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1.1   Summary  

 

Specific structures and cell types in the organization of the liver are the key for its variant functions, like 

protein production, glucose homeostasis and detoxification. In the present work, liver damage from an 

acute toxic injury caused by intraperitoneal injection of a mixture of CCl4 and mineral oil in Balb/c mice 

and its subsequent recovery was studied using different methods to investigate specific cellular functions 

in the liver. The analysis by in situ hybridization and RT-qPCR showed how expression of liver specific 

enzymes and proteins in mouse hepatocytes is changed over a period of 6 days following injection. The 

genes investigated included Albumin, Arginase, Glutaminase2, Glutamine synthetase, Glucose-6-

phosphatase, Glycogen synthase2, Gapdh, Cyp2e1 and Glucagon receptor genes. Interestingly, a 

significant change in gene expression of enzymes involved in nitrogen and glucose metabolism and their 

local distribution in different areas of the liver were observed following CCl4 injury. Cyp2e1, an essential 

metabolizing enzyme in CCl4 metabolism, was strongly expressed in the pericentral zone during recovery. 

In comparison to hepatocytes in livers from untreated mice, liver cells from treated animals displayed 

distinct gene expression profiles in the damaged area around the pericentral vein during the analyzed time 

course and showed a complete recovery with strong albumin production at day 6 post CCl4 injection. The 

results obtained indicate that despite of the severe damage, liver cells in the damaged area do not simply 

die but instead locally adjust gene expression to deal with the damage effect and thereby ensure survival. 

In order to optimize the preparation of cRNA hybridization probes and enable the rapid synthetize of the 

large number of probes used in this study, a new rapid method for antisense cRNA preparation was 

established. The development of this rapid and efficient protocol for the generation of labeled cRNA 

probes was an important pre-requisite for the project. The new protocol is based on the preparation of 

DNA templates in vitro by PCR using primers that include RNA polymerase promoter sequences and size 

based purification of PCR fragments containing the target gene specific cDNA and promoter elements for 

T7 and SP6 RNA-polymerase. Purified PCR fragment based in vitro transcription enables the preparation 
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of in situ hybridization probes, which can be used for the detection of the respective gene and 

visualization of the distribution of gene expression in tissue slices for any gene of interest. The optimized 

synthesis and purification protocols ensure high transcription efficiency and target specificity of the 

labeled cRNA and the obtained cRNA hybridization probes are compatible with established in situ 

hybridization protocols.       

This study proved that with a single dose of CCl4 injection in mouse, liver pericentral hepatocytes are the 

main cell type responsible for neutralizing the toxic agent, and the main consequence of this damage is 

not simply to induce cell death due to apoptosis, but instead these damaged hepatocytes seem to reduce 

any unnecessary activities in favor of processes needed for recovery from damage. 

 

 

1.2  Zusammenfassung   

 

 

Innerhalb des Lebergewebes sorgen spezifische Strukturen und Zelltypen für die verschiedenen 

Funktionen wie Proteinproduktion, Glucose Homöostase und Detoxifizierung. In der vorliegenden Studie 

wurden unterschiedliche Verfahren zur Untersuchung spezifischer  zellulärer Vorgänge innerhalb des 

Regenerierungsprozesses der Leber nach akuter Belastung durch intraperitonealer Injektion von CCl4 und 

Mineralöl in Balb/c Mäuse untersucht. Die Analyse mittels in situ Hybridisierung und RT-qPCR zeigte, 

wie sich die Expression leberspezifischer Enzyme und Protein in murinen Hepatozyten über einen 

Zeitraum von sechs Tagen nach der Injektion verhielt. Folgende Gene wurden in diesem Zusammenhang 

untersucht Albumin, Arginase, Glutaminase2, Glutamine-synthetase, Glucose-6-phosphatase, Glycogen 

synthase2, Gapdh, Cyp2e1 und Glucagon Rezeptor Gene. Interessanterweise wurden nach 

ClC4 Belastung signifikante Änderungen in der Genexpression von Enzymen, welche in den Stickstoff- 

und Glucose Stoffwechsel involviert sind und derer Verteilung innerhalb des Lebergewebes 

nachgewiesen. Cyp2e1, ein essenzielles metabolisierendes Enzym innerhalb des Stoffwechsels von CCl4, 

http://dict.leo.org/#/search=intraperitoneal&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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wurde während der Regeneration des Lebergewebes stark erhöht  innerhalb der perizentralen Zone 

exprimiert. Im Vergleich zu Hepatozyten von unbehandelten Mäusen zeigten die Leberzellen der 

Versuchstiere charakteristisch ausgeprägte Genexpressionprofile innerhalb des geschädigten Bereichs um 

die perizentrale Vene auf. Eine vollständige Wiederherstellung und hohe Albuminexpression konnte 

sechs Tage nach der CCl4 Behandlung nachgewiesen werden. Die erhaltenen Ergebnisse weisen darauf 

hin, dass trotz des enormen Schadens Leberzellen innerhalb der beschädigten Areale nicht sterben, 

sondern lokal ihre Genexpression ändern, um die Schädigung zu bewältigen und ihr Überleben zu 

sichern. Um die Herstellung und rapide Synthese von cRNA Hybridisierungsproben, welche innerhalb 

dieser Studie verwendet wurden, zu gewährleisten, wurde eine neue Methode zur Herstellung von 

antisenser cRNA etabliert. Die Entwicklung einer schnellen und effektiven Methode zur Herstellung von 

markierter cRNA stellte eine entscheidende Voraussetzung zum Gelingen des Projektes dar. Das neu 

etablierte Protokoll basiert auf der Herstellung von DNA Templates durch in vitro Transkription mittels 

PCR. Hierfür wurden Primer, welche die RNA Polymerase Promotor Sequenz beinhalten und 

größenabhängiger Aufreinigung von PCR Fragmenten, die die cDNA des Zielgenes und die Promotor für 

T7 und SP6 RNA-Polymerase enthalten, verwendet. Aufgereinigte PRC Fragmente, welche auf in vitro 

Transkription basieren, ermöglichen die Herstellung von in situ Hybridisierungsproben. Diese dienen dem 

Nachweis des entsprechenden Genes und der Visualisierung der Verteilung der Genexpression eines 

beliebigen Genes innerhalb des Gewebes. Die optimierten Protokolle zur Synthese und Aufreinigung 

sorgen für eine hohe Transkriptionseffektivität und Zielspezifität der markierten cRNA. Die erhaltenen 

cRNA Hybridisierungsproben sind vergleichbar mit etablierten in situ Hybridisierungsprotokollen. 

Innerhalb unserer Studien haben wir nachgewiesen, dass nach einer Einzelbehandlung von Mäusen mit 

CCl4 , perizentrale Hepatozyten den hauptverantwortliche Zelltyp zur Neutralisierung der toxischen 

Substanz darstellen. Des Weiteren haben wir aufgezeigt, dass infolge der Schädigung nicht einfach der 

Zelltod durch Apoptose eintritt, sondern dass die geschädigten Hepatozyten sämtliche anderen 

Aktivitäten einstellen, um sich von dem Schaden zu erholen. 
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2 Abbreviations: 

 

AFP          Alpha-fetoprotein 

Arg1         Arginase 

aSma        alpha-smooth muscle actin  

BP             Base pair 

BSA          Bovine serum albumin 

cDNA       Complementary deoxyribonucleic acid 

cRNA       Complementary ribonucleic acid 

DAPI          4',6-diamidino-2-phenylindole 

DIG           Digoxigenin 

DMEM     Dulbeccos modified eagel-medium 

DNA         Deoxyribonucleic acid 

DNase      Deoxyribonuclease 

dNTPs      Deoxyribonucleoside triphosphates 

EDTA      Ethylenediaminetetraacetic acid  

EtOH        Ethanol 

FCS          Fetal-calf serum 

g               Gram 

G6pc        Glucose-6-phosphatase 

Gapdh     Glyceraldehyde-3-phosphate dehydrogenase 

Gcgr        Glucagon receptor 

Gls2        Glutaminase 2 

Gys2        Glycogen synthase 2 

Gs           Glutamine synthetase 

Gpx4      Glutathione peroxidase 4  
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Gsh         Glutathion  

Gssg       Glutathione disulfide 

Gss         Glutathione synthetase 

ISH          In situ hybridization 

IHC         Immunohistochemistry 

g             Microgram 

NADP
+
     Nicotinamide adenine dinucleotide phosphate 

PCR          Polymerase chain reaction 

PPH          Periportal hepatocyte 

PPC          Percentral hepatocyte 

RNA         Ribonucleic acid 

RNase       Ribonuclease 

Rpm          Round per minute 

RT             Room temperature 

UTP          Uridintriphosphat 

 

 

 

 

 

 

 

 

 

 

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCwQFjAC&url=http%3A%2F%2Fde.wikipedia.org%2Fwiki%2FUridintriphosphat&ei=6BbqU6j0NozH7AaVqICwCg&usg=AFQjCNHmTXMYPFEz9NxYPWDEr9ozlyWHTQ
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3.  Introduction: 

3.1  Liver:  

The liver is a vital and complex organ in vertebrates and plays a key role in many metabolic 

processes. It is the largest visceral organ and gland in the body. The liver has been found to 

participate in more than 500 separate functions. A healthy human liver is reddish brown in color 

and weighs about 1.44-1.66 kg. It contains four lobes of unequal size. Terminology related to the 

liver contains the prefix “hepato-”, the Greek term for liver. This organ’s wide range of functions 

includes detoxification, plasma protein synthesis, and the storage of vitamins and carbohydrate 

like glycogen. It also participates in bile production (as a side effect of red blood cell death and 

hemoglobin degradation), which is necessary for lipid degradation in intestine  [1]. The liver is 

one of the first lines of defense between the host and the external environment. It is exposed to 

blood-borne pathogens, many of which are thought to be derived from the gut  [2]. Eighty 

percent of the liver’s volume is occupied by parenchymal cells, commonly referred to as 

hepatocytes. Non-parenchymal cells constitute Sinusoidal hepatic endothelial cells, Kupffer 

cells, and hepatic stellate cells.  

The hepatic artery and the portal vein are two blood vessels connected to the liver. The blood 

from the aorta carries by the hepatic artery, whereas digested nutrients from the entire 

gastrointestinal tract and also blood from the spleen and pancreas carries by the portal vein. 

Only20% of the liver blood is arterially derived, the remaining originates from the portal vein  

[3]. Further inside the liver these blood vessels subdivide into capillaries, which then with 

hepatocytes form lobules. Acinies (lobule) are the basic functional units in the liver. These units 

consist of two separated areas with different functions, an upstream unit region which 
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constructed of hepatocytes around the terminal hepatic arteriole and terminal portal vein (the 

periportal zone) and a downstream hepatocytes region around the central vein (the perivenous, 

pericentral, or centrilobularzone). Hepatocytes belonging to these two areas due to distinct 

enzyme expression are known to be unequally involved in a variety of different metabolic 

processes. The periportal hepatocytes have greater ability for urea synthesis, bile formation and 

glucose output, whereas hepatocytes in the pericentral area are more responsible for glutamine 

formation, glucose uptake,  and xenobiotic metabolisms  [4, 5]  (Figure 1). 

 

 

Figure 1: Illustration of part of a liver lobule (modified from Frevert U et al) 

Based on the research article "Intravital Observation of Plasmodium berghei Sporozoite 

Infection of the Liver", PLoS Biology, doi:10.1371/journal.pbio.0030192.g011. Originally by 

Frevert U, Engelmann S, Zougbédé S, Stange J, Ng B, et al. Converted to SVG by Viacheslav 

Vtyurin who was hired to do so by User:Eug. 
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3.1.2  The liver functions in the body: 

The liver performs several roles in the body: 

Protein metabolism:  Protein and amino acid synthesis, as well as degradation.  

Carbohydrate metabolism: Gluconeogenesis (the synthesis of glucose from certain amino 

acids, lactate, or glycerol), Glycogenolysis (the breakdown of glycogen into glucose), and 

Glycogenesis (the formation of glycogen from glucose; muscle tissues can also do this). 

Lipid metabolism:  Cholesterol synthesis, Lipogenesis, and Triglycerides (fats) synthesis. Many 

other lipoproteins are also synthesized in the liver. 

Coagulation factors synthesis: Factor I (fibrinogen), II (prothrombin), V, VII, IX, X, and XI, as 

well as protein C, protein S, and antithrombin (responsible for blood coagulation) are 

synthesized in the liver. 

Lipid degradation:  The liver produces and excretes bile, required for emulsifying fats and 

vitamin K absorption.  

Hormone production:  The liver is a major site of thrombopoietin (a glycoprotein hormone that 

regulates the production of platelets by bone marrow) and insulin-like growth factor 1 (IGF-1) 

production, as well as the degradation of insulin and other hormones.  

Drug and toxic molecules modification: most medicines and toxic molecules are detoxified in 

the liver (drug metabolism). This sometimes results in toxication, when the metabolite is more 

toxic than the first one (CCl4 neutralization). 

Urea synthesis: The liver is the main source for producing urea. 

Molecules storage: The liver stores glucose (in the form of glycogen), vitamin A, vitamin B12, 

vitamin K, iron, and copper. 
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Blood component producing: The liver produces Alpha fetal protein (AFP) in its embryonic 

state and Albumin (the major osmolar component of blood serum). 

RBC producers: The liver is the main site of red blood cell production in the fetus (before the 

32nd week of gestation) and is also responsible for immunological effects  [1] .  

3.1.3  Nitrogen metabolism: 

 

The major by-product of proteins, amino acids and other nitrogen-containing molecules 

metabolisms is ammonia. Ammonia is a toxic and harmful molecule for cells and its 

physiological level should be maintained in a minimum level in the circulation. Liver 

(hepatocytes) is the only organ in the body that has the ability for urea synthesis from ammonia 

and this organ plays a central role in ammonia detoxification [6]  (Figure 2).  

  

Figure2: Nitrogen cycle in the liver (modified from Ghafoory et al 2013) 
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In the liver anatomy, these two major ammonia detoxificating types of hepatocytes are separated 

within the liver lobules. In the periportal area hepatocytes with high capacity for urea synthesis 

are located, whereas other type of hepatocytes in the pericentral zone are the only cells in the 

liver responsible for glutamine synthesis (and ammonia detoxification by absorption from the 

circulation). In order to scavenge ammonia escaping from the periportal urea, these two  

ammonia detoxification systems are anatomically arranged in series [7]. Because ammonia’s 

high toxicity glutamine is the most important amino acid for presenting nitrogen from other 

organs or tissues to the liver, of the nitrogen presented to the liver from other organs or 

tissues.The major sources for ammonia in the liver are also glutamine and glutamate. Periportal 

hepatocytes (PPH) are responsible for absorbing glutamine from circulation, the glutaminase 

enzyme hydrolyses glutamine into glutamate and ammonia in PPHs cytoplasm. In mitochondria 

of these cells, the toxic ammonia is introduced to the urea cycle and detoxification will done  

through urea conversion. There are five enzymes in the urea cycle. carbamoylphosphate 

synthetase I (CpsI), ornithine transcarbamylase (Otc), argininosuccinate synthetase (Ass), 

argininosuccinate lyase (Asl) and arginase. Arginase is a key enzyme in the urea cycle and 

catalyzes the last reaction in urea cycle is catalyzed by arginase, it is the key enzyme in 

converting arginine into urea and ornithine [8, 9] . Excess ammonia in the circulation is absorbed 

by 2-3 layer of hepatocytes around central vein (PCH) and in a reverse biochemical reaction 

glutamine is generated from ammonia and glutamate condensation.  Glutamine synthetase is the 

enzyme which catalyze the reaction (Figure 2). 

3.1.4  Carbohydrate metabolism: 

The important molecule for energy storage in the body is glycogen which accumulates mainly in 

muscle and liver tissue [10]. Glycogen is a polysaccharide made from glucose, in this molecule 

many glucose molecules bound and form a chain, glycogen synthase catalysis this reaction by 

adding  glucose-6-phosphate molecules  one after the other in this chain [11] (Figure 3).  
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         Figure 3: Glycogenesis and gluconeogenesis in the liver (modified from Ghafoory et al 2013) 

 

Glycogen synthesis in the liver is either directly used the glucose absorbed from blood or 

through gluconeogenesis utilizing other precursors, like pyruvate, lactate or glutamine. It had 

been demonstrated, that glucose utilization and glycolysis is mostly found in perivenous 

hepatocytes, also known as pericentral hepatocytes (PCH), while gluconeogenesis is more taking 

place in periportal hepatocytes (PPH). Thus, both glycogen synthesis and glycolysis routes are 

almost taking place in different metabolic zones  [12]. Glucose uptake is increased after meals 

(higher glucose level in the blood during absorptive phase) in PCHs, where glucose is converted 

to glycogen catalyzed by glycogen synthase 2 (Gys2). Between meals and in the post absorptive 

phase, first glycogen is degraded to glucose (Glycogenolysis) and later it is utilized in glycolysis 

leading to the production of lactate in the PCHs. Lactate is released from PCHs into circulation, 

it leaves  the liver, and when it is brought back to the liver by the circulation, hepatocytes in the 

periportal zones  can be taken it up and  converted into glycogen via gluconeogenesis [5, 13, 14]. 
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Glucose-6-phospate is the central metabolite in carbohydrate metabolism. It plays a key role for 

providing the connection between glycogenolysis, glycogen synthesis, glycolysis, and 

gluconeogenesis and also regulation of blood glucose level. Glucose-6-phospate is hydrolyzed 

by glucose-6-phosphatase (G6pc) into free glucose and a phosphate group [15]. By quantitative 

enzyme histochemical study had been shown in periportal hepatocytes glucose-6-phosphatase 

activity is much higher than in pericentral hepatocytes [11]. Another key enzyme in glycolysis is 

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh). It is considered as “housekeeping” gene 

whichresponsible for conversion of glyceraldehyde-3-phosphate (G3p) to 1,3-

biphosphoglycerate. It is important for energy production by glycolysis [16].  

 

3.1.5  Liver damage: 

 

The liver supports almost all other organs in the body and it is vital for survival. Its strategic 

location and multidimensional functions, prone it for many diseases. Detoxification and 

neutralization of medicine and molecules in the circulation is one of the most important of liver 

duty is. if the byproduct produces free radicals, detoxification of these molecules is a procedure 

can be harmful and induce injuries in liver hepatocytes,. In liver cells, free radicals can bind and 

react with different molecules (especially in cell organ construction).                             

The damage in cells can be various and directly depend on exposure repetition and dosage. The 

superfamily cytochrome P450 (CYPs) is a large and diverse group of enzymes (Table1). The 

CYP genes encode enzymes of the cytochrome P-450 superfamily. This group of proteins is 

expressed mainly in the liver and is active in the mono-oxygenation and hydroxylation of various 

xenobiotics, including drugs and alcohol, and also endogenous compounds such as steroids, bile 

http://en.wikipedia.org/wiki/Enzyme
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acids, prostaglandins, and leukotrienes. Their expression has a zonated pattern with high 

expression prevailing in the pericentral zone [17] . They are hemoproteins (cysteinato-heme 

enzymes) and containing a heme cofactor (Figure 4). 

The prosthetic group is constituted of an in all of cysteinato-heme enzymes, iron(III)  

protoporphyrin- IX covalently linked to the protein by the sulfur atom of a proximal cysteine 

ligand [18].  Oxidation of organic substances are catalyzed by these enzymes Metabolic 

intermediates such as lipids and steroidal hormones and xenobiotic substances such as drugs and 

other toxic chemicals are their substrates. They involved in around 75% of drug metabolism and 

bioactivation of different metabolic reactions [19]. The most common reaction catalyzed by 

cytochromes P450 is mono oxygenase reaction During the reaction one atom of oxygen reduced 

to water and the other  one is inserted  into the aliphatic position of an organic substrate [19]. 

Change in active site conformation induced by substrate is the base and general mechanism for 

substrate metabolisms in this group of enzymes. By binding the substrate to the active site of the 

enzyme, change is induced in close proximity of heme group [18]. This conformational changes 

induce the electronic state changes in active site, an NADPH’s electron is transfered by 

cytochrome P450 reductase (or another associated reductase) and  ferric heme iron reduced  to 

the ferrous state [20]. The heme iron can bind covalently to one atom of oxygen. The iron-

oxygen covalent bindis relatively stable but can dissociate to an iron (III) and superoxide anion. 

Superoxide released from cytochromecan generate hydrogen peroxide which is harmful for cells  

[18]. .The mechanisms and carcinogenicity effects of hepatotoxic molecules can be studied by 

using these molecules in vivo or in vitro. The best and well-known toxic molecule is Carbon 

tetrachloride (CCl4), it has been extensively used to study liver injury in animal models. 

Cytochrome p450 2e1 (Cyp2e1) in hepatocytes activates CCl4 to generate the trichloromethyl 

radical, CCl3*.   

http://en.wikipedia.org/wiki/Hemoprotein
http://en.wikipedia.org/wiki/Heme
http://en.wikipedia.org/wiki/Cofactor_(biochemistry)
http://en.wikipedia.org/wiki/Redox
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Metabolism
http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Steroid
http://en.wikipedia.org/wiki/Xenobiotic
http://en.wikipedia.org/wiki/Toxic
http://en.wikipedia.org/wiki/Drug_metabolism
http://en.wikipedia.org/wiki/Redox
http://en.wikipedia.org/wiki/Heme_group
http://en.wikipedia.org/wiki/Cytochrome_P450_reductase
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Family Function Members Names 

CYP1  drug and steroid (especially 

estrogen) metabolism  

3 subfamilies, 3 genes, 1 pseudogene  CYP1A1, CYP1A2, CYP1B1  

CYP2  drug and steroid metabolism  

 

13 subfamilies, 16 genes, 16 

pseudogenes  

CYP2A6, CYP2A7, CYP2A13, 

CYP2B6, CYP2C8, CYP2C9, 

CYP2C18, CYP2C19, CYP2D6, 

CYP2E1, CYP2F1, CYP2J2, CYP2R1, 

CYP2S1, CYP2U1, CYP2W1  

CYP3  drug and steroid (including 

testosterone) metabolism  

1 subfamily, 4 genes, 2 pseudogenes  CYP3A4, CYP3A5, CYP3A7, 

CYP3A43  

CYP4  arachidonic acid or fatty acid 

metabolism  

6 subfamilies, 12 genes, 10 

pseudogenes  

CYP4A11, CYP4A22, CYP4B1, 

CYP4F2, CYP4F3, CYP4F8, 

CYP4F11, CYP4F12, CYP4F22, 

CYP4V2, CYP4X1, CYP4Z1 

CYP5  thromboxane A2 synthase  1 subfamily, 1 gene  CYP5A1  

CYP7  bile acid biosynthesis 7-alpha 

hydroxylase of steroid nucleus  

2 subfamilies, 2 genes  CYP7A1, CYP7B1  

CYP8  varied  2 subfamilies, 2 genes  CYP8A1 (prostacyclin synthase), 

CYP8B1 (bile acid biosynthesis)  

CYP11  steroid biosynthesis  2 subfamilies, 3 genes  CYP11A1, CYP11B1, CYP11B2  

CYP17  steroid biosynthesis, 17-alpha 

hydroxylase  

1 subfamily, 1 gene  CYP17A1  

CYP19  steroid biosynthesis: aromatase 

synthesizes estrogen  

1 subfamily, 1 gene  CYP19A1  

CYP20  unknown function  1 subfamily, 1 gene  CYP20A1  

CYP21  steroid biosynthesis  2 subfamilies, 1 gene, 1 pseudogene  CYP21A2  

CYP24  vitamin D degradation  1 subfamily, 1 gene  CYP24A1  

CYP26  retinoic acid hydroxylase  3 subfamilies, 3 genes  CYP26A1,  CYP26B1 

, CYP26C1  

CYP27  varied  3 subfamilies, 3 genes  CYP27A1 (bile acid biosynthesis), 

CYP27B1 (vitamin D3 1-alpha 

hydroxylase, activates vitamin D3), 

CYP27C1 (unknown function)  

CYP39  7-alpha hydroxylation of 24-

hydroxycholesterol  

1 subfamily, 1 gene  CYP39A1  

CYP46  cholesterol 24-hydroxylase  1 subfamily, 1 gene  CYP46A1  

CYP51  cholesterol biosynthesis  1 subfamily, 1 gene, 3 pseudogenes  CYP51A1 (lanosterol 14-alpha 

demethylase)  

                    

         Table 1: Cytochromes P450 in humans (Modified from Nelson D 2003) Retrieved May 9, 2005 

http://drnelson.uthsc.edu/human.P450.table.html
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Figure 4: Prosthetic of cysteinato-heme enzymes: an iron- (III) protoporphyrin-IX linked with 

cysteine ligands (Uploaded from http: //drnelson.utmem.edu/ CytochromeP450 .html) 

 

The reaction between this radical and various cellular molecules (e.g. nucleic acid, protein, lipid) 

or  crucial cellular processes is harmful for hepatocytes (Figure 5) 

In the oxygen excess presence, it can react with CCl3* to form the trichloromethylperoxy radical 

CCl3OO*, another highly reactive species. Under the aerobic conditions CCl3OO* is formed 

very rapidly and in consequence lipid peroxidation proceed is start more faster with  

trichloromethylperoxy radical than trichloromethyl [21]. 

Damage is induced in cell membrane by attacking and destroying polyunsaturated fatty acids in 

response to lipid peroxidation (particular those associated with phospholipids). One of the most 
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important antioxidant molecules in hepatocytes is Glutathion (GSH) (Figure 6), a tripeptide 

composed of glutamin, cysteine, and glycine. 

 

Figure 5: The mechanism of CCl4 damage in hepatocytes 

 

 

 

                                  

 

                              Figure 6: Glutathion (GSH) molecule (file from the Wikimedia Commons) 

 

http://upload.wikimedia.org/wikipedia/commons/a/a9/Glutathion.svg
http://upload.wikimedia.org/wikipedia/commons/a/a9/Glutathion.svg
http://commons.wikimedia.org/wiki/Main_Page
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The sulfhydryl side chains of the cysteine residues can act as an electron donor in this process: 

two glutathione molecules form a disulfide bond (GSSG) and convert to glutathione disulfide 

(GSSG). Fig  

This molecule is glutathione reductase substrate (GSR). To convert one molecule of GSSG to 

two GSH molecules, glutathione reductase requires NADPH as an electron donor. The ratio of 

GSH to GSSG is often used as a measure of cellular toxicity [22], Figure 7.  

 

 

Figure 7: Glutathione disulfide (GSSG) This is a file from the Wikimedia Commons 

 

In normal cells and tissues, more than 90% of the total glutathione is in the reduced form (GSH) 

and less than 10% has a disulfide form (GSSG). An increased GSSG to GSH ratio should be 

considered a symptom of oxidative stress [22]. The capacity of the liver to convert GSSG to 

GSH decreases with aging and, therefore, molecules responsible for lipid peroxidation are more 

likely accumulate to toxic levels after prolonged exposure or after a high dose administration. 

http://commons.wikimedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Oxidative_stress
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The GSH/ GSSG ratio is decreased and CCl4 mediated damage will lead to liver degeneration 

and could contribute to initiate hepatic cancer [17, 19, 23, 24]. 

It is well documented that antioxidants can prevent CCl4 liver toxicity by inhibiting lipid 

peroxidation and increasing antioxidant enzyme activities [23, 25] . Cyp2e1 is predominantly 

expressed in pericentral hepatocytes (PCHs). Consequently, CCl4 treatment leads to severe 

damage of PCHs, while periportal hepatocytes (PPHs) are not damaged [24, 26].It has been 

shown previously, that CCl4 damage also influences nitrogen metabolism. Upon CCl4 treatment, 

glutamine synthase activity was reduced, due to the damage of PCHs, and normal glutamine 

metabolism was disturbed, which resulted in impaired ammonia detoxification. Even so, 

periportal urea synthesis remained unchanged [27]. 

CCl4 treatment also influences carbohydrate metabolism. Perfusion experiments with CCl4 

treated livers showed disturbed glycogen synthesis from exogenous glucose, while glycogen 

synthesis from gluconeogenesis was not impaired [28] Furthermore, treatment with CCl4 also 

reduced the activity of glucose-6-phosphatase in isolated liver microsomes [29]. 

The aim of the present study was to analyze the effect of CCl4 on the expression of important 

metabolizing enzymes in the different zones of liver acini in more detail, and to follow the 

course of expression over time, for 6 days after CCl4 treatment. In situ hybridization was used on 

mouse liver sections to analyze gene expressions and distribution patterns of key enzymes 

(nitrogen and carbohydrate metabolisms).   

 

3.2  In situ Hybridization: 

3.2.1  History: 
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In cellular and molecular biology, hybridization establishes interactions between two 

complementary strands of nucleic acids to make a double-strand DNA or RNA complex. Under 

normal conditions, oligonucleotides from single strands of DNA or RNA will bind to a 

complementary strand, so two strands can bind to each other. In other words, using this 

technique allows for a visualization of the distribution of specific nucleic acid sequences in cells 

within a tissue section (in situ), or in the entire organ (whole mount ISH). ISH can also evaluate 

gene activity at the DNA or mRNA level   Coghlan, Aldred [30], Gall and Pardue [31]. 

Among all different types of in situ hybridization, RNA ISH is used to visualize the localization 

of RNA (all kinds of RNA) expression within whole mounts, tissue sections, or cells. Since some 

types of tissue contain a range of different cell types with specialized functions, it is the preferred 

method for gene profiling studies. Any changes in gene expression and cellular function within 

the tissue can also be studied using this method. This technique was originally developed by 

Pardue and Gall, in 1969,  Coghlan, Aldred [30] and at the same time independently by John et 

al. In the experiment which they developed it single strands DNA were bound with tritium-

labeled RNA.   

Radioisotopes labeled nucleic acids were the only source available in 1969 and molecular 

cloning was not possible. In situ hybridization was restricted to sequences like ribosomal RNAs, 

viral DNA, and mouse satellite DNA that could be isolated and purified by chemical methods. 

Years later, improved radiolabeling techniques and nucleic acids molecular cloning changed this 

method dramatically. In 1985, Coghlan et al used these chemically synthesized radioactivity 

labeled oligonucleotides especially for mRNA detection [31]. Although in situ hybridization was 

widely applicable and the sensitivity of this technique was good, some problems associated with 

radioactive probes and the extensive time required for autoradiography made technique would 
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only be usable in a well-equipped laboratories techniques. These obstacles were removed by 

preparing nucleic acid probes labeled with stable nonradioactive molecules. 

 3.2.2  Non-radioactive in situ hybridization: 

Non-radioactive in situ hybridization (ISH) is becoming increasingly popular because of the 

major advantages attached to this technique, when compared with the use of radioactively-

labelled probes.
 
Those advantages include longer half-life, higher safety, lower costs, and 

reproducibility due to the option of reusing the same probe, as well as a higher signal-to-noise 

ratio and better cellular resolution of the hybridization pattern [32].Among different modified 

oligonucleotides for in situ hybridization, Digoxigenin (Figure 8A)  labeled nucleotides were 

introduced and developed by Roche in 1987 and the first ISH kit with nonradioactivenucleic acid 

for DNA detection was introduced to the market during the same year. Digoxigenin (DIG) is a 

steroid found exclusively in the flowers and leaves of the plants Digitalis purpurea, Digitalis 

orientalis, and Digitalis lanata. DIG is a high antigenicity  

 

 

 

Figure 8A: Digoxigenin molecule, B: Fluorescein molecule(modified from Wikipedia) 

http://en.wikipedia.org/wiki/Steroid
http://en.wikipedia.org/wiki/Digitalis_purpurea
http://en.wikipedia.org/w/index.php?title=Digitalis_orientalis&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Digitalis_orientalis&action=edit&redlink=1
http://en.wikipedia.org/wiki/Digitalis_lanata
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hapten.This molecule can be chemically introduced into biomolecules like proteins and  nucleic 

acids, to be detected further by using a specific antibody. Because naturally occurring DIG is 

limited to certain plants, there should be no cross reaction between anti DIG antibody and all 

other molecules in eukaryotic cells. Nucleotide molecules labeled with digoxigenin can be 

detected with anti-digoxigenin antibodies with high affinities. These antibodies can be labelled 

with dyes, enzymes, or fluorescence to visualize the site of expression directly. Using the 

secondary antibody can amplify the signal indirectly. Digoxigenin is linked to the C-5 position of 

the uridine nucleotide (Figure 9A) which is then incorporated into RNA (a "riboprobe") as it is 

synthesized by the enzymatic machinery  [33]  

 

Figure 9 A: Uridine nucleotide conjugated with Digoxigenin (digoxigenin-UTP) B: Uridine 

nucleotide conjugated with Biotin (Biotin-dUTP)  C: Uridine nucleotide conjugated with 

Fluorescein (Fluorescein –dUTP) (Figures modified from Wikipedia) 

http://en.wikipedia.org/wiki/Hapten
http://en.wikipedia.org/wiki/Antibody
http://en.wikipedia.org/wiki/Affinity_(pharmacology)
http://en.wikipedia.org/wiki/Riboprobe
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Fluorescein (Figure 8B)   and Biotin labeled nucleotides were also introduced to the market by 

Roche in 1991 (Figure 9B and C). The mixture of nucleotides can be used for indirect and direct 

in situ hybridization  [34, 35].  

There are two types of nonradioactive labeling for in situ hybridization: direct and indirect. In 

the direct method, the detectable molecule is bound directly to reporter nucleic acid, and the 

hybridization of the target with this probe can be visualized immediately after hybridization, 

under the microscope. The fluorochrome labeled RNA probe developed by Bauman et al in 1980  

[36], and the direct enzyme labeled nucleic acids described by Renz and Kurz in 1984 [37]. If 

antibodies against labeled nucleotides are available, the direct method can converted to the 

indirect method (see Hopman et al. 1986) [38].  

 

3.2.3  Staining: 

 

In this method, the reporter molecule should be accessible for the antibody and should not 

participate in any other reactions during the different steps of the method. Using Anti-DIG or 

fluorescein conjugated with alkaline phosphatase was developed by Roche. This staining is 

based on precipitation of soluble and colorless molecules during the interaction with an enzyme 

(mostly Alkaline phosphatase), perecipitated molecules accumulate in the cells and producing 

colour in the place of hybridized RNAs. As long as the enzyme is active and interacts with the 

substrate, the staining will be continue and get stronger, using this method for low expressed 

genes is profitable and staining can be amplify by enzyme substrate reaction prolonging. In this 

study two different NBT(Nitro blue tetrazolium chloride yellowish, soluble) /BCIP (5-Bromo-4-

chloro-3-indolyl phosphate  colorless, soluble)  for violet staining and (Figure 10) INT(2-[4-

iodophenyl]-3[4-nitrophenyl]-5phenyl-tetrazolium chloride)/BCIP for yellow staining were used  

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAlkaline_phosphatase&ei=Dx7_U7HrNsaJOMnXgcAE&usg=AFQjCNGeNAJCmMZaehbL6EkFwQ2Skq1ScA&bvm=bv.74035653,d.ZWU
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAlkaline_phosphatase&ei=Dx7_U7HrNsaJOMnXgcAE&usg=AFQjCNGeNAJCmMZaehbL6EkFwQ2Skq1ScA&bvm=bv.74035653,d.ZWU
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAlkaline_phosphatase&ei=Dx7_U7HrNsaJOMnXgcAE&usg=AFQjCNGeNAJCmMZaehbL6EkFwQ2Skq1ScA&bvm=bv.74035653,d.ZWU
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAlkaline_phosphatase&ei=Dx7_U7HrNsaJOMnXgcAE&usg=AFQjCNGeNAJCmMZaehbL6EkFwQ2Skq1ScA&bvm=bv.74035653,d.ZWU
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAlkaline_phosphatase&ei=Dx7_U7HrNsaJOMnXgcAE&usg=AFQjCNGeNAJCmMZaehbL6EkFwQ2Skq1ScA&bvm=bv.74035653,d.ZWU
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAlkaline_phosphatase&ei=Dx7_U7HrNsaJOMnXgcAE&usg=AFQjCNGeNAJCmMZaehbL6EkFwQ2Skq1ScA&bvm=bv.74035653,d.ZWU
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Figure 10: The chemical reactions between alkaline phosphatase as an enzyme and BCIP as the 

substrate, at the end the violet color is emerged     

 

Figure 11: The chemical reactions between alkaline phosphatase as an enzyme and BCIP as the    

substrate, at the end the orange color is emerged     
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(Figure 11). In both staining BCIP is the alkaline phosphatase substrate, removing one phosphate group 

from BCIP induce it to interact with NBT or INT in the solution and new molecules forms new molecules 

which are not soluble anymore .                             

3.2.4  Probes (cRNA) preparation:                                                                                                                                      

The first step of in situ hybridization is probe preparation. Normally, the researcher spends a 

great deal of time on this complicated procedure. Classic primer design and a standard PCR set-

up for DNA amplification should be the first step. Following this, PCR products should run on 

an agar gel and DNA fragments be extracted from it. During this process, DNA fragments will 

be purified and prepared for vector insertion. In the next step, choosing the right vector and 

restriction enzymes are important (vectors should have one RNA polymerase sequence upstream 

or downstream from the insertion site). Following this step, the amplified DNA should be 

inserted in the vector which designed to amplify in bacteria, this process is referred to as 

“bacterial transformation” and is generally done by using Escherichia coli (E. coli). Vectors 

should have another important characteristic: they should contain the antibiotic resistant gene, 

such that only the colonies that pass transformation completely can grow on the agar plate. These 

colonies should be selected and cultured to amplify the vector and the DNA fragment inside it. 

After DNA extraction from the cultured colony, sequencing the DNA is necessary. If the DNA 

sequencing shows the vector contains a DNA fragment and it is in right direction for 

transcription, the transformed colony can be used and should be cultured in a bigger volume of 

media. At this step DNA extraction and purification should be done for transformed colonies in 

the culture. Purified vectors extracted from these colonies have to treat with a pair of restriction 

enzymes in order to separate target DNA from the vector. Restriction enzymes should cut and 

aim at RNA polymerase upstream and downstream from the inserted DNA fragment. The whole 

digested DNA mixture should then be separated by running it on an agar gel. Extraction and 
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subsequent purification of these fragments are the final steps in DNA preparation. These DNA 

fragments can then be used for antisense RNA (cRNA) synthesis.  

3.2.5  New Method: 

Unnecessary steps for cRNA preparation were made in situ hybridization as a complicated 

method for gene expressions study and synthesis a variety of antisense RNAs in a short period of 

time was not possible. Unnecessary steps for cRNA preparation made in situ hybridization a 

complicated method for gene expressions study, and synthesis a variety of antisense RNAs in a 

short period of time was not possible. Skipping many unnecessary steps for cRNA preparation 

was therefore necessary both to conserve materials, and to save time. In order to reach these 

goals, the new method was designed based on DNA amplification and primer design  [39]. 

                                      Figure 12:  Schematic cRNA labeled  preparation 
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The new method has the sufficient ability for digoxigenin or fluorescein labeled cRNA probes 

preparation  in a few days, it makes in situ hybridization more readily for large scale gene 

expression analysis(Figure12).The protocol is based on two-steps Polymerase chain reaction 

(PCR) amplification and purification. By using extended PCR primers included the RNA-

polymerase promoters, without time consuming for cloning and many purification and gene 

extraction steps, the protocol practically is reviled  the fast method  for any cRNA preparation 

[39].  Hybridized mRNA in tissue cells with antisense labeled cRNAs can be visible after 

precipitate formation (enzymatic reaction between alkaline phosphatase enzyme (conjugated 

with digoxigenin or fluorescein specific antibodies) and its substrate). 

 

3.3  Aim of the study: 

Recovery from acute toxic injury in the liver is a problem many people are daily confronted 

with.  Such damage to hepatocytes can be induced by different molecules and medicines like 

ethanol or Acetaminophen. One of the most frequently used model to study acute liver injury is a 

single injection of CCl4 as a toxic agent in mice or rats. In order to explore liver damage post 

CCL4 injection and to study consequent gene expression patterns in liver cells, in situ 

hybridization was chosen. With this method the local pattern of gene expression in tissue 

samples was analyzed at the single cell level.  

The following questions were addressed in this study:    

1- Are hepatocytes massively dying under conditions of damage?  

2- Which zone in the liver is targeted by CCl4-mediated toxicity?  

3- Is Cyp2e1 the key enzyme that triggers liver damage post CCl4 injection?  
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4- Are the gene expression patterns related to nitrogen and carbohydrate metabolism changes in 

the liver during recovery from injury?   
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4   Materials and methods:          

4.1  Chemicals and reagents:  

Table 2:   

Name Company, Address 

NaOH Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

KCl Sigma-Aldrich Chemie GmbH, Munich, Germany 

KH2PO4 Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

NaCl Applichem GmbH, Ottoweg 4 D-64291  Darmstadt, Germany 

MgCl2 Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

Na2HPO4 Sigma-Aldrich Chemie GmbH, Munich, Germany 

Na2CO3 Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

NaHCO3 Applichem GmbH, Ottoweg 4 D-64291  Darmstadt, Germany 

NaOH Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

H3BO3 Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

CH3COOH Merck, Darmstadt, Germany 

HCl Merck, Darmstadt, Germany 

EDTA Calbiochem, Darmstadt, Germany   

Glutaraldehyde Sigma-Aldrich Chemie GmbH, Munich, Germany 

Sodium Citrate Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

Formamide Carl Roth GmbH + Co Kg, Karlsruhe, Germany 

Ethanol Merck, Darmstadt, Germany 

Xylol Merck, Darmstadt, Germany 

tRNA Sigma-Aldrich Chemie GmbH, Munich, Germany 

Chaps Sigma-Aldrich Chemie GmbH, Munich, Germany 

Tween 20 Carl Roth GmbH + Co Kg, Karlsruhe, Germany  

Phenol Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

Chloroform Sigma-Aldrich, Munich, Germany 
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Name  Company, Address 

Heparin Sigma-Aldrich Chemie GmbH, Munich, Germany 

Isoamylalkohol Sigma-Aldrich, Munich, Germany 

Sodium acetate Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

Glycin Applichem GmbH, Darmstadt, Germany 

Proteinase K Sigma-Aldrich, Munich, Germany 

Penicillin/Streptomycine Biochrom KG, Berlin, Germany 

Paraformaldehyde Sigma Aldrich, Munich, Germany 

Ethidium Bromide Sigma, Munich, Germany 

Agasrose  Agarose Neeo ultra-quality, Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

Boehringer Block Roche/Boehringer, Mannheim, Germany 

Tris-HCl Carl Roth GmbH+Co.KG, Karlsruhe  Germany 

Fat pen Vector Laboratories, Loerrach, Germnay 

Boehringer Block Roche/Boehringer, Mannheim, Germany 

Trypsin gibco by life technologies,Paisley, England 

FCS  Fetal calf serum,Invitrogen, Karlsruhe, Germany 

Goat serum Invitrogen, Karlsruhe, Germany 

Aquatex mounting medium ,Merck, Darmstadt, Germany 

SP6  RNA polymerase 20 U/µl, Fermentas, St. Leon-Rot, Germany 

 T7 RNA polymerase 20 U/µl, Fermentas, St. Leon-Rot, Germany 

Oligo dt primer Fermentas St. Leon-Rot, Germany 

Random Hexamer  Fermentas St. Leon-Rot, Germany 

 Reverse Transcriptase AMV Reverse Transcriptase, Promega, Madison, USA 

DreamTaq 5 u/μl, Fermentas St. Leon-Rot, Germany 

DIG RNA Labeling DIG RNA Labeling mix, 10x conc, Roche, Mannheim, Germany 

Fluorescein RNA Labeling Fluorescein RNA Labeling mix,10x conc, Roche, Mannheim, Germany 

Anti-Digoxigenin-AP Fab Fragments, Roche, Mannheim, Germany 
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Name  Company, Address  

Anti-Fluorescein-AP Fab Fragments, Roche, Mannheim, Germany 

RNA isolation kit NucleoSpin® TriPrep purification system, Macherey-Nagel, Düren, Germany 

DNA extraction kit NucleoSpin® Extract II, Macherey-Nagel, Düren, Germany 

NBT/BCIP Roche/Boehringer, Mannheim, Germany 

INT/BCIP Roche/Boehringer, Mannheim, Germany 

β-Mercaptoethanol Sigma Aldrich, Munich, Germany 

 

4.2 Buffers and reagents: 

Table 3: 

Buffers and reagents  Preparation 

10x PBS dissolve 1.37 M NaCl (80.1 g), 0.027 M  KCl (2.0 g), 0.015 M KH2PO4 (2.0 g), 0.065 M  

Na2HPO4 x 2H2O (11.6 g in) 1000 m Milipore-water l, adjust pH to  7.2-7.4  

5x TBE   54 g Tris, 27.5 g Boric Acid(H3BO3), 20 ml EDTA 0.5M  adjust the PH at 8.3 final 

volume with  Milipore-water 500ml. 

Buffers and reagents  Preparation 

0.5x TBE   dilute50 ml 5x TBE buffer in 950 ml Milipore-water 

1x TAE   dilute 20 ml 50x TAE buffer in 980 ml Milipore-water 

Sodium acetate 3M 246 gram of  Sodium acetate dissolve in 1L of Milipore-water 

0.2% Glycin,   dissolve 0.4 g Glycin in 200 ml 1x PBS. 

Proteinase K Dissolve 100mg of Proteinase K in 10ml  1xPBS (10mg/ml) 

Penicillin/Streptomycine Stock solution 10000 U/ml, dilute  with DMEM, working solution 100 U/ml 

Ethidium Bromide  Dissolve  30mg of  Ethidium Bromide in 10ml  Milipore-water 

Agarose gel dissolve Agasrose Neo Ultra Qualität 1.0 g in 100ml 0.5x TBE buffer (or 100 ml 1x TAE 

buffer) in the microwave for 5min, add 10 µl Ethidium Bromide solution 3 mg/ml 

2N NaOH Dissolve 4 gram in 50 ml Milipore-water 

4% PFA heat 150 ml Milipore-water to 60°C. Add 8 g PFA (Paraformaldehyde), 1 ml 2N NaOH 

and 20 ml 10x PBS. Wait till the solution is clear, and adjust the pH to 7.4 with 30% HCl 

(ca. 161 µl). Fill up to 200 ml with Milipore-water and let it cool down. 

4% PFA + 0.2% Glutaraldehyde  dilute 0.8 ml Glutaraldehyde in 200 ml 4% PFA  

1x PBS+Tween add 1ml Tween20 to 1 ml 1x PBS 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Boron
http://en.wikipedia.org/wiki/Boron
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Buffers and reagents  Preparation 

B-Block dissolve 2 g Boehringer Block  in 90 ml 1x PBS +Tween in a water bath at 65°C. After 

cooling add 10 ml goat serum. Aliquots are stored at -20°C. 

20x SSC 87.65 g of NaCl and 44.1 g of sodium citrate were dissolved in 400 ml distilled water. 

(pH 4.5) adjusted to 500 ml with Milipore-water. 

2x SSC add 20 ml 20x SSC pH 4.5 to 180 ml Milipore-water. 

50% Formamid/2x SSC mix 40 ml 20x SSC pH 4.5 with 200 ml 100% Formamide, then add Milipore-water to 

400 ml. 

0.5 M EDTA pH 8.0 Dissolve 18,6 gram in 100ml Milipore-water 

10% CHAPS Dissolve 10 gram in 100ml Milipore-water 

Heparin (50 mg/ml) Dissolve 50mg in 1 ml Milipore-water 

tRNA (50 mg/ml) Dissolve 50mg in 1ml Milipore-water 

1mM  EDTA dilute 0.372 g EDTA in 1000ml Milipore-water 

HYBmix  mix 25 ml Formamide, 12.5 ml 20x SSC pH 4.5, 500 mg Boehringer Block and 10 ml 

Milipore-water in a water bath at 65°C, add 500 µl 0.5 M EDTA pH 8.0, 50 µl Tween20, 

500 µl 10% CHAPS, 20 µl Heparin (50 mg/ml) and 1 ml tRNA (50 mg/ml)  

Tris-HCl pH 9.5   1M Dissolve 60,5 gram in 500 ml Milipore-water, adjust pH at 9,5 

NaCl                      5M Dissolve 29,25 gram in 100 ml Milipore-water 

MgCl2                             1M Dissolve 40,66 gram in 200 ml Milipore-water 

NTM pH9.5 mix 20 ml 1 M Tris-HCl pH 9.5, 4 ml 5 M NaCl with 10 ml 1 M MgCl2 and add 

Milipore-water to 200 ml. 

NBT/BCIP  Dissolve 20μl of stock solution  in 980μl NTM pH9.5 

INT/BCIP Dissolve 7,5μl of stock solution  in 980μl NTM pH9.5 

 

 

 

4.3  Primers and sequences    

 

4.3.1  Mouse Primers for In situ hybridization: 
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Table 4: 

Mouse Genes  NCBI Reference  
 

Primers 

Albumin (S.Albu) NM_009654.3 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGCTGTATCCCTGTTGCTGAGACTTGC 

R CAGTGAATTGTAATACGACTCACTATAGGGAGAGTGCTTTCTGGGTGTAGCGAACTAG 

Albumin (L.Albu) NM_009654.3 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGCCTGCAACACAAAGATGACAACCCC 

R CAGTGAATTGTAATACGACTCACTATAGGGAGAGGGATCCACTACAGCACTTGGTAAC 

Arginase (Arg1) NM_007482.3 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGGAGCTCCAAGCCAAAGTCCTTAGAG 

R CAGTGAATTGTAATACGACTCACTATAGGGAGACGAAGCAAGCCAAGGTTAAAGCCAC 

Glutaminase 2  (Gls2) NM_001033264.3 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGCTTAGGCACTGACTACGTGCACAAG 

R CAGTGAATTGTAATACGACTCACTATAGGGAGACCGAGACATCTCCACTATATGCAGC 

Glutamine synthetase NM_008131.3 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGCTCCATCCTGTTGCCATGTTTCGAG 

R CAGTGAATTGTAATACGACTCACTATAGGGAGAGAGAGGGATCACTGGAAGTCTAGTC 

Glucose-6-phosphatase 

(G6pc) 

NM_008061.3 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGCCCATCCCAGGTTGAGTTGATCTTC 

R CAGTGAATTGTAATACGACTCACTATAGGGAGAGAGAGAAGAATCCTGGGTCTCCTTG 

Glycogen synthase 2 (Gys2) NM_145572.2 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGCTGGGTTCATGTGACCTCAGATTGC 

R CAGTGAATTGTAATACGACTCACTATAGGGAGACCTCGATGGCTGTGATTTCTGACAC 

Gapdh NM_008084.2 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGGAGTATGTCGTGGAGTCTACTGGTG 

R CAGTGAATTGTAATACGACTCACTATAGGGAGAGGTTTCTTACTCCTTGGAGGCCATG 

Cytochrome P450 (Cyp2e1) NM_021282.2      F CAGTGAATTGATTTAGGTGACACTATAGAAGTGCAAGGAGGTGCTACTGAACCACAAG 

R CAGTGAATTGTAATACGACTCACTATAGGGAGAGATGACATATCCTCGGAACACGGTG 

aSMA NM_007392.2       F CAGTGAATTGATTTAGGTGACACTATAGAAGTGGAAGAGCATCCGACACTGCTGACAG 

R CAGTGAATTGTAATACGACTCACTATAGGGAGACAGTTGTGTGCTAGAGGCAGAGCAG 

Gss NM_008180.1 F    CAGTGAATTGATTTAGGTGACACTATAGAAGTGCTTCCTGGAGCAAACACTGTCTAGC 

R    CAGTGAATTGTAATACGACTCACTATAGGGAGACTCCAGAGCTTGTACCATTTCCTCC 

Gpx4 NM_008162.2 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGGCTTACTTAAGCCAGCACTGCTGTG  

R CAGTGAATTGTAATACGACTCACTATAGGGAGAGCTGGTTTTCAGGCAGACCTTCATG 

 

4.3.2  Human Primers for In situ hybridization: 

Table 5: 

 

Human  Genes  NCBI Reference  

 

Primers 

Albumin NM_000477.5 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGGGTGAGACCAGAGGTTGATGTGATG 

R CAGTGAATTGTAATACGACTCACTATAGGGAGACACACATAACTGGTTCAGGACCACG 

Alpha-Fetoprotein (AFP) NM_001134.2 F CAGTGAATTGATTTAGGTGACACTATAGAAGTGGAGATAGCAAGAAGGCATCCCTTCC  

R CAGTGAATTGTAATACGACTCACTATAGGGAGAGGGGGCTTTCTTTGTGTAAGCAACG 

 

4.3.3 QRT-PCR primers 

Table 6: 

 

Gene 5’ Primer 3’ Primer 

Alb GTCTTAGTGAGGTGGAGCATGACAC GCAAGTCTCAGCAACAGGGATACAG 

Arg1 GGAGGCCTATCTTACAGAGAAGGTC CGAAGCAAGCCAAGGTTAAAGCCAC 

Gys2 CCTCGATGGCTGTGATTTCTGACAC CTTGGGCGTTATCTCTGTGCAGCAA 

Gcgr CACAGTGATCATGCAGTACGGCATC CAAACAGACACTTGACCACCACCCA 

Gapdh CTTCAACAGCAACTCCCACTCTTCC GGTTTCTTACTCCTTGGAGGCCATG 

Gls2 CTTCTGCCAGAAGTTGGTGTCTCTC CCGAGACATCTCCACTATATGCAGC 

Gs GCCAGGAGAAGAAGGGCTACTTTGA GAGAGGGATCACTGGAAGTCTAGTC 

G6pc TCCTCCTCAGCCTATGTCTGCATTC GAGAGAAGAATCCTGGGTCTCCTTG 

Cyp2e1 CACCGTGTTCCGAGGATATGTCATC ACACACGCGCTTTCCTGCAGAAAAC                    
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4.4  Total RNA isolation: 

 

Total RNA was isolated from C57BL/6 mouse liver or HepGII cells using Total RNA isolation  

(Macherey-Nagel, Germany), for tissue RNA extraction, 30 mg of liver was cut from mouse 

liver and disrrupted in a tube and hemogenized it with l of buffer Rl β-

Mercaptoethanol), for cell line RNA extraction, 5x10
6  

cells  counted from culture and lysed with 

l of buffer Rl β-Mercaptoethanol). After mixing and complete homogenizing, the 

lysates were filtered through NucleoSpin (violet ring), it placed in a collection tube and 

centrifuged for 1 min at 11000 rpm. 

Flow-throughs were collected in new 1.5 ml microcentrifuge tubes  and 350l  EtOH(70%) were 

added to all filtered cell or tissue lysates. For RNA isolation, NucleoSpin® RNAII columns 

(light blue ring) were placed in a collection tubes and lysates loaded to the columns. Columns 

were centriguged for 30sec at 11000 rpm at this step total RNA were binded to the memberane.  

l of MDB  buffer were added to membrane (desalting memberane) and centrifuge columns 

at 11000 rpm for 30 sec. 

l Dnase reaction mixture (10l of reconstitute rDNase +  l reaction buffer) was added 

directly to the membrane and columns were incubated at RT for 15min. Digested DNAs were 

removed by adding l of RA2 buffer to columns (centrifuged at 11000 rpm for 30sec), and 

RNAs were washed by adding l of RA3 2 times (centrifuged at 11000 rpm for 30sec), 

membranes were dried at high speed centrifugation for 4 min, columns placed in new collection 

tubes and total RNAs were eluted from columns by adding l Rnase free water. Total RNAs 

were collected with high speed spinning down. Total RNA concentrations were mesured by 

using Thermo scientific NANODROP 2000. 
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4.5  PCR Clean-up gel extraction: 

 

The position of PCR products were excised from the 1% agarose gel (without ethidium 

bromide), for  

each 100mg of agaroase gel l NTI buffer was added and incubated at 50°C for 10min(till 

gell completely dissolve in the buffer),  NucleoSpin® Gel and PCR Clean-up Column were 

placed into a collection tube, samples loaded and centrifuges them at 11000 rpm (DNA binding), 

membrane were washed with l NT3 buffer and dried at high speed centrifugation. DNAs 

were eluted by adding l pure water and their concentration were mesured with Thermo 

scientific NANODROP 2000.    

 

4.6  Cell lines: 

10
6 

HepG2 cells (Hepatocellular carcinoma cell line) were suspended in 15ml media (DMEM 

with penicillin/streptomycin and 10% (v/v) FCS L-glutamine and penicillin/Streptomycin) and 

seeded in medium size flasks. Flasks were incubated in a standard tissue culture incubator at 

37°C, 5% CO2, and 95% humidity  until 80–90% confluence(48h) were  reached (10
7
 cells). 

Cells were trypsinized and suspended in 10ml DMEM, after counting cells, the suspension 

centrifuged at 1000 rpm for 3min. The supernatant was removed and the pellet was resuspend 

with cold PBS to reach a final  5 x10
6
/ml cell density, they were centrifuged at 1000 rpm for 

3min and the lysate buffer was added to the pallet (the procedure was continued as mentioned for 

total RNA isolation.  

 

4.7 RNA isolation from tissue: 
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RNA was isolated from C57BL/6 mouse liver and HepG2 cells using NucleoSpin® Total RNA  

isolation (Macherey-Nagel, Germany) as mentioned before,  measured for total RNA 

concentration and used for cDNA synthesizes. 

  

4.8  First cDNA synthesis: 

 

First-strand cDNA was synthesized with 3μg total RNA using 1μl random hexamer primers and 

1μl Oligo-dt primers (Fermentas) final volume 15μl with milipore-water in microptube. The 

mixture incubated for 5 min at 70°C and placed on ice after, 2μl dNTPs, 2μl AMV Reverse 

Transcriptase, 5μl 5x buffer (Promega, Madison) and 1μl RNase inhibitor were added when it 

completely cold(with the final 25μl volume). Microtubes were incubated at 42°C for 2h. 

 

4.9  Primer Design:  

 

“The key element in the protocol is primer design with additional RNA polymerase promoters 

which during PCR cycles are added in the template (Figure 13).The designed primers contained 

a short terminal 5’ sequence followed by SP6 or T7-RNA-polymerase promoter sequences and 

target DNA specific primer sequences and sense and antisense cRNA probes can transcribed 

from the same amplified target DNA (PCR product) . To make it easy for sense and antisense 

RNA synthesis the SP6 promoter was combined with the upstream gene specific primer and the 

T7 promoter with the downstream primer, then using T7-RNA-polymerase with amplified target 

DNA generates  antisense cRNA probes, while in vitro transcription by SP6-RNA-polymerase 

yielded sense cRNA probes. Primers were designed (listed in Fig13, tables 4 & 5) to synthesize 

cRNA probes against mouse albumin (LA-1202nt corresponding to nucleotide 423 to 1559 and 

SA-288nt corresponding to nucleotide 1143 to 1364 NM_009654.3), human albumin (Alb-
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1108nt, nucleotide 490 to 1531 NM_000477.5 ) and human AFP mRNA (AFP-894nt, nucleotide 

540 to 1367 NM_001134.1 ). 

 

 

 

Figure13:  Template cDNA synthesis by PCR (modified from Ghafoory et al 2012) 

 

Template DNAs for ISH probes were prepared through two PCR amplification steps using SP6 

or T7-RNA-polymerase promoter containing primers.  

 

4.10  Template cDNA synthesis by PCR: 
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PCR templates were performed as follows: 1μg cDNA, 1μl dNTPs 10 mM, 0.5μl of DreamTaq 5 

u/μl (Fermentas), 0.5μl upstream (Sp6) primer and 0.5μl downstream (T7) primer (each 100 

pmol/μl) in a total volume of 50µl were used for the first PCR reaction. Primers detailed in figure 

1 were used to synthesize mouse albumin (LA-1202nt, SA-288nt), human albumin (Alb-1108nt) 

and human AFP (AFP-894nt) cDNA fragments. Amplifications were performed with 2 min at 

95°C, followed by 30 cycles with 30sec at 95°C, 2min at 60°C and 1min at 72°C.  

Following PCR, complete samples were run on 1% agarose gel without ethidium bromide with a 

small aliquot of the reaction in a separate lane. This lane together with size standard was cut 

from the gel and stained to visualize PCR reaction products. The position of the PCR fragment in 

ethidium bromide stained lane was measured with a ruler and used to define the position of the 

corresponding non-stained gene specific cDNA PCR fragments. These were excised from the gel 

and extracted with DNA extraction kit (NucleoSpin® Extract II, Macherey-Nagel, Germany) as 

mentioned before. The remaining gel may be stained to ensure that the band was excised 

properly.  

 

4.11  Second round of PCR amplification: 

 

Purified PCR fragments were then used for a second round of PCR amplification in larger 

volume (e.g. 400μl) scaled up from the above protocol in parallel 50µl PCR reactions. The 

resulting template PCR fragments were purified and concentrated by phenol-chloroform 

extraction and ethanol precipitation. Concentrated PCR fragments were again purified using 

agarose (1%) gel electrophoreses and PCR fragments excision (without UV exposure) and 

recovered with DNA extraction kit (NucleoSpin® Extract II). Purified PCR fragments were used 

directly for in vitro transcription of cRNA probes. 
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4.12  Phenol-chloroform extraction and ethanol precipitation: 

 

l of each PCR sample directly added to 2l Phenol, 192l of chloroform and 8l of 

isoamylalkohol added to the mixture and mixed it completely, spin it for 20min ( 4°C) at 11000 

rpm.The upper phase (contains cDNA) was collected  in a new microtube . 400l of chloroform 

was added to the collected sample and mixed well, mixtures was spined for 20min at 11000 rpm. 

The upper phase was collected and mixed with 40l sodium acetate 3M, 3l glycogen, 1200l of 

pure EtOH and incubated at RT for 20min. 

The mixture spined at high speed for 10min and the white pallet washed with %70 Ethanol. 

Washed pallet dried at RT and was dissolved completely in 50l of Milipore-water. Following 

this step concentrated PCR fragments were again purified using agarose (1%) gel 

electrophoreses and PCR fragments excision (without UV exposure) and recovered with DNA 

extraction kit (NucleoSpin® Extract II). Purified PCR fragments were used directly for in vitro 

transcription of cRNA probes. 

 

 

4.13  ISH riboprobe synthesis: 

 

Digoxigenin (DIG) or Fluorescin labeled cRNAs were synthesized using 1μg of purified PCR 

fragments (template DNA), 1µl DIG or Fluorescin 10x nucleotide mix (Roche, Mannheim), 1µl 

SP6 or T7 RNA polymerase (20 u/µl, Fermentas) in 10µl total volume. SP6 RNA polymerase 

was used for sense labeled cRNA preparation and T7 RNA polymerase for antisense labeled 

cRNA preparation. The labeled cRNA probes were precipitated with absolute ethanol and the 

pellet was dissolved in 50% Formamide/ 2x SSC. Probes which were later hydrolyzed in order to 

modulate fragment length were dissolved in RNase free water. 

http://www.google.de/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CDMQFjAA&url=http%3A%2F%2Fde.wikipedia.org%2Fwiki%2FEthanol&ei=3A97U92IIPLG7AbFi4DQBA&usg=AFQjCNGYSxe6j1TBCVKsoSrkhPSiPyAwvw&bvm=bv.67229260,d.bGQ
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4.14  Regulation of RNA probe length by alkaline hydrolysis: 

 

Probe fragment length can be adjusted by alkaline hydrolysis to obtain smaller cRNA fragments 

(e.g. 200nt) which may penetrate tissue more efficiently  [40]. 

1μg of the long cRNA probe (LA-1202nt) was dissolved in RNase free water to obtain a final 

volume of 50μl and was hydrolyzed by adding 30μl of Na2CO3 200 mM, 20μl of NaHCO3 200 

mM and incubated for 37 min at 60°C [40]. The appropriate size distribution was controlled by 

gel electrophoresis. 

 

4.15  Animal experiments: 

4.15.1  Mouse treatment and  liver resection: 

 

CCl4 injection in mice was regarded as a widely accepted model to study liver injuries and/or 

liver regeneration in vivo. 28 male (8-week-old) Balb/c mice weighing 20–25g were used. Acute 

liver injury was induced by intraperitoneal injection of CCl4 mixed with mineral oil 1:8 (1ml ⁄kg 

body weight). All animals received humane care and all animal protocols were in full 

compliance with the guidelines for animal care and were approved by the government of Baden-

Württemberg’s Animal Care Committee, Regierungspräsidium Karlsruhe, Germany. Mice were 

sacrificed at 3 h, 6 h, day 1, day 2, day 3, and day 6 post injection and livers were used for in situ 

hybridization, immunohistochemistry and total RNA isolation. A portion of liver samples were 

fixed in 4% buffered paraformaldehyde for histological examination and immunostaining.  The 

left were snap frozen in liquid nitrogen. 4 - 6 mice were used for every time point. 
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4.15.2  Mouse liver paraffin embedded  block preparation: 

  

Pieces of removed mouse liver tissues were rapidly rinsed in PBS and fixed with 4% PFA at 4°C 

overnight. Fixed tissue was washed with PBS (60min at RT) and dehydrated with 50%, 70%, 

80%, 96% and pure EtOH (each of them 60min at RT). Dehydrated tissues were immersed in 

Aceton/EtOH (1:1) 90min RT and pure Aceton 60min RT, prepared tissues were embedded with 

prewarmed paraffin (62°C) for 3h, and cooled in tissue cassettes at room temperature. 

 

4.16   Human liver Paraffin embedded tissue preparation: 

   

Human liver paraffin-blocks were prepared from HCC patients at the Department of Laboratory 

Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 

Shanghai, China. The study protocol conformed to the ethical guidelines of the Declaration of 

Helsinki (1975). The study was approved by the ethics committee of the Second Military 

Medical University, Shanghai, China. All patients provided an informed consent before the 

study. 

 

4.17  Section preparation: 

 

Sections were cut at a thickness of 4 μm (with microtom) and placed on poly-L-Lysine-covered 

slides. Paraffin sections were deparaffinized with pure xylene 3 × 7min, xylene/ethanol(1:1)  2 

min and  rehydrated  in EtOH decreasing concentration  2 × 2 min pure EtOH  and 96%, 90%, 

70%, 50% (each of them 1 min) followed by PBS (5min). Sections were then incubated with 20 
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μl/ml proteinase K for 8 min at 37°C, with 0.2% glycin for 6 min and post-fixed with 4% PFA 

supplemented with 0.2% glutaraldehyde for 20 min. 

 

4.18  In situ Hybridization (ISH): 

 

After ‘post-fixation’ in 4% PFA-glutaraldehyde, slides were washed with PBS and sections were 

encircled with a fat pen (ImmEdge, Vector Laboratories). Mouse liver sections were covered 

with hybridization mix (5ml Formamid, 2.5ml 20x SSC, pH 4.5, 100mg Boehringer Block, 2ml 

Milipore-Water, 100μl 0.5 M EDTA, pH 8.0, 100μl Tween 20 (10%), 100μl 10% CHAPS, 4μl 

Heparin (50 mg/ml), 200μl tRNA (50 mg/ml)) and prehybridized for 1h at 69°C. The 

hybridization mix was denatured at 95°C for 5 min and chilled on ice immediately before it was 

added to tissue sections. After prehybridization, specific probes were added to 200-300μl 

hybridization mix in order to obtain a final concentration of 2 ng/μl. The probe containing 

hybridization mix was denatured at 95°C for 5 min and chilled on ice. For hybridization the 

hybridization mix was added to tissue sections and sections were incubated O/N at 70°C. 

Subsequently, tissue sections were washed with 2x SSC, incubated with 50% Formamide/ 2x 

SSC 30 min at 65°C, and washed with PBS containing 0.1% Tween at RT. The sections were 

then incubated for 1h at 37°C with 1% blocking reagent (Roche, Mannheim) in PBS (B-Block) 

and 2h at 37°C with alkaline phosphatase-coupled anti-digoxigenin antibody (Roche, 

Mannheim) diluted 1:1,000 in B-Block. Excess antibody was removed by washing for 8 min 

twice with PBS containing 0.1% Tween, then sections were equilibrated for 10 min in NTM 

Buffer (Tris-HCl 100mM, NaCl 100mM, and MgCl2 50mM, pH 9.5). Color development was 

performed at 37°C O/N in NTM buffer containing NBT/BCIP 20μl/ml (Roche, Mannheim). 

Staining was stopped washing twice with PBS.  
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For double staining, slices were again fixed 10 min at RT with 4% PFA/PBS. Tissue sections 

were washed with PBS containing 0.1% tween 3 times and then incubated for 1h at 37°C with 

1% blocking reagent and 2h at 37°C with alkaline phosphatase-coupled anti-Fluorescein 

antibody (Roche, Mannheim) diluted 1:1,000 in B-Block. Excess antibody was removed by 

washing 3 times 15 min with PBS containing 0.1% Tween, then sections were equilibrated 10 

min in NTM Buffer. Color development was performed at 37°C O/N in NTM buffer containing 

INT/BCIP 7.5μl/ml (Roche, Mannheim). Staining was stopped washing twice with PBS. Tissue 

sections were analyzed and recorded using a digital microscope (Biozero 8000, KEYENCE). 

 

4.19  Immunohistochemistry (done by Qi Li): 

4.19.1  Deparaffinization: 

Immunohistochemistry for alpha-smooth muscle actin (aSma) was performed on paraffin 

embedded mouse liver tissue sections following standard protocols, first deparaffinization was 

done by incubating tissue sections at 60° C for 60 min.  They were dewaxed with xylene for 5 

min 3 times. Sections were dehydrated  through descending ethanol: 100% ethanol for 5 min 

twice and 95%, 70% and 50%ethanol for 5 min once, at the end sections were incubated in 

distilled water 1 × 5 min, followed by being rinsed in PBS 1 × 5 min. 

Antigen demaskingwas done for sections using microwave, they were heated up to 95° C ( 2 - 3 

min 200 W) in 10 mM EDTA pH 8, then 50 sec-off-10 sec-on of the microwave were performed 

for 10 min. Then sections were cooled for 35 - 40 min to reach a temperature of 37° C and 

washed with PBS 3 × 5min.Tissues were covered with some drops of Dual Endogenous enzyme 

block in a humid atmosphere for 15 min in order to endogenous peroxidase blocking(DAKO, 

Glostrup, Denmark). Signal was visualized using 3,3’- diaminobenzidine (DAB) staining.   After 

sections were washed with PBS 3 × 5min, they were incubated with the diluted α-SMA antibody 
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(DAKO, Glostrup, Denmark) at 4° C overnight. Afterwards, they were re-warmed at room 

temperature for 1 hour and washed with PBS 3 × 5 min before incubation with secondary goat 

anti-mouse antibody (DAKO, Glostrup, Denmark).  

4.19.2  Preparation and application of peroxidase substrate DAB: 

1 tablet of DAB was dissolved in 15 ml 0.05 M Tris (hydroxymethyl) aminomethane, pH 7.6 

(keep in dark) which was filtered with filter paper. 12 µl H2O2 was added to the filtrate. Sections 

were washed with PBS 3 × 5 min and covered with 200 µl of the substrate. The color 

development was observed under the microscope (maximally incubation time: 10 min) and the 

reaction was stopped by immersing the sections in distilled water for 5 min. 

4.19.3  Counterstaining, clearing and mounting: 

Sections were immersed in Mayers Hämalaun solution for several seconds and then rinsed with 

water for 10 min, followed by being dehydrated through ascending ethanol: 95% ethanol  2 × 10 

sec and 100% ethanol  2 × 10 sec. Clearing was performed in xylene 2 × 10 sec. Finally sections 

were mounted with malin oil and covered with glass. 

4.20  Quantitative real time reverse transcription PCR: 

775 ng of total RNA isolated from C57BL⁄6 mouse liver was reverse transcribed using Roche 

first strand cDNA synthesis kit with Oligo dT primers. Quantitative real-time PCR was 

performed on a LightCycler® 480 (Roche Applied Science) using 2 µl cDNA (1:10 dilution of 

transcribed cDNA), LightCycler® 480 SYBR Green I master mix (Roche) and respective PCR 

primers. Primer pairs used for qRT-PCR are listed in following Table 2.  

qPCR was performed using the following protocol: 1 cycle pre-incubation: 5 min at 95°C, 

followed by 40 amplification cycles: 10s at 95°C, 10s at 60°C 20s at 72°C. For all samples a 
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melting curve analysis was performed in order to monitor the generation of expected unique 

PCR products. 

For statistical analysis, relative expression (RE) levels were calculated with the function (RE = 

2-ΔΔCt), where ΔΔCt is the normalized difference in threshold cycle (Ct) number between the 

control sample and the CCl4- treated sample. Each Ct value was calculated from triplicate 

replicates of any given condition. All samples were normalized to the corresponding expression 

level of albumin. The mean of relative expression levels were calculated from the individual RE 

values from 2 independent experiments, and the standard error of the mean (SEM) was 

calculated from the standard deviation. In order to evaluate the statistical significance the 

Student’s T-test was employed, comparing control sample to CCl4- treated samples.  
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5  Results: 

5.1  Primer design: 

Primer design is the most important step in our protocol (Fig.13). In addition to gene specific 

sequences, an SP6 RNA polymerase promoter sequence was included in the upstream and a T7 

RNA polymerase sequence in the downstream primer. Thus, templates for in vitro transcription 

were directly generated by PCR and antisense cRNA probes were synthesized using T7-RNA-

polymerase, while in vitro transcription by SP6-RNA-polymerase yielded sense cRNA probes 

[39]. To test this method, the PCR primers listed in figure 13 and tables 4&5 were designed. 

These primers were used to prepare mouse albumin sense and antisense cRNAs [Long 

Albumin(LA)-1202nt corresponding to nucleotides 423 to 1559, and SA288nt corresponding to 

nucleotide 1143 to 1364 NM_009654.3], human albumin antisense cRNA (Alb-1108ntnucleotide 

490 to 1531 NM_000477.5), and human AFP antisense cRNA (AFP-894nt, nucleotide 540 to 

1367 NM_001134.1) [39]. 

5.2  Template synthesis, first PCR: 

 

Template cDNAs for ISH probes were prepared through two PCR amplification steps using SP6 

or T7-RNA-polymerase promoter containing primers. PCR templates were performed as 

mentioned in the materials and methods section. Primers detailed in Figure13 were used to 

synthesize and amplify mouse albumin (LA-1202nt, SA-288nt), human albumin (Alb-1108nt), 

and human AFP (AFP-894nt) cDNA fragments by using the PCR method (Figure 14). 

Components which participated in the PCR reaction are explained schematically in Figure 14A. 

The first cycle of the PCR reaction begins with DNA denaturation at 95°C (DNA melting). 

Reaction then continues with the cooling down of the system to an annealing temperature (60-

65°C). At this temperature, primers (that are complementary to the 3' ends of each of the 

http://en.wikipedia.org/wiki/Complementarity_(molecular_biology)
http://en.wikipedia.org/wiki/Directionality_(molecular_biology)
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Figure 14: Schematically explanation for producing target DNA with two additional RNA 

polymerase promoter by PCR amplification 
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sense and anti-sense strands of the target DNA) can bind to their target sequences. After this 

step, the system is reheated to the elongation temperature (72°C). At this temperature, tag DNA 

polymerase enzymatically assembles and synthesizes a new  single strand DNA complementary 

to the DNA strand by adding dNTPs (1000nt per min) in a 5' to 3' (condensing the 5'-phosphate 

group of the dNTPs with the 3'-hydroxyl group at the end of the nascent DNA strand) direction  

[41] (Figure 14B). At the end of the first cycle, all of the synthetized DNA molecules have at 

least one SP6 or T7 RNA polymerase promoter in their upstream side (Figure 14B). In the 

second round of PCR, new cDNA templates with new extra sequences use DNA as a template 

and, at the end of this cycle, most of the copied DNA has both promoters (Figure 14D). By the 

end of the third cycle, both promoters are included in the cDNA sequences (Figure 14F). By 

increasing PCR cycles, the number of cDNA fragments with two promoters is increased 

exponentially and, at the end, dominant cDNA copies have both promoters. 

5.3  The Important method problem: 

The interaction between two primers during the PCR procedure is a major drawback to this 

method, since it can lead to primer dimer formation. These cDNA fragments are smaller and, by 

increasing primer size, amplify faster than the PCR target product. Therefore, the chance of 

unwanted binding between two primers increases (Figure 15). In the method previously 

explained, these cDNA fragments have both RNA polymerase promoters. Using target cDNA 

templates contaminated with primer dimers (for in vitro transcription) induces unspecific sense 

or antisense cRNA formation. In the case of using a contaminated cRNA-labelled probes 

mixture, the chance of false positives or strong background result in sections will increase. This 

concentration of byproducts in a PCR reaction is dependent on primer sequences and the original 

cDNA template concentration in the PCR reaction buffer [42, 43]. In order to solve the problem,  

http://en.wikipedia.org/wiki/DNA#Sense_and_antisense
http://en.wikipedia.org/wiki/Phosphate_group
http://en.wikipedia.org/wiki/Phosphate_group
http://en.wikipedia.org/wiki/Hydroxyl_group
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                                       Figure 15: Primer dimers synthesis during first PCR cycle 

 

gel purification was completed after the first PCR amplification and small size DNA fragments 

were separated from the PCR target products (running them through 1% agarose gel, as 

mentioned in the materials and methods section). Introducing purified cDNAs as template DNA 

in the second round of PCR amplification not only increased the amount of cDNA but decreased 

primer dimers formation, as well (Figure 16). Long and short albumin cDNAs in the first and 

second round of PCR are compared in Figure 16. It is clear that, in the second round of PCR, 

primer dimers disappeared completely and the amount of target cDNAs increased. To reach the 

highest target cDNA concentration, final PCR products were concentrated using phenol-

chloroform extraction and ethanol precipitation, as well as agarose gel electrophoresis 

purification. Purified DNA (minimal concentration: 200 ng/μl) was then used for labelled cRNA 

synthesis. Both of the PCR fragments shown in Figure 16 have the expected size and comprise 

gene-specific cDNA and RNA polymerase promoter sequences incorporated at both sides of the 
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target DNA fragment. The in vitro transcription for generation of sense or antisense probes 

(depending on the use of SP6 or T7 RNA polymerase, respectively) was completed by using the 

purified DNA fragments [39]. 

                                     

Figure 16:  Comparison between first PCR amplified products A and second PCR amplified 

products B (modified from Ghafoory et al 2012) demonstrating the elimination of primer 

dimers. 

5.4   In vitro cRNA transcription: 

The purified cDNAs are easy to use for mRNA transcription (sense or antisense labelled cRNA 

preparation) and the location and direction of promoters designed by this method allow sense 

and antisense labelled cRNAs from one target DNA fragment to be generated. A mixture of SP6 

or T7 RNA polymerase enzyme, buffer, RNase free water, nucleotides (digoxigenin or  
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Figure 17A: Sense and antisense labelled cRNA preparation from purified cDNA  

 

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17B:   A, in vitro transcribed cRNA probes (long and short mouse albumin); B, alkaline 

hydrolysis: non-hydrolyzed (1202nt) and hydrolyzed (200nt) long mouse albumin probe. (modified 

from Ghafoory et al 2012) 

B A 
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fluorescein labelled UTP with CTP, ATP, and GTP), and the purified cDNA with promoters 

(SP6 and T7 RNA polymerases) were used for in vitro sense or antisense cRNA probe 

generation (Figure 17A), changing UTR labelled nucleotide (digoxigenin or fluorescein) in the 

nucleotide mixture, thus generating different cRNAs labelled for ISH co-staining.The quality of 

mouse albumin (short and long) antisenses are shown in Figure 17A [39]. 

5.5  In situ hybridization of mouse liver sections:  

      

 

Figure 18: In situ hybridization of albumin mRNA in mouse liver sections; Role of the riboprobe 

length for sensitivity. Sections were hybridized with antisense (A) and sense (C) long albumin 

(1202nt) or antisense (B) and sense (D) short albumin cRNA (200nt). Images were captured with 20- 

or 4-fold magnification as indicated. Sensitivity of hydrolyzed and non-hydrolyzed long albumin 

copy RNA (cRNA) was compared; sections were hybridized with non-hydrolyzed (E,I) and 

hydrolyzed (F,J) probes. Hybridization with non-hydrolyzed (G,K) and hydrolyzed (H,L) sense long 

albumin cRNA probe is shown as control   (modified from Ghafoory et al. 2012) 
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The relationship between size and peneteration of probes in to the tissue was studied: after cRNA 

probes were synthesised, mouse albumin cRNA long probe was hydrolyzed into smaller 

fragments (around 200nt) by using alkaline hydrolysis  [40]. The change of fragment size of the 

hydrolyzed cRNA is presented in Figure 17B. Mouse antisense albumin probes (digoxigenin 

labelled) were used for detecting transcribed albumin in paraffin sections of adult mouse livers. 

Microscopic images of in situ hybridization results in liver sections are presented in Figure18. 

Both long (LA-1202nt, Figure 18A) and short (SA-288nt, Figure 18B) DIG-labeled antisense 

cRNAs, as well as albumin mRNA specific hybridization were validated by absence of signals in 

control of consecutive sections hybridized with sense probes (Figure 18C, D). 

 

 

Figure 19: A comparison of staining for different antisense cRNA prepared for in situ hybridization 
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Interestingly, the longer probe had a stronger signal than the short albumin cRNA probe, which 

could provide greater detection sensitivity (Figure 18A, B). Both probes were applied in equally 

large excess during hybridization. Thus, the larger number of incorporated UTR in the longer 

albumin cRNA probe explains the stronger signal obtained with it. In another study, hydrolyzed 

and non-hydrolyzed probes were used for detection of albumin transcripts in consecutive mouse 

liver sections (Figure 18E, F, I, and J)[39]. Comparable signals were observed with both 

hydrolyzed and non-hydrolyzed probes.Sense probe hydrolysis did not increase unspecific 

background staining in the control section (Figure 18G, H, K and L). In an attempt to explain the 

obtained results (albumin in situ hybridization) schematically is shown in Figure 19. Using intact 

antisense cRNA probes (maximum UTP-DIG number) for hybridization, increased anti-DIG 

antibody (conjugated with Alkalin phosphatase) numbers bound to albumin mRNA in the section 

(in comparison to short cRNA probes). Colour intensity is also dependent on the precipitation 

rate of the changed substrate (by enzyme reaction) in the section. Equal intensity staining 

obtained from hydrolyzed antisense albumin cRNA (from different parts of the intact probe) and 

intact long albumin cRNA hybridization in consecutive liver sections revealed that the number of 

UTP-DIG in hydrolyzed and intact albumin cRNAs was almost equal. Small size cRNA, which 

generated from a small part of target cDNA template, has less UTP-DIG than the intact and 

hydrolyzed cRNA. The concomitant section hybridized with short probe (for the same duration) 

has less color intensity than others[39].     

 

5.6  Pathological changes in mouse and human liver sections: 

 

The protocol’s applicability was shown by analysing albumin mRNA expression in human and 

mouse liver hepatocytes. Albumin mRNA expression in mouse liver hepatocytes was studied  
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Figure 20A: Visualization of carbon tetrachloride (CCl4)-mediated mouse liver damage using in situ 

hybridization (ISH) for albumin in paraffin sections (A). Staining for albumin mRNA expression 

revealed progression of damage until day 2 and subsequent recovery to days 3 and 6. (modified from 

Ghafoory et al. 2012) 

during an induced injury by carbon tetrachloride (CCl4) and compared with healthy liver 

hepatocytes [39]. In another experiment, albumin and alpha-fetoprotein (AFP) mRNA 

expression in human hepatocellular carcinoma (HCC) was studied. Sections from different parts 

of the tumor (cancerous and noncancerous areas) that had been hybridized with human albumin 

antisense cRNA (Fluorescein labelled) and human AFP antisense cRNA (DIG labelled) were co-

stained [39]. In the first study, liver damage induced by CCl4 was revealed. In late time points 

post injection, the hepatocytes around the central vein lost albumin expression (albumin staining) 

when compared to the adjacent periportal areas (Figure 20A). The albumin expression was only 

marginally changed after 6 hours, but visible liver damage had occurred on days one and two 

post-CCl4 injection. Albumin expression was also strongly reduced in the pericentral 

hepatocytes. Expansion of the albumin expressing area on day three provided signs of recovery 
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from liver damage. By day six, recovery was completed and albumin expression returned to 

healthy liver expression patterns. 

In the second study, human mRNA specific probes for albumin and AFP (alpha-fetoprotein, a 

major plasma protein produced by the yolk sac and the liver during fetal development, is 

considered the fetal form of serum albumin) were prepared and used in liver sections from HCC 

patients as a marker for HCC progression.  

 

 

 

Figure 20B: Albumin and alfa-fetoprotein (AFP) mRNA expression in paraffin liver sections from 

human hepatocellular carcinoma (HCC) patients (B). Sections were stained with antisense copy 

RNA (cRNA) for albumin or double-stained with antisense cRNAs for both albumin and AFP as 

indicated. Strong AFP expression in cancerous area correlated with high AFP blood levels 

indicated on the right. (modified from Ghafoory et al. 2012) 

Images taken from noncancerous areas showed much more similarity to albumin expression 

patterns in healthy mouse livers. Interestingly, AFP expression was found specifically in 

http://en.wikipedia.org/wiki/Plasma_protein
http://en.wikipedia.org/wiki/Serum_albumin
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cancerous areas. Elevated AFP levels in patient serum directly correlated with increased color 

intensity  in HCC-cells (Figure 20B) [39]. 

5.7  Liver CCl4  damage: 

In the first part of this study, the new method proved its practicality for cRNA preparation in a 

short period of time. In the second part of this study, key enzymes and receptors related to 

neutralization and recovery (Cyp2e1, Glutathione synthetase and Glutathione peroxidase 4), 

ammonia detoxification and urea synthesis (Glutaminase2, Glutamin synthetase, and Arginase1), 

and carbohydrate metabolism (Glycogen synthase2, Glucose-6-phosphatase c, Glucagon 

receptor, and Glyceraldehyde-3-phosphate dehydrogenase) were chosen and antisense cRNAs 

were prepared to visualize gene expression changes during acute liver damage.  

CCl4 mixed with mineral oil (1ml⁄kg body weight) and introduced to mouse livers by 

intraperitoneal injection, induced acute liver damage in two groups of Balb ⁄c mice, with seven 

mice in each group. Mice from each group were sacrificed at different time points (3h, 6h, 1d, 

2d, 3d, and 6d) post injection and their livers compared with healthy livers. The livers were 

removed immediately and divided into two parts. The first part was used in paraffin-embedded 

block preparation (for ISH or IHC staining) and the second part was used for tissue RNA 

extraction. cDNAs were synthesized and quantitative real-time PCR measurements (to compare 

changes in gene expression during CCl4 treatment) were taken [44]. 

Tissue sections from all groups (different time points) were arranged on one slide to ensure equal 

conditions during in situ hybridization with one or two gene specific probes. The expression of 

two chosen genes was visualized in one section using digoxigenin and fluorescein labelled 

antisense cRNAs, with yellow stain for probes labelled with fluorescein and violet stain for 

probes labelled with digoxigenin. All in situ hybridization results were visualized using a digital 

microscope at 2-3 magnification levels to obtain an overview of region specific gene expression 
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patterns in the sections (4x), as well as higher resolution gene expression patterns (20x or 40x). 

For optimal comparison, pictures from complementary areas of subsequent slices 

(complementary areas of the liver tissues sections are shown for all hybridizations whenever 

possible) were taken. 

The results of our ISH experiments, which show gene expression pattern changes, are presented 

in seven figures (Figures 21, 22, 23, 24, 25, 26, and 27). Albumin gene expression in different 

time points with three different magnifications and in comparison with DAPI staining is shown 

in Figure 21. Key enzymes of nitrogen metabolism and ammonia detoxification (Figure 22), 

glucose storage and release, and other genes involved in detoxification and basic cellular 

metabolism (Figure 23) are also shown. In Figure 24, higher magnification ISH images of  most 

of genes analyzed in tissue sections from days 1, 2, and 3 post CCl4 injection are presented 

together to facilitate a comparison of tissue distribution of all genes in a more detailed view. 

Cyp2e, Gpx4 (Glutathione peroxidase 4), and Gss (Glutathione synthetase) co-stained with 

albumin and gene expressions are shown in Figure 26. In most sections, albumin expression was 

used as a marker for the periportal area. To give further evidence of the validity of gene 

expression staining with antisense cRNAs, the gene expression and related synthetized protein 

stain in consecutive mouse liver sections with respect to aSMA protein (Figure 27A) were 

compared. In Figure 27B, gene expression and DAPI staining for both the same and consecutive 

sections were compared. Since ISH only provides relative gene expression values elucidating 

areas of high and low expression of respective genes, overall mRNA levels  was also analysed by 

RT-qPCR (Figure 25) [44]. 

 

5.8  Albumin expression:  
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Figure 21: Albumin expression in mouse liver sections during different time points post CCl4 

treatments with an overlay with DAPI staining. 
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Figure 23.In situ hybridization for carbohydrate metabolism genes.                                                                                                                                       

In situ hybridization of mouse liver sections with probes for selected genes of carbohydrate metabolism at different time 

points post CCl4 injection. Genes were visualised by dual staining with yellow and violet dye precipitation. Gene names 

are indicated on the left in the respective color. Co-staining for both genes in the same area resulted in dark brown 

staining. Pictures were captured with 4x objective. (modified from Ghafoory et al 2013)  
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Figure 25: Quantitative real time PCR 

Total RNA was extracted from mouse liver at different time points after administrating CCl
4. 

cDNA     

was analyzed using primers recognizing the following genes: Arg1, Gys2, Gcgr, Gapdh, Gls2, Gs, 

G6pc, Cyp2e1. Primer recognizing Albumin was used for normalization. Values shown represent 

the mean (+/- SEM) of two individual experiments. * = p<0.05, ** = p<0.01, *** = p<0.001, 

Student’s T-test. (modified from Ghafoory et al 2013) 

 

 

 

The most important protein secreted by hepatocytes in to the blood circulation is albumin. In 

healthy livers, albumin is synthesized more in PPH than in PCH, which leads to a specific 

pattern of hepatic albumin expression visualizing the liver acini, [39, 45] (Figure 21 a1, a2 and 

a3). In response to CCl4 treatment, albumin expression was even lower in PCH (conversely, in 

PPH, the albumin gene expression increased during CCl4 treatment), which can be seen by the 

increased signal difference between PPH and PCH for albumin mRNA. In contrast, on post CCl4 

injection day 6, albumin expression was more equally distributed than in normal (untreated) 

livers. 
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      Figure 27A: comparison between in situ Hybridization and immunohistochemistry staining,  

      In situ hybridization with Asma and Albumin antisense probes in different time pointsafter  

      CCl4 treatment. Immunohistochemistry staining with anti Asma antibody and eosin staining 

      (modified from Ghafoory et al 2013) 

  

 

 

 

 

 

 

 

 

 

Figure 27B: comparison between gene expressions and DAPI staining with 20x magnification 

(modified from Ghafoory et al 2013) 

 

B 

A 
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In this study, albumin expression was used as a marker for HPPs. Albumin was expressed in 

different time points post injection, and at different magnification levels (Figure 21). DAPI 

staining and albumin expression (Figure 21a4, b4, c4, d4, e4, f4 and g4) revealed many cell 

nuclei in the pericentral area at all the time points measured, indicating that most of the cells in 

the damaged area were still alive.   

In healthy livers, the expression of enzymes involved in nitrogen metabolism and ammonia 

detoxification has been assigned to defined areas  [9] (Figure 7). In situ hybridization signals for 

arginase (Arg1) and glutaminase (Gls2) show a zonation similar to that of albumin in normal 

livers (Figure 22 a0, b0, d0 and e0), a finding that fits within the established functions of 

periportal hepatocytes[44, 46] (Figure 7). Glutamine synthetase is expressed in 2 or 3 layers of 

hepatocytes around the pericentral vessel (Figure 22 c0), these results are in line with the 

previously published findings on Gs zonation activity [47, 48]. At early time points (3h and 6h) 

post CCl4 treatment, Arg1 and Gls2 mRNAs were detected throughout tissue sections, with very 

specific high expression in hepatocytes located in the boundary between the periportal and 

pericentral areas (Figure 22). At day 1, a more selective expression of Arg1 and Gls2 was 

observed, and sharp expression spots in the pericentral area became completely visible. These 

Arg1 signals in the pericentral area became stronger on day 2, in particular when analyzed with 

higher magnification (Figure 24 a2 and b2). The total levels of Arg1 in mRNA analyzed by RT-

qPCR did not change relative to albumin until day 3, and had increased only marginally on day 6 

specifically, they increased only marginally (Figure 25). In contrast, Gls2 mRNA levels 

immediately decreased and remained lower from 3h through post injection day 3 and increased 

at day 6 (Figure 25) [44]. It should be noted that Arg1 is only expressed by hepatocytes and 

kupffer cells [48]. Therefore the speckled signals in the pericentral area observed on day 2 

(Figure 24 a2 and b2) could also belong to infiltrated macrophages that moved into the 
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pericentral area during liver recovery. Gs expression was also changed significantly during CCl4 

treatment. At early time points post injection, strong expression around the pericentral vein was 

visible (Figure 22 c0-2). This signal was missed on days 1, 2, and 3 (Figure 22 c3-5), but was 

clearly visible again by day 6 (Figure 22 c6). Quantitative analysis of Gs mRNA from total RNA 

extracted from livers showed a parallel change that mirrored the changes observed for Gs 

expression in the in situ hybridization. A significant decrease in Gs expression at days 1, 2, and 

3, as well as a clear recovery by day 6 (Figure 25), confirmed that damage (after CCl4 injection) 

is restricted to the pericentral area. Thus, while enzymes involved directly in the control of 

glutamine levels and ammonia producing were decreased, the total capacity for removing 

ammonia and generating urea remained active throughout the toxicity period[44]. 

Storage and mobilization of glucose is another important role of hepatocytes (Figure 8). The 

enzyme glycogen synthase 2 (Gys2) is responsible for glycogen synthesis and glucose-6- 

phophatase (G6pc) is needed for glucose release. In total, mRNA level Gys2 (like Arg1) shows 

marginal changes after injection (Figure 25). In contrast, G6pc expression was induced 3h post 

injection, reduced significantly by day 1, and returned to normal levels at late time point (Figure 

25). Gcgr, the receptor for glucagon hormone (which is involved in increasing circulated glucose 

levels), appears to be down regulated until day 3 and restored by day 6 (Figure 25). Looking at 

the spatial Gcgr distribution in liver tissue shows a quite uniform expression of the Gcgr 

observed during treatment (Figure 23 b and c) that is also clearly visible at higher magnification 

(Figure 24 g). Albumin-strong expression obscures this homogenous signal, which is, however, 

clearly visible in co-staining with G6pc (Figure 23 b). Gys2 mRNA (like Gcgr) is also 

distributed equally (Figure 23 d0, and 4 h) in periportal and pericentral hepatocytes, producing 

identical hybridization pictures when co-stained with albumin. The sequence used for antisense 

G6pc cRNA preparation in this study belongs to a very specific isoform only expressed in liver 

hepatocytes and does not detect other glucose-6-phosphatase isoforms[44]. The very distinct 
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G6pc1 expression pattern are visible on days 1, 2, and 3 (Figure 23 b3-5). Higher resolution 

(Figure 24 f1-3 and g1-3) clearly showed G6pc1 expression in the “damaged” pericentral area. 

Gapdh has a basic function in cells: it is considered a housekeeping gene and gene expression 

reference. In fact, total mRNA levels for Gapdh did not significantly change during treatment 

(only a slightly higher expression relative to albumin was detected on day 6) Figure 25, and were 

similar to Arg1 and Gys2 expression[44].  

While Gapdh plays a central role in energy generation, its ability to identify in cells with high 

energy requirements should also be considered. In healthy, untreated mice, Gapdh is 

homogeneously expressed in the pericentral and periportal areas of the liver. The distribution of 

Gapdh mRNA in mice livers treated with CCl4 adheres to the albumin pattern in the first 6h, but 

at later time-points, such as from days 1 to 3, Gapdh showed an increased expression in the 

damaged areas (Figure 23 e3-5, and 24 i0-3), clearly reflecting continuous Gapdh expression. 

Interestingly, some cells in the damaged pericentral area expressed Gapdh with high intensity 

(Figure 23 e3-5, and 24 i1-3) [44]. This staining clearly shows cells with high metabolic activity 

present in the damaged area by day 3. When all these data are taken together, the following 

picture emerges: Gys2 expression does not change significantly and remains uniform at different 

time points. While Gcgr expression is uniformly reduced, G6pc shows the most dynamic pattern. 

After an immediate induction at 3h post injection, its expression is significantly reduced on day 1 

and is followed by a continuous increase until day 6. Interestingly, while overall expression is 

reduced (Figure 25), ISH clearly shows that G6pc1 expression is not uniformly lost and a high 

level of expression is retained in the damaged area (Figure 23, 24, and 27B). This high metabolic 

activity is further reflected by associating with Gapdh expression in the damaged area (Figure 

23e, and 24i) [44].  

This research built upon our previous studies by considering other enzymes responsible for cell 

recovery after damage by free radicals. In an oxidative stress condition, Glutathion is used as an 
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electron donor by Glutathione peroxidase 4 enzyme (Gpx4) to protect hepatocytes against 

peroxides such as hydrogen peroxide (H2O2) and organic hydroperoxides (ROOH). In this 

process, toxic molecules are neutralized and two glutathione molecules form the disulfide bond 

glutathione disulfide (GSSG). GSSG is also a substrate for Glutathione reductase (GSR) and can 

change GSSG to producer molecules (Figure 10) [49]. Measuring the GSH/GSSG ratio shows 

cell toxicity, a ratio that is close to 90% in healthy cells. Gss, Gpx4, and Gsr are considered 

strategic enzymes for healthy cells  [50]. 

Glutathione synthetase (Gss) as the Glutathion (GSH) producer and peroxidase 4 enzyme (Gpx4) 

were chosen. To study Gss and Gpx4 expression during CCl4 treatment, ISH was completed for 

all liver sections. Gene expression is shown separately in figure 26 for Gss and Gpx4 (violet) 

when co-stained with albumin as PPHs marker (orange). To compare mono- and co-staining with 

albumin, pictures were taken with two magnifications after the initial staining (violet), and ISH 

was continued for the next staining (Figure 26).  Gpx4 were expressed higher in PPHs  [24, 51] 

than PCHs in normal livers, and our staining for normal liver section showed that PPHs 

expressed Gpx4 more than HPCs, and that Gss expression had the same pattern as Gpx4 (Figure 

26). Three hours post CCl4 injection, both genes were almost equally expressed in both areas. 

Gene expression patterns were changed and shifted to the PCHs at 6 hours post injection and 

continued to reach the maximum levels in PCHs during days 1 and 2 Expression of both genes 

decreased in PCHs on day three, Gss high expression was completely lost but Gpx4 expression 

was sill detectable in PCHs. Both genes’ expression had returned to normal on day 6. It is clear 

that Gpx4 and even Gss expression are raised in response to increased toxic Cyp2e1 by-product 

molecules in PCHs. Interestingly, at day three post injection, Cyp2e1 and Gss were expressed 

only in a mono layer of cells between PPHs and PHCs; these cells are also the last cells in the 

PPH area which expressed albumin (Figure 26 c6, d6, j6 and l6). At the same time, since Gpx4 is 

expressed within the cells in the PCHs, this may indicate the co-expression of Cyp2e1 and Gss at 

http://en.wikipedia.org/wiki/Peroxide
http://en.wikipedia.org/wiki/Hydrogen_peroxide
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the same time and in the same cells, because of the activity and toxic by-products of Cyp2e1 

activity. Gpx4 expression, however, continues simultaneously in cells located in the inner layer 

of the pericenteral area. Examining Cyp2e1 expression required for CCl4 metabolism also 

clearly showed the specific gene expression response to the toxic challenge. While overall 

expression of Cyp2e1 is immediately down regulated post CCl4 exposure (the lowest levels 

occurred on days 1 to 3 and were followed by a recovery on day 6), the specific Cyp2e1 gene 

expression stained with ISH clearly showed  a local and specific increased expression pattern in 

the pericentral area (Figure 23 f). At higher magnification (Figure 24 j), strong signals for 

Cyp2e1 mRNA are clearly visible in the damaged areas, which define a boundary along the area 

with higher albumin expression. 

ISH reliability was shown by comparing Alpha-smooth muscle actin (aSMA is considered the 

gene expressed by activated stellate cells) at the gene and protein levels and by using ISH and 

IHC methods (Figure 27A). It is therefore clear that protein and gene expression exhibit the same 

patterns at different time points. 

6  Discussion: 

The first part of the results demonstrates the introduced method for cRNA preparation is 

sensitive and specific, at least for albumin transcript detection in sections of adult mouse liver, as 

well as albumin and AFP transcripts, in human liver cancer sections. Upon staining with 

albumin-specific probes, the heterogeneously distribution of albumin mRNA expression in the 

liver sections were seen. This result is in keeping with the published results of traditional probe 

preparation protocols [39]. The traditional preparation of cRNA includes five established 

protocols, target cDNA amplification, cloning of cDNA in a plasmid vector with appropriate 

RNA polymerase promoters upstream and downstream of the cloned cDNA fragment, large-



76 
 

scale preparation of the plasmid vector, restriction digest of the template vector and a final 

purification step before in vitro transcription of the labelled cRNA. 

In contrast, rapid and efficient of new protocol for labelled cRNA probe synthesis proves that 

cRNA preparation begins during the equivalent of what was the 5
th

 step of the old method. 

Further, using purified PCR fragments does not require cloning, plasmid selection, and 

preparation. The cRNA probes generated by the new protocol are ideally suited to detect specific 

mRNAs in paraffin sections or cultured cell lines in media (in vitro) and enable visualization of 

specific mRNAs comparable to previously published results  [39, 44, 52]. The AFP and BMP9 

specificity staining [52] in the cancerous area of human HCC sections showed the general 

applicability of the new protocol for histological analysis. Taken together, the major advantages 

of the new simple protocol are the short time required for cRNA labelled preparation. To follow 

up the liver injury in animal model during recovery from CCl4 injection, the new method was 

developed for different antisense cRNAs preparation. Mice treated with an acute toxic dose of 

CCl4, which leads to massive changes in the liver, including a possibility of necrotic cell death 

in the pericentral area and subsequent regeneration involves degradation and removal of the 

remaining cell debris and repopulation of the necrotic area by proliferating hepatocytes from 

adjacent unaffected areas [17, 53-56]. This step is conducted based on the assumption that CCl4 

treatment leads to strong changes in liver enzyme serum levels and liver tissue morphology. The 

induced changes are mostly in the pericentral area (damaged zone) [17, 57], visualizations of 

apoptotic cell nuclei, and transient caspase activation [58]. In this study, enzyme expressions 

involved in nitrogen (ammonia) metabolism, glucose storage and release were analysed. These 

are responsible for cell recovery from damage induced by CCl4 in mouse liver (a well-

established model for liver cell damage [59]). Obtained results clearly show continuous gene 

expression (Fig 22, 23, 24 and 26) and intact nuclei (Fig 21). Such ongoing gene expression 
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requires de novo synthesis of mRNA, in the area around the pericentral vein (considered the 

damaged area) throughout the time course analyzed. De novo synthesis of mRNA can occur only 

in living cells and reflects gene expression in the specific area. The correlation between mRNA 

expression and protein synthesis during CCl4 treatment has also been shown for  alpha-smooth 

muscle actin (aSma) (Figure 27 A), [44]. Time dependent results obtained from ISH (the changes 

in gene expression patterns) indicate that large numbers of cells in the pericentral area survived 

and contributed to regeneration and recovery from damage. Nevertheless, CCl4 treatment 

induced visible tissue damage with a loss of cell-cell interactions, and infiltration of blood cells 

into the damaged area around the pericentral vein (Fig 28). RBCs infiltration in the space 

between damaged pericentral hepatocytes may be the key reason for the increase in aSMA 

expression at the protein and mRNA level in some cells in pericentral area (Fig 27A) [60, 61]. 

The analysis of total gene expression levels by quantitative real time PCR and using primers 

recognizing arginase (Arg1), glycogen synthase (Gys2), glucagon receptor (Gcgr), Gapdh, 

glutaminase (Gls2), glutamine synthase (Gs), glucose-6-phosphatase (G6pc), cytochrome p450 

2E1 (Cyp2e1), and Albumin (Alb) (which was used for normalization and as a reference gene) is 

presented in Figure 25 [44]. The combination of RT-qPCR data with gene specific staining 

revealed, unlike the previously published results which showed cell death around the central vein 

after CCl4 treatment [34], a more complex response should be considered in the damaged area. 

These responses include cell survival and neutralization of the toxic effect of new by-products. 

One of the clear indicators of liver parenchymal cell viability is G6pc expression, the glucose-6-

phosphatase isoform is expressed only in hepatocytes [44]. In the damaged pericentral area, 

despite a strong reduction of total G6pc mRNA levels as analyzed by RT-qPCR (Figure 25), 

G6pc was expressed increasingly by some pericentral hepatocytes even as late as 3 days post 

CCl4 injection. The increased expression of G6p (hepatocyte specific isoform) was 

complemented by high Gapdh mRNA signals in the same  
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                                          3h                                                                                       6h 

    

                                                1d                                                                                  2d 

   

                                         3d                                                                                      6d     

Figure 28: RBCs (red blood cells) penetration and depletion from the damaged area post CCl4 

injection, during different time points. Albumin gene expression was used as a marker for 

periportal area  
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area, albeit not necessarily in the same cells. Another selective expression for genes required for 

ammonia elimination and glutamine level maintenance was also observed. While RT-qPCR 

results show that the total expression of Arg1 did not significantly change, its expression 

increased in some damaged area cells at later time points (Fig 24 a&b). The reorganization of 

Arg1 expression in the pericentral area not only has a very specific pattern of tissue distribution 

during the time course but also exhibits a late recovery [44].While the expressions of albumin 

and arginase mRNAs overlap at early and late time points, indicating that expression is specific 

to periportal hepatocytes, a quite different picture is observed at day 2 post CCl4 injection, where 

Arg1 is expressed in a speckled pattern in the damaged area. Since Arg1 is not expressed in 

hepatocytes alone, and can appear in many other cell types, this signal could also come from 

non-parenchymal cells. Such cells include stellate cells and infiltrating blood monocytes which 

have both been described to express Arg 1 [62, 63]. On days 1 and 2, glutamine synthase also 

showed a speckled expression in the pericentral zone. These speckled stainings do not overlap, 

which indicates that arginase and glutamine synthase expressions occur in different cell 

populations in the damaged area. Cyp2e1, Gpx4, and Gss expression over time are the most 

compelling adjustments of gene expression upon CCl4. Cyp2e1 was expressed throughout the 

liver but expression was much higher around the pericentral vein in healthy liver mice, and after 

recovery at day 6. Three hours post CCl4 injection, and at early time points, Cyp2e1 expression 

increased locally, in the pericentral area, although overall expression in total liver lysates was 

reduced (perhaps because of reduced expression in the periportal hepatocytes). This change 

continued at later time points and zonation of Cyp2e1 expression reached a sharp and clear 

boundary-like expression pattern which separated the albumin producing periportal area and the 

damaged pericentral region (Figures 23f, 22j, 25, 26, and 27B). Cyp2e1 mono staining at day 3 

(Fig 26) showed a sharp expression in a rim of hepatocytes around the pericentral area, which 

seems to be the last frontline for CCl4 neutralization. Co-staining with Alb revealed that these 
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cells are the first hepatocytes around the pericentral area to express Alb (at day 3). Gss also 

showed the same weaker expression pattern. Gpx4, as the key enzyme for free radical molecule 

neutralization, was generated during all time points (Fig 26). Although activation of CCl4 by 

Cyp2e1 contributes to the observed severe damage, the very specific pattern of Cyp2e1 and 

Gpx4 expressions could ensure efficient transformation and detoxification of CCl4 and its by-

products in the pericentral area to neutralize and prevent further spread of the toxic agent into 

other areas, thereby limiting overall tissue damage and ultimately supporting regeneration. The 

gene expression pattern during treatment was summarized in figure 29.   

 

7  Conclusion: 

  

The detialed analysis of the expression of genes, required for detoxification, nitrogen 

metabolism, and glucose utilization, in the liver upon damage induced by CCl4, revealed a rapid 

adjustment of gene expression patterns on both the spatial distribution and the overall level. The 

changes and local shifts of gene expression patterns confirmed that CCl4 mediated damage 

occured specifically around the central vein. The key observations were: (I) while the initial 

pattern of  Cyp2e1 expression around the centrail vein is responsible for the strong local damage, 

the readjustment of the Cyp2e1 gradient with very high expression just aroung the damage array 

could confine damage and ensure rapid detoxification; (II) shortly after induction of Gss and 

Gpx4 occured in the damaged pericentral area, providing enhanced metabolic capacity, required 

to further neutralize CCl4 by-products and damage; (III) this is followed by increased local 

mobilization of glucose from hepatocytes in the damaged area, reflected in local higher levels of 
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G6pc expression, which can provied glucose for the intense metabolism required for repair and 

recovery and elimination of infiltrated RBCs by Kupffer or other immune cells in the damaged 

area; (IV) importantly this also confirmed, that CCl4 damage didn’t immediately induce cell 

death but rather leads to a rapid response and adjustment of expression patterns against the toxic 

effects. Thus, it can be assumed that CCl4 toxicity didn’t lead to complete necrotic, massive cell 

death in the damaged liver tissue, but rather resulted at least in part in a functional transition 

supporting recovery. The results presented here clearly show that hepatocytes in the damaged 

area did not undergo massive necrotic or induced cell death but rather a clear adaptive response 

that can support the recovery from damage and formation of new hepatic tissue in the damaged 

area [44]. Liver cells remained viable in the damaged area and adjusted gene expression 

accordingly, to orchestrate protection from further damage and to enable efficient recovery in 

this area. In the end after repair and regeneration, normal gene expression patterns are 

reestablished, e.g. Cyp2e1 transcription, on day 6 post CCl4 injection [44]. Liver zonation is of 

uppermost importance for orchestrating the biochemical metabolism of the liver, as it not only 

plays an important role for the maintenance of basic liver functions, but is also needed for overall 

health. It also helps the liver to cope with damage caused by toxins by limiting the damage to 

smaller areas. In addition, adjusted gene expression patterns and sustained viability of all liver 

cell types in response to damage should enable the observed efficient recovery of the damaged 

region [44]. To visualize these contributions the gene expression patterns observed in liver 

sections representing damage, damage response and recovery are summarized in Figure 29. 
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