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Abstract This thesis presents a novel flavour tagging algorithm using machine learning techniques
and a precision measurement of the B0–B0 oscillation frequency ∆md using semileptonic B0

decays. The LHC Run I data set is used which corresponds to 3 fb−1 of data taken by the LHCb
experiment at a center-of-mass energy of 7TeV and 8TeV. The performance of flavour tagging
algorithms, exploiting the bb pair production and the b quark hadronization, is relatively low at
the LHC due to the large amount of soft QCD background in inelastic proton-proton collisions.
The standard approach is a cut-based selection of particles, whose charges are correlated to the
production flavour of the B meson. The novel tagging algorithm classifies the particles using
an artificial neural network (ANN). It assigns higher weights to particles, which are likely to be
correlated to the b flavour. A second ANN combines the particles with the highest weights to
derive the tagging decision. An increase of the opposite side kaon tagging performance of 50% and
30% is achieved on B+→ J/ψK+ data. The second number corresponds to a readjustment of the
algorithm to the B0

s production topology. This algorithm is employed in the precision measurement
of ∆md. A data set of 3.2× 106 semileptonic B0 decays is analysed, where the B0 decays into a D−
(K+ π− π−) or D∗− (π− D0 (K+ π−)) and a µ+νµ pair. The νµ is not reconstructed, therefore,
the B0 momentum needs to be statistically corrected for the missing momentum of the neutrino
to compute the correct B0 decay time. A result of ∆md = 0.503± 0.002 (stat)± 0.001 (syst) ps−1

is obtained. This is the world’s best measurement of this quantity.

Zusammenfassung In dieser Arbeit wird ein neuartiger, auf maschinellem Lernen basierender
Flavour Tagging Algorithmus sowie eine Präzisionsmessung der B0–B0 Oszillationsfrequenz ∆md

mittels semileptonischer B0 Zerfälle vorgestellt. Die Daten des ersten LHC Laufes werden genutzt;
diese entsprechen 3 fb−1, aufgenommen vom LHCb Experiment bei einer Schwerpunktsenergie
von 7TeV und 8TeV. Die Leistung von Flavour Tagging Algorithmen, welche die paarweise
bb Produktion und die b Quark Hadronisierung ausnutzen, ist durch den großen Anteil an
niederenergetischem QCD Untergrund in inelastischen Proton-Proton Kollisionen am LHC relativ
niedrig. Der Standardansatz ist eine schnittbasierte Selektion von Teilchen, deren Ladungen
mit dem Produktionsflavour des B Mesons korreliert sind. Der neuartige Tagging Algorithmus
klassifiziert die Teilchen mit Hilfe eines künstlichen Neuronalen Netzes (ANN). Dieses weist umso
höhere Gewichte den Teilchen zu, je wahrscheinlicher diese mit dem b Flavour korreliert sind.
Ein zweites ANN kombiniert die höchstgewichteten Teilchen um die Taggingentscheidung zu
treffen. Die Leistungssteigerung des Opposite Side Kaon Tagging Algorithmus, gemessen auf
B+→ J/ψK+ Daten, beträgt 50% bzw. 30% nach Anpassung auf die B0

s Produktionstopologie.
Dieser Algorithmus wird in der ∆md Präzisionsmessung genutzt. Ein Datensatz von 3.2× 106

semileptonischen B0 Zerfällen, wobei das B0 in ein D− (K+ π− π−) oder D∗− (π− D0 (K+ π−))
und ein µ+νµ Paar zerfällt, wird analysiert. Das νµ wird nicht rekonstruiert, daher muss der B0

Impuls statistisch auf den fehlenden Impuls des Neutrinos korrigiert werden um die korrekte B0

Zerfallszeit zu berechnen. Als Resultat wird ∆md = 0.503± 0.002 (stat)± 0.001 (syst) ps−1 erzielt.
Dies ist die weltbeste Messung dieser Größe.
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Introduction
Fundamental particles and their interactions are described by the Standard Model (SM) of Particle
Physics. Developed in the 1960’s and 70’s, it combines all our current knowledge these days.
Decades of collider experiments have not disproved its precise predictions. The last missing
predicted particle, the Higgs boson, has been discovered by ATLAS and CMS in 2012 at the Large
Hadron Collider (LHC).

However, fundamental questions remain unanswered. Why is gravity that weak at the electroweak
scale? What prevents gravity quantum corrections O(mPlanck) from modifying SM processes?
When the SM describes all visible matter, what are the other 95% of the observed energy density
of the universe? What drove the early evolution of the universe e.g. its inflationary phase? Where
did all the anti-matter go?

The LHC was built to find answers to these fundamental questions. It produces collision energies
and intensities never reached before on earth. It opens a window into conditions very close to the
Big Bang. In this environment beyond the SM effects, so called New Physics (NP), might show
up to bring the desired answers. NP can show up either directly in form of heavy new particles at
the TeV scale, or indirectly via quantum loop corrections to the SM processes at the multiple
TeV scale.
LHCb performs precision measurements in the beauty sector of the SM, which is sensitive to

quantum loop corrections. Thus, it is sensitive to indirect contributions from possible NP. High
bb and cc production rates at the LHC enable precise CP 1 asymmetry measurements. The SM
mechanism of CP violation explains the dominance of particles over anti-particles, however, orders
of magnitudes too small. To explain the matter access observed in the universe NP contributions
are possible, e.g. in the semileptonic CP asymmetry in the B0–B0 system (adsl). A very small,
O(10−4), CP asymmetry is precisely predicted by the SM, while the experimental precision
on adsl, O(10−3) [1], offers quite some room for NP contributions. The measurement of adsl is
time-dependent, thus, the measurement of adsl also depends on the B0–B0 oscillation frequency
∆md. If LHCb wants to pin down adsl, it has to demonstrate the ability to precisely measure ∆md

in semileptonic B0 decays2, which is presented in this thesis.
Semileptonic B0 decays, where the B0 decays into a charmed meson and a muon plus muon

neutrino, have the advantage of high statistics. The muon leaves a signature which is easy to detect.
However, the muon neutrino is not reconstructible. This poses a challenge to the mixing analysis
because the decay reconstruction is kinematically under-constrained. Especially the reconstructed
momentum and thus the decay time and mass resonance of the B0 are underestimated by the
missing momentum of the neutrino. Therefore, the B0 decay time is statistically corrected using
Monte Carlo (MC) simulation, which is one of the technical challenges of the analysis.

1The combination of charge conjugation (C) and parity transformation (P ) stands for particle anti-particle
conjugation.

2Charge conjugation of particles is implied unless explicitly stated.
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Another challenge is the identification of the B production flavour. To determine the b quark
flavour experimentally so-called flavour tagging algorithms are used. These algorithms exploit
the bb pair production and the signal b hadronization process. However, B mesons produced in
inelastic proton-proton interactions are accompanied by plenty of soft QCD background, which
mainly consists of kaons and pions coming from the primary interaction. That is a challenge
for the performance of flavour tagging algorithms. Therefore, the author has developed a novel
flavour tagging algorithm using machine learning techniques. So far tagging particles were selected
by cutting on kinematical and quality variables. This is replaced by a multi-objective optimizing
algorithm based on machine learning.

Two artificial neural networks (ANN) have been trained. A first ANN classifies the reconstructed
particles to find the correct tagging particles. It assigns higher weights to particles which are likely
to be correlated to the b flavour and lower weights to those which are less likely to be correlated
to the flavour of the b hadron. A second ANN combines the particles with the highest weights
to derive the b flavour. Using these techniques a significant improvement in the performance of
the opposite side kaon tagging algorithm is achieved. The new algorithm has been documented
LHCb internally in [2] and is provided to the collaboration.

The measurement of ∆md benefits from the new flavour tagging algorithm. The measurement,
currently under review within the LHCb collaboration, will be published, soon. Details about the
measurement are documented LHCb internally in [3].

The thesis is structured as follows. First, an introduction to the theoretical background, relevant
for the measurement of ∆md, is given in chapter 1. The LHCb experiment is outlined in chapter 2.
Chapter 3 presents the work done on flavour tagging. To understand the challenges for flavour
tagging at the LHC a study to evaluate the differences in tagging performance in MC compared
to data is performed. Then, the novel flavour tagging algorithm is introduced, followed by a
comparison to the existing LHCb flavour tagging algorithms. Systematical effects that influence
the calibration and application of the new algorithm are determined. Chapter 4 presents the
precision measurement of ∆md. After demonstrating the analysis strategy, the determination of
the relevant measurement inputs is revealed. A systematic uncertainty on ∆md is determined and
the final result is given. At the end, a conclusion of the work presented in this thesis is given. In
this thesis natural units are used, i.e. ~ = c = 1.

2



1. Theory

This chapter gives a brief introduction to the Standard Model of particle physics. It highlights the
part of the theory which is necessary for the measurements presented in this thesis. A detailed
introduction is given for example in [4, 5, 6, 7, 8].

1.1. The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is a theory to describe fundamental particles and
their interactions. Fundamental particles are quarks and leptons, depicted in figure 1.1, building
up all visible matter. Interactions between these particles, described by the SM, are the electro
magnetic force, binding electrons to form atoms, the strong force, binding protons and neutrons to
form the nucleus of an atom, and the weak force, responsible for the decay of quarks and leptons.
The fourth fundamental force, gravity, is not included in the SM.

Quarks

Leptons

Forces

Figure 1.1.: Fundamental particles and force carriers of the Standard Model; stickers available at
CERN gift shop.
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1. Theory

Mathematically, the SM is a renormalizable Quantum Field Theory, exploiting the principle of
local gauge invariance. The choice of gauge transformations is motivated by symmetries observed
in nature, connected to the conservation of quantum numbers. The SM Lagrangian L is invariant
under local transformations of the

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (1.1)

symmetry group. Quarks and leptons are realized as matter fields with spin 1
2 . There are 6

different quarks, grouped into three generations, each of them building a doublet of an up-type and
a down-type quark. The up-type quarks are called up, charm and top. They carry an electrical
charge of +2/3, while the down-type quarks, called down, strange and bottom, carry a charge of
−1/3 in units of the elementary charge e. There are three charged leptons, the electron e, the
muon µ and the tau τ , each belonging to another generation. The leptons are accompanied by
electrically neutral, neutrinos, the electron neutrino νe, the muon neutrino νµ and the tau neutrino
ντ , see figure 1.1. Forces are mediated by bosons, spin 1 particles. They are the generators of the
corresponding symmetry group.

The strong force is described by Quantum Chromodynamics with the SU(3)C symmetry group.
Its generators are eight gluons. The conserved quantum numbers are 3 colors, red, blue and green,
carried by quarks, while anti-quarks carry anti-colors. The gluons are massless and electrically
neutral, but carry color charge. Hence, they couple to color. Two characteristics of the strong
force are the principles of confinement and asymptotic freedom. Confinement allows color neutral
objects, hadrons, only. Hadrons are either composed of a quark anti-quark (qq) pair to form a
meson or of three quarks, forming a baryon. Hence, quarks are not free and they are produced
in qq pairs, only, given the strong interaction as production mechanism. However, due to the
running strong coupling constant, which is very large at low energies, but small at high energies
they are quasi-free at small distances, called asymptotic freedom.
The electromagnetic and weak forces, unified to the electroweak force [9, 10, 11], are given

by the SU(2)L ⊗ U(1)Y symmetry group. Its generators are the massless photon γ, and the
massive gauge bosons W+ and W−, carrying the electric charge ±1e, and Z, which is electrically
neutral. Their masses are generated by spontaneous broken symmetry, described by the Higgs
mechanism [12, 13]. An additional scalar (spin 0) field is introduced, that has a non-zero vacuum
expectation value. An excitation of this field results in a Higgs boson, discovered by the ATLAS
and CMS experiments at CERN in July 2012 [14, 15]. Fermion masses are generated by Yukawa
interactions between the Higgs and the fermion fields. The massless γ couples to the electric
charge of fermions. The Z boson couples with different strength to left- and right-handed fermions,
denoted as chiral property. Whereas the charged W± bosons couple only to left-handed fermions
or right-handed anti-fermions. Corresponding to the electric charge of the bosons, these processes
are called neutral and charged currents, respectively. The charged currents cause transitions of
up- to down-type quarks and charged to neutral leptons, or vice versa. The conserved quantum
numbers are the weak isospin T , its third component T3 and the weak hypercharge Y = Q− T3,
with Q being the electric charge in units e.

4



1.2. Quark Sector of the Standard Model

1.2. Quark Sector of the Standard Model
Quark masses are generated by the Yukawa interaction terms in the SM L. Their mass eigenstates
q are not identical to the weak eigenstates q′ [16]. They are connected by an unitary transformation
matrix V CKM: d′s′

b′

 = V CKM

ds
b

 , (1.2)

which rotates the down-type quarks, by convention. In the weak basis the charged current induces
transitions within the doublet of each generation, only. However, transitions between different
generations of quarks also occur, because V CKM is not diagonal. V CKM is the Cabibbo-Kobayashi-
Maskawa (CKM) matrix

V CKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (1.3)

The matrix VCKM has 4 free parameters, three amplitudes and one phase, that causes CP
symmetry violation within the SM. The particle anti-particle conjugation CP is a combination
of the parity transformation P , that inverts the spatial coordinates of a state, P~x = −~x, and
the charge conjugation C, that inverts the electric charge of a particle C|e−〉 = |e+〉. The single
symmetries C and P are maximally violated by the weak interaction. Therefore, charged currents
couple to left-handed particles or right-handed anti-particles, only. However, the combined CP
transformation is conserved up to a small CP violating phase.
The Wolfenstein parameterization illustrates the hierarchy of the CKM matrix elements [17].

Using the expansion parameter λ ∼ 0.23 [18], the CKM matrix can be written as

V CKM =

 1− λ2

2 λ Aλ3 (ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

+O(λ4) , (1.4)

where the Wolfenstein parameters are defined as

λ = |Vus|√
|Vud|2 + |Vus|2

,

Aλ2 = λ
|Vcb|
|Vus|

, (1.5)

Aλ3 (ρ+ iη) = Vub
∗ .

The diagonal elements are close to 1, the probability of transitions within the generation is most
likely. Transitions between the first and second, or second and third generations are suppressed
by λ and λ2. Transitions between the first and third generation, suppressed by λ3, involve the
CP violating phase. The CKM matrix elements are fundamental parameters of the SM. They are
determined experimentally. Using the unitarity condition of the CKM matrix, one can construct
six unitarity triangles of the form [18]

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.6)
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1. Theory

The corresponding angles are defined as

α ≡ arg
(
− VtdV

∗
tb

VudV
∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ ≡

(
−VudV

∗
ub

VcdV
∗
cb

)
. (1.7)

The goal of quark flavour physics is to over-constrain these triangles by the combination of different
measurements, see figure 1.2. Up to now, all measurements have confirmed the SM.

Figure 1.2.: Unitarity triangle, see equation 1.6, in the ρ̄− η̄ plane. Including the new LHCb sin 2β
measurement (blue dashed band), presented at the La Thuile 2015 conference [19],
into the World Average of sin 2β (blue band) leaves not much space for NP to break
the triangle condition. Taken from [20]

The power of flavour physics measurements is, that they are sensitive to higher energy scales,
not directly accessible by the center-of-mass energy at the collider, where New Physics (NP)
might occur. NP can enter via higher order corrections to the processes studied. Especially rare
processes, dominated by loop corrections, are sensitive to NP and can be used to extract CKM
matrix elements, only if the SM is assumed. Neutral meson mixing is an example of second order
corrections, discussed in the next section.

1.3. B0–B0 Mixing Phenomenology
The weak interaction causes flavour oscillations of neutral mesons, B0

q oscillate into B0
q mesons

and vice versa, see figure 1.3. Here, q stands for down or strange quarks. These mixing processes
belong to the class of flavour-changing neutral current processes, involving different flavours with
the same electric charge. In the SM, they are forbidden at tree level. Possible NP heavy particles
can appear as virtual particles in the loop diagram.
Flavour eigenstates are linear superpositions of mass eigenstates

|B0
q 〉 = 1

2p(|B0
q,L〉+ |B0

q,H〉) (1.8)
|B0

q〉 = 1
2q (|B0

q,L〉 − |B0
q,H〉). (1.9)
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B0
s,d

 s, d

s, d

t, c, u

W

b

W

b t, c, u



B0
s,d

B0
s,d

 s, d

s, d

t, c, u

W−

b

b

t, c, u

W+


B0
s,d

Figure 1.3.: Feynman diagrams of the leading order contributions to B0–B0 mixing. B0
q oscillate

into B0
q mesons via an internal loop of up-type quarks and W± bosons.

The indices L,H denote light and heavy in terms of masses, respectively. The parameters q and
p fulfill the normalization condition |p|2 + |q|2 = 1. They are a measure of the decoupling of
the flavour and mass eigenstates. The oscillation process is time-dependent, described by the
phenomenological Schrödinger equation

i
d

dt

(
|B0

q (t)〉
|B0

q(t)〉

)
= (M− iΓ2 )

(
|B0

q (t)〉
|B0

q(t)〉

)
(1.10)

M and Γ are hermitian 2× 2 mass and decay matrices. CPT symmetry enforces the diagonal
elements to be equal

M11 = M22, Γ11 = Γ22. (1.11)
The off-diagonal mass matrix elementM12 stems from the dispersive (real) part of the box diagram
in figure 1.3, given by the internal top loop. While the off-diagonal decay matrix element Γ12
stems from the absorptive (imaginary) part of the box diagram, given by the internal charm and
up quark loop [21]. The eigenvectors that diagonalize the HamiltonianM− i

2Γ, are given by the
time-dependent mass eigenstates

|BH(t)〉 = e−(iMH+ΓH/2)t|BH〉, (1.12)
|BL(t)〉 = e−(iML+ΓL/2)t|BL〉, (1.13)
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1. Theory

where ML,H are the masses of the light and heavy mass eigenstates and ΓL,H their decay widths.
The actual observable quantities are the average mass and decay width and the difference in
masses and decay widths

m = MH +ML

2 = M11 = M22, ∆m = MH −ML, (1.14)

Γ = ΓL + ΓH
2 = Γ11 = Γ22, ∆Γ = ΓL − ΓH . (1.15)

The mass difference ∆mq, where q = b, s, is identified with the mixing frequency of the neutral
B0
q meson oscillation. It is typically measured in ps−1, setting ~ to one. The observable B0

q–B0
q

meson oscillations can than be expressed as

|B0
q (t)〉 = g+(t)|B0

q 〉+ q

p
g−(t)|B0

q〉 (1.16)

|B0
q(t)〉 = p

q
g−(t)|B0

q 〉+ g+(t)|B0
q〉, (1.17)

where g+(0) = 1 and g−(0) = 0 and g±(t) 6= 0 for t > 0 if ∆Γ 6= 0. Hence, an initially produced
B0
q will never turn into a pure B0

q or back into a pure B0
q . The time dependence of the mixing

process is given by

g+(t) = e−im te−iΓ t/2
[
cosh ∆Γ t

4 cos ∆mt

2 − i sinh ∆Γ t
4 sin ∆mt

2

]
, (1.18)

g−(t) = e−im te−iΓ t/2
[
− sinh ∆Γ t

4 cos ∆mt

2 + i cosh ∆Γ t
4 sin ∆mt

2

]
. (1.19)

Measurements of the mixing frequencies ∆md and ∆ms constrain the CKM matrix elements,
because

∆md ∝ |VtbV ∗td|, ∆ms ∝ |VtbV ∗ts| (1.20)

Compare to figure 1.2, where the measurements of ∆md and ∆ms, indicated by yellow and orange
circular bands, give constraints on the length of one side of the triangle | VtdV

∗
tb

VcdV
∗
cb
|.

1.3.1. Time-Dependent Mixing Asymmetry

This thesis presents a precision measurement of ∆md using semileptonic B0 decays. Semileptonic
decays are flavour specific. That means, the final state f can only be reached by B decays not by
B decays. However, if the B meson mixes into a B meson first, then it can also decay into f . The
time-dependent mixing asymmetry A, typically used to measure the oscillation frequency ∆m, is
defined as [6]

A(t) ≡ Γ(B(t)→ f)− Γ(B(t)→ f̄)
Γ(B(t)→ f) + Γ(B(t)→ f̄)

+ c.c. (1.21)

Charge conjugated decays are included. Hence, the mixing asymmetry is given by the difference
of the number of B mesons which do not change flavour between production and decay (unmixed)
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and the number of B mesons which change flavour between production and decay (mixed), divided
by the sum

A(t) = N(t)unmixed −N(t)mixed
N(t)unmixed +N(t)mixed

(1.22)

= cos(∆mt)
cosh(∆Γ t/2) + a

2

[
1− cos2(∆mt)

cosh2(∆Γ t/2)

]
, (1.23)

where a is a measure of the amount of CP violation in mixing, defined as

a = 1−
∣∣∣∣qp
∣∣∣∣2 . (1.24)

In the B meson systems a is O(10−3) [22]. In order to measure ∆m, the B production flavour
has to be determined, typically done using flavour tagging algorithms. In the B0–B0 system ∆Γd
is very small, so that cosh(∆Γd) ∼ 1 and

A(t) ' cos(∆md t) . (1.25)

B0–B0 mixing was discovered by the ARGUS collaboration at DESY in 1987 [23]. At the
DORIS II storage ring, which was a e+ e− collider running at the Υ (4S) resonance to produce
predominantly B0 B0 pairs, like-sign dilepton events were observed in semileptonic B0, B0 decays.
The B0 B0 pair is in an quantum-mechanical entangled state until the decay of one of the mesons
is observed. Semileptonic events with two equally charged leptons can only appear, if one of the
B mesons has undergone mixing. By counting the number of like-sign versus opposite-sign events,
B0-B0 mixing has been observed without measuring the decay time dependence of the mixing
asymmetry A.

1.3.2. CP violation
There are three ways to violate CP symmetry. The decay amplitude of a B (B) meson decaying
into a final state f (f̄) is given by

Af = 〈f |H|B〉, Āf̄ = 〈f̄ |H|B〉. (1.26)

where H is the Hamiltonian of the weak interaction. Direct CP violation (CPV ) occurs, if

Af 6= Āf̄ . (1.27)

This kind of CPV is also called CPV in decay. It is the sole source of CPV for all charged mesons
and all baryons. In contrast, neutral mesons also undergo flavour oscillations. That leads to
non-vanishing decay amplitudes of

Āf = 〈f |H|B〉, Af̄ = 〈f̄ |H|B〉. (1.28)

CPV in mixing occurs, if
|q
p
| 6= 1. (1.29)
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A CP eigenstate fulfills the condition:

CP |fCP 〉 = ηCP |fCP 〉 with ηCP = ±1. (1.30)

If the final state is common for B and B decays, which is always fulfilled for CP eigenstates, CPV
can occur in the interference between mixing and decay. The related quantity is given as

λf = q

p

Āf
Af

with =(λf ) 6= 0. (1.31)

The flavour specific CP asymmetry is defined as [6]

asl ≡
Γ(B(t)→ f)− Γ(B(t)→ f̄)
Γ(B(t)→ f) + Γ(B(t)→ f̄)

, (1.32)

where the subscript sl denotes semileptonic decays. In semileptonic decays CP symmetry can be
violated either directly or in mixing, not in interference between mixing and decay because the
final state f is reached by B decays, only, while f̄ is reached by B decays, only. Note, that asl
can be measured without the knowledge of the production flavour of the B mesons, using the
untagged decay rate

Γ[f, t] = Γ(B(t)→ f) + Γ(B(t)→ f) (1.33)

to obtain the CP asymmetry

ACP (t) = Γ[f, t]− Γ[f̄ , t]
Γ[f, t] + Γ[f̄ , t]

= asl
2 −

asl
2

cos(∆mt)
cosh(∆Γt/2) . (1.34)

Thus, measuring ACP does not require the knowledge of the initial B flavour. It gives a handle to
asl
2 , thus, ACP is damped by a factor 2 compared to equation 1.32. However, compared to the
mixing asymmetry A, ACP is damped by a factor of 2, only, while the measurement of A requires
the knowledge of the production flavour, which damps it by the effective tagging efficiency of
O(5%) at a hadron collider.

1.4. Theoretical Prediction for ∆md

In B0
q–B0

q mixing three physical quantities are involved [24]: |M q
12|, |Γ

q
12| and the CP phase

φq = arg(M q
12/Γ

q
12). (1.35)

The mass and width differences between the heavy and the light mass eigenstates are related to
these physical quantities as

∆mq = M q
H −M

q
L ' 2|M q

12| (1.36)
∆Γq = ΓqL − ΓqH ' 2|Γq12| cosφq, (1.37)

up to corrections of O(m2
b/M

2
W ) [24]. B0

q mixing processes are so-called |∆B| = 2 transitions,
because they change the bottom quantum number by two units. The derivation of ∆mq within
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the SM is sketched in the following. The argumentation is based on [24]. The dispersive term
M q

12 is related to the effective |∆B| = 2 Hamiltonian H |∆B|=2
q

|M q
12| =

〈B0
q |H

|∆B|=2
q |B0

q〉
2MB0

q

, (1.38)

which is given in the SM as
H |∆B|=2
q = (V ∗tqVtb)2CQ+ h.c., (1.39)

where Q is a four-quark operator and C is the Wilson coefficient, which depends on the heavy
mass scales of the theory. The involved hadronic matrix element can be parametrized as

〈B0
q |Q(µB)|B0

q〉 = 2
3M

2
B0
q
f2
B0
q
BB0

q
(µB), (1.40)

with the decay constant fB0
q
and the “bag” factor BB0

q
, which has to be calculated on the lattice.

That leads to large theoretical uncertainties on the predictions of ∆md and ∆ms within the
SM [25]:

∆md|SM = (0.543± 0.091) ps−1 (1.41)
∆ms|SM = (17.30± 2.6) ps−1 . (1.42)

The relative uncertainty on the theoretical prediction is 17% for the B0 and 15% for B0
s oscillation

frequency. Therefore, deviations from the SM predictions are searched for using the semileptonic
CP asymmetry

aqsl =
∣∣∣∣∣ Γq12
M q

12

∣∣∣∣∣ sinφq, (1.43)

which is sensitive to the CP violating phase φq and possibly to additional NP phases. The SM
predicts adsl and assl to be close to zero [26]:

adsl|SM = −(4.1± 0.6) · 10−4, with φd = −4.3◦ ± 1.4◦ (1.44)
assl|SM = (1.9± 0.3) · 10−5, with φs = 0.22◦ ± 0.06◦. (1.45)

Hence, NP effects can be detected, if experimental determinations of adsl and assl differ significantly
from zero.

Mainly driven by the 3.9σ deviation of Asl = 0.6adsl + 0.4assl from the SM prediction measured
by the D0 collaboration in June 2011 [27], NP contributions to the B–B mixing amplitudes were
motivated. A common scenario to introduce NP in neutral meson mixing is shown in figure 1.4 for
the B0–B0 system. In this NP scenario the complex parameter ∆q, where q = d, s, is introduced
independently for B0, B0

s and K0 [24]:

M q
12 = MSM,q

12 ∆q. (1.46)

A deviation from the SM point ∆d = 1(<(∆d) = 1,=(∆d) = 0) of 0.9σ is present, if the D0 Asl
measurement is excluded from the fit. If the D0 Asl measurement is included, a deviation from
the SM point of 1.2σ is present.
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(a) NP in B0–B0 mixing w/o Asl from D0 (b) NP in B0–B0 mixing with Asl from D0

Figure 1.4.: New Physics scenario: M q
12 = MSM,q

12 ∆q. The two-dimensional SM hypothesis in
the B0–B0 system is ∆d = 1(<(∆d) = 1,=(∆d) = 0). Combining all measurements
but without the D0 Asl measurement a 0.9σ deviation from the SM is obtained (a),
with the D0 Asl measurement a 1.2σ deviation from the SM is obtained (b). Taken
from [20]

However, in [28], which is a reconsideration of SM processes contributing to Asl, the 3.9σ
deviation from the SM shrinks to 3σ. Therefore, precise and independent measurements of assl and
adsl are needed [29]. Within the current experimental precision adsl (2 · 10−3) and assl (3 · 10−3) [22]
are SM compatible.

Measurements of the oscillation frequencies ∆md and ∆ms, however, serve as indirect constraints
to NP scenarios. Given the large theoretical uncertainties on their SM predictions the measured
values are used as inputs to global SM fits, rather than to exclude NP scenarios [29].
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2. LHCb Experiment

2.1. The Large Hadron Collider

The Large Hadron Collider (LHC), situated at CERN1 near Geneva, Switzerland, has finished its
first run period (Run I) in the beginning of 2013. Two years of data taking are accomplished:
in the year 2011 proton-proton collisions took place at a center-of-mass energy

√
s = 7 TeV and

in 2012 at
√
s = 8 TeV. This year Run II will begin, first at

√
s = 13 TeV, later at

√
s = 14 TeV,

which was the initial design energy of the LHC.
The LHC is a proton-proton collider with a circumference of 27 km, roughly 100 m underground.

Its design instantaneous luminosity is 1 · 1034 cm−2s−1, having two proton beams with 2808 proton
bunches, where each bunch consists of 1.15 · 1011 protons. At 40 MHz bunch crossing rates, the
spacing between the colliding bunches is 25 ns.

To keep the proton beams on the circular orbit superconducting magnets with field strengths of
up to 8.33 T are necessary, operated at 1.9 K. With a beam current of 0.584 A, 362 MJ are stored
in the beams. Together with the energy stored in the magnets of ≈ 600 MJ, the LHC stores 1 GJ.
A detailed description of the LHC is given in [30].

Four large experiments were built at the LHC, namely ATLAS, CMS, ALICE and LHCb,
located at four different interaction points, see figure 2.1. The high luminosity experiments
ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) have built large,
general purpose particle detectors. The discovery of the Higgs boson on July 4th 2012 [14, 15]
was a big success for the LHC. The ALICE (A Large Ion Collider Experiment) experiment is
specialized on lead ion collisions to study QCD and quark-gluon plasma. The LHC collides lead
ions during dedicated time periods. The LHCb (Large Hadron Collider beauty) experiment is
designed for precision measurements in the B-system. Thus, a broad physics spectrum is covered
by the experiments at the LHC.
After the magnet quench incident in 2008, the LHC started operation at the end of 2009.

Shortly afterwards the LHC became with 1.18TeV per beam the world’s highest-energy particle
accelerator. Operations in 2010, at

√
s = 7 TeV, were devoted to commissioning and establishing

confidence in the critical machine protection system. In 2011, at
√
s =7TeV, the instantaneous

luminosity was pushed to explore the performance limits of the machine. Then, 2012 became a
year of efficient collision data accumulation at

√
s = 8 TeV [32].

To discover the Higgs boson a maximum number of proton-proton collisions was crucial. In
2012 the LHC reached a peak instantaneous luminosity of 7.7 · 1033 cm−2s−1. To achieve this
performance2 at a bunch spacing of 50 ns, the average number of protons per bunch was increased

1European Organization for Nuclear Research
2The injector complex of the LHC delivered excellent beam quality. The beam emittance, which is a measure
for the average spread of particle coordinates in position and momentum phase space, was significantly lower
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2. LHCb Experiment

Figure 2.1.: The LHC is split into eight octants. The four big experiments sit at different
interaction points. The high luminosity experiments ATLAS and CMS are placed at
opposite interaction points, point 1 and point 5, to guarantee similar instantaneous
luminosity conditions. LHCb and ALICE are located at point 8 and 2, respectively.
The remaining octants are used for technical machine operations. The proton beams
are collimated at the cleaning segments, the radio frequency (RF) cavities accelerate
the proton beams and the beam dump facility exits the proton beams. Taken from
[31]

beyond the design value to 1.6− 1.7 · 1011. Figure 2.2 shows characteristic plots provided by the
ATLAS experiment to illustrate the luminosity increase during 2011 and the effect on the number
of interactions per bunch crossing. With brighter proton beams the mean number of interactions
per bunch crossing increased to values of 20 to 25 for ATLAS and CMS.

However, to perform precision measurements in the B-system a constant moderate instantaneous
luminosity is required. Therefore, the proton beams are vertically displaced at the LHCb interaction
point. This technique is called luminosity leveling. The effective collision area of the beams is
readjusted during a fill to achieve a constant instantaneous luminosity. A fill typically lasts for 8
to 12 hours, sometimes up to 20 hours. It is counted from the injection of the proton beams into
the LHC from the pre-accelerators at CERN, at 450GeV, to the beam dump. The acceleration
of the beams to collision energy takes 20 minutes, using the superconducting radio frequency
cavities, that increase the beam energy with 0.5MeV per turn at 400 MHz.

During Run I LHCb recorded data efficiently, see figure 2.3. About 1300 bunches were collided

(1.8 µm) for beams of 50 ns bunch spacing with 1.7 · 1011 protons per bunch, than for beams with 25 ns bunch
spacing with 1.2 · 1011 protons per bunch (2.7 µm) [32].
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Figure 2.2.: Characteristic plots showing high luminosity data taking conditions of the LHC Run
I, provided by the ATLAS experiment. At a bunch spacing of 50 ns the number
of colliding bunches was increased during 2011 to 1374 colliding bunches, but kept
stable in 2012 (a). The instantaneous luminosity was increased throughout 2011
(b), to collect data efficiently in 2012. By simultaneously increasing the number of
protons per bunch beyond design value, the interactions per bunch crossing increased
drastically over the data taking period (c). The mean number of interactions per
crossing was 20 to 25 in 2012 (d) in CMS and ATLAS. Taken from [33]

at a spacing of 50 ns. In 2011, the majority of data was taken at an instantaneous luminosity of
3.5× 1032 cm−2 s−1, which is a factor 1.75 larger than the design luminosity of 2× 1032 cm−2 s−1

at LHCb. In 2012, data was taken at an instantaneous luminosity of 4× 1032 cm−2 s−1, which
is twice the design luminosity at LHCb. The pile-up, defined as the average number of visible
interactions per beam-beam crossing, is a critical parameter for the performance of the LHCb
detector. The detector was designed with a pile-up of 0.7, however it was successfully operated
with an average pile-up of 1.7. The data set, corresponding to an integrated luminosity of 3 fb−1,
collected in 2011 at a center-of-mass energy

√
s = 7 TeV and 2012 at

√
s = 8 TeV is used for the

precision measurement of ∆md, presented in this thesis.
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Figure 2.3.: Delivered and recorded luminosity at LHCb during Run I. Taken from [34]

2.2. Heavy Quark Production at the LHC

Protons are built of three light valence quarks, two up quarks and one down quark, seaquarks
and gluons interacting via the strong interaction. The strong interaction conserves flavour, hence,
quarks are produced as quark anti-quark pairs in inelastic proton-proton collisions. Compared to up,
down and strange quarks, charm and beauty quarks are heavy3. The production of heavy quarks is
described by perturbative QCD [35]. The O(α2

s) leading order Feynman diagrams to produce QQ̄
pairs are qq → QQ̄ and gg → QQ̄ fusion processes, shown in figure 2.4. Additional contributions,
O(α3

s), are pair creation with gluon emission qq → QQ̄g, flavour excitation qg → QQ̄q, gluon
splitting gg → QQ̄g and gluon splitting with flavour excitation, see figure 2.4. At LHC energies
(
√
s > 1 TeV), the flavour excitation process is dominant to produce bb pairs [35].
Figure 2.5 shows the predicted production cross-sections for different processes as a function

of the center of mass energy
√
s. The cross section of bb pairs of ∼ 300µb, is relatively high

compared to Higgs production at the LHC.
At the LHC bb pairs are boosted. The invariant mass of the bb pair, O(10 GeV/c2), is small

compared to the center-of-mass energy, O(10 TeV). Hence, partons with low and different proton
momentum fractions enter the bb production process. It is very likely, that the bb pair is not
produced at rest but boosted in the direction of one of the colliding protons, see figure 2.6.
Therefore, the LHCb detector was designed as a single arm forward spectrometer. The detector
acceptance covers ≈ 32% of the produced bb pairs.

In 2011, at
√
s = 7 TeV, the production cross-sections of B+, B0 and B0

s mesons were measured
at LHCb, within the rapidity4 range of 2.0 < y < 4.5 and a transverse momentum range of

3mc,b > ΛQCD = 217 MeV
4Using the rapidity definition y ≡ 1

2 ln(E+pzc
E−pzc

). The z axis is along the beam line.
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Figure 2.4.: Charm and beauty quark production processes at the LHC. Heavy quarks are produced
as QQ̄ pairs, at O(α2

s) by gluon gluon fusion (a) and qq fusion (b). Additional
contributions (O(α3

s)) come from pair creation with gluon emission (c), flavour
excitation (d), gluon splitting (e) and gluon splitting with flavour excitation (f).
Taken from [35]

0 < pT < 40 GeV/c [36]

σ(pp→ B+ +X) = 38.9± 0.3 (stat)± 2.5 (syst)± 1.3(norm.)µb, (2.1)
σ(pp→ B0 +X) = 38.1± 0.6 (stat)± 3.7 (syst)± 4.7(norm.)µb, (2.2)
σ(pp→ B0

s +X) = 10.5± 0.2 (stat)± 0.8 (syst)± 1.0(norm.)µb. (2.3)

Charge conjugate states are included. To form a B meson or baryon, the b quark hardonizes into
a confined state by picking up light up, down or strange quarks, coming from proton remnants or
the fragmentation process of the initial interaction. The ratio between B+, B0 to B0

s to b-baryons
is roughly 41:41:11:8 % [22].
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Figure 2.5.: Predicted cross-sections of different processes as a function of the center-of-mass
energy

√
s. The cross section of bb pairs is by far the highest with ∼ 300 µb at√

s =7 TeV to 8 TeV, corresponding to the 2011 and 2012 running conditions of the
LHC. Taken from [30]

18



2.2. Heavy Quark Production at the LHC

0
/4π

/2π
/4π3

π

0

/4π

/2π

/4π3

π  [rad]1θ

 [rad]2θ

1θ

2θ

b

b

z

LHCb MC
 = 8 TeVs

Figure 2.6.: At the LHC bb pairs are predominantly produced in the same forward or backward
direction. Taken from [34]
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2.3. The LHCb Experiment

The LHCb detector is a single-arm forward spectrometer, shown in figure 2.7 in the y-z plane.
The coordinate system originates at the interaction point, the z axis follows the beam line into
the detector, the y axis goes vertically from the experiment to the surface and the x axis points
horizontally from the experiment to the outside of the LHC ring.

Figure 2.7.: The LHCb detector in the z − y plane. The proton-proton collisions take place on
the left hand side of the figure, inside the Vertex Locator (VELO). From left to right,
the VELO is followed by the first Ring Imaging Cherenkov detector (RICH1), the
Trigger Tracker (TT), the dipole magnet, bending tracks of charged particles in the
x− z plane, the three main tracking stations (T1-T3), a second RICH (RICH2), the
first of the five Muon stations (M1), the Scintillating Pad Detector (SPD) and Pre-
Shower Detector (PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic
Calorimeter (HCAL), the four of the five Muon stations (M2-M5). Taken from [34]

The detector is designed to perform precision B physics5 measurements. Due to the boost, B
hadrons fly about 1 cm in the laboratory system. A precise determination of the B flight distance,
which is necessary for many B physics analyses, requires a good vertex resolution of both vertices,
the primary vertex, where the proton-proton interaction takes place, and the B decay vertex.

5Given the large charm production cross-section at the LHC, LHCb has also a charm physics program.
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At a hadron collider plenty of low QCD background, mainly kaons and pions, is produced in
the proton-proton collision. A precise vertex reconstruction allows to suppress this background.
Additionally, the detector design is optimized to minimize material budget to precisely reconstruct
single tracks, assigning each a particle hypothesis. The tracks’ momentum resolution is enhanced
by a long lever arm, given there is no tracker inside the dipole magnet.

As shown in figure 2.7, the proton collision point is surrounded by a vertex detector, the Vertex
Locator (VELO). To achieve an optimal vertex resolution, the cylindrical shaped VELO is built
in two halves, that are closed around the interaction point at the beginning of each fill, once the
beams are stable. B mesons decay inside the VELO, hence the primary and secondary vertex
positions are determined by the VELO. The VELO is followed by a Ring Imaging Cherenkov
Detector (RICH1) that separates mainly pion from kaon tracks. After RICH1 the Trigger Tracker
(TT) is installed to reconstruct charged particles from decays of particles outside the VELO, e.g.
K0

S . The TT is followed by a dipole magnet with a maximum magnetic field strength of 1 T
bending the trajectories of charged particles in the x− z plane. Inside the magnet, no sub-detector
is installed. The main tracker, consisting of three tracking stations (T1-T3) is installed behind the
magnet. A second RICH (RICH2) provides particle identification information covering a different
momentum range than RICH1. Before the calorimeters the first Muon station (M1) is installed, to
serve the hardware trigger improving the momentum estimate. The electromagnetic (ECAL) and
hadronic calorimeters (HCAL) absorb all particles except muons, measuring the energy deposit
of the stopped particle. After the calorimeters the four of the five Muon stations (M2-M5) are
installed, measuring the trajectories of muons. The total LHCb detector acceptance for B events,
including all B daughters, is very large, about 30%. In the bending plane the acceptance covers
the angular range from 10 m rad to 300 m rad and in the non-bending plane from 10 m rad to
250 m rad. The sub-detectors are explained in more detail in the following. The LHCb detector
design is documented in [37]. The LHCb detector performance of Run I is given in [38].

2.3.1. Tracking System

The tracking system is designed to deliver precise vertex and momentum resolution. It consists of
the dipole magnet, the VELO and tracking stations, the TT in front of the magnet and the T
stations behind the magnet. The main component of the magnetic field By is shown in figure 2.8
as a function of the z direction.
The magnetic field deflects charged particles depending on the momentum and the charge.

The polarity of the field is reversed frequently to minimize detection asymmetries. Particles
traversing the entire tracking system are exposed to an integrated magnetic field of

∫
Bdl ≈ 4Tm.

All tracking detectors are installed outside the magnet. This results in a long lever arm in
the track extrapolation between the tracking detectors giving a precise momentum resolution
of ∆p/p = 0.4% at 2GeV/c and ∆p/p = 0.6% at 100GeV/c. However, this also enhances the
mis-matching of track parts, resulting in a significant amount of so-called ghost tracks O(10%) [39].

Vertex Locator

The VELO is a silicon strip vertex detector built in R-φ geometry around the interaction point,
see figure 2.9. The LHC beam pipe was removed inside the VELO in order to achieve a very
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Figure 2.8.: Top: The main magnetic field component By of the LHCb dipole magnet as a
function of the z direction. Bottom: The tracking detectors VELO, TT and T
stations. Particles, that are detected before and after the magnet are reconstructed
as long tracks. Taken from [37]

precise vertex resolution. It is replaced by a thin corrugated (RF) foil, 5 mm from the beam, to
shield the vacuum of the beam and possible interference of the beam current with the electronics.
The VELO is built in two halves. During beam injection and calibration the VELO is open, the
two halves are moved in opposite direction along the x axis. For data taking the VELO is closed
around the interaction point. In this position the distance between the beam and the VELO
sensors is 7 mm. For comparison, the inner radii of the vertex detectors of ATLAS or CMS are
50.5 mm and 44 mm, with an inner radius of the beam pipe of 29 mm. In the transverse plane
(x − y) the primary vertex resolution is 13µm and 71µm along the beam axis, measured for
vertices with at least 25 tracks [41].

Trigger Tracker

The TT is a large area silicon strip detector, installed in front of the magnet, covering the full
acceptance of the detector. The two stations consist of two layers each, see figure 2.10. The strips
of one layer are oriented in y direction, the strips of the second layer are tilted ±5◦ with respect
to the first layer. In this way, a two dimensional measurement of the particles position is achieved.
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Figure 2.9.: The silicon strip Vertex Locator (VELO) consists of two halves. During beam injection
the VELO is open. For data taking it is closed around the interaction point. Taken
from [40]

Figure 2.10.: The Trigger Tracker (TT) consisting of two stations. The silicon strips of one layer
are oriented in y direction, the ones of the other layer are tilted ±5◦. Taken from
[42]
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The main purpose of the TT is to reconstruct low momentum particles, bent out of the detector
acceptance, and long-lived particles, decaying after the VELO [42].

Tracking Stations

The three tracking stations (T stations) are located behind the magnet with a size of 6m× 5m.
Each station holds two detectors, the Inner Tracker (IT) and the Outer Tracker (OT), see
figure 2.11.

Figure 2.11.: The three tracking stations (T stations) (right) and the TT (left) surrounding the
beam pipe. The silicon strip detectors TT and IT are shown in purple, the straw
tube drift-time OT detector is shown in turquoise. Taken from [37]

The IT is a silicon strip detector positioned in the inner region with high particle flux, see
figure 2.12. There are four active layers per station. The strips of the first and the last layers

Figure 2.12.: Design of an IT layer with silicon strips oriented in y direction. Taken from [40]

are oriented in y direction, while the strips of the inner two layers are tilted ±5◦, similar to the
TT. Close to the beam pipe the occupancy of the IT is 2.5%. A hit resolution of ∼ 50µm is
achieved [43].
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The OT is a straw tube drift-time detector, covering the large region around the IT at low
particle flux. Analog to the IT, it consists of four layers per station, but each layer is made of two
layers of straw tubes, shifted half a straw diameter for optimal spatial resolution, see figure 2.13.
The straw tubes are filled with gas, serving as drift cells. A position resolution of 200µm is

Figure 2.13.: Design of an OT layer with two layers of straw tubes. Taken from [40]

achieved at a hit efficiency of 99.2% [44, 45].

2.3.2. Particle Identification System

Beside a good tracking system an accurate particle identification (PID) is essential for precision
B physics measurements at LHCb. Kaons, pions, protons, electrons and muons are mainly
reconstructed at LHCb as final states of B and D decays. A particle hypothesis is assigned to the
reconstructed tracks, which is based on a probability provided by the particle identification system.
As many B decay channels contain hadronic final state particles, a good separation between kaons
and pions is essential. The particle identification system consists of RICH1 and RICH2, located
before and after the magnet, the ECal and the HCal and the five muon chambers, M1 – M5.
In analyses a special variable, called DLL, can be used to distinguish final state particles.

Based on the particle hypothesis probability a likelihood L is calculated. The difference in the
logarithmic likelihood of a given kaon hypothesis with respect to a pion hypothesis is computed

DLLKπ = lnL(K)− lnL(π). (2.4)

If DLLKπ > 0 the particle is more likely to be a kaon, otherwise a pion. A second variable to
distinguish final state particles is the ANN-based PID variable [46], which combines the available
the particle hypothesis information using an artificial neural network (ANN).

Ring Imaging Cherenkov Detector

The RICH1 and RICH2 are solid state and gas radiator detectors utilizing the Cherenkov effect.
Relativistic charged particles traversing the radiator gas emit Cherenkov radiation in form of a
light cone, because their velocity is greater than c, the speed of light, in the gas. The light cone is
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radiated under the Cherenkov angle ΘC relative to the flight direction depending on the velocity
of the particle v, and the refractive index of the medium n

cos ΘC = c

nv
. (2.5)

Using the momentum estimate, provided by the tracking system, the Cherenkov angle is related to
the mass of the particle. In RICH detectors the radiated photons are collected by spherical mirrors
and imaged onto Pixel Hybrid Photon Detectors, located outside of the detector acceptance. ΘC

is related to the radius of the imaged ring.
RICH1 and RICH2 operate at different momentum ranges. RICH1, installed before the

magnet, contains Aerogel and a Fluorobutane (C4F10) gas radiator to cover a momentum range
of 2− 40GeV/c, see figure 2.14. Aerogel, with a refractive index of n = 1.03, provides separation
power for particles with momenta below 9.2 GeV/c, while C4F10 gas separates particles up to
40GeV/c, see figure 2.15. RICH2, installed after the magnet, contains a CF4 gas radiator to cover
a momentum range of 15− 100GeV/c [47], also shown in figure 2.14. As RICH1 separates low
momentum particles it covers the full angular acceptance of the tracking system of 25 - 300 mrad.
RICH2, however, separating high momentum particles, preferentially produced in the forward
region, covers 15 - 120 mrad [40].

Figure 2.15 shows the performance of RICH1. Pion, kaon and proton tracks are clearly separable
up to a momentum of 10GeV. The Cherenkov angle resolutions are in agreement with the expected
design performance of the gas radiators [48].

Calorimeter System

The calorimeter system stops all particles except muons and neutrinos. The deceleration energy
is transformed into particle showers, detected by scintillating material. The scintillator light is
collected by optical fibers and guided to photomultipliers.

The calorimeter system is built of the Scintillating Pad Detector (SPD), the Preshower detector
(PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic Calorimeter (HCAL), in positive
z direction. Between the SPD and the PS a lead plate is installed. The combination of SPD, PS
and ECAL delivers a longitudinal shower profile of electromagnetic showers. Charged particles
start to shower in the SPD, while neutral particles start to shower in the lead plate between the
SPD and the PS.
The SPD and the PS material corresponds to 4 electromagnetic interaction lengths and 0.2

hadronic interaction lengths. The ECAL, with 25 electromagnetic interaction lengths, is designed
to stop all photons and electrons. It corresponds to 1.1 hadronic interaction lengths and is built in
shashlik structure of alternating layers of lead and scintillating tiles. The HCAL, with 5.6 hadronic
interaction lengths, stops neutral and charged hadrons. It is built as sampling calorimeter, iron
blocks interspersed by scintillating tiles, see figure 2.16.
The calorimeters are segmented into square cells in the plane perpendicular to the beam line.

The granularity of the cells is highest close to the beam, where the particle flux is high, and
decreases for outer parts. The energy resolution of the ECAL is given as

σ(E)
E
≤ 9.5%√

E/GeV
⊕ 0.8% , (2.6)
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Figure 2.14.: Design of the RICH1 (a, side view) and the RICH2 (b, top view) detectors. Taken
from [40]

(a) Designed separation (b) Measured separation

Figure 2.15.: Cherenkov angle as a function of the track momentum. Design performance of the
different gas radiators (a), measured performance of RICH1 (b). Taken from [48]
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Figure 2.16.: Design of the HCAL as sampling calorimeter of iron blocks used as absorber material
and scintillating tiles to collect the deposit energy. The scintillator light is collected
by optical fibers and guided to the Photomultipliers (PMT). Hadronic particles come
in lengthwise. Taken from [40]

where ⊕ denotes quadratic summation. The energy resolution of the HCAL is given as

σ(E)
E
≤ 69%√

E/GeV
⊕ 9% . (2.7)

The first term accounts for the uncertainty due to the stochastic behavior of showers, the second
term accounts for residual mis-calibrations [49]. The calorimeter system identifies high transverse
energy hadron, electron and photon candidates. The transverse energy of a 2× 2 cells cluster is
defined as

ET =
4∑
i=1

Ei sin Θi, (2.8)

where Ei is the energy deposited in cell i and Θi is the angle between the beam line and the
assumed flight direction of the neutral particle. The calorimeter information is used in the trigger.

Muon system

The identification of muons plays an important role in the LHCb physics programme. Muons
are present in many final states of decay channels used to perform precision CP measurements.
Additionally, muons are used to tag the flavour of neutral B mesons. The muon system consists
of five muon stations M1 – M5, see figure 2.17.
M1 is installed in front of the calorimeters. It is used to improve the transverse momentum

measurement utilized by the hardware trigger. The other stations, M2 to M5, are located behind
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Figure 2.17.: Side view of the muon system (a). The first muon station is located in front of
the calorimeters. The other four muon stations are located directly behind the
calorimeters, separated by muon filters. Schematic of one Muon Station (b) to
illustrate the granularity. Taken from [40, 50]

the calorimeter system, at the end of the LHCb spectrometer. They are interleaved with 80 cm
thick iron absorbers. To pass all five muon stations a muon must have a minimum momentum of
around 6GeV. The inner part of M1 consists of Gas Electron Multipliers (GEM), the outer part
of M1 and M2 – M5 is equipped with multi-wire proportional chambers (MWPC) [51].
The muon chambers provide a hermetic geometric acceptance to high momentum particles

coming from the interaction point, see figure 2.17. They provide space point measurements on
the particle trajectories, which are also used in the trigger [52]. The muon identification efficiency
is 93% at a hadron mis-identification probability of below 0.6% [50].

2.4. LHCb Trigger
The production cross-section of B mesons in proton-proton collisions within the LHCb acceptance
is σ(pp → BX) ' 90µb at

√
s =7TeV, where B is B+, B0 or B0

s , as shown in section 2.2.
The instantaneous luminosity at LHCb was L ' 3.5 · 1032cm−2s−1 in 2011. Hence, in 2011 the
production rate of pp→ BX at LHCb was

R(pp→ BX) = σ · L = 90 · 10−6 · 10−24cm2 · 3.5 · 1032cm−2s−1 = 31.5 kHz . (2.9)
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The main task of the LHCb trigger is to identify these heavy flavour events among the light quark
background processes6. A trigger always has to face a trade off problem. It has to form decisions
very fast, but correct and efficient.

To identify B decays within a hadronic interaction environment partial reconstruction of the
decay is necessary, performed on-line by a software trigger. This takes up to 30 ms per bunch
crossing, executed in parallel on 3× 104 CPUs. Hence, the 40 MHz collision rate has to be reduced
to 1 MHz beforehand, done by a fast hardware trigger.
LHCb has a trigger system, that consists of a level 0 hardware trigger (L0) and a two step

software trigger, the High Level Triggers HLT1 and HLT2, that run on a computer farm of 3× 104

CPUs. The trigger identifies heavy flavour processes by determining the impact parameter of
tracks, by measuring the momentum of tracks with sufficiently high impact parameter or by
identification of muon candidates.

2.4.1. Level 0 Hardware Trigger

L0 reduces the bunch crossing rate to below 1 MHz. It is synchronized to the LHC 40 MHz clock
and operates at latencies below 4 µs [53], which corresponds to the maximum pipeline depth of
the read out system. It uses information from the calorimeter system and from the muon system
as input. The VELO pile-up veto, as reported in [40], is not used to trigger flavour physics events,
since LHCb does not limit the average number of visible interactions per bunch crossing to µ ' 0.4
(design), but runs at µ ' 1.4 in 2011 [53] and µ ' 1.6 in 2012 [54].

An event is triggered if a hadronic shower with transverse energy ET > 3.5 GeV, an electro-
magnetic shower with ET > 2.5 GeV or up to two high energetic muon tracks are detected. The
minimum transverse momentum required for one muon track is pT > 1.48 GeV and for two muon
tracks it is √pT,1 · pT,2 > 1.296 GeV [53]. A simplified momentum estimation with a relative
momentum resolution of 20% is done.

In the 2012, the center of mass energy was increased to 8 TeV, the thresholds were increased to
ET > 3.7 GeV for hadronic showers, ET > 3 GeV for electromagnetic showers and pT > 1.76 GeV,√
pT,1 · pT,2 > 1.6 GeV for one and two muon tracks [54].

2.4.2. High Level Trigger

The HLT reduces the rate of accepted events to 3 kHz in 2011 and 5 kHz in 2012. A higher rate
would be desirable since the pp→ BX production rate in the LHCb acceptance was 31.5 kHz in
2011, however, the rate is limited by the implementation and execution of the software trigger.
All of these events are written to storage. The HLT is written in C++, running on an Event Filter
Farm (EFF), which is a farm of multiprocessor PCs with ∼ 3× 104 CPUs. If an event is excepted
by L0, it is transferred from the front end electronic boards to the EFF. The processing time per
event in the HLT is up to 30 ms [53].

In 2011, the L0 rate of 870 kHz was reduced by the HLT1 to 43 kHz. HLT1 reconstructs tracks
using a simplified reconstruction and performs muon identification. A combination of cuts on
transverse momentum, pT , and impact parameter is applied. At 43 kHz HLT2 performed an

6The charm production rate is a factor 20 larger than the Beauty production rate.
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almost complete event reconstruction, using tracks above pT > 0.5 GeV, only. HLT2 selection
criteria are lepton identification, decay time information and invariant mass. The HLT2 output
rate of 3 kHz consisted of 50% inclusive hadronic triggers7 and 25% triggers on leptons. The
remaining rate is covered by exclusive triggers, mainly on charmed hadrons [53].

In 2012 the new concept of deferred triggering was introduced [55]. During the 2012 data taking
period the LHC machine delivered stable beams for about ∼ 30% of the time on average, see
figure 2.18.

Figure 2.18.: Fraction of stable beam time per week versus the 2012 data taking year. Dips in the
distribution occur at machine development phases, that typically last for more than
a week. Taken from [55]

When the LHC delivers stable beams physics data is recorded. During that time, the HLT
computing farm operates at full capacity, else the CPUs idle. The bottleneck of the LHCb trigger
is the time consumption of the partial event reconstruction of the HLT.

Hence, a new approach was followed. 20% of the L0 accepted events were temporarily saved to
be processed by the HLT during the inter-fill gaps. This increased the HLT output rate from 3 kHz
to 5 kHz and allowed to improve the HLT2 track reconstruction. The minimum pT requirement
was lowered from 500 MeV to 300 MeV and long-lived particles like K0

S , that decay outside of the
VELO, were reconstructed.

In 2012, the L0 event rate of 1 MHz is reduced by the HLT1 to 80 kHz, which is further reduced
by the HLT2 to 5 kHz. The HLT2 output rate of 5 kHz includes the deferred triggered events, see
figure 2.19 [54].

The HLT2 includes generic inclusive beauty trigger selections, based on multivariate selections
to select N -body beauty decays, where N is 2, 3, 4. These so called topological triggers select
beauty decays with charged final state tracks. They do not require all final state particles to be
reconstructed, performing at high efficiency. They are used by the precision measurement of ∆md,
presented in this thesis.

7An inclusive trigger does not require all final state particles to be reconstructed in contrast to exclusive triggers.
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Figure 2.19.: Illustration of the 2012 Trigger System at LHCb. The 40 MHz bunch crossing rate
is reduced by the L0 hardware trigger to 1 MHz. 20% of the L0 triggered events are
written to temporary storage, to be processed during the inter-fill gaps of the LHC.
The other 80% of the L0 triggered events are processed by the software HLT on-line.
Taken from [34]

2.5. LHCb Software Environment

LHCb software applications are based on the Gaudi framework [56, 57], see figure 2.20. The
framework is structured in an object oriented paradigm and written in C++. Originally developed
by and for the LHCb experiment, Gaudi has been adopted by ATLAS and other experiments [58].
The phases of data processing are encapsulated in LHCb applications, as depicted in figure 2.20.
All applications share the LHCb event model and make use of the LHCb detector description.
This ensures consistency.

Gauss software [59, 60] generates events using Monte Carlo (MC) simulation methods. Proton-
proton collisions are generated using Pythia [61, 62] with a LHCb specific configuration [63].
Decays of hadronic particles are described by EvtGen [64], where final state radiation is generated
by Photos [65]. Electromagnetic and hadronic interactions of particles with the detector material
are described by the Geant toolkit [66, 67]. MC simulation is an important tool to understand
the detector response and the physics processes. The originally generated physics process is
accessible from each particle by a link to MC truth information.

Boole software [68] generates detector response for MC simulation events. It digitizes the
simulated physics processes into the detector read out format. Afterwards the format of MC
simulation data is identical to real data. Hence, it is processed by the same reconstruction software
packages in the following.
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Figure 2.20.: Different LHCb software applications, based on the Gaudi framework. Simulated
data is generated by Gauss software. It is digitised by Boole software transforming
simulation into detector response as real data. After this stage, simulated and real
data events are reconstructed by Brunel software. Physics decays are reconstructed
by DaVinci software. Taken from [56]

Brunel software [69] performs off-line reconstruction. From measurements in the tracking
and calorimeter detectors tracks are reconstructed. Single tracks are transformed into particle
candidates using the information of the particle identification system. This reconstruction process
is very time consuming. Therefore, it is performed once for the full data set by the LHCb
computing group.

DaVinci software [70] reconstructs the physics processes of interest. B decays are reconstructed.
By adding four-momenta of final state particles the decay chain is reconstructed from back to
front. Vertices are fitted and selection requirements are applied. This final reconstruction process
is also very time consuming. Analogue to the Brunel reconstruction the DaVinci reconstruction
is done once on the full data set, but using a variety of decay channel and selection requirements,
predefined by the different analysis groups. Events, that do not fulfill the requirements are
stripped off, hence, this process is called “stripping”. Typically, the data analyst accesses fully
reconstructed and stripped data sets.

The HLT is written in Moore software [71]. It reconstructs tracks on-line to reject background
events, that do not fulfill momentum, impact parameter or invariant mass requirements. Compared
to the off-line reconstruction the on-line HLT processing time per event of 30 ms is very short.
The reconstruction and selection algorithms used by the HLT are shared with the Brunel and
DaVinci software, but optimized on timing performance rather than on accuracy.

33



3. Flavour Tagging

To perform a mixing asymmetry measurement in the B0–B0 or B0
s–B0

s system the production
flavour of the B needs to be determined. This is done by flavour tagging algorithms.

Flavour tagging algorithms use particles which are correlated to the production of the B meson.
Exploiting the fact that b quarks are predominantly produced in bb pairs the B event is naturally
partitioned in two sides: the signal side, which are all particles related to the hadronization of the
b quark that forms the signal B meson, and the opposite side, which are all particles related to
the hadronization and decay of the associated opposite side b quark.
Figure 3.1 sketches the structure of a typical B event using a B0

s→ J/ψφ decay. The bb quark
pair is produced at the primary vertex. The b quark hadronizes into the signal B0

s meson. The
associated b undergoes either b→ c→ s transitions and / or a semileptonic b→ Xl− decay.
The different types of flavour tagging algorithms, also called taggers, available at LHCb are

explained in the following. On the signal side, where the b hadronizes together with an s quark
into the signal B0

s meson, the associated s quark from the ss pair can hadronize together with
an u quark into a charged kaon. This charged kaon is utilized by the Signal Side Kaon tagger
(SSK). On the opposite side the b→ c→ s transition can result in a charged kaon, utilized by
the Opposite Side Kaon tagger (OSK), while the semileptonic b→ Xl− decay, where the lepton
is either a muon or electron, is exploited by the Opposite Side Muon (OSµ) or Opposite Side
Electron (OSe) taggers. Additionally, the opposite b decay vertex can be reconstructed inclusively
by the Opposite Side Vertex charge tagger (Qvtx).
For the single particles taggers, the best kaon, electron or muon per B event is selected. This

particle will be called tagging candidate in the following. Its charge determines the B production
flavour. Depending on the B type several taggers can be applied.

The following sections explain the principles of flavour tagging in detail. First, the key quantities
of flavour tagging are introduced and a method to combine multiple taggers is shown. Then,
different taggers are presented, highlighting their advantages and challenges. A typical tagger
development procedure is sketched. A derivation of the tagging power relevant for mixing
asymmetry analyses is given.

3.1. Tagging Key Quantities
Flavour taggers are never perfect. There is a natural non zero probability of mistag as will be
explained below. Additionally, in some B events none of the particles fulfill the requirements of
the tagger. These events remain untagged. Therefore, the tagging efficiency εtag is defined as the
number of tagged B events divided by all B events

εtag = tagged events
all events . (3.1)
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Figure 3.1.: Schematic to illustrate a typical B event. A bb quark pair is produced at the primary
vertex (PV). The b quark hadronizes into the signal B meson, here a B0

s , which
further decays into J/ψ → µ+µ− and φ→ K+K− final states, classified as signal
side of the event. On the opposite side the associated b undergoes either b → c →
s transitions and / or a semileptonic b → Xl− decay. At LHCb different flavour
taggers are applied to determine the production flavour of the B0

s : the Signal Side
Kaon tagger (SSK), the Opposite Side Kaon (OSK), Muon (OSµ) or Electron (OSe)
taggers and the vertex charge tagger (Qvtx).

The average mistag probability ω is defined as the number of wrongly tagged B events divided by
all tagged B events

ω = wrong tagged events
all tagged events . (3.2)

A closely related quantity, the tagging dilution D, is defined as

D = (1− 2ω). (3.3)

The figure of merit is the effective tagging efficiency εeff , also called tagging power, which is
defined as

εeff = εtagD
2 = εtag(1− 2ω)2. (3.4)

These variables quantify the performance of flavour tagging algorithms. The tagging power εeff is
directly connected to the statistical power of a tagged data set used for the mixing asymmetry
measurement. The derivation of this connection is shown in section 3.4.2. A tagger optimization
maximizes εeff .
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3.2. Opposite Side Tagging Algorithm
Opposite side tagger exploit the decay of the associated b hadron. They partially reconstruct the
opposite b hadron decay. Semileptonic decays of the opposite b hadron are exploited by the OSµ
and OSe taggers using the charge of the lepton to tag the production flavour of the opposite b
hadron and coincidentally the production flavour of the associated signal b hadron. The OSK
tagger uses the charge of the kaon coming from b → c → s transitions to tag the production
flavour. The OS vertex charge tagger computes a weighted sum of the charges of the tracks that
originate from the opposite b decay. It sums over all tracks used to reconstruct the vertex.
The advantage of opposite side taggers is, that they are independent of the signal B decay.

They can be developed on high statistics flavour specific channels (e.g. B+→ J/ψK+), that do
not undergo flavour oscillations. Thus, the production flavour of the signal B meson is equal to
the decay flavour. The number of wrongly tagged events is determined by comparing the tagging
decision and the charge of the final state particle.

A challenge for opposite side taggers are B events with high track multiplicities. Of O(100) tracks
per event are typically produced at the LHC, see figure 3.2, showing a graphical representation of
a simulated B0

s→ J/ψφ event in the LHCb detector.

Figure 3.2.: Graphical representation of a simulated B0
s→ J/ψφ event in the LHCb detector. The

reconstructed track multiplicity is of O(100).

Charged soft QCD background particles from the primary vertex or particles from any other
vertex in the event, not related to the opposite b decay, can be selected as tagging candidates. The
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3.3. Signal Side Tagging Algorithm

charge of these background particles gives a random tagging decision. If the opposite b hadron
oscillates, in case it is a B0 or B0

s meson, the tagging decision is no longer related to the signal B
production.
The relative fractions of producing b flavoured hadrons at the LHC (B+: B0: B0

s : b-baryon)
is roughly given by 41:41:11:8 % [22]. Among these, B0 and B0

s mesons oscillate. B0
s mesons

oscillate very fast, the mean B0
s lifetime is τ = (1.512± 0.007) ps with an oscillation frequency

∆ms = (17.761 ± 0.022) ps−1 [72]. A tagging decision based on the charge of an opposite B0
s

decay final state track gives a random answer with a mistag probability of 50%. Whereas, B0

mesons oscillate relatively slow, the mean B0 lifetime is τ = (1.519± 0.005) ps with an oscillation
frequency ∆md = (0.510± 0.003) ps−1 [72]. If the tagger uses the charge of a B0 decay final state
track, it is more likely to give the correct tagging decision, than the wrong tagging decision.
OS lepton taggers can tag the B event wrongly, if a lepton from a semileptonic b→ c→ s`ν

decay is selected instead of a lepton from a semileptonic b hadron decay, see figure 3.3.

W−

b c

l−

ν

(a) Semileptonic b decay

W+

c s

l+

ν

(b) Semileptonic c decay

Figure 3.3.: The charge of the lepton from a semileptonic b hadron decay (a) is opposite to the
charge of the lepton from a semileptonic c hadron decay (b). If the OS lepton tagger
selects a lepton from a semileptonic b→ c-hadron decay instead of a semileptonic b
hadron decay, the tagging decision is wrong.

The OS vertex charge tagger can derive the wrong tagging decision, if background particles
are selected by the tagger, which did not originate from the vertex. On the other hand, it can
happen that particles, that originate from the vertex, are not selected by the OS vertex tagger.
The weighted sum over the charges of the particles can yield the wrong sign in both cases. All
effects together result in a rather high mistag probability of ∼ 30− 40% for the OS taggers.

3.3. Signal Side Tagging Algorithm
Signal side taggers select charged particles produced during the fragmentation of the signal b
hadronization. In the B0

s decay shown above, a b hadronizes together with a s quark into a B0
s

meson. The s quark also comes from a ss quark pair. Hence, the associated s quark can hadronize
into a charged kaon, which happens in about 50% of the cases [73], picked up by the Signal Side
Kaon (SSK) tagger. When the signal B is a B0 meson, the ss pair is replaced by a dd pair, so
that the associated d quark can hadronize into a charged pion, utilized by the Signal Side Pion
tagger (SSπ).
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3. Flavour Tagging

An advantage of signal side taggers is, they contribute significantly to the tagging power1

achieved by opposite side taggers. SS and OS taggers are almost completely uncorrelated.
SS taggers depend on the signal B type signal. They are applicable to B0 and B0

s decays, only.
Thus, a challenge for the algorithm development and calibration is the oscillation of the neutral
B, which has to be resolved. Another challenge for SS taggers is the high track multiplicity at the
LHC. The mistag probability is 50% if the SS tagger selects randomly a particle from the PV,
which is not involved in the signal b hadronization process. In this case, the particle stems from
the so-called underlying event (UE). On the other hand, the tagging efficiency is additionally
reduced by a factor of 2, because only in 50% of the cases a charged kaon or pion is produced
during fragmentation. This results in a rather high mistag probability of ∼ 35% and a reduced
tagging efficiency of ∼ 16%.

3.4. Tagging Algorithms used in LHCb

The standard LHCb taggers are documented in [75] and [76]. Taggers are applied to events, that
contain signal B decays. To execute a tagger all tracks in such events have to be reconstructed.
Tracks are the trajectories of charged particles reconstructed in the tracking detectors. Taggers
apply selection requirements to these particles with the goal, to find the correct tagging candidate,
which is the particle, whose charge is correlated to the production flavour of the signal b quark.
Different taggers apply different selection requirements, accordingly.
A common pre-selection is applied to all particles in the event prior to the execution of the

taggers, see table 3.1. The purpose of the pre-selection is to suppress a large amount of soft
QCD background. This reduces the execution time of the taggers. Additionally, the pre-selection
ensures that particles from the signal B decay are not selected by the taggers. This is important,
because a decay product of the B decay would tag the decay flavour of the B, not the production
flavour.

A geometric requirement, which is determined as the sum of the minimum distances between the
B decay daughters and the tagging particle, ensures that the particle is not part of the signal B
decay chain. Additionally, the azimuthal angle between any B daughter and the tagging particle
has to be greater than 5 mrad. The momentum, p, of the particle has to be above 2GeV/c to
reduce the soft QCD background. An upper limit on p and transverse momentum, pT , of the
particle enhances the probability to not pick up a composed particle rather than a LHCb “stable”
kaon, pion, electron or muon2.
In order to suppress poorly reconstructed tracks, the track fit quality of the tagging particle

has to fulfill a minimum requirement. The track needs to have hits in the vertex detector and in
the tracking stations, either before the dipole magnet (upstream tracks) or before and behind
the magnet (long tracks), see figure 2.8. Particles that traverse the beam pipe suffer typically
from multiple scattering. Hence, they are poorly reconstructed. To avoid picking up those tracks
a minimum requirement is applied to the polar angle, which is the angle between the particle’s
momentum direction and the beam line.

1Compared to lepton colliders the tagging power at hadron colliders is roughly a factor 10 worse, εeff ' 3% instead
of εeff ' 30% [74].

2Kaons, pions, electrons and muons leave hits in all LHCb tracking detectors.
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Quantity Cut Value
geometric /∈ signal decay chain
|∆φ| > 5 mrad
p > 2 GeV/c
p < 200 GeV/c
pt < 10 GeV/c

track type long or upstream
charge ±
θ > 12 mrad

PU IP significance > 3

Table 3.1.: LHCb tagging particle pre-selection. This set of selection requirements is applied to
all reconstructed particles in the signal B event prior to the execution of the taggers.

At typical LHCb running conditions up to five primary vertices are reconstructed per event,
called pile up (PU). In order to not select a particle, which is produced in a PU decay, a minimum
requirement is applied to the PU impact parameter significance. The impact parameter (IP) with
respect to a vertex, is the shortest distance between the particle’s track and the vertex. The IP
significance takes the uncertainty on the IP determination into account. It is computed as the
quotient of the IP divided by its uncertainty.
Then, each tagger applies an individual set of selection requirements to the particles passing

the pre-selection. These selections are optimized for each tagger separately. If more than one
particles passes the tagger selection, the one with the highest pT is used as tagging candidate. Its
charge determines the tagging decision.

Finally, an artificial Neural Net (ANN) predicts the mistag probability of the tagging decision.
The ANN output ηi is a prediction for the mistag probability ωi of the event i. The ANN is trained
on MC simulation. To ensure a correct mistag probability prediction on data, the predicted mistag
probability is calibrated to the measured mistag probability ωi(ηi) on data using a first order
polynomial

ωi = p0 + p1 · (ηi− < η >), (3.5)

where < η > is the mean value of the predicted mistag distribution on the tagged data set. The
calibrated predicted mistag probability ωi per event i can than be used to sum up an event-by-event
dilution, defined as

Devent−by−event =

√√√√ 1
N

N∑
i=1

(1− 2ωi)2, (3.6)

where N is the number of tagged B mesons. In an event-by-event approach, the tagged events can
be weighted according to their predicted mistag probability. Compared to the average dilution,
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introduced in equation 3.3, this improves the tagging power, εeff = εtagD
2, because

Devent−by−event > Daverage =

√√√√(1− 2 1
N

N∑
i=1

ωi)2. (3.7)

The single flavour tagging algorithms have different working points. The OS lepton taggers, for
example, deliver more often a correct tagging decision, thus their mistag probability is relatively
low. However, they are also less efficient, thus have a low tagging efficiency. In contrast, the OS
and SS kaon taggers are relatively efficient, but their mistag probability is also higher, because
the selection of a hadronic tagging particle is more difficult due to the high amount of soft QCD
background than the selection of a leptonic particle.

To get a maximum tagging performance on a given data set the combination of multiple taggers
is used. Each tagger is calibrated individually beforehand. The responses of the different taggers
are combined to derive a single tagging decision and mistag probability prediction per signal B
meson. The combination method is shown in the next subsection.

3.4.1. Combination of Tagging Algorithms

Each tagging algorithm provides a tagging decision di and a predicted mistag probability ηi per
signal B meson. Here, i stands for the ith tagger, applied to the same B meson. In case, the B is
not tagged by the tagger i, di = 0 and ηi = 0.5. The combined probability P (b) / P (b̄) that the
B meson contains a b/ b quark is calculated as

P (b) = p(b)
p(b) + p(b̄)

, P (b̄) = 1− P (b), (3.8)

where p(b) is the product of in the current event available tagging decisions di, weighted by the
corresponding predicted mistag probability ηi

p(b) =
∏
i

(1 + di
2 − di(1− ηi)), p(b̄) =

∏
i

(1− di
2 + di(1− ηi)). (3.9)

The index i loops over the available taggers in the given signal B event. The convention is, that
the combined tagging decision di = 1(−1) if the signal B contains a b (b). Accordingly,

• if P (b) > P (b), than d = −1 and η = 1− P (b)

• if P (b) < P (b), than d = +1 and η = 1− P (b).

A basic assumption entering this combination technique is that the single taggers are uncorrelated.
However, to account for possible correlations the combined predicted mistag probability is also
calibrated on data against the measured mistag probability using the same calibration function as
for the single taggers, see equation 3.5.
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3.4. Tagging Algorithms used in LHCb

3.4.2. Derivation of the Tagging Power εeff

The mixing asymmetry A is defined as the difference of the number of B mesons, that decay with
the same flavour compared to the production flavour (unmixed), minus the number of B mesons,
that decay with the opposite flavour compared to the production flavour (mixed), divided by the
sum

A ≡ Nunmixed −Nmixed
Nunmixed +Nmixed

≡ N −N
N +N

. (3.10)

The second definition is done for better readability. However, the production and decay flavours
are determined experimentally. They are known up to a certain mistag probability ω. Hence, the
measured number of unmixed (mixed) B mesons Nm (Nm) is a superposition of the true number
of unmixed (mixed) B mesons N (N) and mixed (unmixed) B mesons N (N):

Nm = (1− ω)N + ωN (3.11)
Nm = (1− ω)N + ωN. (3.12)

Analogue, the measured mixing asymmetry Am is:

Am = Nm − N̄m

Nm + N̄m
= (1− 2ω)A = DA. (3.13)

In a perfect world, the mistag probability ω would be 0, resulting in a dilution D = 1 and Am = A.
In case of random tagging, the mistag probability is 50%, resulting in a dilution D = 0 and
Am = 0. The statistical uncertainty on the measured asymmetry is given by

σAm = DσA. (3.14)

The measured numbers of B decays carry the corresponding uncertainties of A. They are
propagated into equation 3.14 using Gaussian error propagation:

σ2
Am = (∂Am

∂Nm
)2σ2

Nm + (∂Am
∂N̄m

)2σ2
N̄m

=
4N̄2

mσ
2
Nm

+ 4N2
mσ

2
N̄m

(Nm + N̄m)4 . (3.15)

With the assumption of Poisson distributed uncertainties

σNm =
√
Nm, σN̄m =

√
N̄m (3.16)

and the help of the following identity

1−A2
m = 4NmN̄m

(Nm + N̄m)2 , (3.17)

the statistical uncertainty on the measured asymmetry becomes

σ2
Am = 4NmN̄m

(Nm + N̄m)3 = 1−A2
m

Nm + N̄m
= 1−A2

m

εtagN
= 1−D2A2

εtagN
. (3.18)
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In the second last step the relation, that the measured number of unmixed plus mixed B mesons
is equal to the number of all B mesons in the sample N times the tagging efficiency εtag, is used.
In the last step equation 3.13 is used. Using equation 3.14, the statistical uncertainty on the
mixing asymmetry becomes

σ2
A = 1−D2A2

εtagND2 = 1
εtagN

( 1
D2 −A

2). (3.19)

At LHCb typical values of the mistag probability are ω ∼ 40%. That yields a dilution of D ∼ 0.2,
while mixing asymmetries A are in [−1,+1]. Hence, the approximation

1
D2 � A

2 (3.20)

is valid, which gives a statistical uncertainty on the mixing asymmetry of

σA =
√

1
N εtagD2 =

√
1
N εeff

(3.21)

The statistical power of a tagged data set is at maximum, if the uncertainty σA is at minimum.
To minimize σA the data set needs to be large, large N , and the tagging power εeff needs to be
maximal. Hence, εeff is the figure of merit for flavour tagging optimisation.

3.5. Data MC Comparisons for the cut-based OS Kaon Tagging
Algorithm

This section presents a preparatory study for the development of an improved OS kaon tagger.
The existing LHCb OS kaon tagger is studied in detail, especially the reason for the better
performance in MC simulation than in real data is evaluated. Five topics are investigated: the
possible data MC differences in particle identification, in the number of primary vertices per event,
in track multiplicities per event, in the impact parameter resolution and in the quality of the
track fit. Effective corrections are successively applied to MC simulation to obtain similar tagging
performance on MC compared to data. The goal of this study is not to reproduce the data tagging
performance found in MC simulation, but rather to understand the main causes for the different
performances. At the end of the section a short summary highlights the most important points.
The performance of the flavour tagging algorithms is significantly better in MC simulation

than in real data. Table 3.2 gives the tagging performance of the single OS taggers and their
combination in MC simulation and data. The performance is measured on B+→ J/ψK+ decays
in 1 fb−1 of data, collected at

√
s = 7 TeV in 2011 by the LHCb experiment. The signal selection

is taken from the LHCb measurement of the B+, B0, B0
s meson and Λ0

b baryon lifetimes [77].
The reconstructed B+ mass distribution is fitted in data by a double Gaussian distribution

to model the signal and an exponential distribution to model the combinatoric background, see
figure 3.4. Due to the clean trigger signature of the two muons and the minimum requirement on
the B+ decay time the amount of background is low. A signal yield of 2.17× 105 B+→ J/ψK+
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sample OS tagger εtag(%) ω(%) εeff (%)
MC muon 4.60 ± 0.02 30.62 ± 0.23 0.69 ± 0.02
MC electron 2.67 ± 0.02 33.63 ± 0.31 0.29 ± 0.01
MC kaon 15.91 ± 0.06 35.13 ± 0.18 1.41 ± 0.03
MC vertex 17.86 ± 0.04 37.00 ± 0.12 1.21 ± 0.02
MC combination 31.10 ± 0.05 36.29 ± 0.09 2.34 ± 0.03
data muon 5.16 ± 0.05 30.20 ± 0.43 0.81 ± 0.03
data electron 2.44 ± 0.03 31.77 ± 0.64 0.32 ± 0.02
data kaon 17.57 ± 0.08 39.33 ± 0.25 0.80 ± 0.04
data vertex 18.29 ± 0.08 40.18 ± 0.24 0.71 ± 0.03
data combination 33.47 ± 0.10 39.28 ± 0.18 1.54 ± 0.05

Table 3.2.: Tagging performance of the single OS taggers and of the combined OS tagger. The
large difference in the tagging power εeff of the OS combination between MC and data
is caused by the worse performance of the OS kaon and vertex charge taggers in data.
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Figure 3.4.: Fit to the reconstructed B+ mass distribution.
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Fit Parameter Fitted Value
# signal 217429 ± 527
# background 32508 ± 309
µ 5280.920 ± 0.024
σ1 8.706 ± 0.071
σ2 16.92 ± 0.38
fraction 0.756 ± 0.015
slope −0.0013 ± 0.0001

Table 3.3.: Parameters obtained from a fit to reconstructed B+ mass distribution.

decays is extracted, see table 3.3. For the computation of the tagging performance, the background
events are statistically removed using the sWeights technique [78, 79].

Since the B+ meson does not undergo flavour oscillations, the number of wrong tagged events is
simply determined by comparing the charge of the final state signal decay kaon with the tagging
decision. Then, the mistag probability on the data set is computed by the quotient of wrong
tagged events, divided by all events. The average mistag probability fulfills the aim of this study.
The predicted mistag probability, used to compute an event-by-event weighted tagging power, is
not considered here, however, the trend of the difference in performance between MC and data is
the same. The tagging performance numbers, shown in table 3.2, are the starting point of the
study presented in the following.

The combined OS tagging power is a factor of 1.52 better in MC simulation than in data. It is
computed as a combination of the single OS taggers following the combination technique given
in subsection 3.4.1. The OS lepton tagger performance does not cause this huge difference. The
mistag probability is compatible in data and MC for these taggers, while for the OSµ tagger the
tagging efficiency is even slightly better in data than in MC.

However, the mistag probability of the OS kaon and vertex charge tagger is significantly
underestimated by the MC simulation. In case of the OSK tagger this is 12% in simulation. The
tagging efficiency of both taggers is also higher in data. That indicates, that the taggers pick up
more tracks in data in total, but these tracks are more likely to give a random tagging decision.
Hence, they are probably not related to the signal B decay. Therefore, a dedicated study on the
OSK tagger has been performed to determine the reason for that large difference in performance
between data and MC shown in the following. The study has been made available to the LHCb
collaboration as well as the improved OSK tagger, documented LHCb-internally in [2].

Step by step different effects, that are likely to cause the difference in tagging power, are
investigated. The order of the effects is important. When a significant change on the tagging
power is found, the effect is corrected in MC simulation. All correction methods have been
developed in the course of this thesis.
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3.5.1. The cut-based OS Kaon Tagging Algorithm

The OS kaon tagger tries to find the charged kaon from opposite side b → c → s transition. It
applies a selection of cuts, listed in table 3.4, to the particles that fulfill the requirements of the
tagging pre-selection.

Quantity Cut Value
p > 5 GeV
pt > 0.7 GeV

track χ2

ndf < 2.45
DLLK−π > 0.75
DLLK−p > −3.0

IP significance > 4.3
IP < 1.45 mm

PU IP significance > 7.5

Table 3.4.: Tagging particle selection requirements of the OS kaon tagger. The requirements of
the tagging pre-selection, listed in table 3.1, are applied prior to the execution of the
OS kaon tagger.

The right tagging particle comes from a b hadron decay. Thus, it has on average a higher
momentum than background particles from the underlying event. In order to suppress mis-
reconstructed tracks, the particle’s track has to be of good track fit quality. Requirements on the
particle identification likelihood (DLLK−π, DLLK−p) ensure to select kaons not pions or protons.

Opposite b hadron decays are displaced from the PV. This property is used by the tagger, when
placing a minimum requirement on the IP significance of the particle with respect to the primary
vertex. However, due to the pile up (PU) of multiple primary vertices in the event, a maximum
requirement on the IP and a minimum requirement on the PU IP significance ensure that the
selected particle does not come from a PU vertex.
This rather tight selection results in a tagging efficiency of ∼ 18% on data. On average 1.2

particles are selected per signal B event by the tagger. The charge of the particle with the highest
transverse momentum is used to give the tagging decision.

3.5.2. Effect of the Particle Identification

This subsection determines the influence of possible differences in the particle identification (PID)
in MC simulation compared to data. In data the PID cut efficiencies are measured on clean
samples of kaons, pions and protons, provided by the LHCb PID calibration group [80]. In MC
simulation the MC truth information is used to test the particle hypothesis and to measure the
PID selection efficiency. The particles of the calibration samples cover a different phase space
compared to the tagging particles. Thus, the calibration samples are re-weighted to match the
tagging particle phase space.
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A weighting in the track multiplicity and in the two dimensional momentum and pseudo rapidity
distribution is applied. The PID distributions before and after reweighting are shown in figure 3.5
for the kaons calibration sample. The distributions for the pions and protons samples look similar,
given in appendix A.1. The distributions of the PID calibration data samples are shown on top of
the tagging particle MC simulation sample. The phase space reweighting reduces the statistical
power of the calibration sample significantly.
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Figure 3.5.: DLLK−π distributions of true kaons in MC and in calibration data (a) before reweight-
ing, (b) after reweighting. DLLK−p distributions of true kaons in MC and in calibration
data (c) before reweighting, (d) after reweighting.

Relevant for this study is cut efficiency of the PID cuts applied by the tagger. The PID cut
efficiencies, measured on MC and on PID calibration data separately, are given in table 3.5.
The PID cuts are more efficient on MC simulation. Therefore, the effect of this difference on

the tagging performance in MC is evaluated.
A worse PID cut efficiency is simulated in MC during the execution of the tagger. The effect

on the tagging performance is determined, shown in table 3.6. The absolute and relative changes
in the three tagging performance quantities: εtag, ω and εeff are given.
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PID efficiency ε(K − π)(%) ε(K − p)(%) combined ε(%)
MC kaon 97.09 ± 0.09 89.22 ± 0.17 86.86 ± 0.19
data kaon 96.23 ± 0.25 87.74 ± 0.12 84.95 ± 0.23
MC pion 15.89 ± 0.11 53.19 ± 0.15 9.73 ± 0.09
data pion 11.49 ± 0.04 51.68 ± 0.04 7.89 ± 0.04
MC proton 88.58 ± 0.27 27.65 ± 0.38 25.34 ± 0.37
data proton 85.75 ± 1.15 23.78 ± 0.99 21.95 ± 0.82

Table 3.5.: Kaon, pion and proton PID efficiencies and misidentifications, respectively, obtained
with cuts at DLLK−π > 0.75 and DLLK−p > −3.0. The numbers for MC are deter-
mined with the help of MC truth match information, for data, clean PID calibration
data samples are used.

change ∆εtag(%) ∆ω(%) ∆εeff(%)
absolute −0.35 ± 0.01 −0.21 ± 0.01 +0.01 ± 0.03
relative −2.18 ± 0.07 −0.61 ± 0.19 +0.65 ± 0.06

Table 3.6.: Absolute and relative change in the tagging performance due to the differences in the
PID cut efficiency estimated on MC compared to the nominal tagging performance of the
OSK tagger on MC. The Variation accounts for the PID efficiency and misidentification
measured in data using reweighted calibration channels. This effect is negligible.

Modeling a worse PID cut efficiency in MC simulation lowers εtag. However, the change in
εeff is negligible. Hence, the difference in PID performance does not cause the different tagging
performance in MC simulation and data.

3.5.3. Effect of the Number of Primary Vertices

The pile up of multiple primary interactions per event is a problem for flavour tagging. The tagging
algorithms perform significantly better in events with less primary vertices, both in data and in
MC simulation. Table 3.7 shows the tagging performance in data and in MC using subsamples
separated by the number of PVs per event. In data the tagging power is 60% worse in events with
5 or more PVs compared to events with 1 PV, only. While in MC the tagging power is 30% worse
in events with 5 or more PVs compared to events with 1 PV, only.
Figure 3.6 shows the number of PVs distribution in data and MC. The distributions are

determined on the sample of tagging candidates using B+→ J/ψK+ decays, having applied the
tagging preselection and the PID cuts. The histograms are normalized to an area of one. The
distributions are very similar, in data there are 2.01 PVs per event on average, while in MC there
are 1.99 PVs per event on average. However, a correction to MC is applied, in order to match
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3. Flavour Tagging

# PVs/event εtag(%) ω(%) εeff (%)
1 17.66 ± 0.14 38.91 ± 0.42 0.87 ± 0.06
2 17.66 ± 0.13 39.65 ± 0.41 0.76 ± 0.06
3 17.16 ± 0.18 38.58 ± 0.58 0.84 ± 0.08
4 16.98 ± 0.33 40.29 ± 1.04 0.64 ± 0.13
≥ 5 17.09 ± 0.65 42.81 ± 2.06 0.35 ± 0.19
1 15.84 ± 0.09 33.74 ± 0.30 1.67 ± 0.06
2 15.83 ± 0.09 35.23 ± 0.30 1.38 ± 0.05
3 16.04 ± 0.13 36.86 ± 0.42 1.11 ± 0.07
4 16.41 ± 0.23 36.83 ± 0.75 1.14 ± 0.12
≥ 5 16.08 ± 0.46 36.74 ± 1.51 1.13 ± 0.25

Table 3.7.: Tagging performance of the OSK tagger split by the number of reconstructed PVs
per event determined in 1 fb−1 data (top), collected in 2011, and in MC (MC11a)
(bottom) using the FlavourTagging package v12r7.

exactly the data distribution, by throwing away randomly events in MC until the data distribution
is reproduced, see subfigure (b) in figure 3.6.
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Figure 3.6.: Number of PVs per event in data and MC (a) before correction, (b) after correction.

The change in tagging performance on MC is given in table 3.8. The mistag probability is
increased by the correction, which in turn lowers the tagging power by relatively 1.4%. This effect
is small. Further studies are determined on the PV corrected MC sample, which is split up into
five subsamples according to the number of PVs per event.
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3.5. Data MC Comparisons for the cut-based OS Kaon Tagging Algorithm

change ∆εtag(%) ∆ω(%) ∆εeff(%)
absolute −0.02 ± 0.01 +0.06 ± 0.01 −0.02 ± 0.04
relative −0.13 ± 0.07 +0.17 ± 0.19 −1.44 ± 0.07

Table 3.8.: Absolute and relative change in the tagging performance estimated on MC for a data
driven correction applied to the number of primary vertices per event. For increasing
number of PVs per event, the mistag fraction increases, while the tagging power
decreases. This effect is small.

3.5.4. Effect of the Track Multiplicity

Track multiplicity per event is underestimated by the MC simulation, see figure 3.7. The correction
to MC to match the number of reconstructed PVs in data is already applied. The simulation of
hard processes in B decays is very well understood and modeled. Hence, a possible explanation is
that the amount of low QCD background is not modeled correctly. This so-called “underlying
event” (UE) is underestimated by simulation. If the tagger picks up a particle from UE the mistag
probability is 50%, because the particle does not carry any information about the B production.
This class of tagging background is most likely responsible for the worse tagging performance in
data.
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Figure 3.7.: Track multiplicity distribution (a) before and (b) after correction.

The OS kaon tagger uses particles reconstructed from two types of tracks, labeled in LHCb
with long tracks and upstream tracks, as introduced in chapter 2. Using additionally the class
of upstream tracks does not improve the tagging power, see table 3.9. The tagging performance
is given for data and MC, separately determined on a sample of tagging particles reconstructed
as long and upstream tracks and as long tracks, only. Within the statistical uncertainty, the
tagging power is the same within the two samples of track types in data and MC. In the following,
particles reconstructed as upstream tracks are removed from the sample of tagging candidates.
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3. Flavour Tagging

sample εtag(%) ω(%) εeff (%)
data (long + upstream) 17.57 ± 0.08 39.33 ± 0.25 0.80 ± 0.04
data (long) 16.49 ± 0.08 39.07 ± 0.26 0.79 ± 0.04
MC (long + upstream) 15.91 ± 0.06 35.13 ± 0.18 1.41 ± 0.03
MC (long) 13.93 ± 0.05 33.93 ± 0.19 1.44 ± 0.03

Table 3.9.: Average tagging performance of the OS kaon tagger in data (upper part) and in MC
(lower part). Vetoing the small fraction of particles reconstructed from upstream tracks
has no significant impact on the tagging performance.

To evaluate the effect of the higher track multiplicities due to the UE on the tagging performance
in MC, a correction method is applied to MC. This correction method adds UE particles per event
to MC until the track multiplicity distribution found on data is reproduced. The UE particles are
taken from different events in MC than the events they are added to. A mean fraction of particles
to be added, f , is determined by the difference of the mean number of particles in data minus the
mean number of particles in MC divided by the mean number of particles in MC

f = µdata − µMC

µMC
. (3.22)

Typical values for f are 0.36, 0.53, 0.67, 0.77 and 0.77 corresponding to the 5 categories, respectively.
Note, that f increases for increasing number of PVs per event. The number of particles to be
added is calculated event by event by multiplying the fraction f by the actual number of particles
in the event

nadd = f × nparticles. (3.23)
A Gaussian random number is drawn with µ = nadd and σ = nadd/3. The result, rounded to integer
values, is used as the number of particles to be added per event. A histogram bookkeeping method
guarantees, that all bins of track multiplicities are represented. This event by event correction is
applied to MC, on the 5 subsamples corresponding to the number of PVs per events, separately.
After correction the data track multiplicity distribution is reproduced by MC, see subfigure (b)
in figure 3.7. Here, the total sample, containing all number of PV subsamples, is shown. The
corrected track multiplicity distributions per PV subsample are shown in appendix A.2.

The UE particles are taken from events in MC that have the same number of PVs as the event they
are added to. Additionally, the added particles have to fulfill kinematical requirements, represented
by the transverse momentum pT and the pseudo rapidity η. The kinematical requirements are
determined two dimensionally in pT and η, dividing the data distribution by the uncorrected MC
distribution in these quantities.However, the uncorrected MC distribution is especially in the
subsample with 1 PV per event not a subdistribution of the data pT − η distribution. Hence, the
kinematical correction will not succeed perfectly, shown in figure 3.8. Here, all tagging candidates
per event before and after correction are shown.

Figure 3.9 shows the same distributions before and after correction but filling only the highest
pT tagging candidate per event into the histograms. The corrected histograms show further
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Figure 3.8.: Uncorrected and corrected distributions of the transverse momentum (a) and (b) and
of the pseudo rapidity (c) and (d) of all tagging candidates per event.

non-perfect matching of the MC distributions relative to the data distributions, because the
correction method corrects for average not single particle properties per event. The remaining
differences are caused by momentum correlations of the particles within the event in data.
The effect of the track multiplicity correction on the tagging performance in MC is given in

table 3.10. The tagging power is lowered by 23% percent, relatively, due to the increased mistag
probability by 10%, relatively. This is a big effect. Therefore, all further MC data differences are
studies using the track multiplicity corrected MC sample.

3.5.5. Effect of the Impact Parameter Resolution

The OS kaon tagger is tuned to select kaons from opposite b hadron decays. The b hadron decay
vertex is significantly displaced from the PV. Thus, the most powerful variable to achieve that
is the impact parameter (IP) of the particle’s track with respect to the PV. If the IP resolution
is better in MC compared to data, the tagging efficiency is higher in MC. However, a worse IP
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Figure 3.9.: Uncorrected and corrected distributions of the transverse momentum (a) and (b) and
of the pseudo rapidity (c) and (d) of the highest pT tagging candidate per event.

change ∆εtag(%) ∆ω(%) ∆εeff(%)
absolute +3.55 ± 0.01 +3.47 ± 0.01 −0.33 ± 0.04
relative +25.50 ± 0.07 +10.21 ± 0.19 −23.08 ± 0.07

Table 3.10.: Absolute and relative change in the tagging performance estimated on MC for a data
driven correction applied to the number of tagging candidates per event.
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3.5. Data MC Comparisons for the cut-based OS Kaon Tagging Algorithm

resolution in data mimics UE particles to not originate from the PV, which increases the mistag
probability in data. Therefore, the IP distributions in data and MC are carefully studied.
The IP resolution depends on the kinematical properties of the track. Therefore, figure 3.10

shows the widths of the x and y components of the IP of tagging candidates in bins of the inverse of
the transverse momentum. Here, an effective IP resolution is studied, because the sample contains
UE event particles and particles from b hadron decays. The true IP resolution is determined from
a sample of prompt particles, that have a true IP of zero because all particles originate from the
PV, but due to resolution effects, the particles are reconstructed with a non-zero IP.
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Figure 3.10.: Impact parameter resolution distributions (a) in x direction and (b) in y direction.

Low pT particles, which are most likely particles not coming from opposite b hadron decays, have
a significantly worse IP resolution in data compared to MC. The MC sample is corrected to match
the PV and track multiplicities per event in data. Due to the fact, shown in the previous section,
that to events with more PVs more low pT UE particles have to be added, the IP resolution is
studied and corrected in subsamples corresponding to the number of PVs per event, separately.
The corresponding distributions per PV subsample are shown n appendix A.3.

A correction method applied to MC to correct for the worse IP resolution seen in data is
developed. A two dimensional distribution of the x and y components of the IP in bins of 1/pT is
fitted by Gaussian distributions per 1/pT bin. Only the core part of the IPx/y distributions is
fitted. The widths of the fitted Gaussian distributions is shown in figure 3.10. Then, the quadratic
difference between the x and y components of the IP resolution in data and MC is determined

∆σx,y(pT ) =
√
IP 2

x,y(data)(pT )− IP 2
x,y(MC)(pT ). (3.24)

A Breit-Wigner shaped random number is drawn with a mean value of 0 and a width of the
difference between data and MC in the IP resolution ∆σx,y(pT ). This random number is added in
quadrature to the x and y components of the IP resolution

IPsmeared(pT ) =
√

(IPx(pT ) + ∆σx,random(pT ))2 + (IPy(pT ) + ∆σy,random(pT ))2. (3.25)

The result of this IP resolution correction is shown in figure 3.11. The corresponding corrected
distributions per PV subsample are shown in appendix A.3. Within the uncertainty of the single
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3. Flavour Tagging

IPx/y widths fits, the IP resolution in MC now matches the one in data. This correction method
increases the IP resolution in MC for both particle types: the kaons coming from opposite b
hadron decays and the UE event particles. On average the correction should be correct.
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Figure 3.11.: Smeared impact parameter resolution distributions (a) in x direction and (b) in y
direction.

Figure 3.12 shows the uncorrected and corrected distributions of IPx and IPy in data and MC.
After the IP resolution correction the distributions in MC match the data distributions.

The OS kaon tagger requires a minimum value of 4.3 for the IP significance and a maximum
value of 1.45mm for the IP. Figure 3.13 shows the uncorrected and corrected distributions of the IP
and IP significance for data and MC. After the IP resolution correction the MC distributions match
the ones in data better, however other reconstruction effects play a role here. Especially visible in
the IP significance distribution, there are steps in the data distribution, which is likely due to PV
multiplicity related reconstruction effects on the IP fit uncertainty. Further investigations on such
reconstruction effects are beyond the scope of this study.
The effects of the IP resolution correction on the tagging performance in MC are given in

table 3.11. The relative increase in the tagging efficiency of almost 38% is remarkable. Hence, the
broadening of the IP resolution in MC has increased the number of particles that fulfill the IP
significance lower cut of the OS kaon tagger, significantly. The mistag probability is also increased
by 9%, which means that the majority of the particles in MC that now fulfill the IP significance
requirement are not opposite b hadron decay products. In total this lowers the tagging power by
relatively 35% in MC. This is a huge effect. Therefore, all further MC data differences are studies
using the track multiplicity and IP resolution corrected MC sample.

3.5.6. Effect of the Track χ2/ndf

The quality of the track reconstruction is quantified in the reduced χ2 of the track fit, χ2/ndf. The
OS kaon tagger applies an upper cut on the track χ2/ndf of 2.45 to suppress particles with badly
reconstructed tracks. However, the χ2/ndf distribution in data has a large tail to higher values
compared to the distribution in MC, see figure 3.14. All OS kaon tagger selection requirements are
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Figure 3.12.: Impact parameter resolution distributions in x and y direction before the IP smearing
correction (a) and (b) and after the correction (c) and (d).

change ∆εtag(%) ∆ω(%) ∆εeff(%)
absolute +6.57 ± 0.00 +3.30 ± 0.01 −0.28 ± 0.05
relative +37.61 ± 0.06 +8.81 ± 0.20 −34.55 ± 0.08

Table 3.11.: Absolute and relative change in the tagging performance estimated on PV, track
multiplicity and IP resolution corrected MC compared to the MC performance without
the IP correction.
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Figure 3.13.: Impact parameter and IP significance distributions uncorrected: (a) and (c), cor-
rected: (b) and (d).

applied, except the cut on the track χ2/ndf. In MC the PV, track multiplicity and IP resolution
corrections are applied.

In order to achieve a similar tagging performance in data and MC, the track χ2/ndf cut efficiency
in data has to be translated to MC by determining a different cut value. High momentum tracks
have typically a better track fit quality. Hence, the sample of tagging candidates is binned in 5
momentum bins of increasing momentum, see figure 3.15. The χ2/ndf distribution of wrong (W)
tagged events is subtracted from the one of right (R) tagged events. In this way, the effect of the
χ2/ndf cut on the tagging performance becomes visible. Particles with low quality track fits carry
no information relevant for flavour tagging.

In figure 3.15 the shape of the MC distributions does not change significantly with the momentum,
while, in data the width of the distributions decreases with increasing momentum, significantly.
Hence, the χ2/ndf cut acts differently on MC compared to data. Therefore, five different effective
cut values are determined on MC, to mimic the same χ2/ndf cut efficiency as in data.
Table 3.12 shows the cut efficiencies in data of a χ2/ndf < 2.45 cut and the corresponding

cut values, determined per momentum bin, for MC to yield an equivalent effective cut efficiency.
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Figure 3.14.: Track χ2/ndf distribution of tagging particles for data and MC. The full OS kaon
tagger selection is applied, except the cut on this quantity. In MC the PV, track
multiplicity and IP resolution corrections are applied.

The determination of the effective cut values on MC is limited by the bin widths of the χ2/ndf
distribution histogram. Hence, a range for the effective MC cut is given. However, within this
range, the tagging performance on MC does not change significantly.

momentum bin data efficiency MC cut
[GeV] [%]
5 – 10 0.81 ± 0.01 1.35
10 – 14 0.81 ± 0.01 1.35 – 1.40
14 – 22 0.87 ± 0.01 1.40 – 1.45
22 – 40 0.94 ± 0.01 1.50 – 1.65
40 – 100 1.02 ± 0.01 1.55

Table 3.12.: Evaluation of the track χ2/ndf cut efficiency in data (< 2.45) and the corresponding
cut in MC for different momentum bins. All tagging selection cuts are applied except
the cut on this quantity. The highest pT particle per event is taken. Wrong tagged
events are subtracted from right tagged events.

The change in the MC tagging performance using the effective track χ2/ndf cuts per momentum
bin are given in table 3.13. The tagging efficiency is decreased by 16%, as expected, but also the
mistag probability is decreased. The relative change in the tagging power is small.

3.5.7. Summary

This section has evaluated all important differences between data and MC that caused the different
tagging performance. Table 3.14 shows the tagging performance in data and in MC, split up in
the different correction steps applied to MC. Each correction step is applied on top of the previous
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(a) 5 GeV− 10 GeV: R - W tagged events
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(b) 10 GeV− 14 GeV: R - W tagged events
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(c) 14 GeV− 22 GeV: R - W tagged events
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(d) 22 GeV− 40 GeV: R - W tagged events
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(e) 40 GeV− 100 GeV: R - W tagged events

Figure 3.15.: Track χ2/ndf distribution of right (R) minus wrong (W) tagging candidates with
momenta in (a) [5, 10] GeV, (b) [10, 14] GeV, (c) [14, 22] GeV, (d) [22, 40] GeV and
(e)[40, 100] GeV.
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3.6. Novel Artificial Neural Network Tagging Algorithm

change ∆εtag(%) ∆ω(%) ∆εeff(%)
absolute −3.94 ± 0.00 −0.77 ± 0.01 −0.01 ± 0.05
relative −16.39 ± 0.07 −1.89 ± 0.17 −1.22 ± 0.08

Table 3.13.: Absolute and relative change in the tagging performance estimated on PV, track
multiplicity, IP resolution and track χ2/ndf cut efficiency corrected MC compared to
the MC performance without the last correction.

corrections. Within the statistical uncertainty, the tagging power in MC matches the one in data
after the IP resolution correction or after the effective χ2/ndf cut determination.

sample εtag(%) ω(%) εeff (%)
data 16.49 ± 0.08 39.07 ± 0.26 0.79 ± 0.04
MC initial 13.93 ± 0.05 33.93 ± 0.19 1.44 ± 0.03
MC PV 13.92 ± 0.06 33.99 ± 0.21 1.43 ± 0.04
MC PV + ntracks 17.47 ± 0.06 37.46 ± 0.19 1.10 ± 0.03
MC PV + ntracks + IP 24.04 ± 0.07 40.76 ± 0.16 0.82 ± 0.03
MC PV + ntracks + IP + χ2 20.10 ± 0.07 39.99 ± 0.18 0.81 ± 0.03

Table 3.14.: Tagging performance of the OS kaon tagger showing the effect of each significant
correction step using average mistag probabilities. The PID cut efficiency effect on
the tagging performance is negligible.

The corrections of PVs per event and adapted track χ2/ndf effective cut efficiencies do not
change the tagging performance significantly. Whereas the impact of the track multiplicity and
IP resolution corrections on the tagging performance is large. However, the tagging efficiency is
now over-corrected. The mistag probability is now also slightly too high. The reason is probably,
that all correction methods were determined on average. Possible correlations were not taken into
account. Nevertheless, the most important effects, that cause different tagging performance in
MC compared to data, are understood.

3.6. Novel Artificial Neural Network Tagging Algorithm

The main task of a tagging algorithm is to find the correct tagging particle in the B event. In
case of the Opposite Side (OS) kaon tagger, this task is not trivial. In proton-proton collisions
it is very difficult to distinguish a hadronic tagging particle from the large amount of soft QCD
background, which is produced in the primary interaction as underlying event (UE). Up to now, a
cut-based selection was used to find the tagging particle.
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A novel approach is presented here. The task is reformulated as a multi-dimensional classification
problem, i.e. not a separate optimization of one variable after the other. Thus, it can be efficiently
solved using machine learning techniques.

Machine learning employs three techniques: supervised, unsupervised and reinforcement learning.
In the given tagging classification task, the answer is binary: yes (it is a tagging particle) or no
(it is not). Using MC simulation, this answer is given for every particle in the event before the
classification is done. Hence, supervised learning can be used.

Unsupervised learning is used for example in clustering problems. An algorithm learns unsuper-
vised from a set of inputs how to cluster it into subgroups. An application of such algorithms is a
search engine which bundles information about different topics or even gathers information from
object recognition in images3.

Reinforcement learning is inspired by behaviourist psychology. An algorithm learns to interact
with a dynamic environment. The focus is laid on online performance, applied for example in
automated driving vehicles. Automated driving utilizes deep4 Artificial Neural Networks (ANN)
for image recognition, where several deep ANNs are connected, each processing a piece of the
environment, but combined they deliver a high-abstraction recognition, such as separating between
a truck and an SUV, that accelerates or breaks5.

In general, machine learning techniques are used to solve complex problems, where a con-
ventionally programmed solution would be too complicated or too time consuming in terms of
programmer’s working hours. The given tagging classification problem is an ideal application
for an ANN, which learns supervised to distinguish tagging particles from particles from the UE.
The ANN response is interpreted as a probability, how likely the particle fulfills the requirements
to be a tagging particle, i.e. the particle is correlated to the production flavour of the signal B
meson. This probability is evaluated for every particle in the B event. Hence, all particles can be
weighted according to their assigned probability.

Another novelty is, that the highest-weighted particles are combined to derive the tagging
decision. In the old implementation, only the charge of the highest pT particle was used as tagging
decision. Now, a second ANN is used to derive a tagging decision from multiple high-ranked
particles. The advantage of this implementation is, that it covers cases, where particles of similar
quality are present.

3See for example http://googleresearch.blogspot.de/2014/09/building-deeper-understanding-of-images.
html and http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent.html

4The ANN has multiple hidden layers between the input and output layers.
5See for example Nvidia: deep neural network for auto-piloted driving https://www.youtube.com/watch?v=

zsVsUvx8ieo
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3.6. Novel Artificial Neural Network Tagging Algorithm

Hence, the working principle of the novel ANN-based OS kaon tagger is:

1. Distinguish between tagging particles, which are kaons from opposite b hadron decays, and
background particles using an ANN. The ANN response is evaluated for each particle and
assigned to it as weight.

2. Combine high-ranked particles from step 1 to derive the tag decision using a second ANN.
The second ANN response is evaluated for each B event and assigned to it as mistag
probability.

In the following the strategy of the ANN-based OS kaon tagger is explained in detail. First
an introduction to the used ANN is given, then the development process of the new tagging
algorithm is presented. The improvement in tagging performance achieved by the new tagger
is evaluated. The new tagger is embedded into the combination with the LHCb flavour tagging
algorithms, tagger correlations and systematic uncertainties on the calibration of the new tagger
are determined. At the end of the section a short summary highlights the improvements.

3.6.1. The Artificial Neural Network (ANN)
Mathematically, an ANN is given by a nonlinear function from a set of input variables xi (i = 1, .., n)
to a set of output variables yk (k ∈ N) controlled by a vector of adjustable parameters w, the
network weights [81]. The ANN is structured in layers. The basic structure is given by three
layers, an input layer, a hidden layer and an output layer. Each layer consists of neurons, where a
neuron is a linear or non-linear function, that maps the neuron input onto the neuron output.
The input variables xi are connected to the neurons of the input layer f (1)(xi) and linearly

mapped onto the outputs of the first layer y(1)
i

y
(1)
i = f (1)(xi) with f (1)(xi) = αxi + β. (3.26)

From the outputs of the first layer, m linear combinations are built to form activations aj
(j = 1, ...,m), that serve as inputs to the second layer

aj =
n∑
i=1

w
(1)
ji y

(1)
i + w

(1)
j0 . (3.27)

w
(1)
ji are weights, which are adjusted during the network training process. w(1)

j0 are bias weights,
used to stabilize the training process. Typically, m > n is set in order not to loose information.
In the second layer, the activations aj are transformed using a differentiable, non-linear activation
function f (2)(aj) to yield the outputs y(2)

j of this layer

y
(2)
j = f (2)(aj) with f (2)(aj) = 1

1 + e−aj
. (3.28)

The given flavour tagging task is a classification problem. As a direct consequence of the Bayesian
probability theorem applied to a classification problem the neuron activation function f (2)(aj)
is given by a sigmoidal function, either a logistic sigmoid function, ranging from 0 to 1, as used
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here, or a tanh(h) function ranging from -1 to 1. To obtain the inputs of the third layer, k linear
combinations are built of the outputs of the second layer to form activations ak of the third layer

ak =
m∑
j=1

w
(2)
kj y

(2)
j + w

(2)
k0 . (3.29)

In the classification problem k = 1 is set6. Analog to the hidden layer, the activations are
transformed using f (2)(ak) to yield the output y(3)

1 of the third layer, which corresponds to the
ANN response yANN

yANN = y
(3)
1 = f (2)(ak). (3.30)

Hence, the combined formula which describes the three-layered ANN is

y
(3)
1 (x,w) = f (2)

 m∑
j=1

w
(2)
kj f

(2)
(

n∑
i=1

w
(1)
ji f

(1)(xi) + w
(1)
j0

)
+ w

(2)
k0

 . (3.31)

Figure 3.16 shows a visualization of a three-layered ANN. This network topology is also referred
to as two-layered ANN, counting the layers that carry weights, only. The evaluation process can
be interpreted as a forward propagation of information through the network. Hence, this structure
is called feed-forward in contrast to recurrent neural networks, where connections form directed
cycles.
Each of the two processing stages of the three-layered ANN can be identified with the per-

ceptron model. Hence, the ANN is also called multilayer perceptron. However, the ANN uses
continuous sigmoidal nonlinear functions in the hidden units, while a perceptron uses step-function
nonlinearities.

ANNs are said to be universal approximators [81]. Given sufficient training statistics, the ANN
can distinguish any data that is not linearly separable [82].

The determination of the event weights happens during the learning process. An Error function
E is minimized by adjusting the vector of weights w. E is the sum of N Error functions Ea,
where a = 1, ..., N and N being the number of training events. The Error function of the ath
training event is defined as

Ea(xa|w) = 1
2(yANN,a(xa,w)− ŷa)2, (3.32)

where yANN,a(xa,w) is the network response computed from the vector of input variables xa =
(x1, ..., xn)a and the vector of weights w. ŷa is the desired output, which is either 1 for signal or 0
for background. Then, E is given as

E(x1, ...,xN |w) =
N∑
a=1

Ea(xa|w) =
N∑
a=1

1
2 (yANN,a(xa,w)− ŷa)2 . (3.33)

Depending on the chosen learning mechanism the optimal set of weights is found. Back propagation
optimizes the weights iteratively via the first derivative of the Error function. The Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [83], [84], [85] and [86] uses the second derivatives of
the Error function. The BFGS method is used in this thesis.

6In regression problems k ∈ N and k > 1 is set.

62



3.6. Novel Artificial Neural Network Tagging Algorithm
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Figure 3.16.: Visualization of an ANN with one hidden layer. The neurons are connected in
feed-forward structure.

In the given case of binary classification with logistic sigmoid activation function, where class
C1 corresponds to ŷ = 1 and C2 to ŷ = 0, the ANN response yANN (x,w) can be interpreted as
conditional probability p(C1|x). Accordingly, p(C2|x) is given by 1− yANN (x,w). The conditional
probability of ŷ to occur is given by a Bernoulli distribution

p(ŷ|x,w) = yANN (x,w)ŷ (1− yANN (x,w))1−ŷ (3.34)

If the training set consists of independent observations, as it is here the case, the Error function,
given by the negative log likelihood, is a cross-entropy Error function [81]

E(x1, ...,xN |w) = −
N∑
a=1

[ŷa ln(yANN,a(xa,w) + (1− ŷa) ln(1− yANN,a(xa,w)] . (3.35)

The ANN implementation provided by the TMVA package is used here [87].
After the learning process an overtraining test of the network is done. The training sample is

split in two halves beforehand, one half for training and one half for testing. The minimization of
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the Error function is recalculated on the testing events and compared to the one for training. A
possible sign for overtraining is, when the estimators differ significantly. If the performance on
the training sample is significantly better, the network is sensitive to statistical fluctuations in the
training sample. Normally, the training estimator distribution becomes constant after a sufficient
amount of training cycles and performs slightly better than the testing estimator.
In order to determine the best ANN for a given problem, the importance Ii of each input

variable xi is determined using the weights between the input layer and the first hidden layer w(1)
ij

Ii = x̄2
i

nh∑
j=1

(
w

(1)
ij

)2
, (3.36)

where nh is the number of neurons in the first hidden layer and x̄2
i is the normalized sample mean

of the ith input variable, i.e. prior to the determination of the sample mean the range of the
variable is normalized to [-1,1] using the transformation

xi,norm = 2 · (xi − xi,min)
xi,max − xi,min

− 1. (3.37)

The importance Ii of the ith input variable gives a measure of the connectivity between this
variable and the ANN response. An input variable of good separation power will clearly influence
the ANN response positively.
In the following, the development of the ANN-based OS kaon tagging algorithm is presented.

First, the configuration and training of the first ANN (ANN1) is shown, which separates OS
kaon tagging candidates from background. The ANN1 response is assigned as weight to each
candidate. Then, the configuration and training of the second ANN (ANN2) is shown, which
forms the tagging decision by combining the high-ranked candidates from ANN1.
The global figure of merit is the tagging power of the tagging algorithm. However, the

optimization process consists of multiple steps depending on each other. The ANN1 is used as
input for the ANN2. Hence, the tagging power can only be determined, once an ANN1 has been
chosen and the ANN2 has been trained using the ANN1 response. The local figure of merit, used
to select the ANN1 from several networks, is separation power and training stability.

3.6.2. First ANN

Training Sample

OS taggers can be developed independently of the signal B decay. The underlying assumption is,
that the optimal working point of an OS tagger is independent of the signal B decay. Therefore,
the flavour specific B+→ J/ψK+ decay is commonly used. The advantages are, that due to
the clean trigger signature of the subsequent J/ψ → µ+µ− decay, a high statistics sample of
these decays is available in data. Additionally, charged B mesons do not oscillate. If the tagging
decision differs from the charge of the final state kaon the B+ meson is wrongly tagged. Thus, the
predicted mistag probability of the tagger can be calibrated to the measured mistag probability
in real data by counting the number of correctly and wrongly tagged events.
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However, after the ANN-based OS kaon tagger was developed and optimized on B+→ J/ψK+

data, it turned out that the initial assumption was wrong. The novel tagging algorithm had been
optimized for high tagging efficiencies. However, the fragmentation processes of B+, B0 and B0

s

mesons are different. In the B0
s fragmentation, kaons are produced, that are correlated to the

signal b production flavour, but carry the opposite charge compared to kaons from opposite side
b→ c→ s transitions. This type of background is not present in B+ decays. Hence, it was not
considered during the optimization of the ANN-based OS kaon tagger. Thus, the tagger had to be
re-developed to find the new optimal working point applicable to oscillating B0 and B0

s mesons.
A retraining of the first ANN (ANN1) was done using B0

s→ J/ψφ decays instead of B+→ J/ψK+

decays. The B0
s→ J/ψφ signal selection is taken from the measurement of the CP -violating phase

φs at LHCb using B0
s→ J/ψφ decays [88]. The ANN1 is trained on MC simulation to access the

production information of the tagging candidates, while ANN2 is trained on B+→ J/ψK+ data.
A cut on the response of ANN1 removes background particles including the fragmentation kaons
relevant in B0

s decays. Thus, ANN2 can still be trained using B+ decays. The full LHC Run I
data set is used corresponding to 1 fb−1 of data taken in 2011 and 2 fb−1 of data taken in 2012.

Training Procedure

The training task of ANN1 is to distinguish between kaons from opposite b hadron decays (OS
kaons) and background particles. In general, particles from b hadron decays are high energetic.
Thus, OS kaons have a harder (transverse) momentum spectrum than soft QCD background
from the underlying event (UE) in the primary proton-proton interaction. The b hadrons are
relatively long-lived, hence, their decay vertices are displaced from the primary vertex (PV). Thus,
OS kaons also have relatively large impact parameters (IP) with respect to the PV. The IP is
measured as the perpendicular distance between the OS kaon track and the PV. For OS kaons
also the IP significance is high, which is the IP divided by its uncertainty.
The above listed kinematic properties of OS kaons help to separate them from soft QCD

background. An additional source of background are particles from mis-reconstructed tracks.
The track fit quality serves as a useful variable for that task. The long extrapolation of tracks
through the LHCb spectrometer provides an excellent momentum resolution. However, it also
causes mis-matchings between the tracking detectors resulting in so-called ghost tracks. The ghost
probability [39], a multivariate variable, is used to suppress ghost tracks.
Figure 3.17 shows the mentioned variables. Per variable two distributions are shown, OS

kaons, referred to as signal, and background, which are all other particles in the event, mainly
UE particles and particles from mis-reconstructed tracks. Two transformations are applied to
the variables, before using them as inputs to ANN1. Variables with sharp peak structure, like
momentum or IP distributions are transformed by a logarithmic function. To all variables, a
linear decorrelation transformation is applied, provided by the TMVA framework7.
The bb pair produced at the LHC is boosted. Hence, the flight directions of the opposite b

hadron and the signal B meson are similar. This property can be used to select OS kaons. Thus,
the difference in pseudo rapidity and azimuthal angle between the tagging candidate and the

7The vector of input variables x is multiplied with the inverse of the square-root matrix C′ ·x = x′, which is defined
as C′ = S

√
DST , where D is the diagonal matrix of the symmetric covariance matrix S, with D = STCS.
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Figure 3.17.: ANN1 input variables separately drawn for signal, which are OS kaons (blue)
and background particles, which are all other particles in the event (red): log(p),
log(pT ), log(IPsig), log(IP ), track log(χ2/ndf), log(ghost probability). The linear
decorrelation transformation is applied.
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signal B is taken as inputs to ANN1, ∆η and ∆φ, respectively. The probability to tag signal B
mesons with a large transverse momentum pT is higher than the one for signal B mesons with
small pT due to the more distinct topology of the high energetic B decay. Therefore, the signal
B pT is used as input to ANN1. Generally, the probability to tag B mesons in events with less
primary interactions and lower track multiplicities is higher. Thus, the number of primary vertices
and the number of tagging candidates per event is also used.

These five quantities are shown in figure 3.18. The signal to background separation power seems
to be much weaker than the one from the quantities in figure 3.17. However, they add information
to the ANN, because they give valuable insights into the kinematics of the B event.

The tagging pre-selection, introduced in section 3.4, and the PID cuts as used in the cut-based
OS kaon tagger, see section 3.5.1, are applied to all tagging candidates prior to the ANN1 training
and application. The number of tagging candidates per event is determined after these cuts.
The cuts are applied in order to formulate a distinct training task for the ANN1. The tagging
pre-selection ensures, that particles from the signal B decay are rejected. Additionally, it removes
particles from tracks of poor quality. The PID cuts suppress pions and protons. Hence, the ANN1
learns to distinguish between high energetic OS kaons and kaons from the UE.
During the development process of the ANN1 the above presented set of input parameters

turned out to deliver the network with the best separation power and with the most robust
learning rate. Other networks were trained with subsets of this set of input parameters. Those
networks showed worse performance.

A ranking of the separation power of the input variables is shown in table 3.15. The separation
power

〈
S2〉 of the variable x between the signal S(x) and background B(x) distributions is defined

as 〈
S2
〉

= 1
2

∫ max

min

(S(x)−B(x))2

S(x) +B(x) dx, (3.38)

where min, max are the lower and upper limits of the distribution of x.

Rank Variable Separation Power
1 log(|IPsig|)(K) 2.950× 10−1

2 log(|IP |)(K) 2.100× 10−1

3 log(pT )(K) 1.897× 10−1

4 log(p)(K) 1.251× 10−1

5 log(ghost prob)(K) 7.455× 10−2

6 log(χ2/ndf)(K) 4.230× 10−2

7 log(#candidates) 2.279× 10−2

8 ∆η(K,B) 1.536× 10−2

9 ∆φ(K,B) 1.469× 10−2

10 #vertices 3.390× 10−3

11 log(pT )(B) 9.498× 10−4

Table 3.15.: Separation Power of the input variables of ANN1.
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Figure 3.18.: ANN1 input variables separately drawn for signal, which are OS kaons (blue) and
background particles, which are all other particles in the event (red): ∆η, ∆φ,
signal B log(pT ), log(#candidates/event), #PV s/event. The linear decorrelation
transformation is applied.
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The Bayesian ANN [89] implemented in the TMVA framework [87] is used. A normalization
and decorrelation transformation provided by the TMVA framework is applied to the input
variables. The estimator type cross-entropy is chosen, because the training set consists of
independent observations. The neuron activation function is chosen to be a sigmoid logistic
function, which results in an ANN response between 0 and 1. For training 5.0× 104 signal and
5.0× 104 background tagging candidates are used. The same amount of tagging candidates is
used to test the estimator, allowing to compare the performance of the ANN on two independent
but comparable samples. Several networks were trained with different numbers of hidden layers
and neurons per layer. The network which showed the most reliable training success and gave the
best performance was picked.
The topology of the final network consists of one hidden layer with n+8 neurons, where n is

the number of input variables. The number of additional neurons in the hidden layer was set in
different training scenarios to any number between 1 and 20. Eight turned out to yield the best
training behaviour. The network topology of ANN1 is shown in figure 3.19.

log(k_p) :

log(k_pt) :

log(abs(k_ipsig)) :

log(abs(k_ip)) :

log(k_lcs) :

log(k_ghost) :

k_diff_eta :

k_delta_phi :

log(B_pt) :

log(cands) :

no_vtx :

Bias node :
Layer 0 Layer 1 Output layer

Figure 3.19.: Network Topology of ANN1.

The BFGS training method is chosen. These settings ensure that the ANN response can be
interpreted as a normalized probability [89].
The response of ANN1 is shown in figure 3.20. It clearly peaks at 1 for signal (OS kaons) and

at 0 for background (all other kaons). However, both distributions have long tails that leak into
the other distribution’s peak. The training convergence test is also shown in figure 3.20. After
400 training cycles (called epochs) the estimator curve becomes constant. The estimator of the
training sample is slightly better than the one of the testing sample. The training and testing
samples are statistically independent.

The correlation between the ANN1 response and each input variable is given in table 3.16. As
expected, the IP significance is strongly correlated to the network response. The ranking of the
correlations follows a similar order compared to the ranking of separation power of the variables,
shown in table 3.15.
The separation significance σS of a network response is defined as

σS = (ȳANN1,S − ȳANN1,B)2

RMS(yANN1,S)2 +RMS(yANN1,B)2 , (3.39)
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Figure 3.20.: (a) The response of the first ANN. (b) Convergence test of the training process of
the first ANN. The estimator becomes constant over a large number of epochs. The
estimator of the testing sample follows closely the estimator on the training sample.

ȳANN1,S and ȳANN1,B are the mean values of the response distributions for signal and background,
respectively, and RMS(yANN1,S), RMS(yANN1,B) are the corresponding root-mean-square values
of the distributions. The separation power and the separation significance were used in the
iterative process to determine the optimal ANN1. Table 3.17 shows both quantities evaluated for
networks, where the number of additional neurons in the hidden layer is varied. The configuration
with 8 additional neurons was chosen.

Rank Variable Correlation to yANN1

1 log(|IPsig|)(K) 0.656
2 log(pT )(K) 0.481
3 log(|IP |)(K) 0.421
4 log(p)(K) 0.271
5 ∆η(K,B) 0.153
6 log(ghost prob)(K) 0.143
7 log(#candidates) 0.101
8 log(χ2/ndf)(K) 0.090
9 #vertices 0.024
10 ∆φ(K,B) 0.016
11 log(pT )(B) 0.009

Table 3.16.: Correlation of the ANN1 response to each input variable.
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Additional Neurons Separation Power Separation Significance
3 0.522 1.472
4 0.521 1.470
5 0.520 1.467
6 0.521 1.470
7 0.520 1.469
8 0.522 1.472
9 0.520 1.469
10 0.522 1.472

Table 3.17.: Separation power and separation significance of networks, configured and trained as
ANN1, but varying the number of additional neurons in the hidden layer.

Background rejection versus signal efficiency of ANN1 is shown in figure 3.21. At 90% signal
efficiency 70% of background is rejected.
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Figure 3.21.: Background rejection against signal efficiency of ANN1.

ANN1 is applied to three samples, B0
s → J/ψφ decays using simulation and B+→ J/ψK+

decays using simulation and data, shown in figure 3.22. A minimum cut is applied to the ANN1
response to reject kaons which are unlikely to come from an opposite b hadron decay. The cut
value is optimized to achieve maximum tagging power on both types of B mesons: B+ and B0

s .
Due to the different fragmentation processes of B+ and B0

s mesons, a working point of the tagger
has to be chosen that is suboptimal for B+ decays.
When the tagger is optimized on B+→ J/ψK+ decays, only, a cut value of 0.3 is found. This

rather loose cut is sufficient to reject background tagging particles in B+ decays. The tagger works
at a maximum tagging efficiency. However, when the tagger is also applied to B0

s→ J/ψφ decays,
the cut value needs to be tightened to 0.6 to reject fragmentation kaons. The distributions of the
IP significance and of the number of tagging candidates per event, before and after applying the
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cut on the ANN1 response, are also shown in figure 3.22. The cut on the ANN1 response removes
tagging candidates with low IP significance. After the cut the number of tagging candidates per
event is very similar in B0

s and B+ decays, on average around 1.3.
The initial assumption, that OS taggers can be optimized on any B decay channel is withdrawn

by this study. A multivariate tagger development, that optimizes not only in purity, low mistag
probability, to enhance the tagging power, but also in tagging efficiency, is very sensitive to
different background compositions between B types. The background is different in terms of the
absolute amount of background particles per event and of charge correlation to the b flavour.
Since the B decay time follows an exponential distribution, the tagger with the higher tagging
efficiency predominantly tags additional opposite b hadrons with shorter decay times. Especially
in these decays, where the separation power between the primary and secondary vertices is smaller,
the tagger picks up tagging particles with lower IP values. However, a small IP is also the
signature of fragmentation kaons from signal B0

s mesons. Since fragmentation kaons are oppositely
charged than OS kaons, the tagging power of the efficient ANN-based OS kaon tagger is decreased.
Hence, a different working point is chosen, which is less efficient, because it rejects more tagging
candidates, but the tagging performance becomes comparable on B+ and B0

s decays.

3.6.3. Second ANN
Training Sample

The second ANN (ANN2) is trained on B+→ J/ψK+ decays in data. Since ANN1 was re-trained
to remove the additional fragmentation kaons background present in the B0

s production, B+

decays are suitable here. Thus, the advantages of flavour specific B+ decays, see section 3.6.2,
can be exploited to optimize the ANN2.
The 2011 and 2012 B+→ J/ψK+ data sets are used. The same procedure to evaluate the

yields is applied as in section 3.5. The fits to the reconstructed B+ mass resonance are shown in
figure 3.23, separately for 2011 and 2012 data.
The corresponding fit parameters are listed in table 3.18. In total, 770× 103 B+ candidates

are obtained, 250× 103 in 2011 data and 520× 103 in 2012 data.

Fit Parameter Fit Value in 2011 Data Fit Value in 2012 Data
# signal 251370 ± 584 519360 ± 842
# background 48271 ± 371 111060 ± 548
µ 5280.90 ± 0.02 5280.90 ± 0.02
σ1 8.461 ± 0.059 8.427 ± 0.043
σ2 17.099 ± 0.354 16.688 ± 0.238
fraction 0.757 ± 0.012 0.744 ± 0.009
slope −0.0012 ± 0.0001 −0.0012 ± 0.0001

Table 3.18.: Parameters obtained from fits to the reconstructed B+ mass resonance using B+→
J/ψK+ decays in 2011 and 2012 data.

72



3.6. Novel Artificial Neural Network Tagging Algorithm

NN1 [ ]η
0 0.2 0.4 0.6 0.8 1

no
rm

al
iz

ed
 e

ve
nt

s 
[ ]

0

0.01

0.02

0.03

0.04

0.05
0
sMC B
+MC B

+data B

(a) ANN1 response (no cut applied)

 NN1 [ ]η
0 0.2 0.4 0.6 0.8 1

n
o

rm
al

iz
ed

 e
ve

n
ts

 [
 ]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 0
sMC B
 +MC B
+data B

(b) ANN1 response (cut applied)

IPS [ ]
-40 -20 0 20 40

no
rm

al
iz

ed
 e

ve
nt

s 
[ ]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
0
sMC B
+MC B

+data B

(c) IP significance (no cut applied)

IPS [ ]

-40 -20 0 20 40

n
o

rm
al

iz
ed

 e
ve

n
ts

 [
 ]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 0
sMC B
 +MC B
+data B

(d) IP significance (cut applied)

# candidates / event [ ]
0 2 4 6 8 10

no
rm

al
iz

ed
 e

ve
nt

s 
[ ]

0.04

0.06

0.08

0.1

0.12

0.14 0
sMC B
+MC B

+data B

(e) # candidates (no cut applied)

# candidates / event [ ]

0 2 4 6 8 10

n
o

rm
al

iz
ed

 e
ve

n
ts

 [
 ]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0
sMC B
 +MC B
+data B

(f) #candidates (cut applied)

Figure 3.22.: ANN1 applied to different samples: B0
s → J/ψφ decays (simulation) and B+→

J/ψK+ decays (simulation and data).
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Figure 3.23.: Fits to the reconstructed B+ mass resonance using B+→ J/ψK+ decays in 2011 (a)
and 2012 (b) data.

Training

The training task of ANN2 is to distinguish between B and B mesons. Therefore, the response of
ANN2 is identified with the mistag probability of the B event. A different approach is chosen
compared to the cut-based OS kaon tagger. While the cut-based tagger uses tight requirements
to select one tagging candidate in the event, the ANN-based tagger allows to select more tagging
candidates which fulfill the requirements of ANN1. The advantage of this approach is, that ANN1
is not only used to filter tagging candidates, but also to assign a probability of being an OS kaon
to each candidate. The probability is exploited in ANN2 to derive the tagging decision from one
or multiple tagging candidates per B event. This inclusive approach allows to tag more B events.
Thus, the tagging efficiency of the ANN-based tagger is higher compared to the cut-based tagger.

ANN2 uses up to three ANN1 high-ranked tagging candidates per B event. The candidates
are ordered, the highest-ranked candidate comes first. The ANN1 response of each candidate is
multiplied by its charge and used as input variable to ANN2. Additionally, a particle identification
variable, the ANN-based PID [46], is used as input. The ANN-based PID variable is defined
between 0 and 1. Values close to 1 are assigned to kaons to discriminate mainly pions. The
ANN-based PID is also multiplied by the charge of the tagging candidate. In this way, additional
information is provided to ANN2, which tagging candidate is most likely correlated to the opposite
b hadron flavour. Figure 3.24 shows the variables, separately for B+ events called signal and B−
events called background. In case, less than three high-ranked candidates per B event are present,
the related variables are set to zero.

Besides tagging candidate variables, event variables are also used as inputs to ANN2. The signal
B transverse momentum pT , the number of primary vertices (PV) and the number of tagging

74



3.6. Novel Artificial Neural Network Tagging Algorithm

 (1) [ ]
NN1

ηsign * 
-0.5 0 0.5 1

n
o

rm
al

iz
ed

 c
an

d
id

at
es

 [
 ]

-410

-310

-210

-110

1

10

signal

background

(a) Best candidate: charge× yANN1

 (1) [ ]
NN,k

sign * pid
-0.5 0 0.5 1

n
o

rm
al

iz
ed

 c
an

d
id

at
es

 [
 ]

-410

-310

-210

-110

1

10

signal

background

(b) Best candidate: charge× PIDANN,k

 (2) [ ]
NN1

ηsign * 
-0.5 0 0.5 1

n
o

rm
al

iz
ed

 c
an

d
id

at
es

 [
 ]

-410

-310

-210

-110

1

10

signal

background
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(d) 2nd best candidate: charge× PIDANN,k
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(e) 3rd best candidate: charge× yANN1
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(f) 3rd best candidate: charge× PIDANN,k

Figure 3.24.: ANN2 input variables separately drawn for signal (blue), which are arbitrarily chosen
to be B+ decays, and background (red), which are B− decays. The ANN1 response
(left) and the ANN-based PID variable (right) of the three high-ranked tagging
candidates, best first, multiplied by the charge sign are taken.
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candidates per event, counted after applying the cut on the ANN1 response. These quantities
provide information to ANN2 of the general quality of the B event. If the event contains many
primary interactions, it is unlikely to tag it correctly because the assignment of the PV to the
decay might be wrong. Accordingly, if the signal B is low-energetic most likely the opposite b
hadron is low-energetic, too. In this case the separation between the PV and the b hadron decay
vertex is less significant. The number of tagging candidates per event provides information about
the distinction of the tagging decision. The event variables are shown in figure 3.25. The same
nomenclature is used: B+ events are called signal, B− events background.
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Figure 3.25.: ANN2 input variables separately drawn for signal (blue), which are arbitrarily chosen
to be B+ decays, and background (red), which are B− decays: pT of the signal B,
# of PVs per event and # tagging candidates per event. The latter is evaluated
after the cut on the ANN1 response is applied.

Before the training, the input variables are normalized and the linear decorrelation transfor-
mation is applied, analog to the treatment of input variables in ANN1. Figure 3.26 shows the
tagging candidate related input variables after transformation. The separation power between the
distributions is more visible. The event related input variables after transformation are basically
unchanged.
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(c) 2nd best candidate: charge× yANN1
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(d) 2nd best candidate: charge× PIDANN,k
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(e) 3rd best candidate: charge× yANN1
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(f) 3rd best candidate: charge× PIDANN,k

Figure 3.26.: Linear decorrelation transformation applied to ANN2 input variables separately
drawn for signal (blue) and background (red). The ANN1 response (left) and the
ANN-based PID variable (right) of the three high-ranked tagging candidates, best
first, multiplied by the charge sign are taken.
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The separation power of the ANN2 input variables is ranked, see table 3.19. The same formula
is used as in section 3.6.2. The ANN1 response of the highest-ranked tagging candidate provides
the best separation power. It is directly followed by the ANN-based PID variable of that candidate.
However, the signal B pT variable provides more separation power than the ANN1 response of
the 3rd best candidate.

Rank Variable Separation Power
1 best candidate charge× yANN1 2.270× 10−2

2 best candidate charge× PIDANN,k 1.914× 10−2

3 2nd best candidate charge× PIDANN,k 1.882× 10−3

4 2nd best candidate charge× yANN1 1.465× 10−3

5 3rd best candidate charge× PIDANN,k 8.684× 10−4

6 pT (B) 5.862× 10−4

7 3rd best candidate charge× yANN1 2.904× 10−4

8 #candidates 1.276× 10−4

9 #vertices 1.194× 10−4

Table 3.19.: Separation power of the input variables of ANN2.

Different combinations of input variables were used in the optimization process of ANN2. The
overall trend is, that more information provided to the network leads to better classification.
However, due to the tightened cut applied to the response of ANN1, to remove the fragmentation
kaons of the B0

s production, the gain of information obtained by using more the than three high
ranked candidates is vanished.
Prior to the training, the sample of B+→ J/ψK+ decays in 2012 data, that contain at least

one tagging candidate per event, is split in two halves. The combinatorial background is removed
using sWeights [79], obtained from the fits to the reconstructed B mass resonance. Thus, for
training 55× 103 B+ and B− sWeighted events are used, while the same number of events is used
for testing the estimator of the ANN2.

The best network performance is achieved with the following configuration. A network with one
hidden layer is created, where n+ 2 neurons are present in the hidden layer. n is the number of
input variables, nine in this case. Analog to ANN1, a Bayesian ANN, implemented in the TMVA
framework is used. The neuron activation function is chosen to be a logistic sigmoid function, so
that the network response is in the range between 0 and 1. The network topology of ANN2 is
shown in figure 3.27.

The distribution of the ANN2 response is shown in figure 3.28. Ideally, the distributions would
have a minimal overlap. However, this is not the case here. The signal distribution is relatively
shifted to values closer to +1 and the background distribution to 0. There is a minimum at 0.5,
where the network response is just a guess. This is a good sign, that the training task is well
defined and reflected in the network response. The training convergence test is also shown in
figure 3.28. The estimator improves over the number of used training cycles and becomes constant
after 450 training cycles. However, the performance on the training sample is slightly better
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Figure 3.27.: Network Topology of ANN2.

compared to the one on the test sample. This shows, that the network becomes already sensitive
to statistical fluctuation in the training data set. Further training cycles would probably lead to
overtraining.
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Figure 3.28.: (a) Response of ANN2. (b) Convergence test of the training process of ANN2. The
estimator becomes constant over a large number of epochs.

A ranking of the correlation of the ANN2 response to each input variable is given in table 3.20.
The order is similar to the separation power of the input variables, shown in table 3.19. The
best tagging candidate, according to the ANN1 response has the highest impact on the ANN2
response. Here, the correlations of the ANN-based PID variable and the ANN1 response to the
ANN2 response are similar, while the former is slightly higher. The correlation between the third
best tagging candidate and the ANN2 response is similar to the correlation of the signal B pT
with the ANN2 response. Hence, adding more tagging candidates per event does not improve the
performance of the ANN2.
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Rank Variable Correlation to yANN2

1 best candidate charge× PIDANN,k 0.826
2 best candidate charge× yANN1 0.818
3 2nd best candidate charge× PIDANN,k 0.232
4 2nd best candidate charge× yANN1 0.210
5 3rd best candidate charge× PIDANN,k 0.058
6 3rd best candidate charge× yANN1 0.055
7 pT (B) 0.052
8 #candidates 0.034
9 #vertices 0.015

Table 3.20.: Correlation of the ANN2 response to each input variable.

Analog to the optimization of ANN1, the separation power and separation significance were
used in the iterative process to determine the optimal ANN2. Table 3.21 shows both quantities
evaluated for networks, where the number of additional neurons in the hidden layer is varied. The
configuration with 2 additional neurons was chosen for ANN2.

Additional Neurons Separation Power Separation Significance
2 0.026 0.227
3 0.025 0.224
4 0.025 0.224
5 0.024 0.219
6 0.025 0.222
7 0.025 0.227
8 0.024 0.220
9 0.021 0.206

Table 3.21.: Separation power and separation significance of networks, configured and trained as
ANN2, but varying the number of additional neurons in the hidden layer.

This study shows, the task of finding OS kaons in
√
s = 8 TeV events at the LHC is not trivial.

Nevertheless, the combination of two ANNs provides a powerful tool for the OS kaon tagger.

Derivation of the Tagging Decision

The tagging decision and the predicted mistag probability is derived from the response of ANN2,
called nn2 in the following. A B+ event is tagged correctly, if nn2 is greater than 0.5. While a
B− event is tagged correctly, if nn2 is less than 0.5. Following the tagging convention, the tag
decision is set to:
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• +1, if nn2 > 0.5 → a B+ was produced,

• -1, if nn2 < 0.5 → a B− was produced.

The predicted mistag probability η is typically defined in the range between 0% (no mistag) and
50% (random tag). Therefore, nn2 is folded from its initial range [0,1] to [0, 0.5] by:

• η = 1− nn2, if tag = +1 (the candidate is tagged as B+),

• η = nn2, if tag = -1 (the candidate is tagged as B−).

Probabilistic Interpretation of the ANN Response

In order to translate the ANN2 response, nn2, into a well defined mistag probability some
additional considerations are necessary. By construction nn2 gives the probability for a signal
event (here a B meson) normalized to the number of signal plus background events, B and B
events:

nn2 = #B(nn2)
#B(nn2) + #B(nn2)

(3.40)

Figure 3.29 illustrates this equality, determined on B+→ J/ψK+ data:
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Figure 3.29.: Distribution of the ANN2 output nn2 versus the normalized probability for a B
meson: #B(nn2)

#B(nn2)+#B(nn2) in 2012 B+→ J/ψK+ data.

However, CP asymmetries in the opposite b hadron decay, detection asymmetries of positively
and negatively charged kaons or possible statistical fluctuations in the training sample of ANN2
can cause differences in the ANN2 response for B or B mesons. Thus, the ANN2 response nn2 is
symmetrized

nn′2 = nn2 + (1− nn2,cc)
2 , (3.41)
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where nn2,cc is the ANN2 response, evaluated after flipping the charge signs of the input variables.
The linear dependence of 1− nn2,cc on nn2 is shown in figure 3.30.
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Figure 3.30.: Two dimensional distribution of the ANN2 response nn2 versus 1− nn2,cc, which is
the ANN2 response simultaneously determined on the same events but with charge
conjugated input variables.

This symmetrization is a prerequisite to interpret the ANN2 response as a well defined mistag
probability η [90]. Consequently, the number of B mesons with the symmetrized ANN2 response
nn′2, NB(nn′2), equals the number of B mesons with the network response 1− nn′2, NB(1− nn′2).
The derivation of the tagging decision is accordingly:

• tag = +1 (B), if nn′2 > 0.5

• tag = −1 (B), if nn′2 < 0.5.
The predicted mistag probability is defined as

• η = 1− nn′2, if tag = +1 (the candidate is tagged as B),

• η = nn′2, if tag = -1 (the candidate is tagged as B).
This definition of η leads to a well defined predicted mistag probability, shown in the following.
The measured mistag probability for a B meson with a predicted mistag probability η is

ωB(η) = NB(nn′2 = η)
NB(nn′2 = η) +NB(nn′2 = 1− η)

= N (nn′2 = η)η
N (nn′2 = η)η +N (nn′2 = 1− η)(1− η)

= N (nn′2 = η)η
N (nn′2 = η)η +N (nn′2 = η)(1− η)

= η , (3.42)
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where N (nn′2 = η) = NB(nn′2 = η) + NB(nn′2 = η) and exploiting the symmetric definition of
nn′2 in equation 3.41. Accordingly, ωB(η) = η holds [90]. Hence, the predicted mistag probability
is well defined by the symmetrized ANN2 response.

3.6.4. Calibration of the ANN-based OS Kaon Tagger

The predicted mistag probability, as defined in equation 3.41, is calibrated to the measured mistag
probability, determined on B+→ J/ψK+ data. This is done for 2011 and 2012 data, separately,
shown in figure 3.31. The linear calibration function

ωmeasured = p0 + p1 · (ηpredicted − 〈η〉) (3.43)

is used, where 〈η〉 is the mean value of the ηpredicted distribution. From the calibration fit the
calibration parameters p0 and p1 are determined, given in table 3.22. Within the statistical
uncertainties the calibration parameters agree between the two data sets.
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(a) Mistag probability calibration on 2011 data
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(b) Mistag probability calibration on 2012 data

Figure 3.31.: Calibration of the predicted mistag probability ηpredicted to the measured mistag
probability ωmeasured(ηpredicted) on 2011 data (a) and on 2012 data (b).

The obtained calibration is applied to the predicted mistag probability of the tagger. It moves
the predicted mistag probabilities to slightly higher values, see figure 3.32.

The universality of the calibration is shown using different B meson decay channels in simulation.
B+→ J/ψK+ decays are compared to B0→ J/ψK∗0 and B0

s→ J/ψφ decays. Figure 3.33 shows
the fitted calibration distributions overlaid for each decay mode. The corresponding fit parameter
values are given in table 3.23. There is no significant deviation between the parameters from the
different calibration fits. Thus, the goal of the re-optimization of the ANN-based OS kaon tagger
is achieved.
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Parameter Fit Value in 2011 Data Fit Value in 2012 Data
p0 0.436± 0.002 0.435± 0.002
p1 1.110± 0.042 1.133± 0.029
〈ηpred〉 = p2 0.435± 0.000 0.435± 0.000

Table 3.22.: Parameter obtained from calibration fits to the ANN-based OS kaon tagger measured
mistag probability using 2011 and 2012 B+→ J/ψK+ data.
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(a) Calibrated predicted mistag probability on 2011 data
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(b) Calibrated predicted mistag probability on 2012 data

Figure 3.32.: Calibrated predicted mistag probability ηpredicted on 2011 (a) and on 2012 B+→
J/ψK+ data (b). The calibrated mistag distribution is slightly shifted to higher
mistag probabilities with respect to the uncalibrated mistag distribution.

Parameter B+→ J/ψK+ MC B0→ J/ψK∗0 MC B0
s→ J/ψφ MC

p0 0.415± 0.003 0.411± 0.005 0.421± 0.002
p1 1.264± 0.054 1.288± 0.074 1.312± 0.028
〈ηpred〉 = p2 0.426± 0.000 0.422± 0.000 0.423± 0.000

Table 3.23.: Parameter obtained from calibration fits to the measured mistag probability of the
ANN-based OS kaon tagger using B+→ J/ψK+, B0→ J/ψK∗0 and B0

s → J/ψφ
decays in MC simulation. The calibration is portable among the different B decay
channels.
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Figure 3.33.: Calibration of the ANN-based OS kaon tagger mistag probability applied to different
MC channels: B+ → J/ψK+ decays in black, B0 → J/ψK∗0 decays in red and
B0
s→ J/ψφ in blue. The calibration is portable among different B decay channels.

3.6.5. Performance of the ANN-based OS Kaon Tagger

The performance of the ANN-based OS kaon tagger is determined using B+→ J/ψK+ decays
in 2011 and 2012 data. For comparison, the numbers before the re-optimization of the tagger
to the B0

s production topology are also evaluated. Both, average and event-by-event mistag
probabilities are computed, defined in equation 3.2 and equation 3.6, respectively. Table 3.24
shows all numbers.
The re-optimization of the tagger decreases the tagging power significantly. The tagging

efficiency is 12% to 14% decreased. Comparing the performance on 2011 and 2012 data, tagging
efficiency is slightly higher in 2012 data, where at larger center-of-mass energies events with higher
track multiplicities are produced. The tagging power is compatible in both data taking years.
This shows, that the ANN-based OS kaon tagger can treat higher track multiplicities. In the next
section a comparison of the ANN-based OS kaon tagging performance with the performance of
other OS tagging algorithms is given.

3.6.6. Comparison of Tagging Performances

This section shows the improvement in tagging power of the ANN-based OS kaon tagger compared
to the cut-based OS kaon tagger. To quantify the effective improvement, combinations with all
other OS taggers are evaluated, after separate calibrations of each combination. All numbers
are evaluated for 2011 and 2012 data separately, using B+→ J/ψK+ data. The combination of
taggers is done following the combination technique given in subsection 3.4.1.
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data set εtag(%) ω(%) εeff (%)
average

2011 B+ optimized 57.97 ± 0.10 43.74 ± 0.13 0.91 ± 0.04
2011 B0

s optimized 44.33 ± 0.10 43.60 ± 0.15 0.73 ± 0.04
2012 B+ optimized 59.21 ± 0.07 43.87 ± 0.09 0.89 ± 0.03
2012 B0

s optimized 45.11 ± 0.07 43.57 ± 0.10 0.75 ± 0.03
event-by-event

2011 B+ optimized 57.97 ± 0.10 42.11 ± 0.11 1.44 ± 0.04
2011 B0

s optimized 44.33 ± 0.10 41.43 ± 0.11 1.30 ± 0.04
2012 B+ optimized 59.21 ± 0.07 42.00 ± 0.08 1.52 ± 0.03
2012 B0

s optimized 45.11 ± 0.07 41.45 ± 0.11 1.32 ± 0.03

Table 3.24.: Tagging performance of the ANN-based OS kaon tagger using average mistag probabil-
ities (upper part) and event-by-event mistag probabilities (lower part), determined on
B+→ J/ψK+ 2011 and 2012 data. Both optimizations of the tagger are considered.

An overview of the tagging performances of the single cut-based OS taggers is given in table 3.25.
The upper part of the table uses average mistag probabilities, the lower part event-by-event mistag
probabilities.
Compared to the cut-based OS kaon tagger, which has a tagging power of 0.99± 0.02 using

event-by-event mistag probabilities on 2012 data, the ANN-based OS kaon tagger achieves a
relative improvement in tagging power of 54% using the B+ optimization and 33% using the B0

s

optimization. This reduces the statitical uncertainty on a mixing asymmetry measurement by
19% and 13%, respectively, without taking more data, see subsection 3.4.2. In the following, the
transport of this improvement through the full OS tagger combination is evaluated.

Combination with the OS Vertex Charge Tagger

Overlap in tagged events is expected with the OS vertex charge tagger. Therefore, first a
combination of the OS vertex tagger with the ANN-based or the cut-based OS kaon taggers
is done. The combinations are calibrated, prior to the determination of tagging performance.
Figure 3.34 shows the calibration fits and calibrated predicted mistag distributions for the ANN-
based OS kaon and cut-based vertex charge tagger combination, separately for 2011 and 2012
B+→ J/ψK+ data. The calibrations are compatible among the data taking years. Figure 3.35
shows the same distributions for the combination of cut-based OS kaon and vertex charge tagger
combination, separately for 2011 and 2012 B+→ J/ψK+ data.

The tagging performances for both combinations of taggers are given in table 3.26 using average
mistag probabilities and event-by-event mistag probabilities. The ANN-based OS kaon tagger has
a very steep distribution of predicted mistag values towards 50% mistag, see figure 3.32. This
behaviour is transported through the combination with the OS vertex charge tagger, see figure 3.34.
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(b) 2011 data mistag distribution
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(c) 2012 data calibration
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(d) 2012 data mistag distribution

Figure 3.34.: Calibration of the combination of the OS vertex tagger and the ANN OS kaon tagger
on 2011 data (upper plots) and 2012 data (lower plots).
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(a) 2011 data calibration

 [ ]η
0 0.2 0.4 0.6

n
o

rm
al

iz
ed

 e
ve

n
ts

 [
 ]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

predicted

calibrated

(b) 2011 data mistag distribution
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(c) 2012 data calibration
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(d) 2012 data mistag distribution

Figure 3.35.: Calibration of the combination of the OS vertex tagger and the OS kaon tagger on
2011 data (upper plots) and 2012 data (lower plots).
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tagger εtag(%) ω(%) εeff (%)
average

2011 vertex 17.27 ± 0.08 39.54 ± 0.24 0.76 ± 0.03
2011 kaon 16.75 ± 0.08 39.35 ± 0.25 0.76 ± 0.03
2011 muon 5.13 ± 0.05 30.37 ± 0.42 0.79 ± 0.03
2011 electron 1.56 ± 0.03 28.71 ± 0.74 0.28 ± 0.02
2012 vertex 18.08 ± 0.05 39.75 ± 0.16 0.76 ± 0.02
2012 kaon 16.98 ± 0.05 39.26 ± 0.16 0.78 ± 0.02
2012 muon 5.34 ± 0.03 29.95 ± 0.27 0.86 ± 0.02
2012 electron 1.56 ± 0.02 29.65 ± 0.51 0.26 ± 0.01

event-by-event
2011 vertex 17.27 ± 0.08 37.30 ± 0.24 1.11 ± 0.03
2011 kaon 16.75 ± 0.08 37.72 ± 0.25 1.01 ± 0.03
2011 muon 5.13 ± 0.05 27.51 ± 0.42 1.04 ± 0.03
2011 electron 1.56 ± 0.03 27.93 ± 0.74 0.30 ± 0.02
2012 vertex 18.08 ± 0.05 37.66 ± 0.16 1.10 ± 0.02
2012 kaon 16.98 ± 0.05 37.96 ± 0.16 0.99 ± 0.02
2012 muon 5.34 ± 0.03 27.65 ± 0.27 1.07 ± 0.02
2012 electron 1.56 ± 0.02 28.14 ± 0.51 0.30 ± 0.01

Table 3.25.: Preliminary tagging performance of the cut-based OS taggers using average mistag
probabilities (upper part) and event-by-event mistag probabilities (lower part). The
numbers are determined using B+→ J/ψK+ decays in 2011 and 2012 data.

More tagged events with predicted mistag probabilities close to 0.5 do not harm if event-by-event
mistag probabilities are applied. However, they dilute the average mistag probability. Thus, in
case of average mistag probabilities the cut-based combination shows a better tagging power, after
the re-optimization to B0

s decays. This can be changed, by requiring an upper limit (below 0.5)
on the calibrated predicted mistag probabilities of the ANN-based OS kaon tagger.

However, it reflects the realistic mistag prediction by the tagger, that in a large fraction of
events only little information of the signal B flavour can be extracted. The tagging power
from event-by-event mistag probabilities confirms this. It is highest, when all tagged events are
considered but weighted according to their predicted mistag probability.

After combination, the event-by-event tagging power of the B+ or B0
s optimized ANN-based

OS kaon tagger is very similar. In total, an improvement of relative 16% and 14% in tagging
power using event-by-event mistag probabilities is achieved, respectively.
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tagger εtag(%) ω(%) εeff (%)
average

2011 vertex + cut kaon 28.04 ± 0.09 40.00 ± 0.18 1.12 ± 0.04
2011 vertex + ANN kaon B+ 63.05 ± 0.10 43.14 ± 0.13 1.19 ± 0.05
2011 vertex + ANN kaon B0

s 50.32 ± 0.10 42.83 ± 0.14 1.04 ± 0.04
2012 vertex + cut kaon 28.89 ± 0.06 40.09 ± 0.13 1.14 ± 0.03
2012 vertex + ANN kaon B+ 64.38 ± 0.07 43.22 ± 0.09 1.18 ± 0.03
2012 vertex + ANN kaon B0

s 51.34 ± 0.07 42.84 ± 0.10 1.05 ± 0.03
event-by-event

2011 vertex + cut kaon 28.04 ± 0.09 37.78 ± 0.18 1.67 ± 0.05
2011 vertex + ANN kaon B+ 63.05 ± 0.10 41.16 ± 0.09 1.97 ± 0.04
2011 vertex + ANN kaon B0

s 50.32 ± 0.10 40.31 ± 0.15 1.89 ± 0.06
2012 vertex + cut kaon 28.89 ± 0.06 37.72 ± 0.12 1.74 ± 0.04
2012 vertex + ANN kaon B+ 64.38 ± 0.07 41.15 ± 0.06 2.02 ± 0.03
2012 vertex + ANN kaon B0

s 51.34 ± 0.07 40.19 ± 0.10 1.98 ± 0.04

Table 3.26.: Tagging performance of the combination of the vertex tagger with the cut-based or
with the ANN-based OS kaon tagger using average mistag probabilities (upper part)
and event-by-event mistag probabilities (lower part).

Combination with the Full OS Tagger

The full OS tagger combinations, where the OS vertex charge, OS muon and OS electron taggers are
combined with the ANN-based or the cut-based OS kaon tagger, are shown in the following. The
overlap of tagged events of the ANN-based OS kaon tagger and the OS lepton taggers is expected
to be very small. Hence, the absolute improvement in tagging power after combination with the OS
vertex charge tagger, ∼ 0.2%, is transported through the full OS combination. Figure 3.36 shows
the calibration fits and calibrated predicted mistag distributions for the OS tagger combination
including the ANN-based OS kaon tagger. Within the statistical uncertainties on the calibration
fit parameters the calibrations are comparable between 2011 and 2012 B+ → J/ψK+ data.
Figure 3.37 shows same distributions for the OS tagger combination including the cut-based OS
kaon tagger.
After calibration the tagging power of each combination on each data set is evaluated using

average and event-by-event mistag probabilities, given in table 3.27. The numbers are computed
separately for the B+ optimization of the ANN-based OS kaon tagger and for the B0

s optimization.
The tagging power using average mistag probability is lower for the combination with the ANN-

based OS kaon tagger, while the tagging power using event-by-event mistag probabilities is higher.
The absolute improvement in tagging power of 0.2% is unchanged in case of B0

s optimization of
the ANN-based OS kaon tagger, while in case of the B+ optimization, the absolute gain in tagging
power is slightly higher. The relative improvement in tagging power is 8% and 10%, respectively.
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(b) 2011 data mistag distribution
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(c) 2012 data calibration
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(d) 2012 data mistag distribution

Figure 3.36.: Calibration of the combination of the OS vertex charge, OS muon, OS electron and
ANN-based OS kaon tagger on B+→ J/ψK+ 2011 data (upper plots) and on 2012
data (lower plots).
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(b) 2011 data mistag distribution
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(c) 2012 data calibration
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Figure 3.37.: Calibration of the combination of the OS taggers on 2011 data (upper plots) and on
2012 data (lower plots).
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tagger εtag(%) ω(%) εeff (%)
average

2011 OS + cut kaon 31.75 ± 0.09 38.55 ± 0.17 1.67 ± 0.05
2011 OS + ANN kaon B+ 64.70 ± 0.10 42.25 ± 0.13 1.56 ± 0.05
2011 OS + ANN kaon B0

s 52.63 ± 0.10 41.74 ± 0.14 1.44 ± 0.05
2012 OS + cut kaon 32.70 ± 0.07 38.64 ± 0.12 1.69 ± 0.03
2012 OS + ANN kaon B+ 66.02 ± 0.07 42.30 ± 0.08 1.56 ± 0.04
2012 OS + ANN kaon B0

s 53.68 ± 0.07 41.73 ± 0.09 1.47 ± 0.03
event-by-event

2011 OS + cut kaon 31.75 ± 0.09 35.24 ± 0.16 2.77 ± 0.06
2011 OS + ANN kaon B+ 64.70 ± 0.10 39.34 ± 0.09 2.94 ± 0.05
2011 OS + ANN kaon B0

s 52.63 ± 0.10 38.21 ± 0.14 2.93 ± 0.07
2012 OS + cut kaon 32.70 ± 0.07 35.56 ± 0.11 2.73 ± 0.04
2012 OS + ANN kaon B+ 66.02 ± 0.07 39.37 ± 0.06 2.99 ± 0.03
2012 OS + ANN kaon B0

s 53.68 ± 0.07 38.29 ± 0.09 2.95 ± 0.05

Table 3.27.: Tagging performance of the combination of the OS vertex, electron and muon taggers
and the cut-based OS kaon tagger compared to the combination of the OS taggers
(vertex, electron and muon) with the ANN-based OS kaon tagger using average mistag
probabilities (upper part) and event-by-event mistag probabilities (lower part).

Tagger Correlations

The before mentioned improvements in the combined OS tagging power due to the ANN-based
OS kaon tagger are substantiated by lower correlations to the other OS taggers. This section
evaluates two types of correlations between taggers, the correlations of mistag probabilities and of
tagging efficiencies.
To compute the mistag probability correlations between tagger i and tagger j, the two dimen-

sional distribution of the calibrated predicted mistag probabilities ηi and ηj is used. The mistag
correlation factor ρ(ηi, ηj) is defined as

ρ(ηi, ηj) = Ci,j
σηiσηj

, (3.44)

where Ci,j is the covariance between the mistag distributions of tagger i and j and σηi the width
of the ith mistag probability distribution. The correlation values are shown in table 3.28 for the
combination with the ANN-based OS kaon tagger and in table 3.29 for the combination with
the cut-based OS kaon tagger. The mistag probability correlations between the ANN-based OS
kaon tagger and the OS lepton taggers are a factor 2.5 to 4 lower compared to the ones with the
cut-based OS kaon tagger. Between the OS vertex charge tagger and the ANN-based OS kaon
tagger the correlation is 30% smaller compared to the one with the cut-based OS kaon tagger.
Although the tagging efficiency of the ANN-based OS kaon tagger is a factor of 2.6 higher than
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the one of the cut-based OS kaon tagger the mistag probability correlations are significantly lower.
That emphasizes the different approach of using a two stepped ANN, which learns to classify
events depending on the ANN driven combined probability of tracks to come from opposite b
hadron decays instead of selecting one best tagging track per event.

muon electron ANN-based kaon vertex
muon – 0.1351 / 0.1590 0.0485 / 0.0646 0.3406 / 0.3356

electron – – 0.0740 / 0.0785 0.3054 / 0.3169
ANN-based kaon – – – 0.2198 / 0.2376

vertex – – – –

Table 3.28.: Mistag Probability correlations between two different OS taggers measured on 2011 /
2012 B+→ J/ψK+ data, respectively.

muon electron cut-based kaon vertex
muon – 0.1351 / 0.1590 0.1729 / 0.1785 0.3406 / 0.3356

electron – – 0.1690 / 0.1921 0.3054 / 0.3169
cut-based kaon – – – 0.3138 / 0.3390

vertex – – – –

Table 3.29.: Mistag Probability correlations between two different OS taggers measured on 2011 /
2012 B+→ J/ψK+ data, respectively.

The tagging efficiency correlation factor ρ(εi, εj) between tagger i and tagger j is defined as

ρ(εi, εj) =
εi&jtag

εitagε
j
tag

− 1, (3.45)

where εi&jtag is the tagging efficiency for a given sample of events, to be tagged by both taggers and
εitag, ε

j
tag are the tagging efficiencies of each tagger on this sample. If the overlap εi&jtag is zero, the

correlation factor is -1. The correlation factor illustrates, whether the majority of events tagged
by one tagger is contained in the set of events tagged by another tagger.

The tagging efficiency correlation factor values are given in table 3.30 for the combination with
the ANN-based OS kaon tagger and in table 3.31 for the combination with the cut-based OS kaon
tagger. The different working principle of the ANN-based OS kaon tagger is very prominent here.
The tagging efficiency correlations between the OS lepton taggers and the OS vertex charge tagger
are big, the events tagged by the muon or electron taggers are (almost) completely contained
in the tagged events by the vertex charge tagger. The ANN-based OS kaon tagger and the OS
vertex charge tagger share only 2/3 of the events tagged by the vertex charge tagger. In contrast,
the cut-based OS kaon tagger tags more than 80% of the same events as the vertex charge tagger.
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muon electron ANN-based kaon vertex
muon – -0.1520 / -0.1454 0.1525 / 0.1570 0.9867 / 0.9529

electron – – 0.3542 / 0.3151 1.4416 / 1.2579
ANN-based kaon – – – 0.4743 / 0.4513

vertex – – – –

Table 3.30.: Tagging efficiency correlations between two different OS taggers measured on 2011 /
2012 B+→ J/ψK+ data, respectively.

muon electron cut-based kaon vertex
muon – -0.1520 / -0.1454 0.2428 / 0.2401 0.9867 / 0.9529

electron – – 0.4122 / 0.3401 1.4416 / 1.2579
cut-based kaon – – – 1.0720 / 1.0122

vertex – – – –

Table 3.31.: Tagging efficiency correlations between two different OS taggers measured on 2011 /
2012 B+→ J/ψK+ data, respectively.

In summary, the OS tagger combination profits from the ANN-based OS kaon tagger. The
mistag probabilities of the OS taggers with respect to the ANN-based OS kaon tagger are less
correlated. However, the gain of 60% in tagging efficiency by the ANN-based OS kaon tagger
is partially covered by the OS vertex charge tagger. The absolute tagging efficiency correlation
factors between the OS vertex charge and ANN-based OS kaon tagger compared to the one
with the cut-based OS kaon tagger are improved. While the relative improvement in these
correlation factors is 20% smaller than the gain in tagging efficiency. This explains, why the
absolute improvement of 0.3% in tagging power of the ANN-based OS kaon tagger compared to
the cut-based OS kaon tagger is reduced by 1/3 to 0.2% absolute gain in tagging power after
the combination with the vertex charge tagger. The additional combination with the OS lepton
taggers does not lower the absolute gain in tagging power.

3.6.7. Systematic Effects on the Calibration

To perform precision CP violation measurements it is crucial that the tagger is properly calibrated
for B and B decays separately. Charge dependent reconstruction asymmetries might result in a
different tagging performance for B and B decays. Many dependencies are taken into account in
the ANN input variables, however, in order to transport the tagger from one data set to another,
one needs to test such dependencies explicitly. Thus, such effects will be investigated in this
section. The tests can be classified into three different types.
First, the influence of possible charge and detector asymmetries on the mistag calibration are

tested. Particles and anti-particles can interact differently with the detector, mainly due to two
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reasons. The cross sections for material interaction are different for K+ and K− [72]. This effect
on the calibration is tested by splitting the data sample into B+ and B− subsamples. On the other
hand particles and anti-particles are bent into different halves of the detector by the magnetic
field. Due to asymmetries in the detector material detection inefficiencies can arise. Here, the
special LHCb feature, the reversal of the magnet polarity can be exploited. The effect on the
calibration is tested by splitting the data sample into magnet polarity up and magnet polarity
down subsamples.
Second, different event topologies can have an impact on the predicted mistag calibration and

tagging performance. Heavier mesons require higher production energies. They are dominantly
selected in events with more QCD background which means higher track multiplicities. The
ANN-based OS kaon tagger was designed to cope with high track multiplicities, however, the
influence of more tagging background tracks on the mistag probability can not be excluded. Also
the fraction of events containing more PVs per event is higher in those events. The selection
criteria for B0

s mesons typically also enhance the mean value of the selected B0
s pT distribution

compared to B0 or B+ selections. Hence, the effect on the mistag calibration is tested by splitting
the sample into subsamples according to different track multiplicities, signal B pT ranges and
number of primary vertices per event.

Third, the running conditions may have changed over the full run period. The effect of different
instantaneous luminosities may cause different predicted mistag probabilities. It is tested by
splitting the sample into subsamples according to different run periods.

Charge and Detection Asymmetries

To test the influence of charge asymmetries on the calibration of the predicted mistag probability
of the ANN-based OS kaon tagger, the B+→ J/ψK+ data samples are split according to the
initial flavour of the B meson. 2011 and 2012 data is tested separately. The influence of possible
detection asymmetries is tested by splitting the samples according to magnet polarities. Figure 3.38
shows the calibrations performed on each subsample. The fitted calibration parameters p0 and p1
are listed in table 3.32 for the B+ B− tests and in table 3.33 for the magnet polarity up and down
tests. The subsamples are statistically independent. Hence, the difference between the subsamples
in p0 and p1 is calculated divided by the combined uncertainty on the difference.
The mistag calibration p0 offset parameter shows a significant deviation between the B+ and

B− subsamples of 5 σ in 2011 data and 6.7σ in 2012 data. This difference has to be taken into
account, when the ANN-based OS kaon tagger is applied to a CP asymmetry measurement.
For different magnet polarities no systematic effect on the mistag calibration is observed.

Different Event Topologies

The influence of different event topologies on the mistag calibration is tested by splitting the sample
into subsamples according to different number of primary vertices per event, track multiplicities
and signal B pT ranges. To test the influence of the mean number of PVs per event the data set is
split into three subsets: events that contain one reconstructed PV per event, events containing two
PVs and events containing three or more PVs per event. The subsets according to different track
multiplicities are chosen such that they contain roughly the same amount of events each. The first

96



3.6. Novel Artificial Neural Network Tagging Algorithm

 [ ]
predicted

η
0 0.2 0.4 0.6

 [
 ]

m
ea

su
re

d
ω

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) initial flavour, 2011

 [ ]
predicted

η
0 0.2 0.4 0.6

 [
 ]

m
ea

su
re

d
ω

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) magnet polarity, 2011
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(c) initial flavour, 2012
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(d) magnet polarity, 2012

Figure 3.38.: Systematic effects on the mistag calibration (top 2011 data, bottom 2012 data)
splitting the sample according to (a, c) the initial flavour of the signal B meson (red:
B+, blue: B−), (b, d) the magnet polarity (red: up, blue: down). The calibration
of the whole sample is shown in black.
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sample p0 ∆p0/σ(∆p0) p1 ∆p1/σ(∆p1)
B+ 0.447 ± 0.003 – 0.972 ± 0.054 –
B− 0.423 ± 0.003 – 1.007 ± 0.052 –
∆ cat. 1-2 (×100) 2.419 ± 0.475 5.1 3.545 ± 7.441 0.5
B+ 0.446 ± 0.002 – 0.965 ± 0.037 –
B− 0.424 ± 0.002 – 1.055 ± 0.035 –
∆ cat. 1-2 (×100) 2.195 ± 0.327 6.7 8.972 ± 5.123 1.8

Table 3.32.: Systematic test on the mistag probability calibration for splitting the sample according
to different initial flavours of the signal B meson using 2011 data (top) and 2012 data
(bottom). The significance of the differences in p0 and p1 are calculated.

sample p0 ∆p0/σ(∆p0) p1 ∆p1/σ(∆p1)
magnet up 0.431 ± 0.004 – 0.991 ± 0.058 –
magnet down 0.438 ± 0.003 – 1.020 ± 0.048 –
∆ cat. 1-2 (×100) 0.679 ± 0.481 1.4 2.903 ± 7.509 0.4
magnet up 0.437 ± 0.002 – 0.992 ± 0.036 –
magnet down 0.433 ± 0.002 – 1.029 ± 0.037 –
∆ cat. 1-2 (×100) 0.427 ± 0.327 1.3 3.730 ± 5.132 0.7

Table 3.33.: Systematic test on the mistag probability calibration for splitting the sample according
to different magnet polarities using 2011 data (top) and 2012 data (bottom). The
significance of the differences in p0 and p1 are calculated.

of three categories contains events with track multiplicities smaller than 100, the second contains
events with track multiplicities between 100 and 200, the third above 200 tracks per event. The
calibration fits are shown in figure 3.39, separately for 2011 and 2012 data. The corresponding
fit parameter values are given in table 3.34 for PVs per event splits and in table 3.35 for track
multiplicity splits. In 2012 data a deviation of 3.9σ is observed in the mistag calibration offset
parameter p0, comparing events that contain 1 PV per event with events that contain 3 or more
PVs per event. The different subsamples according to low and high track multiplicities yield in
2011 data a significant difference in the mistag calibration offset parameter p0 of 5.5σ and in 2012
data of 9.2σ. However, this comparison of subsets probably overestimates the effect, because
typically the data set where the mistag probability calibration is determined from is not that
different in track multiplicities compared to the CP measurement data set. Though, the effect
should be reevaluated for the given conditions when a systematic uncertainty is determined.
The data sets are split in three different sets according to the signal B pT , containing roughly

the same amount of events. In the first subsample the B pT is smaller than 4GeV, in the second
it is larger than 4GeV but smaller than 8GeV and in the third set it is larger than 8GeV. The
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(b) track multiplicity, 2011
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(c) number of vertices, 2012
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(d) track multiplicity, 2012

Figure 3.39.: Calibration systematics for (top 2011 data, bottom 2012 data) splitting the sample
according to (a, c) the number of primary vertices in the event (red: #PVs = 1,
blue: #PVs = 2, green: #PVs ≥ 3), (b, d) the track multiplicity of the event (red:
#tracks < 100, blue: #tracks ∈ [100, 200], green: #tracks > 200). The calibration
of the whole sample is shown in black.
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sample p0 ∆p0/σ(∆p0) p1 ∆p1/σ(∆p1)
#vertices = 1 0.429 ± 0.004 – 1.028 ± 0.061 –
#vertices = 2 0.439 ± 0.004 – 1.033 ± 0.060 –
#vertices ≥ 3 0.437 ± 0.004 – 0.911 ± 0.076 –
∆ cat. 1-2 (×100) 1.023 ± 0.568 1.8 0.541 ± 8.591 0.1
∆ cat. 1-3 (×100) 0.820 ± 0.602 1.4 11.657 ± 9.756 1.2
∆ cat. 2-3 (×100) 0.203 ± 0.582 0.3 12.198 ± 9.671 1.3
#vertices = 1 0.427 ± 0.003 – 1.059 ± 0.047 –
#vertices = 2 0.432 ± 0.003 – 1.006 ± 0.041 –
#vertices ≥ 3 0.443 ± 0.003 – 1.038 ± 0.046 –
∆ cat. 1-2 (×100) 0.554 ± 0.413 1.3 5.296 ± 6.207 0.9
∆ cat. 1-3 (×100) 1.620 ± 0.419 3.9 2.156 ± 6.565 0.3
∆ cat. 2-3 (×100) 1.066 ± 0.382 2.8 3.141 ± 6.179 0.5

Table 3.34.: Systematic test on the mistag probability calibration for splitting the sample according
to different number of primary vertices per event using 2011 data (top) and 2012
data (bottom). The significance of the differences in p0 and p1 are calculated.

sample p0 ∆p0/σ(∆p0) p1 ∆p1/σ(∆p1)
#tracks < 100 0.414 ± 0.005 – 1.094 ± 0.066 –
#tracks ∈ [100, 200] 0.437 ± 0.003 – 0.975 ± 0.054 –
#tracks > 200 0.451 ± 0.005 – 0.883 ± 0.086 –
∆ cat. 1-2 (×100) 2.363 ± 0.571 4.1 11.901 ± 8.506 1.4
∆ cat. 1-3 (×100) 3.696 ± 0.666 5.5 21.068 ±10.810 1.9
∆ cat. 2-3 (×100) 1.332 ± 0.592 2.2 9.167 ±10.121 0.9
#tracks < 100 0.409 ± 0.004 – 1.137 ± 0.053 –
#tracks ∈ [100, 200] 0.432 ± 0.002 – 0.978 ± 0.037 –
#tracks > 200 0.452 ± 0.003 – 0.919 ± 0.050 –
∆ cat. 1-2 (×100) 2.300 ± 0.436 5.3 15.963 ± 6.471 2.5
∆ cat. 1-3 (×100) 4.270 ± 0.463 9.2 21.864 ± 7.257 3.0
∆ cat. 2-3 (×100) 1.970 ± 0.373 5.3 5.901 ± 6.202 1.0

Table 3.35.: Systematic test on the mistag probability calibration for splitting the sample according
to different different track multiplicities per event using 2011 data (top) and 2012
data (bottom). The significance of the differences in p0 and p1 are calculated.
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mistag calibration fits are shown in figure 3.40. The corresponding fit parameter values are given
in table 3.36. No significant deviation in p0 or p1 between the subsamples is observed.
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(a) signal B pT , 2011
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(b) signal B pT , 2012

Figure 3.40.: Calibration systematics for ((a) 2011 data, (b) 2012 data) splitting the sample
according to the pT of the signal B meson (red: pT < 4 GeV, blue: pT ∈ [4, 8] GeV,
green: pT > 8 GeV). The calibration of the whole sample is shown in black.

Different Running Conditions

The influence of different running conditions on the predicted mistag probability calibration of
the ANN-based OS kaon tagger is tested by splitting the sample in subsamples according to
run periods. In LHCb every physics run is assigned an integer continuous run number. Hence,
different run periods are encoded by this run number. 2011 data is split in three run periods
containing roughly the same amount of events each: run numbers smaller than 9.5× 104, run
numbers between 9.5× 104 and 1.01× 105 and run numbers above 1.01× 105. 2012 data is split
in three run periods, accordingly: run numbers smaller than 1.19× 105, run numbers between
1.19× 105 and 1.29× 105 and run numbers above 1.29× 105. The calibration fits are shown in
figure 3.41. The corresponding fit parameter values are given in table 3.37. No significant change
in the fitted calibration parameters due to different run periods is found.

Summary

The influence of charge asymmetries on the predicted mistag probability calibration is significant.
It is recommended to calibrate the ANN-based OS kaon tagger separately on B and B events
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sample p0 ∆p0/σ(∆p0) p1 ∆p1/σ(∆p1)
Bpt < 4 GeV 0.440 ± 0.004 – 1.064 ± 0.070 –
Bpt ∈ [4, 8] GeV 0.434 ± 0.004 – 1.028 ± 0.062 –
Bpt > 8 GeV 0.429 ± 0.005 – 0.939 ± 0.063 –
∆ cat. 1-2 (×100) 0.609 ± 0.550 1.1 3.562 ± 9.411 0.4
∆ cat. 1-3 (×100) 1.030 ± 0.615 1.7 12.475 ± 9.422 1.3
∆ cat. 2-3 (×100) 0.421 ± 0.606 0.7 8.913 ± 8.844 1.0
Bpt < 4 GeV 0.438 ± 0.003 – 1.142 ± 0.051 –
Bpt ∈ [4, 8] GeV 0.433 ± 0.003 – 1.023 ± 0.043 –
Bpt > 8 GeV 0.433 ± 0.003 – 0.968 ± 0.042 –
∆ cat. 1-2 (×100) 0.495 ± 0.384 1.3 11.931 ± 6.639 1.8
∆ cat. 1-3 (×100) 0.443 ± 0.422 1.0 17.431 ± 6.584 2.6
∆ cat. 2-3 (×100) 0.052 ± 0.409 0.1 5.499 ± 5.987 0.9

Table 3.36.: Systematic test on the mistag probability calibration for splitting the sample according
to different different signal B pT ranges using 2011 data (top) and 2012 data (bottom).
The significance of the differences in p0 and p1 are calculated.
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Figure 3.41.: Calibration systematics for (left 2011 data, right 2012 data) splitting the sample
according to the run number, representing the time the data was taken (red: run# <
9.5× 104, blue: run# ∈ [9.5× 104, 1.01× 105], green: run# > 1.01× 105), red:
run# < 1.19× 105, blue: run# ∈ [1.19× 105, 1.29× 105], green: run# > 1.29× 105,
respectively for 2012 data. The calibration of the whole sample is shown in black.
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sample p0 ∆p0/σ(∆p0) p1 ∆p1/σ(∆p1)
run # < 9.5× 104 0.433 ± 0.004 – 1.037 ± 0.060 –
run # ∈ [9.5× 104, 1.01× 105] 0.434 ± 0.004 – 0.929 ± 0.071 –
run # > 1.01× 105 0.437 ± 0.004 – 1.039 ± 0.064 –
∆ cat. 1-2 (×100) 0.071 ± 0.588 0.1 10.816 ± 9.268 1.2
∆ cat. 1-3 (×100) 0.362 ± 0.564 0.6 0.245 ± 8.737 0.0
∆ cat. 2-3 (×100) 0.291 ± 0.598 0.5 11.061 ± 9.521 1.2
run # < 1.19× 105 0.436 ± 0.003 – 1.023 ± 0.047 –
run # ∈ [1.19× 105, 1.29× 105] 0.433 ± 0.003 – 1.041 ± 0.042 –
run # > 1.29× 105 0.435 ± 0.003 – 1.033 ± 0.043 –
∆ cat. 1-2 (×100) 0.247 ± 0.407 0.6 1.745 ± 6.357 0.3
∆ cat. 1-3 (×100) 0.076 ± 0.408 0.2 0.978 ± 6.383 0.2
∆ cat. 2-3 (×100) 0.171 ± 0.390 0.4 0.767 ± 6.028 0.1

Table 3.37.: Systematic test on the mistag probability calibration for splitting the sample according
to different different run numbers using 2011 data (top) and 2012 data (bottom).
The significance of the differences in p0 and p1 are calculated.

before using it in CP asymmetry measurements. The influence of different track multiplicities
and number of PVs per event on the calibration, shown in this study, is overestimated. It is
recommended to study this effect in detail with the given realistic track multiplicity and PV
multiplicity settings for a CP analysis. All other effects are found to be negligible.

3.7. Summary

A novel OS kaon tagging algorithm has been developed in this thesis. It is based on machine
learning techniques. Two feed-forward artificial neural networks (ANN) have been chosen, where
the first ANN serves as input for the second ANN. The first ANN is trained on MC simulation
to identify kaons from opposite b hadron decays. The response of the first ANN, determined
per tagging candidate, is used in two ways. A minimum cut is applied to suppress soft QCD
background. Additionally, the ANN response is applied as weight to each tagging candidate. Up
to three best-ranked tagging candidates, according to the response of the first ANN, are combined
in the second ANN, which predicts the tagging decision accompanied by the mistag probability.
It is trained on data.
The tagger was first optimized on B+→ J/ψK+ decays, only. However, fragmentation kaons

present in the production of B0
s mesons, were selected by this optimization, once the tagger is

applied to B0
s mesons. Hence, the first ANN was re-trained on a sample of B0

s→ J/ψφ decays to
remove this background.
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Using ANNs, the tagging power of the OS kaon tagger improves by 33% using B0
s optimization

and 50% using B+ optimization. This reduces the statistical uncertainty of mixing asymmetry
measurements by 13% and 19%, respectively.
After the re-optimization on the sample of B0

s→ J/ψφ decays the portability to different B
decay channels, B0→ J/ψK∗0 or B0

s → J/ψφ, is guaranteed. After combination with the OS
vertex charge tagger the absolute improvement in tagging power of 0.3% is reduced to 0.2%. The
tagging power of the full OS tagger combination, built of the ANN-based OS kaon tagger, the
OS vertex charge tagger and the OS muon and electron taggers, is improved by absolute 0.2%,
which corresponds to a relative improvement of 8% compared to the OS combination including
the cut-based OS kaon tagger. A relative improvement of 8% in tagging power translates into a
4% improved statistical uncertainty on the mixing asymmetry.

The predicted mistag probability is calibrated against the measured mistag probability in
B+→ J/ψK+ data. Systematic studies on the calibration showed, that the predicted mistag
probability is affected by initial flavour asymmetries. It is recommended to calibrate the tagger
separately for B and B decays before using it in CP asymmetry measurements.
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4. The B0–B0 Oscillation Frequency ∆md

B0–B0 mixing was discovered by the ARGUS collaboration in 1987 [23]. At the DORIS1 II e+e−

storage ring, B0B0 pairs were produced from Υ (4S) decays in a coherent P-wave state. Hence,
B0B0 or B0B0 events could only be observed, if one of the B0/B0 mesons had undergone mixing.
The mixing strength

r = Γ(B0 → B0 → X ′)
Γ(B0 → X) = N(B0B0) +N(B0B0)

N(B0B0)
(4.1)

was measured using three analysis methods. First, ARGUS searched for fully reconstructed
Υ (4S)→ B0B0 or B0B0 decays. Within 88× 103 Υ (4S) decays, one Υ (4S)→ B0B0 decay was
fully reconstructed, see figure 4.1, compatible with the expected occurrence at a mixing strength
of r = 0.2.

Figure 4.1.: Fully reconstructed Υ (4S) → B0B0 event in the ARGUS detector, part of the
discovery of B0–B0 mixing. One B0 decays into B0

1 → D∗−1 µ+
1 ν1, with D∗−1 → π−1sD

0

and D0 → K+
1 π
−
1 . The other B0 decays into B0

2 → D∗−2 µ+
2 ν2, with D∗−2 → π0D−,

where π0 → γγ and D− → K+
2 π
−
2 π
−
2 . Taken from [23]

Second, lepton pairs originating from Υ (4S) decays were reconstructed. In this case, the charge
of the lepton from the b decay identifies the decay of a B or B meson. Hence, like-sign lepton

1Doppel-Ring-Speicher, located at Deutsches Elektronen-Synchrotron (DESY), Hamburg.
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pairs occur only in case of B0–B0 mixing. Third, one B0 from Υ (4S) was reconstructed, while
the second B0 was tagged with a high momentum lepton.
The B0–B0 mixing strength was measured by combining the observation of one fully recon-

structed Υ (4S)→ B0B0 event, 24.8 like-sign lepton pairs (at 4.0σ) and 4.1 tagged B0/B0 events
(at 3.0σ), resulting in

r = 0.21± 0.08 or χ = r

1 + r
= 0.17± 0.05. (4.2)

The B0–B0 mixing discovery year 1987 was the breakthrough year of the B factory idea, i.e.
e+e− annihilation is the cleanest way to study CP violation in B meson decays. The center-of-mass
collision energy is set to the Υ (4S) mass resonance (10.6 GeV) to produce large amounts of BB
pairs2. In order to precisely determine the B decay time the center-of-mass frame of the Υ (4S) is
Lorentz boosted. Therefore, the two beams are operated at asymmetric energies, one high-energy
electron beam at 8− 9 GeV and one low-energy positron beam at 3.1− 3.5 GeV. The most precise
measurements of ∆md today were performed at B factories by BaBar and Belle and at the LHC
by LHCb. These three measurements are sketched in the following.
BaBar reconstructed 50× 103 B0 → D∗+`−ν` decays3 using a data sample of 88× 106 BB

events collected at the Υ (4S) resonance at the PEP-II asymmetric-energy e+ e− storage ring
at SLAC4. The flavour of the other B meson is determined from the charge of another high
momentum lepton. A result of ∆md = (0.511± 0.007 (stat)+0.007

−0.006 (syst)) ps−1 is obtained [91].
Belle reconstructed 177× 103 B0 → D∗−`+ν` and B0 → D−π+, D∗−π+, D∗−ρ+, J/ψK∗0

decays using a data sample of 152× 106 BB pairs collected at the Υ (4S) resonance at the
asymmetric-energy e+ e− KEKB collider at KEK5. To identify the flavour of the other B meson
charged leptons, pions, kaons and Λ baryons are used. A result of ∆md = (0.511± 0.005 (stat)±
0.006 (syst)) ps−1 is obtained [92].
LHCb reconstructed 88× 103 B0 → D−π+ decays and 39× 103 B0 → J/ψK∗0 decays using a

data set, which corresponds to an integrated luminosity of 1 fb−1 of proton-proton collisions at√
s = 7 TeV. With a production cross-section of σ(pp→ B0 +X) = 38.1± 0.6 (stat)± 3.7 (syst)±

4.7(norm.)µb [36] at
√
s = 7 TeV within the LHCb acceptance, this corresponds to 38× 109

produced B0 mesons. The production flavour of the B0 is determined by the opposite side and the
same side pion tagging algorithms. A result of ∆md = (0.5156± 0.0051 (stat)± 0.0033 (syst)) ps−1

is obtained [93]. Although reconstruction and tagging efficiencies of B mesons are significantly
lower, the LHC serves as a competing “hadronic B factory” due to the high bb production rate.
From the first observation of B0–B0 mixing by ARGUS until today, various experiments have

measured the time-dependent oscillation frequency ∆md, see figure 4.2. The Heavy Flavour
Averaging Group (HFAG) combines all ∆md measurements to obtain a world average value. The
latest value, as of Fall 2014, is [22]

∆md = 0.510± 0.003 ps−1. (4.3)
2The fraction of Υ (4S) decaying into BB pairs is larger than 96% [22].
3Charge conjugation of particles is implied unless explicitly stated.
4Stanford Linear Accelerator Center, California, USA
5High Energy Accelerator Research Organization, Tsukuba, Ibaraki Prefecture, Japan
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Figure 4.2.: HFAG ∆md world average. The combination of measurements from almost 30 years of
experimental determination results in a very precise ∆md value, which has a relative
uncertainty of 6‰. Taken from [22]
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Hence, ∆md is currently known with a relative experimental precision of 6‰. Now, what is
the purpose of measuring ∆md at LHCb more precisely? The experimental precision on CP
asymmetries in semileptonic B decays offers room for New Physics contributions, see chapter 1.
LHCb is on its way to measure these asymmetries precisely. The level of accuracy needed to
understand these processes can be demonstrated by a very precise determination of well established
processes like B0–B0 mixing.
Four main ingredients are needed to measure ∆md precisely: the B0 production flavour, the

B0 decay flavour, the B0 decay time, and a large number of reconstructed B0 mesons. A large
data set of semileptonic B0 decays, O(106), is analysed, collected at

√
s = 7 TeV and

√
s = 8 TeV

by the LHCb experiment. Semileptonic decays are flavour specific, thus, the decay flavour of the
B0 is given by the charge of the final state lepton. The production flavour is predicted by flavour
tagging algorithms, see chapter 3.
The goal of the measurement is a precision comparable or even better than the world average.

This can be achieved by exploiting the advantages of the LHC. Due to the large bb cross section, a
high statistics data set of semileptonic B0 decays is recorded, which is efficiently triggered by the
final state lepton. An excellent B0 decay time resolution is obtained, thanks to the large boost of
the bb pair in proton-proton collisions and to the vertex detector of LHCb. A well performing
particle identification is obtained, due to the ring imaging Cherenkov detectors of LHCb.

On the other hand, certain disadvantages have to be tackled at a hadron collider. Compared to
e+e− annihilation at a B factory, proton-proton collisions at the LHC produce orders of magnitudes
higher amounts of background, i.e. a large amount of low QCD background is produced in the
primary interaction. In addition, multiple primary interactions per event are common. Cuts on
the signal B decay length allow a clean signal reconstruction. However, flavour tagging algorithms
are affected by large track multiplicities per event. The tagging power is drastically reduced,
hence, optimized tagging algorithms and large statistics are needed to obtain the statistical power
needed for a precision measurement of ∆md.
To face this problem a novel tagging algorithm has been developed utilizing Artificial Neural

Networks (ANN), that manages to deal with high track multiplicities. This ANN-based OS kaon
tagger combined with other tagging algorithms is used in the precision measurement of ∆md. The
world average precision can only be outplayed, when every part of the analysis plays perfectly
together.

The following sections document the approach and results in detail. In section 4.1 the analysis
is introduced. The decay channels are shown, the experimental approach is explained and the
different B0–B0 oscillation damping factors are illustrated. Section 4.2 presents the analysed data
set, the trigger and selection requirements. Section 4.3 is devoted to MC simulation. Simulation
plays a major role in the measurement of ∆md, because the B0 is only partially reconstructed
due to the missing neutrino. A simulation-driven method, the so called k factor method, first
introduced by the CDF collaboration [94], is used to correct the B0 momentum for the momentum
carried away by the neutrino. Section 4.4 shows the choice of flavour tagging algorithms used to
predict the production flavour of the B0. Section 4.5 presents all relevant backgrounds that have
to be considered for this analysis.

Section 4.6 introduces the Probability Density Function (PDF) to fit ∆md. Section 4.7 shows
the decay time acceptance function and the measured decay time resolution, which is composed
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of the flight distance resolution and the k factor resolution. The k factor method plays a key
role in the analysis. The accuracy of the initial k factor correction is not sufficient for the aimed
precision on ∆md. Hence, an improved k factor method is developed. Section 4.8 demonstrates
the validity of the fit procedure using MC simulation. Section 4.9 shows toy experiment studies
to evaluate the systematic uncertainties. Finally, the result on ∆md and the measured tagging
performance are given in section 4.10.

The oscillation frequency is measured on four data sets: two semileptonic decay channels, each
reconstructed in data sets of two data taking periods, 2011 at

√
s = 7 TeV and 2012 at

√
s = 8 TeV.

These four data sets are fitted separately, first. Second, the data sets are fitted simultaneously,
floating the specific parameters per data set but fitting for one combined ∆md value.

4.1. Measurement of ∆md

The author’s work presented here has also been made available LHCb internally [3] and is currently
in the LHCb-wide review process for publication. The collaboration organizes analysis working
groups, where people from different institutes and countries collaborate to set up a valuable, stable
and robust physics analysis. The author has contributed to the semileptonic working group which
has a subdivision devoted to the measurement of ∆md. In this subgroup the main analysis strategy
decisions were made, however the real analysis implementation was carried out by single persons
separately. The choice was made to develop, maintain and use two different fitter frameworks, one
in Heidelberg presented in this thesis and one in Milan, Italy. The Heidelberg fitter is based on
the implementation of [95] used to measure the CP violating phase φs. It has been adapted since
then for the measurement of the B0

s–B0
s oscillation frequency ∆ms [96] and the semileptonic CP

asymmetry adsl [1] within the Heidelberg LHCb group. This thesis shows a precision measurement
of ∆md carried out by the author, based on the Heidelberg fitter framework. When collaborative
work inputs are referred to, they are explicitly marked.

4.1.1. Semileptonic Decay Channels

The knowledge of the decay flavour of the B meson is a crucial ingredient for the measurement of
∆md. Here, two flavour specific semileptonic decay channels of B0 mesons are chosen:

B0→ D−µ+νµX (with D−→ K+π−π−) (4.4)

B0→ D∗−µ+νµX (with D∗−→ D0π− and D0→ K+π−) (4.5)

X denotes an arbitrary number of additional non-reconstructed hadronic particles. The first
decay channel, equation 4.4, is later on referred to as B0→ D−µ+νµX mode. The reconstructed
decay topology is sketched in figure 4.3. The D− decays into three hadronic final state particles.
It is fully reconstructed, while the B0 which decays into the D− meson and a muon is partially
reconstructed due to the non-reconstructible neutrino.

The second decay channel, equation 4.5, is later on referred to as B0→ D∗−µ+νµX mode. The
reconstructed decay topology is sketched in figure 4.4. Both D decays, the D∗− and the D0 decay,
are fully reconstructed. The D0 decays into two hadronic final state particles. The D∗− decays
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PV B0

D−

νµ
µ+

K+

π−

π−

Figure 4.3.: Topology of the reconstructed B0→ D−µ+νµX (with D− → K+π−π−) decay. The
νµ is not reconstructed. PV denotes the primary interaction vertex.

instantaneously into the D0 meson and a low-energetic pion. The B0 decay into the D∗− and a
muon is partially reconstructed.

PV B0

D∗−
D̄0

νµ
µ+

K+

π−

π−

Figure 4.4.: Topology of the reconstructed B0→ D∗−µ+νµX (with D∗− → D0π− and D0 →
K+π−) decay. The νµ is not reconstructed. PV denotes the primary interaction
vertex.

The charge of the muon tags the b quark content of the B0 meson at decay. With the choice of
using semileptonic decays both advantages and disadvantages come. The advantages are high
branching ratios, B(B0 → D`+ν` anything) = (9.2± 0.8)% [18] and a clean trigger signature of
the decay due to the muon, resulting in a high statistics data set. The hadronic background in
the subsequent D decay can easily be removed by D mass fits. The major disadvantage of this
choice is the non-reconstructible neutrino. Since the LHCb detector is a forward spectrometer,
it is not possible to reconstruct missing energy carried away by the neutrino. The effect on the
reconstructed B0 decay time is corrected by the k factor method. However, the reconstructed B
mass is also affected. Therefore, it is not possible to disentangle semileptonic feed down modes,
which are higher D resonance decays, using a fit to the reconstructed B mass. Hence, also the
sample composition needs to be understood, which relies mainly on simulation.

4.1.2. Analysis Overview
The oscillation frequency ∆md is determined from a fit to the time-dependent mixing asymmetry
distribution, as introduced in chapter 1:

A(t) = N(t)unmixed −N(t)mixed
N(t)unmixed +N(t)mixed

' cos(∆mdt)

Several steps are needed to derive this distribution. An illustration of these steps is shown in
figure 4.5 using a flow chart.
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TaggerSelection

Missing Neutrino

Resolution

Acceptance Weights

B0 Decay Time D Mass Decision Mistag Probability

Mixing Asymmetry

Figure 4.5.: Flow chart to illustrate the measurement of the oscillation frequency ∆md extracted
from the mixing asymmetry (from bottom to top). The tagging efficiency and selection
requirements define the data set. The missing momentum of the neutrino and the
decay time resolution and acceptance shape the B0 decay time distribution. The D
mass resonance is used to statistically remove hadronic background via weights. The
tagging decision and mistag probability construct the mixing asymmetry out of the
decay time distribution.

The mixing asymmetry depends on the B0 decay time. Therefore, two B0 decay time distribu-
tions are determined separately for two classes of reconstructed B0 decays. One class contains B0

decays, whose tagging decision equals the final state muon charge. These are unmixed decays, the
production flavour equals the decay flavour, thus the B0 meson did not oscillate. The other class
contains B0 decays, whose tagging decision is opposite to the final state muon charge. These are
mixed decays, the production flavour is opposite to the decay flavour, thus the B0 meson did
oscillate. The affiliation into the two classes is distorted by the mistag probability, which damps
the mixing asymmetry.
The tagging algorithm has a tagging efficiency, which is smaller than 100%. Hence, the data

set used for the measurement is defined by the tagging efficiency and the additional selection
requirements. The missing neutrino is the driving factor for the decay time determination. The
B0 decay time cannot be measured directly, because of its proportionality to the B0 momentum,
which is partially reconstructed here. The simulation-driven k factor method is used to correct the
reconstructed B0 decay time. Subsequently, the decay time resolution and acceptance functions
are determined. The D mass resonances allow to separate between signal and mis-reconstructed
background. They are fitted to statistically remove the background from the data set using
sWeights [79, 78]. These sWeights are applied to the B0 decay time distribution.

The measurement of ∆md is developed using the blind analysis technique. A random offset and
scale is applied to the ∆md fit result, obtained by fitting data, until the analysis is finalized in
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4. The B0–B0 Oscillation Frequency ∆md

order not to bias the final result. The novel ANN-based OS kaon tagging algorithm is used in
combination with other tagging algorithms to obtain the maximum tagging power.

4.1.3. Experimental approach

The decay time of the B0 meson is reconstructed using the measured flight distance L and the
momentum p of the B:

t = M(PDG)L
pc

(4.6)

with M(PDG) the mass of the B, taken from the PDG [18] and c the speed of light. However,
the measured momentum of the B, which is nothing but the sum of the momenta of the visible
daughter particles of the B, is underestimated due to the non-reconstructible neutrino. There
are different experimental ways to cope with the missing momentum. Either, one may use the
knowledge of the primary and secondary vertex positions to correct for the missing neutrino
momentum up to a quadratic ambiguity [97]. On the other hand, one may follow the CDF
approach and correct for the average momentum loss statistically based on simulation. Here, the
so called k factor is defined as the ratio between the reconstructed and the true B momentum:

k = prec
ptrue

. (4.7)

The k factor is folded into the description of the decay time distribution, described in section 4.7.
A crucial point of this approach is to guarantee, that the simulation reflects properly the conditions
present in the data set. Therefore, extensive studies on the sample composition, selection efficiencies
and kinematics of simulation and data are performed. The uncertainties on these parts are treated
as inputs for the evaluation of systematic uncertainties on ∆md.

4.1.4. Damping factors

The measured mixing asymmetry is damped by several factors:

Ameas(t) ' Dk(t)DσtDtagcos(∆mdt). (4.8)

First, the k factor, as explained above, enters directly the determination of the decay time. Its
damping on the mixing asymmetry is time-dependent in contrast to the other damping factors.
Second, the flight distance resolution enters the decay time distribution at small values close to
zero. It is closely related to the decay time acceptance distribution, which carries a selection
specific shape, and shows the inefficiency in the capability of reconstructing very small flight
distances. Third and most important here, the tagging dilution damps the amplitude of the
mixing asymmetry significantly.
To illustrate the different effects and to get an idea about the orders of magnitudes of the

damping factors, a toy study is performed. A set of 1.6× 107 toy events is generated and fitted
under different measurement conditions. The generated data set is ten times larger than the largest
real data set. Figure 4.6 compares two cases: realistic conditions and idealistic conditions for a
measurement of ∆md. The difference in the amplitude of the mixing asymmetry is remarkable.
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(a) Decay time distribution under realistic conditions
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(c) Decay time distribution under idealistic conditions
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(d) Corresponding mixing asymmetry distribution un-
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Figure 4.6.: Illustration of the damping factors on the mixing asymmetry using 1.6× 107 simulated
B0 decays, generated under realistic conditions (upper plots) and under idealistic
conditions (lower plots). Left: the B0 decay time distributions for all events (black)
and split up according to mixed (red, different production and decay flavour) and
unmixed (blue, same production and decay flavour) events. The corresponding mixing
asymmetry distributions are shown (right). Idealistic conditions contain 4% mistag
probability, therefore, A|t=0 = 0.92.
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Under realistic conditions all damping factors are of the order of the later data fit conditions.
In detail, this means the k factor distribution has a mean value of 1 and a width of 0.14, the flight
distance resolution distribution has Gaussian shape with a mean of 0 fs and width of 100 fs and
the mistag probability ω is of order 40%. Going from realistic to idealistic conditions, without
changing the structure of the fit model is done by exchanging the k factor distribution by a δ
function, which peaks at 1, reducing the flight distance distribution width by a factor 100, from
100 fs to 1 fs, and reducing ω from 40% to 4%. Additionally, the influence of the decay time
acceptance distribution is tested by exchanging the turn-on distribution by a constant distribution.
A truly ideal mixing asymmetry distribution would start at 1. The remaining dilution comes from
the mistag probability of 4%. Figure 4.7 shows the four different scenarios, starting from the
idealistic case and turning on one effect at a time, only.
Quantitatively, the influence of the different damping factors on the mixing asymmetry is

reflected in the fitted statistical uncertainty on ∆md, given in table 4.1.

Fit Model σ(∆md) [ ns−1 ]
idealistic 0.14
with decay time acceptance 0.12
with flight distance resolution 0.14
with k factor resolution 0.16
with mistag probability ω 0.76

Table 4.1.: The influence of different damping factors on the precision of the oscillation frequency
∆md using 1.6× 107 simulated B0 decays.

By far the largest impact on the precision of ∆md has the tagging dilution. It damps the
mixing asymmetry by a factor of (1− 2ω), see section 3.4.2. The realistic decay time acceptance
shape improves the uncertainty, because the total number of generated events is kept constant,
while the realistic decay time acceptance increases the relative amount of valuable long-lived
to short-lived B0 mesons for the measurement. The realistic flight distance resolution has no
significant impact on the statistical uncertainty of ∆md. The k factor resolution increases the
statistical uncertainty on ∆md slightly. However, it is decay time-dependent. It damps the mixing
asymmetry of long-lived B0 mesons more than the asymmetry of short-lived B0 mesons. Thus, the
k factor correction has to be determined accurately in order not to bias the oscillation frequency.

4.2. Data set and Selection
The measurement of the semileptonic CP asymmetry in B0– B0 mixing at LHCb, adsl [1], has
been carried out using the same semileptonic decay channels and similar k factor and fitter
frameworks. In the B0→ D∗−µ+νµX a fit to the mixing asymmetry has been used since a couple
of years by the flavour tagging group to calibrate the OS taggers on B0 data [76]. However, in
the mistag probability calibration fits, the mixing frequency ∆md was fixed to the PDG value.
In a combined effort of the author and colleagues from Milan and Ferrara to measure ∆md in
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(a) Effect of the decay time acceptance
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(b) Effect of the decay time acceptance
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(c) Effect of the flight distance resolution
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(d) Effect of the flight distance resolution
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(e) Effect of the k factor correction
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(f) Effect of the k factor correction
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(g) Effect of the mistag probability ω
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(h) Effect of the mistag probability ω

Figure 4.7.: One-by-one illustration of the different damping factors on the mixing asymmetry, as
in figure 4.6 explained. Left plots: effect on the decay time distribution; right plots:
effect on the mixing asymmetry distribution.
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semileptonic B0 decays at LHCb, the B0→ D−µ+νµX selection was adopted by the author from
the adsl measurement, while the B0→ D∗−µ+νµX selection was set by the Italian colleagues.
The full LHC Run I data set is used, collected by LHCb in the years 2011 and 2012. It

corresponds to approximately 1 fb−1 + 2 fb−1 of data. The 2011 data was taken at a center-of-mass
energy of 7TeV, the 2012 data at 8TeV.
Although semileptonic B0 decays are only partially reconstructed, the decay topology has

characteristic properties, that allow an efficient selection. The most useful features are depicted
in figure 4.8. There are two displaced vertices of good quality, the B0 decay vertex and the D
decay vertex. There is one track that is associated to a muon candidate, detected in the muon
stations of LHCb. The trajectories of the final state particles have large impact parameters with
respect to the Primary Vertex (PV) and a harder transverse momentum spectrum than low QCD
background from the PV.

PV B0

DV
D−

DV

flight distance ~p

νµ

α µ+

IPµ+

IPπ−

K+

π−

π−

z-axis

Figure 4.8.: Visualization of selection variables using the B0→ D−µ+νµX decay. The B0 decay
vertex (DV) is drawn in green, the D− DV is drawn in blue. The distance between
the primary vertex (PV) and the B0 DV is measured as flight distance (fD) of the
B0. The impact parameter (IP) is measured as the perpendicular connection of a
track with respect to the PV. The B0 momentum (~p) does not point back to the PV
due to the missing momentum of the neutrino. The angle between the B0 ~p and the
connection of the PV and the B0 DV (α = DIRA) is used as pointing constraint.
The distance of closest approach (DOCA) between two tracks is measured as the
perpendicular connection between those tracks.

4.2.1. Trigger Selection
The final state muon triggers the hardware L0 trigger. This high momentum muon is also used
to trigger the HLT16. HLT2 selects topologically 2, 3 or 4 body B decays7, where one of the
decay daughters is a muon. Tight track quality cuts and multivariate selection criteria are applied
[98, 99]. The advantage of such an inclusive trigger is, that not all B daughters have to be
reconstructed to trigger an event. Hence, no requirements on the invariant B or D masses are

6The trigger line HLT1TrackMuon is used.
7The trigger lines HLT2TopoMu2,3,4BodyBBDT are used.
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applied, but on the displacement of the decay of the long-lived particles, e.g. impact parameter.
Boosted decision trees are used to perform this task efficiently [100].

4.2.2. Stripping and Off-line Selection

Events that pass the trigger requirements are fully reconstructed and written to storage. Particle
candidates are formed out of tracks and particle identification information. Those candidates
are combined to reconstruct the semileptonic B0 decay. As a next step a pre-selection, called
stripping selection, is applied LHCb-centrally to the full data set. Its purpose is to reduce the
data set using selection requirements, defined by the analysis groups. Hence, the data analyst
accesses a fully reconstructed, stripped data set8. Additional off-line selection requirements are
used to suppress further background.

The vertex fit to form a B0 candidate has to be of good quality. To ensure, that the B0 comes
from the assigned primary vertex (PV), the angle between the direction of the B0 momentum
and its flight direction (DIRA), given by the distance between the PV and the decay vertex (DV)
of the B0, is used. The B0 DV has to be subsequently to the PV and the D DV subsequently to
the B0 DV, which is ensured by a minimum requirement on the difference of the z-positions of
the vertices, where the z-axis is defined from the interaction point into the LHCb spectrometer.
Minimum momentum requirements or tight cuts on the reconstructed mass are not applied to the
B0 candidate due to the missing momentum of the non-reconstructed neutrino.
Muons from semileptonic B decays are high energetic. To select those candidates, minimum

transverse momentum (pT ) and momentum (p) requirements are used. The muon track fit and
the track extrapolation through the LHCb spectrometer have to be of good quality. The latter
is assured by a cut on the so-called ghost probability. A minimum requirement on particle
identification (DLL) ensures to select real muons. The impact parameter (IP) of the muon track
with respect to the PV is used to suppress muons from the primary interaction. Both, the IP and
the uncertainty on the IP are used.
The D decay is fully reconstructed. The D− and D0 mesons decay into hadronic final states

of kaons and pions. As many hadronic particles are produced in the primary proton-proton
interaction, random combinations of particles to form the D candidate have to be suppressed.
Therefore, the D mass resonance is required to be close to the PDG value. Additionally, the sum
of the transverse momenta of the daughter particles has to fulfill a minimum requirement. The
distance of closest approach (DOCA) divided by its uncertainty σDOCA of the daughter tracks has
to be below a maximum requirement and the fit quality of the D DV has to be good. A minimum
requirement on the D decay time ensures to select the relatively long-lived D meson candidate.
The D DV has to be well separated from the PV, ensured by a large IP, while the correct PV
assignment is ensured by a DIRA requirement.
In B0 → D∗−µ+νµX decays, the intermediate D∗ resonance is very short-lived. It decays

immediately into a D0 and a low-energetic pion. The reconstructed mass of the D∗ and the
difference of the reconstructed D∗ and D0 masses are used to reduce combinatorial background. To

8For the B0→ D∗−µ+νµX mode the stripping line StrippingBd2DstarMuNuTight is used, for the B0→ D−µ+νµX
mode Strippingb2DpMuXB2DMuNuXLine.
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4. The B0–B0 Oscillation Frequency ∆md

ensure that the slow pion comes from the D∗ decay, not from the PV, a minimum IP requirement
is used.
The kaon and pion candidates from the D− or D0 decays are required to have a minimum

momentum and transverse momentum. The track fits have to be of good quality and the ghost
probability has has to be low. DLL requirements enhance the separation of kaon and pion
candidates. A minimum requirement on the IP significance ensures that the particles do not
originate from the PV, but from the displaced D vertex.
The stripping and off-line selection requirements used to select B0→ D−µ+νµX decays are

summarized in table 4.2, the ones used to select B0→ D∗−µ+νµX decays are summarized in
table 4.3. Additional veto cuts are applied to suppress specific background decays, see next
subsections.

candidate variable requirement
B0 mass ∈ [3, 5.2] GeV

vertex χ2/ndf < 6
cos(DIRA) > 0.999

z(DVD)− z(DVB) > 0 mm
µ pT > 800 MeV

p > 3.0 GeV
ghost probability < 0.5
track χ2/ndf < 4

DLLµπ > 0
IP/σIP > 3

D− |M(D)−MPDG(D)| < 80 MeV∑
pT D daughters > 1.8 GeV

DOCA/σDOCA D daughters < 4.5
vertex χ2/ndf < 6

vertex separation significance > 10
cos(DIRA) > 0.99

τ > 0.1 ps
log(IP) > −3 log( mm)

K,π pT > 300 MeV
p > 2.0 GeV

ghost probability < 0.5
track χ2/ndf < 4

DLLKπ > 4(K) < 10(π)
IP/σIP > 3

Table 4.2.: Stripping and off-line requirements to select B0→ D−µ+νµX (with D− → K+π−π−)
decays.
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candidate variable requirement
B0 mass ∈ [3, 5.2] GeV

vertex χ2/ndf < 6.6
cos(DIRA) > 0.999

z(DVD)− z(DVB) > −2.5 mm
z(DVB)− z(PV ) > 0.5 mm

µ pT > 0.8 GeV
p > 2.0 GeV

ghost probability < 0.5
DLLµπ > −4
IP/σIP > 2
IP > 0.05 mm

D∗− pT > 1.25 GeV
vertex χ2/ndf < 10

|M(D∗−)−MPDG(D∗−)| < 100 MeV
|M(D∗−)−M(D0)| < 165 MeV

π from D∗− pT > 110 MeV
IP > 0.04 mm

D0 pT > 1.8 GeV
|M(D0)−MPDG(D0)| < 60 MeV

vertex χ2/ndf < 10
vertex separation significance > 7.1

log(IP) > −3 log( mm)
K,π from D0 pT > 400 MeV

p > 2.0 GeV
ghost probability < 0.5

IP > 0.04 mm
DLLKπ > 0 (−)
IP/σIP > 2

Table 4.3.: Stripping and off-line requirements to select B0→ D∗−µ+νµX (with D∗− → D0π−

and D0 → K+π−) decays.
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4. The B0–B0 Oscillation Frequency ∆md

4.2.3. Λ0
b Veto

About 10% of the produced b quarks hadronize to b-baryons, mainly Λ0
b baryons. About 10% of

Λ0
b decay semileptonically [18] into Λ+

c `
−ν`, from which 5% of the Λ+

c decay hadronically into
pK−π+ [18]. If the final state proton is misidentified as a pion the Λ0

b decay looks very similar
to the B0→ D−µ+νµX decay mode. Figure 4.9 shows the Kππ invariant mass distribution
in B0→ D−µ+νµX and B0→ D∗−µ+νµX data, computed under the proton mass hypothesis
for the lowest momentum pion. There is a prominent peak at the mass of the Λ+

c baryon
(mΛ+

c
= 2286.46 ± 0.14 MeV [18]) in the B0 → D−µ+νµX mode. Hence, a veto cut at these

decays is applied to the B0→ D−µ+νµX mode, rejecting events with a proton to pion particle
identification likelihood larger than 10 and an invariant mass, recalculated after exchanging the
proton mass hypothesis, within 2260 MeV and 2310 MeV.
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Figure 4.9.: Kππ invariant mass distributions in the B0 → D−µ+νµX mode (left) and the
B0 → D∗−µ+νµX mode (right) on 2012 data, computed under the proton mass
hypothesis for the lowest momentum pion. In the B0→ D−µ+νµX mode a clear mass
peak at the Λ+

c mass, mΛ+
c

= 2286.46± 0.14 MeV [18], is visible.

4.2.4. J/ψ Veto

B→ J/ψX decays, where the J/ψ decays into two muons, is a source of background due to
misidentification of one of the muons as a high momentum pion. Figure 4.10 shows the µπ
invariant mass distribution in B0→ D−µ+νµX and B0→ D∗−µ+νµX data, where the mass
hypothesis of the highest momentum pion is exchanged by a muon mass hypothesis. In both
modes there is a clear mass peak at the J/ψ mass visible. To remove this background a veto
cut is applied in both modes, rejecting the event if the pion carries the IsMuon flag and if the
invariant mass, recalculated after exchanging the muon mass hypothesis, is between 3070 MeV
and 3150 MeV.
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Figure 4.10.: µπ invariant mass distributions in the B0 → D−µ+νµX (left) and the B0 →
D∗−µ+νµX mode (right) on 2012 data, computed under the muon mass hypothesis
for the highest momentum pion. In both distributions a clear peak at the J/ψ mass,
mJ/ψ = 3096.916± 0.011 MeV [18], is visible.

4.2.5. B+ Veto

Of the order of 10% of the reconstructed decays which pass the selection are semileptonic B+ decays.
Semileptonic B+ decays have a similar decay topology as semileptonic B0 signal decays. However,
an additional charged pion is not reconstructed in case of the B+ decay: B+→ D−µ+νµX and
B+→ D∗−µ+νµX, here contained in the X. Due to the missing momentum, carried away by the
neutrino, the B0 mass resonance cannot be not reconstructed. Instead, a rather broad B mass
shape is present. Hence, B0 and B+ candidates cannot be separated by their invariant mass.
Therefore, a different approach is followed, initially developed by rare decays searches, like

τ → µµµ [101] and rare decay measurements like B0
s → µµ [102]. A multivariate classifier is

trained on track isolation.
Track isolation is computed by combining every track from the event with one of the signal

decay daughter tracks. If those pairs of tracks form a good vertex, the signal decay daughter
track is badly isolated and the decay is most likely background. The multivariate classifier, here a
boosted decision tree (BDT), is trained on this classification task and assigns a probability to
each event as a measure for this track isolation. The latest optimisation study for this classifier
was performed in [103] based on the work, documented in [104]. In this optimised status, the
isolation BDT was successfully used in the τ → µµµ analysis [105].

For the ∆md analysis, a second BDT was trained following closely the approach of the isolation
BDT mentioned above, but including additional semileptonic decay variables: the reconstructed
broad B mass, the pointing angle, which is the angle between the B momentum and the vector
connecting the primary and the B decay vertex, the corrected mass, which is defined as mcorr =√
m2
B + p2

Tν + pTν . The transverse momentum of the neutrino pTν is not reconstructed. Similar
to [106] it is defined as the sine of the pointing angle times the absolute value of the B momentum.
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4. The B0–B0 Oscillation Frequency ∆md

A ‘best’ pion is defined as the one having the smallest impact parameter with respect to the D0/
D+ decay vertex. The invariant mass of the D∗/ D+ and the ‘best’ pion gives a handle on D∗∗
resonances, that are more contained in B+ decays than in B0 decays. The cone isolation is defined
as the fraction of the B pT divided by the B pT plus the sum of the pT of all tracks, that fulfill√
δη2 + δφ2 < 1, where δη, δφ are the difference in pseudo-rapidity and in φ coordinate between the

track and the B candidate. Additionally, the ∆md isolation BDT uses the output of the isolation
BDT per decay daughter track as used in the τ → µµµ analysis [105] and the isolation track
counter from [104] as inputs. The ∆md isolation BDT is trained on B0→ D∗−µ+νµX simulation,
using the B0 → D∗−µ+νµX sample as signal class and the B+ → D∗−µ+νµX simulation as
background class. Before training, the track multiplicities in simulation are re-weighted to match
the track multiplicities in data, which are on average higher.

The development of the ∆md isolation BDT was done within the ∆md semileptonic subgroup,
documented in [3]. The author has applied the ∆md isolation BDT to all data sets used for the
analysis in data and simulation. Figure 4.11 shows the ∆md isolation BDT response in simulation
for both modes. The B0 signal response peaks at +1, while the B+ background response peaks at
-1.
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(a) B0→ D−µ+νµX mode
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Figure 4.11.: Isolation BDT response in B0 signal MC and B+ background MC in the B0→
D−µ+νµX mode (left) and B0→ D∗−µ+νµX mode (right).

To reduce the amount of B+ background, a cut is applied to the ∆md isolation BDT output.
The cut value is chosen to loose 10% of the signal B0 MC events. A scan through tighter cut
values showed, that the ratio of B0 to B+ is not improving. The sample specific cut values are
shown in table 4.4. The fraction of B+ background is determined data driven by fitting the
isolation BDT distribution in data. The isolation BDT distribution histograms obtained from B0

signal and B+ background simulation are used hereby as templates. The only free parameter of
the fit is the B+ fraction, shown in section 4.4. For comparison the B+ fraction is also computed
on simulation, only, taking into account the selection efficiencies normalised to the branching
ratios of the decays, shown in section 4.3.
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4.2. Data set and Selection

MC sample isolation BDT
2011 B0→ D−µ+νµX > -0.12
2012 B0→ D−µ+νµX > -0.16
2011 B0→ D∗−µ+νµX > -0.36
2012 B0→ D∗−µ+νµX > -0.38

Table 4.4.: Cut values on the isolation BDT response to veto B+ decays at 10% B0 signal loss.

The measurement of ∆md requires flavour tagging, which posses an algorithm specific tagging
efficiency. Hence, the selection efficiencies are given in section 4.4, together with the tagging
efficiencies.
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4. The B0–B0 Oscillation Frequency ∆md

4.3. Monte Carlo Simulation

MC simulation is used to understand the composition of semileptonic decays in the data set. The
reconstruction of semileptonic decays is inclusive, i.e. the decay can contain more particles, that
are not reconstructed. Due to the missing momentum carried away by the neutrino, the decay
chain is kinematically underconstrained. Hence, additional non-reconstructed tracks from the B0

decay are possible, that originate from higher D resonances. Those events are called feed down
modes, which are included in the MC “cocktails”.

The k factor, used to correct the B0 momentum for the missing neutrino momentum, is derived
from MC. The impact of branching ratio uncertainties, that limit the knowledge of the sample
composition, is treated as systematic uncertainty on ∆md, tested in section 4.9.

For each decay mode a signal B0 decay sample and a background B+ decay sample is generated
for 2011 and 2012 conditions, see table 4.5. In the simulated signal samples the B0 is forced to
decay semileptonically either into a D− or a D∗− meson, including possible higher D resonances.
Subsequently, the D− meson is forced to decay into the K+π−π− final state and the D∗− meson is
forced to decay into the D0(→ K+π−)π− final state. Analogously, in the B+ background samples,
the B+ is forced to decay either into a D− µ+ νµ π

+, or a D∗ µ+ νµ π
+, with subsequent D

decays as in the signal B0 samples. In both cases, the pion is not reconstructed.

Type Decay Generated events
[×106]

2011 2012
Signal B0→ D−µ+νµX 10.0 20.2
Signal B0→ D∗−µ+νµX 20.2 40.1
Background B+→ D−µ+νµX 2.6 7.6
Background B+→ D∗−µ+νµX 2.0 4.1
Background inclusive D+→ K−π+π+ 5.0 10.1
Background inclusive D∗−→ D0π− with D0→ K+π− 6.0 12.1
Background B0

s → D−s1µ
+νµX, Ds1 → D−K0

S - 2.6
Background B0

s → D−s1µ
+νµX, Ds1 → D∗−K0

S - 2.6
Background Λ0

b → n0D−µ+νµX - 2.6
Background Λ0

b → n0D∗−µ+νµX - 2.6

Table 4.5.: Generated samples. The number of generated events is given. It includes both magnet
polarities and Pythia versions (6 and 8). The X in each decay mode indicates that a
cocktail of decay modes has to be considered.

After the Monte Carlo production was finished a bug was discovered in the cocktail decay
files. Wrong form factors were contained in the decay files for D∗ decays. Therefore, the ∆md

semileptonic subgroup developed event by event kinematic correction weights, applied to all D∗
decays in every simulation sample.
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4.4. Flavour Tagging

For both modes and years inclusive D background samples are generated to study the inclusive
background composition. This is necessary, because B0

s and Λ0
b mesons can also decay semilepton-

ically into charmed mesons. The possible fractions of these decays are estimated after applying
the full off-line selection and isolation BDT requirements. B0

s decays occur with a fraction of
1.5 ± 0.4% in the B0→ D−µ+νµX mode and 1.6 ± 0.3% in the B0→ D∗−µ+νµX mode. Due
to the limited statistics of the MC samples, these predictions are not very precise. Introducing
a B0

s component into the ∆md fit is not practicable since the ∆ms oscillation is too fast to be
resolved in the semileptonic decay. Hence, the B0

s component is treated as a systematic. The
Λ0
b component is found to be negligible in both modes having applied all selection requirements.

Additionally, dedicated B0
s and Λ0

b decay background samples are generated, to study the mixing
asymmetry distributions of these backgrounds.

The specifications of the MC generation process are defined by the ∆md semileptonic subgroup
using the relative branching fractions given in appendix B.1. They are based on the work
documented in [107]. The current settings are summarized in [108]. To the simulation samples,
the same stripping, trigger and offline selection requirements are applied as on real data.

4.4. Flavour Tagging

The production flavour of B0 mesons can be determined by opposite side taggers and by the same
side pion tagger, which exploits a charged pion track from the signal b hadronization. Using all
available tagging algorithms and combining their responses results in the highest possible tagging
power, thus, the best sensitivity on ∆md. However, the actual choice of tagging algorithms must
be carefully made due to backgrounds.

A non negligible amount of B+ background, O(6%), is present in the data set. B+ mesons are
charged, hence, they do not oscillate. Particularly at low decay times, the mixing asymmetry
distribution of B+ events tagged by a certain tagger has to be constant. It can have a non-zero
offset, due to a non-zero mistag probability, but the tagging algorithm should not introduce a
time dependence into the mixing asymmetry.
Figure 4.12 shows the mixing asymmetry distribution of B0 signal simulation events overlaid

by B+ background events. It is shown in the B0→ D−µ+νµX mode, where the higher fraction
of B+ background is expected. The B+ mixing asymmetry should be constant, but it is clearly
not. The reason is, that the same side pion tagger selects the additional charged pion track from
semileptonic B+ decays, which is not reconstructed in the signal decay. However, the charged
pion track from the signal decay is of opposite charge than the fragmentation pion. This reverts
the tagging decision of the same side pion tagger, thus, non-oscillating B+ decays appear to have
undergone mixing. In order to avoid the introduction of an artificial background oscillation the
same side pion tagger cannot be used in the ∆md analysis.
Figure 4.13 shows the mixing asymmetry distributions of B0 and B+ simulated events tagged

by opposite side taggers: the OS muon, electron, vertex charge and ANN-based kaon tagger.
Unfortunately, the B+ simulation statistics are low. The B+ mixing distributions tagged by
lepton taggers, that have low tagging efficiencies, are dominated by statistical variations. However,
lepton taggers select leptonic tagging tracks, that leave clean signatures in the detector. It is very
unlikely, that they pick up the additional pion from the semileptonic B+ decay.
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Figure 4.12.: Mixing asymmetry distribution of B0 signal and B+ background simulated events
tagged by the same side pion tagger. The mixing asymmetry of B+ events should
be constant, especially at low decay times, but it shows oscillating behaviour here.
The SS pion tagger is not used.

The mixing asymmetry distribution of B+ decays tagged by the vertex charge tagger shows a
non-constant behaviour at low decay times. It is possible, that the additional pion track from
semileptonic B+ decays is contained in the inclusive secondary vertex reconstruction of the vertex
charge tagger at low B decay times. Thus, the OS vertex charge tagger is not used in the ∆md

analysis.
The mixing asymmetry distribution for B+ decays tagged by the ANN-based kaon tagger is

constant. Hence, a combination of the OS muon, electron and ANN-based kaon taggers is chosen
for the ∆md analysis.

4.4.1. Definition of Tagging Categories

A maximum tagging power is obtained when the events are weighted with the predicted event-
by-event mistag probability. This can be done in an unbinned fit. However, several million
semileptonic B0 decays are selected and tagged in data. Hence, the fit to the mixing asymmetry
must be performed as a binned fit, because an unbinned fit would demand too many computing
resources.

To profit from the predicted mistag probability the events are categorized in tagging categories
of increasing predicted mistag probability. The average measured mistag probability is fitted
per category. Indeed a similar tagging power can be obtained in a binned fit using four tagging
categories compared to an unbinned fit.

A study, to find the optimal set of tagging categories, was determined in the ∆md semileptonic
subgroup, see [3]. The goal of the optimization is to find the minimum number of categories,
that yield a tagging power close to the event-by-event tagging power. A minimum number of
categories is desirable, because each category introduces an additional dimension in the ∆md fit.
The boundaries of the categories are chosen such, that each category is properly populated.
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Figure 4.13.: Mixing asymmetry distributions of B0 signal and B+ background simulated events
tagged by single opposite side taggers. Top left: OS muon tagger, right: OS electron
tagger. Bottom left: vertex charge tagger, right: ANN-based kaon tagger. At
low decay times the mixing asymmetry of B+ events tagged by the OS vertex
charge tagger is not constant. Hence, a combination of the OS muon, electron and
ANN-based kaon taggers is used.

A single category provides a tagging power of 82% of the event-by-event tagging power. 98%
of the event-by-event tagging power is reached with four categories. Introducing more tagging
categories does not significantly improve the reached tagging power. The tagging category
boundaries are shown in table 4.6.

The range of the predicted mistag probability is 0% to 50%. Here, the upper boundary of the
highest mistag category is chosen at 47.5% to exclude badly tagged events. This increases the
average measured mistag probability in that category and the combined mistag probability of all
categories. The cost in tagging efficiency does not undercut the win in mistag probability, because
εeff = εtag(1− 2ω)2.
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4. The B0–B0 Oscillation Frequency ∆md

category lower boundary upper boundary
0 0.00 0.25
1 0.25 0.33
2 0.33 0.41
3 0.41 0.475

Table 4.6.: Tagging category boundary values. The events are categorized with respect to the
event-by-event predicted mistag probability. Using four tagging categories yields 98%
of the maximum tagging power, which is the event-by-event tagging power.

4.4.2. Selection Efficiencies

The final selection efficiencies are shown in table 4.7 for 2011 and 2012, B0→ D−µ+νµX and
B0→ D∗−µ+νµX tagged data. The events are tagged by the combination of OS muon, electron
and ANN-based kaon taggers. In total 5.8× 106 of semileptonic B0 data events are selected
and tagged. These events include combinatoric background of the subsequent D decays. This
background will be removed by fits to the D mass resonances.

Selection B0→ D−µ+νµX B0→ D∗−µ+νµX
2011 2012 2011 2012

# Post-stripping events [106] 7.35 20.74 5.41 15.16
# Selected events [106] 2.17 5.82 1.21 2.80
Selection efficiency 29.5% 28.1% 22.3% 18.5%
# Tagged events [106] 1.02 2.84 0.58 1.38
Tagging efficiency 47.2% 48.7% 47.8% 49.4%

Table 4.7.: Tagged events in 2011 and 2012, B0→ D−µ+νµX and B0→ D∗−µ+νµX mode data
samples. A combination of OS muon, electron and ANN-based kaon taggers is used.
Efficiencies are calculated with respect to the events that pass the previous selection
step.

4.5. Backgrounds

This section discusses all relevant backgrounds for the measurement of ∆md. There are two
types of background. One type is related to the reconstruction of the D decay. The D decays
hadronically into Kππ in case of the D− and Kπ in case of the D0. The D0 comes from a D∗ →
D0 π decay. Possible mis-reconstruction occurs, if hadronic tracks are combined randomly. This
combinatoric background is determined by a mass fit to the D mass resonance. In case of the
B0→ D−µ+νµX mode, a one-dimensional fit to the D− mass resonance is done, while in case
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of the B0→ D∗−µ+νµX mode a two-dimensional fit to the D0 mass resonance and to the mass
difference of m(D∗)−m(D0) = δm is done.

The second type of background are mis-reconstructed B decays. As already discussed, semilep-
tonic B+ decays are not distinguishable from semileptonic B0 decays due to the broad mass
distribution of the reconstructed semileptonic B decays. The neutrino carries away momentum,
hence the momentum of the reconstructed B0 is underestimated. On the other side, momentum of
possible additional non-reconstructed tracks, like the charged pion in case of the semileptonic B+

decay, cannot be separated from the missing momentum of the neutrino. In order to determine
the fraction of B+ decays on data, a different quantity than the B0 mass is exploited, the isolation
BDT distribution. Using the shapes of B0 and B+ isolation BDT distributions from MC in a fit
to the isolation BDT distribution in data, the B+ fraction is extracted. As a cross check, the B+

fraction is also calculated using simulation, only.
Besides semileptonic B+ decays, also semileptonic B0

s and Λ0
b decays are possible. The fractions

of B0
s and Λ0

b decays, estimated from MC, are 1.5% and 0.1%, respectively. They are treated
as systematic uncertainty on ∆md. To evaluate this systematic, the dedicated B0

s and Λ0
b MC

samples are used to study the behaviour of the mixing asymmetry distribution.

4.5.1. Hadronic Combinatoric Background in the B0→ D−µ+νµX Mode

In the B0 → D−µ+νµX mode the reconstructed D− mass distribution is fitted by a binned
extended maximum likelihood9 fit to extract the signal and background yields. Here, signal
includes all types of semileptonic B decays. Two components are considered: D− signal and
D− combinatorial background. The D− mass distribution is binned in 80 uniform bins between
1790MeV and 1950MeV. The signal mass model S is composed of two Gaussian distributions
and a Crystal Ball distribution:

S(m) = G(m;µm, σm,G1) + fm,G ·G(m;µm, σm,G2)
+ (1− fm,G) · fm,CB · CB(m;µm, σm,CB, nm,CB, αm,CB) . (4.9)

The Gaussian distributions, G(m;µm, σm,G1) and G(m;µm, σm,G2), account for mass resolu-
tion effects. One mass mean value µm, but different mass widths, σm,G1, σm,G2 are used.
The fraction fm,G connects the two distributions. The asymmetric Crystal Ball distribution
CB(m;µm, σm,CB, nm,CB, αm,CB) accounts for radiative tails towards lower reconstructed D−

masses. It shares the same mass mean value as the Gaussian distributions, but has a different
width, σm,CB, and parameters nm,CB, αm,CB. The fraction fm,CB connects the Crystal Ball
distribution with the double Gaussian distributions. The background mass model is a single
exponential distribution C:

C(m) = em0·m, (4.10)

with the parameter m0. The total fit to the D− mass distribution is an extended likelihood fit,
i.e. the number of signal (nSig) and background (nBkg) events are fitted:

P(m) = nSig · S(m) + nBkg · C(m). (4.11)
9The definition of a maximum likelihood fit is given in section 4.6.
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4. The B0–B0 Oscillation Frequency ∆md

Parameter 2011 data 2012 data
µm[ MeV] 1871.04± 0.01 1871.103± 0.007
σm,G,1 [MeV ] 7.1± 0.1 7.10± 0.07
σm,G,2 [MeV ] 12.1± 0.3 11.9± 0.2
σm,CB [MeV ] 4.70± 0.07 4.72± 0.04
αm,CB 2.37± 0.03 2.37± 0.02
nm,CB 0.00001 0.00001
fm,G 0.65± 0.02 0.63± 0.01
fm,CB 0.21± 0.02 0.22± 0.01
m0[ MeV−1] −0.00227± 0.0001 −0.002340± 0.00009
#nSig 572 579± 1820 1 597 639± 3 045
#nBkg 184 041± 1709 513 034± 2 862

Table 4.8.: B0→ D−µ+νµX mode: 2011 and 2012 data fitted parameters determined in fits to
the reconstructed D− mass distribution. For the fit parameter definitions see text.

All parameters are floated except the Crystal Ball parameter nm,CB. Figure 4.14 shows the fits to
reconstructed D− mass distributions in 2011 and 2012 B0→ D−µ+νµX data. Tagged events are
considered, only. The corresponding fit parameters are listed in table 4.8. In 2011 data 5.7× 105
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(b) D− 2012 data

Figure 4.14.: Fit to the D− mass distributions in 2011 data (left) and 2012 data (right), tagged
events, only. The signal component (magenta dashed line) and the hadronic combi-
natoric background component (green line) are separately shown. The full mass fit
model is shown as blue line.

signal events are extracted, in 2012 data 1.6× 106, where signal includes all semileptonic B decays.
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4.5. Backgrounds

4.5.2. Hadronic Combinatoric Background in the B0→ D∗−µ+νµX Mode

In the B0 → D∗−µ+νµX mode the reconstructed D0 mass and the mass difference δm =
m(D∗) − m(D0) are fitted by a two dimensional extended maximum likelihood fit. Three
components are considered: D∗ → D0(Kπ)π signal, D0 directly from B decays and combinatoric
background. The signal components describes decays, where the full reconstruction was successful:
the D∗ → D0 π decay and the D0 to Kπ decay. The D0 from B component describes real D0

to Kπ decays, but without an intermediate D∗ resonance, instead the D0 mesons come directly
from B decays. The last component describes hadronic combinatoric background, where non of
the two D decays is reconstructed correctly. Also here, “signal” includes all types of semileptonic
B decays. The reconstructed D0 mass and δm distributions are binned in 80 equally sized bins,
between 1820MeV and 1912MeV the former and between 139.MeV and 165.5MeV the latter.
The signal component peaks in the D0 mass and in the δm distribution. Its D0 mass model

is identical to the D− mass model S(m), separating signal D0 → Kπ decays from combinatoric
background. Its δm model is composed of two Gaussian distributions and a Johnson distribution:

S(δm) = G(δm;µδm, σδm,G1) + fδm,G ·G(δm;µδm, σδm,G2)
+ (1− fδm,G) · fδm,RJ · RJ(δm;µδm, σδm,RJ , γδm, δδm) . (4.12)

The two Gaussian distributions G(δm;µδm, σδm,G1), G(δm;µδm, σδm,G2), share the same mean δm
parameter µδm, but different widths σδm,G1, σδm,G2 to account for mass resolution effects. They
are connected by the fraction fδm,G. The Johnson distribution RJ(δm;µδm, σδm,RJ , γδm, δδm) also
shares the same mean parameter µδm, but has a different width parameter σδm,RJ and additional
γδm, δδm parameters. It is defined using the RooJohnson parametrization10 from the RooFit
package and the substitution x = (δm− µδm)/σδm:

RJ(x;σ, γ, δ) = δ/
√

2πσ2 · (1 + x2) · exp (−0.5 · (γ + δ · log(x+
√

1 + x2))2) (4.13)

The parameter δ is set to 1. The two-dimensional signal model is then:

S(m, δm) = S(m) · S(δm). (4.14)

The D0 from B component peaks in the D0 mass distribution modeled by the signal mass model
S(m), but does not peak in the δm distribution. It’s shape is modeled by the RooDstD0BG
distribution:

D0(δm;mth
δm, aδm, bδm, cδm) = RooDstD0BG(δm;mth

δm, aδm, bδm, cδm). (4.15)

The threshold parameter mth
δm determines the threshold of the δm distribution start, it is set

constant. The parameters aδm, bδm, cδm are defined as follows:

RooDstD0BG(δm;mth
δm, aδm, bδm, cδm) =

(1− e−(δm−mthδm)/cδm) · (δm/mth
δm)aδm + bδm(δm/mth

δm − 1), (4.16)
10For better readability, the subscripts δm are not written.
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4. The B0–B0 Oscillation Frequency ∆md

for δm−mth
δm > 0. The two-dimensional D0 from B model is then:

D0fB(m, δm) = S(m) · D0(δm). (4.17)

The D0 combinatoric background does not peak in the D0 mass nor the δm distribution. The
former part is modeled by the D mass background exponential model C(m), the latter is described
analogue to the D0 from B component by the RooDstD0BG(δm) distribution. Thus, the
two-dimensional combinatoric model is

C(m, δm) = C(m) · RooDstD0BG(δm;mth
δm, aδm, bδm, cδm). (4.18)

The same parameters mth
δm, aδm, bδm, cδm are used for the fit to both backgrounds.

The total two-dimensional mD0 , δm extended fit model is then:

P(m, δm) = nSig · S(m, δm) + nBkgD0fB · D0fB(m, δm) + nBkg · C(m, δm). (4.19)

The number of signal (nSig), D0 from B (nBkgD0fB) and combinatoric background (nBkg)
events are extracted from the fit. All shape parameters are floated, except the Johnson parameter
δδm, the RooDstD0BG threshold parameter mth

δm and the Crystal Ball parameter nm,CB. The
fits to the mD0 and ∆m distributions in the B0→ D∗−µ+νµX with 2011 and 2012 data are shown
in figure 4.15. Also here tagged events only are considered.
The corresponding fit parameters are listed in table 4.9. In 2011 data 3.1× 105 signal events

are extracted, in 2012 data 7.4× 105, where signal includes all semileptonic B decays.

4.5.3. sWeights

From the above shown mass fits sWeights [78, 79] can be extracted. These event-by-event weights
are used to statistically remove the background components from the data which is fitted to
extract ∆md. This approach is followed to stabilize the ∆md fit. It is advantageous in three
ways. First, the fits to disentangle the D background components are done prior to the ∆md fit.
This speeds up the ∆md fit significantly. Second, the D background components do not have to
be modeled for the decay time and mixing asymmetry distributions. Indeed, the D background
components show oscillating and non-oscillating behaviour, because they do not consist of pure
mis-reconstructed combinatoric background, but also of mis-reconstructed D coming from B
decays. A second oscillation frequency would have to be introduced in this case. Hence, using
sWeights to statistically remove the D background components reduces the ∆md fit dimensions
by a factor of two. Third, the sWeights are used to determine fit inputs, like B+ fractions directly
from sWeighted data, as explained in the next section.

The sWeights are extracted from fits to the reconstructed m(D−) and m(D0), δm distributions
per tagging category. The single fits are shown in the appendix B.2 for the B0→ D−µ+νµX
and B0→ D∗−µ+νµX modes in 2011 and in 2012 data. As a cross check, the ∆md fit is also
performed on an sWeighted data sample, where the sWeights are determined without splitting
the sample in tagging categories. The deviation between the nominal fit and this cross check fit is
taken as systematic uncertainty on ∆md.
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(c) D∗ 2011 data
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(d) D∗ 2012 data

Figure 4.15.: Two-dimensional fit to the reconstructed δm = m(D∗)−m(D0) distributions (upper
plots) and the reconstructed m(D0) distributions (lower plots) for 2011 data (left)
and 2012 data (right), tagged events, only. The signal component (magenta dashed
line), the hadronic combinatoric background component (light green line) and the
D0 from B component (dark green line) are shown separately. The latter is separable
in the δm distribution, only. The full mass fit model is shown as blue line.

4.5.4. B+ background

The dominant B+ background is controlled by the isolation BDT response, introduced in section 4.2.
The fraction of B+ events in data is determined data-driven.

The full isolation BDT response distribution is fitted on sWeighted data. Note, no cut is applied
to the isolation BDT response here. Two components are modeled: B0 signal decays and B+

background decays. The shapes of the two components are taken from MC as histograms. The

133



4. The B0–B0 Oscillation Frequency ∆md

Parameter 2011 2012
µm[ MeV] 1866.26± 0.01 1866.288± 0.010
σm,G1[ MeV] 8.27± 0.07 8.32± 0.04
σm,G2[ MeV] 16.2± 0.3 16.6± 0.2
fm,G 0.717± 0.007 0.726± 0.004
σm,CB[ MeV] 5.14± 0.05 5.07± 0.03
αm,CB 2.52± 0.02 2.56± 0.01
nm,CB 0.00001 0.00001
fm,CB 0.152± 0.009 0.150± 0.004
m0[ MeV−1] −0.00875± 0.0004 −0.00895± 0.0002
µδm[ MeV] 145.368± 0.006 145.375± 0.006
σδm,G1[ MeV] 0.54± 0.02 0.52± 0.03
σδm,G2[ MeV] 0.97± 0.02 0.94± 0.01
fδm,G 0.23± 0.02 0.21± 0.01
σδm,RJ [ MeV] 0.64± 0.02 0.67± 0.02
δδm 1 1
γδm −0.248± 0.02 −0.2197± 0.010
fδm,RJ 0.36± 0.02 0.37± 0.02
mth
δm[ MeV] 139 139

aδm 3.70± 0.08 2.78± 0.09
bδm −5.000± 0.07 −3.23± 0.2
cδm 1.81± 0.05 1.66± 0.03
#nSig 314093± 686 743612± 1049
#nBkg 19643± 280 49261± 440
#nBkgD0fB 92463± 518 232737± 803

Table 4.9.: B0→ D∗−µ+νµX mode: 2011 and 2012 data fitted parameters determined in two-
dimensional fits to the reconstructed δm and m(D0) mass distributions. For the fit
parameter definitions see text. Parameters of the fits to the D0 mass distribution are
listed in the upper part of the table, parameters from δm fits are listed in the middle
part. The extracted number of signal, combinatoric background and D0 from B decays
background events are listed in the lower part.

only free fit parameter is the fraction of B+ events with respect to all events:

fB+ = NB+

NB0 +NB+
, (4.20)

where NB0 is the number of B0 events and NB+ is the number of B+ events.
The isolation BDT response distribution in sWeighted data is fitted by a maximum likelihood

fit. The data is binned in 60 uniformly sized bins between -1 and +1. The signal and background
shape histograms are prior to the fit reweighted to match the track multiplicity distribution in
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4.5. Backgrounds

data. Kinematic weights, as introduced in section 4.2, to correct for the wrong form factors in the
D∗ simulation are also applied.
Due to the limited statistics in simulation, a second reweighting is applied to the histograms

in simulation after performing the fit to the data distribution. With this first estimate for fB+

the sum of the B0 signal and B+ background histograms is reweighted to match the sWeighted
data histogram. Then, the fit is performed again to extract the final fB+ value. The second
reweighting step changes the fit result on the 0.1% level, which indicates the robustness of the
method against statistics induced differences in the distribution shapes.
Fits to the isolation BDT distributions in 2012 B0→ D−µ+νµX and B0→ D∗−µ+νµX data

are shown in figure 4.16. Tagged events only are considered.
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Figure 4.16.: Isolation BDT response distributions fitted on 2012 sWeighted B0→ D−µ+νµX
data (left) and B0→ D∗−µ+νµX data (right).

B+ fractions are determined per tagging category per data set. The results of all fits are given
in table 4.10 for the B0→ D−µ+νµX mode and in table 4.11 for the B0→ D∗−µ+νµX mode.

The fitted isolation BDT distribution shape is integrated, to determine the B+ fraction within
the range of the cut applied to the isolation BDT distribution, as shown in table 4.4. The results
are also shown in table 4.10 (B0→ D−µ+νµX mode) and in table 4.11 (B0→ D∗−µ+νµX mode).
These B+ fractions per tagging category within the cut range, are taken as fit inputs for the
∆md fit. Possible deviations induced by the uncertainties on the branching ratios which enter the
simulation cocktail composition are taken as systematic uncertainty on ∆md, shown in section 4.9.
In B0→ D∗−µ+νµX data compared to B0→ D−µ+νµX data, the B+ fraction is lower. Also

the amount of combinatoric D background is lower in B0→ D∗−µ+νµX data. The reason is mostly
given by the additional δm = m(D∗)−m(D0) constraint in this mode. The cut applied to the
isolation BDT distribution reduces the B+ fraction by a factor of ∼ 3, while in B0→ D−µ+νµX
data, this is only a factor ∼ 2. In the end, the B+ fraction is about 5 to 6% in B0→ D−µ+νµX
data and about 3% in B0→ D∗−µ+νµX data.
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4. The B0–B0 Oscillation Frequency ∆md

Events fB+ [%] without cut fB+ [%] with cut
Cat. 0 12.59 ± 0.36 5.65 ± 0.16
Cat. 1 13.52 ± 0.29 5.96 ± 0.13
Cat. 2 13.05 ± 0.20 5.75 ± 0.09
Cat. 3 11.31 ± 0.11 4.82 ± 0.05
All 12.11 ± 0.09 5.25 ± 0.04

Cat. 0 13.48 ± 0.24 6.32 ± 0.11
Cat. 1 13.97 ± 0.19 6.47 ± 0.09
Cat. 2 12.67 ± 0.12 5.93 ± 0.06
Cat. 3 10.78 ± 0.07 4.89 ± 0.03
All 11.68 ± 0.06 5.37 ± 0.03

Table 4.10.: B0→ D−µ+νµX mode: B+ fractions determined in 2011 data (top) and 2012 data
(bottom) in four tagging categories, Cat. 0 - 3, and on the whole sample, All. Left:
no cut is applied to the isolation BDT response, right: the cut is applied.

4.5.5. Evaluation of the B+ Fraction in Simulation

As a cross check the B+ fraction fB+ is also calculated on simulation. Large uncertainties
on semileptonic branching fractions, as shown in appendix B.1, propagate directly into the
determination of fB+ . Therefore, the method to measure fB+ directly from data was developed.

Under the assumption of isospin symmetry, B+ and B0 have the same production cross section.
Using the number of generated events from table 4.5 the total selection efficiencies for B0 and B+

Events fB+ [%] without cut fB+ [%] with cut
Cat. 0 9.08 ± 0.28 2.97 ± 0.09
Cat. 1 9.96 ± 0.23 3.25 ± 0.07
Cat. 2 9.30 ± 0.15 2.87 ± 0.05
Cat. 3 9.28 ± 0.09 3.00 ± 0.03
All 9.28 ± 0.07 2.97 ± 0.02

Cat. 0 9.23 ± 0.18 2.95 ± 0.06
Cat. 1 10.16 ± 0.15 3.20 ± 0.05
Cat. 2 9.54 ± 0.10 3.05 ± 0.03
Cat. 3 8.94 ± 0.06 2.89 ± 0.02
All 9.29 ± 0.05 2.99 ± 0.02

Table 4.11.: B0→ D∗−µ+νµX mode: B+ fractions determined in 2011 data (top) and 2012 data
(bottom) in four tagging categories, Cat. 0 - 3, and on the whole sample, All. Left:
no cut is applied to the isolation BDT response, right: the cut is applied.
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events can be calculated, see table 4.12. The full selection is applied, including the cut on the
isolation BDT response. Tagged events are considered, only.

Decay 2011 2012
B0→ D−µ+νµX 0.557 ± 0.002 % 0.550 ± 0.002 %
B0→ D∗−µ+νµX 0.762 ± 0.002 % 0.756 ± 0.001 %
B+→ D−µ+νµX 0.196 ± 0.003 % 0.205 ± 0.002 %
B+→ D∗−µ+νµX 0.186 ± 0.003 % 0.206 ± 0.002 %

Table 4.12.: Total efficiencies of each MC sample for selected, tagged events. Both magnet polarities
and Pythia versions are added. The full off-line selection is applied, including the cut
on the isolation BDT response.

In 2011 data the estimated B+ fractions are:

fB+(B0→ D−µ+νµX) = (6.44± 1.15(1.15(B), 0.09 (stat)))% (4.21)
fB+(B0→ D∗−µ+νµX) = (3.38± 0.78(0.77(B), 0.05 (stat)))% (4.22)

and in 2012 data:

fB+(B0→ D−µ+νµX) = (6.81± 1.21(1.21(B), 0.05 (stat)))% (4.23)
fB+(B0→ D∗−µ+νµX) = (3.74± 0.85(0.85(B), 0.04 (stat)))%. (4.24)

The total uncertainty is split up into a systematic uncertainty induced by the large uncertainties
on semileptonic branching ratios (B) and into a statistical component (stat). The branching ratio
uncertainty dominates the total uncertainty on fB+ . If fB+ is determined on samples, generated
with different Pythia versions, the variation is small, less than 15% of the uncertainty on fB+ .
Given the large uncertainties estimated here, the B+ fractions extracted from simulation and the
ones from data agree perfectly.

4.5.6. B0
s and Λ0

b background

B0
s background occurs on a level of (1.5±0.4)%. While, the amount of Λ0

b background is negligible
((0.1±0.1)%), mainly due to the Λ0

b veto cut. Figure 4.17 shows a comparison of mixing asymmetry
distributions, comparing B0 signal, B+, B0

s and Λ0
b background decays.

The mixing frequency in the B0
s–B0

s system, ∆ms, is a factor 34 faster than the B0 mixing
frequency ∆md. Given the k factor damping, ∆ms is not resolvable in the semileptonic ∆md

fit. A constant mixing asymmetry at zero is present, see figure 4.17. The Λ0
b mixing asymmetry

shows the same offset as the B+ mixing asymmetry distribution. In the ∆md fit the Λ0
b and B0

s

components are absorbed in the non-oscillating B+ component. A systematic uncertainty on ∆md

related to the limited knowledge of the B0
s and Λ0

b fraction in data is assigned, see section 4.9.
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Figure 4.17.: Comparison of different b hadron samples: B0 signal versus B+, B0
s and Λ0

b back-
ground semileptonic decays. The mixing asymmetry is constant for all backgrounds.
A mistag offset is present in the B+ and Λ0

b background decays, while the B0
s sample

does not show a mistag offset. It averages out due to the fast oscillation frequency
∆ms. To illustrate the difference between the distributions within the limited MC
statistics, the bin errors are scaled by a factor of 0.5.

4.6. Probability Density Function of ∆md

This section introduces the Probability Density Function (PDF) used to determine ∆md. A PDF
is a prediction for the distribution of the measured quantities ~x depending on the parameters
~λ, PDF(~x;~λ). It is normalized to one,

∫
PDF(~x;~λ)d~x = 1, to conserve the total probability.

Experimentally, N measurements of ~x are obtained, ~xe with e = 1, ..., N . The aim of the fit
procedure is to find the parameters ~λ, that maximize the probability of ~xe to occur, given by
the likelihood L = ∏N

e=1 PDF(~xe;~λ). Numerically, it is more stable to minimize the negative
logarithm of the likelihood

− lnL = −
N∑
e=1
PDF(~xe;~λ) (4.25)

than to maximize it. The fit procedure is implemented in the Root Minuit minimization
package [109]. It is controlled by a customized interface, written in C++. The minimization
procedure can be either run optimized on speed or on precision. Here, the choice has been set
to precision11. After minimization the errors of the fit parameters are estimated using Gaussian
approximation, implemented in the Hesse algorithm of the Minuit package. Due to large
statistics the data is binned prior to the fitting procedure. Hence, a binned maximum likelihood
fit is performed to determine the oscillation frequency ∆md.

11The Migrad minimization technique is run with strategy 2. This allows MINUIT to use more function calls,
which improves the reliability of the minimization.
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4.6. Probability Density Function of ∆md

Two physical components are modeled by the PDF : the B0 signal component, which performs
oscillations with the frequency ∆md and the B+ background component, which does not oscillate.
The hadronic combinatorial D mass component is removed on a statistical basis following the sFit
technique [78]. Prior to the fit procedure sWeights are determined in separate fits to the D mass,
following the sPlot technique [79]. The sWeights are used to unfold the hadronic combinatorial
D mass background component in the ∆md fit, without modeling the decay time and mixing
asymmetry distributions of this background. After the statistical removal of D backgrounds, the
two decay channels are described by the same PDF . All background components have been
evaluated, shown in section 4.5.
The decay time distribution is binned in 140 bins of increasing width between 0 ps and 15 ps.

The increasing bin width is chosen to describe properly the steep turn-on of the decay time
distribution due to selection inefficiencies a small decay times. The events are categorized in four
tagging categories of increasing mistag probability, as introduced in section 4.4. Two additional
dimensions are defined, given by the product of the tagging decision and the muon charge: q = +1,
where the b flavour has changed between production and decay, also called mixed decay, and
q = −1, where the flavour has not changed between production and decay, also called unmixed
decay.
There are nine parameters floated in the ∆md fit:

• ∆md

• four mistag probabilities ωB0,i, with i = 0, ..3 for category i

• four mistag probabilities ωB+,i, with i = 0, ..3 for category i.

One average measured mistag probability is fitted per predicted mistag probability category for
both B0 and B+ components, separately. All other parameters, the B0 and the B+ lifetimes, the
decay time resolution parameters and the decay time acceptance shapes, are fixed.
The PDF of B0 decays depends on the state q and the decay time t. It is proportional to

the exponential decay rate, determined by the B0 lifetime τB0 = 1/Γd, and to the mixing term,
determined by the decay width difference ∆Γd and the mixing frequency ∆md, see chapter 1:

PB0(q, t) ∝ e−Γdt(cosh(∆Γd
2 t)− q cos(∆mdt)). (4.26)

The state q = +1 indicates mixed decays and q = −1 unmixed decays. Since ∆Γd ∼ 0, equation 4.26
simplifies to:

PB0(q, t) ∝ e−Γdt(1− q cos(∆mdt)). (4.27)
The tagging decision carries a certain mistag probability ω, which damps the mixing asymmetry
by the tagging dilution factor Dtag = (1− 2ω), see section 3.4.2:

PB0(q, t) ∝ e−Γdt(1− qDtag cos(∆mdt)). (4.28)

In case of the non-oscillating B+ background, the mixing term vanishes and the PDF of B+

decays simplifies to

PB+(q, t) ∝
{
e−Γut(1− ωB+) q = 1
e−Γut(ωB+) q = −1

(4.29)
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4. The B0–B0 Oscillation Frequency ∆md

where the mistag probability also appears, because the tagging algorithm does not know about
the signal B meson type.
In real world experiments one has to include additional resolution effects into the PDF . The

effects, which are specific for semileptonic decays, are introduced in the following.

4.6.1. Collecting all resolution effects
As already introduced in section 4.1 the decay time of the B0 candidate is not directly re-
constructible due to the missing neutrino momentum. This enters over the reconstructed B0

momentum as an uncertainty into the reconstructed decay time, given by

t = M(PDG)L
pc

, (4.30)

where M(PDG) is the B mass taken from the PDG [110]. The reconstructed flight distance
L is determined by the distance of the primary and the B0 decay vertices. The B momentum
p, which is the sum of the D and µ four-momenta is incomplete. Both, the uncertainty on the
flight distance and the uncertainty on the momentum have to be taken into account. Hence, the
uncertainty on the decay time is computed by error propagation applied to equation 4.30:

σt =
√(

M

pc
σL

)2
+
(
t
σp
p

)2
(4.31)

The first term reflects the uncertainty on the reconstructed flight distance, while the second term
reflects the uncertainty on the reconstructed momentum, which is fully determined by the k factor
resolution in semileptonic decays. The k factor is a measure of the momentum fraction carried
away by the neutrino: k = prec

ptrue
[94].

These effects are folded into the PDF with a double convolution. First, the PDF is convolved
with a triple Gaussian resolution function with a mean width of about 100 fs to account for the
reconstructed flight distance resolution. This convolution is done analytically:

PB(q, t) decay time resolution−−−−−−−−−−−−−→ PB(q, t− t′)⊗t R(t′). (4.32)

The flight distance resolution R(t′) is determined from simulation, separately for each decay
mode. Second, the PDF is multiplicatively convoluted with the k factor resolution F (k), which is
obtained from simulation as a binned histogram. The determination of both resolutions is shown
in section 4.7.

PB(q, t− t′)⊗t R(t′) k factor resolution−−−−−−−−−−−→ [PB(q, t− t′)⊗t R(t′)]⊗k F (k) (4.33)

Practically, this is just a sum over all bins in the k factor histogram:

[PB(q, t− t′)⊗t R(t′)]⊗k F (k) =
∑
i

[PB(q, kit− t′)⊗t R(t′)]kiFi . (4.34)

The decay time t is multiplied by the k factor in each bin ki and the total PDF is multiplied
with the normalized bin content Fi. Another multiplication with ki = dttrue/dtrec is necessary to
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4.7. Decay Time Description

normalize the k factor convolution correctly. A detailed derivation of equation 4.34 is given in
[111] calculating the convolution integrals.

To account for selection inefficiencies, that influence the shape of the decay time distribution at
small decay times, e.g. IP cuts, and reconstruction effects, that cause inefficiencies at large decay
times, a decay time acceptance distribution a(t) is multiplied to the PDF from Eq. 4.34:

PB(q, t) = N × ([PB(q, t− t′)⊗t R(t′)]⊗k F (k))× a(t). (4.35)

The term a(t) is a normalized decay time acceptance histogram, which is obtained directly from
sWeighted data. N accounts for the normalization of the PDF . It is calculated by integrating
over the decay time and summing over the k factors ki:

N (tmin, tmax) =
∫ tmax

tmin

dt
∑
ki

a(t)[PB(q, t− t′)⊗t R(t′)]Fiki∆ki. (4.36)

Finally, the full PDF is made of two parts, one for the oscillating B0 signal component and
one for the non-oscillating B+ background component. The two parts are connected by the B+

fraction fB+ :
PDF(q, t) = PB0(q, t) + fB+PB+(q, t). (4.37)

The flight distance resolution parameters and the k factor histograms are determined separately
for the B0 and B+ components, see next section.

4.7. Decay Time Description

The reconstruction of the decay time in semileptonic decays, without the momentum of the
neutrino, is a challenging task. A statistical correction method, the k factor method, is used to
obtain the decay time from the underestimated B momentum, as introduced in section 4.1.3.
Consequently, the k factor resolution impacts the decay time resolution. The k factor method
has been improved to account for dependencies on the true B decay time, that appear in the
present precision of the ∆md measurement. Both methods are explained here, first the standard
k factor method, as introduced by CDF [94], then the improved method. The reconstructed B0

flight distance also impacts the decay time resolution, explained below.
The decay time distribution is also affected by selection efficiency effects. The LHCb trigger

uses mainly cuts on the particles’ impact parameter to select B decays with the topology of
displaced decay vertices. This leads to a less efficient reconstruction of B decays with small decay
times. Additionally, due to the imperfect implementation of the track reconstruction in the LHCb
vertex detector, a loss in reconstruction efficiency for high decay times is also present [77]. A
decay time acceptance distribution accounts for both effects, given below.
The k factor and flight distance resolutions are determined separately for B0 and B+ decays

using MC simulation. The decay time acceptance is obtained directly from sWeighted data. These
three effects are modeled in the fit to extract ∆md.
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4. The B0–B0 Oscillation Frequency ∆md

4.7.1. k Factor Method
The k factor, defined as quotient of the reconstructed B momentum divided by the true B
momentum:

k = prec
ptrue

, (4.38)

is a measure of the momentum fraction carried away by the neutrino, shown in figure 4.18. In B+

background decays at least one additional track, a charged pion, is not reconstructed. This affects
the k factor distribution. Hence, the k factor is determined separately for B0 and B+ decays, as
shown in figure 4.18.
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Figure 4.18.: K factor distributions determined in the B0→ D∗−µ+νµX mode 2012 MC (left) and
the B+→ D∗−µ+νµX 2012 MC (right). These distributions are averaged over all
reconstructed B masses Mrec.

The method was first introduced by the CDF collaboration [94], to evaluate a correction for
the partially reconstructed semileptonic B decay time. Besides the reconstructed decay time, the
missing neutrino momentum also affects the reconstructed B mass. Therefore, the k factor is
determined in bins of the reconstructed B mass, shown in figure 4.19. The mean of each k factor
histogram per B mass bin is plotted. The uncertainty per bin in y direction is the RMS value of
each k factor histogram, not the uncertainty of the mean value, to illustrate the widths of the k
factor distributions in different bins of the reconstructed B mass.

The k factor dependence on the reconstructed B mass Mrec is described by an empirical second
order polynomial:

kfit(Mrec) = p0 + p1 (Mrec) + p2 (Mrec)2 , (4.39)

where p0,1,2 are the fit parameters and kfit is the expected k factor based on the visible B mass.
The fit parameters are given in table 4.13 for the B0 samples and in table 4.14 for the B+ samples.

The k factor dependence on the reconstructed B mass, given in equation 4.39, is directly
multiplied to the reconstructed B decay time. The result is illustrated in figure 4.20, showing the
corrected B decay time and the corrected k factor histogram. The reconstructed B momentum
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Figure 4.19.: Mean k factor in bins of the visible B mass for tagged events in B0→ D∗−µ+νµX
mode 2012 MC. Left: signal component, right: B+ → D∗−µ+νµX background
component. The plotted k factor mean error is given as RMS of each k factor
histogram per bin.

is too small, hence the reconstructed B decay time too large. By rescaling the decay time with
the k factor depending on the reconstructed B mass, the corrected reconstructed decay time
distribution matches the true decay time distribution. However, not only the mean value but also
the width of the k factor distribution needs to be taken into account. The width after correction
for kfit(Mrec) on event-by-event basis is shown in figure 4.20. By doing so, the mean of the scaled
k factor distribution is now at one, the width is slightly increased, from 0.13 to 0.15. In this

B0→ D−µ+νµX 2011 2012
p0 [10−1] 9.7± 5.0 9.6± 5.2
p1 [10−4] −1.8± 2.2 −1.7± 2.4
p2 [10−8] 3.3± 2.5 3.3± 2.6

B0→ D∗−µ+νµX 2011 2012
p0 [10−1] 10.3± 5.2 9.9± 5.8
p1 [10−4] −2.0± 2.4 −1.8± 2.7
p2 [10−8] 3.5± 2.6 3.3± 3.0

Table 4.13.: Parameters of the fit to the mean k factor in bins of the visible B mass for tagged
events in B0→ D−µ+νµX mode (upper table) and B0→ D∗−µ+νµX mode (lower
table), 2011 MC (left) and 2012 MC (right).
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4. The B0–B0 Oscillation Frequency ∆md

B+→ D−µ+νµX 2011 2012
p0 [10−1] 6.8± 6.5 7.8± 6.7
p1 [10−4] −0.5± 3.1 −1.1± 3.2
p2 [10−8] 2.1± 3.8 2.7± 3.9

B+→ D∗−µ+νµX 2011 2012
p0 [10−1] 6.8± 7.0 6.0± 6.9
p1 [10−4] −0.6± 3.4 −0.2± 3.4
p2 [10−8] 2.2± 4.1 1.7± 4.0

Table 4.14.: Parameters of the fit to the mean k factor in bins of the visible B mass for all events
in B+→ D−µ+νµX mode (upper table) and B+→ D∗−µ+νµX mode (lower table),
2011 B+ MC (left) and 2012 B+ MC (right).

way, the dependence of the k factor on the B mass can be transported into the ∆md fit, without
adding an extra B mass dimension.

decay time [ps]

0 5 10 15

# 
ev

en
ts

 [
 ]

0

50

100

150

200

250

310×

true
reconstructed
corrected

(a) corrected decay time

 (B mass) [ ]
true

 / p
rec

p
0.6 0.8 1 1.2

n
o

rm
al

iz
ed

 e
ve

n
ts

 [
 ]

0

0.5

1

1.5

2

2.5

3

 0.0±mean = 1.0 

 0.0± = 0.15 σ

(b) corrected k factor

Figure 4.20.: Left: the reconstructed B decay time (blue squares) is corrected by the mean k
factor as a function of the B mass, kfit(Mrec), (red triangles) to match the true
decay time distribution (black circles). Right: spread of the k factor distribution
after event-by-event correction to the mean value kfit(Mrec). Tagged events in
B0→ D∗−µ+νµX 2012 MC are shown.

The above presented k factor method is analogue to the original method introduced by the
CDF experiment. CDF has measured ∆md with a precision between 0.05 and 0.1 ps−1. However,
this analysis aims for a precision of the order of 0.003 ps−1. It turned out, that the k factor
method introduces a bias on ∆md of the order of 0.004 ps−1. The reason for this bias is, that the
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Figure 4.21.: Corrected k factor distributions in different true B decay time (ttrue) bins.

k factor correction depends also on the true B decay time, see figure 4.21. The corrected k factor
distributions are plotted for different true B decay time bins. Introducing this dependence in a
toy MC and ignoring the dependence in the fit reproduces the observed bias seen in fits to large
statistics MC samples. As a result of this study, the k factor method is improved to avoid the
bias on ∆md, shown in the next section.

4.7.2. Improved k Factor Method
The main idea of the advancement to the k factor method is to take the dependence of the k
factor on the true decay time into account. Similar to the standard k factor method, where the k
factor was determined in bins of the reconstructed B mass, the k factor is now determined in bins
of the true decay time. The dependence on the reconstructed B mass is dropped. A schematic
shown in figure 4.22 gives an overview of the basic concept of the improved k factor method.
One k factor histogram is created per true decay time bin. The binning is chosen such that

it matches the binning of the ∆md fit, 140 bins with increasing widths. Note, that the k factor
histograms are filled per true decay time bin. Figure 4.23 shows 2× 104 factor histograms filled
in the first 20 true decay time bins.
Due to the exponential shape of the decay time distribution, the statistics fade away in the

high decay time bins. It is not possible to get sufficient information on the k factor in these
upper bins. Therefore, neighboring bins are added, depending on the decay time bin. Technically,
the following scheme is used: ttrue bin ±n neighbor bins, where n = 1, 2, 3, 6, 12, 18, 24 for
ttrue > 1.38, 2.1, 2.85, 3.95, 5.21, 6.46, 7.72 ps. This results in overlapping k factor histograms, but
the relative information on the position in the true decay time distribution is kept. Analogue,
to the standard k factor method, the mean values of the single k factor histograms are plotted
versus the true decay time, see figure 4.24.

The distribution is fitted by an empirical function, consisting of 4 exponential distributions:

kfit(ttrue) = p0 + p1e
p2ttrue + p3e

p4ttrue + p5e
p6ttrue + p7e

p8ttrue . (4.40)

The kfit(ttrue) value is used to correct the reconstructed decay time and to shift the k factor
histograms to be centered around 1. To keep the normalization of the ∆md PDF it is also folded
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Reconstructed decay time True decay time

k factor (ttrue)

k factor histogram Reconstructed decay time

Polynomial f(trec)

Exponential f(ttrue)

Divide Multiply

Figure 4.22.: Schematic to illustrate the working principle of the improved k factor method.
The basic concept of the standard k factor method is kept. The mean k factor is
determined in bins of the true B decay time, before it was the reconstructed B mass.
This dependence is multiplied as a correction to the reconstructed decay time. The
k factor histogram is corrected by the average kfit(ttrue). The novel point is the
translation between the true decay time and the reconstructed decay time via a
polynomial function f(trec).

into the 1.40× 105 factor histograms per true decay time interval. The first 20 of these corrected
k factor histograms are shown in figure 4.25.

However, fitting ∆md on real data requires a matching between the true decay time bin and the
reconstructed decay time, which is the only quantity available in data. Only after this matching
it is possible to apply kfit(ttrue) to the reconstructed decay time. Therefore, a translation function
between the reconstructed and the true decay time is created. It is determined from the 2
dimensional histogram, shown in figure 4.26, which is projected onto the y axis to obtain the true
decay time as a function of the reconstructed decay time.
It is fitted by a second order polynomial:

ttrue(trec) = p0 + p1 (trec) + p2 (trec)2 . (4.41)

The robustness of this reconstructed to true decay time translation is shown in section 4.8.
Another novelty compared to the standard k factor method is, that one kfit(ttrue) scaled k factor

histogram is used per corresponding time bin by the ∆md fit PDF . Figure 4.27 highlights the
difference between the standard k factor method and the improved k factor method at this point.
With this two stepped k factor lookup correction method and usage of 140 properly scaled k factor
histograms, ∆md is fitted without bias on signal B0 simulation, shown in section 4.8.
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Figure 4.23.: 2× 104 factor histograms filled in the first 20 bins out of 140 bins of the true decay
time for 2012 B0→ D∗−µ+νµX MC.
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Figure 4.24.: Fitted mean k factor distribution in MC true decay time bins of tagged events in
B0→ D∗−µ+νµX 2012 MC. The distribution is fitted by an empirical function given
in equation 4.40. The uncertainty per bin in y direction is given by the uncertainty
on the mean value of the k factor histogram.
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Figure 4.25.: 20 corrected k factor histograms in the first 20 bins out of 140 bins of the true decay
time for 2012 B0→ D∗−µ+νµX MC.

149



4. The B0–B0 Oscillation Frequency ∆md

true decay time [ps]

0 5 10 15

re
co

n
st

ru
ct

ed
 d

ec
ay

 t
im

e 
[p

s]

0

2

4

6

8

10

12

14

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

(a) 2 dimensional ttrue vs trec distribution

 / ndf 2χ   337.55 / 100

p0        0.000682± 0.018519 

p1        0.00074± 0.84656 

p2        0.000149± -0.010656 

reconstructed decay time [ps]

0 5 10 15

tr
u

e 
d

ec
ay

 t
im

e 
[p

s]

0

2

4

6

8

10

 / ndf 2χ   337.55 / 100

p0        0.000682± 0.018519 

p1        0.00074± 0.84656 

p2        0.000149± -0.010656 

(b) projection on the y-axis

Figure 4.26.: MC true versus reconstructed decay time of tagged events in B0→ D∗−µ+νµX
mode 2012 MC. Left: the 2 dimensional distribution, right: projected on the y-axis.
The dependence of the reconstructed decay time on the true decay time is fitted by
a second order polynomial.
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Figure 4.27.: Schematic to highlight the difference between the standard k factor method and
the improved k factor method. Formerly, one average k factor histogram was put
into the ∆md PDF , now, 1.40× 105 factor histograms, filled per true decay time
bin, are put into the ∆md PDF . The k factor correction is determined in bins of
the true B decay time in the new method, while it was done as a function of the
reconstructed B mass before.
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4.7. Decay Time Description

4.7.3. Flight Distance Resolution
The flight distance resolution is determined from simulation. It is calculated as the difference of
the reconstructed flight distance entering the decay time minus the true flight distance entering
the decay time determination:

σL = Lrec ·M(PDG)
pMC · c

− LMC ·M(PDG)
pMC · c

. (4.42)

Lrec is the reconstructed, while LMC is the MC true flight distance of the B0. M(PDG) is the
PDG value of the B0 mass. c is the speed of light and pMC is the MC true B0 momentum. The
effect of the reconstructed momentum is taken out here to disentangle the different resolution
effects.
The flight distance resolution is fitted by a triple Gaussian distribution:

S(t) =f1(1− f2) ·G(t;µ, σ1)
+ (1− f1)(1− f2) ·G(t;µ, σ2) (4.43)
+ (1− f1)f2 ·G(t;µ, σ3).

All three Gaussian distributions share the same mean value µ, but have different width values
σ1,2,3. They are connected by the fractions f1 and f2. The flight distance resolution is determined
separately for B0 signal decays and B+ background decays, see figure 4.28 showing the B0→
D∗−µ+νµX mode in 2012 MC. For B0 decays, tagged events, only, are considered, however, due
to lack of statistics in B+ decays, all events, tagged and untagged, are considered.
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Figure 4.28.: Decay time resolution for tagged events in B0→ D∗−µ+νµX mode 2012 MC (left)
and for B+→ D∗−µ+νµX 2012 MC (right). The effect of the reconstructed flight
distance on the decay time resolution is evaluated. It is fitted by a triple Gaussian.

The flight distance resolution is determined on every sample, separately: B0→ D−µ+νµX 2011
and 2012, B0→ D∗−µ+νµX 2011 and 2012, as well as for the corresponding B+ background
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4. The B0–B0 Oscillation Frequency ∆md

samples. The obtained fit parameters are given in appendix B.3. An average flight distance
resolution per sample is determined using

< σ >=
√
f1(1− f2) · σ2

1 + (1− f1)(1− f2) · σ2
2 + (1− f1)f2 · σ2

3. (4.44)

The uncertainties of the single fit parameters are propagated using Gaussian error propagation.
Table 4.15 shows the average width values for the different samples.

mode year < σ > [ ps ]
B0→ D−µ+νµX 2011 0.102± 0.006
B0→ D−µ+νµX 2012 0.112± 0.005
B0→ D∗−µ+νµX 2011 0.119± 0.003
B0→ D∗−µ+νµX 2012 0.108± 0.003
B+→ D−µ+νµX 2011 0.146± 0.035
B+→ D−µ+νµX 2012 0.103± 0.011
B+→ D∗−µ+νµX 2011 0.085± 0.002
B+→ D∗−µ+νµX 2012 0.132± 0.022

Table 4.15.: Mean width of the flight distance resolution for tagged events in B0→ D−µ+νµX and
B0→ D∗−µ+νµX signal (upper part) and B+→ D−µ+νµX and B+→ D∗−µ+νµX
background (lower part) for 2011 and 2012 MC, separately.

As can be seen in figure 4.7, the flight distance resolution has practically no impact on the
determination of ∆md. However, it is properly modeled to obtain a fit projection on the decay
time distribution. Therefore, the obtained flight distance resolution fit parameters are directly
used as inputs for the ∆md fit. A systematic uncertainty on ∆md caused by an underestimated
flight distance resolution from MC is evaluated in section 4.9. An increase of the resolution width
by 50% has only a small impact on ∆md.

4.7.4. Decay Time Acceptance
The decay time acceptance is implemented in the ∆md fit by a normalized histogram obtained
from sWeighted data. It is determined as the quotient of the decay time distribution of events
that pass the full selection, here sWeighted data, divided by the theory decay time distribution,
according to a k factor convoluted true decay rate:

a(t) = Treconstructed(t)
Ttheoretical(t)

. (4.45)

Figure 4.29 shows the decay time acceptance distribution for B0→ D−µ+νµX 2012 sWeighted
data.

Decay time acceptance distributions are obtained separately for 2011 and 2012 B0→ D−µ+νµX
and B0→ D∗−µ+νµX mode sWeighted data. The same decay time acceptance is used for the
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4.8. Validation of the ∆md Fit Procedure using MC Simulation

decay time [ps]

0 5 10 15

ac
ce

p
ta

n
ce

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 4.29.: Decay time acceptance histogram determined on tagged events in B0→ D−µ+νµX
mode 2012 sWeighted data.

B0 and the B+ components. Possible differences due to the slightly different lifetimes of the B0

and the B+ meson and different k factor resolutions are expected to be negligible An according
systematic uncertainty on ∆md is evaluated.

The measurement of ∆md is not sensitive to the exact fit of the decay time distribution in first
order, because the mixing asymmetry is calculated by the quotient of decay time distributions,
where the nominator is the difference of decay time distributions of mixed and unmixed events,
while the denominator is the sum of both. As long as decay time acceptance effects impact both
decay time distributions in the same way, all mis-modeling effects of the decay time distribution
cancel. However, the decay time acceptance model is mainly implemented to obtain nice fit
projections on the decay time distribution.

4.8. Validation of the ∆md Fit Procedure using MC Simulation

To validate the fitting procedure B0 signal MC is fitted. The statistical precision on the fitted
∆md value is enhanced by cheating the flavour tagging. The MC true production flavour is used
as “tag”. In 4% of the events the “tag” is reversed to introduce a mistag probability of 4%. The
statistical precision is further increased by fitting all events, not tagged events only. The k factor
correction, as well as the flight distance resolution and decay time acceptance, are determined for
each sample separately, depending on the requirement to fit all events or tagged events only. The
∆md fit projections are shown in figure 4.30 for the B0→ D−µ+νµX and in figure 4.31 for the
B0→ D∗−µ+νµX mode.
The corresponding fitted ∆md values in both decay modes, both tagging requirement settings

and both years are given in table 4.16. The standard k factor method gives a significant bias on
∆md to higher frequency values. On B0→ D∗−µ+νµX 2012 MC the highest statistics are available.
With a statistical precision of 0.6 ns−1 ∆md is fitted about 3 to 4 ns−1 too high, compared to
∆md = 0.507 ps−1 used as generation value in the MC simulation. The improved k factor method
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(a) 2011 B0→ D−µ+νµX decay time
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(b) 2011 B0→ D−µ+νµX mixing asymmetry
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(c) 2012 B0→ D−µ+νµX decay time
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(d) 2012 B0→ D−µ+νµX mixing asymmetry

Figure 4.30.: Fit projections of the ∆md fit to 2011 (upper row) and 2012 (lower row) B0→
D−µ+νµX signal MC with cheated tagging.

removes this bias. However, the picture is not fully consistent. On 2011 MC, there are quite large
variations.

In order to be able to judge, how significant the actual variations are and if they are actually
related to the k factor treatment at all, ∆md is also determined from fits to the MC true decay
time. The k factor correction is not applied in this case. Both tests are performed on each sample:
fitting all events of the sample and fitting the subset of tagged events, only, while cheating the
mistag probability in both cases. Figure 4.32 shows the mixing asymmetry projections of all
events in all four samples.
The mixing asymmetry distributions are not significantly damped due to the absence of the k

factor correction. However, the mixing frequency is obtained from a fit to one oscillation period,
only. The relatively slow oscillation in the B0–B0 system compared to the B0 lifetime does not
allow to average over multiple periods to obtain a precisely determined frequency. Additionally,
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(a) 2011 B0→ D∗−µ+νµX decay time
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(b) 2011 B0→ D∗−µ+νµX mixing asymmetry
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(c) 2012 B0→ D∗−µ+νµX decay time
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(d) 2012 B0→ D∗−µ+νµX mixing asymmetry

Figure 4.31.: Fit projections of the ∆md fit to 2011 (upper row) and 2012 (lower row) B0→
D∗−µ+νµX signal MC with cheated tagging.

the second maximum of the oscillation is less constrained than the first maximum due to the
exponential decay. Hence, the fit becomes sensitive to the statistics of the sample. The obtained
fit values are also given in table 4.16.
For comparison, the MC samples are additionally fitted under data fit conditions using real

tagging. Each sample is fitted for one average mistag probability and in four tagging categories,
fitting for each category one average mistag probability. The results obtained using the standard
k factor method are compared to the ones using the improved k factor method, see table 4.17.
The statistical precision on ∆md obtained from these fits is not sensitive to the observed bias.

This gives valuable additional information of two kinds. First, the statistical sensitivity to fit
∆md from the given MC sample is obtained. Comparing the statistical uncertainties on ∆md

between the fits using a k factor correction and the fits to ttrue, that do not require any k factor
correction, shows, that they are slightly larger in the first case. Hence, the k factor resolution
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(a) 2011 B0→ D−µ+νµX all
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(b) 2011 B0→ D∗−µ+νµX all
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(c) 2012 B0→ D−µ+νµX all
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(d) 2012 B0→ D∗−µ+νµX all

Figure 4.32.: Mixing asymmetry fit projections of the ∆md fit to the true decay time of all events in
the sample using cheated tagging (without any k factor correction). B0→ D−µ+νµX
(left) and B0→ D∗−µ+νµX (right) in 2011 signal MC (upper row) and 2012 signal
MC (lower row).

does not have a big impact on the statistical uncertainty of ∆md. Second, the MC samples show
some statistical fluctuations in the determination of ∆md. Therefore, the different bias values for
2011 and 2012 MC are within this statistically allowed range.
The k factor correction is determined from these statistically limited MC samples. Hence, a

test is performed to determine the effect of the statistical limitation of the k factor correction. In
this test, the bin contents of the k factor histograms are varied according to Gaussian fluctuations.
To each k factor histogram bin content a Gaussian random number is added, which is drawn
with a mean value of zero and a width value of the statistical uncertainty of the bin content.
This procedure is repeated a hundred times, each time fitting the same sample of events. The
results are shown in table 4.18, evaluated for each decay mode and year. Each fit result, obtained
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4.8. Validation of the ∆md Fit Procedure using MC Simulation

mode year events standard k factor [ ps−1 ] improved k factor [ ps−1 ] fit to ttrue [ ps−1 ]
D− 2011 all 0.50619± 0.00143 0.50212± 0.00145 0.50509± 0.00127
D− 2011 tagged 0.51190± 0.00248 0.50753± 0.00254 0.50961± 0.00220
D− 2012 all 0.51011± 0.00103 0.50684± 0.00104 0.50638± 0.00091
D− 2012 tagged 0.50835± 0.00173 0.50493± 0.00176 0.50473± 0.00151
D∗− 2011 all 0.51116± 0.00087 0.50587± 0.00088 0.50828± 0.00077
D∗− 2011 tagged 0.50987± 0.00149 0.50423± 0.00150 0.50709± 0.00130
D∗− 2012 all 0.51211± 0.00063 0.50841± 0.00064 0.50853± 0.00055
D∗− 2012 tagged 0.51131± 0.00104 0.50792± 0.00106 0.50781± 0.00091

Table 4.16.: Fitted values of ∆md obtained from fits to all and to tagged events, only, using cheated
tagging, in both decay modes and both data taking periods 2011 MC and 2012 MC.
The ∆md = 0.507 ps−1 value was used during MC generation. For comparison ∆md

is also obtained from fits to the true decay time.

mode year mistag probability standard k factor [ ps−1 ] improved k factor [ ps−1 ]
D− 2011 average 0.50028± 0.00920 0.49736± 0.00945
D− 2011 per category 0.49998± 0.00816 0.49537± 0.00822
D− 2012 average 0.50787± 0.00710 0.50596± 0.00721
D− 2012 per category 0.51279± 0.00621 0.50896± 0.00627
D∗− 2011 average 0.50616± 0.00556 0.49799± 0.00563
D∗− 2011 per category 0.50893± 0.00491 0.50362± 0.00496
D∗− 2012 average 0.51457± 0.00421 0.51143± 0.00427
D∗− 2012 per category 0.51316± 0.00368 0.50889± 0.00372

Table 4.17.: Fitted values of ∆md obtained from fits to tagged events, only, using real tagging,
in both decay modes and both data taking periods 2011 MC and 2012 MC. The
statistical precision on ∆md is not sensitive to the bias on ∆md.

with a statistically variated k factor histogram, is subtracted from the nominal fit result on that
sample. The width of this distribution indicates the uncertainty on ∆md related to the statistical
limitation of the k factor correction.
This test reassures, that the statistical fluctuations on ∆md are not primarily caused by the

k factor correction. The variations on ∆md are of the order 2 − 4 ns−1, while the statistical
uncertainty on the k factor correction causes variations on ∆md below 0.5 ns−1. Table 4.19 gives
an overview of the variations on ∆md obtained by the different methods.
The ∆md results from the fits to ttrue deviate from the generation value of ∆md = 0.507 ps−1

due to the before mentioned statistical reasons. Therefore, the differences between the ∆md fits to
the reconstructed decay time, using either the standard k factor method or the improved method,
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4. The B0–B0 Oscillation Frequency ∆md

standard k factor improved k factor
mode year mean [ ns−1 ] width [ ns−1 ] mean [ ns−1 ] width [ ns−1 ]
D− 2011 −0.06 0.37 +0.06 0.45
D− 2012 −0.06 0.25 −0.00 0.25
D∗− 2011 +0.02 0.22 −0.34 0.21
D∗− 2012 −0.01 0.17 +0.01 0.14

Table 4.18.: Determination of the uncertainty on ∆md induced by the limited statistics of the
sample, where the k factor correction is determined from. The sample is restricted to
tagged events, only, because this reflects the final ∆md fit conditions on data. 100
fits are performed per sample, each fit result is subtracted from the nominal fit result.
The mean and width values of the resulting distributions are given.

mode year events fit ttrue - 0.507 improved k - ttrue standard k - ttrue (stand. - impr.)k
[ ns−1 ] [ ns−1 ] [ ns−1 ] [ ns−1 ]

D− 2011 all -1.91 -2.97 1.10 4.07
D− 2011 tagged +2.61 -2.08 2.29 4.37
D− 2012 all -0.62 +0.46 3.73 3.27
D− 2012 tagged -2.27 +0.20 3.62 3.42
D∗− 2011 all 1.28 -2.41 2.88 5.29
D∗− 2011 tagged 0.09 -2.86 2.78 5.64
D∗− 2012 all 1.53 -0.12 3.58 3.70
D∗− 2012 tagged 0.81 +0.11 3.50 3.39

Table 4.19.: Comparison of the ∆md fit values obtained using different methods. The first
column shows the statistical goodness of the MC sample by computing the difference
between ∆md obtained by fitting the true decay time minus the generation value
∆md = 0.507 ps−1. The improved k factor method gives very close results for ∆md

on the 2012 MC samples. However, in 2011 MC the results are limited by statistical
fluctuations. A comparison of the standard k factor method with the fit to ttrue
shows, that this method gives a biased result for ∆md of ∼ 3.5 ns−1 for 2012 MC.
The deviations obtained from 2011 MC are dominated by statistical fluctuations. The
direct comparison of the ∆md results obtained by the standard and the improved k
factor methods gives the real size of the bias on ∆md independent of the statistical
fluctuations in the 2011 MC samples.
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are computed with respect to the fits to the true decay time. On 2012 MC, these values agree very
well, at the 0.2 ns−1 level for B0→ D−µ+νµX and at the 0.1 ns−1 level for the B0→ D∗−µ+νµX.
However, the 2011 MC samples, show a deviation of 2.1 ns−1 for B0 → D−µ+νµX here and
2.9 ns−1 for B0→ D∗−µ+νµX. These deviations are taken as uncertainty on the knowledge, that
the bias on ∆md is removed by the improved k factor method. It is determined on statistically
independent samples. Hence, it will be treated accordingly in the estimate of the uncertainties of
the weighted average of the combined ∆md measurement on data.

4.8.1. Demonstration of the Robustness of the trec to ttrue Translation

A crucial point of the improved k factor method is the translation between the reconstructed and
the true decay time by the second order polynomial. During MC generation the B0 decay width
Γd = 0.658 ps−1, which is the inverse of the B0 lifetime, was used as input. What happens to the
determination of ∆md, if this value is different in real data? Does the improved k factor method still
work? To test this, Γd is changed within the current PDG uncertainty, τB0 = (1.519±0.005) ps [72],
by changing the fraction of short- to long-lived decays within a MC sample. Then, this variated
sample is fitted with the default improved k factor correction. The difference between the ∆md

fit result from this test and the default fit result gives the systematic uncertainty on ∆md.
The largest MC sample (B0→ D∗−µ+νµX, 2012) is used for this test. The B0 decay width is

fitted with Γd = 0.658± 0.002 ps−1, shown in figure 4.33. A very simple exponential decay model
is taken here, choosing the minimum and maximum fit range borders such, that no resolution or
reconstruction inefficiencies affect the decay width fit result. Of course, real lifetime measurements
are a lot more difficult. True short-lived B mesons can be reconstructed as long-lived B mesons by
mismatches in the reconstruction, such as wrong decay vertex assignments or randomly combined
tracks. The probability to reconstruct true long-lived B mesons as short-lived B mesons instead
is smaller, due to the better reconstructible signature in the detector of significantly displaced
vertices.
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Figure 4.33.: True decay time distribution of 2012 MC events in the B0→ D∗−µ+νµX mode. A
single exponential fit gives the B0 decay width Γd = (0.658± 0.002) ps−1.
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4. The B0–B0 Oscillation Frequency ∆md

First, the sample is enriched with long-lived events by randomly rejecting short-lived events
until the mean B0 decay width is smaller by 1σ of the PDG uncertainty. Second, the sample
is enriched with short-lived events by randomly rejecting long-lived events until the mean B0

decay width is larger by 1σ of the PDG uncertainty. Both scenarios are shown in figure 4.34, the
corresponding B0 decay widths fits are overlaid.
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(a) Γd −1σ PDG uncertainty
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Figure 4.34.: True decay time distribution of 2012 MC events in the B0→ D∗−µ+νµX mode.
Left: the sample is enriched with long-lived events by randomly rejecting short-lived
events, the mean B0 decay width is 1σ of the PDG uncertainty smaller, right: the
other way around.

It is necessary to reject half of the events, in order to increase or decrease the B0 decay width by
1σ. ∆md is fitted on these samples. The fit projections are shown in figure 4.35. The corresponding
fit values are given in table 4.20.

B0→ D∗−µ+νµX 2012 MC sample Γd [ ps−1 ] ∆md [ ps−1 ]
original 0.658± 0.002 0.50841± 0.00064

Γd − 1σ short-lived 0.656± 0.003 0.50899± 0.00090
Γd + 1σ long-lived 0.661± 0.003 0.50762± 0.00091

Table 4.20.: Parameters of the ∆md fit applied to 2012 MC events in the B0→ D∗−µ+νµX mode,
using cheated tagging. The sample is artificially enriched with long-lived or short-lived
true B decay times. To increase or reduce the B0 decay width by 1σ of the PDG
uncertainty, the sample size is reduced by a factor of 2. The translation between the
reconstructed and the true decay time is not sensitive to the exact knowledge of Γd.

The deviation in ∆md is −0.79 ns−1 for the long-lived enhanced sample and +0.58 ns−1 for
the short-lived enhanced sample. To judge, whether this is a significant deviation the statistical
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(a) Oscillation projection on events with Γd −1σ
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(b) Oscillation projection on events with Γd +1σ

Figure 4.35.: Mixing asymmetry fit projections of the ∆md fit to 2012 MC events in the B0→
D∗−µ+νµX mode using cheated tagging. Left: Γd is lowered by 1σ, right: Γd is
increased by 1σ by changing the sample composition.

component of the deviation is evaluated. Given A with uncertainty σA is the measurement on the
whole sample. B with uncertainty σB is the measurement that gives the larger deviation. Then C
with uncertainty σC is a hypothetical measurement on the subsample of sample A, that is not
contained in sample B. B and C are statistically independent measurements, so that

A

σ2
A

= B

σ2
B

+ C

σ2
C

, (4.46)

or
1
σ2
A

= 1
σ2
B

+ 1
σ2
C

. (4.47)

Then
σ2
A = σ2

Bσ
2
C

σ2
B + σ2

C

. (4.48)

The statistical uncertainty σ(A−B) is obtained by
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B
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σ2
C

)
σ2
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(4.49)

From line 1 to 2, equation 4.48 has been used. Given, that B and C are statistically independent
measurements, the statistical uncertainty σ(A−B) is

σ(A−B) =
√
σ2
B + σ2

C

σ2
B

σ2
B + σ2

C

= σ2
B√

σ2
B + σ2

C

(4.50)
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4. The B0–B0 Oscillation Frequency ∆md

The statistically independent uncertainty σC is determined using equation 4.47:

σC = σAσB√
σ2
B − σ2

A

= 0.00090 ps−1. (4.51)

Inserting σB = 0.91 ns−1 and σC = 0.90 ns−1 yields σ(A − B) = 0.65 ns−1. Hence, the upper
variation on ∆md is compatible with a statistical variation of 1.2σ and the lower variation on
∆md is 0.9σ. This is not significant. Thus, the improved k factor method is not limited by the
knowledge of the B0 lifetime.

4.9. Systematic Uncertainty on ∆md

This section shows the determination of the systematic uncertainty on the measurement of ∆md.
All contributing effects are summarized in table 4.23, given in the end of this section. Systematic
uncertainties can bias the result of ∆md on data. In contrast to the statistical uncertainty, given
by the statistical power of the data set, they are evaluated on pseudo experiment data. These
so called toy experiments are generated according to the ∆md fit PDF using a random number
generator 12. Then, the toy data sets are fitted. By generating and fitting O(1000) of toy data
sets the statistical component of the fit uncertainty vanishes but any systematic effect remains.

To evaluate the systematic uncertainty on ∆md due to a given uncertainty, either the generation
PDF is modified to account for this uncertainty or the fit PDF is modified. Both approaches
are equivalent. Modifying the fit PDF has the advantage, that the generated set of toy samples
can be used in multiple systematic tests. That saves significantly CPU hours and carbon dioxide.
This approach is mainly used here.

A visualization method for systematic effects is to plot three types of histograms. First, the fitted
∆md values are subtracted from the generated ∆md values. This difference is filled in a histogram.
If a systematic effect is present, a shift will show up. Second, the statistical uncertainties of each
toy sample fit are filled in another histogram. The mean value of this histogram corresponds to the
statistical precision of the ∆md fit on data. By construction, the generation statistics, generated
events per toy data set, are chosen such, that this condition is fulfilled. Third, the pull quantity is
calculated, which is the shift value per toy data set divided by its statistical uncertainty. The pull
distribution will take Gaussian shape, when the number of toy data sets is large enough. It has a
mean value of 0 and a width of 1. When a significant systematic effect occurs, it will show up as
shift of 1, 2, ..., nσ in the pull distribution by moving the pull mean value to ±1, 2, ..., n.
The ∆md fit on data requires for every decay mode and data taking year different input

parameters, such as flight distance resolution, decay time acceptance, k factor correction and
B+ fractions per tagging category. The measured mistag probabilities per category per signal
or background component are determined individually as well. Therefore, the toy data sets are
generated with the fit conditions of one of the 4 data sets, the one giving the best statistical
precision on ∆md, which is the B0→ D−µ+νµX 2012 data set. The B0→ D−µ+νµX mode is also
chosen, because it carries larger uncertainties of the sample composition in terms of semileptonic
feed down decay modes. Analogue to the data fit, 9 parameters are floated: ∆md and four
12The ROOT TRandom3 class is used.
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parameters for the mistag ω in B0 and in B+ decays, respectively. All other parameters are fixed.
This reflects the setup of an sWeighted fit on data, with a statistical precision of 2.8 ns−1, where
1.6× 106 events are generated.

After a sanity test, generating and fitting events with the same PDF , four classes of systematic
tests are performed. First, the general PDF settings are validated, such as the binning, the D
mass sWeights and B0 flight distance resolution and decay time acceptance. The uncertainties on
the z-scale and momentum scale are also considered. Second, the B+ background component is
tested. A crucial input to the fit is the B+ fraction per category, fB+,i, determined externally by
a fit to the isolation BDT distribution on sWeighted data. The uncertainty on fB+,i is determined
by varying the branching ratios of the decay modes entering the MC cocktail and refitting the
isolation BDT distribution on sWeighted data with the BR variated MC templates. One σ
of this uncertainty is propagated on ∆md using toy experiments. Additionally, the B+ flight
distance resolution and decay time acceptance are varied. In the default fit, the decay time
acceptance is assumed to be the same for B0 and B+ decays. The impact of this assumption
is tested here. Third, other types of background are introduced such as B0

s and B0 → DD
decays. A Λ0

b component is found to be negligible. The fourth class of tests is about the k factor
distribution. The impact on ∆md by possible deviations in the sample composition is tested. The
fully reconstructed mode B+→ J/ψK+ is used to compare B momentum differences between
data and MC. Differences are propagated on the B0 momentum within the k factor distribution.

4.9.1. Validation of the ∆md Fit Procedure using Toy Experiments
The fit procedure is validated by generating toy experiments according to the Probability Density
Function PDF , used for the fit. As introduced above, shift, statistical uncertainty and pull
distributions for all floating parameters are obtained. Figure 4.36 shows the corresponding
distributions for ∆md. The shift and pull distributions are fitted by Gaussian distributions to
extract the mean and width values. The pull distributions of the other eight floated fit parameters
are shown in figure B.1 (the four B0 ω parameters) and in figure B.2 (the four B+ ω parameters),
given in appendix B.4.
A small systematic shift on ∆md of (−0.5 ± 0.1) ns−1 is observed. The mean of the pull

distribution is shifted by −0.24± 0.03, while the pull width is compatible with one, 0.98± 0.03.
Thus, the statistical uncertainties of the single ∆md fits are evaluated correctly, however the fitted
values of ∆md are slightly shifted. This effect is significant. Several explanations are possible.

First, the limited statistics of the generated samples are tested as source of this systematic shift.
However, a statistical source is excluded by generating another set of toy samples with 10 times
more statistics per sample: 1.6× 106 events → 1.6× 107 events. The shift stays identical in size.

Second, the effect of the binning choice is considered as reason for this systematic intrinsic shift.
The toy data is generated unbinned by drawing random numbers according to the shape of the
fit PDF . However, the fit is performed on binned data. Going from continuous to binned data,
the initial dimensionality is reduced, information is lost. Additionally, bin borders can have an
impact on the frequency measurement via the zero crossings of the oscillation. The effect of the
choice of binning is evaluated below. It partially explains the shift on ∆md.
Thus, another possibility is, that there is a difference in the technical implementation of the

generation model and the fit model. Therefore, the absolute size of the observed shift is added
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Figure 4.36.: Shift (a), statistical uncertainty (b) and pull (c) distributions on ∆md of a set of
toys samples, generated and fitted with 2012 B0→ D−µ+νµX data set conditions.
On Average, the statistical uncertainty of a single toy fit is 2.8 ns−1. The shift and
pull distributions are fitted by Gaussian distributions. A systematic shift on ∆md of
−0.5± 0.1 ns−1 is observed. The reason for this shift is evaluated in the following. It
is treated as a systematic. All following systematic variations are evaluated relative
to this shift.
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4.9. Systematic Uncertainty on ∆md

to the list of systematic uncertainties on ∆md. All following systematic variations are evaluated
relative to this intrinsic shift.

Choice of Binning

The default binning scheme uses 140 bins in the decay time with increasing widths to display
the fast turn on, induced by cuts on the flight distance of the B0, of the decay time distribution
properly. Compared to the B0 lifetime the B0–B0 oscillation frequency is relatively slow. Thus, the
mixing asymmetry is reconstructed for one oscillation period, only. The frequency measurement,
given by the two zero crossings of one period, can be sensitive to the choice of bin borders close to
these points. Naturally, the bin widths are chosen to be smaller in the high statistics beginning of
the decay time distribution and wider, when statistics fade away, given by the exponential decay
law.

Initially, the analysis was performed on 70 bins in the decay time. However, it soon turned out
to be a non-optimal choice. The widths of the higher decay time bins were too wide to display
the needed sensitivity to the second zero crossing of the oscillation. Hence, the number of bins
was increased. The optimal sensitivity is reached with 140 bins.

The systematic uncertainty on ∆md due to the choice of binning in the decay time is evaluated
by changing the bin borders. The 140 bins of increasing bin widths are exchanged by 140 bins
of uniform bin widths. The fit to the validation toy samples is repeated using these bins of
uniform widths. The intrinsic shift on ∆md is slightly increased to (−0.6± 0.1) ns−1.The absolute
difference between both intrinsic shifts of 0.1 ns−1 is taken as systematic uncertainty on ∆md.

4.9.2. Effects of the B0 Signal Modeling

The description of the B0 signal component is tested in the following. Possible systematic
uncertainties on ∆md are evaluated.

B0 Decay Time Acceptance

The default fit is done using a decay time acceptance histogram obtained from sWeighted data.
As a systematic check, a set of toys is generated with the default acceptance histogram from data,
but fitted with an acceptance histogram obtained from signal B0 MC. No significant effect on
∆md is observed. Hence, the mixing asymmetry is not sensitive to the modeling of the B0 decay
time distribution. Possible modeling differences are common for the nominator and denominator
of the mixing asymmetry distribution, hence, they cancel.

B0 Flight Distance Resolution

The effect on ∆md caused by a worse flight distance resolution in data compared to MC simulation
is tested. Therefore, a set of toy samples is generated with the nominal flight distance resolution,
but fitted with an alternative resolution, which is a factor of 1.5 wider than the nominal one. A
shift on ∆md of 0.3 ns−1 is observed. This is taken as a systematic uncertainty on ∆md.
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4. The B0–B0 Oscillation Frequency ∆md

D Mass sWeights

∆md is determined on sWeighted data in order to suppress the combinatoric background from
mis-reconstructed D decays. The sWeights are determined from D mass resonance fits on data,
see section 4.5. To account for possible differences in the amount of combinatorial background in
different tagging categories, the data sample is split into tagging categories before sWeights are
extracted. As a systematic test, the 2012 B0→ D−µ+νµX data sample is fitted with sWeights,
that were determined on the whole sample, without splitting in tagging categories. An absolute
difference in ∆md of (0.1± 3.0) ns−1 is observed. Since the fits are performed on the same data
sample, both measurements are 100% correlated. Hence, the small shift is significant and taken as
a systematic uncertainty on ∆md.

z Scale Uncertainty

The decay time is proportional to the flight distance. The uncertainty on the flight distance mea-
surement is given by the VELO module position precision along the z-axis. For the measurement
∆ms at LHCb [96], two main contributions to the z scale uncertainty are evaluated: the overall
length of the VELO (0.01%) and possible relative shifts of the individual modules within the
VELO (0.02%). These effects are also considered here. The effects are added in quadrature to
yield σz−scale = 0.022%. This relative uncertainty translates directly into an absolute uncertainty
on ∆md of 0.1 ns−1, which is taken as a systematic uncertainty on ∆md.

Momentum Scale Uncertainty

The decay time is proportional to the quotient of reconstructed B mass and momentum. In
fully reconstructed decays most of the uncertainties on the momentum scale cancel, because the
momentum measurement also enters the mass measurement. However, in semileptonic decays,
which are partially reconstructed decays, the B mass is fixed to the PDG value. Thus, effects
on the momentum scale do not cancel here. In [96] the uncertainty on the momentum scale is
determined to be 0.15%. This relative uncertainty translates directly into an absolute uncertainty
on ∆md of 0.8 ns−1, which is taken as a systematic uncertainty on ∆md.

4.9.3. Effects of the B+ Background Modeling

B+ background is non-oscillating. A possible mis-modeling of this background can change the
mixing frequency of B0 signal events. The mistag probability per category of B+ background is
floated in the ∆md fit, however, the amount of B+ background per category is fixed to values
obtained from fits to the isolation BDT distribution in sWeighted data. The shape of the B0

signal and B+ background isolation BDT distributions are taken from MC simulation. Possible
mis-modeling can enter here. The B+ decay time acceptance is modeled in the ∆md fit by the
B0 decay time acceptance determined on sWeighted data. Possible differences due to the different
B0 and B+ lifetimes and reconstruction inefficiencies, are taken into account with the help of MC
simulation. The following subsections show the effects in detail.
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Mode fraction [%] weights (−1σ) weights (+1σ)
D+µ 54.80± 3.03 0.94 1.06
D∗µ 37.76± 0.84 0.98 1.02
D∗0µ 2.14± 0.79 0.63 1.37
D′1µ 0.71± 0.25 0.65 1.35
D1µ 1.84± 0.28 0.85 1.15
D∗2µ 1.98± 0.82 0.59 1.41
non-resonant 0.78± 0.41 0.47 1.53

Table 4.21.: MC sample composition in B0→ D−µ+νµX mode after full selection. The ∓1σ
columns show values for weights to decrease or enhance the given mode by ∓1σ of the
fraction uncertainty, which is mainly determined by the uncertainty of the branching
fraction.

B+ Fractions

The externally fitted B+ fractions per category are varied here. The sample composition, in terms
of feed down modes, of the MC cocktail determines the shape of the B0 signal and B+ background
isolation BDT distributions. Relatively large uncertainties on the semileptonic branching ratios
dominate the uncertainty on the fraction of each component in the sample. The statistical
component of the uncertainty on the B+ fraction is negligible, as found out in the determination of
the B+ fraction in simulation, see section 4.5. Thus, the effect of the branching ratio uncertainties
on the determination of the B+ fractions from data is tested here.

Therefore, relative sample composition weights are calculated to enhance or decrease the given
feed down mode by 1σ of the branching ratio uncertainty, shown in table 4.21. Table 4.22 shows
the branching ratio uncertainties that enter the B0→ D∗−µ+νµX mode MC simulation cocktail.
This sample consists of 95% D∗ µ decays, in contrast to the B0→ D−µ+νµX mode, where D+ µ
decays make only 55% of the full sample and D∗ µ decays 38%.
The weights are applied one after another to the isolation BDT shapes in B0 signal MC, see

figure 4.37 for the B0→ D−µ+νµX mode. By eye, there is no significant difference in the weighted
isolation BDT distributions visible. For each weighted MC distribution the fit to sWeighted data
is repeated extracting a B+ fraction.
Figure 4.38 shows the results of the weighted isolation BDT distribution fits. In the B0→

D−µ+νµX mode, where the sample consists of only 55% signal decays, an almost linear dependence
of the fitted B+ fractions on the relative branching ratio uncertainty weighting is present. Whereas
in the B0 → D∗−µ+νµX mode, where the sample consists of 95% signal decays, the fitted
B+ fractions are rather constant except for the variation of the non resonant branching ratio
uncertainties. The maximum difference in the fitted B+ fractions of absolute 0.5% is larger in the
B0→ D−µ+νµX, than in the B0→ D∗−µ+νµX, where it is 0.3%.

The effect on ∆md of this variation is tested in toys by generating toy events with the nominal
B+ fractions, but fitting with 0.5% up and downwards variated B+ fractions. The ω parameters
of the B0 and B+ components are left floating. For the up-type variation of the B+ fractions,
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4. The B0–B0 Oscillation Frequency ∆md

Mode fraction [%] weights (−1σ) weights (+1σ)
D∗µ 94.99± 2.07 0.98 1.02
D∗0µ 0.35± 0.12 0.65 1.35
D′1µ 0.89± 0.34 0.63 1.37
D1µ 2.30± 0.34 0.85 1.15
D∗2µ 0.68± 0.31 0.55 1.45
non-resonant 0.79± 0.25 0.69 1.31

Table 4.22.: MC sample composition in B0→ D∗−µ+νµX mode after full selection. The ∓1σ
columns show values for weights to decrease or enhance the given mode by ∓1σ of the
fraction uncertainty, which is mainly determined by the uncertainty of the branching
fraction.
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Figure 4.37.: Weighted B0 isolation BDT response distribution in B0 → D−µ+νµX mode to
account for semileptonic branching ratio uncertainties varying (a) −1σ and (b) +1σ.

a negligible shift on ∆md of 0.04 ns−1 is found. For the down-type variation, a shift on ∆md

of 0.14 ns−1 is found. The down-type variation effect on ∆md of 0.1 ns−1 is taken as systematic
uncertainty on ∆md.

B+ Decay Time Acceptance

In the nominal ∆md fit the same decay time acceptance distribution is used for the B0 and the
B+ component, which is obtained from sWeighted data. Due to the different lifetimes of B0 and
B+ mesons and possibly different reconstruction efficiencies, the effect of this assumption on ∆md

is tested.

168



4.9. Systematic Uncertainty on ∆md

σ
) 

-1
µ 

+
f(

D

σ
) 

-1
µ

f(
D

* 

σ
) 

-1
µ

f(
D

*0
 

σ
) 

-1
µ

f(
D

1'
 

σ
) 

-1
µ

f(
D

1 

σ
) 

-1
µ

f(
D

2*
 

σ
f(

n
o

n
-r

es
) 

-1

σ
) 

+1
µ 

+
f(

D

σ
) 

+1
µ

f(
D

* 

σ
) 

+1
µ

f(
D

*0
 

σ
) 

+1
µ

f(
D

1'
 

σ
) 

+1
µ

f(
D

1 

σ
) 

+1
µ

f(
D

2*
 

σ
f(

n
o

n
-r

es
) 

+1

D
ef

au
lt

 [
%

]
B

+
f

5.2

5.3

5.4

5.5

5.6

5.7

(a) B0→ D−µ+νµX mode

σ
) 

-1
µ 

+
f(

D

σ
) 

-1
µ

f(
D

* 

σ
) 

-1
µ

f(
D

*0
 

σ
) 

-1
µ

f(
D

1'
 

σ
) 

-1
µ

f(
D

1 

σ
) 

-1
µ

f(
D

2*
 

σ
f(

n
o

n
-r

es
) 

-1

σ
) 

+1
µ 

+
f(

D

σ
) 

+1
µ

f(
D

* 

σ
) 

+1
µ

f(
D

*0
 

σ
) 

+1
µ

f(
D

1'
 

σ
) 

+1
µ

f(
D

1 

σ
) 

+1
µ

f(
D

2*
 

σ
f(

n
o

n
-r

es
) 

+1

D
ef

au
lt

 [
%

]
B

+
f

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

(b) B0→ D∗−µ+νµX mode

Figure 4.38.: Fitted B+ fractions (fB+) in B0 → D−µ+νµX mode (a) and B0 → D∗−µ+νµX
mode (b), where the signal B0 MC isolation BDT distribution template is weighted
according to the semileptonic branching ratio uncertainties.

Toy samples are generated with the default fit setup but fitted with a different decay time
acceptance distribution for the B+ background component. Due to known data MC simulation
differences in the decay time acceptance distribution, the B+ decay time acceptance obtained
from MC simulation is not directly taken here. However, the acceptance histogram obtained from
sWeighted data is reweighted to the relative difference of the B0 and B+ decay time acceptance,
both obtained from simulation, shown in figure 4.39. A shift on ∆md of 0.4 ns−1 is observed. This
is taken as systematic uncertainty on ∆md.

B+ Flight Distance Resolution

The nominal ∆md fit uses different flight distance resolutions for the B0 and the B+ component,
both obtained from MC simulation. However, the statistics of the B+ MC sample are limited,
which causes large uncertainties on the fitted B+ flight distance resolution parameters. Hence,
the effect on ∆md is determined by using different flight distance resolution parameters for the
B+ component. A set of toy samples is generated under nominal conditions but fitted using the
B0 flight distance resolution for both components. A shift on ∆md of 0.1 ns−1 is observed. This
is taken as a systematic uncertainty on ∆md.

4.9.4. Effects of the Modeling of other Backgrounds

This section evaluates other backgrounds, besides B+ background, affecting the systematic
uncertainty on ∆md. Three types of additional backgrounds are identified: B0

s , Λ0
b and B →

D(∗)−D+
s decays. They are investigated in the following.
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Figure 4.39.: Nominal decay time acceptance distribution determined on sWeighted data (red)
used in the ∆md fit for both components, B0 signal and B+ background. This
acceptance distribution is reweighted to the relative B+/ B0 acceptance distribution
differences obtained from MC simulation (blue).

B0
s and Λ0

b Background Component

B0
s mesons oscillate a factor 34 faster than B0 mesons. Given the decay time resolution of

semileptonic decays the fast B0
s oscillation is not resolvable, see figure 4.40. The oscillation

averages out and appears to have a constant zero mixing asymmetry. Λ0
b decays do not oscillate.

Therefore, they can be treated as the non-oscillating B+ background. The Λ0
b mixing asymmetry

is non-zero but constant over decay time.
The fraction of Λ0

b events in the sample is 0.1± 0.1% in the B0→ D−µ+νµX mode and 0.0%
in the B0→ D∗−µ+νµX mode. A variation of that order of magnitude is covered by the variation
of the B+ fractions of absolute ±0.5% up and down. The fraction of B0

s decays is estimated to
be 1.5 ± 0.4% in the B0→ D−µ+νµX mode and 1.6 ± 0.3% in the B0→ D∗−µ+νµX mode. A
contribution of B0

s decays of that size is generated in toy MC samples, but the fit is performed
without this extra component. A shift on ∆md of 0.2 ns−1 is observed. This is taken as a
systematic uncertainty on ∆md.

B → D(∗)−D+
s X or B → D(∗)−τX Background Decays

A small contribution from B → D(∗)−D+
s decays, where the Ds decays semileptonically, is also

tested. B → D(∗)−τX decays, where τ → µνµντ , are kinematically similar, thus, have a similar
k factor distribution. Therefore, the effect of this contribution is estimated by enlarging the
contribution of the τ decays from 0.1% to 1.7% in the k factor distribution. Toy samples are
generated without this effect, but fitted with the τ enlarged k factor distribution. A shift on ∆md

of 0.2 ns−1 is observed. This is taken as a systematic uncertainty on ∆md.
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Figure 4.40.: Mixing asymmetry for different MC samples: B0 signal (black), B+ background
(red), B0

s background (blue) and Λ0
b background (green).

4.9.5. Effects of the k Factor Correction

The k factor correction plays a central role in the analysis. Since it is determined using MC
simulation, possible MC data differences have to be accounted for. The effect on ∆md is
determined, caused by differences in the B0 momentum distribution between data and MC. Also
the semileptonic branching ratio uncertainties are propagated into the k factor distributions to
determine a systematic effect on ∆md. The presented studies are done using the standard k factor
method. However, the effects on ∆md are identical, when using the improved k factor method.

Data MC Differences in the B Momentum Distribution

Possible data MC differences in the B momentum distribution are checked with the help of fully
reconstructed B+→ J/ψK+ decays. The momentum distributions of B+ data and B+ MC are
divided to obtain momentum weights. Those weights are applied to the k factor distribution,
shown in figure 4.41. Both MC production Pythia versions (6 and 8) are tested. The agreement
between the data and MC B+ momentum distributions is slightly different for different Pythia
versions.

To evaluate the systematic effect on ∆md a set of toy samples is generated according to the
nominal fit conditions, but fitted with the weighted k factor distribution. The k factor distribution,
weighted by Pythia 8 momentum weights, yields the larger effect on ∆md of 0.3 ns−1. The Pythia
6 weighted k factor distribution yields an almost negligible shift on ∆md of 0.05 ns−1. The larger
shift value is taken as systematic uncertainty on ∆md.

Semileptonic Branching Ratio Uncertainties

Figure 4.42 shows the k factor histogram as a stacked histogram of all different feed down
modes for both channels. The different sample compositions in B0→ D−µ+νµX compared to
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Figure 4.41.: (a) B momentum weights obtained by dividing the B+ momentum distribution
of data by the one obtained from MC using the fully reconstructed B+→ J/ψK+

decay mode. Pythia 6 and 8 versions are considered separately. (b) Default k
factor distribution compared to the weighted k factor distributions using the weights
from (a).

B0→ D∗−µ+νµX mode are well visible. Hence, semileptonic branching ratio uncertainties affect
the B0→ D−µ+νµX more.

As the semileptonic branching ratio uncertainties affect the determination of the B+ fractions,
they also affect the k factor distribution. Hence, the same ±1σ weights are used here, see table 4.21
for the B0→ D−µ+νµX mode and table 4.22 for the B0→ D∗−µ+νµX mode. They are applied
one after another to the k factor distribution. A comparison of the default and weighted k factor
distributions is shown in figure 4.43 for the B0→ D−µ+νµX mode.
A single high statistics toy sample is generated with the default k factor histogram and fitted

with each of the weighted k factor histograms. The fit results are shown in figure 4.44. The
number of generated toy events is increased by a factor of 10 from 1.6× 106 to 1.6× 107 events.
That decreases the statistical uncertainty on ∆md from 2.8 ns−1 to 1.7 ns−1. No large shift on
∆md for any of the weighted k factor histograms is observed. The quadratic sum of the differences
between the fitted value and the default value of ∆md is calculated. It yields a mean deviation
0.4 ns−1. This is taken as systematic uncertainty on ∆md.

4.9.6. Combination of the Systematic Uncertainty on ∆md

Table 4.23 shows all systematic uncertainties considered for the measurement of ∆md. The
different uncertainties are grouped according to five types of tests. First, the fit procedure is
validated using toy experiments. Second, the B0 signal component modeling is tested. Third, all
uncertainties related to the B+ background modeling are evaluated. Fourth, uncertainties related
to possible contributions of other backgrounds, B0

s , Λ0
b or double D or τ decays, are given. Fifth,

uncertainties induced by the k factor correction method are evaluated.
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Figure 4.42.: Sample composition of B0→ D−µ+νµX (a) and B0→ D∗−µ+νµX (b) displayed
in stacked k factor histograms. The corresponding fraction numbers are given in
table 4.21 and table 4.22.
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Figure 4.43.: Comparison of k factor distributions in the B0→ D−µ+νµX mode after applying
weights corresponding to a variation of (a) −1σ and (b) +1σ of the semileptonic
branching ratio uncertainties.
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Figure 4.44.: A high statistics toy sample (1.6× 107 events) is generated with nominal fit conditions.
The sample is fitted with weighted k factor histograms corresponding to ±1σ
variations in the semileptonic branching ratio uncertainties.

The largest systematic uncertainty on ∆md comes from the knowledge of the momentum scale
in LHCb. In all fully reconstructed decay modes, this uncertainty cancels at first order. However,
in partially reconstructed semileptonic B decays, the determination of the B0 decay time is fully
affected by this uncertainty due to the absence of the reconstructed B0 mass resonance. All other
systematic uncertainties are of similar size. The total systematic uncertainty on ∆md is obtained
by the square root of the quadratic sum of the single effects. An overall systematic uncertainty on
∆md of 1 ns−1 is evaluated. For comparison, the combined statistical precision, fitting all four
data sets, is 2 ns−1.
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4.10. Results

Source of uncertainty Uncertainty [ ns−1 ]
Validation:
bias of nominal fit 0.5
binning 0.1

B0 signal:
B0 acceptance neg.
B0 flight distance resolution 0.3
D mass sWeights 0.1
z-scale uncertainty 0.1
momentum scale uncertainty 0.8

B+ background:
B+ fraction 0.1
B+ acceptance 0.4
B+ flight distance resolution 0.1

Other backgrounds:
B0
s component 0.2

Λ0
b component -

B0 → D(∗)−D+
s X or B0 → D(∗)−τX decays 0.2

k factor distribution:
Momentum distributions 0.3
Branching ratio from D∗(∗) 0.4

Quadratic sum 1.2

Table 4.23.: Overview of all contributions to the systematic uncertainty on ∆md. The variations
are determined on sets of toy samples (O(1000)), with B0→ D−µ+νµX 2012 data
conditions (1.6× 106 signal events). The statistical precision on ∆md of a single toy
sample fit is 2.8 ns−1. Entries marked with - are found to be non present. Entries
marked with ’neg.’ are found to be negligible.

4.10. Results

The method to measure ∆md has been developed using the blind analysis technique. The blinding
offset is removed from the fitted value of ∆md, after all systematic checks and data crosschecks
are finished. The systematic studies were presented in the previous section. This section shows
the crosschecks evaluated on data.
Four non-overlapping data sets are used to measure ∆md: 2011 and 2012 data in the B0→

D−µ+νµX and B0→ D∗−µ+νµX modes. These data sets are fitted separately, first. ∆md is
calculated as the weighted average from the four results. Second, one combined fit is performed
on all four data sets simultaneously. The simultaneous fit picks up all input parameters data set
specifically, as well as the mistag parameters per category are fitted data set specific. The ∆md
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subsample name events requirement
All —

mag Up magnet polarity up
mag Dn magnet polarity down
µ+ positively charged final state muon
µ− negatively charged final state muon

#PV = 1 number of primary vertices per event = 1
#PV = 2 number of primary vertices per event = 2
#PV > 2 number of primary vertices per event at least 3
Mult 1 track multiplicity per event <150
Mult 2 track multiplicity per event >150 and <220
Mult 3 track multiplicity per event >220
Run 1 run number <9.5× 104 (1.19× 105)
Run 2 run number >9.5× 104 (1.19× 105) and <1.01× 105 (1.29× 105)
Run 3 run number >1.01× 105 (1.29× 105)

Table 4.24.: Definitions of data set split categories. The run number is a continuous number
assigned to every data taking run, hence different values are given for 2011 and 2012
data, respectively.

parameter, however, is shared. A comparison of ∆md obtained from the two fitting methods is
given.

4.10.1. Crosscheck using Data Set Splits

The data sets are split into different subsamples, divided by magnet polarities, charge of the final
state µ, number of primary vertices, track multiplicities and data taking periods. The definitions
of the subsample splits are given in table 4.24. The splitting categories ensure that the final result
is independent of systematic effects in data. The splits should give, besides statistical fluctuations,
the same (blinded) fit value for ∆md. A variation of up to two σ of the statistical uncertainty on
∆md is tolerated.

Figure 4.45 shows the data set splits on all four data samples. A blinded value for ∆md is
given for every subsample fit. Within 2σ all subsamples yield a compatible blinded ∆md fit value
compared to the fit to the full sample.

4.10.2. Fit Projections

This section shows the ∆md fit projections on the decay time distribution. The data is sWeighted
to remove the combinatoric background from mis-reconstructed D decays. For every data set
three types of projections are plotted: the total fit to the decay time distribution with a separation
into the B0 and B+ fit components, the total fit to the decay time distribution with a separation
into the decay times distributions of mixed and unmixed decays and the mixing asymmetry as
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(a) 2011 B0→ D−µ+νµX data
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(b) 2012 B0→ D−µ+νµX data
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Figure 4.45.: Data set splits of blinded ∆md fits for 2011 and 2012 data in B0→ D−µ+νµX and
B0→ D∗−µ+νµX modes. The split definitions are given in table 4.24. All subsample
fit results are compatible with the result obtained on the full sample within 2σ of
the statistical uncertainty on ∆md.

a function of the decay time. Every type is additionally plotted in the four tagging categories.
Figure 4.46 shows the fit projection plots in 2011 B0→ D−µ+νµX mode data and figure 4.47 for
2012 data. Figure 4.48 shows the fit projection plots in 2011 B0→ D∗−µ+νµX mode data and
figure 4.49 for 2012 data.

Pull distributions given below the uncategorized projections indicate the good description of
the data distribution by the fit PDF . The categorized mixing asymmetries show the different
damping effects of different mistag probabilities.
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(f) Mixing asymmetry in categories

Figure 4.46.: Fit projections of the ∆md fit to 2011 B0→ D−µ+νµX data. Upper row: fitted
decay time distributions separated into B0 signal and B+ background components.
Middle row: fitted decay time distributions separated into decays with different
production and decay flavour and decays with same production and decay flavour.
Lower row: fitted mixing asymmetry distributions. Left column: all events, right
column: events split in mistag categories of increasing mistag.
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Figure 4.47.: Fit projections of the ∆md fit to 2012 B0 → D−µ+νµX data, as in figure 4.46
explained.
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Figure 4.48.: Fit projections of the ∆md fit to 2011 B0→ D∗−µ+νµX data, as in figure 4.46
explained.
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Figure 4.49.: Fit projections of the ∆md fit to 2012 B0→ D∗−µ+νµX data, as in figure 4.46
explained.
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4. The B0–B0 Oscillation Frequency ∆md

4.10.3. Tagging Performance
The tagging performance is evaluated for each data set. For B0→ D−µ+νµX mode table 4.25
shows the performance measured in 2012 data and table 4.26 shows the performance measured
in 2011 data. Accordingly, for B0→ D∗−µ+νµX mode the tagging performance for 2012 data
is given in table 4.27 and for 2011 data in table 4.28. The tagging performance is determined
separately for the B0 signal and the B+ background components.

quantity cat. 0 [%] cat. 1 [%] cat. 2 [%] cat. 3 [%] Σ [%]
B0εtag 3.65± 0.08 6.36± 0.11 12.24± 0.17 15.11± 0.16 37.36± 0.27
B0 ω 23.06± 0.36 31.62± 0.30 40.46± 0.12 46.22± 0.16 35.34± 0.51
B0 εeff 1.06± 0.05 0.86± 0.05 0.45± 0.03 0.09± 0.01 2.46± 0.08
B+εtag 3.53± 0.07 6.13± 0.09 11.99± 0.14 15.45± 0.13 37.10± 0.22
B+ ω 17.45± 2.87 29.17± 2.11 35.96± 1.55 46.13± 1.45 32.18± 4.15
B+ εeff 1.50± 0.27 1.06± 0.22 0.95± 0.21 0.09± 0.07 3.60± 0.41

Table 4.25.: Tagging performance in 2012 B0→ D−µ+νµX data, separately for the B0 signal and
the B+ background component. From the tagging efficiency (εtag) and the measured
mistag probability (ω) the tagging power (εeff = εtag(1− 2ω)2) is calculated per
category. The last column gives the overall tagging performance, summed over the
four categories.

quantity cat. 0 [%] cat. 1 [%] cat. 2 [%] cat. 3 [%] Σ [%]
B0εtag 3.34± 0.12 5.90± 0.17 11.52± 0.25 14.51± 0.24 35.27± 0.40
B0 ω 23.17± 0.34 31.25± 0.27 39.57± 0.20 46.06± 0.27 35.01± 0.55
B0 εeff 0.96± 0.07 0.83± 0.07 0.50± 0.06 0.09± 0.02 2.38± 0.12
B+εtag 3.29± 0.10 5.74± 0.13 11.29± 0.20 14.83± 0.19 35.15± 0.32
B+ ω 19.55± 4.87 31.04± 3.76 44.79± 2.64 45.36± 2.50 35.19± 7.15
B+ εeff 1.22± 0.39 0.83± 0.33 0.12± 0.13 0.13± 0.14 2.30± 0.55

Table 4.26.: Fitted tagging parameters in 2011 B0→ D−µ+νµX data, following the same structure
as explained in table 4.25.

The tagging efficiency (εtag) per category is determined by the number of sWeighted data events
in that category, divided by the number of all sWeighted data events. Separate tagging efficiencies
are evaluated for the B0 and the B+ component due to different B+ fractions per category, see
table 4.10 and table 4.11 in section 4.5. The uncertainties on the B+ fractions are propagated
into εtag as well as the statistical uncertainty on the number of events.

The measured mistag probability (ω) per category is determined by the ∆md fit. Additionally,
the tagging power (εeff = εtag(1− 2ω)2) is calculated per category. The last column of each table
gives the overall tagging performance of the sample by summing over all tagging categories.
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4.10. Results

quantity cat. 0 [%] cat. 1 [%] cat. 2 [%] cat. 3 [%] Σ [%]
B0εtag 3.00± 0.10 5.64± 0.14 11.20± 0.20 16.21± 0.24 36.05± 0.36
B0 ω 22.66± 0.30 30.64± 0.42 40.06± 0.17 46.16± 0.23 34.88± 0.59
B0 εeff 0.90± 0.06 0.85± 0.07 0.44± 0.04 0.10± 0.02 2.29± 0.10
B+εtag 3.02± 0.07 5.46± 0.09 11.09± 0.13 16.5± 0.16 36.07± 0.24
B+ ω 16.90± 8.10 39.79± 6.08 41.69± 4.30 50.9± 3.52 37.32± 11.55
B+ εeff 1.32± 0.65 0.23± 0.27 0.31± 0.32 0.01± 0.04 1.87± 0.77

Table 4.27.: Fitted tagging parameters in 2012B0→ D∗−µ+νµX data, following the same structure
as explained in table 4.25.

quantity cat. 0 [%] cat. 1 [%] cat. 2 [%] cat. 3 [%] Σ [%]
B0εtag 3.09± 0.15 5.77± 0.19 9.83± 0.29 16.53± 0.31 35.22± 0.49
B0 ω 21.24± 0.56 30.63± 0.64 40.05± 0.46 46.57± 0.35 34.62± 1.03
B0 εeff 1.02± 0.09 0.87± 0.09 0.39± 0.07 0.08± 0.03 2.36± 0.15
B+εtag 3.09± 0.10 5.53± 0.13 10.01± 0.19 16.45± 0.20 35.08± 0.32
B+ ω 44.62± 9.79 41.2± 12.8 31.68± 6.61 38.09± 7.58 38.90± 19.00
B+ εeff 0.04± 0.13 0.17± 0.50 1.34± 0.97 0.93± 1.19 2.48± 1.62

Table 4.28.: Fitted tagging parameters in 2011B0→ D∗−µ+νµX data, following the same structure
as explained in table 4.25.

The tagging power of B0 signal is compatible between decay modes and years. Combining
all four measurements, the tagging power measured in semileptonic B0 decays is 2.39± 0.05%,
achieved by the combination of the ANN-based OS kaon tagger and the OS muon and electron
taggers.

However, the tagging power of B+ background differs significantly from the performance of B0

signal and within different years and modes. The reason is, that the assignment to categories,
which depends on the predicted mistag probability, is not properly defined for B+ background.
The momentum measurement of semileptonic B+ decays, which are reconstructed as B0 decays,
is underestimated due to the additional non-reconstructed pion track. This shifts the predicted
mistag probability to higher values, because the tagging algorithms predict the lowest mistag
probabilities for high B momentum events. Thus, events that should be categorized in the best
mistag category are propagated into the second best mistag category and so on. That decreases
the measured mistag probability of B+ background in the best mistag category significantly, while
the effect is less pronounced in the subsequent categories. Hence, the average tagging power of
the B+ component is overestimated.
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4. The B0–B0 Oscillation Frequency ∆md

4.10.4. Results
First, the four data sets are fitted separately. All fits are converged. The extracted mistag
probability parameters of the B0 signal and B+ background components are in a physical range
between 0% and 50%. They increase for increasing tagging categories, according to predicted
mistag probabilities. In the first category, the lowest mistag probability is measured, in the
last category, the highest mistag probability is measured, see table 4.25, table 4.26, table 4.27
and table 4.28 for 2012 and 2011 B0→ D−µ+νµX data and 2012 and 2011 B0→ D∗−µ+νµX
data, respectively. However, the measured mistag probabilities of the B+ component in 2011
B0→ D∗−µ+νµX data in the best two categories do not follow this behavior. While the measured
mistag probabilities of the B0 signal component do not show this peculiarity here.
The B+ fractions of this data set are very small in the best two categories, see table 4.11.

Effectively, 840 B+ events are present in the best category and 1480 B+ events in the second best
category. Due to low statistics the fit is not able to determine the correct B+ mistag probability
here. The fit converges, but tends to overestimate the statistical precision on ∆md. Relative to
the statistical precision on ∆md given by the fit to 2012 B0→ D∗−µ+νµX data, the uncertainty
on ∆md obtained from 2011 data should scale with the square root of the quotient of the number
of sWeighted events in 2012 data divided by the number of sWeighted events in 2011 data:

σ(∆md(2011)) ∝ σ(∆md(2012)) ·
√

#events(2012)
#events(2011) (4.52)

The fitted ∆md value on 2011 B0→ D∗−µ+νµX data is trusted, but the fit error estimate is
calculated according to equation 4.52. This increases the error estimate effectively by 20% and
reduces the impact on the combined ∆md value of this measurement.

The combined ∆md value is determined as weighted average of the four independent ∆md mea-
surements i = 1, 2, 3, 4 (∆md,i) and the corresponding uncertainty (σi), which is the combination
of the statistical and the k factor bias uncertainties:

∆md =
( 4∑
i=1

∆md,i

σ2
i

)
· σcomb, (4.53)

where the combined uncertainty on all four measurements is calculated as quadratic sum of the
single uncertainties:

1
σcomb

=

√√√√ 4∑
i=1

1
σ2
i

. (4.54)

The fit results are given in table 4.29.
The k factor method was improved to remove the bias on ∆md. However, due to limited

statistics in MC simulation, the absolute knowledge on the bias removal is limited. Thus, an
additional uncertainty on ∆md is assumed, given in the third column of table 4.29. In order to
avoid over-counting of statistical fluctuations, the difference of two methods to extract ∆md from
MC simulation is considered here. As reference the fit to the true decay time, without k factor
correction, is taken. The result of the improved k factor correction applied to the reconstructed
decay time in MC is tested. To increase the statistical sensitivity, the tagging performance is
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data sample ∆md [ ps−1 ] σ (stat) σ(k factor) σ(combined)
2012 B0→ D−µ+νµX 0.5047 ±0.0029 +0.0002 ± 0.0029
2011 B0→ D−µ+νµX 0.5012 ±0.0049 -0.0021 ± 0.0053
2012 B0→ D∗−µ+νµX 0.5029 ±0.0036 +0.0001 ± 0.0036
2011 B0→ D∗−µ+νµX 0.4981 ±0.0054 -0.0029 ± 0.0062
combined 0.5030 ±0.0019 ∓0.0006 ±0.0020
simultaneous fit 0.5025 ±0.0020 ∓0.0006 ±0.0020

Table 4.29.: Results of the ∆md fit. The results of the single fits performed separately on each data
set are given. The combination of the four separate fits (“combined”) is calculated
following equation 4.53. The result of one simultaneous fit to all four data sets is
also given (“simultaneous fit”). The uncertainty on the 2011 B0→ D∗−µ+νµX data
result has been scaled according to equation 4.52.

cheated with 4% mistag probability, as explained in section 4.8. The difference of the latter minus
the reference value is assumed to be the absolute knowledge of the bias removal on ∆md. Hence,
this value is taken as additional k factor uncertainty.
The statistical precision on ∆md and the uncertainty of the k factor method are uncorrelated.

They are added in quadrature per data set, given in the fourth column of table 4.29. This
combined uncertainty per data set is used to derive the combined result of ∆md.
Finally, one fit is performed to all four data sets simultaneously. The mistag probability

parameters are fitted per data set, but ∆md is a shared fit parameter, minimized on all data sets
simultaneously. The fit input parameters, i.e. flight distance resolution, decay time acceptance and
k factor correction, are set for each data set separately. The result of this simultaneous fit is also
given in table 4.29. It is in agreement with the combined fit result, in terms of central value and
of statistical precision. This reassures that the above explained treatment of the underestimated
statistical uncertainty on the 2011 B0→ D∗−µ+νµX data sample is correct.
The final result on ∆md measured on 3.2× 106 tagged semileptonic B0 → D−µ+νµX and

B0→ D∗−µ+νµX decays, extracted from the full Run I LHCb data of 3 fb−1, is

∆md = 0.503± 0.002 (stat)± 0.001 (syst) ps−1. (4.55)

The measurement agrees within 2σ with the current world average from Fall 2014 [22] of ∆md =
0.510± 0.003 ps−1. This is the world’s best measurement of this quantity.

4.11. Summary

The B0–B0 oscillation frequency ∆md has been precisely measured using semileptonic B0 decays.
Two decay channels were reconstructed, B0→ D−µ+νµX and B0→ D∗−µ+νµX. The full LHCb
Run I data, corresponding to 3 fb−1 or 26× 1010 bb pairs, has been exploited. A precision of 2 ns−1
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due to statistical uncertainties and of 1 ns−1 due to systematic uncertainties has been achieved.
This results in a measurement of

∆md = 0.503± 0.002 (stat)± 0.001 (syst) ps−1,

which is the world’s best single measurement to date and supersedes the current world average
from Fall 2014 [22] of ∆md = 0.510± 0.003 ps−1. The two values agree within 2σ.

This precision can only be obtained, when every part of the analysis performs at its best. The
crucial ingredients were a maximum statistical power of the tagged data sample, provided by the
ANN-based OS kaon tagger combined with the OS muon and electron taggers, and an excellent
reconstruction of the decay.
The k factor method was used to correct the measured B0 decay time on a statistical basis

for the missing momentum of the non-reconstructed neutrino. One of the two main challenges of
the analysis was the understanding of the k factor dependence on the true B0 decay time, which
caused a 4 ns−1 shift on ∆md. The k factor method was improved to account for this dependence
and to remove the shift on ∆md.

The other main challenge of the analysis was the treatment of the non-oscillating B+ background.
Due to the missing momentum carried away by the neutrino, the B0 mass resonance cannot be
reconstructed. Hence, a separation of B0 and B+ decays using a fit to the B0 mass resonance is
not possible. Therefore a multivariate analysis technique was used, exploiting the decay topology
of the semileptonic B+ decay. The absolute amount of B+ background was reduced and the
remaining fraction of B+ decays in data was measured.
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Conclusion
A novel flavour tagging algorithm and a precision measurement of the oscillation frequency in the
B0–B0 system ∆md have been presented. The full LHC Run I data set was analysed corresponding
to 1 fb−1 of data taken in 2011 by the LHCb experiment and 2 fb−1 taken in 2012. With 26 · 1010

recorded bb pairs LHCb is an ideal place to perform precision measurements in the B-system.
Flavour tagging algorithms exploit the bb pair production and the signal b-hadron hadronization

process to determine the production flavour of neutral B mesons. This is challenging at the
LHC, because inelastic proton-proton interactions are accompanied by a large amount of soft
QCD background. Tagging algorithms have to distinguish between this background and tagging
particles, which are correlated to the b production flavour. In the standard LHCb approach tagging
particles are selected using a cut-based selection optimized on Monte Carlo (MC) simulation.
In case of the opposite side kaon tagging algorithm a better approach can be chosen, because

the tagging performance is significantly worse in data compared to MC. Two main reasons for
that have been determined. The amount of soft QCD background is not properly modelled in
MC. Additionally, the impact parameter resolution in MC is too good compared to data.

Thus, a novel opposite side kaon tagging algorithm has been developed. The cut-based selection
of tagging particles was replaced by a multi-objective optimizing algorithm based on machine
learning. Two artificial neural networks (ANN) have been trained. The first ANN classifies tagging
particles to distinguish them from soft QCD background efficiently. It assigns higher weights
to those particles, which are likely to be correlated to the b flavour, and lower weights to those,
which are less likely to be correlated to the flavour of the b hadron. The particles with the highest
weights according to the response of the first ANN are combined in a second ANN to derive
the tagging decision on the b production flavour. The first ANN is trained on MC simulation,
while the second ANN is trained on data. An increase of the performance of the opposite side
kaon tagging algorithm of 50% and 30% is achieved on B+→ J/ψK+ data. The second number
corresponds to a readjustment of the algorithm to the B0

s production topology. For the first time,
a tagging algorithm with sufficient tagging performance has been developed, to demonstrate, that
the optimal working point of opposite side tagging algorithms does depend on the signal B type.

The mixing frequency ∆md has been measured precisely using semileptonic B0 decays and the
new ANN-based opposite side kaon tagging algorithm combined with other tagging algorithms.
The B0 decays into a charmed meson, a muon and a muon neutrino. The advantage of semileptonic
decays is high statistics, a consequence of large branching fractions of the decay modes and a
clean trigger signature provided by the muon. However, the muon neutrino is not reconstructible.
Therefore, the B0 decay time is statistically corrected for the missing momentum carried away
by the neutrino. This correction is a crucial ingredient for the time-dependent measurement
of ∆md. It introduces a time-dependent damping on the mixing asymmetry. In this thesis an
improved correction method has been developed to avoid a bias on ∆md, which was beforehand
dominating the precision of the analysis. Another challenge of the measurement is non-oscillating
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B+ background. The missing neutrino does not allow to reconstruct a B0 mass resonance. Thus,
B+ background cannot be separated from B0 signal using a fit to the reconstructed B0 mass
distribution. A multivariate classifier has been used instead, which exploits track isolation. The
absolute amount of B+ background has been reduced and the fraction of remaining background
has been measured on data. A result of

∆md = 0.503± 0.002 (stat)± 0.001 (syst) ps−1 (4.56)

has been obtained. The precision of this measurement supersedes the HFAG world average from
Fall 2014 [22] of ∆md = 0.510± 0.003 ps−1. The mean values agree within 2 σ.
The experimental precision on ∆md is a factor of 30 smaller than the uncertainty of the SM

prediction. Thus, New physics (NP) that would show up as deviations from SM predictions
are not detectable in the measurement of ∆md. However, the closely related semileptonic CP
asymmetry in the B0–B0 system, adsl, is suitable to detect NP. Here, the current experimental
precision, measured by the LHCb experiment [1], is a factor 32 larger than the SM prediction
uncertainty. The measurement of adsl is time-dependent, thus, the measurement of adsl also depends
on the B0–B0 oscillation frequency ∆md. With the precision measurement of ∆md LHCb has
shown to control the decay time reconstruction of semileptonic B0 decays at a very high level.
Hence, LHCb will be sensitive to NP in the B0–B0 system once more LHC collision data is taken.

The improved flavour tagging algorithm will be applied to future CP asymmetry measurements,
that rely on flavour tagging, e.g. the CP violating phase φs in B0

s→ J/ψφ decays. It will enhance
the sensitivity of the measurements on top of the reduced statistical uncertainty due to larger
data sets collected in Run II of the LHC. In this way, LHCb will be capable to rule out, whether
there are NP contributions in the B0–B0 and B0

s–B0
s systems or not.

188



Bibliography

[1] R. Aaij et al. Measurement of the Semileptonic CP Asymmetry in B0– B0 Mixing. PRL,
114:041601–9, 2015, arXiv:1409.8586 [hep-ex].

[2] K. Kreplin, G. Krocker, and S. Hansmann-Menzemer. The Opposite-side kaon tagger: Data
MC performance comparison and optimization using neural networks. LHCb-INT-2013-014,
2014.

[3] C. Bozzi, M. Calvi, M. Fiore, M. Frosini, L. Grillo, B. Khanji, K. Kreplin, A. Lupato, S. Stahl,
J. van Tilburg, S. Vecchi, M. Vesterinen, J. de Vries, and S. Wandernoth. Measurement of the
mixing frequency ∆md using semileptonic B0 decays. Internal note LHCb-ANA-2013-079,
2015.

[4] I. Brock and T. Schörner-Sadenius. Physics at the Terascale. Wiley-VCH, Weinheim,
Germany, 2001.

[5] G. Altarelli. The Standard Model of Particle Physics. 2005, arXiv:0510281v1 [hep-ph].

[6] U. Nierste. Three Lectures on Meson Mixing and CKM phenomenology. 2009,
arXiv:0904.1869 [hep-ph].

[7] D. Boutigny et al. The BABAR Physics Book: Physics at an Asymmetric B Factory. page
1056, 1998.

[8] K. Anikeev et al. B Physics at the Tevatron: Run II and Beyond. page 583, 2001,
arXiv:0201071v2 [hep-ph].

[9] S. Glashow. Partial-Symmetries of Weak Interactions. Nucl.Phys., 22:579, 1961.

[10] S. Weinberg. A Model of Leptons. Phys.Rev.Lett., 19:1264, 1967.

[11] A. Salam and J. Ward. Electromagnetic and weak interactions. Phys.Lett., 13:168, 1964.

[12] P. Higgs. Broken Symmetries and the Masses of Gauge Bosons. Phys.Rev.Lett., 13(16):
508–509, 1964.

[13] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector Mesons.
Phys.Rev.Lett., 13(9):321–323, 1964.

[14] G. Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC. Phys. Lett. B, 716(716):1–29, 2012, arXiv:1207.7214
[hep-ex].

189

http://arxiv.org/abs/1409.8586
http://arxiv.org/abs/0510281v1
http://arxiv.org/abs/0904.1869
http://arxiv.org/abs/0201071v2
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7214


Bibliography

[15] S. Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC. Phys. Lett. B, 716(716):30–61, 2012, arXiv:1207.7235 [hep-ex].

[16] M. Kobayashi and T. Maskawa. CP-Violation in the Renormalizable Theory of Weak
Interaction. Prog.Theor.Phys., 49:652–657, 1973.

[17] L. Wolfenstein. Parametrization of the Kobayashi-Maskawa Matrix. Phys.Rev.Lett., 51:
1945–1947, 1983.

[18] K. A. Olive et al. Review of Particle Physics. Chin. Phys. C, 38(090001), 2014.

[19] La thuile conference, 2015. 1-7 March La Thuile, Aosta Valley, Italy.

[20] CKMfitter group, J. Charles, et al. Updated results and plots available at: http://
ckmfitter.in2p3.fr, 2015.

[21] U. Nierste. Flavour physics at LHCb beyond Run I: a theorist’s view on challenges and
opportunities, 2015. Presentation at the 75th LHCb Week on 27 Feb 2015.

[22] Y. Amhis et al. Averages of b-hadron, c-hadron, and τ -lepton properties as of sum-
mer 2014. 2014, arXiv:1412.7515 [hep-ex]. Updated results and plots available at:
http://www.slac.stanford.edu/xorg/hfag/.

[23] ARGUS collaboration, H. Albrecht et al.. Observation of B0 - B0 mixing. Phys.Lett B192
245, 1987.

[24] A. Lenz, U. Nierste, et al. Anatomy of new physics in B–B mixing. Phys.Rev.D., 83:036004,
2011, arXiv:1008.1593 [hep-ph].

[25] A. Lenz. B-mixing in and beyond the Standard model. 2014, arXiv:1409.6963 [hep-ph].

[26] A. Lenz and U. Nierste. Numerical Updates of Lifetimes and Mixing Parameters of B
Mesons. 2011, arXiv:1102.4274 [hep-ph].

[27] V. M. Abazov et al. Measurement of the anomalous like-sign dimuon charge asymmetry
with 9 fb−1 of pp̄ collisions. Phys.Rev., D84:052007, 2011, arXiv:1106.6308 [hep-ex].

[28] G. Borissov and B. Hoeneisen. Understanding the like-sign dimuon charge asymmetry in p
p collisions. 2013, arXiv:1303.0175 [hep-ph].

[29] A. Lenz, U. Nierste, et al. Constraints on new physics in B–B mixing in the light of recent
LHCb data. Phys.Rev.D., 86:033008, 2012, arXiv:1203.0238 [hep-ph].

[30] E. L. and B. P. LHC Machine. JINST, 3:S08001, 2008.

[31] LHC machine outreach. http://lhc-machine-outreach.web.cern.ch/
lhc-machine-outreach/lhc_in_pictures.htm, 2015.

[32] L. M. Status of the LHC. J. Phys. Conf. Ser., 455:012001, 2013.

190

http://arxiv.org/abs/1207.7235
https://agenda.infn.it/conferenceOtherViews.py?confId=8743&view=standard
http://ckmfitter.in2p3.fr
http://ckmfitter.in2p3.fr
https://indico.cern.ch/event/371747/session/8/contribution/31/material/slides/0.pdf
http://arxiv.org/abs/1412.7515
http://www.slac.stanford.edu/xorg/hfag/
http://arxiv.org/abs/1008.1593
http://arxiv.org/abs/1409.6963
http://arxiv.org/abs/1102.4274
http://arxiv.org/abs/1106.6308
http://arxiv.org/abs/1303.0175
http://arxiv.org/abs/1203.0238
http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/lhc_in_pictures.htm
http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/lhc_in_pictures.htm


Bibliography

[33] ATLAS Collaboration. ATLAS Experiment – Public Results.
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults, 2015.

[34] LHCb Collaboration. Material for presentations, LHCb webpage. http://lhcb.web.cern.
ch/lhcb/speakersbureau/html/Material_for_Presentations.html, 2015.

[35] E. Norrbin and T. Sjöstrand. Production and Hadronization of Heavy Quarks. Eur.Phys.J.,
C17:137–161, 2000, arXiv:0005110v1 [hep-ph].

[36] R. Aaij et al. Measurement of the B meson production cross-sections in proton proton
collisions at

√
s =7TeV. JHEP, 08:17, 2013, arXiv:1306.3663 [hep-ex].

[37] A. A. Alves Jr. et al. The LHCb detector at the LHC. JINST, 3:S08005, 2008.

[38] R. Aaij et al. LHCb Detector Performance. IJMPA, 30(07):1530022, 2015, arXiv:1412.6352
[hep-ex].

[39] J. Brehmer, J. Albrecht, and P. Seyfert. Ghost probability: an efficient tool to remove
background tracks. LHCb-INT-2012-025, September 2012.

[40] The LHCb Collaboration. The LHCb Detector at the LHC. 2008 JINST 3 S08005, 2008.

[41] R. Aaij et al. Performance of the LHCb Vertex Locator. JINST, 9:P09007, 2014.

[42] The LHCb Collaboration. LHCb Silicon Tracker - Material for Publications. http://lhcb.
physik.uzh.ch/ST/public/material/index.php, 2015.

[43] The LHCb Collaboration. LHCb Inner Tracker design report. CERN-LHCC/2002-029, 2003.

[44] R. Arink et al. Performance of the LHCb Outer Tracker. JINST, 9:P01002, 2014.

[45] The LHCb Collaboration. LHCb Outer Tracker Technical Design Report. CERN/LHCC-
2001-024, 2001.

[46] C. Jones. ANN PID Retuning for Reco 14 Data, 2013. Presentation in the Physics
Performance, Trigger & Stripping Meeting on 6 May.

[47] The LHCb Collaboration. LHCb RICH technical design report. CERN-LHCC/2000-037,
2000.

[48] M. Adinolfi et al. Performance of the LHCb RICH detector at the LHC. Eur. Phys. J., C
(73):2431, 2013.

[49] The LHCb Collaboration. LHCb Calorimeters Technical Design Report. CERN/LHCC-
2000-036, 2000.

[50] F. Archilli et al. Performance of the Muon Identification at LHCb. J. Instrum., 8:P10020,
2013.

191

http://lhcb.web.cern.ch/lhcb/speakersbureau/html/Material_for_Presentations.html
http://lhcb.web.cern.ch/lhcb/speakersbureau/html/Material_for_Presentations.html
http://arxiv.org/abs/0005110v1
http://arxiv.org/abs/1306.3663
http://arxiv.org/abs/1412.6352
http://arxiv.org/abs/1412.6352
http://lhcb.physik.uzh.ch/ST/public/material/index.php
http://lhcb.physik.uzh.ch/ST/public/material/index.php
https://indico.cern.ch/event/226062/material/slides/0?contribId=1
https://indico.cern.ch/event/226062/material/slides/0?contribId=1


Bibliography

[51] The LHCb Collaboration. LHCb Muon Technical Design Report. CERN/LHCC-2000-037,
2000.

[52] A. A. Alves Jr. et al. Performance of the LHCb muon system. JINST., 8:P02022, 2013.

[53] R. Aaij et al. The LHCb trigger and its performance in 2011. JINST., 8:P04022, 2013.

[54] J. Albrecht et al. Performance of the LHCb High Level Trigger in 2012. J. Phys. Conf. Ser.,
513:012001, 2013.

[55] M. Frank et al. Deferred High Level Trigger in LHCb: A Boost to CPU Resource Utilization.
J. Phys. Conf. Ser., 513:012006, 2013.

[56] G. Corti et al. Software for the LHCb Experiment. IEEE Transactions on Nuclear Science,
53(3), 2006.

[57] G. Barrand et al. GAUDI - A software architecture and framework for building HEP data
processing applications. Comput. Phys. Commun., 140(45), 2001.

[58] M. Clemencic et al. Recent Developments in the LHCb Software Framework Gaudi. J.
Phys.: Conf. Ser., 219:042006, 2010.

[59] LHCb Collaboration. The Gauss Project. http://lhcb-release-area.web.cern.ch/LHCb-release-
area/DOC/gauss/, 2015.

[60] M. Clemencic et al. The LHCb simulation application, Gauss: design, evolution and
experience. J. Phys.: Conf. Ser., 331:032023, 2011.

[61] T. Sjöstrand, S. Mrenna, and P. Skands. PYTHIA 6.4 physics and manual. JHEP, 05:026,
2006, arXiv:0603175 [hep-ph].

[62] T. Sjöstrand, S. Mrenna, and P. Skands. A brief introduction to pythia 8.1. Comput.
Phys.Commun., 178:852–867, 2008, arXiv:0710.3820v1 [hep-ph].

[63] I. Belyaev et al. Handling of the generation of primary events in Gauss, the LHCb simulation
framework. Nuclear Science Symposium Conference Record (NSS/MIC), IEEE:1155, 2010.

[64] D. J. Lange. The EvtGen particle decay simulation package. Nucl. Instrum. Meth., A462:
152–155, 2001.

[65] P. Golonka and Z. Was. PHOTOS Monte Carlo: a precision tool for QED corrections in Z
and W decays. Eur.Phys.J., C45:97–107, 2006, arXiv:0506026 [hep-ph].

[66] S. Agostinelli et al. Geant4: a simulation toolkit. Nucl. Instrum. Meth., A506:250, 2003.

[67] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois, et al. Geant4 developments
and applications. IEEE Trans.Nucl.Sci., 53:270, 2006.

[68] LHCb Collaboration. The Boole Project. http://lhcb-release-area.web.cern.ch/LHCb-release-
area/DOC/boole/, 2015.

192

http://arxiv.org/abs/0603175
http://arxiv.org/abs/0710.3820v1
http://arxiv.org/abs/0506026


Bibliography

[69] LHCb Collaboration. The Brunel Project. http://lhcb-release-area.web.cern.ch/LHCb-
release-area/DOC/brunel/, 2015.

[70] LHCb Collaboration. The DaVinci Project. http://lhcb-release-area.web.cern.ch/LHCb-
release-area/DOC/davinci/, 2015.

[71] LHCb Collaboration. The Moore Project. http://lhcb-release-area.web.cern.ch/LHCb-
release-area/DOC/moore/, 2015.

[72] K. A. Olive et al. Review of particle physics. Chin.Phys., C38:090001, 2014.

[73] G. Krocker. Development and Calibration of a Same Side Kaon Tagging Algorithm and
Measurement of the B0

s– B0
s Oscillation Frequency ∆ms at the LHCb Experiment. PhD

thesis, Heidelberg U., Nov 2013. Presented 20 Nov 2013.

[74] J. Weatherall. CP Violation in the B0 meson system with BaBar. page 9, 2001.

[75] M. Grabalosa. Flavour Tagging developments within the LHCb experiment. PhD thesis,
Barcelona U., Mar 2012. Presented 15 May 2012.

[76] R. Aaij et al. Opposite-side flavour tagging of b mesons at the LHCb experiment.
oai:cds.cern.ch:1426509. Eur. Phys. J. C, 72:2022, February 2012, arXiv:1202.4979. CERN-
PH-EP-2012-039. LHCb-PAPER-2011-027.

[77] R. Aaij et al. Measurement of the B+, B0, B0
s meson and Λ0

b baryon lifetimes. JHEP, 04:
10.1007–25, 2014, arXiv:1402.2554 [hep-ex].

[78] Y. Xie. sFit: a method for background subtraction in maximum likelihood fit. 2009.

[79] M. Pivk and F. R. Le Diberder. sPlot: A statistical tool to unfold data distributions. Nucl.
Instrum. Meth., A555(1-2):356–369, 2005.

[80] A. Powell et al. PIDCalib: packages for extracting pid performance results from both collision
data and mc. https://twiki.cern.ch/twiki/bin/view/LHCb/PIDCalibPackage.

[81] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, NY 10013,
USA, 9th edition, 2006.

[82] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control
Signals Systems, 2:303–314, 1989.

[83] C. G. Broyden. The convergence of a class of double-rank minimization algorithms 1. general
considerations. IMA J Appl Math, 6(1):76–90, 1970.

[84] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13(3):
317–322, 1970.

[85] D. Goldfarb. A family of variable-metric methods derived by variational means. Mathematics
of Computation, 24(109):23–26, January 1970.

193

http://pdg.lbl.gov/
http://arxiv.org/abs/1202.4979
http://arxiv.org/abs/1402.2554
https://twiki.cern.ch/twiki/bin/view/LHCb/PIDCalibPackage


Bibliography

[86] D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics
of Computation, 24(111):647–656, July 1970.

[87] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, and H. Voss. TMVA
4, toolkit for multivariate data analysis with ROOT, users guide. 040, November 2009,
arXiv:physics/0703039.

[88] R. Aaij et al. Measurement of the CP -Violating Phase φs in the decay B0
s→ J/ψφ. PRL,

108:101803–8, 2012, arXiv:1304.2600 [hep-ex].

[89] J. Zhong, R.-S. Huang, and S.-C. Lee. A program for the bayesian neural network in the
ROOT framework. Computer Physics Communications, 182(12):2655–2660, December 2011,
arXiv:1103.2854.

[90] K. Kreplin, G. Krocker, G. Tellarini, S. Hansmann-Menzemer, S. Vecchi, and M. Dorigo.
Neural-network-based kaon tagging: development of new same side and opposite side tagging
algorithms. LHCb-ANA-2014-003, 2015.

[91] B. Aubert et al. Measurement of theB0 lifetime and theB0 B0 oscillation frequency using par-
tially reconstructed B0 → D∗+`−ν̄` decays. Phys.Rev., D73:012004, 2006, arXiv:0507054
[hep-ex].

[92] K. Abe et al. Improved Measurement of CP -Violation Parameters sin 2φ1 and |λ|, B
Meson Lifetimes, and B0– B0 Mixing Parameter ∆md. Phys.Rev., D71:072003, 2005,
arXiv:0408111 [hep-ex].

[93] R. Aaij et al. Measurement of the B0– B0 oscillation frequency ∆md with the decays B0

→ D− π+ and B0 → J/ψ K∗0. PLB, 719:318–325, 2013, arXiv:1210.6750 [hep-ex].

[94] F. Abe et al. Measurement of the B0 B0 oscillation frequency using dimuon data in p p
collisions at

√
s = 1.8TeV. Phys. Rev., D 60:051101–6, 1999.

[95] C. Langenbruch. Measurement of the B0
s mixing phase in the decay B0

s→ J/ψφ with the
LHCb Experiment. PhD thesis, Heidelberg U., Nov 2011. Presented 9 Nov 2011.

[96] S. Wandernoth. Measurement of the B0
s– B0

s Oscillation Frequency at LHCb using 1 fb−1 of
data taken in 2011. PhD thesis, Heidelberg U., Feb 2014. Presented 04 Feb 2014.

[97] T. Bird, S. Easo, U. Kerzel, R. W. Lambert, and K. Vervink. Time dependent semileptonic
studies: correcting for missing momentum and the effect of multiple interactions. Technical
Report LHCb-INT-2011-004. CERN-LHCb-INT-2011-004, CERN, Geneva, Feb 2011.

[98] M. Williams, V. Gligorov, C. Thomas, H. Dijkstra, J. Nardulli and P. Spradlin. The HLT2
Topological Lines. CERN/LHCb-PUB-2011-002, 2011.

[99] V. Gligorov, C. Thomas, and M. Williams. The HLT inclusive B triggers. CERN-LHCb-
PUB-2011-016, 2011.

194

http://arxiv.org/abs/physics/0703039
http://arxiv.org/abs/1304.2600
http://arxiv.org/abs/1103.2854
http://arxiv.org/abs/0507054
http://arxiv.org/abs/0507054
http://arxiv.org/abs/0408111
http://arxiv.org/abs/1210.6750


Bibliography

[100] V. V. Gligorov and M. Williams. Efficient, reliable and fast high-level triggering using a bonsai
boosted decision tree. JINST, 8:P02013, 2013, arXiv:1210.6861 [physics.ins-det].

[101] R. Aaij et al. Search for the lepton flavour violating decay τ− → µm µ+ µm. JHEP, 2015,
arXiv:1409.8548 [hep-ex].

[102] R. Aaij et al. Measurement of the B0
s → µ+ µm branching fraction and search for B0 → µ+

µm decays at the LHCb experiment. PRL, 111:101805, 2013, arXiv:1307.5024 [hep-ex].

[103] Gavardi, Laura. Search for lepton flavour violation in τ decays at the LHCb experiment.
CERN-THESIS-2013-259, 2013.

[104] Giampiero Mancinelli and Justine Serrano. Study of Muon Isoltaion in the B0
s → µ+ µm

Channel. LHCb-ANA-2010-011, 2010.

[105] The LHCb Collaboration. Search for the lepton flavour violating decay τ− → µ+ µmµm.
LHCb-ANA-2014-005, 2014.

[106] S. Dambach, U. Langenegger, and A. Starodumov. Neutrino reconstruction with topo-
logical information. Nuclear Instruments and Methods in Physics Research, A 569, 2006,
arXiv:0607294 [hep-ex].

[107] P. Urquijo. Semileptonic B decay branching fractions. Unpublished internal note.

[108] C. Bozzi. LHCb MC cocktails. Twiki page.

[109] F. James. MINUIT Function Minimization and Error Analysis. CERN Program Library
Long Writeup, D506(94.1), 1994.

[110] J. Beringer et al. Review of particle physics. Phys. Rev., D86:010001, 2012.

[111] C. Bozzi, M. Calvi, M. Fiore, M. Frosini, L. Grillo, B. Khanji, M. Kolpin, K. Kreplin,
A. Lupato, S. Stahl, J. van Tilburg, M. Vesterinen, J. de Vries, and S. Wandernoth.
Measurement of the semileptonic CP asymmetry adsl. LHCb-ANA-2013-050, 2014.

195

http://arxiv.org/abs/1210.6861
http://arxiv.org/abs/1409.8548
http://arxiv.org/abs/1307.5024
http://arxiv.org/abs/0607294
https://indico.cern.ch/getFile.py/access?contribId=5&resId=0&materialId=0&confId=123574
https://twiki.cern.ch/twiki/bin/view/LHCbPhysics/SemileptonicCocktailMonteCarlo
http://pdg.lbl.gov/




A. Appendix to Flavour Tagging

A.1. Pid Calibration Reweighting
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Figure A.1.: DLLK−π distributions of true pions in MC and in calibration data (a) before reweight-
ing, (b) after reweighting. DLLK−p distributions of true pions in MC and in calibra-
tion data (c) before reweighting, (d) after reweighting.
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Figure A.2.: DLLK−π distributions of true protons in MC and in calibration data (a) before
reweighting, (b) after reweighting. DLLK−p distributions of true protons in MC and
in calibration data (c) before reweighting, (d) after reweighting.
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A.2. Track Multiplicity Correction
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Figure A.3.: Track multiplicity distribution for events with 1 PV per event (a) before and (b)
after correction and with 2 PVs per event (c) before and (d) after correction.
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Figure A.4.: Track multiplicity distribution for events with 3 PVs per event (a) before and (b)
after correction, with 4 PVs per event (c) before and (d) after correction and with 5
and more PVs per event (e) before and (f) after correction.
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A.3. Impact Parameter Resolution Correction
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Figure A.5.: Impact parameter resolution distributions in x direction for events with 1 PV per
event (a), 2 PVs per event (b), 3 PVs per event (c), 4 PVs per event (d) and 5 or
more PVs per event (e).
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Figure A.6.: Impact parameter resolution distributions in y direction for events with 1 PV per
event (a), 2 PVs per event (b), 3 PVs per event (c), 4 PVs per event (d) and 5 or
more PVs per event (e).
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Figure A.7.: Corrected impact parameter resolution distributions in x direction for events with 1
PV per event (a), 2 PVs per event (b), 3 PVs per event (c), 4 PVs per event (d) and
5 or more PVs per event (e).

203



 [1/MeV]
T

1/p

0 0.0005 0.001 0.0015 0.002

R
M

S
 I
P

 y
 [

m
m

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

MC

data

(a) 1 PV

 [1/MeV]
T

1/p

0 0.0005 0.001 0.0015 0.002

R
M

S
 I
P

 y
 [

m
m

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

MC

data

(b) 2 PVs

 [1/MeV]
T

1/p

0 0.0005 0.001 0.0015 0.002

R
M

S
 I
P

 y
 [

m
m

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

MC

data

(c) 3 PVs

 [1/MeV]
T

1/p

0 0.0005 0.001 0.0015 0.002

R
M

S
 I
P

 y
 [

m
m

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

MC

data

(d) 4 PVs

 [1/MeV]
T

1/p

0 0.0005 0.001 0.0015 0.002

R
M

S
 I
P

 y
 [

m
m

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

MC

data

(e) 5 PVs

Figure A.8.: Corrected impact parameter resolution distributions in y direction for events with 1
PV per event (a), 2 PVs per event (b), 3 PVs per event (c), 4 PVs per event (d) and
5 or more PVs per event (e).
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B. Appendix to the Measurement of ∆md

B.1. Semileptonic Branching Ratios used in MC Generation

Process Branching fraction (%)
B0 → D−µ+νµ 2.17 ± 0.12
B0 → D∗−(→ D−π0/γ)µ+νµ 1.62 ± 0.04
B0 → D∗−

0 µ+νµ → D−µ+νµX 0.14 ± 0.05
B0 → D

′−
1 µ+νµ → D−µ+νµX 0.06 ± 0.02

B0 → D−
1 µ

+νµ → D−µ+νµX 0.18 ± 0.03
B0 → D∗−

2 µ+νµ → D−µ+νµX 0.17 ± 0.07
Total B0 → D(∗(∗))−µ+νµX 4.34 ± 0.15
B0 → D−π0µ+νµ 0.02 ± 0.02
B0 → D∗−(→ D−π0/γ)π0µ+νµ 0.01 ± 0.01
B0 → D∗−(→ D−π0/γ)π0π0µ+νµ 0.02 ± 0.02
B0 → D∗−(→ D−π0/γ)π+π−µ+νµ 0.09 ± 0.09
B0 → D−π0π0µ+νµ 0.03 ± 0.03
B0 → D−π+π−µ+νµ 0.12 ± 0.12
Total non-resonant B0 0.30 ± 0.16
B0 → D−τ+ντ → D−µ+νµX 0.19 ± 0.04
B0 → D∗−τ+ντ → D−µ+νµX 0.08 ± 0.03
B0 → D∗−

0 τ+ντ → D−µ+νµX 0.01 ± 0.02
B0 → D

′−
1 τ+ντ → D−µ+νµX 0.01 ± 0.02

B0 → D−
1 τ

+ντ → D−µ+νµX 0.01 ± 0.03
B0 → D∗−

2 τ+ντ → D−µ+νµX 0.01 ± 0.04
Total B0 → D(∗(∗))−τ+ντX 0.31 ± 0.05
Total SL cocktail B0 → D−µ+X 4.95 ± 0.23

Table B.1.: Exclusive semileptonic branching ratios used to generate the signal simulation sample
in the B0→ D−µ+νµX. The branching ratios for D∗∗ resonances decaying into D−
and at least one pion are already included. For modes decaying via τ leptons, the
branching fraction τ → µνµντ is included as well. The D− branching ratio in K+π−π−

is not included, taken from [3]
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Process Branching fraction (%)
B0 → D∗−µ+νµ 3.39 ± 0.074
B0 → D∗−

0 µ+νµ → D∗−µ+νµX 0.040 ± 0.014
B0 → D

′−
1 µ+νµ → D∗−µ+νµX 0.040 ± 0.015

B0 → D−
1 µ

+νµ → D∗−µ+νµX 0.12 ± 0.018
B0 → D∗−

2 µ+νµ → D∗−µ+νµX 0.040 ± 0.018
Total B0 → D∗(∗)−µ+νµ 3.63 ± 0.081
B0 → D∗−π0µ+νµ 0.030 ± 0.031
B0 → D∗−π0π0µ+νµ 0.044 ± 0.044
B0 → D∗−π+π−µ+νµ 0.170 ± 0.166
Total non-resonant B0 0.24 ± 0.17
B0 → D∗−τ+ντ → D∗−µ+νµX 0.176 ± 0.059
B0 → D∗−

0 τ+ντ → D∗−µ+νµX 0.002 ± 0.001
B0 → D

′−
1 τ+ντ → D∗−µ+νµX 0.004 ± 0.001

B0 → D−
1 τ

+ντ → D∗−µ+νµX 0.006 ± 0.002
B0 → D∗−

2 τ+ντ → D∗−µ+νµX 0.003 ± 0.001
Total B0 → D∗(∗)−τ+ντX 0.190 ± 0.059
Total SL cocktail B0 → D∗−µ+X 4.07 ± 0.20

Table B.2.: Exclusive semileptonic branching ratios used to generate the signal simulation sample
in the B0 → D∗−µ+νµX. The branching ratios for D∗∗ resonances decaying into
D∗ and at least one pion are already included, as well as the branching fraction of
D∗+ decaying into D0π+. For modes decaying via τ leptons, the branching fraction
τ → µνµντ is included as well. The D0 branching ratio in K+π− is not included,
taken from [3]
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Process Branching fraction (%)
B+ → D∗0

0 µ+νµ → D−µ+νµX 0.26 ± 0.01
B+ → D

′0
1 µ

+νµ → D−µ+νµX 0.07 ± 0.02
B+ → D0

1µ
+νµ → D−µ+νµX 0.21 ± 0.03

B+ → D∗0
2 µ+νµ → D−µ+νµX 0.23 ± 0.10

Total B+→ D∗∗µ+νµX 0.77 ± 0.14
B+ → D−π+µ+νµ 0.04 ± 0.04
B+ → D−π0π+µ+νµ 0.05 ± 0.05
B+ → D∗−(→ D−π0/γ)π+µ+νµ 0.03 ± 0.03
B+ → D∗−(→ D−π0/γ)π0π+µ+νµ 0.04 ± 0.04
Total non-resonant B+ 0.16 ± 0.08
B+ → D∗0

0 τ+ντ → D−µ+νµX 0.010 ± 0.003
B+ → D

′0
1 τ

+ντ → D−µ+νµX 0.013 ± 0.004
B+ → D0

1τ
+ντ → D−µ+νµX 0.006 ± 0.002

B+ → D∗0
2 τ+ντ → D−µ+νµX 0.015 ± 0.005

Total B+ → D∗∗τ+ντ → D−µ+νµX 0.04 ± 0.01
Total SL cocktail B+ → D−µ+X 0.97 ± 0.16

Table B.3.: Exclusive semileptonic branching ratios used to generate the B+ background sample
in the B0 → D−µ+νµX. The branching ratios for D∗∗ resonances decaying into
D− and at least one pion are already included, as well as the branching fraction of
D∗+ decaying into D0π+. For modes decaying via τ leptons, the branching fraction
τ → µνµντ is included as well. The D− → K+π−π− branching ratio is not included,
taken from [3]
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Process Branching fraction (%)
B+ → D∗0

0 µ+νµ → D∗−µ+νµX 0.03 ± 0.01
B+ → D

′0
1 µ

+νµ → D∗−µ+νµX 0.09 ± 0.03
B+ → D0

1µ
+νµ → D∗−µ+νµX 0.22 ± 0.03

B+ → D∗0
2 µ+νµ → D∗−µ+νµX 0.07 ± 0.03

Total B+ → D∗∗µ+νµX 0.41 ± 0.05
B+ → D∗−π+µ+νµ 0.06 ± 0.06
B+ → D∗−π+π0µ+νµ 0.08 ± 0.08
Total non-resonant B+ 0.15 ± 0.11
B+ → D∗0

0 µ+νµτ
+ντ → D∗−µ+νµX 0.0012± 0.0002

B+ → D
′0
1 µ

+νµτ
+ντ → D∗−µ+νµX 0.0076 ± 0.0011

B+ → D0
1µ

+νµτ
+ντ → D∗−µ+νµX 0.0104 ± 0.0015

B+ → D∗0
2 µ+νµτ

+ντ → D∗−µ+νµX 0.0048 ± 0.0007
Total B+ → D∗∗τ+ντ → D∗−µ+νµX 0.0241 ± 0.0020
Total SL cocktail B+ → D−µ+X 0.58 ± 0.12

Table B.4.: Exclusive semileptonic branching ratios used to generate the B+ background sample
in the B0 → D∗−µ+νµX. The branching ratios for D∗∗ resonances decaying into
D∗ and at least one pion are already included, as well as the branching fraction of
D∗+ decaying into D0π+. For modes decaying via τ leptons, the branching fraction
τ → µνµντ is included as well. The D0 → K+π− branching ratio is not included,
taken from [3]

Sample Branching fraction
Signal B0→ D∗−µ+νµX cocktail (4.07± 0.20± 0.08)% ×B(D0 → K−π+)
Signal B0→ D−µ+νµX cocktail (4.95± 0.23± 0.08)% ×B(D− → K+π−π−)
Bkg B+→ D∗−µ+νµX cocktail (0.58± 0.12± 0.06)% ×B(D0 → K−π+)
Bkg B+→ D−µ+νµX cocktail (0.97± 0.16± 0.08)% ×B(D− → K+π−π−)

Table B.5.: Total branching ratios corresponding to the generated MC cocktails. The first un-
certainty comes from the measured uncertainties on the branching fractions. The
second uncertainty on the semileptonic B cocktails comes from varying the branching
fractions for the different D∗∗ decay models, taken from [3]
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B.2. Parameters of Fits to the D Mass in Categories

Parameter Cat. 0 Cat. 1 Cat. 2 Cat. 3
µm[ MeV] 1871.06± 0.04 1871.03± 0.03 1871.05± 0.02 1871.10± 0.01
σm,G,1 [MeV ] 6.9± 0.2 7.3± 0.2 7.0± 0.2 6.51± 0.07
σm,G,2 [MeV ] 12.7± 0.9 12.7± 0.9 11.4± 0.6 11.3± 0.2
σm,CB [MeV ] 4.2± 0.4 4.5± 0.2 4.7± 0.1 3.0± 0.1
αm,CB 2.1± 0.2 2.46± 0.09 2.35± 0.07 1.73± 0.07
nm,CB 0.00001 0.00001 0.00001 0.00001
fm,G 0.71± 0.04 0.69± 0.04 0.60± 0.04 0.66± 0.02
fm,CB 0.20± 0.04 0.19± 0.05 0.25± 0.05 0.28± 0.02
m0[ MeV−1] −0.00276± 0.0005 −0.00324± 0.0004 −0.00223± 0.0003 −0.00211± 0.0002
#nSig 50525± 537 83662± 673 170472± 991 467393± 1667
#nBkg 15781± 504 27494± 630 55527± 932 150530± 1569

Table B.6.: B0→ D−µ+νµX mode in 2011 data: fit parameters obtained from fits to the recon-
structed D− mass separately in four tagging categories.

Parameter Cat. 0 Cat. 1 Cat. 2 Cat. 3
µm[ MeV] 1871.09± 0.03 1871.12± 0.02 1871.12± 0.01 1871.126± 0.008
σm,G,1 [MeV ] 7.2± 0.2 7.1± 0.1 6.77± 0.10 6.63± 0.05
σm,G,2 [MeV ] 11.9± 0.6 12.2± 0.5 11.5± 0.3 11.4± 0.1
σm,CB [MeV ] 4.7± 0.1 4.09± 0.10 4.3± 0.1 3.71± 0.07
αm,CB 2.37± 0.07 2.25± 0.05 2.12± 0.05 1.94± 0.04
nm,CB 0.00001 0.00001 0.00001 0.00001
fm,G 0.63± 0.04 0.68± 0.03 0.63± 0.02 0.66± 0.01
fm,CB 0.22± 0.05 0.21± 0.03 0.27± 0.02 0.27± 0.01
m0[ MeV−1] −0.00247± 0.0003 −0.00272± 0.0002 −0.00238± 0.0002 −0.002228± 0.00010
#nSig 133404± 872 226153± 1126 482720± 1669 1300091± 2798
#nBkg 40607± 816 71260± 1055 155597± 1567 424489± 2637

Table B.7.: B0→ D−µ+νµX mode in 2012 data: fit parameters obtained from fits to the recon-
structed D− mass separately in four tagging categories.
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Parameter Cat. 0 Cat. 1 Cat. 2 Cat. 3
µm[ MeV] 1866.36± 0.05 1866.25± 0.03 1866.28± 0.03 1866.26± 0.01
σm,G1[ MeV] 8.0± 0.2 8.18± 0.05 8.2± 0.1 8.21± 0.02
σm,G2[ MeV] 15.5± 0.8 16.1± 0.2 16.0± 0.5 16.25± 0.09
fm,G 0.75± 0.02 0.764± 0.006 0.73± 0.01 0.717± 0.003
σm,CB[ MeV] 4.3± 0.2 4.6± 0.1 4.8± 0.1 5.09± 0.04
αm,CB 2.27± 0.09 2.35± 0.04 2.46± 0.05 2.54± 0.01
nm,CB 0.00001 0.00001 0.00001 0.00001
fm,CB 0.17± 0.03 0.153± 0.005 0.16± 0.02 0.152± 0.002
m0[ MeV−1] −0.0064± 0.001 −0.00847± 0.0009 −0.00823± 0.0007 −0.00882± 0.0003
µδm[ MeV] 145.33± 0.02 145.392± 0.005 145.36± 0.01 145.374± 0.002
σδm,G1[ MeV] 0.60± 0.05 0.46± 0.01 0.55± 0.07 0.554± 0.005
σδm,G2[ MeV] 1.07± 0.06 0.928± 0.010 0.96± 0.04 0.964± 0.006
fδm,G 0.33± 0.06 0.21± 0.01 0.19± 0.05 0.216± 0.008
σδm,RJ [ MeV] 0.63± 0.04 0.67± 0.02 0.61± 0.03 0.638± 0.006
δδm 1 1 1 1
γδm −0.44± 0.1 −0.234± 0.02 −0.260± 0.04 −0.2078± 0.006
fδm,RJ 0.31± 0.07 0.47± 0.02 0.36± 0.06 0.341± 0.007
mth
δm[ MeV] 139 139 139 139

aδm 4.0± 0.3 3.7± 0.9 3.7± 0.1 3.7± 0.3
bδm −5.0± 1 −5.0± 4 −5.00± 0.2 −5.0± 6
cδm 1.5± 0.2 1.8± 0.4 1.79± 0.09 1.9± 0.2
#nSig 27892± 202 45659± 333 93517± 372 256789± 807
#nBkg 1444± 77 2468± 96 5979± 154 17005± 237
#nBkgD0fB 7267± 146 11292± 265 27066± 279 81426± 674

Table B.8.: B0 → D∗−µ+νµX mode in 2011 data: fit parameters obtained from fits to the
reconstructed D0 mass and the mass difference δm of the reconstructed D∗ and D0

masses separately in four tagging categories.
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Parameter Cat. 0 Cat. 1 Cat. 2 Cat. 3
µm[ MeV] 1866.24± 0.03 1866.25± 0.03 1866.31± 0.02 1866.311± 0.009
σm,G1[ MeV] 8.4± 0.1 8.27± 0.10 8.19± 0.08 8.31± 0.01
σm,G2[ MeV] 17.2± 0.7 16.3± 0.4 16.2± 0.3 16.42± 0.07
fm,G 0.75± 0.01 0.73± 0.01 0.716± 0.008 0.723± 0.002
σm,CB[ MeV] 5.1± 0.1 4.69± 0.09 5.14± 0.07 5.07± 0.03
αm,CB 2.54± 0.05 2.52± 0.04 2.53± 0.03 2.568± 0.009
nm,CB 0.00001 0.00001 0.00001 0.00001
fm,CB 0.13± 0.01 0.17± 0.01 0.167± 0.010 0.148± 0.001
m0[ MeV−1] −0.01000± 0.0010 −0.00951± 0.0007 −0.00848± 0.0005 −0.00865± 0.0002
µδm[ MeV] 145.37± 0.02 145.37± 0.02 145.385± 0.007 145.371± 0.002
σδm,G1[ MeV] 0.51± 0.08 0.50± 0.06 0.52± 0.03 0.548± 0.004
σδm,G2[ MeV] 0.92± 0.04 0.95± 0.03 0.96± 0.02 0.953± 0.004
fδm,G 0.18± 0.06 0.21± 0.04 0.22± 0.03 0.216± 0.006
σδm,RJ [ MeV] 0.70± 0.08 0.68± 0.07 0.68± 0.03 0.649± 0.005
δδm 1 1 1 1
γδm −0.225± 0.03 −0.252± 0.03 −0.196± 0.02 −0.2242± 0.005
fδm,RJ 0.38± 0.08 0.40± 0.06 0.38± 0.03 0.356± 0.006
mth
δm[ MeV] 139 139 139 139

aδm 0.6± 0.8 3.8± 0.2 3.71± 0.08 3.7± 0.2
bδm −0.08± 0.7 −5.0± 1 −4.999± 0.06 −4.95± 0.6
cδm 1.4± 0.1 1.8± 0.1 1.79± 0.06 1.74± 0.10
#nSig 62958± 311 104965± 389 223564± 583 604909± 1563
#nBkg 3427± 118 5785± 153 14969± 246 43312± 430
#nBkgD0fB 17932± 232 27536± 282 68982± 450 205630± 1312

Table B.9.: B0 → D∗−µ+νµX mode in 2012 data: fit parameters obtained from fits to the
reconstructed D0 mass and the mass difference δm of the reconstructed D∗ and D0

masses separately in four tagging categories.
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B.3. Parameters of Fits to the Flight Distance Resolution

B0→ D−µ+νµX 2011 2012
µt [ ps] 0.000346± 0.000217 1.7 · 10−5 ± 0.000161
σt,1 [ ps] 0.033± 0.001 0.035± 0.001
σt,2 [ ps] 0.067± 0.002 0.071± 0.001
σt,3 [ ps] 0.181± 0.008 0.204± 0.006
ft,1 0.67± 0.024 0.685± 0.019
ft,2 0.96± 0.004 0.956± 0.003

B0→ D∗−µ+νµX 2011 2012
µt [ ps] 0.000957± 0.000108 0.001288± 0.000143
σt,1 [ ps] 0.035± 0.0 0.034± 0.001
σt,2 [ ps] 0.074± 0.001 0.072± 0.001
σt,3 [ ps] 0.206± 0.003 0.189± 0.004
ft,1 0.646± 0.011 0.658± 0.014
ft,2 0.937± 0.002 0.94± 0.003

Table B.10.: Parameters of the flight distance resolution fit for tagged events in B0→ D−µ+νµX
mode (upper row) and B0→ D∗−µ+νµX mode (lower row), 2011 MC (left) and 2012
MC (right).
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B+→ D−µ+νµX 2011 2012
µt [ ps] 0.001455± 0.000507 0.001266± 0.000313
σt,1 [ ps] 0.038± 0.002 0.038± 0.001
σt,2 [ ps] 0.076± 0.004 0.077± 0.003
σt,3 [ ps] 0.279± 0.062 0.189± 0.017
ft,1 0.721± 0.046 0.695± 0.036
ft,2 0.979± 0.006 0.954± 0.01

B+→ D∗−µ+νµX 2011 2012
µt [ ps] 0.003549± 0.00012 0.001263± 0.000462
σt,1 [ ps] 0.043± 0.001 0.04± 0.002
σt,2 [ ps] 0.104± 0.003 0.083± 0.004
σt,3 [ ps] 0.27± 0.058 0.24± 0.036
ft,1 0.315± 0.015 0.688± 0.042
ft,2 0.092± 0.005 0.968± 0.009

Table B.11.: Parameters of the flight distance resolution fit for all events in B+→ D−µ+νµX
mode (upper row) and B+→ D∗−µ+νµX mode (lower row), 2011 B+ MC (left) and
2012 B+ MC (right).
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B.4. Additional Toy Experiment Pull Distributions
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Figure B.1.: Pull distributions of the B0 ω parameters in the four tagging categories.
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Figure B.2.: Pull distributions of the B+ ω parameters in the four tagging categories.
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