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1 Summary 

Chromosomal instability (CIN) is one of the hallmarks of cancer and is found to be a 

characteristic property of most solid tumors. However, only little is known about the exact 

mechanisms leading to CIN. On the other hand, CIN is known to drive tumor cell evolution 

by clonal expansion leading to tumor heterogeneity, providing proliferative advantage, 

metastatic potential and chemoresistance to tumor cells. Hence, it is of utmost importance 

to identify causal mutations and delineate the mechanisms involved in CIN development in 

order to design targeted treatments for such notorious tumors.  

In this thesis, I analyzed the NCH149 cell line derived from a primary glioblastoma tumor 

that is highly resistant to chemo- and radiotherapy. Cytogenetic analysis of this cell line 

revealed extraordinary aneuploidy, clonal heterogeneity and CIN. We could further 

demonstrate that mitotic chromosome segregation defects and centriole amplification were 

the causes of CIN in NCH149 cells.  

With the aim to identify mutated genes that might contribute to the CIN phenotype of 

NCH149 cells whole exome sequencing was performed. This led to the identification of a 

novel mutation in the tumor suppressor gene LATS1. Functional characterization of LATS1 

protein showed that the identified mutation (p.I615V) interferes with YAP1 binding and 

prevents phosphorylation of YAP1 causing its nuclear localization. Overexpression of 

constructs harboring the identified LATS1 mutation influenced the subcellular localization of 

YAP1. In addition, micronucleus formation and centriole over-duplication was induced by 

overexpression of mutant LATS1. In addition, we could show that hyperactive YAP1 in 

NCH149 cells, which is due to mutated LATS1, is an effective drug target to induce 

cytotoxicity to highly resistant NCH149. Verteporfin, an inhibitor of the transcriptional 

activity of YAP1, prevents the transcription of downstream targets and by this specifically 

kills LATS1-mutant NCH149 cells compared to LATS1 wild type NCH82 glioblastoma cells.    

Therefore, this study demonstrates that LATS1 plays a key role in maintaining genomic 

integrity. Mutant LATS1 causes loss of YAP1 oncogene negative regulation and leads to the 

development of CIN. In addition, Verteporfin has been identified as a targeted cytotoxic 

agent against LATS1 mutant cells. 
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2 Zusammenfassung 

Chromosomale Instabilität (CIN) ist ein Charakteristikum von Krebs und in den meisten soliden 

Tumoren zu finden. CIN beschleunigt die Tumorentwicklung durch klonale Evolution, die zu 

Tumorheterogenität, beschleunigter Proliferation, Metastasierung und Resistenz gegenüber 

Chemotherapie führt. Allerdings ist über die genauen Mechanismen, die zur Enstehung von 

CIN führen, wenig bekannt. Daher ist es von großer Bedeutung, ursächliche Mutationen und 

die an der Entwicklung von CIN beteiligten Mechanismen zu identifizieren, um eine gezielte 

Behandlung von Tumoren mit CIN zu ermöglichen. 

In dieser Arbeit wurde die NCH149-Zelllinie, die aus einem primären Glioblastom generiert 

wurde und die eine ausgeprägte Resistenz gegenüber Chemo- und Strahlentherapie aufweist, 

untersucht. Zytogenetische Analysen zeigten, dass diese Zellen hochgradig aneuploid und 

sehr heterogen und somit chromosomal instabil sind. Weiter konnte gezeigt werden, dass CIN 

in diesen Zellen auf fehlerhafte Chromosomensegregation während der Mitose und eine 

Zentriolenamplifikation zurückzuführen ist. 

Zur Identifikation von Mutationen, die ursächlich für den hohen Grad an CIN in diesen Zellen 

sein können, wurde das gesamte Exom der NCH149-Zellen sequenziert. Dabei wurde eine 

neue Mutation im Tumorsuppressorgen LATS1 identifiziert. Funktionelle Analysen dieser 

Mutation (p.I615V) zeigten, dass die Mutation die Interaktion von LATS1 und YAP1 verhindert, 

wodurch YAP1 nicht phosphoryliert wird und dadurch im Zellkern lokalisiert. Überexpression 

eines LATS1-Konstrukts, das die Mutation enthält, führt ebenfalls zu einer vermehrt nukleären 

YAP1-Lokalisation. Zudem führt die Überexpression von mutiertem LATS1 zur Bildung von 

Micronuclei und zur Zentriolenamplifikation. Weiter konnte ich diese LATS1-Mutation und die 

daraus resultierende YAP1-Hyperaktivität als ein therapeutisches Target identifizieren, um 

NCH149-Zellen, die sonst resistent gegenüber Standardbehandlungen sind, gezielt zu töten. 

Die Behandlung von Zellen mit Verteporfin, dass die transkriptionelle Aktivität von YAP1 

inhibiert, zeigt, führte zum Absterben LATS1-mutierter NCH149-Zellen, wohingegen LATS1-

Wildtyp NCH82-Glioblastomzellen durch Verteporfin nicht beeinflusst wurden. 

Zusammenfassend zeigt sich, dass LATS1 für die Integrität des Genoms von Zellen von großer 

Bedeutung ist. Die identifizierte LATS1-Mutation hat einen Verlust der Regulation des YAP1-

Onkogens und somit die Entstehung von CIN zur Folge. Zudem konnte Verteporfin als ein 

spezifisch gegen LATS1-mutierte Zellen wirkendes Chemotherapeutikum identifiziert werden. 
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3 Introduction 

3.1 Chromosomal Instability 

Chromosomal Instability (CIN) is defined as a persistent high rate of gain or loss of 

chromosomes (1). These gains and losses of chromosomes are manifested as aneuploidy; 

an abnormal karyotype of a cell (2). Although, aneuploidy is the ultimate consequence of 

CIN and could be a measure of the degree of CIN, these terms can not be used 

interchangeably (3). CIN is a dynamic process of changes in the cellular chromosome 

content over generations resulting in aneuploidy. Aneuploidy on the other hand is a 

description of a cellular state, it specifically describes a cell whose karyotype is not a 

multiple of the haploid complement (4). In contrast to CIN, aneuploidy may develop from a 

transient chromosomal aberration event during the development of the cell leading to the 

abnormal karyotype that is subsequently stably propagated and inherited. For instance, 

Down syndrome is caused only due to trisomy (gain of a single copy) of chromosome 21 

while the rest of the chromosome content is unperturbed. Therefore it can be stated that all 

chromosomally instable cells are aneuploid but aneuploid cells are not necessarily 

chromosomally instable (5). 

CIN can be broadly divided into two categories: structural and numerical CIN. Structural CIN 

encompasses subtle sequence instabilities represented by amplifications, inversions, 

translocations, deletions, and other events such as NER-associated instability (NIN) or 

microsatellite instability (MIN) (6). Numerical instability on the other hand includes gains and 

losses of whole chromosomes. This work is focused on the causes of numerical CIN and 

the resulting aneuploidy and its role in disease development and progression. 

CIN is most often a result of defects in the machinery responsible for faithful chromosome 

segregation during mitosis. These defects could arise either through mutation of genes 

encoding mitotic proteins or by imbalances in protein levels or activities that reduce mitotic 

fidelity (7). To gain a better understanding of the development of CIN it is important to look 

into the process of cell division in greater detail. 
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3.2 The Cell Cycle 

The cell cycle is described as the period and the sum of all biochemical processes between 

the emergence of a cell from a mother cell and its division into two daughter cells (8). The 

eukaryotic cell cycle is divided in four successive phases (M, G1, S, G2). The M-phase 

(division phase) includes mitosis (nuclear division) and cytokinesis (division of 

cytoplasm/cell). The interval between two M-phases is termed interphase which includes 

G1-, S- and G2-phases of the cell cycle. The term G1 (gap 1) describes the period between 

M-phase and S-phase. In the S-phase (synthesis phase) replication of nuclear DNA takes 

place. The G2-phase falls between S phase and M phase wherein the connections with 

neighboring cells are dissolved to prepare for mitosis.  

Mitosis involves a sequence of events that culminate in the production of new (daughter) 

cells that are genetically identical to the original (mother) cell (9). This requires precise 

orchestration of three major events: entry into mitosis, chromosomal segregation, and 

cytokinesis which are distributed over four stages: prophase, metaphase, anaphase and 

telophase. In prophase chromosomes are condensed and the spindle apparatus starts to 

build up. With the beginning of metaphase (prometaphase) the nuclear envelope breaks 

down and the spindle microtubules are formed that attach to the kinetochores (protein 

structure on chromatids) of the chromosomes. During metaphase chromosomes are 

arranged at the equatorial plane of the cell and the spindle apparatus is fully formed. 

Anaphase marks the separation of sister chromatids leading to their segregation to the two 

spindle poles. In parallel, the microtubules lengthen moving the spindle poles apart. In 

telophase a new nuclear membrane is formed around the two sets of chromosomes at each 

pole and the contractile ring is formed. During cytokinesis the contractile ring ingresses 

forming the cleavage furrow eventually separating the daughter cells.   

The cell cycle phases are subject to strict control by various control mechanisms referred to 

as "checkpoints", which verify whether the requirements for the cell to pass to the next 

phase of the cell cycle have been fulfilled (Figure 3.1) (10). 
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Figure 3.1 The cell cycle and its checkpoints 
The cell cycle is divided into four phases: S-phase (synthesis phase), M-phase (mitosis phase), and 

the G1- and G2-phases (Gap-phases). Checkpoints regulating the various phases of cell cycle are 

indicated. Albert, B. et al. (2008) Molecular biology of the cell. New York, USA: Garland Science. 
 

3.3 Cell cycle checkpoints 

The first checkpoint within the course of the cell cycle is called the restriction point or G1-

checkpoint, which occurs at the end of G1-phase of the cell cycle. At the G1-checkpoint 

decided whether or not the cell is allowed to divide depending on the environmental 

condition. Under unfavorable conditions cells can either delay entry intro S-phase or enter 

the resting G0-stage (11).  

The cell encounters a second checkpoint at the G2-M boundary called the DNA damage 

checkpoint or S-phase checkpoint. This ensures that the cells do not enter mitosis with 

damaged DNA that may have accumulated during S-phase. DNA repair proteins (e.g. ATM, 

ATR) that localize to sites of DNA damage in G2-phase initiate a signaling cascade that 

regulates mitotic entry via Cdk1-cyclin B (12).  

Third, the spindle assembly checkpoint (SAC) or mitotic checkpoint ensures that 

chromosome segregation proceeds error free thereby preventing aneuploidy. During 

mitosis, this checkpoint inhibits anaphase onset until all chromosomes are properly 

attached to the spindle and the kinetochores of the sister chromatids are correctly attached 

to opposite spindle poles, ensuring their proper segregation (13). A mitotic checkpoint 
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complex (MCC) comprising of MAD2, BUBR1/Mad3 and BUB3, assembles at unoccupied 

kinetochores (14). This complex negatively regulates the ability of CDC20 to activate 

APC/C-mediated polyubiquitinylation of cyclin B and securin, thereby preventing separation 

of sister chromatids and exit from mitosis, respectively. Securin is a stoichiometric inhibitor 

of separase which is required to cleave the cohesin complex that holds sister chromatids 

together, and cohesin cleavage is required to execute anaphase. On the other hand, 

proteolysis of cyclin B by APC/C inactivates CDK1, which promotes mitotic exit (15). Hence, 

by keeping CDC20 in check, the SAC prolongs metaphase until all chromosomes have 

become bi-orientated between separated spindle poles on the metaphase plate. Even a 

single unattached kinetochore is sufficient to delay anaphase onset indicating the efficiency 

of this checkpoint. 

3.4 Causes of CIN 

Deregulation of proteins involved in chromosome condensation, sister-chromatid cohesion, 

kinetochore structure and function, centrosome/microtubule formation and dynamics and 

checkpoint genes that monitor the proper progression of the cell cycle can lead to CIN (16). 

The pathways by which cells can gain or lose chromosomes during mitosis are described 

below (Figure 3.2). 

3.4.1 Defects in cell cycle checkpoints 

The first defect that was proposed to play a causal role in CIN was a defect in the spindle 

assembly checkpoint (SAC) (17). Impairment of the mitotic checkpoint due to reduction in 

levels of one or more checkpoint components might allow cells to enter anaphase in the 

presence of unattached or misaligned chromosomes. As a consequence, both copies of 

one or more replicated chromosomes are deposited in the same daughter cell (non-

disjunction errors) causing aneuploidy (18). 

Mitotic checkpoint errors can give rise to aneuploidy or lead to cell death, depending on the 

extent of checkpoint malfunction. Complete inactivation of the mitotic checkpoint resulting 

from elimination of key components such as MAD2 or BUBR1 leads to extensive aneuploidy 

and massive chromosome missegregation, which is lethal for cells (19). Studies in mice 

have shown that weakened SAC activity is associated with a high incidence of aneuploidy 

and tumorigenesis (20; 21). However, meanwhile it has been shown that most aneuploid 
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human cancer cells have a functional SAC indicating that loss of SAC function seems not to 

play a major role in CIN induction in human tumors. However, despite extensive search, 

large-scale genome sequencing has revealed very few mutations in genes that encode 

proteins involved in SAC have been found in human tumors (22; 23).  

 

 

Figure 3.2 Pathways to chromosomal missegregation 

Mechanisms of chromosomal missegregation include mitotic checkpoint defects (A), cohesion 

defects (B), merotelic microtubule-kinetochore attachments (C) and supernumerary centrosomes 

which, by themselves, lead to merotelic microtubule-kinetochore attachments again (D). Modified 

from Holland et al., Nature, 2009, with permission. 

 

 

A) Mitotic checkpoint defects B) Cohesion defects C) Merotelic attachments

D) Supernumerary centrosomes
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3.4.2 Chromosomal missegregation  

Mitotic errors leading to aneuploidy can occur despite intact mitotic checkpoint signaling. 

During mitosis, faithful segregation of chromosomes relies on the bi-oriented attachment of 

kinetochores to spindle microtubules (k-MT attachments) called amphitelic attachments, 

meaning that each kinetochore binds to microtubules oriented toward only one spindle pole, 

thereby generating centromeric tension that satisfies the SAC (24). Kinetochores in human 

cells bind approximately 20 microtubules and errors in k-MT attachments lead to 

missegregation of chromosomes. In chromosomally instable cells missegregation of 

chromosomes is found on an average, once in every one to five cell divisions (25). 

Erroneous k-MT attachments frequently occur during prophase when (i) one of the sister 

kinetochores is left unattached (monotelic attachment), (ii) when both sister kinetochores 

become attached to microtubules from the same pole (syntelic attachment) or when (i) a 

single kinetochore attaches to microtubules arising from both spindle poles rather than just 

one (merotelic attachment) (Figure 3.3). Monotelic and syntelic configurations fail to satisfy 

the SAC because not all kinetochores are bound to microtubules or no centromeric tension 

is generated and are therefore detected by the spindle checkpoint. In contrast, merotely 

avoids detection by the SAC since kinetochores attain full occupancy by microtubules 

despite improper orientation and centromeric tension is generated as well (26). Therefore, 

undetected by the SAC, merotelic attachments can cause sister chromatids to either be 

pulled towards the same pole into one daughter nucleus (chromosome non-disjunction) or 

left behind in the spindle midzone (lagging chromosomes), thereby often excluding them 

from both the daughter nuclei resulting in micronucleus formation (27). Studies have shown 

that on average about 21% of daughter cell pairs of CIN cells have micronuclei (28). 

Destabilization of erroneous k-MT attachments is essential for their correction and was 

found to restore faithful chromosome segregation to CIN cells, indicating a causal 
relationship between k-MT attachment errors and CIN (29). Correspondingly, it has been 

shown that chromosomally instable cells often have hyperstable k-MT attachments, which 

impairs their ability for faulty attachment correction (30). 

Another defect that contributes to chromosomal missegregation is premature loss of sister 

chromatid cohesion. Maintenance of cohesion between the two sister centromeres until 

anaphase onset is essential for proper chromosome segregation. Duplicated sister 

chromatids are held together until anaphase by the cohesin complex ensuring proper k-MT 

attachments and centromeric tension needed for proper segregation. Premature loss of 

sister chromatid cohesion causes the sister chromatids to separate and float in the cellular 
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space. Overexpression of separase, cohesin complex subunits or dysfunctional securin has 

been shown to cause a loss of proper sister chromatid cohesion (31). As a consequence, 

sister chromatids fail to segregate equally between the daughter cells leading to aneuploidy. 

Emerging cancer genomics studies have documented that cohesin genes are a frequent 

target of somatic alterations in a number of tumor types including glioblastoma, Ewing 

sarcoma, urothelial carcinoma and acute myeloid leukemia (32).  

 

3.4.3 Supernumerary centrosomes 

Centrosomes are important regulators of cell-cycle progression, serving as the main 

microtubule-organizing centers (MTOC) to form k-MT attachments and aid faithful 

segregation of chromosomes during mitosis. A centrosome is composed of a pair of 

centrioles and a surrounding amorphous cloud of pericentriolar material (PCM). Centrosome 

number is tightly regulated during the cell cycle such that a centrosome duplicates in S 

phase and separates at mitotic entry. However, defects in the centrosome duplication 

machinery lead to supernumerary centrosomes (33; 34; 35). Presence of supernumerary 

(extra) centrosomes leads to the formation of multiple spindle poles during mitosis followed 

by multipolar division. Multipolar divisions give rise to highly aneuploid daughter cells, which 

 

Figure 3.2 Types of k-MT attcahments 

The various types of kinetochore-microtubule attachments include: A) correct amphitelic microtubule 
attchment to the sister kinetochores that attains the right centromeric tension (green) and therefore 
does not activate SAC (green). B) and C) erroneous attachments where only one (monotelic) or both 
sister kinetochores (syntelic) are attached to microtubules from the same spindle pole do not lead to 
correct centromeric tension (red), causing SAC activation (green) and subsequent correction to 
proper k-MT attachment. D) Merotelic attachment, where one of the kinetochores is attached 
aberrantly to microtubules form both spindle poles and since the kinetochores attain full occupancy 
of microtubules centromeric tension is falsely satisfied (red) which avoids detection by the SAC (red) 
causing chromosomal missegregation. 

A) Amphitelic B) Monotelic C) Syntelic D) Merotelic

Centromeric 
tension

SAC 
activation
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are usually unviable (36). In order to generate viable daughter cells, supernumerary 

centrosomes are often found to be clustered together to form two groups, allowing cells to 

divide in a pseudo-bipolar fashion (37; 38). This mechanism is termed centrosomal 

clustering. The frequency of multipolar spindles is found to be higher in prometaphase than 

in anaphase confirming that centrosomes cluster to promote bipolar spindle formation prior 

to anaphase onset (39). 

Interestingly, extra centrosomes are capable of driving chromosome missegregation 

through a mechanism independent of multipolar divisions. Studies have shown that the 

process of centrosomal clustering via transient multipolar spindle formation increases the 

propensity of merotelic k-MT attachments leading to chromosome missegregation (40).  

Thus, the presence of extra centrosomes accompanied by centrosomal clustering increases 

the rate of k-MT attachment errors leading to CIN. Notably, the presence of extra 

centrosomes and clustering mechanisms prolong the duration of mitosis by delaying 

satisfaction of the SAC (41; 42). Although a majority of the cells with extra centrosomes 

divide bipolarly with missegregated chromosomes, some cells die during the prolonged 

mitotic arrest and some others remain without undergoing cytokinesis and end up as a 

single tetraploid G1 cell (43).  

3.5 Consequences of CIN 

Mutation-induced mitotic checkpoint relaxation, defects in chromatid cohesion, merotelic 

attachments of microtubules to kinetochores, and supernumerary centrosomes cause 

chromosome missegregation resulting in aneuploid cells. Aneuploidy is marked by altered 

chromosome copy number leading to changes in the level of transcripts of affected genes. 

This in turn translates into protein dosage changes that can alter the balanced stoichiometry 

of various complexes or pathways leading to malfunctioning of corresponding biological 

processes. When proteins involved in various mitotic processes are affected, it may lead to 

errors causing further CIN and thus contributing to aneuploidy generation (44). Hence, 

chromosomally instable cells enter a vicious circle of events leading to continuous genomic 

instability which might be beneficial or disadvantageous to a cell. 

In theory, the direct consequences of CIN should be disadvantageous for cell proliferation 

and survival. The lack of essential genes produced by random aneuploidy may adversely 

effect survival and the aberrant genome would risk detection by selection barriers (e.g. 

checkpoints) resulting in elimination. If the accumulated damage rises above the threshold  
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for viability, apoptotic pathways are activated and cell death ensues. However, CIN gives 

rise to heterogeneity, which might prove beneficial for survival. The heterogeneity in the 

population of a given cell mass arising as a result of CIN ensures that at least some of the 

cells contain the required genetic alteration to overcome selection barriers and continue 

proliferation (45). Heterogeneity allows cells to survive and adapt to changing 

microenvironments giving cells proliferative advantages (46). 

Such adaptive interactions can provide opportunities for chromosomally instable cells to 

survive and evolve to suit the microenvironment, in a manner comparable to Darwinian 

theory of natural selection. Hence, by clonal evolution, an aberrant karyotype is established, 

which has optimal chances of survival, proliferation and resistance to internal and external 

elimination pressure, which are the characteristic features of most cancer cells. Indeed, 

various studies show that CIN plays a crucial role in the development of cancer (47; 48).  

3.6 Role of CIN in Cancer 

The presence of aneuploid chromosome contents in tumor cells has been common 

knowledge for over 100 years. The foundations for viewing cancer as a genetic disease 

were laid as early as 1890 when David von Hansemann postulated that aberrant cell 

divisions are responsible for the decreased or increased chromatin content found in cancer 

cells. Theodor Boveri found the association between aberrant mitoses, aneuploidy and 

malignancy – Boveri, T. Zur Frage der Entstehung Maligner Tumoren; Gustav Fisher, Jena, 

1914. Today, it has been demonstrated that 68% of all solid tumors have numerical 

variations in their chromosomes number, i.e. they are aneuploid (49). In a study by Lengauer 

et al., fluorescence in situ hybridization (FISH) was used to show that losses or gains of 

multiple chromosomes occurred as often as 10-100 times more often in aneuploid 

colorectal cancer cell lines than in normal cells. Karyoptypic analyses show that tumors 

display both intra- and intertumor heterogeneity suggesting that most tumors are not only 

aneuploid, but also chromosomally instable. As CIN is found to be a characteristic property 

of most solid tumors, it has been regarded as a hallmark of cancer. Although scientific 

advances in recent years have permitted more refined analysis of the types of chromosomal 

abnormalities in cancer, the function of numerical chromosome aberrations in the etiology of 

cancer is less understood. A crucial question still remains unanswered: is CIN is a cause or 

a consequence of tumorigenesis? 
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The presence of CIN in cancer cells has been interpreted in two ways. One point of view 

portrays CIN and aneuploidy as a consequence of general chaos that accompanies 

malignant cells (50). The second point of view ascribes a causal importance to aneuploidy, 

arguing that it fuels tumorigenic progression (51). It has been established that cells have to 

acquire several genetic changes to allow tumorigenesis. It has been argued that the normal 

rate of mutation would be insufficient to provide the amount of genetic variation that is 

required for tumor growth, and hence it is often proposed that mutations causing genomic 

instability occur as the initiating event and act as a driving force of tumorigenesis (52).  

Tumors initiate as a result of one or more mutations that give a cell the selective growth 

advantage by means of CIN to overcome waves of clonal selection. As mentioned before 

CIN further drives adaptation by allowing tumors to constantly sample their 

microenvironment and attain the genetic changes necessary to propel tumor survival, 

proliferation and resistance to therapy. This model of mutation-driven genomic instability 

and tumorigenesis has been confirmed by numerous studies (53; 54).  

3.7 Genetic basis for CIN in cancers 

The concept that tumors develop through the accumulation of mutations in oncogenes and 

tumor suppressor genes is now a widely accepted fundamental principle of cancer biology. 

Although CIN aids faster accumulation of carcinogenic mutations, it still remains unclear 

what causes CIN itself. Mutations in genes with putative functions in guarding against 

chromosome missegregation and aberrant mitoses have been shown to cause CIN in rare 

cases (55).  

In theory, hundreds of human genes can be categorized as CIN causing genes, but only a 

few have been identified so far (56). These genes include hBUB1 and MAD2, proteins 

required for the proper functioning of the spindle assembly checkpoint (57; 58). Inherent 

mutations in BRCA1 and BRCA2 (involved in DNA repair and recombination, checkpoint 

control of the cell cycle and transcription) lead to high-grade familial breast cancer and CIN 

(59). Cyclin-dependent kinases (CDKs), the governors of cell cycle, are often found mutated 

or dysregulated in cancer cells, which manifests in an increased rate of cell cycling, cellular 

hyperproliferation and acquired genomic and chromosomal instability (60). In addition, 

studies have shown that overexpression of one of the two key regulators controlling sister 

chromatid cohesion, separase or securin, promotes CIN and oncogenic transformation (61). 

Moreover, mutational inactivation of genes encoding cohesin subunits such as STAG2 and 
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RAD21 have also been found in various human cancers (62).  

Michor and colleagues classify CIN genes based on the mutational events required to 

trigger instability (63). Class I CIN genes cause CIN if one allele of the gene is mutated or 

lost (e.g. MAD2) and class II CIN genes trigger CIN if one allele is mutated in a dominant- 

negative fashion (e.g. hBUB1). Thus, class I and II genes are called ‘single hit’ CIN genes. 

Class III CIN genes cause CIN only if both alleles are mutated (e.g. BRCA1 and BRCA2). 

Hence, a direct connection can be drawn between mutations in cell cycle components, 

tumor suppressor genes, oncogenes and CIN development. This provides evidence that 

CIN has a mutational origin and clues to the mechanistic basis of instability in cancers. 

3.8 Hippo pathway and cancer 

The mammalian Hippo pathway is a kinase cascade that plays a pivotal role in organ size 

control and tumor suppression by restricting proliferation and promoting apoptosis (64). The 

Hippo pathway was first identified in Drosophila by genetic mosaic screens for tumor 

suppressor genes. It is a highly conserved pathway, which in mammals includes two sets of 

core kinases MST1/2 and LATS1/2, which along with their respective co-activators SAV1 

and Mob1 form the backbone of the kinase cascade. The N-terminus of LATS1 contains 

two PPxY motifs (P, proline; X, any amino acid; Y, tyrosine), which bind to WW-domains 

(conserved tryptophans spaced 20-22 amino acids apart) of the transcriptional co-activators 

TAZ and YAP. When the pathway is active, Lats1/2 phosphorylates YAP and/or TAZ, which 

leads to cytoplasmic sequestration and degradation of these proteins. As consequence, 

TEAD 1-4 remains bound to VGL4 rendering it incapable of switching on the transcription of 

target genes. When the pathway is inactive, YAP/TAZ remain unphosphorylated and free to 

enter the nucleus and bind to TEAD1–4 resulting in context-dependent transcriptional 

output that mediates major physiological functions (Figure 1.3) (65). However, the regulatory 

mechanisms for the Hippo signaling pathway are not well understood (66). Numerous 

upstream regulators of the Hippo pathway have been identified recently, e.g. NF2/merlin-

mediated regulation involved in cell polarity as well as G-protein-coupled receptor (GPCR)-

dependent signaling for growth and proliferation. Lysophospholipid (LPA), sphingosine-1-

phosphate (S1P) or protease-activated receptors (PARs) bind to their corresponding 

membrane GPCRs and act through Rho-GTPases to activate YAP/TAZ (67). In addition, the 

actin cytoskeleton or mechanical tension appears to transmit upstream signals to the core 
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Hippo signaling cascade. Therefore, LATS-dependent modulation of YAP/TAZ activity 

appears to act as a focal point for different upstream cellular signals to Hippo pathway.  

 

 

Figure 3.3 The Hippo pathway 

Schematics of the core pathway components of the Hippo pathway and how they interact are 
depicted. A) When the pathway is on, proteins are phosphorylated resulting in cytoplasmic retention 
or degradation of YAP/TAZ. As a consequence TEAD1-4 remains bound to VGL4 rendering it 
incapable of switching on the transcription of target genes. B) When the pathway is off, un-
phosphorylated YAP/TAZ translocates to the nucleus and competitively binds to co-activators 
TEAD1-4 to switch the transcription of target genes on. Johnson et al. 2014, with permission. 
 

3.8.1 LATS1 and YAP1 

LATS1 is a member of the LATS/Warts tumor suppressor family. It is a putative 

serine/threonine kinase that belongs to AGC group (named after protein kinase A, G and C) 

and acts as a negative regulator of YAP1 in the Hippo signaling pathway. YAP1 is known to 

be an oncogene and shown to cause CIN and radioresistance in medulloblastoma (68). 

LATS1 localizes in the cytoplasm and to centrosomes during interphase and during mitosis. 

It is known to migrate to the mitotic spindle, spindle poles as well as the midbody during 

mitosis indicating its role in proper mitotic progression (69). During interphase, 
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phosphorylated LATS1 phosphorylates YAP1 at Ser127, which leads to 14–3–3 binding and 

cytoplasmic sequestration followed by ubiquitination-dependent degradation of YAP1. In 

early mitosis LATS1 is dephosphorylated causing dephosphorylation of YAP1 and hence its 

nuclear localization leading to transcription of genes important for cell proliferation, cell 

death, and cell migration. Therefore, deregulation of LATS1-mediated sequestration of 

YAP1 in interphase causes YAP1 to translocate to the nucleus and prematurely activate 

transcription of cell growth proliferation and survival genes which is known to be associated 

with many cancer types (70). LATS1-mediated YAP1 phosphorylation is regulated by cell 

density in vitro in cultured cells and plays an important role in mediating cell contact 

inhibition. Upon reaching confluence (high density), YAP1 is found phosphorylated and 

localized to the cytoplasm of the cells whereas, at low density, YAP1 is predominantly 

localized in the nucleus (71). YAP1 expression levels and nuclear localization are found 

strongly elevated in some human cancers suggesting the loss of cell contact inhibition 

indicative of uncontrolled cell proliferation. 

In addition, LATS1 also functions in non-canonical Hippo signalling and Hippo-independent 

pathways. It has been shown that autophosphorylation of LATS1 during the G2/M transition 

plays a critical role in maintenance of ploidy through its actions in mitotic progression and 

G1 tetraploidy checkpoint. LATS1 regulates the cell cycle by modulating CDK1/Cyclin A 

activity (72). LATS1 with its protein-binding domain (PBD) is also known to bind and regulate 

the activity of MOB1, a regulatory protein of LATS1 and component of mitotic exit network 

(73). LATS1 interacts with regulators of actin filament assembly, Zyxin and LIMK1 indicating 

that LATS1 functions in mitosis and mechano-sensing independent of YAP/TAZ as well (74) 

(75). During the G2/M transition, YAP1 is found to be hyper-phosphorylated due to 

additional positive regulation of YAP1 by CDK1-mediated phoshorylation at T119 and S289. 

Defects in CDK1-mediated YAP1 phosphorylation were found to play a role in neoplastic 

transformation as they lead to mitotic defects and increased cell motility (76). This extensive 

involvement of LATS1 in important cellular functions elucidates its role in tumor suppression 

and maintenance of genomic integrity. 

Interestingly, studies of The Cancer Genome Atlas (TCGA) consortium show that LATS1 is 

infrequently mutated in human cancers (http://www.cbioportal.org/public-portal/) (Figure 

3.4). However, in a variety of human cancers upstream components of the pathway are 

downregulated through deletion or epigenetic mechanisms (e.g. deletion of NF2), with 

silencing of upstream components of the pathway leading to increased activity of the 

downstream effectors of YAP and TAZ. Experimental N-terminal truncation of LATS1 in 

mouse embryonic fibroblasts (MEFs) was found to cause abnormal cell growth and CIN in 
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nude mice (77). Decreased expression of LATS1 is correlated with progression and 

prognosis of glioma (78). This suggests that Hippo signaling is closely linked to tumor 

initiation and progression. 

  

 

 

 

 

Figure 3.3 LATS1 mutations in cancers 

Cross cancer histogram of LATS1 mutations obtained from cBioportal indicating a low frequency of 

mutations, deletions or amplifications of the LATS1 gene in patients with various cancer types. The 

graph includes data pooled together from 69 cancer genomics studies, from a total of 17584 cancer 

patient samples. Gao et al. 2013 & Cerami et al. 2012. 
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3.9 YAP1 inhibitors 

The complex relationship between CIN and cancer and the possible causal role of the Hippo 

pathway in CIN induction offer previously unrecognized means to limit tumor growth by 

pharmacological intervention. Although kinases are effective targets for small molecules, 

designing inhibitors to restore loss-of-function of kinases has been found to be a 

challenging task. Functionally, the most attractive targets for pharmacologic intervention 

with the Hippo pathway are the key proteins YAP and TAZ, which are the final common 

conduits of the entire pathway. Also, YAP is dispensable for the growth and homeostasis of 

normal tissues, thus potentially limiting the likelihood of side effects on healthy tissues (79). 

Since YAP and TAZ are the final downstream effectors, drug resistance achieved by 

alternative pathways can be, in theory, ruled out. Recent progress in the search for small-

molecule Hippo pathway modulators has identified Verteporfin (VP) and Dobutamine (a 

GPCR-beta adrenergic receptor antagonist) to be specific inhibitors of YAP1. Also, 

monoclonal antobodies (mAb’s) against LAP and SIP (YAP1 activators) has proven to be 

effective against YAP1 activity. Verteporfin is a benzoporphyrine derivative, a 

photosensitizer used for photodynamic therapy of macular degradation of the eye. VP 

disrupts YAP-TEAD transcriptional activation complex formation, hence, inhibiting YAP1 

activity (80). The porphyrin ring of VP disrupts the formation of the YAP–TEAD complex by 

binding to YAP and changing its conformation, thereby blocking the transcription of 

downstream targets. VP has already been be used as a chemotherapeutic agent for cancer 

cells overexpressing YAP1 in vitro (81). 

 

Figure 3.5 Structure of Verteporfin 

Verteporfin, a benzoporphyrin derivative, with its porphyrin ring disrupts the YAP-TEAD complex 
inhibiting its transcriptional activity. 
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3.10 Glioblastoma and CIN 

Gliomas are the most common primary malignant brain tumors in adults. The World Health 

Organization (WHO) classification distinguishes gliomas into four different grades of which 

Glioblastoma multiforme (GBM) is the fastest growing malignant type of brain tumor and 

accounts for about 15 percent of all brain tumors (82). Patients with GBM have a 

poor prognosis with a median survival of 15 months (83). GBM is know to be highly 

anaplastic and a morphologically highly heterogeneous tumor (84). Several studies showed 

that GBM samples harboring mutations of p53, or amplification of MDM2, epidermal growth 

factor receptor (EGFR) or mismatch repair (MMR) genes were typically chromosomally 

instable (85) (86) (87). GBM is also known to be remarkably resistant to chemotherapy and 

ionizing radiation. Resistance to treatment might be a consequence of CIN/aneuploidy, 

genetic alterations and intratumor heterogeneity, which are characteristics of these tumors. 

Understanding the genetic alterations, specific molecular biomarkers and proliferative 

pathways may promote development of effective therapeutic strategies for the management 

of GBM patients. Nevertheless, only little is known about patterns or exact mechanisms of 

CIN in GBM. 

3.11 GBM cell lines 

NCH149 and NCH82 are two cell lines derived form primary GBM tumors in the lab of Dr. C. 

Herold-Mende at the Department of Neurosurgery, University Hospital Heidelberg, Germany 

(88). Cytogenetic analysis of these cell lines revealed extraordinary aneuploidy in NCH149 

cells with chromosome numbers ranging from 42 to 129 and a few structural chromosome 

aberrations were observed namely t(13;17), isochromosome 7q, deletions 11q, 16p, and 

18p as well as unbalanced translocations der(13)t(11;13) and der(17)t(17;19), each of which 

were found in only 2 of 21 metaphase spreads analysed. NCH82 cells were found to have a 

near tetraploid karyotype and some recurrent unbalanced translocations like der(7)t(7;22) 

(observed in 14/15 metaphase spreads) and a deletion in the long arm of chromosome 22 

(in 15/15 metaphase spreads) were observed (89). This data indicates that NCH149 cells are 

possibly chromosomally instable while NCH82 cells are stablly tetraploid. 
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3.12 Aim of this study 

Extensive literature evidence has suggested a direct link between CIN and the pathogenesis of 

various human malignancies. Nevertheless, the underlying molecular mechanisms of CIN 

development and resulting tumorigenesis remain undefined. Among a collection of primary 

GBM cultures one sample, the NCH149 cell line showed extensive numerical CIN and 

resistance against irradiation and cytotoxic agents was identified. With the aim to study the 

mechanism of massive numerical CIN, a comparative analysis of chromosomally instable 

(NCH149) and chromosomally stable (NCH82) patient-derived glioblastoma cell lines was 

performed. Using FISH as well as fluorescence microscopy the extent of CIN and the 

underlying mechanisms were investigated. 

Since it is discussed that mutation-induced aberrations in cellular mechanisms could lead to 

CIN, the mutation profile of the NCH149 GBM tumor cell line was assessed by whole exome 

sequencing. This profile was compared to the profile of cells of the associated primary tumor 

from which the cell line was derived as well as with healthy tissue from the patient. Dependent 

on the mutations detected in primary tumor and tumor cell line derived thereof, the role of the 

mutated genes for the development of CIN were investigated by microscopic, cell biological 

and biochemical techniques. 
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4 Materials and Methods 

4.1 Materials 

4.1.1 Biological materials  

4.1.1.1 Eukaryotic cell lines 

 

Table 4.: Eukaryotic cell lines  

Cell Lines Description Source / Reference 
Normal Human 
Astrocytes 

Cell line derived from 
primary astrocytes of a 
healthy donor. 
Catalog number: 1800 

Sciencell, CA, USA 

NCH149 Human Glioblastoma A. Régnier-Vigouroux, DKFZ, 
Heidelberg, Germany 

NCH82 Human Glioblastoma A. Régnier-Vigouroux, DKFZ, 
Heidelberg, Germany 

U2OS Human Osteosarcoma cell 
line 

Ponten and Saksela, 1967, 
ATCC HTB-96  

U2OS-Tet on Human Osteosarcoma cell 
line expressing tetracyclin 
(Tet)-regulated 
transactivator Tet-On 

Life technologies; Invitrogen, 
Carlsbad, USA 

 

4.1.1.2 Patient material 

Paraffin sections and DNA extracts of the parental tumor which was used to establish the 

NCH149 cell line as well as control brain tissue of the same patient were provided by C. 

Herold-Mende, University Hospital, Heidelberg (Tissue Bank of the National Center for 

Tumor Diseases (NCT) in Heidelberg, Germany). This material was used for fluorescence in 

situ hybridization (FISH) and whole exome sequencing experiments. 
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4.1.1.3 Bacterial Material 

Table 4.1 Bacterial Material 

Name Genotype Source / Reference 
E. coli DH5 alpha  F- φ80lacZΔM15 Δ(lacZYA argF) 

U169recA1endA1 hsdR17 
(rKmK+) phoA supE44 thi-
1gyrA96 relA1 λ-  

Stratagene, USA  
 

 

4.1.1.4 Genetic material 

4.1.1.4.1 DNA primers    

All primers were ordered from Eurofins MWG Operon, Ebersberg, Germany. 

Table 4.2: List of Primers used for GATC sequencing, mutagenesis and PCR 

Nr. Name Use Sequence (5’-3’) 
1 LATS1_Mlu1 PCR AGTCAGCTGACGCGTATGGACTACAAAGA

CGATGACGACAAG 
2 LATS1_Sal1 PCR AGAGATATCGTCGACTTAAACATATACTAGA

TCGCGATTTTTAATCTCTGAG 
3 LATS1_Mut_s Mutagenesis AAGAAACAGATTACAACTTCACCTGTTACT

GTTAGGAAAAACAAGAAAG 
4 LATS1_Mut_as Mutagenesis CTTTCTTGTTTTTCCTAACAGTAACAGGTGA

AGTTGTAATCTGTTTCTT 
5 LATS1_PCR PCR ACCGCTTCAAATGTGACTGTGATGCCACCT 
6 LATS1_r_PCR PCR TCTACTTTTCTTGCTAGACAGACTTCACCA 
7 L3 Sanger 

Sequencing 
TGGGCATGAAATCCCTACA 

 

4.1.1.4.2 Expression plasmids 

Table 4.4: Expression Plasmids 

Vector Tag (terminus) Antibiotic Resistance  Source 
CMV-LATS1 2XFlag (N) Ampicillin Addgene 
pTRE2hyg - Ampicillin Clontech 
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4.1.1.4.3 Expression constructs 

Table 4.5: List of expression constructs 

Nr. Name Description Primer Source 
1 LATS1-wt-

pTRE2hyg 
Wild type LATS1 cDNA in 
pTRE-2Hyg vector  

 1&2 
(Table 2.4) 

Produced during 
this work  

2 LATS1-mut-
pTRE2hyg 

Produced by Mutagenesis of 
expression construct 1 

1&2 
(Table 2.4) 

Produced during 
this work 

4.1.1.4.4 Centromere probes  

All FISH probes were received from Prof. A. Jauch, Department of Human Genetics, 

University of Heidelberg, Germany. 

Table 4.6: Centromere probes used for FISH 

 
 
 
 
 
 
 
 
 

4.1.1.4.5 Nucleotides 

Table 4.7: Nucleotides and DNA 

Chromosome Probe Name Resistance 
Chr 1 pUC 1.77 Ampicillin 
Chr 2 pBS4D (M. Rocchi) Ampicillin 
Chr 3 pAE0.68 (M. Rocchi) Ampicillin 
Chr 8 pZ8.4 Ampicillin 
Chr 17 P17H8 Ampicillin 
Chr 20 pZ20 (M. Rocchi) Ampicillin 

Name Source 
CY3-dUTP Dyomics GmbH, Jena, Germany 
FITC-dUTP Dyomics GmbH, Jena, Germany 
dNTPs in Lithium salt Roche Diagnostics, Basel, Switzerland 
Salmon Sperm DNA Sigma Aldrich St. Louis, USA 
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4.1.1.5 Antibodies 

4.1.1.5.1 Primary Antibodies 

Table 4.8: List of Primary Antibodies 

Antigen Clone Immunized 
species/Typ 

Dilution Fixation 
for IF 

Source 

Actin sc-
47778 

Mouse 
(monoclonal) 

1:5000 - Santa Cruz, 
Dallas, USA 

CP110 1278 Rabbit 
(ployclonal) 

1:200 MeOH/
Ac 

Proteintech, 
Chicago, USA 

CREST -
Centromere 

Z140228
B2 

Human 1:20 MeOH EuroImmun, 
Germany 

IgG mouse SC-2025 Mouse 1:200 - Santa Cruz, 
Dallas, USA 

IgG Rabbit SC-2027 Rabbit 1:200 - Santa Cruz, 
Dallas, USA 

LATS1 C665B Rabbit 
(monoclonal) 

1:1000 MeOH/
Ac 

Cell Signalling, 
MA, USA 

MCM7 141.2, 
sc-9966 

Mouse 
(monoclonal) 

1:1000 - Santa Cruz, 
Dallas, USA 

Pericentrin ab4448 Rabbit 
(polyclonal) 

1:1000 MeOH Abcam, 
Cambridge, UK 

pYAP1 
(S127)  

EP1675
Y 

Rabbit 1:10000 - Abcam, 
Cambridge, UK 

YAP1 EP1674
Y 

Rabbit 1: 
25000 

MeOH Abcam 
Cambridge, UK 

YAP1 (63.7) Sc-
101199 

Mouse 1:1000 MeOH Santa Cruz, 
Dallas, USA 

γ-Tubulin TU-30 Mouse 
(monoclonal) 

1:1000 MeOH/
Ac 

EXBIO, 
Prag, CZ 

α-Tubulin DM1A Mouse 
(monoclonal) 

1:500 MeOH/
Ac 

Sigma-Aldrich 
St. Louis, USA 

4.1.1.5.2 Secondary Antibodies 

Table 4.9: List of Secondary Antibodies 

Antigen Immunized 
species 

Conjugate Dilution Source 

Anti-
MouseHRP 

Goat HRP 1:5000 Santa Cruz, Dallas, USA 

Anti- rabbit 
HRP 

Goat HRP 1:5000 Santa Cruz, Dallas, USA 

Mouse IgG Goat Alexa 568 1:1000 Invitrogen, Carlsbad, 
USA 
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Mouse IgG Goat Alexa 488 1:1000 Invitrogen, Carlsbad, 
USA 

Rabbit  IgG Goat Alexa 568 1:1000 Invitrogen, Carlsbad, 
USA 

Rabbit IgG Goat Alexa 488 1:1000 Invitrogen, Carlsbad, 
USA 

4.1.1.6 Enzymes 

Table 4.10: List of Enzymes 

Name Source 
DNAse Roche Diagnostics, 

Basel, Switzerland 
E.coli DNA Polymerase I Roche Diagnostics, 

Basel, Switzerland 
Pepsin Sigma-Aldrich, 

Missouri, USA 
Phusion High-Fidelity DNA Polymerase Fermentas/Thermo Fisher Scientific, 

Waltham, USA 
Restriction Endonucleases New England Biolabs,  

Ipswich, UK 
RNase Roche Diagnostics, 

Basel, Switzerland 
Shrimp Alkaline Phosphatase Fermentas/Thermo Fisher Scientific, 

Waltham, USA 
T4 DNA Ligase  New England Biolabs,  

Ipswich, UK 
Lambda phosphatase New England Biolabs,  

Ipswich, UK 
 

4.1.2 Molecular weight markers 

Table 4.11: Molecular Weight Markers  

 

 

 

Name Source 
HighRanger DNA Ladder Norgen Biotek Corp., Ontario, Canada 
Hind III marker Fermentas Life Science,  Waltham, USA 
Precision Plus ProteinTM Dual Color 
Standards 

Bio-Rad Laboratories, Hercules, USA 
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4.1.3 Kits 

Table 4.12: Kits used in this work 

Name Source 
Annexin V FITC v1.0  BD Bioscience, San Jose, USA 
CellTiter-Glo® Luminescent Viability Assay Promega, Madison, USA 
Fugene® 6 Transfection Reagent Promega, Madison, USA 
In-Fusion® HD Cloning Kit  Clontech Inc., Mountain View, CA 
Midi/Maxi Plasmid Purification Kit Qiagen, Hilden, Germany 
Pierce® ECL Western Blotting Substrate Thermo Scientific, Waltham, USA 
QIAprep® Spin Miniprep Kit Qiagen, Hilden, Germany 
QIAQuick® Gel Extraction Kit Qiagen, Hilden, Germany 
Quick StartTM Bradford Protein Assay Bio-Rad Laboratories, Hercules, USA 
QuikChange XL Mutagenesis Kit Agilent Technologies, Santa Clara, USA 
Vectashield® Vector Laboratories, Burlingame, USA 
Vectashield® with DAPI Vector Laboratories, Burlingame, USA 

 

 

4.1.4 Chemicals  

The standard chemicals used in this work were purchased from Sigma-Aldrich (St. Louis, 

USA), Carl Roth GmbH (Karlsruhe, Germany), Merck (Darmstadt, Germany), Roche (Basel, 

CH), AppliChem (Darmstadt, Germany), Serva (Heidelberg, Germany) and GERBU 

Biochemicals GmbH (Gaiberg, Germany). Consumables used were purchased from GE 

Healthcare (Chalfont St Giles, UK), Greiner Bio-One (Kremsmuenster, Austria), Starlab 

(Hamburg, Germany), Sarstedt (Nuembrecht, Germany), Eppendorf (Hamburg, Germany) 

and Whatman (Maidstone, UK).  

4.1.4.1 Media, buffers and solutions 

4.1.4.1.1 Media for Bacterial culture 

LB-Medium 1% (w/v) Trypton  

0,5% (w/v) Yeast extract  

1% (w/v) NaCl  

pH 7,2 
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LB-Agar LB-Medium  

1,5% (w/v) Agar 

SOC-Medium 2% (w/v) Trypton  

0,5% (w/v) Yeast Extract 

0,05% (w/v) NaCl  

2,5 mM KCl  

10 mM MgCl2  

20 mM Glucose  

pH 7,0 

 

4.1.4.1.2 Media and solutions for cell culture 

DMEM Gibco®/Invitrogen, Carlsbad, USA 

McCoy´s 5A Gibco®/Invitrogen, Carlsbad, USA 

OptiMEM Gibco®/Invitrogen, Carlsbad, USA 

B-Mercaptoethanol Gibco®/Invitrogen, Carlsbad, USA 

PBS/EDTA 2 mM EDTA in PBS 

Poly-L-Lysine Sigma-Aldrich St. Louis, USA 

Trypsin/EDTA-Lösung 0,25% (v/v) Pig-trypsin (Gibco®/Invitrogen, Carlsbad, 

USA) in PBS/EDTA 

 

4.1.4.2 Buffers and reagents 

 

Acrylamide Acrylamid / Bis 37.5:1 solution (30% w/v) 

(Serva Electrophoresis, Gremany) 

APS Carl Roth, GmbH, Germany 

Blocking buffer for 

Immunofluorescence 
10% Goat serum in PBS  

Blocking buffer for 

Western Blot 

5% Bovine serum albumin (BSA) in TBST 

Borat Buffer 20 mM boric acid  
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1,3 mM EDTA  

pH 8.8 

Dilution Buffer for CoIP 10 mM Tris/HCl, pH 7.5  

150 mM NaCl  

0.5 mM EDTA  

1 Tablet/50 ml Complete Protease inhibitor  

(Roche, Basel, CH) 

Hoechst 33342 Trihydrocloride, trihydrate 

(Life Technologies) 

PBS 137 mM NaCl  

2,7 mM KCl  

10 mM Na2HPO4  

1,7 mM KH2PO4  

pH 7,4 

RIPA-Buffer 50 mM Tris/HCl, pH 7,5  

150 mM NaCl  

0.25 % (w/v) Nadeoxycholate  

1 % (v/v) Nonidet P40  

1 mM EDTA  

1 Tablets/50 ml Complete protease inhibitor  

(Roche, Basel, CH)  

5 Tablets/50 ml PhosSTOP Phosphatase inhibitor 

(Roche, Basel, Switzerland) 

SDS 20% Dissolved in water to make 20% solution 

(Roth) 

SDS-Running buffer 380 mM glycin  

50 mM Tris  

0,1% (w/v) SDS 

SSC 20x 3M NaCl 

0.3M Trisodium citrate  

pH 7.0 

Stop Mix 0.5% Dextran blue 

0.1% NaCl 

20mM EDTA 

20mM Tris pH7.5, in double distilled water 
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TAE 40 mM Tris/HCl, pH 8,0  

0,12% conc. Acetic acid  

1 mM EDTA 

TEMED Serva Electrophoresis, Germany 

TBS 10 mM Tris/HCl  

150 mM NaCl  

pH 8.0 

TBST 0.1% (v/v) Tween 20 in TBS 

Transfer buffer 10x  50 mM Tris  

40mM Glycine  

3.7g SDS 

(For working solution add 20% of absolute methanol 

to 1x transfer buffer)  

6x DNA-Loading Buffer 200 mM EDTA  

100 mM Tris/HCl, pH 7,5  

0,01% (w/v) Bromphenol blue  

0,01% (w/v) Xylencyanol  

30% (v/v) Glycerol 

6x SDS-Protein loading 

buffer 

240 mM Tris/HCl, pH 6,8  

30% (v/v) β-Mercaptoethanol  

6% (w/v) SDS  

30% (v/v) Glycerol  

0,002% (w/v) Bromphenolblau 

Vectashield Mounting Medium  

(Linaris GmBH, Germany) 

 

4.1.4.3 Antibiotics 

Carbenicillin Serva, Heidelberg, DE,  

Final concentration: 100 μg/ml 

Geneticin (G418) PAA Laboratories GmbH (Austria)  

Final concentration: suited for the cell line  

Hygromycin B Invitrogen, Carlsbad, USA, 

Final concentration: suited for the cell line  
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Penicillin/Streptomycin Gibco®/Invitrogen, Carlsbad, USA,  

Final concentration: 100 μg/ml 

Puromycin Merck, Darmstadt, DE, Final concentration: suited for 

the cell line 

 

4.1.4.4 Drugs 

Nocodazole Sigma-Aldrich, Missouri, USA 

Thymidine Sigma-Aldrich, Missouri, USA 

Verteporfin Sigma-Aldrich, Missouri, USA 

 

4.1.4.5 Laboratory equipment 

BD Accuri C6 Flow cytometer Becton Dickinson, San Jose, 

USA 

Centrifuge 5417R Eppendorf, Hamburg, Germany 

Fluorescence microscope Axiovert 200M 

equipped with AxioCam MRm 

Carl Zeiss, Göttingen, Germany 

Fluorescence microscope Axioskop equipped 

with AxioCam MRc 

Carl Zeiss, Göttingen, Germany 

Axio Observer.Z1, Live cell observer  Carl Zeiss, Göttingen, Germany 

Confocal  Microscope Leica TCS SP5 Leica, Wetzlar, Germany 

Mini-PROTEAN® Tetra Cell Bio-Rad Laboratories, Hercules, 

USA 

Mini Trans-Blot® Electrophoretic Transfer Cell Bio-Rad Laboratories, Hercules, 

USA 

PCR-Maschine „Mastercycler gradient“ Eppendorf, Hamburg, Germany 

PCR-Maschine „Mastercycler personal“ Eppendorf, Hamburg, Germany 

pH-Meter SevenMulti Mettler Toledo, Giessen, 

Germany 

Photometer Eppendorf, Hamburg, Germany 

Shandon Cytospin III  Thermo electron corporation, 

Pittsburg, USA 

Spectrophotometer “NanoDrop” PeqLab Biotechnologie, 
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Erlangen, Germany 

UV Table Konra Benda, Wiesloch, 

Germany 

Zentrifuge Megafuge 1.0R Heraeus, Hanau, Germany 

Zentrifuge Sorvall RC6Plus Thermo Scientific, Waltham, 

USA 

 

4.1.4.6 Software 

ApE- A plasmid editor M. Davis Wayne, Utah, USA 

AxioVision Version 4.7.2 Carl Zeiss, Göttingen, Germany 

BD Accuri C6 Becton Dickinson, San Jose, USA 

ImageJ Wayne Rasband, USA 

Microsoft Office 2010 Microsoft Corporation, Redmond, USA 

QuickChange Primer Design  Stratagene, LaJolla, USA 

 

4.2 Methods 

4.2.1 Cell biology methods 

4.2.1.1 Cell culture 

The cell lines listed in Table 4.1 were cultured at 37 °C under 5% CO2 in tissue culture flasks 

or dishes. To passage, adherent cells were washed once with PBS/EDTA, trypsin/EDTA was 

added and the cells were incubated for 2-4 min at 37 °C. The cells were then collected in 

fresh medium, and seeded into new cell culture flasks or dishes. The following media were 

used: 

Normal Human 
Astrocytes 

HA medium + 10% (v/v) FCS + 1% Pen/Strep 

NCH149 DMEM + 10% (v/v) FCS + 1% Pen/Strep 

NCH82 DMEM + 10% (v/v) FCS + 1% Pen/Strep 

U2OS DMEM + 10% (v/v) FCS + 1% Pen/Strep 
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U2OS-Tet on DMEM + 10% (v/v) FCS + 1% Pen/Strep + 4mM 
Glutamine + Geneticine (End concentration 200ug/ml) 

 

 

4.2.1.2 Synchronization of human cell lines  

In order to study cell cycle duration and progression, cells were synchronized using one of 

the following methods: 

4.2.1.2.1 Nocodazole 

Cells were incubated for about 16 h with 100 ng/ml nocodazole to block asynchronously 

growing cells in early mitosis. After this incubation, cells were gently washed twice with 

nocodazole-free medium and mitotic cells were collected by mitotic “shake off”, i.e., 

strongly tapping the flasks to detach rounded mitotic cells from the bottom. If mitotic cells 

were needed, these cells were washed (5 minutes, 200 g, RT) and then fixed for FACS (ice 

cold 100% methanol) or lysates were prepared for Western blot or CoIP experiments (see 

4.2.6). To analyze later cell cycle stages, mitotic cells were seeded in medium without 

nocodazole and incubated for the appropriate time. 

4.2.1.2.2 Synchronization by double thymidine block  

200,000 cells were seeded in 14 cell culture dishes (60 mm). At the next day the first 

thymidine block was performed by incubating the cells with medium containing 2 mM 

thymidine for 16 hours leading to S-phase arrest of the cells. After washing three times with 

PBS, medium containing 24 uM 2'-deoxycytidine was added to the cells and they were 

incubated at 37 °C for additional 12 hours. Then, the cells were subjected to the second S-

phase arrest by re-addition of 2 mM thymidine containing medium for 12 hours. After 

washing three times with PBS, 2'-deoxycytidine-containing medium was added to the cells 

and processed every hour to obtain lysates upto 8 hours. 

4.2.1.3 Poly-l-lysine coating 

Sterile glass slides and cover slips were coated with poly-l-lysine solution under sterile 

conditions, incubated for 20 minutes at 37°C and then washed twice with 1x PBS. Coated 
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slides and coverslips were used for culturing cells in order to enhance the attachment of 

cells, especially mitotic cells, to glass slides or cover slips. 

4.2.2 Immunofluorescence 

To stain eukaryotic cells by indirect immunofluorescence, cells were cultured on coverslips. 

The cells were washed with PBS and fixed in accordance with the requirements of the 

primary antibodies used for staining (see Table 4.8). For methanol-acetone fixation the cells 

were incubated with a 1:1 methanol-acetone mixture for 7 minutes and the coverslips were 

then air dried. For methanol fixation, cells were incubated for 10 minutes with ice-cold 

100% methanol followed by air drying. The dried coverslips were stored at -20 °C. After 

fixation, the cells were blocked for 30 minutes with 10% goat serum in PBS and then 

incubated with the primary antibody for 1-1.5 hours. The cells were washed 3 times with 

PBS to remove excess primary antobody and then incubated for 30 minutes with the 

secondary antibody. Both primary and secondary antibodies were diluted in 10% goat 

serum in PBS (see Tables 4.8 and 4.9). To stain the nuclei, cells were then incubated with 10 

ug/ml Hoechst 33342 in 10% goat serum in PBS and incubated for 5 min. After washing 

three times with PBS and washing once with ddH2O, the coverslips were immersed in 100% 

ethanol, dried on filter paper and coated with Vectashield. The analysis of stained cells was 

done by fluorescence microscopy. 

4.2.3 Flow cytometry 

The distribution of cells from a cell population in different cell cycle phases was determined 

using flow cytometry. For this, cells were collected by trypsinization or mitotic shake off and 

washed with PBS. Subsequently, the cell pellet was resuspended in 250 ul PBS. The cells 

were fixed by dropwise addition of 700 ul of 100% ice-cold methanol and vortexing. After 

incubation at 4°C for at least 1 hour the cells were washed once with PBS and 200 ul of a 

propidium iodide solution (10 ug/ml propidium iodide + 0.25 mg/ml RNase A in PBS) was 

added to the cells. Cells were then incubated for 30 min at 37 °C and analyzed by a BD 

Accuri flow cytometer using C6 software. Since propidium iodide is a DNA intercalating 

substance, DNA content and the cell cycle stages can be determined. 
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4.2.4 Live cell imaging 

In order to observe the behavior of cells in real time, live cell imaging was performed. For 

this purpose, cells were seeded in 35 mm dishes (μ-dish, Ibidi, Martinsried) and allowed to 

adhere for 24 hours. Cells were syncronized overnight (see 4.2.1.2), released and placed 

into the incubation chamber (37°C and 5% CO2) of an Axio Observer. To determine the 

duration of mitosis, bright field images were taken every 10 minutes at various dish 

positions using a 20x objective. 

4.2.5 Protein biochemistry methods 

4.2.5.1 Preparation of cell lysates  

 

The preparation of cell lysates was carried out using RIPA buffer. Adherent cells were 

scraped from the bottom of the cell culture dishes, washed with PBS. Cells were pelleted by 

centrifugation. The pellet was resuspended in RIPA buffer and incubated on ice for at least 

30 minutes. Cell clumps were removed by repeated pipetting up and down or vortexing 

during the incubation period. The mixture was then subjected to centrifugation for 10 

minutes at 18000 g and 4 °C, the supernatant was transferred to a new tube and the protein 

concentration was determined (see 4.2.5.2.) and analyzed either by SDS-PAGE (see 4.2.5.3.) 

or used for co-immunoprecipitation (see 4.2.6). 

4.2.5.2 Determination of protein concentration  

 

To determine the protein concentration of cell lysates the "Quick START Bradford Protein 

Assay" was used according to the manufacturers protocol. To create a calibration curve a 

BSA standard was used. 

4.2.5.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

The electrophoretic separation of proteins was performed by SDS polyacrylamide gel 

electrophoresis under denaturing conditions (90). Gels were prepared with 6-12% 

acrylamide depending on the size of the proteins to be detected. Cell lysates were mixed 

with 1x SDS protein loading buffer, boiled for 5 min at 95 °C and 50-100 ug protein was 
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loaded per well. Separation was performed in the stacking gel at 80 V and in the separating 

gel at 110-120 V. 

4.2.5.4 Western Blot 

Proteins separated by SDS-PAGE (see 4.2.5.3.) were transferred to a PVDF membrane (GE 

Healthcare, Chalfont St Giles, UK) by wet transfer methodology using "Mini Trans-Blot 

Electrophoretic Transfer Cell". The membrane was activated in 100% methanol for 1 minute, 

and sandwiched with the gel between 3 layers of filter paper and fiber pads on each side. 

The protein transfer was performed for 2.5 hours at 4 °C and 450 mA in either borate buffer 

or methanol transfer buffer. The proteins were then detected by immunodetection (see 

4.2.5.5).  

4.2.5.5 Immunodetection 

For the detection of proteins by means of immunodetection the membrane was blocked for 

one hour with 5% (w/v) milk powder in 1x TBST at room temperature and then incubated 

with the primary antibodies overnight at 4 °C with gentle shaking. After three 5 minutes 

washes with 1 x TBST, the membrane was incubated with secondary antibody for 1 hour at 

room temperature and then again washed 3 times for 5 minutes each with 1 x TBST. Both 

primary and secondary antibodies were diluted in 5% (w/v) milk powder or 5% (w/v) BSA in 

1 × TBST (see Tables 4.8 and 4.9). Detection was done by treating the membrane with 

"Pierce ECL Western Blotting Substrates" according to the manufacturer's instructions 

followed by exposure to X-ray films (Amersham HyperfilmTM ECL, GE Healthcare, Chalfont 

St Giles, UK). The films were then developed in a dark room. 

4.2.6 Co-Immunoprecipitation 

To detect protein-protein interactions, co-immunoprecipitation (Co-IP) was performed in 

which an antibody against the target protein was used. By adding this antibody to whole cell 

lysates, proteins binding to the target protein or proteins present in the same complex, can 

be co-immunoprecipitated with the target protein. For this purpose, cell lysates were 

prepared (see 4.2.5.1.) and diluted with 500 ul of dilution buffer. For the co-

immunoprecipitation of endogenous proteins the antibodies were bound to protein A/G 

agarose beads. For this, 25 µl of each, protein A and protein G agarose beads (Roche, 

Basel, Switzerland), were mixed and washed three times with 500 µl dilution buffer 



                                                                                                               Materials and Methods 

 38 

(centrifugation at 500 g, 4 °C for 5 min) and incubated with 1 µg antibody for one hour under 

constant rotation at 4 °C. The IgG antibodies are used as control. The cell lysates were 

incubated with the antibody-coupled agarose beads overnight at 4 °C with continuous 

rotation. The agarose were again washed three times with dilution buffer, mixed with 2x 

SDS protein loading buffer and boiled for 10 minutes at 95 °C. The analysis was performed 

by SDS-PAGE (see 4.2.5.3.), Western blot (see 4.2.5.4.) and immunodetection (see 4.2.5.5.).  

4.2.7 Molecular Biology Methods 

4.2.7.1 PCR 

Polymerase chain reaction (PCR) was performed to enzymatically amplify specific DNA 

sequences using suitable primers (Table 4.3) (91). To this end, a PCR approach was 

established, as follows: 

CloneAmp HiFi PCR Premix  10 µl 
Forward primer (100pmol/µl) 1 µl 
Reverse primer (100pmol/µl) 1 µl 
dNTP mix (10 mM each) 1 µl 
Template DNA 10 ng 
Nuclease free water make up to 50 µl 

 

The PCR program was set as follows; denaturation, annealing and elongation were repeated 
for 35 cycles: 

 

Initial denaturation of DNA 98 °C 10 s 
Denaturation and Annealing 55 °C 15 s 
Elongation 72 °C 5 s per kb of template 

 

The PCR product was treated with DpnI enzyme in Super Cut buffer for 1 hour at 37 °C to 

remove the template DNA, followed by heat treatment at 80 °C for 15 minutes to inactivate 

the enzyme. The purification of amplified DNA fragments was carried out using the 

"QIAQuick Gel Extraction Kit" according to the manufacturer’s protocol. 
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4.2.7.2 Agarose gel electrophoresis  

 

DNA fragments were separated according to their size using agarose gel electrophoresis. 

The DNA samples were mixed with 1x DNA loading buffer and loaded on to 1% agarose 

gels containing ethidium bromide (0.1 µl/ml of a 1% ethidium bromide solution). The 

electrophoresis was carried out in 1x TAE buffer for 1 hour at 120 V. 

4.2.7.3 DNA digestion by restriction endonucleases 

  

Plasmid DNA was cut by type II restriction endonucleases at specific sites. Two batches of 

50 ul reactions were prepared containing the following components:  

10x reaction buffer 5 µl  
Restriction enzymes 20 U per enzyme  
Purified PCR fragment or plasmid DNA 5 ng / 5 µg 
nuclease-free water make up to 50 µl 

 

The mixtures were incubated for 1-3 h at 37 °C. The linearized plasmid DNA was 

dephosphorylated by the addition of 1 U "Shrimp Alkaline Phosphatase" for 30 min at 37 °C. 

Purification of cleaved DNA was performed by "QIAQuick Gel Extraction Kit" according to 

the maufacturer’s protocol. 

4.2.7.4 Ligation 

 

After determination of the concentration of the PCR amplified DNA and the target plasmid, 

the ligation was carried out using the manufacturer’s protocol (In-Fusion HD Cloning Kit). 

Ligation mixture was prepared along with negative control (without PCR amplified DNA) as 

follows: 

 

 

 

The ligation was performed for 15 minutes at 50 °C.  

5x HD enzyme mix 2 µl 
Vector (54 ng)  2 µl 
PCR amplified DNA (50 ng)  4 µl   
Nuclease free water 2 µl  (to make up to 10 µl ) 
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4.2.7.5 Transformation of chemically competent bacteria 

To transform chemically competent bacteria (see Table 4.2), 50 ul of competent bacteria 

provided with the In-Fusion HD Cloning Kit were thawed and incubated with 2.5 ul of 

ligation mixture for 30 minutes on ice. This was followed by a heat shock for 45 s at 42 °C. 

After incubation for 2 minutes on ice, 500 ul of SOC medium was added and the bacteria 

were allowed to grow for 1 hour at 37 °C while shaking. Then, bacteria were centrifuged (5 

minutes, 1300 g), resuspended in 100 ul of SOC medium and streaked on LB plates 

containing the respective antibiotic. Incubation was carried out overnight at 37 °C. 

4.2.7.6 Mutagenesis 

Site-directed mutagenesis was carried out using mutagenesis primers listed in Table 4.3 

and the "QuikChange II XL Site-Directed Mutagenesis Kit" according to the manufacturer's 

instructions. The mutagenesis was performed using the following PCR program. 

Denaturation, annealing and elongation were repeated for 35 cycles:  

Initial denaturation  95°C 2mins 
Denaturation 95°C 20 s 
Annealing 60°C 10 s 
Elongation 68°C 30 s per kb 
Final Elongation 68°C 5 mins 

 

The PCR product obtained was treated with Dpn I enzyme and transformed into chemically 

competent bacteria (see 4.2.7.5). These bacteria were plated on ampicillin agar plates and 

resistant colonies were picked. The DNA was extracted using miniprep kit (see 4.2.7.7) and 

the presence of the mutation was verified by sequencing (GATC Biotech AG, Konstanz, 

Germany). 

4.2.7.7 Plasmid isolation  

 

For the extraction of plasmid DNA, single colonies were picked and placed in 2 ml LB 

medium containing the appropriate antibiotic and incubated overnight at 37 °C while 

shaking. The next day, plasmid DNA was purified using the "QIAprep Spin Miniprep Kit" 

according to manufacturer's instructions. Verification of successful cloning was carried out 

by sequencing (GATC Biotech AG, Konstanz, Germany). For purification of larger amounts 

of plasmid DNA, the positive clones were expanded into 100 ml of LB medium with 
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antibiotic and subsequent DNA purification by the "Midi/Maxi Plasmid Purification Kit" 

according to the manufacturer's protocol. 

4.2.8 Transfection of human cell lines 

4.2.8.1 Transient transfection 

To study phenotypes after overexpression of a protein, plasmid DNA was transfected into 

human cells. For transfection of plasmid DNA Fugene 6 was used according to the 

manufacturer's instructions. The ratio of transfection reagent (µl): plasmid (µg) used was 

either 3:1. The cells were seeded one day before transfection so that 60% confluency was 

attained on the day of transfection. 

4.2.8.2 Stable transfection  

For the preparation of stably transfected cell lines, the cells were transfected with the 

appropriate expression construct (Table 4.5) and incubated at 5% CO2 for 48 hours at 37 

°C. For selection and isolation of the transfected cells, these were re-plated at various 

dilutions in larger cell culture dishes and the antibiotic whose resistance gene was included 

in the plasmid DNA, was added to the culture medium. The cells were cultured for two to 

three weeks and the medium with antibiotic was changed every two days. During this 

selection period, single colonies were scraped off carefully using a pipette tip and put into a 

24-well plate, seeding only one colony per well. The cells were expanded and the success 

of the stable transfection was determined by indirect immunofluorescence (see 4.2.2) and 

Western blotting (see 4.2.5). 

4.2.9 Cytogenetic methods  

4.2.9.1 Multicolour FISH and karyotyping 

Multiplex fluorescence in situ hybridization (M-FISH) on fixed metaphase spreads of the 

GBM cell lines NCH82 and NCH149 were carried out as described (92). For this, DOP-PCR 

amplified probe pools were labeled in combination with seven different fluorochromes 

(DEAC, FITC, Cy3, Cy3.5, Cy5, Cy5.5, and Cy7) and hybridized together in the presence of 

cot-1 DNA. Twenty-one metaphase spreads were captured using a DM RXA 
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epifluorescence microscope (Leica Microsystems, Bensheim, Germany) equipped with a 

Sensys CCD camera (Photometrics, Tucson, AZ, USA). Images were processed on the 

basis of the Leica MCK software (Leica Microsystems Imaging solutions, Cambridge, UK) 

and presented as multicolor karyograms. These experiments were performed by Brigitte 

Scholer in the laboratory of Prof. A Jauch, Department of Human Genetics, University of 

Heidelberg. 

4.2.9.2 Interphase FISH 

Two color FISH experiments were carried out according to previously reported standard 

protocols (93) using repetitive DNA probe sets for the centromeric regions of chromosomes 

(see Table 4.6) and atleast 300 nuclei per experiment were analyzed for each chromosome. 

4.2.9.2.1 Nick translation 

For direct labeling of centromere repetitive probes, a nick translation reaction was 

performed as follows: 

B-mercaptoethanol  5 µl 
NT-Buffer (10x) 5 µl 
dNTP mix (mM) 5 µl 
Probe DNA 1 µg 
dUTP ( Spectrum green/orange) 1 µl 
DNAse 1mg/ml (1:50 in water) 3 µl  
DNA polymerase (50 U/µl) 1 µl 
Nuclease free water  up to 50 µl 

 

The reaction mixture was incubated for 90 minutes at 15 °C. A stop mix was added to the 

tubes to block the polymerase and stop the reaction. The size of the probes was checked 

by agarose gel electrophoresis (see 4.2.7.2) using Hind III marker as molecular weight 

marker. 

4.2.9.2.2 Precipitation of probes and preparation of the hybridization mix 

The labeled probes were precipitated by spinning at 10000 g for 30 minutes at 4 °C. To 

make the hybridization mix ready to use, the pellet was re-suspended in 6.5 ul of deionized 

formamide by shaking at 37 °C followed by addition of 3.5 ul of 20% dextran sulphate. 
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4.2.9.2.3 Hybridization 

The desired cells were collected, washed, put on glass slides using a cytospin centrifuge 

(400 g, 5 minutes) and fixed using methanol-acetic acid (3:1). The slides were be stored at -

20 °C up to several days. For hybridization, the slides were equilibrated briefly in a coplin jar 

with 2x SSC at 37 °C. Then, the slides were incubated for 1 hour with 100 mg/ml (1:200 ul 

2x SSC) RNase in a moist chamber at 37 °C. Slides were washed three times with 2x SSC 

for 5 minutes and then treated with pepsin HCL working solution in a coplin jar for 12 

minutes. The slides were subsequently washed with 1x PBS and fixed with 1% 

formaldehyde at RT for 10 minutes under a fume hood. For denaturation, the slides were 

immersed in 70%, 90% and 100% ethanol sequentially for 3 minutes each. For 

hybridization, 3 µl of hybridization mix (see 4.2.9.2.2) was added to each cytospin and 

covered with a coverslip. Then, slides were placed in a metal box and incubated in a water 

bath for 5 minutes at 75 °C. The coverslips were sealed to prevent them from drying and 

incubated overnight at 37 °C. At the next morning coverslips were removed and the slides 

were washed twice with 0.2x SSC and once with 4x SSC/1% Tween 20. DAPI was added to 

the cytospins to stain the DNA and cells were mounted using Anti-Fade. Analysis was 

performed using fluorescence microscopy.  

4.2.10  Whole exome sequencing 

Dr. Balca Mardin, a member of Jan Korbel’s group (Genome biology) at EMBL, Heidelberg, 

Germany performed whole exome sequencing of the NCH149 cell line as well as of the 

control and tumor DNA from the patient of whom the cell line was established. 

4.2.11 Sanger sequencing 

LATS1 mutation in genomic DNA of cell lines were confirmed by Sanger sequencing. For 

this, mRNA was isolated and cDNA was synthesized followed by PCR amplification of 

LATS1 mutation containing region using the primers 5 and 6 in table 4.3. The PCR products 

along with primer 7 (table 4.3) were then sent for Sanger sequencing to GATC. 
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4.2.12  Viability assay 

Viability assay was performed to calculate the number of viable cells in culture with and with 

out verteporfin treatment. For this assay, the cells were seeded in 6-well plates (1x10E6 

cells per well) and allowed to adhere over night. The next day, desired concentrations of the 

drug to be analyzed were prepared and added to the cells. At desired time points after 

addition of the drug, cells were harvested and the number of live cells were counted.  

4.2.13 Annexin staining 

FITC Annexin V is used to quantitatively determine the percentage of cells within a 

population that are undergoing apoptosis. Annexin V is a calcium-dependent phospholipid-

binding protein that has a high affinity for phosphatidylserine (PS), which is found exposed 

in apoptotic cells. Propidium Iodide (PI) is a standard flow cytometric viability probe and is 

used to distinguish viable from nonviable cells. Viable cells with intact membranes exclude 

PI, whereas the membranes of dead and damaged cells are permeable to PI. Cells that stain 

positive for FITC Annexin V and negative for PI are currently undergoing apoptosis. Cells 

that stain positive for both FITC Annexin V and PI are either in the end stages of apoptosis, 

are undergoing necrosis, or are already dead. Cells that stain negative for both FITC 

Annexin V and PI are alive and not undergoing measurable apoptosis. Treated and 

untreated cells were harvested, washed twice with ice cold PBS and then resuspend in 1× 

binding buffer at a concentration of 1 × 106 cells/ml). Then 100 μl of this solution (1 × 105 

cells) was transfered to a 5 ml culture tube followed by addition of 5 μl of FITC Annexin V 

and 10 μl PI, vortexed and incubated for 15 minutes at 25 °C in the dark. Unstained and 

single stained controls for each sample were also prepared for flow cytometric analysis. 

Flow cytometric analysis was performed using a BD Accuri flow cytometer and analysed 

using B6 software. 

4.2.14 Statistical Analysis 

All results are presented as mean ± standard deviation (SD). Differences between 

experimental groups were analyzed by unpaired Student’s t-test for unpaired groups and 

values of p < 0.05 were considered as statistically significant. The asterisks represent 

significantly different values. *: p<0.05; **: p<0.01; ***: p<0.001.  
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5 Results 

5.1 Identification of CIN in glioblastoma cell lines  

5.1.1 Karyoptypic profiling of NCH149 and NCH82 cell  

Cellular genome integrity at the chromosomal level is reflected through cellular ploidy levels 

and intercellular heterogeneity. In order to characterize genome integrity of the two 

glioblastoma (GBM) cell lines NCH149 and NCH82, cytogenetic analysis was performed in 

the laboratory of Prof. Dr. Anna Jauch using multiplex FISH (M-FISH; Figure 5.1) as well as 

classical karyotyping.  By M-FISH analysis both numerical and structural chromosomal 

aberrations were observed in these cell lines. Metaphase spreads of the NCH149 cell line 

(n=21) revealed that these cells display extraordinary CIN with a variety of clones having 

different metaphase chromosome numbers ranging from 42 to 129. In contrast to NCH149 

cells, the chromosome number of NCH82 cells has been almost equal within the 

metaphases analyzed showing a tetraploid karyotype in 15 evaluated metaphases. This was 

indicative for a more stable karyotype of NCH82 cells compared to NCH149 cells as 

observed by Dokic et. al. 2014.  

 
Figure 5.1 M-FISH karyoptypes of GBM cell lines 

M-FISH images of NCH149 (A) showing extreme aneuploidy and NCH82 (B) showing a near tetraploid 
karyotype. Modified from Dokic et. al. International Journal of Radiation Biology, 2014, with 
permission. 
 
 
 
 
 

22 del(22)
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5.1.2 Confirming CIN in NCH149 cells  

In order to verify the M-FISH data I performed interphase-FISH for chromosomes 2 and 20 

and at least 300 interphase cells were scored for each chromosome by Dr. Tilmann 

Bochtler. Analyzing considerably more cells as compared to M-FISH analysis allowed to 

ensure that NCH82 have a more stable karyotype than NCH149 cells. As expected, high 

intercellular variation in chromosome number was observed in NCH149 cells. Quantification 

showed that up to 10 copies of the analyzed chromosomes were present in single cells. In 

addition, grouping the cells according to the chromosome number revealed that each group 

does not comprise of more than 25% of the cells indicating the presence of CIN (Figure 

5.2A). In contrast, In contrast, NCH82 cells were found to have a stable tetraploid karyotype 

with little intercellular variation. In the NCH82 cell line 68% and 79% of cells were tetraploid 

for chromosme 2 and 20, respectively, and the rest mainly diploid meaning that a major 

fraction of the cells were tetraploid at least for these two chromosomes but not 

chromosomaly instable (Figure 5.2 B).Together this shows that, although both cell lines 

harbor numerically aberrant karyotypes, NCH82 cells have a stable near tetraploid karyotype 

while NCH149 cells are chromosomally instable. 

 

Figure 5.2 Interphase FISH score for chromosmes 2 and 20  

Interphase FISH with centromere probes for chromosmes 2 and 20 of the NCH149 cell line showing 
excessive cell-to-cell variation in chromosome numbers (A). NCH82 cells seem to have a major 
tetraploid subclone and a minor subclone which is diploid for chromosomes 2 and 20 (B). 
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5.2 CIN phenotype of NCH149 cells 

Next, I studied the phenotype of NCH149 cells using immunofluorescence microscopy and 

live cell imaging. To further assess the CIN phenotype, we performed immunofluoresence 

and live cell imging experiments to evaluate parameters such as presence of micronuclei, 

lagging chromosmes, centriole amplification and aberrant mitosis that indicate extent of CIN 

in the NCH149 cell line compared to the NCH82 cell line with out CIN.  

5.2.1 Presence of micronuclei  

Firstly, the two cell lines were stained for DNA (Hoechst) and centromeres (CREST) to 

check for the presence of micronuclei (Figure 5.3). For each cell line 300 cells were counted 

in 3 independent experiments. Upon microscopic analysis it was found that 25 ± 1% (mean 

± SD) of NCH149 cells show micronucleus formation. On the other hand, only 2% ± 1%  

(mean ± SD) of NCH82 cells harbor micronuclei (p < 0.001) (Figure 5.3).  

 

  
Figure 5.3 Extensive micronucleus formation in NCH149 cells 

NCH149 and NCH82 cells were stained with DNA dye, Hoechst (blue) and scored for micronuclei 
(indicated by arrows) by fluoresence microscopy showing that NCH149 cells, in contrast to NCH82 
cells, possess micronuclei. Scale bar, 10 µm. 
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5.2.2 Occurrence of whole chromosomes in micronuclei  

Further, to determine the contents of micronuclei I stained the NCH149 cells with the 

nuclear lamina marker lamin A in this experiment to investigate whether the DNA is 

surrounded by a nuclear envelop. In addition I again used the CREST-antibody against 

centromeres. The presence of a CREST signal in micronuclei indicates the presence of 

whole chromosomes. Quantification of 300 cells in 3 independent experiments revealed 

that amongst the cells containing micronuclei, 75.15 ± 2.7% (mean ± SD)  of micronuclei 

harbor 1 or 2 centromere (CREST) signals in NCH149 cells (Figure 5.4). Incontrast, in 

NCH82 cells, however, had only 1.33 ± 0.5% (mean ± SD) of micronuclei with CREST 

signals (p < 0.001). This suggests that NCH149 cells missegregate whole chromosomes at 

significantly higher rates as compared to the NCH82 cell line. 

 

Figure 5.4 Presence of whole chromorsomes in micronuclei of NCH149 cells 

Immunofluoresence staining of NCH149 cells with an antibody to lamin A (red) and CREST antibodies 
(green). Most of micronuclei in NCH149 cells were found to contain one or more CREST signals 
confirming the presence of whole chromosomes (indicated by arrows). Inset shows micrunucleus 
with and without CREST signal. Scale bar, 10 µm.  
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5.2.3 Chromosome missegregation in NCH149 cells 

It has been shown that micronucleus formation occurs due to missegregation of 

chromosomes during late mitosis leading to lagging chromosomes resulting in aneuploidy 

and chromosomal instability (94). Hence, we further analysed mitotic missegregation of 

chromosomes in NCH149 and NCH82 cell lines. For this, we synchronized the cells by 

thymidine block and collected mitotic cells by fixing after release (see 4.2.1.2.2).  Mitotic 

cells were stained with CREST antibodies and an antibody to α-tubulin and 100 mitotic cells 

were scored and quantified from 3 different experiments. Interestingly, in 30 ± 2.2% (mean 

± SD) of mitotic NCH149 cells lagging chromosomes were found (Figure 5.5). In NCH82 

cells only very few cells 0.6 ± 0.57% (mean ± SD) containing lagging chromosomes are 

observed  (p < 0.001). 

The lagging chromosome score correlates with the micronuclei score in both the cell lines 

(see 5.2.1). This suggests that the presence of micronuclei is indeed a result of 

chromosomal missegregation events which is more pronounced in NCH149 cells when 

compared to NCH82 cells. 

 

 

 

 
Figure 5.5 Chromosomal missegregation 

Scoring mitotic cells immunostained with  α-tubulin (red) and CREST (green) antibodies as well as 
Hoechst (blue) showed lagging chromosomes in 30% of mitotic NCH149 cells. In NCH82 <1% of 
mitotc cells showed lagging chromosomes. Scale bar, 10 µm. 
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5.2.4 Centriole amplification 

CIN is often associated with and caused by amplified centrosomes/centrioles. Therefore, we 

next determined the centriole content of NCH149 as well as NCH82 cells by 

immunostaining with antibodies against the centriolar proteins centrin and CP110. Counting 

both centrin and CP110 signals in 100 interphase cells in 3 independent experiments 

revealed that 44.3 ± 2.36 % of NCH149 cells possess supernumerary centrioles while this is 

true for only 8 ± 0.82 % (mean ± SD) of NCH82 cells (p < 0.001) (Figure 5.6). Both 

immunostaining and analysis were performed by Anna Cazzola. 

 

 
Figure 5.6 Centriole amplification in NCH149 cells 

Cells were stained with antibodies to centrin (green) and CP110 (red) and Hoechst. Cells with > 4 
centrin signals were considered to have centriole amplification. Centriole amplification was observed 
in 44.3 % of NCH149 cells whereas NCH82 cells show amplified centrioles in only 8% of the cells.  
Scale bar, 10 µm. 
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5.2.5 Mitotic phenotype 

Aberrant multipolar mitoses or evasion from cytokinesis after nuclear division is one of the 

main mechanisms leading to aneuploidy or CIN especially in the presence of supernumerary 

centrosomes. Often in cancer cells the extra chromosomes cluster together to force the cell 

into pseudo-bipolar division. However, despite clustering, extra centrosomes prolong 

mitosis by delaying the satisfaction of the SAC due to merotelic attachment of kinetochores 

to microtubules. To investigate the mitotic phenotype of NCH149 and NCH82 cells 

immunofluorescence microscopy and live cell imaging techniques were used. 

For immunofluorescence microsopy mitotic cells were stained with the centrosomal marker 

pericentrin (PCNT) and α-tubulin to visualise mitotic spindles. Given the aberrant number of 

centrioles, the majority of NCH149 cells surprisingly undergoes bipolar mitosis. Only less 

than 1 of 100 mitoses scored in three independent experiments show abnormal multipolar 

divisions (Figure 5.7A). Also most of the NCH82 cells also undergo bipolar division. 

Further, to analyse the duration of mitosis of NCH149 and NCH82 cells I performed live cell 

imaging. The duration of mitosis was calculated from cell rounding to cytokinesis; n=300; 

(Figure 5.7B). 79% of NCH149 underwent mitosis within 80 minutes compared to 75% of 

NCH82 cells within 40 minutes indicating prolonged mitosis duration in NCH149 cells. In 

addition to the prolonged mitosis, 13 % of mitotic NCH149 cells failed to undergo 

cytokinesis after nuclear division during the 24 hours of observation period. 
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Figure 5.7 Mitotic phenotype  

(A) Immunofluorescence staining of NCH149 and NCH82 cells with antibodies against pericentrin 
(PCNT) (red), α-tubulin (green) and Hoechst shows normal bipolar mitosis in both cell lines. Scale bar, 
10 µm. (B) Duration of mitosis from cell rounding to cytokinesis was calculated from live cell imaging 
data (n=300).  
 
 

Together, these results demonstrate that NCH149 cells missegregate whole chromosomes 

at a high frequency indicated by the presence of whole chromosomes in micronuclei, 

centriole amplification and prolonged mitosis, pointing towards a CIN phenotype of NCH149 

cells. On the other hand NCH82 cells have a stable aneuploid/tetraploid karyotype as they 

show minimal chromosomal missegregation, centriole amplification and normal mitotic 

phenotype. 
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5.3 Mutation profile of NCH149 cells 

To gain insight into the cause of the CIN phenotype of NCH149 cells we performed whole 

exome sequencing of the NCH149 cell line as well as the primary tumor from which the cell 

line was derived, compared to healthy brain tissue (control) of the same patient. Sequencing 

and data analysis was performed by Dr. Balca Mardin form the Korbel group, EMBL, 

Heidleberg. 

5.3.1 Whole exome sequencing  

The read depth plots show massive gains and losses of chromosomes in tumor tissue and 

the cell line derived thereof when compared to control tissue supporting the finding of 

extensive aneuploidy in NCH149 cells (Figure 5.8). 

 

 
Figure 5.8 Read Deapth plots 

Comparative read depth plots of all chromosoms for control, tumor as well as early and late passage 
of the cell line. The red line indicates normal 2n number of chromosmes, copy number gains or 
losses are shown as a shift above or below the red line, respectively. An example for a whole 
chromosome gain of chromosome 7 is highlighted in the blue box. 
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5.3.2 Mutations in NCH149 cells 

Besides gains or losses of whole chromosomes, the whole exome sequencing also led to 
the identification of 24 novel, non-synonymous mutations, found in the primary tumor and 
the derived cell line NCH149 but not in the control healthy brain tissue (Table 5.1).  

Table 5.1 List of Mutant genes in NCH149 
 

 

These mutations are all novel and are predicted to affect protein function. Among the genes 

harboring mutations, LATS1 (highlighted in red) has been chosen for further investigation 

with regard to CIN and tumorigenesis of NCH149 cells since mutations in LATS1 have been 

implicated in tumorigenesis and found to be associated with CIN and resistance to therapy. 

The LATS1 mutation was further verified using Sanger sequencing (Figure 5.9). 

Gene Mutations Zygosity 
ALPK1 exon4:c.184G>A:p.V62M Heterozygous 
C6orf118 exon2:c.158G>A:p.R53Q Heterozygous 
DLGAP3 exon9:c.2618C>T:p.A873V Heterozygous 
DOCK11 exon27:c.2885G>T:p.W962L Homozygous 
DFNB31 exon3:c.863G>A:p.R288Q Heterozygous  
DYRK2 exon3:c.586G>T:p.G196C Heterozygous 
EPHB3 exon4:c.879G>C:p.K293N Heterozygous 
GIPC1 exon3:c.170G>T:p.R57L Heterozygous 
KCNJ12, 18 exon3:c.242G>A:p.R81Q Heterozygous 
KHNYN exon3:c.1262A>C:p.Q421P Heterozygous 
LAMA5 exon69:c.9385G>A:p.G3129S Heterozygous 
LATS1 exon4:c.1843A>G:p.I615V Heterozygous 
LASS3 exon12:c.860C>T:p.T287M Heterozygous 
LILRA3 exon5:c.557C>T:p.A186V 

exon5:c.749C>T:p.A250V 
Heterozygous  
Heterozygous 

LRP2 exon27:c.4493C>T:p.T1498M Heterozygous 
MUC6 exon31:c.4711C>A:p.P1571T Heterozygous 
MMP1 exon7:c.911G>A:p.R304H Homozygous 
OR52K1 exon1:c.59C>G:p.P20R Homozygous 
PIK3R1 exon10:c.1126G>A:p.G376R Heterozygous 
PUM1 exon5:c.720T>A:p.F240L Heterozygous 
PPL exon22:c.4186C>T:p.R1396C Heterozygous 
RANBP17 exon20:c.2144G>A:p.R715H Heterozygous 
SLA exon8:c.602G>T:p.W201L Heterozygous 
SYF2 exon3:c.233A>G:p.E78G 

exon3:c.229T>G:p.W77G 
exon3:c.254A>G:p.K85R 

Heterozygous  
Heterozygous  
Heterozygous 



                                                                                                                                        Results 

 55 

 

5.3.3 LATS1 mutation  

The novel, heterozygous LATS1 mutation identified here is a point mutation (exon 4: base 

1843 A>G) leading to an amino acid exchange p.I615V. This mutation was found to localize 

in the YAP1 binding domain (p.526-p.655) of LATS1 and might therefore might impair 

LATS1 binding to YAP1 (Figure 5.10A). Absence of binding may affect the ability of LATS1 

to phosphorylate YAP1 preventing its cytoplasmic sequestration and subsequent 

degradation.  

To determine the frequency of LATS1 mutations in human cancers we used the online 

database cBioportal (http://www.cbioportal.org/public-portal/). Among all cancers, 10% 

(21/214) of the LATS1 mutations registered in this database were found to be in the YAP1 

binding domain of LATS1 (Figure 5.9B) (95)(96). Also, this data base currently contains 

genomic data from 596 GBM samples. Mutations of LATS1 have been identified in only 1% 

GBM patient samples. The functional significance of the LATS1 mutations in various cancer 

types including GBM is largely unclear. Since LATS1 is part of the Hippo pathway, we 

further investigated the impact of the identified mutation on Hippo pathway signalling. For 

this, we next analyzed expression, localization and interactions of mutated LATS1 and YAP1 

in NCH149 cells. 

 
Figure 5.9 Sanger sequencing of LATS1 in NCH149 and NCH82 cells   

Verification of a LATS1 gene mutation in NCH149 cells compared with wildtype LATS1 in NCH82 
cells by Sanger sequencing, confirming a point mutation at base 1843 A>G leading to an amino acid 
change from isoleucine (GTT) to valine (ATT) (p.I615V). 
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Figure 5.10 Domain structure of LATS1 and LATS1 mutations described up to date 

LATS1 protein domain structure, showing the localization of the I615V mutation in the YAP1 binding 
domain (A). Mutations found in various regions of the LATS1 protein among the GBM data set in 
cBioportal. The pins indicate the positions of mutations and the height of pins their frequency of 
occurance (cBioportal, B). 

5.4 Hippo pathway signalling dysfunction due to LATS1 mutation 

5.4.1 LATS1 and YAP1 protein expression 

Firstly, we checked whether the p.I615V mutation within LATS1 influences the expression 

level of LATS1. Cell lysates of normal human astrocytes (NHA) as a healthy control, 

chromosomally instable U2OS osteosarcoma cell line, NCH149 and NCH82 were prepared 

and the expression level of endogenous LATS1 was analyzed by Western blot. For this, the 

bands corresponding to LATS1 as well as ß-Actin, which served as loading control, were 

quantified (n=3). From these values a ratio was determined for each cell line analyzed. In 

order to normalize the expression levels, the expression level of NHA lysates were set to 1. 

As shown in Figure 5.11A the mutation does not lead to a significant change in LATS1 

expression in NCH149 cells as compared to the other cell lines. The same is true for YAP1 

expression levels (Fig. 5.11B). Hence, the p.I615V mutation does not seem to significantly 

alter the expression level of LATS1 and YAP1 in NCH149 cells compared to wild type 

NCH82 and NHA control. 
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Figure 5.11 LATS1 and YAP1 protein expression levels  

Representative blots of LATS1 (A) and YAP1 (B) are shown. Densitometric quantification of the bands 
normalized to the ß-actin control reveals that the mutation in NCH149 cells has no influence on the 
expression of LATS1 and YAP1 compared to normal NHA control cells. 
 

 

 

5.4.2 LATS1 localization 

Next, cellular localization of LATS1 and YAP1 was investigated using immunofluorescence 

microscopy. Cells were immunostained with a LATS1 antibody that detects both 

phosphorylated and non-phosphorylated LATS1. LATS1 in interphase cells is present in the 

cytoplasm in NCH149, NCH82 and NHA cell lines (Figure 5.12). This indicates that the 

p.I615V muation does not influence the cellular localization of LATS1 in NCH149 cells which 

is comparable to NCH82 and NHA cells wildtype for LATS1. 
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Figure 5.12 Cellular localization of LATS1  

NCH149 and NCH82 cells were stained with antibodies against LATS1 and γ-tubulin. LATS1 localised 
in the cytoplasm during interphase in all the cell lines. Scale bar, 10 µm.  
 

5.4.3 Density-dependent localization of YAP1 

YAP1 is one of the downstream Hippo pathway targets of LATS1. In proliferating cells YAP1 

translocates to the nucleus and acts as a transcriptional co-activator while in resting cells, 

LATS1 is known to phosphorylate YAP1 causing its cytoplasmic retention and further 

degradation.  

To study the localization of YAP1 in LATS1 mutant NCH149 compared to LATS1 wildtype 

NCH82 cells and NHA cells, non-confluent (low density) and confluent (densely packed) 

cells were fixed and stained with an antibody to YAP1. At low density YAP1 is found 

localised in the nucleus in all three cell types which is normal for proliferating cells (Figure 

5.13 A). Interestingly, at high density, YAP1 localizes to the nucleus in NCH149 cells while in 

NCH82 cells and normal NHA cells the signal is restricted to the cytoplasm (Figure 5.13 B). 

This indicates that although the cells are confluent the negative regulation of YAP1 by 

LATS1 is inactive leading to its uncontrolled translocation to the nucelus.  
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Figure 5.13 Density-dependent intracellular localization of YAP1 

Immunofluoresence microscopy after immunostaining with an antibody against YAP1 (green) and 

DNA stained with Hoechst (blue). (A) Under low density conditions YAP1 localized to the nucleus in all 

three cell lines. (B) At high density normal cytoplasmic localization of YAP1 is observed in normal 

human astrocytes (NHA) and NCH82 cells and abnormal nuclear localization in NCH149 cells. Scale 

bar, 10 µm. 

N
C
H
14

9
N
C
H
82

N
H
A

Hoechst YAP1 Merge

H
ig

h 
de

ns
ity

Lo
w

 d
en

si
ty

MergeHoechst YAP1

N
C
H
14

9
N
C
H
82

N
H
A

B

A



                                                                                                                                        Results 

 60 

5.4.4 YAP1 phosphorylation 

In order to investigate whether a loss of YAP1 phosphorylation by I615V-mutant LATS1 

causes the altered localization of YAP1 in NCH149 cells at high density, the extent of 

LATS1-specific phosphorylation of YAP1 at Ser127 was determined by Western blot 

analysis. The pYAP1 levels in NCH149 and NCH82 cells were compared at low density and 

high density. The phosphorylation of YAP1 at Ser127 was significantly lower in NCH149 

compared to NCH82 cells at both high and low density. Mainly, at high density the levels of 

phosphorylated YAP1 (Ser127) were found to be greatly reduced in NCH149 cells when 

compared to NCH82 cells (P < 0.005) (Figure 5.14). 
 

 

Figure 5.14 pYAP1 (Ser127) Western Blot 

Western blot detection of pYAP1 using a phospho (Ser127) YAP1 specific antibody showed lower 
pYAP1 levels in NCH149 compared to NCH82 at both high and low density (A). Quantification of 
bands normalized to ß-actin confirmed significant decrease in phosphorylation of YAP1 at Ser127 in 
NCH149 compared to NCH82 at both high and low density (B).  
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5.4.5 Interaction of LATS1 and YAP1 

To confirm that the reduced phosphorylation of YAP1 at Ser127 by LATS1 was due to a 

failure of YAP1 binding to LATS1, I performed co-immunoprecipitation experiments. For 

this, I immunoprecipitated YAP1 and analysed for co-immunoprecipitation of LATS1 by 

Western blotting and vice versa. It was observed that in NCH149 cells YAP1 does not co-

immunoprecipitate with LATS1 confirming the lack of interaction between the two proteins 

and hence explaining reduced YAP1 phosphorylation and localization of YAP1 to the 

nucleus. In contrast, the interaction between YAP1 and LATS1 was intact in NCH82 cells, as 

these proteins co-immunoprecipitated in these cells (Figure 5.15). This result confirms that 

the p.I615V mutation impairs the binding of YAP1 to LATS1, hence preventing the 

phosphorylation of YAP1 by LATS1. 

This leads to a conclusion that in NCH149 cells YAP1 binding to LATS1 is impaired due to 

the p.I615V mutation causing reduced phosphorylation of the YAP1. Unphoshorylated YAP1 

then translocates to the nucleus in NCH149 cells. 

 

Figure 5.15 Co-immunoprecipitation of LATS1 and YAP1 

Western blots showing absence of bound fraction of LATS1 and YAP1 in NCH149 cells while LATS1 

and YAP1 were found to co-immunoprecipitate in NCH82 cells. 
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5.5 Chemotherapeutic intervention of Hippo pathway   

Final downstream effectors of Hippo pathway YAP and TAZ are attractive targets for 

chemotherapeutic interventions. Various inhibitors have been identified to target YAP 

directly or indirectly. YAP is dispensable for growth and homeostasis of normal tissues and 

is the final common conduit of upstream signals thus, potentially limiting side effects and 

drug resistance achieved by alternative pathways. Verteporfin is one such small molecule 

that disrupts the YAP-TEAD transcriptional activation complex formation, thereby 

specifically inhibiting YAP1 activity. Since verteporfin has been shown to act in vitro as an 

effective chemotherapeutic agent for cancer cells overexpressing YAP1, this inhibitor was 

chosen for further experiments. 

5.5.1 Dose-dependent toxicity of VP on NCH149 cells 

To analyze the impact of VP on cell viability, the NCH149 and NCH82 cells were treated with 

VP (2 µg/ml and 10 µg/ml) and cell numbers were determined by scoring live cells every day 

for a total of three days (n=3). NCH149 cells which are known to be resistant to most 

chemotheraputic agents as well as radiation, started to die already 24 hours after initiation 

of VP treatment with all NCH149 cells being dead by day 3 (Figure 5.16A). In contrast, 

NCH82 cells, after showing some initial toxicity to VP at day 1, recovered and grew almost 

normally on days 2-3 (Figure 5.16B). 

 
Figure 5.16 Dose-dependent toxicity of verteporfin on NCH149 cells. 

NCH149 and NCH82 cells were incubated with VP for 3 days and cytotoxicity was determined by 
scoring the number of living cells each day. (A) Dose dependent cytotoxicity was induced by VP 
treatment of NCH149 which on day 3 were completely dead. NCH82 cells show initial toxicity on Day 
1 but on day 2 and 3 recover to grow normally.  
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5.5.2 Apoptosis measurement 

In addition, we performed annexin V staining to determine whether the decrease in live 

NCH149 cells is due to apoptosis induced by VP. For this, NCH149 as well as NCH82 cells 

were treated with VP for 1, 2 or 3 days with either 2 or 10 µg/ml. After the respective 

incubation times the cells were stained with FITC-labelled Annexin V and PI. The cells were 

then subjected to flow cytometric analysis and the cells were considered apoptotic when 

they were double positive for Annexin V and PI whereas pre-apoptotic cells were only 

Annexin V-positive (Figure 5.17A). The total sum of apoptotic and pre-apoptotic populations 

was considered for quantification of apoptosis in both the cell lines after VP treatment 

(green boxes in Figure 5.17A). 

In NCH149 cells a dose-dependent increase in the apoptotic cell fraction was observed over 

the period of treatment and almost all the cells were dead by day 3 of VP treatment. In 

contrast, in NCH82 cells an increase of the apoptotic cell fraction related to initial toxicity 

was observed on day 1 but on days 2 and 3 the apoptosis level was comparable to 

untreated controls (Figure 5.17B). Together, this shows that VP specifically kills LATS1-

mutant NCH149 cells but not NCH82 cells which are wildtype for LATS1. 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                        Results 

 64 

 

 

 

 
Figure 5.17 Measurement of apoptosis after VP treatment 

NCH149 and NCH82 cells were treated with VP and after day 1, 2 and 3 apoptosis induction was 
analysed by staining cells with Annexin V and PI followed by flow cytometric analysis. (A) Examples 
of dot blots at day 3 are shown. Apoptotic (Annexin V / PI double-positive) and pre-apoptotic 
(Annexin V-positive) cells are shown demonstrating the induction of apoptosis by VP in NCH149 
cells. The percentages of apototic and pre-apoptotic cells were calculated together to compare 
apoptosis in NCH149 and NCH82 cells during the 3 day treatment period (B). Dose-dependent 
increase in apoptosis was induced by VP treatment of NCH149 which on day 3 were all dead. NCH82 
cells show initial toxicity on day 1 but on day 2 and 3 recover to grow normally. 
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5.6 Inducible expression of wildtype and mutant LATS1 in the U2OS-tet-on 
system 

With the goal to verify the impact of the LATS1 p.I615V mutation on cell proliferation and 

CIN in an isogenic system, I generated stable U2OS-Tet-on cell lines that inducibly express 

wild type or mutant (p.I615V) LATS1 (Figure 5.18) each fused to a double Flag-tag (2xFlag). I 

performed immunofluorescence at various time points after induction by doxycyclin to study 

the effects of mutant LATS1.  

 

 

Figure 5.18 Sanger sequencing of wildtype and mutant LATS1 plasmids 

Verification of LATS1 mutation by Sanger squencing in pTER2hyg plasmids generated for stable 
transfection of U2OS-tet-on cells, confirms a point mutation A>G at 1843. 
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Firstly, I analyzed the localization of wildtype and mutant LATS1 after overexpression in 

order to demonstrate that overexpressed Flag-tagged LATS1 (either wildtype or mutated) 

behaves like their endogeneous counterparts. For this, U2OS-Tet-on cells with wildtype and 

mutant were grown in medium with (+Dox) or without (-Dox) doxycyclin for 6 days. On day 2 

after induction with doxycyclin the expression levels of wildtype and mutated LATS1 were 

analyzed by Western blotting using an antibody against Flag-tag. Both wild type and mutant 

LATS1 are expressed after induction (Figure 5.19 A). In addition, coverslips were collected 

and fixed every second day after induction and immunofluoresence staining was performed 

with antibody against Flag-tag to detect the presence of induced LATS1. Cellular 

localization of Flag-LATS1 in interphase cells of both wildtype and mutant LATS1 seems to 

be cytoplasmic similar to endogenous LATS1 in interphase cells (Figure 5.19 B). This shows 

that the overexpressed LATS1-versions behave like the endogeneous proteins making the 

cell lines suitable for further experiments. 

 

 

 

 

 

 

 
Figure 5.19 Inducible expression of 2xFlag LATS1 in U2OS-Tet-on cells 

U2OS-Tet-on cells transfected with 2 x Flag wildtype (wt) or mutant (mut) LATS1 were induced by 
doxycyclin. Expression of wildtype or mutant LATS1 was confirmed by Western blotting (A). 
Immunofluorescence shows that overexpressed wildtype and mutant LATS1 localize to the 
cytoplasm during interphase (A). Scale bar, 10 µm. 
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Next, the cells were stained with an antibody against YAP1 to observe whether YAP1 

localizes to the nucleus after overexpression of mutant LATS1. Indeed, already two days 

after induction nuclear localization of YAP1 was observed in confluent LATS1-mutant cells 

but not in non-induced or LATS1-wildtype cells (Figure 5.19). 

 

 
Figure 5.20 YAP1 nuclear localization in mutant-LATS1-expressing cells 

Immunofluorescence staining of induced U2OS-Tet-on cells with an antibody against YAP1 (green) 
and Hoechst shows normal cytoplasmic localization of YAP1 in wild type and un-induced mutant 
cells and nuclear localization in induced mutant LATS1-expressing U2OS cells. Scale bar, 10µm. 
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Finally, I analyzed the impact of overexpression of wildtype and mutant LATS1, respectively, 

on the formation of micronuclei and centriole amplification. For this, cells were fixed 6 days 

after induction of either wildtype or mutant LATS1 (+Dox and –Dox). Preliminary 

experiments upon scoring three times 100 cells show an increase in micronucleus formation 

in induced LATS1-mutant as compared to non-induced LATS1-mutant cells as well as to 

cells expressing wildtype LATS1 (Figure 5.21A). Also, a significant increase in centriole 

amplification in induced LATS1-mutant over both non-induced and wildtype-LATS1 

expressing cells was observed (Figure 5.21B). 

 
Figure 5.21 Micronucleus formation and centriole amplification in mutant-LATS1-
expressing cells 

An increase in the number of cells with micronuclei stained with hoechst (blue) (A) and amplified 
centrioles stained with centrin (green) and CP110 (red) (B) was observed in induced mutant LATS1-
expressing U2OS cells when compared to un-induced mutant and wildtype LATS1 expressing U2OS 
cells (B). Scale bar, 10 µm.  
 

These findings lead to the conclusion that the p.I615V LATS1 mutation impairs binding and 
phosphorylation of YAP1 that results in its nuclear localization. This deregulation of the 
Hippo pathway also seems to contribute to the CIN phenotype by increased micronucleus 
and centriole amplification upon overexpression of mutant LATS1. 
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6 Discussion 

Since Hansemann's work in the late 19th century, abnormal chromosome numbers have 

been recognized as a nearly ubiquitous feature of human cancers (97). Today numerical 

CIN is an established characteristic feature of most human malignancies. For example, a 

current study shows that most late stage cancers contain an average of 60 to 90 

chromosomes (98). Despite its long history and clinical relevance, the study of CIN has yet 

to prove Boveri's postulate that abnormal chromosome numbers are a cause rather than a 

consequence of the cancerous state (99). Although it has been shown that gains and losses 

of whole chromosomes have anti-proliferative effects in untransformed diploid cells, tumors 

exhibiting a large number of gains and losses of chromosomes seem to have a proliferative 

advantage (100; 101).  

Normally, cells that have an abnormal DNA content are prevented from further proliferation 

by a number of cell cycle checkpoints, however, continuous accumulation of chromosome 

changes in a cell population increases the chance of mutations in oncogenes, tumor 

suppressor genes and cell cycle checkpoint genes decreasing the tendency for self-

elimination of aberrant cells (102). Therefore, extreme CIN provides a survival advantage to 

cells by overcoming the protective mechanisms. It is well known that neoplastic 

transformation requires a set of mutations that can be achieved by having abnormally high 

rate of mutations and CIN provides a platform for such a high mutation rate (54). This 

phenomenon is explained by the “mutator hypothesis” that suggests that an initial 

mutation, which creates the "mutator phenotype", allows the accumulation of further 

mutations and the evasion of the normal checks on the cells growth (103; 47). For example, 

in the extreme case of human colorectal cancers that arise from the mismatch repair defect 

were found to have 100,000 genetic mutations and are presumed to have an ability to 

overcome a wide variety of negative controls on proliferation also exhibit significant CIN 

(104). Although, some studies challenge the idea that CIN is important for tumorigenesis 

(105), its prevalence in malignant solid tumors and its contribution to development and 

sustaining ability’s of tumor growth has brought forth the suggestion that CIN plays a 

causal role in tumorigenesis.    
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6.1 Occurance and causes of CIN in Glioblastoma 

Glioblastomas are known to have high levels of CIN making them heterogeneous and 

difficult to treat. Although mechanisms of CIN are comparatively well understood in 

colorectal cancers, there have not been many studies investigating the cause and affect of 

CIN in GBM. In a recent study inactivating mutations in STAG2, a gene coding for subunit 

of cohesin complex that regulates the separation of sister chromatids was shown to cause 

aneuploidy in 5 % of GBM’s (106). In another study oncogenic chromosomal translocation 

event causing fusion of FGFR and centrosomal proteins TACC was shown to induces 

mitotic and chromosomal segregation defects and trigger aneuploidy in 3.1 % of GBM 

tumors (107). The presence of intratumor hererogeneity and chemoresistance and the lack 

of knowledge makes GBM a suitable model to study CIN. 

In the present study, the patient-derived GBM cell line NCH149 was identified in the 

laboratory of Dr. Anne Régnier-Vigouroux that show excessive numerical chromosome 

gains and loses. This cell line was also found to have extreme chemo- and radioresistance. 

Upon further cytogenetic analysis of NCH149 cells and comparing it to another GBM cell 

line NCH82 using M-FISH, it was observed that NCH149 cells exibited extreme aneuploidy 

and cell-to-cell heterogeneity among 24 M-FISH metaphase spreads analysed, while 

NCH82 cells were stably tetraploid (89). It is known that aneuploid cells may or may not be 

chromosomally instable. Numerical CIN is defined by a high rate of continuous gains and 

losses of whole chromosomes therefore; cytogenetic complexity per se cannot be used as 

evidence of CIN. In practice, instability is assessed by following the evolution of cytogenetic 

abnormalities in a tumor cell population over time and by comparing the rate of 

chromosome mutations with that in a normal cell population (108). Alternatively, CIN is 

monitored indirectly by quantifying the incidence of chromosomal losses, gains and 

resulting heterogeneity in a given population of cells. Hence, CIN cells are distinguished 

form merely aneuploid cells by the presence of cell-to-cell heterogeneity. Consequently, in 

this study, interphase FISH experiments were performed for two chromosomes, namely 

chromosomes 2 (large) and 20 (small) of both the cell lines. NCH149 cells were found to 

exibit high clonal heterogeneity confirming the presence of CIN while NCH82 have a major 

tetraploid subclone, this correlates with the M-FISH data. CIN causes a step-wise accumulation 

of cytogenetic changes during tumor growth, which is manifested as clonal heterogeneity 

(45). Heterogeneous tumors are known to generate a larger variety of genetic variants to be 

tested by selection providing a wider adaptive landscape increasing the probability of 

clones reaching fitness for microenvironmental challenges (109). CIN therefore also allows 
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cells to better adapt to changes following exposure to DNA damage encountered during 

radiotherapy protocols, thereby contributing to radioresistant in tumors both before and 

after radiotherapy (110). It has also been previously shown that CIN confers intrinsic 

resistance to chemotherapeutic agents in colorectal cancer cell lines and that presence of 

stable tertraploidy was found incapable of such resistance  (111). This implies that 

karyotypic heterogeneity rather than increased ploidy is responsible for increased treatment 

resistance compared to karyotypically stable cells. Indeed, the high variation of 

chromosome numbers within the population of NCH149 cells strongly indicating the 

presence of CIN could be the cause of resistance to X-ray irradiation and carbon ion 

therapy as observed by Dokic et. al. In contrast, NCH82 cells lower resistant to these 

radiation treatments which can be attributed to the presence of a stable karyotype. Due to 

the observed differences within the population, NCH149 cells are confirmed to be 

chromosomally instable whereas the NCH82 cell line is stably aneuploid (tetraploid). For 

this reason we further examined NCH149 cells in order to determine one of the 

mechanisms leading to CIN in GBM. Chromosomal gains or losses in CIN are known to be 

a result of chromosome missegregation caused by abnormal mitotic spindle assembly, 

impaired microtubule–kinetochore attachment or a weakened spindle assembly checkpoint 

(112). When NCH149 cells were stained with Hoechst, 25% of cells were found to have one 

or more micronuclei per cell. In contrast, in NCH82 cells only about 2% of the cells had 

micronuclei. Micronuclei mainly originate when chromosome fragments or whole 

chromosomes fail to be included in the daughter nuclei after mitosis. These displaced 

chromosomes or chromosome fragments are enclosed by a nuclear membrane and appear 

as micronuclei. Micronuclei are smaller but morphologically similar to the nuclei and can be 

observed by conventional nuclear staining. Presence of micronuclei is an indicator of 

chromosomal missegregation (113). The frequency of micronuclei is used as a biomarker of 

chromosomal damage, genome stability and predicts increased risk of cancer development 

in human populations (114). However, only whole chromosome gains or losses indicate 

numerical CIN hence, we further investigate the presence of whole chromosomes by 

immunofluorescence staining with CREST. In NCH149 cells, 75 % of the micronuclei had 

whole chromosomes with CREST signals meaning that there was high incidence 

chromosomal missegregation. This process of missegregation in NCH149 was clearly 

visualized by staining fixed mitotic cells with CREST, α-tubulin and Hoechst where about 

30% of mitotic NCH149 cells had lagging chromosomes during anaphase and as opposed 

to less than 1 % of anaphases in NCH82 cell line (Figure 5.5).  
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Chromosome missegregation is associated with  supernumerary chromosomes for over 

100 years. Today, it is well known that regulation of centrosome number and function 

underlies bipolar mitotic spindle formation and genetic integrity (115). Here we found that 

NCH149 have higher centriole amplification compared to NCH82 cells. Deregulation of the 

centriole duplication machinery and resulting centriole amplificaton is an obvious source of 

centrosome amplification and aneuploidy in tumors (35). The extent of centrosomal 

aberrations is often correlated with chromosomal instability (CIN) and malignant behavior in 

tumor cell lines, mouse tumor models, and human tumors (116; 117). Hence, the observed 

CIN in NCH149 cells could be a result of supernumerary centrosomes. Centrosome 

amplification, is often associated with multipolar mitosis that lead to aberrant chromosome 

segregation (43; 118). Interestingly, immunofluorescence studies of mitotic cells stained 

with β-actin and γ-tubulin showed that both cell lines NCH149 and NCH82 underwent 

normal bipolar mitosis despite centriole amplification. Comparable to this study the 

frequent occurrence of supernumerary centrosomes in human breast cancer samples was 

associated with surprisingly rare abnormal mitoses (119). Extra centrosomes to bypass the 

SAC by centrosome clustering to undergo bipolar mitosis. However, no signs of 

centrosomal clustering was observed in NCH149 or NCH82 cells. Whether or not 

supernumerary centrosomes undergo clustering to undergo bipolar mitosis is yet to be 

studied in NCH149 cells. Interestingly, by live cell imaging it was observed that NCH149 

cells, on an average took ~30 minutes longer to under go mitosis when compared to 

NCH82 cells (Figure 5.7 B). It is has been recently shown that extra centrosomes or 

chromosomes delay satisfaction of the spindle assembly checkpoint leading to prolonged 

mitosis. Cancer cells having normal number of chromosomes and centrosome can divide in 

less than 20 minutes while doubling the chromosome number adds ~10 minutes while 

doubling the number of centrosomes adds ~30 minutes (120). Therefore, the prolonged 

mitosis duration could be attributed to the higher chromosome number and high centriole 

amplification in NCH149 cells. Prolonged mitosis due to delay in SAC checkpoint has been 

reported to cause missegregation of chromosomes, mitotic slippage causing aneuploidy 

(21). Several other causes of prolonged activation of the mitotic checkpoint in human 

cancer cells have been described such as inactivation of Rb and abnormal MAD2 

expression, abnormal accumulation of cyclinE due to inactivation of the hCDC4 and 
activation of oncogenes such as c-Myc (121). The above phenotypic observations 

demonstrate that NCH149 is chromosomally instable indicated by presence of cell-to-cell 

heterogeneity, chromosomal missegregation and centriole amplification but the causal 

factor for these abnormalities was unknown. NCH149 cells therefore provide a suitable 



                                                                                                                                  Discussion 

 73 

system to investigate connection between CIN and genetic mutations and hence whole 

exome sequencing of NCH149 cells was performed to identify mutations that might cause 

CIN. Analysis of the whole exome sequencing data identified mutations in 24 different 

genes found in the tumor and in the cell line but absent in healthy tissue (Table 5.1). Of 

these LATS1 p.I615V mutation was most interesting with regard to tumorigenesis and CIN. 

Mutation induced defects in mitotic spindle assembly, mitotic check point, sister chromatid 

cohesion and centrosome amplification have been shown to cause chromosomal 

missegregation leading to CIN (29). So far, mutations in genes regulating these processes 

such as STAG2 and MAD2 have been identified to be possible causes of CIN. Other genes 

such as BRCA1, BLM and ATM that are known keep genetic alterations to a minimum, and 

thus when they are inactivated, mutations in other genes occur at a higher rate (122). 

However, LATS1 mutations are rare in cancer tissues in general and especially in GBM. 

Interestingly, a recent study has uncovered LATS1 p.I615T mutation by silico analysis 

provides evidence that LATS1 mutations in this region may play a role in CIN and drive 

human tumor development (123). 

6.2 LATS1 mutation mediated deregulation of Hippo pathway and its role in 
CIN 

In the present work I have attempted to deliniate the effect of the identified LATS1 p.I615V 

mutation on Hippo pathway function in NCH149 GBM cells. Classically identified within the 

Hippo signaling pathway, LATS1 also acts independently of this pathway, possessing 

multiple functions including regulation of cell proliferation, cell death and cell migration, and 

plays a governing role in mitosis and maintenance of genetic stability. LATS1 is a tumor 

suppressor gene. This was initially recognized by genetic studies in Drosophila 

demonstrating that heterozygous loss of LATS1 produced a wart-like phenotype 

characterized by excessive overproliferation of imaginal disc epithelial cells of Drosophila 

(124). Complete loss of LATS1 causes embryonic lethality in flies, which highlights the 

importance of LATS1 function (125). Downregulated LATS1 gene expression was found in a 

variety of tumor types including soft tissue sarcomas, breast, myxoid liposarcoma, 

leiomyosarcomas and malignant fibrous histiocytoma (126). In one study, LATS1 

downregulation was correlated with poor prognosis in glioma patients (78). In contrast there 

was no significant difference in the protein expression levels of LATS1 or YAP1 in LATS1-

mutant NCH149 cells when compared to LATS1 wild type NCH82 cells and  normal human 

astrocytes.  
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YAP1 overexpression was observed in many cancers such as mesotheliomas, non-small-

cell lung carcinoma and brain tumors like GBM (127; 128). In spite of the high frequency of 

YAP1 overexpression, a relatively low incidence (5 –15 %) of amplification of the human 

chromosome 11q22 amplicon containing YAP1 gene has been reported in human tumors 

(129). This led to the speculation that elevation of YAP1 protein levels in cancer may not 

only due to gene amplification, but a result of deregulation of the Hippo pathway. The direct 

upstream controller of YAP1 activity is LATS1 and mutations in LATS1 could affect YAP1 

negative regulation. Therefore, immunfluoresence staining of NCH149, NCH82 and NHA 

cells was performed which shows normal nuclear localization of YAP1 in all cell types at low 

density. Interestingly, YAP1 immunofluoresence staining of NCH149 cells at high density 

showed nuclear localization while in NHA and NCH82 cells YAP1 was found localized in the 

cytoplasm. It is known that in response to cell contact inhibition the Hippo pathway is 

activated leading to LATS1-mediated YAP1 phosphorylation with subsequent cytoplasmic 

retention and degradation of YAP1 (71).  When cells proliferate at low density the Hippo 

pathway is inactive thereby facilitating the translocation of YAP1 into the nucleus to initiate 

trasciption of various growth promoting genes. Nuclear localization of YAP1 has been 

identified before during immunohistochemical survey of YAP1 expression in meningioma 

tumors (130). This suggests that the negative regulation of YAP1 by the Hippo pathway is 

not functional in p.I615V LATS1-mutant NCH149 cells. To further investigate the extent of 

YAP1 phosphorylation at Ser127 by LATS1, Western blot analysis was performed and 

compared in high and low density cells. Accordingly, pSer127-YAP1 levels were 

significantly lower in NCH149 cells with mutant LATS1 compared to NCH82 cells which are 

wildtype for LATS1. These results strongly argue that the phoshoprylation of YAP1 by 

LATS1 is impaired in NCH149 cells due to the presence of a mutation in the YAP1-binding 

domain of LATS1. This finding is supported by co-immunoprecipitation experiments, which 

showed that LATS1 and YAP1 did not co-immunoprecipitate in LATS1-mutant NCH149 

cells. Mutations in YAP1 that lead to decreased phosphorylation by LATS1 or decreased 

14–3–3 binding have been reported earlier (131; 132). In YAP1 S381 mutant cells YAP1 

overexpression and nuclear localization was observed due to loss of S318 phosphorylation 

and subsequent degradation (133). The correlation between LATS1 dysfunction due to 

downregulation or mutations and its  involvement in cancer development has been widely 

discussed. However, LATS1 mutations preventing binding and phosphorylation of YAP1 

have not been identified up to now in human cells.  

There have been some studies that describe the involvement of the Hippo pathway in 

maintenance of genetic integrity. LATS1 dynamically localizes to centrosomes and the 

mitotic spindle apparatus, including the central spindle, and contributes to the regulation of 
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proper chromosome segregation during mitotic progression and cytokinesis (74; 134). Cells 

expressing N-terminally truncated LATS1 show supernumerary centrosomes as well mitotic 

defects including chromosomal missegregation and cytokinesis failure. Also, overexpression 

of YAP1 has been shown to cause genomic instability in medulloblastoma (68). To 

determine if Hippo pathway deregulation by p.I615V-mutant LATS1 plays a role in CIN 

development, we established U2OS cell lines inducibly expressing wildtype and p.I615V-

mutant LATS1. Upon induction of mutant LATS1, YAP1 was found localized in the nucleus 

even at high density while YAP1 was cytoplasmic in induced wildtype and non-induced 

cells. Preliminary experiments also indicated an increase in micronucleus formation and 

centriole amplification when compared to the induced wildtype and non-induced cells. 

There are various theories on how CIN could develop as a result of LATS1 mutation and 

resulting Hippo pathway deregulation. First, enforced expression of NDR1, a LATS1-related 

kinase, is known to enhances centrosomal overduplication in a kinase activity-dependent 

manner (135). The p.I615V mutation lies within the protein binding domain (PBD; aa.656–

758)  with is known to be important form MOB1 binding. Therfore mutation mediated loss of 

LATS1-MOB1 could in theory increase MOB1-NDR1 complex leading to centrosomal 

overduplication. Second, YAP1 overactivation due to LATS1 mutation may cause Akt 

phoshorylation and activation through IGF2 causing downregulation of ATM-Chk2-p53 

pathway leading to radioresistance and genomic instability (68). During mitosis CDC2 is 

known to form a complex with LATS1 at the centrosome and phosphorylation of Ser613 

occurs. The LATS1 p.I615V may interfere with phosphorylation at this site leading to CIN 

(136). These effects of LATS1 mutation on the above pathways leading to CIN development 

remain to be explored in NCH149 cells.  

6.3 VP a specific cytotoxic agent for LATS1 mutant YAP1 hyperactive cells 

An intriguing aspect of the Hippo pathway is that its components interact through well 

characterized structures such as WW-domain and PPxY motifs. These properties of the 

Hippo pathway impart significant potential and advantages to be an attractive target for 

drug development (137). However, to date, few small-molecule inhibitors have been 

discovered that target the Hippo pathway.  

Recent progress in the search for small-molecule Hippo pathway modulators has identified 

Verteporfin (VP) to be a specific inhibitor of YAP1 (81). VP has been shown to act as an 

effective chemotherapeutic agent in vitro for mainly those cells overexpressing YAP1. Since 
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in this study NCH149 was shown to have YAP1 hyperactivity VP was chosen for targeting 

YAP1-TEAD in NCH149 cells. As mentioned before NCH149 cells are highly resistant to 

standard chemotherapeutic drugs and radiation. Nevertheless VP did induce dose-

dependent toxicity in NCH149 but not in NCH82 cells. This toxicity observed is attributed to 

apoptosis induced by VP specifically in NCH149 and not in NCH82 cells. This appears to be 

due to a dependency of NCH149 cells on YAP1 activity for growth and proliferation. The 

recent discovery of G-protein coupled receptors (GPCRs) as regulators of the Hippo-

YAP/TAZ pathway has broadened the scope of upstream drug targets including a wide 

variety of extracellular ligands and receptors. Dobutamine (a GPCR β-adrenergic receptor 

antagonist) was recently recognized as an inhibitor of the Hippo pathway (79). However, 

targeting the downstream YAP1-TEAD interaction directly has proven to be more 

successful. YAP and TAZ are transcriptional co-activators with no known catalytic activity. 

Thus, inhibiting the function of YAP1 and TAZ require targeting protein-protein interactions 

(138). VP was found to be effective in inhibition of growth and proliferation of retinoblastoma 

cells in vitro (80). In vivo experiments in inducible YAP1 transgenic mouse model showed 

that VP treatment suppressed YAP1-induced hepatomegaly and more importantly showed 

no effect on wild-type non-transgenic controls (81). As YAP1 is the final effectors of the 

Hippo pathway, direct inhibition of YAP1–TEAD may reduce possible side effects that might 

be caused by targeting upstream components that probably affect multiple intracellular 

signalling pathways. Also, YAP1-TEAD pathway is not active in normal tissues, drugs 

disrupting this interaction have the potential for increased cancer specificity and minimal 

healthy tissue toxicity making it a suitable drug target. Therefore, this study provides 

additional proof that VP could be an effective targeted therapy against LATS1-mutant or 

YAP1-hyperactive tumors. 

In summary, the findings presented here establish for the first time a model wherein a 

LATS1 mutation (p.I615V) in the YAP1 binding domain hinders the interaction of the two 

proteins resulting in significantly decreased YAP1-Ser127 phosphorylation. YAP1, an 

oncogene, as a result localizes to the nucleus and binds to TEAD to activate transcription of 

tumor promoting genes (Figure 6.1). This deregulation of the Hippo pathway as a result of a 

LATS1 mutation also seems to increase chromosomal instability in cells expressing mutant 

LATS1. 
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Figure 6.1: Deregulation of the Hippo pathway due to LATS1 mutation 

Schematic illustration of the proposed model wherein the LATS1 p.I615V mutation leads to 
cancelling of YAP1 phosphorylation causing its nuclear translocation. This leads to YAP1-TEAD 
binding and transcriptional activation of tumor promoting genes and chromosomal instability. VP, 
known to disrupt the YAP1-TEAD interaction, selectively kills cells with such YAP1 hyperactivity. 

6.4 Outlook 

In the present work first evidence could be found that muations in the YAP1-binding domain 

of LATS1 deregulate the Hippo pathway by preventing negative regulation of YAP1. 

However, the clinical significance of this finding must be estimated possibly by 

immunohistochemical staining of GBM tumor sections to look for YAP1 nuclear localization 

along with screen to identify single nucleotide changes using derived cleaved amplified 

polymeric sequence (dCAPS) method (139).  

To analyze whether the CIN phenotype can be reset, "rescue" experiments are necessary 

by siRNA-mediated "knock down" of mutant LATS specifically and the overexpression of 

wild type LATS. Moreover, to verify the effect of an amino acid substitution in LATS1 on the 
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protein itself, in silico studies could be performed to observe why the mutation affects YAP1 

binding. Furthermore, it may be analyzed whether this mutation affects interactions of 

LATS1 with other proteins including MOB1, NDR kinase, TAZ and CDK1 which may have an 

impact on mitotic processes as well. Furthermore, experiments should be carried out to 

delineate mechanistically how mutant LATS1 leads to the development of CIN. One 

possibilty is overactivation of the NDR1 kinase that is known to cause CIN mediated by 

MOB1. Another is YAP1-mediated Akt activation and cell cycle checkpoint suppression or 

IGF2 activation to inhibit the DNA repair machinery (68).  

Preliminary experiments in U2OS cells expressing wildtype and mutant LATS1 suggested 

that the identified mutation caused an increase in micronucleus formation and centriole 

amplification. To determine whether this leads to CIN in these cell lines, M-FISH analysis or 

interphase FISH could be performed to analyze for increased rates of chromosomal gains or 

losses. Furthermore, U2OS cells are known to be chromosomally aberrant from the 

beginning (140). Therefore, inducible diploid, chromosomally stable cells expressing 

wildtype and mutant LATS1 should be generated using for example the HCT116 colon 

cancer cell line, so that the development of CIN can be clearly monitored. In addition 

microarray analysis of RNA isolated from wildtype and mutant LATS1 expressing cells could 

be performed to identify changes in transcription of genes involved in tumor progression 

and CIN. 

Verteporfin treatment showed that the cytotoxicity was specific to LATS1-mutant cells with 

YAP1 hyperactivity as in NCH149 cells. VP toxicity experiments must be performed in cell 

lines inducibly expressing mutant LATS1 along with healthy controls to specifically allocate 

this effect to the I615V-LATS1 mutation. 

 

 

 



                                                                                                                                       Litrature 

 79 

References 

1.  McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer 
chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012 
Jun;13(6):528–38.  

2.  Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and 
annotated by Henry Harris. J Cell Sci. 2008 Jan;121 Suppl 1:1–84.  

3.  Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 
1998 Dec 17;396(6712):643–9.  

4.  Sheltzer JM. A transcriptional and metabolic signature of primary aneuploidy is present 
in chromosomally unstable cancer cells and informs clinical prognosis. Cancer Res. 
2013 Nov 1;73(21):6401–12.  

5.  Manning AL, Dyson NJ. pRB, a Tumor Suppressor with a Stabilizing Presence. Trends 
Cell Biol. 2011 Aug;21(8):433–41.  

6.  Rao CV, Yamada HY. Genomic Instability and Colon Carcinogenesis: From the 
Perspective of Genes. Front Oncol [Internet]. 2013 May 21 [cited 2014 Nov 20];3. 
Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659308/ 

7.  Nicholson JM, Cimini D. How mitotic errors contribute to karyotypic diversity in cancer. 
Adv Cancer Res. 2011;112:43–75.  

8.  Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, 
deregulation and therapeutic targets in cancer. Cell Prolif. 2003 Jun;36(3):131–49.  

9.  Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the 
Cell. 4th ed. Garland Science; 2002.  

10.  Rhind N, Russell P. Signaling Pathways that Regulate Cell Division. Cold Spring Harb 
Perspect Biol [Internet]. 2012 Oct [cited 2014 Nov 20];4(10). Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475169/ 

11.  Foster DA, Yellen P, Xu L, Saqcena M. Regulation of G1 Cell Cycle Progression. Genes 
Cancer. 2010 Nov;1(11):1124–31.  

12.  Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev 
Cancer. 2003 Mar;3(3):155–68.  

13.  Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev 
Mol Cell Biol. 2007 May;8(5):379–93.  

14.  Nicklas RB, Ward SC, Gorbsky GJ. Kinetochore chemistry is sensitive to tension and 
may link mitotic forces to a cell cycle checkpoint. J Cell Biol. 1995 Aug 15;130(4):929–
39.  



                                                                                                                                       Litrature 

 80 

15.  Murray AW, Solomon MJ, Kirschner MW. The role of cyclin synthesis and degradation in 
the control of maturation promoting factor activity. Nature. 1989 May 25;339(6222):280–
6.  

16.  Gollin SM. Mechanisms leading to chromosomal instability. Semin Cancer Biol. 2005 
Feb;15(1):33–42.  

17.  Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, et al. Mutations of 
mitotic checkpoint genes in human cancers. Nature. 1998 Mar 19;392(6673):300–3.  

18.  Weaver BAA, Silk AD, Cleveland DW. Cell biology: Nondisjunction, aneuploidy and 
tetraploidy. Nature. 2006 Aug 17;442(7104):E9–10.  

19.  Kops GJPL, Weaver BAA, Cleveland DW. On the road to cancer: aneuploidy and the 
mitotic checkpoint. Nat Rev Cancer. 2005 Oct;5(10):773–85.  

20.  Iwanaga Y, Chi Y-H, Miyazato A, Sheleg S, Haller K, Peloponese J-M, et al. 
Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the 
incidence of tumors in mice. Cancer Res. 2007 Jan 1;67(1):160–6.  

21.  Rieder CL, Maiato H. Stuck in Division or Passing through: What Happens When Cells 
Cannot Satisfy the Spindle Assembly Checkpoint. Dev Cell. 2004 Nov;7(5):637–51.  

22.  Cancer Genome Atlas Research Network. Comprehensive genomic characterization 
defines human glioblastoma genes and core pathways. Nature. 2008 Oct 
23;455(7216):1061–8.  

23.  Network TCGA. Comprehensive molecular characterization of human colon and rectal 
cancer. Nature. 2012 Jul 19;487(7407):330–7.  

24.  Cimini D, Moree B, Canman JC, Salmon ED. Merotelic kinetochore orientation occurs 
frequently during early mitosis in mammalian tissue cells and error correction is 
achieved by two different mechanisms. J Cell Sci. 2003 Oct 15;116(Pt 20):4213–25.  

25.  Thompson SL, Bakhoum SF, Compton DA. Mechanisms of Chromosomal Instability. 
Curr Biol CB. 2010 Mar 23;20(6):R285–95.  

26.  Orr B, Compton DA. A double-edged sword: how oncogenes and tumor suppressor 
genes can contribute to chromosomal instability. Front Oncol. 2013;3:164.  

27.  Weaver BA, Cleveland DW. Does aneuploidy cause cancer? Curr Opin Cell Biol. 2006 
Dec;18(6):658–67.  

28.  Thompson SL, Compton DA. Chromosome missegregation in human cells arises 
through specific types of kinetochore–microtubule attachment errors. Proc Natl Acad 
Sci. 2011 Nov 1;108(44):17974–8.  

29.  Bakhoum SF, Genovese G, Compton DA. Deviant kinetochore-microtubule dynamics 
underlie chromosomal instability. Curr Biol CB. 2009 Dec 1;19(22):1937–42.  

30.  Kabeche L, Compton DA. Checkpoint-independent stabilization of kinetochore-
microtubule attachments by Mad2 in human cells. Curr Biol CB. 2012 Apr 10;22(7):638–
44.  



                                                                                                                                       Litrature 

 81 

31.  Zhang N, Ge G, Meyer R, Sethi S, Basu D, Pradhan S, et al. Overexpression of Separase 
induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci U S A. 2008 Sep 
2;105(35):13033–8.  

32.  Solomon DA, Kim J-S, Waldman T. Cohesin gene mutations in tumorigenesis: from 
discovery to clinical significance. BMB Rep. 2014 Jun;47(6):299–310.  

33.  Duensing A, Liu Y, Tseng M, Malumbres M, Barbacid M, Duensing S. Cyclin-dependent 
kinase 2 is dispensable for normal centrosome duplication but required for oncogene-
induced centrosome overduplication. Oncogene. 2006 May 11;25(20):2943–9.  

34.  Löffler H, Fechter A, Matuszewska M, Saffrich R, Mistrik M, Marhold J, et al. Cep63 
recruits Cdk1 to the centrosome: implications for regulation of mitotic entry, centrosome 
amplification, and genome maintenance. Cancer Res. 2011 Mar 15;71(6):2129–39.  

35.  Anderhub SJ, Krämer A, Maier B. Centrosome amplification in tumorigenesis. Cancer 
Lett. 2012 Sep;322(1):8–17.  

36.  Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to 
chromosomal instability. Nature. 2009 Jul 9;460(7252):278–82.  

37.  Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat 
Rev Cancer. 2002 Nov;2(11):815–25.  

38.  Krämer A, Maier B, Bartek J. Centrosome clustering and chromosomal (in)stability: A 
matter of life and death. Mol Oncol. 2011 Aug;5(4):324–35.  

39.  Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS. Spindle Multipolarity Is 
Prevented by Centrosomal Clustering. Science. 2005 Jan 7;307(5706):127–9.  

40.  Silkworth WT, Nardi IK, Scholl LM, Cimini D. Multipolar spindle pole coalescence is a 
major source of kinetochore mis-attachment and chromosome mis-segregation in 
cancer cells. PloS One. 2009;4(8):e6564.  

41.  Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, et al. 
Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. 
Genes Dev. 2008 Aug 15;22(16):2189–203.  

42.  Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, et al. Centrosome 
Amplification Can Initiate Tumorigenesis in Flies. Cell. 2008 Jun 13;133(6):1032–42.  

43.  Brinkley BR. Managing the centrosome numbers game: from chaos to stability in cancer 
cell division. Trends Cell Biol. 2001 Jan;11(1):18–21.  

44.  Potapova TA, Zhu J, Li R. Aneuploidy and chromosomal instability: a vicious cycle 
driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev. 2013 Dec 
1;32(3-4):377–89.  

45.  Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian 
selection in tumours. Trends Cell Biol. 1999 Dec 1;9(12):M57–60.  

46.  Roschke AV, Rozenblum E. Multi-layered cancer chromosomal instability phenotype. 
Mol Cell Oncol. 2013;3:302.  



                                                                                                                                       Litrature 

 82 

47.  Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih I-M, Vogelstein B, et al. The 
role of chromosomal instability in tumor initiation. Proc Natl Acad Sci. 2002 Dec 
10;99(25):16226–31.  

48.  Jefford CE, Irminger-Finger I. Mechanisms of chromosome instability in cancers. Crit 
Rev Oncol Hematol. 2006 Jul 1;59(1):1–14.  

49.  Duijf PHG, Schultz N, Benezra R. Cancer cells preferentially lose small chromosomes. 
Int J Cancer J Int Cancer. 2013 May 15;132(10):2316–26.  

50.  Zimonjic D, Brooks MW, Popescu N, Weinberg RA, Hahn WC. Derivation of human 
tumor cells in vitro without widespread genomic instability. Cancer Res. 2001 Dec 
15;61(24):8838–44.  

51.  Duesberg P, Rausch C, Rasnick D, Hehlmann R. Genetic instability of cancer cells is 
proportional to their degree of aneuploidy. Proc Natl Acad Sci U S A. 1998 Nov 
10;95(23):13692–7.  

52.  Sieber OM, Heinimann K, Tomlinson IPM. Genomic instability — the engine of 
tumorigenesis? Nat Rev Cancer. 2003 Sep;3(9):701–8.  

53.  Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer 
Res. 1991 Jun 15;51(12):3075–9.  

54.  Nowell PC. The clonal evolution of tumor cell populations. Science. 1976 Oct 
1;194(4260):23–8.  

55.  Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and 
tumorigenesis. Nat Rev Mol Cell Biol. 2009 Jul;10(7):478–87.  

56.  Michor F. Chromosomal instability and human cancer. Philos Trans R Soc B Biol Sci. 
2005 Mar 29;360(1455):631–5.  

57.  Pangilinan F, Li Q, Weaver T, Lewis BC, Dang CV, Spencer F. Mammalian BUB1 protein 
kinases: map positions and in vivo expression. Genomics. 1997 Dec 15;46(3):379–88.  

58.  Schvartzman J-M, Duijf PHG, Sotillo R, Coker C, Benezra R. Mad2 is a critical mediator 
of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer 
Cell. 2011 Jun 14;19(6):701–14.  

59.  Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated 
proteins in the maintenance of genomic stability. Oncogene. 2006;25(43):5864–74.  

60.  Choi YJ, Anders L. Signaling through cyclin D-dependent kinases. Oncogene. 2014 Apr 
10;33(15):1890–903.  

61.  Shepard JL, Amatruda JF, Finkelstein D, Ziai J, Finley KR, Stern HM, et al. A mutation in 
separase causes genome instability and increased susceptibility to epithelial cancer. 
Genes Dev. 2007 Jan 1;21(1):55–9.  

62.  Eichinger CS, Kurze A, Oliveira RA, Nasmyth K. Disengaging the Smc3/kleisin interface 
releases cohesin from Drosophila chromosomes during interphase and mitosis. EMBO 
J. 2013 Mar 6;32(5):656–65.  



                                                                                                                                       Litrature 

 83 

63.  Michor F, Iwasa Y, Nowak MA. Dynamics of cancer progression. Nat Rev Cancer. 2004 
Mar;4(3):197–205.  

64.  Zhao B, Li L, Lei Q, Guan K-L. The Hippo-YAP pathway in organ size control and 
tumorigenesis: an updated version. Genes Dev. 2010 May;24(9):862–74.  

65.  Zhao B, Ye X, Yu J, Li L, Li W, Li S, et al. TEAD mediates YAP-dependent gene 
induction and growth control. Genes Dev. 2008 Jul 15;22(14):1962–71.  

66.  Yu F-X, Guan K-L. The Hippo pathway: regulators and regulations. Genes Dev. 2013 
Feb 15;27(4):355–71.  

67.  Yu F-X, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. Regulation of the 
Hippo-YAP pathway by G-protein coupled receptor signaling. Cell. 2012 Aug 
17;150(4):780–91.  

68.  Fernandez-L A, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, et al. 
Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma 
through IGF2-mediated Akt activation. Oncogene. 2012 Apr 12;31(15):1923–37.  

69.  Nishiyama Y, Hirota T, Morisaki T, Hara T, Marumoto T, Iida S, et al. A human homolog 
of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and 
specifically phosphorylated during mitosis. FEBS Lett. 1999 Oct 8;459(2):159–65.  

70.  Vlug EJ, van de Ven RAH, Vermeulen JF, Bult P, van Diest PJ, Derksen PWB. Nuclear 
localization of the transcriptional coactivator YAP is associated with invasive lobular 
breast cancer. Cell Oncol Dordr. 2013 Oct;36(5):375–84.  

71.  Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by 
the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes 
Dev. 2007 Nov 1;21(21):2747–61.  

72.  Tao W, Zhang S, Turenchalk GS, Stewart RA, St John MA, Chen W, et al. Human 
homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 
activity. Nat Genet. 1999 Feb;21(2):177–81.  

73.  Hergovich A. Regulation and functions of mammalian LATS/NDR kinases: looking 
beyond canonical Hippo signalling. Cell Biosci. 2013;3(1):32.  

74.  Hirota T, Morisaki T, Nishiyama Y, Marumoto T, Tada K, Hara T, et al. Zyxin, a regulator 
of actin filament assembly, targets the mitotic apparatus by interacting with h-
warts/LATS1 tumor suppressor. J Cell Biol. 2000 May 29;149(5):1073–86.  

75.  Yang X, Yu K, Hao Y, Li D, Stewart R, Insogna KL, et al. LATS1 tumour suppressor 
affects cytokinesis by inhibiting LIMK1. Nat Cell Biol. 2004 Jul;6(7):609–17.  

76.  Yang S, Zhang L, Liu M, Chong R, Ding S-J, Chen Y, et al. CDK1 Phosphorylation of 
YAP Promotes Mitotic Defects and Cell Motility and Is Essential for Neoplastic 
Transformation. Cancer Res [Internet]. 2013 Nov 15 [cited 2014 Nov 30];73(22). 
Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861241/ 

77.  Yabuta N, Mukai S, Okamoto A, Okuzaki D, Suzuki H, Torigata K, et al. N-terminal 
truncation of Lats1 causes abnormal cell growth control and chromosomal instability. J 
Cell Sci. 2013 Jan 15;126(Pt 2):508–20.  



                                                                                                                                       Litrature 

 84 

78.  Ji T, Liu D, Shao W, Yang W, Wu H, Bian X. Decreased expression of LATS1 is 
correlated with the progression and prognosis of glioma. J Exp Clin Cancer Res CR. 
2012;31:67.  

79.  Bao Y, Nakagawa K, Yang Z, Ikeda M, Withanage K, Ishigami-Yuasa M, et al. A cell-
based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of 
dobutamine on the YAP-dependent gene transcription. J Biochem (Tokyo). 2011 
Aug;150(2):199–208.  

80.  Brodowska K, Al-Moujahed A, Marmalidou A, Meyer Zu Horste M, Cichy J, Miller JW, et 
al. The clinically used photosensitizer Verteporfin (VP) inhibits YAP-TEAD and human 
retinoblastoma cell growth in vitro without light activation. Exp Eye Res. 2014 
Jul;124:67–73.  

81.  Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee S-J, Anders RA, et al. Genetic and 
pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic 
activity of YAP. Genes Dev. 2012 Jun 15;26(12):1300–5.  

82.  Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The 
WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002 
Mar;61(3):215–25; discussion 226–9.  

83.  Johnson DR, O’Neill BP. Glioblastoma survival in the United States before and during 
the temozolomide era. J Neurooncol. 2012 Apr;107(2):359–64.  

84.  ZHANG X, ZHANG W, CAO W-D, CHENG G, ZHANG Y-Q. Glioblastoma multiforme: 
Molecular characterization and current treatment strategy (Review). Exp Ther Med. 2012 
Jan;3(1):9–14.  

85.  Martinez R, Schackert H-K, Plaschke J, Baretton G, Appelt H, Schackert G. Molecular 
mechanisms associated with chromosomal and microsatellite instability in sporadic 
glioblastoma multiforme. Oncology. 2004;66(5):395–403.  

86.  Von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN. 
Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 
Zurich Switz. 1993 Jan;3(1):19–26.  

87.  Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and 
Overexpression of the MDM2 Gene in a Subset of Human Malignant Gliomas without 
p53 Mutations. Cancer Res. 1993 Jun 15;53(12):2736–9.  

88.  Karcher S, Steiner H-H, Ahmadi R, Zoubaa S, Vasvari G, Bauer H, et al. Different 
angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer. 
2006;118(9):2182–9.  

89.  Dokic I, Mairani A, Brons S, Schoell B, Jauch A, Krunic D, et al. High resistance to X-
rays and therapeutic carbon ions in glioblastoma cells bearing dysfunctional ATM 
associates with intrinsic chromosomal instability. Int J Radiat Biol. 2014 Sep 8;1–9.  

90.  Laemmli UK. Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–5.  



                                                                                                                                       Litrature 

 85 

91.  Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification 
of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 
1986;51 Pt 1:263–73.  

92.  Geigl JB, Obenauf AC, Waldispuehl-Geigl J, Hoffmann EM, Auer M, Hörmann M, et al. 
Identification of small gains and losses in single cells after whole genome amplification 
on tiling oligo arrays. Nucleic Acids Res. 2009 Aug;37(15):e105.  

93.  Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, et al. Multicolor 3D 
Fluorescence In Situ Hybridization for Imaging Interphase Chromosomes. In: Hancock 
R, editor. The Nucleus [Internet]. Humana Press; 2008 [cited 2015 Jan 1]. p. 205–39. 
Available from: http://link.springer.com/protocol/10.1007/978-1-59745-406-3_15 

94.  Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, et al. 
Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud 
formation in mammalian and human cells. Mutagenesis. 2011 Jan 1;26(1):125–32.  

95.  Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative 
Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci 
Signal. 2013 Apr 2;6(269):pl1–pl1.  

96.  Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio Cancer 
Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics 
Data. Cancer Discov. 2012 May 1;2(5):401–4.  

97.  Bignold LP, Coghlan BLD, Jersmann HPA. Hansemann, Boveri, chromosomes and the 
gametogenesis-related theories of tumours. Cell Biol Int. 2006 Jul;30(7):640–4.  

98.  Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C. The significance of unstable 
chromosomes in colorectal cancer. Nat Rev Cancer. 2003 Sep;3(9):695–701.  

99.  Hardy PA, Zacharias H. Reappraisal of the Hansemann-Boveri hypothesis on the origin 
of tumors. Cell Biol Int. 2005 Dec;29(12):983–92.  

100.  Weaver BAA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW. Aneuploidy 
Acts Both Oncogenically and as a Tumor Suppressor. Cancer Cell. 2007 Jan;11(1):25–
36.  

101.  Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, et al. 
Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. 
Science. 2008 Oct 31;322(5902):703–9.  

102.  Baranovskaya S, Soto JL, Perucho M, Malkhosyan SR. Functional significance of 
concomitant inactivation of hMLH1 and hMSH6 in tumor cells of the microsatellite 
mutator phenotype. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15107–12.  

103.  Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci 
U S A. 2003 Feb 4;100(3):776–81.  

104.  Perucho M. Cancer of the microsatellite mutator phenotype. Biol Chem. 1996 
Nov;377(11):675–84.  



                                                                                                                                       Litrature 

 86 

105.  Haigis KM, Caya JG, Reichelderfer M, Dove WF. Intestinal adenomas can develop 
with a stable karyotype and stable microsatellites. Proc Natl Acad Sci U S A. 2002 Jun 
25;99(13):8927–31.  

106.  Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT, et al. 
Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science. 2011 
Aug 19;333(6045):1039–43.  

107.  Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, et al. Transforming 
fusions of FGFR and TACC genes in human glioblastoma. Science. 2012 Sep 
7;337(6099):1231–5.  

108.  Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. 
Nature. 1997 Apr 10;386(6625):623–7.  

109.  Diaz-Cano SJ. Tumor Heterogeneity: Mechanisms and Bases for a Reliable 
Application of Molecular Marker Design. Int J Mol Sci. 2012 Feb 13;13(2):1951–2011.  

110.  Morgan WF, Murnane JP. A role for genomic instability in cellular radioresistance? 
Cancer Metastasis Rev. 1995 Mar 1;14(1):49–58.  

111.  Lee AJX, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, et al. 
Chromosomal Instability Confers Intrinsic Multi-Drug Resistance. Cancer Res. 2011 Mar 
1;71(5):1858–70.  

112.  Gisselsson D. Classification of chromosome segregation errors in cancer. 
Chromosoma. 2008 Dec 1;117(6):511–9.  

113.  Geigl JB, Obenauf AC, Schwarzbraun T, Speicher MR. Defining “chromosomal 
instability.” Trends Genet TIG. 2008 Feb;24(2):64–9.  

114.  Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, et al. An increased 
micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in 
humans. Carcinogenesis. 2006 Sep 14;28(3):625–31.  

115.  Zyss D, Gergely F. Centrosome function in cancer: guilty or innocent? Trends Cell 
Biol. 2009 Jul;19(7):334–46.  

116.  Koutsami MK, Tsantoulis PK, Kouloukoussa M, Apostolopoulou K, Pateras IS, 
Spartinou Z, et al. Centrosome abnormalities are frequently observed in non-small-cell 
lung cancer and are associated with aneuploidy and cyclin E overexpression. J Pathol. 
2006 Aug;209(4):512–21.  

117.  Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL. Centrosome hypertrophy in 
human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad 
Sci U S A. 1998 Mar 17;95(6):2950–5.  

118.  Hut HMJ, Lemstra W, Blaauw EH, van Cappellen GWA, Kampinga HH, Sibon OCM. 
Centrosomes Split in the Presence of Impaired DNA Integrity during  Mitosis. Mol Biol 
Cell. 2003 May;14(5):1993–2004.  

119.  Lingle WL, Salisbury JL. Altered Centrosome Structure Is Associated with Abnormal 
Mitoses in Human Breast Tumors. Am J Pathol. 1999 Dec;155(6):1941–51.  



                                                                                                                                       Litrature 

 87 

120.  Yang Z, Lončarek J, Khodjakov A, Rieder CL. Extra centrosomes and/or 
chromosomes prolong mitosis in human cells. Nat Cell Biol. 2008 Jun;10(6):748–51.  

121.  Dalton WB, Yang VW. THE ROLE OF PROLONGED MITOTIC CHECKPOINT 
ACTIVATION IN THE FORMATION AND TREATMENT OF CANCER. Future Oncol Lond 
Engl. 2009 Nov;5(9):1363–70.  

122.  Friedberg EC. DNA damage and repair. Nature. 2003 Jan 23;421(6921):436–40.  

123.  Yu T, Bachman J, Lai Z-C. Mutation analysis of large tumor suppressor genes LATS1 
and LATS2 supports a tumor suppressor role in human cancer. Protein Cell. 2014 Dec 
9;1–6.  

124.  Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic 
mosaics: the Drosophila lats gene encodes a putative protein kinase. Dev Camb Engl. 
1995 Apr;121(4):1053–63.  

125.  Eeken JCJ, Klink I, van Veen BL, Pastink A, Ferro W. Induction of epithelial tumors in 
Drosophila melanogaster heterozygous for the tumor suppressor gene wts. Environ Mol 
Mutagen. 2002;40(4):277–82.  

126.  Hisaoka M, Tanaka A, Hashimoto H. Molecular alterations of h-warts/LATS1 tumor 
suppressor in human soft tissue sarcoma. Lab Investig J Tech Methods Pathol. 2002 
Oct;82(10):1427–35.  

127.  Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-Associated Protein 1 
(YAP1) Is Widely Expressed in Human Brain Tumors and Promotes Glioblastoma 
Growth. J Neuropathol Exp Neurol. 2011 Jul;70(7):568–77.  

128.  Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS. A census of amplified 
and overexpressed human cancer genes. Nat Rev Cancer. 2010 Jan;10(1):59–64.  

129.  Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, et al. 
Identification and Validation of Oncogenes in Liver Cancer Using an Integrative 
Oncogenomic Approach. Cell. 2006 Jun 30;125(7):1253–67.  

130.  Baia GS, Caballero OL, Orr BA, Lal A, Ho JSY, Cowdrey C, et al. Yes-Associated 
Protein 1 Is Activated and Functions as an Oncogene in Meningiomas. Mol Cancer Res. 
2012 Jul 1;10(7):904–13.  

131.  Wang W, Huang J, Chen J. Angiomotin-like proteins associate with and negatively 
regulate YAP1. J Biol Chem. 2011 Feb 11;286(6):4364–70.  

132.  Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 Phosphorylation by c-Abl Is a 
Critical Step in Selective Activation of Proapoptotic Genes in Response to DNA 
Damage. Mol Cell. 2008 Feb 15;29(3):350–61.  

133.  Zhao B, Li L, Tumaneng K, Wang C-Y, Guan K-L. A coordinated phosphorylation by 
Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 2010 Jan 
1;24(1):72–85.  

134.  Iida S-I, Hirota T, Morisaki T, Marumoto T, Hara T, Kuninaka S, et al. Tumor 
suppressor WARTS ensures genomic integrity by regulating both mitotic progression 
and G1 tetraploidy checkpoint function. Oncogene. 2004 Jul 8;23(31):5266–74.  



                                                                                                                                       Litrature 

 88 

135.  Hergovich A, Cornils H, Hemmings BA. Mammalian NDR protein kinases: from 
regulation to a role in centrosome duplication. Biochim Biophys Acta. 2008 
Jan;1784(1):3–15.  

136.  Visser S, Yang X. LATS tumor suppressor: A new governor of cellular homeostasis. 
Cell Cycle. 2010 Oct 1;9(19):3892–903.  

137.  Park HW, Guan K-L. Regulation of the Hippo pathway and implications for 
anticancer drug development. Trends Pharmacol Sci. 2013 Oct;34(10):581–9.  

138.  Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for 
regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014 Jan;13(1):63–
79.  

139.  Meyer J, Pusch S, Balss J, Capper D, Mueller W, Christians A, et al. PCR- and 
restriction endonuclease-based detection of IDH1 mutations. Brain Pathol Zurich Switz. 
2010 Mar;20(2):298–300.  

140.  Bakhoum SF, Thompson SL, Manning AL, Compton DA. Genome stability is ensured 
by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol. 2009 
Jan;11(1):27–35.  



 

 
89 

 


