those that require either auxiliary hypotheses or correction. The same rigor allows

us to identify solutions that have so far escaped attention, such as our finding that

abatement may actually be higher when SRM capabilities are developed, and challenges

loose argumentation, such as the claim regarding the presence of “moral hazard”.

For the economic debate, this paper represents a starting point for considering more

systematically than before how to integrate the development of technological capabilities

into intergenerational models. This integration is far from complete. It also adds to an

emerging literature that examines the potential role of behavioral factors such as hyper-

bolic discounting, paternalism, and bounded rationality in the context of interactions

across generations. The context of geoengineering provides a conducive and potentially

consequential setting for more research of this type.
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Environmental Technologies ∗
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Abstract

The innovation of environmental technologies is a key strategy against environmen-
tal problems, requiring however substantial R&D expenditures. This paper focuses
on a specific mechanism that may influence countries’ innovation incentives, thus
impeding global optimal R&D outcomes. In this mechanism, the outlook of future
conflicts about the technology deployment directly impacts on the willingness to
sacrifice means for innovation. The possible deployment conflicts are free-riding
on other countries’ technology deployment and, recently discussed, so-called ’free-
driving’ (Weitzman 2012) that is expected to occur for technologies with low deploy-
ment cost and heterogeneous preferences like stratospheric aerosol injection, a ’solar
radiation management’ technique (Keith 2013). This paper develops a simple two
stage model for analyzing how innovation incentives of two asymmetric countries are
shaped by taking into account future deployment equilibria. The framework gives
rise to rich findings, demonstrating that future deployment conflicts pull forward to
the R&D decision. It can be shown that the outlook of free-riding behavior in the
technology deployment weakens the incentives for innovation, underpinning a narra-
tive by Popp (2010). More surprisingly and novel, the repercussions of free-driving
on R&D incentives are sharply different. The paper demonstrates the possibility
of superoptimal innovation incentives as well as countries’ willingness to undertake
counter-R&D in order to preclude a ’free-driver’ from the option to deploy the tech-
nology.
Keywords: Environmental Technologies; Innovation; R&D Incentives; Public Goods;
Strategic Conflicts; Climate Engineering.
JEL Codes: Q54; Q55; Q52.

1 Introduction

Technological innovation plays a key role in combating environmental problems. Im-

portant examples include CO2 abatement technologies (Bosetti et al. 2009; Perino and

Requate 2012; Poyago-Theotoky 2007) and the development of ’breakthrough technolo-

gies’, for instance no-emission energy sources (Barrett 2006; Hoffert et al. 2002). A

defining characteristic of novel technologies is that they require costly R&D to become

available (Popp 2006; Harstad 2012; Golombek and Hoel 2011). In the absence of a

∗I thank conference participants at the World Congress of Environmental and Resource Economists
(WCERE) 2014 in Istanbul, the AUROE Young Academics Workshop 2014 in Kiel, seminar participants
at the FZU-ZEW Monthly Brown Bag Seminar, the Brown Bag Seminar at the Chair of Environmental
Economics, and participants of the climate engineering summer schools at Harvard University 2013 and
Heidelberg 2014 for helpful comments.
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supranational entity undertaking or enforcing the development of these technologies, the

main burden for R&D expenditures falls on countries. Domestic interests and strategic

considerations, however, often stand in the way of implementing actions that would im-

prove global well-being. The prospects for successful development of potentially welfare

enhancing environmental technologies thus crucially depend on countries’ incentives to

engage in R&D.

In this R&D game, incentives can deviate from the global optimal for different rea-

sons. A possible cause for an overall insufficient willingness to develop technologies is the

public good nature of knowledge (Stiglitz 1999), leading to free-riding on other countries’

R&D efforts (Popp 2010; Hall and Helmers 2013). Another reason for inefficiencies in

the technological innovation process is that future deployment of the technologies, usu-

ally involving significant externalities, itself is prone to strategic considerations. Such

outlook of suboptimal deployment patterns, in turn, may also shape the incentives for

technology R&D. This mechanism has been explicitly raised by Popp (2010)1 and is

present, yet less prominently, in a couple of other contributions (Hall and Helmers 2013;

Perino and Requate 2012; Barrett 2006; Hoel and De Zeeuw 2010). It is this impact of

anticipated technology deployment profiles on R&D incentives that is the focus of the

present inquiry.

The mechanism described by Popp (2010) is that R&D incentives are weakened due

to the anticipation of free-riding behavior in future use of the technology. But free-

riding is not the only deviation from global optimal deployment that can occur with

environmental technologies. To explore the possibility of other deployment conflicts, it

is helpful to focus on a specific set of environmental technologies. ’Climate engineering’

(CE), or ’geoengineering’, is the “deliberate large-scale manipulation of the planetary

environment to counteract anthropogenic climate change” (Shepherd 2009). The main

categories are so-called carbon dioxide removal (CDR) techniques that aim at reducing

the stock of greenhouse gases in the atmosphere, for instance by removing CO2 from

the ambient air by means of chemicals (’direct air capture’, see Keith et al. 2006), and

solar radiation management (SRM) techniques that would alter the earth’s radiation

balance, for instance by the release of sulfur particles (’stratospheric aerosol injection’,

see Caldeira et al. 2013).

CE technologies raise a set of new economical and political questions (Barrett 2008;

Finus et al. 2013; Victor 2008). While CDR techniques like direct air capture may, in

terms of the surrounding incentive structure, be very similar to the mitigation of green-

house gases and thus prone to free-riding (Chen and Tavoni 2013), the low deployment

costs together with the necessarily global effect of SRM are expected to induce a novel

strategic conflict, ’free driving’ (Weitzman 2012): If preferences for global cooling are

different across countries, the country aiming at the strongest temperature reduction,

1“Thus, without appropriate policy interventions, the market for technologies that reduce emissions
will be limited, reducing incentives to develop such technologies” (Popp 2010).
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the ’free-driver’, will use SRM as to maximize its own payoffs; due to the low deployment

costs, the resulting amount of cooling may considerably exceed the level of cooling other

countries prefer. The domination of the outcome by one single country jeopardizes the

global benefits SRM could provide if deployed as to maximize global welfare.

The present paper asks about the repercussions of these strategic conflicts, free-riding

and free-driving, on the incentives for technological innovation. For this purpose, it de-

velops a simple game-theoretical framework in which two countries non-cooperatively

play a threshold R&D game in the first period and, conditional on successful R&D,

a deployment game for a transboundary environmental technology in the second pe-

riod. The general set-up combines well-known building blocks from the literature: The

two stage R&D game structure is borrowed from the industrial organization literature

(D’Aspremont and Jacquemin 1988; Kamien et al. 1992), the threshold R&D structure

stems from Barrett (2006), and the technology deployment game is a standard public

good game (Barrett 1994; Finus and Rübbelke 2013; Diamantoudi and Sartzetakis 2006)

in which the countries have heterogeneous preferences for the technology deployment

(McGinty 2006).

CE technologies are a fitting illustration for this general framework. Different tech-

nologies are expected to bring about the different strategic conflicts free-riding and free-

driving. Also, CE technologies are not developed yet and thus require sufficient R&D

incentives to become available.

The paper makes three main contributions. The first contribution is to demonstrate

that free-rider and free-driver equilibria can emerge in the same standard public good

framework. In comparison to Weitzman (2012), the smooth (inverse U-shaped) benefit

function is more tractable than a kinked benefit function. Also, the cost parameter in

the present framework plays an important and informative role, while Weitzman (2012)

abstracts from technology deployment costs. The second contribution is to provide a

simple and tractable framework to analyze the impact of anticipated deployment equi-

libria on the willingness to undertake R&D. In particular, the framework is capable

of underpinning the narrative of Popp (2010) of future free-riding weakening today’s

innovation incentives. The third contribution of this paper is to offer a toolkit for dis-

entangling R&D incentives into a ’non-spillover technology’ part and a pure ’technology

interaction’ part and thus enabling a deeper understanding of R&D.

The framework produces novel and partially surprising findings. The main message

is that strategic conflicts looming on the horizon directly impact on RnD incentives. It

is this mechanism at work that weakens R&D incentives due to the anticipation of free-

riding. What is more to it, free-driving – itself being a non-standard strategic outcome

– has striking implications for R&D: Not only are superoptimal innovation incentives

possible for a low cost technology like stratospheric aerosol injection, it is also possible

that a country is willing to undertake ’counter-R&D’ in order to preclude a potential free-

driver from the technological option. What makes the possible outcomes of the model
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more rich and subtle is the finding that even in free-driver equilibria, if the divergence in

preferences is not so extreme as to cause counter-R&D, the ’dominated’ country benefits

even more of the transboundary nature of the technology than the free-driver does.

The present study makes contributions to three strands of literature. The first strand

of literature revolves around the implications of externalities on strategic interaction.

This literature can be applied, as the present paper does, to technology deployment,

but the most common field of application in environmental economics is mitigation

of greenhouse gas emissions. This literature started from Barrett (1994) and mostly

developed into the direction of International Environmental Agreements (for a survey

see Wagner 2001). The present paper abstracts from any possible form of treaty, issue-

linkage and governance. The topic of asymmetric countries, a crucial feature of the

present study, has received attention in Barrett (2001) and McGinty (2006).

The second strand of literature this paper contributes to is environmental innovation.

This environmental R&D can either be analyzed in a social planner framework (Goeschl

and Perino 2007; Teubal 1978), with regard to an intergenerational dimension (Goeschl

et al. 2013), or – most common – the international dimension. The latter literature is

closely connected to the industrial organization literature on R&D games (Brander and

Spencer 1983; D’Aspremont and Jacquemin 1988; Kamien et al. 1992; Cozzi 1999) and

covers different forms of environmental innovation: R&D can be cost-reducing (Bosetti et

al. 2009; Hall and Helmers 2013), pollution-reducing (Perino and Requate 2012; Poyago-

Theotoky 2007) or, as in the present paper, technology enabling (Barrett 2006; Hoel and

De Zeeuw 2010).

Finally, this paper adds to the literature on the economics of CE. Most of the ex-

isiting literature is interested in the interplay of SRM and abatement efforts, focusing

either on intergenerational heterogeneity (Goeschl et al. 2013) or heterogeneity across

countries (Moreno-Cruz 2010; Manoussi and Xepapadeas 2014). For the sake of simplic-

ity, the present paper abstracts from the interplay of SRM with abatement. It is closely

connected to Weitzman (2012) who, for the fist time, analyzed ’free-driving’ behavior in

SRM deployment. The new angle the present paper adds to Weitzman (2012) is to put

the repercussions on R&D incentives center stage.

The organization of the paper is as follows. Section 2 develops the simple game-

theoretical setting in which two asymmetric countries play a non-cooperative R&D and

technology deployment game. Section 3 characterizes deployment equilibria for the case

of symmetric countries and analyzes the resulting R&D incentives. These findings serve

as a useful benchmark for the general case of asymmetric countries that is the focus of

section 4, which is the main section of this paper. Section 5 demonstrates how R&D

incentives can be disentangled into two effects that enhance the understanding of the

complex findings of section 4. Finally, section 6 concludes.
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2 The Model

Two countries play a non-cooperative R&D and technology deployment game. In stage

one, countries simultaneously make their individual R&D investments for an environmen-

tal technology. The R&D game is a threshold public good game with perfect spillovers:

If the sum of R&D contributions exceeds a (commonly known) threshold, the technology

is in the second stage available to both countries; otherwise no country can use it. Con-

ditional on successful R&D, countries in the second stage simultaneously choose their

deployment levels of the technology. This technology deployment game is a standard

public good game with perfect spillovers. Each country bears the full (quadratic) costs

of its technology deployment; in contrast to that and as usual in public good games,

the other country cannot be excluded form the (inverse U-shaped) benefits. But, due

to heterogeneity in the benefit-function, a central feature of the model, this has a flip-

side. Non-excludability also implies that a country cannot protect against undesired

high technology deployment levels.

The set-up combines different well-established building blocks. The general two-

period setting with R&D and successive deployment stage, here transboundary technol-

ogy use instead of Cournot competition, is borrowed from seminal work in the industrial

organization literature (D’Aspremont and Jacquemin 1988; Kamien et al. 1992). The

design of the threshold R&D process for a new environmental technology, but without

treaty formation, is taken from Barrett (2006).

This public good structure with asymmetric benefits is quite general and capable

of embracing a variety of technologies with transboundary effects and heterogeneous

preferences. A particular fitting set of technologies however are the above mentioned

climate engineering (CE) technologies.2 What makes CE a good working example is

that, first, these technologies are not developed yet so that the relevant R&D question is

whether they are made available – in contrast to cost-reducing R&D (for instance Hall

and Helmers 2013). Second, CE deployment fits well into the public good structure:

Deployment costs are borne by the deploying country alone while the effect of reduced

GHG levels and temperatures is inevitably global. Finally, and central in this paper,

countries differ in their assessment of an ’optimal climate’ (Rosenzweig and Parry 1994;

Porter et al. 2014; Manoussi and Xepapadeas 2014; Heyen et al. 2015); as a consequence,

the assumption of heterogeneous preferences for the public gob3 is particular reasonable

here.

The magnitude of deployment costs will crucially shape the outcome of the game.

Direct air capture, a CE technology of the carbon dioxide removal (CDR) class, is a

2It should be noted that the simple framework deliberately abstracts from dissimilarities of CE
technologies – how quickly they act and how big their unintended side-effects will be – that are crucial
in other contexts.

3“A pure public gob is a pure public good (more of it is better) for some people under some circum-
stances and a pure public bad (more of it is worse) for some other people under some other circum-
stances.” (Weitzman 2012)
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suited example for an environmental technology with rather high deployment costs; in

contrast, stratospheric aerosol injection, the best-known proposal for a solar radiation

management (SRM) technology, is a good example of a low deployment cost technology.

The rest of this paper will constantly refer to these two CE technologies.

The solution concept of the model is standard subgame perfectness (SPNE). The

natural tool to solve the game is thus by backward induction. In the following we will

explain the two stages of the model in detail, starting with the technology deployment

stage (2.1) and then turning to the R&D stage (2.2).

2.1 Technology deployment stage

In case of successful R&D, countries in the second period choose their technology level

qi ≥ 0 simultaneously and non-cooperatively. In terms of the working example CE, think

of qi as the reduction in global temperatures that is accomplished by either removing

CO2 from the atmosphere (direct air capture) or putting sulfur into the stratosphere

(stratospheric aerosol injection). The cost and benefit structure is of the quadratic-

quadratic type (Barrett 1994; Finus and Rübbelke 2013; Diamantoudi and Sartzetakis

2006). The cost function, the same for both countries, is

C(qi) =
c

2
q2
i , i = 1, 2 (1)

with c > 0. Costs only depend on the private contribution qi. In contrast, benefits

feature the usual public good structure with perfect spillovers, such that benefits are a

function of the total technology level Q = q1 + q2,

Bi(Q) = b

(
aiQ−

1

2
Q2

)
(2)

with b > 0 and ai > 0. The marginal benefits dBi/dQ vanish at Q = ai which justifies

calling ai country i’s preferred technology level. A central component of the model is

to allow for a1 6= a2 and hence heterogeneous technology preferences. Without loss

of generality suppose a1 ≤ a2. Instead of a1 and a2, it is often more meaningful to

focus on the mean technology optimum ā = (a1 + a2)/2 and the preference asymmetry

a∆ = (a2 − a1)/2. The condition ai > 0 translates into the restriction a∆ < ā.

The countries choose their deployment levels non-cooperatively so that standard

Nash equilibrium is the appropriate solution concept. Denote the Nash equilibrium

of this game, to be determined in section 3 and 4, by (q∗1, q
∗
2). The social optimal

configuration is (q∗∗1 , q
∗∗
2 ). The payoff of country i of this technology deployment game

is denoted πi(q1, q2) = B(q1 + q2)− C(qi).
4

4The reason to consider only the second stage payoffs, and not total payoffs that would also take into
account R&D expenditures, is the following: The main focus of this paper is on R&D incentives, and
the second period payoffs crucially shape the willingness to undertake costly R&D.
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2.2 R&D stage

In the first period, countries simultaneously choose their R&D levels ri ≥ 0 (the possi-

bility of non-negative R&D contributions will be discussed in section 4.3). As in Barrett

(2006), R&D is a threshold public good game with perfect knowledge spillovers. If

r1 + r2 ≥ R̄, the technology is available to both countries. If r1 + r2 < R̄, neither coun-

try has access to the technology. The threshold R̄ is common knowledge. Modeling R&D

as a threshold process, and not as cost-reducing R&D (Hoel and De Zeeuw 2010; Hall

and Helmers 2013; Bosetti et al. 2009) or emission-reducing (Poyago-Theotoky 2007;

Perino and Requate 2012), is a realistic assumption in the context of technologies like

direct air capture and stratospheric aerosol injection because CE technologies are at

present merely theoretical concepts. The countries choose their individual R&D levels

non-cooperatively so that, again, standard Nash equilibrium is the appropriate solution

concept.

The analysis of R&D incentives crucially depends on how much the countries are

willing to sacrifice to have the environmental technology available.

Definition 1. Country i’s willingness to pay for the technology (wtp) is Ri = πi(q
∗
1, q
∗
2)−

πi(0, 0), where (q∗1, q
∗
2) is the Nash equilibrium of the technology deployment game in the

second period. The total willingness to pay is R = R1 + R2. Important for comparison

is R∗∗ = (π1(q∗∗1 , q
∗∗
2 )− π1(0, 0)) + (π2(q∗∗1 , q

∗∗
2 )− π2(0, 0)), the maximal amount society

would be willing to pay for making the technology available.

Well known (for instance Barrett 2013) is that the Nash equilibria of a threshold

public good game do not suffer from underprovision. In our context:

Lemma 1. The Nash equilibria of the R&D game are all combinations (r1, r2) with

r1 + r2 = R̄ and ri ≤ max(0, Ri).

The intuition is that every country is willing to fill up R&D investments up to the

necessary threshold if the necessary contribution does not exceed its wtp Ri. The reason

for the condition ri ≤ max(0, Ri) in Lemma 1 is that R1 can be negative (see section 4.3).

In this case, Nash equilibria involving zero R&D contributions by country 1, r1 = 0, are

still possible.

Lemma 1 demonstrates a further merit of the threshold R&D assumption. In general,

due to the public good nature of knowledge, we would expect total R&D contributions

in equilibrium to fall short of its optimal level (Stiglitz 1999; Popp 2010). At the same

time, and being the central topic of this paper, we also expect strong implications of the

anticipated strategic behavior in the deployment stage on R&D incentives. Disentangling

both effects would be cumbersome. Due to the favorable equilibrium conditions of the

threshold R&D game, it is clear that any effect on total R&D in this model can be fully

ascribed to the anticipated strategic outcome of the technology deployment game.
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In particular, this paper is not about equilibrium selection. Which of the, in general

infinitely many, R&D equilibria is more or less likely to become reality is not the ambition

of this inquiry. Rather, the focus is on (i) a comparison of R&D incentives across

countries and (ii) the question whether total R&D incentives are strong enough for

successful technology development. Both questions are fully determined by analyzing Ri

and R1 +R2.

3 The symmetric benchmark

This section is dedicated to the case in which both countries have homogeneous prefer-

ences for the level of technology deployment, a1 = a2, that is a∆ = 0. In a first step,

section 3.1 derives the deployment equilibrium, reestablishing well-known free-riding re-

sults from the literature. Building on this, section 3.2 characterizes the R&D equilibria,

demonstrating that the anticipated free-riding deployment profile weakens R&D incen-

tives. Thus, the first contribution of this section is to pin down the narrative of Popp

(2010), giving us confidence that the model is adequately designed for making statements

about R&D incentives due to anticipated strategic conflicts. The second contribution of

this section is to provide benchmark equilibria for the asymmetric case a∆ > 0 that will

be covered in section 4.

3.1 Technology deployment

This section derives the Nash equilibrium (q∗1, q
∗
2) and contrasts it with the social optimal

configuration (q∗∗1 , q
∗∗
2 ). The main step for deriving the Nash equilibrium is to determine

the reaction function. Given the other country’s contribution q−i, country i optimally

chooses

qi(q−i) = max

{
0 ,

b

b+ c
(ā− q−i)

}
, i = 1, 2 . (3)

Recall that in the symmetric case ā is the global technology level that maximizes the

countries’ benefit function. If the other country’s contribution does not exceed ā (if it

does, qi = 0 is the best reply), the optimal response is to deploy some fraction of the

remaining amount ā − q−i that would maximize country i’s benefits, and this fraction

approaches unity as the deployment costs converge to zero. As usual, the condition for

the Nash equilibrium is q1(q∗2) = q∗1 and q2(q∗1) = q∗2.

Proposition 1 (Deployment equilibrium in the symmetric benchmark, a∆ = 0). Let

c > 0. The deployment equilibrium in the symmetric benchmark with a1 = a2 = ā is

unique and has the following properties:

(i) The contributions q∗i = āb
c+2b are positive and monotonically decreasing in c with

limc→∞ q
∗
i = 0.
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(ii) The sum of contributions Q∗ = q∗1 + q∗2 is smaller than the socially optimal amount

Q∗∗ = 4āb
c+4b , and the fraction Q∗/Q∗∗ decreases in c.

(iii) The equilibrium (q∗1, q
∗
2) is not Pareto optimal. The social optimal configuration

(q∗∗1 , q
∗∗
2 ) is Pareto optimal and a Pareto improvement to (q∗1, q

∗
2).

Proof. See Appendix B.

These findings are hardly surprising and, for abatement instead of technology de-

ployment choices, widely found in the literature (e.g. Barrett 1994). The key properties

of the strategic conflict surrounding the technology use is that free-riding on other coun-

tries’ contribution exists, giving rise to suboptimal low deployment levels. The social

optimal configuration would make both countries better off, but is not stable against

unilateral deviations. The higher the deployment costs, the more severe is, in relative

terms, the gap between social optimal and actually undertaken technology deployment.

In that sense, lower cost technologies are not only beneficial because they boost total

net benefits, but also because small deployment costs alleviate the free-riding problem.

Regarding our working example climate engineering technologies, the findings of

Proposition 1 imply that, if countries are symmetric and hence regard the same global

temperature as optimal, any strategic problem that we can expect, irrespective of the cost

structure of the CE technology, is free-riding and thus underprovision of the technology.

We would expect this conflict to be stronger for cost-intensive technologies like direct

air capture and significantly attenuated for for low cost technologies like stratospheric

aerosol injection. We will see in section 4 that heterogeneity in technology preferences

substantially changes this favorable picture of low deployment costs.

3.2 R&D

Based on the results from the previous section we can determine the countries’ willingness

to pay Ri and contrast the total wtp R with the amount R∗∗ a global planner would be

willing to sacrifice to make the technology available (cf. Definition 1).

Proposition 2 (wtp for R&D in the symmetric benchmark). The wtp in the symmetric

benchmark has the following properties:

(i) The individual wtp R1 = R2, and hence also the total wtp R = R1 + R2, are

positive and decreasing in c with limc→∞R = 0.

(ii) The total wtp R falls short of the social optimal amount R∗∗.

Proof. See Appendix B.

Figure 1 gives a graphical illustration of Proposition 2. What is intuitive in light

of the deployment equilibrium in Proposition 1 is the decrease of wtp in the costs
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Figure 1: Comparison of the total wtp (solid line) and the social optimal amount (dashed line)
as a function of the cost parameter c in the symmetric benchmark (a∆ = 0). The total wtp R
is the sum R1 +R2 with R1 = R2. The parameter settings are ā = 2 and b = 1.

parameter c: The higher the costs, the lower will be the levels deployed, and thus the

less willing are countries to spend money to get the technology.

The interesting feature is that the total wtp R is lower than what a social planner

would be ready to pay for the technology’s availability, R∗∗. Whether this has impli-

cations for the success of technology R&D depends on the threshold R̄. If R̄ is higher

than R∗∗, then the discrepancy of R and R∗∗ is inconsequential because R&D should not

proceed anyway. Likewise, if R̄ is lower than R, the R&D incentives for the (social de-

sirable) technology are strong enough. The divergence of R and R∗∗ however implies the

existence of threshold values R̄ for which development of the technology should proceed,

but fails to do so due to weak incentives.

The reason why R falls short of R∗∗, to stress this again, is not the public good nature

of R&D. The threshold assumption precludes underprovision due to R&D free-riding.

Rather, the reason for R < R∗∗ is the anticipated strategic conflict in the technology

deployment stage. Foreseeing free-riding in technology deployment, countries’ incentives

to develop the technology are substantially weakened. The first deliverable of section 3

is thus to underpin the narrative of Popp (2010) in a rigorous framework. The second

deliverable is that the findings of Proposition 1 and Proposition 2 serve as a benchmark

for the asymmetric case.

4 Asymmetric countries

This central section extends the analysis of R&D incentives to asymmetric countries.

In Section 4.1 it will become clear that the cost parameter c plays a crucial role in the

analysis. High cost parameter values give rise to deployment and R&D equilibria very

similar to the benchmark case. These ’free-riding’ equilibria will be covered in Section

4.2. In contrast, and topic of section 4.3, low deployment costs substantially change the

50



Paper 2 · R&D Incentives for Environmental Technologies

strategic set-up, giving rise to ’free-driving’ behavior (Weitzman 2012) with far-reaching

implications for R&D incentives.

4.1 Two types of deployment equilibria

The first step is again to look at the deployment stage and specifically the reaction

functions. The counterpart of 3, now for non-vanishing preference asymmetry a∆ > 0,

is

q1(q2) = max

{
0 ,

b

b+ c
(ā− a∆ − q2)

}
, q2(q1) = max

{
0 ,

b

b+ c
(ā+ a∆ − q1)

}
.

(4)

Recall that ā− a∆ = a1 and ā+ a∆ = a2 are the preferred technology levels of country

1 and country 2, respectively.

Definition 2. We call a Nash equilibrium (q∗1, q
∗
2) of the technology deployment game a

free-driver equilibrium if the country with the lower preference for the technology does

not deploy in equilibrium, q∗1 = 0. If both countries contribute positive amounts q∗i > 0,

we call (q∗1, q
∗
2) a free-rider equilibrium.

In particular, the deployment equilibrium in the symmetric benchmark is of the free-

rider type. Weitzman (2012) gives a similar definition for free-driving in an n country

setting with a kinked benefit function and without deployment costs.5

As a direct consequence of the reaction functions in (4), the following Lemma presents

the key role of the cost parameter c in determining the type of deployment equilibrium.

Lemma 2. The technology deployment game has a unique Nash equilibrium if not c = 0

and a∆ = 0 at the same time. For a∆ > 0, the cost parameter c̄ := 2ba∆/(ā − a∆)

separates the two different strategic outcomes. The equilibrium is of the free-rider type

for c > c̄ and of the free-driver type for c < c̄.

Proof. See Appendix C.

The separating cost parameter c̄ increases in the preference asymmetry a∆ and van-

ishes for a∆ = 0.

Figure 2 illustrates Lemma 2 by presenting the reaction functions from (4) for two

different cost parameter. If c > c̄, both countries in equilibrium deploy positive amounts

of the technology; for c ≤ c̄, country 1 would actually prefer a negative deployment level

to counteract the high deployment level of country 2; being restricted to non-negative

5Two comments on the free-driver definition are in order. First, the extension of Definition 2 to an
n country setting would involve the choice whether to speak of a free-driver equilibrium when at least
one country or all but one countries do not contribute in equilibrium. Second, the free-driver definition
in its current form rests on the impossibility of negative deployment. In the context of Solar Radiation
Management, the possibility of counter-geoengineering (Barrett et al. 2014) has been raised. In this case
negative contributions would be possible. The analysis of this possibility is left for future research.
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(a) c = 2 > c̄. Free-rider equilibrium.
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(b) c = 0 < c̄. Free-driver equilibrium.

Figure 2: The reaction functions in the asymmetric case (a∆ > 0) for two different cost parameter
c. The parameter settings are b = 1, ā = 2, a∆ = 2/3 so that c̄ = 1. With c = 2 (left panel), the
equilibrium (1/6, 5/6) is of the free-rider type. With c = 0 (right panel), the equilibrium (0, 8/3)
is a free-driver equilibrium.

levels country 1’s best response is not to deploy. Table 1 summarizes the different

outcomes.

Table 1: Nash outcomes of the deployment game in period 2 for asymmetric countries (a∆ > 0)
specifying technology deployment of country 1 (q∗1), country 2 (q∗2), total deployment (Q∗) and
social optimal total deployment (Q∗∗).

Type Free-rider Free-driver

c c > c̄ c ≤ c̄
q∗1

b
c+2b ā−

b
ca∆ 0

q∗2
b

c+2b ā+ b
ca∆

b
b+c(ā+ a∆)

Q∗ 2b
c+2b ā

b
b+c(ā+ a∆)

Q∗∗ 4b
c+4b ā

4b
c+4b ā

In terms of the working example CE technologies the above findings are highly rel-

evant. In light of the sharp difference in deployment costs, we can expect CDR tech-

nologies like direct air capture to be prone to very different strategic incentives as the

low cost SRM technology stratospheric aerosol injection. Table 1 also demonstrates that

the framework outlined in section 2 is capable of reproducing the free-driver behavior,

established in Weitzman (2012), in a standard smooth public good setting.

The following two subsections will elaborate and compare the deployment and re-

sulting R&D characteristics for free-rider (4.2) and free-driver (4.3) equilibria.

4.2 Free-rider equilibria, c > c̄

The first part of this section specifies the free-rider deployment equilibrium (the second

column in Table 1) and is thus the counterpart of Proposition 1 for asymmetric countries
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a∆ > 0.

Proposition 3 (Free-rider deployment equilibrium with asymmetric countries). The

unique free-rider equilibrium has the following properties:

(i) The contributions q∗1 and q∗2 are positive with limits limc→c̄ q
∗
1 = 0, limc→∞ q

∗
1 = 0,

limc→c̄ q
∗
2 = a1, and limc→∞ q

∗
2 = 0. While q∗2 is monotonically decreasing in c, q∗1

has a maximum in (c̄,∞). While q∗1 increases in the asymmetry parameter a∆, q∗2
decreases in a∆.

(ii) The sum of contributions Q∗ is smaller than the social optimal amount Q∗∗.

(iii) The equilibrium (q∗1, q
∗
2) is not Pareto optimal. Local Pareto improvements consist

of (q∗1 + δα, q∗2 + δβ), where α, β, δ > 0. While the social optimal configuration

(q∗∗1 , q
∗∗
2 ) is an improvement to (q∗1, q

∗
2) for country 2, this is in general not true

for country 1: For a∆ > 0, (q∗∗1 , q
∗∗
2 ) is not an improvement to (q∗1, q

∗
2) at least in

a neighborhood of c̄.

Proof. See Appendix C.1.

Country 2’s technology deployment is very similar to the symmetric benchmark.

That increases in a∆ drive up q∗2 is simply because this implies a higher technology

preference, a2 = ā+ a∆.

Quite different is the non-monotonic pattern of country 1. The reason that a decrease

in costs close to the separating cost level c̄ reduces the contribution of country 1 is

free-riding of the extremest form: At c̄, country 2 contributes ā − a∆ = a1, exactly

country 1’s preferred level; as a consequence, country 1 does not need to make own costly

contributions. Not surprising, see part (ii), is that this leads overall to an underprovision

of the technology.

What is interesting is the look at the Pareto improvements in (iii): Small increases

in both contributions would make both countries better off, a simple consequence of the

underprovision due to free-riding; the social optimal configuration however is often, and

definitely when costs are low, not an improvement for country 1. The reason is again

that, close to c̄, country 1 is free-riding in an extreme way on country 2’s contribution

such that there is no room for better outcomes. As the appendix C.1 shows, a similar sit-

uation can also occur for high cost parameter values if the asymmetry a∆ is high enough.

What are the implications for R&D incentives? The following Proposition, the counter-

part of Proposition 2 for asymmetric countries, gives the answer.

Proposition 4 (wtp for R&D with asymmetric countries. Free-rider). The wtp for

free-rider technologies fulfills:

(i) The individual wtp for R&D R1, R2, and hence also the total wtp R are positive

and decreasing in c. We have R1 < R2 and limc→c̄
dR1
dc = 0.
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(ii) Increases in the preference asymmetry a∆ decrease R1 and increase R2.

(iii) The total wtp R falls short of the social optimal amount R∗∗. The difference

between them increases in the preference asymmetry a∆.

Proof. See Appendix C.1.

Proposition 4 features strong similarities with the corresponding results in the sym-

metric benchmark, see Proposition 2. Most importantly, the total wtp falls short of the

social optimum (part (iii)), implying the existence of constellations in which a beneficial

technology is not developed for strategic reasons. The interpretation for R < R∗∗ is,

again, that the prospect of an underprovision of the technology directly reduces R&D

incentives.

Besides the intuitive finding that an increase in a∆ drives up country 2’s wtp and

decreases country 1’s wtp (part (ii)), a fact worth mentioning is that country 1’s wtp

R1 is strictly positive and flat at c̄. Both are direct consequences of the fact that, at

c = c̄, the technological deployment profile is perfect from the country 1’s viewpoint: No

private costs, q∗1 = 0, but the optimal total technology deployment Q = a1 provided by

country 2.

4.3 Free-driver equilibria, c ≤ c̄

This section demonstrates that free-driver equilibria are very different from their free-

rider counterparts, both with regard to the deployment patterns, but also the resulting

R&D incentives.

The first part of this section specifies characteristics of the free-driver deployment

equilibrium (cf. third column in Table 1).

Proposition 5 (Free-driver deployment equilibrium with asymmetric countries). The

unique free-driver equilibrium has the following properties:

(i) Country 1 does not contribute, q∗1 = 0, while q∗2 is positive, monotonically decreas-

ing in c, and taking on the values ā+ a∆ = a2 and ā− a∆ = a1 at the boundaries

c = 0 and c = c̄, respectively.

(ii) The sum of contributions Q∗ is higher than the social optimal amount Q∗∗ if and

only if c < 4ba∆/(3ā− a∆) < c̄.

(iii) The equilibrium (q∗1, q
∗
2) is not Pareto optimal except for c = c̄. For c < c̄, local

Pareto improvements consist of (q∗1 + δα, q∗2 + δβ), where α, δ > 0 and β < −α. At

c = 0, the social optimal configuration is an improvement for country 1 but not for

country 2; at c = c̄, it is the other way round. There always exists an inner range

where (q∗∗1 , q
∗∗
2 ) is a a Pareto improvement to (q∗1, q

∗
2).

Proof. See Appendix C.2.
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By definition, in the entire free-driver region c ≤ c̄ country 1 does not deploy the

technology, q∗1 = 0. The total technology deployment level thus equals country 2’s

contribution q∗2. It is not surprising to observe, and according to earlier findings, that

this level goes up as costs c decrease. It also makes sense that q∗2 = a2 at c = 0: If there

are no costs of deployment, country 2 chooses its preferred technology level.

Part (ii) shows that the total deployment level Q∗ can exceed the social optimal

amount. This finding, unknown in the standard public good literature, is another indi-

cation of the highly unusual and fascinating nature of free-driver equilibria. One has to

keep in mind however that the comparison of the total values Q∗ and Q∗∗ is only one

dimension of gauging the gap between equilibrium outcomes and social optimal reference

points. Due to non-linear deployment costs, the distribution of deployment levels across

countries always matters.

Part (iii) describes the possible Pareto improvements. The constellation at c = c̄

must be Pareto optimal as country 1, by definition, cannot do any better: The overall

deployment level is at the optimal level Q∗ = a1 without own costly contributions. Once

c < c̄, however, the Nash outcome is not Pareto optimal, and local Pareto improve-

ments consist of country 1 contributing positive amounts, which already suffices to make

country 2 better off, while country 2, in order to make it an improvement for country

1, would overproportionally decrease its deployment. Interestingly, the social optimal

configuration (q∗∗1 , q
∗∗
2 ) can only be a Pareto improvement if costs are in a certain interior

range; when costs get extreme, either to c = 0 or c = c̄, the Nash outcome favors one

country too strongly as if the uniform social optimal deployment profile is attractive for

both.

Connecting these findings with the respective part for free-rider equilibria of Propo-

sition 3 gives a comprehensive picture. For country 2, the social optimal configuration

is always an improvement except for very small c. For c > c̄ this is because it overcomes

the free-rider problem, for levels below but close to c̄, it saves deployment costs because

(q∗∗1 , q
∗∗
2 ) involves positive contributions by country 1. For cost parameter values close

to 0, however, the benefits of being able to afford technology levels close to optimal

outweigh the costs of being the only contributor. For country 1, things are slightly more

complex. Starting at the low cost end with costs close to zero, it is clear that the social

optimal configuration would be an improvement; the reason is that here the free-driver

behavior of country 2 is extreme, implying a significant divergence between preferred,

Q = a1, and actual deployment. Also clear is that for values close to, and on both

sides, of the separating cost parameter c̄, country 1 is better off under the Nash outcome

because the overall deployment level is close to a1 and own provision costs are low, if

not zero. Ambiguous however is the case of higher cost parameters: As explained in 4.2,

(q∗∗1 , q
∗∗
2 ) is a Pareto improvement only if the asymmetry a∆ is not too high.
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The main result in this section is concerned with the implications of free-driving behavior

for R&D incentives.

Proposition 6 (wtp for R&D with asymmetric countries. Free-driver). The wtp for

free-rider technologies fulfills:

(i) Country 2’s wtp R2 is positive and decreasing in the cost parameter c. Country

1’s wtp R1 is increasing in c with limc→c̄
dR1
dc = 0; R1 gets negative for small c if

a∆ > ā/3.

(ii) Increases in the asymmetry a∆ decrease R1 and increase R2.

(iii) The total wtp R = max{R1, 0} + max{R2, 0} is positive and decreasing in c. If

a∆ > (
√

2 − 1)ā, the total wtp R at low values of c is higher than the the social

optimum R∗∗. If this is the case, country 1’s wtp R1 is necessarily negative.

Proof. See Appendix C.2.

Figure 3 gives a graphical illustration of Proposition 6.
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Figure 3: The wtp of country 1 (dot-dashed line), country 2 (dot-dot-dashed line), total wtp
(solid line) and social optimal wtp (dashed line) as a function of the cost parameter c for different
asymmetry levels a∆. The vertical dotted line is at c̄, separating free-driver equilibria to the left
from free-rider equilibria to the right. Note that R = max(0, R1) + max(0, R2). The parameter
settings are ā = 2 and b = 1 as before.

It is not surprising that country 2’s wtpR2 is positive and decreasing in costs. Also,

that a∆ drives R1 up while it decreases R2 has been found before and follows the same

intuition here.

Quite unusual however is the behavior of country 1’s wtp R1. In contrast to the free-

riding case, see Proposition 4, and sharply different from country 2, here R1 decreases as

costs go down. This new finding however makes sense in light of the perfect constellation

country 1 has at c̄. Relative to that, lower c values drive country 2 into ever higher

deployment levels and thus away from country 1’s preferred overall technology level a1.

Related and also interesting to note is that in the free-driving equilibrium, country

1, although not deploying the technology, is in general ready to sacrifice means to get
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the technology. The reason for this positive wtp is that, despite excessive technology

deployment by country 2, country 1 is often better off with the technology deployment

pattern of country 2 than without any deployment.

This, however, can change for low cost levels if the technology preference across

countries is high. Then, country 2’s deployment strongly exceeds country 1’s optimal

deployment level so that country 1 would be better off without the technology. The

negative wtp R1 in this case can be interpreted as the willingness to undertake counter-

R&D. This demonstrates that low cost technologies like stratospheric aerosol injection

that give rise to free-driver behavior not only suffer from strategic conflicts at the de-

ployment stage in some future, but that the anticipation of those future conflicts my

directly give rise to conflicts in the present.

Another peculiarity with free-driver equilibria is that R&D incentives can be too

strong. The total wtp R, when defined based on non-negative R&D contributions ri ≥ 0

(for the other case see Remark 1), can exceed R∗∗ when the cost parameter c is low and

the preference asymmetry between countries a∆ is high. In Figure 3, the asymmetry a∆

in the right figure, a∆ = 1, is large enough to feature R > R∗∗ for small c, while this is

not the case in the left figure. If R > R∗∗, the consequence is that technology R&D takes

place (undertaken by country 2 alone) that should, from a societal point, not proceed.

Remark 1. The analysis in Proposition 6 (iii) is correct if R&D contributions are

non-negative, ri ≥ 0. Alternatively, one may consider the possibility of counter-R&D.

For simplicity assume that one unit of counter-R&D just cancels one unit of R&D.

In terms of possible equilibria, note that with R1 < 0 and R2 > 0 there is a unique

R&D equilibrium, namely either either (0, R̄) or (0, 0). The relevant total wtp that

decides about successful R&D is R = R1 + R2. It is easy to show (see C.2) that this

measure is positive and always falls short of the social optimum; in other words the

R&D incentives with counter-R&D are never too strong as in the case discussed before.

But also the counter-R&D scenario gives rise to a peculiar outcome: For significant

asymmetry between the countries, a∆ > ā/3, the total wtp R is non-monotonical in c.

5 Disentangling Effects

The purpose of this final substantive section is to get a deeper understanding of the R&D

incentives. For this purpose, divide the R&D process for a transboundary technology in

a thought experiment into two steps. We write country i’s wtp Ri = πi(q
∗
1, q
∗
2)−πi(0, 0)

accordingly as

R1 = π1(q∗1, q
∗
2)− π1(qPriv

1 , 0)︸ ︷︷ ︸
=:RPub

1

+ π1(qPriv
1 , 0)− π1(0, 0)︸ ︷︷ ︸

=:RPriv
1

(5)
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and similar for R2. The thought experiment consists of splitting R&D artificially into two

processes. First, the development of a fully private technology so that the other country

can be excluded from any deployment effects. The optimal technology deployment for

such a private technology just balances private benefits and private costs with

qPriv
i =

b

b+ c
ai , i = 1, 2 . (6)

The wtp for such a no-spillover technology is then RPriv
i .

The second process is then to transform the private technology to a transboundary

technology with perfect spillovers that can be used by both countries. The willingness

to open up a private technology in that way, which will result in the Nash contribution

pattern (q∗1, q
∗
2), is RPub

i .

The first Proposition analyzes the incentives to develop a no-spillover technology.

Proposition 7 (wtp for private technology). The incentives to develop a fully private

technology are RPriv
1 = b2

2(b+c)(ā− a∆)2 and RPriv
2 = b2

2(b+c)(ā+ a∆)2. Thus:

(i) For both countries, the wtp to develop a private technology is positive and decreas-

ing in c.

(ii) Increases in the asymmetry a∆ increase RPriv
1 and decreases RPriv

2 , and always

RPriv
1 < RPriv

2 .

Proof. Obvious.

The findings are hardly surprising. In the absence of any interaction effects with other

countries’ deployment, the lower the costs and the higher the preferred technology level,

the higher the wtp to develop such a private technology. Also, due to any interaction

effects, the findings of Proposition 7 are valid for any cost level c.

The simple and obvious nature of the wtp for a private technology cannot explain the

rich findings and differences between countries and cost ranges, see Propositions 4 and

6. Before we tackle the asymmetric case, a few words on the symmetric case are helpful

to fully appreciate what is to come. In contrast to RPriv
i , which is always monotonic in

c, the effect RPub
i is not monotonic, even in the symmetric case. For a∆ = 0 we get

RPub
i =

ā2b2c(2c+ 3b)

2(c3 + 5bc2 + 8b2c+ 4b3)
(7)

with limc→0R
Pub
i = limc→∞R

Pub
i = 0. The reason that RPub

i is not monotonically

increasing as costs go down is that opening up a low cost technology has only limited

benefits: If costs are low, private deployment levels are already close to optimal; hence

there is not much room for benefiting from other’s deployment. It is helpful to keep this

non-monotonicity in the symmetric case in mind when we now turn to the willingness

to open up a technology for interaction for the general, asymmetric case.
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Proposition 8 (wtp for opening up a private technology). The incentives to open up

an existing private technology to a fully spillover technology are as follows:

(i) Country 1. In the free-rider region, RPub
1 is positive and non-monotonic in c. In

the free-driver region it increases with c and is negative for c <
4ba2

∆

ā2+2a∆ā−3a2
∆

.

(ii) Country 2. In the free-rider region, RPub
2 is positive and non-monotonic in c with

limc→c̄R
Pub
2 = 0. In the free-driver region, RPub

2 = 0.

(iii) The wtp to open the private technology is always higher for country 1, RPub
1 >

RPub
2 , except for small c when RPub

1 < 0, see (i).

Proof. See Appendix D.

Figure 4 gives a graphical representation of both effects.
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Figure 4: Disentangling two drivers of the wtp for country 1 (black lines) and country 2 (gray
lines). The vertical dotted line is at c̄, separating free-driver equilibria to the left from free-
rider equilibria to the right. The functions depicted are the total wtp Ri (solid lines), the wtp
to develop a no-spillover technology RPriv

i (dashed lines), and the wtp to transform a private
technology to a perfect spillover technology RPub

i (dot-dashed lines). The parameter settings are
ā = 2, a∆ = 2/3 and b = 1.

Not surprising is the non-montonic pattern of the willingness to open up a technology

that we find for both countries in the free-rider region. This is essentially the same effect

that we already isolated in the symmetric case, see (7).

An interesting feature is that RPub
2 = 0 over the entire free-driver region. The reason

for that is that country 2, with country 1 in the Nash equilibrium not deploying at all,

is already using the technology privately.

In terms of interpretation, (iii) shows that over the entire free-rider region RPub
1 >

RPub
2 , and the gap increases with the preference asymmetry a∆ (see appendix D). This

surprising finding can be interpreted as that country 1 is benefiting more from the pubic
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good characteristic of the technology as country 2 does; country 1 is free-riding heavily

on country 2’s contribution.

Disentangling the different drivers also helps us to develop a more nuanced interpre-

tation of the free-driving zone. At first sight, country 1 could be interpreted as a loser

from the technology interaction because it is in the hand of the ’free-driver’ and would

actually prefer negative own contributions. However, if c is not too small, RPub
1 > 0 (and

in particular larger than RPub
2 ) because country 1 still benefits from country 2’s tech-

nology deployment. So the story is more subtle. Even though we are in a ’free-driver’

equilibrium in which country 1 does not deploy, country 1 is still free-riding on country

2’s technology deployment. Only if the cost parameter c gets very small, country 1 is ac-

tually a loser from the spillover character of the technology. The reason that Weitzman

(2012) only covers the latter case is that in his model c = 0. Due to the general public

good structure with continuous cost parameter values c, the present model is capable of

generating more complex and subtle effects.

6 Conclusions

Technologies constitute a central component in the portfolio of measures against en-

vironmental problems. An important example is climate engineering (CE), a set of

environmental technologies that has recently received increasing attention. Novel en-

vironmental technologies, and CE in particular, however require substantial R&D ex-

penditures to become available. In a decentralized world largely shaped by domestic

interests, the incentives for innovation are crucial for successful R&D and thus deserve

a thorough analysis.

The present paper focused on a specific problem surrounding R&D incentives. The

anticipation of strategic conflicts in their future use, for instance free-riding, can be

expected to have repercussions on the willingness to develop these technologies. In fact,

the rigorous, yet parsimonious, framework developed in this paper has proved capable

of underpinning a narrative of (Popp 2010) holding that the anticipation of free-riding

weakens R&D incentives.

Starting from there, the paper also focused on a different strategic effect. In sharp

contrast to free-riding, free-driving occurs when one country dominates the technology

outcome (Weitzman 2012). This novel strategic effect materializes – and the present

paper has provided further support for this in a standard smooth public good setting –

if preferences for the technology deployment are heterogeneous and deployment costs for

the technology are low. Stratospheric aerosol injection, and in general SRM, are expected

to exhibit these characteristics and may thus be prone to free-driving outcomes.

This paper demonstrated that the outlook of free-driving has novel and rich impacts

on innovation incentives. Most notably, the anticipated future deployment conflict may

’pull forward’ to the R&D stage: The free-driver, keen to get the technology, may push
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technology development even if this is against the global best. Accordingly, the other

country, foreseeing the free-driver’s extreme deployment level, may be willing to costly

counteract the free-driver’s innovation efforts, giving rise to an R&D conflict.

The present paper provides only the first step into the formal and rigorous analy-

sis repercussions of how deployment conflicts impact on R&D incentives. There are a

couple of valuable extensions that future research should envisage. The first possible

extension is to generalize the two-country setting to n countries. It is far from clear

how to generalize the definitions of ’free-riding’ and ’free-driving’ to the general case as

it involves non-trivial and meaningful choices. This is particularly true in light of the

subtleties surrounding free-driving that already emerged in the two country setting: The

’dominated’ country, at first sight an obvious loser from the technology interaction, can

for many parameter settings be expected to substantially benefit from the technological

interaction. The question about winners and losers from the technology in a general

setting is a fascinating research question.

A second possible line of research is to modify the framework to cost-reducing R&D.

This type of innovation is pervasive in environmental economics (Bosetti et al. 2009; Hall

and Helmers 2013), emphasizing the welfare-improving role of low cost technologies. The

findings in the present paper suggest that free-driver technologies may be characterized

by opposition against cost reducing R&D. The country with the lower preference for the

technology, concerned of being worse-off under the free-driver’s increasing deployment,

may be willing to prevent cost-reducing innovation.

Another important extension of the existing framework is to consider governance

structures and treaty formation. The present paper deliberately refrained from dis-

cussing these issues. Accordingly, the focus was on non-cooperative behavior and pure

Nash outcomes as the relevant solution concept. The motivation to do so was mainly to

develop a framework for making positive statements about the R&D incentives – in par-

ticular its deviations from global optimal – that we may expect without any governance

regime in place. The present framework is thus the ideal starting point to see which, if

any, governance structures or treaty options can help to overcome the strategic incentive

problems.

Finally, future research should also incorporate an angle from the CE literature by fo-

cusing on the interplay of technology and abatement. In particular, Moreno-Cruz (2010)

and Goeschl et al. (2013) demonstrated, in very different settings, that abatement can

serve as a tool to attenuate strategic conflicts about the use of a technology by shifting

their deployment incentives. A promising research question is whether abatement can

play this role also in the context of innovation incentives for free-driver technologies.
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Appendix A Toolkit for proving inequalities

There is often the need to prove inequalities of the type P < 0 or P > 0 where P is a polynomial
in c. In the former case we want to find upper bounds of negative terms to get sufficient conditions
for P < 0. For free-rider technologies, c > c̄, this is possible by replacing c by c̄. If we have
to prove P > 0 for free-driver technologies, c ≤ c̄, replacing c in negative terms by c̄ gives the
needed lower bound.

Remark 2. For the proof of inequalities it makes sense to deviate from expressing a1 and a2 in
terms of ā and a∆; rather, a1 and δ where a2 = a1 + δ is the best choice. With that, c̄ = bδ/a1

Example If we have to prove −3a1bc
2 +2δb2c < 0 for c < c̄, a sufficient condition is −3a1bcc̄+

2δb2c < 0, which is true because −3a1bcc̄ = −3δb2c. In more complex situations, we will indicate
the terms that are combined in that way.

Appendix B On section 3

Proof of Proposition 1 The social optimal deployment is q∗∗1 = q∗∗2 = 2āb
c+4b , so that

Q∗∗ = 4āb
c+4b .

(i) This part of the Proposition is obvious.

(ii) The only fact that needs clarification is the behavior of the fraction Q∗/Q∗∗ = (c+4b)/(2c+
4b): It decreases monotonically from 1 at c = 0 to 1/2 in the limit c→∞.

(iii) The condition πi(q
∗
1 , q
∗
2) < πi(q

∗∗
1 , q∗∗2 ) is equivalent with a2b2c2

c3+8bc2+20b2c+16b3 > 0 so that
(q∗∗1 , q∗∗2 ) is a Pareto improvement to (q∗1 , q

∗
2). The social optimum must be Pareto optimal

because otherwise there would exist a constellation that has higher total welfare.

Proof of Proposition 2

(i) We have R1 = R2 = a2b2(3c+4b)
2(c+2b)2) > 0 with dR1

dc = −a2b2(3c+2b)
2(c+2b)3) < 0.

(ii) The social optimal reference point is R∗∗ = 4a2b2

(c+4b) , which obviously declines in c. The

condition R < R∗∗ is equivalent with a2b2c2

c3+8bc2+20b2c+16b3 > 0.

Appendix C On section 4

Proof of Lemma 2 The reaction functions in (4) do not have an interior intersect iff c ≤ c̄.
The only statement that remains to be shown is dc̄

da∆
= 2bā

(ā−a∆)2 > 0.

C.1 Free-rider

Proof of Proposition 3

(i) We have q∗1 = b
c+2b ā −

b
ca∆ > 0 because c > c̄ and q∗2 = b

c+2b ā + b
ca∆ > 0. In particular,

q∗1 = 0 and q∗2 = ā− a∆ = a1 at c = c̄. In terms of the derivatives,

dq∗1
dc

= − b
(c+2b)2 ā+ b

c2 a∆ ,
dq∗2
dc

= − b
(c+2b)2 ā− b

c2 a∆ < 0 .

Here, dq∗1/dc has a root at c̄+ 2b
√
āa∆/(ā− a∆) > c̄.

(ii) From (i) we get Q∗ = 2b
c+2b ā. Easy to verify is Q∗∗ = 4b

c+4b ā. Thus, Q∗ < Q∗∗ is obvious.

64



Paper 2 · R&D Incentives for Environmental Technologies

(iii) The general directional derivative is as follows: Define fi(t) := πi(q
∗
1 + tα, q∗2 + tβ). Then

f ′i(0) is the (α, β)-directional derivative of πi at the Nash equilibrium. In this specific case
we get

f ′1(0) =
βb(ā− a∆)

c+ 2b
(c− c̄) , f ′2(0) =

αb

c+ 2b
((ā+ a∆)c+ 2ba∆)

and both expressions are positive for α, β > 0. Whether the social optimal configuration
is a Pareto Improvement for country 1 depends on the sign of

π1(q∗∗1 , q∗∗2 )− π1(q∗1 , q
∗
2) =(

ā2 − 6a∆ā+ a∆
2
)
b2c3 +

(
8a∆

2 − 20a∆ā
)
b3c2 +

(
20a∆

2 − 16a∆ā
)
b4c+ 16a∆

2b5

2c4 + 16bc3 + 40b2c2 + 32b3c

At c = c̄, this expression reads −16b3a2
∆ā

2(ā+a∆)/(ā−a∆)3 and is negative when a∆ > 0.
By continuity, this extends to a full neighborhood. For large a∆ the c3-coefficient in the
numerator gets negative, implying that (q∗∗1 , q∗∗2 ) is not a Pareto improvement for large c.
The situation is different for country 2. Here,

π2(q∗∗1 , q∗∗2 )− π2(q∗1 , q
∗
2) =(

ā2 + 6a∆ā+ a∆
2
)
b2c3 +

(
20a∆ā+ 8a∆

2
)
b3c2 +

(
16a∆ā+ 20a∆

2
)
b4c+ 16a∆

2b5

2c4 + 16bc3 + 40b2c2 + 32b3c

and this is clearly positive.

Proof of Proposition 4 For the notation used in proofs of inequality, see Appendix A.

(i) dR1

dc = b2

2c2(c+2b)3

(
−2a1δc

3︸ ︷︷ ︸
(B)

−3a2
1c

3︸ ︷︷ ︸
(A)

+2δ2bc2︸ ︷︷ ︸
(B)

−2a2
1bc

2︸ ︷︷ ︸
(C)

+3b2δ2c︸ ︷︷ ︸
(A)

+2b3δ2︸ ︷︷ ︸
(C)

)
< 0 with equality

for c = c̄. dR2

dc = b2

2c2(c+2b)3

(
− δ2c3 − 4a1δc

3−3a1
2c3︸ ︷︷ ︸

(B)

−4a1bδc
2−2a1

2bc2︸ ︷︷ ︸
(A)

+3b2δ2c︸ ︷︷ ︸
(B)

+2b3δ2︸ ︷︷ ︸
(A)

)
which is strictly negative at c = c̄.

(ii) dR1

da∆
= − (ā+a∆)b2c+2a∆b3

c2+2bc < 0 and dR2

da∆
= b2((ā−a∆)c−2a∆b)

c2+2bc > 0 (because c > c̄).

(iii) R∗∗ −R = b2c2

c3+8bc2+20b2c+16b3 ā
2 + b2

c a
2
∆

C.2 Free-driver

Proof of Proposition 5

(i) Obvious from q∗2 = b
b+c (ā+ a∆).

(ii) Simple algebra.

(iii) The directional derivatives are

f ′1(0) =
(β + α)b(ā− a∆)

c+ b
(c− c̄) , f ′2(0) =

αbc

c+ b
(ā+ a∆)

and both expressions are positive when α > 0 and β < −α. Simple algebra shows that
π2(q∗∗1 , q∗∗2 ) − π2(q∗1 , q

∗
2) < 0 iff c < 4a2

∆b/(3ā
2 + 6a∆ā − a2

∆). Evaluating π1(q∗∗1 , q∗∗2 ) −
π1(q∗1 , q

∗
2) at this point gives ba2

∆
12ā3+30a∆ā2+8a2

∆ā−2a3
∆

9ā3+36a∆ā2+45a2
∆ā+18a3

∆
. The numerator is positive due to

ā ≥ a∆.
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Proof of Proposition 6

(i) R1 = b2

2(c+b)2

(
(2c+ b)ā2 − 2ba∆ā− (2c+ 3b)a2

∆

)
with a root at cR1=0 = (3a∆−ā)b

2(ā−a∆)

R2 = b2

2(c+b) (ā+ a∆)
2

dR1

dc = b2

(c+b)3

(
δ2b︸︷︷︸
(A)

+a1δb︸ ︷︷ ︸
(B)

−a1δc︸ ︷︷ ︸
(A)

−a2
1c︸ ︷︷ ︸

(B)

)
> 0 with equality for c = c̄.

(ii) See (i).

(iii) Helpful notations: R2 = R∗∗ at cR2=R∗∗ = − 4b(ā2−2a∆ā−a2
∆)

7ā2−2a∆ā−a2
∆

. This is positive iff a∆ >

(
√

2 − 1)ā. For R = R1 + R2, dR
dc = 0 at cR′=0 = (3a∆−ā)b

3ā−a∆
. This is positive iff a∆ > ā/3

(same condition as ”R1 has a root”). If counter-R&D is not possible, the statement
that R is positive and monotonical is justified with two arguments: For all c > cR1=0,
where R = R1 + R2 anyways, this results from cR′=0 < cR1=0 (obvious because these
expressions only differ in the denominator). For all other c we have R = R2 and thus
R inherits the characteristics ’positive’ and ’decreasing in c’. That at the crossing point
R = R∗∗ necessarily max{R1, 0} = 0 results from the proof R < R∗∗ if R = R1 + R2

below. If counter-R&D is possible, R = b2

2(c+b)2

(
(ā2 − a2

∆)(c+ 2b) + 2ā(ā+ a∆)
)
>

0 with dR
dc = − b2

2(c+b)3

(
(3c+ b)ā2 − 2(b− c)a∆ā− (c+ 3b)a2

∆

)
. We have R∗∗ − R =

b2

2c3+12bc2+18b2c+8b3

(
(5a2

1 + 4a1δ + δ2)c2 + 2a2
1bc−2a1δbc︸ ︷︷ ︸

(A)

+2δ2b2︸ ︷︷ ︸
(A)

)
> 0.

Appendix D On section 5

Proof of Proposition 8 In the free-rider region: With C1 = b2

2c(c3+5bc2+8b2c+4b3) ,

RPub
1 = C1

(
2a1δc

3︸ ︷︷ ︸
(A)

+2a2
1c

3 +4a1δbc
2︸ ︷︷ ︸

(B)

+3a2
1bc

2︸ ︷︷ ︸
(C)

+2a1δb
2c−δ2bc2︸ ︷︷ ︸

(A)

−2δ2b2c︸ ︷︷ ︸
(B)

−δ2b3︸ ︷︷ ︸
(C)

)
> 0

The derivative
dRPub

1

dc at c̄ is a4
1/(2(a1 + δ)2) > 0. Thus, with limc→infty R

Priv
1 = 0, RPriv

1 cannot

be monotone. With C2 = b2

2c(c3+5bc2+8b2c+4b3) ,

RPub
2 = C2

(
2a1δc

3︸ ︷︷ ︸
(A)

+2a2
1c

3 + 2a1δbc
2︸ ︷︷ ︸

(B)

+3a2
1bc

2︸ ︷︷ ︸
(C)

−2δ2bc2︸ ︷︷ ︸
(A)

−4δ2b2c︸ ︷︷ ︸
(B)

−2a1δb
2c− δ2b3︸ ︷︷ ︸

(C)

)
> 0 ,

getting zero at c̄. We have RPub
1 −RPub

2 = 2b3āa∆

c2+3bc+2b2 > 0.

In the free-driver region:

RPub
1 =

b2

2(c+ b)2

(
(ā2 + 2a∆ā− 3a2

∆)c− 4a2
∆b
)
,

which is zero at 0 < c =
4ba2

∆

ā2+2a∆ā−3a2
∆
< c̄. The c-derivative is, with a2 = a1 + δ,

dRPub
1

dc
=

b2

2(b+ c)3

(
2δ2b︸︷︷︸
(A)

+2a1δb︸ ︷︷ ︸
(B)

+a2
1b−2a1δc︸ ︷︷ ︸

(A)

−a2
1c︸ ︷︷ ︸

(B)

)
> 0 .

Clearly, RPub
2 = 0.
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Informativeness of Experiments for meu –

A Recursive Definition ∗†

Daniel Heyen Boris Wiesenfarth

Abstract

The well-known Blackwell’s theorem states the equivalence of statistical informa-
tiveness and economic valuableness. Çelen (2012) generalizes this theorem, which is
well-known for subjective expected utility (seu), to maxmin expected utility (meu)
preferences. We demonstrate that the underlying definition of the value of infor-
mation used in Çelen (2012) is in contradiction with the principle of recursively
defined utility. As a consequence, Çelen’s framework features dynamic inconsis-
tency. Our main contribution consists in the definition of a value of information for
meu preferences that is compatible with recursive utility and thus respects dynamic
consistency.
Keywords: Blackwell; Value of Information; Maxmin Expected Utility; Recursive
Utility.
JEL Codes: D81; D83; D84.

1 Introduction

For decades economists have been studying the relationship between decision-making

under uncertainty and the so-called value of information. A famous and well-known re-

sult in this context is Blackwell’s theorem (Blackwell 1953) stating that an experiment is

more valuable than another if and only if the same experiment is more informative than

the latter. In order to obtain this equivalence (e.g. Crémer 1982), a standard assump-

tion has been that decision-makers are subjective expected utility (seu) maximizers, cf.

Savage (1972).

The objective of Çelen (2012) is to extend the Blackwell theorem to meu preferences,

which were axiomatized by Gilboa and Schmeidler (1989). In this note we demonstrate

that Çelen’s proof relies on a value of information for meu preferences that is not defined

via backward induction and thus is incompatible with the intertemporal extension of meu

by Epstein and Schneider (2003). In particular, optimal strategies in Çelen’s framework

prescribe decisions conditional on signal realizations that an meu decision-maker will

not find optimal to adhere to once those signal realizations have been observed. In this

∗We would like to acknowledge helpful comments by Jürgen Eichberger, Jean-Philippe Lefort and
Boğaçhan Çelen. The first author acknowledges the support of the German Science Foundation, grant
no. GO 1604/2-1.
†An almost identical version of this article is forthcoming in the Journal of Mathematical Economics,

doi: 10.1016/j.jmateco.2014.12.002.
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sense, Çelen’s framework features dynamic inconsistency. Our contribution is to define

a value of information that is compatible with the recursive intertemporal formulation

of meu preferences by Epstein and Schneider (2003).

2 Framework and definition of the value of information in

Çelen (2012)

In the following, we adopt Çelen’s framework and notation. Let Ω := {ω1, . . . , ωn} be

the finite set of states and X := {a1, . . . , aχ} the finite set of actions available to a

decision-maker. Moreover, let ∆(Ω) and ∆(X) be the set of all probability distributions

defined on Ω and X, respectively. Let further u : Ω × X → R be a utility function

and u with uij = u(ωi, aj) the corresponding utility matrix. An seu decision-maker is

characterized by (π,u), where π ∈ ∆(Ω) is a prior over the states.

An experiment is a tuple (S,p) with the signal space S = {s1, . . . , sσ} and the Markov

matrix p with pij = Pr(sj |ωi) for sj ∈ S. Çelen introduces a strategy as a vector valued

mapping f : S → ∆(X), thus characterizing all (mixed) actions the decision maker plans

to take after observing certain signal realizations s. The σ × χ-matrix f is defined such

that (fi1, · · · , fiχ) := f(si).

In this framework, Çelen determines the value of the experiment (S,p) for a given

strategy f as

Uf(π,u)(S,p) =
∑
j

Pr(sj)
∑
i

Pr(ωi|sj)
∑
k

fjku(ωi, ak) (1)

=
∑
j

∑
i

pijπi
∑
k

fjkuik (by Bayes’ rule) . (2)

With a strategy f∗ maximizing (2), Çelen defines U∗(π,u)(S,p) = Uf
∗

(π,u)(S,p) as the value

of the experiment for an seu decision-maker.

Building on this, Çelen extends the definition of the value of an experiment to the

class of meu preferences. For that purpose, he characterizes an meu decision-maker by

(A, u), where A ⊂ ∆(Ω) is a convex and compact set of priors. As a counterpart of

U∗(π,u)(S,p), he defines

W∗(A,u) = max
f

min
π∈A

Uf(π,u)(S,p) (3)

as the value of an experiment (S,p) for an meu decision-maker. It is expression (3) that

Çelen relies on in his proof of the generalized Blackwell’s theorem.

3 A recursively defined MEU value of information

It is insightful to note that Çelen’s framework essentially constitutes an intertemporal

setting with two periods. In the second period, after observing a signal realization, the
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decision maker takes a (mixed) action. In the first period, before observing the signal

realization, the value of the experiment (S,p) is determined. Çelen accounts for the

intertemporal structure insofar as he considers strategies, that is complete contingent

plans for appropriate play after observing signal realizations.

His formulation, however, is in contrast to the usual intertemporal formulation of

meu preferences that is provided by Epstein and Schneider (2003). One of the main

characteristics of their recursive definition of intertemporal meu is the compatibility

with backward induction. We follow the approach in Epstein and Schneider (2003) and

develop an alternative definition of the value of information for meu preferences.

According to backward induction, the first step to define a value of information is

to determine the value of the final decision given that the decision maker chooses an

optimal action for all possible signal realizations sj , j = 1, . . . , σ. For meu preferences

this value is

V (Mj) = max
g∈∆(X)

min
µ∈Mj

Eµ[u](g) , (4)

where Eµ[u](g) =
∑

k,i gkµi uik denotes the expected utility under action g ∈ ∆(X)

and ex-post belief µ. The optimal action is determined considering the worst posterior

µ ∈ Mj . Formally, the set of posteriors is Mj = {π(·|sj) : π ∈ A}, where π(·|sj)
denotes the conditional probability of the prior π ∈ ∆(Ω) given the signal sj . We obtain

π(·|sj) via Bayes’ rule and update each prior π in this way.1

Building on (4), we can define the value of the experiment (S,p) for meu preferences

as

V(A,u) = min
π∈A

∑
i,j

πipijV (Mj) . (5)

As usual, the value of information is obtained by taking the expectation over all possible

signal realizations. Due to meu preferences the value of the experiment is the worst of

those expectations. This alternative way of defining the value of an experiment is in line

with the intertemporal model of recursive utility under multiple priors as introduced in

Epstein and Schneider (2003, 2007).

The key characteristic of (5) is that optimal actions are determined with the maxmin

rule for each signal realization sj individually. In particular, the worst posterior in (4)

in general depends on the signal realization sj . This is in contrast to (3). By following

the derivation of the seu counterpart, essentially the step from (1) to (2), Çelen silently

assumes that the worst prior from the ex-ante perspective coincides with the preimage

of all worst posteriors, irrespective of the signal realization. For the seu decision-maker

this argumentation is innocent as there is a unique prior, and thus a unique posterior as

well. For the meu decision-maker, however, this argument is in conflict with backward

induction.

1Epstein and Schneider (2007) show that further restrictions on the set M can be made. For the sake
of simplicity, you may think of full Bayesian updating.
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In Appendix A, we demonstrate that the conflict of Çelen’s framework with intertem-

poral recursive utility can be made even more concrete. We provide an example in which

the optimal strategy derived in Çelen’s framework prescribes actions that are different

from what an meu decision-maker will actually do after observing those signals real-

izations.2 This supports our claim that the value of information for meu preferences

should be defined by (5). By construction, our definition of the value of information is

compatible with dynamic consistency.

4 Results and Discussion

We have shown that Çelen’s proof of Blackwell’s theorem only applies to a value of infor-

mation that is defined in a non-recursive utility framework. We have offered a definition

for the value of information derived via backward induction, thus compatible with the

dynamic consistent intertemporal axiomatization of Epstein and Schneider (2003). Con-

sequently, we argue that the proof of Blackwell’s theorem should deal with expression

(5) as the definition of the value of information for meu preferences. This proof is still

pending.
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Appendix A Example demonstrating the dynamic incon-
sistency of Çelen’s framework

We restrict the number of states of the world Ω = {ω1, ω2}, actions X = {a1, a2} and signal
realizations S = {s1, s2} to two. Payoffs are specified by u11 = 1, u12 = −1, u22 = 2 and
u21 = 0. This is a simple example of a setting in which the decision maker wants to learn the
true ω because action a1 is optimal if ω = ω1 and action a2 is optimal if ω = ω2.

For the signal likelihood λ = p11 = p22 we assume 1/2 < λ < 3/4 and specify the set of
priors as A = {(π1, 1− π1) : 1/4 ≤ π1 ≤ 3/4}.

Using equation (2), we obtain that the optimal strategy f∗ in Çelen’s framework is

f∗(s1) = (1, 0) , f∗(s2) = (1/2, 1/2) . (6)

In words, the optimal strategy in the Çelen framework consists of taking action a1 if s = s1 and
mixing over actions a1 and a2 with equal weights if s = s2.

Next, we demonstrate that an meu decision-maker operating with the principle of backward
induction would deviate from f∗ as soon as the signal materializes. The decision rule after
observing a signal realization sj is given in (4), where g is a randomization over actions a1 and
a2, andMj ⊂ ∆(Ω) is the set of posteriors that depends on the set of priors A, the likelihood p,
and the signal realization sj observed. After simple algebra we get

g∗(s1) = (3/4, 1/4) and g∗(s2) = (3/4, 1/4) . (7)

In words, the optimal action of the meu decision-maker, both after receiving s = s1 and s = s2, is
to mix over actions a1 and a2 with the ratio 3 to 1. This is in contrast to the behavior prescribed
in (6). Our example thus demonstrates the dynamic inconsistency in Çelen’s framework.
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Abstract

Epstein and Schneider (2007) develop a framework of learning under ambiguity,
generalizing maxmin preferences of Gilboa and Schmeidler (1989) to intertemporal
settings. The specific belief dynamics in Epstein and Schneider (2007) rely on the
rejection of initial priors that have become implausible over the learning process. I
demonstrate that this feature of ex-post rejection of theories gives rise to choices
that are in sharp contradiction with ambiguity aversion. Concrete, the intertem-
poral maxmin decision-maker equipped with such belief dynamics, under prevalent
conditions, prefers a bet in an ambiguous urn over the same bet in a risky urn. I
offer two modifications of their framework, each of which is capable of avoiding this
anomaly.
Keywords: Learning under Ambiguity; Bayesian Updating; Multiple Priors; Maxmin
Expected Utility; Ambiguity Aversion.
JEL Codes: D81; D83.

1 Introduction

Since Ellsberg (1961), ambiguity averse preferences as opposed to subjective expected

utility preferences (seu, Savage 1972) have been a vital economic research topic. One

of the most influential axiomatization of ambiguity aversion is the multiple prior model

with maxmin expected utility (meu) of Gilboa and Schmeidler (1989). The framework of

Gilboa and Schmeidler (1989), however, is atemporal and thus not capable of reflecting

intertemporal ambiguity aversion. In a recent and influential paper, Epstein and Schnei-

der (2007) (henceforth es) develop, based on Epstein and Schneider (2003), a tractable

framework of intertemporal maxmin preferences and thus open ambiguity aversion to

a dynamic learning environment. This framework has already been used extensively in

various contexts, including financial markets (Condie and Ganguli 2011; Garlappi et al.

2007; Ju and Miao 2012; Leippold et al. 2008) and real options (Nishimura and Ozaki

2007; Riedel 2009).

∗I want to thank Boris Wiesenfarth for discussions in the early stages of this paper and am grateful
to Timo Goeschl and Tobias Pfrommer for their helpful comments and suggestions. I acknowledge the
support of the German Science Foundation, grant no. GO 1604/2-1.
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The focus of this paper is a problematic characteristic of the belief dynamics in

Epstein and Schneider (2007). The updating process in es involves the rejection of initial

beliefs that have become less plausible given the observed signal history. I demonstrate

that the rejection of beliefs renders possible a switch in preferences. To illustrate this,

I construct a simple example in which an ambiguity averse decision-maker switches to

ambiguity loving behavior after observing one draw from a payoff-relevant urn. The

reason for this instability of preferences is found in the rejection of initial beliefs in

the updating procedure. It can happen that the uniform distribution, the standard

initial prior of the seu decision-maker, is rejected in the reevaluation procedure of es.

As a consequence, the set of updated beliefs does not include the posterior of the seu

decision-maker, who serves as the usual reference point to define ambiguity preferences.

This gives rise to the switch to ambiguity loving behavior.1 Furthermore, I show that

this anomaly of intertemporal beliefs is not just an artifact, but rather a pervasive and

general feature of the es belief dynamics. Finally, I suggest two modifications of the es

setting to ensure stable ambiguity averse preferences over time.

I proceed as follows. In section 2, I recapitulate the basic cornerstones of Epstein

and Schneider (2007). The simple example demonstrating the es anomaly in a standard

setting is found in section 3. Section 4 generalizes the example to symmetric urns with

an arbitrary number of balls and shows that the es anomaly may occur under very

general conditions. The two parts of the theorem are illustrated graphically in section 5.

In section 6, I offer two alternatives to overcome the problems while keeping the general

structure of es. I conclude in section 7.

2 Intertemporal maxmin preferences – The setting of Ep-

stein and Schneider (2007)

The main purpose of this section is to recall the basic components of Epstein and Schnei-

der (2007). All readers familiar with the es framework may thus skip this section.

To reemphasize the motivation of their framework, I consider two urns that are

simplifications of the scenarios in es. Both urns only features risk or ambiguity, but

not both kinds of uncertainty at the same time. These urns are used in section 3 to

demonstrate the existence of the es anomaly and are then generalized in section 4 to

arbitrary symmetric settings.

2.1 Unknown parameter

To motivate the introduction of the parameter space in es, consider the two urns in

Figure 1. Both urns contain exactly three balls (this assumption will be abandoned in

1es notes that Ellsberg type behavior in the short run will converge (for a fixed composition urn)
to ambiguity neutral behavior in the long run. The possibility of a change in preferences to ambiguity
loving choices, however, was not mentioned.
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Urn R: Risk Urn A: Ambiguity

Figure 1

section 4). In both urns there is, apart from a white and a black ball, a third ball that

is either black or white. The composition of either urn is thus unknown to the decision-

maker but will not change over the course of the experiment.2 In the language of es,

the ratio of black balls in the urn is the unknown parameter θ with possible values in

the set Θ = {1/3, 2/3}. The key difference between both urns is that for the risky Urn

R, the decision-maker knows that the color of the third ball has been determined via a

fair mechanism, e.g. a fair coin. This is the same kind of uncertainty as in scenario 1

in es. For the ambiguous Urn A however, the decision-maker has no information on the

mechanism that determined the color of the third ball. In contrast to scenario 2 in es,

Urn A features pure ambiguity.

2.2 State space and recursive utility

In every period and for each urn, one ball is drawn and then put back (sampling with

replacement). The period state space is St = S = {B,W}, identical for all times. We

denote by st ∈ S the color observed by the agent at time t. An agent’s information at

time t is the history st = (s1, . . . , st). The natural full state space is S∞.

The agent ranks consumption plans c = (ct) according to recursively defined utility,

Ut(c; s
t) = min

p∈Pt(st)
Ep
[
u(ct) + βUt+1(c; st, st+1)

]
, (1)

where u and β have the usual properties. A central component in es is Pt(st). This set of

probability measures models beliefs about the next ball observed, st+1, given the history

st. Such beliefs reflect ambiguity if Pt(st) is a non-singleton, which is the appropriate

description if the draw will be made from Urn A. Beliefs about the next draw from Urn

R can be, as usual, described with Pt(st) being a singleton. es refer to (Pt) as the process

of one-step-ahead beliefs. Specifying beliefs in this way ensures dynamic consistency of

the decision framework, as is shown in Epstein and Schneider (2003). To further clarify

this set of beliefs, let us turn to the learning structure in the es setting.

2Thus, we do not consider scenario 3 in Epstein and Schneider (2007) with unknown likelihoods
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2.3 Learning

By observing data, here a sequence (st) of white and black balls, the decision-maker tries

to learn the color of the third ball and thus the unknown parameter θ ∈ Θ. Ambiguity in

initial beliefs about parameters can be represented by a set M0 of probability measures

on Θ. The size of M0 reflects the decision-maker’s (lack of) confidence in the prior

information on which initial beliefs are based.

In both urns, Urn R and Urn A, the likelihood of observing a black or a white ball

is fully determined by the parameter θ, the ratio of black balls in the urn. Obviously,

l(s = B|θ) = θ. Throughout this paper, we restrict ourselves to those settings of

unique likelihood functions.3 Beliefs about parameters and the likelihood function jointly

determine the process of one-step-ahead beliefs

Pt(st) =

{
pt(·) =

∫
Θ
l(·|θ)dµt(θ) : µt ∈Mt(s

t)

}
, (2)

where Mt(s
t) is the set of posterior beliefs after observing the data st. This set is basi-

cally the priorwise Bayesian update of initial beliefs µ0 ∈M0. es, however, incorporate

the possibility that the decision-maker rejects at every t some implausible initial be-

liefs. The set of posteriors only include updates of initial beliefs that are not rejected

in this process. The specific procedure of rejecting beliefs in es, however, gives rise to

the anomaly that is the topic of this paper. In the following subsection, we explain the

rejection of beliefs in es in detail.

2.4 Updating and reevaluation

To assess the plausibility of a ”theory” µ0 ∈ M0 after having observed the history of

signals st, es use the data density evaluated at st. I denote this plausibility of a theory

µ0 given the data st = (s1, . . . , st) by

Plaus(µ0; st) =

∫
Θ

t∏
j=1

l(sj |θ)dµ0(θ) . (3)

With the usual Bayesian updating, recursively defined by

dµt(·; st, µ0) =
l(st|·)∫

Θ l(st|θ′)dµt−1(θ′; st−1, µ0)
dµt−1(·; st−1, µ0) , (4)

3es also allow for ambiguity in likelihoods, that is a set of likelihoods L. At any point in time, any
element of L might be relevant for generating the next observation. Multiple likelihoods refer to those
components of a decision problem the decision-maker has decided that she will not try to (or is not able
to) learn about. The findings of this paper are independent of L, which is why I restrict this analysis to
the simplest case with a single likelihood function.
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es define the set of posteriors

Mα
t (st) =

{
µt(·; st, µ0) : µ0 ∈Mα

0 (st)
}

(5)

as the set of prior-by-prior updates of Mα
0 (st). Here,

Mα
0 (st) =

{
µ0 ∈M0 | Plaus(µ0; st) ≥ α max

µ̃0∈M0

Plaus(µ̃0; st)

}
(6)

is the set of theories (i.e. initial priors) that are not rejected after having observed the

signal history st. Rejected are those initial priors that fail a maximum likelihood test

against the most plausible prior, and the parameter α governs how strict this maximum

likelihood test is. es consider 0 < α ≤ 1 as possible values for the rejection parameter.

Ruling out α = 0 implies that they require the decision-maker to actually use this

rejection device.

The likelihood-ratio test is more stringent and the set of posteriors smaller, the

greater is α. In the extreme case α = 1, only parameters that achieve the maximum

likelihood are permitted. If the maximum likelihood estimator is unique, ambiguity

about parameters is resolved as soon as the first signal is observed. More generally, we

have that α > α′ implies Mα
t ⊂ Mα′

t . It is important that the test is done after every

history. In particular, a theory that was disregarded at time t might look more plausible

at a later time and posteriors based on it may again be taken into account.

2.5 Subjective expected utility vs. maxmin preferences

Some words on the relation between subjective expected utility (seu) and intertemporal

maxmin (meu) preferences are in order to round up this section. For Urn R, the initial

prior (1/2, 1/2) that puts equal weight on both parameters is obviously the best descrip-

tion of the decision-maker’s state of knowledge, irrespective of whether the decision-rule

is seu or meu.

For Urn A this is different. An seu decision-maker – who is the standard Bayesian

decision-maker – is by definition characterized by a single belief. As objective knowledge

about Urn A is not available, the question how the initial prior is determined is in general

not easy to answer (Maskin 1979). Due to the perfect symmetry of this setting, however,

it is clear that a Bayesian decision-maker would, according to the principle of insufficient

reason (see for instance Gilboa 2009), hold the initial prior that assigns equal probability

to θ = 1/3 and θ = 2/3. As a consequence, an seu decision-maker sees no difference

between Urn R and Urn A.
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3 A simple example demonstrating the switch in prefer-

ences

In this section I design a simple example to illustrate the key problem in the es setting.

It involves an meu decision-maker who initially features the usual ambiguity averse pref-

erences. After observing one draw from the urns, however, she switches her preferences

and partially exhibits ambiguity loving behavior.

3.1 Preliminaries

The example is constructed within the standard infinite horizon setting with S∞. I will,

however, only compare the betting behavior on the color of the next ball before and after

a single signal realization s. That is, I will focus on the betting preferences at t = 0 and

t = 1. For simplicity, I consider exclusively the two bets 1B0 and 1W 0, where the bet

1B0 involves a payment of 1 $ if the color of the ball drawn is black and 0 $ if the ball is

white. The bet 1W 0 is defined similar.

The example rests on the simple three-ball-urns introduced in section 2, cf. Figure

1. Consequently, the parameter space consists of the two possible ratios of black balls

in the urn, Θ = {1/3, 2/3}. Any prior and posterior over the parameter space has the

form (ν, 1 − ν) where the extreme points (1, 0) and (0, 1) correspond to full weight on

the parameter θ = 1/3 and θ = 2/3, respectively.

For Urn R, both the seu and the meu decision-maker hold the uniform distribution

as the initial prior. This is also the prior the seu decision-maker associates with the

ambiguous Urn A. The meu decision-maker, in contrast, holds a set of initial priors

regarding Urn A. For simplicity, let the set in this example be the full set of priors

M0 = {(ν, 1− ν) | 0 ≤ ν ≤ 1}. Let the rejection parameter α be 4/5, which means that

the meu decision-maker only updates the initial priors with a plausibility of at least 0.8

of the maximal plausibility.

3.2 Ambiguity aversion before observing the signal

Let us first compare the betting preferences of the seu and the meu decision-maker

before the signal has been observed. Irrespective of the color to bet on, the seu is

indifferent between the bet on Urn R and Urn A as for her both urns are essentially the

same. The meu decision-maker, however, has – irrespective of the color to bet on – a

clear preference for betting on Urn R. The reason is basically expression (1). For bet

1B0, where B is the favorable color, the worst scenario is that with the lowest number of

black balls in the urn. Thus the meu decision-maker rests her decision on the prior (1, 0)

that puts full weight on θ = 1/3. The associated expected payoffs are 1/3 $. A similar

argument for bet 1W 0 shows that the worst prior is (0, 1), again with the expected payoff

1/3 $. This has to be compared to the expected payoffs for Urn R. Clearly, the prior
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(1/2, 1/2) is for both bets associated with expected payoffs of 1/2 $. Thus, the MEU

decision-maker strictly prefers either bet in Urn R over Urn A. This is the well-known

ambiguity averse behavior.

3.3 Switch to ambiguity loving behavior after learning

We now compare the betting behavior after a signal s has been observed. To make

behavior comparable, we restrict to the case that the balls drawn from Urn R and Urn

A have the same color. Without loss of generality, say s = B. This transforms the seu

decision-maker’s belief from the initial prior (1/2, 1/2), irrespective of the urn, into the

posterior (1/3, 2/3), reflecting the increased subjective probability for the scenario that

the unknown ball is black.

The meu decision-maker shares this view for Urn R, but naturally has a different

take on Urn A. Here, the set of initial priors M0 is, according to (5), updated to the

setMα
1 (s). To recapitulate the es procedure explained in section 2.4, the first task is to

find the most plausible theory µ0 ∈ M0. This is clearly (0, 1). The plausibility of this

theory (cf. (3)) is 2/3. With α = 4/5, the meu decision maker rejects all theories with a

plausibility less than 4/5 ·2/3 and thus keeps the set M0(s) = {(ν, 1− ν) | 0 ≤ ν ≤ 2/5}.
Finally, this set is updated to Mα

1 (s) = {(ν, 1− ν) | 0 ≤ ν ≤ 1/4}.
Let us again compare betting preferences of the seu and the meu decision-maker.

The seu remains, for either bet, indifferent between Urn R and Urn A. Turning to the

meu decision-maker, consider first the bet 1W 0. Urn R promises expected payoffs of

4/9 $. For Urn A the worst belief is still (0, 1), associated with expected payoffs of

1/3 $ < 4/9 $. Thus, the meu decision-maker still prefers the bet 1W 0 in Urn R over

Urn A.

Most intriguing, this is different for the bet 1B0. Urn R promises an expected payoff

of 5/9 $. For Urn A, the worst posterior in Mα
1 is (1/4, 3/4). This translates into

expected payoffs of 7/12 $, which is larger than 5/9 $. The maxmin decision-maker thus

prefers the bet 1B0 in Urn A over the same bet in Urn R. This very surprising and a clear

contradiction to ambiguity averse preferences. The reason for that switch in behavior

stems from the fact that in general es reject too many theories. Here, with a rather

high α = 4/5, the critical ambiguity neutral seu prior (1/2, 1/2) is rejected. This prior

is critical because with it also all ’pessimistic priors’ that would give rise to ambiguity

averse choices are rejected. As a consequence, the set of posteriors M1 only contains

optimistic beliefs that give rise to ambiguity loving choices.

One could argue that this problematic betting behavior can be avoided by adequately

choosing α. In the example, any α < 3/4 would not give rise to the switch in preferences,

at least not at t = 1. However, α was introduced by es to be a characteristic of the

decision-maker and it is thus unnatural to adjust α to the specific setting.

The next section will demonstrate that the es anomaly is pervasive. For every α > 0
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there is a similar setting to that considered in the example for which such a disconnect in

the behavior of the meu decision-maker occurs. It is thus not possible to find a rejection

parameter 0 < α ≤ 1 that is not prone to the es anomaly.

4 The general result

In this section, I first generalize the setting from urns with three balls to arbitrary

symmetric settings. This provides the framework to demonstrate that the problematic

characteristic of the es updating procedure is not restricted to specific urns. Indeed,

we can show that each pair of generalized urns has this property for some rejection

parameter 0 < α ≤ 1. Even more interesting and less obvious, for each 0 < α ≤ 1 we

can construct a pair of urns and a signal history st such that the meu decision-maker

features the switch to ambiguity loving behavior.

4.1 Generalized urns

The first step is to define generalizations of Urn R and Urn U. I restrict to symmetric

settings in the sense that a priori both colors are interchangeable. The generalized Urn

R and Urn A, I denote them by UR(n, k) and UA(n, k), respectively, have exactly 2n+k

balls. It is known that n balls are black, n balls are white and each of the remaining

k balls can either be black or white. As will become clear in what follows, the urns in

the example in the previous section correspond to the case n = k = 1. To generalize the

three balls urn example, we assume that the number of black balls within the k unknown

balls in urn UR(n, k) is uniformly distributed.4 The urn UA(n, k) is basically the same,

but without information about the distribution of the k unknown balls. In either case,

the parameter set is Θ = {n/(2n+ k), . . . , (n+ k)/(2n+ k)} with θ ∈ Θ being the true

fraction of black balls in the urn, unknown to the decision-maker. The period state space

is again S with the full state space S∞. The likelihood functions are fully specified by

l(s = B|θ) = θ.

In terms of initial prior, it is clear that for UR(n, k) both seu and meu decision-maker

have the initial prior (1/(k + 1), . . . , 1/(k + 1)) on Θ. This is also the initial prior the

seu decision-maker holds for Urn A. In contrast, the meu decision-maker operates with

a set M0 of initial priors, which is by definition a subset of ∆({0, . . . , k}). The natural

assumption I make is that the uniform distribution is an element of the set of initial

priors, (1/(k + 1), . . . , 1/(k + 1)) ∈M0.

It is convenient to focus on simple and tractable sets forM0. As a generalization of

4An alternative generalization would be that of k independent coin flips. My choice, however, is more
intuitive and technically simpler
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intervals around 1/2 in the case k = 1, I consider sets of the form

∆(k)
ε =

{
(ν0, . . . , νk) |

∑
i

νi = 1 , 0 ≤ ε ≤ νi ≤ 1− kε ≤ 1∀i , ε < 1
k+1

}
. (7)

By construction, all these sets contain the uniform distribution. The full set of priors ∆

is the special case ∆
(k)
ε with ε = 0, and for ε→ 1/(k+ 1) the set collapses to a singleton

with the uniform distribution as the only element.

4.2 Theorem

I now have the toolkit to formulate the main finding. The intertemporal maxmin

decision-maker in the es sense is characterized by the parameter α that describes to

what extent theories are rejected ex-post. I have shown in section 3 that also the uni-

form distribution, the initial prior of the seu decision-maker, can be rejected in this

process. As a consequence, all pessimistic priors are rejected as well, giving rise to

ambiguity loving choices. This anomaly occurs under very general conditions. Concrete,

Theorem 4.1. The es anomaly can be characterized by two statements.

(i) For any pair (n, k) ∈ N2, anyM0 = ∆
(k)
ε and any bet there is a rejection parameter

α and a signal history st such that after observing st the meu decision-maker

exhibits ambiguity loving behavior, i.e. she prefers the bet in UA(n, k) over the

same bet in UR(n, k).

(ii) For any rejection parameter α ∈ (0, 1] and any bet there is (n, k) ∈ N2, a set of

initial prior M0 = ∆
(k)
ε and a signal history st such that after observing st the

meu decision maker prefers the bet in UA(n, k) over the same bet in UR(n, k).

Proof. For both statements of the theorem I have to construct a suited signal history st.

Without loss of generality, I consider the bet 1B0. Accordingly, the signal history can

be constructed as st = (B, . . . , B). The task then is to construct an appropriate t. For

M0 = ∆
(k)
ε , the maximal plausible prior after observing only black balls is (ε, . . . , ε, 1−

kε). The es anomaly occurs if the uniform distribution (1/(k + 1), . . . , 1/(k + 1)) is

rejected. This happens if its plausibility is lower than α times the maximal plausibility.

This condition, after multiplying with (2n+ k)t, reads

k∑
i=0

(n+ i)t < (k + 1)α

(
ε
k−1∑
i=0

(n+ i)t + (1− kε) (n+ k)t
)
. (8)

For part (i), I have to construct a suited rejection parameter 0 < α ≤ 1. In appendix

A, I demonstrate that this is equivalent with α > α, where α is a number independent

of t. I show α < 1 and thus the existence of a problematic rejection parameter α.
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For part (ii), α ∈ (0, 1] is given and the task is to construct an urn (n, k), a set

of initial prior ∆
(k)
ε and a signal history st that fulfills (8). With sensible choices, this

reduces to finding a number of unknown balls k. It is obvious that the smaller α, the

larger must be k. In appendix A, I derive a condition for k of the form k > k(α) that is

sufficient for (8).

5 Graphical illustration

This section is dedicated to the graphical illustration of the general findings. The first

subsection 5.1 illustrates the first part of the theorem by demonstrating the existence of

a problematic rejection parameter in any given setting, here n = k = 1. The second part

of the theorem is made more concrete in subsection 5.2: A given rejection parameter

that is innocent in some setting (k = 1) gets problematic in a higher dimensional setting

(k = 2).

5.1 First part of the theorem

The first part of the theorem can be illustrated with n = k = 1. In Figure 2 we see the

time series of non-rejected initial priors Mα
0 (st) (top panel), the history of standard seu

beliefs (black line in the bottom panel) and the set of es beliefsMα
t (st) (shaded area in

the bottom panel) for different rejection parameter α. At t = 0, by definition M0 =M0

which is chosen as the full set ∆
(1)
0 . The initial seu prior is (1/2, 1/2).

The signal underlying all subfigures in figure 2 is the iteration of the sequence W,B,B

(six times) and thus evidence for the theory θ = 2/3, which corresponds to the belief

(0, 1). In the subfigures we see how this evidence is processed under different rejection

parameter α. With α = 0, which is a limiting case not permitted by es, no theory inM0

is ever rejected. Thus M0(st) remains the full set M0 over the whole time (top panel).

The update of the full set, however, is the full set again. This is why also Mt remains

constant over time. The update of the seu decision-maker, of course, is independent of

α and converges to (0, 1).

For increasing α more and more theories are rejected. Note that after observing the

first signal, s = W , the theory (1, 0) is the most plausible one. This is why theories

in the neighborhood of (0, 1) are rejected for adequately high α at time t = 1 (cf. top

panel) but later, as (0, 1) has become the most plausible theory, are element of the set

M0 again. After observing the first two signal realizations, s1 = W and s2 = B, all

theories are equally likely. This is reflected in the fact that Mα
0 (s2) is the full set, even

for the most strict rejection parameter α = 1. The same effect occurs at t = 4.

Central in this paper is the question under which conditions the seu posterior is not

in the set Mt of es posteriors, potentially causing those problems delineated in section

3 and generally formulated in section 4.2. By definition of Mt, this es anomaly occurs
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Figure 2: Illustration of the first part of the theorem. Each subfigure corresponds to a different
rejection parameter α and presents the history of non-rejected initial priors Mα

0 (st) (top panel),
the history of standard seu beliefs (black line in the bottom panel) and the set of es beliefs
Mα

t (st) (shaded area in the bottom panel). For α > 0.5, the es anomaly occurs at some point
in time.

if and only if the initial seu prior (1/2, 1/2) is not in M0. We see this effect in the

subfigures with α = 0.6, α = 0.8 and α = 1.0. In the latter case, with the strictest

rejection parameter possible, the set of non-rejected theories is either the full set (when

the signal history is not conclusive) or the singleton with one of the extreme theories

(1, 0) or (0, 1). As a consequence, also the posterior set Mt is either the full set or an

extreme singleton. This shows the problem of the es updating in a nutshell: The specific

form of es updating favors extreme beliefs, rather than ’smooth’ beliefs around the seu

belief history. With α = 1.0, the MEU decision-maker is positive that the unknown ball

in the urn is white (M1 = {(1, 0)}) after observing the first signal realizations; after the

second signal realization, she is clueless (M2 = ∆); then positive that the color of the

unknown ball is black (M3 = {(0, 1)}); then clueless again before remaining perfectly

convinced that the unknown ball is black. This extreme form of reevaluation is due to

α = 1, but even smaller values give rise to a similar behavior.

Figure 2 thus illustrates the first part of the theorem: For a given urn, it states

the existence of a signal history st and a rejection parameter α such that the setting

described by those parameters features the es anomaly. Figure 2 suggests that the es

anomaly does occur for α ≥ 0.6, but not for α ≤ 0.4. The proof of Theorem 4.1 in

appendix A indeed shows that α = 0.5 is the relevant threshold for α.

This, in turn, implies that the setting n = k = 1 is innocent for α ≤ 0.5. Indeed,

the es anomaly does not occur even with extreme signal histories. This is demonstrated
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in Figure 3. Here, the rejection parameter α = 0.5 is just small enough to ensure that

the seu posterior remains in the set of es posteriors. Observing only black balls drawn,

(0.1) is always the upper bound of the non-rejected initial priors (Figure 3, upper panel)

and consequently also the upper bound of the set of posteriors (lower panel). The lower

bound of the non-rejected priors M0 converges to (1/2, 1/2). Thus, the setting α = 0.5

exhibits no es anomaly.

t=0 t=9
(1,0)

(0,1)

t=0 t=9
(1,0)

(0,1)

Figure 3: Illustration that n = k = 1 is innocent for α = 0.5.

5.2 Second part of the theorem

The second part of the theorem, however, shows that all rejection parameter α > 0 are

potentially problematic. An arbitrary α ≤ 1/2 might be innocent for the urn character-

ized by k = 1; there exists, however, a generalized urn (characterized by n and k) giving

rise to the es anomaly.

This part of the theorem is illustrated by Figure 4 with α = 1/2, the signal history

st = (B,B,B,B,B) and n = k = 2.5 As usual, the beliefs under k = 2 can conveniently

be captured in a simplex. Each subfigure in Figure 4 corresponds to one point in time

and shows the non-rejected theories M0 with the uniform distribution (1/3, 1/3, 1/3)

marked with a black dot (top panel), seu posteriors (black dots in the bottom panel)

and set of es posteriors (shaded area in the bottom panel).

We can see in the top panels that the uniform distribution (1/3, 1/3, 1/3) is not in

the set of admissible theories M0 for all t ≥ 4. As a result, the set of posteriorsMt does

not contain the seu update. This reflects the general theorem: A rejection parameter

α, here α = 0.5, might be innocent for certain settings, e.g. n = k = 1 (cf. Figure 3).

It is always possible, however, to construct a generalized urn, here n = k = 2, such that

the es anomaly occurs after observing s = B for a finite number of times.

The theorem demonstrates the problematic feature of the es setting: It is not possible

to avoid the es anomaly when the positive rejection parameter α > 0 ought to be

5The number of unknown balls, k, determines the dimension of beliefs and is the relevant number.
The number n only determines likelihoods and is thus of minor importance.
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Figure 4: Illustration of the second part of the theorem with α = 0.5 and k = 2. Each subfigure
shows for a certain point in time the set of non-rejected initial priors Mα

0 (st) (top panel), the
standard seu belief (black dot in the bottom panel) and the set of es beliefsMα

t (st) (shaded area
in the bottom panel). The es anomaly occurs at t = 4 and t = 5 when the uniform distribution
is rejected.

independent of the decision-problem. In the next section, we offer two modifications of

the es framework in order to avoid the witch in ambiguity preferences.

6 Alternatives

In this final substantive section I offer two modifications of the es framework, each of

which is designed to overcome the es anomaly. The first modification in 6.1 is basically

a refinement of the es approach and thus also involves the rejection of initial priors;

the es anomaly is avoided by defining a set of essential beliefs that are immune to

rejection. The second modification, which I consider the preferable fix, has the charm

of simplicity. I argue that the rejection of theories is not desirable anyway. Abstaining

from the rejection of theories clearly avoids the es anomaly. As I will demonstrate in 6.2,

simple restrictions on the set of initial priorsM0 suffice to ensure well-behaved learning
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dynamics.

6.1 Refinement of the rejection of theories

The first modification of the es framework declares certain theories as unrejectable and

can thus avoid the es anomaly. The decision-maker may feel that a certain set of

theories Mess
0 is essential and thus should be immune to ex-post rejection, no matter

how implausible the essential priors are in light of the signal history.

The modification of (6) is, for Mess
0 6= ∅,6 given by

Mα
0 (st) =

{
µ0 ∈M0 | Plaus(µ0; st) ≥ α min

µ̃0∈Mess
0

Plaus(µ̃0; st)

}
. (9)

That is, a theory µ0 is only rejected if it fails a maximum likelihood test against all

theories in Mess
0 . This ensures that even for α = 1 all theories in Mess

0 are updated.

In our setting, a natural candidate for such an essential theory is the uniform distri-

bution held by the seu decision-maker as the prior distribution. As it might be desirable

to ensure that the Bayesian update is an inner point ofMt, we chooseMess
0 = ∆

(k)
εess (cf.

4.1) with some 0 < εess < 1/(k + 1).

In Figure 5 we illustrate the effect of this alternative definition on the dynamics of

multiple beliefs. All parameters settings are as in Figure 2. The only difference is that

the rejection of initial priors is based on (9) instead of (6).

Figure 5 shows that the es anomaly is avoided by this alternative definition. Due

to (9), the initial prior (1/2, 1/2) is an element of the set of non-rejected priors for all t

and all rejection parameter α (upper panels). Thus, the seu posterior (black line in the

bottom panel) is always element of set of modified es posteriors. As the reference point

for theory rejection is not the theory with the maximal plausible anymore, the rejection

of theories is less strict even in cases that were not prone to the es anomaly (compare

α = 0.2, α = 0.4 and α = 0.6 in Figure 5 to those in Figure 2). The convergence behavior

of the modified es framework is the same as in the initial framework: For α > 0, the set

of posteriors converges to the true distribution.

The appeal of this modified definition is that it is only a slight modification of the

es framework. It avoids the es anomaly while preserving their general structure of

reevaluation of theories. In the next subsection, I argue for an alternative modification

that does not rest on the reevaluation of theories (α = 0).

6.2 A simple alternative to the rejection of theories

If a decision-maker holds the full set of priors ∆
(k)
0 as the initial prior setM0, unrestricted

updating (full Bayesian updating, α = 0) is not capable of reflecting learning as Mt =

6If Mess
0 = ∅ and thus no theory is regarded essential, the es framework is unchanged. In that case

the rejection of theories is defined by (6).
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Figure 5: Refinement of the es theory rejection with essential priors Mess
0 . Each subfigure

corresponds to a different rejection parameter α. In each subfigure you find the history of non-
rejected initial priors Mα

0 (st) (top panel), the history of standard seu beliefs (black line in the
bottom panel) and the set of modified es beliefsMα

t (st) (shaded area in the bottom panel). The
critical seu prior, the uniform distribution, is never rejected.

M0 for all t, irrespective of the signal history (cf., for example, the first subfigure

in Figure 2). As shown by es, this undesirable feature can be avoided by using a

theory rejection parameter α > 0 (cf. Figure 2). This, however, in turn gives rise to a

problem I coined the es anomaly. Theorem 4.1 showed that this anomaly is a pervasive

characteristic of the es framework. The previous subsection introduced a moderate

modification of this framework to circumvent this anomaly. In this subsection, I follow

a different line of thought.

Reevaluation, that is the rejection of theories after observing a signal history, is not

part of the standard Bayesian updating procedure. Clearly, an seu decision-maker does

not reevaluate its initial prior. She does not replace her initial prior by a more plausible

one to update the latter. Rather, the initial prior (the uniform distribution in this paper)

is the prior to be updated for all t and all conceivable signal histories. The information

obtained over the learning process is reflected in the posterior and not used to reevaluate

the initial prior.

I argue to keep this characteristic in the multiple prior setting. That is, I argue for

defining the set of posteriors Mt, under all conditions, as the update of the full initial

prior setM0. In other words, I argue for extending the es framework to α = 0 and rule

out all α > 0. Reevaluation of initial priors is not necessary as the information provided

by the signal history is reflected in the set of posteriors. This will become apparent

below.
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The price for this simple fix of the es anomaly is that I have to avoid the trivial

learning dynamics mentioned above. The solution is just the restriction M0 6= ∆
(k)
0 .

The price of this restriction, however, is low. Please recall that the axiomatization of

maxmin preferences of Gilboa and Schmeidler (1989) regards the set of beliefs as an

endogenous component of the ambiguity averse preferences. In other words, the set

of beliefs, instead of reflecting objective uncertainty, reflects how strong the ambiguity

averse preferences of the decision-maker are. With the inflexible and extreme maxmin

rule the set of beliefs is basically the only way to express different degrees of ambiguity

aversion. In that sense, the full initial prior set ∆
(k)
0 would correspond to the most

extreme uncertainty aversion possible. It seems not problematic to rule ot this extreme

form of ambiguity aversion.

Due to the non-rejection of theories, one might suspect this modification α = 0

to produce very large sets of posteriors. Figure 6, however, demonstrates that this is

actually not the case. Even large prior sets narrow down substantially as the signals get

more and more informative.
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Figure 6: Simple alternative without theory rejection. Initial priors Mα
0 (st) (top panel), the

history of standard seu beliefs (black line in the bottom panel) and the set of es beliefsMα
t (st)

(shaded area in the bottom panel).

Figure 6 shows the set of non-rejected priors M0, the seu posteriors and set of es

posteriors for different initial prior setsM0 6= ∆
(k)
0 . The set M0 is, by definition of α = 0,

constant over time. The attractive features of this modification of the es framework for

applications are that (i) the procedure is simple, (ii) that the set of posteriorsMt follows

a similar trajectory like the seu posterior and yet (iii) the contraction of the set reflects

the increased information about the true parameter θ. The belief dynamics in Figure 6

make the impression of being more ”smooth” than those in Figure 5, let alone Figure 2.

As this impression is further underpinned by the theoretical argument that the rejection

of initial priors may be per se problematic, I argue to use this modification of the es

setting in applications.
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7 Concluding discussion

The intertemporal maxmin framework of Epstein and Schneider (2007) involves the

rejection of initial priors that have become implausible in light of the observed signal

history. In this note, I have demonstrated that these specific belief dynamics potentially

give rise the so called es anomaly, namely a problematic switch in ambiguity preferences.

Those who apply the framework of Epstein and Schneider (2007) to model intertemporal

ambiguity aversion should be aware of the potential switch in preferences and aim to

avoid it.

I have offered two modifications of the es framework. The first solution to the es

anomaly is to declare a set of priors essential and thus immune to rejection. To avoid

the switch in ambiguity preferences, the uniform distribution would be such an essential

prior. The second alternative, which seems the simpler and more appealing solution,

abstains from the rejection of initial priors in any case and thus avoids the preference

switch right from the start. As I have demonstrated, this modification leads to well-

behaved belief dynamics if the set of initial priors is not the full set.

It is important to note that I have essentially focused in this comment on a reduced

version of Epstein and Schneider (2007). Apart from multiple initial priors captured by

the set M0, es also allow for multiple likelihoods L. The rejection of ”theories” in es

does apply to initial priors in M0 and likelihoods in L. The es anomaly already occurs

in the reduced setting with L being a singleton; a similar anomaly, however, may occur

with multiple likelihoods when a standard likelihood is rejected over the course of the

learning process. Future research ought to isolate the conditions for such a switch in

detail. Both modifications of the es framework presented in this paper, however, seem

to be promising candidates to also fix the potential anomalies that may occur due to the

reevaluation of multiple likelihoods.
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Appendix A Proof of the theorem

Proof. For both statements of the theorem I have to construct a suited signal history st. Without
loss of generality, consider the bet 1B0. Accordingly, I construct the signal history to generate
the es anomaly in the form of constantly observing s = B, st = (B, . . . , B). The task then is

to construct an appropriate t. For M0 = ∆
(k)
ε , the maximal plausible prior after observing only

black signals is (ε, . . . , ε, 1−kε). The uniform distribution (1/(k + 1), . . . , 1/(k + 1)) is rejected if
its plausibility is lower than α times the maximal plausibility. This condition, after multiplying
with (2n+ k)t, reads

k∑
i=0

(n+ i)
t
< (k + 1)α

(
ε

k−1∑
i=0

(n+ i)
t

+ (1− kε) (n+ k)
t

)
. (10)

For part (i), I have to construct, for given n and k, a suited rejection parameter 0 < α ≤ 1.
The condition for the existence of such a rejection parameter is

α > α :=

∑k
i=0 (n+ i)

t

(k + 1)
(
ε
∑k−1
i=0 (n+ i)

t
+ (1− kε) (n+ k)

t
) . (11)

The existence of a rejection parameter α giving rise to the es anomaly is ensured if α < 1. Simple
algebra leads to the equivalent condition

(1− (k + 1)ε)

k−1∑
i=0

(n+ i)
t
< (1− (k + 1)ε) k (n+ k)

t
. (12)

By definition of ∆
(k)
ε , (k+ 1)ε < 1. Furthermore,

∑k−1
i=0 (n+ i)

t
< k(n+ k)t. This proves α < 1.

In particular, there are no further restrictions on t. This implies that for every urn there is a
rejection parameter α such that the ambiguity loving behavior occurs already after observing
one signal, t = 1.

For part (ii), α ∈ (0, 1] is given and I have to construct an urn (n, k), a set of initial prior ∆
(k)
ε

and signal history st that fulfills (8). As will become clear, it is helpful to choose ε = 1
k(k+1)α ,

for which ε < 1
k+1 if k > 1

α . With that, condition (8) reads

k∑
i=0

(n+ i)
t
< 1

k

k−1∑
i=0

(n+ i)
t

+ ((k + 1)α− 1) (n+ k)t . (13)

Sufficient for this, by neglecting the first positive expression on the right hand side, is

k∑
i=0

(
n+ i

n+ k

)t
< (k + 1)α− 1 . (14)
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As ((n+ i)/(n+ k))
t

tends to 0 for t→∞ for all 0 ≤ i < k, there is a t such that ((n+ i)/(n+ k))
t
<

1/k for all 0 ≤ i < k. Thus, a sufficient condition for the existence of a parameter k giving rise
to the esanomaly is the condition 1 + k · 1k < (k + 1)α− 1. This is equivalent with

k > k(α) =
3

α
− 1 . (15)

In particular, under this condition also k > 1/α and thus the ε-value I defined above is actually
feasible.

I have shown the existence of a problematic urn for all rejection parameter α. It is intuitive
that smaller α make higher k necessary. It is interesting that there are no restrictions on n, the
number of known black and white balls, respectively.
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Information Acquisition under Ambiguity –

Why the Precautionary Principle

may Keep us Uninformed ∗

Daniel Heyen Timo Goeschl Boris Wiesenfarth

Abstract

Agencies charged with regulating complex risks like food safety or novel substances
frequently need to take decisions in settings characterized by ambiguity, namely be-
ing unable to assign probabilities to possible outcomes of their regulatory actions.
For such settings, advocates of the Precautionary Principle (PP) suggest an ambi-
guity averse decision rule which puts more weight on the adverse scenarios. While
there is some literature on the merits of the PP given a certain degree of uncertainty,
the question of the optimal level of knowledge if uncertainty can be (costly) reduced
has been disregarded. Such active information gathering, however, is a central part
of regulatory mandates. The purpose of this paper is to shed light on the implica-
tions a precautionary mandate has on the level of investment in active information
acquisition. In our parsimonious model, a decision maker can decide on the precision
of a signal which provides noisy information on a payoff-relevant parameter. Our
key finding is that – contrary to intuition – a mandate of precaution often leads to
less investment in active information gathering. In other words, for an important
class of regulatory settings, a mandate of PP gives rise to a form of willful ignorance
on behalf of the regulator.
Keywords: Scientific Uncertainty; Precautionary Principle; Active Information
Acquisition; Regulatory Mandates; Maxmin Expected Utility.
JEL Codes: D81; D83; Q58.

1 Introduction

In the early summer of 2011, the European Union experienced an outbreak of Shiga-

toxin producing Escherichia coli (STEC).1 More than 3,100 cases of bloody diarrhea and

∗We are grateful to conference participants at the AUROE Young Academics Workshop 2012 in Bern,
the Spring Meeting of Young Economists 2012 in Mannheim, the Annual Conference of the Society
of Environmental Law and Economics 2012 at the Indiana University in Bloomington, the Summer
Conference of the Association of Environmental and Resource Economists (AERE) 2012 in Asheville
(NC), the Annual Conference of the European Association of Environmental and Resource Economists
(EAERE) 2012 in Prague, the Workshop on Irreversible Choices 2012 in Brescia, seminar participants
at the Departmental Seminar in Heidelberg, the FEEM Seminar, the Microcosm Meeting at the IASS,
the FZU-ZEW Monthly Brown Bag Seminar, the Heidelberg Geoengineering Forum, and participants
of the Harvard Geoengineering Summer School 2013 for helpful comments. Particular thanks goes to
Gregor Betz, Valentina Bosetti, Adam Dominiak, Juergen Eichberger, Itzhak Gilboa, Simon Grant,
Juan Moreno-Cruz, Joerg Oechssler, Frank Riedel, Christian Traeger, and Nicolas Treich. The first two
authors acknowledge the support of the German Science Foundation, grant no. GO 1604/2-1.

1The outbreak was first incorrectly classified as EHEC and has become widely known under this label.
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more than 850 of haemolytic uremic syndrome (HUS), a serious condition that can lead

to kidney failure, were reported during the outbreak. There were 53 confirmed deaths

(EFSA 2012). The outbreak of STEC was linked through epidemiological research to

the consumption of fresh salad vegetables (BfR 2012). Because research found toxin

producing E.coli on cucumbers from Spain, European Commission and German officials

issued alerts and effectively required Spanish cucumbers to be withdrawn from the mar-

ket (BBC 2011; BfR 2012). These events saddled Spanish vegetable growers, among

others, with economic damages of several hundred millions of Euros (BBC 2011). After

more research commissioned by the European Food Safety Authority (EFSA) and the

German Interior Ministry, however, it became clear that officials had in all likelihood

misidentified the source: Bean sprouts from a German farm, rather than contaminated

Spanish cucumbers, carried the dangerous strain that gave rise to potentially lethal HUS

among consumers (BfR 2012). While acknowledged as the most likely source, an entirely

conclusive result on the cause of the outbreak has never been established.

The STEC incident from 2011 typifies an important recurring problem for regula-

tors. Here, a regulator was called upon to make decisions of both public mortality

and morbidity risk and economic livelihoods on the basis of ambiguous evidence on the

source of risk. Not only did the regulator have to decide on which produce to ban in

order to eliminate the source of risk, thus imposing damages of several hundred million

Euros on its producers. The regulator also had to decide on the scale of the research

effort of collecting and screening thousands of samples in order to reduce the risk of

erroneously banning harmless produce while allowing harmful produce to continue to

be sold. As the European Commission made clear after the episode, the relationship

between the regulator’s research effort and the quality of the regulatory decision was

well understood.2

Situations in which a regulator needs to take a highly consequential decision based

on poor, but improvable knowledge, are commonplace in today’s world (Sunstein 2005a;

Randall 2009; Graham 2001). This raises the question of what rules should govern these

decisions. Differently put, under what mandate should the EFSA reach its decisions on

the appropriate amount of research effort and on product regulation? Two approaches

for writing this mandate stand out in the current discussion on regulation. One is the use

of a traditional welfare-economic approach based on expected utility theory. This is the

approach that underpins most forms of conventional cost-benefit analysis (CBA) (Viscusi

et al. 2000). The other is the Precautionary Principle (PP). Despite lacking a clear

definition (Asselt et al. 2013) and being criticized on grounds of internally inconsistency

(Sunstein 2005b) and logical incoherence (Peterson 2006), the PP has been adopted by

the European Commission (European Commission 2000) and gained significance of ”a

2EU Health Commissioner John Dalli said ”In future we need to see how the timing of the alerts
can be closer to the actual scientific basis and proof” (EUobserver 2011), suggesting that the European
Commission would have preferred a better level of information before removing a certain product from
the market that might or might not be the cause of a serious health incident.
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general priciple of EU law” (Recuerda 2006). The PP has several connotations, all of

them rooted in the presence of fundamental uncertainties that challenge traditional risk

assessments. One of these interpretations of the PP requests the regulator to avoid harm

even if the causal chain is subject to scientific uncertainty, and thus to prepare against

unfavorable events (Zander 2010; Sunstein 2005c). A related, yet distinct, interpretation

of the PP directly targets the level of information under which the regulator has to make

her decision. In this widespread view, regulatory mandates based on the PP would lead

to ’more science’ (Tickner 2002) and thus a better informed regulatory decision than

conventional CBA mandates (Cranor 2005; Myers and Raffensberger 2005; Martuzzi

2007; Bourg and Whiteside 2009).

How to meaningfully compare the implications of CBA and PP? Over the last

decades, the literature on decision-making under uncertainty has offered alternatives

to the subjective expected utility framework (Savage 1972) which underpins traditional

CBA (Dasgupta and Pearce 1973; Shaw and Woodward 2008). These non-expected util-

ity frameworks provide several coherent ’rationalizations’ of ambiguity averse preferences

(Gilboa and Schmeidler 1989; Klibanoff et al. 2005; Chateauneuf et al. 2007), forming

the decision-theoretic foundations of the PP in applications (Asano 2010; Athanassoglou

and Xepapadeas 2012; Basili et al. 2008; Lemoine and Traeger 2012; Millner et al. 2013;

Treich 2010; Treich et al. 2013; Vardas and Xepapadeas 2010). Despite being important

steps into a solid economic foundation of the PP, these contributions are not capable of

shedding light on the interplay of regulatory decision and research effort that was at the

heart of the EFSA tasks during the STEC outbreak. The reason for this gap is that the

present PP literature rests upon a static level of information, leaving disregarded recent

decision-theoretic advances in formalizing intertemporal ambiguity averse preferences

under learning (Epstein and Schneider 2003, 2007).

The purpose of the present paper is to exploit the insights of these recent advances.

By operationalizing the PP as maxmin expected utility preferences (Gilboa and Schmei-

dler 1989), thus following the main approach in the economic literature on the PP (Asano

2010; Athanassoglou and Xepapadeas 2012; Treich et al. 2013; Vardas and Xepapadeas

2010), we can build on Epstein and Schneider (2003, 2007) to analyze the PP in an

intertemporal set-up with learning. In doing so, the paper demonstrates how decision

problems of the EFSA type can be formalized within these decision-theoretic frame-

works; likewise, it extends these frameworks by showing how decisions about active

learning can be incorporated into decision-making under ambiguity. Jointly, these two

steps demonstrate that intuition leads in many cases to a mistaken prediction about the

relative research efforts expended by a regulator operating under a conventional CBA

mandate and one operating under a PP mandate. In many settings conventional CBA,

not the PP, leads to a greater effort to understand the true state of the world.

The paper proceeds in three steps. By introducing two specific stylized examples

of regulatory decision-making situations, we first illustrate numerically that in one of
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them the standard intuition holds, while in the other one it fails. This discrepancy of

outcomes, in which the PP sometimes leads to more research, sometimes to less, jus-

tifies the development of a simple conceptual model that explains the nature of these

effects. We develop such a model and demonstrate that there are two effects at work, a

’Precautionary Learning Effect’ that makes a PP regulator value research more highly

than a CBA regulator, and a ’Research Pessimism Effect’ that has the opposite effect.

Which effect dominates depends on the specific features of the decision-making situa-

tion. This means that no mandate will ensure that the regulatory decision is always

better informed, irrespective of the circumstances. The insight that the choice of the

mandate does not have a uniform impact on the regulator’s level of information is not

only important in its own right. The identification of the two countervailing effects also

has immediate implications for the design of regulatory institutions. A setting in which

the decision on information acquisition is institutionally separate from the regulatory

decision can reconcile the PP with its notion of better informed decision-making.

We proceed as follows. Section 2 numerically works out two stylized examples, the

STEC example from above and the approval decision for a new pesticide by the Environ-

mental Protection Agency. Despite being structurally very similar, the examples exhibit

sharply different ramifications of the PP on the research effort. Section 3 develops the

fundamental decision-theoretic model that embraces both examples. The reader more

interested in the formal analysis may thus skip section 2 and go straight to section 3.

Section 4 demonstrates the existence of two countervailing effects of the PP on infor-

mation acquisition and, by comparing their relative dependency on the payoff-structure,

provides a compelling understanding of the contrarian findings in section 2. Finally,

section 5 concludes.

2 Two leading examples

In this section we present a stylized numerical version of the STEC example delineated

in the introduction. The second example, revolving around the approval decision for a

novel pesticide by the Environmental Protection Agency (EPA), is very similar in its

structure but features a sharply different effect of the PP on research effort.

2.1 Example 1: STEC and the EFSA

At the core of the European Food Safety Authority’s (EFSA) decision problem is un-

certainty about which vegetable is the actual cause of an STEC outbreak. For the sake

of simplicity, say that the set of potential origins of the infection has been narrowed

down to cucumbers and sprouts exclusively. Thus, either cucumbers or sprouts should

be banned from the market to prevent harm from society.3 The reason not to ban (or

3The simultaneous occurrence of the dangerous strain in cucumbers and sprouts is extremely unlikely
due to separate production lines and can thus be ignored.
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prematurely warn for) both products is the significant loss in trade value that has serious

impacts on the agricultural sector, as was the case for Spanish cucumber farmers. Table

1 gives a stylized specification of societal costs that accrue under the two possible states

of the world and the two different actions by the EFSA.

Table 1: Societal outcomes in millions EUR of the EFSA’s ban decision.

Ban sprouts Ban cucumbers

Sprouts contaminated +500 −500
Cucumbers contaminated −500 +500

A product ban results in losses to the agricultural sector that equal the market value

of the product, here assumed to be 500 million EUR for either product. The baseline

for calculating the payoffs is the health incident without any intervention. Relative to

that, the ban of the contaminated vegetable renders positive payoffs equal to the health

damages caused by STEC, which are assumed to be 1000 million EUR. If the EFSA

makes the correct decision and bans the contaminated vegetable, final societal payoffs

are thus +1000 − 500 = +500 million EUR. In contrast, banning the wrong product

just leads to losses in the market value of this product, −500. The numbers chosen are

for illustration purposes only, but are in the order of magnitude of the actual decision

problem back in 2011.4

Research on the true origin of the outbreak is crucial to increase the chance of making

the right decision. It involves taking samples of cucumbers and sprouts from different

regions and testing them for the specific dangerous E.coli strain. Such research is always

imperfect, as was demonstrated by wrongly suspecting Spanish cucumbers based on

positive E.coli tests. Importantly, however, the EFSA is not only passive recipient

of research results: It can decide how many resources to invest in research and thus

improving the state of knowledge about the source of the infection. The usual economic

principles of this learning process are decreasing marginal improvements in the state of

knowledge and / or increasing marginal costs. Obviously, the EFSA finds the optimal

level of research by balancing costs and benefits of improved knowledge.

Assume that the costs of such a research program are known to the EFSA. The

benefits, however, are uncertain for different reasons. The first reason why benefits are

uncertain is the imperfectness of research. It is unclear whether results are conclusive,

and even if so, results may be misleading. This uncertainty has to be taken into account

when assessing the benefits of research. Past experience, however, gives the EFSA a quite

thorough understanding of the odds of such a research program. The second source of

4There are de facto more options for the EFSA, namely a ban of both products or of none. Both
actions would result in payoffs of 0 EUR relative to the baseline, irrespective of the true state of the
world. Once the EFSA has observed evidence that, say, sprouts are more likely to be the cause of the
outbreak, banning sprouts however strictly dominates the ban of both and the ban of none product. The
same obviously holds if there is evidence that cucumbers ought to be banned. As a result, the actions
’ban both’ and ’ban none’ can be ignored right from the start.
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uncertainty is more severe. At the core of the EFSA’s decision problem is uncertainty

whether sprouts or cucumbers are the reason for the health emergency. The EFSA

initially lacks reliable data on this question and is thus confronted with fundamental

scientific uncertainty.

As mentioned in the introduction, there exist two opposed ways for the EFSA to re-

flect this uncertainty and accordingly make an optimal regulatory decision. The heuristic

in standard CBA is to apply subjective expected utility theory and describe the (lack of)

initial knowledge with the uniform prior over the two possible states. To be specific, the

EFSA’s knowledge before research can be described by ρ0 = 1/2, where ρ0 = 0 (ρ0 = 1)

would correspond to perfect knowledge that sprouts (cucumbers) are the contaminated

vegetable. Expected benefits are calculated based on this initial prior. Opposed to

this standard CBA approach, many have argued to account for the lack of precise data

about the problem and use robust decision rules in the precautionary spirit of ’better be

safe than sorry’ (Sunstein 2005c). A prominent example for such precautionary decision

making is to describe the initial knowledge by a set of probability distributions and to

base decision making on the worst probability scenario among them (maxmin expected

utility).

Let us first analyze the research decision if the EFSA follows a standard CBA. With

reasonable functional specifications on the likelihood of research outcomes and costs of

different research precision level (see appendix A), we get the following expected benefits

and costs.5

Table 2: Research decision by the EFSA with a CBA mandate. Numbers are millions of Euros.

Precision level Expected benefits Costs Net benefits

Low 316 55 261
Medium 432 110 322

High 475 165 310

Marginal expected (gross) benefits are decreasing in the research precision and marginal

costs are constant. Expected gross benefits under perfect information would be 500 mil-

lion EUR since the correct product ban decision could then be taken in any case. But

this status of full information is hardly attainable. Research is imperfect so that its ben-

efits, even under high research precision, fall short of the value of perfect information.

In our example, the EFSA equipped with the CBA decision rule would choose a medium

research level. Increasing research further would increase expected benefits; the higher

costs, however, do not justify that.

We now compare this result to the research precision choice if the EFSA followed

the PP, modeled as maxmin expected utility (Gilboa and Schmeidler 1989). In contrast

to the single probability distribution of the CBA approach, the EFSA equipped with

5The general framework to calculate these numbers will be developed in section 3
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a PP mandate initially holds a set of priors (see Vardas and Xepapadeas 2010; Asano

2010). Without information that one state is more likely than the other, it is plausible

to assume a symmetric set around the uniform distribution ρ0 = 1/2. Let this set be

M0 = [3/8, 5/8]. The first consequence of assuming a set of priors is that also ex-

post knowledge (after observing research results) is a set of probability distributions

(the Bayesian updates of all single priors). The EFSA’s decision under the PP is, by

definition of maxmin expected utility, based on the worst of these ex-post probability

distributions. Likewise, the optimal research decision is found by balancing expected

benefits (taking into account the final ban decision for all possible research results) and

costs under the worst ex-ante prior.

Table 3: Research decision by the EFSA with a PP mandate. Numbers are in millions of Euros.
Expected benefits are calculated based on the worst probability scenario.

Precision level Expected benefits Costs Net benefits

Low 252 55 197
Medium 405 110 295

High 464 165 299

The counterpart of Table 2 is Table 3. Not being subject to uncertainty, costs are

the same irrespective of the regulatory mandate. As for the CBA mandate, marginal

expected gross benefits are decreasing in the level of precision. We see however that

expected benefits under the PP are systematically lower than their CBA counterparts.

The simple reason is that expected benefits are calculated based on the worst probability

scenario.

The main finding is that optimal research levels under the PP and CBA are different.

The PP, in line with the narrative of precautionary learning, increases the research

precision choice relative to the CBA mandate. Higher information costs are tolerated

to improve the product ban decision. Due to the higher level of information acquisition,

the regulatory ban decision is improved, decreasing the odds of further STEC infections.

The EFSA operating under a standard CBA, however, considers the information costs

for this gain in precision too high.

2.2 Example 2: The EPA decides on a novel pesticide

The second example is about the US Environmental Protection Agency (EPA) com-

missioned to decide whether to approve a novel pesticide. The pesticide relies on a new

mechanism against a variety of pests, and suppose its improved efficacy has already been

demonstrated. What has not been researched, however, is whether the new pesticide

poses any threat to human health. The approval decision of the EPA critically depends

on whether this is the case or not and is complicated by the fact that the pesticide builds

on a novel mechanism on which no data exists.
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The similarities to the EFSA’s task to ban a contaminated vegetable are striking.

In both cases there is uncertainty about a payoff relevant parameter with two possible

states. The EFSA is uncertain about whether sprouts or cucumbers are responsible for a

serious STEC outbreak; the EPA is uncertain whether a novel pesticide has severe side-

effects to human health or not. Intimately linked are two possible regulatory actions.

The EFSA can either ban sprouts or cucumbers from the market; the EPA can approve

or not approve the pesticide. In both examples the appropriate decision depends on the

underlying true state of the world. The regulatory thus benefits from information about

the true state.

To specify the EPA example, let us assume that non-approval of the pesticide is the

baseline and, relative to that, approval gives rise to societal gains of 500 million USD

if the substance is innocent and losses of −500 million USD if involves negative health

effects.

Table 4: Societal outcomes in millions USD of the EPA’s pesticide approval decision.

Approval Non-approval

Pesticide harmless +500 0
Pesticide has severe side-effects −500 0

Another similarity of both examples is the option to undertake and shape research

efforts to learn about the true state of the world. Pesticides are tested with animals

to assess their health impacts on humans, and this testing can take different levels of

precision. Suppose the substance can either be tested with mice, rabbits or apes. The

more similar to humans the animals are, the higher the costs and the reliability of

research. The research precision is a choice variable to the EPA, as it was to the EFSA

in the STEC example.

The EPA operates in an uncertain environment. There is uncertainty whether re-

search results will be conclusive and if so, how reliable the results actually are. More

severe, the EPA has no data on the novel pesticide, thus facing the same kind of fun-

damental scientific uncertainty that complicated the EFSA decision. In the previous

section we analyzed the EFSA’s research decision under two regulatory mandates, CBA

and PP, and found, as expected, that the PP pushed the EFSA to undertake more

research relative to CBA. The following tables demonstrate that the impact of the reg-

ulatory mandate on the EPA’s research choice is fundamentally different.

Table 5: Research decision by the EPA with a CBA mandate. Numbers are millions of USD.

Precision level Expected benefits Costs Net benefits

Low 158 55 103
Medium 216 110 106

High 238 165 73
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Table 5, being the counterpart of Table 2, is based on the same information structure

as in the previous example. Again, we observe decreasing marginal expected benefits of

research precision. Expected (gross) benefits here are significantly smaller (essentially

half the corresponding numbers of the EFSA example) because gains accrue only if the

pesticide is harmless, while the EFSA can realize gains in either case. As in the EFSA

example, though, trading off benefits and costs of research under the CBA mandate

leads to a medium level of research precision.

Table 6: Research decision by the EPA with a PP mandate. Numbers are millions of USD.
Expected benefits are calculated based on the worst probability scenario.

Precision level Expected benefits Costs Net benefits

Low 103 55 48
Medium 156 110 46

High 176 165 11

In the EFSA example (cf. Table 3), the PP mandate increased research efforts relative

to the CBA decision rule. Table 6 shows that a PP mandate for the EPA has the contrary

effect. As before, expected (gross) benefits are increasing in the level of precision with

decreasing marginal benefits. Also, the focus on the worst probability scenario gives

rise to consistently lower expected benefits compared to the CBA mandate. What is

in stark contrast to the previous example, however, is that balancing costs and benefits

of research under the PP mandate here leads to a reduction in research precision. In

other words, the EPA equipped with the maxmin rule would, relative to a CBA mandate,

accept an increase in wrong decisions about the pesticide to save information costs. This

is in clear contradiction to the notion of precautionary learning.

The EFSA and the EPA examples are very similar in their structure, so why does

the PP lead to such disparate information acquisition choices? The following section

develops a simple decision-theoretic framework that embraces both examples and thus

opens them to a joint analysis. With this framework at hand it will be possible to

verify the findings of the two examples in a general algebraic way and gain a deeper

understanding of the different and partially counterintuitive findings.

3 The general framework

In order to shed light on the interplay of regulatory mandates and information acqui-

sition, this section develops a parsimonious framework combining two building blocks.

The first building block is a two states-two actions model with a one-shot noisy signal

structure whose precision is a choice variable to the decision-maker. Around this active

learning model, we build maxmin expected utility preferences as the second building

block. From a decision-theoretic viewpoint, our framework thus analyzes active learning

under ambiguity aversion and is, to our knowledge, the first model to do so.
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3.1 Timeline

Figure 1 presents the time structure of the model. First, nature chooses a payoff relevant

parameter θ from two possible values, θ− and θ+. The regulator is uncertain which

parameter is the true θ. In the STEC example in section 2.1, the EFSA is uncertain

whether sprouts (θ = θ+) or cucumbers (θ = θ−) is the origin of the STEC outbreak;

in the second example in section 2.2, the EPA is uncertain whether a new pesticide is

harmless and beneficial (θ = θ+) or has severe side-effects to human health and the

environment (θ = θ−).

In the second stage, the regulator decides on the precision of research activities. The

result of this research realizes in stage three. Research results can be either inconclusive

or they might provide evidence for one of the two parameter values being the true θ. As

usual, however, there is some likelihood that even conclusive research results are wrong.

The more resources the regulator invests into research precision (stage 2), the less likely

get those erroneous findings. This option to influence the information structure is called

active learning, also known as active information acquisition. The main focus of this

paper is to analyze the active information acquisition decision under different regulatory

mandates.

After research results from stage 3 have been observed and processed to a better, yet

incomplete understanding of the decision problem, the regulator has to make the final

regulatory decision a (stage 4). The regulator chooses among (randomizations over) two

actions, a− and a+, where the first is optimal if θ = θ− and the second if θ = θ+. In

the examples, the actions available to the EFSA are the ban of sprouts (a = a+) or the

ban of cucumbers (a = a−); the EPA can either approve the new pesticide (a = a+) or

not approve it (a = a−). In both examples, no action dominates the other: The optimal

decision depends on the true state of the world θ.

Figure 1: Time structure of the model. The regulator chooses how much to invest into research
precision (stage 2) and makes the final regulatory decision (stage 4). Both decisions have to
be taken under incomplete knowledge because the regulator is uncertain which payoff relevant
parameter θ was chosen by nature in stage 1. Research results in stage 3 however provide noisy
information about θ. The precision of this information depends on the regulator’s investment
decision in stage 2.
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In the following subsections we will explain the components of the model in detail.

In the spirit of backward induction, which is the natural tool to solve the model, we

start with payoffs (3.2) and competing regulatory mandates (3.3) to analyze the final

regulatory decision of stage 4 (3.4). In a next step, we then explain the signal structure

that represents the observation of research results in stage 3 (3.5) and finally turn to the

choice of research precision in stage 2 (3.6) that is the central topic of this paper.

3.2 Payoff structure

Let π+
− denote the payoff if the true state is θ− and the regulator chooses action a+.

All other notations accordingly. The assumptions π−− > π+
− and π+

+ > π−+ then reflect

that there is no dominant action. We also assume that the difference in payoffs under

correct and incorrect decision be independent of the states, π+
+ − π−+ = π−− − π+

− =: a∆,

and call a∆ the error cost. It measures how large the cost of erroneous decision-making

by the regulator is. The second parameter we define is the payoff asymmetry parameter

π∆ = π+
+ − π−− = π−+ − π+

−. This parameter captures, orthogonal to the interpretation

of a∆, how asymmetric the regulatory problem is in terms of the unknown parameter θ.

Parameter π∆ is non-negative if we assume, without loss of generality, that π+
+ ≥ π−−. As

a further simplification, we normalize payoffs such that π−−+π−+ = π+
+ +π+

− = 0. We will

see in section 3.4 that this is equivalent with normalizing the value of no information in

the CBA case to 0. The initially four dimensional payoff space is now fully described by

the error cost a∆ and the payoff asymmetry π∆. Figure 2 gives a graphical illustration.

Figure 2: The parameter a∆ and π∆ fully describe the payoff structure. The error cost a∆

captures how wide the span between correct and wrong decision is. The payoff asymmetry π∆ is
a measure of how strong payoffs differ across the two realizations of the unknown parameter θ.

Table 7 summarizes how the two examples fit into the general framework. The

payoff asymmetry parameter π∆ vanishes in the STEC example as the final payoffs are

symmetric over both parameter values θ− and θ+; the payoff only depends on whether the

EFSA is able to identify the contaminated vegetable. In contrast to that, π∆ is positive

in the pesticide example because the payoffs associated with a harmless pesticide, θ = θ+,

are consistenly higher than those associated with a harmful pesticide, θ = θ−. We will

see in section 4 that π∆ plays a crucial role in understanding the effect of the PP on
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research incentives.

Table 7: The two examples from section 2 in the language of the general framework.

Interpretation and Numbers

Parameter STEC example (2.1) Pesticide example (2.2)

θ+ Sprouts contaminated Pesticide harmless
θ− Cucumbers contaminated Pesticide harmful
a+ Ban sprouts Approve pesticide
a− Ban cucumbers Not approve pesticide
π+

+ +500 +500
π−+ −500 0
π−− +500 0
π+
− −500 −500
a∆ 1000 500
π∆ 0 500

3.3 Regulatory mandates under static information

Before we can analyze the final regulatory decision, we have to clarify our understanding

of the two regulatory mandates under uncertainty we are contrasting in this paper and

briefly touch upon their decision-theoretic foundation. The typical decision-problem

under uncertainty, with the examples in section 2 as specific applications, is characterized

by two components. First, a payoff relevant parameter θ is unknown to the decision-

maker who only knows that θ ∈ Θ with some set Θ. Secondly, the decision-problem

involves the task to choose an action from the set A. The final payoff π(θ, a), we restrict

for simplicity to a risk-neutral decision-maker, depends on the true state θ and the action

taken a. The decision rules that form the basis of the two regulatory mandates differ in

how they deal with the uncertainty about the parameter θ.

The basis for the standard CBA mandate is the maximization of subjective expected

utility (seu, Savage 1972). Integral part of this decision rule is the formation of a single

belief µ over Θ that best reflects the decision-maker’s knowledge. Based on this belief,

the optimal action a ∈ A is found by maximizing subjective expected utility,

max
a∈A

Eµπ(θ, a) . (1)

Apparent from (1) is the central role of the formation of the belief µ. What is relevant

for our analysis is that in settings with no prior information about θ the belief µ is usally

modeled as the uniform distribution on Θ (Principle of Insufficient Reason, cf. Gilboa

2009).

As mentioned before, standard CBA based on seu is challenged for two reasons.

First, the single probability distribution in (1) pretends a clear knowledge about the
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decision-problem that seems arbitrary given the high degree of scientific uncertainty

present in problems like the STEC outbreak or the new pesticide on which no data

exists. A multiple prior approach is regarded as a possible solution (Athanassoglou and

Xepapadeas 2012). Related to that, the second source of criticism of CBA is that in the

presence of significant scientific uncertainty a precautionary approach preparing against

adverse outcomes may be advised. A well-known axiomatization to accommodate both

concerns is maxmin expected utility (meu, Gilboa and Schmeidler 1989). The subjective

uncertainty here is reflected in a set of beliefs M, and every action available to the

decision-maker is assessed based on the worst probability distribution in M. In other

words, the optimal action maximizes the worst expected utility,

max
a∈A

min
µ∈M

Eµu(π(θ, a)) . (2)

Subjective expected utility (1) is the special case of (2) when M is a singleton.

Due to its conceptual simplicity and sound axiomatization, meu has been used in

many regulatory settings (for instance Asano 2010; Treich et al. 2013; Vardas and Xepa-

padeas 2010) to reflect precautionary decision-making. In the present paper we follow

this literature and always mean meu preferences when we write ’PP’. It is important

to note that the specific form of the set of beliefs M is part of the preferences of the

decision-maker (Gilboa and Schmeidler 1989; Etner et al. 2012). The ’size’ ofM can be

regarded as the decision-maker’s degree of uncertainty aversion and has been associated

with the degree of precaution.

The next section contrasts the implications of the competing regulatory mandates

for the final regulatory decision.

3.4 Final regulatory decision

The final regulatory decision, for instance whether to approve a new pesticide or which

vegetable to ban from the market, depends on the research results observed and the

regulatory mandate. We start the analysis with the standard CBA approach and then

contrast it with the PP.

3.4.1 Standard CBA

The regulator following a CBA has started initially with a single belief about both pa-

rameter values (usually 1/2 for each of them), and thus also holds a unique posterior

belief after having observed the research results (by Bayesian updating, the precise for-

mulation will be explained in section 3.5). Since the set of states Θ has only two elements,

the posterior belief can be expressed by the single number ρ1 ∈ [0, 1] that captures the

(subjective) probability the regulator holds for θ = θ+. Then, 1 − ρ1 is the probability
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that θ = θ−.6 In line with (1), the decision problem under CBA is to maximize expected

payoffs,

max
a∈[0,1]

ρ1

(
aπ+

+ + (1− a)π−+
)

+ (1− ρ1)
(
aπ+
− + (1− a)π−−

)
. (3)

Here a is a randomization over the two actions a− and a+, with a = 1 (a = 0) cor-

responding to the pure action a+ (a−). Based on the payoff assumptions in 3.2, it is

easy to show that the regulator strictly prefers the pure action a+ (a−) if and only if

ρ1 > 1/2 (ρ1 < 1/2); under inconclusive knowledge ρ1 = 1/2 the regulator regards all

randomizations a ∈ [0, 1] as equally reasonable.

Based on this profile of optimal actions, we can derive the value function that

maps the posterior belief to the expected value under the optimal regulatory decision,

ρ1 7→ V (ρ1). This value function is a standard tool for the analysis of information ac-

quisition problems (Mirman et al. 1993; Grossman et al. 1977). With the payoff space

simplifications that enable us to write all payoffs in terms of the error cost a∆ and the

payoff asymmetry π∆, the value function for the CBA regulator reads

V (ρ1) =


(1

2 − ρ1)(a∆ − π∆) ρ1 < 1/2

0 ρ1 = 1/2

(ρ1 − 1
2)(a∆ + π∆) ρ1 > 1/2 .

(4)

As a result of the normalization π−−+π−+ = π+
++π+

− = 0 (see 3.2), the value of inconclusive

knowledge V (1/2) is zero. When the posterior knowledge ρ1 approaches subjective

certainty ρ1 = 0 and ρ1 = 1, the value V (ρ1) converges to the optimal payoffs π−− =

(a∆ − π∆)/2 and π+
+ = (a∆ + π∆)/2, respectively.

Figure 3 depicts the value function for the two examples from section 2. In the

STEC example, the expected value, as we move away from the uninformative posterior

ρ1 = 1/2, rises uniformly on both sides, reflecting the inherent symmetry of this problem.

In the pesticide example, the left leg 0 ≤ ρ1 < 1/2 is flat because the regulator with

such posterior belief does not approve the pesticide, and non-approval of the pesticide

yields payoffs of 0 irrespective of the true state θ and thus irrespective of the regulator’s

level of confidence ρ1.

3.4.2 Precautionary maxmin rule

As explained in 3.3, basically two features set the PP apart from CBA. First, the reg-

ulator does not hold a unique belief ρ1 about the true state θ but a set of beliefs. We

denote the set of ex-post beliefs by M1 = [ρ
1
, ρ̄1]. That M1 is an interval results from

the assumptions we will impose on the set of initial priors M0 in section 3.5. The sec-

ond feature that is in sharp contrast to CBA is that the PP regulator assesses expected

6The index ’1’ refers to the posterior belief after having observed the signal; the index ’0’ is used for
initial priors.
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(a) STEC example (b) Pesticide example

Figure 3: The value functions of the two examples. Every posterior ρ1 ∈ [0, 1] is associated with
the expected payoff under the optimal decision given ρ1.

benefits of an action a ∈ A based on the worst posterior, cf. (2),

max
a∈[0,1]

min
ρ1∈M1

ρ1

(
aπ+

+ + (1− a)π−+
)

+ (1− ρ1)
(
aπ+
− + (1− a)π−−

)
. (5)

The optimal action a∗(M1), again a randomization over actions a− and a+, under the PP

depends on the set of posteriors M1. Only if all posteriors are higher (lower) than 1/2,

the PP regulator chooses the pure action a+ (a−). If however 1/2 ∈ M1, the regulator

randomizes over actions in a non-trivial way that depends on the payoff structure: In

the STEC example, the PP regulator randomizes over both actions with 1/2 while PP

regulation in the pesticide example leads to non-approval, a∗ = 0 (see appendix B). The

clear non-approval under ambiguous knowledge, compared to indifference under CBA

regulation, is one indicator of precautionary decision-making.

As before, optimal actions translate into the value function, which is now the worst

expected payoff under optimal decision-making. A difference to (4) is that the value

depends on the shape of the payoff structure and is a function of the set of posteriors

M1 = [ρ
1
, ρ̄1]. We get (for details see appendix B)

a∆ ≥ π∆

V (M1) =


( 1

2 − ρ̄1)(a∆ − π∆) ρ̄1 < 1/2

0 1/2 ∈M1

(ρ
1
− 1

2 )(a∆ + π∆) ρ
1
> 1/2 .

(6a)

a∆ < π∆

V (M1) =


( 1

2 − ρ1
)(a∆ − π∆) ρ̄1 < 1/2

( 1
2 − ρ1

)(a∆ − π∆) 1/2 ∈M1

(ρ
1
− 1

2 )(a∆ + π∆) ρ
1
> 1/2 .

(6b)

A difference between (6) and (4) is that the value under inconclusive posteriors depends

on the payoff structure. Under moderate payoff asymmetry π∆ ≤ a∆, the value of

inconclusive knowledge is zero as in the CBA case. If the payoff asymmetry is larger than

the error cost, however, the value depends on the worst posterior ρ
1

and gets negative. In

particular, the maxmin value function under inconclusive posterior knowledge 1/2 ∈M1
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is never larger than the CBA counterpart ρ1 = 1/2, a statement that is also true for

clearer posterior knowledge, 1/2 6∈ M1. The reason is that the value of the decision

problem is always determined by the worst posterior. Note that what the worst posterior

is, ρ
1

or ρ̄1, depends on the shape of the payoff structure.

3.5 Research results - the signal structure

The previous section gave expressions for the value of the final regulatory decision based

on the posterior knowledge. This section will shed light on the formation of those

posterior beliefs and explain how a priori knowledge is updated in order to process

research results. Such research results are modeled as a one-shot noisy signal structure,

whose precision is already fixed at this point in time (it is the choice variable of the

regulator in stage 2, to be discussed in the next subsection 3.6.) We first explain Bayesian

updating in the multiple prior case (3.5.1) and then develop a discrete signal structure

(3.5.2) that enables us to derive closed-form solutions.

3.5.1 Bayesian Updating

A signal structure is characterized by a signal space S and a likelihood function l : Θ→
∆(S) that describes how likely the signals s ∈ S are if θ is the true state. For better

readability we write l+(s) for l(θ+)(s). Because Θ has only two elements, every belief

can be expressed as a single number in the unit interval. Let the regulator initially hold

ρ0 ∈ [0, 1], her ex-ante belief that θ = θ+. If she observes the signal s ∈ S, the prior is

updated to the posterior

ρ1(s, ρ0) =
ρ0l+(s)

ρ0l+(s) + (1− ρ0)l−(s)
. (7)

When the regulator initially has no information about the true θ ∈ Θ, she would usu-

ally follow the Principle of Insufficient Reason (see for instance Gilboa 2009) and hold

the uniform prior ρ0 = 1/2. With that, formula (7) simplifies further: ρ1(s, 1/2) =

l+(s)/(l+(s) + l−(s)).

The learning process of the PP regulator is similar. Instead of a single prior ρ0 she

holds a set of initial beliefs M0. In analogy to the Principle of Insufficient Reason, let

this set be symmetric around the uniform distribution,M0 = [1/2− δ, 1/2 + δ] with the

uncertainty parameter 0 ≤ δ ≤ 1/2. Importantly, the ’size’ of M0, here fully expressed

by the uncertainty parameter δ, is not exogenous; instead, it is part of the preference

structure of the regulator (Gilboa and Schmeidler 1989; Etner et al. 2012). The extreme

cases are the CBA regulator, who narrows down the set to a single belief (δ = 0), and

the most pessimistic PP regulator who does not exclude any possible prior (δ = 1/2).

Further assumptions we are going to make will shortly rule out this extreme pessimistic

case.
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The learning dynamics of multiple priors follow Epstein and Schneider (2003, 2007).

The set of initial beliefs is updated to the set of posteriorsM1 by updating every single

ρ0 ∈M0 according to (7),

M1(s) = {ρ = ρ1(s, ρ0) | ρ0 ∈M0} . (8)

In other words, we assume full Bayesian updating of multiple priors.7 This updating

process has very intuitive features. For instance, a non-informative signal s with l−(s) =

l+(s) results in no learning, M1 = M0. A maximal informative signal structure, on

the other extreme, transforms M1 into a singleton reflecting subjective certainty; for

instance, observing a signal s that can only be observed in case of θ = θ+, l−(s) = 0, gives

rise to ex-post certainty that θ+ must be the payoff relevant parameter, M1(s) = {1}.
A standard signal structure widely used in the literature consists of normally dis-

tributed likelihoods with some fixed variance and different means for θ− and θ+. The

reciprocal of the variance is usually defined as the precision of the signal structure

(Kihlstrom 1974; Keppo et al. 2008). The main drawback of this approach, however,

is its lack of tractability. We thus design a simple discrete signal space. The justifica-

tion for the discrete signal structure will be given in appendix E where we demonstrate

that all main findings of this paper also hold for the continuous structure with normally

distributed signals.

3.5.2 Discrete signal space

We consider a discrete signal space with three elements, S = {s−, s?, s+}. Their interpre-

tation is straightforward: The signals s− and s+ represent research results that suggest

θ = θ− and θ = θ+ respectively, while s? models inconclusive research outcomes. A sig-

nal structure requires a specification of the likelihood of all signals under all parameters

θ ∈ Θ. Assuming symmetry over θ− and θ+, the signal structure is fully determined by

specifying the likelihood of correct, erroneous and inconclusive research results

Pcorr = l−(s−) = l+(s+) , Pmist = l−(s+) = l+(s−) , Pinconcl = l−(s?) = l+(s?) . (9)

These likelihoods are functions of the signal structure’s precision τ ∈ T = [τ0,∞) and

sum to one for all τ ∈ T .8 We further assume that Pcorr, Pmist and Pinconcl are twice

7For simplicity and to ensure dynamic stable preferences (Heyen 2014), we abstain from the ex-post
rejection of beliefs that is allowed for in Epstein and Schneider (2007).

8There is no natural unit for precision (Chade and Schlee 2002). The assumptions (10) are however
invariant under monotone transformations τ 7→ τ ′; together with the fact that we do not have to make
restrictions on the cost function, see section 3.6, this shows that our results are invariant under monotone
transformations in the precision parameter τ .
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continuously differentiable in τ and that for all precision level τ

lim
τ→∞

Pcorr(τ) = 1 , P ′corr(τ) > 0 (10a)

lim
τ→∞

Pmist(τ) = 0 , P ′mist(τ) < 0 (10b)

lim
τ→∞

Pinconcl(τ) = 0 , P ′inconcl(τ) < 0 (10c)

(1− 2δ)Pcorr(τ) > (1 + 2δ)Pmist(τ) (10d)

(PcorrPmist)
′(τ) < 0 . (10e)

Assumptions (10a) to (10c) are straightforward: The noisiness of the signal structure

decreases in the precision of the signal structure and vanishes in the limit of perfect

information. Equivalent with (10c) is P ′corr + P ′mist > 0. Assumption (10d) is equivalent

with ρ
1
(s+) > 1/2 and ρ̄1(s−) < 1/2 and thus ensures that also for PP regulation clear

research results lead to clear actions; otherwise information trivially has no value. In

particular, assumption (10d) rules out the extreme regulator preferences δ = 1/2 right

from the start. Assumption (10d) rules out, for given 0 ≤ δ < 1/2, small precision levels.

This is also true for the technical assumption (10e) because PcorrPmist is non-negative

and PcorrPmist → 0 for τ → ∞. Thus, assumptions (10d) and (10e) basically translate

into assumptions for the smallest feasible precision level τ0.9

With the restriction on the discrete signal structure we can give simple expressions

for the updating formula (7). Let ρ0 be an initial prior. From the inconclusive research

result s? no information can be gained, ρ1(s?, ρ0) = ρ0. Observation of s− transforms

the initial prior to ρ1(s−, ρ0) = ρ0Pmist/(ρ0Pmist + (1 − ρ0)Pcorr). This push towards

ρ1 = 0 is stronger the higher is the research precision τ . Similar, observing s+ pushes

ρ1(s+, ρ0) = ρ0Pcorr/(ρ0Pcorr + (1 − ρ0)Pmist) to the right. These formulas are of use

both in the CBA and the PP analysis. For CBA, ρ0 = 1/2. For the PP, every ρ0 ∈M0

is updated in that way, together forming the set of posteriors M1.

3.6 The research precision choice

We have now all components at hand to analyze the regulator’s research precision choice.

The optimal research precision level is found when marginal benefits of research equal

marginal costs. Two factors make the cost part very simple so that it need no further

attention in our analysis: Firstly, costs are not prone to uncertainty, so that the different

regulatory stance has no implications for the cost assessment; secondly, the statements

we are going to make about the (marginal) benefits of research will hold for all precision

levels τ > 0 and thus make further specifications of the cost function unnecessary.

Sufficient are the standard assumptions of positive and non-decreasing marginal costs.

9In particular, τ0 usually does not correspond with the ”uninformative” signal structure of Radner
and Stiglitz (1984).
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Being thus disburdened from a sophisticated analysis of costs, we can turn our full

attention to a derivation of the marginal benefits of research MB(δ). Here, δ is the

uncertainty parameter that determines how cautious the regulator is in the description of

the initial knowledge.10 The CBA regulator is the special case δ = 0, so that statements

about changes in the research behavior under different regulatory decision rules can be

made by analyzing the function δ 7→ MB(δ). If, for instance, MB(δ) > MB(0), we can

unambiguously conclude that the PP regulator chooses a higher research precision level

than the CBA regulator.

Figure 4: A reduced form of the timeline. Compared to Figure 1, here the final regulatory
decision is replaced by its value under optimal play, and the uncertainty under which the research
precision choice has to be made is not explicit. The focus here is on the possible research results
s ∈ S. Expected benefits of research are the sum of the values V (s, δ) over all s ∈ S, weighted
with their likelihoods of occurrence. The values V (s, δ) and likelihoods l(s, δ) both depend on
the precision τ .

The main step for the derivation of MB(δ) is to determine the benefits B(δ). Figure 4

gives a reduced form of the timeline (cf. Figure 1), designed to draw the attention to the

research precision choice at which the benefits of research have to be assessed. For this

purpose, and as is usual in backward induction, the final regulatory decision stage has

been condensed into the value of the final decision under optimal play. Accordingly, every

possible research result s ∈ S is associated with some value V (s, δ). The formula for

these values was given in (6): The research result s, the precision τ , and the uncertainty

parameter δ through the initial prior set M0 = [1/2 − δ, 1/2 + δ] jointly determine

the posterior set M1. The expected benefits of research are the sum of these values

V (s, δ) over all possible research results s ∈ S, weighting the different signals s with

their likelihood l(s). Because the PP regulator consistently follows meu preferences not

only in the final regulatory decision but also in the research precision choice, also the

likelihoods depend on the uncertainty parameter δ. We get for the meu benefits of

research

B(δ) = l(s+, δ)V (s+, δ) + l(s?, δ)V (s?, δ) + l(s−, δ)V (s−, δ) . (11)

Here, the likelihood l(s, δ) for the occurrence of the research result s ∈ S, assessed from

the perspective of the PP regulator, reads l(s, δ) = (1/2− δ)l+(s, δ) + (1/2 + δ)l−(s, δ).

10To keep the notation simple, we do suppress as often as possible the benefit’s dependency on the
precision level τ .
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(Recall that l+(s) = l(s|θ = θ+) and similar for l−). The reason for less weight on l+

and more weight on l− is V (s+, δ) ≥ V (s−, δ), a simple consequence of our assumption

that θ+ is the more favorable state. Together with l+(s+) = l−(s−) = Pcorr > Pmist =

l+(s−) = l−(s+) this implies that ρ
0

= 1/2− δ is the prior that minimizes the expected

benefits
∑

s∈S
(
ρ0l+(s) + (1 − ρ0)l−(s)

)
V (s, δ) and is thus the worst prior relevant for

PP regulation. The value in (11) conforms with the value of information under meu

developed in Heyen and Wiesenfarth (2015).

Central for the research precision choice are the marginal benefits MB(δ),

MB(δ) = B′(δ) . (12)

Note that the prime always means the derivative with respect to τ , not with respect to δ.

The benefit function B(δ), as a sum of products of differentiable functions, is obviously

differentiable in τ . What makes the analysis of MB(δ) intricate is that both the values

V (s, δ) and likelihoods l(s, δ) depend on τ .

The expression simplifies if we focus on the specific settings from the regulatory

examples in section 2. The partially surprising effects we found there can now be formally

validated. The convenient tool for comparing marginal benefits under CBA and PP is

to analyze the derivative d/dδMB, in particular at δ = 0.

3.6.1 Research precision choice in the STEC example

Due to the symmetry of the STEC example, V (s−, δ) = V (s+, δ) and V (s?, δ) = 0,

cf. (6). Together with l(s+, δ) + l(s−, δ) = Pcorr + Pmist we get that the marginal

benefits of research are MB(τ, δ) = a∆

(
(Pcorr + Pmist)(ρ1

(s+, δ) − 1/2)
)′

and this reads

a∆

(
Pcorr+Pmist

2
(1/2−δ)Pcorr−(1/2+δ)Pmist

(1/2−δ)Pcorr+(1/2+δ)Pmist

)′
. From that we infer for the δ-derivative at δ = 0

d

dδ
MB(δ)|δ=0 = − 4a∆

(Pcorr + Pmist)2
(P 2

corrP
′
mist + P 2

mistP
′
corr) . (13)

Due to assumption (10e) this expression is positive. By continuity, the positive sign

extends to a full neighborhood of δ = 0. Thus, compared to a CBA regulator with

δ = 0, the PP regulator characterized by the uncertainty parameter δ (as long as δ is not

too large) prefers a higher amount of research precision. This is the formal verification

of the effect that we found in the example in section 2.1.

3.6.2 Research precision choice in the pesticide example

The pesticide example is characterized by V (s−, δ) = V (s?, δ) = 0 because any evidence

that is not clear in favor of the pesticide leads to its non-approval by the EPA. We

thus get MB(τ, δ) = 2a∆

(
l(s+, δ)(ρ1

(s+, δ) − 1/2))′, where we used π∆ = a∆. This is
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equivalent with MB(τ, δ) = a∆

(
(1/2− δ)Pcorr − (1/2 + δ)Pmist)

′. We get

d

dδ
MB(δ) = −a∆(P ′corr + P ′mist) . (14)

This expression is negative because P ′corr + P ′mist > 0 by (10c). Interestingly, the δ-

derivative – and its sign in particular – does not depend on the uncertainty parameter

δ. Thus, and in contrast to the STEC example, the decline in the research precision in

the pesticide example (cf. section 2.2) caused by the PP regulation is unambiguous.

Throughout this section we have developed a framework for the analysis of research

incentives under different regulatory mandates under uncertainty. As demonstrated at

the end of the section, this framework is capable of verifying the opposed effects of the

PP on research behavior illustrated in the examples. Still unclear, however, is what

drives the diverging results. This will be answered in the next section.

4 Two countervailing effects

In this section we explain how the intricate implications of the PP on research incentives

can be disentangled into two effects, the Precautionary Learning Effect and the Research

Pessimism Effect. While the former drives demand for research precision up relative to

CBA, the latter has the opposite effect. The specific way in which both effects depend

on the payoff asymmetry π∆ gives us the final explanation why we found so different net

effects of the PP regulation on the demand for research precision in the STEC and the

pesticide example (cf. section 2 as well as (13) and (14)).

What is an important step for disentangling the different drivers is the observation

that the benefits B(δ) in (11), and thus also the marginal benefits MB(δ), depend on the

maxmin rule in two different ways, reflecting that the regulator makes two temporally

separated decisions under meu. Let us formally distinguish the role of the uncertainty

parameter in those two decisions and write11

B(δ1, δ2) = l(s+, δ1)V (s+, δ2) + l(s?, δ1)V (s?, δ2) + l(s−, δ1)V (s−, δ2) . (15)

The parameter δ2 belongs to the final regulatory decision and is closely connected to the

size of the posterior set, determining through this channel the final stage value V (s, δ2).

In contrast to this, the parameter δ1 describes the size of the initial prior setM0 relevant

for the likelihood assessment of the possible research results.

Basic calculus gives us a convenient tool to disentangle the impact of δ1 and δ2. In

3.6.1 and 3.6.2, we have seen that the derivative d/dδ MB(δ) is a key tool for analyzing

the implications of the PP on research incentives. We can write the net effect of the PP

11To avoid excessive notation we use the same symbol B irrespective of whether we consider the
benefits as a function of one or two arguments. In that sense, B(δ) = B(δ, δ).
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regulation as the sum of the partial effects,

d

dδ
MB(δ) =

∂

∂δ1
MB(δ, δ) +

∂

∂δ2
MB(δ, δ) . (16)

In the following it will become apparent that the distinction into δ1 and δ2 is justified:

the first partial derivative is negative (4.2) while the second is positive (4.1).

4.1 The Precautionary Learning Effect

We start with the general statement of the theorem and then provide intuition for the

results.

Theorem 4.1 (Precautionary Learning Effect). The introduction of meu at the final

regulatory decision stage has, irrespective of the payoff structure, a positive impact on

research incentives,
∂

∂δ2
MB(δ, δ)|δ=0 > 0 . (17)

By continuity, this extends to a full neighborhood of δ = 0.

Proof. The proof is similar to the special case in the STEC example. See appendix C

for details.

In the remainder of this section we provide intuition for the Precautionary Learning

Effect and also show why the positive sign of the δ2-derivative in (17) does not hold for

arbitrary δ > 0. For the sake of illustration, we restrict to the specific payoff structures

of the examples. The general proof is in appendix C.

From 3.6.1 and 3.6.2 we can see that for both examples (up to a factor of 1/2 in the

pesticide example) marginal benefits as a function of δ2 can be written as

MB(0, δ2) = (Pcorr + Pmist)V
′(s+, δ2) + (P ′corr + P ′mist)V (s+, δ2) . (18)

Expression (18) shows that a higher research precision τ is productive for two reasons:

Higher precision shifts the posteriors away from the inconclusive middle region, cf. (6),

and thus increases the value V (s+, δ2) (first term); also, higher research precision sharp-

ens the likelihood of correct research results (second term), P ′corr + P ′mist > 0 by (10c).

The δ2-derivative of (18) reads

∂

∂δ2
MB(0, δ2) = (Pcorr + Pmist)

∂

∂δ2
V ′(s+, δ2) + (P ′corr + P ′mist)

∂

∂δ2
V (s+, δ2) . (19)

Theorem 4.1 states that the Precautionary Learning Effect is not clear-cut; the reason

is that the second term in (19) is negative. An increase in the final stage uncertainty

δ2 reduces V (s+, δ2) and thus dampens the positive marginal effect on the likelihood

of correct research results. The first term in (19) however is positive and can thus be
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regarded as the key driver behind the Precautionary Learning Effect. The reason for
∂
∂δ2
V ′(s+, δ2) > 0 is the following: For every precision level V (s+, δ2) < V (s+, 0), but

the difference gets smaller and zero in the limit τ → ∞ as both values converge to the

value of perfect information. As a result, the increase of V (s+, δ2) in the precision level

τ is steeper the higher is δ2. In other words: Research precision is more productive in

shifting up the pessimistic value V (s+, δ2). This is the Precautionary Learning Effect.

4.2 The Research Pessimism Effect

The negative effect of meu on the demand for research precision holds for all asymmetric

payoff structures and, in contrast to the Precautionary Learning Effect, globally.

Theorem 4.2 (Research Pessimism Effect). The likelihood assessment of research results

with meu has a negative effect on research incentives,

∂

∂δ1
MB(δ, δ) ≤ 0 for all δ . (20)

The derivative vanishes if and only if the payoff structure is perfectly symmetric, π∆ = 0.

Proof. From (11),

∂

∂δ1
MB(δ, δ) = −

[
(Pcorr − Pmist)(V (s+, δ)− V (s−, δ))

]′
. (21)

The first factor, Pcorr−Pmist, is positive by assumption (10d). Its τ -derivative is positive

by assumptions (10a) and (10b). The second factor, V (s+, δ)− V (s−, δ), is positive by

the assumption π+
+ ≥ π−−. Its derivative is positive for the same reason; if V (s−, δ)

′ is

positive at all, it is bounded by V (s+, δ)
′.

In the following we will provide intuition for this result. We start from (15) and

write

MB(δ1, δ2) = l(s+, δ1)V (s+, δ2)′ + l(s−, δ1)V (s−, δ2)′ + . . . . (22)

In order to focus only on relevant contributions, this omits all terms that involve

the inconclusive signal s? or marginal effects on the likelihoods. Figure 5 depicts

both contributions to marginal benefits. Here, the left bar is lower in height be-

cause V (s−, δ2)′ ≤ V (s+, δ2)′. The Research Pessimism Effect results from the fact

that the maxmin rule shifts likelihood weights: the CBA regulator assesses both sig-

nals as equally likely, l(s−, 0) = l(s+, 0), but the PP regulator assesses the occur-

rence of s− more likely, l(s−, δ1) > l(s+, δ1). The simple reason is that signal likeli-

hoods are directly associated with prior beliefs regarding the parameter values θ, cf.

l(s, δ) = (1/2 − δ)l+(s, δ) + (1/2 + δ)l−(s, δ). As a result of that shift in likelihoods,

marginal benefits of research precision decrease under the PP. The Research Pessimism

Effect thus deserves its name: Due to the pessimistic maxmin rule, the (marginal) value
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(a) CBA regulator (b) PP regulator

Figure 5: The intuition behind the Research Pessimism Effect. Important contributions to
marginal benefits MB are l(s−, δ1)V (s−, δ2)′ (dark shaded area) and l(s+, δ1)V (s+, δ2)′ (light
shaded area). Under the CBA regulation both contributions are equally weighted (left subfigure).
The PP regulation however implies a shift in the likelihoods and thus more weight on the left
bar (right subfigure). This explains why the maxmin rule in assessing the likelihoods of research
results decreases the marginal benefits of research precision.

of information is assessed lower compared to a CBA regulation. This reduces the demand

for research precision.

4.3 The net effect

For any given regulatory problem, both effects explained in the previous sections, the

Research Pessimism Effect and the Precautionary Learning Effect, are present and jointly

form the net effect of the PP on information acquisition. In this section we analyze

how these countervailing effects depend on the payoff asymmetry π∆ of the regulatory

problem. This will help us to eventually understand why we found a positive net effect

of the PP on research incentives in the STEC example, in contrast to the opposite result

for the pesticide regulation. To keep the analysis tractable we restrict the evaluation

of the derivatives underlying the effects to the most important case δ = 0. We show

findings for some δ > 0 in appendix D.

We start with the Research Pessimism Effect. Starting from (21) we get with (6)

that

∂

∂δ1
MB(δ, δ) =

−π∆

[
(Pcorr − Pmist)(ρ1

(s+, δ)− ρ̄1(s−, δ))
]′

a∆ ≥ π∆

−π∆

[
(Pcorr − Pmist)(ρ1

(s+, δ)− ρ1
(s−, δ))

]′
a∆ < π∆ .

(23)

We already know that the Research Pessimism Effect vanishes for π∆ = 0. From there,

its strength increases (piecewise) linearly in the payoff asymmetry π∆ because in both

cases the two factors in the bracket and their τ -derivatives are positive. There is a

change of the slope at a∆ = π∆. When evaluating the Research Pessimism Effect at

δ = 0 the two slopes coincide.

The payoff asymmetry dependency of the Precautionary Learning Effect is slightly
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more complex. From appendix C we get

∂

∂δ2
MB(0, 0) =

αa∆ a∆ ≥ π∆

β0(π∆ − a∆) + β1π∆ a∆ < π∆

(24)

with π∆-free positive coefficients α, β0 and β1. Thus, the Precautionary Learning Effect

is positive at π∆ = 0 and remains constant until π∆ = a∆. From there on the Precau-

tionary Learning Effect increases linearly in π∆. Figure 6 gives a graphical illustration

of all effects (with the specific likelihood assumptions from appendix A and a∆ = 1000).

Figure 6: The disentangled effects on research incentives and the net effect as a function of the
payoff asymmetry π∆.

What we know so far already determines the net effect of the PP mandate on in-

formation acquisition for all payoff structures with 0 ≤ π∆ ≤ a∆, with the boundaries

given by the examples from section 2. At π∆ = 0, the STEC example, the net effect is

positive; at π∆ = a∆, the class of the pesticide example12, the net effect is negative. In

between, as the Research Pessimism Effect gets stronger, the net effect decreases and

turns negative at some point π∆ < a∆.

With the Precautionary Learning Effect and the Research Pessimism Effect both

increasing for π∆ > a∆, the net effect in this region is yet unclear. One obvious way

to proceed would be to compare the slopes of both effects. It however proves easier

and more general to write down MB(δ) in this region and determine the overall deriva-

tive d
dδ MB(δ). With l(s−)V (s−, δ) =

(
(1/2 + δ)Pcorr − (1/2 − δ)Pmist

)
(a∆ − π∆)/2,

l(s?)V (s?, δ) = (1 − Pcorr − Pmist)δ(a∆ − π∆) and l(s+)V (s+, δ) =
(
(1/2 − δ)Pcorr −

(1/2 + δ)Pmist

)
(a∆ + π∆)/2 we get

MB(δ) = a∆

(
(1/2− δ)P ′corr − (1/2 + δ)P ′mist

)
for a∆ < π∆ (25)

and thus d/dδMB(δ) = −a∆(P ′corr + P ′mist). This demonstrates that for π∆ > a∆ the

net effect, for any δ ≥ 0, is independent of the payoff asymmetry π∆. The consequence

12The pesticide example was constructed with a∆ = 500 so that the point π∆ = a∆ = 1000 in Figure
6 is a scaled version of the pesticide example.
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is that the overall effect of the PP on research incentives remains at the same negative

level for all π∆ ≥ a∆ (cf. Figure 6 and also its counterparts with δ > 0 in appendix D).

5 Concluding Discussion

The regulation of complex risks like food safety and novel substances is characterized

by far-reaching consequences of erroneous decisions and, at the same time, a poor in-

formational basis for making those decisions. In light of these challenges and with the

intention to prevent harm from society, the Precautionary Principle (PP) has recently

gained significant importance in the regulatory practice.

What has not received adequate attention in the literature, despite being a cen-

tral task in the regulation of complex risks, is the regulator’s possibility of undertaking

research and thus managing her state of knowledge. Most notably, the interplay of reg-

ulatory mandates like the PP and the incentives for active information acquisition has

so far gone unnoticed. The present paper sheds light on this interplay with a parsimo-

nious decision-theoretic setting of active learning under maxmin expected utility (meu)

preferences. The latter is a common operationalization of the PP, while active learning

reflects the regulator’s option to choose her preferred state of information.

We find a non-trivial impact of the PP on research incentives. On the one hand, and

in line with common narratives about the PP, we find the existence of a ’Precaution-

ary Learning Effect’ that induces a regulator following the PP to improve here state of

knowledge relative to a standard CBA mandate. On the other hand, however, we also

demonstrate the existence of a research dampening ’Research Pessimism Effect’. The

total effect of the PP on information acquisition is not clear-cut and depends on the char-

acteristics of the regulatory problem, in particular its payoff structure. The significance

of this finding is that no mandate, neither CBA nor PP, always leads to better informed

decision-maker. If such a better informed decision-making is regarded as a desirable and

crucial feature of the regulation of complex risks, then writing an appropriate mandates

is not possible without paying attention to the specific regulatory problem.

Our framework can only be the starting point for researching the interplay of the

PP and research incentives. One possible extension is about the decision-theoretic foun-

dation. Although being a standard formulation of the PP in the theoretical regula-

tion literature, meu is not the only definition of ambiguity averse preferences that has

been suggested as a precautionary decision-rule. Even though we expect alternative ap-

proaches (Klibanoff et al. 2005; Chateauneuf et al. 2007) to give rise to similar effects

on information acquisition, future research ought to clarify these issues with similar and

equally tractable frameworks.

Another direction for future research is the significance of our findings for the reg-

ulatory practice. Our model is the first step towards informing the regulatory practice

about institutional set-ups surrounding PP and information acquisition. Our findings
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suggest that an institutional separation of the regulatory decision and research is pos-

sible, and that this separation might reconcile the PP with the notion of precautionary

learning. Future research can leap from there and, by carefully analyzing real-world

examples and their subtleties, make specific suggestions for the design of risk regulation.
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Appendix A Functional specifications for the example

Pcorr(τ) := 1 − 2/3 · exp(−τ), Pmist(τ) := 1/3 · exp(−τ). Low, medium and high precision level
corresponds with τ = 1, 2, 3. Costs are linear in precision τ , c(τ) = 55τ . All effects in Figure 6
are evaluated at τ = 2 ln(4/3).

Appendix B Optimal actions and the value function in the
general case for the maxmin regulator

The expected value of the decision problem is

ρ1(aπ+
+ + (1− a)π−+) + (1− ρ1)(aπ+

− + (1− a)π−−) . (26)

We define the (potentially negative) â := 1/2 − π∆/(2a∆). With that we find that the worst
belief is, depending on which action a ∈ [0, 1] the regulator considers,

ρworst
1 =

{
ρ

1
a > â

ρ̄1 a < â .
(27)

After plugging this into the expected value (26) we can determine the optimal action. Three
cases are relevant: ρ

1
> 1/2, 1/2 ∈ M1 and ρ̄1 < 1/2. Consider ρ

1
> 1/2. Among the actions

a > â then clearly a = 1 is best; among a < â (if â ≥ 0) the best action is â. Comparing payoffs
under a = 1 and â shows that the former is strictly better. Similarly in the two other cases.
Together we get

a∗(M1) =


0 ρ̄1 < 1/2

max(0, â) 1/2 ∈M1

1 ρ
1
> 1/2 .

(28)

The corresponding value function (6) is obtained by plugging in a∗(M1). If max(0, â) = 0, the
value function still depends on the worst belief ρ

1
.

Appendix C Full formula of δ2-derivatives

The general δ2-derivative is

∂

∂δ2
MB(τ, δ, δ) =

{
1

X(δ)

(
A0a∆ + P (δ)

)
π∆ ≤ a∆

1
X(δ)Y (δ)

(
B0(π∆ − a∆) +B1π∆ +Q(δ)

)
π∆ > a∆ .

(29)

Here, X(δ) =
(
(1− 2δ)Pcorr + (1 + 2δ)Pmist

)3
and Y (δ) =

(
(1 + 2δ)Pcorr + (1− 2δ)Pmist

)3
. Both

expressions are positive, X(δ) due to assumption (10d). P (δ) and Q(δ) are polynomials in δ of
degree 2 and 6 respectively with P (0) = Q(0) = 0. The coefficients are

A0 = −4(Pcorr + Pmist)(P
2
corrP

′
mist + P 2

mistP
′
corr) > 0 (by (10e))

B0 = (P ′corr + P ′mist)(Pcorr + Pmist)
6 > 0 (by (10c))

B1 = −4(Pcorr + Pmist)
4(P 2

corrP
′
mist + P 2

mistP
′
corr) > 0 (by (10e)) .
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Taken together, this proves the Precautionary Learning Effect: The δ2-derivative at δ = 0, as
stated in (17), is positive. Due to continuity, this extends to a full neighborhood of δ = 0. The
δ2-derivative can become negative at some δ > 0 due to the higher order terms P (δ) and Q(δ).

Appendix D The effects at δ > 0

In section 4.3 we discussed all effects and their dependency on the payoff asymmetry π∆ when
the effects are evaluated at δ = 0. Figure 7 gives some intuition how these findings change when
δ > 0.

(a) δ = 1/8 (b) δ = 1/4

Figure 7: The analog of Figure 6 for δ > 0.

The Research Pessimism Effect always vanishes at π∆ = 0 and gets linearly stronger as π∆

increases. The slope at π∆ = a∆ in general changes, a fact that is obscured in the special case
δ = 0 depicted in Figure 6 in the main text. The Precautionary Learning Effect, when evaluated
at δ > 0, is in general neither constant nor positive in the range 0 ≤ π∆ ≤ a∆; unambiguous,
however, is that it increases for π∆ > a∆. The net effect, due to the vanishing Research Pessimism
Effect, must equal the Research Pessimism Effect at π∆ = 0 and can thus be negative for higher
δ. The net effect at π∆ = a∆ is unambiguously negative and remains at this δ-independent level
for all π∆ > a∆, as was proven in section 4.3.

Appendix E Continuous, normally distributed signals

Let the signal space be S = R and

l−(s, τ) =
τ√
2π

exp
(
− 1

2τ
2(s+ a)2

)
, l+(s, τ) =

τ√
2π

exp
(
− 1

2τ
2(s− a)2

)
(30)

the densities. Here, τ = 1/σ is the usual measure of precision when σ is the variance of the
normal distribution. In this signal structure a signal s < 0 (s > 0) suggests θ = θ− (θ = θ+).
The higher |s|, the stronger is the signal. The latter feature could not be reflected in the simple
discrete structure we use throughout the paper.

As before, l(s, δ) = (1/2 − δ)l+(s) + (1/2 + δ)l−(s). With that, the benefits of research
are B(δ) =

∫
S
l(s, δ)V (s, δ)ds, cf. (11). The distinction into δ1 and δ2 reads B(δ1, δ2) =∫

S
l(s, δ1)V (s, δ2)ds.
The signal space splits into three parts. For s < s ≤ 0, the signal is strong enough to push all

posteriors ρ1 ∈M1 below 1/2 so that V (s, δ2) is determined by the first line in (6). For s < s < s̄,
with s̄ ≥ 0, the posterior set contains 1/2 so that the middle line in (6) applies. Finally, for s > s̄
all posteriors are above 1/2 and V (s, δ) always equals (ρ

1
(s, δ2) − 1/2)(a∆ + π∆). Obviously, s

and s̄ depend on τ and δ2. For instance s = s̄ = 0 when δ2 = 0.
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(a) δ = 0 (b) δ = 1/50 (c) δ = 1/8

Figure 8: The net effect as a function of the payoff asymmetry π∆ for a continuous, normally
distributed signal. Compare to Figure 6 and Figure 7.

Figure 8 shows the resulting effects for the continuous signal structure described above. The
main figure is the left one with δ = 0, the counterpart of Figure 6. The two other figures show
the effects for two different positive δ-levels.

Focus on the left figure first. It shows that all effects exist with the same qualitative behavior
that we found in the discrete signal structure: The Research Pessimism Effect vanishes at π∆ = 0
and from there evolves linearly. The Precautionary Learning Effect is positive and constant in
0 ≤ π∆ ≤ a∆ and increases in π∆ once π∆ > a∆. Most importantly, the net effect is positive at
π∆ = 0, negative at π∆ = a∆, and remains constant for π∆ > a∆.

Moreover, the two other figures show that also for the continuous signal structure the impli-
cations of δ > 0 is intricate with the potential to kill the Precautionary Learning Effect while the
Research Pessimism Effect is very robust. The reaction to increasing levels of the uncertainty
parameter δ seems to be more pronounced in the normal distribution structure. Interestingly,
however, the net effect is still constant in π∆ once π∆ > a∆. This constant level, however – and
this is the only apparent qualitative difference between discrete and continuous signal structure
– is here a function of the point δ at which the derivative is evaluated.

In sum, Appendix E has shown that the analytical tractable discrete signal structure captures
the relevant features of the model surprisingly well.
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Conclusion

The articles in this dissertation contributed to two important topics in theoretical

environmental economics. The first topic is the innovation of environmental technolo-

gies with a particular focus on climate engineering. The second topic this dissertation

contributed to is regulation under uncertainty and active information acquisition. Infor-

mation and research plays a crucial role in each of them, thus connecting both parts.

The first two articles focused on deployment conflicts surrounding climate engineering

(CE) and identified novel mechanisms within and across generations how technology

deployment may impact on innovation incentives. Not only did these articles provide

specific insights for ongoing discussions about climate engineering, each of them also

delivered parsimonious and powerful frameworks as a starting point for future research.

The dissertation moved on, motivated from solar radiation management (SRM) as a

typical high risk and novel technology, to the regulation under uncertainty and the role of

the Precautionary Principle (PP). As a contribution to the decision-theoretic literature

and valuable for a wide range of applications in environmental economics, two articles

established sound concepts of the value of information and the learning dynamics under

maxmin expected utility (meu). Based on this solid foundation, the fifth article devel-

oped a framework combining meu with active learning and argued that this framework

is capable of capturing two important regulatory tasks under fundamental uncertainty,

namely final regulatory decisions like approval decisions on novel substances as well as

research decisions to improve the regulator’s state of knowledge. Most importantly, this

framework enabled an analysis of the interplay of two notions of the PP: While the for-

malization of the PP as ambiguity aversion has some appeal, the fifth article identified

a conflict with a second, information-based interpretation of the PP.

The importance of research and information is evident in both parts of the thesis.

On the one hand, as part of ’research and development’ (R&D), research plays an impor-

tant role in the innovation of new technologies. A typical characteristic of information

relevant in this context is its public good nature: once it is in the world, it typically

cannot be taken back – neither within nor across generations. On the other hand, and in

a normative dimension, information has substantial value. Because a sound knowledge

basis is regarded crucial for decision-making under fundamental uncertainty, information

acquisition itself has been associated with precaution. Taken together, this dissertation

has re-emphasized the remarkable and central role of information in the economic con-

text (Arrow 1996; Stiglitz 2000, 2002).
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This dissertation might serve as the starting point for future research. In a first dimen-

sion, and related to the first article, the question under what conditions a generation is

willing to equip the future with a technology applies to a much broader field than just

climate engineering. The interesting feature of technology in this context is that the

provision of technology, in sharp contrast to intergenerational transfers in-kind (Bruce

and Waldman 1991), opens choices of the recipient. This intergenerational technology

provision is particular interesting when preferences are instable and uncertain (Krysiak

and Krysiak 2006; Heal and Kriström 2002; Le Kama and Schubert 2004).

Another line of future research may be to further improve the analysis of innovation

incentives and to account for the uncertainties surrounding climate engineering that

the articles on strategic issues in this thesis have abstracted from. On the one hand,

there may be a direct effect of uncertainty on innovation (Hart 2009). On the other

hand, uncertainty also has ramifications for how technologies will be used; and this, as

established by the second article of this dissertation, in turn impacts on R&D incentives.

Analyzing the interplay of both uncertainty effects on innovation seems a promising

research task. This may be particular true in light of the quite unusual form of low

probability and high impact ’fat tail’ uncertainty that characterizes both climate change

and SRM (Weitzman 2011; Pindyck 2011; Nordhaus 2011).

This specific fat tail uncertainty also points to a recurrent characteristic of risk reg-

ulation. Many regulatory tasks are characterized by so-called ’risk-risk trade-offs’ in

which the regulator, lacking a safe option, has to make hard choices in the face of high

uncertainty (Wiener and Graham 2009; Sunstein 2002; Gray and Hammitt 2000). Risk

assessments are substantially challenged if cost-benefit comparisons are questioned on

both ends of the spectrum: “How should the bad fat tail of climate uncertainty be

compared with the bad fat tails of various proposed solutions such as nuclear power,

geoengineering, or carbon sequestration in the ocean floor?” (Weitzman 2009). The

specific risk-risk trade-off surrounding SRM has not received adequate attention in this

dissertation.

The presence of risk-risk trade-offs about climate engineering, particular SRM, also

point to another related angle for future research. While this thesis relied on SRM to

motivate the idea of the PP, it did – in order two keep the second part succinct – not

play the insights gained back to inform the regulation of SRM. But there is an obvious

gap to be filled. As mentioned before, the idea to regulate SRM under the PP has been

raised frequently (Bodansky 1996; Reynolds and Fleurke 2013). Also, and demonstrat-

ing that SRM is a typical example for the framework developed in the fifth article, active

information acquisition regarding the beneficial and harmful characteristics of SRM is

likely to dominate the coming decade (Parson and Keith 2013; Parker 2014; Keith et al.

2014). Assuming the responsibility for SRM deployment and research was given into the

hands of one regulating agency, for instance under the roof of the United Nations (Bo-
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dansky 2011): How would a precautionary mandate for this agency shape the decisions

surrounding SRM?

A solid analysis of this question is left for future research, but preliminary insights

can already be sketched. Assuming that the hypothetical agency for SRM regulation

were equipped with a PP in the form of meu to ensure a ’margin of safety’ in SRM

decisions, then this may lead to problematic effects on the regulator’s level of informa-

tion. The fifth article of this thesis demonstrated that the asymmetry in the payoff

structure of the regulatory problem plays a crucial role in shaping the value of research.

Accordingly, it seems possible that the SRM agency operating under the PP may un-

dertake more research before making the decision whether marine cloud brightening or

stratospheric aerosol injection is the preferable SRM method and thus should receive

more R&D funding; this is because in this question, the regulator can be expected to

be ex-ante indifferent between both options, precluding the information dampening ’re-

search pessimism effect’ established in this thesis. In contrast, however, if the agency had

to make the decision on SRM deployment, balancing the clear benefits with uncertain

side-effects, the picture may change. The high asymmetry in this setting may induce

the regulator to learn less than an ordinary risk management agency would do. And

this, again, would not be compatible with the notion of the PP that calls for more and

better science in decisions surrounding SRM. Thus SRM can be expected to join the list

of examples suggestive of shortcomings in the formalization of the PP.

Hence we should revisit what ought to be an integral part of the Precautionary Prin-

ciple. The formalization of the PP by means of Knightian uncertainty and ambiguity

aversion captures important notions of precaution, but neglects others. The ’margin of

safety’ notion of the PP can also be read as to prepare against unfavorable surprises.

There are plenty examples in which a decision-maker is temporarily ignorant of relevant

contingencies, for instance unknown feedback-mechanisms in a complex system (Oppen-

heimer et al. 2008). Closing the circle to the first sentence of this dissertation, global

warming itself is a typical example of temporary ignorance. For decades, mankind filled

up the atmospheric stock of greenhouse gases, fully unaware of the negative effects this

would bring about.

This suggests an alternative definition of the PP. In a new line of thinking, funda-

mental uncertainty is not described by ambiguity but, on a deeper level, as state-space

uncertainty and thus the possibility of unawareness (Walker 2014; Heifetz et al. 2006;

Grant and Quiggin 2013b). Based on these axiomatizations, Grant and Quiggin (2013a)

formulate the PP as an heuristic that requires the decision-maker to only consider ac-

tions that are not prone to unfavorable surprises. Because the framework in Grant and

Quiggin (2013a) also entails considerable restrictions on active information possibilities,

and in light of the main message of the fifth article in this thesis, it however remains to

be seen how active learning fits into this novel and promising definition of the PP.
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This dissertation had its starting point in the danger of climate change. Novel tech-

nologies, running under the label of climate engineering, offer remedy; and yet, they

pose threats themselves. This is the process of adding ever more layers of complexity

to our ’risk society’ that the sociologist Ulrich Beck speaks about when he defines risk

as “a systematic way of dealing with hazards and insecurities induced and introduced

by modernisation itself” (Beck 1992). Maybe society decides that climate engineering is

a valuable and controllable tool; maybe it decides to ban it. But the decision on that,

whatever it may look like, should be a rational one. This defines the task of modern

risk regulation. May the insights derived in this thesis help to build a sound and com-

prehensive risk management in which sophisticated uncertainty frameworks and CBA’s

unerring view on trade-offs come together.
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