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Abstract

Thanks to revolutionary developments in microscopy techniques such as robotic
high-throughput setups or light sheet microscopy, vast amounts of data can be
acquired at unprecedented temporal and spatial resolution. The mass of data nat-
urally prohibits manual analysis, though, and life scientists thus have to rely more
and more on automated cell tracking methods. However, automated cell tracking
involves intricacies that are not commonly found in traditional tracking applica-
tions. For instance, cells may undergo mitosis, which results in variable numbers of
tracking targets across successive frames. These difficulties have been addressed by
tracking-by-assignment models in the past, which dissect the task into two stages,
detection and tracking. However, as with every two-stage framework, the approach
hinges on the quality of the first stage, and errors propagate partially irrevocably
from the detection to the tracking phase.

The research in this thesis thus focuses on methods to advance tracking-by-
assignment models in order to avoid these errors by exploiting synergy effects be-
tween the two (previously) separate stages. We propose two approaches, both in
terms of probabilistic graphical models, which allow for information exchange be-
tween the detection and the tracking step to different degrees. The first algorithm,
termed Conservation tracking, models both possible over- and undersegmentation
errors and implements global consistency constraints in order to reidentify target
identities even across occlusion or erroneous detections. Wrong detections from the
first step can hence be corrected in the second stage. The second method goes one
step further and optimizes the two stages completely jointly in one holistic model.
In this way, the detection and tracking step can maximally benefit from each other
and reach the overall most likely interpretation of the data. Both algorithms yield
notable results which are state-of-the-art.

In spite of the distinguished results achieved with these methods, automated cell
tracking methods are still error-prone and manual proof-reading is often unavoidable
for life scientists. To avoid the time-consuming manual identification of errors on
very large datasets, most ambiguous predictions ought to be detected automatically
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so that these can be corrected by a human expert with minimal effort. In response,
we propose two easy-to-use methods to sample multiple solutions from a tracking-
by-assignment graphical model and derive uncertainty measures from the variations
across the samples. We showcase the usefulness for guided proof-reading on the cell
tracking model proposed in this work.

Finally, the successful application of structured output learning algorithms to
cell tracking in previous work inspired us to advance the state-of-the-art by an algo-
rithm called Coulomb Structured Support Vector Machine (CSSVM). The CSSVM
improves the expected generalization error for unseen test data by the training
of multiple concurrent graphical models. Through the novel diversity encourag-
ing term, motivated from experimental design, the ensemble of graphical models is
learned to yield diverse predictions for test data. The best prediction amongst these
models may then be selected by an oracle or with respect to a more complex loss.
Experimental evaluation shows significantly better results than using only one model
and achieves state-of-the-art performance on challenging computer vision tasks.



Zusammenfassung

Dank revolutiondrer Entwicklungen in der Mikroskopiertechnik, wie zum Beispiel
High- Throughput-Roboter oder die Lichtscheibenmikroskopie, konnen gewaltige
Datenmengen mit beispielloser zeitlicher und rdumlicher Auflosung aufgenommen
werden. Allerdings macht die riesige Masse an Daten eine manuelle Analyse un-
moglich, weshalb Biowissenschaftler immer mehr auf automatische Zell-Tracking-
Methoden angewiesen sind. Automatisches Zell-Tracking bringt jedoch Schwierig-
keiten mit sich, welche in traditionellen Tracking-Anwendungen kaum eine Rolle
spielen. Beispielsweise durchlaufen Zellen Mitose, wodurch sich die Anzahl der
Tracking-Objekte in aufeinanderfolgenden Zeitschritten stark verandern kann. Diese
Komplexitaten wurden in der Vergangenheit durch so genannte Tracking-by-
assignment-Methoden angegangen, welche die Aufgabe in zwei Abschnitte aufteilen:
Erkennung und Tracking. Wie jedes Zwei-Phasen-Modell steht und fallt jedoch auch
dieses mit der Qualitidt des ersten Schrittes, und Fehler pflanzen sich teilweise un-
widerruflich von der Erkennungs- zur Tracking-Phase fort.

Diese Forschungsarbeit beschéftigt sich deshalb mit Methoden, welche Tracking-
by-assignment-Modelle durch das Ausnutzen von Synergieeffekten zwischen den bei-
den (bisher) getrennten Schritten verbessern sollen, um solche Fehler zu vermei-
den. Wir schlagen zwei Ansétze vor, beide in Form von probabilistischen graph-
ischen Modellen, die einen Informationsaustausch zwischen der Erkennungs- und der
Tracking-Phase zu unterschiedlichen Graden erméglichen. Der erste Algorithmus,
den wir Conservation Tracking nennen, modelliert sowohl méogliche Uber- als auch
Untersegmentierungsfehler und fiihrt globale Konsistenzbedingungen ein um Ob-
jektidentitaten sogar nach Verdeckung oder fehlerhafter Erkennung wiederzufinden.
Falsch erkannte Objekte aus dem ersten Schritt konnen somit in der zweiten Phase
korrigiert werden. Die zweite Methode geht noch einen Schritt weiter und opti-
miert die beiden Schritte komplett gemeinsam in einem ganzheitlichen Modell. Auf
diese Weise kénnen Erkennung und Tracking maximal voneinander profitieren und
zusammen die insgesamt wahrscheinlichste Dateninterpretation erreichen. Beide Al-
gorithmen erzielen hervorragende Ergebnisse, die dem neuesten Stand der Technik
entsprechen.
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Trotz der iiberzeugenden Ergebnisse, die mit diesen Methoden erzielt werden, ist
das automatische Zell-Tracking jedoch immer noch fehleranfallig, was eine manuelle
Fehlersuche fiir Biowissenschaftler unumgéanglich macht. Um eine zeitraubende
manuelle Identifikation solcher Fehler auf sehr groflen Datensétzen zu vermeiden,
sollten deshalb die unsichersten Vorhersagen automatisch gefunden werden, so dass
diese von einem menschlichen Experten mit méglichst wenig Aufwand korrigiert wer-
den kénnen. Aus diesem Grund schlagen wir zwei einfach anwendbare Methoden
vor um mehrere Losungen von einem Tracking-by-assignment-Modell zu sampeln
und leiten Unsicherheitsmafle von der Variabilitét dieser Losungen ab. Wir demon-
strieren die Niitzlichkeit fiir eine gesteuerte Fehlersuche auf dem in dieser Arbeit
vorgestellten Zell-Tracking-Modell.

In fritheren Arbeiten wurden strukturierte Lernalgorithmen erfolgreich auf Zell-
Tracking-Modelle angewendet, was uns letztlich inspiriert hat, den Stand der Tech-
nik in dieser Richtung durch eine Methode namens Coulomb Structured Support Vec-
tor Machine (CSSVM) weiterzuentwickeln. Die CSSVM verbessert den erwarteten
Generalisierungsfehler fiir zukiinftige Testdaten durch das Training von mehreren
konkurrierenden graphischen Modellen. Der neu eingefiihrte Term belohnt Diver-
sitat unter den Modellen und wird aus dem Bereich der Versuchsanordnung mo-
tiviert. Durch ihn wird ein Ensemble von graphischen Modellen so trainiert, dass es
diverse Vorhersagen auf Testdaten liefert. Anschliefend konnen die besten Vorher-
sagen von diesen Modellen durch ein Orakel oder durch eine komplexere Funktion
ausgewahlt werden. In der experimentellen Evaluation zeigen sich fiir die CSSVM
deutlich bessere Ergebnisse gegeniiber den Vorhersagen nur eines Modells und es
werden Ergebnisse auf herausfordernden Problemen aus dem Computer-Vision-
Bereich erzielt, die dem neuesten Stand der Technik entsprechen.
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Introduction

Recent innovative developments in light sheet microscopy enable researchers in life
sciences to examine research questions which have long been limited by imaging tech-
niques. These novel microscopes (Keller et al. 2008; Keller et al. 2010; Tomer et al.
2012; Krzic et al. 2012) allow to acquire multidimensional images in vivo at outstand-
ing high spatial and temporal resolutions, up to sub-cellular level. Thanks to selective
plane illumination, and as a consequence, highly reduced effects of phototoxity and
bleaching (Keller et al. 2008), (live) organisms may be recorded over multiple days
without being harmed. As a result, one grand challenge of developmental biology,
namely to understand embryogenesis (Keller et al. 2008; Keller et al. 2010; Hockendorf
et al. 2012; Amat and Keller 2013), has been revived in recent years. Developmen-
tal biologists, hence, long for full reconstructions of so-called digital embryos (Keller
et al. 2008), i.e. a fully documented lineage tree for each embryo from the egg cell
to the tens of thousands of cells developed until the larval stage. From such building
plans (Amat and Keller 2013), the scientists desire to analyze correlations at different
scales (Hockendorf et al. 2012; Krzic et al. 2012; Amat and Keller 2013), between indi-
vidual cells, between lineage trees of distinct embryos, or even across diverse species.
From these insights, conclusions may be drawn about important biological research
questions, such as:

+ How are shapes generated during embryonic development and how can they be
reproducible? Or more generally:

« Which mechanical forces govern embryogenesis? (Keller et al. 2008; Amat and
Keller 2013)

« Which lineage relationships within and across tissues/organs can be found? For
instance:
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+ Where and how are specialized cell types established? When do their lineages
branch off the main tree? How related are the different cell types of an adult
organ in the lineage tree? (Keller et al. 2008; Hockendorf et al. 2012)

Correlations in the lineage across tissues, individuals, or species would greatly con-
tribute to the understanding of building patterns in developmental biology. Ulti-
mately, these insights promise to be applicable in a wide range of contexts, including
disease models, drug design, or analysis of mutant phenotypes (Amat and Keller
2013).

For simple organisms such as the nematode Caenorhabditis elegans (C. elegans),
such a digital embryo has been successfully acquired already decades ago by Sulston
and Horvitz (1977). Sulston and Horvitz (1977) performed their image analysis pre-
ponderantly manually, profiting from the invariant lineages, the transparency of the
organism, and the fact that a male larva only consists of 671 cells. Such manual
analysis, however, becomes prohibitive for more complex organisms such as zebrafish
(Danio rerio) or fruit fly (Drosophila), as studied in this work. For such animals,
which develop to tens of thousands of cells (Amat and Keller 2013), investigations for
correlations between different embryos, and even within one single embryo, are only
feasible if computing systems are able to automatically observe and reconstruct such
lineage trees. Image analysis algorithms need to automatically follow each and every
cell' over time to identify each cell at every point in time, and — at the same time —
find all cell divisions.

Cell tracking, certainly, is not restricted to the in vivo experiments from develop-
mental biology described above. Insights in other areas in life sciences are also highly
dependent on robust and accurate automated cell tracking (Meijering et al. 2009;
Kanade et al. 2011; Meijering et al. 2012; Gonzélez et al. 2013; Maska et al. 2014),
which is not only due to enormous amounts of data acquired by means of robotic
high-throughput setups. In particular, many interesting research questions may only
be approached by observing proliferating cells (in vitro) under various culture condi-
tions, or by analyzing cell behavior in live tissues (in sitsu), both only feasible with
the help of automated cell tracking methods.

However, since automated algorithms are not reliable enough yet due to the chal-
lenges outlined next, cell tracking is often still performed manually in these kind of
experiments (Coutu and Schroeder 2013).

I Typically the cell nucles are stained by fluorescence markers. Thus, technically speaking, the cell nuclei
are to be tracked. Note that for brevity, we refer in this thesis to the tracking of cell nuclei as the tracking
of cells or cell tracking.



Figure 1.1: Developing Drosophila embryo during gastrulation. Depicted are three frames
of the dataset described in Appendix A, which we will use for evaluation in
the next chapters. The goal is to automatically find correspondences between
all cells in the embryo. The image sequence was acquired with a recent light
sheet microscope (Krzic et al. 2012). Best viewed in 3D with red/cyan glasses,
red side left.
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1.1 Challenges for Computer Vision

With all the improvements made in image acquisition in recent years, it is now es-
sential to develop automated frameworks for cell tracking which yield high-quality
cell lineage reconstructions. However, automated cell tracking is a highly challenging
computer vision problem due to the properties outlined next. Moreover, the problem
contrasts strongly from well established tracking applications (Yilmaz et al. 2006)
such as those from military target tracking (Luo et al. 2002), or vehicle or pedestrian
tracking (Enzweiler and Gavrila 2009), to name but a few.

First of all, extremely high tracking accuracy is required to allow for biolog-
ical insights from the in-depth analysis of the results: Each false assignment of cells
between a pair of frames results in the respective entire subtree of the cell lineage to
be associated with the wrong cell, i.e. each single error propagates to all succeeding
time points. The correctness of each and every assignment (cell-to-cell assignment or
cell division) is hence of enormous importance.

Furthermore, when tracking multiple targets?, the quality of the tracking result
is directly dependent on the degree to which the following assumptions are fulfilled:

(i) Tracking targets must be distinctive in terms of appearance, e.g. unique color,
characteristic shape, etc.:
However, as the examples from the embryogenesis development of a Drosophila
embryo in Figure 1.1 show, cells are almost indistinguishable from each other
in terms of appearance. In particular, similar shapes which vary over time,
and almost identical intensity distributions, make all cells highly resemblant to
each other. Although an ingenious technique termed Brainbow (Livet et al. 2007)
has been developed in recent years for neuroscience, in which individual cells are
marked with specific fluorescent proteins in order to express random colors (and
thus generate a distinctive appearance criterion), this technique would evoke
a deterioration in the temporal resolution since multiple channels need to be
recorded and thus, Brainbow has not been applied in the context of entire digital
embryos yet (Hockendorf et al. 2012).

(ii) Targets follow a known or predictable motion model, e.g. linear motion, or group
motion (7.e. the motion of all targets in a neighborhood window is highly corre-
lated):

Generally speaking, we cannot assume that this property holds in the movies
we analyze. Whereas often a Brownian motion model is assumed (Meijering et
al. 2012), it is yet unknown which motion patterns the cells follow during
embryogenesis. In fact, in Chapter 2, we observe that during embryogenesis,
cells within a proximal neighborhood temporally seem to follow similar motion

2In cell tracking, the cells (or cell nuclei) represent the objects or targets to be tracked.
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patterns and we model this by a pre-processing step in Section 2.2.3. However,
no such motion patterns apply in general and assuming a motion model a priori
is risky in these cases.

(iii) The environment or background is not cluttered or noisy, or tracking targets are
sparsely distributed:
However, the development of tens of thousands of cells during embryoge-
nesis of complex organisms such as fruit fly or zebrafish, result in dense cell
populations in late developmental stages. As a natural consequence of limited
spatial resolution of microscopes, this results in each cell occupying only few
pixels®, with very few background pixels between distinct cells (cf. Figure 1.1).
Due to autofluorescence, heterogeneous staining, or low signal-to-noise ratio
(SNR), cells may falsely be clustered together if background between cells can-
not be detected clearly. We refer to two or more cells detected in such clusters
as falsely merged cells (or mergers) in this thesis.

(iv) The sets of pixels which represent the same object in two successive frames
must spatially overlap, i.e. objects migrate slowly relative to the temporal
resolution of the movie:

Thanks to the most recent developments in light sheet microscopy (Tomer et al.
2012; Krzic et al. 2012), frame rates of one 3D volume per 10-30 seconds are
made possible, and hence, cells between successive frames do spatially overlap.

To summarize, in the cell tracking datasets from developmental biology which we
study throughout this work, properties (i)-(iii) are all violated, which makes successful
frame-to-frame cell assignments highly dependent on the temporal resolution of the
movies (iv). Thus, the most important assumption for successful tracking is that the
cells are migrating slowly relative to the temporal resolution of the movie.

In fact, even if all properties (i)-(iv) were fulfilled, cell tracking remains an ex-
tremely complicated computer vision task, due to the fact that cells undergo mitosis
and thus divide: Except for early developmental stages in embryogenesis, cell division
is highly heterogeneous across individual cells, i.e. cells may divide at any point in
time. As a result, there exists a highly variable number of cells across successive
frames. Indeed, even if an expert user provided the exact number of cells in a subset
of frames, the detection of cell divisions is still crucial for accurate reconstructions of
cell lineages. Furthermore, since every cell must undergo a lengthy cell cycle before
its duplication into two daughter cells, cell division is a rare event to be observed
in time-lapse movies. Thus, only few observations of divisions are available even
when long movies of proliferating cells are acquired, which challenges the training of
automated cell division detection methods.

3In the context of 3D volumes, pizels are often termed wvozels. For brevity, we sometimes use the term
pizel for both 2D and 3D images.
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It is mainly the division of the tracking targets which makes it impossible to ap-
ply well established tracking methods from computer vision as those listed above.
In particular, multi target tracking is typically formulated as a network flow prob-
lem (Ahuja et al. 1993; Zhang et al. 2008) which can be solved in polynomial time.
However, when it comes to the modeling of target division, the constraint matrix of
the underlying optimization problem leaves the group of totally unimodular matrices,
which lifts the problem into the class of integer linear programming problems, known
to be NP-hard in the general case, ¢f. Section 2.1. The problem of tracking dividing
targets, where the targets are not cells, has — to the best of our knowledge — to date
only been studied in the car industry, namely for tracking of headlights (Rubio et al.
2012), and neuroscience, there known as object tracing (Funke et al. 2012).

Apart from these methodological challenges, the methods to be developed, more-
over, need to be easily approachable by non-professional computer users. In
particular, the high-dimensional data needs to be represented in an accessible way
and the methods should only rely on very few auto-descriptive parameters or — even
better — all parameters should be automatically learned from user annotations. We
tackle the latter in this work by relying on methods from machine learning. However,
there is no dense ground truth of tracked cells publicly available for late stages in
embryogenesis of complex organisms such as fruit fly or zebrafish, from which model
parameters could be automatically estimated or on which developed frameworks could
be evaluated.

1.2 Tracking-by-assignment Methods for
Cell Tracking

While other types of cell tracking approaches are discussed in the subsequent chapters,
let us now introduce so-called tracking-by-assignment methods which are at the core
of this thesis.

Tracking-by-assignment frameworks, sometimes referred to as data association
(Kachouie et al. 2006; Bise et al. 2011) or tracking-by-detection (Magnusson et al.
2014) methods, typically comprise two stages:

(i) detection or segmentation of object candidates (targets) in every frame, and

(ii) a tracking or association step, in which the objects detected in step (i) are linked
over time in order to form consistent tracks.

Here, the definition of consistent is application dependent: When dealing with non-
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dividing objects, typically only one-to-one object matchings are feasible*, whereas in
cell tracking, where cells may divide into two daughter cells, each target may have up
to two successors.

These assignment models are very flexible to explicitly model object properties
such as target division. The methods may be formulated as integer linear pro-
grams (Bise et al. 2011) or probabilistic graphical models (Kausler et al. 2012b),
which allow to exploit methods from discrete optimization or probabilistic modeling.

One major drawback of traditional tracking-by-assignment methods, however, is
that they highly rely on the quality of the first stage. Errors introduced in the
detection / segmentation step propagate to the second stage, the tracking. Due to
low contrast or a low signal-to-noise ratio, errors such as undetected objects or false
positive detections, false mergers (a cluster of multiple objects found as only one
detection), or falsely split objects (oversegmentation), may occur. We will provide
detailed examples for possible errors in Chapter 2, Figure 2.2. Of those only false
positive detections can be corrected in the tracking step (Bise et al. 2011; Kausler
et al. 2012b) so far, by handling cell candidates as random variables and taking a
longer temporal context into account through global optimization over all time steps
and variables.

1.3 Goals and Structure of the Thesis

The goal of this thesis is to advance the state-of-the-art of tracking-by-assignment
models for cell tracking in the following directions:

+ Segmentation errors should be identified and corrected in the tracking
step. Moreover, for accurate lineage trees, it is important that results are con-
sistent over time in the number of cells contained in each frame and detection,
while at the same time, cell division is detected. To this end, we present an
approach termed Conservation tracking in Chapter 2.

« To allow for maximal interaction (and synergy effects) between the two stages
in tracking-by-assignment models, it is beneficial to handle both steps jointly
in one model. In response, we present in Chapter 3 a novel approach for cell
tracking which jointly optimizes segmentation and tracking globally over
all time steps and space.

+ Remaining errors should be spotted automatically in order to point the user
to assignments which are likely to be erroneous. In Chapter 4, we propose

4 Appearance or disappearance of an object may be modeled by introducing synthetic appearance or
disappearance objects, respectively.
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two methods to successfully estimate ambiguities in results of tracking-by-
assignment models, the first of this kind for cell tracking. In this way, the user
can be efficiently guided for proof-reading.

+ The learning of model parameters from user annotations while taking the struc-
ture of the output space into account, is essential to achieve high quality cell
tracking results. We propose a novel method in Chapter 5, which trains mul-
tiple diverse models from only one set of annotations in order to present
multiple highly likely solutions to the user.

Before delving into these findings, we briefly review the concept of factor graphs
as graphical representations of probability distributions for later reference.

1.4 Factor Graphs & Log-linear Models

Factor graphs (Kschischang et al. 2001) allow for visualizations of (in)dependence
relationships in a probability distribution (Barber 2012, Chapter 4) and are repre-
sentations for probabilistic graphical models (Koller and Friedman 2010, Chapter 4).
In general, an (undirected) factor graph is defined by the tuple G = (Y, F, &) and
graphically represents the factorization of a function

p) = [T 9:Ver). (1.1)

Here, C; C {1,..., N} is an index set, i € {1,..., M}, Y = {Y1,...,Yn} are variables,
and F = {41, ...,¢n} are factors, both are nodes in the bipartite graph denoted by
circles and squares, respectively. An undirected edge E,; € £ is drawn between
variable node Y, € Y, v € {1,..., N} and factor node ¢; € F if v € C;. Often, factor
graphs represent a probability distribution

pY) = Zp(), (1.2)

where the normalization constant Z is assumed implicitly. We refer the reader to
(Koller and Friedman 2010; Wainwright and Jordan 2008; Barber 2012; Bishop 2006)
for thorough introductions to probabilistic graphical models.

In this work, we study factor graphs for cell tracking and assume log-linear models
(Koller and Friedman 2010, Chapter 4), i.e. factor graphs for which each factor ¢;(V¢;)
(notation as in Equation (1.1)) can be written in the form

biVe) = exp (Ei (Ve,)),  ie B (Vo) = —log (vi(Ve,)) s (1.3)
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Factor 15(Y1,Y3):

States of | Indicator function p(Y;,Y>) = | Energy/Cost

Vi Y2 | [fis pllay Pl Pliayl’ | 012 =01(w) =
0 0 1 0 0 0 0%y = w'¢:(0,0)
0o 1 0 1 0 0 673 = w'¢:i(0,1)
1 0 0 0 1 0 013 = w'¢:(1,0)
1 1 0 0 0 1 01 = wlgi(1,1)

Figure 1.2: (Left) Factor graph for the function p(Y7,Y2,Y3) = ¥3(Y3) - ¥12(Y1,Ys) -
Yo3(Ya, Ys) - 1123(Y1, Yo, Y3). Variables Y7, Yo, Ys are indicated by circles, fac-
tors 13, 112, Ya3, Y123 are depicted by black squares. A factor graph visualizes
the decomposition of a function, and hence, (in)dependence relationships of
random variables in probability distributions. Factors of order one (e.g. t3)
are called unary factors, those of order two (e.g. 112, 193) are termed pairwise
factors, and those of order > 2 are generally referred to as higher-order factors.
(Right) As an example, we illustrate our notation through the pairwise factor
¥12(Y1,Ys). Indicator variable p“ = 1if, and only if, Y; = k and Y; = [, zero
otherwise. Costs 675V are linear in the joint features ¢;(y1,y2) where Y1, Y2
are the realizations of Y7, Y5.

with linear energy
Ei (Ve,) = B (Ve w) = 6] (w) - p(Ver), (1.4)

where p(-) are indicator functions yielding one binary indicator variable per possible
configuration of Vc,, and 6;(w) are the costs associated with factor 1»;. Note that 8;(-)
themselves may be linearly parameterized through the joint feature matriz ¢;(Ve,)
and the coefficients w and thus,

Ei(Yo,) = 6, (w) - p(Ve,) = W' ¢i(Ve)p(Vey). (1.5)

The coefficients w are called the parameters of the graphical model.

Consequently, log-linear models may be rewritten as

M M M
= H¢Z(ycz) = Hexp (_EZ (ycz)) = exp (Z WT¢1(yCz)p<yCz)> : (16)

A toy example for a factor graph with this type of parameterization is shown in
Figure 1.2.

Strategies to tune the parameters w include manual tweaking, grid search over
a pre-defined parameter range, unstructured learning (i.e. ignoring factors of order
> 2), mazimum likelihood estimation (Koller and Friedman 2010, Chapter 20), or
mazimum-margin learning for structured models (Taskar et al. 2004), also known as
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structured output learning (Tsochantaridis et al. 2005). While the first two methods
are only applicable for small sets of parameters due to the highly time-consuming user
or machine interaction needed, respectively, unstructured learning ignores the struc-
ture of the graphical model in the training of (flat) classifiers. Maximum likelihood
based methods, in turn, train the model to fit the data. In contrast, in the structured
learning framework, a discriminant function is learned to minimize the expected gen-
eralization error on unseen data while considering the entire structure described by
the graphical model.

We propose cell tracking models in Chapters 2 and 3 in the form of factor graphs.
They model a-priori knowledge in terms of linear constraints which yield a struc-
tured output space, i.e. only solutions which fulfill these linear constraints are feasible.
Structured learning is hence a natural choice for the learning of the model parameters
in cell tracking. While we use the time-consuming grid search in the experimental
evaluations in Chapters 2 and 3 (the chapters focus on modeling rather than op-
timization/learning), we introduce structured learning strategies for our models in
Chapters 4 and 5 in order to find parameters which maximally discriminate correct
cell assignments in successive time steps from any other (false) solution. Further
details on structured learning algorithms are discussed in Chapter 5.



Conservation Tracking

As pointed out in Section 1.2, multi-object tracking in general may be implemented as
a two-step pipeline consisting of a detection/segmentation step and a data association
or assignment/tracking step. Such approaches, however, are obviously susceptible to
errors in the detection step which are propagated to the tracking model and typically
cannot be corrected downstream. Therefore, the ultimate goal of data association
tracking is to address detection and data association jointly such that both steps can
maximally benefit from each other and information can be propagated from more to
less obvious parts of the data. There are first approaches addressing joint detection
and tracking (Wang et al. 2009; Wu et al. 2012), but none of them has been extended
to deal with dividing objects. Given that the tracking of multiple dividing objects
already is an NP-hard problem (Sahni 1974) in itself, joint detection and assignment
is harder still.

As a first step into this direction, in this chapter, we propose a model that handles
detection errors explicitly in the tracking step and can even correct most of them.
Typical segmentation errors are depicted in the lower rows in Figure 2.1 and can be
categorized into over- and undersegmentation errors occurring due to low contrast
or noise in the images. Furthermore, a real data example is given in Figure 2.2.
Oversegmentation may result in false detections whereas undersegmentation could
lead to the appearance and vanishing of tracks or to accidental track merging. In this
context, the divisibility of the objects is particularly challenging since demerging due
to previous merging must be distinguished from object division. Note that we will
differentiate between object division and object demerging throughout this chapter.

Contributions We present in this chapter® the first method which explicitly models
all of the potential segmentation errors outlined above in one probabilistic graphical

5This chapter is an extended version of (Schiegg et al. 2013).
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Events t1 t t+1 [factor graph at

moving O—O—u

dividing u—g)ﬁ

appearing u—u
vanishing u—u

merging &O—O
demerging &Oﬁ

false
detection \{&u

Figure 2.1: The proposed tracking-by-assignment model accounts for all of these events.
Left column: Objects (represented as balls) are associated (edges) with each
other over three time steps. Right: Excerpt of the proposed factor graph
showing the three detection variables for the connected component at time ¢:
Red variables are indicators for a division event. The other variables, taken
together, represent the number of targets covered by a detection but they can
also represent the other depicted scenarios such as disappearance or “demerg-
ing”. See Figure 2.4 for more details.

~

undersegmentation

over- .
segmentation

R

model. The proposed factor graph models conservation laws for the number of objects
contained in each detection to ensure global consistency of the solution. In other
words, the model not only assures consistency between pairs of frames but can also
resolve segmentation errors which only become evident from considering a complete
time series at once (¢f. Figure 2.2). In this way, temporarily merged targets can be
resolved under identity preservation even for objects which are merged during longer
sequences. For this purpose, a spatial Gaussian mixture model with the appropriate
number of components is fitted to the undersegmented regions.

Object properties such as velocity are easy to represent in state space models, but
notoriously difficult to model in a tracking-by-assignment approaches. To avoid bias
towards slow motions and false assignments during group movement, we estimate
group motion in a preprocessing step, using patch-wise cross correlation.

Structure The remainder of this chapter is structured as follows. We commence
with the review of prior art and propose the tracking framework — and particularly
the construction of the factor graph — in Section 2.2. To showcase the usefulness
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Tracking Segmentation Raw Data

Figure 2.2: Tiny excerpt of dataset B with its almost indistinguishable objects. A short se-
quence of the raw data is depicted as 2D slices (top row) from 3D+time data
and displays cells in a developing Drosophila embryo. Due to low contrast,
multiple cells are segmented as only one connected component (undersegmen-
tation) as pointed out in the middle row. Our tracking model (bottom row)
can handle such errors and preserves the target identities as indicated by colors
(see the three previously merged cells in ¢t = 52) by fitting the correct number
of Gaussians (ellipses) to detections containing multiple objects. Furthermore,
the proposed factor graph can handle false detections (oversegmentation) as
indicated by the black detection in frame 42 (bottom row).

and efficiency of this novel cell tracking approach, we finally present and discuss
experiments on three challenging 2D+t and 3D+t datasets in Section 2.3.

2.1 Related Work

Existing tracking approaches can broadly be categorized into three:

(i) space-time segmentation,
(ii) state space models, and

(iii) tracking-by-assignment.

The first is only applicable at frame rates that make for small, ideally sub-pixel,
displacements of objects between subsequent images.
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State space models or Bayesian sequential filtering are not easily applicable to an
unknown or variable number of objects, calling for costly strategies such as reversible
jump MCMC or Gibbs sampling on Dirichlet process mixture models (Fox et al. 2006).
In such a setup, dealing with divisible objects is harder still.

Tracking-by-assignment gracefully handles multiple, and even dividing objects; on
the downside, object properties such as object velocity need to be implemented using
factors that are higher-order in time.

We draw inspiration from, and build on, a series of excellent papers. The track-
ing of undersegmented objects was first described in (Nillius et al. 2006) and soon
extended to deal with fragmentation (false positive detections) (Bose et al. 2007).
Ben Shitrit et al. (2011) additionally address object identity preserving for possible
occlusions of objects by exploiting global appearance constraints. Furthermore, Lou
and Hamprecht (2011) account for both dividing objects and undersegmentation, and
exploit local evidence in pairs of frames to find undersegmented objects. Their model,
however, does not guarantee consistency over all time steps and detections.

The structure of our graphical model also builds on the network flow formulation
in (Zhang et al. 2008). Note, however, that allowing for object division no longer
permits to do inference via an ordinary network flow computation as in (Zhang et
al. 2008). Instead, admitting divisions necessarily turns the problem into an integer
flow problem with homologous arcs (i.e. flow along separate edges is required to be
identical) and a constraint matrix which is not totally unimodular. Hence, there is
no guarantee to obtain integer solutions in a network flow, and rounding (Padfield
et al. 2009) gives only approximate solutions to a problem that is in general NP-hard
(Sahni 1974).

Moreover, the only model which handles the tracking of dividing objects in a global
probabilistic framework is the graphical model presented in (Kausler et al. 2012b).
While oversegmentation is addressed in terms of false detections, it cannot deal with
undersegmentation such as merged objects.

The method described in (Magnusson et al. 2014) — published shortly after the
original publication of this chapter (Schiegg et al. 2013) — is most similar to our ap-
proach. They furthermore formulate their model as a dynamic programming problem
which allows them to solve the underlying optimization problem approximately using
a greedy strategy using heuristic rules.
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Figure 2.3: Objects are first detected from raw data by segmentation. Subsequently, on
pairs of frames, patch-wise cross correlation on the binary images yields rough
estimates about the displacement of groups of objects. Following this, prob-
abilistic classifiers determine the unary potentials of each detection, i.e. they
estimate the division probability and a probability mass function of the number
of objects contained in each detection. These potentials are then used in the
proposed factor graph (cf. Figure 2.4) to find a globally consistent tracking so-
lution (here, tracks are indicated by colors). In the last step, detections which
were found to contain more than one object (yellow/green in this example) are
partitioned by fitting a spatial Gaussian mixture model with the respective
number of kernels, and the demerged objects are being tracked again in order
to find their original identities.

2.2 Tracking Divisible Objects in spite of

Over- and Undersegmentation

The purpose of this work is to track dividing objects based on an error-prone segmen-
tation. We therefore model data association in a probabilistic graphical model (Koller
and Friedman 2010) where we explicitly handle over- and undersegmentation errors
(cf. Figure 2.1). Here, the key idea is that all detections over all time steps are handled
simultaneously in a holistic graphical model on which inference is performed globally.
In this way, each segmented region is assigned the number of objects it contains while
conservation laws across subsequent detections guarantee global consistency. Finally,
each detection is partitioned into its inferred number of objects by fitting a Gaussian
mixture model such that post-hoc linking yields identity preservation for temporarily
merged targets. It should be noted that we distinguish between the terms object and
detection which denote one target and one connected component, respectively, where
a detection may comprise multiple objects. In the following, we describe our tracking
workflow in detail for which a schematic overview is depicted in Figure 2.3.
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Tt_ -

m

wdiv wtr ¢

wtr tr wdiv ¢tr
incoming detection and division outgoing incoming detection and division outgoing
transition for connected comp. X, f transition transition for connected comp. X, f transition

(a) Full representation for one detection (b) Simplified representation

Figure 2.4: Factor graph for one detection X} with two incoming and two outgoing tran-
sition candidates: (a) One detection is represented by three multi-state vari-
ables, X!, V!, and Al, where X! keeps the number of objects present in the
corresponding detection, and the latter variables indicate whether objects are
vanishing or appearing, respectively. Note that, since X/ is given by a deter-
ministic function of Af, Vi!, it can be omitted in the simplified representation
in (b). Furthermore, the binary variable D! indicates whether object X/ is
about to divide. See Figure 2.1 for different configurations of these variables.
Moreover, transition variables T € {0,...,m} indicate how many objects are
associated between two respective detections. Here, the black squares imple-
ment conservation laws, i.e. the sum of the left-hand side must equal the sum
of the right-hand side, whereas colored squares represent unary factors of the
variables.

2.2.1 Graphical Model Implementing Global Conserva-

tion Laws

We design a factor graph (Kschischang et al. 2001), illustrated in Figure 2.4, which
contains three categories of variables: Detection variables (comprising appearance
and vanishing variables) for each connected component X! from the segmented image,
division variables which indicate whether an object is about to divide, and transition
variables that associate detections in two adjacent time frames with each other.

In particular, each detection X! is represented by an appearance variable
Al € {0,...,m} and a vanishing variable V;' € {0,...,m}, where m is the maximal
number of objects contained in one detection. The number of objects comprised by

detection X! is given by their maximum X! = max(V, A%).5 The appearance and

SNote that X! is given by a deterministic function of Af, V! and is hence omitted from the model in
Figure 2.4(b).
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vanishing variables of one detection are connected by factor 1qe; with energy

fln<]5(Xf:k;|fit))’ Vit:Af:k;
~n (POXE = k| fD) + Ky, Vi =0, AL =k >0
—In (f’(Xf =k| ff)) + kwyan, Vi=k>0,A=0"

o, otherwise

Edet(Agv‘/;tafzt) = (21)

where k € {0,...,m}. In other words, only three different kinds of configurations are
allowed (cf. Figure 2.1): Vi! = Al = k indicates that X} comprises k objects (and X!
is a false detection if £ = 0); V;! =0, A! > 0 means that the object(s) in X! is/are
appearing in this time step (i.e. starting a new track); whereas V! > 0, A! = 0 stands
for their disappearance at time t¢.

Here, the model parameters wapp and wya, penalize spontaneous appearance and
vanishing. P(X! = k | f!) is determined by a probabilistic discriminative clas-
sifier where f! stands for local evidence. In our experiments, we train a random
forest (Breiman 2001) on local features such as the size of the connected compo-
nent, its mean and variance of intensity, or the standard deviation along the principal
components of the detected segment.

Now, we introduce a binary variable D! which indicates whether an object in
detection X! is about to divide or not. Again, its unary potential is determined by a
probabilistic classifier based on local evidence. In our experiments, we deal with cell
tracking and therefore utilize domain specific features for cell division. These include
the angle that the two nearest neighbors X;H,X;Jrl at t + 1 enclose with X/, the
mean and variance intensity of X!, and the ratios of the squared distances to X}, the
mean intensities, and the sizes of X;H and X ltH. For all features where appropriate,
the region centers corrected by their cross correlation offset (c¢f. Section 2.2.3) are
appended in addition. Division nodes are only added if the respective detection has
at least two potential successors in the next time frame and the score from the division
detection classifier is above some small threshold.

The third category of random variables in the proposed graphical model, the tran-
sition variables T}; € {0,...,m}, are added for pairs of detections X, X;H in two
subsequent frames. Their value indicates the number of objects of X! which are as-
signed to X;f“ (this can be some or all). Local evidence for pairs of detections X},
X;H is injected by

A l—eXp(—dij)7 k=0
P(Tj; =k |dj) = & , (2.2)
exp (— Zj), k=#0
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Figure 2.5: Concrete example for the representation of a small but complex toy sequence
in terms of the proposed factor graph. The numbers indicate the states that
were inferred for each random variable. See Figure 2.4 for color codes.

o

2
where df; = (c?rl —(ct+ uf)) is the squared distance of the region centers ¢ cor-
rected by the estimated cross correlation offset u (¢f. Section 2.2.3), and « is a design
parameter. It should be noted that by taking into account the estimated rather than

the detected region centers, acceleration of an object is penalized instead of its velocity.

So far, only probabilistic local evidence has been implemented into the model.
To ensure global consistency of the inferred solution, we augment the factor graph
with conservation laws: In particular, the number of objects in detection X! in ¢
must equal to the sum of objects associated with X! in time ¢ — 1 and ¢ + 1 (while
taking object divisions into consideration). The conservation laws which guarantee
these equivalences are implemented in the black squares in Figure 2.4, where, broadly
speaking, the sum of objects on the left-hand side must equal the sum of the right-
hand side. For instance, the conservation law for the outgoing transitions of X! is
expressed through factor 1o, with energy

0, ¥ Ti#A+D!
1€{j0se>dn }
00, EllE{jo,...,jn/} ,‘thl >A§
Eout (AL T o TS ) = 4 o0, > Th#2ifDi=1. (2.3)
le{j07-~'7jn/}
oo, Al#£1ifDi=1
0, otherwise

A toy example of our model over three time steps is depicted in Figure 2.5.
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In addition, since sparse objects may lead to isolated (sub-)paths in the graphical
model, i.e. paths where only one transition between two detections is possible, we
subsume variables in such paths in tracklets and set their unary potential to the
sum of the single detections’ unaries plus their transition potentials for each possible
configuration. In this way, whole tracklets may be treated just like single detections,
which leads to major speed-ups in optimization.

Finally, the approximate maximum a-posteriori (MAP) solution of the proposed
factor graph can be found using standard message passing algorithms. Alternatively,
by minimizing the energy

argmin E(A,V, D, T) =
AV D, T

ir]g;;u? Z Z Eaet (A§> V;t) + Ediv(DE) + Z Etr(th]) ) (24)
s Vs by t ]

K]

subject to integrality constraints and the linear constraints implicitly given in the po-
tentials Yget, Yout, and Yi,, a solution can be obtained using integer linear program-
ming (ILP) solvers. We opt for the latter since the problem can be solved exactly to
global optimality for reasonably sized problems.

The energy terms in Equation (2.4) are obtained by reformulating probabilities
in the energy domain utilizing the well-known Gibbs distribution P(X) = Le P(X),
where Z is a normalizing factor.

2.2.2 Resolving Merged Objects

The inferred result of the described factor graph yields the number of objects covered
by one detection X} and the number of objects Tfj transferred between two detections
Xt X;H in adjacent time steps. Identities of individual objects are amalgamated into
a cluster whenever undersegmentation leads to seeming mergers. To recover individual
identities, we introduce the following model based on the inferred configuration of the
factor graph.

Given the number of objects k contained in detection X}, we fit a Gaussian mixture
model with £ normal distributions A (yy, ¥;) of unknown weight 7; to the connected
component with pixels/voxels {p1, ..., pn}, i.e. we maximize

N k
P(p1.-pn) = [[ D_mP(pi | 1. ). (2.5)
j=11=1

The resulting clusters with means gy, [ € {1,...,k} are then treated as separate
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detections with centers y;. Next, another factor graph as described in Section 2.2.1 is
constructed comprising all newly resolved and all attaching original detections. We
modify this merger resolving factor graph by setting all AL = V! = 1, i.e. in this
post-processing step, we disallow appearance, vanishing, and false detections. This
graphical model is again solved to global optimality and its solution hence preserves
identities of objects, even for long sequences of merged objects.

2.2.3 Cross Correlation for Region Center Correction

Most tracking-by-assignment approaches penalize displacements of objects in terms
of squared distance between objects of adjacent time frames. However, if a group
of objects is moving rapidly in the same direction, this approach may lead to false
assignments due to temporal aliasing. On this account, we adapt our model to penalize
acceleration rather than velocity.

Before constructing the factor graph described in Section 2.2.1, we perform patch-
wise cross correlation on the binary images on pairs of adjacent frames. In other
words, for each patch g'(c) at time ¢ of a user-specified size, we search for the best
match in its neighborhood h**1(c) at ¢ + 1 by maximizing

y(e) =g (e)h (e —u') (2.6)

to estimate an offset u' for each pixel/voxel at t. The transition prior ¢, can then
be computed based on the detection centers corrected by those offsets to find the
displacement relative to the motion of the object’s neighborhood.

2.2.4 Implementation

We have implemented the proposed algorithm in C+4++ and inference is performed
using CPLEX. Optimization time is between one and 30 minutes on a current work-
station, even for the experiments with large problem sizes presented in the following
section. The source code together with a GUI for the complete workflow is freely
available on https://github.com/martinsch/pgmlink.

2.3 Experiments & Results

Cell tracking is a natural application for the tracking of dividing objects, particularly
challenging due to their almost texture-less appearances, which makes them nearly
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Figure 2.6: An excerpt of one time step of dataset A. Green color indicates detections
including many false positives.

indistinguishable from each other. Furthermore, microscope images often suffer from
low contrast which typically makes segmentation error-prone. Especially in dense cell
populations, undersegmentation is a common cause for errors.

In order to show the efficiency and accuracy of the proposed algorithm, we perform
experiments on three challenging datasets, datasets A and B are 3D+t, dataset C is
2D+t. Note that, although both datasets A and B show developing embryos of fruit
flies, they are of drastic difference in appearance in terms of contrast. Furthermore,
the density of cell populations due to their diverging stages in the developmental
process of the embryo are highly differential.

In all experiments, we use random forests (Breiman 2001) each comprising 100
trees grown to purity as classifiers for the cell number in factor 14 and cell mitosis
in factor ¢g;y. Small training sets (< 30 samples for positive classes) are taken from
the data. For a fair comparison, we used the same cell number classifier in our method
and the competitive model.

First, we evaluate our model on the publicly available dataset from (Kausler et al.
2012b) which shows a Drosophila embryo in syncytial blastoderm (dataset A). Its
segmentation (cf. Figure 2.6) consists of ~ 300 connected components on average over
40 time steps of 2,362 x 994 x 47 volumes and shows many false detections. We take
the published segmentation of this dataset and its gold standard to compare with
the cell tracking model from Kausler et al. (2012b). Their segmentation contains no
merged objects and thus, we set in our model the maximal number of objects per
detection to one, i.e. m = 1. In this experiment, we use the cell detection classifier
of (Kausler et al. 2012b) and set our parameters to o = 25, Wapp = 50, Wyan = 50,
wy = 13, waiy = 28, where the latter two parameters weight the transition and
division priors versus the detection prior. The results of this experiment are given
in Table 2.1. Our model yields an f-measure of 0.94 taking all pairwise events, i.e.
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Overall: 12,289 Divisions: 380
Prec. Rec. F-meas. | Prec. Rec. F-meas.
(Kausler et al. 2012b) 0.96 0.96 0.96 092 091 0.92

Classifiers only N/A N/A N/A 0.79  0.69 0.74
Ours (m 094 0.95 0.94 0.92 0.88 0.90

Table 2.1: Cell tracking results on dataset A: precision (= ﬂfifFP), recall (= %),

and f-measure (= 2 - B%XC) for the overall pairwise events (move, appear-
prec.+rec.

ance, disappearance, divisions) and divisions in particular. For a description of
Classifiers only, refer to Table 2.2.

moves, appearances, disappearances, and divisions, together, comparable to (Kausler
et al. 2012b) (0.96). The f-measure for divisions in (Kausler et al. 2012b) is slightly
better than ours, namely 0.92 compared to 0.90, which is due to their model making
assumptions about minimal durations between division events, cf. (Kausler et al.
2012b, Figure 5).

The second dataset (dataset B) again shows a Drosophila fruit fly, but this time
during gastrulation. Due to the embryonic development, the cell population is now
much denser than in dataset B, resulting in a high number of undersegmented objects
(cf. Figure 2.2). Furthermore, different from dataset A, cells enter mitosis highly
heterogeneously in time. In this dataset, on average ~ 800 cells are tracked over 100
time steps of 730 x 320 x 30 volumes. We refer the reader to Appendix A for a de-
tailed description of this dataset. A gold standard for this dataset has been manually
acquired. This dataset is segmented using the segmentation toolkit élastik (Sommer
et al. 2011), a pixel-wise random forest classifier for segmentation. The design param-
eters in our factor graph — for the case of allowing maximally 4 cells in one detection
(i.e. m =4) — are set to a = 5, Wapp = 100, Wyan = 100, wy, = 24, waiy = 36. A 3D
rendering of the resulting trajectories over all time steps is depicted in Figure 2.8(a).
The results (¢f. Table 2.2) show that our method outperforms the cell tracking model
n (Kausler et al. 2012b). As indicated by the division f-measure of 0.71 compared to
0.06 of the competitive model, the explicit modeling and distinction of demerging and
dividing — together with the probabilistic division prior 1g;y — brings a boost in the
detection of mitotic events. Besides, due to the consideration of all detections of all
frames in one holistic model and due to the conservation laws posed, our factor graph
can accurately (precision of 0.78) detect the true number of targets contained in each
detection. For this evaluation measure, only detections have been considered which
contain more than one cell. Finally, with an f-measure of 0.68, our framework can
resolve the original identities of such merged objects. In particular, the associations
between the distinct objects after demerging are evaluated as true positives only if
they link to the true respective objects before merging — possibly over long sequences
of being merged.
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Figure 2.7: Parameter sensitivity: Box-plots for f-measures for dataset C for a search over
720 parameter configurations.

Dataset C is a publicly available 2D+t dataset taken from the Mitocheck project”
(92 time steps, 1,344 x 1,024 pixels), segmented using the method in (Lou et al. 2012)
and a gold standard is acquired manually. In our model, we again treat each connected
component as one detection and set the parameters (for m = 4) to a = 5, wapp = 100,
Wyan = 100, wy, = 10, waiy = 16. Due to the global mass conservation, our model
(f-measure of 0.80 and 0.76 for divisions and mergers) improves significantly over
the results of the rather weak local division and merger classifiers (0.70 and 0.49,
respectively), ¢f. Table 2.2.

In Figure 2.7 the robustness of the model parameters is addressed for this ex-
periment in the case of m = 4 for a search over a reasonable parameter range (720
evaluations). The influence of the parameter setting on the overall result is marginal
due to the domination of move events, which are robust to parameters. The results
of mergers and divisions seem to depend more on the parameter setting, however, the
standard deviation is only 0.02 and 0.08, respectively.

The results of our model can be further improved by designing even more features
for object classification and division detection. This additional local evidence can
then be put into global context within the factor graph. It should be noted that
the object classification and division detection modules can be fully adopted to the
particular application domain.

In the next chapter, we show that combining both segmentation and tracking
completely into one holistic model such that the separate steps maximally benefit
from each other, yields even superior results.

Thttp://www.mitocheck.org/archive/cgi-bin/mtc?action=show_movie;query=87214, last accessed on
09/02/2015.
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(b) One frame of dataset C (Mitocheck 2D+t)  (c) Space-time rendering of the trajectories of dataset C

Figure 2.8: (a) 2D projection of the 3D trajectories of dataset B (Drosophila, 3D+t) over
all 100 time steps. (b) One frame of dataset C (2D+t) and (c) the 3D space-
time rendering of its trajectories. Note that daughter cells inherit the color of
their mother cell.
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Joint Cell Segmentation
and Tracking

As discussed in the previous chapter, the modeling power in tracking-by-assignment
approaches comes at the cost of propagating errors from the first stage (detection/seg-
mentation®) to the second (tracking), and the overall achievable quality is limited by
the lack of interaction between detection and assignment decisions. We addressed
this challenge in Chapter 2 by combining a graphical model with a post-processing
step to resolve many types of segmentation errors as shown in Figure 2.1.

Our work in this chapter aims at formulating a completely joint model for seg-
mentation and tracking for the single stages to maximally interact between each
other. Instead of a single fixed segmentation as used in Chapter 2 and other tracking-
by-assignment models (Bise et al. 2011; Kausler et al. 2012b), the detection phase
generates superpixels/-voxels from which regions (possible cell segmentations) are
extracted as sets of the original superpixels. In particular, these regions can be un-
derstood as a selection of possible segmentation hypotheses. Global temporal and
spatial information guides the selection of those hypotheses that best fit the overall
tracking. During inference, each superpixel is assigned either a cell track identifier
or the identifier of the background (cf. Figure 3.1). Put another way, our algorithm
simultaneously produces both, a valid cell segmentation and an assignment of each
cell to its cell lineage.

Contributions Our main contribution in this chapter? is the formulation of a prob-
abilistic graphical model for joint segmentation and tracking for divisible and almost

8For brevity, we mostly refer to the combination of detection and segmentation as detection only.
9This chapter is an extended version of (Schiegg* et al. 2014).
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Raw Data

Oversegmentation

Tracking

Figure 3.1: An excerpt of three consecutive time steps of the Drosophila dataset (2D slices
out of 3D volumes). The raw data (top row) is oversegmented into superpixels
(middle row). Our graphical model then tracks the cells over time and assigns
each segment to a track (indicated by the same random color) or background
(black). Offspring cells are assigned the color of their parent cell after mitosis
(here: orange). Note that one cell may be represented by multiple superpixels.
Scale bars are 10um.

indistinguishable cells. This undirected graphical model incorporates prior beliefs
from multiple local classifiers and guarantees consistency in time and space. We also
present a method to generate an oversegmentation which respects the borders be-
tween cells and generates an overcomplete set of superpixels even for cells in dense
populations. Furthermore, the 3D+t Drosophila dataset we use for evaluation, as well
as our manually acquired dense annotations are provided to the public. This is the
first dataset of this size and kind for which manual annotations are freely available.

Structure We start off with the review of related work in Section 3.1, followed by
a detailed description of the proposed pipeline for joint segmentation and tracking
in Section 3.2: We develop a method to effectively oversegment a volume of cells,
and design the joint graphical model for cell segmentation and tracking. The chapter
is concluded in Section 3.3 with a discussion of experiments on a challenging 3D+t
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t+1

(

Stage Stage 11 Stage IIT Stage IV Stage V
Raw Data Oversegmentation Region Merging Graphical Model Tracking Result

Figure 3.2: First, the raw data is oversegmented in all timesteps separately (stage II).

Then, in stage III, segmentation hypotheses are generated by merging adja-
cent segments into bigger segments (e.g. 2, 3 may be merged into 23). From
this structure, a graphical model is constructed (stage IV): Overlapping seg-
mentation hypotheses are connected by intra-frame factors (red: conflicting
segmentation hypotheses; blue: local evidence for the number of cells in one
connected component) and inter-timestep transition hypotheses are modeled
by binary random variables (green nodes) indicating whether the correspon-
ding cell in ¢ has moved to, divided to, or is not associated with the corres-
ponding cell in ¢ + 1. Note that, for simplicity, only one connected component
in only two timesteps is visualized. The proposed factor graph in stage IV,
in fact, models all detections and all timesteps in one holistic model at once.
Also for simplicity, only a small subset of transition variables is shown. After
performing inference on this factor graph, the most probable selection of ac-
tive regions (actual cells) and their transitions between timesteps are found as
visualized by the two cells marked in yellow and blue in stage IV.

cell tracking dataset from Drosophila embryogenesis as well as on a 2D+t dataset of

proliferating cells in a dense population with frequent overlaps. We show that the

proposed method achieves state-of-the-art results.

3.1 Related Work

Joint object detection and tracking is handled naturally in tracking algorithms based
on active contours (Xiong et al. 2006), space-time segmentation (Lezama et al. 2011),
or video segmentation of multiple objects (Vazquez-Reina et al. 2010; Budvytis et al.
2011). However, these methods either cannot deal naturally with divisible objects and

heuristics must be used, or they cannot cope with dense object populations where ob-
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jects may overlap. In a very recent study, Amat et al. (2014) present a fast pipeline
to simultaneously segment and track cells by propagating Gaussian mixture models
through time, but again heuristic rules remain to detect cell divisions. Furthermore,
optical flow has been extended to jointly deal with segmentation and tracking (Amat
et al. 2013). These authors propose to augment an optical flow algorithm by a regu-
larization term based on similarities of neighboring superpixels modeled in a Markov
random field.

In tracking-by-assignment models, however, joint optimization of segmentation
and tracking is only rarely tackled. Instead, to reduce errors in the final results,
errors are minimized in each step of the two-stage tracking-by-assignment separately,
the segmentation step and the tracking step: For the former, specialized segmentation
approaches for the detection of overlapping objects have been developed (Park et
al. 2013; Arteta et al. 2013; Lou et al. 2012). These approaches aim to find most
accurate segmentations, however, they do not incorporate any time information. To
reduce errors in the tracking step, probabilistic tracking-by-assignment methods for
dividing objects have been proposed (Bise et al. 2011; Kausler et al. 2012b), which
associate a random variable with each detected object to make allowance for false
positive detections. This idea has been extended in Chapter 2 to further correct
for undersegmentation errors by introducing conservation constraints between time
steps to guarantee a consistent number of objects contained in each detected region.
In a postprocessing step, we corrected the original segmentations. Our idea in this
chapter goes one step further and aims to avoid segmentation errors already in the
first place by jointly optimizing segmentation (i.e. selection of foreground-superpixels)
and tracking.

Most similar to our proposed method are the models in (Funke et al. 2012; Hof-
mann et al. 2013; Jug et al. 2014). Funke et al. (2012) propose an algorithm which
segments an anisotropic 3D volume of branching neurons by generating segmentation
hypotheses in 2D slices separately and posing constraints between overlapping seg-
mentation hypotheses. In contrast to our model, the authors do not need to model
background for their specific use-case whereas in our domain it is important to infer
both whether a segment should be activated as foreground and to which segments
in the consecutive timesteps it should be linked. Moreover, in contrast to the model
we propose, they do not model detection variables directly; instead they introduce
additional transition variables which model appearance, disappearance, and divisions.
The explicit modeling of detection variables allows us to pose a prior on the count
of cells in connected components. The authors in (Hofmann et al. 2013) propose a
similar idea for joint tracking and object reconstruction from multiple cameras. Both
methods have in common that they solve an integer linear program with a large set
of hard constraints between superpixels within one (time/z-slice) instance and across
instances. In independent work, Jug et al. (2014) jointly segment and track bacteria
in 1D+t.
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The original idea to refine a segmentation by modeling the conflicts between mul-
tiple overlapping segmentation hypotheses was introduced by Brendel and Todorovic
(2010) and Ion et al. (2011). Whereas Brendel and Todorovic (2010) propose al-
gorithms to efficiently find the best independent sets in a conflict graph, Ion et al.
(2011) present a complementary approach to search for maximum cliques in the graph
of possible hypotheses (where contradicting tiles are not connected). Their ideas were
extended to the temporal domain in (Brendel et al. 2011), but they cannot deal with
dividing objects. Extending this idea to dividing cells is a much harder problem and
the main contribution of this chapter.

3.2 Pipeline for Joint Segmentation and

Tracking

The purpose of this work is to segment and track multiple dividing cells in a tracking-
by-assignment framework. To avoid error-propagation from the segmentation to the
tracking stage, we propose to jointly segment and track the targets based on an
oversegmentation. This process is illustrated in Figure 3.2: We first run an over-
segmentation algorithm on the volumes with overlapping cells to generate multiple
segmentation hypotheses. This is followed by the construction of a graphical model
for the joint segmentation and tracking. It models competing (intra-frame) relations
between the potential cell segmentations which overlap in space, as well as possible
inter-frame hypotheses between regions of adjacent timesteps. In this section, we
specify each step of this pipeline consecutively, starting with the oversegmentation
step.

3.2.1 Competing Segmentation Hypotheses

To make joint segmentation and tracking computationally feasible in tracking-by-
assignment approaches, the time-series of 2D /3D images/volumes must be coarse-
grained into superpixels/-voxels to reduce the problem space (stage (II) and (III) in
Figure 3.2). Note that the resulting superpixels also afford the extraction of more
expressive features at the object rather than the pixel level. To this end, first su-
perpixels are obtained which are as large as possible but at the same time small
enough to respect all cell boundaries. Next, neighboring superpixels are grouped to
generate different segmentation hypotheses. Here, we choose to merge the superpixels
in a hierarchical fashion. However, the proposed model does not rely on or exploit
the resulting tree structure, so any other means of generating complementary but
conflicting segmentations could be used.
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Oversegmentation

In stage (II), the purpose is to obtain an oversegmentation on every image which is
sufficiently fine but as coarse as possible. That is, we prefer single segments (superpix-
els) for (isolated) objects without ambiguities, whereas multiple (smaller) segments
are desired in cases where objects overlap in space. To this end, we propose the
following oversegmentation algorithm:

1. Obtain a coarse segmentation which only distinguishes potential foreground from
definite background (high sensitivity, low specificity).

2. Automatically select seeds fulfilling the requirements outlined above.
3. Compute the seeded watershed on the foreground mask.

4. Merge resulting segments hierarchically to potential regions.

Here, the first step may be performed by any segmentation algorithm which can be
adjusted in a way that only those pixels are predicted as background where we are
sufficiently certain. This step’s output is either a hard segmentation or a probability
map of the foreground (soft segmentation). Note that typically, it is not desirable to
track the resulting connected components directly, since large clusters of cells may
be contained in each connected component. Hence, we continue by splitting these
connected components into multiple segments. To this end, the watershed algorithm
is applied on the probability map of the potential foreground (the foreground mask is
obtained by truncating probabilities below a chosen threshold; we choose 0.5). The
seeds for the watershed algorithm are then the local maxima of the distance transform
on the foreground mask. This gives rise to regularly shaped compact segments.

Region Merging

Finally, superpixels are grouped into regions which form possibly competing cell seg-
mentations (stage (III) in Figure 3.2). These segmentation candidates can be gener-
ated in very different ways. For simplicity, we choose a hierarchical region merging in
a region adjacency graph using L tree levels. Its edge weights between neighboring
segments/regions may be arbitrarily complex and the regions may be merged in an
order determined by these edge weights.

Since the segmentation hypotheses are composed from the same superpixels, nat-
ural conflicts between these regions exist and are resolved by our graphical model
(stage (IV) in Figure 3.2) as discussed in the next section.
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Figure 3.3: Close-up on stage IV from Figure 3.2. In the factor graph, detection variables
for possible cell segmentations are shown in black while their allowed inter-
timestep transitions are modeled by random variables depicted in green (most
of them are omitted for clarity). Blue factors give a prior probability to each
connected component for how many cells it may contain. By introducing intra-
timestep conflict hard constraints (red factors), it is guaranteed that at most
only one variable in each conflict set, e.g. C = {{123}, {23}, {3}}, may be active
at a time. Outgoing and incoming factors (black squares) connect inter-frame
transition with detection variables and ensure a unique lineage of cells.

3.2.2 Graphical Model for Joint Segmentation and
Tracking

Based on the oversegmentation described in Section 3.2.1, a graphical model (here: a
factor graph (Kschischang et al. 2001)) is constructed whose factors collect evidence
from local classifiers and, at the same time, guarantee consistency due to linear con-
straints. That is, impossible configurations are disallowed, e.g. a cell dividing into
more than two children. Building the graphical model corresponds to stage (IV) in
Figure 3.2. The construction of the factor graph and the meaning of contained factors
and random variables are described in detail in this section. We will refer to the toy
example depicted in Figure 3.3 as a running example.
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Random Variables

To build the factor graph for joint segmentation and tracking, we first introduce two
types of binary random variables, detection variables and transition variables. In
particular, each possible cell segmentation (region) gets assigned a detection variable
X, €{0,1} with region identifier a and timestep ¢. Secondly, variables Y, 5 € {0,1}
for each possible inter-frame transition between two regions in adjacent timesteps
are added. In our illustrative example in Figure 3.2, one detection variable is X iH,
referring to region 4 at time ¢ + 1. Yf2374 is an exemplary inter-frame transition
variable, where the indices mean that region 123 at time ¢ may be associated with

region 4 at time ¢ + 1.

Factors

We continue the construction of our graphical model by adding factors. Factors may
disallow specific configurations (see the constraints paragraph) and score possible
configurations of their associated variables based on estimated probabilities P that are
here determined by probabilistic classifiers using local evidence f!. In the following,
intra-frame factors (detection and count factors) and inter-frame factors (outgoing
and incoming factors) are described.

Obviously, all regions in each path from a leaf node to the root node in the region
merging graph (see stage (III) of Figure 3.2) form competing segmentation hypothe-
ses and are represented by a conflict set C} each of which contains indices of such
conflicting regions. For each such conflict set Cf, a higher order detection factor \qge;
is added to the graphical model with energy!'?

Ean( . ) —Waet log (ﬁ’f; (X5 = 1)) 7 X, =1
d, ) = > y
e\ Tk Tk —Wdet szlzgéé log (Pfé (X! = O)) + Chias, XL, =0VX! e X]

(3.1)
where X = {X[}.cer, Fi. = {fi}recr are the detection variables (and their corres-
ponding features) of regions contained in conflict set C’,tC and wqet Weighs the detection
factor against other factors. Equation (3.1) translates to the following: A prior prob-
ability Py (X! = 1) obtained from a pre-trained local classifier (see Section 3.2.3 for
details) with features f! is transformed into an energy for the configuration where
exactly one X!, is found to be a true cell. In the second case, none of the regions in
the conflict set is a true cell, a penalty has to be paid based on the classifier’s belief of
each of the regions being false positive detections. The model parameter cpi,s can put

10A factor 9(X) can be obtained from the given energy FE(X) by the following transformation:
P(X) = exp (—FE(X)). For the sake of brevity, we will only describe the energies in the remainder of this
chapter.
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a bias on regions to be activated rather than deactivated in case of doubt. Note that
impossible configurations, such as the selection of more than one competing region,
are forbidden by constraint €;, see Table 3.1. In Figure 3.3, the potential 1qe; ideally
obtains a high energy (i.e. low probability) for the single region 2 being one cell, while
region 23 has a low energy since it better represents an entire cell.

Moreover, local evidence is further leveraged by a higher-order count factor

Ecount({Xzi}aele) = —Wecount log (pcount( Z X = k)), (32)
Xe{Xt}

ackt

where { X! },c x: denotes the detection variables for all regions belonging to connected
component K} at time ¢. It injects prior beliefs for each connected component i to
contain k actual cells. To this end, a probabilistic count classifier (see Section 3.2.3)
is trained using features such as total intensity or size, and applied on connected
components. For instance, two active regions are favored for connected component

The factors above are both associated with variables from single timesteps only. To
achieve temporal associations of cells across timesteps, the model has to be extended
by inter-frame factors which connect detection with transition variables. Firstly,
outgoing factors with energy

Eout(Xéw yg—>) = EdiS(sz i—)) + Emove(Xéa i—>) + EdiV(Xém (i—>) (33)

associate each variable X! with all possible transitions V! _, to variables in the suc-
cessive timestep. This factor decomposes into three energy terms:

1. Disappearance: The termination of a track is penalized by the disappearance
energy
wais, X =1AYyey Y =0

t At
Eais(Xg, Vas) = 0 otherwise

(3.4)

In other words, cost wgss is charged when a detection variable is active, but all
outgoing transition variables are inactive.

2. Cell division: The division energy is given by

Ediv(y(i_>> = Wdiv - % (35)
{XE aext]
—tog (Paie (Y, + Y, =2))if Y Y=2AY, Y, =1
X YeYi_, ,

0, otherwise
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where Py, is estimated by the division classifier (cf. the classifier paragraph).

Here, the first case applies if region « divides into regions u; and us, and the
t

second if not. The prefactor in‘*‘

HXE D aexct

weighs the energy by the ratio of the

number of superpixels contained in region « to the total number of those con-
tained in its connected component K!. This weight avoids bias towards large
objects since the cost of activating multiple small regions is balanced with the
cost of activating one large region.

3. Cell migration: The transition energy

move( a a%)*wmove"{Xt} IC|>< ()
aSaekt
—log (Pmove (Y;,N - 1)) A YV =1AY, =1
YGy(txa
0 otherwise

assigns the cost estimated by the move classifier if, and only if, region « is
associated with region u. The prefactor is justified as above.

The second inter-frame factor, the incoming factor, assigns a cost in case a cell
appears, i.e. XEH is one, but all of the transition variables in ytjﬁl are zero. The
incoming factor is defined by the energy

Wapp, HXGT=1A > Y=0
Ein(Xé+1, yt+1) _ Yeyt; (3.7)

—p
0, otherwise

and connects the detection variable at ¢ + 1 with all appropriate transition variables
coming from the previous timestep t.

Omitted in these factors so far are impossible configurations, such as more than
one ancestor or more than two descendants for one cell. These configurations are
prohibited by adding the following constraints.

Constraints

We add linear constraints to guarantee that only feasible configurations are part of
a solution. Constraints within individual timesteps are referred to as intra-frame
constraints while inter-frame constraints regularize the interaction of detection with
transition variables. The constraints are summarized in Table 3.1 and explained in
the following.

Since overlapping — and hence conflicting — regions are contained in the segmen-
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Constraint Name Description Linear Formulation 1D
Intra-Frame Segmen- Conflicting (i.e. overlapping) Ziec Xt <1 (]
tation Conflicts regions may not be active at the VC € {C}. }x

same time.
Couple-Detection- Inter-frame hypotheses may Y(i 5 <X tvp &
Outgoing not be active when the cor-
responding detection variable is
inactive.
g Descendants- A region may not have more Zﬁ Y(f’ 5 < 2Va Cs
5 Outgoing than two descendants.
h's,_' Couple-Detection- Inter-frame hypotheses may ch’ 5 < X/t;rl Va ¢y
¢ Incoming not be active when the corres-
= ponding intra-frame hypothe-

ses are inactive.
Ancestors-Incoming A region may not have more Y Y! s <1V s
than one ancestor.

Table 3.1: Linear constraints for random variables

tation hypotheses, constraints need to restrict the space of feasible solutions to non-
contradicting solutions. For this purpose, conflicting hypotheses are subsumed into
conflict sets Cl. (Red factors and their associated detection variables in Figure 3.3.).
Constraint €; in Table 3.1 ensures that at most one detection variable is active in each
conflict set. Taking conflict set C = {{123}, {23}, {3}} in Figure 3.3 as an example,
the constraint states: X%+ X&; + Xips < 1.

Those intra-frame constraints added, outgoing and incoming constraints model
inter-frame interactions and couple detection variables with transition variables.
These constraints (€, and €4 in Table 3.1) ensure compatibility of detection and
assignment variables: No transition variable may be active if the corresponding de-
tection variable has state zero. In terms of the factor graph in Figure 3.3, this means
that, e.g. Y{ys 45 < Xiag.

In a similar fashion, constraints €3 and €5 in Table 3.1 enforce compliance with the
tracking requirement that a cell can have at most two descendants and one ancestor,
respectively. A feasible tracking solution must fulfill all constraints €;—€5. It should
be noted that only €3 needs to be adjusted appropriately if non-divisible objects are
to be tracked.
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Inference

In our global graphical model, the total energy

E<X; y) = Z (Z ( Z Edet(Xlz) + Ecount({Xi}aelCﬁ))

t q keC;
0 (B4 + Bl 9550) ) G3)
subject to all constraints in Table 3.1,

is the sum of all factors over all possible variable configurations of detection vari-
ables X and transition variables ). Note that X and ) contain all random variables
of all time steps taking all information available into account in one holistic graph-
ical model. The probability for a configuration X, ) is then given by the Gibbs
distribution P(X,Y) o e (¥ and the optimal tracking corresponds to its MAP
solution. We solve the energy minimization problem to global optimality by solving
the corresponding integer linear program.

After inference, the optimal configuration of the factor graph can be interpreted
as a segmentation and tracking result as illustrated in stage (IV) in Figure 3.2. The
graphical model assigns a track identifier to each foreground superpixel and sets seg-
ment values to zero which are inferred to be background.

3.2.3 Local Classifiers

The factors of the probabilistic graphical model introduced in Section 3.2.2 are based
on the predictions of local classifiers for

1. the number of cells in a connected component: the count classifier is trained
based on the appearance (e.g. the size, intensity, radius) of a connected compo-
nent and predicts the number of cells that are contained within. The predictions
are then injected into the count factors in Equation (3.2) as prior belief for the
number of cells contained in a connected component.

2. true detections: the detection classifier estimates how strongly a region resem-

bles a cell (¢f. Equation (3.1)).

3. cell divisions: the division classifier rates the probability of triples of regions,
ancestor and two children from consecutive frames, to represent a division.

4. cell migration (moves): the move classifier rates every pair of regions associated
with a transition variable.
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In our implementation, we train random forest classifiers, but any classifier which
provides (pseudo-)probabilistic predictions can be used. These classifiers are trained
on user annotated training examples.

3.2.4 Implementation Details

In this cell tracking application, we use the following methods and parameters for the
oversegmentation algorithm sketched in Section 3.2.1. To obtain a coarse foreground
mask, we use the segmentation toolkit ilastik (Sommer et al. 2011) which can segment
both the phase-contrast images from the Rat stem cells dataset as well as the stained
cell nuclei from the Drosophila dataset: Here, prediction maps for each timestep
are computed independently using a pixel-wise random forest trained on few training
examples from the respective dataset. We use 100 trees in every experiment and select
the following features at different scales: Gaussian smoothing, Gaussian Gradient
Magnitude, Difference of Gaussians, Structure Tensor Eigenvalues, and Hessian of
Gaussian Eigenvalues. Then, the seeds are determined by the local maxima of the
distance transform on the slightly smoothed foreground mask (Gaussian smoothing
with 0 = 0.3 and ¢ = 1.0 in the case of Drosophila and Rat stem cells, respectively)
and nearby seeds are pruned by dilating with a disc/ball of radius 2 pixels. Resulting
segments are merged hierarchically with edge weights determined by the ratio of
the length of their common border and the perimeter of the smaller region. While
much more expressive weights could be used here, we find that these simple features
already perform sufficiently well. Then, at every level I € {0, ..., L} of the hierarchical
segmentation hypotheses (we choose the tree depth L = 4 in the 2D+t and L =5 in
the 3D+t dataset), edge weights are ordered and the p% best neighbors (in our case,
highest weights'!) are merged iteratively. Here, we set p = 20 for [ € {0, ..., L—1} and
p = 100 for | = L, which yields the connected components of the foreground mask as
the root node of the segmentation hypotheses trees. Our model and implementation
is not limited to hierarchical segmentation hypotheses. In fact, any algorithm which
generates competing segmentation hypotheses could be used.

The graphical model described in Section 3.2.2 is implemented in C++4 using the
open-source library OpenGM (Andres et al. 2012). For tractability, the number of
inter-frame hypotheses is pruned to a reasonable number of candidates in the spatial
proximity of each region: In particular, inter-frame hypotheses between frames ¢ and
t + 1 are generated by finding the 2 nearest neighbors in ¢t 4+ 1 for each region in
frame t as well as the 2 nearest neighbors in ¢ for each region in frame ¢ + 1. This
procedure yields many inter-frame hypotheses (> 2) in dense cell populations and
only few hypotheses in the parts of the image where cells are sparse. To create training

11 In this way, segments completely contained within other segments are merged first, whereas regions
which only touch in few pixels are merged last.
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examples for the classifiers, a small subset of the raw data is selected and sparsely
annotated to train a random forest (Breiman 2001) for each classifier suggested in
Section 3.2.3. We choose 100 trees for each and train the random forests to purity.
The parameters of the factor graph are then tuned to best fit a small, fully annotated
subset of the data. These parameters are used for the final predictions on the entire
dataset to report the performance measures. To do inference on our graphical model,
we use the (integer) linear programming solver CPLEX. The globally optimal solution
for the entire time sequence is found within &~ 10 — 70 minutes. We refer the reader
to Appendix B more detailed runtime discussion.

3.3 Results & Discussion

We perform comparative experiments on two datasets — a cell culture (2D+t), and
a developing Drosophila embryo (3D+t). The former is challenging due to severe
mutual overlap while the latter is difficult owing to its ambiguity in the segmentation
hypotheses due to high cell density under low contrast.

The first dataset is publicly available from (Rapoport et al. 2011) (their dataset A)
and consists of a time-series of 209 images (1376 x 1038 pixels) of about 240000
pancreatic stem cells of a rattus norwegicus (“Rat stem cells”). This dataset is partic-
ularly challenging due to the cells changing their appearance (shape, size, intensity)
over time from long elongated to round cells. Moreover, the proliferating stem cells
quickly grow to a dense population causing frequent overlaps between cells. Due to the
dataset’s high temporal resolution, it is difficult to pinpoint a cell division to a specific
point in time. Instead, mitosis occurs over multiple timesteps. For this reason, we
subsample the sequence in time, processing every second image only (leaving us with
104 time steps) and relax the evaluation criterion for divisions (see Section 3.3.1). We
further resample the ground truth provided by (Rapoport et al. 2011) to guarantee
that no cell division is lost in the subsampling.

The second dataset is dataset B from Chapter 2, a developing Drosophila embryo,
described in more detail in Appendix A. On average, about 800 cells are tracked over
100 time steps (730 x 320 x 30 voxels, voxel resolution 0.5um). In Chapter 2, we
evaluated the conservation tracking method on this dataset conditioned on a given
segmentation. To evaluate the performance of the joint approach of segmentation
and tracking as proposed in this chapter, we extend the manual annotations such
that they also cover previously missing cells, and that voxels of falsely merged cells
are assigned to individual cell identities.'? In this way, we can further report seg-
mentation/detection measures in addition to tracking measures unconditioned on the

12Both the dataset and our manual annotations are freely available online on http://hci.iwr.
uni-heidelberg.de/MIP/Research/tracking/.
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segmentation result.

3.3.1 Evaluation Measures

In contrast to the typical evaluation of tracking-by-assignment methods, for which an
evaluation conditioned on the segmentation is sufficient to determine the efficiency
of the tracking algorithm, here, both segmentation and tracking must be compared
against a ground truth. To evaluate the segmentation quality, we use the Jaccard
index as a similarity measure between a region 1. of the result and ground truth
region rgt, i.€.

_ ‘Tres N rgt|

((rres; Tgt) (3.9)

B |rres U Tgt| )

The best-matching region

T;kes (Tgt) = argmax ((Tgt; rres) (310)
Tres
for some ground truth region rg counts as a true positive segmentation for that
region if its Jaccard index is greater than some threshold 7 (we set 7 = 0.5)%.
Unmatched ground truth/tracking result regions are considered false negative/false
positive detections.

We then compare the frame-to-frame tracking events (moves and divisions) from
the ground truth to those of the tracking result. We report an unconditioned tracking
result as well as conditioned performance measures. The former evaluates the tracking
on the raw data directly, the latter is conditioned on the true segmentation hypotheses.
Note that it is often not clear from the raw data, in which exact timestep a cell
division is occurring. We hence allow cell divisions to be off from the ground truth
by one timestep, ¢.e. a division is still counted as a true positive if it occurs one
timestep earlier or later within the same track. Finally, based on the number of
true/false positives and false negatives, precision, recall and f-measure are computed
for detections, moves, and divisions.

3.3.2 Results for Joint Segmentation and Tracking

To evaluate the performance of our model for joint cell segmentation and tracking
(JST), we perform experiments on the two datasets described above. We compare
with two state-of-the-art cell tracking algorithms:

13For the competitive method (Amat et al. 2014), we dilate the resulting centroids of Gaussians with a
disc/ball of radius 5. For evaluation, we then choose 7 = 0.0 which accepts matching segmentations already
at only 1 pixel overlap.
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Dataset Segmentation
Method Precision Recall F-Measure

Rat stem cells (2D+t) (Rapoport et al. 2011)
(Rapoport et al. 2011) 0.95
Conservation tracking (CT) 0.75 0.99 0.85
Conservation tracking on oversegmentation 0.79 0.99 0.88
(Amat et al. 2014) on raw data 0.94 0.95 0.94
(Amat et al. 2014) on our prediction maps 0.92 0.95 0.93
Joint segmentation and tracking (JST) 0.99 0.96 0.97

Drosophila embryo (3D+t)
Conservation tracking (CT) 0.82 0.93 0.87
Conservation tracking on oversegmentation 0.77 0.95 0.85
(Amat et al. 2014) on raw data 0.97 0.93 0.95
(Amat et al. 2014) on our prediction maps 0.96 0.89 0.93
Joint segmentation and tracking (JST) 0.99 0.88 0.93

Table 3.2: Segmentation quality after tracking (higher is better). Note that in the joint

segmentation and tracking method proposed in this chapter, segmentation and
tracking are optimized concurrently. The rat stem cells dataset contains a
ground truth of 121632 cells across all frames, whereas the Drosophila embryo
data consists of 65821 true cells.

1. the conservation tracking method (CT) proposed in Chapter 2 based on a given

segmentation, which can correct for falsely merged cells in a post-processing
step. In order to show that the method proposed in this chapter operates on
a reasonably fine oversegmentation and that it is not enough to merely track
the superpixels in this oversegmentation, we also perform experiments using the
conservation tracking method but use an oversegmentation as input. To this end,
we set the parameter of maximally allowed cells (parameter m in Chapter 2) in
a single detection to m = 1. In all three methods, we use the same count and
division classifier, to which in our JST method move and detection classifiers
are added.

. a cell tracking pipeline designed to track entire embryos (Amat et al. 2014). We

evaluate their algorithm on both the raw data directly and our prediction maps
as input. Note that their code was primarily designed for 3D+t datasets, and
all computations on the 2D Rat stem cells movie are internally performed for
3D using one z-slice only; we report these results. Note that stacking duplicates
of the 2D images to artificially construct 3D volumes yielded inferior results.

In the 2D+t dataset, we furthermore compare with the results of (Rapoport et al.

2011) for the quantitative results reported there.
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Segmentation Quality

We first investigate the quality of cell segmentations, see Table 3.2 for results. Note
that in both methods CT and JST, cell candidates may be set inactive by the graphical
model. In both datasets, the JST method outperforms the segmentation quality of
the CT model from Chapter 2 with an f-measure of 0.97 and 0.93 compared to 0.88
and 0.87. Since our JST model groups superpixels into cells or deactivates them, it is
not crucial in this approach whether cell candidates (or superpixels) are touching in
the segmented image. In the CT method, in contrast, the complexity of the model is
determined by the worst case cluster size, i.e. the number of potentially merged cells.
Hence, in the CT approach, the need for correctly segmented individual cells leads to
parameter settings that in turn make for many false negatives in the segmentation. We
consider it a strong advantage of our JST method to deal with competing segmentation
hypotheses rather than repairing a fixed segmentation. Moreover, Rapoport et al.
(2011) achieve on the Rat stem cells data a recall of 0.95 (they do not report precision),
whereas our JST method obtains a recall of 0.96 under very high precision (0.99). Note
that (Rapoport et al. 2011) use 7 = 0.3 (¢f. Section 3.3.1) whereas we set 7 = 0.5 as
a stronger criterion. Amat et al. (2014) achieve similar or slightly better detection
accuracies on the 3D+t dataset. Their detection accuracy on the 2D+t dataset only
increases in the course of the movie, seemingly due to the following reasons: The cells
adopt a Gaussian shape only after a number of frames, but their model is tailored
towards Gaussian shaped objects. Moreover, due to non-homogeneous illumination,
initialization with the correct number of cells seems to be imperfect. Of course,
these detection errors in this dataset are also mirrored when inspecting their tracking
quality.

Tracking Quality

The detection/segmentation errors usually propagate to the next stage, the tracking
stage. Our JST model aims at avoiding such error-propagation, the performance
measures for the tracking quality are reported in Table 3.3. On both datasets, the
proposed JST method is on par with CT (Chapter 2) and (Amat et al. 2014) in
terms of (frame-to-frame) move events. For the division events, we show through the
f-measures of 0.70 (unconditioned) and 0.84 (conditioned) that our JST method can
deal with mitosis in the challenging 2D+t dataset slightly better than (Rapoport et
al. 2011) (f-measure of 0.67), and improves significantly upon CT (f-measures of 0.32
and 0.56, respectively), although using the same classifier. On the other hand, the CT
method yields a slightly better detection rate of division events on the 3D+t dataset.
We believe that this fluctuation is due to a lack of training data for the graphical model
(only 16 divisions occur in our training set) which is more critical in our JST approach
since it has more degrees of freedom. In particular, when dealing with oversegmented
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Figure 3.4: Qualitative results for the Rat stem cells dataset. Cells are assigned a random
color identity in the first frame, which is inherited to their children in later
timesteps. The magnified views illustrate that cells can be tracked reliably
by our JST method in spite of frequent overlap. CT is short for Conserva-
tion Tracking (Chapter 2), TGMM stands for Tracking with Gaussian Mizture
Models, (Amat et al. 2014), and Joint segmentation and tracking (JST) is the
model proposed in this chapter.

objects, a strong division classifier is crucial since the introduced ambiguity may lead
to increased confusion in division events. If higher division accuracies are desired, the
training set needs to be expanded at the cost of more user annotations.

Furthermore, the division detection accuracy our proposed JST model achieves is
significantly better than that of (Amat et al. 2014). We believe this is due to the reason
that divisions are handled naturally in tracking-by-assignment approaches (compared
to heuristic rules) and further evidence can be injected through local classifiers trained
on this specific event.

Qualitative results for our experiments on the Rat stem cells dataset and the
Drosophila dataset are depicted in Figures 3.4 and 3.5, respectively.

Although both quantitative and qualitative results prove high accuracy of the algo-
rithm, the tracking results are still far from being 100% accurate on these challenging
datasets. We tackle this issue in the next chapter, where we present methods to
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Figure 3.5: 3D rendering for the Drosophila embryo dataset. Depicted are the cell seg-
mentations in timestep 50 with their trajectories as one-voxel-traces over the
previous 50 timesteps (the remaining 50 timesteps are omitted for clarity). In
the close-up view (right), the two yellow cells are the result of a cell division
many timesteps ago and the lower one is touching with cells indicated in gray
and pink. Thanks to the joint optimization of segmentation and tracking, the
identity of the yellow cell is preserved in spite of this heavy overlap.

automatically guide the human expert to assignments which are most probably er-
roneous in order to manually correct these if necessary. With the user in the loop,
we can significantly improve the reliability of our algorithms with only little human
interaction time needed.
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unconditioned conditioned on segmentation
Dataset Moves Divisions Moves Divisions
Method Prec. Rec. F-Meas. | Prec. Rec. F-Meas. | Prec. Rec. F-Meas. | Prec. Rec. F-Meas.
Rat stem cells (2D+t) (Rapoport et al. 2011)
(Rapoport et al. 2011) 0.55 0.87 0.67
Conservation tracking (CT) 0.96 0.89 0.92 0.68 0.26 0.32 0.98 0.90 0.94 0.72 0.26 0.38
Conservation tracking on oversegmentation 0.89  0.90 0.90 0.22 044 0.29 0.99 0091 0.95 0.77  0.45 0.56
(Amat et al. 2014) on raw data 092 0.63 0.75 0.62 0.17 0.26 0.96 0.68 0.80 0.64 0.24 0.35
(Amat et al. 2014) on our pred. maps 0.90 0.88 0.89 0.74 0.31 0.44 097 094 0.95 0.8 0.41 0.54

Joint segmentation and tracking (JST) || 0.97 0.93 0.95 0.74  0.67 0.70 0.98 0.97 0.98 0.90 0.78 0.84
Drosophila embryo (3D+t)

Conservation tracking (CT) 095 0.85 0.90 0.65 0.74 0.69 0.97 0.92 0.94 0.80 0.77 0.78
Conservation tracking on oversegmentation 0.73  0.77 0.75 0.04 0.78 0.08 0.97 0.82 0.89 0.28 0.82 0.42
(Amat et al. 2014) on raw data 0.93 091 0.92 0.25 0.75 0.38 0.97 0.98 0.97 0.35 0.78 0.48
(Amat et al. 2014) on our pred. maps 091 0.86 0.89 0.18 0.70 0.29 096 097 0.96 0.25 0.85 0.38

Joint segmentation and tracking (JST) 0.96 0.86 0.91 0.54 0.75 0.63 0.98 0.99 0.98 0.60 0.89 0.72

Table 3.3: Quantitative results for cell tracking. Reported are precision, recall, and f-measure for (frame-to-frame) events move (i.e.
transition assignments) and cell divisions (i.e. mitosis). Rat stem cells comprises 119 266 and 1998 such events, respectively,
whereas Drosophila embryo includes 63 548 moves and 226 divisions. Results are shown for the tracking being conditioned on
its segmentation result and directly compared to ground truth (unconditioned).



Proof-reading Guidance
by Sampling

Biomedical applications often require a highly accurate tracking of proliferating cells
(Meijering et al. 2009). Existing cell tracking methods (Al-Kofahi et al. 2006; Padfield
et al. 2009; Bise et al. 2011; Amat et al. 2014) perform well on sparse cell populations
with high signal-to-noise ratio (SNR). However, they are far from achieving gold-
standard-accuracy on high-dimensional data with low SNR. To analyze their data with
highest reliability, biomedical specialists have to spend their precious time to proof-
read the predicted cell lineages and correct them where necessary. When working
with high-throughput setups, unguided proof-reading quickly becomes prohibitive,
though. In response, what is needed is automatic guidance which presents the most
ambiguous frame-to-frame assignments to the user, omitting trivial assignments.

Tracking-by-assignment methods as proposed in Chapters 2 and 3, or in (Padfield
et al. 2009; Bise et al. 2011) typically consist of a data term (local features) and an
interaction term (e.g. lineage consistency constraints, penalties for large displace-
ments, etc.). While the latter term is based on model assumptions, the first term
may be corrupted by missing features, noisy signal, or poor image quality. When
estimating the maximum a-posteriori (MAP) solution to obtain the most likely cell
lineages, these cell tracking methods ignore this signal uncertainty.

Contributions In this chapter', we take into account the uncertainty in the mea-
surements to derive ambiguity quantification measures in order to guide the user
to those predicted assignments which are most uncertain. Both types of predicted
events, cell migration (moves) and mitosis (divisions), are taken into consideration

14This chapter is an extended version of (Schiegg et al. 2015b).
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Figure 4.1: To derive proof-reading priorities, we propose to perturb the unary potentials
of a tracking-by-assignment cell tracking model according to (i) a Gumbel dis-
tribution (Papandreou and Yuille 2011), or (%) a Gaussian distribution pre-
dicted from a Gaussian process. Instances of the graphical model can then be
generated by sampling locally from the distributions of the unary potentials.
Estimating the MAP solution of each individual graphical model instance al-
lows to compute robustness measures for each individual predicted event and
helps to guide the biomedical specialist to the most ambiguous assignments.

independently. In order to sample multiple proposal solutions from the tracking-
by-assignment method, we present two methods, the application of Perturb-and-
MAP (Papandreou and Yuille 2011) and a novel approach based on Gaussian process
predictions for the unary terms. Both alternatives allow sampling multiple instances
of the underlying graphical model on which, in turn, individual MAP solutions are
estimated, cf. Figure 4.1. We find that the variations in each assignment among these
proposal solutions is an efficient guidance measure for proof-reading.

Structure This chapter is structured as follows. We first elaborate on prior work
related to uncertainty estimation in (cell) tracking in Section 4.1. In Section 4.2,
we present two approaches to effectively sample from tracking-by-assignment models,
followed by the proposition of a useful ambiguity measure in Section 4.3. With an
empirical evaluation of the proposed approaches in Section 4.4, we conclude this
chapter.

4.1 Related Work

Tracking-by-assignment models aim at solving the cell tracking task with a struc-
tured model spanning pairs of frames (Padfield et al. 2009) or a larger, possibly the
entire, time sequence (Bise et al. 2011; Jug et al. 2014) as also proposed in Chapters 2
and 3. These methods can be formulated as probabilistic graphical models which
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describe a Gibbs distribution defined by local potentials. To quantify uncertainty
in such graphical models, sampling from this distribution by Markov chain Monte
Carlo (MCMC) techniques would be the natural first choice. However, due to signal-
sensitive local potentials, the Gibbs distribution may be “ragged” (Maji et al. 2014)
and sampling will be expensive. In contrast, recent developments in machine learn-
ing turn to generating multiple instances of graphical models and perform a MAP
estimation on each of those instances to obtain proposal solutions (Papandreou and
Yuille 2011), similar to k-best data association hypotheses (Kragel et al. 2012). We
apply Perturb-and-MAP (Papandreou and Yuille 2011) to cell tracking, i.e. all unary
potentials are perturbed with the same distribution, and we propose an alternative
where the perturbations are based on local uncertainties in the features.

In cell tracking, assignment ambiguities have only been explored rarely. Rapoport
et al. (2011) find potential error types and remove all lineages which are likely to
contain such errors to only show the most “trustworthy” lineages, i.e. aiming for a
high precision at the cost of low recall. Lou et al. (2014b) exploit uncertainty in an
active learning framework to request the most uncertain assignment from the user in
order to improve the weights of the structured cell tracking method.

4.2 Sampling from
Tracking-by-Assignment Models

First, we briefly recapitulate tracking-by-assignment models to introduce a simplified
notation, then review Perturb-and-MAP as “one shot approximate random sampling”
approaches (Papandreou and Yuille 2011) and finally propose a novel related sampling
method using Gaussian processes.

4.2.1 Tracking-by-Assignment Models

As discussed in previous chapters, tracking-by-assignment models typically decouple
into two subsequent stages, a detection/segmentation stage followed by a tracking/as-
signment stage. For the ease of notation, let us now rewrite the energy minimization
problem for tracking-by-assignment as

y* =argmin E(y) = argmin 0 p(y) (4.1)
yey yey

s.t. consistency constraints,
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which minimizes real-valued costs (energy) E associated with specific configurations
y € Y of the detections and cell-to-cell transitions to find the optimal assignments/de-
tections y*. In general, the energy function can be expressed in terms of indicator
functions p(y) and energies @ (which express costs in unary and higher-order poten-
tials). We refer the reader to Section 1.4 for more details on this notation. Linear
constraints forbid inconsistent solutions such as more than one cell ancestor or more
than two cell successors; these constraints can equivalently be added to the objective
function. Thus we drop the constraints in our following notations.

In Chapter 2, we propose to choose multi-state random variables, Y € {0, ..., m}?,
where m is the maximal number of cells expected to appear in one detection (falsely

merged cells)!® and D is the number of random variables in the graphical model.

Energy minimization problems as in Equation (4.1) can be cast as maximum a-
posteriori (MAP) estimation problems through the maximization of the underlying
Gibbs distribution,

1

P(y) =  exp(=E(y)) = % exp (—BTP(Y)) , (4.2)

where Z is the normalizing partition function.

4.2.2 Sampling through Perturb-and-MAP
Random Fields

The key idea of Perturb-and-MAP (Papandreou and Yuille 2011) is to inject random
noise € into the Gibbs distribution in Equation (4.2), i.e.

1

Pely) = oxp (~(0+€) (). (43)

and then repeatedly find the MAP estimates of the perturbed objective. It has been
shown (Papandreou and Yuille 2011) that if the perturbation variables e are dis-
tributed according to a Gumbel distribution, the distribution defined in Equation (4.3)
approximates the Gibbs distribution in Equation (4.2).

In practice, each cost of the (unary) potentials is perturbed independently and
identically according to a Gumbel distribution. The scale parameter for this single
distribution needs to be set manually. In the following, we propose to model each
data term with a distinct Gaussian distribution that reflects the ambiguity of the
local observations.

15For the ease of notation, we are here only referring to one variable type )V, whereas in the original model
in Chapter 2, a finer distinction is made.
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4.2.3 Sampling through Gaussian Processes

The costs 0 introduced in Section 4.2.1 relate to the energies defined by unary or
higher-order potentials in the graphical model. In many graphical models, the unary
potentials are based on predictions of classifiers fed with local features. This is also
true for the conservation tracking method studied in this work: The unary costs
are results of a cell division classifier, a cell detection classifier, and a transition
classifier. We propose to utilize Gaussian process classifiers!S for the generation of
unary potentials since they provide full predictive distributions for each query point.
In particular, let us denote the energy associated with some variable Y; € {0, ...,m} by
0% k€ {0,...,m}. Note that ¥ are the costs which were perturbed in Section 4.2.2.
Typically, an unstructured classifier with parameters n is trained on a training set
of input/output pairs, D = {x;,y;}i=1,..v = (X,y), and the (mean) prediction
p(Y; = k|x;, X, y,n) from local features x; determines these costs 65 for variable Y;
as

0; = —wlog (p(Y; = klx;, X, y,m)), (4.4)

()

where w is a parameter of the graphical model; see, e.g. Equation (2.1). For a Gaussian
process classifier, reviewed in the next paragraph, #¥ may either come from the mean
of the predictive distribution in Equation (4.6) specific for variable Y;, or drawing
M samples in Equation (4.6) yields multiple Hﬁl, [ € {1,...,M}. Drawing samples
from the predictive distributions of each variable in the graphical model yields a
multitude of perturbations of the graphical model similar to Equation (4.3). Their
non-parametric nature avoids choosing a value for the perturbation variance, and
the unary potentials in the tracking-by-assignment model are perturbed according
to the predicted second-order uncertainty in the measured data, in other words the
data term is perturbed locally w.r.t. the predictive uncertainty from the Gaussian
process classifier. An example for the uncertainty of the cell detection classifier on our
Drosophila dataset is shown in Figure 4.2. Similarly to Section 4.2.2, these perturbed
graphical models can finally be solved independently and distributedly to approximate
samples from the Gibbs distribution.

Gaussian Process Classification

Gaussian processes (GPs), denoted by GP(m(x), k(x,x')), are stochastic processes
each realization of which defines a multi-variate joint Gaussian distribution (Ras-
mussen and Williams 2006). The mean function m(x) is typically assumed to be
constant zero whereas the covariance function k(x,x’) may be any Mercer kernel.
GP classification aims at finding a mapping from an input space to a categorical
output space given unstructured training data D = (X,y) and it can be shown (Ras-

16Gaussian process regression may also be used directly for the generation of unary potentials. We refer
the reader to (Rasmussen and Williams 2006) for a thorough introduction to Gaussian processes.
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Figure 4.2: One slice of the 3D+t Drosophila sequence: The more opaque the red color
the higher the classifier uncertainty that the connected component contains
exactly one cell.

mussen and Williams 2006) that the latent predictive distribution for query point x,
is given as
folxe, X, y,m ~ Nk Ky k., — k] K71k,), (4.5)

where N(-,-) denotes the Gaussian distribution, [K|;; = k(x;,x;), [kii = k(xs,x;)
with x;,x; € X, k. = k(X4,X,), and the parameters of k(-, -) are the hyperparameters
n of the GP. For binary classification with class label y € {0, 1}, the prediction for
the latent f, in Equation (4.5) is “squashed” through a sigmoid function:

p(Y* = +1|X*7 X7 Yy, 77) = ]E (SlngId (f*|x*7 X7 Yy, ’r]))

Applying the sigmoid function on multiple samples of f, rather than its expected
value yields samples from the non-Gaussian class-conditional distribution. In our
experiments, we choose the error function as the sigmoid function. To train a GP
classifier, the marginal likelihood of the model is optimized, and approximations need
to be made due to the non-Gaussian likelihood function utilized in GP classification.
We refer to (Rasmussen and Williams 2006) for more details.

To extend the binary GP classifier to multiple classes, uncorrelated latent functions
are assumed, one per class. The hyperparameters of these latent processes may either
be learned jointly using the softmax (Williams and Barber 1998) or independently as
a set of binary classifiers in a one-vs.-all scheme. We use the latter in our experiments.
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4.2.4 Graphical Model Point of View

We summarize in the probabilistic graphical model depicted in Figure 4.3 the assump-
tions made in this chapter. The simplistic graphical model is a conditional random
field (Koller and Friedman 2010, Chapter 4) and shows two input variables X;, Xj,
and their observations x;, x; are called the features. The corresponding outputs Y;, Y
are correlated, which is a simple example for a structured output space. Throughout
this work, we assume that the energies of the potentials are linearly parameterized
as in Equation (1.6), the weights of which are unknown and estimated from training
data, for instance using structured learning as in Section 5.2.

In our cell tracking application, we further augment the locally observed features
by the predictions from unstructured classifiers such as random forests (Breiman
2001) or Gaussian process classification as in this chapter. The parameters 1 of these
classifiers are learned from unstructured input/output pairs only, without taking the
correlations of the outputs into consideration, as depicted in Figure 4.4(a). For the
structured prediction, in turn, these parameters 7 are fixed, the observed inputs x;,
x; are fed into the classifiers, which finally determines the classification estimates f;,
fj. respectively. The local feature vector is then augmented by these estimates. In
fact, note that in Equation (4.4), we only use these classifier estimates as features in
our cell tracking model (i.e. we set all other model weights to zero).

In this chapter, we propose two strategies to analyze the robustness of the model
predictions. The first, Perturb-and-MAP in Section 4.2.2, uses a point estimate of
the unstructured classifier as input and assumes that the resultant energies are per-
turbed by random noise &, cf. Figure 4.4(b). Sampling different values for € from a
Gumbel distribution yields multiple proposal predictions for the structured outputs.
In contrast, in Section 4.2.3, we propose to sample different predictions from the pos-
terior distribution of the Gaussian process classifier which naturally considers local
uncertainty in the observed data. This process is illustrated in Figure 4.4(c).

4.3 Uncertainty in Cell Tracking

The goal in cell tracking is to find full cell lineages which, in turn, decompose over
frame-to-frame events, assignments either between two or three cell candidates, de-
noted as mowves or cell divisions, respectively. For manual proof-reading, we want
to guide the user to the most uncertain events, while assuming that ground truth
is not available for the test dataset. We propose to estimate the event uncertainty
(also referred to as event ambiguity) by analyzing the proposal solutions drawn from
the tracking-by-assignment model, as outlined in the previous sections. Both events,
moves and divisions are modeled as random variables Y;°'¢ and Y4 in the graphical
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served

structured output

Figure 4.3:

loc;ﬂly ob- @ @
eatures @ classifier parame-

ters

fi

Underlying graphical model The probabilistic graphical model consists
of two output variables Y;, Y;, which are interdependent through a pairwise
factor (a simple structured output space). In a conditional random field, the
pairwise interaction term as well as the unary potentials (all black) depend on
the observations x;, x; from X;, X;. Note that additionally to the directly
observed features, other features might be derived such as g(f;), g(f;), where
fi, f; are predictions of a classifier and g(-) is an arbitrary, possibly non-linear,
function. This classifier has parameters 1 estimated from an unstructured
training set, as shown in Figure 4.4(a). Shaded nodes are observed.

i i i i f:
OXIC v’7°
a: Classifier learning b: Perturb-and-MAP c: GP-sampling
Figure 4.4: (a) Classifier learning The graphical model from Figure 4.3 is modified for

the estimation of the parameters n of the unstructured classifier. During this
phase, direct interactions between input and output variables are omitted.
(b) Perturb-and-MAP Variable w is kept fixed after structured learning
(see Section 5.2) and fi is deterministically computed from n and x; (k =
{i,7}). For perturbations, a noise injecting variable & is introduced, which is
assumed to be Gumbel distributed and perturbs the costs. (c) GP sampling
Again, w is fixed after structured learning, and different f; are sampled from
a Gaussian process with parameters 7 learned in (a), ¢f. Equation (4.5).
Shaded nodes are (in)directly observed. See Figure 4.3 for notations.

model proposed in Chapter 2, whose realizations in the nth proposal are denoted as

move

yi,n

and ygg’; for brevity we omit the event type.

To reason about the reliability of a selected labeling y,, we introduce the labeling
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uncertainty measure as

1 N
UY; =yis) =1— N > yin = Yinl: (4.7)
n=1

which normalizes the number of votes amongst the solutions of the perturbed models
against labeling y,. In other words, the labeling uncertainty finds the most uncertain
decisions, i.e. the predictions in the selected proposal which are likely to be wrong,
compared to the labelings of the other proposals.

Note that in order to guarantee a consistent solution, it is not possible to round
the approximated marginal distributions for an “averaged” distribution. Instead, one
proposal solution (e.g. the MAP solution of the unperturbed model) needs to be
chosen to guarantee that no consistency constraint in Equation (4.1) is violated. In
the GP based sampling approach, this unperturbed proposal solution corresponds to
the mean predictions.

4.4 Experiments & Results

We evaluate the usefulness of the proposed uncertainty measures on a challenging
3D+t sequence from the developing Drosophila embryo with annotations as in Chap-
ter 2. For this purpose, we adapt the tracking-by-assignment model from Chapter 2
(we set m = 2) and use Gaussian process classifiers for the detection, transition, and
division priors using the GP implementations in the GPy package (GPy authors 2014).
The parameters of the graphical model are trained using the structured max-margin
learning implementation from (Funke 2014). We used the first 20 frames as training
set and the remaining 80 frames as test set. Structured learning will be studied in
the next Chapter in Section 5.2. Using this technique, significantly less iterations
involving inference on the graphical model are necessary compared to an exhaustive
grid search over a reasonable parameter range as done in the previous chapters. In
this way, learning is performed orders of magnitudes faster with better generalization
properties on test data.

As performance measure, we choose the

2 - True Positives (TP)

f_ —
MeASUIe = o s Talse Negatives + False Positives’

(4.8)

since it balances the number of true events found (recall) and the rate of true predic-
tions (precision). Note that although tracking-by-assignment is a two-stage model, we
here only evaluate the second stage, namely the tracking model, since the ambiguity
measures proposed only apply to that; we hence only compare to the ground truth
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Events presented 0 10 50 100 150 250 500
GP sampling (5x) 68.3 69.3 71.8 749 785 80.5 -

GP sampling (20x) 68.3 70.0 753 779 819 842 87.2
GP sampling (50x) 68.3 69.8 75.0 79.8 824 841 86.6

GP sampling (100x) 68.3 69.8 751 80.0 825 841 86.6
Perturb-and-MAP (5x) 68.3 69.3 T2.7 - -
Perturb-and-MAP (20x) 68.3 69.1 734 764 80.8 - -
(
(

Perturb-and-MAP (50x) 68.3 69.1 734 76.6 79.7 - -
Perturb-and-MAP (100x) | 68.3 69.3 73.3 76.6 79.1 - -

Table 4.1: Division accuracy after N events presented to the user (and corrected if
necessary); “-” indicates that the method did not generate enough events with
positive uncertainty. The number “(¢x)” is the number of samples drawn.

actually seen by the tracking model. The numbers may deviate from those reported
in Chapter 2 since a separate test set and different classifiers are used. We want to
show in this evaluation that presenting the most ambiguous events to the user and
asking for corrections may quickly boost performance. The samples are drawn from
the graphical model offline, so no expensive human interaction time is needed during
the generation of the uncertainty values. In our experiments, drawing a sample took
~ 30 seconds on a contemporary workstation.

Our experimental setup is as follows. We iteratively present the event with the
highest labeling uncertainty according to Equation (4.7) to an oracle which corrects
the event if necessary. For both divisions and moves, most of the highly uncertain
events must be corrected by the oracle as shown in Figure 4.6(b) and Figure 4.7(b),
and less corrections need to be made for less uncertain events. Our baseline is a
random suggestion of events. Both presented sampling methods perform similarly well
with a slight advantage for the GP sampling approach for division events. As expected,
the more samples are drawn, the more meaningful are the uncertainty measures. As
shown in Table 4.1 and Figure 4.6(a), manually correcting the divisions proposed by
the GP sampling method can boost the performance from 68.3% to 80.0% already
after 100 presented examples. The f-measure of moves (cf. Figure 4.7(a)) increases
more slowly due to the large number of move events in the dataset. Examples of
uncertain (and falsely predicted) division and move events are provided in Figure 4.8
and Figure 4.9, respectively. The frequencies of division and move uncertainties in
our Drosophila dataset are shown in Figure 4.5.

To further improve the uncertainty estimations, we propose in the next chapter
to learn an ensemble of diverse structured models. By analyzing diverse but similarly
likely solutions of the tracking problem, ambiguous assignments may be easily found
by only examining very few proposal solutions. Furthermore, since diversity is already
considered at the training time of the structured models, it is ensured that all models
in the ensemble fit and represent the training data well while still yielding diverse
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(a) Division uncertainties (b) Move uncertainties

Figure 4.5: Frequencies of division and move uncertainties

predictions. This is in contrast to the methods proposed in this chapter, where only
one structured model is being learned and samples are generated with this unique set
of model parameters.
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Accuracy of Divisions
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Figure 4.6: Division Events: Comparison of sampling methods and the resulting labeling
uncertainties. The curve terminates prematurely if all remaining uncertainty
estimates are zero. “iters” stands for the number of samples generated from
one model. See main text for details.
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Figure 4.7: Move Events: Comparison of sampling methods and the resulting labeling
uncertainties. The curve terminates prematurely if all remaining uncertainty
estimates are zero. “iters” stands for the number of samples generated from
one model. See main text for details.
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U(Y; = yin) = t t+1
(a) 0.78
(b) 0.64
(c) 0.50
(d) 0.17

Figure 4.8: Uncertain division events: The cells of interest are centered in orthoviews
(green, red, and blue lines indicate the cuts of each view) and incorrect pre-
dictions are indicated with a red arrow. Appearance at the image border (a),
undetected demerging (b), and oversegmentation (c, d) lead to falsely pre-
dicted divisions. These false predictions are identified by our GP sampling
method as the uncertainty quantities (first column) indicate.
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U(Yi = yi.) = t t+1
(a) 0.85
(b) 0.68
(c) 0.46
(d) 0.13

Figure 4.9: Uncertain move events: The cells of interest are centered in orthoviews
(green, red, and blue lines indicate the cuts of each view) and incorrect predic-
tions are indicated with a red arrow. Too high priors for being a false detection
(a, ¢), or missing segmentations (b, d) result in wrong move predictions. In
(a), the green cell falsely disappears, whereas in (b, ¢, d), the cell of interest is
associated with the wrong descendant, in (b) even leading to a chain of wrong
associations. The uncertainty quantities (first column) estimated by our GP
sampling method lead the user to these wrong predictions.






Learning Diverse Models

Tracking-by-assignment methods, as presented in this thesis, map a structured in-
put in terms of features to a structured output space of consistent tracking solu-
tions. To learn the model parameters from annotations on the structured space, it
is standard procedure to discriminatively train a single model that is then used to
make a single prediction for each input, as in the structured support vector machine
(SSVM) (Tsochantaridis et al. 2005).

The success of such large margin methods for structured output learning, is partly
due to their good generalization performances achieved on test data, compared to,
e.g. maximum likelihood learning on structured models (Nowozin and Lampert 2011).
Despite such regularization strategies, however, it is not guaranteed that the model
which optimizes the learning objective function really generalizes well to unseen data.
Reasons include wrong model assumptions, noisy data, ambiguities in the data, miss-
ing features, insufficient training data, or a task loss which is too complex to model
directly.

To further decrease the generalization error, it is beneficial to either (7) generate
multiple likely solutions from the model (Yanover and Weiss 2003; Papandreou and
Yuille 2011; Batra et al. 2012) or, (7) learn multiple models which generate diverse
predictions (Guzman-Rivera et al. 2012; Guzman-Rivera et al. 2014; Gane et al. 2014).

The different predictions for a given structured input may then be analyzed to
compute robustness/uncertainty measures, or may be the input for a more complex
model exploiting higher-order dependencies, as is done in re-ranking models, e.g.
Yadollahpour et al. (2013) augment their features with global ones for automatic
re-ranking. Other successful applications include prediction of diverse hypotheses
for machine translation (Gimpel et al. 2013), on-demand feature computation (Roig
et al. 2013), or active learning methods (Maji et al. 2014; Premachandran et al.
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2014). Furthermore, an oracle may choose amongst all predictions that one which
is closest to the ground truth. This becomes handy for proof-reading tasks in order
to keep manual interactions at a minimum. It is particularly beneficial in structured
output spaces to present to the user not only similarly likely, but also diverse proposal
solutions. The set of diverse predictions may still contain a low-loss solution, even
if the most likely prediction of the single model has a large loss. As a consequence,
instead of minimizing the expected generalization error of a single model in structured
learning, (cf. Figure 5.1(a)), it is favorable to minimize the expected generalization
error amongst multiple models, see Figure 5.1(b,c).

Contributions Our main contribution in this chapter!” is an algorithm termed the
Coulomb structured support vector machine (CSSVM) which learns an ensemble of
M models with different parameters, thanks to a corresponding diversity-encouraging
prior. This is qualitatively different from previous work which requires that the out-
puts of the M models are diverse. In particular, we allow the M models in the
ensemble to make identical predictions (and hence perfectly fit the data) at training
time. Another benefit is that CSSVM can learn diverse models even if only a single
structured training example is available. In Section 5.3.4, we generalize our algorithm
to allow for structured clustering. Note that, in contrast to the approaches presented
in Chapter 4, where proposal samples are generated from only one model through
(local) perturbations, we present in this chapter a novel algorithm to learn multiple
models which are coupled at training time to encourage diverse predictions on unseen
data.

Structure The remainder of this chapter is organized as follows. We first discuss
recent work on generating M (diverse) structured outputs in Section 5.1, followed by
a review of structured learning in Section 5.2. In Section 5.3, we propose the Coulomb
structured support vector machine, a novel algorithm to learn M structured models
coupled by a diversity term. We finally empirically demonstrate the utility of the
proposed ensemble method in Section 5.4.

5.1 Related Work

One major research avenue is to generate at prediction time multiple (possibly diverse)
solutions from a single previously trained structured model (Yanover and Weiss 2003;
Papandreou and Yuille 2011; Batra et al. 2012). In order to find M similarly likely
solutions, Yanover and Weiss (2003) propose a message passing scheme to iteratively

17This chapter is an extended version of (Schiegg et al. 2015a), which is still under review at the time of
writing.
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Figure 5.1: Structured SVM learning. “+” indicates a structured training example
whereas “—” in the same color are the corresponding structured outputs with
task loss A(+,—) > 0. (a) A standard linear SSVM maximizes the margin
between positive and all “negative” examples (decision boundary with its nor-
mal vector in cyan). (b) Multiple choice learning (Guzman-Rivera et al. 2012)
learns M SSVMs (here: 3) which cluster the space (clusters for positive and
negative examples are depicted in the same color) to generate M outputs. (c)
We propose the Coulomb Structured SVM which learns an ensemble of M
SSVMs through a diversity term which maximizes the pairwise angles 6;; be-
tween their (linear) decision boundaries, while seeking to best fit all training
data.

add constraints forbidding the previous solutions. Batra et al. (2012) build on the
same idea but incorporate these constraints directly into the objective function. This
yields a deterministic framework which tries to find diverse solutions by requiring
a minimum distance to the previous solutions. Papandreou and Yuille (2011), in-
stead, perturb model parameters repeatedly with noise from a Gumbel distribution,
and subsequently solve for the maximum-a-posteriori (MAP) solution to sample M
plausible solutions. Their idea of perturbing the data term is natural when data is
assumed to be noisy. We applied this idea to cell tracking in Chapter 4.

Sampling M solutions could of course also be achieved using Gibbs sampling or other
MCMC techniques, however with very slow mixing time on general graphs; more ef-
ficient sampling strategies have been proposed recently (Hazan et al. 2013). Most
recent work aims at finding the M best modes of the probability distribution (lo-
cal maxima) directly (Chen et al. 2013; Chen et al. 2014). While promising, their
algorithms are yet not applicable to general graphs.

Rather than learning one model and then sampling successively (possibly diverse)
solutions from the model, recent developments (Guzman-Rivera et al. 2012; Guzman-
Rivera et al. 2014; Gane et al. 2014) allow to train multiple diverse models, i.e.
diversity is already considered at training time. Typically, only one ground truth
solution is provided per training sample rather than a diverse set, and thus diversity
amongst the models can not be directly measured by means of training data. There
are multiple works which tackle this challenge successfully: Gane et al. (2014) learn
(multi-modal) distributions over the perturbations in Perturb-and-MAP models using
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latent variable models which include inverse convex programs to determine relations
between the model parameters and the MAP solution. Most similar to our work is
(Guzman-Rivera et al. 2012; Guzman-Rivera et al. 2014), where a set of M SSVMs is
optimized while trading diversity versus data fit. In the former, diversity is encouraged
through clustering: Each structured training example is assigned to the learner which
achieves the lowest task loss for this sample in the current iteration. Their idea builds
on the assumption that there are M clusters present in the data, thus requiring at least
M (implicitly) diverse training samples. This requirement may be a crucial problem
on small training sets. Our approach, in contrast, can learn M diverse models even
if only one training example is present, as is often the case in CRF learning. In their
more recent work, Guzman-Rivera et al. (2014) extend their idea by augmenting the
learning objective directly with a convex term which explicitly rewards diversity in
the outputs of different learners. In our approach, in contrast, the diversity prior is
posed on the parameters of the M models, and thus, all learners might achieve the
same loss on the training samples while still providing diverse predictions on test data,
cf. Figure 5.1(b,c).

5.2 Structured Support Vector Machine

Structured learning has shown to be a useful framework to learn the parameters of
a graphical model from training data, while minimizing the expected generalization
error on unseen test data (Nowozin and Lampert 2011). Lou and Hamprecht (2011)
and Lou and Hamprecht (2012) successfully applied this technique to cell tracking. We
briefly review in this section the structured support vector machine (Tsochantaridis
et al. 2005), a popular technique for structured learning, and extend this algorithm
to a diverse ensemble method in Section 5.3.

In Section 1.4, we defined a log-linear model through the energy F(x,y;w) which
is linearly parameterized through observed features ¢(x,y) on the input-output pair
(x,y), i.e. B(x,y;w) = w'¢(x,y)p(x,y). Here, w are the model weights which
parameterize the energy function E(-), and p(-) are indicator functions which we omit
in the following without loss of generality!®.

The goal of structured (output) learning is to estimate the model weights w*, such
that the true solution y for the observed input x obtains the lowest energy amongst
all possible labelings y’ € Y in the structured output space ), i.e. we want to find
w* such that for any future input-output pair (x,y) holds:

y = argmin F(x, y'; w*). (5.1)
y'ey

8 These indicators may be incorporated into the feature function ¢(-).
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To learn these parameters from a training set of N structured input-output pairs
D = {(xi,yi)}i=1,...n, Tsochantaridis et al. (2005) propose an algorithm called the
structured support vector machine (SSVM) or large margin learning for structured
models (Taskar et al. 2005). Here, the regularized empirical risk over the training set
is minimized in order to find the optimal w* among all w € W from a set of feasible
parameters'® W, i.e.

w* = argmin Q(w) + C' - Ry(w, D), (5.2)
wew
where Q(w) is the convex regularization term, typically the L2 regularizer,
Qw) = 3|[w|3, and
1
Ri(w,D) =<+ ) L(xi,y;w) (5.3)
N 3
is the empirical risk over all training examples in D with L(x;,y;; W) being the struc-
tured loss of the i-th training example. To guarantee convexity of the objective func-
tion, typically the structured hinge loss is chosen for L(x;,y;; w), which is defined
by

L(x;,yi; W) = Ts{leajf (WT¢(Xi, Yi) — WTfﬁ(Xz‘, y) + A(yi, Y)) . (5.4)

Here, A(y;,y) is the task loss, for instance the Hamming distance, and measures the
similarity between labeling y and the ground truth solution y;, with A(y’,y) > 0 and

Ay,y) =0.

The resultant (convex) quadratic objective function in Equation (5.2), however,
at a first glance seems hard to optimize since it involves a maximum operation over
exponentially many labelings y € ). Nevertheless, recent works successfully applied
optimization strategies such as cutting planes (Tsochantaridis et al. 2005) or the
subgradient method (Ratliff et al. 2007). For the first, slack variables are introduced
to rewrite the maximum operation as (exponentially) many constraints of which the
most violated ones are successively added to the optimizer. In this chapter, however,
we will resort to the latter method.

With the choices of €(-) and L(-) in Equation (5.2) as being made above, a sub-
gradient?” g; for the convex loss function L(x;,y;; w) at w is defined by

g/ (W —w) > (L(x;,yi; W) — L(x;,y;; W) Yw' € W. (5.5)

Note that a subgradient is not unique for non-differentiable L(-). A subgradient for

9For instance, in submodular energy minimization, this YW may be a half-space.
20The subgradient is a generalization of the gradient for non-differentiable convex functions.
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Figure 5.2: Structured Learning Figure 4.3 is modified to illustrate the state of the
graphical model during structured learning. All variables except the model
weights are (implicitly) observed: The observed states of X and Y serve as
training data x and y, and the classifier parameters 1 are already learned as
depicted in Figure 4.4(a), which determines the classifier predictions f, which
augment the features ¢(x). The difference to the learning of the unstructured
classifiers in Figure 4.4(a) should be noted, to wit the structure in the output
space is preserved. Shaded nodes are (implicitly) observed.

L(-) from Equation (5.4) at w may be computed through
§ = max (w'o(x;, i) = W' (xi,y) + Ayi,y)) .
yey
g8 = d(xi,yi) — ¢(x:,¥).- (5.6)

Finally, using the subgradient method (Boyd et al. 2003), w is iteratively updated
through
C N
/
since w is the (sub)gradient of the L2 regularizer. Boyd et al. (2003) show that the

subgradient method converges to the optimal objective value if the step size (; fulfills
certain requirements.

We adopt Figure 4.3 in Figure 5.2, and illustrate that all variables during struc-
tured learning are kept fixed except for w. The optimal w* is found through a
structured learning method such as SSVM.

We refer the reader to (Nowozin and Lampert 2011) for a thorough tutorial on
structured output learning.
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5.3 Coulomb Structured Support Vector Ma-

chine

The goal of this chapter is to learn M mappings from one structured input to M
possibly diverse structured outputs from a training set D = {(x;,y:)}i=1,.. N-

5.3.1 Problem Description and Diversity Prior

For this purpose, we propose to learn an ensemble of M concurrent structured SVMs,
which amounts to the following optimization problem:

argmin o' (W)+ QW) +C-Ry(W,D), (5.8)
Wyeor WL N e’ N—— N————
diversity = generalization data term
1 M N
where Ry (W, D) N ,;(H (xyw))

is the empirical risk with L(x;,y;; w,,) being the structured loss of the i-th train-
ing example evaluated by the m-th learner. Q(W) is the regularization term on the
parameters W = [wy,...,wy| (as in Section 5.2, typically an L2 regularizer on each
single w;), and a bias term is omitted since it does not have an influence on the opti-
mization problem (Lampert 2011). Diversity amongst the M learners is encouraged
by the diversity prior I'(WW) on the parameters W, where « regulates the degree of di-
versity. In this way, a = 0 reveals the standard SSVM formulation in Equation (5.2),
since all M weights converge to the same optimum.

For the ease of argument, let us now assume the training set is linearly separable?!
as in Figure 5.1. Our illustration of the structured learning problem in Figure 5.1
is analogous to representations of flat classification problems, where we regard the
ground truth labeling of the structured training samples as the single positive exam-
ples and all other (exponentially many) labelings as corresponding negative examples.
The objective in Figure 5.1(a) is to find a weight vector w which separates the positive
from the negative examples and maximizes the margin (Tsochantaridis et al. 2005).
We define the version space V(D) analogously as in flat classification (Mitchell 1997;
Herbrich et al. 2004), as

V(D) = {w € W| Ry(w,D) = 0}, (5.9)

where R; is the empirical risk as in Equation (5.8) with M = 1, and W is the space

21Note that this is almost always true once we have a sufficient number of independent features, see the
function counting theorem (Cover 1965).
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of feasible weight vectors. In other words, the version space is the set of all feasible
weight vectors which yield zero loss on the training set D. For linear classifiers, the
weight vectors w € W are linear combinations of the training points x; (Herbrich
et al. 2004), i.e. w = Zf\il ¢;x; for coefficients ¢;, and the version space may be
restricted appropriately. Note that the error of a structured model induced from a
weight vector in version space may still be large for randomly chosen query points
(i.e. high generalization error), in spite of achieving zero loss on the training set.

Typically, version space is only summarized by a single point such as the center
of the largest inscribed sphere (the hard-margin SVM) or the center of mass of the
version space (the Bayes point machine (Herbrich et al. 2001)). To learn an ensemble
of classifiers, our goal is to distribute M weight vectors w,, € W, m = 1,..., M, in
version space such that the most diverse predictions on unseen points are obtained.
To this end, it is sufficient for structured models with energy functions linear in w —
similar to flat linear classification (Graepel and Herbrich 2000) — to only investigate
weight vectors on the unit sphere (i.e. |[w|2 = 1): At prediction time, labelings are
scored by the energy function of the structured model as shown in Equation (5.1).
Replacing w* by Aw™, A > 0, still yields the same ordering of the labelings.

We hence have to solve an experimental design problem on parts of the unit sphere
to get an ensemble of diverse structured models, in other words — disregarding training
data — we want to evenly distribute M points on the unit sphere. Following experi-
mental design (Hardin and Sloane 1993), we introduce in the next section the repulsive
diversity energy term I'(W) which makes Equation (5.8) a non-convex optimization
problem.

5.3.2 Diversity through Coulomb Potential

Distributing M points evenly on the unit sphere is much studied in information the-
ory and is known as a spherical code (Conway and Sloane 1987): Different variants
include sphere packing (maximize the minimal angle between any two parameter vec-
tors) and covering problems (minimize the distance between any point on the sphere
and the closest parameter vector). In three dimensions, the problem is known as
the Thomson problem®?: The goal is to minimize the energy configuration of M
charges on a unit sphere while the charges repel each other with forces determined
by Coulomb’s law. While yet unsolved exactly, approximate solutions have been pro-
posed in the literature, including spiral approximations (Saff and Kuijlaars 1997),
subdivisions of polyhedrons (Katanforoush and Shahshahani 2003), or gradient de-
scent methods (Claxton and Benson 1966; Erber and Hockney 1991; Lakhbab et al.
2012) which correspond to electrostatic repulsion simulations exploiting Coulomb’s
law: Particles of equal charge repel each other with a force proportional to the square

22Note that we want to approximate this problem in a high dimensional space instead of only 3 dimensions.
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of their pairwise distance, the Coulomb force. More generally, in the equilibrium state
of the M particles p1, ..., par on the unit sphere, the Riesz energy,

st ||pills =1 Vi (5.10)

Es(p1,...,PMm) = ZZ

i=1 j=1 ”pZ p]”
i
is minimal. In the following, we set s = 1 which yields the Coulomb energy Ec = FEj.
The Coulomb force which affects particle p; amounts to the negative gradient vector
of Equation (5.10) w.r.t. p; (Claxton and Benson 1966; Neubauer et al. 1998; Lakhbab
et al. 2012) and is given by

_ 8EC
F"LC = (pla' 7pM
Op; Z le ||3 Z

]5‘61 ]951,

(5.11)
sz pyll

where e;; is the unit vector from p; to p;. Projecting the resultant of force Fic on p;
back to the unit sphere by the projection P(p) = ﬁ yields the projected gradient
descent update on p;,

p; = P(pi + FY). (5.12)

5.3.3 Optimization by an Electrostatic Repulsion
Model

In the following, we will specify the diversity term I'(1¥) in Equation (5.8) and min-
imize it by utilizing the electrostatic repulsion simulation from the previous section.
As derived in Section 5.3.1, the magnitudes of vectors w,, do not contribute to the
diversity term I'(W). Thus, we project the weight vectors to the unit sphere, i.e.
and use the Coulomb energy E¢ as the diversity term in Equation (5.8),

T(wi, ... W) = Ec(W1, ., War). (5.13)

Note that the weights in both the regularizer Q(W) and the risk Ry (W, D) are not
constrained to the unit sphere.

In Equation (5.12), we derived the projected Coulomb forces which act on the
point w,,, on the unit sphere. This update step can be projected to w,, utilizing the
intercept theorem (cf. Figure 5.3),

Fr, = [Winll3 - P(Wm + aFy). (5.14)

Next, let us derive force F*F which acts on particle w,, according to the regular-
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Figure 5.3: In each iteration of the subgradient algorithm, the current weights w of
the competing M learners (here: 2) are projected to the unit sphere, w,
their Coulomb forces (green) are computed, and the resultant weight updates
P(w + oF) are projected from the unit sphere to the original weight vectors
w, yielding F'¢ (pink). Independently, the negative gradient of the regularized
risk determines forces FE® (blue). Added together, FF% and FC yield the
update F' of the weight vector (red).

ized risk Q(W)+C'"- Ry (W, D) in Equation (5.8). The regularized risk in a structured
SVM can be minimized using subgradient methods as derived in Section 5.2 and the
negative subgradient for the learner m amounts to the force FZ% i.e. the direction
to go in the next optimization step when only considering the regularized risk. When
choosing the structured hinge loss as defined in Equation (5.4), then the subgradient

g for training example k is given analogously to Section 5.2 by

3" = max (W0 (%6, i) = Wi0(xk,y) + Ayey))

ye
i.e. the regularized risk force on particle w,, is F.Ef = —% Zszl g

Finally, all forces acting on w,, can be summed to the total force F;,, which deter-
mines the next update of w,,: F,, = FEE + F,,C: ; in other words, the update of w,, is
given by

C’ N
W, Wi — G (Wit — > g —Ff ) (5.16)
N3
or, in the stochastic subgradient algorithm with a random [ € {1, ..., N},

W), 4 Wi — G (Wi + Cg" = FS) | (5.17)
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fi

a: CSSVM b: CSSVM (simplified)

Figure 5.4: Coulomb Structured Support Vector Machine Training Figure 5.2 is
extended to learn an ensemble of multiple model weights W = [wr, ..., w,,,] all
connected by a repulsive diversity encouraging term, as in the Coulomb Struc-
tured Support Vector Machine (CSSVM). Rectangles denote plates (Buntine
1994) and replicate the surrounded objects according to the key in their bot-
tom right corner. In this chapter, we omit the classifier outputs (features in
X may be extended appropriately), which makes for the simplified version of
the CSSVM graphical model in (b).

where (; is a step size at iteration ¢ and g" as in Equation (5.15). Note that element
[w! ]; may be projected to zero to guarantee submodular energies during training as
proved in (Prasad et al. 2014).

For initialization of the CSSVM, we train one SSVM to get the optimum w,. Then
M random perturbations of w, give starting points for wy,...wy;.

To illustrate the proposed CSSVM approach, the graphical model from Figure 4.3
is augmented in Figure 5.4 accordingly. Note that here, all model parameters w,,,
m € {1,..., M}, are coupled by a common factor, the diversity term I'(1V).

5.3.4 Extension: Structured Clustering

Our model suggests a straightforward extension to structured clustering: In the
stochastic subgradient update given in Equation (5.17), a random training sample
is chosen for each learner to update the weight vector. Instead of random selec-
tion, a steered selection of training samples for each individual learner would in-
crease diversity. Similarly to the structured K-means block-coordinate descent al-
gorithm proposed in (Guzman-Rivera et al. 2012), we assign training examples to
individual learners: After each subgradient iteration in Section 5.3.3, the task losses
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[o(7)]m = Description Abbrev.
1 Assign the sample ¢ to every | all
learner m € {1,...M}, i.e.
Equation (5.16).

1 |m = argmin{z” }| | Assign the sample i to the | best
m learner m which achieves the

best task loss.

Sample a learner index M | sampled

from the distribution defined

by gq},..¢M and assign the

sample ¢ to learner m; here,

- _
g = A’ Yomdtit =1

1 {z =Jm J Sample one training example in- | stochastic
dex 7, € {1,..,N} for each
learner m € {1,..,M}, ie.
Equation (5.17).

Table 5.1: Possible mappings for the assignment of training samples to individual learners.

A(y™,yi; Wi,) between prediction y™ and ground truth y; are computed for each
learner m, m € {1, ..., M}, and normalized over all learners, i.e.

A = M(y Yo 7 ) Soar =1 (5.18)
Sho1 AWR v we)

Training example 7 is then assigned to any of the M learners according to some
indicator vector o(7r;), where [o(7;)],,, = 1 if training sample i is assigned to learner m,
0 otherwise. In Table 5.1, we propose different alternatives for the mapping o(-). The
subgradient update step in Equation (5.16) is then modified accordingly:

¢ 7 > lo(m)]m - g5 — Fﬁ) : (5.19)

W/ %Wm—ct <Wm+
" Sy [o(my,

5.4 Experiments & Results

To evaluate the performance of our approach, we run experiments on three chal-
lenging tasks from computer vision: (%) co-segmentation, (7) foreground/background
segmentation, and (7i7) semantic segmentation. We use the iCoseg (Batra et al. 2010)
database for the first two and PASCAL VOC 2010 (Everingham et al. 2010) for the
latter task.

We implemented our algorithm in Python using the PyStruct (Miiller and Behnke
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Top: Hamming losses on the respective datasets of the iCoseg database av-
eraged after cross-validation (lower is better): Each fold consists of exactly
one image. We train our model, MCL (Guzman-Rivera et al. 2012), and Di-
vMCL (Guzman-Rivera et al. 2014) on one fold, validate on three other folds,
and take the remaining N, —4 folds as test folds, the errors of which we report.
For each test example, we compute the M task losses of the predictions to the
ground truth, report the minimum as the pick best error (line), and mark the
averages of the second, third, etc. best errors in the graphs. In other words,
the line represents the losses which an oracle achieves when selecting always
the best out of the M predictions. Note that the average error when always
selecting the prediction with highest task error (i.e. the worst prediction),
is constantly lower in our model than in the competing MCL and DivMCL.
Bottom left: Frequency of how often model #i, i € {1,..., M}, generates
the best test prediction; here M = 10, speed-skating dataset. Note that in
our algorithm, there is no dominant model and each of the M models achieves
the pick-best error on a reasonable number of test samples, whereas in MCL
and DivMCL the pick-best losses are attributed to only one or few models, re-
spectively. Bottom right: Frequencies of task losses achieved among all test
folds and models. All models in our CSSVM ensemble yield predominantly
low losses whereas in Div-/MCL many predictions are useless.
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2014) framework. The code will be available on the authors’ website?®. On all three
tasks, we are comparing our results with the state-of-the-art diversity inducing meth-
ods Multiple Choice Learning (Guzman-Rivera et al. 2012) (MCL) and Diverse Mul-
tiple Choice Learning (Guzman-Rivera et al. 2014) (DivMCL), the Matlab implemen-
tations of which as well as their features/splitting criterions for the iCoseg dataset
in task (%) were kindly provided by the authors. The energies for tasks (i) and (i)
are submodular, and we thus use graph-cut as inference method; for the multi-label
problem in (%), we utilize TRWS (Kolmogorov 2006).

Generating M diverse outputs is particularly useful in early stages of cascaded
approaches, where at a later stage, e.g. a human or a second complex model may
choose the best of M predictions according to a higher-order loss function. The goal
of our approach is, hence, to generate M diverse predictions some of which ought
to achieve better task loss than the prediction of the single max-margin model. We
therefore stick to the evaluation criterion as applied in prior works, where an oracle
chooses the best out of M predictions. In this way, we can evaluate the usefulness of
such an approach for cascade models. We relate to this loss as pick best error, i.e. the
lowest task loss among the M predictions.

5.4.1 Co-Segmentation

The design of the proposed CSSVM allows to learn an ensemble of diverse models on
very small training sets, in fact, even on training sets which consist of one structured
training example only. To demonstrate the usefulness of our approach on such tasks,
we run experiments on a co-segmentation dataset. The goal in co-segmentation,
in general, is the simultaneous segmentation of two images each containing similar
objects (Rother et al. 2006). In our experiments, we assume that a model can be
learned on the annotations of one image to predict the segmentation of similar images.
We choose six categories from the iCoseg database and use the superpixels and features
from (Guzman-Rivera et al. 2014), their 12-dimensional color features for the nodes
and a contrast-sensitive and -insensitive Potts term for the edges.

The results for MCL, DivMCL, and our model are depicted in Figure 5.5. For
each category, we vary the number of models in the ensemble M from 1 to 10, where
M =1 may be viewed as the baseline and corresponds to the training of a standard
SSVM. We perform a full N.-fold crossvalidation on each category, where N, is the
number of images in category ¢, and report the test losses of all M models. We choose
the regularization and diversity trade-off parameters of each method on a hold-out
validation set consisting of three images per category. Note that these losses are
computed on superpixel level rather than pixel level which makes for a fair comparison
since all three models are using the same superpixels and features. In these datasets,

23http://github.com/martinsch/
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Figure 5.6: Foreground/background Co-segmentation (white/black, respectively).
The single training image in each dataset is marked in yellow, the best pre-
diction is framed in green. Note that all M = 10 models of CSSVM fit the
training images similarly well, whereas high diversity amongst the M models
is present in the predictions of the test set. GT stands for ground truth.

N.’s are in the range of 10 to 33, dependent on the dataset. Obviously, we use strategy
“all” from Table 5.1 for these experiments.

It should be noted that, if we took the same implementations, exactly the same
losses for all three competing models for M = 1 would be obtained (since all three
models are direct generalizations of SSVM). The deviations here are probably due
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to different optimization strategies, e.g. different minima on a plateau or not enough
iterations for the subgradient method (Div-/MCL use cutting-plane optimization in-
stead).

On all six datasets, our method clearly improves over the baseline of only one
SSVM (M = 1) and achieves better pick-best errors for large M than MCL and
DivMCL do, with the exception of the speed-skating category. We show for this
category exemplarily, however, that our algorithm learns M models which are all
performing similarly well while in DivMCL only few models are strong, and in MCL,
there exists only one strong model since diversity is only encouraged by assigning
the training samples (here: 1) to specific models (shown for M = 10 in bottom left
of Figure 5.5). The phenomenon that our method yields significantly better average
errors across all predictors in the ensemble is also reflected in the histogram of all
losses from the full cross validation, as provided in Figure 5.5 bottom right. The
fact that most of the predictions achieve low loss in the proposed CSSVM is a strong
advantage when the model is used in a cascade model since all predictions are good
candidates to be selected as the best solution.

Example images for M = 10 are presented in Figure 5.6. Note that for CSSVM,
all models in the ensemble achieve similar training performances while yielding high
diversity on the test images. By design, diversity on the training samples is not re-
warded but models are distributed diversely in version space as argued in Section 5.3.1
in order to achieve a low generalization error on unseen data when the predictions of
all M models are considered jointly. This is in contrast to the competing methods,
where diversity among the models is also enforced on the training set.

5.4.2 Foreground/background Segmentation

In this experiment, we use all these categories together (166 images in total) and use
the same split criterion for the 5-fold cross validation as in (Guzman-Rivera et al.
2014). We train the models on one fold, select regularization and diversity trade
off parameters on two validation folds and report the test error on the remaining
two folds. Figure 5.7 presents the results for MCL, DivMCL, and our model with
different sample assignment strategies as in Table 5.1. Since this dataset consists of
different categories, it seems natural that the models which cluster the training data
by assigning training instances to distinct models (as in Div-/MCL, Ours-sampled,
and Ours-best) perform better than the models which try to fit all M models to the
entire dataset (Ours-all, Ours-stochastic). Our model achieves similar accuracies as
the state-of-the-art method DivMCL in this experiment.
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Figure 5.7: Foreground/background Segmentation (iCoseg). Average pick-best er-
ror (Hamming distance, lower is better) on the set of all categories. Shown are
the test errors with one standard deviation (error bars are slightly perturbed on
the x-axis for illustration purposes). Our training sample assignment strategies
are denoted as in Table 5.1.

5.4.3 Semantic Segmentation

We also evaluate our algorithm on the PASCAL VOC 2010 benchmark dataset for
object class segmentation (challenge 5). The dataset consists of an official training
set and validation set comprising 964 images each, which contain 21 object classes.
We use the SLIC superpixels and Textonboost potentials (Krahenbiithl and Koltun
2011) publicly available from (Miiller and Behnke 2014). Due to the lack of a publicly
available test set, we are selecting the parameters of all three models on the official
validation set and report these validation errors in Table 5.2 using the PASCAL VOC
evaluation criterion, the Jaccard index. For structured learning, all models use a loss
weighted by the inverse class frequency present in the training data.

The baselines for this experiment are given by an argmax operation on our features
(“unaries only”), a linear SVM on the unary features, and a structured SVM (M = 1).
With the publicly available features, these baselines achieve average accuracies of
21.6%, 27.4%, and 29.1% which is much lower than the current best results reported
on this challenge. In this experiment, however, we want to focus on how much a
baseline algorithm can be improved thanks to a diverse ensemble, and not indulge in
feature and pipeline tuning.

By training M = 6 diverse models and selecting the best predictions amongst them
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according to the ground truth, all three competing methods yield significantly higher
pick-best accuracies than a single SSVM. We can even improve the accuracy from
29.1% to 37.6% with the assignment strategy “best” (c¢f. Table 5.1). This massive
relative improvement underlines the usefulness of a diverse ensemble approach. MCL
(35.0%) and DivMCL (34.5%) yield inferior performance.
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Discussion

Tracking-by-assignment methods, formulated as graphical models, are well suited for
cell tracking. We have shown that their modeling flexibility renders it possible to cope
with cell division and segmentation errors in one holistic tracking model. Furthermore,
the machinery naturally coming with probabilistic graphical model representations
may be exploited for parameter learning or uncertainty estimation.

Structure In this final chapter, we summarize our contributions in the subsequent
section. We conclude in Section 6.2 with a discussion of the limitations of the proposed
algorithms and relevant future research directions.

6.1 Conclusions & Contributions

This work presented two approaches for cell tracking which reduce and correct errors
which originally raised from the clear separation into a detection and a tracking phase
in previous works. The synergy effects which appear in our novel formulations make
it possible to improve over state-of-the-art. Moreover, we discussed how uncertainty
measures may be derived from tracking-by-assignment approaches and how these
could guide the user for more efficient proof-reading. We finally presented a method
to learn multiple diverse graphical models to decrease the expected generalization
error for predictions on test data. We now summarize our contributions in detail.

6.1.1 Higher Accuracy through Synergy Effects

The tracking of dividing cells involves phenomena that are not commonly found in
other typical tracking applications. In particular, one wants to track multiple targets
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that are almost indistinguishable, that may divide (undergo mitosis), that may be
undersegmented due to mutual occlusion or low contrast (yielding cells falsely clus-
tered together in only one detection), and that may be recorded in the presence of
noise, provoking false positive detections.

Most existing tracking-by-assignment approaches break down the problem by solv-
ing the segmentation / detection and the assignment / association problems sepa-
rately. To prevent the propagation of errors resulting from wrong but fixed decisions,
it is desirable to solve the detection and the assignment problems jointly.

(a) Identify and Correct Segmentation Errors

We presented in Chapter 2 the first principled treatment that addresses all of the
above complications simultaneously. Our formulation is in terms of an undirected
graphical model which — due to the explicit modeling of global conservation laws —
can robustly correct errors from the previous detection step. We have shown that the
proposed factor graph can outperform a recently published cell tracking method on
sequences of proliferating cells in dense populations thanks to

« the joint consideration of over- and undersegmentation errors in one probabilistic
model: Guaranteeing consistent solutions through conservation laws makes it
possible to identify and correct errors from the preceding segmentation step
such as false detections or falsely clustered cells. It can thus tolerate detection
errors from a foregoing detection step.

« the coupling of all detections over all time steps in one model: This ensures
maximal temporal context and decisions are not only based on local influences.

+ the exact optimization: We solve this model to global optimality using integer
linear programming. We thus avoid approximation errors.

In addition, our model can partition and track previously merged objects while pre-
serving their original identities.

We empirically demonstrated the effectiveness of this novel tracking method on
three different and challenging 2D+t and 3D+t datasets from developmental biology
and present state-of-the-art results.

(b) Avoid Segmentation Errors through Joint Optimization of Seg-
mentation and Tracking

The work in Chapter 3 was motivated by the desire to further increase the synergy
effects between the two (previously independent) steps of detection and tracking by
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joint optimization of the two steps together in one model. In response, we proposed
an undirected graphical model which simultaneously selects a subset of competing
segmentation hypotheses and links them across time steps. All of these decisions are
made to interact so as to reach the overall most likely interpretation of the data.
Although the model is one of significant complexity, it remains solvable to global
optimality in practicable runtimes of less than an hour on the large datasets used.

The benefits of this approach were borne out by experimental results which are a
significant improvement over the state-of-the-art, in particular in terms of the division
detection accuracy reached.

6.1.2 Uncertainty Measures for Guided Proof-Reading

The formulation of cell tracking in terms of probabilistic graphical models, allows us to
sample multiple likely solutions from these models. In Chapter 4, we first proposed to
apply the recently developed technique of Perturb-and-MAP (Papandreou and Yuille
2011) random fields to sample multiple instances of graphical models through the
synthetic injection of global noise. Moreover, we presented a novel procedure based
on Gaussian processes in order to estimate local uncertainty in the observed data.
The latter method proved particularly useful for the robust detection of cell division
errors. Since training sets for cell division detection are typically small, an explicit
modeling of the ambiguity of such events is crucial for accurate cell tracking results.

The uncertainty measures derived from the variations between these proposal so-
lutions guide the user to the most ambiguous predictions. We demonstrated on a
challenging Drosophila dataset shown in Figure 1.1 that these measures guide the
user reliably to false predictions for proof-reading. Human interaction time is hence
greatly reduced compared to full manual tracking (or random guidance) while achiev-
ing a much higher tracking accuracy than with purely automatic methods.

6.1.3 Parameter Learning for Diverse Models to Im-

prove (zeneralization on Test Data

Previous work in cell tracking has shown that the discriminative learning of param-
eters of tracking-by-assignment models may lead to significantly better results than
the hand-tuning of the model weights (Lou et al. 2014b). We applied a structured
learning strategy to our tracking model in Chapter 4 which sped up training time
from multiple days as for the grid search used in Chapters 2 and 3 to a few hours for
large datasets.

We furthermore enhanced structured learning techniques in Chapter 5 by the
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proposition of a novel algorithm termed the Coulomb Structured Support Vector Ma-
chine (CSSVM). The CSSVM learns an ensemble of multiple models which yield
diverse predictions on test data. This method models a diversity prior on the set of
model weights, trading off diversity in the test data against data fit. We demonstrated
on numerous real world datasets that selecting the best prediction from the set of di-
verse outputs yields to significantly improved results compared to only one model
trained. Furthermore, we outperform on challenging computer vision tasks state-of-
the-art methods for diverse output predictions. The applicability of the proposed
method to cell tracking is straightforward and is left for future work.

6.1.4 Dense Ground-Truth for Dataset from Develop-
mental Biology

One major challenge to develop cell tracking algorithms is that there are only very
few public datasets with ground truth available. In response, we manually annotated
100 time steps of late developmental stages of a Drosophila embryo, and released
this dataset. The data was utilized in Chapters 2-4 for evaluation purposes and is
described in Appendix A. Three example frames are shown in Figure 1.1.

The dataset together with our manual annotations may be used free of charge by
the cell tracking community to develop and evaluate their algorithms.

6.1.5 Open Source Development

In addition, we made the code developed for the cell tracking models proposed in
Chapters 2 and 3 available to the public. Moreover, we plan to release the code of
the methods proposed in Chapters 4 and 5 in the future. This open source devel-
opment will facilitate other researchers to use our algorithms for their applications,
advance these methods, compare performances of competitive methods, or reproduce
the results achieved in this work.

6.1.6 Applicability for Non-expert Users

As mentioned in Section 1.1, to allow for impacts in life sciences, our algorithms must
be approachable for non-expert computer users. It is hence not sufficient to only
release the research code, but graphical user interfaces (GUIs) need to be provided to
ease the use of the proposed methods. We therefore implemented the Conservation
tracking algorithm from Chapter 2 into dlastik**, a tool for automatic analysis of

24yyw.ilastik. org
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high-dimensional image data with an easy-to-use GUI. Its availability for all major
platforms allows users worldwide to use our methods on their own data and active
development guarantees support in the future.

6.2 Limitations & Outlook

There are several immediately relevant avenues for future work arising from the re-
search done in this thesis.

6.2.1 Gap Closing: Find Undetected Cells

In Chapters 2 and 3, we proposed graphical models which refine previously segmented
cells by taking into account temporal context. Both methods are initiated from a seg-
mentation or an oversegmentation, and can automatically correct errors from this pre-
ceding stage by the coupling of the two stages in tracking-by-assignment approaches.

There is, however, one type of segmentation error which has not been explicitly
addressed so far, viz undetected objects. We proposed in Chapter 3 to circumvent
this phenomena by a more conservative segmentation method with high recall and
low precision, i.e. detecting considerably more objects than present in the data. The
joint segmentation and tracking model can then assign false positive detections to
background. Yet this strategy comes at the cost of a significant increase of random
variables and thus shifts the problem towards the already hard optimization problem.
Besides, due to low contrast or noise in the data, it is not always possible to pick up
each cell in each frame without temporal context.

As a result, tracking-by-assignment models should be refined to close gaps between
falsely disappearing and later reappearing cells. Introducing higher-order edges over
multiple time frames is, unfortunately, out of question due to the high complexity it
would introduce to the optimization problem. Instead, Jagaman et al. (2008) propose
a linear program formulation to link tracks that terminate early with those that start
in later frames, and Dicle et al. (2013) present a regression method which relies on
locally constant motion patterns. These approaches could be extended to cope with
divisions of objects. It is also conceivable to integrate the raw signals recorded in the
movies into these approaches by, for instance, locally reducing the threshold of the
segmentation when gaps are detected.

6.2.2 Approximate or Decoupled Inference

The exact optimization over a maximally possible time range in our cell tracking
algorithms has proven to yield highly accurate results. However, this comes at the
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cost of solving an NP-hard optimization problem. While runtimes less than an hour
are achieved on the datasets used throughout this work with < 1000 cells per frame,
it is obvious that exact optimization will not scale to tens of thousands of cells.

It is thus necessary to focus research on the acceleration of the inference process.
Different directions include:

« Approximate Inference: If approximate results are sufficient for the applica-
tion, the optimization problem may be simplified. For instance, integer linear
programming allows to perform approzimate inference by early stopping and
comes with upper bounds for the gap to the real optimum. Furthermore, greedy
optimization strategies as in (Magnusson et al. 2014) may be followed, how-
ever, at the cost of high approximation errors. In this case, crafty heuristics are
necessary to revoke and refine previous decisions.

« Domain Decomposition: One straightforward strategy could be a so-called
sliding window approach, where the time sequence is dissected into multiple
chunks with at least one frame overlap. These sequences can then be solved
subsequently, fixing the result of the previous chunk on the respective overlap to
guarantee consistency in the overlaps. Another possibility which even guaran-
tees global optimality, is to decompose the graphical model temporally (and/or
spatially) into smaller portions with overlaps, for each of which inference is fast.
Dual decomposition techniques (Komodakis et al. 2007) then guarantee globally
consistent solutions by iteratively enforcing a consensus on the overlaps. To scale
up, these subproblems may also be solved approximately. Funke (2014, Chap-
ter 5) experiments with dual decomposition on similar problem structures and
concludes that, unfortunately, the runtime even increases with these methods.
It is hence necessary to turn to more informed decomposition strategies.

Furthermore, coupling the fast method of Amat et al. (2014), which achieves out-
standing performance on one-to-one cell associations (moves), with our graphical
model formulations to precisely detect cell divisions, may be a good compromise be-
tween exact inference and approximate optimization for the easier decisions. In par-
ticular, a set of tracklets?® may be generated with the Gaussian mixture model based
method of Amat et al. (2014) and subsequently, may be stitched together through
a graphical model formulation similar to those proposed in this work, while, at the
same time, finding cell divisions. This might yield both significant speed-ups and
performance improvements due to less ambiguities.

25 As a reminder from Chapter 2, a tracklet is a fixed linking of one object over multiple frames.
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6.2.3 Higher-order Relations through Tracklets

Such tracklets not only speed-up inference for easy decisions, they come with an-
other great advantage. When stitching them together, expressive higher-order fea-
tures may be computed on the tracklets (Pirsiavash et al. 2011; Arora and Globerson
2013). Higher-order features such as acceleration, constant velocity or direction, or
other higher-order motion dynamics, avoidance of outliers within one track in terms
of appearance features, etc., are prohibitive to model in a framework consisting of
single-frame objects only, since they span over multiple frames and hence involve ex-
ponentially many objects and higher-order factors. In contrast, they are cheap to
determine on a small set of tracklet proposals.

The bottom line is that although tracklets involve irrevocable hard decisions, if
only used for highly likely assignments, they may decrease the problem size drastically
and at the same time allow for more expressive modeling power due to higher-order
features.

Note that although we introduced tracklets in Chapter 2, we did not exploit the
use of more expressive features but only reduced the number of variables in the integer
linear program. Including these features in this simplified representation obviously
increases the number of model parameters to be learned.

6.2.4 Non-linear Energy Parameterization

To make structured learning feasible in our models, we are restricted to use linear
parameterizations of the energies. Kernel based extensions of the structured support
vector machine (SSVM) have been presented (Tsochantaridis et al. 2005), however,
they involve a prohibitive number of kernel evaluations during training. To avoid
expensive training, our work in Chapters 4 and 5 is hence based on linear SSVMs,
using features from unstructured non-linear classifiers. Approximations for non-linear
SSVM may be investigated. One attempt has been taken in (Lucchi et al. 2012)
where a set of features is constructed from kernel evaluations with support vectors
in a previously trained (kernel-based) support vector machine. Their results seem
promising and their method should be directly applicable to our applications.

6.2.5 Re-ranking of Proposal Solutions

The method we proposed in Chapter 5 yields diverse predictions for structured output
problems and in the experimental evaluation, an oracle selects the best among these
predictions. The method may be extended by a second-stage model which automati-
cally selects the best of these predictions based on a previously trained model which,
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in turn, takes into account higher-order features. Note that due to the same reasons
as outlined in Section 6.2.3, it is not possible to model these features already in the
first-stage model.

Applied to cell tracking, such an automatic re-ranking (Yadollahpour et al. 2013)
may yield a significant decrease in proof-reading time.

6.2.6 Fusion of Proposal Solutions

Ultimately, however, one would like to fuse the (diverse) proposal solutions (and the
corrections made by the user) to one consistent solution. One possible strategy could
be to rely on move-making paradigms as done in (Beier et al. 2014).

Furthermore, if it is possible to fuse multiple solutions consistently, concurrent
solutions resulting from early stopping in domain decomposition based approaches as
discussed in Section 6.2.2 could be corrected.

To conclude, since major insights in life sciences rely heavily on a highly accurate
tracking of cells, human verifications will always be necessary. The focus of research
on cell tracking algorithms will hence slowly shift from the design of reliable cell track-
ing algorithms to the question of how to efficiently integrate a human expert into the
cell tracking process, trading off the human interaction time with accuracy of results.
The cell tracking models, parameter learning, and proof-reading guidance presented in
this thesis, are an itmportant step towards this goal.



Drosophila Dataset
Description

The fruit fly (Drosophila) dataset on which we evaluate the algorithms presented
in this thesis, has been recorded by the Hufnagel group, EMBL, Heidelberg. The
acquisition process is described in detail in (Krzic et al. 2012).

For evaluation purposes, we cropped the volumes to the dimensions described
in Table A.1 and depicted in Figure 1.1, segmented the cells automatically with
ilastik (Sommer et al. 2011), and refined the result with a seeded watershed. We
then tracked all segmented cells manually? over 100 time steps. For this purpose, we
developed the Manual Tracking workflow in ilastik, which is made publicly available
on http://www.ilastik.org.

26Philipp Hanslovsky and Christoph Klein (both University of Heidelberg) assisted with the manual an-
notations.
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92 Appendix A. Drosophila Dataset Description

Original Dataset Cropped Dataset for
Manual Annotations

Organism Drosophila melanogaster embryo
Dataset label 20120803-170524 Fusion Histone
Stage in embryonic Gastrulation
development
Fluorescent protein H2Av-mCherry
M Multiview selective-plane illumination

teroscope microscope (MuVi-SPIM) (Krzic et al. 2012)
Volume dimensions 1050 x 435 x 361 voxels 730 x 320 x 30 voxels
Voxel size 0.52um x 0.52um x 0.52um (3D isotropic)
Temporal resolution 1 frame per 30 seconds
Time sequence 650 time steps frames 300-399

Table A.1: The dataset was recorded by the Hufnagel group, EMBL Heidelberg, Ger-
many. We extracted from the original dataset the volumes (¢, x,y,z) from
(300,160,60,0) to (400,890, 380,30) for dense manual tracking annotations.
These were acquired by Martin Schiegg, Philipp Hanslovsky, and Christoph
Klein (University of Heidelberg, Germany).



Runtime Comparisons

For an analysis of runtimes of the algorithms proposed in this work, we compare
the Conservation tracking method introduced in Chapter 2 and the joint model for
segmentation and tracking proposed in Chapter 3 with the method from (Amat et
al. 2014). For this purpose, we run each algorithm on a contemporary workstation
(2x Intel(R) Xeon(R) CPU E5606, 4x 2.13 GHz each, GeForce GTX 680). A detailed
comparison of implementation language, parallel implementations, and runtimes (wall
clock time) in seconds are provided in Table B.1.

In total, tracking using TGMM (Amat et al. 2014) runs significantly faster than
using the graphical models of Conservation Tracking (CT) from Chapter 2 or the
joint segmentation and tracking model (JST) proposed in Chapter 3. This is not
only due to the GPU implementation vs. the CPU implementations but mainly
comes from the nature of the underlying model: Whereas in TGMM the tracking is
based on a forward propagation of the parameters of the Gaussian mixture models
based on a short history only, the graphical models (CT and JST) aim at solving
the exact optimization problem taking all temporal information in one holistic model
into account. The optimization problems in these graphical models are formulated
as energy minimizations and the integer linear programs are solved exactly. Using
approximate solvers may significantly speed up inference, but inconsistent solutions
may occur. We leave research on approximations for future work as discussed in
Section 6.2.

Moreover, it should be noted that all of the expensive preprocessing computations
to construct the graphical models can be run without user interaction and intermedi-
ate results may be stored to enable fast parameter training. Computing features on
the (competing) segmented cell candidates allow for expressive classifiers to be used
as priors and are an important ingredient to achieve high accuracies in cell division
detection.
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Furthermore, the biggest portion in runtime of the joint tracking and segmentation
approach is due to an expensive operation in our implementation for the export of
the MAP solution of the graphical model: To ease evaluation of results, we export the
sequence of images/volumes with a unique cell lineage identifier on each and every
pixel/voxel. In contrast, the export of results in CT or TGMM is much faster since,
for our evaluation, we only export a mapping from an object identifier to a lineage
identifier or the coordinates of the centroid (and a lineage identifier), respectively.
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List of Figures

1.1

1.2

2.1

Developing Drosophila embryo during gastrulation. Depicted are three
frames of the dataset described in Appendix A, which we will use for
evaluation in the next chapters. The goal is to automatically find
correspondences between all cells in the embryo. The image sequence
was acquired with a recent light sheet microscope (Krzic et al. 2012).
Best viewed in 3D with red/cyan glasses, red side left. . . . . . . . ..

(Left) Factor graph for the function p(Y7, Yo, Y3) = 13(Y3)-112(Y1, Ya)-
a3(Ya, Y3)-1h123(Y1, Ya, Y3). Variables Y1, Ya, Y3 are indicated by circles,
factors 3, 112, a3, 1123 are depicted by black squares. A factor graph
visualizes the decomposition of a function, and hence, (in)dependence
relationships of random variables in probability distributions. Factors
of order one (e.g. 13) are called unary factors, those of order two (e.g.
112, 193) are termed pairwise factors, and those of order > 2 are gen-
erally referred to as higher-order factors. (Right) As an example, we
illustrate our notation through the pairwise factor 112(Y7, ¥2). Indica-
tor variable pfjl = 1 if, and only if, Y; = k and Y; = [, zero otherwise.
Costs 0Y5Y* are linear in the joint features ¢;(y1,y2) where y1, yo are
the realizations of Y7, Yo. . . . . . . . ..o

The proposed tracking-by-assignment model accounts for all of these
events. Left column: Objects (represented as balls) are associated
(edges) with each other over three time steps. Right: Excerpt of the
proposed factor graph showing the three detection variables for the
connected component at time t: Red variables are indicators for a
division event. The other variables, taken together, represent the num-
ber of targets covered by a detection but they can also represent the
other depicted scenarios such as disappearance or “demerging”. See
Figure 2.4 for more details. . . . . . . . . ... .. ... ... ... ..
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Tiny excerpt of dataset B with its almost indistinguishable objects. A
short sequence of the raw data is depicted as 2D slices (top row) from
3D+time data and displays cells in a developing Drosophila embryo.
Due to low contrast, multiple cells are segmented as only one connected
component (undersegmentation) as pointed out in the middle row. Our
tracking model (bottom row) can handle such errors and preserves
the target identities as indicated by colors (see the three previously
merged cells in ¢ = 52) by fitting the correct number of Gaussians
(ellipses) to detections containing multiple objects. Furthermore, the
proposed factor graph can handle false detections (oversegmentation)
as indicated by the black detection in frame 42 (bottom row).

Objects are first detected from raw data by segmentation. Subse-
quently, on pairs of frames, patch-wise cross correlation on the bi-
nary images yields rough estimates about the displacement of groups
of objects. Following this, probabilistic classifiers determine the unary
potentials of each detection, i.e. they estimate the division probability
and a probability mass function of the number of objects contained in
each detection. These potentials are then used in the proposed fac-
tor graph (cf. Figure 2.4) to find a globally consistent tracking solution
(here, tracks are indicated by colors). In the last step, detections which
were found to contain more than one object (yellow/green in this exam-
ple) are partitioned by fitting a spatial Gaussian mixture model with
the respective number of kernels, and the demerged objects are being
tracked again in order to find their original identities. . . . . . . ..

Factor graph for one detection X! with two incoming and two outgo-
ing transition candidates: (a) One detection is represented by three
multi-state variables, X!, V!, and A!, where X! keeps the number of
objects present in the corresponding detection, and the latter variables
indicate whether objects are vanishing or appearing, respectively. Note
that, since X! is given by a deterministic function of Af, V', it can be
omitted in the simplified representation in (b). Furthermore, the bi-
nary variable D} indicates whether object X! is about to divide. See
Figure 2.1 for different configurations of these variables. Moreover,
transition variables T' € {0, ...,m} indicate how many objects are as-
sociated between two respective detections. Here, the black squares
implement conservation laws, i.e. the sum of the left-hand side must
equal the sum of the right-hand side, whereas colored squares represent
unary factors of the variables. . . . . . . ... ... ... .. ... ..
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2.5

2.6

2.7

2.8

3.1

3.2

Concrete example for the representation of a small but complex toy
sequence in terms of the proposed factor graph. The numbers indicate
the states that were inferred for each random variable. See Figure 2.4
for color codes. . . . . . ..

An excerpt of one time step of dataset A. Green color indicates detec-
tions including many false positives. . . . . . . . ... ... ... ..

Parameter sensitivity: Box-plots for f-measures for dataset C for a
search over 720 parameter configurations. . . . . . . . ... ... ..

(a) 2D projection of the 3D trajectories of dataset B (Drosophila, 3D+t)
over all 100 time steps. (b) One frame of dataset C (2D+t) and (c) the
3D space-time rendering of its trajectories. Note that daughter cells
inherit the color of their mother cell. . . . . .. . ... ... ... ..

An excerpt of three consecutive time steps of the Drosophila dataset
(2D slices out of 3D volumes). The raw data (top row) is oversegmented
into superpixels (middle row). Our graphical model then tracks the
cells over time and assigns each segment to a track (indicated by the
same random color) or background (black). Offspring cells are assigned
the color of their parent cell after mitosis (here: orange). Note that one
cell may be represented by multiple superpixels. Scale bars are 10um.

First, the raw data is oversegmented in all timesteps separately (stage
IT). Then, in stage III, segmentation hypotheses are generated by merg-
ing adjacent segments into bigger segments (e.g. 2, 3 may be merged
into 23). From this structure, a graphical model is constructed (stage
IV): Overlapping segmentation hypotheses are connected by intra-frame
factors (red: conflicting segmentation hypotheses; blue: local evidence
for the number of cells in one connected component) and inter-timestep
transition hypotheses are modeled by binary random variables (green
nodes) indicating whether the corresponding cell in ¢ has moved to,
divided to, or is not associated with the corresponding cell in ¢ + 1.
Note that, for simplicity, only one connected component in only two
timesteps is visualized. The proposed factor graph in stage IV, in fact,
models all detections and all timesteps in one holistic model at once.
Also for simplicity, only a small subset of transition variables is shown.
After performing inference on this factor graph, the most probable se-
lection of active regions (actual cells) and their transitions between
timesteps are found as visualized by the two cells marked in yellow and
blue in stage IV. . . . . . . ...
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Close-up on stage IV from Figure 3.2. In the factor graph, detec-
tion variables for possible cell segmentations are shown in black while
their allowed inter-timestep transitions are modeled by random vari-
ables depicted in green (most of them are omitted for clarity). Blue
factors give a prior probability to each connected component for how
many cells it may contain. By introducing intra-timestep conflict hard
constraints (red factors), it is guaranteed that at most only one vari-
able in each conflict set, e.g. C = {{123}, {23}, {3}}, may be active at
a time. Outgoing and incoming factors (black squares) connect inter-
frame transition with detection variables and ensure a unique lineage
of cells. . . . .

Qualitative results for the Rat stem cells dataset. Cells are assigned
a random color identity in the first frame, which is inherited to their
children in later timesteps. The magnified views illustrate that cells
can be tracked reliably by our JST method in spite of frequent overlap.
CT is short for Conservation Tracking (Chapter 2), TGMM stands for
Tracking with Gaussian Mizture Models, (Amat et al. 2014), and Joint

33

segmentation and tracking (JST) is the model proposed in this chapter. 44

3D rendering for the Drosophila embryo dataset. Depicted are the
cell segmentations in timestep 50 with their trajectories as one-voxel-
traces over the previous 50 timesteps (the remaining 50 timesteps are
omitted for clarity). In the close-up view (right), the two yellow cells
are the result of a cell division many timesteps ago and the lower one
is touching with cells indicated in gray and pink. Thanks to the joint
optimization of segmentation and tracking, the identity of the yellow
cell is preserved in spite of this heavy overlap. . . . . . . . ... ...

To derive proof-reading priorities, we propose to perturb the unary
potentials of a tracking-by-assignment cell tracking model according
to (i) a Gumbel distribution (Papandreou and Yuille 2011), or (7i) a
Gaussian distribution predicted from a Gaussian process. Instances of
the graphical model can then be generated by sampling locally from the
distributions of the unary potentials. Estimating the MAP solution of
each individual graphical model instance allows to compute robustness
measures for each individual predicted event and helps to guide the
biomedical specialist to the most ambiguous assignments. . . . . . . .

One slice of the 3D+t Drosophila sequence: The more opaque the red
color the higher the classifier uncertainty that the connected compo-
nent contains exactly onecell. . . . . . . ... ... ...
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4.4

4.5

4.6

4.7

4.8

Underlying graphical model The probabilistic graphical model con-
sists of two output variables Y;, Y;, which are interdependent through
a pairwise factor (a simple structured output space). In a conditional
random field, the pairwise interaction term as well as the unary po-
tentials (all black) depend on the observations x;, x; from X;, Xj.
Note that additionally to the directly observed features, other features
might be derived such as g(fi), g(f;), where f;, f; are predictions of
a classifier and g¢(-) is an arbitrary, possibly non-linear, function. This
classifier has parameters 1 estimated from an unstructured training
set, as shown in Figure 4.4(a). Shaded nodes are observed. . . . . .

(a) Classifier learning The graphical model from Figure 4.3 is mod-
ified for the estimation of the parameters 1 of the unstructured classi-
fier. During this phase, direct interactions between input and output
variables are omitted. (b) Perturb-and-MAP Variable w is kept
fixed after structured learning (see Section 5.2) and fj, is deterministi-
cally computed from n and x; (k = {7, 7}). For perturbations, a noise
injecting variable € is introduced, which is assumed to be Gumbel dis-
tributed and perturbs the costs. (c) GP sampling Again, w is fixed
after structured learning, and different f; are sampled from a Gaussian
process with parameters n learned in (a), ¢f. Equation (4.5). Shaded
nodes are (in)directly observed. See Figure 4.3 for notations.

Frequencies of division and move uncertainties . . . . . . . . .. . ..

Division Events: Comparison of sampling methods and the resulting
labeling uncertainties. The curve terminates prematurely if all remain-
ing uncertainty estimates are zero. “iters” stands for the number of
samples generated from one model. See main text for details. . . . . .

Move Events: Comparison of sampling methods and the resulting
labeling uncertainties. The curve terminates prematurely if all remain-
ing uncertainty estimates are zero. “iters” stands for the number of
samples generated from one model. See main text for details. . . . . .

Uncertain division events: The cells of interest are centered in or-
thoviews (green, red, and blue lines indicate the cuts of each view) and
incorrect predictions are indicated with a red arrow. Appearance at the
image border (a), undetected demerging (b), and oversegmentation (c,
d) lead to falsely predicted divisions. These false predictions are iden-
tified by our GP sampling method as the uncertainty quantities (first
column) indicate. . . . . ...
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5.3

Uncertain move events: The cells of interest are centered in or-
thoviews (green, red, and blue lines indicate the cuts of each view)
and incorrect predictions are indicated with a red arrow. Too high
priors for being a false detection (a, c¢), or missing segmentations (b,
d) result in wrong move predictions. In (a), the green cell falsely dis-
appears, whereas in (b, ¢, d), the cell of interest is associated with
the wrong descendant, in (b) even leading to a chain of wrong associa-
tions. The uncertainty quantities (first column) estimated by our GP
sampling method lead the user to these wrong predictions. . . . . . .

Structured SVM learning. “+” indicates a structured training ex-
ample whereas “—” in the same color are the corresponding structured
outputs with task loss A(+,—) > 0. (a) A standard linear SSVM max-
imizes the margin between positive and all “negative” examples (de-
cision boundary with its normal vector in cyan). (b) Multiple choice
learning (Guzman-Rivera et al. 2012) learns M SSVMs (here: 3) which
cluster the space (clusters for positive and negative examples are de-
picted in the same color) to generate M outputs. (c) We propose
the Coulomb Structured SVM which learns an ensemble of M SSVMs
through a diversity term which maximizes the pairwise angles 0;; be-
tween their (linear) decision boundaries, while seeking to best fit all
training data. . . . ... L oL L

Structured Learning Figure 4.3 is modified to illustrate the state of
the graphical model during structured learning. All variables except
the model weights are (implicitly) observed: The observed states of X
and Y serve as training data x and y, and the classifier parameters
n are already learned as depicted in Figure 4.4(a), which determines
the classifier predictions f, which augment the features ¢(x). The
difference to the learning of the unstructured classifiers in Figure 4.4(a)
should be noted, to wit the structure in the output space is preserved.
Shaded nodes are (implicitly) observed. . . . . .. .. .. ... ...

In each iteration of the subgradient algorithm, the current weights w of
the competing M learners (here: 2) are projected to the unit sphere, w,
their Coulomb forces (green) are computed, and the resultant weight
updates P(w + oF) are projected from the unit sphere to the original
weight vectors w, yielding F¢ (pink). Independently, the negative
gradient of the regularized risk determines forces FF® (blue). Added
together, FF and F© yield the update F of the weight vector (red).

61

65

68

72



LIST OF FIGURES

103

5.4

2.5

5.6

Coulomb Structured Support Vector Machine Training Fig-
ure 5.2 is extended to learn an ensemble of multiple model weights W =
[W1, ..., W,,] all connected by a repulsive diversity encouraging term, as
in the Coulomb Structured Support Vector Machine (CSSVM). Rectan-
gles denote plates (Buntine 1994) and replicate the surrounded objects
according to the key in their bottom right corner. In this chapter, we
omit the classifier outputs (features in X may be extended appropri-
ately), which makes for the simplified version of the CSSVM graphical
model in (b). . . . ...

Top: Hamming losses on the respective datasets of the iCoseg database
averaged after cross-validation (lower is better): Each fold consists of
exactly one image. We train our model, MCL (Guzman-Rivera et al.
2012), and DivMCL (Guzman-Rivera et al. 2014) on one fold, validate
on three other folds, and take the remaining N, — 4 folds as test folds,
the errors of which we report. For each test example, we compute
the M task losses of the predictions to the ground truth, report the
minimum as the pick best error (line), and mark the averages of the
second, third, etc. best errors in the graphs. In other words, the line
represents the losses which an oracle achieves when selecting always
the best out of the M predictions. Note that the average error when
always selecting the prediction with highest task error (i.e. the worst
prediction), is constantly lower in our model than in the competing
MCL and DivMCL. Bottom left: Frequency of how often model #i,
i €{1,..., M}, generates the best test prediction; here M = 10, speed-
skating dataset. Note that in our algorithm, there is no dominant
model and each of the M models achieves the pick-best error on a
reasonable number of test samples, whereas in MCL and DivMCL the
pick-best losses are attributed to only one or few models, respectively.
Bottom right: Frequencies of task losses achieved among all test folds
and models. All models in our CSSVM ensemble yield predominantly
low losses whereas in Div-/MCL many predictions are useless.

Foreground /background Co-segmentation (white/black, respec-
tively). The single training image in each dataset is marked in yellow,
the best prediction is framed in green. Note that all M = 10 models of
CSSVM fit the training images similarly well, whereas high diversity
amongst the M models is present in the predictions of the test set. GT
stands for ground truth. . . . . . ... ... ... 0L
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5.7 Foreground/background Segmentation (iCoseg). Average pick-
best error (Hamming distance, lower is better) on the set of all cate-
gories. Shown are the test errors with one standard deviation (error
bars are slightly perturbed on the x-axis for illustration purposes). Our
training sample assignment strategies are denoted as in Table 5.1. . . 79



List of Tables

2.1

2.2

3.1

3.2

Cell tracking results on dataset A: precision (= TPTi-EFP)’ recall (=

Pec 222 ) for the overall pairwise events

L) _prec.-Tec.
TP + FN prec.—+rec.
(move, appearance, disappearance, divisions) and divisions in particu-

lar. For a description of Classifiers only, refer to Table 2.2. . . . . .

, and f-measure (= 2-
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Note that in Classifiers only, it is only evaluated whether the particu-
lar cell is dividing whereas in the tracking models, we go beyond that
and additionally require the correct links to the daughter cells. The
ground truth of dataset B (dataset C) contains 56,029 (34,985) moves,
216 (440) divisions, 1,878 (1,189) mergers, and 1,466 (533) resolved
mergers events. . . . ... ... Lo

Linear constraints for random variables . . . . . . . . . . . ... ...

Segmentation quality after tracking (higher is better). Note that in
the joint segmentation and tracking method proposed in this chapter,
segmentation and tracking are optimized concurrently. The rat stem
cells dataset contains a ground truth of 121 632 cells across all frames,
whereas the Drosophila embryo data consists of 65821 true cells.

22

25

37

42



106

LIST OF TABLES

3.3

4.1

5.1

5.2

Al

B.1

Quantitative results for cell tracking. Reported are precision, recall,
and f-measure for (frame-to-frame) events move (i.e. transition as-
signments) and cell divisions (i.e. mitosis). Rat stem cells comprises
119266 and 1998 such events, respectively, whereas Drosophila em-
bryo includes 63 548 moves and 226 divisions. Results are shown for
the tracking being conditioned on its segmentation result and directly
compared to ground truth (unconditioned). . . . . . . . .. ... ...

Division accuracy after NV events presented to the user (and corrected
if necessary); “-” indicates that the method did not generate enough
events with positive uncertainty. The number “(¢x)” is the number of
samples drawn. . . . . . ...

Possible mappings for the assignment of training samples to individual
learners. . . . . . ...

Pascal VOC 2010 Validation Accuracy (higher is better). We
tune a popular conditional random field (Miiller and Behnke 2014) as
baseline structured models (top rows). We here focus on the relative
improvement that different diversity strategies can achieve (bottom
rows), rather than tweaking the baseline model itself. . . . . . . . ..

The dataset was recorded by the Hufnagel group, EMBL Heidelberg,
Germany. We extracted from the original dataset the volumes (¢, z, y, z)
from (300, 160,60, 0) to (400,890, 380,30) for dense manual tracking
annotations. These were acquired by Martin Schiegg, Philipp Hanslov-
sky, and Christoph Klein (University of Heidelberg, Germany).

Runtime comparison in seconds (wall clock time). . . . . ... .. ..

46

56

74

81

95



Bibliography

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc. 1SBN: 0-13-617549-X (cited on p. 6).

Amat, F. and Keller, P. J. (2013). “Towards comprehensive cell lineage reconstructions in
complex organisms using light-sheet microscopy”. In: Development, Growth & Differen-
tiation 55.4, pp. 563-578 (cited on pp. 1, 2).

Amat, F., Lemon, W., Mossing, D. P., McDole, K., Wan, Y., Branson, K., Myers, E. W.,
and Keller, P. J. (2014). “Fast, accurate reconstruction of cell lineages from large-scale
fluorescence microscopy data”. In: Nature Methods July. 1SSN: 1548-7091. por: 10.1038/
nmeth.3036 (cited on pp. 30, 41-44, 46, 47, 88, 93, 95).

Amat, F., Myers, E. W., and Keller, P. J. (2013). “Fast and robust optical flow for time-lapse
microscopy using super-voxels”. In: Bioinformatics 29.3, pp. 373-380 (cited on p. 30).
Andres, B., Beier, T., and Kappes, J. H. (2012). “OpenGM: A C++ Library for Discrete

Graphical Models”. In: CoRR (cited on p. 39).

Arora, C. and Globerson, A. (2013). “Higher Order Matching for Consistent Multiple Target
Tracking”. In: IEEFE International Conference on Computer Vision (ICCV), pp. 177-184.
DOI: 10.1109/ICCV.2013.29 (cited on p. 89).

Arteta, C., Lempitsky, V., Noble, J. A., and Zisserman, A. (2013). “Learning to Detect
Partially Overlapping Instances”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3230-3237. DOI: 10.1109/CVPR.2013.415 (cited on p. 30).

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press.
ISBN: 0521518148 (cited on p. 8).

Batra, D., Kowdle, A., Parikh, D., Luo, J., and Chen, T. (2010). “iCoseg: Interactive co-
segmentation with intelligent scribble guidance”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3169-3176. DOI: 10.1109/CVPR.2010.
5540080 (cited on p. 74).

Batra, D., Yadollahpour, P., Guzman-Rivera, A., and Shakhnarovich, G. (2012). “Diverse
M-best solutions in Markov random fields”. In: Furopean Conference on Computer Vision
(ECCV). DOL: 10.1007/978-3-642-33715-4_1 (cited on pp. 63-65).

Beier, T., Kroeger, T., Kappes, J. H., Koethe, U., and Hamprecht, F. A. (2014). “Cut, Glue
& Cut: A Fast, Approximate Solver for Multicut Partitioning”. In: IEEE Conference on


http://dx.doi.org/10.1038/nmeth.3036
http://dx.doi.org/10.1038/nmeth.3036
http://dx.doi.org/10.1109/ICCV.2013.29
http://dx.doi.org/10.1109/CVPR.2013.415
http://dx.doi.org/10.1109/CVPR.2010.5540080
http://dx.doi.org/10.1109/CVPR.2010.5540080
http://dx.doi.org/10.1007/978-3-642-33715-4_1

108 BIBLIOGRAPHY

Computer Vision and Pattern Recognition (CVPR), pp. 73-80. DoL: 10.1109/CVPR.
2014.17 (cited on p. 90).

Ben Shitrit, H., Berclaz, J., Fleuret, F., and Fua, P. (2011). “Tracking multiple people under
global appearance constraints”. In: IEEE International Conference on Computer Vision
(ICCV), pp. 137-144. DOL: 10.1109/ICCV.2011.6126235 (cited on p. 14).

Bise, R., Yin, Z., and Kanade, T. (2011). “Reliable Cell Tracking by Global Data Associa-
tion”. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro
(ISBI), pp. 1004-1010. 1SBN: 9781424441280. DOI: 10.1109/ISBI.2011.5872571 (cited
on pp. 6, 7, 27, 30, 47, 48).

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc. 1SBN: 0387310738 (cited on p. 8).

Bose, B., Wang, X., and Grimson, E. (2007). “Multi-class object tracking algorithm that
handles fragmentation and grouping”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). DOI: 10.1109/CVPR.2007.383175 (cited on p. 14).

Boyd, S., Xiao, L., and Mutapcic, A. (2003). “Subgradient methods”. In: Lecture Notes of
EFE3920, Stanford University, Autumn Quarter (cited on p. 68).

Breiman, L. (2001). “Random forests”. In: Machine Learning 45.1, pp. 5-32. DOI: 10.1023/
A:1010933404324 (cited on pp. 17, 21, 40, 53).

Brendel, W., Amer, M., and Todorovic, S. (2011). “Multiobject tracking as maximum weight
independent set”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1273-1280. 1SBN: 978-1-4577-0394-2. DOI: 10.1109/CVPR. 2011 . 5995395
(cited on p. 31).

Brendel, W. and Todorovic, S. (2010). “Segmentation as Maximum-Weight Independent
Set”. In: Neural Information Processing Systems (NIPS), pp. 307-315 (cited on p. 31).

Budvytis, I., Badrinarayanan, V., and Cipolla, R. (2011). “Semi-supervised video segmenta-
tion using tree structured graphical models”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2257-2264. pOI: 10.1109/CVPR.2011.5995600
(cited on p. 29).

Buntine, W. L. (1994). “Operations for learning with graphical models”. In: Journal of
Artificial Intelligence Research 2, pp. 159-225 (cited on p. 73).

Chen, C., Kolmogorov, V., Zhu, Y., Metaxas, D. N., and Lampert, C. H. (2013). “Computing
the M Most Probable Modes of a Graphical Model”. In: International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 161-169 (cited on p. 65).

Chen, C., Liu, H., Metaxas, D. N.; and Zhao, T. (2014). “Mode Estimation for High Di-
mensional Discrete Tree Graphical Models”. In: Neural Information Processing Systems
(NIPS), pp. 1323-1331 (cited on p. 65).

Claxton, T. and Benson, G. (1966). “Stereochemistry and Seven Coordination”. In: Canadian
Journal of Chemistry 44.2, pp. 157-163 (cited on pp. 70, 71).

Conway, J. H. and Sloane, N. J. A. (1987). Sphere-packings, Lattices, and Groups. Springer-
Verlag New York, Inc. (cited on p. 70).


http://dx.doi.org/10.1109/CVPR.2014.17
http://dx.doi.org/10.1109/CVPR.2014.17
http://dx.doi.org/10.1109/ICCV.2011.6126235
http://dx.doi.org/10.1109/ISBI.2011.5872571
http://dx.doi.org/10.1109/CVPR.2007.383175
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/CVPR.2011.5995395
http://dx.doi.org/10.1109/CVPR.2011.5995600

BIBLIOGRAPHY 109

Coutu, D. L. and Schroeder, T. (2013). “Probing cellular processes by long-term live imaging—
historic problems and current solutions”. In: Journal of Cell Science 126.17, pp. 3805—
3815 (cited on p. 2).

Cover, T. M. (1965). “Geometrical and Statistical Properties of Systems of Linear Inequal-
ities with Applications in Pattern Recognition”. In: IEEE Transactions on FElectronic
Computers EC-14.3, pp. 326-334. 1SSN: 0367-7508. DOI: 10.1109/PGEC. 1965 . 264137
(cited on p. 69).

Dicle, C., Camps, O. L., and Sznaier, M. (2013). “The Way They Move: Tracking Targets with
Similar Appearance”. In: IEEE International Conference on Computer Vision (ICCV),
pp. 2304-2311. poI: 10.1109/ICCV.2013.286 (cited on p. 87).

Enzweiler, M. and Gavrila, D. M. (2009). “Monocular pedestrian detection: Survey and ex-
periments”. In: IEEFE Transactions on Pattern Analysis and Machine Intelligence 31.12,
pp. 2179-2195. DOI: 10.1109/TPAMI.2008.260 (cited on p. 4).

Erber, T. and Hockney, G. M. (1991). “Equilibrium configurations of N equal charges on a
sphere”. In: Journal of Physics A: Mathematical and General 24.23 (cited on p. 70).
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010).
The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results. [Online; last
accessed 09/02/2015]. URL: http://www . pascal -network . org/challenges/VOC/

voc2010/workshop/index.html (cited on p. 74).

Fox, E. B., Choi, D. S., and Willsky, A. S. (2006). “Nonparametric Bayesian methods for
large scale multi-target tracking”. In: Asilomar Conference on Signals, Systems, and
Computers, pp. 2009-2013. DOI: 10.1109/ACSSC.2006.355118 (cited on p. 14).

Funke, J., Andres, B., Hamprecht, F. A., Cardona, A., and Cook, M. (2012). “Efficient
automatic 3D-reconstruction of branching neurons from EM data”. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1004-1011. 1SBN: 978-1-4673-
1228-8. DOI: 10.1109/CVPR.2012.6247777 (cited on pp. 6, 30).

Funke, J. (2014). “Automatic Neuron Reconstruction from Anisotropic Electron Microscopy
Volumes”. PhD thesis. Institute of Neuroinformatics, ETH Zurich (cited on pp. 55, 88).

Gane, A., Hazan, T., and Jaakkola, T. (2014). “Learning with Maximum A-Posteriori Per-
turbation Models”. In: International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 247-256 (cited on pp. 63, 65).

Gimpel, K., Batra, D., Dyer, C., Shakhnarovich, G., and Tech, V. (2013). “A Systematic
Exploration of Diversity in Machine Translation”. In: Conference on Empirical Methods
on Natural Language Processing (cited on p. 63).

Gonzélez, G., Fusco, L., Benmansour, F., Fua, P., Pertz, O., and Smith, K. (2013). “Auto-
mated quantification of morphodynamics for high-throughput live cell time-lapse data-
sets”. In: IEEFE International Symposium on Biomedical Imaging: From Nano to Macro
(ISBI), pp. 664-667. DOI: 10.1109/ISBI.2013.6556562 (cited on p. 2).

GPy authors, the (2014). GPy: A Gaussian process framework in Python. https://github.
com/SheffieldML/GPy (cited on p. 55).


http://dx.doi.org/10.1109/PGEC.1965.264137
http://dx.doi.org/10.1109/ICCV.2013.286
http://dx.doi.org/10.1109/TPAMI.2008.260
http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
http://dx.doi.org/10.1109/ACSSC.2006.355118
http://dx.doi.org/10.1109/CVPR.2012.6247777
http://dx.doi.org/10.1109/ISBI.2013.6556562
https://github.com/SheffieldML/GPy
https://github.com/SheffieldML/GPy

110 BIBLIOGRAPHY

Graepel, T. and Herbrich, R. (2000). “The Kernel Gibbs Sampler”. In: Neural Information
Processing Systems (NIPS), pp. 514-520 (cited on p. 70).

Guzman-Rivera, A., Batra, D., and Kohli, P. (2012). “Multiple Choice Learning: Learning
to Produce Multiple Structured Outputs”. In: Neural Information Processing Systems
(NIPS), pp. 1808-1816 (cited on pp. 63, 65, 66, 73, 75, 76).

Guzman-Rivera, A., Kohli, P., Batra, D., and Rutenbar, R. A. (2014). “Efficiently Enforc-
ing Diversity in Multi-Output Structured Prediction”. In: International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 284-292 (cited on pp. 63, 65, 66,
75, 76, 78).

Hardin, R. H. and Sloane, N. J. A. (1993). “A new approach to the construction of optimal
designs”. In: Journal of Statistical Planning and Inference 37.3, pp. 339-369 (cited on
p. 70).

Hazan, T., Maji, S., and Jaakkola, T. (2013). “On sampling from the Gibbs distribution
with random maximum a-posteriori perturbations”. In: Neural Information Processing
Systems (NIPS), pp. 1268-1276 (cited on p. 65).

Herbrich, R., Graepel, T., and Campbell, C. (2001). “Bayes Point Machines”. In: Journal of
Machine Learning Research 1, pp. 245-279. 18SN: 1532-4435 (cited on p. 70).

Herbrich, R., Graepel, T., and Williamson, R. C. (2004). The Structure of Version Space.
Tech. rep. MSR-TR-2004-63. Microsoft Research, p. 17 (cited on pp. 69, 70).

Hockendorf, B., Thumberger, T., and Wittbrodt, J. (2012). “Quantitative analysis of embryo-
genesis: A perspective for light sheet microscopy”. In: Developmental Cell 23.6, pp. 1111—
1120 (cited on pp. 1, 2, 4).

Hofmann, M., Wolf, D., and Rigoll, G. (2013). “Hypergraphs for Joint Multi-View Recon-
struction and Multi-Object Tracking”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3650-3657. DOI: 10.1109/CVPR.2013.468 (cited on
p. 30).

Ton, A., Carreira, J., and Sminchisescu, C. (2011). “Image Segmentation by Figure-Ground
Composition into Maximal Cliques”. In: IEEE International Conference on Computer
Vision (ICCV), pp. 2110-2117. DOI: 10.1109/ICCV.2011.6126486 (cited on p. 31).

Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L., and Danuser,
G. (2008). “Robust single-particle tracking in live-cell time-lapse sequences”. In: Nature
Methods 5.8, pp. 695-702 (cited on p. 87).

Jug, F., Pietzsch, T., Kainmiiller, D., Funke, J., Kaiser, M., Nimwegen, E. van, Rother, C.,
and Myers, G. (2014). “Optimal Joint Segmentation and Tracking of Escherichia Coli
in the Mother Machine”. In: Bayesian and Graphical Models for Biomedical Imaging
(BAMBI-MICCAI), pp. 25-36. DOI: 10.1007/978-3-319-12289-2_3 (cited on pp. 30,
48).

Kachouie, N. N., Fieguth, P. W., Ramunas, J., and Jervis, E. (2006). “Probabilistic model-
based cell tracking”. In: International Journal of Biomedical Imaging. DOI: 10.1155/
IJBI/2006/12186 (cited on p. 6).


http://dx.doi.org/10.1109/CVPR.2013.468
http://dx.doi.org/10.1109/ICCV.2011.6126486
http://dx.doi.org/10.1007/978-3-319-12289-2_3
http://dx.doi.org/10.1155/IJBI/2006/12186
http://dx.doi.org/10.1155/IJBI/2006/12186

BIBLIOGRAPHY 111

Kanade, T., Yin, Z., Bise, R., Huh, S., Eom, S., Sandbothe, M. F., and Chen, M. (2011).
“Cell image analysis: Algorithms, system and applications”. In: IEEE Workshop on Ap-
plications of Computer Vision (WACV), pp. 374-381. DOI: 10.1109/WACV.2011.5711528
(cited on p. 2).

Katanforoush, A. and Shahshahani, M. (2003). “Distributing points on the sphere”. In:
Ezperimental Mathematics 12.2, pp. 199-209. por: 10.1080/10586458.2003.10504492
(cited on p. 70).

Kausler, B. X., Schiegg, M., Andres, B., Lindner, M. S., Koethe, U., Leitte, H., Wittbrodt,
J., Hufnagel, L., and Hamprecht, F. A. (2012b). “A Discrete Chain Graph Model for
3d + t Cell Tracking with High Misdetection Robustness”. In: European Conference on
Computer Vision (ECCV), pp. 144-157. pOL: 10.1007/978-3-642-33712-3_11 (cited
on pp. 7, 14, 21, 22, 25, 27, 30).

Keller, P. J., Schmidt, A. D., Santella, A., Khairy, K., Bao, Z., Wittbrodt, J., and Stelzer,
E. H. (2010). “Fast, high-contrast imaging of animal development with scanned light
sheet-based structured-illumination microscopy”. In: Nature Methods 7.8, pp. 637642
(cited on p. 1).

Keller, P. J., Schmidt, A. D., Wittbrodt, J., and Stelzer, E. H. (2008). “Reconstruction of
zebrafish early embryonic development by scanned light sheet microscopy”. In: Science
322.5904, pp. 1065-1069 (cited on pp. 1, 2).

Al-Kofahi, O., Radke, R. J., Goderie, S. K., Shen, Q., Temple, S., and Roysam, B. (2006).
“Automated Cell Lineage Construction: A Rapid Method to Analyze Clonal Development
Established with Murine Neural Progenitor Cells”. In: Cell Cycle 5.3, pp. 327-335 (cited

on p. 47).
Koller, D. and Friedman, N. (2010). Probabilistic Graphical Models (cited on pp. 8, 9, 15,
53).

Kolmogorov, V. (2006). “Convergent tree-reweighted message passing for energy minimiza-
tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.10, 1568—
1583. pOI: 10.1109/TPAMI.2006.200 (cited on p. 76).

Komodakis, N., Paragios, N., and Tziritas, G. (2007). “MRF optimization via dual decom-
position: Message-passing revisited”. In: IEEFE International Conference on Computer
Vision (ICCV). DOI: 10.1109/ICCV.2007.4408890 (cited on p. 83).

Kragel, B., Herman, S., and Roseveare, N. (2012). “A Comparison of Methods for Estimating
Track-to-Track Assignment Probabilities”. In: IEEE Transactions on Aerospace and Elec-
tronic Systems 48.3, pp. 1870-1888. 1ssN: 0018-9251. DOI: 10.1109/TAES.2012.6237567
(cited on p. 49).

Krihenbiihl, P. and Koltun, V. (2011). “Efficient Inference in Fully Connected CRFs with
Gaussian Edge Potentials”. In: Neural Information Processing Systems (NIPS), pp. 109—
117 (cited on p. 79).

Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J., and Hufnagel, L. (2012). “Multiview
light-sheet microscope for rapid in toto imaging”. In: Nature Methods 9.7, pp. 730-733.
ISSN: 1548-7105. DOL: 10.1038/nmeth.2064 (cited on pp. 1, 3, 5, 91, 92).


http://dx.doi.org/10.1109/WACV.2011.5711528
http://dx.doi.org/10.1080/10586458.2003.10504492
http://dx.doi.org/10.1007/978-3-642-33712-3_11
http://dx.doi.org/10.1109/TPAMI.2006.200
http://dx.doi.org/10.1109/ICCV.2007.4408890
http://dx.doi.org/10.1109/TAES.2012.6237567
http://dx.doi.org/10.1038/nmeth.2064

112 BIBLIOGRAPHY

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001). “Factor graphs and the sum-
product algorithm”. In: IEEE Transactions on Information Theory 47.2, pp. 498-519.
ISSN: 0018-9448. por: 10.1109/18.910572 (cited on pp. 8, 16, 33).

Lakhbab, H., Bernoussi, S. E., and Harif, A. E. (2012). “Energy Minimization of Point
Charges on a Sphere with a Spectral Projected Gradient Method”. In: International
Journal of Scientific & Engineering Research 3.5 (cited on pp. 70, 71).

Lampert, C. H. (2011). “Maximum margin multi-label structured prediction”. In: Neural
Information Processing Systems (NIPS), pp. 289-297 (cited on p. 69).

Lezama, J., Alahari, K., Sivic, J., and Laptev, I. (2011). “Track to the future: Spatio-
temporal video segmentation with long-range motion cues”. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3369-3376. DOL: 10.1109/CVPR.
2011.6044588 (cited on p. 29).

Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R., and
Lichtman, J. W. (2007). “Transgenic strategies for combinatorial expression of fluorescent
proteins in the nervous system”. In: Nature 450.7166, pp. 56-62. 1SSN: 1476-4687. DOI:
10.1038/nature06293 (cited on p. 4).

Lou, X. and Hamprecht, F. A. (2011). “Structured Learning for Cell Tracking”. In: Neural
Information Processing Systems (NIPS), pp. 1296-1304 (cited on pp. 14, 66).

Lou, X. and Hamprecht, F. A. (2012). “Structured Learning from Partial Annotations”. In:
International Conference on Machine Learning (ICML) (cited on p. 66).

Lou, X., Koethe, U., Wittbrodt, J., and Hamprecht, F. A. (2012). “Learning to Segment
Dense Cell Nuclei with Shape Prior”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1012-1018. DOI: 10.1109/CVPR.2012.6247778 (cited
on pp. 23, 30).

Lou, X., Schiegg, M., and Hamprecht, F. A. (2014b). “Active Structured Learning for
Cell Tracking: Algorithm, Framework and Usability”. In: IEEE Transactions on Medical
Imaging 33.4, pp. 849-860. 1SSN: 0278-0062. DOI: 10.1109/TMI.2013.2296937 (cited on
pp. 49, 85).

Lucchi, A., Li, Y., Smith, K., and Fua, P. (2012). “Structured image segmentation using
kernelized features”. In: Furopean Conference on Computer Vision (ECCYV). Springer,
pp- 400-413. por: 10.1007/978-3-642-33709-3_29 (cited on p. 89).

Luo, R. C., Yih, C.-C., and Su, K. L. (2002). “Multisensor fusion and integration: approaches,
applications, and future research directions”. In: Sensors Journal 2.2, pp. 107-119. 1SSN:
1530-437X. DOI: 10.1109/JSEN.2002.1000251 (Cited on p. 4).

Magnusson, K., Jalden, J., Gilbert, P., and Blau, H. (2014). “Global linking of cell tracks
using the Viterbi algorithm”. In: IEEE Transactions on Medical Imaging PP.99. 1SSN:
0278-0062. DOT: 10.1109/TMI.2014.2370951 (cited on pp. 6, 14, 88).

Maji, S., Hazan, T., and Jaakkola, T. (2014). “Efficient Boundary Annotation using Ran-
dom Maximum A-Posteriori Perturbations”. In: International Conference on Artificial
Intelligence and Statistics (AISTATS) (cited on pp. 49, 63).


http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1109/CVPR.2011.6044588
http://dx.doi.org/10.1109/CVPR.2011.6044588
http://dx.doi.org/10.1038/nature06293
http://dx.doi.org/10.1109/CVPR.2012.6247778
http://dx.doi.org/10.1109/TMI.2013.2296937
http://dx.doi.org/10.1007/978-3-642-33709-3_29
http://dx.doi.org/10.1109/JSEN.2002.1000251
http://dx.doi.org/10.1109/TMI.2014.2370951

BIBLIOGRAPHY 113

Maska, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., Urbiola, A., Espana,
T., Venkatesan, S., Balak, D. M. W., Karas, P., Bolckova, T., Streitova, M., Carthel,
C., Coraluppi, S., Harder, N., Rohr, K., Magnusson, K. E. G., Jaldén, J., Blau, H. M.,
Dzyubachyk, O., Krizek, P., Hagen, G. M., Pastor-Escuredo, D., Jimenez-Carretero, D.,
Ledesma-Carbayo, M. J., Mufioz-Barrutia, A., Meijering, E., Kozubek, M., and Ortiz-de-
Solorzano, C. (2014). “A Benchmark for Comparison of Cell Tracking Algorithms”. In:
Bioinformatics 30.11, pp. 1609-1617. 1sSN: 1460-2059. DOI: 10.1093/bioinformatics/
btu080 (cited on p. 2).

Meijering, E., Dzyubachyk, O., and Smal, I. (2012). “Methods for cell and particle tracking”.
In: Methods in Enzymology: Live Cell Imaging 504.9, pp. 183-200 (cited on pp. 2, 4).
Meijering, E., Dzyubachyk, O., Smal, I., and Cappellen, W. A. van (2009). “Tracking in cell
and developmental biology”. In: Seminars in Cell & Developmental Biology. Vol. 20. 8.

Elsevier, pp. 894-902 (cited on pp. 2, 47).

Mitchell, T. M. (1997). Machine Learning. 1st ed. McGraw-Hill, Inc. 1sBN: 0070428077 (cited
on p. 69).

Miiller, A. C. and Behnke, S. (2014). “PyStruct - Learning Structured Prediction in Python”.
In: Journal of Machine Learning Research 15.1, pp. 20552060 (cited on pp. 74, 79, 81).

Neubauer, Schilling, Watkins, and Zeitlin (1998). “An algorithm for finding potential mini-
mizing configurations of points on a sphere”. In: [Online; last accessed 09/02/2015]. URL:
http://www.csun.edu/~hcmth007/algorithm. html (cited on p. 71).

Nillius, P., Sullivan, J., and Carlsson, S. (2006). “Multi-Target Tracking — Linking Identities
using Bayesian Network Inference”. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). Vol. 2, pp. 2187-2194. DOI: 10.1109/CVPR.2006.198 (cited
on p. 14).

Nowozin, S. and Lampert, C. H. (2011). “Structured learning and prediction in computer
vision”. In: Foundations and Trends in Computer Graphics and Vision 6.3-4, pp. 185—
365. DOL: 10.1561/0600000033 (cited on pp. 63, 66, 68).

Padfield, D. R., Rittscher, J., and Roysam, B. (2009). “Coupled minimum-cost flow cell
tracking”. In: Information Processing in Medical Imaging. Ed. by J. Prince, D. Pham,
and K. Myers. Vol. 5636. Lecture Notes in Computer Science. Springer, pp. 374-85. ISBN:
978-3-642-02497-9. DOI: 10.1007/978-3-642-02498-6_31 (cited on pp. 14, 47, 48).

Papandreou, G. and Yuille, A. L. (2011). “Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models”. In: IEEE International Confer-
ence on Computer Vision (ICCV), pp. 193-200. po1: 10.1109/ICCV.2011 . 6126242
(cited on pp. 48-50, 63-65, 85).

Park, C., Huang, J. Z., Ji, J. X., and Ding, Y. (2013). “Segmentation, Inference and Classifi-
cation of Partially Overlapping Nanoparticles”. In: IEEE Transactions on Pattern Anal-
ysts and Machine Intelligence 35.3. 1SSN: 0162-8828. poI: 10.1109/TPAMI. 2012. 163
(cited on p. 30).

Pirsiavash, H., Ramanan, D., and Fowlkes, C. C. (2011). “Globally-Optimal Greedy Algo-
rithms for Tracking a Variable Number of Objects”. In: IEEE Conference on Computer


http://dx.doi.org/10.1093/bioinformatics/btu080
http://dx.doi.org/10.1093/bioinformatics/btu080
http://www.csun.edu/~hcmth007/algorithm.html
http://dx.doi.org/10.1109/CVPR.2006.198
http://dx.doi.org/10.1561/0600000033
http://dx.doi.org/10.1007/978-3-642-02498-6_31
http://dx.doi.org/10.1109/ICCV.2011.6126242
http://dx.doi.org/10.1109/TPAMI.2012.163

114 BIBLIOGRAPHY

Vision and Pattern Recognition (CVPR), pp. 1201-1208. DO1: 10.1109/CVPR. 2011 .
5995604 (cited on p. 89).

Prasad, A., Jegelka, S., and Batra, D. (2014). “Submodular meets Structured: Finding Di-
verse Subsets in Exponentially-Large Structured Item Sets”. In: Neural Information Pro-
cessing Systems (NIPS), pp. 2645-2653 (cited on p. 73).

Premachandran, V., Tarlow, D., and Batra, D. (2014). “Empirical Minimum Bayes Risk
Prediction: How to extract an extra few% performance from vision models with just three
more parameters”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1043-1050. DOI: 10.1109/CVPR.2014.137 (cited on p. 63).

Rapoport, D. H., Becker, T., Madany Mamlouk, A., Schicktanz, S., and Kruse, C. (2011).
“A novel validation algorithm allows for automated cell tracking and the extraction of
biologically meaningful parameters”. In: PLOS ONE 6.11, e27315. 1SSN: 1932-6203. DOTI:
10.1371/journal.pone.0027315 (cited on pp. 40, 42, 43, 46, 49).

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning.
Vol. 14. 2. 1sBN: 026218253X (cited on pp. 51, 52).

Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. (2007). “(Online) Subgradient Methods
for Structured Prediction”. In: International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 380387 (cited on p. 67).

Roig, G., Boix, X., Nijs, R. de, Ramos, S., Kithnlenz, K., and Van Gool, L. J. (2013). “Active
MAP Inference in CRFs for Efficient Semantic Segmentation”. In: IEEFE International
Conference on Computer Vision (ICCV), pp. 2312-2319. pOI: 10.1109/ICCV.2013.287
(cited on p. 63).

Rother, C., Minka, T. P., Blake, A., and Kolmogorov, V. (2006). “Cosegmentation of image
pairs by histogram matching-incorporating a global constraint into MRFs”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 993-1000. DOI:
10.1109/CVPR.2006.91 (cited on p. 76).

Rubio, J. C., Serrat, J., Lopez, A. M., and Ponsa, D. (2012). “Multiple-Target Tracking
for Intelligent Headlights Control”. In: IEEE Transactions on Intelligent Transportation
Systems 13.2, pp. 594—605. 1SSN: 1524-9050. DOI: 10.1109/TITS.2011.2175219 (cited
on p. 6).

Saff, E. B. and Kuijlaars, A. B. (1997). “Distributing many points on a sphere”. In: The
Mathematical Intelligencer 19.1, pp. 5-11 (cited on p. 70).

Sahni, S. (1974). “Computationally related problems”. In: STAM Journal on Computing 3.4,
pp. 262-279. DOI: 10.1137/0203021 (cited on pp. 11, 14).

Schiegg, M., Diego, F., and Hamprecht, F. A. (2015a). Learning Diverse Models: The Coulomb
Structured Support Vector Machine. (under review) (cited on p. 64).

Schiegg™, M., Hanslovsky®, P., Haubold, C., Koethe, U., Hufnagel, L., and Hamprecht,
F. A. (2014). “Graphical Model for Joint Segmentation and Tracking of Multiple Di-
viding Cells”. In: Bioinformatics. [* contributed equally], in press. DOI: 10 . 1093 /
bioinformatics/btu764 (cited on p. 27).


http://dx.doi.org/10.1109/CVPR.2011.5995604
http://dx.doi.org/10.1109/CVPR.2011.5995604
http://dx.doi.org/10.1109/CVPR.2014.137
http://dx.doi.org/10.1371/journal.pone.0027315
http://dx.doi.org/10.1109/ICCV.2013.287
http://dx.doi.org/10.1109/CVPR.2006.91
http://dx.doi.org/10.1109/TITS.2011.2175219
http://dx.doi.org/10.1137/0203021
http://dx.doi.org/10.1093/bioinformatics/btu764
http://dx.doi.org/10.1093/bioinformatics/btu764

BIBLIOGRAPHY 115

Schiegg, M., Hanslovsky, P., Kausler, B. X., Hufnagel, L., and Hamprecht, F. A. (2013).
“Conservation Tracking”. In: IEEE International Conference on Computer Vision (IC-
CV), pp. 2928-2935. DOI: 10.1109/ICCV.2013.364 (cited on pp. 11, 14).

Schiegg, M., Heuer, B., Haubold, C., Wolf, S., Koethe, U., and Hamprecht, F. A. (2015b).
“Proof-reading guidance in cell tracking by sampling from tracking-by-assignment mod-
els”. In: IEEFE International Symposium on Biomedical Imaging: From Nano to Macro
(ISBI). (in press) (cited on p. 47).

Sommer, C., Straehle, C., Koethe, U., and Hamprecht, F. A. (2011). “ilastik: Interactive
learning and segmentation toolkit”. In: IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (ISBI), pp. 230-233. 1SBN: 978-1-4244-4127-3. pOL: 10.
1109/ISBI.2011.5872394 (cited on pp. 22, 39, 91, 95).

Sulston, J. E. and Horvitz, H. R. (1977). “Post-embryonic cell lineages of the nematode,
Caenorhabditis elegans”. In: Developmental Biology 56.1, pp. 110-156 (cited on p. 2).
Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. (2005). “Learning structured
prediction models: A large margin approach”. In: International Conference on Machine

Learning (ICML). ACM, pp. 896-903 (cited on p. 67).

Taskar, B., Guestrin, C., and Koller, D. (2004). “Max-Margin Markov Networks”. In: Neural
Information Processing Systems (NIPS), pp. 25-32 (cited on p. 9).

Tomer, R., Khairy, K., Amat, F., and Keller, P. J. (2012). “Quantitative high-speed imaging
of entire developing embryos with simultaneous multiview light-sheet microscopy”. In:
Nature Methods 9.7, pp. 755-763. 1SSN: 1548-7105. DOI: 10.1038/nmeth.2062 (cited on
pp- 1, 5).

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). “Large Margin Methods
for Structured and Interdependent Output Variables”. In: Journal of Machine Learning
Research 6, pp. 1453-1484. 18SN: 1532-4435 (cited on pp. 10, 63, 66, 67, 69, 89).

Vazquez-Reina, A., Avidan, S., Pfister, H., and Miller, E. L. (2010). “Multiple Hypothe-
sis Video Segmentation from Superpixel Flows”. In: Furopean Conference on Computer
Vision (ECCV), pp. 268-281. DOI: 10.1007/978-3-642-15555-0_20 (cited on p. 29).

Wainwright, M. J. and Jordan, M. I. (2008). “Graphical models, exponential families, and
variational inference”. In: Foundations and Trends in Machine Learning 1.1-2, pp. 1-305
(cited on p. 8).

Wang, C., La Gorce, M. de, and Paragios, N. (2009). “Segmentation, ordering and multi-
object tracking using graphical models”. In: IEEFE International Conference on Computer
Vision (ICCV), pp. 747-754. DOIL: 10.1109/ICCV.2009.5459247 (cited on p. 11).

Williams, C. K. I. and Barber, D. (1998). “Bayesian Classification With Gaussian Processes”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 20.12, pp. 1342—
1351. 1sSN: 0162-8828. DOI: 10.1109/34.735807 (cited on p. 52).

Wu, Z., Thangali, A., Sclaroff, S., and Betke, M. (2012). “Coupling Detection and Data
Association for Multiple Object Tracking”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1948-1955. DOI: 10.1109/CVPR.2012 . 6247896
(cited on p. 11).


http://dx.doi.org/10.1109/ICCV.2013.364
http://dx.doi.org/10.1109/ISBI.2011.5872394
http://dx.doi.org/10.1109/ISBI.2011.5872394
http://dx.doi.org/10.1038/nmeth.2062
http://dx.doi.org/10.1007/978-3-642-15555-0_20
http://dx.doi.org/10.1109/ICCV.2009.5459247
http://dx.doi.org/10.1109/34.735807
http://dx.doi.org/10.1109/CVPR.2012.6247896

116 BIBLIOGRAPHY

Xiong, G., Feng, C., and Ji, L. (2006). “Dynamical Gaussian mixture model for tracking
elliptical living objects”. In: Pattern Recognition Letters 27.7, pp. 838-842. pOI: 10.
1016/j.patrec.2005.11.015 (cited on p. 29).

Yadollahpour, P., Batra, D., and Shakhnarovich, G. (2013). “Discriminative Re-ranking of
Diverse Segmentations”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1923-1930. DOI: 10.1109/CVPR.2013.251 (cited on pp. 63, 90).

Yanover, C. and Weiss, Y. (2003). “Finding the M most probable configurations using loopy
belief propagation”. In: Neural Information Processing Systems (NIPS) (cited on pp. 63,
64).

Yilmaz, A., Javed, O., and Shah, M. (2006). “Object tracking: A Survey”. In: ACM Com-
puting Surveys 38.4. 1SSN: 03600300. DOI: 10.1145/1177352.1177355 (cited on p. 4).
Zhang, L., Li, Y., and Nevatia, R. (2008). “Global data association for multi-object tracking
using network flows”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). DOL: 10.1109/CVPR.. 20084587584 (cited on pp. 6, 14).


http://dx.doi.org/10.1016/j.patrec.2005.11.015
http://dx.doi.org/10.1016/j.patrec.2005.11.015
http://dx.doi.org/10.1109/CVPR.2013.251
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1109/CVPR.2008.4587584

List of Publications

Peer-reviewed Journal Articles

Schiegg*, M., Hanslovsky*, P., Haubold, C., Koethe, U., Hufnagel, L., and Hamprecht,
F. A. (2014). “Graphical Model for Joint Segmentation and Tracking of Multiple Di-
viding Cells”. In: Bioinformatics. [* contributed equally], in press. DOI: 10 . 1093/
bioinformatics/btu764.

Peer-reviewed Conference Articles

Schiegg, M., Diego, F., and Hamprecht, F. A. (2015a). Learning Diverse Models: The
Coulomb Structured Support Vector Machine. (under review).

Schiegg, M., Hanslovsky, P., Kausler, B. X., Hufnagel, L., and Hamprecht, F. A. (2013).
“Conservation Tracking”. In: IEEE International Conference on Computer Vision (IC-
CV), pp. 2928-2935. pDOL: 10.1109/ICCV.2013.364.

Schiegg, M., Heuer, B., Haubold, C., Wolf, S., Koethe, U., and Hamprecht, F. A. (2015b).
“Proof-reading guidance in cell tracking by sampling from tracking-by-assignment mod-
els”. In: IEEFE International Symposium on Biomedical Imaging: From Nano to Macro
(ISBI). (in press).

Contributions beyond the Scope of this Thesis

Fiaschi, L., Diego, F., Gregor, K., Schiegg, M., Koethe, U., Zlatic, M., and Hamprecht,
F. A. (2014). “Tracking Indistinguishable Translucent Objects over Time using Weakly
Supervised Structured Learning”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2736-2743. DOI: 10.1109/CVPR.2014.356.


http://dx.doi.org/10.1093/bioinformatics/btu764
http://dx.doi.org/10.1093/bioinformatics/btu764
http://dx.doi.org/10.1109/ICCV.2013.364
http://dx.doi.org/10.1109/CVPR.2014.356

118 BIBLIOGRAPHY

Kausler, B. X., Schiegg, M., Andres, B., Lindner, M. S., Koethe, U., Leitte, H., Wittbrodt,
J., Hufnagel, L., and Hamprecht, F. A. (2012a). “A Discrete Chain Graph Model for 3d
+ t Cell Tracking with High Misdetection Robustness”. In: Furopean Conference on
Computer Vision (ECCV), pp. 144-157. DOIL: 10.1007/978-3-642-33712-3_11.

Lou, X., Schiegg, M., and Hamprecht, F. A. (2014a). “Active Structured Learning for
Cell Tracking: Algorithm, Framework and Usability”. In: IEEE Transactions on Medical
Imaging 33.4, pp. 849-860. 1SSN: 0278-0062. DOI: 10.1109/TMI.2013.2296937.


http://dx.doi.org/10.1007/978-3-642-33712-3_11
http://dx.doi.org/10.1109/TMI.2013.2296937

	Contents
	1 Introduction
	1.1 Challenges for Computer Vision
	1.2 Tracking-by-assignment Methods for Cell Tracking
	1.3 Goals and Structure of the Thesis
	1.4 Factor Graphs & Log-linear Models

	2 Conservation Tracking
	2.1 Related Work
	2.2 Tracking Divisible Objects in spite of Over- and Undersegmentation
	2.2.1 Graphical Model Implementing Global Conservation Laws
	2.2.2 Resolving Merged Objects
	2.2.3 Cross Correlation for Region Center Correction
	2.2.4 Implementation

	2.3 Experiments & Results

	3 Joint Cell Segmentation and Tracking
	3.1 Related Work
	3.2 Pipeline for Joint Segmentation and Tracking
	3.2.1 Competing Segmentation Hypotheses
	3.2.2 Graphical Model for Joint Segmentation and Tracking
	3.2.3 Local Classifiers
	3.2.4 Implementation Details

	3.3 Results & Discussion
	3.3.1 Evaluation Measures
	3.3.2 Results for Joint Segmentation and Tracking


	4 Proof-reading Guidance by Sampling
	4.1 Related Work
	4.2 Sampling from Tracking-by-Assignment Models
	4.2.1 Tracking-by-Assignment Models
	4.2.2 Sampling through Perturb-and-MAP Random Fields
	4.2.3 Sampling through Gaussian Processes
	4.2.4 Graphical Model Point of View

	4.3 Uncertainty in Cell Tracking
	4.4 Experiments & Results

	5 Learning Diverse Models
	5.1 Related Work
	5.2 Structured Support Vector Machine
	5.3 Coulomb Structured Support Vector Machine
	5.3.1 Problem Description and Diversity Prior
	5.3.2 Diversity through Coulomb Potential
	5.3.3 Optimization by an Electrostatic Repulsion Model
	5.3.4 Extension: Structured Clustering

	5.4 Experiments & Results
	5.4.1 Co-Segmentation
	5.4.2 Foreground/background Segmentation
	5.4.3 Semantic Segmentation


	6 Discussion
	6.1 Conclusions & Contributions
	6.1.1 Higher Accuracy through Synergy Effects
	6.1.2 Uncertainty Measures for Guided Proof-Reading
	6.1.3 Parameter Learning for Diverse Models to Improve Generalization on Test Data
	6.1.4 Dense Ground-Truth for Dataset from Developmental Biology
	6.1.5 Open Source Development
	6.1.6 Applicability for Non-expert Users

	6.2 Limitations & Outlook
	6.2.1 Gap Closing: Find Undetected Cells
	6.2.2 Approximate or Decoupled Inference
	6.2.3 Higher-order Relations through Tracklets
	6.2.4 Non-linear Energy Parameterization
	6.2.5 Re-ranking of Proposal Solutions
	6.2.6 Fusion of Proposal Solutions


	A Drosophila Dataset Description
	B Runtime Comparisons
	List of Figures
	List of Tables
	Bibliography
	List of Publications

