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Abstract This thesis develops strategies for a posteriori error control of dis-
cretization and model errors, as well as adaptation strategies, in the context of
multiscale finite-element methods. This is done within the general methodology
of the Dual Weighted Residual Method (DWR).

In particular, a reformulation of the Heterogeneous Multiscale Method (HMM)
as an abstract model-adaptation framework is introduced that explicitly decou-
ples discretization and model parameters. Based on the framework a sampling-
adaptation strategy is proposed that allows for simultaneous control of discretiza-
tion and model errors with the help of classical refinement strategies for mesh and
sampling regions. Further, a model-adaptation approach is derived that interprets
model adaptivity as a minimization problem of a local model-error indicator.
This allows for the formulation of an efficient post-processing strategy that lifts
the requirement of strict a priori knowledge about applicability and quality of
effective models.

The proposed framework is tested on an elliptic model problem with heteroge-
neous coefficients, as well as on an advection-diffusion problem with dominant
microscopic transport.

Zusammenfassung Ziel der Arbeit ist die Entwicklung von Strategien zur a
posteriori Fehlerkontrolle sowohl des Diskretisierungs-, als auch des Modell-
fehlers im Rahmen von Finite-Elemente-Mehrskalenmethoden. Zur Anwendung
kommt hierbei die „Dual Weighted Residual“-Methode.

Zu diesem Zweck wird zunächst eine Reformulierung der bekannten heteroge-
nen Mehrskalenmethode („Heterogeneous Multiscale Method“) als generalisierte
Methode eingeführt, in der sowohl Diskretisierungs- und Modellparameter, als
auch die konkrete Wahl des effektiven Modells, entkoppelt sind. Basierend
auf der Reformulierung wird eine „Sampling“-Adaptionsstrategie eingeführt,
die die gleichzeitige Kontrolle von Diskretisierungs- und Modellfehler durch
lokale Gitter- und Samplingbereichsverfeinerung ermöglicht. Des Weiteren er-
laubt es die Reformulierung, Modelladaptation als ein Minimierungsproblem
eines lokalen Fehlerindikators aufzufassen. Die Strategie ein Minimierungsprob-
lem zu lösen hat insbesondere den Vorteil, dass keine strikte a priori Aussage
über die Anwendbarkeit und Qualität effektiver Modelle vorliegen muss. Die
entwickelten Modelladaptionsstrategien werden sowohl an einem elliptischen
Modellproblem mit heterogenen Koeffizienten, als auch an einem Advektions-
Diffusions-Problem mit dominantem, mikroskopischem Transport numerisch
untersucht.

v





Contents

1 Introduction 1

2 A survey of multiscale methods 7
2.1 Multiscale methods based on ansatz-space splitting . . . . . . . . . 10

2.1.1 Variational Multiscale Method (VMM) . . . . . . . . . . . . 11
2.1.2 Residual-Free Bubbles and Element Green’s Functions . 13
2.1.3 Localization techniques by partition of unities . . . . . . . 16
2.1.4 On the choice of subspaces . . . . . . . . . . . . . . . . . . . 18
2.1.5 Implementational aspects and scale separability . . . . . . 18
2.1.6 Related methods . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Multiscale methods based on homogenization principles . . . . . 23
2.2.1 Homogenization of the elliptic model problem . . . . . . 24
2.2.2 Heterogeneous Multiscale Method (HMM) . . . . . . . . . 28
2.2.3 Implementational aspects . . . . . . . . . . . . . . . . . . . . 30
2.2.4 On the question of periodicity and scale separation . . . 32
2.2.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Multiscale methods based on physical upscaling principles . . . . 35
2.3.1 An example from linear elasticity . . . . . . . . . . . . . . . 35
2.3.2 Relation to HMM and MsFEM . . . . . . . . . . . . . . . . 38
2.3.3 Averaging schemes . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 An abstract multiscale scheme for model adaptation 43
3.1 On the choice of the underlying multiscale formulation . . . . . . 44
3.2 An abstract multiscale scheme . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Effective problem . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Semi-discretized problem . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Fully discretized problem . . . . . . . . . . . . . . . . . . . . 50

vii



Contents

3.3 A note on the generality of the framework . . . . . . . . . . . . . . 51
3.4 Well-posedness and a priori error analysis . . . . . . . . . . . . . . . 53

3.4.1 Convergence of the averaging schemes . . . . . . . . . . . . 54
3.4.2 Convergence of the homogenization scheme . . . . . . . . 63

3.5 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5.1 Uniform refinement . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.2 Model error of averaging schemes and HMM scheme . . 75
3.5.3 Convergence rates for uniform refinement . . . . . . . . . 77

4 A posteriori error estimation 79
4.1 Duality-based error identity . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Efficiency of the error estimators . . . . . . . . . . . . . . . . . . . . 83
4.3 Localization strategies for the dual problem . . . . . . . . . . . . . . 88
4.4 Evaluation of the estimators and indicators . . . . . . . . . . . . . . 92
4.5 Numerical validation of the error estimators . . . . . . . . . . . . . 95

4.5.1 Behavior under uniform refinement . . . . . . . . . . . . . 95
4.5.2 Qualitative and quantitative behavior . . . . . . . . . . . . 99

5 Model-adaptation strategies 107
5.1 Model switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 General model switching . . . . . . . . . . . . . . . . . . . . . 108
5.1.2 Binary switching . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 A sampling-adaptation strategy . . . . . . . . . . . . . . . . . . . . . . 111
5.2.1 Model adaptation by means of local refinement . . . . . . 111
5.2.2 The adaptation algorithm in detail . . . . . . . . . . . . . . 113

5.3 Numerical results for the sampling-adaptation strategy . . . . . . 114
5.3.1 Periodic coefficients . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Random coefficients . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Optimization strategies for model adaptivity 121
6.1 Model-optimization framework . . . . . . . . . . . . . . . . . . . . . 122
6.2 Model switching revisited . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3 An efficient post-processing strategy . . . . . . . . . . . . . . . . . . 127
6.4 Implementational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 130

viii



Contents

6.5 Numerical results for the model-optimization strategy . . . . . . . 135
6.5.1 Parameter study for random coefficients . . . . . . . . . . . 135
6.5.2 Counterexample for large model-deviation . . . . . . . . . 139

6.6 An advection-diffusion example with dominant transport . . . . 141
6.6.1 Periodic coefficients . . . . . . . . . . . . . . . . . . . . . . . . 141
6.6.2 Random coefficients . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Conclusion and Outlook 151

Acknowledgments 153

List of Abbreviations and Symbols 155

Bibliography 161

ix





1 Introduction

A large class of modeling problems in Physics and Engineering is of multiscale
character, meaning, that relevant physical processes act on highly different length
and time scales. A prominent example in Fluid Mechanics is flow in porous
media where the macroscopic flow behavior is highly influenced by different
permeabilities varying rapidly on a small length scale.

A direct numerical treatment of problems that exhibit multiscale phenomena
usually makes a full resolution of all relevant scales necessary. This implies high
computational costs, rendering such a simulation computationally infeasible in
practice. One way to avoid the need for a full resolution is the use of multiscale
methods. These are methods where, generally speaking, an effective model is
solved on a coarse scale with upscaled, effective parameters that are determined
with the help of localized (possibly coupled) sampling problems on a fine scale.
The usage of such multiscale schemes can be traced back as early as the 1970s,
where upscaling principles for effective parameters in the context of elasticity
problems were formulated [56,57]. Multiscale methods have become increasingly
popular since then in the engineering [49] and mathematical [45] communities.

Different approaches for modeling multiscale phenomena in the context of
finite-element methods exist and have lead to a number of methods introduced
over the last years. Most of them either rely on the existence of a periodic or
stochastic substructure or on the scale-dependent splitting of variational solution-
and test spaces. Most notable are the Variational Multiscale Method (VMM) devel-
oped by Hughes et al. [63] and Brezzi [29], the Mixed Multiscale Methods by Arbogast
and Boyd [11] or Chen and Hou [32], the Two-Scale or Generalized Finite-Element
Method by Matache and Schwab [75,76], or the Multiscale Finite-Element Method
(MsFEM) introduced by Hou and Wu [59], Efendiev et al. [47,48], and variants of
these approaches. A mathematically rigorous formulation in the context of finite-
element theory and homogenization theory was given by E and Engquist [42,43,45]

with the description of the so-called Heterogeneous Multiscale Method (HMM).
In its original setting the HMM relies on a local periodic substructure of the
coefficient matrix and can be viewed as a direct discretization of the underlying
homogenization process (see Babuška [13] and Ohlberger [88]).
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1 Introduction

The use of multiscale methods comes at a significant price with respect to
sources of error: Among the usual discretization error due to a numerical approx-
imation of the partial differential equation (PDE), multiscale methods typically
exhibit additional discretization errors in (localized) fine-scale problems, as well as
an inherent model error resulting from a modeling assumption for scale separation.
Consequently, when applying a multiscale scheme, there is not only the problem
of choice for a number of discretization parameters (such as mesh sizes on macro-
and microscale) and possible choices of upscaling principles or microscale models,
but also the inherent problem that if only one of the many parameters involved
is insufficiently chosen, usually a bad approximation is observed that does not
obey any nice convergence behavior known from “smooth” problems.

This consideration makes the idea of a posteriori error estimation, where a
quantitative estimate for the different sources of error is computed by means of a
post-processing approach (within an adaptation cycle), highly attractive and a
promising field of research.

How to deal with discretization errors is well understood: For the HMM a
number of theoretical a priori and a posteriori results are available: An a priori
error estimation dealing with the discretization errors was first presented by E
and Engquist [42,43], E et al. [45], and later, with improved results, by Abdulle [2]

and Abdulle and Vilmart [5] (for a nonlinear case) – without an estimation of the
underlying modeling error. A posteriori error estimation for the discretization er-
rors was later presented by Ohlberger [88], Henning and Ohlberger [53], Henning
et al. [55], and Abdulle [3]; goal-oriented error estimation results (for discretization
errors on macro- and microscale) were formulated by Abdulle and Nonnen-
macher [4]. Corresponding a priori and a posteriori results for the VMM ansatz
were derived by Larson and Målqvist [67–69].

The novelty in a posteriori error estimation with respect to multiscale meth-
ods lies in the possibility for model adaptivity. First results for estimating and
controlling the model error in the context of multiscale schemes were given by
Oden and Vemaganti [84–87,91] and Braack and Ern [26].

Goal-oriented adaptivity for multiscale methods A versatile method for a
posteriori error control is the Dual Weighted Residual (DWR) method developed
by Becker and Rannacher [19–21]. It constructs estimates of local error contribu-
tions in terms of a target functional, the so called quantity of interest, with the
help of dual problems. While such duality arguments and error identities are also
one of the main tools in classical (residual based) a posteriori error estimation
for multiscale methods [4,88] the principal idea of the DWR method lies in the
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fact that it is possible to numerically approximate the dual solution directly with
comparable accuracy than the primal problem resulting in dual weighted, and
hence improved, local error indicators.

In contrast to PDEs without multiscale behavior the following main problems
have to be addressed [72]:

– The dual problem exhibits the same multiscale features as the primal prob-
lem and is therefore of the same computational complexity. A reduction of
the dual problem that still preserves all multiscale features is necessary. De-
pending on the information that shall be extracted from the dual problem,
it can either be approximated by a coarse, or homogenized dual problem
(for discretization errors) or with the help of local reconstructions (to assess
the local quality of the current multiscale model for the primal problem).

– Discretization errors on macro- and microscale can be dealt with by classical
mesh refinement. However, a good estimate to balance the amount of mesh
refinement between scales and, in particular, in comparison to the model
adaptation is important.

– Local model adaptation to minimize a high local model error is a hard
problem. Locally switching to a better problem is an obvious strategy
(with, for example, a full resolution as the “best” available model). But
whether such an approach leads to a better model is hard to predict a
priori, especially information about quantitative behavior of the better
model is unavailable. Furthermore, better models might not always be
computationally feasible.

Objective of the thesis The main target of this thesis is the application of
the DWR method in the context of multiscale schemes, an investigation about
the principal challenges this involves, and the development of model-adaptation
strategies. Therefore, this thesis introduces a reformulation of the HMM as an
abstract model-adaptation framework that explicitly decouples all sources of
error (Chapter 3 and 4). Based on this framework, different approaches for
model-adaptation strategies are developed and discussed. In particular, a sampling-
adaptation strategy is proposed that employs model adaptivity by means of locally
refining a sampling meshTδ(Ω) that holds cell-wise constant, effective parameters
(Chapter 5). A balancing strategy is introduced for the sampling-adaptation
process that simultaneously controls macro- and microscale discretization in
addition to the sampling process. Further, a novel model-adaptation approach is
derived that interprets model adaptivity as an optimization problem (Chapter 6).
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1 Introduction

This allows for the formulation of an efficient post-processing strategy that can
be interpreted as a multiscale approach in its own right (see Section 6.3) and lifts
the requirement of strict a priori knowledge about applicability and quality of
effective models.

Layout of the thesis In detail, the thesis is organized as follows: Chapter 2
gives an overview over different multiscale-modeling approaches. Based on the
variational, elliptic model problem to find uε ∈H 1

0 (Ω) s. t.
∫

Ω

Aε(x)∇uε(x) · ∇ϕ(x)dx =
∫

Ω

f (x)ϕ(x)dx ∀ϕ ∈H 1
0 (Ω) (1.1)

on the Sobolev space H 1
0 (Ω), the HMM and VMM approaches, as well as its most

important variants and related methods, are introduced. Here, Aε(x) ∈ L∞(Ω)d×d

is sought to contain multiscale features, i. e. it rapidly oscillates on a small length
scale. Further, a computational homogenization approach based on physical
upscaling principles is exemplarily examined. The chapter concludes with a
discussion about upscaling strategies based on simple averaging principles.

In Chapter 3 an abstract model-adaptation framework based on the HMM
scheme is derived that explicitly decouples discretization and modeling parame-
ters. This is done by defining the concept of an effective model

Aδ : Tδ(Ω)→R
d×d (1.2)

on a so-called sampling meshTδ(Ω) and by further introducing an effective equation
to find uδ ∈H 1

0 (Ω) s. t.
∫

Ω

Aδ(x)∇uδ(x) · ∇ϕ(x)dx =
∫

Ω

f (x)ϕ(x)dx ∀ϕ ∈H 1
0 (Ω). (1.3)

A priori error estimates for two different finescale reconstruction approaches
(simple upscaling by averaging and an HMM ansatz) are discussed.

The corresponding a posteriori error analysis in the DWR framework is given
in Chapter 4. A key point is the efficient numerical approximation of the dual
equation

∫

Ω

Aε(x)∇ϕ(x) · ∇zε(x)dx = 〈 j ,ϕ〉 ∀ϕ ∈H 1
0 (Ω) (1.4)

where the functional j denotes a quantity of interest. Efficiently approximating
the dual solution can be done by different localization strategies. As a novel
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localization technique the approximation of the dual problem by globally using
the same effective model Aδ and locally reconstructing finescale features of the full
solution zε with the help of local cell problems is proposed (Section 4.3). The
dual equation leads to an error identity for the finite-element approximation U ,

〈 j , uε〉− 〈 j , U 〉=
�

f , zδ
�

−
�

Aδ,h∇U ,∇zδ
�

︸ ︷︷ ︸

=:θH

+
�

Aδ,h∇U ,∇zδ
�

−
�

Aδ∇U ,∇zδ
�

︸ ︷︷ ︸

=:θh

+
�

Aδ∇uδ ,∇zε
�

−
�

Aε∇uδ ,∇zε
�

︸ ︷︷ ︸

=:θδ

, (1.5)

which is used to derive decoupled local indicators for the macroscale discretization
error (θH ), the microscale discretization error (θh ) and the model error (θδ ).
This split allows to balance error contributions coming from discretization and
model.

Based on the model framework and the a posteriori error analysis derived for
it, different model-adaptation strategies are introduced and discussed in Chapter 5:
Within the given framework, two fundamentally different approaches for model
adaptivity are possible. The first possibility is to adjust the sampling mesh Tδ(Ω)
and the location of associated sampling regions while keeping the same recon-
struction process for all sampling regions. The second one consists of “improving”
the effective model used for the reconstruction (by various means) [26,84–87,91]. This
is typically done while maintaining the same fixed sampling discretization. In
particular, model switching (i. e. the gradual, local improvement of Aδ from a
fixed set of a priori chosen models) is discussed as an example for the second
approach. Further, a sampling-mesh adaptation strategy is introduced, where the
mesh Tδ(Ω) is locally refined in order to improve the effective model.

As a novel approach Chapter 6 presents a model-optimization framework that
interprets model adaptivity as an optimization problem to minimize the model
error θδ in the above error identity:

arg inf
Aδ∈A δ

∑

K∈Tδ (Ω)

�

�

�

(Aδ −Aε)∇uδ(Aδ),∇zε
�

K

�

�

2+αK



AδK −Aδ,0
K





2
Rd×d . (1.6)

The optimization problem allows to derive an efficient post-processing strategy
for model adaptation. Most importantly, it lifts the requirement of strict a priori
knowledge about applicability and quality of effective models.

Numerical results will be given throughout Chapters 3 to 6 to validate the
theoretical findings. Especially, the model adaptation strategies derived in Chap-
ters 5 and 6 are tested on prototypical numerical examples. A conclusion and
outlook is given in Chapter 7.
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2 A survey of multiscale methods

A natural approach to tackle problems with multiscale character—beside the
obvious method of running an expensive computation with full resolution—
is to identify and exploit scale separating properties. This may happen on a
purely mathematical level starting from an already derived microscale model
that captures all relevant scales. Consider a sequence of abstract problems:

Find uε ∈ V ε s. t.L εuε = f ε, (2.1)

with a sequence of operatorsL ε : V ε→V ε∗ and data f ε ∈ V ε∗ associated with
a scaling parameter ε > 0. Here, V ε denotes a separable Hilbert space and V ε∗

its dual space. Different methods emerge by either exploiting structure in the
(variational) ansatz spaces, or by exploiting structure in the operator.

One possible strategy is to construct sequences of subsequently refined ansatz
spaces,

V ε = V 0⊕V 1⊕V 2⊕ . . . , (2.2)

with the idea to localize V i and only solve for a subspace V 0⊕V 1⊕ . . .⊕V n

resulting in an efficient multiscale approximation of the variational ansatz space.
Examples for approaches of this nature are the Variational Multiscale Method intro-
duced by Hughes et al. [63], the Mixed Multiscale Methods by Arbogast and Boyd [11]

or Chen and Hou [32], the Two-Scale or Generalized Finite-Element Method by
Matache and Schwab [75,76] or the Multiscale Finite-Element Method introduced by
Hou and Wu [59] and Efendiev et al. [48], and variants thereof.

A different approach comes from a formalization of structure in the operator
L ε of the partial differential equation. With the help of formal expansions

L ε =L 0+ εL 1+ ε2L 2+ . . . (2.3)

matched with an expansion of the solution

uε = u0+ εu1(x, x
ε )+ ε

2u2(x, x
ε )+ . . . (2.4)

7



2 A survey of multiscale methods

macroscale

microscale

compressionreconstruction

Figure 2.1. The general multiscale modeling approach: macroscale and mi-
croscale are coupled by an averaging prescription (compression) and in opposite
direction a reconstruction procedure to recover fine-scale behavior.

it is possible to derive effective equations for the constituents u0, u1, . . . , un. The
idea is that a cut-off of the formal expansion (2.4) is already a good approximation
of uε (in some notion yet to be defined):

uε ≈ u0+ εu1(x, x
ε )+ . . .+ εn un(x, x

ε ). (2.5)

The procedure of expanding functions and equations in powers of a scaling pa-
rameter ε and match the result in powers of ε is known as asymptotic analysis [22].
A mathematically precise justification is the subject of mathematical homogeniza-
tion theory [7,22,34]. Effective models derived in the context of homogenization
theories allow for a reformulation as a numerical multiscale scheme [2,88] such as
the Heterogeneous Multiscale Method by E and Engquist [42,43].

Mathematical approaches for deriving multiscale descriptions (by starting from
an already derived microscale model) are fundamentally different from physical
approaches. Those usually begin at the modeling phase and employ upscaling and
conservation principles to couple a priori independent (and possibly different)
models for micro- and macroscale [49].

The general physical multiscale modeling approach can be summarized as
follows: A macroscale and microscale model are coupled by an averaging pre-
scription, so-called compression, that describes how to average quantities from
the microscale to be used on the macroscale. Further, a reconstruction procedure
recovers fine-scale behavior from a given macroscale quantity, see Figure 2.1. The
result is a computational homogenization technique that couples individual, closed
microscale problems on so-called representative volume elements via boundary
conditions and averaging principles to a macroscale. We refer to a discussion
by Zohdi and Wriggers [101] for an overview. An example for pure upscaling
principles (without a reconstruction) are approaches using simple averaging of

8



effective parameters under certain microscale distributions, such as the geometric
mean value [77] in context of log-normally distributed permeabilities [100]. Exam-
ples for combined reconstruction and compression principles are the Method of
Virtual Power [50] which results in the Hill-Mandel-Homogeneity condition [57] (see
Section 2.3.1).

It is remarkable that given the very different nature and reasoning in model
derivation the resulting multiscale methods are usually closely related. Therefore,
the aim of this chapter is to give an introduction to the approaches mentioned
above and outline their equivalence.

The underlying reasoning is exemplified with typical, established multiscale
schemes; in particular, the Variational Multiscale Method for a multiscale scheme
derived from ansatz-space splitting, the Heterogeneous Multiscale Method for
a multiscale scheme derived by exploiting structure in the operator, and a (first
order) computational homogenization scheme as an example of how to apply
physical conservation principles for multiscale coupling.

For simplicity, the discussion in this chapter will be based on the following
abstract model problem:

Definition 2.1 (Abstract model problem). Let V be a separable Hilbert space
and

a : V ×V →R (2.6)

a V -elliptic, bilinear form. For a given linear and continuous functional f ∈ V ∗
find u ∈ V such that

a(u,ϕ) = 〈 f ,ϕ〉 ∀ϕ ∈ V , (2.7)

where 〈 . , . 〉 denotes the duality pairing.

Often, the abstract model problem will be reduced to a Laplace-like problem
with heterogeneous coefficients:

Definition 2.2 (Model problem). Let Ω be a bounded domain and let Aε ∈
L∞(Ω)d×d with Aε = (Aεi j )

d
i j=1,

Aεi j =Aεj i ∀i , j = 1, . . . , d , (2.8)

∃α,β ∈R+ s. t. α |ξ |2 ≤
∑

i j

Aεi jξiξ j ≤β |ξ |
2 ∀ξ ∈Rd a. e. on Ω, (2.9)

9



2 A survey of multiscale methods

and define the bilinear form a(ϕ,ψ) =
�

Aε∇ϕ,∇ψ
�

L2(Ω)d for ϕ,ψ ∈H 1
0 (Ω). The

model problem now reads
�

Aε∇uε,∇ϕ
�

L2(Ω)d = 〈 f ,ϕ〉 ∀ϕ ∈H 1
0 (Ω). (2.10)

Existence and uniqueness of u and uε in (2.7) and (2.10) follow by classical elliptic
solution theory.

Here, the space L∞(Ω) denotes the space of Lebesgue-Borel-measurable func-
tions bounded in the essential supremum norm and H 1(Ω) is the usual Sobolev
space of functions ϕ ∈ L2(Ω) (Lebesgue-Borel-measurable and square integrable)
with generalized derivatives ∇u of class L2(Ω)d . The Hilbert space H 1

0 (Ω) is
the subspace of H 1(Ω) of functions fulfilling homogeneous Dirichlet boundary
conditions. ( . , . ) is the usual scalar product on L2(Ω).

Further, ε > 0 is a scaling parameter for fine-scale oscillations. When a certain
fine-scale behavior is needed, the precise definition of the functional dependency
ε 7→Aε will be given. For now, ε shall be interpreted as a superscript indicating
an abstract notion of fine-scale oscillations.

Remark 2.3. While (2.7) and (2.10) might look similar, they exhibit—from a
multiscale perspective—quite different behavior: The essential difference with
respect to multiscale schemes is the fact that (2.7) allows for nonlocal coupling
effects and responses between u and ϕ, whereas (2.10) is localized in this regard.

Remark 2.4. A generalization to an advection-diffusion problem in context
of the Heterogeneous Multiscale Method is discussed in Section 2.2.5. The
application of a Computational Homogenization scheme on an elasticity problem
can be found in Section 2.3.1.

2.1 Multiscale methods based on ansatz-space
splitting

Multiscale methods based on the splitting of ansatz spaces arose in the context
of (modern) variational formulation of partial differential equations and its nu-
merical treatment with the finite-element method. At heart, it is based on the
fundamental observation that subgrid phenomena, i. e. effects not captured by a
given resolution of a numerical discretization, can have two distinct sources [29]:
They may either result from a lack of discretization, more precisely, the lack of
necessary stability properties of the discretization. Or, they may come from some

10



2.1 Multiscale methods based on ansatz-space splitting

(a) (b)

Figure 2.2. Schematic example of a function u with multiscale character:
The Ritz projection uH (dashed line) onto a finite-element space V H differs
greatly in terms of macroscale behavior in case of a coefficient with multiscale
behavior (a) compared to a smooth coefficient with mild oscillations (b).

physical (subgrid) phenomena that are present in the model but not captured by
the given macroscale resolution.

The stability aspect of numerical discretizations is a well understood field of
research, so there is hope that techniques developed for the former are also appli-
cable to the latter. In spirit of this reasoning, Hughes et al. [60,62,63] and Brezzi [29]

developed the Variational Multiscale Method (VMM) that shall be examined in
detail in the following section.

2.1.1 Variational Multiscale Method (VMM)

Assume that the abstract model problem defined in (2.7), find u ∈ V such that

a(u,ϕ) = 〈 f ,ϕ〉 ∀ϕ ∈ V , (2.11)

is of multiscale character, i. e. the variational formulation (2.11) yields the correct
result u for the full space V , but any Ritz projection uH onto a (classical) finite-
element subspace V H leads to a bad approximation (see Figure 2.2). Now, we
assume that V can be decomposed into a direct sum

V =V H ⊕V f (2.12)

consisting of a finite-dimensional finite-element space V H and a fine-scale space
V f . Various different splittings are possible. For the moment we just assume that
the splitting is direct in the sense of vector spaces so that subsequent equations are
well defined. Additional orthogonality relations are discussed in Section 2.1.4.

11



2 A survey of multiscale methods

Following the notation and general considerations introduced by Brezzi [29],
Equation (2.11) can be rewritten as: Find uH ∈V H , u f ∈ V f such that

a(uH ,ϕH )+ a(u f ,ϕH ) = 〈 f ,ϕH 〉 ∀ϕH ∈V H , (2.13a)

a(u f ,ϕ f )+ a(uH ,ϕ f ) = 〈 f ,ϕ f 〉 ∀ϕ f ∈ V f . (2.13b)

Due to the linearity of a we immediately get:

Lemma 2.5. The variational formulation (2.13) is well defined and admits a
one-to-one correspondence to (2.7).

Now, let T : V f ∗→V f denote the solution operator associated with (2.13b).
More precisely, T satisfies

a(T f ,ϕ f ) =



f ,ϕ f � ∀ϕ f ∈ V f , ∀ f ∈ V f ∗. (2.14)

With

L : V →V ∗, L ϕ = a(ϕ, . ) (2.15)

equation (2.13a) can be restated as

a(uH ,ϕH )+ a(T ( f −L uH ),ϕH ) =



f ,ϕH � ϕH ∈V H . (2.16)

This statically condensed equation is a typical starting point for variational multi-
scale formulations. Furthermore, it allows for a precise definition of the notion
of multiscale character (in the context of VMM).

Definition 2.6. A problem is of multiscale character (in the sense of VMM) if the
fine-scale contribution a(T ( f −L uH ),ϕH ) is of the same order as a(uH ,ϕH )
for every computationally feasible V H .

The idea of the VMM approach is to find a localized, finite-dimensional sub-
space formulation

V f =
∑

i

V f
i ⊂V

f (2.17)

such that with the solution operators Ti : V f
i

∗
→V f

i it holds true that
∑

i

a
�

Ti ( f −L uH ),ϕH � ≈ a
�

T ( f −L uH ),ϕH �. (2.18)

12



2.1 Multiscale methods based on ansatz-space splitting

However, it is a delicate matter to construct a good subspace approximation
(2.17) that also allows for an efficient approximation of a(T ( f −L uH ,ϕH ). One
has to keep in mind that the goal is to construct an efficient multiscale method
that should allow for good parallelization of assembly and solution processes,
and should in total be cheaper than a straightforward numerical treatment with
a full resolution of the original problem.

We examine two reconstruction approaches in the following.

2.1.2 Residual-Free Bubbles and Element Green’s Functions

The traditional approach developed to approximate the fine-scale contribution
is via so-called Residual-Free Bubbles or Element Green’s Functions. Let TH be a
mesh covering Ω and let V H be the corresponding ansatz space with linear finite
elements. Define a space of element-wise bubbles [29]

V f
B :=

∏

K∈TH

H 1
0 (K). (2.19)

Remark 2.7. Above choice (2.19) for a fine-scale approximation is consistent
and, in case of a linear space V H , the sum of macro- and microscale spaces is
direct, i. e. V H ⊕V f

B ⊂V . For a higher polynomial degree for the finite-element
ansatz V H additional constraints are necessary to ensure direct summability.

Equation (2.13) decouples (2.13b) into localized fine-scale contributions

u f =
∑

K∈TH

u f
K , u f

K ∈H 1
0 (K), (2.20a)

a(u f
K ,ϕ f

K) =



f −L uH ,ϕ f
K

�

∀ϕ f
K ∈H 1

0 (K). (2.20b)

Let TK : H−1(K)→H 1
0 (K) denote the solution operator associated with (2.20b).

Inserted into (2.13a) the coarse-scale equation now reads

a(uH ,ϕH )+
∑

K∈TH

a
�

TK( f −L uH ),ϕH �=



f ,ϕH � . (2.21)

Remark 2.8. The name Residual-Free Bubbles comes from the following fact:
Given a fine-scale discretization to solve the fine-scale problems approximately

V f
B :=

∏

K∈TH

V h(K) ⊂ V f
B =

∏

K∈TH

H 1
0 (K), (2.22)
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2 A survey of multiscale methods

and a localizing property for the variational form a (e. g. in form of problem (2.10)),
a(ϕ,ψ) = (A∇ϕ,∇ψ), relatively few macroscale degrees of freedom couple into
the fine-scale problem. Consequently, the coarse-scale equation (2.16) can be
rewritten by a Schur’s complement approach:

∑

K ,suppϕi∩K 6=;

∫

K
A∇ϕH

j · ∇ϕ
H
i dx −

∫

K
A∇(TKϕ

H
j ) · ∇ϕ

H
i dx

=
∑

K ,suppϕi∩K 6=;

∫

K
f ϕH

i dx −
∫

K
A∇(TK f ) · ∇ϕH

i dx. (2.23)

This allows for an efficient parallel assembly of the macroscale problem where no
macroscale residual enters the fine-scale feedback computations explicitly, hence
residual free [60].

Remark 2.9. The motivation behind ansatz (2.19) is owed to the restricted com-
putational possibilities of the time the method was first formulated. Spending
some degrees of freedom for a local subspace reconstruction of (2.20b) with a
priori considerations can result in a good stabilization of the subscale behavior.
Given the nature of Equation (2.20b), a better approximation of the fine-scale
response is likely reachable by a bubble space approximation than by pure en-
richment of the macroscale finite-element ansatz.

A similar approach, originally formulated by Hughes [60] arises from the use
of an Element Green’s Function formulation by expressing all terms coming from
the fine-scale contribution by the Green’s function associated with (2.20b):

Definition 2.10. Let gK denote the classical Green’s function associated with
the solution of (2.20b), i. e. for a given right hand side f and withLK denoting
the variational operator of (2.20b) in strong form, the solution ofLK u ≡ f can
be expressed as

u =
∫

gK(x, y) f (y)dy. (2.24)

With the help of gK the fine-scale contribution a
�

TK( f −L uH ),ϕH
�

in the
condensed equation (2.16) can be expressed as

a
�

TK( f −L uH ),ϕH �=



LϕH ,TK( f −L uH )
�

=
∫

K

∫

K
gK(x, y)LϕH (x) ( f −L uH )(y)dy dx. (2.25)
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2.1 Multiscale methods based on ansatz-space splitting

Remark 2.11. The motivation behind a description of the fine-scale contribution
in form of Equation (2.25) lies in the possibility of a pure a priori treatment of
(2.25). The behavior of Green’s functions is a well established field of research.

Both approaches, Residual-Free Bubbles and Element Green’s Functions, lead
to similar descriptions depending on the concrete approximation chosen (for
the fine-scale problems, or the Green’s function, respectively). It is important to
note that the basic idea behind both approaches is to enable a relatively cheap
stabilization technique for multiscale problems. It is possible to allow only for
a few degrees of freedom (even just one degree of freedom) for the fine-scale
reconstruction, for example by choosing a one-dimensional bubble element

V f
B :=

�

ϕ ∈ P 4(K) : ϕ(x)
�

�

K ≡ 0
	

, (2.26)

or by approximating the Green’s function gK by

gK ≈ τδ(x − y) (2.27)

with a scalar τ ∈ R suitably chosen. The correspondence between both ap-
proaches is examined in depth by Brezzi et al. [30]

Remark 2.12. Various stabilization techniques, that were developed and formu-
lated independently of the VMM ansatz, can be recast as a derivation based on
(2.25) in context of the VMM ansatz [60]. We state an example by Hughes [60] in
the context of above abstract model problem (2.7). Consider an approximation
of gK(x, y) by the Dirac distribution,

gK(x, y)≈ τδ(x − y), (2.28)

with a degree of freedom τ ∈R chosen such hat
∫

K

∫

K
gK(x, y)dx dy = τ

∫

K

∫

K
δ(x − y)dx dy. (2.29)

Inserting (2.28) and (2.29) into (2.25) leads to

a(uH ,ϕH )+
∑

K∈TH

τ(K)
∫

K
( f −L uH )LϕH dx =




f ,ϕH � , (2.30a)

with a cell-wise stabilization parameter

τ(K) :=
1
|K |

∫

K

∫

K
gK(x, y)dx dy. (2.30b)
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2 A survey of multiscale methods

This is a classical Galerkin least-squares stabilization, except for the choice of
scaling parameter τ that is not determined by a classical heuristic approach
(bound to the local mesh size) but by a refined choice determined by (2.29) that
takes fine-scale influences into account. For a thorough investigation as well as
an overview of more involved schemes we refer to Hughes et al. [60,62,63].

2.1.3 Localization techniques by partition of unities

The strict confinement to function spaces with support inside a cell in the bubble-
space ansatz

V f ⊂V f
B =

∏

K∈TH

H 1
0 (K) (2.31)

has the severe drawback that it only allows for fine-scale responses localized within
a macro-cell K . The a priori assumption that no inter-cell fine-scale responses
occur does not have to be satisfied, meaning that a VMM approach with bubbles
might result in an unstable approximation with

�

�

�

∑

i

a
�

Ti ( f −L uH ),ϕH �
�

�

��
�

�

�a
�

T ( f −L uH ),ϕH �
�

�

�. (2.32)

This phenomenon, i. e. the error due to non-matching periodicities of the sam-
pling (in this case due to strict homogeneous Dirichlet conditions on macro-cell
boundaries) with the inherent periodicity of the micro-structure is known as
resonance error [59].

It is possible to augment V f to take missing (inter macro-cell) fine-scale fea-
tures into account. The tradeoff is a higher computational complexity. In the
following we present a modified localization technique proposed and analyzed
in depth by Larson and Målqvist [67,68,81] that addresses this problem. It is based
on a (nodal-oriented) partition of unity where the size of the individual fine-
scale-reconstruction patches, more precisely the position of artificial boundary
conditions of the fine-scale reconstructions, can be chosen at will—ideally con-
trolled by a priori or a posteriori techniques (as will be discussed later).

Let
�

ψi

	n
i=1
⊂ H 1(Ω) be a partition of unity, e. g. the nodal basis of a linear

finite-element space V H . Split the fine-scale equation as follows:

u f =
n
∑

i=1

u f
i , u f

i ∈ V
f , (2.33a)

a(u f
i ,ϕ f ) =




f −L uH ,ψiϕ
f � ∀ϕ f ∈ V f, i = 1, . . . , n. (2.33b)
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2.1 Multiscale methods based on ansatz-space splitting

TH

•

suppψi

ωi

Figure 2.3. A patchωi ⊂TH for a nodal basis function ψi .

The fine-scale equations are now localized by imposing artificial boundary
conditions. For each nodal basis function ψi fix a simply-connected patchωi ⊂
TH with suppψi ⊂ωi (see Figure 2.3) and define a space

V f
ωi

:=
n

ψ ∈ V f : suppψ⊂ωi

o

. (2.34)

This leads to

a(uH ,ϕH )+ a(u f ,ϕH ) = 〈 f ,ϕH 〉 ∀ϕH ∈V H , (2.35a)

a(u f
i ,ϕ f ) =




f −L uH ,ψiϕ
f � ∀ϕ f ∈ V f

ωi
, ∀ i = 1, . . . , n. (2.35b)

By construction, the splitting (2.35) is again a conforming ansatz, i. e.

V H ⊕
∑

i

V f
ωi
⊂ V . (2.36)

The difference lies in the possibility to increase the sampling region as necessary.

Remark 2.13. It is noteworthy to mention that (2.35) is by construction always
“oversampling”, i. e. even for the smallest non-degenerate choice of ωi every
macro cell is sampled for every nodal basis function with intersecting support
in ωi . This makes an a posteriori method for controlling the local patch size
ofωi highly necessary. On the other hand, the splitting (2.35) is more natural
in the sense that it suppresses the influence of artificial boundary conditions
“isotropically” (for every nodal point). In contrast, the bubble-space ansatz forces
strict confinement to

�

ϕ ∈ V f : ϕ
�

�

∂ K ≡ 0 ∀K ∈ TH

	

, (2.37)

which completely removes any fine-scale modes not identically vanishing on
individual element boundaries.
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2 A survey of multiscale methods

2.1.4 On the choice of subspaces

Besides the influence of artificial boundary equations another crucial aspect of
a VMM approach is the choice of “orthogonality” for the space decomposition
V H⊕V f . By construction, the bubble-space ansatz is always direct for the choice
of a linear finite-element space V H . For higher polynomial degrees, or for the
partition-of-unity approach, the fine-scale space V f has to be restricted. From
an implementational standpoint a natural choice is the hierarchical basis method,
where V h(ωi ) is chosen to be part of a fine, global finite-element ansatz V h on a
refined mesh Th of TH divided by V H to ensure strict summability [81]:

Definition 2.14. Let TH (Ω) be a mesh covering Ω, and Th(Ω) ⊃ TH (Ω) be a
refined mesh. With the nodal interpolant IH : V h(Ω)→V H (Ω) define

V h(ωi ) :=
�

ϕ ∈V h(Ω) : suppϕ ⊂ωi and IHϕ ≡ 0
	

. (2.38)

A more expensive approach than the hierarchical basis method is to enforce
L2-, H 1-, a-orthogonality for the subspaces by orthogonalizing V h(ωi ) such that

�

ϕH ,ϕ f )L2(ωi )
= 0 ∀ϕH ∈V H , ∀ϕ f ∈V h(ωi ), or (2.39)

�

∇ϕH ,∇ϕ f )L2(ωi )d
= 0 ∀ϕH ∈V H , ∀ϕ f ∈V h(ωi ), or (2.40)

a
�

ϕH ,ϕ f ) = 0 ∀ϕH ∈V H , ∀ϕ f ∈V h(ωi ), (2.41)

respectively. This leads to considerably improved localization of fine-scale prob-
lems, and consequently less influence of artificial boundary conditions. We refer
to Hughes and Sangalli [61] for a detailed theoretical and numerical analysis for
different projector choices (L2- and H 1-orthogonal), as well as to a publication
by Målqvist and Peterseim [82] that shows results for the localizing property of
an a( . , . )-orthogonal splitting. However, constructing spaces with high orthogo-
nality requirements is very expensive [81].

2.1.5 Implementational aspects and scale separability

Given the nodal basis {ψH
i }i∈N of V H the Equation (2.35) can be rewritten as a

linear system of equations AU = F ,

Ai j := a(ϕH
j ,ϕH

i )−
∑

k∈N
a
�

T h
k (ψ

H
k ϕ

H
j ),ϕ

H
i

�

, (2.42)

Fi := ( f ,ϕH
i )−

∑

k∈N
a
�

T h
k (ψ

H
k f ),ϕH

i ), (2.43)

with the solution operatorT h
k : H−1(Ω)→V h(ωk) given by (2.35b). In summary,

we have established Algorithm 1.
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2.1 Multiscale methods based on ansatz-space splitting

Algorithm 1: General VMM algorithm.

– Choose a macroscale discretization V H of Ω with nodal basis {ψH
i }i∈N .

for each i ∈N do
– Choose a patchωi with a finite-element discretization V h(ωi ).

while stopping criterion not reached do
for k ∈N do

– Compute Tk(ψ
H
k f ) according to (2.35b).

for every nodal basis ϕH
i ∈ {ψ

H
ν }ν with supp (ϕH

i )∩ supp (ψH
k ) 6= ; do

– Compute a(Tk(ψ
H
k f ),ϕH

i ) and add contribution to right hand
side F .

for every ϕH
j ∈ {ψ

H
ν }ν with supp (ϕH

j )∩ supp (ψH
k ) 6= ; do

– Compute Tk(ψ
H
k ϕ

H
j ) according to (2.35b).

for every ϕH
i ∈ {ψ

H
ν }ν with supp (ϕH

i )∩ supp (ψH
k ) 6= ; do

– Compute a(Tk(ψ
H
k ϕ

H
j ),ϕ

H
i ) and add contribution to

system matrix A.

– Solve macroscale problem AU = F .

– Adapt V H and/or {V h(ωi )}i∈N with a suitable strategy.
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2 A survey of multiscale methods

Remark 2.15. Special care must be taken when numerically computing (2.42)
or (2.43). Even with ϕH

i , ϕH
j ∈ V H (Ω) being functions from a coarse scale,

a(ϕH
j ,ϕH

i ) still exhibits fine-scale fluctuations. This makes a summed quadrature
rule necessary in order to evaluate (2.42) and (2.43) correctly.

The above VMM approach allows for a straight forward parallelization of the
assembly process, where for a given entry Ai j or Fi the fine-scale contribution
(2.43) and coarse scale par (2.42) can be computed individually on different threads
of execution (in case of thread parallelization).

In light of Remark 2.15 it is best to do all assembly work on the fine-scale grid
Th(ωi ) associated with the patch-wise fine-scale problems (and especially use it
for all numerical quadrature). Such an assembly of the matrix A is essentially a
Schur’s complement approach, where the resulting linear equation AU = F is
much smaller than the full system and can be solved in a single thread of execution
(or computing node). If a local fine-scale reconstruction is desired, it is possible
to store the linear system of equation defined by (2.13b) in a suitable manner and
reconstruct the contribution U f

i with it.

Remark 2.16. Given the fact that for a each individual microscale region the
fine-scale response has to be computed for each nodal basis with non-vanishing
support in the microscale region, direct solvers are preferred for the fine-scale
problems. For example, for a linear finite-element ansatz it is already necessary
to compute nine values for each of the nodal basis functions and one additional
inhomogeneity, see Equation (2.43).

Taking both remarks into account, a modified, detailed version of Algorithm 1
can be formulated, see Algorithm 2 on the next page.

Remark 2.17. The maximal resolution τres for the above (essentially) two-scale
VMM is roughly given by

τres = 2−Hmax−hmax . (2.44)

This implies a natural limit in the degree of scale separation that can be captured
by a two-scale VMM formulation. For a higher degree of scale separation, it is
necessary to introduce intermediate scales, or to use modeling assumptions in
order to cut the fine-scale problems down in size.

2.1.6 Related methods

The localization principle employed in the VMM ansatz is closely related to a
number of different numerical multiscale methods. Notable examples are the
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2.1 Multiscale methods based on ansatz-space splitting

Algorithm 2: Detailed VMM algorithm with direct solver.
– Start with an initial macroscale discretization TH (Ω) of Ω with nodal basis
{ψH

i }i∈N , patches {ωi}i∈N with discretization Th(ωi ).

while stopping criterion not reached do

for ψH
k , k ∈N do

– Set up Th(ωk) and assemble AF
k :

�

AF
k

�

νµ
= (ϕ f

µ,ϕ f
ν ) ∀ϕ f

µ,ϕ f
ν ∈V h(ωk).

– Compute matrix decomposition of AF
k : L R=AF

k .

– Solve for inhomogeneity ψH
k f :

�

B F
k

�

ν
:= (ψH

k f ,ϕ f
ν ),

U F
k = R−1(L−1B F

k ).

for every nodal basis ϕH
i ∈ {ψ

H
ν }ν with supp (ϕH

j )∩ supp (ψH
k ) 6= ; do

– Let ΦF
i be the interpolation of ϕH

i onto V h(ωk).

– Add contribution B F
k ·Φ

F
i to right hand side Fi .

– Subtract contribution (AF
K U F

K ) ·ΦF
i from right hand side Fi .

– Solve for ψH
k ϕ

H
i :
�

B F
k ,i

�

ν
:= (ψH

k ϕ
H
i ,ϕ f

ν ), U F
k ,i = R−1(L−1B F

k ,i ).
for every nodal basis ϕH

j ∈ {ψ
H
ν }ν with

supp (ϕH
i )∩ supp (ψH

k ) 6= ; do

– Let ΦF
j be the interpolation of ϕH

j onto V h(ωk).

– Add contribution B F
k ,i ·Φ

F
j to system matrix Aj i .

– Subtract (AF
K U F

K ,i ) ·Φ
F
j from right hand side Aj i .

– Solve macroscale problem AU = F .

– Modify TH (Ω) and/or {Th(ωi )}i∈N with a suitable strategy.
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2 A survey of multiscale methods

Multiscale Finite-Element Method (MsFEM) introduced by Hou and Wu [59] and
Efendiev and Hou [47], the Mixed Multiscale Methods by Arbogast [11,12] and Chen
and Hou [32], the Two-Scale or Generalized Finite-Element Method by Matache and
Schwab [75,76] and variants thereof.

These models have different modeling assumptions but can be recast in the
same variational context (2.13) as the VMM. All have the same fundamental idea
in common, to augment or replace an insufficient coarse-scale space V H (Ω) by a
suitable approximation with (ideally) the same magnitude of degrees of freedom
(on the coarse-scale). This can happen by a variety of approaches.

Generalized-basis methods

The underlying idea of generalized-basis methods is to replace V H (Ω) by a space
of generalized ansatz functions that are able to cover the essential features of the
fine scale—an idea that can be traced back to Babuška and Osborn [14].

In the context of multiscale problems this ansatz was introduced by Hou
and Wu [59] and Efendiev and Hou [47,48] as the Multiscale Finite-Element Method
(MsFEM). The construction of generalized basis functions is done with the help
of a “multiscale mapping” [48] that connects a coarse-scale (finite-element) function
ϕH with its fine-scale counterpart ϕh (see Definition 2.18). The reconstruction of
ϕh leads (in some sense) to localized sampling problems. For the sake of simplicity
we present a prototypical example (with a straightforward multiscale mapping)
which can be regarded as a simplification of the full abstract framework [47,59].

Definition 2.18 (MsFEM ansatz [47,59]). Let TH (Ω) be a coarse-scale mesh. Fur-
ther, let V H (Ω) be an associated finite-element space and V h(Ω) ⊃ V H (Ω) a
fine-scale space with sufficient resolution. For K ∈ TH (Ω) define

V h(K) =
�

ϕ ∈V h(Ω) : suppϕ ∈K
	

, (2.45)

i. e. V h(K) shall have homogeneous Dirichlet boundary conditions. Now, for
K ∈ TH (Ω) and ϕH

i ∈V H (Ω) with supp (ϕH
i )∩K 6= ; define ϕh

K ,i ∈ ϕ
H
i +V h(Ω)

by
�

Aε∇ϕh
K ,i ,∇ψ

h�

K
= 0 ∀ψh ∈V h(K), (2.46)

and set

Ṽ h(Ω) :=
n

∑

K

ϕh
K ,i : ϕH

i ∈V H
o

. (2.47)
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This is a conforming ansatz space. The MsFEM problem formulation (as pro-
posed by Hou and Wu [59]) reads: Find u h ∈ Ṽ h(Ω) s. t.

�

Aε∇u h ,∇ϕh�=



f ,ϕh� ∀ϕh ∈ Ṽ h . (2.48)

Proposition 2.19 (Equivalence of MsFEM and VMM). The conforming MsFEM
formulation (2.48) can be embedded into the VMM ansatz defined by (2.16).

Proof. Let iH : Ṽ h(Ω)→ V H (Ω) denote the nodal interpolation onto V H (Ω)
and consider the split exact sequence

0→V H (Ω)→ Ṽ h(Ω)→ Ṽ h(Ω)/V H (Ω)→ 0 (2.49)

defined by the canonical embedding and the projection ϕh 7→ ϕh − iHϕ
h . With

ϕ f := ϕh − iHϕ
h and ϕH := iHϕ

h Equation (2.48) takes the form

�

Aε∇(uH + u f ),∇(ϕH +ϕ f )
�

=



f ,ϕH +ϕ f �

∀ϕH ∈V H (Ω), ∀ϕ f ∈ Ṽ h(Ω)/V H (Ω). (2.50)

By linearity this is equivalent to (2.13) and therefore to (2.16).

Remark 2.20. The ansatz (2.48) suffers from the very same type of resonance
error as the bubble-space ansatz (2.19). Similar mitigation techniques can be
applied as formulated in Subsection 2.1.3 for the VMM ansatz.

Remark 2.21. The MsFEM approach is by no means limited to a conforming
ansatz or the specific multiscale mapping on macro cells K ∈ TH as employed
in Definition 2.18. Different boundary conditions have been studied that can
lead to better approximation properties than the restriction to linear boundary
conditions in (2.46) [47,59].

2.2 Multiscale methods based on homogenization
principles

Classical homogenization theory is a mathematical field of research that examines
the “approximability” of a series of solutions uε of microscale models

L εuε = f ε. (2.51)

Here,L ε and f ε exhibit fine-scale features associated with a scaling factor ε > 0.
Under appropriate assumptions on the sequence of operatorsL ε and data f ε (that
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2 A survey of multiscale methods

will be formulated in the following), an effective solution u0 of a homogenized
problem

L 0u0 = f 0 (2.52)

can be constructed. The individual fine-scale solutions uε then converge,

uε→ u0, for ε→ 0 (2.53)

in a suitable norm.
A vast body of literature is available on general and specific homogenization

processes. For a general overview we refer to Bensoussan et al. [22], Sanchez-
Palencia [92], Allaire [7], Cioranescu and Donato [34], and Tartar [97].

Remark 2.22. Mathematical homogenization theory has its roots in the field of
asymptotic analysis in whose context formal expansions

uε(x) = u0(x, x
ε )+ εu1(x, x

ε )+ ε
2u2(x, x

ε )+ . . . , (2.54)
L ε =L 0+ εL 1+ ε2L 2+ . . . (2.55)

are used to match components in powers of ε to construct effective models [7,66,92].
The field of asymptotic analysis is a heuristic one; there exist examples in literature
that do not admit an expansion of the form (2.54) or (2.55) [46]. In contrast, math-
ematical homogenization theory is rigorous in the sense that precise convergence
results (in specific norms and orders of ε) can be proved.

2.2.1 Homogenization of the elliptic model problem

We assume that the model problem (2.7) has the following (local) periodicity
property; namely thatL ε admits a representation of the form

L εϕε =
�

Aε(x)∇ϕε,∇ .
�

(2.56)

with coefficients Aε ∈ L∞(Ω)d×d that can be expressed as

Aε(x) =A(x, x
ε ), with A∈C 0,1�Ω, L∞per(Y )

d×d �, (2.57)

where Y := [0,1]d is the so-called unit cell, and C 0,1(Ω,X ) denotes the space
of Lipschitz continuous functions defined on Ω with values in a Banach space
X . The precise definition of L∞per(Y ) and other periodic function spaces is given
below.
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2.2 Multiscale methods based on homogenization principles

Remark 2.23. The introduction of an additional degree of freedom y in A(x, y)
can be justified by a scale-separation assumption: Assume that ε� 1. Then, a
small variation δx of the location x on the microscale is so minuscule on the
coarse scale that it can be effectively regarded as being independent. Therefore, it
is justified to assume that every observable f with (spatial) multiscale features
can be described in terms of two variables, x for the coarse scale and y = x

ε on the
fine scale, hence f (x, y). The variable y can be physically interpreted as a hidden
variable describing fine-scale oscillations not resolvable on the coarse scale [46].

Remark 2.24. Only the local behavior of an observable f with multiscale charac-
ter is expressed with the finescale variable y—global behavior is already expressed
with the macroscopic variable x. This justifies the introduction of a periodicity
assumption on the observable with respect to y [66].

We introduce the following function spaces:

Definition 2.25 (Periodic function spaces). Let Y be the unit cell Y = [0,1]d

and fix the notation Y δ for a scaling of Y with δ > 0, Y δ := δY . Define an
equivalence relation on Rd by

x ≡ y mod Y δ ⇐⇒
x − y
δ
∈Zd . (2.58)

Furthermore, define x mod Y δ to be equal to the uniquely determined y ∈ Y δ

with x ≡ y mod Y δ and yi <δ, i = 1, . . . , d .
A function ϕ ∈ C k(Rd ) is said to be δ -periodic if ϕ(x + δz) = ϕ(x) ∀x ∈
Rd , z ∈Zd . We denote the space of all k-times differentiableδ-periodic functions
onRd by C k

per(Y
δ). This allows to add a notion of periodicity to the usual closure

of Lebesgue- and Sobolev-spaces: Let Lp
per(Y δ) be the closure of C∞per(Y

δ) in
Lp(Y δ) and let W m, p

per (Y δ) be the closure of C∞per(Y
δ) in W m, p(Y δ).

For the choice p = 2 we use the usual notation H for Hilbert spaces, i. e.

H m
per(Y

δ) :=W m,2
per (Y

δ). (2.59)

Furthermore, let H̃ m
per(Y

δ) :=
�

ϕ ∈H m
per(Y

δ) : −∫
Y
ϕ dx = 0

	

be equipped with
the homogeneous scalar product (∇ . ,∇ . ). Here, −∫ denotes the mean value,

−
∫

X
. . . =

1
|X |

∫

X
. . . for measurable X ⊂Ω. (2.60)

By abuse of notation, we allow functions ϕ ∈W m, p
per (Y δ), or ϕ ∈ Lp

per(Y δ), to be
interpreted as functions in W m, p

loc
(Rd ), or Lp

loc
(Rd ) respectively, by setting ϕ(x) =
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2 A survey of multiscale methods

ϕ(x mod Y δ) for x 6∈ Y δ . Finally, we fix the notation Y δ
x for a translation of

the rescaled unit cell Y δ to a new midpoint x,

Y δ
x = x − (0.5, . . . , 0.5)T +Y δ . (2.61)

All periodic spaces can also be defined for Y δ
x in a straightforward manner.

Consider the canonical elliptic model problem (2.10) to find uε ∈H 1
0 (Ω) s. t.

�

Aε∇uε,∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω). (2.62)

In the remainder of this subsection we present a homogenization result for
the elliptic multiscale problem (2.62), as well as rescaling results that will serve
as a starting point for the Heterogeneous Multiscale Method (HMM). The
homogenized problem corresponding to (2.62) is:

Definition 2.26 (Homogenized Problem). Find u0 ∈H 1
0 (Ω) s. t.

�

A0∇u0,∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω), where (2.63)

A0
i j (x) :=

∫

Y
A(x, y)

�

∇yωi (x, y)+ e i

�

·
�

∇yω j (x, y)+ e j

�

dy, (2.64)

and theωi ∈ H̃ 1
per(Y ) are solutions of so-called cell problems

∫

Y
A(x, y)

�

∇yωi (x, y)+ e i

�

· ∇ϕ dy = 0 ∀ϕ ∈ H̃ 1
per(Y ). (2.65)

Remark 2.27. The inherent difficulty to construct an effective equation and
solution of (2.62) lies in the pairing of two weak convergence processes: The
control of uε in H 1

0 (Ω) is as expected: uε is uniformly bounded in H 1
0 (Ω) with

respect to ε under the uniform ellipticity condition (2.9). This implies that there
exists a u0 ∈H 1

0 (Ω) such that up to a subsequence

uε+ u0 weakly in H 1
0 (Ω). (2.66)

However, the coefficients Aε(x) do not admit sufficient control. It is generally
only possible to show [34] the following:

Aε(x) + A(x) :=
1
|Y |

∫

Y
A(x, y)dy weak- ∗ in L∞(Ω). (2.67)

This convergence is not strong enough to take the simultaneous limit of the
expression Aε∇uε [97, Ch. 4], and in fact, it generally holds that Aε∇uε 6→ A∇u0.
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2.2 Multiscale methods based on homogenization principles

The principle idea to construct an effective equation for u0 emerging from
(2.62) is to exploit the periodicity assumption in context of a generalized con-
cept of convergence. Established methods are, e. g., the G- and Γ -convergence
by Spagnolo [95,96] and De Giorgi [39], H -convergence coined by Murat and Tar-
tar [80,97], or the concept of two-scale convergence introduced by Allaire [7–10]. All
these approaches have different advantages and are in principle also applicable to
non-periodic cases. We concentrate on the concept of two-scale convergence in
the following. The classical convergence result reads:

Proposition 2.28 (Classical homogenization result [7,22]). Problems (2.62) and
(2.63) are well defined and admit a unique solution. In particular, all cell problems
(2.65) are well defined and the resulting A0 defined by (2.64) is elliptic, symmetric
and positive definite. The sequence of solutions uε converges weakly in H 1

0 (Ω)
to u0,

uε+ u0 in H 1
0 (Ω). (2.68)

Proof. For a detailed proof of the statements we refer to Allaire [7], Bensoussan
et al. [22] and Cioranescu and Donato [34].

Remark 2.29. It is also possible to derive the effective problem by means of
asymptotic expansions and matching in the field of asymptotic analysis [22,46].

The qualitative convergence of the last proposition can be improved by the
following corrector result:

Proposition 2.30 (A corrector result by Allaire [7] and Hoang and Schwab [58]).
u0 is also part of the solution of the so-called two-scale homogenized problem: Find
u0 ∈H 1

0 (Ω), u1 ∈ L2
�

Ω, H̃ 1
per(Y )

�

s. t.

∫

Ω

∫

Y
A(x, y)

�

∇x u0(x)+∇y u1(x, y)
�

·
�

∇xϕ
0(x)+∇yϕ

1(x, y)
�

dy dx

=
∫

Ω

f (x)ϕ0(x)dx ∀ϕ0 ∈H 1
0 (Ω), ϕ

1 ∈ L2�Ω, H̃ 1
per(Y )

�

. (2.69)

It holds that

u1(x, y) =
∑

i

∇i u0(x)ωi (x, y), (2.70)
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2 A survey of multiscale methods

whereωi are the solutions of the cell problems as defined in (2.65). uε(x) two-scale
converges to∇u0(x)+∇y u1(x, y), i. e.

lim
ε→0

∫

Ω

∇uε(x) ·ψ
�

x,
x
ε

�

dx =
∫

Ω

∫

Y

�

∇u0(x)+∇y u1(x, y)
�

·ψ(x, y)dy dx

∀ψ ∈C∞c
�

Ω,C∞per(Y )
�d . (2.71)

In addition, if A admits the regularity A∈C 0,1
�

Ω,C 0,1(Y )
�

the following quanti-
tative convergence results are available



uε− u0


L2(Ω) = O
�

ε
�

, (2.72)


∇uε−∇
�

u0+ εu1(x, x
ε )
�



L2(Ω)d = O
�p
ε
�

. (2.73)

Proof. The correspondence of (2.69) to the two-scale problem was established by
Allaire [7]. The quantitative convergence rate in terms of ε was formulated by
Hoang and Schwab [58].

To embed modern numerical HMM formulations into this homogenization
context, a rescaled variant formulated by Ohlberger [88] is helpful.

Proposition 2.31 (Reformulation by Ohlberger [88]). It is possible to restate the
homogenized equation (2.63) with the homogenized coefficient A0 given by (2.64)
as follows: Find u0 ∈H 1

0 (Ω) s. t.

∫

Ω

−
∫

Y δ

A(x, y
δ )
�

∇x u0+∇yR(u
0)(x, y)

�

·
�

∇xϕ
0+∇yR(ϕ

0)(x, y)
�

dy dx

=
∫

Ω

f (x)ϕ0(x)dx ∀ϕ0 ∈H 1
0 (Ω), (2.74)

and the solutionR(ϕ)(x, y) ∈ L2
�

Ω, H̃ 1
per(Y

δ)
�

of the rescaled cell problem
∫

Y δ

A(x, y
δ )
�

∇xϕ(x)+∇yR(ϕ)(x, y)
�

· ∇ψdy = 0 ∀ψ ∈ H̃ 1
per(Y

δ). (2.75)

Proof. Follows immediately by elementary rescaling [88].

2.2.2 Heterogeneous Multiscale Method (HMM)

We present a derivation of the Finite-Element Heterogeneous Multiscale Method
(HMM) in the context of mathematical homogenization theory based on work
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2.2 Multiscale methods based on homogenization principles

by Ohlberger [88] and Abdulle [2]. The traditional derivation of the HMM can be
found in the original publications by E and Engquist [42,43]. For a given macroscale
discretization TH (Ω) a standard finite-element approximation of (2.10) with
(for simplicity) Q1 discretization, a linear mapping and a given quadrature rule
{(x̂i , qi )}i for a given cell K takes the form: Find U ∈V H s. t.
∑

K∈TH

|K |
∑

i

qi A
ε(xi )∇U (xi ) · ∇ϕ(xi )

=
∑

K∈TH

|K |
∑

i

qi f (xi )ϕ(xi ) ∀ϕ ∈V H . (2.76)

The principle idea of the HMM is to use the homogenized equation (2.74) as a
starting point for an improved approximation. In order to deal with the unknown
hidden variable y

δ in A(x, y
δ ) an approximation A(x, y

δ ) ≈ Aε(x) is necessary.
Then, discretizing (2.74) and (2.75) leads to: Find U ∈V H s. t.

∑

K∈TH

|K |
∑

i

qi
−

∫

Y δ
K ,i

Aε(x)∇
�

U (x)+R h
K ,i (U )(x)

�

· ∇
�

ϕ(x)+R h
K ,i (ϕ)(x)

�

dx

=
∑

K∈TH

|K |
∑

i

qi f (xi )ϕ(xi ) ∀ϕ ∈V H , (2.77)

with a discretized fine-scale reconstructionR h
K ,i : H 1(Ω)→V h(Y δ

K ,i ) associated
with a finite-element discretization V h(Y δ

K ,i )⊂ H̃ 1
per(Y

δ
K ,i ) and defined by

−
∫

Y δ
K ,i

Aε(x)∇
�

R h
K ,i (ϕ)(x)+ϕ(x)

�

· ∇ψ(x)dx = 0 ∀ψ ∈V h(Y δ
K ,i ). (2.78)

Remark 2.32. It is insightful to note that the HMM discretization (2.78) is
up to quadrature algebraically equivalent to a direct numerical treatment of
(2.63): An approximate assembly of A0 defined by (2.64) with a finite-element
discretization for the cell problems (2.65) in combination with a standard finite-
element discretization of the macroscale problem (2.63) yields the same algebraic
system.

Remark 2.33. Under the strong periodicity assumption on A—as required by
the model problem—and under scale separation, i. e. ε� 1, the HMM allows
for both, an efficient parallel assembly of the fine-scale reconstructions (2.78) as
well as for a net saving of total computational cost because δ can be chosen as a
small multiple of ε resulting in a small total area with fine-scale reconstruction,
see Figure 2.4. However, strong periodicity is a very restrictive assumption and
cannot always be assumed to hold in practice.
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TH (Ω)

Th(Y
δ
K ,i )

Figure 2.4. Macroscale discretization TH with fine-scale sampling regions
Y δ

K ,i (in gray) at quadrature points

2.2.3 Implementational aspects

From an implementational point of view, HMM approaches are closely related
to VMM. Both rely on a coarse macroscale description that can be treated by
traditional numerical methods. Due to the fact that fine-scale responses are
modeled by localized problems that couple to the macroscale it is possible to
employ the same Schur’s complement approach as in the case of VMM. Let
�

ΨH
i

	

i∈N denote the nodal basis of V H (Ω). Then, Equation (2.77) can be written
as a linear system of equations, AU = F , where the matrix A and right hand side
F are defined as

Aµν =
∑

K

|K |
∑

i

qi
−

∫

Y δ
K ,i

Aε(x)∇
�

ϕν +R
h
K ,i (ϕν)

�

· ∇
�

ϕµ+R
h
K ,i (ϕµ)

�

dx, (2.79)

Fν =
∑

K

|K |
∑

i

qi f (xi )ϕν(xi ), with (2.80)

−
∫

Y δ
K ,i

Aε(x)∇
�

R h
K ,i (ϕ)(x)+ϕ(x)

�

· ∇ψ(x)dx = 0 ∀ψ ∈V h(Y δ
K ,i ). (2.81)

Remark 2.34. In contrast to the VMM approach, the HMM has the advantage
that all functions already “live” on the correct scale, i. e. in contrast to VMM
(see Remark 2.15) every sampling/quadrature process that encounters fine-scale
features is already on Y δ

K ,i with an appropriate discretization Th(Y
δ
K ,i ).

Following the same considerations as expressed in Subsection 2.1.5 for the
VMM, it is best to compute (2.81) by a direct method. Furthermore, the same
considerations with respect to (thread) parallelization apply. In summary, we
end up with Algorithm 3 for the HMM (that has remarkable similarities to
Algorithm 2).

30



2.2 Multiscale methods based on homogenization principles

Algorithm 3: General HMM approach
– Start with an initial macroscale discretization TH (Ω) and a quadrature rule
(x̂i , qi )i as well as for each cell K and quadrature point x̂i a sampling region
Y δ

K ,i and discretization Th(Y
δ
K ,i ).

while stopping criterion not reached do

for each K ∈ TH (Ω) do

for each quadrature point (x̂i , qi ) do

– Set up Th(Y
δ
K ,i ) and assemble AF

K ,i :
�

AF
K ,i

�

νµ
= a(ϕ f

µ,ϕ f
ν ).

– Compute matrix decomposition of AF
K ,i : L R=AF

K ,i .

for every nodal basis ϕH
µ ∈ {ψH

k }k with supp (ϕH
µ )∩Y δ

K ,i 6= ; do
– Solve for ϕH

µ :
�

B F
K ,i ,µ

�

k
:=− −∫

Y δ
K ,i

Aε∇ϕH
µ · ∇ϕ

f
k dx, U F

K ,i ,µ = R−1(L−1B F
k ,i ,µ)

– Store UK ,i ,µ.

– Add contribution ( f ,ϕH
µ )Y δ

K ,i
to right hand side Fµ.

for every nodal basis ϕH
µ ∈ {ψH

k }k with supp (ϕH
µ )∩Y δ

K ,i 6= ; do

for every nodal basis ϕH
ν ∈ {ψH

k }k with supp (ϕH
ν )∩Y δ

K ,i 6= ;
do

– Add contribution qi |K |/|Y δ
K ,i |

�

AF
K ,i U

F
K ,µ

�

·U F
K ,ν to

system matrix Aµν .

– Solve macroscale problem AU = F .

– Modify macroscale discretization TH and/or microscale
discretization Th(Y

δ
K ,i ).

31



2 A survey of multiscale methods

2.2.4 On the question of periodicity and scale separation

The underlying regularity assumption of the discussion in the previous subsection,
namely the strong periodicity assumption Aε(x) =A(x, x

ε ) is critical. On the one
hand it allows for a thorough theoretical treatment—and a good “saving” of total
computational time (see Remark 2.33 and Figure 2.4)—on the other hand strong
periodicity conditions are a severe limitation.

Especially the implied exact knowledge of ε is a problem. If the sampling sizeδ
is not an integral multiple of ε the model error uδ− uε might be of order 1. This
phenomenon is known as resonance error [44,59]. Thus, a practical implementation
is usually forced to choose local sampling sizes δ quite large compared to the
assumed periodicity of the roughness ε.

Furthermore, for the HMM method as defined above, a refinement in the
macroscale also forces a (significant) increase of individual sampling regions—and
will inevitably lead to drastic redundant sampling when the fine-scale regions
start to overlap. This is due to the fact that macro- and microscale refinements
are not entirely decoupled from each other.

2.2.5 Generalizations

The basic HMM presented so far has been generalized to a big class of nonlinear
and time-dependent problems. We refer to Henning and Ohlberger [52–55] and
Abdulle and Nonnenmacher [2–5,83]. In the following, a generalization to an
advection-diffusion problem is presented.

Generalized advection-diffusion problems

The model problem (2.62) is a special case of a generalized class of time-dependent
advection-diffusion problems for which a (mathematical) homogenization theory
is available [74]. We give a brief overview and point to relevant literature.

Definition 2.35 (Multiscale advection-diffusion-reaction-problem [52,53]).
Let I = [0,T ] be a time interval and A : I × Y → Rd×d be coefficients and
b : I×Y →Rd be an advection field with multiscale character. Let c : I×Y →R
be a reaction rate. We define the following advection-diffusion-reaction problem:
Find uε : I ×Ω→R s. t.

∂t uε − ∇ ·
�

Aε(t ; x)∇uε
�

+
1
ε

b ε(t ; x) · ∇uε +
1
ε2

cε(t ; x)uε = 0, (2.82)

with the initial condition uε(0; .) = u0 in Ω for a given u0 ∈ L2(Ω), and the
definitions Aε(t ; x) =A(t , x

ε ), b ε(t ; x) = b (t , x
ε ), cε(t ; x) = c(t , x

ε ).
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2.2 Multiscale methods based on homogenization principles

For a discussion of well-posedness and unique solvability of the advection-
diffusion-reaction problem (2.82) we refer to Henning and Ohlberger [52,53].

Assume that A is symmetric and uniformly elliptic in the sense of (2.8) and
(2.9) and admits a representation in W 1,∞�I ,W 1,∞

per (Y )
d
�

. Let the advection field
b be of class W 1,∞�I ,W 1,∞

per (Y )
d
�

and divergence-free, i. e.

∇x · b = 0, ∇y · b = 0, a. e. on I ×Y, (2.83)

and let c ∈W 1,∞�I , L∞per(Y )
d
�

. In correspondence to the two-scale homogenized
formulation (2.69) the following convergence result holds true:

Proposition 2.36 (Homogenization result for the adv.-diff. prob. [52,53,74]).
Let u0 ∈ L2

�

I ; H 1(Ω)
�

, u1 ∈ L2
�

I ; H̃ 1
per(Y )

�

be the solution of the two-scale ho-
mogenized equation with drift [53]:

−
∫

I
(u0,∂tϕ

0)L2(Ω)dt +
∫

I

∫

Ω

∫

Y
A(t , y)

�

∇u0+∇y u1� ·
�

∇ϕ0+∇yϕ
1�dy dx dt

+
∫

I

∫

Ω

∫

Y
b (t , y) ·

�

∇u0+∇y u1�ϕ1(y)dy dx dt

−
∫

I

∫

Ω

∫

Y
b (t , y) · ∇ϕ0 u1(y)dy dx dt =

�

u0,ϕ
0(0, .)

�

L2(Ω), (2.84)

with the average b (t ) :=
∫

Y
(b (t , y)dy. Then,

uε→ u0 two-scale with drift,
∇uε→∇x u0+∇y u1 two-scale with drift.

(2.85)

Two-scale convergence with drift is defined as [10,52,74]:

Definition 2.37 (Two-scale convergence with drift [10,52,74]). Let

B(t ) :=
∫ t

0

∫

Y
b (s , y) dy ds . (2.86)

In analogy of (2.71) a sequence (vε) ∈ L2(I ×Y ) two-scale converges with drift
B(t ) to a limit v0 ∈ L2(I ×Ω×Y ) if and only if

lim
ε→0

∫

I

∫

Ω

vε(t , x) ·ψ
�

t , x −
B(t )
ε

,
x
ε

�

dx dt

=
∫

I

∫

Ω

∫

Y
v0(t , x, y)ψ(t , x, y)dy dx dt

∀ψ ∈C∞
�

I ,C∞c
�

Ω,C∞per(Y )
�d �. (2.87)
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Corollary 2.38. u0 is the solution of the homogenized equation
�

∂t u0,ϕ
�

+
�

A0∇u0,∇ϕ
�

= 0 ∀ϕ ∈H 1
0 (Ω), (2.88a)

u0(0, .) = u0 (2.88b)

with

A0
i j (t ) :=

∫

Y
A(t , y)

�

∇yωi (t , y)+ e i

�

·
�

∇yω j (t , y)+ e j

�

dy, (2.89)

and theωi (t , .) ∈ H̃ 1
per(Y ) are solutions of the cell problems

∫

Y
A(t , y)

�

∇yωi (t , y)+ e i

�

· ∇yϕ dy

+
∫

Y
b (t , y) ·

�

∇yωi (t , y)+ e i

�

ϕ dy = 0 ∀ϕ ∈ H̃ 1
per(Y ). (2.90)

Proof of Proposition 2.36 and Corollary 2.38. A proof of a more general variant
of the statements is given by Henning [52,53]. The proof is based on the general
framework of two-scale convergence and the notion of “two-scale convergence
with drift” developed by Allaire [7,10] and Marušić-Paloka and Piatnitski [74].

Now, an HMM can be derived by means of a Rothe method. First, Equa-
tion (2.88) is discretized in time with a suitable time-stepping scheme. After
that, (2.88) and (2.90) are simultaneously discretized in space with the HMM
discretization developed in Subsection 2.2.2.

In analogy of (2.77), the discretized version of the diffusive term
�

A0∇u0,ϕ0
�

takes the form:
∑

K∈TH

|K |
∑

i

qi
−

∫

Y δ
K ,i

Aε(x)∇
�

U (x)+R h
K ,i (U )(x)

�

·∇
�

ϕ(x)+R h
K ,i (ϕ)(x)

�

dx,

(2.91)

where a discretized fine-scale reconstruction

R h
K ,i : H 1(Ω)→V h(Y δ

K ,i ) (2.92)

associated with a finite-element discretization V h(Y δ
K ,i )⊂ H̃ 1

per(Y
δ
K ,i ) is defined

by:

−
∫

Y δ
K ,i

Aε(x)∇
�

R h
K ,i (ϕ)(x)+ϕ(x)

�

· ∇ψ(x)dx

+ −
∫

Y δ
K ,i

b ε(t , y) ·
�

∇yωi (t , y)+ e i

�

ϕ dy = 0 ∀ψ ∈V h(Y δ
K ,i ). (2.93)
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2.3 Multiscale methods based on physical upscaling
principles

In contrast to the mathematical derivation of multiscale schemes that was pre-
sented in the last two subsections, the emphasis within upscaling and computa-
tional homogenization techniques lies on a physically sound derivation of multiscale
descriptions. In general, this involves the formulation of (possibly independent)
macroscale and microscale models coupled by physical first principles [49] (see
Figure 2.1 on page 8).

Generally, scale separation is assumed in the sense that it is possible to describe
the fine scale in terms of a hidden variable (“hidden” because not visible on the
macroscale, see Remark 2.23 on page 25). This justifies the introduction of
localized fine-scale problems for each macroscopic point x ∈Ω—the so-called
representative volume element (RVE). Similarly to cell problems in mathemati-
cal homogenization theory, these fine-scale problems are localized by artificial
boundary values. However, in contrast to mathematical homogenization the
justification for the introduction of localized fine-scale problems is fundamen-
tally different. The former proves rigorous convergence results under a strong
periodicity assumption (or similar a priori assumptions) in a mathematical sense.
The latter justifies the introduction purely by a scale-separation hypothesis in
combination with upscaling principles: The RVE shall on average be “structurally
typical” [56] of the material, and the sampling region large enough so that the error
introduced by artificial boundary conditions is controlled [56].

2.3.1 An example from linear elasticity

To exemplify the approach we give a modeling example from linear elasticity. The
following discussion is based on the outline and methodology given by Miehe
and Bayreuther [17,78].

Given a heterogeneous material in Ω ∈Rd described by a macroscopic defor-
mation

u : Ω→Rd , (2.94)

assume that the material follows the constitutive equation of linear elasticity, u is
the solution of an optimization problem defined over the space of all admissible
deformations:

inf
u adm.

1
2

�

σ ,ε
�

L2(Ω)d×d −
�

f , u
�

L2(Ω)d , (2.95)
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with the strain tensor

ε=
1
2

�

∇u +∇uT � ∈ L2(Ω)d×d (2.96)

and the Cauchy-stress tensor σ ∈ L2(Ω)d×d . Equivalently, the optimization prob-
lem reads in weak form:

�

σ ,∇ϕ
�

L2(Ω)d×d =
�

f ,ϕ
�

L2(Ω)d ∀ϕ ∈H 1(Ω)d ,

n ·σ = τ on ∂ Ωτ,
u = ud on ∂ Ωd ,

(2.97)

Remark 2.39. For a material without microstructure a relation of the form

σ =C : ε, (2.98)

with the fourth order elasticity tensor C : Ω→ Rd×d×d×d is known and the
combined system of equations (2.97) and (2.98) is closed.

We assume that the material is constituted by a fine scale (not visible on the
macroscale) so that a closed form of the macroscopic elasticity tensor C is not
available. The fine scale shall also be governed by a model of linear elasticity: For
every macro-point x ∈Ω there exists a microscopic displacement field uF (x, y) :
RVE(x)→Rd

�

σ F ,∇ϕ
�

L2(RVE(x))d×d = 0 ∀ϕ ∈H 1(RVE(x))d , (2.99)

σ F =C F : εF , (2.100)

with a known, microscopic fourth order elasticity tensor C F . In this form, the
microscopic model (2.99) is still ill-defined due to unknown boundary conditions,
and consequently needs a closure assumption that will define the appropriate
reconstruction and compression operations.

A famous principle dating back to Germain [50] is the principle of virtual power.
It states that given

a system S [. . . ] in equilibrium with respect to a given Galilean frame;
then in any virtual motion, the virtual power of all the “internal forces”
and “external forces” acting on S is null [50].

It was introduced by Hill [56] and Mandel in the context of multiscale modeling,
where it is now known as the Hill-Mandel homogeneity condition that enforces
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that the virtual power of virtual motions of macro- and microscale with respect
to a simultaneous displacement on macro- and microscale is equal [57].

With respect to the given elasticity problem this implies

σ : ε(x) = −
∫

RVE(x)
σ F : εF (y)dy, (2.101)

where the binary operator : denotes the full contraction of both tensors. From
the defining properties of a RVE the following averaging principle is directly
deducible [17]:

σ(x) = −
∫

RVE(x)
σ F (y)dy. (2.102)

Proof. In the state of an equilibrium, the total energy of a displacement on macro-
and microscale is σ : ε and −∫

RVE(x)σ
F : εF dy, respectively. Hence, by virtue of

the Hill-Mandel condition [17] Equation (2.101) holds true. Furthermore, it must
hold that for any displacement

�

δεF ,δε= −∫ εF dy
�

the change on total energy on
macro- and microscale is equal. This must especially hold true for a homogeneous
displacement δε= δεF = e i j , with a unit tensor e i j . Consequently, Equation
(2.102) is fulfilled.

A sufficient condition for (2.101) to be fulfilled is to assume that the differ-
ence between the microscopic displacement uF (x, y) on RVE(x) and the linear
extension∇u(x) · y of the macroscopic displacement is periodic [17].

uF (x, y)−∇x u(x) · y ∈H 1
per

�

RVE(x)
�

. (2.103)

Remark 2.40. This coupling is similar to a first-order homogenization approach
known from computational homogenization for general nonlinear mechanical
problems [49].

Remark 2.41. Other choices of boundary conditions in order to fulfill the Hill-
Mandel condition (2.101) are possible. For a detailed overview we refer to a
discussion given by Miehe and Bayreuther [17,78].

In summary, choosing periodic boundary conditions, we have established the
following compression and reconstruction process (in the sense of Figure 2.1 on
page 8):

– The macroscale-stress is given by

σ(x) = −
∫

RVE(x)
σ F (y)dy. (2.104)
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– For a given stress σ on the macroscale the microscale displacement σ F is
given by the solution of (2.99) with boundary conditions

uF ∈H 1
per

�

RVE(x)
�

. (2.105)

In order to convert this computational homogenization approach to a computable
numerical scheme, both, the macroscale (2.97) and microscale (2.99) equations
are discretized. Similarly to the HMM, a corresponding micro-problem is solved
on RVE(x) for every quadrature point x. The resulting scheme is known as FE2

computational homogenization [102].

2.3.2 Relation to HMM and MsFEM

Computational homogenization schemes are closely related to HMM (cf. Section
2.2) and MsFEM (cf. Subsection 2.2.5) approaches. For the choice of structurally
identical macro- and microscale models all three methods are in fact equivalent up
to quadrature and discretization: The RVE of the computational homogenization
schemes either corresponds to local cell, or sampling problems in case of HMM.
Or, the microscale problems defined on RVE(x) together with the reconstruction
and compression operations correspond to the multiscale mapping defined in
context of MsFEM.

We exemplify this claim by proving the correspondence of a scalar version
of the computational homogenization scheme (2.97) and (2.99) with periodic
boundary conditions (2.103) to the HMM formulation that was outlined in
Subsection 2.2.2.

Definition 2.42 (Scalar computational homogenization problem). A scalar pen-
dant of the above computational homogenization scheme (2.97) and (2.99) with
homogeneous Dirichlet boundary conditions reads

(σ ,∇ϕ)L2(Ω)3 = ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω), (2.106a)

(Aε∇uF ,∇ϕ)L2(Ω)3 = ( f
F ,ϕ) ∀ϕ ∈H 1

per(RVE(x)), (2.106b)

with Aε denoting, for the sake of consistency with the model problem (2.10),
the known relation σ F =Aε∇uF on the fine scale.

Let A0 denote the unknown (and to be determined) pendant of the elasticity
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tensor on the macroscale. Then, it follows by virtue of (2.102) that

A0(x)∇u = −
∫

RVE(x)
Aε(y)∇uF (x, y)dy

= −
∫

RVE(x)
Aε(y)

�

∇x u +∇y ûF (x, y)
�

dy, (2.107)

with the definition ûF (x, y) := uF (x, y)−∇x u · y according to (2.103). Further-
more, expressing (2.99) with ûF (x, y) leads to

−
∫

RVE(x)
Aε(y)

�

∇y ûF (x, y)+∇x u
�

· ∇yϕ̂
F dy = 0 ∀ϕ̂F ∈H 1

per

�

RVE(x)
�

. (2.108)

This is exactly the cell problem (2.62). Finally, observe that with (2.107) and
(2.108) it follows:
�

A0(x)∇u,∇ϕ
�

L2(Ω)d

= −
∫

RVE(x)
Aε(y)

�

∇x u +∇y ûF (x, y)
�

· ∇xϕ dy dx

= −
∫

RVE(x)
Aε(y)

�

∇x u +∇y ûF (x, y)
�

·
�

∇xϕ+∇yϕ̂
F (x, y)

�

dy dx, (2.109)

which is equivalent to Equation (2.74). In summary, we have established the
following Proposition:

Proposition 2.43 (Equivalence of computational homogenization and HMM).
The scalar simplification (2.106) of the original computational homogenization
scheme (2.97) and (2.99) is equivalent to the homogenized problem (2.62); and
therefore after discretization (and in combination with the discussion given in
Remark 2.32) equivalent to the HMM method (2.77).

2.3.3 Averaging schemes

An even simpler upscaling technique that determines effective parameters solely
by means of averaging on the finescale—without solving finescale problems,
and without a coupling “reconstruction” process—is very popular in ground-
water flow simulations (and related fields of research). Here, the heterogeneous
coefficient is given by a fluctuating permeability Kε(x):

Aε(x) =Kε(x) Id, (2.110)
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with the identity matrix Id. The general idea is to generate piecewise constant,
effective coefficients,

Aδ(x) =Kδ(x) Id : Ω→Rd×d (2.111)

that are (in contrast to Aε) resolvable by a coarse discretization and reproduce
the effective macroscale behavior. More precisely, one could seek an effective
coefficient Aδ such that the solution uδ ∈H 1

0 (Ω) of the variational problem
�

Aδ∇uδ ,∇ϕ
�

=
�

f ,ϕ
�

∀ϕ ∈H 1
0 (Ω) (2.112)

is a good approximation of uε in the L2(Ω)-norm (but not necessarily in the
H 1(Ω)-norm). Very simple averaging schemes involve the geometric or harmonic
mean value taken over small sampling regions RVE(x) (in the notation of the
previous section):

logKδ(x) = −
∫

RVE(x)
logKε(x)dx. (2.113)

or the harmonic mean value

logKδ(x) = −
∫

RVE(x)
Kδ(x)−1 = −

∫

RVE(x)
Kε(x)−1 dx. (2.114)

Remark 2.44. It is a well known fact that the arithmetic average

Kδ(x) = −
∫

RVE(x)
Kε(x)dx, (2.115)

is not appropriate in practice. In case of classical homogenization theory it
can be shown, e. g., that in 1D the homogenization limit A0 is given by the
harmonic mean value and that in higher space dimension the correctors are
non-vanishing [13,34], see the summary of classical homogenization results given
in Section 2.2.1.

It was shown by Cardwell and Parsons [31] that for a large class of randomly
distributed permeabilities a good effective value is expected to lie between the
arithmetic and harmonic mean value,

�

−
∫

Y δ
K

1
Kε

dy
�−1
≤K0 ≤ −

∫

Y δ
K

Kε(y) dy. (2.116)

The geometric mean value was further examined extensively for log-normally
distributed permeabilities, i. e. permeabilities where the logarithm of the per-
meability values is pointwise normally distributed with a specific correlation
structure. First numerical tests were performed by Warren and Price [100].
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Remark 2.45. In context of linear elasticity it can also be shown that effective
coefficients can be expected to lie between the harmonic and arithmetic mean
value, see Dederichs and Zeller [40] and Kröner [65].

Simple averaging strategies such as (2.113) and (2.114) can only lead to satisfy-
ing approximation results under the assumption of strong statistical properties
to hold true, e. g. the underlying microstructure must be isotropic, i. e. it must
have the same characteristics for each spatial dimension. A multitude of refined,
heuristic averaging schemes have been proposed to resolve those shortcomings
of simple averages in case of more complex random permeabilities. This involves
cases of layered permeabilities, and with permeabilities with specific correla-
tion properties, possibly different for individual spatial dimensions. Usually,
a sophisticated heuristic postprocessing is used that involves the adaptation of
simple (spatial) averages with the help of local statistical properties. For a detailed
description of such a method as well as a general overview we refer to Li et al. [71]

Remark 2.46. Nevertheless, the simple averaging strategies (2.113) and (2.114)
will also be considered as computationally inexpensive reconstruction strategies
in the abstract framework introduced in Chapter 3. This is justifiable, because
the quality of the resulting method is controlled by a posteriori techniques in
an adaptive algorithm tuned for a quantity of interest. In this case the goal is to
achieve a significant computational saving (of several orders of magnitude) by
means of adaptive discretization and model control, see Chapters 5 and 6.
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3 An abstract multiscale scheme
for model adaptation

As evidenced in the previous chapter, multiscale schemes have many intrinsic
refinement and quality parameters. For the methods presented in Chapter 2 there
are choices for macroscale discretization (denoted by H ), microscale discretiza-
tions (denoted by h) and modeling parameters. The latter involves the location
of sampling regions or cell problems, the choice of sampling size and placement
of artificial boundary conditions, and orthogonality relations (as discussed in
subsection 2.1.4). Such model parameters (that are not related to macroscale or
microscale discretization parameters) shall subsequently be denoted by δ.

A good choice for all discretization and model parameters is necessary in order
to have an efficient multiscale method. However, in the methods presented
so far the choice of modeling parameters is directly coupled to a macroscale
discretization. For example, by prescribing a sampling or cell problem in each
quadrature point (in case of HMM and computational homogenization), or by
a cell-wise fine-scale reconstruction (in case of VMM). This leads to the effect
that refinement in the macro region induces a simultaneous adaptation of the
effective model.

There are situations in which such a strict coupling of macroscale resolution
and model parameters is not ideal. Consider, e. g., the case of a singularity only
present on the macroscale (for example a corner singularity). This makes a
local grid refinement on the macroscale necessary but has no influence on the
quality of the sampling process on the microscale. A local refinement with fixed
sampling in each quadrature point, however, leads to severe “oversampling” due
to increasingly many, closely located sampling regions. But, for closely located
sampling regions effective parameters do not vary much.

Further, all approaches examined in Chapter 2 have an underlying scale sep-
aration assumption: in case of HMM the assumption ε� 1 (and a periodicity
assumption), and in case of VMM the assumption that the influence of artificial
boundary conditions is small (which implies smallness of microscale features).
Such a scale-separation assumption might not always be fulfilled—especially
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when the modeling error, i. e., uε − u0 (in the notation of Section 2.2), is not
homogeneously small for all x ∈Ω. In such cases a model adaptation strategy is
desirable.

In light of this discussion, this chapter presents an abstract multiscale scheme for
model adaptation that explicitly decouples all discretization and modeling param-
eters. It is suitable as a model framework for the development of discretization and
model adaptation approaches. Furthermore, it can be regarded as a generalization
of the HMM and shares some ideas with the model adaptation approaches by
Oden and Vemaganti [84–87,91] and Braack and Ern [26] (see Section 5.1 for details).
The novelty lies in the explicit decoupling of the sampling processes from the
macroscopic discretization.

3.1 On the choice of the underlying multiscale
formulation

A fundamental question for formulating a multiscale framework is on which of
the mathematical multiscale formulations, that were introduced in Chapter 2,
it should be based on. This choice has to be done while keeping in mind that
the goal of the discussion is to use the framework for goal oriented a posteriori
error estimation and model adaptation (cf. Chapter 4). Here, the variational
ansatz pursued in the VMM formulation suffers from an intrinsic problem:
Consider the DWR ansatz [19–21] (that will be introduced in detail in Chapter 4):
Let j ∈ H−1(Ω) be a functional. For the quantity of interest 〈 j , uε〉 define the
dual problem to find z ∈ V

�

Aε∇ϕ,∇z
�

= 〈 j ,ϕ〉 ∀ϕ ∈ V . (3.1)

By using the split z = zH + z f given by V =V H ⊕V f we derive the following
error identity for a VMM approximation U =U H +U f ∈V H ⊕V f :

〈 j , uε−U 〉= ( f , z)− (Aε∇U ,∇z)

= ( f , z)− (Aε∇U f ,∇z)− (Aε∇U H ,∇z)

= ( f , z f )− (Aε∇U f ,∇z f )− (Aε∇U H ,∇z f ). (3.2)

The last equation holds true due to the variational split (2.13) of U :

( f , zH )− (Aε∇U f ,∇zH )− (Aε∇U H ,∇zH ) = 0. (3.3)
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Thus, the error identity reduces entirely to a residual on the fine-scale space V f :

〈 j , uε−U 〉= ( f , z f )− (Aε∇U f ,∇z f )− (Aε∇U H ,∇z f ). (3.4)

No information about the “quality” of the macroscale discretization can be
reconstructed. Given the modeling ansatz of the VMM approach this comes
at no surprise—after all, the underlying idea is to augment the space V H by an
“orthogonal” correction. But, from an a posteriori adaptation perspective, this
is unfortunate as it possibly forces resolving macroscale effects with fine-scale
reconstructions. The HMM formulation on the other hand does not suffer from
this kind of defect (see Chapter 4).

Another point that has to be taken into consideration is the question in which
form model adaptation is actually possible within a given approach. We note that
the VMM ansatz (2.13) uses the same equations for coarse and fine scale—the
modeling aspect lies solely in the choice of split V H ⊕V f and approximation
of V f . More precisely, model adaptivity in context of VMM formulations is
reduced to the choice of approximations of the fine-scale space (2.17):

V f =
∑

i

V f
i ⊂V

f . (3.5)

This boils down to the sole question of choosing sufficient discretization parame-
ters. In contrast, the HMM approach of constructing an effective operatorL 0

(2.52) is not only closer to the physical approach of upscaling and effective param-
eters (see Section 2.3), but also allows for model adaptivity by combining different
upscaling principles, e. g., by using effective parameters computed by HMM cell
problems in combination with simple averaging strategies (see Sections 2.2.2 and
2.3.3). Thus, we will base the framework on an abstraction of those approaches.

Remark 3.1. An extensive study for goal-oriented a posteriori control of dis-
cretization parameters (involving microscale discretization and patch size) for
the VMM ansatz is given by Larson and Målqvist [67–69,81].

3.2 An abstract multiscale scheme
The discussion in this Subsection follows in parts a publication by the author [72].
Consider the model problem (2.10) to find uε ∈H 1

0 (Ω) s. t.
�

Aε∇uε,∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω), (3.6)

with coefficients Aε ∈ L∞(Ω)d×d that employ multiscale behavior in the sense of
Definition 2.2.
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Remark 3.2. For the formulation of the method, we will not make any further
assumptions on the coefficient Aε other than (2.8) and (2.9) that guarantees well-
posedness of (3.6). For the a priori convergence results, however, mild regularity
assumptions have to be made.

3.2.1 Effective problem

In order to be able to adapt model parameters separately from the discretization
it is necessary to introduce an abstract notion of a model. In context of the
mathematical homogenization theory for the elliptic problem (2.10) a natural
starting point is the homogenized equation (2.62): Find u0 ∈H 1

0 (Ω) s. t.
�

A0∇u0,∇ϕ
�

=
�

f ,ϕ
�

∀ϕ ∈H 1
0 (Ω). (3.7)

In case of a heterogeneous problem, the coefficient A0 ∈ L∞(Ω)d×d is a function
depending on x. This space dependency has to be discretized for a numerical
scheme. A possible choice (as employed by the HMM) is to start with a finite-
element discretization of (3.7) and define a sampling problem for every quadrature
point in Ω for which A0(x) has to be evaluated.

However, this is exactly the type of coupling between (macroscale) discretiza-
tion and sampling process that we try to avoid. Consequently, in order to decou-
ple the sampling process from the coarse-scale discretization, it is necessary to
abstract this choice and incorporate it into an effective model.

Definition 3.3 (Effective model). Define an effective model to be a pair
�

Tδ(Ω),Aδ
�

(3.8)

consisting of a discretization Tδ(Ω) of Ω called a sampling mesh together with a
function

Aδ : Tδ(Ω)→R
d×d (3.9)

with region-wise constant values (see Figure 3.1). We assume that Aδ fulfills (2.8)
and (2.9). The discretization parameter δ shall denote the typical length scale of
Tδ(Ω).

The effective model
�

Tδ(Ω),Aδ
�

can be constructed by different means. In
spirit of the classical HMM, it is possible to define a reconstruction process by
solving a local cell problem on a sampling region:
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TH (Ω)

Tδ(Ω)

Y δ
K

K

Th(Y
δ

K )

AδK ∈Rd×d

Figure 3.1. The computational domain Ω together with the sampling mesh
Πδ(Ω) consisting of sampling regions K ∈ Πδ that are in turn discretized
by a fine-scale mesh Πh (K). The coarse mesh ΠH (Ω) used for the final finite-
element discretization is a refinement of the sampling mesh Πδ .

Definition 3.4 (Homogenization sampling strategy). For K ∈ Tδ(Ω) let Y δ
K be

a sampling region associated with a sampling cell K , where every Y δ
K is sought

to be a simple translation and rescaling of the unit cell Y . Define Aδ(K) as

Aδi j (K) := −
∫

Y δ
K

Aε(x)
�

∇xωi (x)+ e i

�

·
�

∇xω j (x)+ e j

�

dx, (3.10)

where theωi ∈ H̃ 1
per(Y

δ
K ) are solutions of

∫

Y δ
K

Aε(x)
�

∇xωi (x)+ e i ) · ∇ϕ = 0 ∀ϕ ∈ H̃ 1
per(Y

δ
K ). (3.11)

Other choices of sampling strategies are possible. As discussed in Section 2.3.3
simple averaging schemes can be defined in order to avoid solving local sampling
problems. Transferred to the heterogeneous coefficient this leads to an averaging
sampling strategy:

Definition 3.5 (Averaging sampling strategies). Let Y δ
K , K ∈ Tδ(Ω) be the set

of sampling regions as defined in Definition 3.4. A simple averaging process is
given by the arithmetic mean value

Aδi j (K) := −
∫

Y δ
K

Aεi j (y)dy, (3.12)
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by the geometric mean value

logAδi j (K) := −
∫

Y δ
K

logAεi j (y)dy, for Aεi j (K) 6= 0, Aδi j = 0, otherwise, (3.13)

or by the harmonic mean value

Aδi j (K)
−1 := −

∫

Y δ
K

1
Aεi j (y)

dy, for Aεi j (K) 6= 0, Aδi j = 0, otherwise. (3.14)

Remark 3.6. In general, the (arithmetic) average (3.12) does not lead to the correct
homogenization limit A0 (see the discussion in Remark 2.27 and Section 2.3.3).
However, in context of linear elasticity it can be shown that good, effective
coefficients lie between the harmonic (3.14) and arithmetic (3.12) mean value (cf.
Dederichs and Zeller [40] and Kröner [65]); expressed in terms of a scalar coefficient:

�

−
∫

Y δ
K

1
Aε(y)

dy
�−1
≤A0 ≤ −

∫

Y δ
K

Aε(y)dy. (3.15)

As already discussed in Section 2.3.3, the same observation holds true for ground-
water flow simulations with Aε(x) = Kε(x) Id and an effective permeability
Kδ(x).

Remark 3.7. The geometric mean value (3.13) is usually a reasonable choice for
a large class of log-normally distributed permeabilities [100], i. e., permeabilities
Aε where the (component-wise) logarithm logAε is normally distributed with
a specific correlation structure. Consequently, the correct choice of averaging
strategy is highly micro structure and problem dependent.

In order to avoid a reduction in regularity the cell-wise constant (globally
discontinuous) coefficients Aδ may be further post-processed to yield a globally
continuous function:

Definition 3.8 (Post processing). Let V δ(Ω) denote the space of linear finite-
elements associated with Tδ(Ω). Define Aδ ∈ V δ(Ω)d×d with the help of an
interpolation of Clément-type (cf. Clément [35] and Scott and Zhang [94]): Let
xi be a nodal point of Tδ(Ω) and let Ki be the set of all cells K ∈ Tδ(Ω) with

K ∩ xi 6= ;. Define

Aδ(xi ) =

∑

K∈Ki
Aδ(K) |Ki |

∑

K∈Ki
|Ki |

. (3.16)
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With the help of the effective model
�

Tδ(Ω),Aδ
�

we define an effective problem.

Definition 3.9 (Effective problem). Let
�

Tδ(Ω),Aδ
�

be an effective model in the
sense of Definition 3.3. The effective problem reads: Find uδ ∈H 1

0 (Ω) s. t.

�

Aδ∇uδ ,∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω). (3.17)

Here, Aδ shall either denote the post-processed coefficient according to (3.16) or
Aδ defined by Definition 3.5.

Remark 3.10. The well-posedness and a priori convergence of the numerical
homogenization scheme (3.17), as well as the well-posedness of the sampling
problems (3.11), will be established in Section 3.4.

3.2.2 Semi-discretized problem

A numerical evaluation of the sampling processes (3.11), (3.12), or (3.13) intro-
duces quadrature and discretization errors on the fine (sampling) scale that have
to be taken into account. Therefore, we denote such a numerically computed, ef-
fective model with a global discretization parameter h and a sequence {hK}K∈Tδ (Ω)
of local discretization parameters for each sampling region Y δ

K . Here, hK denotes
the refinement level of a fine-scale mesh Th(Y

δ
K ) of Y δ

K , and h is the maximum
of the hK . With the help of the meshes Th a summed quadrature rule Qh,K on
Y δ

K is defined:

Definition 3.11 (Summed quadrature rule). Given a base quadrature rule Q̂ on Y
with support points

�

x̂i

	

i
and weights

�

qi

	

i
and letTK̃ denote the transformation

TK̃ : Y → K̃ for K̃ ∈ Th(Y
δ

K ). Define a summed quadrature rule

Qh,K( f ) :=
∑

K̃∈Th (Y δ
K )

|K̃ | Q̂
�

f ◦TK̃

�

=
∑

K̃∈Th (Y δ
K )

|K̃ |
∑

i

qi f ◦TK̃(x̂i ). (3.18)

Define, in correspondence to (3.12), (3.13), and (3.14) the numerically computed,
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effective model
�

Tδ(Ω),Aδ,h
�

by

Aδ,h
i j (K) :=

1
|Y δ

K |
Qh,K

�

Aεi j (y)
�

, or (3.19)

�

Aδ,h
i j (K)

�−1 :=
1
|Y δ

K |
Qh,K

� 1
Aεi j (y)

�

, or (3.20)

logAδ,h
i j (K) :=

1
|Y δ

K |
Qh,K

�

logAεi j (y)
�

dy, respectively. (3.21)

In case of the homogenization scheme (see Definition 3.4), an additional fine-
scale discretization has to be taken into account. Namely, the choice of a dis-
cretized fine-scale space V h(Y δ

K )⊂ H̃ 1
per(Y

δ
K ) associated with a mesh Th(Y

δ
K ) of

Y δ
K . With such a choice at hand we set

Aδ,h
i j (x) :=

1
|Y δ

K |
Qh,K

�

Aε(x)
�

∇xω
h
i (x)+ e i

�

·
�

∇xω
h
j (x)+ e j

�

�

, where (3.22)

Qh,K

�

Aε(x)
�

∇xωi (x)+ e i ) · ∇ϕ
�

= 0 ∀ϕ ∈V h(Y δ
K ). (3.23)

In summary, introducing a fine-scale discretization for the sampling process leads
to another auxiliary problem:

Definition 3.12 (effective, semi-discretized problem).
For a numerically computed, effective model

�

Tδ(Ω),Aδ,h
�

let Aδ,h be its post-
processed variant and consider the variational problem: Find uδ,h ∈H 1

0 (Ω) s. t.
�

Aδ,h∇uδ,h ,∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω). (3.24)

Remark 3.13. Well-posedness and a priori convergence of the semi-discretized
problem (3.24) will be established in Section 3.4.

3.2.3 Fully discretized problem

As a last step introduce a coarse grid TH (Ω) for numerically approximating the
variational equation (3.24):

Definition 3.14 (Fully discretized problem). Let TH be a mesh covering Ω, and
let VH (Ω)⊂H 1

0 (Ω) be a finite-element ansatz space. The fully discrete problem
reads: Find U ∈VH (Ω) s. t.

�

Aδ,h∇U ,∇ϕH �=
�

f ,ϕH � ∀ϕH ∈VH (Ω). (3.25)
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uε

Aε

uδ

modeling
error

Aδ, Aδ

uδ,h

microscale
discr. error

Aδ,h, Aδ,h

U

macroscale
discr. error

Figure 3.2. The interplay of the different sources of error ranging from the
solution uε of the full model problem (3.6), over the solutions uδ and uδ,h of
the auxiliary problems (3.17), (3.24) to the solution U of the fully discretized
problem (3.25).

In summary, we have established a framework that explicitly decouples all
discretization parameters and respective sources of error, see Figure 3.2.

Remark 3.15. Oden and Vemaganti, and Braack and Ern considered a similar
abstract model framework [26,84,86] that can be regarded as a simplification of above
scheme by neglecting fine-scale discretization errors (discussed in Section 3.2.2)
and assuming uδ ≡ uδ,h , as well as removing the choice of a different sampling
discretization by setting Tδ =TH .

3.3 A note on the generality of the framework
The model framework is general in the sense that it allows the presented VMM
and HMM, as well as the computational homogenization scheme to be formulated
within its boundaries.

In case of the HMM scheme create a sampling discretization Tδ(Ω) such that
every quadrature point of the macroscale discretization is located in a separate
cell K ∈ Tδ(Ω). Further, fix the midpoint of the sampling regions Y δ

K to coincide
with the respective quadrature point. Neglecting quadrature on the microscale dis-
cretization for simplicity, it remains to show that after introducing a macroscale
discretization the system
∑

K∈TH (Ω)

|K |
∑

i

qi A
δ
K∇U (xi ) · ∇ϕ

H (xi )

=
∑

K∈TH (Ω)

|K |
∑

i

qi A
δ
K f (xi )ϕ

H (xi ) ∀ϕ
H ∈V H (Ω) (3.26)
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is equivalent to

∑

K∈TH (Ω)

|K |
∑

i

qi
−

∫

Y δ
K ,i

Aε∇
�

U (xi )+R
h
K ,i (U )(x)

�

·
�

ϕH (xi )+R
h
K ,i (ϕ

H )(x)
�

=
∑

K∈TH (Ω)

|K |
∑

i

qi A
δ
K f (xi )ϕ

H (xi ) ∀ϕ
H ∈V H (Ω). (3.27)

Such an equivalence follows fully analogous to the continuous case examined in
Proposition 2.31. In light of the discussion in Section 2.3.2 the same holds true for
the computational homogenization scheme defined in Subsection 2.3.1. Hence,
both, HMM and the computational homogenization scheme can be embedded
into the given framework.

In contrast to the former approaches, the VMM ansatz is based on a split of the
ansatz space. In order to show equivalence to the given framework is is necessary
to express this split in terms of an effective parameter:

Proof. Applying the VMM ansatz (2.16) to the model problem and a subsequent
discretization with a finite-element space V H (Ω) and a quadrature rule (qi , xi )
results in
∑

K∈TH (Ω)

|K |
∑

i

qi Aε∇uH (xi ) · ∇ϕ
H (xi )

+
∑

K∈TH (Ω)

|K |
∑

i

qi Aε∇(T ( f −L uH )(xi ) · ∇ϕ
H (xi )

=
∑

K∈TH (Ω)

|K |
∑

i

qi A
δ
K f (xi )ϕ

H (xi ) ∀ϕ
H ∈V H (Ω). (3.28)

In order to express this equation in terms of (3.25) it must hold true that

AδK∇uH (xi ) =Aε(xi )∇uH (xi )+Aε(xi )∇u f (xi ) ∀uH (xi ). (3.29)

It is important to note that the functional dependency ∇u f (xi )
�

∇uH (xi )
�

is
effectively a linear dependency. Thus, it can be expressed by a reconstruction
matrixF with

∇u f (xi ) =F ∇uH (xi ). (3.30)

Therefore,

AδK(xi ) =Aε(xi )+Aε(xi )F (3.31)

is a solution.
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Remark 3.16. The developed methodology and all model adaptation strategies
that will be formulated in the following are in principle applicable to any method
that fulfills the following conditions:

– There exists a complete (microscopic) model of the phenomenon in ques-
tion such that the problem can be stated as: Find uε ∈ V ε s. t.

L εuε = f ε, (3.32)

i. e. formulated as an abstract model problem in the sense of (2.7).

– There exists an effective model

L δuδ = f δ , (3.33)

that has a localization property for its parameters (that are denoted by δ),
i. e. L δ can be iteratively refined to a sequence of improved, effective
modelL di andL di →L ε in the operator norm.

– Model specific residuals of the form (L δ
K −L ε

K) can be estimated.

3.4 Well-posedness and a priori error analysis

In this section an existence and uniqueness result for the developed multiscale
framework is established and a priori error estimates in the homogeneous H 1-
and L2-norm are derived. This is done for both types of sampling processes—
the averaging schemes given in Definition 3.5 and the homogenization process
(cf. Definition 3.4). The following assumptions are made:

(A1) Aε ∈ L∞(Ω)d×d is Lipschitz continuous with an ε-dependent coefficient,


Aε(y)−Aε(x)


≤ C (ε)‖y − x‖. (3.34)

(A2) Ω is a polygonal/polyhedral domain and all meshes involved in the multi-
scale method, TH (Ω), Tδ(Ω), {Th(Y

δ
K ),K ∈ Tδ(Ω)} shall be quasi-uniform,

i. e., we assume that the following properties are fulfilled (see Ciarlet [33] or
Brenner and Scott [28]):

– Structural regularity:
⋃

K =Ω, and every intersection K i ∩K j , i 6= j
is a corner, an edge, or a face.
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3 An abstract multiscale scheme for model adaptation

– Uniform shape regularity: There exists C ≥ 0, such that


det∇TK



+


det∇T −1
K



≤C uniformly for all cells K of all families of meshes.
Here, TK : Y →K denotes a d -linear transformation of the unit cell
Y onto K . This allows for a decomposition of Ω consisting of (closed
and convex) quadrilaterals/hexahedra.

(A3) Additional structural requirements:

– Interior-angle condition on the sampling mesh Tδ(Ω): There exist
numbers α1,α2 > 0 such that α1 ≤ α≤ α2 for all interior angles α of
K ∈ Tδ(Ω) of the sampling mesh Tδ(Ω).

– Y δ
K ⊂K for all sampling regions Y δ

K associated with a cell K for the
family of sampling meshes

�

Tδ(Ω)
	

δ>0
.

Remark 3.17. There is no requirement about size regularity of the meshes in
order to allow for local mesh adaptation. To further ease local mesh refinement
the regularity assumption (A2) can be relaxed to allow for hanging nodes (see
Becker and Braack [18]). This leads to the following relaxed conditions:

– Lift the structural regularity by introducing hanging nodes: Allow for
a difference of one degree of refinement between neighboring cells and
introduce an additional linear constraint.

– Only require polynomial size regularity: There exist c1, c2 > 0 and κ> 0 s. t.
c1ν

κ ≤ νK ≤ c2ν for all meshes Tν and ν =H , h,δ.

Remark 3.18. The main focus of the thesis is an a posteriori treatment of the
abstract model framework. Thus, the discussion given below will only derive
convergence results for uniform refinement to ensure well-posedness and (princi-
pal) a priori convergence. The efficiency of the framework will be solely based
on a posteriori techniques, not strong a priori assumptions.

3.4.1 Convergence of the averaging schemes

In order to derive a priori error estimates and convergence results for the modeling
error uδ − uε it is necessary to assume some control over the quality of effective
models. Therefore, we make the following a priori assumption on the effective
model

�

Tδ(Ω),Aδ
�

that takes the choice of model (denoted by δ) as well as the
finescale scaling ε into account:
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3.4 Well-posedness and a priori error analysis

Definition 3.19 (Applicability). Let
�

Aε
	

ε>0
be a family of heterogeneities and

let
��

Tδ(Ω),Aδ
�	

δ>0
be a family of effective models. The family of effective

models is said to be applicable for Aε if there exists a possibly ε-dependent C (ε)
s. t.

sup
K∈Tδ (Ω)



Aε−Aδ




L∞(K) ≤C (ε)δ. (3.35)

Remark 3.20. The a priori assumption (3.35) is used for the averaging schemes
(3.12) and (3.13) to show convergence in H 1. Given its ε-dependence expressed
as C (ε) the convergence results can be arbitrarily ill-posed for the limit ε→ 0.
Thus, the a priori assumption (3.34) can be interpreted as the requirement for a
typical length scale of fluctuations such that, with a sufficient refinement of Tδ(Ω),
it is possible to resolve the fine scale completely. In order to control the limit
ε→ 0, additional regularity assumptions on Aε are necessary. A possibility is
the requirement of a local periodic structure Aε(x) =A(x, x

ε ) with A(x, y) being
Y -periodic in y as done in the context of the mathematical homogenization
theory (cf. Section 2.2.1). This periodicity assumption will be used for the
homogenization sampling approach (Definition 3.4) for an improved convergence
result, see Section 3.4.2.

The question of a priori convergence of the solution uδ of the effective equa-
tion (3.17) to the solution uε of the model problem (3.6) is subtle. The inherent
difficulty lies in the fact that δ is not only a discretization parameter but also
denotes the choice of effective parameters for an effective model. In its extremes,
one has the option between a convergence result

uδ→ uε for (discretization parameter) δ→ 0 (3.36)

for a pure discretization-adaptation strategy (with fixed effective model derivation)
and a pure model adaptation by improving the values Aδ while maintaining a
fixed sampling discretization Tδ(Ω).

It has to be noted that at first sight an asymptotic refinement of the discretiza-
tion Tδ(Ω) seems to be contrary to the very philosophy of multiscale methods
that try to decrease computational costs by maintaining a coarse sampling grid
Tδ(Ω). However, this is only true if the microscale discretization associated
with an individual sampling cell cannot be simultaneously coarsened in order to
maintain an equal amount of total microscale resolution. In Chapter 5, a sampling-
adaptation strategy will be presented that is based on this pure discretization
adaptation approach.
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3 An abstract multiscale scheme for model adaptation

The definition of applicability given in Definition 3.19 is fulfilled by every
class of coefficients Aε that is at least Lipschitz continuous as defined in (A1):

Lemma 3.21. Let Aε ∈ L∞(Ω)d×d be Lipschitz continuous as defined in (3.34).
Then, every sequence of effective models with sampling discretization fulfilling

sup
K∈Tδ (Ω)

(diamK)≤Cδ (3.37)

is applicable.

Proof. In case of the arithmetic average it holds true that

sup
K∈Tδ (Ω)



Aε−Aδ




L∞(K) = sup
K∈Tδ (Ω)





Aε− −
∫

Y δ
K

Aε dy






L∞(K)

≤ sup
K∈Tδ (Ω)

h



Aε−Aε(x̂)




L∞(K)+




Aε(x̂)− −
∫

Y δ
K

Aε dy






Rd×d

i

(3.38)

for some x̂ ∈ Y δ
K ⊂K . Furthermore, the second term can be bounded by





|Y δ
K |A

ε(x̂)−
∫

Y δ
K

Aε dy






Rd×d
=






∫

Y δ
K

Aε(x̂)−Aε(y)dy






Rd×d

≤ |Y δ
K |


Aε(x̂)−Aε(y)




L∞(Y δ
K )

. (3.39)

Inserting (3.39) into (3.38):

sup
K∈Tδ (Ω)



Aε−Aδ




L∞(K) ≤ sup
K∈Tδ (Ω)

C (ε)
�

(diamY δ
K )+ (diamK)

	

≤C (ε)δ. (3.40)

In case of the post-processed coefficients it also holds that

sup
K∈Tδ (Ω)



Aδ −Aδ




L∞(K) ≤Cδ (3.41)

by virtue of the Clément-type interpolation (see Definition 3.8). A similar
estimate yields the result for the geometric and harmonic mean value. Observe
for example that





Aεi j (x̂)− exp
� −
∫

Y δ
K

log Aεi j dy
�







Rd×d

≤
�

�Aεi j (x̂)
�

�

h

1− exp
� −
∫

Y δ
K

log Aεi j dy − log Aεi j (x̂)
�

i

≤
�

�Aεi j (x̂)
�

�

h

1− exp
�

 log Aεi j − log Aεi j (x̂)




L∞(Y δ
K )

�

i
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3.4 Well-posedness and a priori error analysis

≤
�

�Aεi j (x̂)
�

�

h

1− exp
�

O
�

log(C (ε)diamY δ
K )
�

�i

≤
�

�Aεi j (x̂)
�

�

h

O
�

C (ε)diamY δ
K

�

i

. (3.42)

Effective problem In the following we assume (A1) and (A2) to be fulfilled.
Alternatively, the Lipschitz continuity assumed in (A1) can be replaced by

(A*)
�

(Tδ(Ω),Aδ)
	

δ>0
is applicable for

�

Aε
	

ε>0
in the sense of Definition 3.19.

Under these assumptions, the effective problem (3.17) is well-posed:

Lemma 3.22. Aδ as defined in (3.12), (3.13), or (3.14), and its post-processed
counterpart Aδ are symmetric and elliptic with the same constants as Aε stated
in (2.8) and (2.9). Therefore, the effective problem of Definition 3.9 to find
uδ ∈H 1(Ω) s. t.

�

Aδ∇uδ ,∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω). (3.43)

admits a unique solution.

Proof. The statement follows immediately from the fact that the corresponding
properties are fulfilled point-wise a. e. and that the Clément-type interpolation
preserves symmetry and ellipticity.

Lemma 3.23. It holds true that

‖∇uδ −∇uε‖L2(Ω) ≤
1
α

max
K∈Tδ (Ω)



Aδ −Aε‖L∞(K)



∇uε‖L2(Ω). (3.44)

Proof. By (2.10) and (3.17) it follows that
�

Aδ∇uδ ,∇ϕ
�

= (Aε∇uε,∇ϕ) . (3.45)

Subtracting Aδ∇uε from (3.17), testing with uδ − uε and utilizing (3.45):
�

Aδ∇uδ −Aδ∇uε,∇uδ −∇uε
�

=
�

Aε∇uε−Aδ∇uε,∇uδ −∇uε
�

. (3.46)

Therefore,

α‖∇uδ −∇uε‖2
L2(Ω) ≤

�

(Aε−Aδ)∇uε,∇uδ −∇uε
�

L2(Ω)

≤max
K
‖Aδ −Aε‖L∞(K)‖∇uε‖‖∇uδ −∇uε‖. (3.47)
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Corollary 3.24. The corresponding estimate for the H 1-norm,

‖uδ − uε‖H 1(Ω) ≤C
1
α

max
K∈Tδ (Ω)



Aδ −Aε‖L∞(K)



∇uε‖L2(Ω), (3.48)

follows by virtue of Poincaré’s inequality.

With this prerequisites at hand we have established:

Proposition 3.25 (Convergence). Under assumptions (A1) and (A2) the effective
solution uδ converges to uε with the same order in H 1,



uε− uδ




H 1(Ω) ≤C (ε)δ. (3.49)

Proof. The result follows immediately from Lemma 3.23 together with the a
priori estimate

‖∇uε‖L2(Ω)d ≤C‖ f ‖L2(Ω), (3.50)

with C independent of ε due to the uniform ellipticity assumption (2.9).

Remark 3.26. Improved convergence rates can be shown for the L2(Ω) norm,
provided the oscillatory coefficient Aε has enough regularity. Such results follow
by the same reasoning as the duality arguments given in the a posteriori error
analysis in Chapter 4.

Semi-discretized problem Next, we examine the numerically computed, ef-
fective model

�

Tδ(Ω),Aδ,h
�

that takes quadrature and discretization errors on
the fine (sampling) scale into account. Let uδ,h ∈ H 1

0 (Ω) be the solution of the
numerically computed, effective problem (3.24):

�

Aδ,h∇uδ,h ,∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω). (3.51)

The requirement for Lipschitz continuity made in (A1) is sufficient to establish a
convergence result for an approximation with a summed quadrature rule Qh,K of
Aε.

Remark 3.27. Alternative approaches can be made by requiring statistical prop-
erties to hold true [90]. We restrict the discussion to the non-statistical case.
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Lemma 3.28. Assume that (A1) is fulfilled, in particular that Aε is Lipschitz
continuous in the sense of (3.34). Let Qh be a summed quadrature rule as defined
in Definition 3.11 and let Q̂ be its base quadrature defined on the unit cell, with
support points {x̂i}i and weights {qi}i . Then, there exists δ0 > 0 s. t.







1
|Y δ

K |
Qh,K

�

Aε
�

− −
∫

Y δ
K

Aε dy




≤C (ε) h (3.52)

uniformly in K ∈ Tδ(Ω), δ ≤ δ0.

Proof. By virtue of (3.18):
�

�

�

�

Qh,K

�

Aε
�

−
∫

Y δ
K

Aε dy
�

�

�

�

=
�

�

�

�

∑

K̃∈Th (Y δ
K )

|K̃ |
∑

i

qi Aε ◦TK̃(x̂i )−
∫

Y δ
K

Aε dy
�

�

�

�

≤
∑

K̃∈Th (Y δ
K )

|K̃ |
�

�

�

�

∑

i

qi A
ε
�

TK̃(x̂i )
�

−
∫

K̃
Aε dy

�

�

�

�

≤
∑

K̃∈Th (Y δ
K )

|K̃ |
�

�

�

�

∑

i

qi



Aε
�

TK̃(x̂i )
�

−Aε




L∞(K̃)

�

�

�

�

≤ |Y δ
K |C (ε) max

K̃∈Th (Y δ
K )

diam (K̃). (3.53)

Due to (A2) and (A3) this result is uniform in K ∈ Tδ(Ω), δ ≤ δ0.

Remark 3.29. A corresponding result can be shown for the geometric and har-
monic mean value (3.13).

Proposition 3.30. With assumptions (A1) and (A2), it holds true that


uδ,h − uδ




H 1(Ω) ≤C (ε) h (3.54)

uniformly in δ ≤ δ0.

Proof. With Lemma 3.28 and the same argumentation as in Lemma 3.23 it follows
that

‖∇uδ,h −∇uδ‖ ≤ 1
α∗

max
K ∈Tδ (Ω)

‖Aδ −Aδ,h‖L∞(K) ‖∇uδ‖Ω

≤ 1
α∗
(1+C δ) max

K ∈Tδ (Ω)
‖Aδ −Aδ,h‖L∞(K) ‖∇uδ‖

≤ 1
α∗
(1+C δ) max

K ∈Tδ (Ω)

�

�

�

�

1
|Y δ

K |
Qh,K

�

Aε
�

− −
∫

Y δ
K

Aε dy
�

�

�

�

‖∇uδ‖L2(Ω)

≤ 1
α∗
(1+C δ) max

K ∈Tδ (Ω)
C (ε) hK‖∇uδ‖L2(Ω). (3.55)
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The first transformation follows from

‖Aδ−Aδ,h‖ ≤ ‖(Aδ−Aδ,h)− (Aδ−Aδ,h)‖+ ‖Aδ−Aδ,h‖
≤
�

1+C δ)‖Aδ −Aδ,h‖.

Applying an a priori bound on ‖∇uδ‖ by virtue of Lemma 3.22 gives the desired
result. The corresponding estimate in the L2-norm follows with the help of
Poincaré’s inequality.

Remark 3.31. This convergence result can be substantially improved in case of
a smooth coefficient Aε ∈C k(Ω)d×d for some small k. In this case (3.55) can be
combined with a standard interpolation estimate:

‖∇uδ,h −∇uδ‖

≤ 1
α∗

max
K ∈Tδ (Ω)

‖Aδ −Aδ,h‖L∞(K) ‖∇uδ‖Ω

≤ 1
α∗
(1+C δ) max

K ∈Tδ (Ω)

1
|Y δ

K |

�

�

�

�

Qh,K

�

Aε
�

−
∫

Y δ
K

Aε dy
�

�

�

�

‖∇uδ‖L2(Ω)

≤ 1
α∗
(1+C δ) max

K ∈Tδ (Ω)

1
|Y δ

K |

∑

Q ∈Th (Y δ
K )

�

�

�

�

Qh

�

Aε
�

−
∫

Q
Aε dy

�

�

�

�

‖∇uδ‖L2(Ω)

≤ 1
α∗
(1+C δ) max

K ∈Tδ (Ω)

1
|Y δ

K |

∑

Q ∈Th (K)

C hk |Q|

≤ C
1
α∗

hk . (3.56)

In regard of the fully discretized problem that will be discussed in the next
paragraph, a stability result for



∇2uδ,h




L2(Ω)d×d is necessary:

Lemma 3.32. In case of the post-processed, continuous Aδ,h , it holds true that


Aδ,h‖W 1,∞(Ω) ≤C (δ)≤C (ε), (3.57)

where C (δ) describes the same functional dependency as the coefficient abstractly
introduced in (3.35). Consequently, uδ,h ∈H 2(Ω) with

‖∇2uδ,h‖L2(Ω)d×d ≤C (δ). (3.58)

Proof. Aδ,h is a piecewise d -linear function and therefore of class W 1,∞(Ω). Fur-
ther, the uniform bound ‖Aδ,h‖L∞(Ω)d×d ≤C holds true by a priori assumptions.
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3.4 Well-posedness and a priori error analysis

The derivatives of Aδ,h are solely determined by the variation of Aδ,h and the
sampling-cell sizes of Tδ(Ω). Hence, the constant C (δ) occurs, where C (δ)
generally behaves like 1/δ and describes the same functional dependency as
C (ε).

Fully discretized problem Let U ∈ VH (Ω) be the solution of the fully dis-
cretized problem (3.25),

�

Aδ,h∇U ,∇ϕH �=
�

f ,ϕH � ∀ϕH ∈VH (Ω). (3.59)

In preparation for a convergence result of the fully discretized problem a regular-
ity result for the semi-discrete problem is needed.

Proposition 3.33 (Regularity of the semi-discrete problem). Let uδ,h ∈H 1(Ω) be
the solution of (3.24) with post-processed, continuous Aδ,h . Then, Aδ,h is of class
W 1,∞(Ω) and, assuming sufficient smoothness of the boundary, it is uδ,h ∈H 2(Ω)
and the well known a priori error estimate


uδ,h −U




L2(Ω)+H


∇uδ,h −∇U




L2(Ω)d ≤C (δ)H 2
∇2uδ,h



L2(Ω)d×d (3.60)

holds true.

Proof. The statement follows immediately by standard a priori error analysis
(see Ciarlet [33]). Further, due to the fact that Aδ,h is a continuous and patch-wise
d -linear interpolation the bound ‖Aδ,h‖W 1,∞(Ω) ≤C (δ) is available, where C (δ)
is the abstract functional dependency described in Lemma 3.32.

In case of discontinuous coefficients Aδ,h = Aδ,h a problem arises from the
fact that Aδ is discontinuous over the boundaries of the sampling regions. The
solution uδ,h is generally only of class H 1(Ω) and a full regularity H 2(Ω) (required
by standard finite-element estimates) cannot be expected. Even in individual
subregions K ∈ Tδ(Ω) there holds in general that uδ,h

�

�

K 6∈ H 2(K). The reason
for this lies in the fact that a discontinuous permeability Aδ,h : Tδ(Ω)→Rd×d

produces the same type of singularities as “reentrant corners” in the case of
polygonal or polyhedral domains [24,25]. Given the fact that an approximation
with piecewise constant Aδ,h is numerically desirable, we go into detail and state
the corresponding convergence results.

The question of regularity of solutions (and especially the question of the
correct notion of regularity) has been studied extensively for different special
cases in two or three dimensions. We refer to work by Blumenfeld [24,25], who gives
an explicit decomposition into singular functions for the case of two dimensions,
and cite the following result.

61
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Proposition 3.34 (Regularity of the semi-discrete problem in 2D [24,25]).
Let uδ,h ∈H 1(Ω) be the solution of (3.24) for the case d = 2. Then, given the set
Pδ(Ω) of all vertices of Tδ(Ω), the solution uδ,h can be decomposed into

uδ,h(x) =
∑

k∈Pδ (Ω)

∑

j≤J k

σ k
j s k

j (x)+ u(x), (3.61)

with u ∈
∏

K∈Tδ (Ω)H
2(K) and σ k

j ∈R. Here, {σ k
j , j ≤ J k} denotes the singular-

function expansion associated with vertex k: The s k
j have the form

s k
j (x) = |x|

λk
j ϕk

j

�

arg(x)
�

(3.62)

with pairs of eigenfunctions ϕk
j (ϑ) and eigenvalues 0≤ λk

j ≤ 1 coming from a
one-dimensional eigenvalue problem associated with the vertex k ∈ Pδ(Ω). It
holds,

∑

k∈Pδ (Ω)

∑

j≤J k

(σ k
j )

2+
∑

K∈Tδ (Ω)
‖u‖2

H 2(K) ≤C (δ)‖ f ‖2
L2(Ω), (3.63)

with the same functional dependency C (δ) as found in Lemma 3.32.

Proof. The statement was proved by Blumenfeld [25, Th. 3.2,Th. 5.1]. The dependency
on C (δ) follows by a similar argument as given in Lemma 3.32.

Corollary 3.35. The result copies verbatim to the solution uδ of the numerically
homogenized problem (3.17).

Remark 3.36. In case of reentrant corners the functional dependency of

(λk
j ,ϕ

k
j ) j≤J k (3.64)

on the interior angleωk of the reentrant corner is well known [64]:

if π<ωk < 3
2π : J k = 1 with λk

1 =
π

ωk
, (3.65)

if π≤ωk < 2π : J k = 2 with λk
1 =

π

ωk
and λk

2 =
2π
ωk

. (3.66)

The case of internal interfaces is more complicated because multiple interior
angles have to be considered simultaneously in an eigenvalue problem [25]: Find
ϕ ∈H 1

per(I ) on I = [0,2π]
∫

I
a∂ϑϕ∂ϑψdϑ = λ2

∫

I
aϕψdϑ ∀ψ ∈H 1

per(I ), (3.67)

with a sector-wise constant a defined in therms of Aδ,h .
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The singular expansion (3.61) is used to establish the following a priori result:

Proposition 3.37. Assume (A2) – (A3), as well as

TH (Ω)⊃Tδ(Ω) (3.68)

to hold true. Let V H ⊂H 1
0 (Ω) be a space of linear finite elements associated with

TH (Ω) and U ∈V H a solution of (3.25). Then,



uδ,h −U




L2(Ω)+H γ


∇uδ,h −∇U




L2(Ω)d

≤C (δ)H 2γ
�



∇2u




L2(Ω)d×d +
√

√

√

∑

k∈Pδ (Ω)

∑

j≤J k

(σ k
j )2
�

, (3.69)

with the decomposition of uδ,h according to Proposition 3.34 and a constant γ ,

min
k∈Pδ (Ω)

π

ωk
≤ γ ≤ 1, (3.70)

that depends on the explicit form of the expansion (3.61). Here,ωk denotes the
smallest interior angle for a given vertex k.

Proof. The explicit expansion (3.61) of uδ,h admits a corresponding asymptotic
error expansion

uδ,h(x)−U (x)

=
∑

k∈Pδ (Ω)

∑

j≤J k

σ k
j (H )(ϕ

k
j )
′(arg(x))H 2λk

i +O
�

‖∇2u‖
�

H 2| log H |. (3.71)

This expansion follows by applying results given by Dobrowolski [41], and Blum
and Rannacher [23, Th. 4]. By virtue of (A2) it holds σ k

j (H ) = σ
k
j +O

�

1
�

[23, Th. 2].
Due to the quasi uniformity required in (A2) and the interior angle condition
assumed in (A3) the derivatives (ϕk

j )
′ are uniformly bounded [24, Th. 3.5].

Remark 3.38. mink∈Pδ (Ω)
π
ωk is uniformly bounded from below by virtue of (A3).

3.4.2 Convergence of the homogenization scheme

The multiscale method introduced in Sections 3.2.1 to 3.2.3 can be readily applied
in the usual homogenization context. Here, we present the corresponding a priori
estimates and existence results for the homogenization sampling strategy.
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Effective problem The effective problem (3.17) is well defined for the homoge-
nization strategy given in Definition 3.4 (cf. Corollary 3.43 on page 66). Further-
more, under suitable a priori assumptions the convergence of the numerically
homogenized solution uδ to uε (for δ,ε→ 0) can be established (cf. Proposi-
tion 3.44 and Proposition 3.48 on pages 66 and 70, respectively). The results in
this section are only proved for the case of piecewise constant coefficients Aδ ,
Aδ,h . The transfer of the results to the case of interpolated coefficients Aδ and
Aδ,h , respectively, can be done in full analogy to the sampling strategies discussed
above. For brevity it is omitted.

Some preparations are necessary in order to establish the convergence results.

Lemma 3.39. For the cell problems (3.11)
∫

Y δ
K

Aε(x)
�

∇xωi (x)+ e i ) · ∇ϕ = 0 ∀ϕ ∈ H̃ 1
per(Y

δ
K ) (3.72)

it holds:

a) They are uniquely solvable.

b) If Aε is constant over Y δ
K , thenωi ≡ 0.

c) ‖∇ωi‖Y δ
K
≤ 1

α

Æ

|Y δ
K |






−∫
Y δ

K
Aε(y)dy −Aε







L∞(Y δ
K )

.

Proof. The statement given in (a) is obvious. To prove (b) use partial integration
for the right-hand side of (3.11):

∫

Y δ
K

Aεei · ∇ϕ dy = 0−
∫

Y δ
K

(∇ · (Aεei )ϕ dy = 0 ∀ϕ ∈ H̃ 1
per(Y

δ
K ), (3.73)

andωi ≡ 0 is due to (a) the only solution for vanishing right hand side. Finally,
for (c) we observe that

∫

Y δ
K

Aε∇ωi · ∇ωi dy =−
∫

Y δ
K

Aεei · ∇ωi dy

=
∫

Y δ
K

�

−
∫

Y δ
K

Aε dy −Aε
�

ei · ∇ωi dy. (3.74)

Utilizing the uniform ellipticity (2.9) leads to:

α‖∇ωi‖
2 ≤

Æ

|Y δ
K |






−
∫

Y δ
K

Aε dy −Aε






L∞(Y δ
K )
‖∇ωi‖L2(Y δ

K )
. (3.75)

This concludes the proof.

64



3.4 Well-posedness and a priori error analysis

Lemma 3.40. Then, Aδ defined by (3.11) is symmetric and elliptic.

Proof. We follow closely an argument by Cioranescu and Donato [34]. Symmetry
follows from the fact that Aε allows the representation:

Aδi j = −
∫

Y δ
K

Aεi j dy − −
∫

Y δ
K

Aε∇ωi · ∇ω j dy. (3.76)

For ellipticity observe that

AδK ,i jξiξ j = −
∫

Y δ
K

Aεk l∂k(ωi + xi ) · ∂l (ω j + x j )dy ≥ α −
∫

Y δ
K

|∇ζ |2 dy ∀ξ ∈Rd ,

(3.77)

with ζ = ξi (ωi + xi ). It holds true that −∫
Y δ

K
‖∇ζ ‖2 > 0, otherwise ξiωi (y) =

−ξi xi contradictsωi ∈H 1
per(K).

For a uniform lower bound on the ellipticity of Aδ in case of the homogeniza-
tion strategy a further regularity assumption on Aε is necessary. It is sufficient
to assume (A1) to hold true, i. e., to assume that Aε is Lipschitz continuous.
Alternatively, in spirit of classical homogenization theory (cf. Section 2.2.1) it is
possible to replace (A1) with:

(A4) There exists A∈C 0,1
�

Ω,C 0,1(Y )
�d×d such that Aε =A(x, x

ε ) a. e. on Ω.

Here, C 0,1
�

Ω,C 0,1(Y )
�d×d denotes the space of Lipschitz continuous functions

defined on Ω with values in the space C 0,1(Y ). Additionally, we assume

(A5) δK = δ ∀K ∈ Tδ(Ω) and δ is an integral multiple of ε.

Remark 3.41. (A4) is an example of a heterogeneity with a “bad” behavior in ε
in the sense of assumption (A1): It only holds true that



Aε(x)−Aε(y)


≤C
�

1+
1
ε

�

‖y − x‖, (3.78)

i. e., Aε is not uniformly Lipschitz continuous.

With this prerequisites the following Lemma can be shown:

Lemma 3.42. In case of (A1) it holds true that

Aδi jξiξ j ≥
�

α−C (ε)δ2�|ξ |2, (3.79)

with the ellipticity constant α defined in (2.9). The result is also true if the
assumptions (A4) and (A5) are fulfilled instead of (A1).
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Proof. The statement follows directly by virtue of (3.76), the definition of the
cell problems (3.11) and Lemma 3.39:

AδK ,i jξiξ j = −
∫

Y δ
K

Aεi jξiξ j dy − −
∫

Y δ
K

Aε∇ωi · ∇ω j ξiξ j dy

= −
∫

Y δ
K

Aεi jξiξ j dy + −
∫

Y δ
K

Aεei · ∇ω j ξiξ j dy

= −
∫

Y δ
K

Aεi jξiξ j dy − 1
|Y δ

K |

∫

Y δ
K

h

−
∫

Y δ
K

Aε dy −Aε
i

ei · ∇ω j ξiξ j dy

≥ α|ξ |2− 1
|Y δ

K |







−
∫

Y δ
K

Aε dy −Aε






L∞(Y δ
K )

Æ

|Y δ
K | ‖∇ω j‖L2(Y δ

K )
ξiξ j

≥ α|ξ |2− 1
α







−
∫

Y δ
K

Aε dy −Aε






2

L∞(Y δ
K )
ξiξ j . (3.80)

Now, apply the result from Lemma 3.21. The case of (A4) and (A5) will be
proved together with Proposition 3.45 on page 67.

With this result well-posedness follows immediately:

Corollary 3.43 (Well-posedness). Assume either (A1), or alternatively (A4) and
(A5), to hold true. The numerically homogenized problem (3.17) is well defined
for the homogenization strategy given in Definition 3.4, i. e. it admits a unique
solution.

In the following we prove a convergence result for both cases of assumptions,
(A1) or (A4).

Proposition 3.44. Let (A1) – (A3) be fulfilled. Then, the solution uδ of the
effective problem (3.17) in case of the homogenization strategy (cf. Definition 3.4)
converges against the solution uε of the model problem (2.10):



∇uδ −∇uε




L2(Ω)d×d ≤C (ε)δ. (3.81)

Proof. By virtue of (3.76) in combination with Lemma 3.39 and following the
same strategy as in the proof of Lemma 3.42:



Aδi j −Aεi j





L∞(K)d×d =






−
∫

Y δ
K

Aεi j dy − −
∫

Y δ
K

Aε∇ωi · ∇ω j dy −Aε






L∞(K)d×d

≤






−
∫

Y δ
K

Aεi j dy −Aε






L∞(K)d×d
+

1
α







−
∫

Y δ
K

Aεi j dy −Aε






2

L∞(K)d×d
. (3.82)

The statement follows with Lemma 3.21.
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3.4 Well-posedness and a priori error analysis

Assumptions (A4) and (A5) require a different approach. In preparation for the
convergence result stated in Proposition 3.48, we prove the following proposition.

Proposition 3.45. Let (A2) – (A5) be fulfilled, in particular assume that Aε(x) =
A(x, x

ε ) a. e. with A ∈ C 0,1
�

Ω, L∞per(Y )
d×d

�

. Then, for δ and ε suitably small it
holds



A0−Aδ




L∞(K) ≤C (δ + ε), (3.83)

with C only depending on a priori data. Here, A0 denotes the homogenized
matrix (see Section 2.2.1), i. e., it is defined by (2.64),

A0
i j (x) = −

∫

Y
A(x, y)

�

∇ω̃i (x, y)+ ei

�

·
�

∇ω̃ j (x, y)+ e j

�

dy, (3.84)

with the solution ω̃i ∈ H̃ 1
per(Y ) of the local cell problem (2.65),

−
∫

Y
A(x, y)

�

∇ω̃i (x, y)+ ei

�

· ∇ϕ(y)dy = 0 ∀ϕ ∈ H̃ 1
per(Y ). (3.85)

Proof. As a first step, apply the pull-back defined by the transformation

y 7→ x0+ εy (3.86)

on the integral (3.10) defining Aδ :

Aδi j (x) = −
∫

Y δ
K

Aεi j (y)dy − −
∫

Y δ
K

Aε(y)∇ωi (y) · ∇ω j (y)dy

=
� ε

δ

�d
∫

δ
ε Y
Ai j

�

x0+ εy,
x0

ε
+ y

�

dy

−
� ε

δ

�d
∫

δ
ε Y
A
�

x0+ εy,
x0

ε
+ y

�1
ε
∇yωi (x0+ εy) · 1

ε
∇yω j (x0+ εy)dy, (3.87)

where x0 denotes the lower left point of the sampling region K with x ∈K . By
virtue of periodicity, shift the integrals in the definition of A0 by x0/ε and expand
the integration area by the factor δ/ε:

A0
i j (x) =

� ε

δ

�d
∫

δ
ε Y
Ai j

�

x,
x0

ε
+ y

�

dy

−
� ε

δ

�d
∫

δ
ε Y
A
�

x,
x0

ε
+ y

�

∇y ω̃i

� x0

ε
+ y

�

· ∇y ω̃ j

� x0

ε
+ y

�

dy. (3.88)
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Combining these equations leads to

Aδi j (x)−A0
i j (x) =

� ε

δ

�d
∫

δ
ε Y
Ai j

�

x0+ εy,
x0

ε
+ y

�

−Ai j

�

x,
x0

ε
+ y

�

dy

+
� ε

δ

�d ·
∫

δ
ε Y

h

A
�

x,
x0

ε
+ y

�

−A
�

x0+ εy,
x0

ε
+ y

�

i1
ε
∇yωi ·

1
ε
∇yω j dy

+
� ε

δ

�d
∫

δ
ε Y
A
�

x,
x0

ε
+ y

�

h

∇y ω̃i

� x0

ε
+ y

�

· ∇y ω̃ j

� x0

ε
+ y

�

− 1
ε
∇yωi (x0+ εy) · 1

ε
∇yω j (x0+ εy)

i

dy. (3.89)

The first integral term can be directly bounded with the help of the Lipschitz
continuity and Lemma 3.39:

� ε

δ

�d 
A
�

x0+ εy,
x0

ε
+ y

�

−A
�

x,
x0

ε
+ y

�



L∞
�δ
ε Y
�

≤C ‖x0+ εy − x‖ ≤C (δ + ε), (3.90)

because ε
δ ≤ 1. For the second term observe that

� ε

δ

�d
∫

δ
ε Y

h

A
�

x,
x0

ε
+ y

�

−A
�

x0+ εy,
x0

ε
+ y

�

i1
ε
∇yωi ·

1
ε
∇yω j dy

≤


A
�

x0+ εy,
x0

ε
+ y

�

−A
�

x,
x0

ε
+ y

�



L∞
�δ
ε Y
�

×
� ε

δ

�d
h





1
ε
∇yωi (x0+ εy)





2

L2
�δ
ε

�+




1
ε
∇yω j (x0+ εy)





2

L2
�δ
ε

�

i

.

(3.91)

The gradient ofωi arising in the second term can be uniformly bounded. Trans-
forming back and employing Lemma 3.39 yields

� ε

δ

�d
∫

δ
ε Y

�

�

1
ε
∇yωi (x0+ εy)

�

�

2 dy =
∫

Y δ
K

�

�∇yωi (y)
�

�

2 dy

≤C
1
α2
|Y δ

K | ‖A‖L∞(Ω×Y ) ≤C . (3.92)

For the last integral term, add and subtract

A
�

x,
x0

ε
+ y

�

∇y ω̃i

� x0

ε
+ y

�

· 1
ε
∇yω j (x0+ εy) (3.93)
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and utilize symmetry (2.8) to derive an inequality
�

�

�

� ε

δ

�d
∫

δ
ε Y
A
�

x,
x0

ε
+ y

�

h

∇y ω̃i

� x0

ε
+ y

�

· ∇y ω̃ j

� x0

ε
+ y

�

− 1
ε
∇yωi (x0+ εy) · 1

ε
∇yω j (x0+ εy)

i

dy
�

�

�

≤
� ε

δ

�d ‖A‖L∞

h



∇yω̃i





L2( δε Y )



∇yω̃ j

� x0

ε
+ y

�

− 1
ε
∇yω j

�

x0+ εy
�



L2( δε Y )

+


∇yω̃ j





L2( δε Y )



∇yω̃i

� x0

ε
+ y

�

− 1
ε
∇yωi

�

x0+ εy
�



L2( δε Y )

i

. (3.94)

It remains to show that
� ε

δ

�d/2




∇yω̃i

� x0

ε
+ y

�

− 1
ε
∇yωi

�

x0+ εy
�







L2( δε Y )
= O

�

δ + ε
�

(3.95)

and that the following stability estimate holds true:

� ε

δ

�d/2
h





1
ε
∇ωi





L2
�δ
ε Y
�+



∇ωi





L2
�δ
ε Y
�

i

≤ 1
α

�δ

ε

�d/2 ‖Aε‖
L∞
�δ
ε Y
�. (3.96)

Rescaling the corresponding cell problems (3.11) and (2.65) in the same manner
as done in (3.87) and (3.88) and subtracting the result yields
∫

δ
ε Y
A
�

x0+ εy,
x0

ε
+ y

�1
ε
∇yωi (x0+ εy) · ∇ϕ dy

=
∫

δ
ε Y
A
�

x,
x0

ε
+ y

�

∇y ω̃i

� x0

ε
+ y

�

· ∇ϕ dy

+
∫

δ
ε Y

h

A
�

x,
x0

ε
+ y

�

−A
�

x0+ εy,
x0

ε
+ y

�

i

ei · ∇ϕ dy. (3.97)

Following the same strategy as used in the proof of Lemma 3.23 by testing with
1
εωi − ω̃i leads to




∇yω̃i

� x0

ε
+ y

�

− 1
ε
∇yωi

�

x0+ εy
�







L2( δε Y )

≤ 1
α



A
�

x0+ εy,
x0

ε
+ y

�

−A
�

x,
x0

ε
+ y

�



L∞
�δ
ε Y
�

×
�

�δ

ε

�d/2+ ‖∇ω̃‖L2( δε Y )

�

. (3.98)

Finally, Equation (3.96) follows by a similar argument as used in the proof of
Lemma 3.39.
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Remark 3.46. Only the fact that δ is an integral multiple of ε was used in the
proof, the factor δ/ε does not have to be bounded. In fact, assumption (A5)
could be weakened to

(A6) δK is a (not necessarily uniform) integral multiple of ε for K ∈ Tδ , δ > 0.

Remark 3.47. If the requirement of δ being an integral multiple of ε is lifted,
Equation (3.88) does not hold anymore. Instead, it is necessary to estimate

�

�Aδi j (x)−A0
i j (x)

�

�≤
�

�Aδi j (x)−Aδ̃i j (x)
�

�+
�

�Aδ̃i j (x)−A0
i j (x)

�

�, (3.99)

with δ̃ being defined as the next integral multiple of ε smaller than δ. The term
�

�Aδi j (x)−Aδ̃i j (x)
�

� exhibits a resonance error [59] that only allows for an a priori
estimate

�

�Aδi j (x)−Aδ̃i j (x)
�

�≤ C
h

δ +
ε

δ

i

. (3.100)

In summary,


A0−Aδ




L∞(K) ≤C
h

δ + ε+
ε

δ

i

. (3.101)

Proof. With the help of the two auxiliary estimates
�
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−
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≤ 1
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(3.102)

and

‖∇ωi‖
2

L2
�

Y δ
K

�d + ‖∇ω̂δ
i ‖

2

L2
�

Y δ̃
K

�d ≤ C (3.103)

the statement follows analogous to Proposition 3.48.

By virtue of Proposition 3.45 and with the help of classical homogenization
results convergence against the homogenized solution u0 follows directly:

Proposition 3.48. Under the same assumptions (A2) – (A5) as used in Proposi-
tion 3.45, the solution uδ converges to u0 in H 1,



u0− uδ




H 1(Ω) ≤C
�

δ + ε
�

, (3.104)

with a constant C independent of δ and ε, and for δ,ε suitably small.
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3.4 Well-posedness and a priori error analysis

Proof. The results follow immediately from Lemma 3.23 and Proposition 3.45
together with the a priori estimate

‖uε‖H 1(Ω) ≤C‖ f ‖L2(Ω), (3.105)

with C independent of ε, resulting from the uniform ellipticity assumption
(2.9).

Finally, combining the result of Proposition 3.48 with the a priori convergence
of uε against u0, which was established in Proposition 2.30, leads to a convergence
result:

Proposition 3.49 (Convergence). Let A∈C 0,1
�

C 0,1(Y )
�

. Then,



uε− uδ


≤C ε, (3.106)


∇uε− ε∇y u1(x,
x
ε
)−∇uδ



≤C ε1/2. (3.107)

Unfortunately uε only converges to u0 weakly in H 1, for strong convergence in
H 1 the corrector u1 is needed. At least we can formulate the following corollary:

Corollary 3.50. Under the assumption stated in Proposition 3.48, the difference
uε and uδ remains uniformly bounded with respect to δ and ε, i. e.



uε− uδ




H 1(Ω) ≤C ∀ε≤ ε0 ∀δ ≤ δ0, (3.108)

where ε0 and δ0 only depend on a priori data.

Semi-discretized problem Similarly to the averaging strategy, we establish a
convergence result for the weaker case of a periodic coefficient Aε as defined in
(A4). In order to estimate quadrature errors and discretization errors separately,
introduce an auxiliary problem. Given a finite-element space V h

�

Y δ
K

�

, let Âδ,h
i j

be defined as

Âδ,h
i j (K) := −

∫

Y δ
K

Aε(x)
�

∇xω̂
h
i (x)+ e i

�

·
�

∇xω̂
h
j (x)+ e j

�

dx, (3.109)

where the ω̂h
i ∈V h

�

Y δ
K

�

⊂ H̃ 1
per(Y

δ
K ) are solutions of

∫

Y δ
K

Aε(x)
�

∇xω̂
h
i (x)+ e i ) · ∇ϕ = 0 ∀ϕ ∈V h�Y δ

K

�

. (3.110)
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Lemma 3.51. Let Aδ,h
i j be defined according to (3.22) and (3.23) with a summed

quadrature rule Qh,K associated with Th(Y
δ

K ) as defined in (3.18). Then, under
assumptions (A2) – (A5) it holds true that
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�≤ C
h
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. (3.111)

Proof. Utilizing (3.109) and (3.22), the error
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�Aδ,h
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to a quadrature error for approximating Aε:
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where, shown by similar techniques as used in the proofs of Proposition 3.45
and Lemma 3.28,
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In analogy of Lemma 3.28 it can be shown that
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Lemma 3.52. Assume (A2) – (A5) to be fulfilled. Let ω̂h
i ∈ V h

�

Y δ
K

�

be the
solution of (3.110) andωi ∈ H̃ 1

per(Y
δ

K ) be the solution of (3.11). Then, by virtue
of the Lipschitz continuity of Aε, the ωi are already of class H 2(Y δ

K ) and the
following a priori estimate holds true:
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h
i





L2(Y δ
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Æ

|Y δ
K |

h
δ

, (3.115)

with a constant C only depends on a priori data independent of δ and h.
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3.4 Well-posedness and a priori error analysis

Proof. For the regularity result ωi ∈ H 2(Y δ
K ) in case of Lipschitz continuous

coefficients Aε on the rescaled unit square Y δ
K we refer to Grisvard [51, Th. 3.2.1.2];

the corresponding regularity result by Grisvard can be immediately adapted to
the case of periodic boundary conditions and right hand side (Aε e i∇ . ). Then,
by standard finite-element approximation theory:
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d×d . (3.116)

A rescaling argument now shows that
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Æ
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1
δ

. (3.117)

Lemma 3.53. Let Aδi j be defined according to (3.10) and (3.11). Then, under the
same assumptions as stated in Lemma 3.51, it holds

�
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. (3.118)

Proof. Utilizing the definition of Aδ and Aδ,h leads to
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The statement now follows by virtue of Lemma 3.52.

With this prerequisites at hand a convergence result can be established.

Proposition 3.54. In case of the homogenization strategy and under the same
assumptions as in Lemma 3.51:



Aδ,h −Aδ




L∞(Ω) ≤ C
� h
ε
+

h
δ

�

. (3.120)

This estimate leads to the error estimate (with C only depending on a priori
data):



uδ,h − uδ




H 1(Ω) ≤ C
� h
ε
+

h
δ

�

. (3.121)

Proof. The first statement is a consequence of Lemma 3.51 and 3.53. The second
statement follows with the same technique as used in Lemma 3.23 and the previous
propositions.
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I

II III

IV

(a) (b) (c)

Figure 3.3. The slit domain Ω = [0,1]2 \ s together with the 4 quadrants
(a). Computations are done for an artificial periodic coefficient (b) and a
log-normally distributed permeability (c). Both coefficients are shown in
logarithmic scale with respect to base 10.

3.5 Numerical validation

The a priori convergence results shall be examined with a series of small numerical
tests. Those are done with a C++ [1] program that utilizes the finite-element
library D E A L . I I [15,16] as a general framework, the Q UA N T IM [99] library for
generating stochastic coefficients as well as the U M F PAC K solver from the
S U I T E S PA R S E [37,38] collection as a direct solver for cell problems.

Two different kinds of heterogeneous coefficients are examined. The first
one is an artificial, periodic structure with quadrant-wise different character (cf.
Figure 3.3):

Aε(x) = Id γ















exp (3) in I and III,

exp
�

6 (1− x1) x2 [cos(πx̂1)+ cos(πx̂2)]
�

in II,

exp
�

6 (1− x2) x1 [cos(πx̂1)+ cos(πx̂2)]
�

in IV.

(3.122)

Here, γ = 0.001 and the rescaling x̂i is defined as x̂i := bxi/εc − 1/2 with the
notation b . c for the floor function that selects the largest previous integral value.
For the periodic structure a mild scale separation with ε= 2−5 is chosen. The
second example is given by a log-normally distributed random field with Gaussian
correlation: Aε(x) = Id×γ×exp(10× g (x)/255), where g (x) is an 8 bit grayscale
picture (with integral values between 0 and 255) with 1024×1024 pixels resolution
(see Figure 3.3). A Gaussian correlation with a strong scale separation due to a
small correlation length of r = 0.0025 is chosen.
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3.5 Numerical validation

Due to the exponential scaling the microscale fluctuations in the coefficients
exhibit a strong influence on the macroscale in both cases. This manifests in
the fact that a high resolution that resolves the finescale completely is necessary
for a good approximation. The periodic structure is an example that fulfills the
periodicity assumption of the modified HMM scheme. It exhibits a quadrant-wise
different behavior with a heterogeneous character. Both coefficients are tested
on the slit domain Ω= [0,1]2 \ s (see Figure 3.3).

3.5.1 Uniform refinement

In a first numerical test the convergence rate in the L2(Ω)- and H 1(Ω)-norm for
a standard finite-element discretization under uniform refinement is examined.
For this, a reference solution with 1.67× 107 cells is computed against which
intermediate results are compared. The results are given in Table 3.1. The right
column for each norm is the logarithmic reduction rate, i. e., log2(‖ek‖/‖ek−1‖).
A reduced convergence rate can be observed. Compared to the corresponding
Laplace problem with smooth coefficient, a drastically increased resolution of
several orders of magnitude is necessary in order to reach the same relative error.
Further, even for a very fine discretization of over 1× 106 cells, a relative error
of less than 5% in the H 1(Ω)-norm cannot be achieved. In conclusion, a clear
two-scale behavior with a significant influence of the microscopic permeability
on the macroscale can be observed.

3.5.2 Model error of averaging schemes and HMM scheme

Another point of interest is the typical numerical range of the model error. To
get an estimate for it, a computation with high resolution on macroscale and
microscale discretization is performed. 2.56×106 cells on macroscale and 1.0×106

cells on microscale are chosen (in case of HMM 4.0× 106). The sampling mesh
Tδ(Ω) is chosen to be a uniform refinement of Ω. For simplicity, the individual
sampling regions are fixed to the full, respective sampling cell, Y δ

K =K . Further,
δ = ε= 2−5 is used in the case of the periodic structure and δ = 2−3, as well as
2−5, in the case of the randomly distributed permeability is chosen. The results
are given in Table 3.2. It can be seen that the effective macroscale behavior
expressed in the L2(Ω)-norm can be reproduced by the HMM scheme and by
the geometric averaging approach. In contrast to this, the effective coefficients
based on arithmetic and harmonic mean values result in very large relative errors
of around 50%. The relative error with respect to the H 1(Ω)-norm (which also
captures local oscillations) remains large throughout.
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Table 3.1. Error development in L2- and H 1-norm under uniform refinement
for both types of permeabilities (given in absolute and relative error, as well
as the logarithmic reduction rate with respect to base 2).

periodic coefficient random coefficient

# macro L2(Ω) H 1(Ω) L2(Ω) H 1(Ω)

256 2.9e-1 (35%) — 3.5e-0 (59%) — 7.0e-2 (41%) — 8.7e-1 (68%) —
1024 2.6e-1 (32%) 0.1 3.3e-0 (55%) 0.1 6.8e-2 (40%) 0.0 8.6e-1 (67%) 0.0
4096 2.6e-1 (31%) 0.0 3.3e-0 (55%) 0.0 6.4e-2 (37%) 0.1 8.3e-1 (65%) 0.1

16384 1.2e-1 (15%) 1.0 2.3e-0 (39%) 0.5 5.1e-2 (30%) 0.3 7.4e-1 (58%) 0.2
65536 4.1e-2 (4.9%) 1.6 1.4e-0 (23%) 0.8 2.7e-2 (16%) 0.9 5.3e-1 (41%) 0.5

262144 1.2e-2 (1.5%) 1.8 7.8e-1 (13%) 0.8 7.3e-3 (4.3%) 1.9 2.7e-1 (21%) 1.0
1048576 3.7e-3 (0.5%) 1.7 4.6e-1 (7.7%) 0.8 7.3e-4 (0.4%) 3.3 8.4e-2 (6.5%) 1.7

Table 3.2. Model error in L2- and H 1-norm for the proposed sampling schemes
(with arithmetic, geometric and harmonic mean value) and the HMM scheme
for (a) the periodic coefficients and (b) the random permeability.

strategy L2(Ω) H 1(Ω)

arithmetic averaging 2.6e-1 (31%) 3.2e-0 (54%)
geometric averaging 5.2e-2 (6.4%) 2.7e-0 (45%)
harmonic averaging 4.4e-1 (54%) 4.0e-0 (67%)

HMM scheme 1.6e-2 (2.0%) 2.7e-0 (45%)

(a) periodic coefficient

δ = 2−3 δ = 2−5

strategy L2(Ω) H 1(Ω) L2(Ω) H 1(Ω)

arithmetic av. 6.9e-2 (40%) 8.6e-1 (67%) 6.8e-2 (40%) 8.5e-1 (66%)
geometric av. 3.7e-3 (2.2%) 7.5e-1 (59%) 2.6e-3 (1.5%) 7.5e-1 (59%)
harmonic av. 1.2e-1 (71%) 1.1e-0 (86%) 1.2e-1 (67%) 1.0e-0 (78%)

HMM scheme 2.9e-3 (1.7%) 7.5e-1 (59%) 2.2e-3 (1.3%) 7.5e-1 (59%)

(b) random coefficient
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3.5 Numerical validation

3.5.3 Convergence rates for uniform refinement

Next, we examine the convergence rates achieved under uniform refinement and
compare them to the theoretical results given in Propositions 3.25, 3.30, 3.33,
and 3.37. This is done for the simple averaging strategy. In light of the numerical
results of the first two tests the geometric average is chosen.

In order to verify the a priori results, additional approximations of uδ and uδ,h

are computed with 4.0×106 cells on the macroscale; with a fine resolution on the
microscale (h = 2−12) for uδ and a sequence of decreasing h = 2−4, . . . , 2−10 for
uδ,h . Finally, the error uε−uδ (as a function of δ), uδ−uδ,h (as a function of h),
and uε− uδ (as a function of δ) is determined in both, L2(Ω)- and H 1(Ω)-norm.

The results are depicted in Figure 3.4 in form of a semi-logarithmic plot of
the relative error normalized to an initial error of 1. Due to the macroscopic
singularity coming from the reentrant corner and the discontinuous coefficient
Aδ,h only a reduced convergence rate of 2/3 in the H 1(Ω)- and 4/3 in the L2(Ω)-
norm is expected (cf. Proposition 3.37 and Remark 3.36). This can be verified
for both types of microstructures.

In contrast, in case of the microscale error uδ − uδ,h under refinement of
Th(K), a similar behavior for both global norms, i. e., in L2(Ω) and H 1(Ω), is
expected—and this is indeed the case. The convergence rate in h is identical for
both norms and both types of microstructure. Here, a high convergence order of
4 was achieved in case of the periodic permeability (for a 4th order quadrature rule
that was used). In case of the random coefficients, a roughly linear convergence
rate can be observed for the first steps. The sudden drop of the microscale error
to 10−10 is due to the way how the random permeability is implemented, namely,
as a piecewise constant coefficient on a 1024× 1024 background mesh. A soon
as the summed quadrature rule resolves the background mesh, the error drops
abruptly. The observed convergence rates under sampling-grid refinement (in
δ) need some explanation. For the periodic coefficients (Figure 3.4), at first, no
convergence in H 1(Ω) or L2(Ω) is observable. This is due to the fact that up to
cycle 3 the parameter δ is still an exact integral multiple of ε. Later, the model
error ‖∇(uε−uδ)‖ shows an asymptotic linear convergence order for the periodic
coefficients. In case of the random coefficients a reduced convergence order can be
observed that increases from∼ 0.1 to linear convergence. This has to be expected
as the microstructure is not continuous, but piecewise constant. In both cases, the
model error in the L2(Ω) norm shows a roughly doubled convergence order as the
H 1(Ω) case: 1.8 instead of 0.9 for the periodic coefficients, linear instead of 0.5 for
the random permeability—in agreement with Remark 3.26 and Proposition 3.49.
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(a) Periodic coefficients
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(b) Random coefficients

Figure 3.4. Convergence order of macroscale, microscale and discretization
for (a) periodic and (b) random coefficients. The error is plotted on a semi-
logarithmic scale as relative error normalized to an initial error of 1.
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4 A posteriori error estimation

In this section we derive a posteriori error estimates for the multiscale scheme.
This is done in the framework of the Dual Weighted Residual (DWR) method
introduced by Becker and Rannacher [19–21]. A so-called dual problem is solved
that is defined in terms of the coefficients Aε and a quantity of interest represented
by a linear functional j . The goal of this discussion is to derive independent a
posteriori error estimates and local indicators for all sources of error—for the
discretization errors on the macro- and microscale, as well as for the model error.
The error indicators will be used as the basis of different adaptation strategies
formulated in Chapters 5 and 6.

A fundamental difficulty that has to be taken care of arises from the fact that
computing the solution of the dual problem (in case of the elliptic model problem)
is of the same complexity as the primal problem, but a good approximation of
the dual solution is needed for certain types of model adaptation strategies.

Thus, in order to make a numerical evaluation of the dual problem compu-
tationally feasible, different strategies to reconstruct the dual solution will be
examined. Such reconstruction strategies range from coarse macroscale approx-
imations of the dual solution (with high quadrature) to local enhancement by
solving localized reconstruction problems.

Remark 4.1. Comparable techniques by using the DWR method in a model-
adaptive context have been developed by Oden and Vemaganti [84–87,91] and Braack
and Ern [26] (see Section 5.1), albeit with a different treatment of localization and
a posteriori control.

4.1 Duality-based error identity
Let j ∈H−1(Ω) be a linear and continuous functional and suppose that a quantity
of interest is given by the value 〈 j , uε〉. Define a dual problem:

Definition 4.2 (Dual problem). Find zε ∈H 1(Ω) s. t.
�

Aε∇ϕ,∇zε
�

= 〈 j ,ϕ〉 ∀ϕ ∈H 1(Ω). (4.1)
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4 A posteriori error estimation

The dual problem is well-posed and admits a unique solution.

At this point the usual approach is to transform the error expressed in the
quantity of interest, 〈 j , uε〉 − 〈 j , U 〉, into a residual tested with the dual solu-
tion [19].

〈 j , uε〉− 〈 j , U 〉= ( f , zε)−〈 j , U 〉= ( f , zε)−
�

Aε∇U ,∇zε
�

. (4.2)

By introducing an effective model and a microscale discretization, the situation
becomes more complicated. Several different splitting strategies can be used.
In principle, it is possible to use the error identity independently between all
intermediate problems leading to an identity of the form

〈 j , uε〉− 〈 j , U 〉
= 〈 j , uε〉− 〈 j , uδ〉+ 〈 j , uδ〉− 〈 j , uδ,h〉+ 〈 j , uδ,h〉− 〈 j , U 〉
=
�

[Aδ −Aε]∇uδ ,∇zε
�

+
�

[Aδ,h −Aδ]∇uδ,h ,∇zδ
�

+( f , zδ,h)−
�

Aδ,h∇U ,∇zδ,h). (4.3)

Here, Aδ , Aδ,h denote either the post-processed coefficients according to Defini-
tion 3.8, or its piecewise constant counterpart Aδ , Aδ,h (depending on which is
actually used). zδ , zδ,h are solutions of corresponding intermediate dual prob-
lems that will be defined below. This form of splitting has the disadvantage of
introducing all primal and dual intermediate solutions in the equation. Especially
the generally unavailable intermediate solutions uδ and uδ,h pose a problem. An
alternative approach is to split only between discretization and model contribu-
tion:

〈 j , uε〉− 〈 j , uδ〉+ 〈 j , uδ〉− 〈 j , U 〉
= ( f , zε)−

�

Aε∇uδ ,∇zε
�

+( f , zδ)−
�

Aδ∇U ,∇zδ
�

=
�

[Aδ −Aε]∇uδ ,∇zε
�

+
�

[Aδ,h −Aδ]∇U ,∇zδ
�

+( f , zδ)−
�

Aδ∇U ,∇zδ
�

, (4.4)

with the solution zδ ∈H 1
0 (Ω) of an effective, dual solution

�

Aδ∇ϕ,∇zδ
�

= 〈 j ,ϕ〉 ∀ϕ ∈H 1
0 (Ω). (4.5)

This splitting has the advantage that at least both terms that relate to discretization
errors entirely consist of evaluable expressions. The question how to efficiently
approximate the model error will be examined in detail in Section 4.4. In sum-
mary, we have established the following result.

80



4.1 Duality-based error identity

Proposition 4.3 (Error identity). It holds true that

〈 j , uε〉− 〈 j , U 〉
=
�

f , zδ
�

−
�

Aδ,h∇U ,∇zδ
�

︸ ︷︷ ︸

=:θH

+
�

Aδ,h∇U ,∇zδ
�

−
�

Aδ∇U ,∇zδ
�

︸ ︷︷ ︸

=:θh

+
�

Aδ∇uδ ,∇zε
�

−
�

Aε∇uδ ,∇zε
�

︸ ︷︷ ︸

=:θδ

, (4.6)

with the following error estimators: θH , which is a residual on the macroscale,
θh that takes the form of a residual on the microscale, and θδ that estimates the
model error.

The macroscale and microscale error estimators can be rewritten in the usual
form of a residual tested with the dual solution. By employing Galerkin orthogo-
nality and partial integration (in case of the macroscale error estimator) the error
estimators can be localized and split into local error indicators.

Proposition 4.4. The macroscale error estimator θH permits the representation

θH =
∑

K∈TH (Ω)

ηH
K , (4.7)

ηH
K :=

�

f +∇ ·Aδ,h∇U , zδ −ϕH �

L2(K)

− 1
2

��

n ·Aδ,h∇U
�

∂ Q
, zδ −ϕH �

L2(∂ K)d (4.8)

for arbitrary ϕH ∈VH (Ω). Here, [ . ]∂ K denotes the jump over ∂ K and n is the
outward unit normal. The microscale error indicator is given by

θh =
∑

K∈Tδ (Ω)
ηh

K , (4.9)

ηh
K :=

�

{Aδ −Aδ,h}∇U ,∇zδ
�

K
. (4.10)

Finally, based on the definition of θδ , also define local model-error indicators

θδ =
∑

K∈Tδ (Ω)
ηδK , (4.11)

ηδK :=
�

{Aε−Aδ}∇uδ ,∇zε
�

K
. (4.12)
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4 A posteriori error estimation

Remark 4.5. In case of the homogenization sampling strategy (3.10), the mi-
croscale error estimator can be expressed in terms of microscale residuals (ne-
glecting quadrature):

ηh
K :=

∑

i j

∫

K
∇i U∇j z

δ dx
1
|Y δ

K |
∑

Q ∈Th (Y δ
K )

∫

Q
Aε
�

−∇ωh
j − e j

�

·
�

∇ωi −∇ψ
h
K

�

dy, (4.13)

with a choice ψh
K ∈V h(Y δ

K ) due to Galerkin orthogonality.

Proof of proposition and remark. Equation (4.7) immediately follows by virtue
of Galerkin orthogonality and by partial integration,

θH =
∑

K∈TH (Ω)

�

f , zδ −πH zδ
�

L2(K)−
�

Aδ,h∇U ,∇zδ −∇πH zδ
�

L2(K)d

=
∑

K∈TH (Ω)

�

f +∇ ·Aδ,h∇U , zδ −πH zδ
�

L2(K)

− 1
2

�

�

n ·Aδ,h∇U
�

∂ K
, zδ −∇πH zδ

�

L2(∂ K)d
. (4.14)

Equation (4.13) is a consequence of a straightforward calculation with the identity

−
∫

Y δ
K

Aε∇ωh
i · ∇ω

h
j dy = −

∫

Y δ
K

Aε∇ωh
i · ∇ω j dy (4.15)

and the symmetric characterization (3.76) ofωi andωh
i :

θh =
∑

K∈Tδ (Ω)

∫

K

�

Aδ,h −Aδ)∇U · ∇zδ dx

=
∑

K∈Tδ (Ω)

∑

i j

∫

K

−
∫

Y δ
K

Aε(y)∇yωi · ∇yω j −Aε(y)∇yω
h
i · ∇yω

h
j dy∇i U ∇j z

δ dx

=
∑

K∈Tδ (Ω)

∑

i j

∫

K
∇i U∇j z

δ dx −
∫

Y δ
K

−Aε(y)e i · ∇yω j −Aε(y)∇yω
h
i · ∇yω j dy

=
∑

K∈Tδ (Ω)

∑

i j

∫

K
∇i U∇j z

δ dx
1
|Y δ

K |

×
∑

Q ∈Th

�

Y δ
K

�

∫

Q
Aε(y)

�

− e i −∇yω
h
i

�

·
�

∇yω j −∇ψ
h
K

�

dy. (4.16)
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Remark 4.6. Residual based a posteriori results for the discretization errors for
the underlying HMM were already presented by Ohlberger [88], Henning and
Ohlberger [53], Henning et al. [55], and Abdulle [3]. Corresponding goal-oriented er-
ror estimates for discretization errors on macro- and microscale were formulated
by Abdulle and Nonnenmacher [4]. Those are similar to the local error estimators
ηH

K and ηh
K developed for the abstract framework. Furthermore, goal-oriented

a posteriori results for the VMM ansatz that use the same methodology were
derived by Larson and Målqvist [67–69], see also Section 3.1.

4.2 Efficiency of the error estimators

The residual-type error indicators θH and θh are well behaved, i. e. they are
uniformly bounded in powers of H and h, respectively. Let πH : H 1

0 (Ω)→
V H (Ω) be the Scott-Zhang interpolant [94] defined on H 1

0 (Ω). Or alternatively,
let πH be any other choice of interpolation that fulfills the local estimate


ϕ−πHϕ




L2(K)+H 1/2
K



ϕ−πHϕ




L2(∂ K)+HK



∇ϕ−∇πHϕ




L2(K)d

≤C HK



∇ϕ




L2(Ω)d ∀ϕ ∈H 1
0 (Ω). (4.17)

Proposition 4.7. Let Aδ,h be the post-processed, continuous coefficient from
Definition 3.8 and let assumptions (A1) – (A3), or alternatively (A2) – (A5) in
case of the homogenization strategy, hold true. Then, the macroscale error
estimator and indicators converge linearly in H (with a constant depending on
δ as described in Lemma 3.32),

|θH | ≤
∑

K∈TH (Ω)

|ηH
K | ≤ C (δ)H . (4.18)

Proof. The macroscale error indicator reads

ηH
K =

�

f +∇ ·Aδ,h∇U , zδ −πH zδ
�

L2(K)

− 1
2

��

n ·Aδ,h∇U
�

∂ K
, zδ −πH zδ

�

L2(∂ K). (4.19)

Estimating the first term of (4.19) yields
�

�

�

�

f +∇ ·Aδ,h∇U , zε−πH zε
�

L2(K)

�

�

�

≤ ‖ f +∇ ·Aδ,h∇U‖L2(K)



zε−πH zε




L2(K)

≤ ‖ f +∇ ·Aδ,h∇U‖L2(K)C HK . (4.20)
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4 A posteriori error estimation

To employ the same strategy on the second term needs a variant of a well known
trace theorem [6]. The function uδ,h ∈H 1

0 (Ω) admits a representation

∇ ·Aδ,h∇uδ,h ≡ f ∈ L2(Ω). (4.21)

Thus, for arbitrary K ∈ TH (Ω), the trace n ·Aδ,h∇uδ,h ∈ L2(∂ K) exists and the
following estimate holds by virtue of a rescaling argument:


n ·Aδ,h∇(uδ,h −U )




2
L2(∂ K)

≤C
�

HK



 f +∇ ·Aδ,h∇U




2
L2(K)+H−1

K



Aδ,h∇(uδ,h −U )




2
L2(K)d

�

, (4.22)

with a constant C independent of H and HK denoting the local cell size of K .
Hence,

H−1
K





�

n ·Aδ,h∇U
�

∂ K





2
L2(∂ K)d

=H−1
K





�

n ·Aδ,h�∇U −∇uδ,h��

∂ K





2
L2(∂ K)d

≤ C


 f +∇ ·Aδ,h∇U




2
L2(K)+C H−2

K



Aδ,h(∇U −∇uδ,h)




2
L2(K)d . (4.23)

This enables us to estimate the second term:
�

�

�

�

[n ·Aδ,h∇U ]∂ K , zδ −πH zδ
�

L2(∂ K)

�

�

�

≤C
�



 f +∇ ·Aδ,h∇U




2
L2(K)+H−2

K



Aδ,h(∇U −∇uδ,h)




2
L2(K)d

�

HK . (4.24)

As a last ingredient a local stability estimate is needed:


 f +∇ ·Aδ,h∇U




2
L2(K)+H−2

K



Aδ,h(∇U −∇uδ,h)




2
L2(K)d ≤ C (δ). (4.25)

For the post-processed variant and thus uniformly Lipschitz continuous coeffi-
cient Aδ,h this is indeed the case [6], see Lemma 3.32 and Proposition 3.33.

Remark 4.8. In case of the piecewise constant coefficients Aδ and Aδ,h only a
reduced stability estimate


 f +∇ ·Aδ,h∇U




2
L2(K)+H−2

K



Aδ,h(∇U −∇uδ,h)




2
L2(K)d ≤ C (δ)H−2+2γ

K

(4.26)

holds true (cf. Proposition 3.37). This also leads to a reduced convergence order
for the macroscale error estimator and local indicators:

�

�θH �
�≤

∑

K∈TH (Ω)

�

�ηH
K

�

�≤C (δ)H γ . (4.27)
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4.2 Efficiency of the error estimators

Remark 4.9. For a large class of quantities of interest and associated dual solutions
an improved interpolation estimate as the one given in (4.17) holds true and a
higher convergence rate can be shown: Suppose zε admits the estimate



zε−πH zε




L2(K)+H 1/2
K



zε−πH zε




∂ L2(K) ≤C H 1+κ, (4.28)

then, in case of the post-processed coefficient Aδ,h , it holds true that
�

�θH �
�≤

∑

K∈TH (Ω)

�

�ηH
K

�

�≤C (δ)H 1+κ. (4.29)

Similarly, in case of the piecewise constant coefficient Aδ,h

�

�θH �
�≤

∑

K∈TH (Ω)

�

�ηH
K

�

�≤C (δ)H γ+κ. (4.30)

The required regularity assumptions for such an improved interpolation estimate
are fulfilled for a big class of quantities of interests j . Elliptic equations with
very weak regularity on the coefficient Aε have been studied extensively in the
literature [79,93,98]. As an example, consider j to be of class L2(Ω). Then, the dual
solution zε already admits a Hölder-continuous representation [79, Ch. 5], i. e.,

ess sup
Ω

�

�zε(y)− zε(x)
�

�

‖y − x‖κ
<∞, (4.31)

for some Hölder-exponent 0 < κ ≤ 1. This result only requires a Lebesgue-
integrable function Aε, which is the case for Aε ∈ L∞(Ω)d×d on a bounded
domain Ω. However, the Hölder-continuity is only uniform in ε in case of
stronger assumptions such as (A1). Otherwise, no uniform bound with respect
to ε can be established.

In contrast to the macroscopic discretization indicator θH , the microscopic
pendant θh depends only on the regularity of the solutions of the local sampling
problems and the approximation order of the quadrature rule used.

Proposition 4.10. In case of the averaging strategy (3.12) and if (A1) – (A3) hold
true, the microscale indicator θh admits an estimate

|θh | ≤
∑

K∈Tδ (Ω)

∑

Q ∈Th (Y δ
K )

|ηh
Q | ≤ C (ε) h. (4.32)

In case of the homogenization sampling strategy and with (A2) – (A5) being
fulfilled a slightly different result follows:

|θh | ≤
∑

K∈Tδ (Ω)

∑

Q ∈Th (Y δ
K )

|ηh
Q | ≤ C

� h
ε

�

. (4.33)
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4 A posteriori error estimation

Proof. The statements are a direct consequence of Lemma 3.28 as well as Proposi-
tion 3.54, respectively, where it is shown that ‖Aδ,h −Aδ‖L∞(Ω) is bounded with
the respective convergence order.

The model-error indicator θδ is of fundamentally different character as the dis-
cretization indicators θH and θh . Only for the considerably stronger assumption
of applicability (cf. Definition 3.19) a convergence with respect to a discretization
parameter for a family of effective models

�

(Tδ(Ω),Aδ)
	

δ>0
can be shown.

Proposition 4.11. Assume that a family of effective models
�

(Tδ(Ω),Aδ)
	

δ>0
is

applicable for Aε. Then,

|θδ | ≤
∑

K∈Tδ (Ω)
|ηδK | ≤

∑

K∈Tδ (Ω)
C (ε)‖∇zε‖K δ ≤ C (ε)δ. (4.34)

Proof. This is an immediate consequence of (3.35).

Remark 4.12. The preceding proposition is too pessimistic in practice. The key
point of the whole a posteriori approach is the fact that the model error indicator
(4.11), ηδK :=

�

{Aε −Aδ}∇uδ ,∇zε
�

K
, contains the dual solution as a weighting

factor. Thus, for a localized functional, where zε is of Green’s function type,
the bad error constant C (ε) is only present in a small region that needs to be
resolved in full. We refer to the numerical results given in Section 5.3.

Under the weaker assumptions (A2) – (A5) alone (in the case of the homoge-
nization sampling strategy) a general a priori result for the convergence of the
model-error estimator is not possible. Additional assumptions are required. The
reason for this lies in the fact that a relation between 〈 j , uε〉 and 〈 j , u0〉 in the
homogenization limit has to hold true.

Remark 4.13. This observation is one of the reasons that motivate alternative
model-adaptation strategies that do not rely on asymptotic behavior with respect
to a discretization parameter δ, see Chapter 6.

For the sake of completeness we formulate the following convergence result—
but stress the fact that due to the occurrence of all discretization parameters its
usefulness is rather limited.

Proposition 4.14. Let the homogenization sampling strategy given in Defini-
tion 3.4 be applicable for the given quantity of interest j in the sense that

�

�〈 j , u0〉− 〈 j , uε〉
�

�≤ C ε. (4.35)
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4.2 Efficiency of the error estimators

Then, the model-error estimator θδ permits the estimate

|θδ | ≤ C
�

H +
h
ε
+δ + ε

�

. (4.36)

Remark 4.15. The additional assumption (4.35) is analogous to the assumption

‖u0− uε‖ ≤C ε (4.37)

made in the previous a priori analysis where a convergence ‖uδ − u0‖ ≤ C δ
was shown.

Proof of the proposition. Starting with the definition of θδ :

θδ =
�

(Aε−Aδ)∇U ,∇zε
�

L2(Ω)d

=
�

(A0−Aδ)∇U ,∇zε
�

L2(Ω)d +
�

(Aε−A0)∇[U − u0],∇zε
�

L2(Ω)d

+
�

(Aε−A0)∇u0,∇zε
�

L2(Ω)d . (4.38)

The last term can be further transformed into
�

Aε∇u0−A0∇u0,∇zε
�

L2(Ω)d =
�

Aε∇u0−Aε∇uε,∇zε
�

L2(Ω)d

= 〈 j , u0〉− 〈 j , uε〉. (4.39)

Hence,

|θδ | ≤


A0−Aδ




L∞(Ω)d×d‖∇U‖L2(Ω)d ‖∇zε‖L2(Ω)d

+
�

‖Aε‖L∞(Ω)d×d + ‖A0‖L∞(Ω)d×d

�



∇U −∇u0


L2(Ω)d ‖∇zε‖L2(Ω)d

+
�

�〈 j , u0〉− 〈 j , uε〉
�

�. (4.40)

The result now follows by virtue of Propositions 3.37, 3.45, 3.48, and 3.54.

Remark 4.16. The last proposition illustrates the fundamental problem one
is faced with in context of model adaptation. In light of Proposition 4.7 and
4.10 it can be safely assessed that θδ is (at least for H and h suitably small) an
estimator for the model error. So it is possible to detect a large model error—but
the possibility to adapt the model locally in order to improve the situation is not
necessarily given. As an illustration consider the case of vanishing H , h and δ.
Then, ‖θδ‖ ≤C ε by virtue of above result. However, within the confinement
of one specific model derivation (in this case HMM) no further model adaptation
to improve the situation can be done; ε is a fixed problem parameter.
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4 A posteriori error estimation

4.3 Localization strategies for the dual problem
A fundamental difficulty arises from the fact that computing the solution of the
dual problem is (in case of the elliptic model problem) of the same complexity
as the primal problem itself. A global fine-scale approximation of zε has to be
considered infeasible. Thus, a strategy to approximate the dual problem with low
computational overhead is needed. This section discusses a number of possible
approaches to address this problem are discussed. The chapter concludes with a
numerical validation of the different reconstruction principles.

As a first step, we make the observation that the model-error indicator ηδK is
of fundamentally different character than the residual-type indicators ηH

K and
ηh

K . This can be seen by the following heuristic reasoning: ηH
K , and similarly ηh

K ,
correspond to moments of first order with respect to microscale fluctuations when
defined with the full dual solution zε. For example, the microscale indicator
reads

ηh
K =

�

(Aδ −Aδ,h)∇U ,∇zε
︸︷︷︸

fluct.

�

K
. (4.41)

In case of the error splitting given in Proposition 4.3 the macro- and microscale
error indicators actually contain no fluctuations at all. Whereas ηδK always corre-
sponds to a moment of second order,

ηδK =
�

(Aε−Aδ)
︸ ︷︷ ︸

fluct.

∇uδ ,∇zε
︸︷︷︸

fluct.

�

. (4.42)

Due to the fact that zε influences ηh
K mainly by its mean value

∫

K
zε dy and not

by its variation
∫

K
‖zε‖dy, a replacement of ∇zε in ηH

K and ηh
K by an averaged

approximation can be justified. As already introduced, a canonical candidate is
the solution zδ ∈H 1

0 (Ω) of a corresponding effective dual problem
�

Aδ∇ϕ,∇zδ
�

= 〈 j ,ϕ〉 ∀ϕ ∈H 1
0 (Ω) (4.43)

defined with in terms of the effective model Aδ . The idea is that an effective
approximation of zδ that, for example, globally approximates zε in L2(Ω) also
produces suitable averages (for a sampling region K large enough) with

∫

K
∇zδ dy ≈

∫

K
∇zε dy. (4.44)

For the model-error indicator, however, such a (heuristic) argument cannot
be applied because replacing zε by a mean value zδ destroys the coupling of
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4.3 Localization strategies for the dual problem

fluctuations in ∇zε with those in Aδ −Aε, and thus the property of being a
moment of second order.

Different strategies for effectively approximating the dual solution have been
discussed in the literature:

– Braack and Ern [26] used the homogenized dual solution zδ directly instead
of zε in order to estimate model errors. This approach can be justified, if
the difference between Aε and Aδ is suitably small, i. e. if Aδ is an effective
model already very close to the full model Aε, or if only a qualitative—not
a quantitative—error estimate is needed, see Chapter 5.

– Oden and Vemaganti [84–86] also used the homogenized dual solution zδ

but with an additional cell-wise local inverse of the form

Id − (A
ε)−1Aδ (4.45)

in the estimation of the model-error indicator. This results in an estimate
of the form [84, Th. 3.1] (adapted to the modified HMM scheme)

�

�〈 j , uδ〉− 〈 j , uε〉
�

�

2 ≤ C
∑

K∈Tδ (Ω)

�

�

�

∇uδ ,
�

Id −
�

Aε
�−1Aδ

�

zδ
�

K

�

�

2+R . (4.46)

with a (not directly computable) residual-type remainderR .

– A different strategy was explored by Romkes and Moody [91]. They re-
placed the global dual problem (4.1) by a local problem solely defined on
the local sampling region: Find ẑε ∈H 1(K), s. t.

�

Aε∇ϕ,∇ẑε
�

= 〈 j ,ϕ〉, ∀ϕ ∈H 1(K)
n ·Aε∇ẑε = 0 on ∂ K .

(4.47)

This approach is computationally rather expensive and does not capture
global information about the error distribution that is part of zε (or even
the reduced version zδ ).

All of this strategies were derived in a context of model adaptation strategies that
only require a qualitative error estimate (see Sections 5.1 and 5.2). In particular,
a correct balancing of discretization estimators θH , θh and model error indicator
θδ was not needed and therefore not examined.

In this thesis, two slightly different reconstruction approaches are used. The
first one is based on the idea to approximate zε directly on a coarse discretization
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4 A posteriori error estimation

but with high (summed) quadrature. The idea is that if the coarse discretization
is chosen to be a (sufficient) refinement of TH (Ω) a compromise between compu-
tational complexity and quantitative information can be found. This requires
the dual discretization to be still coarse enough to have a computable number of
degrees of freedom, but refined enough to capture essential oscillations in the
finite-element ansatz space of the dual problem.

Definition 4.17 (Coarse dual approximation). Let TH/2(Ω) be the triangulation
resulting from a one time refinement of TH (Ω) and let Qh be a fine, summed
quadrature rule. Define Z̃ ∈V H/2(Ω) as the solution of

Qh

�

Aε∇Z̃ · ∇ϕH/2�=Qh

�

jϕH/2� ∀ϕH/2 ∈V H/2(Ω). (4.48)

Remark 4.18. This reconstruction is of a similar nature as the arithmetic averag-
ing sampling strategy. ∇Z̃ ⊗∇ϕH/2 is approximately constant for the summed
quadrature rule Qh such that

Qh,K

�

Aε∇Z̃ · ∇ϕH/2�≈Qh,K

�

Aε
�

∇Z̃ · ∇ϕH/2 (4.49)

on a macro cell K . Consequently, this approximation suffers from the same
problem of probably bad global approximation in L2(Ω), see the numerical
results of Subsection 3.5.2. But, as evidenced by standard DWR techniques, the
approximation of the dual solution zε can be relatively coarse and might still
contain enough qualitative information about error distribution to enable a
stable adaptation process.

It is clear that the approximation property of (4.48) will degrade with increasing
scale separation. For such cases a more elaborate approximation strategy is needed.
Thus as a second reconstruction principle we propose a strategy that combines
the usage of a global, effective approximation of zε with a local enhancement.
The enhancement is given by localized reconstruction problems in spirit of the
VMM ansatz.

Definition 4.19 (Local enhancement). Let zδ be the solution of (4.43),
�

Aδ∇ϕ,∇zδ
�

= 〈 j ,ϕ〉 ∀ϕ ∈H 1
0 (Ω), (4.50)

and let
�

ωK : K ∈ Tδ(Ω)
	

be a set of reconstruction patches fulfilling ωK ⊃ K .
Define a patch-wise reconstruction zδK ∈H 1

0 (ωK) by
�

Aε∇ϕ,∇(zδ + zδK )
�

= 〈 j ,ϕ〉 ∀ϕ ∈H 1
0 (ωK). (4.51)
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4.3 Localization strategies for the dual problem

Remark 4.20. The reconstruction patchesω(K) can usually be chosen as small
asω(K) =K (and the majority of numerical results in this thesis are computed
with this choice). If a very precise error estimate is necessary, however, a slightly
increased patch-size must be used. Further, for technical reasons faced with in
the model optimization framework in Chapter 6 the reconstruction processes is
sometimes used on a patchω(K) around K with patch-depth 1.

Remark 4.21. It is also possible to use other boundary conditions than homo-
geneous Dirichlet conditions—homogeneous Neumann, natural, or periodic
boundary conditions are a possible. This results in a non-conforming ansatz
that unconditionally requires to chooseω(K) slightly larger than K in order to
control the effect of the imposed boundary conditions.

With the choiceω(K) =K , the locally reconstructed dual solution leads to a
conforming ansatz zδ+

∑

K ∈TδzδK ∈H 1(Ω). In this case above local enhancement
strategy can be regarded as a variant of the VMM formulation that only has a
reconstruction coupling and omits the opposite coupling via compression (cf.
Figure 2.1).

Remark 4.22. More precisely, the error identity (6.3) lifts the question of suitable
approximations in terms of a quantity of interest (for the primal problem) to
the question of suitable approximation properties of the localization technique
for the dual problem. The catch here is that the latter is typically measured in
the L2-norm of the gradient of the error of the dual approximation, for which—
depending on the localization approach—strong approximation properties are
available.

In general, no strict projection property onto V H (Ω)⊕
∑

K∈Tδ H 1
0 (K) with

respect to the functional j holds true, i. e., ((Aδ −Aε)∇U ,∇zδ + zδK )K does not
necessarily have to be a better approximation of ηδK than the reduced variant
((Aδ −Aε)∇U ,∇zδ)K .

Remark 4.23. A heuristic argument can be given for the case of homogeneous
Dirichlet boundary conditions in case of a global approximation property to
hold true: The difference between ηδK and its approximation η̃δK =

�

(Aε −
Aδ)∇uδ ,∇zδ +∇zδK

�

K
can be expressed as

ηδK − η̃
δ
K =

�

(Aε−Aδ)∇uδ ,∇zε−∇(zδ + zδK )
�

K

=
�

(Aε−Aδ)∇(uδ −ϕ),∇(zε− zδ − zδK )
�

K

+
�

Aδ∇ϕ,∇(zε− zδ − zδK )
�

K
(4.52)
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for arbitrary ϕ ∈ H 1
0 (K). Now, choose ϕ to be equal to the projection of the

function uδ ∈H 2(Ω)∩H 1
0 (Ω) onto H 1

0 (K), ϕ =π0uδ , and estimate the last term
as follows:
�

�

�

�

Aδ∇ϕ,∇(zε− zδ − zδK )
�

K

�

�

�

≤
�

�

�

∫

∂ K
n ·Aδ∇π0uδ (zε− zδ)dox

�

�

�+
�

�

�

�

∇ ·Aδ∇π0uδ , zε− zδ − zδK
�

K

�

�

�

=
�

�

�

�

∇ ·Aδ∇π0uδ , zε− zδ − zδK
�

K

�

�

�

≤




∇ ·Aδ∇π0uδ






K





zε− zδ − zδK






K
. (4.53)

Given the fact that π0uδ deviates from ϕ only close to the boundary, it can be
heuristically justified to approximate the first term by

�

�

�

�

(Aε−Aδ)∇(uδ −π0uδ),∇(zε− zδ − zδK )
�

K

�

�

�∼
�

�

�

∫

∂ K
zε− zδ − zδK dox

�

�

�. (4.54)

One conludes that the approximate error estimator η̃δK is indeed a sufficient
approximation on ηδK provided that the heuristic properties



zε− zδ − zδK




K � 1, (4.55)

�

�

�

∫

∂ K
zε− zδ − zδK dox

�

�

� � 1 (4.56)

hold true. The critical property is (4.56) which can be highly influenced by the
artificial boundary conditions imposed on zδK .

A detailed numerical study about qualitative and quantitative behavior of the
coarse approximation and local enhancement strategy is given in Section 4.5.

4.4 Evaluation of the estimators and indicators

In contrast to pure residual-type estimators that can be evaluated in a simple
post-processing step, the practical evaluation of the error estimators require
the approximation of an additional, intermediate dual solution and effective
coefficients. The evaluation of the discretization error indicators ηH

K and ηh
K

according to (4.7) and (4.9) involve the a priori unknown effective coefficients Aδ

and dual solution zδ . Both have to be approximated with higher order than the
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corresponding solution of the primal problem U , or the numerically computed,
effective coefficients Aδ,h . Thus, we define an approximation of the dual solution
with appropriately chosen refinement parameters for both localization strategies
that were given by Definitions 4.17 and 4.19.

Definition 4.24 (Coarse dual approximation). As already introduced in Defini-
tion 4.17, let Z̃ ∈V H/2(Ω) be the solution of

�

Aε∇ϕH/2,∇Z̃
�

= 〈 j ,ϕH/2〉 ∀ϕH ∈V H/2(Ω). (4.57)

Definition 4.25 (Local higher order approximation). Let the coefficient Aδ,h/2

denote the numerically computed, effective model with respect a one time refined
microscale discretization

�

Th/2(Y
δ

K ) : K ∈ Tδ(Ω)
	

. Define Z̃ ∈V H (Ω) to be the
solution of

�

Aδ,h/2∇ϕH ,∇Z̃
�

= 〈 j ,ϕH 〉 ∀ϕH ∈V H (Ω). (4.58)

Let π(2)2H denote the patch-wise interpolation to a d-quadratic finite-element space
defined on a one times coarsened mesh T2H (Ω). Define the approximate error
indicators

η̃H
K :=

�

f ,π(2)2H Z̃ − Z̃
�

K
−
�

Aδ,h∇U ,∇(π(2)2H Z̃ − Z̃)
�

K
, (4.59)

η̃h
K :=

�

{Aδ,h/2−Aδ,h}∇U ,∇zδ
�

K
. (4.60)

The replacement of zδ−πH zδ by π(2)2H Z̃−Z̃ is a well-known post-processing
technique [21]. It allows to use the same ansatz space V H (Ω) for the dual solution
that is used for the primal problem where, normally, due to Galerkin orthogo-
nality an approximation of the dual solution in the same ansatz space would be
unsuitable. Its usage leads to a slight reduction in effectivity (i. e. the quantitative
prediction of the estimator).

Remark 4.26. The usage of Z̃ instead of zδ in the evaluation of ηh
K is uncritical

because zδ only takes the role of a weighting factor outside of the residual such
that no Galerkin orthogonality occurs. Recalling (4.13) for the HMM method:

ηh
K =

∑

i j

∫

K
∇i U∇j z

δ dx
1

�

�Y δ
K

�

�

∑

Q ∈Th (Y δ
K )

residual on micro scale. (4.61)

In order to define an approximation of the model-error indicator

ηδK =
�

(Aε−Aδ)∇uδ ,∇zε
�

(4.62)
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the additional unknown uδ occurring in the definition of ηδK has to be taken care
of. It would be possible to approximate uδ by a higher order approximation Ũ
solving—similarly to (4.58)—the equation

�

Aδ,h/2∇Ũ ,∇ϕH �= 〈 j ,ϕH 〉 ∀ϕH ∈V H (Ω). (4.63)

An alternative approach is to avoid this higher order approximation of the primal
problem entirely by ensuring that the macroscale is always approximated with
a higher accuracy, e. g., by ensuring that TH is always sufficiently refined such
that θH is an order of magnitude smaller than θδ . This approach is justified by
the fact that the computational cost for a higher accuracy on the macroscale is
negligible compared to the necessary work to improve the model error. We thus
define:

Definition 4.27 (Approximate model-error indicator). Let Aδ,h/2 be the higher
order effective model of Definition 4.25 and let Z̃ be the corresponding (dis-
crete) dual solution of problem (4.58). We define the approximative model-error
indicator

η̃δK :=
�

(Aδ,h/2−Aε)∇U ,∇Z̃
�

K
. (4.64)

The local problems of the proposed local enhancement strategy are numerically
discretized in a straight forward manner.

Definition 4.28 (Approximate local enhancement). Per sampling region K ∈
Tδ(Ω) define a local correction η̃δK + η̃

δ
K ,rec of the error indicator η̃δK by

η̃δK ,rec :=
�

(Aδ,h/2−Aε)∇U ,∇Z̃K

�

K
, (4.65)

with a finite-element approximation Z̃k solving the local reconstruction problem:
Find Z̃k ∈V h(K) s. t.

�

Aε∇ϕ,∇Z̃ +∇Z̃K

�

K
= 〈 j ,ϕ〉 ∀ϕ ∈V h(K). (4.66)
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x0
·

Figure 4.1. Evaluation point x0 = (0.25,0.25) for the point functionals inside
the slit domain Ω.

4.5 Numerical validation of the error estimators
The error splitting and practical evaluation of the error indicators developed
in this chapter deserve a thorough numerical validation. Consider again both
microstructures defined on the domain Ω introduced in Section 3.5. In addition,
three quantities of interest will be examined; a non-local average given by

〈 j1,ϕ〉=
∫

Ω

ϕ dx, (4.67)

and two localized point functionals

〈 j2,ϕ〉= ϕ(x0), (4.68)

〈 j3,ϕ〉= ∂yϕ(x0), (4.69)

evaluated at point x0 = (0.25,0.25), see Figure 4.1. The functionals are chosen in
such a way that the microstructure has an increasingly pronounced influence on
the quantity of interest—ranging from a purely macroscopic dependency of j1 to
the high influence of the micro structure on j3.

In the following, several different aspects of the a posteriori error analysis are
examined. In particular, the convergence results of Section 4.2 are verified and
the different reduction and reconstruction approaches introduced in Section 4.3
are examined for both, qualitative and quantitative behavior.

4.5.1 Behavior under uniform refinement

In a first numerical test the behavior of the three error estimators θH , θh and θδ

given by (4.6) under uniform refinement is examined. The numerical test serves
two purposes. Firstly, the idea is to verify that the predicted convergence rates
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derived in Section 4.2 can be reproduced. Secondly—and more important—the
question arises whether the error splitting into θH + θh + θδ is well behaved.
Meaning, whether the individual estimators (and indicators) are separated. For
example, pure refinement in the macroscale should only influence the estimator
θH , but θh and θδ should remain approximately constant, etc. Such a separation
property is important for the model- and discretization-adaptive strategies that
will be developed in the next chapter. Otherwise, a simultaneous treatment of
different sources with above error splitting cannot be justified.

All numerical results are compared with a reference computation of 1.67×107

cells. Instead of the reduced dual approximations (4.57) or (4.58), a fully resolved
dual approximation of zε given by a discretization of (4.1) with 1.67×107 macro
cells is used. Otherwise, the individual error estimators are computed as described
in Section 4.4 (see Equations 4.59, 4.60, and 4.64).

Remark 4.29. The behavior of the error indicators and estimators for different
reconstructions of the dual problem will be examined in the next numerical test.

A base resolution of H = 2−9, h = 2−11 and δ = 2−3 is chosen for two series
of computations: One is performed for a successive macroscale refinement with
H = 2−3, . . . , 2−9; another for a successive microscale refinement given by the
sequence h = 2−6, . . . , 2−12. Figures 4.2 and 4.3 show the results in form of a
semi-logarithmic plot of the error estimators over refinement cycles normalized
to an initial value of 1.

Under uniform refinement in H , the estimators θh and θδ remain close to
their respective initial values: within 10 % for the periodic coefficients and within
a factor of 2 for the random permeability. Whereas the macroscale estimator θH

decreases with roughly linear order for all cases.

Remark 4.30. An increased convergence rate with respect to the regular func-
tional j1 (or j2) cannot be observed because of a lack of regularity—for all com-
putations in this chapter the piecewise constant variant Aδ,h is used instead of
the post-processed and therefore continuous variant given in Definition 3.8.

A similar behavior for uniform refinement in the microscale discretization
Th(K) can be observed, see Figure 4.3. The estimators θH and θδ remain close to
their initial value with the exception of θH

3 for the localized functional j3 on the
random permeability that changes by around one order of magnitude. Again, in
analogy to the numerical a priori results of Section 3.5.3, a high convergence rate
of order 4 occurs for θh . For the random permeability the microscale indicators
show the same behavior of a sudden drop to vanishing values as was observed for
uniform refinement in the L2(Ω)- and H 1(Ω)-norms (cf. Section 3.5.3).
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Figure 4.2. Behavior of macroscale (θH ), microscale (θh ), and sampling (θδ )
error estimates under uniform refinement of TH (Ω) with H = 2−3, . . . , 2−8

for the global functional j1 and the highly localized variant j3.
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(b) Random coefficients, microscale refinement (h)

Figure 4.3. Behavior of macroscale (θH ), microscale (θh ), and sampling (θδ )
error estimates under uniform refinement of TH (Ω) with h = 2−6, . . . , 2−11

for the global functional j1 and the highly localized variant j3.

98



4.5 Numerical validation of the error estimators

4.5.2 Qualitative and quantitative behavior

A second numerical test is concerned with the reconstruction strategies intro-
duced in Definitions 4.17 and 4.19. As we are primarily interested in the quanti-
tative estimation of the model error, a fine macro- and fine microscale mesh is
chosen with 6.5×104 cells on the macro level and a resolution of h = 2−11 for the
sampling patches. The error estimators θH , θh , and θδ are computed with 4 dif-
ferent dual solutions: a reference dual solution with 4.1× 106 degrees of freedom
(“full”) with the help of (4.1), the coarse variant computed on a macroscale mesh
consisting of 6.5× 104 cells and with a summed quadrature rule of high order
(“coarse”), and a reduced version (4.43) utilizing the effective coefficients without
any reconstruction (“reduced”). Finally, a reduced variant with local reconstruc-
tion (“enhanced”) is used that is given by (4.51) with the choiceω(K) =K . Again,
the geometric mean value is chosen as a simple averaging strategy. The results are
given in Tables 4.1 and 4.2, as well as, in Figures 4.4 and 4.5 on page 101 et seqq.

Here, the performance of the different reconstruction approaches are measured
with two different quantities. The effectivity index Ieff defined as

Ieff :=
θ̃H + θ̃h + θ̃δ

〈 j , uε−U 〉
, (4.70)

expresses the quantitative behavior of the error estimation. The closer it is to 1,
the better. The index Iloc defined as

Iloc :=

∑

K∈Tδ (Ω) |θ̃
H |+ |θ̃h |+ |θ̃δ |

|θ̃H + θ̃h + θ̃δ |
(4.71)

is a measure for the oscillatory behavior of the error indicators.
For all quantities of interest the effectivity of the (almost) fully resolved dual

solution is around 0.97 in case of the periodic coefficients and remains between
1.0 – 1.4 for the random microstructure. The “coarse” approximation shows also
a reasonable quantitative behavior for the chosen resolution with an effectivity
that ranges roughly between 0.4 – 4. Further, the “reduced” reconstruction strat-
egy generally leads to false quantitative estimates θ̃δ for the model error that can
be significantly improved by the local reconstruction strategy. The macroscale
and microscale resolutions are already chosen relatively fine. Nevertheless, the
macroscale and microscale discretization indicators θH and θh remain well ap-
proximated for all different approximation strategies of the dual solution and all
examined quantities of interest.
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In general, the results for the periodic test case are similar for all three func-
tionals. The localization Iloc remains close to 1 for all reconstruction approaches.
The very bad quantitative estimate Ieff ≈−6 for the reduced variant is improved
to a very good effectivity of Ieff ≈ 0.7 by means of local enhancement.

The observations made for the periodic test case generally also hold true for
the microstructure with random coefficients. The higher values in Iloc indicate a
pronounced oscillative behavior that is also evidenced by generally worse effi-
ciency values Ieff ≈ 4. Obviously, the concrete behavior examined is owed to the
random nature of the coefficients and can change slightly with different samples
chosen.

Remark 4.31. The same numerical test performed with the arithmetic mean
value leads to a strong underestimation with Ieff ≈ 0.001 in case of the reduced
reconstruction strategy. The effectivity of Ieff ≈ −6.00 in case of the periodic
coefficients comes from the fact that the geometric mean value was used.

For the reconstruction strategies to be usable for model adaptation not just
a quantitative behavior θ̃δ ≈ θδ of the error estimators is important, but also a
mostly quantitative approximation η̃δK ≈ ηδK of the local error indicators. Thus,
this property shall be discussed exemplarily for the case of periodic coefficients
and local functional j3, 〈 j3,ϕ〉= ∂yϕ(x0), and for the case of random coefficients
and global functional j1.

In Figures 4.4, 4.5, and 4.6 on page 103 et seqq. the local model-error indicator
η̃δK is depicted for the different reconstruction processes. It can be seen that
the local Dirichlet reconstruction leads to a significantly improved quantitative
behavior. Furthermore, the numerical results also indicate (Figure 4.6) that the
qualitative behavior of the reduced approximation can still be adequate when
used for marking strategies in case of localized functionals (cf. Section 5.2), but
not if quantitative information is actually needed (cf. Chapter 6).

Remark 4.32. It has to be noted that this numerical test of trying to achieve
a quantitative estimate for the elliptic model problem is a kind of worst case
scenario. Normally, when applied in context of an adaptation cycle—as will be
formulated in the next chapter—the successive improvement of the effective
model Aδ will also improve the quantitative character of zδ +

∑

zδK . We refer to
the numerical results presented in Chapter 5.
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Table 4.1. Error estimators θH , θh , θδ for the different quantities of interest
in case of the periodic coefficients computed with different reconstruction
strategies for the dual solution: full, reduced and coarse variants following (4.1)
and (4.43), as well as the reduced and locally reconstructed variant (enhanced)
given by (4.51).

〈 j1, U 〉 〈 j1, u −U 〉 θH θh θδ Ieff Iloc

full 5.90e-1 5.08e-2 1.61e-3 -1.50e-9 4.78e-2 0.97 1.05
coarse 5.90e-1 5.08e-2 7.66e-4 -1.37e-9 1.99e-2 0.39 1.22

reduced 5.90e-1 5.08e-2 3.83e-4 -1.29e-9 -3.23e-1 -6.36 1.01
enhanced 5.90e-1 5.08e-2 3.83e-4 -1.29e-9 3.32e-2 0.65 1.06

(a) Periodic coefficients, global functional j1

〈 j2, U 〉 〈 j2, u −U 〉 θH θh θδ Ieff Iloc

full 1.15e+0 2.22e-2 4.57e-4 -6.59e-10 2.10e-2 0.97 1.22
coarse 1.15e+0 2.22e-2 2.40e-4 -6.14e-10 9.39e-3 0.42 1.37

reduced 1.15e+0 2.22e-2 1.73e-4 -5.95e-10 -1.37e-1 -6.15 1.02
enhanced 1.15e+0 2.22e-2 1.73e-4 -5.95e-10 1.57e-2 0.71 1.14

(b) Periodic coefficients, local functional j2

〈 j3, U 〉 〈 j3, u −U 〉 θH θh θδ Ieff Iloc

full 1.55e+0 1.5032e-01 2.92e-3 -4.50e-9 1.43e-1 0.97 3.21
coarse 1.55e+0 1.5032e-01 1.36e-3 -4.20e-9 6.41e-2 0.43 1.37

reduced 1.55e+0 1.5032e-01 9.10e-4 -4.07e-9 -9.32e-1 -6.20 1.02
enhanced 1.55e+0 1.5032e-01 9.10e-4 -4.07e-9 1.07e-1 0.71 1.14

(c) Periodic coefficients, local functional j3
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Table 4.2. Error estimators θH , θh , θδ for the different quantities of interest
in case of the random coefficients computed with different reconstruction
strategies for the dual solution: full, reduced and coarse variants following (4.1)
and (4.43), as well as the reduced and locally reconstructed variant (enhanced)
given by (4.51).

〈 j1, U 〉 〈 j1, u −U 〉 θH θh θδ Ieff Iloc

full 1.48e-1 -1.82e-3 1.02e-4 -1.01e-14 -2.64e-3 1.39 4.95
coarse 1.48e-1 -1.82e-3 6.35e-5 -9.65e-15 -8.11e-3 4.42 2.08

reduced 1.48e-1 -1.82e-3 8.67e-5 -1.01e-14 -1.02e-1 56.1 1.00
enhanced 1.48e-1 -1.82e-3 8.67e-5 -1.01e-14 -6.75e-3 3.66 1.08

(a) Random coefficients, global functional j1

〈 j2, U 〉 〈 j2, u −U 〉 θH θh θδ Ieff Iloc

full 1.92e-1 -2.14e-3 2.52e-5 1.18e-15 -3.12e-3 1.45 7.67
coarse 1.92e-1 -2.14e-3 3.43e-5 9.89e-16 -1.04e-2 4.84 2.44

reduced 1.92e-1 -2.14e-3 4.83e-5 8.33e-16 -1.29e-1 60.3 1.01
enhanced 1.92e-1 -2.14e-3 4.83e-5 8.33e-16 -8.92e-3 4.15 1.07

(b) Random coefficients, local functional j2

〈 j3, U 〉 〈 j3, u −U 〉 θH θh θδ Ieff Iloc

full 3.76e-1 7.93e-1 2.74e-3 -8.30e-13 7.34e-1 0.94 2.21
coarse 3.76e-1 7.93e-1 3.41e-3 -5.84e-13 4.77e-1 0.61 2.34

reduced 3.76e-1 7.93e-1 3.01e-4 -1.89e-13 2.38e-1 0.30 4.48
enhanced 3.76e-1 7.93e-1 3.01e-4 -1.89e-13 3.03e-1 0.38 1.27

(c) Random coefficients, local functional j3
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(a) ηδK (left) and |ηδK | (right) for fully resolved dual solution

(b) ηδK (left) and |ηδK | (right) for reduced dual solution

(c) ηδK (left) and |ηδK | (right) for the local enhancement strategy

Figure 4.4. Local error indicators ηδK (left column) and its absolute values |ηδK |
(right column) in the case of periodic coefficients and functional j3 computed
with different reconstruction strategies: full (a), reduced (b), and enhanced (c).
The color ranges for left and right colum are fixed, respectively.
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(a) ηδK (left) and |ηδK | (right) for fully resolved dual solution

(b) ηδK (left) and |ηδK | (right) for reduced dual solution

(c) ηδK (left) and |ηδK | (right) for the local enhancement strategy

Figure 4.5. Local error indicators ηδK (left column) and its absolute values |ηδK |
(right column) in the case of random coefficients and functional j1 computed
with different reconstruction strategies: full (a), reduced (b), and enhanced (c).
The color ranges in the left and right colum are fixed.
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(a) ηδK (left) and |ηδK | (right) for fully resolved dual solution

(b) ηδK (left) and |ηδK | (right) for reduced dual solution

(c) ηδK (left) and |ηδK | (right) for the local enhancement strategy

Figure 4.6. Local error indicators ηδK (left column) and its absolute values |ηδK |
(right column) in the case of random coefficients and functional j3 computed
with different reconstruction strategies: full (a), reduced (b), and enhanced (c).
The color ranges in the left and right colum are fixed.
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The abstract model framework with the a posteriori error estimates developed
in the preceding chapters can be used for different model adaptation strategies.
Based on the concept of an effective model

Aδ : Tδ(Ω)→R
d×d , (5.1)

which was introduced in the abstract model framework (see Definition 3.3), two
fundamentally different approaches for model adaptivity are possible.

The first is based on the refinement of the sampling meshTδ(Ω) and associated
sampling regions {Y δ

K : K ∈ Tδ(Ω)} while keeping the same reconstruction
process for all sampling regions. It is thus comparable to classical discretiza-
tion adaptation—and is indeed the model-adaptation strategy for which a priori
convergence results were shown in Chapter 3. The second strategy consists of
switching the effective model used for the reconstruction process [26,84–87,91]. This
is done by locally selecting a more expensive but also more precise sampling
strategy from an a priori chosen list of effective models. Typically, the same fixed
sampling discretization is used throughout the process.

This chapter examines model-adaptation strategies based on these two ap-
proaches. In particular, a novel sampling-adaptation strategy is derived that em-
ploys model adaptivity by means of locally refining the sampling mesh Tδ(Ω).
A balancing strategy is introduced for the sampling-adaptation process that si-
multaneously controls macro- and microscale discretization in addition to the
sampling process.

Remark 5.1. A completely different approach for model adaptation (but still in
the spirit of the second strategy) can be derived by starting with the error identity
(4.6),

〈 j , uε〉− 〈 j , U 〉= θH +θh +θδ, θδ =
�

(Aδ −Aε)∇uδ ,∇zε
�

, (5.2)

and interpreting model adaptivity as an optimization problem

arg inf
Aδ

∑

K∈Tδ (Ω)

h

�

�

�

(Aδ −Aε)∇uδ ,∇zε
��

�

2+ regularization
i

. (5.3)

This approach is examined in detail in Chapter 6.
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5.1 Model switching

In this section, adaptation strategies based on the local switching of effective
parameters from an a priori chosen set of models are briefly discussed. A refined
strategy based on local sampling-mesh adaptation is discussed in detail in the
next section. In the following the sampling discretization Tδ(Ω) shall be a priori
chosen and remains fixed.

5.1.1 General model switching

One of the first strategies for model adaptation that comes to mind are model
switching strategies. Here, depending on the local model-error estimate ηδK , a
more expensive, but also more precise sampling strategy is locally chosen from a
fixed list

A =
�

Aδ,0, Aδ,1, . . . , Aδ,n	 (5.4)

of effective models. Obviously, this makes a priori knowledge about the quality
of the individual effective models necessary. At least, ηδK ≈ 0 for K ∈ Tδ(Ω)
must hold true for the most precise model Aδ,n that is available. Otherwise, the
adaptation limit, where Aδ,n is chosen throughout the domain Ω, is ill-posed.

Combining this adaptation approach with standard mesh refinement forTH (Ω)
and Th(Ω) results in three independent adaptation processes being available: a
local adaptation of the macroscale discretization TH (Ω) controlled by ηH

K , as
well as the microscale discretizations {hK : K ∈Tδ(Ω)} controlled by ηδK , and a
local switch of the model by using Aδ,i+1

K instead of Aδ,i
K as long as i < n. The

individual selection of macro-, micro-, and sampling cell for adaptation can be
carried out by a number of different marking strategies.

Due to the fact that this approach is—with the exception of the model adapta-
tion step—similar to the sampling-adaptation strategy discussed in the next section,
we refer for any further details, such as a balancing strategy for the individual
error sources, to Section 5.2. A reduced model-adaptation algorithm that utilizes
the model switching approach that does not deal with discretization errors is
given in Algorithm 4.

5.1.2 Binary switching

In context of the elliptic model problem (2.10) one is usually limited to one
effective model (e. g., to an HMM approach, or to a sampling with an appropriate
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5.1 Model switching

Algorithm 4: General model-switching algorithm.
Choose fixed discretizations TH (Ω) for macroscale, Tδ(Ω) for sampling, and
�

Th(Y
δ

K ),K ∈ Tδ(Ω)
	

for the microscale.

while stopping criterion not reached do

– Compute U and Z̃ with the help of (3.25) and (4.58), respectively.

– Compute the model-error estimator and local indicators

θ̃δ =
∑

K∈Tδ (Ω)
η̃δK .

according to (4.64).
– Optionally, determine a local enhancement θ̃δrec =

∑

K∈Tδ (Ω) η̃
δ
K ,rec

following Definition 4.19.

– If |θ̃δ | ≤TOL, then stop. Otherwise continue.

– Based on the local error indicators |ηδK | select sampling cells K for
model adaptation with the help of a suitable marking strategy (e. g. select
a fixed fraction of the cells ordered in decreasing magnitude of the
absolute indicator values |ηδK |).

– Model adaptation. For every marked sampling cell K , switch the model
from Aδ,i

K to Aδ,i+1
K if i < n.

averaging strategy), because from an a priori standpoint it is often clear what the
best available model is. Deliberately choosing a sequence of sampling strategies
(increasing in quality) that all exhibit the same computational workload does
not make very much sense. So, the only more precise model left is to actually
resolve the microscale in full. This consideration gives rise to a binary switching
approach where either the effective value AδK is used for a given sampling cell, or
the microstructure is resolved in full by not using the constant effective value
but Aε(x) directly.

This approach was first described in context of the DWR method by Oden and
Vemaganti [84–86] as a form of post-processing technique. The explicit formulation
by locally switching the effective model is due to Braack and Ern [26], who also
gave a generalization to nonlinear problems. In detail, Oden and Vemaganti
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I i

Tδ(Ω)
Aε

H 1
0 (I

i )

Figure 5.1. The (iteratively increased) region of influence [84–86] I i for a local
quantity of interest j . A correction with homogeneous Dirichlet boundary
conditions and full coefficients Aε(x) is computed on it.

proposed to use approximate model-error indicators η̃δK , e. g., as defined in (4.46),
to iteratively define a region of influence [85] I n (see Figure 5.1):

Definition 5.2 (Region of influence [84–86]). For a local quantity of interest j
define an initial region of influence I 0 := {K ∈ Tδ(Ω) : K ∩ supp j 6= ;}, where
supp j is defined as supp f ∪ suppg for a representation 〈 j , .〉= ( f , . )+ (g ,∇. ).
Now, iteratively increase I i by selecting all neighboring sampling regions K of
Tδ(Ω) with high absolute indicator values |η̃δK |,

I i+1 := I i ∪
�

K ∈Tδ(Ω) : K ∩ I
i 6= ;, |η̃δK | is high

	

, (5.5)

with a suitable marking strategy [84–86].

On the region of influence I i a correction is defined: Find uδ,i ∈H 1
0 (I

i ) s. t.
�

Aε∇(uδ,i + uδ),∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (I

i ). (5.6)

This results in an iterative post-processing strategy where I i is subsequently in-
creased by selecting more and more sampling regions until the value 〈 j , uδ+uδ,i〉
is a good enough estimate for the quantity of interest. An improved reformu-
lation of above post-processing strategy was introduced by Braack and Ern [26]

that actually switches from an effective model to a full variational formulation
within an adaptation cycle similar to Algorithm 4.

The binary switching approach suffers from an intrinsic deficiency in case of
bad effective models. As an illustration, consider the case of an effective model
Aδ that produces entirely false effective values. Then, the full model has to be
used on a macroscopic part of the domain Ω in order to reach a certain level of
accuracy, which is of the same computational complexity as a full resolution.
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5.2 A sampling-adaptation strategy

Consequently, even the coarse effective model Aδ must in general fulfill a certain
level of “applicability”, e. g., sufficient approximation properties in the L2(Ω)-
norm, to allow for local model adaptation.

Remark 5.3. One of the biggest drawbacks of a binary switching approach is
the fact that a sudden change to full resolution is quite “sharp”. It not only
comes with a high computational penalty (full resolution) but also contains sharp
transitions from Aε(x) to constant effective values. A gradual transition from Aδ

to full resolution might actually be preferred instead, and is thus the root concept
of the sampling-adaptation strategy introduced in the next section.

5.2 A sampling-adaptation strategy
In this section, a sampling-adaptation strategy is derived that solely uses local
mesh refinement of Tδ(Ω) for model adaptation. It falls into the first category of
adaptation strategies outlined in the introduction of this chapter. The following
discussion is based on a publication by the author [72].

5.2.1 Model adaptation by means of local refinement

The basic idea of the sampling-adaptation strategy is to use the local model-error
indicators ηδK to adaptively refine Tδ(Ω). This approach is based on the result
that for suitable regularity in the coefficient Aε a convergence of uδ → uε for
δ→ 0 is available (see Proposition 3.25).

For this approach to result in an efficient approximation, i. e., one that actually
allows for localized refinement in the sampling mesh Tδ(Ω), the chosen effective
model Aδ must have some macroscale approximation property. For example, a
good approximation when measured in L2(Ω)might hold true. Otherwise, an
adaptation process resulting in a homogeneously highly refined sampling mesh
Tδ(Ω) would exhibit no significant computational saving compared to a straight-
forward numerical treatment of the model problem.

Consequently, the primary application for the proposed sampling-adaptation
approach is the local improvement of an otherwise applicable effective model for
a badly approximated, localized quantity of interest (such as the point functional
j3 introduced in Section 4.5). An example of such a multiscale problem was
introduced in Sections 3.5 and 4.5. The sampling with the geometric average
provides a good effective model for log-normally distributed random coefficients
when measured in L2(Ω). However, the point value 〈 j3, uε〉 is inadequately
approximated by 〈 j3, uδ〉.
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Remark 5.4. An insightful counterexample where a refinement in Tδ(Ω) cannot
be localized is also given by the very same log-normally distributed coefficients
Aε as above, but with the arithmetic average chosen as sampling strategy instead.

The adaptation strategy outlined in this section is not fundamentally different
from the previously examined model switching strategy. For the case of a binary
model switching, it can be interpreted as a refined strategy instead. Consider
the example of a binary model-switching strategy between a reduced model Aδ

and a full resolution by using Aε directly (with sufficient macroscale resolution).
The key point is the observation that in the refinement limit of Tδ(Ω) and with
a microstructure fulfilling (A1) the sampling strategy becomes equivalent to a
quadrature rule. Thus, a subsequent refinement of Tδ(Ω) can be regarded as
an improved strategy of a binary model switching in the sense that intermediate
resolutions between the reduced model and full resolution are also considered.

Remark 5.5. This claim also holds true for homogenization strategies with
local cell problems. It can be shown that the corrector defined by the local cell
problem vanishes asymptotically for δ� ε and under assumption (A1), i. e., also
homogenization processes degrade in this sense to mere quadrature rules.

A fundamental problem, one is faced with in context of model adaptation,
is the fact that the model-error indicator ηδK only provides a scalar value as an
indicator for the (local) quality of the effective model. This is less of a problem
for a model switching strategy where an ordering in quality of different models
is available and thus switching to the next, more expensive model is a natural
strategy. In contrast, adaptation of the sampling grid Tδ(Ω) and the sampling
region Y δ

K involves a number of different parameters such that a natural choice is
not obvious. In particular, the ideal position and size of Y δ

K is an open problem.
In light of the a priori analysis of the averaging scheme given in Section 3.4

a simple strategy is chosen: The sampling regions Y δ
K are fixed to be located in

the center of each sampling region K and further scaled to a width that is a fixed
fraction of the local mesh size δK .

Remark 5.6. Some first results for an a posteriori treatment of the sampling
size of Y δ

K were given by Larson and Målqvist [67,68,81] in the context of a VMM
localization technique based on a partition of unity and presented in Subsec-
tion 2.1.3, as well as an a posteriori error analysis based on it (cf. Section 3.1).
An artificial split in the error identity (3.2) is used to patch-wise increase the
sampling regions ωi

[67,68]. But, only under strong conditions on the splitting
(such as H 1-, or (Aε∇. ,∇.)-orthogonality) a priori convergence results of this
approach are available [61,82].
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5.2 A sampling-adaptation strategy

Figure 5.2. Refinement of a sampling cell K and the associated sampling
region Y δ

K . The degree of microlevel resolution is preserved.

5.2.2 The adaptation algorithm in detail

For the sake of simplicity, let the individual meshes Th(Y
δ

K ) of sampling regions
Y δ

K be homogeneous and let hK denote the local (uniform) refinement parame-
ter of this finescale discretization. No further restriction on the discretization
is made, i. e., the macroscale and sampling discretization TH (Ω) and Tδ(Ω), re-
spectively, are allowed to be a family of locally refined meshes according to
Remark 3.17 in Chapter 3.

In order to control the microscale discretization when adapting the sampling
region, the local discretization Th(K) of a sampling region K ∈ Tδ(Ω) involved
has to be kept at the same level of resolution. More precisely, the following
approach is chosen:

– If ηδK is large for some K ∈ Tδ(Ω), split K into 2d sampling regions Ki ,
correspondingly shrink the sampling region Y δ

K by a factor of 2−d and set
hKi
= hK . This amounts to a coarsening of one level if expressed in terms

of number of grid refinements (see Figure 5.2).

Combining this refinement procedure with standard mesh refinement for
TH (Ω) and Th(Y

δ
K ) by splitting individual cells results in three independent re-

finement processes being available: a local adaptation of the macroscale dis-
cretization TH (Ω) controlled by ηH

K , as well as the microscale discretizations
�

hK : K ∈ Tδ(Ω)
	

controlled by ηh
K , and finally the sampling Tδ(Ω) itself con-

trolled by ηδK . The individual local mesh refinement itself can be carried out by a
number of different marking strategies. A straightforward method is to select a
fixed fraction of the cells ordered in decreasing magnitude of the absolute indica-
tor values |ηνK | (ν =H , h, δ). More sophisticated marking strategies have been
derived that take approximation orders into account, see Braack and Richter [27].

The last part missing is a balancing strategy for those independent refinement
strategies in order to maintain a balanced error contribution. Thus, not all cells
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that are originally selected on the individual discretization are refined but only
the fraction

αν |θ̃ν |
αH |θ̃H |+αδ |θ̃δ |+αh |θ̃h |

(5.7)

for ν =H , h, δ, where αν are a priori chosen scaling parameters. Now, let the
goal be to reach a certain error tolerance

�

�θH +θh +θδ
�

�≤TOL. (5.8)

To achieve this, a finite number of repetitions of above adaptation cycle is carried
out, see Algorithm 5.

Remark 5.7. A local enhancement θ̃δrec =
∑

K∈Tδ (Ω) η̃
δ
K ,rec, as proposed in Defi-

nition 4.19, is usually not necessary for this adaptation strategy to be efficient.
The reason for this lies in the fact that the reduced variant of error indicators
still gives a reasonable qualitative localization, see Section 4.5.2. In order to com-
pensate for the loss of quantitative information, however, the scaling parameters
αν (ν =H , h,δ) have to be chosen appropriately. The numerical results of Sec-
tion 4.5.2 indicate that a slight initial overestimation of the absolute value of the
model error by a factor of 6 has to be expected, hence the microscale discretiza-
tion should be given slightly more weight by approximately the same factor:
αh ≈ 10, αδ ≈ 1. The macroscale discretization is usually less critical because
it is implicitly coupled by the technical requirement of TH (Ω) to be a refined
discretization of Tδ(Ω). Thus, depending on emphasis, a choice of αH = 1 − 10
(compared to αδ = 1) is adequate.

5.3 Numerical results for the sampling-adaptation
strategy

The proposed algorithm is tested on both microstructures introduced in Sec-
tion 3.5. The resulting mesh refinement is compared with uniform and local
refinement as well as the HMM. The geometric averaging strategy is chosen as a
base sampling strategy for the adaptive sampling algorithm, starting from a coarse
macroscale and microscale discretization of 256 and 1 024 cells, respectively, with
64 distinct sampling regions. As quantity of interest the highly localized third
functional j3, as given in (4.69), is chosen,

〈 j3,ϕ〉= ∂yϕ(x0). (5.10)
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5.3 Numerical results for the sampling-adaptation strategy

Algorithm 5: Sampling-adaptation algorithm.

Start with initial discretization meshes TH (Ω), Tδ(Ω),
�

Th(Y
δ

K ),K ∈ Tδ(Ω)
	

and choose scaling parameters αH , αh , and αδ .

while stopping criterion not reached do

– Compute Aδ,h and Aδ,h/2 according to one of the strategies in
Definition 3.11 and compute U and Z̃ with the help of (3.25) and (4.58),
respectively.

– Compute the error estimators and local indicators

θ̃H =
∑

K∈TH (Ω)

η̃H
K , θ̃h =

∑

K∈Tδ (Ω)
η̃h

K , θ̃δ =
∑

K∈Tδ (Ω)
η̃δK .

according to (4.59), (4.60) and (4.64). Optionally, determine a local
enhancement θ̃δrec =

∑

K∈Tδ (Ω) η̃
δ
K ,rec following Definition 4.19.

– If |θ̃H + θ̃h + θ̃δ | ≤TOL, then stop. Otherwise continue.

– Based on the local error indicators |ηνK | select, for each source of error
independently, cells for refinement with the help of a suitable marking
strategy.

– Balancing. In order to balance the adaptation, not all of the selected
cells are used but only the fraction

αν |θ̃ν |
αH |θ̃H |+αδ |θ̃δ |+αh |θ̃h |

, (5.9)

where αν are fixed scaling parameters.

– Microlevel refinement. Set hK ← hK/2 for all selected cells K ∈ Tδ(Ω).

– Sampling refinement. In order to maintain TH (Ω)⊃Tδ(Ω), mark every
macrocell K ∈ TH (Ω) for refinement that is equal to a selected sampling
cell K of Tδ(Ω). Split each selected sampling cell K into a finite number
of children cells Q, associate new sampling regions Y δ

Q with half edge
length and discretizations Tν(Y δ

Q ) with ν = hK , cf. Figure 5.2.

– Macrolevel refinement. Split each selected macrolevel cell K ∈ TH (Ω)
into a finite number of child cells (while ensuring that TH (Ω)⊃Tδ(Ω)).
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(a) (b) (c)

Figure 5.3. Refinement on cycle 6 (with 7 174 macro cells) for the periodic
coefficients on (a) the macroscale TH (Ω), (b) the sampling discretization
Tδ (Ω), and (c) on the microscale discretization {hK} (logarithmically scaled).

5.3.1 Periodic coefficients

Following Remark 5.7, the scaling parameters in the balancing step of the adaptive
algorithm are set to αH = αδ = 1 and αh = 10. This enforces slightly more
accuracy on the microscale. The initial microscale resolution is chosen in such a
way that the microstructures are coarsely resolved. The results of the adaptation
process are shown in Table 5.1 together with the intermediate values for the
different error estimators. A slight initial overestimation, |Ieff|> 1, mainly of the
model error, changes into a pronounced underestimation in the refinement limit.
The qualitative character of the error indicators is still well preserved.

Figure 5.3 shows the adapted meshes for cycle 6 (which corresponds to 5%
relative error): The macroscale discretization (Figure 5.3a) is locally refined at
the point (0.25,0.25) in quadrant I (due to the choice of quantity of interest)
as well as where the sampling discretization enforces a local refinement. The
sampling discretization is adapted in quadrants II and IV, with significantly more
refinement in quadrant II than in quadrant IV. The same observation holds
true for the microscale discretization. The adaptive sampling algorithm leads
to a significant improvement in terms of necessary refinement (on macro- and
microscale) compared to a direct finite-element discretization and HMM (cf.
Sections 3.5.1 and 3.5.2). The values for the HMM are determined with the help
of the adaptive algorithm and a fixed sampling mesh in order to provide a more
sensible comparison than uniform refinement.

From Table 5.2 it can be seen that the adaptive sampling is consistently better
than uniform and local refinement. This is mainly due to the fact that the
geometric average allows for a higher localization in the mesh adaptation than
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the arithmetic average, which is automatically used in the classical finite-element
discretization. Compared to the adaptive HMM the adaptive algorithm needs
significantly more cells for macroscale and sampling (compared to the fixed 1 024
sampling regions of the HMM). However, the 3.0× 105 cells on the microscale
correspond to 1 024 full sampling problems in case of the HMM, whereas for
the averaging scheme only a significantly less expensive averaging procedure with
9.0× 104 cells is necessary.

Table 5.1. Refinement history, error in the quantity of interest and error
estimator for the sampling strategy with geometric averaging.

#macro #sampl. #micro |〈 j3, uε−U 〉| |θH | |θh | |θδ | |Ieff|

256 64 1 024 9.04e-2 (11%) 3.61e-2 1.04e-1 9.99e-1 11.811
262 91 1 456 2.63e-1 (15%) 1.48e-1 1.80e-2 9.00e-1 2.929
385 217 1 696 2.13e-1 (13%) 9.87e-2 8.87e-3 9.05e-1 3.830
886 709 2 032 1.87e-1 (11%) 7.31e-2 5.76e-3 9.06e-1 4.489

2 803 2 620 4 180 1.61e-1 (9.5%) 4.83e-2 9.84e-4 3.36e-1 1.794
7 357 7 102 8 374 6.58e-2 (3.9%) 9.60e-3 2.23e-4 1.17e-1 1.633

17 749 17 407 18 355 3.12e-2 (1.8%) 5.29e-3 6.74e-5 5.25e-2 1.515
39 736 39 262 39 775 2.63e-2 (1.5%) 1.34e-2 1.46e-5 2.15e-2 0.310
89 911 88 675 89 056 1.11e-2 (0.7%) 5.48e-3 3.02e-6 9.06e-3 0.323

Table 5.2. Refinement levels in number of cells on macro, micro and sampling
discretization to achieve at least (a) 5% and (b) 1% error.

strategy #macro #micro #sampl. |〈 j , uε−U 〉|
uniform 65 536 — — 8.62e-2 (5.1%)
local 35 377 — — 1.06e-1 (6.2%)
ad. sampl. 7 174 6 679 8 149 7.13e-2 (4.1%)

(a)

strategy #macro #micro #sampl. |〈 j , uε−U 〉|
uniform 1 048 576 — — 6.64e-3 (0.4%)
local 568 201 — — 1.19e-2 (0.7%)
HMM 19 330 302 896 1 024 1.55e-2 (0.9%)
ad. sampl. 93 245 89 017 89 500 1.12e-2 (0.7%)

(b)
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(a) (b) (c)

Figure 5.4. Refinement on cycle 10 (that reaches 2% accuracy) on (a) the
macroscale TH (Ω) and (b) the sampling discretization Tδ (Ω). Panel (c) shows
a corresponding locally refined mesh to reach 2% accuracy with a direct finite-
element discretization.

5.3.2 Random coefficients

As a last numerical test, we perform a full adaptation process for the random
permeability with coarse initial macroscale discretization and a coarse sampling
mesh. In contrast to the first numerical example, a high initial resolution of
the microscale with about 106 cells is chosen (resulting in h = 2−11 respecting
quadrature). This is done in order to avoid unnecessary refinement on macroscale
and sampling, which turns out to happen if the microscale resolution is not
sufficiently good. This is due to the bad convergence behavior with respect to the
microscale discretization parameter h as evidenced in Sections 3.5 and 4.5. Given
the fact that in case of averaging schemes a high microscale resolution does only
introduce a high quadrature, such a choice is still computationally acceptable.

A slightly different scaling is chosen as in the first numerical example. We
set αδ = αh = 1, because the microscale is already resolved by the initial choice
of h, and enforce a higher accuracy on the macroscale discretization by setting
αH = 20. The results of the adaptation process are given in Table 5.3. Compared
to uniform and local refinement with a standard finite-element discretization,
a significant saving can be observed for macroscale and sampling discretization
with a difference of almost two orders of magnitude in refinement (see Figure 5.4
and Figure 5.5). The huge saving is due to the fact that the geometric average
allows for a very localized refinement process in order to improve the accuracy in
the quantity of interest. With this, a relative error of around 2% can be reached
with very little coarse scale and sampling refinement. After that, convergence
stagnates and the adaptive sampling algorithm “degenerates” to local refinement.
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Table 5.3. Refinement history: error in the quantity of interest and error
estimators for the adaptive sampling strategy with geometric averaging.

#macro #sampl. #micro |〈 j , uε−U 〉| |θH | |θh | |θδ | Ieff

1 256 16 ≈ 106 8.09e-1 (70%) 1.07e-2 1.96e-13 2.14e-1 0.25
3 388 37 ≈ 106 7.94e-1 (68%) 7.56e-3 6.25e-15 3.14e-1 0.38
5 652 166 ≈ 106 7.75e-1 (66%) 6.08e-3 2.98e-16 9.84e-2 0.13
7 1 285 760 ≈ 106 5.22e-1 (45%) 1.22e-2 6.29e-15 2.12e-1 0.43
9 3 442 1 981 ≈ 106 1.78e-1 (15%) 2.13e-2 7.47e-14 5.26e-1 2.83

11 11 788 8 581 ≈ 106 1.77e-2 (1.5%) 1.14e-2 5.76e-13 2.59e-1 14.05
13 50 836 26 641 ≈ 106 2.10e-2 (1.8%) 1.37e-2 5.80e-13 1.55e-1 6.73
15 191 368 62 290 ≈ 106 1.61e-2 (1.4%) 9.66e-3 5.84e-13 9.24e-2 5.14
17 658 525 129 910 ≈ 106 1.25e-2 (1.1%) 5.29e-3 6.00e-13 4.68e-2 4.88

0.01

0.1

1

1× 103 1× 104 1× 105 1× 106

1%

10%

� �

〈j
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# macro

uniform refinement
local refinement

adaptive sampling

Figure 5.5. Performance plot showing the error in quantity of interest over
macroscale discretization for uniform and local refinement with a standard
finite element discretization and the adaptive sampling strategy with geometric
averaging
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6 Optimization strategies for
model adaptivity

The model-adaptation strategies discussed in the preceding chapter are all based on
the availability of a priori knowledge about the quality of effective models. The
efficiency of the model-adaptive process itself is solely based on the selection of
an improved model, or alternatively, a refinement of the sampling discretization.
In this sense, only qualitative information of the model-error indicators ηδK enter
the adaptation process—its stability is solely based on a priori knowledge.

On the other hand, the numerical results of Chapter 4 indicate that the model-
error estimators and indicators based on a coarse approximation of the full dual
solution zε, or its reduced, locally enhanced variant zδ +

∑

zδK , already exhibit
nearly quantitative behavior. Given the fact that a concise choice of improved
models might not be available (see Section 5.1.2) the question arises whether the
almost quantitative error information can be directly used for model adaptation.

This chapter presents a novel approach for model adaptivity that expresses the
adaptation process as a minimization problem of the error estimator θδ : Given
the error identity (4.6),

〈 j , uε〉− 〈 j , U 〉= θH +θh +θδ, θδ =
�

(Aδ −Aε)∇uδ ,∇zε
�

, (6.1)

model adaptivity is interpreted as an optimization problem

arg inf
Aδ

∑

K∈Tδ (Ω)

h

�

�

�

(Aδ −Aε)∇uδ ,∇zε
��

�

2+ regularization
i

. (6.2)

This approach can be used as a model-optimization framework to locally select
optimal coefficients from a set of available models (see Section 6.2), as well
as in situations where an effective model is not known and, thus, an efficient
post-processing strategy is needed to construct one (see Section 6.3). It has the
advantage that no a priori knowledge about effective models and reconstruction
principles has to be available. The optimization problem itself is used to select
the optimal model.
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uε

uδ 〈 j , uε〉

Figure 6.1. Ill-posedness of the naive optimization problem (6.5): For a point
functional j an effective solution uδ might result in a good approximation
〈 j , uδ〉 ≈ 〈 j , uε〉 while not reproducing the global behavior of uε at all.

6.1 Model-optimization framework

In context of the a posteriori error analysis that was derived for the abstract
model framework the quality of an effective model Aδ with respect to a quantity
of interest j can be measured with the help of the error identity (4.6)

〈 j , uε〉− 〈 j , uδ〉=
�

(Aδ −Aε)∇uδ(Aδ),∇zε
�

L2(Ω)d . (6.3)

Now, given an a priori chosen sampling discretization Tδ(Ω), define a set of
admissible coefficients consisting of symmetric and elliptic coefficients (as defined
in Chapter 2) for this fixed sampling discretization,

A δ :=
�

Aδ : Tδ(Ω)→R
d×d : Aδ fulfills (2.8) and (2.9)

	

. (6.4)

The error identity (6.3) encourages to define an optimization problem over above
setA δ of admissible effective models:

arg inf
Aδ∈A δ

�

�

�

(Aδ −Aε)∇uδ(Aδ),∇zε
�

L2(Ω)

�

�. (6.5)

However, in this form the fact whether the optimization problem is well-
behaved highly depends on the locality of the functional j in question (see
Remark 6.7). As a counterexample, consider a point functional (such as j2 or j3
defined in Section 4.5). For such a choice, an infinite number of effective values
Aδ are possible that all fulfill the error identity (6.3). A schematic illustration of
this is given in Figure 6.1. Hence, above optimization problem is ill-posed.

From a physical point of view such a behavior is also not desirable. As exam-
ined in Section 2.3, upscaling strategies are usually based on physical averaging
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principles motivated by first principles. Thus, those upscaling principles should
in general be fulfilled by a numerical approximation as well—even if they fail to
reproduce localized quantities of interest correctly.

A solution for this dilemma is to add a penalization term to the optimization
problem that controls the deviation of the effective values Aδ from a physical
model Aδ,0 (or any other choice of initial model). In this sense, the resulting
optimization problem can be restated as a local optimization of a given initial
model Aδ,0:

Definition 6.1 (Model-optimization problem). Let Aδ,0 be an initial effective
model and let {αK}K∈Tδ (Ω), αK ∈R+, be a set of (local) regularization parameters.

Then, an optimal model Aδ,opt is defined to be a solution of

arg inf
Aδ∈A δ

∑

K∈Tδ (Ω)

�

�

�

(Aδ −Aε)∇uδ(Aδ),∇zε
�

K

�

�

2+αK



AδK −Aδ,0
K





2
Rd×d , (6.6)

subject to the side condition
�

Aδ∇uδ(Aδ),∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1
0 (Ω). (6.7)

Remark 6.2. Given the fact that the ellipticity (2.9) is impractical to enforce in
practice, because the correct lower-bound α is usually not known, the ellipticity
constraint present inA δ is dropped in the concrete numerical computations to
avoid the hard side-condition. The regularization term together with a factor αK

appropriately chosen is enough to ensure sensible coefficients Aδ .

The regularization parameter αK is best fixed to a uniform value αK = α0 on
all sampling regions. Here, α0 is chosen to be roughly 0.01− 1 times the typical
size of |θ̃δ |2/|AδK |2.

Remark 6.3. While such a uniform choice is often sufficient, improved strategies
are also possible. In spirit of above discussion of a local optimization of a given
initial model Aδ,0, the penalization can, for example, be further localized with
the help of the dual solution zε. Assuming zε is the corresponding dual solution
of a local functional such as j2, or j3 (defined in Section 4.5), then zε—interpreted
as the propagator of error—is of pronounced Green’s function character. In such
a case it is often desirable to localize the model adaptation to the region with
high values in∇zε. Hence, an alternative choice

αK ∼
1

‖∇zε‖L2(Ω)d
(6.8)

can be made instead of a uniformly chosen parameter αK .
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6 Optimization strategies for model adaptivity

Proposition 6.4. The optimization problem is well-posed.

Proof. The functional dependency uδ(Aδ) described by (6.7) with respect to
Aδ ∈A δ is well-posed—i. e. (6.7) is always uniquely solvable—and continuous.
Further,

‖∇uδ(Aδ)‖ ≤ 1
α
‖ f ‖, (6.9)

by definition ofA δ . Hence, the function

F (Aδ) :=
∑

K∈Tδ (Ω)

�

�

�

(Aδ −Aε)∇uδ(Aδ),∇zε
�

K

�

�

2+αK



AδK −Aδ,0
K





2
Rd×d (6.10)

is well-defined, continuous, and coercitive, i. e., it holds

F (Aδ)→∞ for ‖Aδ‖→∞. (6.11)

The optimization problem is thus well-posed.

Remark 6.5. The functional dependency uδ(Aδ) given by the side-condition
(6.7) is highly nonlinear. In fact, ‖∇uδ‖L2(K) → 0 has to be expected for the

limit ‖AδK‖→∞. Consequently,
�

�

�

(Aδ −Aε)∇uδ(Aδ),∇zε
�

K

�

�

2 is in general not
convex. The optimization problem is therefore not necessarily uniquely solvable.

In preparation for the numerical treatment of the optimization problem (6.6),
we formulate the following regularity result for the cost functionalF given in
(6.10):

Proposition 6.6. The functional dependency F (Aδ) is Gâteaux-differentiable
and its derivative DF (Aδ)[δAδ] in direction δAδ is given by

DF (Aδ)[δAδ] =
∑

K∈Tδ (Ω)
2ηδK

n

�

δAδK∇uδ(Aδ) ,∇zε
�

K

+
�

(Aδ −Aε)∇Duδ(Aδ)[δAδ] ,∇zε
�

K

o

+
∑

K∈Tδ (Ω)
2αK (A

δ
K −Aδ,0

K ) : δAδK , (6.12)

with the solution Duδ(Aδ)[δAδ] of the equation
�

Aδ∇Duδ(Aδ)[δAδ] ,∇ϕ
�

+
�

δAδ∇uδ(Aδ),∇ϕ
�

= 0 ∀ϕ ∈H 1(Ω). (6.13)
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6.1 Model-optimization framework

Proof. The crucial part is to assert that the side condition (6.7) interpreted as
a functional dependency uδ(Aδ) is Gâteaux-differentiable and its derivative is
given by (6.13). The rest of the statement follows in a straightforward manner.

Due to the fact thatA δ is finite dimensional it suffices to show that the limit

lim
s↘0

Ds uδ , Ds uδ :=
1
s

�

uδ(Aδ +δAδ)− uδ(Aδ)
�

(6.14)

is well defined for arbitrary δAδ . For this we note that the difference Ds uδ(Aδ)
is, for s sufficiently small, given by

�

(Aδ + sδAδ)∇(uδ(Aδ)+ s Ds uδ) ,∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈H 1(Ω). (6.15)

Equivalently,

�

Aδ∇Ds uδ ,∇ϕ
�

+ s
�

δAδ∇Ds uδ ,∇ϕ
�

+
�

δAδuδ(Aδ) ,∇ϕ
�

= 0. (6.16)

By continuity, it follows that the limit of (6.16) for s → 0 is well-defined and
indeed given by (6.13).

Remark 6.7 (Large model deviations). The necessity for the regularization term
in Definition 6.1 limits its application to a local optimization of a given initial
model Aδ,0. Consequently, this imposes some conditions on the quality of the
base model. Or expressed the opposite way, the worse the quality of Aδ,0 is the
smaller the regularization parameters {αK} have to be chosen to allow for a large
enough deviation. The regularization term is introduced to primarily ensure
robustness in case of localized functionals—and, in regard of Remark 6.2, to
provide an alternative for a strong ellipticity side condition. In case of a global
quantity of interest the optimization problem itself is in general already stable
without the regularization term. As an example, consider the global quantity of
interest

〈 j , uε〉=
∫

Ω

uε dx. (6.17)

A heuristic argument is

∑

K∈Tδ (Ω)

�

�

�

(Aδ −Aε)∇uδ(Aδ),∇zε
�

K

�

�

2 ≈
∑

K∈Tδ (Ω)

�

�

�

∫

K
uε− uδ(Aδ)dx

�

�

�

2
. (6.18)
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6 Optimization strategies for model adaptivity

Now, utilizing uε(x)> 0, uδ(x)> 0 a. e. on Ω, as well as the functional depen-
dency of uδ(Aδ), one concludes that

�

�

�

∫

K
uε− uδ(Aδ)dx

�

�

�→
�

�

�

∫

K
uε dx

�

�

� for ‖Aδ‖→∞. (6.19)

Together with the observation that there is always a choice for the local coefficient
AδK for which

�

�

∫

K
uε− uδ(Aδ)dx

�

�<
�

�

∫

K
uε dx

�

�, it follows that the optimization
problem (6.6) with αK = 0 is already well-posed.

Thus, for model adaptation with large deviation from the base model Aδ,0,
global functionals with such stabilizing character should be preferred.

6.2 Model switching revisited
The optimization problem (6.6) can also be used for a reinterpretation of the
model-switching strategy discussed in Section 5.1. LetA 0 be a finite set of n+ 1
different admissible models Aδ,i that fulfill (2.8) and (2.9),

A 0 =
�

Aδ,0, . . . , Aδ,n	, (6.20)

and let the task be to locally switch to an appropriate linear combination of those
candidates. Therefore, restrictA δ to the affine hull ofA 0:

affA 0 :=
n

Aδ : ∀K ∈Tδ ∃γ ∈R
n+1, γ ≥ 0,

∑

i

γi = 1 s. t.

AδK =
∑

i

γi A
δ,i
K

o

. (6.21)

Lemma 6.8. The modified optimization problem (6.6) corresponding to a mini-
mization over the closed, affine subset affA 0 ⊂A δ ,

arg inf
γ≥0,

∑

i γi=1

∑

K∈Tδ (Ω)

�

�

�

(Aδ(γ )−Aε)∇uδ(Aδ(γ )),∇zε
�

K

�

�

2, (6.22)

with the side condition uδ(Aδ) given in (6.7), is already well-posed without a
regularization term, i. e., with the choice αK = 0.

Proof. Due to affA 0 ⊂A δ , the side condition (6.7) remains well-posed. Further,
affA 0 is compact and the function F : affA 0 7→ R+ that was defined in the
proof of Proposition 6.4 is continuous.
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6.3 An efficient post-processing strategy

In contrast to the model switching discussed in Section 5.1, this optimization
approach has the advantage that no a priori ordering of the effective models in
terms of quality has to be known. The optimization problem itself locally selects
the optimal effective coefficient, or (to be more precise) an affine combination of
coefficients. This additional information comes at the prize that it requires to
compute all effective coefficients Aδ,i ∈A 0 beforehand.

Consequently, the primary purpose of this modified optimization problem
(6.22) is not to serve as a post-processing step in order to reduce the computational
cost of using the most expensive model throughout. Instead, it is used to find an
optimal configuration of effective coefficients in situations where the best choice is
not obvious a priori. This applies, e. g., to situation with strongly heterogeneous
behavior in different parts of the computational domain Ω.

This information can then be further used, for example, for model validation,
or as offline data for a subsequent computation (e. g., tune the model with a
stationary computation and run a time-dependent computation afterwards).

Remark 6.9. If an affine-linear combination of coefficients is not intended and a
binary switch is needed, problem (6.22) can be transformed into a constrained
optimization problem over integral values

arg inf
γ ∈{0,1}n+1,

∑

i γi=1

∑

K∈Tδ (Ω)

�

�

�

(Aδ(γ )−Aε)∇uδ(Aδ(γ )),∇zε
�

K

�

�

2. (6.23)

6.3 An efficient post-processing strategy

The optimization problem (6.6) can be used as an efficient post-processing strategy
that does not require—with the exception of an initial model—any additional a
priori knowledge on effective models. For this, fix a macroscale and a sampling
discretization TH (Ω) and Tδ(Ω), as well as initial effective coefficients Aδ,0. The
dual solution is again either approximated with a coarse dual solution according
to (4.57) or with the help of the effective dual solution and a local enhancement
zδ +

∑

zδK , given in Definition 4.27.

Remark 6.10. Within the optimization framework (6.6), as no further sampling
of Aδ by primal reconstruction process is necessary, the computation of the primal
problem is very cheap. This justifies to also use more sophisticated, but also
more expensive, reconstruction approaches for the dual solution. A natural
candidate for an improved reconstruction approach is the VMM. In particular,
with the fact in mind, that the correct local behavior of ∇zε is required for a
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6 Optimization strategies for model adaptivity

quantitative ηδK , VMM approaches with higher orthogonality requirements are a
natural candidate (see also Section 2.1.4 and Remark 4.22).

In summary, this results in the following general optimization strategy for-
mulated for the case of a reduced, locally enhanced approximation of the dual
solution:

Definition 6.11 (Reduced, locally enhanced model-optimization problem).
Let Tδ(Ω) be a fixed sampling mesh and TH (Ω) a fixed macroscale discretiza-
tion. Fix a microscale discretization {Th(K) : K ∈ Tδ(Ω)} as well and let
Aδ,0 :Tδ(Ω)→Rd×d be an initial effective model. The reduced, locally enhanced
model-optimization problem reads: Find a solution Aδ,opt ∈A δ of

arg inf
Aδ∈A δ

∑

K∈Tδ (Ω)

�

�

�

(Aδ −Aε)∇U (Aδ),∇(Z̃ + Z̃K)(A
δ)
�

K

�

�

2

+αK



AδK −Aδ,0
K





2
Rd×d (6.24)

with U , Z̃ ∈V H (Ω), and Z̃K ∈V h(K) subject to the side conditions:
�

Aδ∇U (Aδ),∇ϕ
�

= ( f ,ϕ) ∀ϕ ∈V H (Ω), (6.25)
�

Aδ∇ϕ,∇Z̃(Aδ)
�

= 〈 j ,ϕ〉 ∀ϕ ∈V H (Ω), (6.26)
�

Aε∇ϕ,∇Z̃ +∇Z̃K

�

K
= 〈 j ,ϕ〉 ∀ϕ ∈V h(K). (6.27)

Remark 6.12. Here, in contrast to the first two model-adaptation strategies, a
local enhancement is actually necessary, as will be evidenced by the numerical
results given below.

Remark 6.13. A microscale discretization (with respect to h) only enters the
modified model-optimization problem by means of an approximation quality of
the dual solution. Either due to the coarse approximation, say Z̃ ∈V h(Ω), or
in terms of resolution of the reconstruction Z̃K ∈ V h(K). In case of the local
enhancement strategy, the artificial boundary conditions in (6.27) introduce an
additional systematic error such that a solution of (6.24) is usually slightly different
from a solution of (6.6).

Remark 6.14. A posteriori error estimation with a reduced, locally enhanced
strategy given in Definitions 4.27 and 4.28 had the disadvantage that for both, the
primal problem (in form of sampling Aδ,h ) and the dual problem (by means of a
local reconstruction according to Definition 4.28) an expensive reconstruction
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6.3 An efficient post-processing strategy

has to be computed. In contrast, the model-optimization framework of Defini-
tion 6.11 only requires the local reconstruction of the dual solution. The only
exception is the computation of the initial model Aδ,0. But given the fact that
the effective model is subject to an optimization procedure, this computation is
usually relatively cheap.

As was already discussed in Chapter 4, the error identity lifts the question of
suitable approximation in terms of a quantity of interest (for the primal problem)
to the question of suitable approximation properties of the localization technique
for the dual problem (see Remark 4.22). The latter is typically measured in the
L2-norm of the gradient of the error of the dual approximation, for which—
depending on the localization approach—strong approximation properties are
available, and not in the quantity of interest itself.

Thus, the proposed optimization framework can be interpreted as a multiscale
method in its own right, where a reconstruction process is used for the dual
solution. The modeling aspect of the optimization problem lies in the choice of
functional j as quantity of interest, as well as (in case of a local enhancement) the
choice of local reconstruction of the dual solution.

Analogously to Proposition 6.6 we formulate the following result:

Proposition 6.15. Let F̃ be the modified cost functional of (6.24). Then, in full
analogy of the result for F in Proposition 6.6, the functional dependency of
F̃ (Aδ) is also Gâteaux-differentiable and it holds true that

DF̃ (Aδ)[δAδ] = DF (Aδ , U , Z̃)[δAδ] +
∑

K∈Tδ (Ω)
2ηδK

�

(Aδ −Aε)∇U ,∇(DZ̃ +DZ̃K)(A
δ)[δAδ]

�

, (6.28)

with DZ̃ ∈V H (K) being defined as the solution of
�

Aδ∇ϕ,∇DZ̃(Aδ)[δAδ]
�

+
�

δAδ∇ϕ,∇Z̃(Aδ)
�

= 0 ∀ϕ ∈V H (Ω), (6.29)

and DZ̃K ∈V h(K) solving

�

Aε∇ϕ,∇DZ̃K(A
δ)[δAδ]

�

K

+
�

Aε∇ϕ,∇δZ̃(Aδ)[δAδ]
�

K
= 0 ∀ϕ ∈V h(K). (6.30)

Proof. The first part of the statement is already proved in Proposition 6.6. The
additional terms arise from the derivatives of Equations (6.26) and (6.27).
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6 Optimization strategies for model adaptivity

6.4 Implementational aspects
The optimization problem (6.6) and its modified variant (6.24) contain strongly
nonlinear side conditions, where computing the Gâteaux-derivative for a given
direction δAδ alone already involves solving the variational equation (6.13), and,
depending on the reconstruction approach, also (6.29) and (6.30). Consequently,
a straightforward application of the Newton method to solve the optimization
problem,







Aδ,i+1←Aδ,i +δAδ,i ,

D2F (Aδ,i )[δB][δAδ,i] = −DF (Aδ,i )[δB] ∀δB ,
(6.31)

has to be avoided, because ensuring above variational equation to hold true
for every direction δB implies the construction of the full gradient ∇F (by
interpreting F : A δ ∼= Rd×d×n → R), which means solving d × d × n times
Equation (6.13), etc. Further, actually determining the direction δAδ,i effectively
squares this complexity.

In order to avoid computing the second order derivatives d2F (Aδ,i ) a modified
Gauß-Newton method [70,73] is used. For this, we reformulate the optimization
problem slightly:

Lemma 6.16. Introduce an index (K , i , j ) ∈ Tδ ×Rd×d and define the vector-
valued function

G :=
n

�

η̃K

�

K
,
�

gKi j

�

Ki j

o

, (6.32)

with

η̃K :=
�

(Aδ −Aε)∇U(Aδ) ,∇(Z̃ + Z̃K)
�

K
, (6.33)

gKi j :=pαK

�

AδK ,i j −Aδ,0
K ,i j

�

. (6.34)

Then, the modified optimization problem (6.24) can equivalently be expressed as
the minimization of the squared Euclidian norm | . | of G :

arg inf
Aδ∈A δ

�

�G
�

�

2 = arg inf
Aδ∈A δ

∑

K∈Tδ (Ω)

n

η̃2
K +

∑

i j

g 2
Ki j

o

. (6.35)

Further, for a given index (K , i , j ) let δAδ(Ki j ) : Tδ → Rd×d be defined as
the value

�

δAδQ
�

mn
:= δQK δmi δni , (6.36)
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for a cell Q ∈ Tδ(Ω), where δQK denotes Kronecker’s delta. Define the short
notation

DKi j η̃Q := Dη̃Q[δAδ(Ki j )], (6.37)

DKi j gQ mn := DgQ mn(A
δ)[δAδ(Ki j )]. (6.38)

Lemma 6.17. By virtue of Propositions 6.6 and 6.15 it holds true that

DKi j η̃Q = δQK

∫

Q
∇j U ∇i (Z̃ + Z̃Q)dx

+
∫

Q
(Aδ −Aε)∇DKi j U · ∇(Z̃ + Z̃Q)dx

+
∫

Q
(Aδ −Aε)∇U · ∇DKi j (Z̃ + Z̃Q)dx, (6.39)

as well as

DKi j gQ mn = δQK δmi δni
p

αQ . (6.40)

With these prerequisites at hand, a modified Gauß-Newton iteration following
a discussion by Levenberg [70] and Marquardt [73] is defined:

Definition 6.18 (Gauß-Newton iteration). Let J denote the Jacobian matrix
of G ,

J =
n

�

DKi j η̃Q

�Ki j
Q

,
�

DKi j g̃Q mn

�Ki j
Q mn

o

. (6.41)

Given a penalty λ ≥ 0 and starting from an initial effective model Aδ,0 the
modified Gauß-Newton iteration reads







Aδ,n+1←Aδ,n +δAδ,n,
�

JJ T (Aδ,n)+λ Id
�

δAδ,n =−JG T (Aδ,n).
(6.42)

The penalization term λ Id acts as a dampening term in the Gauß-Newton
method to stabilize the iteration and to reduce the influence of approximation
errors of the Jacobian J . Depending on the situation, it will be chosen between
0− 1 times the mean value of the diagonal elements of JJ T .
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6 Optimization strategies for model adaptivity

Reduction of computational complexity The computationally expensive
part of computing the Jacobi matrix J are the non-local responses DKi j U ,

DKi j Z̃ , and DKi j Z̃Q that have to be computed for each choice (K , i , j ) individ-
ually according to (6.13), (6.29), and (6.30). Another aspect that has to be kept
in mind is the fact that JJ T is actually a dense matrix of size N ×N with
N =

�

�Tδ(Ω)
�

� (1+ d 2). Storing such a matrix, even for moderate sizes of the
sampling mesh Tδ(Ω), is computationally infeasible. Thus, a reduction strategy
to efficiently approximate J is necessary.

The microscale response DKi j U is given by (cf. Equation 6.13):

�

Aδ∇DKi j U ,∇ϕ
�

=−
∫

K
∇j U∇iϕ dx ∀ϕ ∈V H (Ω). (6.43)

The right hand side of this equation is highly localized, consequently, the contri-
bution of

∫

Q
(Aδ −Aε)∇DKi j U · ∇(Z̃ + Z̃Q)dx (6.44)

rapidly decreases the farther Q is away from K—and can be neglected at some
point. A sensible compromise is, for example, to compute above contribution
only for the case K =Q, or alternatively, as a more precise strategy, only if Q
belongs to a small patch around K, e. g., if K ∩Q 6= ;. All of this choices result
in a block diagonal matrix J̃ whose band size is independent of |Tδ(Ω)|.

The microscale response DZ̃ , DZ̃Q in contrast will just be neglected entirely:
∫

Q
(Aδ −Aε)∇U · ∇DKi j (Z̃ + Z̃Q)dx ≈ 0. (6.45)

The reasoning behind this choice is the fact that in case of a fully resolved dual
solution zε, or the coarse approximation strategy, such finescale response does
not exist at all, and further, that the optimization problem (6.24) is designed to
be an approximation of (6.6); so a derivative approximation (probably) closer to
the original problem is actually desirable.

In summary, the following approximation strategies of the derivative DKi j η̃Q

will be considered:

Definition 6.19 (Approximative Jacobian). The derivative DKi j η̃Q is either
approximated by ignoring all microscale responses DKi j U entirely, i. e.,

DKi j η̃Q ≈ δQK

∫

Q
∇j U ∇i (Z̃ + Z̃Q)dx, (6.46)
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or by taking the local response of DKi j U on K itself into account:

DKi j η̃Q ≈ δQK

∫

Q
∇j U ∇i (Z̃ + Z̃Q)dx

+δQK

∫

Q
(Aδ −Aε)∇DKi j U · ∇(Z̃ + Z̃Q)dx. (6.47)

Finally, as a more precise reconstruction approach, define a patchω(K) := {Q ∈
Tδ(Ω) : K ∩Q 6= ;} and let IQω(K) be the indicator function that is equal to 1 for
Q ∈ω(K) and 0 otherwise. Now set

DKi j η̃Q ≈ δQK

∫

Q
∇j U ∇i (Z̃ + Z̃Q)dx

+ IQω(K)

∫

Q
(Aδ −Aε)∇DKi j U · ∇(Z̃ + Z̃Q)dx. (6.48)

One last obstacle for the patch-centered reconstruction (6.47) remains. Namely,
that the response DKi j U is needed in combination with the microscale recon-

struction Z̃Q . In an efficient algorithm, fine-scale reconstructions of such kinds
cannot be stored for further use but are local to the computation on the current
sampling region Q. One way to mitigate this problem is to not use a finescale
reconstruction ZQ defined on Q, but to use a slightly more expensive Z̃ω(K)
defined on the patch ω(K) around K with patch-depth 1. This allows for an
efficient assembly as described in Algorithm 6.

Finally, a model-optimization algorithm can be defined, see Algorithm 7.

Remark 6.20. The implementational details for the optimization framework
discussed in this subsection are readily transferable to the case of improved recon-
struction approaches with the VMM that were briefly mentioned in Remark 6.10.
On an abstract level those also take the form of a global approximation zH ∈V H

(corresponding to Z̃) and localized reconstructions z f
i ∈V f

i (corresponding to
Z̃K ). Thus, an application to this type of reconstruction with a slightly different
partition (nodal based versus cell based) is straightforward. Further, z f

i and zH

do not depend on Aδ which removes the necessity for the approximation (6.45).

Remark 6.21. Due to the fact thatJ is always approximated with a substantially
reduced variant, the value ‖J ‖ does not provide a good stopping criterion with
‖J ‖ � 1. Instead, it is better to use the approximative estimator value |θ̃δ |
directly. For example, stop if |θ̃δ | is reduced to 1% of its initial value.
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Algorithm 6: Assembly of {η̃K} and J
– Set up TH (Ω) and assemble matrix A: Aνµ = (A

δ,i∇ϕµ ,∇ϕν).
– Compute matrix decomposition of A: LU =A.
for K ∈Tδ(Ω) do

– Assembleω(K) and compute Z̃K ∈V h(ω(K)).
– Compute η̃δK with (4.64) and (4.65). for i = 1, . . . , d do

for j = 1, . . . , d do
– Compute response DKi j U with above decomposition.
for Q ∈ω(K) do

– Compute contribution DKi j η̃Q according to (6.47) for J .

Algorithm 7: Model-optimization algorithm

– Compute initial model Aδ,0.

– Solve primal and (reduced) dual problem U (Aδ,0), Z̃(Aδ,0) with the help of
(3.25) and (4.58), respectively.

while stopping criterion not reached do

– Compute the error estimator and local indicators {η̃K}

θ̃δ =
∑

K∈Tδ (Ω)
η̃δK ,

as well as, the Jacobian J with Algorithm 6.

– Solve
�

JJ T (Aδ,n)+λId
�

δAδ,n =−JG T (Aδ,n).

– Update model: Aδ,n+1←Aδ,n +δAδ,n.

– Solve primal and (reduced) dual problem U (Aδ,n+1), Z̃(Aδ,n+1) with the
help of (3.25) and (4.58), respectively.
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6.5 Numerical results for the model-optimization strategy

6.5 Numerical results for the model-optimization
strategy

With the help of the elliptic model problem, a series of short numerical tests shall
be conducted in order to examine specific behavior and aspects of the model-
optimization approach that was proposed in the previous section. In particular,
the dependence of the optimization result on the initial value Aδ,0, on the size
of the sampling discretization Tδ(Ω), and on the strength of the regularization
parameters αK is examined for the global functional j1, as well as the local variant
j2. The test is conducted for for the random coefficients (Section 6.5.1) for both,
the fully resolved dual solution zε, as well as the reduced, locally enhanced variant
zδ +

∑

zδK . Finally, Section 6.5.2 concludes with a counterexample for large
model-deviation when starting from an insufficient initial model Aδ,0.

6.5.1 Parameter study for random coefficients

The purpose of the first numerical test is to examine the stability of the optimiza-
tion approach for a variety of differently chosen discretization and optimization
parameters. In particular, the feasibility of using the reduced, locally enhanced
approximation approach within the optimization framework shall be assessed as
this property is essential for the optimization approach to be computationally
feasible and thus comparable to VMM or HMM approaches.

Consider the computational domain Ω with the random microstructure intro-
duced in Section 3.5 together with the global and local functionals

〈 j1,ϕ〉=
∫

Ω

ϕ dx, 〈 j2,ϕ〉= ϕ(x0), (6.49)

that were examined in Section 4.5. For a fixed choice of 65.5K macrocells and a
microscale resolution of h = 2−12, a parameter study is conducted with sampling
discretizations δ = 2−3 and δ = 2−4, a choice of mild penalty with λ = 0.1 m
and regularization αK = 0.001 and strong penalty λ= 1.0 m and regularization
αK = 0.01, where m is the absolute mean value of the diagonal entries of the
matrix J TJ , see (6.42). The optimization algorithm is run for the full opti-
mization strategy (6.48), as well as the reduced variant (6.46) for both types of
reconstruction approaches for the dual solution: fully resolved zε and the reduced,
local enhanced variant zδ +

∑

zδK . With reference values of 〈 j1, uεref〉 ≈ 0.14641
and 〈 j2, uεref〉 ≈ 0.189403 the initial model errors are in the range of 40% for the
arithmetic average and around 1% for the geometric average.
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6 Optimization strategies for model adaptivity

Remark 6.22. An application of the model-optimization framework to an
advection-diffusion example with dominant finescale transport and actually large
initial model error is given in Section 6.6.

For each choice of parameters, Tables 6.1 and 6.2 show the final error after a
fixed number of 15 optimization cycles for periodic and random coefficients.

The first observation that can be made is that in almost all cases the model-
optimization approach is able to consistently reduce the initial error to around 1%
for the arithmetic average as initial model, and well below 1% for the geometric
average (that already provides a very good initial model), respectively. The slight
difference in the final value can be explained by the different impact of the chosen
regularization αK .

More importantly, the reduced, locally enhanced variant zδ +
∑

zδK with
increased patch size (and thus reduced impact of the artificial Dirichlet boundary
conditions of the reconstruction problems) leads to comparable results very
similar to the results for the full variant zε. As discussed, this observation is crucial
for the proposed optimization approach to be computationally competitive.

There are two notable exceptions to this general observation. The first one is
for the case of the arithmetic average as initial model and strong regularization
(αK = 10−2, 10−3). Here, the regularization term prevents further convergence to
an acceptable optimal model (cf., e. g., Table 6.1a, δ = 2−4, for zε and zδ+

∑

zδK ).
The effect is more pronounced for the case of small sampling cells (δ = 2−4).

The second exception occurs for the reduced model-optimization in combina-
tion with the reduced, locally enhanced dual approximation (cf. Table 6.1c–d and
6.2c–d). Here, the higher influence of the artificial boundary conditions of the
dual approximation leads to a consistent overall error of around 3% (δ = 2−3)
and 6% (δ = 2−4) independent of starting model and quantity of interest.

Remark 6.23. The decrease of precision in case of the reduced optimization
is in fact due to the increased influence of the artificial boundaries and not the
patch size. This is evidenced by the fact that the result for the reduced, locally
enhanced dual reconstruction with increased patch size is practically identical
for δ = 2−3, δ = 2−4 (and δ = 2−5, which is not shown in the tables).

The results for the full dual solution zε (and the case of reduced optimization
strategy), on the other hand, show that the reduced reconstruction (6.46) gives
practically the same result for both examined quantities of interest compared to
the full reconstruction (6.48).
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Table 6.1. Parameter study for the random permeability and the global func-
tional j1. For each choice the absolute and relative error after cycle 15 of the
optimization algorithm are shown.

zε zδ +
∑

zδK
cl. δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 5.9e-2 (40 %) 5.9e-2 (40 %) 5.9e-2 (40 %) 5.9e-2 (40 %)

αK = 10−2 15 6.0e-3 (4.1 %) 2.7e-2 (18 %) 7.1e-3 (4.8 %) 3.6e-2 (24 %)
αK = 10−3 15 9.6e-4 (0.7 %) 1.4e-3 (0.9 %) 9.1e-4 (0.6 %) 1.4e-3 (1.0 %)
αK = 10−4 15 9.3e-4 (0.6 %) 9.9e-4 (0.7 %) 8.7e-4 (0.6 %) 9.6e-4 (0.7 %)

(a) Full model-optimization (6.48), arithmetic average Aδ,0

zε zδ +
∑

zδK
cl. δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 1.8e-3 (1.3 %) 1.3e-3 (0.9 %) 1.8e-3 (1.3 %) 1.3e-3 (0.9 %)

αK = 10−2 15 7.5e-4 (0.5 %) 4.2e-4 (0.3 %) 6.7e-4 (0.5 %) 3.7e-4 (0.3 %)
αK = 10−3 15 8.0e-4 (0.6 %) 7.9e-4 (0.5 %) 7.1e-4 (0.5 %) 7.2e-4 (0.5 %)

(b) Full model-optimization (6.48), geometric average Aδ,0

zε zδ +
∑

zδK
cl. δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 5.9e-2 (40 %) 5.9e-2 (40 %) 5.9e-2 (40 %) 5.9e-2 (40 %)

αK = 10−2 15 5.6e-2 (3.8 %) 2.6e-2 (17 %) 1.1e-2 (7.7 %) 3.8e-2 (26 %)
αK = 10−3 15 5.8e-4 (0.4 %) 1.3e-3 (0.9 %) 4.8e-3 (3.2 %) 8.7e-3 (5.9 %)
αK = 10−4 15 9.0e-4 (0.6 %) 9.7e-4 (0.7 %) 4.7e-3 (3.2 %) 8.2e-3 (5.6 %)

(c) Reduced model-optimization (6.46), arithmetic average Aδ,0

zε zδ +
∑

zδK
cl. δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 1.8e-3 (1.3 %) 1.3e-3 (0.9 %) 1.8e-3 (1.3 %) 1.3e-3 (0.9 %)

αK = 10−2 15 7.6e-4 (0.5 %) 4.2e-4 (0.3 %) 4.4e-3 (3.0 %) 5.9e-3 (4.0 %)
αK = 10−3 15 8.0e-4 (0.5 %) 7.9e-4 (0.5 %) 4.6e-3 (3.1 %) 8.0e-3 (5.4 %)

(d) Reduced model-optimization (6.46), geometric average Aδ,0
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Table 6.2. Parameter study for the random permeability and the local func-
tional j2. For each choice the absolute and relative error after cycle 15 of the
optimization algorithm are shown.

zε zδ +
∑

zδK
cl. δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 7.5e-2 (40 %) 7.4e-2 (39 %) 7.5e-2 (40 %) 7.4e-2 (39 %)

αK = 10−2 15 3.5e-3 (1.9 %) 6.9e-4 (0.4 %) 3.0e-3 (1.6 %) 4.2e-3 (2.2 %)
αK = 10−3 15 1.8e-3 (1.0 %) 1.0e-3 (0.6 %) 1.6e-3 (0.8 %) 7.1e-3 (3.7 %)
αK = 10−4 15 1.8e-3 (1.0 %) 3.0e-3 (1.6 %) 1.5e-3 (0.8 %) 6.8e03 (3.6 %)

(a) Full model-optimization (6.48), arithmetic average Aδ,0

zε zδ +
∑

zδK
cl. δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 2.1e-3 (1.1 %) 2.2e-3 (1.2 %) 2.1e-3 (1.1 %) 2.2e-3 (1.2 %)

αK = 10−2 15 6.0e-4 (0.3 %) 6.2e-4 (0.3 %) 8.7e-4 (0.5 %) 9.5e-4 (0.5 %)
αK = 10−3 15 6.9e-4 (0.4 %) 7.2e-4 (0.4 %) 9.5e-4 (0.5 %) 1.0e-3 (0.5 %)

(b) Full model-optimization (6.48), geometric average Aδ,0

zε zδ +
∑

zδK
cl. δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 7.5e-2 (40 %) 7.4e-2 (39 %) 7.5e-2 (40 %) 7.4e-2 (39 %)

αK = 10−2 15 3.6e-3 (1.9 %) 7.3e-3 (3.9 %) 8.5e-4 (4.5 %) 1.7e-2 (8.9 %)
αK = 10−3 15 2.6e-3 (1.4 %) 2.1e-3 (1.1 %) 7.6e-3 (4.0 %) 1.2e-2 (6.3 %)
αK = 10−4 15 2.6e-3 (1.4 %) 1.9e-3 (1.0 %) 7.6e-3 (4.0 %) 1.3e-2 (6.7 %)

(c) Reduced model-optimization (6.46), arithmetic average Aδ,0

zε zδ +
∑

zδK
cl. δ = 2−3 δ = 2−4 δ = 2−3 δ = 2−4

1 2.1e-3 (1.1 %) 2.2e-3 (1.2 %) 2.1e-3 (1.1 %) 2.2e-3 (1.2 %)

αK = 10−2 15 6.2e-4 (0.3 %) 4.1e-4 (0.2 %) 6.1e-3 (3.2 %) 1.0e-2 (5.3 %)
αK = 10−3 15 7.1e-4 (0.4 %) 5.0e-4 (0.3 %) 6.2e-3 (3.2 %) 1.0e-2 (5.5 %)

(d) Reduced model-optimization (6.46), geometric average Aδ,0
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6.5 Numerical results for the model-optimization strategy

6.5.2 Counterexample for large model-deviation

The optimization problem (Definition 6.1) itself is not uniquely solvable. In fact,
with the regularization term introduced in (6.6), as well as with the Gauß-Newton
iteration with approximate Jacobian that was introduced, the outcome of the
minimization algorithm is dependent on specific properties being present in the
initial model Aδ,0. As a numerical test case, consider periodic coefficients given
by regularly located, small ellipses with periodicity ε= 2−3 and high permeability
(Kε = 1 compared to Kε = 0.01 outside) on the unit square Ω (see Figure 6.2a–
b). Two choices of initial models are used: the geometric average, as well as a
sampling with the cell problem (3.10) of the homogenization sampling strategy.
The algorithm is run for a sampling region consisting of just a single sampling
cell (δ = 1) and for a fine sampling discretization with δ = ε= 2−3. The global
functional j1 given by (4.67) is chosen as quantity of interest. As can be seen
from the numerical results given in Table 6.3, for all choices of initial model (that
exhibit 37% and 2.6% relative error, respectively) the optimization algorithm
converges to the almost same result close to the reference value with a relative
error of 0.03% (which is basically entirely dominated by macro- and microscale
discretization errors present in the primal and dual approximation).

However, when examined in the picture norm (see Figure 6.2c–f) an important
difference appears in the sense that the “optimal” solution for δ = 1 and simple
averaging as initial model is almost isotropic, where, in fact, for the reference
solution and for the result obtained by starting with Aδ,0 computed by (3.10)
this isn’t the case. This behavior gets less pronounced with a refined sampling
discretization (δ = 2−3).

In order to avoid such a pathologic behavior, it is necessary to either use an
initial model that already captures such important properties and further optimize
it (as was done in this example), or, to use a (possibly nonlinear) functional capable
of capturing such anisotropy in the optimization problem.

Table 6.3. Model-optimization results for periodic coefficients with ellipses
(see Figure 6.2) for different initial models (geometric average and homoge-
nization) and different sampling grid sizes

Homogenization Geometric average

cycle. δ = 2−0 δ = 2−3 δ = 2−0 δ = 2−3

1 3.2e-2 (2.6 %) 3.2e-2 (2.6 %) 5.6e-1 (45 %) 5.6e-1 (45 %)

15 4.1e-4 (0.03 %) 4.1e-4 (0.03 %) 4.2e-4 (0.03 %) 3.9e-4 (0.03 %)
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6 Optimization strategies for model adaptivity

(a) Periodic coefficients (left) and corresponding reference solution (right)

(b) Optimal solution for initial model with geometric average, δ = 1
(left) and δ = 2−3 (right)

(c) Optimal solution for initial model computed with HMM, δ = 1 (left)
and δ = 2−3 (right)

Figure 6.2. A periodic microstructure consisting of ellipses on the unit square
and its reference solution (a). Panel (b) and (c) show the final results for the
optimization algorithm for different initial models and sampling grid sizes.
The optimal solution in case of an initial model with geometric average only
exhibit isotropic effective coefficients Aδ . This is clearly visible in case of
only one sampling cell δ = 1.
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6.6 An advection-diffusion example with dominant transport

6.6 An advection-diffusion example with dominant
transport

As a further test case consider an advection-diffusion problem

γ (∇uε,∇ϕ)+ (bε · ∇uε,ϕ) = ( f ,ϕ) ∀ϕ ∈V (6.50)

driven by a divergence-free vector field bε ∈H 1,∞(Ω)d , i. e. ∇ · bε = 0 a. e. on Ω
and bε ≡ 0 on ∂ Ω, together with a positive scaling factor γ ∈R+. This time, the
multiscale character is given by bε that shall consist of small (but strong) eddies.

6.6.1 Periodic coefficients

For a first numerical test, the influence of bε is assumed to be entirely local, i. e.,
no effective macroscopic transport shall occur. More precisely, assume

−
∫

K
bε = 0 ∀K ∈Tδ(Ω). (6.51)

Due to the absence of an averaged transport, the small eddies only influence
the macroscopic behavior by means of an additional effective diffusivity. Conse-
quently, let the task be to find effective (diffusion) constants Aδ : Tδ(Ω)→Rd×d

such that the solution uδ of the usual effective problem

(Aδ∇uδ ,∇ϕ) = ( f ,ϕ) ∀ϕ ∈V (6.52)

is a good approximation of above uε in some quantity of interest.
The only significant change in the model-adaptation framework for above

advection-diffusion problem is the occurrence of an additional term (bε ·∇uε, zε)
in the error identity (4.6) that now splits into

〈 j , uε〉− 〈 j , U 〉
=
�

f , zδ
�

−
�

Aδ,h∇U ,∇zδ
�

︸ ︷︷ ︸

=:θH

+
�

Aδ,h∇U ,∇zδ
�

−
�

Aδ∇U ,∇zδ
�

︸ ︷︷ ︸

=:θh

+
�

Aδ∇uδ ,∇zε
�

− γ
�

∇uδ ,∇zε
�

−
�

bε · ∇uδ , zε
�

︸ ︷︷ ︸

=:θδ

. (6.53)

This leads to a local model-error indicator

ηδK :=
�

{γ Id−Aδ}∇uδ ,∇zε
�

K
−
�

bε · ∇uδ , zε
�

K
. (6.54)
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Ω ΓA

ΓD

ΓC

ΓB

ΓE

(a) Domain Ω (b) bε, x-comp. (c) bε, y-comp.

Figure 6.3. The computational domain Ω for the advection-diffusion test
case (a) and the periodic vector field bε for the first numerical test (b-c).

With above assumptions on bε the corresponding dual problem reads

γ (∇ϕ,∇zε)− (bε · ∇zε,ϕ) = 〈 j ,ϕ〉 ∀ϕ ∈V . (6.55)

A rectangular domainΩ is chosen (see Figure 6.3) with homogeneous Dirichlet
boundary conditions on ΓD , homogeneous Neumann conditions on ΓA, ΓB and
ΓC , and γ ∂n uε ≡ 1 on ΓE . The source term is set to f ≡ 0 and the quantity of
interest is chosen to be

〈 j ,ϕ〉=
∫

ΓB

ϕ dox . (6.56)

In spirit of Definition 4.19, a reduced dual problem with a local enhancement
can be defined

�

Aδ∇ϕ,∇zδ
�

= 〈 j ,ϕ〉 ∀ϕ ∈V , (6.57)

γ
�

∇ϕ,∇(zδ + zδK )
�

K
−
�

bε · ∇(zδ + zδK ),ϕ
�

K
= 〈 j ,ϕ〉 ∀ϕ ∈V (K). (6.58)

Here, the local reconstruction zδK ∈V (K) has homogeneous Dirichlet conditions
on interior boundary parts ∂ K but shall have homogeneous Neumann conditions
on all Neumann boundaries of the primal problem, i. e., on boundaries ∂ K ∩ Γi
with i =A, B , C , E .
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6.6 An advection-diffusion example with dominant transport

For the first numerical test, an artificial, periodic vector field is constructed
that fulfills (6.51): Consider the function b ∈C 2(Ω, R2) defined by

b(x, y) :=
1
2











�

1− 2r + r 2�
�

−y
x

�

, if r ≤ 1,

0, otherwise,
(6.59)

with r =
p

x2+ y2. With the help of the rescaling x̂ = x/εmod Y into the unit
cell Y define bε : Ω→R2 (see Figure 6.3) by

bε(x) = s (−1)bx/εc (−1)by/εc b
�

2× x̂ −
�

1
1

�

�

, (6.60)

with a scaling factor s ∈ R+. For the choice ε = 2−5, γ = 0.01, and s = 1000,
a reference computation with 8.39× 106 degrees of freedom yields the result
〈 j , uεref〉 ≈ 1.781. A uniform sampling mesh with 32 sampling regions is chosen,
as well as a macroscale discretization of 1.3× 105 cells and a (fully resolved)
microscale discretization with h = 2−11. The optimization framework is run for
a fully resolved dual solution (“full”) with 2.1× 106 cells as well as the reduced,
locally enhanced variant given in Definition 4.28 (“enhanced”). As stopping
criterion a reduction of |θ̃δ | to less than 1% of the initial value is chosen with
a penalty λ = 1.0× m, where m is the absolute mean value of the diagonal
entries of the matrix J TJ , see (6.42), and a very small regularization αK = 0.1
(compared to |θ̃δ |2/|AδK |2 ∼ 1000). The numerical results are given in Table 6.4.

To examine the numerical stability of the optimization algorithm the compu-
tation is actually run for 15 adaptation cycles well beyond the stopping criterion
that is reached with step 7 for the full dual solution and with step 6 for the local
enhancement strategy. The initial error of 142% in the target functional with a
starting model AδK = γ Id can be reduced to under 1% for the full dual reconstruc-
tion and to under 3% for the localized variant. Further, the adaptation cycle
remains stable well beyond the stopping criterion was reached.

Reference, initial and final (for step 7 and 6, respectively) solutions are depicted
in Figure 6.4. As can be seen from the numerical results, the microscale advection
due to bε leads to a locally increased value for AδK in the range 0.01 − 0.02
compared to the initial choice AδK = γ Id ∼ 0.01. The effective models found
with the optimization approach match the reference solution quite well near the
boundary ΓB . In contrast, on the far end of ΓB near the inhomogeneous Neumann
condition on ΓE , the effective solutions deviate from uε. This has to be expected
as the optimization problem only minimizes the error given by an integral over
ΓB .
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Table 6.4. Results for the model-optimization algorithm (Algorithm 7) ap-
plied to the advection-diffusion problem (6.50) with periodic advection (6.60)
with fully resolved dual solution (a) and for the reduced, locally enhanced
variant (b). After steps 7 and 6, respectively, the estimator |θ̃δ | is reduced to
less than 1% of its initial value.

L2(Ω) |〈 j , U 〉| |〈 j , uε−U 〉| |θ̃δ | Ieff Iloc

1 5.77e+0 4.31e+0 -2.53e+0 (142 %) -2.55e+0 1.01 1.67
2 2.82e+0 2.58e+0 -7.96e-1 (44,7 %) -8.07e-1 1.01 2.13
3 1.77e+0 2.03e+0 -2.52e-1 (14.1 %) -2.60e-1 1.03 2.86
4 1.46e+0 1.87e+0 -8.74e-2 (4.91 %) -9.52e-2 1.07 4.16
5 1.38e+0 1.82e+0 -3.63e-2 (2.04 %) -4.39e-2 1.17 5.69
6 1.35e+0 1.80e+0 -1.83e-2 (1.03 %) -2.59e-2 1.34 6.91

7 1.34e+0 1.79e+0 -1.02e-2 (0.57 %) -1.77e-2 1.61 7.86

14 1.33e+0 1.78e+0 4.92e-3 (0.28 %) -2.49e-3 -0.25 19.7
15 1.33e+0 1.78e+0 5.40e-3 (0.31 %) -2.00e-3 -0.14 21.81

(a) Model-optimization algorithm with fully resolved dual solution

L2(Ω) |〈 j , U 〉| |〈 j , uε−U 〉| |θ̃δ | Ieff Iloc

1 5.77e+0 4.31e+0 -2.53e+0 (142 %) -6.18e+0 2.44 1.66
2 2.82e+0 2.57e+0 -7.93e-1 (44,5 %) -1.25e+0 1.58 2.29
3 1.75e+0 2.03e+0 -2.47e-1 (13.8 %) -3.95e-1 1.60 2.65
4 1.44e+0 1.84e+0 -6.17e-2 (3.47 %) -1.50e-1 2.43 3.22
5 1.36e+0 1.78e+0 5.85e-4 (0.33 %) -6.57e-2 -112 4.02

6 1.33e+0 1.76e+0 2.31e-2 (1.30 %) -3.37e-2 -1.46 5.04

14 1.32e+0 1.74e+0 4.30e-2 (2.42 %) -3.78e-3 -0.09 9.90
15 1.32e+0 1.74e+0 4.34e-2 (2.44 %) -3.31e-3 -0.08 10.1

(b) Model-optimization algorithm with reduced, locally enhanced
dual solution
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6.6 An advection-diffusion example with dominant transport

(a) Reference solution (b) Initial solution

(c) Fully resolved dual solution (d) Locally enhanced dual solution

Figure 6.4. 3 dimensional plot of the reference solution (a), the initial solution
uδ,0 of the optimization problem (b), and the solutions of the final models for
fully resolved (c) and reduced, locally enhanced (d) dual solution. The figures
are a 3 dimensional view from the right side ΓA onto Ω. The height is given
by the value uε, uδ,i , the scale is kept the same. Onto Ω itself the values |Aδ,i |
are plotted, except for the reference solution, where bx is depicted.
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6.6.2 Random coefficients

As a last numerical test, the model-optimization approach shall be tested on the
advection-diffusion problem (6.50) with a random advection field bε. In order to
construct a divergence-free vector field that also fulfills bε ≡ 0 on ∂ Ω, a potential
Ψε ∈ C 2(Ω) is constructed first with the help of a Hermite interpolation: Fix a
uniform, fine-scale mesh Tε(Ω) and assign random, Gaussian-distributed values
to its vertices. In order to ensure the boundary condition bε ≡ 0 on ∂ Ω, the
individual values of the vertices at the boundary are replaced by the mean value
of the random distribution. Now, for all K ∈Tε(Ω) define ΨεK to be given by

ΨεK(x̂) =
1
∑

i , j=0

vi j pi (x̂)p j (ŷ), (6.61)

where vi j denote the individual, assigned nodal values, and pi are the Hermite
polynomials

p0(x) = 1+ 2x3− 3x2, (6.62)
p1(x) =−2x3+ 3x2. (6.63)

x̂ is the already introduced rescaling to the unit cell, x̂ = x/ε mod Y . Now
define

bε(x) := curlΨε =−∂yΨ
ε ex + ∂xΨ

ε ey . (6.64)

Due to the random nature of the advection field, the strong condition (6.51)
of a vanishing mean value of bε over sampling regions cannot hold true. Conse-
quently, the full effective advection-diffusion problem of Section 2.2.5 has to be
used. Therefore, for a given sampling discretization Tδ(Ω) define

bδ : Tδ(Ω)→R
d , (6.65)

bδK := −
∫

K
bε dx for K ∈Tδ(Ω). (6.66)

This leads to the effective advection-diffusion problem

(Aδ∇uδ ,∇ϕ)+ (bδ · ∇uδ ,ϕ) = ( f ,ϕ) ∀ϕ ∈V . (6.67)
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The error identity (4.6) now features additional contributions given by bδ :

〈 j , uε〉− 〈 j , U 〉=
�

f , zδ
�

−
�

Aδ,h∇U ,∇zδ
�

−
�

bδ,h · ∇U , zδ
�

︸ ︷︷ ︸

=:θH

+
�

Aδ,h∇U ,∇zδ
�

−
�

Aδ∇U ,∇zδ
�

−
�

(bδ − bδ,h) · ∇U , zδ
�

︸ ︷︷ ︸

=:θh

+
�

Aδ∇uδ ,∇zε
�

− γ
�

∇uδ ,∇zε
�

−
�

(bε− bδ) · ∇uδ , zε
�

︸ ︷︷ ︸

=:θδ

(6.68)

along with model-error indicators

ηδK :=
�

{γ Id−Aδ}∇uδ ,∇zε
�

K
−
�

(bε− bδ) · ∇uδ , zε
�

K
. (6.69)

For the choice ε= 2−8, γ = 0.1, as well as values of the advection field with
magnitude in the range 0− 300, a reference computation 8.39× 106 degrees of
freedom yields the result 〈 j , uεref〉 ≈ 0.2170. Otherwise, identical discretization
and stabilization parameters as for the periodic case are chosen.

The optimization framework is once again run for a fully resolved dual solution
(“full”) with 2.1× 106 cells as well as the reduced, locally enhanced variant. A
slightly decreased stopping criterion to reach a reduction of |θ̃δ | to less than 5%
of the initial value is chosen. The numerical results are given in Table 6.5 and
Figure 6.5. This time, after 12 and 10 steps, respectively, the stopping criterion is
reached. The final error stays well below the targeted error bound of 5%. In fact,
a final error of 2− 3% can be assumed.
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6 Optimization strategies for model adaptivity

Table 6.5. Results for the model-optimization algorithm (Algorithm 7) ap-
plied to the advection-diffusion problem (6.50) with random advection (6.64)
with fully resolved dual solution (a) and for the reduced, locally enhanced
variant (b). After steps 12 and 10, respectively, the estimator |θ̃δ | is reduced
to less than 5% of its initial value.

L2(Ω) |〈 j , U 〉| |〈 j , uε−U 〉| |θ̃δ | Ieff Iloc

1 4.43e-1 3.86e-1 -1.69e-1 (77.9 %) -1.69e-1 1.00 2.21
2 3.25e-1 2.99e-1 -8.17e-2 (37.6 %) -8.19e-2 1.00 3.28
3 2.80e-1 2.71e-1 -5.36e-2 (24.7 %) -5.38e-2 1.00 4.24
4 2.52e-1 2.57e-1 -4.02e-2 (18.5 %) -4.04e-2 1.00 5.07
5 2.29e-1 2.49e-1 -3.16e-2 (14.6 %) -3.18e-2 1.00 5.86
6 2.09e-1 2.42e-1 -2.52e-2 (11.6 %) -2.54e-2 1.00 6.71
7 1.90e-1 2.37e-1 -2.02e-2 (9.30 %) -2.04e-2 1.00 7.68

11 1.39e-1 2.26e-1 -9.14e-3 (4.21 %) -9.35e-3 1.00 13.2

12 1.30e-1 2.25e-1 -7.91e-3 (3.64 %) -8.12e-3 1.00 14.7

13 1.23e-1 2.24e-1 -7.07e-3 (3.25 %) -7.29e-3 0.99 16.0
14 1.17e-1 2.24e-1 -6.55e-3 (3.01 %) -6.77e-3 0.99 16.9
15 1.13e-1 2.23e-1 -6.28e-3 (2.89 %) -6.51e-3 0.99 17.3

(a) model-optimization algorithm with fully resolved dual
solution

L2(Ω) |〈 j , U 〉| |〈 j , uε−U 〉| |θ̃δ | Ieff Iloc

1 4.43e-1 3.86e-1 -1.69e-1 (77.9 %) -2.96e-1 1.76 2.15
2 3.03e-1 2.95e-1 -7.78e-2 (35.9 %) -9.55e-2 1.23 3.21
3 2.33e-1 2.62e-1 -4.48e-2 (20.6 %) -4.92e-2 1.10 4.01
4 1.85e-1 2.48e-1 -3.12e-2 (14.4 %) -3.61e-2 1.16 4.07
5 1.46e-1 2.39e-1 -2.20e-2 (10.1 %) -2.85e-2 1.30 3.85
6 1.17e-1 2.32e-1 -1.53e-2 (7.05 %) -2.35e-2 1.53 3.70
7 9.86e-2 2.28e-1 -1.08e-2 (4.97 %) -2.06e-2 1.90 3.80
8 8.77e-2 2.25e-1 -7.68e-3 (3.53 %) -1.83e-2 2.39 3.84
9 8.21e-2 2.22e-1 -5.22e-3 (2.40 %) -1.58e-2 3.04 4.20

10 7.99e-2 2.20e-1 -3.02e-3 (1.39 %) -1.27e-2 4.18 4.91

14 9.03e-2 2.14e-1 3.14e-3 (1.44 %) 3.85e-3 1.23 17.2
15 9.70e-2 2.14e-1 3.07e-3 (1.41 %) 7.00e-3 2.28 10.4

(b) model-optimization algorithm with reduced, locally en-
hanced dual solution
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6.6 An advection-diffusion example with dominant transport

(a) Reference solution (b) Initial solution

(c) Fully resolved dual solution (d) Locally enhanced dual solution

Figure 6.5. 3 dimensional plot of the reference solution (a), the initial solution
uδ,0 of the optimization problem (b), and the solutions of the final models for
fully resolved (c) and reduced, locally enhanced (d) dual solution. The figures
are a 3 dimensional view from the right side ΓA onto Ω. The height is given
by the value uε, uδ,i , the scale is kept the same. Onto Ω itself the values |Aδ,i |
are plotted.
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7 Conclusion and Outlook

In this thesis, an abstract model-adaptation framework was introduced that ex-
plicitly decouples all discretization and modeling parameters. It can be regarded
as a generalization of the HMM and shares some ideas with the model adaptation
approaches by Oden and Vemaganti [84–87,91] and Braack and Ern [26]. The novelty
lies in the explicit decoupling of the sampling processes from the macroscopic
discretization and the simultaneous treatment of discretization and model errors.

With the concept of an effective model,

Aδ : Tδ(Ω)→R
d×d ,

that was introduced in the abstract framework, different model-adaptation strate-
gies were discussed. In addition to the category of model-switching approaches
(which most of the model-adaptation strategies discussed in the literature so far
fall into) a sampling-mesh adaptation strategy was proposed that uses local mesh
refinement of Tδ(Ω) for model adaptation. Numerical tests showed that this
approach can result in an efficient post-processing strategy capable of balancing
model and discretization errors and, in particular, can lead to significant savings
in computational complexity.

Further, as a novel approach, a model-adaptation strategy based on solving an
optimization problem that minimizes the local model-error indicators derived
from a DWR formulation was proposed. The optimization approach allowed to
derive an efficient post-processing strategy that can be regarded as a multiscale
approach in its own right. Its strength lies in the fact that it is in principle
independent of strong a priori knowledge about applicability of efficient models—
its efficiency is rooted in the almost quantitative behavior of the DWR method
when combined with a suitable localization technique for the dual problem. The
modeling aspect of the optimization problem lies in the choice of functional
j as quantity of interest and the choice of localization approach for the dual
problem. In this sense it lifts the question of suitable approximation in terms
of a quantity of interest (for the primal problem) to the question of suitable
approximation properties of the localization technique for the dual problem.
The catch here is that the latter is typically measured in the L2-norm of the
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7 Conclusion and Outlook

gradient of the error of the dual approximation, for which—depending on the
localization approach—strong approximation properties are available, and not
in the quantity of interest itself. Prototypical numerical results were given for
periodic, as well as random coefficients (with specific stochastic properties), that
indicate that the optimization approach combined with a localization technique
that globally uses the same effective model as the primal problem and locally
reconstructs finescale features of the full dual solution with the help of local cell
problems does result in an efficient model-adaptation strategy.

Outlook Interpreting model adaptation as an optimization problem in the
context of the DWR method has turned out to be a feasible a posteriori technique
and a promising field for future research. Extensions of the model-adaptation
framework are possible in various directions.

First of all, there remain principle open questions with regard to efficient
approximations of the dual problem. The approaches studied in this thesis are
by no means exhaustive. An extension of the methodology can be done by
considering more sophisticated reconstruction approaches of the dual solution,
e. g., by using a full VMM ansatz that (depending on the chosen orthogonality
for the ansatz-space splitting) exhibits better approximation properties in H 1

than the heuristic approach of using globally the same effective model as for the
primal problem and reconstruct finescale behavior locally, that was presented.

Further, an interesting extension of the optimization framework is to incor-
porate the microscale-discretization indicator for controlling the discretization
parameters of the dual reconstruction. This again requires an efficient balancing
strategy of model and discretization adaptation with the additional obstacle that
discretization errors now also enter the adaptation process of the model—which is
a far less problem in case of the model-switching or sampling-adaptation strategies
because of a priori control of the sampling process.

Another promising direction for extending the current work is given by an
application of the abstract model- and discretization-adaptation framework to
nonlinear and time-dependent problems—especially problems exhibiting multi-
scale behavior in time.

Furthermore, in current research on multiscale methods there is a gap between
the Physics community, that emphasizes on model derivation and simulation of
large multiscale and multiphysics problems, and the mathematical community
(where my current work is located), that mainly works on numerical schemes
and a priori/a posteriori error control in context of simplified model problems.
This is a gap that should be closed.
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46

Aδ,h Region-wise constant, numerically computed, effective
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Aδ,0 Initial effective coefficient Aδ for the model-optimization
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the help of a Clément-type interpolation

50
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help of a Clément-type interpolation
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Aε Coefficient matrix Aε ∈ L∞(Ω)d×d exhibiting multiscale
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9, 24

a. e. almost everywhere 9
αK Regularization parameter for K ∈Tδ(Ω) 123
αν Scaling parameter 114
A Two-scale coefficients A(x, y) ∈C 0,1

�
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d×d

�

24
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δ) Space of k-times differentiable, δ-periodic functions 25
C k(Rd ) Space of k-times differentiable functions on Rd 25
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DKi j Short-hand notation for D . [δAδ(Ki j )] 131
D . [δX ] Gâteaux derivative in direction δX 124
δ Discretization parameter, δ > 0, denoting the typical

length scale of a sampling discretization Tδ(Ω)
46
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ε Scaling parameter ε > 0 denoting fine-scale oscillations 10, 23
ηδK Local model-error indicator for a sampling cell K ∈Tδ(Ω) 81
η̃δK Approximate local model-error indicator 94
η̃δK ,rec Local correction of the approximate indicator η̃δK given
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ηH
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K Local microscale discretization error indicator for a sam-
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η̃H
K Approximate macroscale discretization error indicator 93
η̃h

K Approximate microscale discretization error indicator 93

F (Aδ) Cost function of the optimization problem 124
f ε Right hand side with multiscale features 7, 23
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gKi j Regularization part of the optimization problem 130
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