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Abstract 

Protein misfolding and aggregation perturbs cellular functions and is involved in 

aging and numerous medical disorders. In cells, the first line of defense is the 

association of deleterious aggregating proteins with small Heat shock proteins 

(sHsp). These oligomeric, ATP-independent chaperones sequester misfolded proteins 

into complexes and facilitate subsequent substrate solubilization and refolding by 

ATP-dependent chaperones. The cytosol of S. cerevisiae contains two sHsps: Hsp42 is 

constitutively active, while Hsp26 is activated at elevated temperatures. In my thesis, 

I wanted to elucidate how sHsps change the structure of aggregates, facilitating 

substrate reactivation. To this end, I studied the impact of Hsp26 and Hsp42 

incorporation on the architecture of heat-induced aggregates by amide hydrogen 

exchange (HX). I established the experimental conditions for HX of heat-induced 

protein aggregates using thermolabile malate dehydrogenase (MDH) as model 

substrate. My data show that the formation of heat-induced Hsp26/MDH or 

Hsp42/MDH complexes has profound impact on the MDH structure. In the aggregated 

state formed in absence of sHsps, almost the entire MDH polypeptide becomes 

accessible to HX, reflecting global, large misfolding. In contrast, a more protected 

form of MDH is detected when complexed with Hsp26 or Hsp42. I observed that the 

mass spectra of many MDH peptides derived from sHsp/MDH complexes exist as a 

mixture of two populations after HX: a native-like and an aggregate-like population. 

Higher excess of sHsps promoted the native-like state. Single-molecule experiments 

confirmed the binding of sHsps to near native substrate folds. Furthermore, FRET 

experiments showed that sHsps increase the spacing between MDH molecules in 

sHsp/MDH complexes, preventing intermolecular contacts of misfolded MDH species. 

Finally, crosslinking approaches identified peripheral, surface-exposed MDH sites 

showing high HX as major sHsp binding sites. Summarized, these findings indicate 

that sHsps capture early unfolding intermediates of substrates and keep parts of the 

protein in a native-like state. This activity of sHsps might facilitate chaperone-

dependent disaggregation.  

I then investigated how the two sHsps of yeast interact with their substrates. The N-

terminal extensions (NTE) of both yeast sHsps were found to be the major substrate 

interaction sites. Compared to all known sHsps, the NTE of Hsp42 is unusually 

elongated and it was shown to be involved in the organized deposition of misfolded 

proteins at CytoQ (cytosolic quality control compartment). Hsp42 NTE harbors the 

two prototypes of intrinsically disordered domains (IDD): a prion-like and an 

unstructured subdomain. IDDs play important roles in the formation of membrane-

free compartments due to their ability to self-associate and to coalesce into 
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inclusions. In this study, the roles of both NTE subdomains in CytoQ formation and 

Hsp42 chaperone activity were investigated. We found that the prion-like domain of 

Hsp42 has a dual function: It binds misfolded substrate proteins and triggers CytoQ 

formation. The unstructured domain is dispensable for CytoQ formation, but it has a 

regulatory function, controlling Hsp42 localization and CytoQ numbers. Deletion of 

the unstructured domain increases Hsp42 substrate interaction and holdase activity, 

i.e. the prevention of tight contacts between misfolded species. 

Together, the presented data show that the prion-like domain of Hsp42 is essential 

for CytoQ formation, extending the role of prion-like domains in inclusion formation 

from RNA granules to protein aggregates and emphasizing their crucial contributions 

to protein phase transitions. 

 

In a second part of my thesis I studied how the Hsp70 chaperone system interacts 

with RepE, a dimeric replication initiation protein in E. coli. The disassembly of RepE 

seems mechanistically related to the disaggregation process. As a dimer RepE 

represses its own transcription, as a monomer it initiates the replication of the mini-F 

plasmid. Monomerization is mediated by the DnaK chaperone system. So far, it 

remained elusive, how components of the DnaK chaperone system interact with RepE 

and how they change its structure, leading to the disassembly of the RepE dimer. In 

this study the binding of DnaK and DnaJ to dimeric RepE wt and to RepE54, a 

constitutively monomeric variant, was studied by HX. HX analysis of RepE wt 

revealed a putative DnaK binding site and conformational changes induced by 

chaperones. Only dimeric RepE wt, but not monomeric RepE54, interacts with DnaJ. 

In contrast, both oligomeric states of RepE were able to bind DnaK – at least in 

absence of DNA. In presence of their respective DNA-binding elements, the binding of 

DnaK was prevented, most likely due to sterical hindrance as the DNA and the 

putative DnaK binding sites in RepE are in close proximity. The binding of DnaJ 

probably occurs in aa 96-116, and it destabilized parts of the DNA binding region in 

RepE, indicating conformational changes. Although interaction with DnaJ was shown 

to enhance the binding affinity of RepE to DNA, the DnaJ-induced conformational 

change might enable DnaK to access its binding site. Crosslinking experiments, 

however, showed that DnaJ binding is not sufficient to allow for interaction of DnaK 

with DNA-complexed RepE wt. Only concomitant presence of DnaJ and GrpE enabled 

DnaK to interact with DNA-bound RepE wt. HX revealed, that concerted binding of 

DnaJ and DnaK causes substantial conformational changes in RepE: Destabilization of 

the C-terminal region and stabilization in helix α4 near the dimer interface. The latter 

might be implicated in the monomerization of RepE wt. 

In summary, my results provide major contributions to elucidate the chaperone-

mediated RepE monomerization process.  



Zusammenfassung 

Fehlfaltung und Aggregation von Proteinen stören Zellfunktionen und sind 

wesentlich am Alterungsprozess und an zahlreichen Krankheiten beteiligt. Die erste 

Abwehrstrategie der Zelle ist die Assoziation von schädlichen, aggregierenden 

Proteinen mit kleinen Hitzeschockproteinen (small heat shock proteins, sHsp). Diese 

oligomeren, ATP-unabhängigen Chaperone binden fehlgefaltete Proteine und bilden 

Komplexe, aus denen Substrate effizienter durch ATP-abhängige Chaperone 

herausgelöst und zurückgefaltet werden. Das Zytosol von S. cerevisiae enthält zwei 

sHsps: Hsp42 is konstitutiv aktiv, wohingegen Hsp26 durch Hitzestress aktiviert 

wird. In meiner Doktorarbeit wollte ich herausfinden, wie sHsps die Aggregatstruktur 

ändern und so die Reaktivierung von Substraten erleichtern. Hierfür habe ich den 

Einfluss von Hsp26 und Hsp42 auf die Struktur von hitzeinduzierten Aggregaten 

mittels Wasserstoff/Deuterium-Austausch (HX) untersucht. Zunächst habe ich die 

experimentellen Bedingungen für HX von hitzeinduzierten Proteinaggregaten 

ermittelt, wofür ich thermolabile Malatdehydrogenase (MDH) als Modellsubstrat 

verwendet habe. Meine Daten zeigen, dass die Bildung von hitzeinduzierten 

Hsp26/MDH- oder Hsp42/MDH-Komplexen tiefgreifende Auswirkung auf die MDH-

Struktur hat. Im aggregierten Zustand, der in Abwesenheit von sHsps gebildet wurde, 

wird beinahe das gesamte MDH-Polypeptid zugänglich für HX, was eine globale, 

starke Fehlfaltung widerspiegelt. Im Gegensatz dazu befindet sich MDH in einem 

geschützteren Zustand, wenn sie sich im Komplex mit Hsp26 oder Hsp42 befindet. Ich 

habe festgestellt, dass die Massenspektren vieler Peptide, die von sHsp/MDH-

Komplexen stammen, nach dem HX eine Mischung aus zwei Populationen darstellen: 

eine nativ-ähnliche und eine Aggregat-ähnliche Population. Höherer Überschuss an 

sHsps begünstigt den nativ-ähnlichen Zustand. Einzelmolekül-Experimente 

bestätigten, dass sich die Struktur sHsp-gebundener Proteine nahe am nativen 

Zustand befindet. Zudem zeigten FRET Experimente, dass sHsps den Abstand 

zwischen MDH Molekülen in sHsp/MDH-Komplexen vergrößern, wodurch 

intermolekulare Kontakte von fehlgefalteter MDH verringert werden. Schließlich 

habe ich in Quervernetzungsexperimenten herausgefunden, dass periphere, 

Oberflächen-exponierte MDH-Bereiche, die hohen HX zeigten, die Hauptbindestellen 

für sHsps sind. Zusammengenommen zeigen diese Ergebnisse, dass sHsps frühe 

Entfaltungsintermediate der Substrate binden und Teile des Proteins in einem nativ-

ähnlichen Zustand halten. Diese Aktivität von sHsps könnte die Chaperon-vermittelte 

Disaggregation erleichtern. 
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Dann habe die Interaktion beider Hefe-sHsps mit ihren Substraten untersucht. Es 

zeigte sich, dass vorwiegend die N-terminalen Domänen (N-terminal extension, NTE) 

beider Hefe-sHsps mit Substraten interagieren. Im Vergleich zu allen anderen 

bekannten sHsps, ist die NTE von Hsp42 verlängert, und wird für die Ablagerung 

missgefalteter Proteine an CytoQ (cytosolic quality control compartment) 

Einschlüssen benötigt. Die NTE von Hsp42 enthält zwei Prototypen von intrinsisch 

ungeordneten Domänen (intrinsically disordered domains, IDD): Eine Prionen-

ähnliche und eine unstrukturierte Subdomäne. Durch ihre Fähigkeit zur Selbst-

Assoziation und zur Vereinigung in Einschlüssen, spielen IDDs bei der Bildung von 

membranfreien Kompartimenten eine wichtige Rolle. In dieser Arbeit wurden die 

Rollen beider NTE Subdomänen für die Bildung von CytoQ und Hsp42 

Chaperonaktivität untersucht. Es wurde gezeigt, dass die Prionen-ähnliche Domäne 

von Hsp42 eine duale Funktion besitzt: Sie bindet fehlgefaltete Substratproteine und 

löst deren Ablagerung an CytoQs aus. Die unstrukturierte Domäne wird für die CytoQ 

Bildung nicht benötigt. Sie hat vielmehr eine regulatorische Funktion, indem sie die 

Hsp42 Lokalisierung und die CytoQ Anzahl kontrolliert. Die Deletion der 

unstrukturierten Domäne führt zu einer erhöhten Substratinteraktion von Hsp42, 

welche mit einer erhöhten Chaperoneaktivität einhergeht. 

Zusammengefasst zeigen die Daten, dass die Prionen-ähnliche Domäne von Hsp42 

essentiell für die Ausbildung von CytoQs ist. Die Rolle von Prionen-ähnlichen 

Domänen bei der Bildung von Einschlusskörpern kann somit von RNA granules auf 

Proteinaggregate erweitert werden und unterstreicht ihre Bedeutung bei 

Phasenübergängen von Proteinen.  

In einem zweiten Teil meiner Doktorarbeit untersuchte ich die Interaktion zwischen 

dem Hsp70 Chaperon-System und RepE, einem dimeren Replikation-Initiations-

Protein in E. coli. Die Disassemblierung des DnaK-Substrats RepE scheint dem 

Disaggregations-Prozess mechanistisch ähnlich zu sein. Als Dimer unterdrückt RepE 

seine eigene Transkription, als Monomer initiiert es die Replikation des mini-F 

Plasmids. Die Monomerisierung erfolgt durch das DnaK Chaperon-System. Bislang 

blieb unerforscht, wie Komponenten des DnaK Chaperon-Systems mit RepE 

interagieren und wie sie dessen Struktur ändern, sodass die Disassemblierung des 

RepE Dimers erfolgt. In dieser Studie wurde die Bindung von DnaK und DnaJ an 

dimeres RepE  wt und an RepE54, einer konstitutiv monomeren Variante, mittels HX 

untersucht. Durch HX Analyse von RepE wt konnte die mutmaßliche DnaK-

Bindestelle identifiziert, und Chaperon-induzierte Konformationsänderungen 

beobachtet werden. Dimeres RepE wt jedoch nicht monomeres RepE54 konnte mit 

DnaJ interagieren. Im Gegensatz dazu konnten beide oligomeren Zustände von RepE 

DnaK binden – zumindest in Abwesenheit von DNA. In Gegenwart ihrer 

entsprechenden DNA-Bindeelemente wurde die Bindung von DnaK verhindert, sehr 
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wahrscheinlich aus sterischen Gründen, da die DNA- und die mutmaßliche DnaK-

Bindestelle in RepE eng beieinander liegen. Die Bindung von DnaJ erfolgt 

wahrscheinlich an aa 96-116 und führt zur Destabilisierung in Teilen der DNA-

Binderegion in RepE, was auf Konformationsänderungen hindeutet. 

Quervernetzungsexperimente zeigten jedoch, dass DnaJ-Bindung nicht ausreicht um 

die Interaktion von DnaK mit DNA-komplexiertem RepE wt zu ermöglichen. Nur die 

gleichzeitige Anwesenheit von DnaK und GrpE erlaubte DnaK mit DNA-gebundenem 

RepE wt zu interagieren. HX zeigte, dass die gleichzeitige Bindung von DnaJ und DnaK 

erhebliche Konformationsänderungen verursacht: Destabilisierung in der C-

terminalen Region von RepE und Stabilisierung in Helix α4 nahe der 

Dimerisierungsgrenzfläche. Letzteres könnte bei der Monomerisierung von RepE wt 

eine Rolle spielen. 

Ergebnisse dieser Arbeit leisten einen bedeutenden Beitrag zur Aufklärung des 

Chaperon-vermittelten RepE Monomerisierungsprozesses.  
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1 Introduction 

Proteins are the most abundant and diverse class of biomolecules found in living cells. 

They function either alone or by forming complexes with other proteins or different 

cellular components. Proteins are involved in virtually all biochemical processes, 

including the transport and storage of molecules, the control of development and cell 

differentiation, the immune response, the enzymatic catalysis of thousands of 

reactions, and many further tasks. Therefore, the efficient functioning and regulation 

of the proteome (i.e. all proteins expressed by a genome) is of central importance to 

cellular health and impacts the lifespan of all organisms. 

1.1 Protein aggregation 

1.1.1 General relevance of protein aggregation 

Protein aggregation is a process during which identical polypeptides self-associate, 

forming insoluble, high-molecular assemblies that can finally precipitate. In recent 

years, this self-assembly of misfolded proteins has increasingly gained importance 

since aggregates cause the perturbation of cellular functions, which is associated with 

the process of aging and a variety of severe human disorders (e.g. Alzheimer’s 

disease, Parkinson’s disease and diabetes type II) (Dobson, 2003; Kelly, 2005; Selkoe, 

2003). Moreover, protein aggregation is a major issue in the biotechnological 

production. The massive recombinant overexpression of proteins generates high 

protein concentrations, favoring aggregation and reducing the yields of protein-based 

pharmaceutical products (Ventura, 2005; Ventura and Villaverde, 2006).  

In cells, the vast majority of vital processes is performed by proteins. The synthesis of 

proteins occurs at ribosomes, initially generating a linear chain of amino acids 

(primary structure) that exists as an unfolded polypeptide or random coil structure. 

In order to be functional, these amino acid chains have to fold into a well-defined 

three-dimensional structure, referred to as ‘native state’ (Figure 1). Although the 

proper fold is essential for protein activity, in some cases parts of functional proteins 

may remain unfolded (Dunker et al., 2008). Occasionally, polypeptide chains fail to 

assume the native structure and end up as misfolded species that are trapped in free 

energy minima (Tyedmers et al., 2010). Misfolding might, however, also affect 

properly folded polypeptides. In diluted solutions proteins usually exist as soluble 

conformers and are able to circumvent aggregation. Yet, the native conformation of 

proteins is in general only marginally stable, even at physiological conditions. Within 
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the cell, an extremely high concentration of total protein (300 g/l) causes excluded-

volume effects (macromolecular crowding), increasing the probability of proteins to 

misfold and to form aggregated species (Ellis and Minton, 2006). Therefore, native 

proteins are at permanent risk of unfolding, and already small perturbations in 

protein homeostasis may produce inactive conformers that have modified or toxic 

properties (Dobson, 2003; Jaenicke, 1998; Jahn and Radford, 2005).  

 

Figure 1: Overview of cellular protein aggregation. Translational errors, mutations or environmental 
stress can lead to the unfolding or misfolding of polypeptide chains. Components of the protein quality 
control system are able to refold or degrade non-native proteins. However, if its capacity is exceeded, 
misfolded species accumulate and assemble into protein aggregates. In general, two types of aggregates 
are distinguished: Amyloidogenic aggregates with highly ordered β-sheet structure and aggregates with 
disordered parts and varying degree of β-sheet content (Tyedmers et al., 2010). 

The failure of proteins to assume or keep their properly folded native structure might 

occur as a consequence of various different circumstances or events: 

False amino acid incorporation during ribosomal translation might lead to partial 

unfolding or misfolding and thereby to impaired assembly of protein complexes. 

Together, this increases the tendency of proteins to aggregate (Drummond and Wilke, 

2008; Pierre, 2005).  

Furthermore, mutations in genes, usually encoding soluble proteins, can result in the 

destabilization of their native conformation and thus promote aggregation (Canet 

et al., 2002). Many such mutations are associated with numerous medical disorders, 
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including Huntington’s, Parkinson’s or Alzheimer’s disease. Here, the misfolding of 

proteins disrupts their function and leads to the formation of high-molecular, 

insoluble depositions (see below). Accordingly, they are termed as ‘conformational 

diseases’ (Chiti and Dobson, 2006; Powers et al., 2009; Ross and Poirier, 2004).  

Finally, environmental stress conditions, such as heat or oxidative stress, can cause 

enhanced protein aggregation. Exposure of cells to unphysiologically high 

temperatures can result in the excessive unfolding and aggregation of numerous 

proteins. A fraction of those heat-induced aggregates can be reactivated (see below) 

(Parsell et al., 1994). In contrast, oxidative stress often results in irreversible protein 

modifications. So called ‘reactive oxygen species’ (ROS) cause the oxidation of amino 

acid side chains, the formation of undesired protein-crosslinks and the oxidation of 

the polypeptide backbone, leading to protein fragmentation. Carbonyl groups are 

produced by the direct oxidation of side chains (especially of Arg, Pro, Lys, and Thr), 

and by reactions with aldehydes generated during lipid peroxidation or with reactive 

carbonyl derivatives (Berlett and Stadtman, 1997).  Oxidative damage can then result 

in protein misfolding and subsequent aggregation. 

Advanced age or high stress levels increase the probability of protein aggregation. 

Here, one reason is the enhanced production of misfolded protein conformers leading 

to a high burden on components of the cellular protein quality machinery (see 

chapter 1.2). A capacity overload results in the accumulation of non-native 

polypeptides, which might form aggregates (David et al., 2010; Koga et al., 2011; Reis-

Rodrigues et al., 2012). 

The aggregation tendency of a specific protein is determined by the chemical nature 

of its amino acid sequence, the stability of its natively folded conformation, and its 

cellular concentration (Chiti and Dobson, 2006; Ciryam et al., 2013). Interestingly, 

high expression levels are observed preferentially for proteins that are less prone to 

aggregation (Tartaglia et al., 2007). 

1.1.2 Types of protein aggregates 

Protein aggregates can be defined as any assembly of two or more protein molecules 

exhibiting a non-native conformation. In general, two classes of protein aggregates 

are distinguished: The first class comprises amyloidogenic aggregates. Amyloids form 

large, highly ordered, fibrillar assemblies that are characterized by so called ‘cross-β’ 

structures (see below) and they are associated with numerous neurodegenerative 

diseases (Lührs et al., 2005; Nelson et al., 2005; Ritter et al., 2005; Sawaya et al., 2007; 

Tanaka et al., 2006; Wasmer et al., 2008). The term ‘amyloid’ means ‘starch-like’, 

since fibrillar deposits that were observed in patients suffering from amyloid-related 

disorders produce a purple color when reacting with iodine, comparable to effects 
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caused by starch (Buxbaum and Linke, 2012; Sipe and Cohen, 2000). The second class 

contains non-fibrillar aggregates lacking any long-range order. They are therefore 

traditionally termed as ‘amorphous’ aggregates (Bowden et al., 1991). This type 

includes precipitates and bacterial inclusion bodies, which cause major concerns in 

the biotechnological production (Fink, 1998; Rousseau et al., 2006; Ventura and 

Villaverde, 2006). 

1.1.3 Fibrillar, amyloidogenic aggregates 

Amyloid fibrils are unbranched filamentous structures, consisting of several 

protofilaments that are twisted around each other. Fibrils made from different 

proteins appear to be very similar in size (with diameters between 5 and 25 nm and 

with a length of several micrometers) (Chiti and Dobson, 2006; Cohen, 1969; Sunde 

et al., 1997). X-ray analysis revealed that amyloid fibrils generally contain a ‘cross-β’ 

structure, i.e. an extended β-sheet conformation, in which the β-strands are oriented 

perpendicularly to the main fibril axis (Eisenberg and Jucker, 2012; Fitzpatrick et al., 

2013; Sawaya et al., 2007). This highly ordered and closely packed organization 

confers very robust properties to amyloids, including resistance to denaturants and 

proteases as well as mechanical stability (Chiti and Dobson, 2006; Vendruscolo, 

2011).  

The exact process of amyloid fibril formation is still under debate. However, many 

biophysical studies (microscopy, mass spectrometry and single-molecule optical 

methods) suggested that a heterogeneous ensemble of oligomers is involved in initial 

steps of fibril formation (Bernstein et al., 2009; Cremades et al., 2012; Nettleton et al., 

2000; Smith et al., 2010). For some proteins, including α-synuclein and yeast prions, 

conformational transitions of those oligomers have been reported, starting from a 

rather disordered state to more organized structures that are able to assemble into 

fibrils (Serio et al., 2000; Walsh et al., 2002). During ‘secondary nucleation’ fibrils act 

as a template: When monomers are attached to the fibril ends, they convert to the 

cross-β conformation, enlarging the extended β-sheet structure (Nelson et al., 2005; 

Serio et al., 2000). 

A special subclass of amyloids is spreading within and between cells. These self-

perpetuating and infectious features were initially discovered for prions 

(proteinaceous infectious particles) (Collinge, 2007; Krishnan and Lindquist, 2005). 

However, recent studies revealed the spreading of amyloids for further disease-

related proteins, such as α‑synuclein, tau and amyloid-β (Jucker and Walker, 2013; 

Walker et al., 2013). 



1.1 Protein aggregation 21 

1.1.4 Non-fibrillar (‘amorphous’) aggregates 

The formation of non-fibrillar aggregates is typically promoted by high temperature, 

extreme pH values, high protein concentration and by heterologous protein 

overexpression in bacteria (Jahn and Radford, 2005; Jahn and Radford, 2008). In the 

latter case, the aggregates are deposited as ‘inclusion bodies’. Using electron 

microscopy or atomic force microscopy this aggregate type often appears as very 

heterogeneous in its overall structure. Thus, such aggregates were assumed to be 

random-coil-like structures that stick to each other through nonspecific interactions. 

They were therefore termed as ‘amorphous’ aggregates (Fink, 1998; Rousseau et al., 

2006; Ventura and Villaverde, 2006). Meanwhile, however, many studies using dye 

binding (Congo red, Thioflavin T), X-ray diffraction, CD and IR spectroscopy or other 

techniques have demonstrated that amorphous aggregates are significantly 

structured (Christopeit et al., 2005; Fink, 1998; Fändrich et al., 2003; Fändrich et al., 

2006; Jackson and Mantsch, 1991). In fact, those non-fibrillar aggregates show 

extensively higher contents of β-sheet structure than the soluble conformation of the 

same polypeptide (Chang et al., 2009; Kendrick et al., 1998; Okuno et al., 2007). 

Inclusion bodies even contain some amyloid-like segments coexisting with 

disordered and remaining folded parts (García-Fruitós et al., 2005; Sambashivan 

et al., 2005; Wang et al., 2008). Despite common structural features of inclusion 

bodies and amyloid fibrils, inclusion bodies are not toxic to its host E. coli and they 

are even thought to counteract the cytotoxicity of misfolded proteins (Gonzalez-

Montalban et al., 2005). However, the described structural similarities explain the 

observation that non-fibrillar aggregates can accelerate amyloid formation by acting 

as nuclei during fibril assembly (Chiti and Dobson, 2006; Dobson, 2001; Fändrich 

et al., 2006; Goldsbury et al., 2005; Serio et al., 2000). 

Taken together, intramolecular β-sheets seem to be a common structural feature of 

amorphous and amyloidogenic aggregates. However, the level of their structural 

organization is much more pronounced in highly ordered amyloid fibrils (Chiti and 

Dobson, 2006; Fändrich, 2007; Maji and Riek, 2009; Nelson and Eisenberg, 2006). 

1.1.5 A single protein can adapt different types of aggregates 

In recent years, it became increasingly evident that the ability to adopt amyloid 

structures is more general than previously assumed. Amyloid formation is not 

restricted to a few disease-related proteins. Rather, it represents an alternative 

conformational state that can be formed by a multitude of polypeptides (Chiti and 

Dobson, 2006; Dobson, 1999-Dobson, 2001; Eisenberg and Jucker, 2012; Fändrich 

and Dobson, 2002). For instance, in vitro experiments revealed that myoglobin, which 

is predominantly α-helical in its globular state, can form non-fibrillar aggregates or 
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amyloid fibrils, both containing high β-sheet content (Fändrich et al., 2001; Smeller 

et al., 1999). In a recent study, five different aggregate types of the protein HypF were 

generated by using distinct denaturing conditions, which cause different 

unfolding/aggregation processes (Ben-Zvi and Goloubinoff, 2002; Wang and Riek, 

2010). The aggregates differed in morphology, stability, toxicity and further 

properties. Structural investigation showed that all five forms contained cross-β sheet 

structure, which, however, involved different segments of the protein sequence 

(Heise et al., 2005; Petkova et al., 2005; van derWel et al., 2007). 

Unlike the native state, the basic amyloid structure is not sequence-dependent 

(Dobson, 1999; Dobson, 2003), although it is favored by continuous glutamine and 

asparagine stretches (Michelitsch and Weissman, 2000). It is therefore in principle 

accessible to most proteins. Interestingly, cells have developed mechanisms to avoid 

the conversion of proteins into the non-functional amyloid conformation. During 

evolution, polypepetide sequences that promote amyloid formation are commonly 

selected against (Broome and Hecht, 2000; Tartaglia et al., 2008), or residues are 

inserted which interrupt the interactions between such amino acid stretches (termed 

as ‘gatekeepers’) (Otzen and Oliveberg, 1999; Tartaglia et al., 2008). 

1.1.6 Deleterious effects of protein aggregates 

Non-native protein conformers are deleterious to cells as they are unable to perform 

their designated functions. Furthermore, folding intermediates and misfolded 

conformers expose hydrophobic segments that are usually embedded in the core of 

the natively folded protein (Bolognesi et al., 2010; Campioni et al., 2010; Cheon et al., 

2007; Olzscha et al., 2011). These hydrophobic patches are now accessible to the 

cellular environment and can initiate the aggregation process. Predominantly, a single 

protein accumulates within aggregates. However, the aggregation of different 

proteins can be triggered (Ben-Zvi and Goloubinoff, 2002), and exposed hydrophobic 

surfaces can interact inappropriately with various functional cellular components, 

including other proteins, lipid membranes and nucleic acids (Narayan et al., 2013; 

Olzscha et al., 2011). In association with amyloid disorders there were no correlations 

observed between the levels of fibrillar aggregates and the state of disease 

advancement (Cohen et al., 2013; Haass and Selkoe, 2007; Karran and De Strooper, 

2011). These findings and further evidence suggest that pre-fibrillar oligomers, 

rather than mature amyloid fibrils, seem to be the primary toxic species (Chiti and 

Dobson, 2006; Eisenberg and Jucker, 2012; Haass and Selkoe, 2007). The trapping of 

cellular components by those intermediates were found to be generically damaging to 

cells (Cremades et al., 2012; Lesné et al., 2006; Walsh et al., 2002). Interestingly, cell 
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viability studies using Aβ40 and Aβ42 oligomers indicated that toxicity increases with 

decreasing oligomer size (Kayed et al., 2003; Kayed et al., 2009).  

Consequently, the appearance of aggregation-prone misfolded species is a permanent 

danger for cell homeostasis. Initial aggregation events might activate a cascade of 

pathological reactions and might accelerate the aging process. 

1.2 Interaction of chaperones with protein assemblies and 
aggregates 

In the living cell, protein aggregation is modified by components of the protein quality 

control network consisting of molecular chaperones and proteases (Tyedmers et al., 

2010). Molecular chaperones assist in the de novo synthesis of proteins, minimizing 

misfolding, and prevent or even reverse protein aggregation (see chapter 1.2.2). 

Proteins that cannot be rescued are targeted for protease-mediated degradation. 

Most chaperones use ATP binding and hydrolysis to switch between states with low 

or high binding affinities for their polypeptide substrates (Beissinger and Buchner, 

1998; Bukau and Horwich, 1998; Walter and Buchner, 2002). In contrast, the small 

Heat shock proteins (sHsps) work in an ATP-independent manner. In fact, this class of 

chaperones acts as the first line of defense during unfolding stress as they associate 

fast with misfolded polypeptides and form stable complexes (Cashikar et al., 2005; 

Haslbeck et al., 1999; Mogk et al., 2003). In this way, misfolded proteins are 

sequestered, reducing the probability for severe protein aggregation and lowering the 

burden on other components of the protein quality system.  

1.2.1 Influence of sHsps on protein aggregation 

1.2.1.1 The sHsp family 

The sHsp family comprises a group of ubiquitous, diverse intracellular chaperones, 

ranging from 12 to 43 kDa in monomeric size. Many of them can form oligomeric 

states. sHsps were first discovered due to their strongly induced expression at high 

temperatures. However, other environmental or pathological stresses were similarly 

found to increase sHsp expression, and some sHsps are constitutively expressed 

(Haslbeck et al., 2005; McHaourab et al., 2009; Walter and Buchner, 2002). sHsps 

exist in all kingdoms of life, and, unlike many other chaperone families, they show 

extensive sequence variation and evolutionary divergence (Basha et al., 2012). In 

humans ten paralogous sHsps were found, termed HspB1-HspB10, with HspB4 (αA-

crystallin) and HspB5 (αB-crystallin) being the best characterized members 

(Kampinga et al., 2009; Vos et al., 2008).  
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Some sHsps are located to distinct tissues, and expression levels might considerably 

vary within different cell types. However, organelle-specific sHsps have only been 

observed in plants, with the exception of a mitochondrion-located sHsp in Drosophila 

melanogaster. In addition, sHsp levels increase during the stationary phase in 

numerous microorganisms and in quiescent cells of many invertebrates (Wadhwa 

et al., 2010). 

1.2.1.2 Roles of sHsps and sHsp-associated diseases 

In contrast to many other molecular chaperones, sHsps themselves do not actively 

refold target proteins. Instead, sHsps specifically interact with misfolded 

polypeptides thereby preventing or attenuating irreversible aggregation (Gobbo 

et al., 2011; Horwitz, 1992; Kim et al., 1998). sHsps and the bound polypeptides form 

large, stable, globular complexes (Basha et al., 2004; Haslbeck et al., 1999; Lee et al., 

1997), in which the non-native substrate proteins are maintained in a refolding-

competent state (Ehrnsperger et al., 1997; Lee et al., 1997; Stromer et al., 2003). 

Subsequently, ATP-dependent Hsp70 and Hsp100 chaperones are able to refold the 

bound substrate protein (Haslbeck et al., 2005; McHaourab et al., 2009; Mogk et al., 

2003) (see chapter 1.2.2). Many sHsps have a substantial binding capacity and bind 

up to an equal weight of misfolded polypeptides (Haslbeck et al., 2005; McHaourab 

et al., 2009; van Montfort et al., 2001a). With increasing amounts of sHsps being 

present during aggregation, sHsp-substrate complexes become smaller and more 

soluble. Concomitantly, the reactivation of sequestered proteins by ATP-dependent 

chaperones is facilitated (Stengel et al., 2010). Typically, sHsps are less efficient with 

larger proteins, reflecting the need for direct interactions between sHsps and non-

native substrates (Basha et al., 2013). 

Within the protein homeostasis network there must be a coordinated interaction 

between chaperones and components of the protein degradation machinery. So far, 

little is known about the mechanisms, deciding if misfolded proteins are refolded or 

subjected to proteolysis. However, some human sHsps have been shown to interact 

with the proteasome (directly or indirectly) and to be part of an ubiquitin ligase 

complex (Lanneau et al., 2007). For instance, human HspB1 (Hsp27) interacts with 

HDM2, an ubiquitin ligase (E3) that target the tumor protein p53 for degradation 

(O’Callaghan-Sunol et al., 2007). In addition, specific sHsps are involved in directing 

native or aggregated proteins toward autophagy (Carra et al., 2010).  

These important functions in protein quality control explain the cytoprotective 

effects of sHsps (Bruey et al., 2000; Charette et al., 2001; Paul et al., 2002). 

Furthermore, some sHsps can interact with key apoptotic proteins thereby 

preventing apoptotic cell death (Garridoa et al., 2012). 
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Beyond their role in protein quality control, sHsps were reported to influence the 

redox metabolism of cells thereby modifying their ability to respond to oxidative 

stress (Préville et al., 1999). Moreover, some sHsps assist during cytoskeleton 

assembly: They associate with the main cytoskeletal constituents (microtubules, 

intermediate filaments and microfilaments) and control interactions between 

filaments thereby inhibiting their aggregation (Launay et al., 2006; Perng et al., 1999; 

Tessier et al., 2003). 

According to their multiple important roles described above, the dysfunction of sHsps 

is linked to a broad spectrum of pathological disorders. Various inherited diseases 

were discovered to result from defects (e.g. amino acid changes) in sHsps (Clark and 

Muchowski, 2000). In association with their anti-aggregating function, mutations in 

the vertebrate eye lens sHsps (α-crystallins) lead to the formation of cataracts (Brady 

et al., 1997; Graw, 2009; Horwitz, 2003) and mutated sHsps in muscle tissues cause 

cardio-, skeletal- and neuro-myopathies (Goldfarb and Dalakas, 2009; Goldfarb et al., 

2008; Rajasekaran et al., 2007). Malfunctions of sHsps are also involved in the 

development of a variety of neurodegenerative disorders that are linked to protein 

misfolding, e.g. Alzheimer’s, Huntington’s and Creutzfeldt-Jakob disease or multiple 

sclerosis (Laskowska et al., 2010; Lowe et al., 1992; van Noort et al., 2010). 

Accordingly, some sHsps were shown to suppress the aggregation of polyQ proteins 

(Carra et al., 2010; Robertson et al., 2010; Vos et al., 2010) and to prevent the 

formation of amyloid fibrils (Ecroyd and Carver, 2009; Shammas et al., 2011; Waudby 

et al., 2010). With respect to their function in cytoskeleton assembly, sHsps are 

implicated in renal or pulmonary fibrosis (Garridoa et al., 2012). Moreover, due to 

their anti-apoptotic activities, sHsps are connected to cancer, and several cancers 

show characteristic changes in their sHsp expression pattern (Deng et al., 2010; 

Kamada et al., 2007). Their implication in diverse devastating diseases let sHsps 

appear as promising therapeutic targets. 

1.2.1.3 Structure and organization of sHsps 

The common feature of sHsps is the highly conserved α-crystallin domain (ACD) 

(around 90 aa), which is named after the vertebrate eye lens sHsp α-crystallin 

(Ecroyd and Carver, 2009; Horwitz, 1992). It is flanked by flexible N- and C-terminal 

extensions (NTE and CTE), that are variable in sequence and length (on average: NTE 

55 aa; CTE < 20 aa) (Kriehuber et al., 2010; Poulain et al., 2010). Despite low overall 

sequence similarities, the CTE contains a conserved I/L/V-X-I/L/V motif (Haslbeck 

et al., 2005; McHaourab et al., 2009; van Montfort et al., 2001a) (Figure 2a and b). 
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Figure 2: Structural organization of sHsps. (a) Domain organization of sHsps. NTE: N-terminal extension, 
CTE: C-terminal extension. (b)-(c) Assembly and fold of the wheat sHsp Hsp16.9 are shown. (b) Ribbon 
diagram of the monomer with the NTE shown in green, and the alpha-crystallin domain and CTE in red. 
(c) In the Hsp16.9 dodecamer dimeric subunits are arranged as two disks with a central hole. Dimers of 
the top disk are colored red, green and blue, dimers of the bottom disk pink, sage and turquoise (van 
Montfort et al., 2001b). 

Most sHsps form oligomeric structures frequently consisting of 12 or 24 monomers 

(Kennaway et al., 2005; Stamler et al., 2005; White et al., 2006) (Figure 2c). But even 

larger complexes with up to 50 monomers were reported for α-crystallin or other 

sHsps (Haslbeck et al., 2005; van Montfort et al., 2001b). Despite these variations, the 

common building block of oligomer assemblies is a dimeric subunit (Ecroyd and 

Carver, 2009; Haslbeck et al., 2005; McHaourab et al., 2009). This was demonstrated 

in biochemical and structural studies (Haslbeck et al., 2008; Kim et al., 1998; Peschek 

et al., 2009; van Montfort et al., 2001b). Some sHsp oligomers were shown to 

dissociate into dimers and monomers at elevated temperatures (Benesch et al., 2003; 

Giese and Vierling, 2002; Haslbeck et al., 1999; van Montfort et al., 2001b).  

Many members of the sHsp family are extremely dynamic and heterogeneous in size 

and form. Therefore, the structure of sHsps remained poorly understood for a long 

time. But due to technical improvements in electron microscopy and X-ray 

crystallography increasing structural information was obtained during the last years. 

Often, sHsp oligomers form sphere- or barrel-shaped assemblies (Kim et al., 1998; 

van Montfort et al., 2001b). Atomic structures showed that the α-crystallin domain 

consists of seven or eight anti-parallel β-strands forming a β-sandwich (Kriehuber 

et al., 2010; Poulain et al., 2010) and that it is involved in dimerization of monomers. 

Two different dimer interfaces have been observed, depending on presence of a loop 

that contains β-strand β6. Many bacterial, yeast and plant sHsps contain this β6-loop 

structure (e.g. Methanocaldococcus Hsp16.5 or wheat Hsp16.9). Here, dimerization is 

mediated through strand swapping: β6 of one monomer is incorporated at the end of 
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the β-sheet, comprising β2, β3, β8 and β9, in the α-crystallin domain of the other 

monomer. Many metazoan sHsps (e.g. HspB4, HspB5 and HspB6) do not possess this 

β6-loop. Instead, β7 of one monomer positions in antiparallel orientation next to β7 

of the second monomer, forming a continuous β-sheet and connecting both 

monomers (Bagnéris et al., 2009; Jehle et al., 2009a). While dimerization of sHsps is 

mediated by the α-crystallin domain, both N- and C-terminal extensions have been 

shown to contribute to oligomer formation. The partial or complete deletion of either 

of these domains or certain amino acid changes have been reported to disrupt 

oligomerization. This often results in the formation of stable dimeric subunits or 

leads to the appearance of amorphous aggregates (Basha et al., 2012; Giese and 

Vierling, 2004; Lindner et al., 2000). Crystal structures of Methanocaldococcus 

Hsp16.5 and wheat Hsp16.9 revealed for the first time a widespread mechanism for 

establishing oligomers: The conserved C-terminal I/L/V-X-I/L/V motif in one dimer 

interacts with a hydrophobic groove formed by β4 and β8 in the α-crystallin domain 

of the adjacent dimer (Kim et al., 1998; van Montfort et al., 2001b). Due to the high 

flexibility that has been observed for N- and C-terminal domains, dimers can associate 

in different geometries (Baldwin et al., 2011; Jehle et al., 2009a; Jehle et al., 2009b; 

Laganowsky et al., 2010). Moreover, the large variability in the length of the N-

terminal extension seems to be the reason for the formation of significantly 

differently sized oligomers (Narberhaus, 2002). 

1.2.1.4 Dynamics of sHsps 

sHsps form highly dynamic structures, which continuously exchange dimeric subunits 

between oligomers (Aquilina et al., 2005; Franzmann et al., 2005; Painter et al., 2008; 

Sobott et al., 2002). The rate limiting step during this process seems to be the 

dissociation of dimers from the oligomers, whereas the association is very rapid 

(Basha et al., 2012; Bova et al., 2000). The dynamic of subunit exchange increases 

with elevated temperature, and it is sensitive to other environmental conditions (e.g. 

ionic strength) (Basha et al., 2012). In addition, phosphorylation patterns have been 

found to influence subunit association (Bova et al., 2002; Giese and Vierling, 2002; 

Haslbeck et al., 1999; van Montfort et al., 2001a). This dynamic exchange of subunits 

seems to be a common feature among sHsps. Yet, its biological significance and 

functional importance remain unclear (Bova et al., 1997; Haslbeck et al., 1999; Sobott 

et al., 2002). There have been speculations that subunit exchange might be implicated 

in the chaperone mechanism by uncovering substrate binding sites (Basha et al., 

2012; Stengel et al., 2010). However, several studies demonstrated that subunit 

exchange does not necessarily correlate with the activity of sHsps (Aquilina et al., 

2005; Franzmann et al., 2005). 
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1.2.1.5 Substrate interaction and activation of sHsps 

sHsps tightly bind non-native, aggregation-prone substrate proteins and keep them in 

a refolding-competent state. How sHsps recognize their substrates and which extent 

of unfolding is required remains unclear. Many sHsps, especially from bacteria and 

yeast, have a broad substrate spectrum, lacking substrate specificity (Basha et al., 

2004; Haslbeck et al., 2004). More specific binding has been demonstrated for some 

mammalian sHsps (van Montfort et al., 2001a; Vos et al., 2008).  

So far, the identity of substrate binding sites within sHsps is unknown. Studies 

analyzing deletion mutants, crosslinking approaches and peptide library scanning 

were performed in order to identify interaction sites (Ahrman et al., 2007; Ghosh 

et al., 2007). Overall, the findings suggest that multiple sites belonging to each of the 

three domains contribute to substrate binding (Jaya et al., 2009; McHaourab et al., 

2009). Though, the N-terminal region seems to play a major role in the recognition of 

substrates (Giese et al., 2005; Haslbeck et al., 2004). 

Some sHsps are constitutively active (i.e. they bind misfolded polypeptides). Others 

are activated by heat, phosphorylation or different modifications (Ecroyd et al., 2007; 

Haslbeck et al., 1999; Shashidharamurthy et al., 2005).  

The emerging picture is that activation occurs via improved substrate binding due to 

an increase in accessible hydrophobic surfaces on the sHsps (Figure 3). This is 

reached in different ways. The dissociation of subunits or the formation of smaller 

oligomeric species could reveal buried, hydrophobic sites which are able to interact 

with non-native proteins. In this case higher oligomers would act as a storage form, 

preserving binding sites until they are needed (Haslbeck et al., 2005; McHaourab 

et al., 2009; van Montfort et al., 2001a). Consistently, for several sHsps, including α-

crystallin and Hsp16.2 from Caenorhabditis elegans, it was suggested that the N-

terminal regions, which are often involved in substrate binding, are buried inside the 

oligomers (Kim et al., 1998). However, a few studies demonstrated that oligomer 

dissociation does not necessarily correlate with sHsp activity (Franzmann et al., 

2005). Rather, for many sHsps structural plasticity seems to be the decisive factor 

during substrate recognition and binding (Aquilina et al., 2004; Bepperling et al., 

2012; Franzmann et al., 2008). For instance, in αB-crystallin it has been shown that 

enhanced substrate binding is based on increased flexibility of the NTE (Peschek 

et al., 2013). High structural plasticity of the NTE also explains the ability to bind a 

variety of substrate proteins differing in sequence and structure (Bardwell and Jakob, 

2012; Tompa and Csermely, 2004; Uversky, 2011). This order-to-disorder transition 

during activation has also been reported for other chaperones (Chen et al., 2011; 

Reichmann et al., 2012; Tapley et al., 2009). 
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Figure 3: Function of sHsps during protein aggregation. sHsps often form oligomeric complexes, which 
dynamically exchange dimeric subunits between each other. Upon stress, many sHsps can convert from a 
state with low substrate affinity to a state with high substrate affinity. In this activated state sHsps co-
aggregate with misfolded polypeptides and prevent the formation of large aggregates. The resulting 
sHsp-substrate complexes can be disaggregated and refolded more efficiently by ATP-dependent 
chaperones (adapted from Tyedmers et al. 2010).   

Regarding the findings described above, it becomes increasingly obvious that there is 

no general mechanism which could explain the activation of chaperone function for 

all sHsps.  

1.2.1.6 Post-translational phosphorylation of sHsps 

The properties of sHsps are frequently altered by post-translational phosphorylation. 

Many sHsps possess serine or threonine residues that can be reversibly 

phosphorylated in response to multiple kinds of stresses including heat, mitogens or 

oxidants (Butt et al., 2001; Rogalla et al., 1999; Shemetov et al., 2008). Often, 

phosphorylation promotes oligomer dissociation and activates the sHsp (Aquilina 

et al., 2004; Parcellier et al., 2005). In addition, the interactions with some 

cytoskeletal components require the phosphorylation of the respective sHsps 

(Launay et al., 2006). Phosphorylation has also been reported to influence the cellular 

distribution of sHsps, inducing their translocation into the nucleus (Brunet Simioni 

et al., 2009; den Engelsman et al., 2004).  
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1.2.1.7 sHsps in Saccharomyces cerevisiae 

The cytosol of S. cerevisiae contains two chaperones of the sHsp family, sharing 46% 

identity and 66% similarity (Wotton et al., 1996): Hsp26 and Hsp42. Hsp26 was 

found to be activated at elevated temperature (Haslbeck et al., 1999), whereas Hsp42 

displays chaperone activity under physiological and heat shock conditions (Haslbeck 

et al., 2004). The expression of both yeast sHsps is increased by various stress 

conditions (e.g. heat, high salt and starvation). However, unlike Hsp26, Hsp42 is also 

expressed in unstressed cells (Kurtz et al., 1986; Varela et al., 1992). Under 

physiological conditions Hsp42 is five times more abundant (0.15% Hsp42 and only 

around 0.03% of Hsp26 of total cytosolic protein). After exposure to heat, up to ten 

times more Hsp42 is present compared to Hsp26 (Haslbeck et al., 2004). 

The overexpression of several sHsps was shown to confer thermoresistance 

(Haslbeck, 2003). Yet, with the exception of Hsp16.6 from Synechocystis sp., the 

deletion of those chaperones does usually not lead to defects in thermotolerance 

(Giese and Vierling, 2002). According to this, cells deleted for Hsp26, Hsp42 or both 

are able to survive after a severe heat shock (Haslbeck et al., 2004; Petko and 

Lindquist, 1986; Susek and Lindquist, 1989). Although the deletion strains did not 

exhibit pronounced phenotypic effects at first glance, scanning electron microscopy 

revealed dramatic changes in cell morphology at elevated temperature (Haslbeck 

et al., 2004), indicating a protective influence of Hsp26 and Hsp42 on the general 

status of the cell. The different appearance of the cells might be the consequence of 

massive protein aggregation upon deletion of either sHsp during heat stress 

(Haslbeck et al., 2004). In yeast cell lysates, both sHsps were shown to suppress the 

aggregation of one third of the cytosolic proteins during heat treatment (Haslbeck 

et al., 2004). 90% of Hsp26 and Hsp42 substrates are similar, suggesting at least 

partially overlapping functions. The substrate proteins comprise molecular masses 

from 10 to 100 kDa belonging to different biochemical pathways. This indicates 

nonspecific binding properties and a general protective role of Hsp26 and Hsp42 for 

proteome stability in yeast (Haslbeck et al., 2004). After heat shock, large fractions of 

both sHsps become insoluble as well. For Hsp26 it was demonstrated that it is 

subsequently solubilized by the chaperone Hsp104, an ATP-driven disaggregase, 

which dissolves protein aggregates and is crucial for mediating thermoresistance in 

yeast (Bosl et al., 2006; Parsell et al., 1994). Although the deletion of Hsp26 does not 

affect thermotolerance, the double deletion of Hsp26 and Hsp104 decreases the 

survival rate of yeast cells during heat stress five-fold, suggesting a functional link 

between both chaperones. In contrast, Hsp42 does not show this effect. This might 

indicate differences in the line of action of Hsp26 and Hsp42 (Cashikar et al., 2006). 
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Hsp26 

As mentioned above, Hsp26 belongs to the group of temperature-regulated sHsps. 

Only upon heat shock mediated activation Hsp26 interacts with non-native 

polypeptides (Franzmann et al., 2008; Franzmann et al., 2005; Haslbeck et al., 1999; 

Stromer et al., 2003) and forms stable complexes. These can efficiently be 

disaggregated by Hsp70/Hsp100 chaperones in vivo and in vitro (Cashikar et al., 

2006; Haslbeck et al., 2005). In addition, a previous study showed that Hsp26 is able 

to antagonize polyglutamine aggregation thereby partially suppressing toxicity 

(Cashikar et al., 2006). 

Hsp26 in its native form exists as a heterogeneous mixture of oligomers, with the 

24mer representing the most populated state (Benesch et al., 2010; Bentley et al., 

1992; Bossier et al., 1989; Tuite et al., 1990). As observed for other sHsps, dimers 

constitute the basic building units (Haslbeck et al., 2005; White et al., 2006). Each 

monomer of Hsp26 consists of an α-crystallin domain, a rather long N-terminal 

extension and a short C-terminal tail (Bagnéris et al., 2009; Haslbeck et al., 2005; Kim 

et al., 1998; van Montfort et al., 2001a; White et al., 2006) (Figure 4a). The N-terminal 

region can be subdivided into the N-terminal domain (NTD) and the middle domain 

(MD) separated by a short glycine-rich part (aa 25-31) (Haslbeck et al., 2004; White 

et al., 2006). Dimerization of Hsp26 depends on presence of the conserved C-terminal 

motif (in Hsp26 IEV) as well as the middle domain (Chen et al., 2010). In addition, the 

latter was shown to be involved in the thermal activation of Hsp26 (described in 

more detail below) (Franzmann et al., 2008). The NTD was suggested to play a role in 

substrate interaction and stabilization of the oligomeric state. However, the main 

contributions for oligomerization seem to be provided by the MD and the CTE 

(Stromer et al., 2004). 

 

Figure 4: Domain arrangement of sHsps and cryo-EM structures of oligomeric Hsp26 complexes. (a) 
Domain structure of sHsps in general and of yeast sHsps Hsp26 and Hsp42. NTE: N-terminal extension; 
CTE: C-terminal extension. (b) Cryo-EM images of Hsp26 oligomers reveal the coexistence of two distinct 
forms, a ‘compact’ form (left) and an ‘expanded’ form (right). The upper structures represent surface 
rendered views. One dimeric subunit is bordered (upper right structure). The bottom structures represent 
sliced open views, showing mass densities in the interior of the oligomer. One density is circled (bottom 
right structure) (White et al., 2006).     
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Cryo-electron microscopy studies revealed two coexisting structures of Hsp26, each 

consisting of 24 monomers (White et al., 2006): a ‘compact’ and an ‘expanded’ form 

(Figure 4b). In both states elongated dimeric subunits assemble into a porous shell 

with tetrahedral symmetry. Domain fitting using homology models indicated that 

both termini and the MD mediate trimeric contacts between the dimers, and 12 C-

termini penetrate inside the shell. In contrast to many other sHsps (see above), 

contacts between the conserved C-terminal IEV sequence and the α-crystallin of 

adjacent dimers seem impossible. However, the C-termini and the MD of nearby 

dimers are close enough to form interactions with each other, possibly mediating 

oligomerization. 

A detailed study about the quaternary structure and dynamics of Hsp26 showed that 

at room temperature a variety of oligomeric states are present, ranging from 24 to 

40mers (with 24mers being most abundant). Under heat shock conditions two shifts 

of the populations were detected: Additional dimers and monomers were formed by 

the dissociation of smaller oligomers (e.g. 24mers), and, higher-oligomeric species 

became more populated (predominantly 40mers) (Benesch et al., 2010). Dissociation 

of oligomers into dimers and monomers have previously been reported for other 

sHsps, and for some this is linked to chaperone activation (Benesch et al., 2003; Giese 

and Vierling, 2002; van Montfort et al., 2001a). For Hsp26, however, the heat-induced 

disassembly into dimers is not required for its activation (Franzmann et al., 2005). 

Thus, the changes in Hsp26 necessary to assume a high affinity state for binding non-

native proteins do not depend on oligomer dissociation. 

The basis for the temperature-regulated activation of Hsp26 was shown to be a heat-

induced conformational rearrangement in the MD (Franzmann et al., 2008). This 

change is reversible and relies on alterations of the tertiary structure of Hsp26. The 

reorganization of the MD was suggested to control the accessibility to the substrate 

binding site, maybe by uncovering a buried substrate binding site (Franzmann et al., 

2008). Thus, the Hsp26 MD acts as a ‘thermoswitch’ which can regulate its chaperone 

activity.  

In addition, elevated temperature accelerates subunit exchange in Hsp26 in a 

biphasic process (Benesch et al., 2010). The first process was proposed to be a heat-

induced conformational change in the CTE, which might lead to enhanced dissociation 

of oligomers representing the second phase (Benesch et al., 2010; Franzmann et al., 

2005). The latest study on the mechanism of Hsp26 proposed that subunit exchange 

could be more dynamic in the active form of MD-conformers, resulting in higher 

chaperone activity (Benesch et al., 2010). This hypothesis is contradictory to previous 

findings demonstrating that subunit exchange in Hsp26 is significantly slower than 

substrate aggregation, and, Hsp26 is still active when subunit dissociation is inhibited 

(by crosslinking) (Franzmann et al., 2005). 
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An alternative model takes into account that the heat-induced activation of Hsp26 is a 

fast, biphasic process. The two processes could comprise the activation of two distinct 

populations (Franzmann et al., 2008). This is in good agreement with the cryo-EM 

studies which revealed two oligomeric species exhibiting different structural states 

(see above) (White et al., 2006). 

Hsp42 

Hsp42 is the second sHsp in the cytosol of S. cerevisiae. In contrast to Hsp26, Hsp42 is 

active at physiological and heat shock temperatures (Haslbeck et al., 2004). As Hsp42 

is abundantly present at low and high temperatures, it might be an important player 

in maintaining protein homeostasis in both, stressed and unstressed cells. 

 

Figure 5: Organized sequestration and deposition of misfolded proteins in S. cerevisiae. Misfolded 
polypeptide chains (dark blue) are either targeted to the CytoQ (cytosolic quality control compartment), 
the insoluble protein deposit (IPOD) close to the vacuole, or the intranuclear quality control compartment 
(INQ).  Amyloidogenic substrates (dark blue β-sheets) accumulate at the IPOD. Under physiological 
folding stress (37°C) Hsp42 (orange) and Btn2 (yellow) co-aggregate with misfolded proteins, triggering 
the formation of CytoQ or INQ, respectively. In contrast, Hsp26 (light blue) only associates with misfolded 
polypeptides during severe heat stress (45°C) and is found in both compartments, CytoQ and INQ. 

Notably, compared to other sHsps, Hsp42 possesses an unusual elongated NTE 

(Figure 4a). The interaction with multiple substrate proteins and its tendency to 

aggregate hampers the purification of Hsp42. Thus, little is known about its 

mechanism and structure. However, size exclusion experiments showed that Hsp42 

exists as a heterogeneous mixture of oligomers, consisting of 12-16 subunits, with a 

dimer as basic building block (Haslbeck et al., 2004). Moreover, the ACD seems to be 

involved in oligomerization (Wotton et al., 1996). Unlike Hsp26, CD and native 

polyacrylamide gel electrophoresis demonstrated that Hsp42 oligomers do not 
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dissociate at elevated temperature (Haslbeck et al., 2004). Negative stain EM pictures 

of Hsp42 followed by single-particle analysis revealed large, barrel-like complexes 

which are assembled of potentially dimeric building units (Haslbeck et al., 2004). 

In vivo, Hsp42 was shown to play an important role during the organized 

sequestration and deposition of protein aggregates (Specht et al., 2011). Moreover, it 

has been implicated in the formation of stationary-phase granules in quiescent yeast 

(Liu et al., 2012). The organized deposition of protein aggregates is observed 

throughout all kingdoms of life. It is assumed to protect the cellular environment 

from misfolded protein species. Especially during stress conditions, the trapping of 

rapidly increasing amounts of unfolded or misfolded polypeptides seems to reduce 

the burden on the quality control system, and localization to distinct subcellular sites 

might help to coordinate the interplay between components of the proteastasis 

network. S. cerevisiae cells harbor three different types of protein aggregates (Figure 

6). The IPOD (insoluble protein deposit) is located close to the vacuole and contains 

terminally aggregated proteins including amyloidogenic structures (Kaganovich et al., 

2008). Physiological folding stress (37°C) leads to the formation of cytosolic 

aggregates (CytoQ: cytosolic quality control compartment) and the intranuclear 

quality control compartment (INQ), both harboring amorphously aggregated proteins 

(Miller et al., 2014; Specht et al., 2011). Recently, different factors have been shown to 

co-aggregate with CytoQ and INQ. Hsp26 was detected within CytoQ and INQ only 

upon severe heat shock (45°C) but seems to be dispensable for the organized 

sequestration of aggregates (Specht et al., 2011). Under mild heat stress (37°C) Btn2 

is located to cytosolic and particularly nuclear aggregates whereas Hsp42 has 

exclusively been observed in the CytoQ. In this connection Btn2 has been shown to 

trigger the formation of INQ, whereas Hsp42 is required for the sequestration of 

misfolded proteins at CytoQ (Malinovska et al., 2012; Specht et al., 2011). Hence, both 

proteins were suggested to act as compartment-specific aggregases.   

1.2.2 Disassembly of protein aggregates by ATP-dependent chaperones 

In order to assure survival under stress, a network of various chaperone classes is 

active, in which the components are tightly working together. They prevent the 

aggregation of misfolded species and can reactivate proteins that are trapped in 

aggregates. During stress, sHsps seem to be the first responders, optimized to 

efficiently bind to non-native proteins and keep them in are more soluble, refolding-

competent state. In bacteria, fungi and plants, further processing and reactivation of 

misfolded proteins is performed by a bi-chaperone system, consisting of the Hsp70-

Hsp40 system (DnaK-DnaJ in E. coli; Ssa1-Ydj1/Sis1 in S. cerevisiae) and Hsp100 

proteins (ClpB in E. coli; Hsp104 in S. cerevisiae) (Glover and Lindquist, 1998; 
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Goloubinoff et al., 1999; Parsell et al., 1994; Tessarz et al., 2008; Weibezahn et al., 

2004). 

Hsp70 chaperones can bind and release client proteins, regulated by ATP binding and 

hydrolysis, switching between low- or high substrate affinity states (Beissinger and 

Buchner, 1998; Bukau and Horwich, 1998; Walter and Buchner, 2002). ATPase 

cycling is usually controlled by cochaperones and nucleotide exchange factors. The 

largest class of Hsp70 cochaperones is the Hsp40/J-protein family (Kampinga and 

Craig, 2010). They bind non-native polypeptides, exerting holdase function 

(suppression of aggregation) and transfer substrates to Hsp70s. The J-domain of 

Hsp40s interacts with the ATPase domain of Hsp70s, thereby stimulating ATP-

hydrolysis. Release of ADP and substrate is accelerated by nucleotide exchange 

factors (GrpE in E. coli and Sse1/Sse2, Fes1, Bag1 in S. cerevisiae). These ATPase 

cycles are able to drive an unfolding force, extracting trapped polypeptides from 

aggregates. For instance, Hsp70 unfolding activity has been demonstrated for a 

soluble misfolded form of firefly luciferase (Sharma et al., 2010). 

1.2.2.1 Disassembly of amorphous aggregates 

The disaggregation of small amorphous aggregates can be managed by the Hsp70 

system alone (Deloche et al., 1997; Liberek et al., 2008; Skowyra et al., 1990). In 

contrast, the disassembly of larger, strongly misfolded aggregates requires the 

collaboration with Hsp100 chaperones (Ben-Zvi et al., 2004; Diamant et al., 2000; 

Goloubinoff et al., 1999). Hsp100 chaperones exhibit ATP-dependent unfolding 

activity and are part of the AAA+ protein superfamily (Neuwald et al., 1999). AAA+ 

proteins contain the AAA domain, which exerts ATPase activity and mediates 

oligomerization, mostly into hexameric rings. Through direct contacts at substrate 

termini or internal sites substrates are translocated through the central pore of the 

hexamer by an ATP-dependent pulling force (Burton et al., 2001; Haslberger et al., 

2008).  

During the disaggregation reaction Hsp70 first binds to hydrophobic surfaces of 

protein aggregates (Figure 6). Via direct contact between the ATPase domain of 

Hsp70 and ClpB/Hsp104, the substrate is delivered to the central cavity of the 

Hsp100 protein (Rosenzweig et al., 2013; Seyffer et al., 2012; Weibezahn et al., 2004; 

Zietkiewicz et al., 2004). This interaction with the substrate induces the activation of 

Hsp100 (Seyffer et al., 2012). An ATP-fueled power-stroke pulls at a free substrate 

site, thereby disentangling single polypeptide chains from the aggregated protein. 

Concomitantly, contacts between substrate and Hsp70 are disrupted (Rosenzweig 

et al., 2013). Refolding of the unfolded polypeptide occurs either spontaneously or 

assisted by chaperones. 
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Figure 6: Protein disaggregation by the cooperative action of the Hsp70-40 chaperone system and 
Hsp100 chaperones (ClpB in E. coli, Hsp104 in yeast). The Hsp40 cochaperone targets substrates to Hsp70 
and stimulates its ATPase activity, leading to conformational changes that result in tight substrate 
binding by Hsp70. Via direct interaction between the ATPase domain of Hsp70 and ClpB/Hsp104 the 
substrate is transferred to the central cavity of the hexameric Hsp100 chaperone. Contacts to substrates 
are mediated by conserved aromatic residues in mobile loops at the openings of the central pore. An ATP-
fueled power-stroke causes conformational changes of the loop segments and pulls the substrate through 
the pore, thereby dissolving non-native interactions. Refolding of the unfolded polypeptide occurs either 
spontaneously or assisted by chaperones (Tyedmers et al., 2010). 

Metazoan cells do not contain a ClpB/Hsp104 homolog in their cytosol or nucleus. 

Yet, cell extracts possess remarkable disaggregation activity and are able to 

disassemble amyloid aggregates (Murray et al., 2010). Previous studies suggest that 

Hsp110 cochaperones empower the metazoan Hsp70-Hsp40 system to perform 

efficient disaggregation (Rampelt et al., 2012; Shorter, 2011). 

1.2.2.2 Disassembly of the native, dimeric replication initiator protein RepE 

The Hsp70-chaperone system of E. coli does not only participate in the disaggregation 

and reactivation of amorphous protein aggregates. It is also involved in the 

disassembly of native protein complexes such as clathrin coats, viral capsids or 

replication initiation proteins (Mayer and Bukau, 2005). One example is the 

replication initiator protein RepE, which regulates the copy number of the mini-F 

plasmid in E. coli. The mini-F plasmid is a derivative of the F (fertility) factor, which is 

involved in sexual conjugation (Lovett and Helinksi, 1976). It is maintained to one to 

two copies per cell and its replication is strictly regulated on the level of initiation by 

the RepE protein (Ishiai et al., 1994). RepE exists predominantly as a dimer, but it can 

be monomerized by the concerted action of DnaK, DnaJ and GrpE (Ishiai et al., 1994; 

Kawasaki et al., 1990) (Figure 7a). Each oligomeric state performs a distinct function: 
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Dimeric RepE binds to inverted repeat operator DNA (IR-DNA), repressing its own 

transcription. Monomeric RepE binds to four direct repeats iteron DNA (DR-DNA) 

within the F plasmid replication origin ori2 and initiates plasmid replication (Masson 

and Ray, 1986; Wada et al., 1987). Iteron and operator DNA sequences share eight 

common base pairs. In addition, replication initiation is negatively controlled by 

pairing of the iterons in ori2 with a second set of iterons, called IncC (Figure 7b). This 

results in DNA looping, inhibiting the formation of an open initiation complex. 

Previous findings suggest that the looping is mediated by RepE dimers that bridge 

iteron sequences bound to monomeric RepE. Therefore, efficient negative regulation 

requires both, monomeric and dimeric RepE (Zzaman and Bastia, 2005). 

 

Figure 7: Functions of dimeric and monomeric RepE. (a) RepE dimers bind to promotor inverted repeat 
DNA, repressing its own transcription. RepE monomers bind to four iteron direct repeats and initiate the 
replication of the mini-F plasmid in E. coli. Direct and inverted repeats share eight common base pairs 
(underlined). (b) Complete repression of repE transcription seems to involve the formation of a DNA-loop 
structure in which RepE monomers and dimers are bridging iterons of oriF and incC (Zzaman and Bastia, 
2005)(modified). 

RepE54 is a constitutively monomeric variant, which carries a point mutation in the 

RepE dimer interface region (R118P) (Ishiai et al., 1992; Ishiai et al., 1994). In vivo 

experiments as well as studies with a reconstituted in vitro replication system 

demonstrated that this mutant has enhanced initiator and lower repressor activity 

and that a plasmid carrying this mutation can replicate in absence of the DnaK 

machinery (Ishiai et al., 1994; Matsunaga et al., 1997). In contrast to dimeric RepE wt, 

which tends to aggregate easily, monomeric RepE54 stays soluble even at high 
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concentrations and binds to iteron DNA with great efficiency. Therefore, first 

structural information about RepE was obtained from the crystallized RepE54-iteron 

DNA complex, whose preparation and crystallization appeared easier than for 

RepE wt (Komori et al., 1999). The crystal structure showed that the RepE monomer 

consists of topologically similar N- and C-terminal domains related to each other by 

internal pseudo two-fold symmetry. Moreover, both domains bind to the two major 

grooves of the iteron DNA but with strikingly different affinities. The N-terminal 

domain mostly contacts the phosphate backbone resulting in weak binding, whereas 

contacts between the C-terminal domain and the DNA bases mediate stronger main 

interactions with iteron DNA (Komori et al., 1999). Modelling of dimeric RepE to 

operator DNA, in a similar manner as observed for RepE54, resulted in a large sterical 

hindrance in the N-terminal domains. This implied that monomerization of RepE is 

accompanied by a marked structural change and that a different conformation of the 

RepE dimer is necessary to accommodate it to operator DNA. A few years later, the 

crystal structure of the complex between dimeric RepE wt and operator DNA was 

determined (Nakamura et al., 2007). It revealed differences in the relative 

orientations of the N- and C-terminal domains in RepE wt compared to RepE54, 

accompanied by secondary structural changes in the linker connecting the two 

domains. The observed alterations explain how the conformation of dimeric RepE wt 

adapts, enabling the binding to operator DNA. A recent study characterized the RepE-

DnaJ complex using EM, crosslinking and gel retardation experiments (Cuéllar et al., 

2013). The authors suggested a DnaJ-induced conformational change in the RepE 

dimer, which increases the intermolecular distance thereby enhancing its affinity for 

DNA. Still, the mechanism of chaperone-mediated monomerization of RepE remains 

elusive. 

RepA is a replication initiator protein in Pseudomonas syringae and shows sequence 

and structural similarities to RepE. When using low DnaK/DnaJ/GrpE concentrations, 

the disassembly of the RepA dimer was shown to be much more efficient in presence 

of the ClpB chaperone (Doyle et al., 2007). This is similar for the chaperone-driven 

dissolution of amorphous protein aggregates, indicating that the disassembly of 

native protein oligomers might be mechanistically related to the disaggregation 

process. 
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In their native state, proteins perform the bulk of vital functions. However, especially 

under stress conditions, proteins can misfold and associate into large, amorphous 

aggregates. In such assemblies, some studies detected a relatively high β-sheet 

content, which might even assume amyloid-like organization. However, only few 

studies were performed using techniques with high structural resolution. Therefore, 

the structure of amorphous aggregates remains poorly defined.  

In cells, the first reaction to the appearance of harmful, misfolded polypeptides is 

their association with sHsps. sHsps thereby modify aggregation, and the resulting 

sHsp-substrate complexes facilitate the reactivation of the bound non-native 

polypeptides by the Hsp70-Hsp100 machinery. The underlying sHsp-caused 

structural changes that facilitate disaggregation are still unclear. 

The yeast sHsps, Hsp26 and Hsp42, were shown to localize to defined aggregate 

deposition sites. Hsp42, but not Hsp26, was found to be required for CytoQ formation 

(Specht et al., 2011). Which special feature of Hsp42 drives the sequestration of 

misfolded proteins in CytoQ is unknown. 

The chaperone-mediated disassembly of native, oligomeric substrates seems to be 

mechanistically related to the disaggregation process. Examples of those native 

chaperone substrates are many replication initiator proteins for plasmids and phages. 

In their ground state, these proteins are dimers. Only upon monomerization by the 

Hsp70-system the proteins can bind to the replication origin initiating the replication 

of the plasmid- or phage-DNA (Del Solar et al., 1998). This Hsp70-mediated 

monomerization process is poorly understood. A suitable model substrate for 

studying the underlying mechanisms is RepE, the replication initiator protein for the 

mini-F plasmid in E. coli.  

One major goal of this thesis was to elucidate why sHsps facilitate the disaggregation 

of amorphous aggregates. To be able to answer this question, I studied the structure 

of heat-induced protein aggregates formed in absence and presence of Hsp26 and 

Hsp42. A more detailed analysis of Hsp42 should reveal which part of the NTE is 

required for its chaperone activity in vitro (complementing in vivo results by 

Stephanie Miller, unpublished data). In addition, I wanted to determine the structural 

basis underlying the facilitated chaperone-mediated disassembly of sHsp-substrate 

complexes. 

FRET approaches and amide hydrogen exchange experiments (HX) combined with 

mass spectrometry (MS) were used to investigate the structure of aggregates and to 

study how sHsps influence the aggregate architecture. Moreover, I performed HX-MS 
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as well as crosslinking between sHsps and substrate in heat-induced complexes in 

order to identify the interaction sites and to detect substrate-induced effects within 

sHsps. The roles of specific parts in the Hsp42 NTE were studied in vitro by 

aggregation and disaggregation assays, negative stain EM and HX-MS.  

The experimental handling of native proteins is considerably easier than working 

with aggregates. Therefore, the chaperone-mediated disassembly of protein 

aggregates has been addressed by studying the monomerization of the RepE dimer as 

an example of a minimal model aggregate. Mainly HX-MS of RepE in presence and 

absence of DnaK and DnaJ chaperones as well as crosslinking approaches were used 

to study interactions and effects of chaperone binding to dimeric RepE wt or the 

constitutively monomeric variant RepE54. 

To be more specific, in my PhD thesis I addressed the following questions: 

Molecular analysis of heat-induced protein aggregates and interactions 

between substrate and yeast sHsps Hsp26 and Hsp42: 

 Are proteins mostly unfolded in aggregates or does some native structure 

remain? 

 How do sHsps alter the structure of aggregated proteins? 

 Are there any functional differences between Hsp26 and Hsp42? 

 Where are the chaperone binding sites within protein aggregates?  

 Are there substrate-induced conformational changes within Hsp26 or Hsp42? 

 Where are the substrate binding sites within Hsp26 and Hsp42?  

 Which part of the Hsp42 NTE is required for the aggregase function of Hsp42? 

Disassembly of the dimeric DnaK substrate RepE: 

 Does DnaJ or DnaK bind to monomeric and dimeric RepE? 

 Where are the DnaK and DnaJ binding sites in RepE? 

 Does DnaJ or/and DnaK binding result in conformational changes of the RepE 

dimer? 

Combining the results of biochemical and biophysical approaches should help to 

elucidate the architecture of protein aggregates and how sHsps influence the 

structure, thereby facilitating the disaggregation by the Hsp70/Hsp100-bi-

chaperone-system. In particular, the role of the NTE for Hsp42 functionality was 

examined, and the findings were combined with unpublished in vivo data. Moreover, 

effects of chaperone binding on the RepE dimer combined with the known structures 

should contribute to elucidate the chaperone-mediated mechanism of the RepE 

monomerization process. 
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3.1 Heat-induced MDH aggregates consist of largely unfolded 
conformers 

In order to study the structure of heat-induced protein aggregates and the influence 

of sHsps on the aggregate architecture (chapter 3.2), I performed amide hydrogen 

exchange (HX) experiments combined with mass spectrometry (MS) analysis. HX is a 

powerful technique that can be used to study the structure and dynamics of proteins. 

It is based on the exchange of backbone amide protons against deuterons. The 

involvement of backbone amide hydrogens in the formation of hydrogen bonds 

protects them from HX. Therefore, HX analysis provides information about both: The 

tertiary structure, which determines general solvent accessibility to backbone 

hydrogens, as well as changes in the secondary structure of proteins. 

In HX-MS experiments, proteins are incubated with D2O-based buffer at physiological 

conditions. After a defined time the exchange reaction is quenched by lowering the 

pH to 2.2 and the temperature to 0°C. The number of incorporated deuterons is 

determined by HPLC (High Performance Liquid Chromatography)-coupled MS. The 

analysis of the full length protein is called ‘global’ exchange. Pepsin digest of the 

deuterated substrates (under quench conditions) and the subsequent analysis of the 

generated peptides (‘local’ exchange) allow for determining differences of the HX in 

short peptides, providing detailed structural information on molecular level. The 

resulting spectra are compared with those of the unexchanged proteins. The 

differences in deuteron incorporation, and thus in the solvent accessibility of the 

amide protons, reveal conformational changes. 

To determine the structure of heat-induced protein aggregates by HX, thermolabile 

malate dehydrogenase (MDH) was chosen. MDH, which forms dimers in its native 

state, misfolds and aggregates at 47°C (Veinger et al., 1998) and, is a widely used 

model substrate in the chaperone field. However, employing protein aggregates in 

HX-MS bears multiple experimental challenges, which had to be managed, and a 

suitable setup had to be established. Firstly, aggregates must be solubilized before 

injection into the HPLC-coupled measuring setup. Secondly, the concentration of the 

model substrates used in aggregation-disaggregation reactions is usually strikingly 

lower than the concentrations which are necessary for the detection in the mass 

spectrometer. Thus, aggregates would either have to be formed at higher protein 

concentrations, or the aggregates have to be concentrated after their formation. The 

first procedure would create much larger aggregate species, which are not 
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disaggregated efficiently by chaperones. Concentrating aggregates by centrifugation 

is possible, could, however, alter the aggregate structure. Thus, both approaches were 

not suitable for the planned experiments. Instead, a His6-tag was introduced at the N-

terminus of MDH. After the formation of heat-induced aggregates, the protein was 

concentrated by binding to Ni-magnetic beads. The HX was performed on the bead-

bound material. Attempts to elute and solubilize the aggregates with quench buffer 

containing 6 M guanidinium chloride were unsuccessful. Therefore, the 

determination of the global exchange of aggregates was not possible. Finally, the use 

of pepsin-containing quench buffer enabled simultaneous elution and digestion of the 

protein aggregates, circumventing the solubilization problem. After optimizing the 

conditions (amounts of MDH, Ni-magnetic beads and pepsin, as well as the duration 

for the incubation with pepsin) the time for pepsin digestion was restricted to 1 min 

at 0°C, as back-exchange of the deuterated protein had to be minimized.  

By using the established settings, pepsin digested all of the bead-bound native MDH 

and more than 50% of MDH aggregates (Figure 8a). Larger degradation products 

were not detected, indicating that the majority of aggregated MDH species was 

accessible to HX analysis at the peptide level. For native MDH the sequence coverage 

was 83% (i.e. the percentage of the sequence, which is covered by the identified 

peptic peptides), for aggregated MDH 76%. In each HX experiment, three replicates 

were measured, with standard deviations for the deuteron incorporation between 5 

and 15% for the aggregate (Figure 8b). Although different sets of experiments 

showed some variability for the HX of aggregate derived peptides (10-20% deviation 

of total HX), the trend always remained the same for all peptides. Aggregated MDH 

shows a high degree of deuterium incorporation up to 60%, indicating that most 

regions are largely unfolded (Figure 8b and c). Remaining protection could either be 

due to residual native structure or due to the formation of new, unspecific 

interactions during aggregation. A comparison to the HX pattern of native MDH 

illustrates considerable deprotection in the aggregated state, with deprotected 

peptides being distributed throughout the sequence and structure (Figure 8).  

Peptides Tyr32-Ala41 and Val213-Met227, which show only minor increase in HX, 

already strongly exchange in the native state. Phe90-Leu100 displays moderate HX in 

both, native and aggregated state. As this peptide is part of a surface exposed α-helix, 

protection against HX could arise from unfolding and subsequent hydrophobic 

interactions, rather than from residual native structure. The only peptide, keeping 

low HX in the aggregated state (Ala228-Phe236), is located in an α-helix at the MDH 

dimer interface. Further peptides at or near the dimer interface (e.g. Leu20-Leu31), 

however, display high exchange rates, arguing against a remaining dimer core 

structure in the aggregate.  
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Figure 8: Heat-induced aggregates of MDH are largely deprotected in HX. (a) In HX experiments resin-
bound native or heat-aggregated His6-MDH was digested by pepsin. Afterwards, undigested protein was 
analyzed by SDS-PAGE and Coomassie staining. (b) Relative proton/deuteron exchange in native and 
heat-aggregated MDH after 30 s incubation in D2O. The data were corrected for deuteron losses due to 
back-exchange using a 100% deuterated control (i.e. protein in which all exchangeable protons have been 
replaced by deuterons). (c) HX-heat map of native and aggregated states of the MDH dimer structure 
(PDB ID 1MLD). Peptic peptides are colored according to their exchange behavior. Gray regions could not 
be detected. (d) Difference in deuteron incorporation of peptic peptides between native and aggregated 
MDH (left: absolute number of deuterons; right: number of deuterons relative to the total number of 
exchangeable deuterons in the respective peptide). 
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In summary, the HX results indicate that MDH aggregates are composed of largely 

unfolded conformers and do not possess substantial secondary structures. In 

accordance, FTIR spectroscopy measurements of heat-denaturing MDH (at 47°C) did 

not result in pronounced increase of β-sheets (data not shown). 

3.2 Impact of sHsp incorporation on heat-induced aggregation 

The rapid association of sHsps with heat-denaturing polypeptides results in the 

formation of stable sHsp-substrate complexes. Those are smaller than heat-induced 

amorphous aggregates (lacking sHsps), and they keep the bound substrates in a 

refolding-competent state, facilitating their reactivation by Hsp70 and Hsp100 

chaperones. To figure out how sHsps influence the heat-induced aggregation of MDH I 

used Hsp42 and Hsp26 as models for constitutively active and stress-activated sHsps, 

respectively. 

3.2.1 Hsp26 and Hsp42 prevent the formation of large heat-induced 
aggregates and facilitate chaperone-mediated disaggregation 

First, the chaperone functions of Hsp26 and Hsp42 were tested and compared in 

aggregation and disaggregation assays. In addition to MDH, thermolabile firefly 

luciferase was used as a second model substrate. MDH or luciferase was mixed with 

various ratios of sHsps and heat-denatured at 47°C or 43°C, respectively. This results 

in the formation of differently sized sHsp-substrate complexes. 

Centrifugation and subsequent SDS-PAGE analysis of heat-induced MDH/sHsp 

complexes revealed that substoichiometric levels of Hsp26 and Hsp42 were not 

sufficient to prevent aggregation (Figure 9a). Consistently, turbid complexes were 

formed at this ratio, as demonstrated in light scattering measurements (Figure 9b). In 

contrast, excess amounts of sHsps resulted in soluble, non-turbid aggregates (Figure 

9a and b). For MDH, prevention of heat-induced aggregation appears to be similarly 

efficient for both sHsps. However, when using luciferase, Hsp42 completely 

prevented the formation of turbid complexes already at equimolar ratios, whereas 

excess amounts of Hsp26 were necessary to keep MDH soluble.  

For the disaggregation/refolding assay substrate and different levels of sHsps were 

mixed and complexes were formed by incubation for 30 min at 47°C or 15 min at 

43°C for MDH or luciferase, respectively. The disaggregation and refolding was 

initiated by adding the yeast Hsp70/Hsp100 bi-chaperone system (Figure 10). In case 

of MDH, the GroEL/GroES chaperone machinery was included to accelerate efficient 

refolding.  
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Figure 9: Hsp26 and Hsp42 prevent the formation of turbid, insoluble MDH and luciferase aggregates. 
(a) MDH (0.5 µM) was denatured for 30 min at 47°C in absence or presence of sHsps at various ratios 
(0.25–2.5 µM). As a control 2.5 µM sHsps were heated alone. Samples were centrifuged (30 min, 
13 000 rpm, 4°C). Equal amounts of supernatants and pellets were analyzed by SDS-PAGE and Coomassie-
staining. (b) Samples were prepared as described in (a) and the formation of turbid MDH aggregates was 
followed at 550 nm. (c) Luciferase (0.1 µM) was denatured at 43°C in absence or presence of sHsps 
(0.1 µM or 0.5 µM) and the formation of turbid aggregates was followed at 600 nm. As a control 0.5 µM 
sHsps were heated alone. Luci: luciferase. 
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Figure 10: Hsp26 and Hsp42 facilitate the chaperone-mediated refolding of heat-induced MDH and 
luciferase aggregates. (a)-(c) MDH (0.5 µM) was denatured for 30 min at 47°C in absence or presence of 
sHsps at various ratios (0.25–2.5 µM). MDH refolding from aggregated or sHsp-complexed states was 
initiated at 30°C by addition of the S. cerevisiae bi-chaperone system (2 µM Ssa1, 1 µM Sis1, 0.1 µM Sse1, 
1 µM Hsp104) and 1 µM GroEL/GroES. (d)-(f) Luciferase (0.1 µM) was denatured for 15 min at 43°C in 
absence or presence of sHsps at various ratios (0.05–0.5 µM). Luciferase refolding from aggregated or 
sHsp-complexed states was initiated at 30°C by addition of the S. cerevisiae bichaperone system (2 µM 
Ssa1, 1 µM Sis1, 0.1 µM Sse1, 1 µM Hsp104). MDH and luciferase activities were determined at the 
indicated time points. The enzymatic activity of native MDH and luciferase was set at 100%. 

 



3.2 Impact of sHsp incorporation on heat-induced aggregation 47 

The renaturation was followed by observing the regain of enzymatic activity. The 

sHsp-bound substrates were inactive, but soluble complexes with sHsps facilitated 

chaperone-mediated MDH and luciferase reactivation. Hsp26 and Hsp42 caused a 

pronounced acceleration of MDH disaggregation and increased the levels of 

renatured protein by up to 30% (Figure 10b and c). High concentrations of Hsp26 

seem to interfere with disaggregation/refolding, resulting in optimal efficiencies for a 

1:3 MDH/Hsp26 ratio. In case of luciferase, even stronger inhibiting effects for Hsp26 

were observed, and Hsp42 only slightly enhanced the final amounts of reactivated 

protein (Figure 10e and f). Thus, the consequences on refolding by ATP-dependent 

chaperones seem to be substrate-dependent. 

Earlier findings showed that the dissolution of small aggregates and of aggregates 

with high content of non-native secondary structure (especially β-sheets) can occur 

by the Hsp70 system alone, without the need of Hsp100 chaperones (Ben-Zvi et al., 

2004; Diamant et al., 2000; Lewandowska et al., 2007; Skowyra et al., 1990). 

However, MDH reactivation experiments omitting Hsp104 proved that the 

disaggregation of sHsp-substrate complexes containing Hsp26 or Hsp42 is still 

Hsp104-dependent (Figure 11).    

 

Figure 11: The disaggregation of heat-induced complexes between MDH and Hsp26 (a) or Hsp42 (b) is 
still Hsp104-dependent. MDH (0.5 µM) was denatured for 30 min at 47°C in absence or presence of sHsps 
at various ratios (0.25–2.5 µM). MDH refolding from aggregated or sHsp-complexed states was initiated 
at 30°C by addition of the S. cerevisiae bi-chaperone system (2 µM Ssa1, 1 µM Sis1, 0.1 µM Sse1) and 1 µM 
GroEL/GroES. MDH activities were determined at the indicated time points. The enzymatic activity of 
native MDH was set at 100%. 

Summarized, Hsp26 and Hsp42 were both active in preventing the formation of large 

heat-induced aggregates. Moreover, complexes with either sHsp allowed for faster 

and more efficient chaperone-mediated reactivation of heat-denatured MDH in an 

Hsp104-dependent manner. 
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3.2.2 Hsp26 and Hsp42 increase the distance of sequestered misfolded 
proteins 

Although yeast sHsps suppress the formation of large amorphous aggregates in vitro, 

Hsp42 was found to be required for the generation of CytoQ deposits in yeast cells. 

During severe heat stress cytosolic aggregates can, however, even be formed in 

hsp42Δ cells, albeit with reduced size. This observation brought us to consider that 

sHsps, especially Hsp42, might act as a protein aggregase, triggering and/or 

accelerating the formation of protein aggregates. Initiating aggregate formation might 

have important cytoprotective functions as potentially toxic misfolded proteins 

would become rapidly sequestered. To test for such a role of sHsps in vitro, I 

performed fluorescence resonance energy transfer (FRET) experiments using MDH-

YFP and MDH labeled with 7-diethylcoumarin-3-carboxylic acid as FRET pair. 

Equimolar amounts of both FRET partners were mixed. An increase in donor 

fluorescence was detected at 47°C, but not at 30°C, indicating that the FRET signal 

reports on the heat-induced co-aggregation of MDH donor and acceptor molecules 

(Figure 12a). Compared to turbidity experiments (Figure 9) the signal increase 

occurred much earlier, indicating a higher sensitivity of this approach. When 

including Hsp26 or Hsp42, no acceleration of protein aggregation could be detected. 

Instead, a decrease of FRET efficiencies was observed in a concentration-dependent 

manner (Figure 12b). This could be explained by co-aggregation of denatured MDH 

molecules and Hsp26 or Hsp42, increasing the spacing between misfolded protein 

conformers and preventing the formation of hydrophobic interactions between 

denatured parts of MDH. In contrast to turbidity experiments, a stronger effect was 

detected for Hsp42 as compared to Hsp26. At substoichiometric ratio, Hsp26 did not 

change the donor fluorescence, whereas Hsp42 clearly reduced FRET intensity 

(Figure 12b), indicating a more efficient spacing of misfolded MDH by Hsp42. For 

Hsp42, similar experiments were performed using luciferase-YFP and luciferase-CFP, 

resulting in the same effects as observed for the MDH FRET pair (data not shown).  
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Figure 12: Hsp26 and Hsp42 keep misfolded MDH molecules apart. (a) Co-aggregation of MDH-YFP 
(FRET donor, MDH-D) and MDH labeled with 7-diethylcoumarin-3-carboxylic acid (FRET acceptor, MDH-
A) at 47°C causes specific FRET increase. A mixture of FRET donor and acceptor at 30°C or acceptor- or 
donor-only controls at 47°C do not result in FRET. Presence of Hsp26 (b) or Hsp42 (c) reduces FRET 
efficiencies between MDH-YFP and 7-diethylcoumarin-3-carboxylic acid-labeled MDH in a concentration-
dependent manner. 

3.2.3 Hsp26 and Hsp42 globally reduce HX in sHsp-bound MDH 

After having studied the effects of sHsps on the overall organization of amorphous 

aggregates, I wanted to investigate how sHsps change the structure of heat-induced 

aggregates at the molecular level. To analyze this, I performed HX of complexes 

generated with MDH and various ratios of yeast sHsps upon unfolding stress for 

30 min at 47°C. Less peptic peptides could be identified from MDH/sHsp complexes 

compared to aggregated MDH (sequence coverages of 37% for Hsp26 and 52% for 

Hsp42). Analysis of the Ni-particles after pepsin treatment showed that reduced 

recovery was not due to less efficient digest (Figure 13). Rather, competing and 

overlapping signals from sHsp peptic peptides disturbed the MS analysis.  
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Figure 13: Most of the sHsp-complexed MDH used in HX experiments was digested by pepsin. For HX 
experiments native, heat-aggregated or sHsp-complexed His6-MDH were bound to MagneHis™ Ni-
particles. After incubation in D2O, the samples were digested by pepsin. Afterwards undigested protein 
was analyzed by SDS-PAGE and Coomassie staining. 

 

 

Figure 14: Hsp26 and Hsp42 protect unfolded regions of aggregated MDH from HX. Relative 
proton/deuteron exchange in MDH co-aggregated with either Hsp26 (a) or Hsp42 (b) was determined 
after 30 s labeling. The data were corrected for deuteron losses due to back-exchange using a 100% 
deuterated control (i.e. protein in which all exchangeable protons have been replaced by deuterons). 
MDH/sHsp complexes were formed by incubation for 30 min at 47°C.  
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MS analysis after HX revealed that mass spectra of many MDH peptides derived from 

MDH/sHsp complexes exist as a mixture of two populations (‘bimodal distribution’), 

as will be explained in more detail below. First, the overall change of deuterium 

incorporation was determined by averaging over both populations. For both sHsps, 

rising concentrations during complex formation gradually increased the protection of 

most identified MDH peptides (Figure 14, Figure 15 and Figure 16).  

 

Figure 15: HX-heat map of MDH in heat-induced MDH/sHsp complexes. Peptic peptides are colored 
according to their exchange behavior. Gray regions could not be identified. The ratio of sHsps vs. MDH 
during substrate denaturation is given.  

The degree of protection by Hsp26 and Hsp42 was similar and the effects were not 

locally restricted, but protected MDH peptides were distributed throughout sequence 

and structure. Peptide Val130-Leu148, which showed strongest protection upon 

complex formation, and Ser237-Glu250 are largely buried inside the hydrophobic 

core of native MDH (Figure 16c). A five-fold excess of sHsps resulted in native-like HX 

patterns of both peptides (Figure 16). There was no correlation between the 

hydrophobicity of a peptide and the degree of sHsp-caused protection. Some peptides 

(in Hsp26: Leu270-Met291, Ile292-Lys314; in Hsp42: Val130-Leu148, Phe253-

Leu269, Leu270-Met291, Ile292-Glu308) showed strongly enhanced protective 

effects when increasing sHsp concentration from a three- to a five-fold excess during 

complex formation. These differences were not obvious in solubility or turbidity 
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experiments (Figure 8), demonstrating the potential of HX to sense conformational 

changes on molecular level. 

 

Figure 16: Hsp26 and Hsp42 globally reduce HX in sHsp-complexed MDH. (a) Difference in deuteron 
incorporation between heat-induced MDH/Hsp26 complexes and aggregated (left panel) or native (right 
panel) MDH. (b) Difference in deuteron incorporation between heat-induced MDH/Hsp42 complexes and 
aggregated (left panel) or native (right panel) MDH. (c) Peptide Val130-Leu148, which showed strongest 
protection upon complex formation, and Ser237-Glu250 (both blue) are largely buried inside the 
hydrophobic core of native MDH. Peptides whose numbers are gray could not be detected. 

In conclusion, the association with sHsps globally protects unfolded MDH from HX. 

Protection could arise from both: Binding of sHsps to strongly exchanging unfolded 

regions in denatured MDH and from preservation of native conformation due to the 
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influence of sHsps. However, HX was still faster compared to native MDH, suggesting 

that sHsp-bound MDH is partially folded and more flexible (Figure 16). 

3.2.4 sHsp-bound MDH displays native-like structures 

As suggested above, protection of sHsp-complexed MDH might indicate preserved 

native conformation. Intriguingly, HX analysis revealed evidence for residual native 

structure: Bimodal peak distributions were found for many peptic peptides derived 

from sHsp-complexed MDH, reflecting the existence of two different structural states. 

We observed a low exchanging population, whose position was similar to the peak 

positions of the peptide from native MDH (‘native-like’), and a high exchanging 

population, which resembled the aggregated state (‘aggregate-like’) (Figure 17). 

Bimodal distributions were not detected for peptides derived from native MDH and 

only to a minor extent for few peptides of aggregated MDH (Leu20-Leu31, Ala42-

His66). With increasing concentrations of sHsps present during denaturation, there is 

a shift of peptides from the aggregate-like to the native-like population (Figure 18). 

This trend was found to a varying degree for all identified peptides exhibiting a 

bimodal distribution (see Appendix Figure 54). Therefore, the native-like HX pattern 

can be attributed to the promotion of native-like structures in MDH caused by 

association with sHsps upon heat-stress. MDH peptides Val130-Leu148 (bound to 

Hsp26 or Hsp42) and Ile113-Glu129 (bound to Hsp26) were almost completely 

shifted to native-like states, when using a five-fold excess of sHsps. Notably, these 

peptides are largely buried in the interior of native MDH, suggesting that MDH retains 

substantial tertiary structure in complex with sHsps (Figure 19).  
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Figure 17: sHsps stabilize segments of bound MDH in a native-like state. Mass spectra of MDH peptides in 
the native, aggregated or Hsp26-complexed state after 30 s D2O incubation at 30°C. The left panels show a 
representative peptide displaying a bimodal distribution after HX when complexed with sHsps, whereas 
the peptide shown in the right panels exists as a single population. 
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Figure 18: Concentration-dependent stabilization of native-like structures in sHsp-complexed MDH. 
Bimodal distribution of isotope peaks of indicated MDH peptides derived from MDH/Hsp26 (a) and 
MDH/Hsp42 (b) complexes. Left panels: Intensity versus m/z diagrams for different peptic MDH peptides 
after 30 s HX at 30°C. Right panels: Fractions of native-like and aggregate-like populations calculated for 
respective peptides. For each sHsp two representative spectra are shown. 
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Figure 19: Localization of peptides Ile113-Glu129 and Val130-Leu148 (blue) in the native MDH dimer 
structure. Both peptides show almost exclusively native-like HX pattern when complexed with sHsps.  

An alternative explanation for native-like HX patterns would be partial MDH refolding 

after spontaneous release from MDH/sHsp complexes. In order to test for this 

possibility, GroEL-D87K (GroEL-trap) was used. This is an ATPase-deficient variant, 

which traps misfolded proteins (Weber-Ban et al., 1999). Tritium-labeled MDH was 

heat-denatured in presence or absence of sHsps, incubated with GroEL-trap and 

separated by size exclusion chromatography (Figure 20). MDH was not transferred 

from MDH/sHsp complexes to GroEL-trap, excluding spontaneous dissociation of 

misfolded MDH conformers. 

 

Figure 20: MDH does not spontaneously dissociate from MDH/Hsp26 and MDH/Hsp42 complexes. 1 µM 
3H-MDH and 5 µM sHsps were heat treated for 30 min at 47°C. The formed sHsp/protein complexes were 
incubated for 10 min at 30°C with 2 mM ATP in presence or absence of 14 µM GroEL-D87K (GroEL-trap). 
As control 3H-MDH was denatured in presence of 2 mM ATP and 14 µM GroEL trap (30 min at 47°C). All 
samples were separated by size exclusion chromatography and collected fractions were quantified by 
scintillation counting (open circles). 

Taken together, these findings demonstrate that Hsp26 and Hsp42 form stable 

complexes with heat-denatured MDH and the association with sHsps keeps parts of 

MDH in a native-like state. 
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3.2.5 Hsp42 suppresses the formation of tight aggregates and promotes 
native-like folds 

Another, completely independent technique that is suitable for testing the effects of 

chaperones on protein aggregation is the optical-tweezer single-molecule technology.   

 

Figure 21: Hsp42 suppresses the formation of tight aggregates and promotes native-like folds. (a) Setup 
for single-molecule experiments: MBP constructs are tethered between two beads by using a DNA spacer. 
(c), (e) and (g) show statistics on the unfolding events. (b) Force-extension curves for the first stretching-
relaxation of natively-folded 4MBP. Gray lines represent the unfolding stages predicted by molecular 
dynamics simulations from the folded (F) to the unfolded (U) state. During stretching four native-like core 
unfolding events (green) (4→3→2→1→U) are observed. (d) After relaxation, subsequent pulling 
predominantly shows no unfolding (red) which indicates tight misfolding between domains. Sometimes 
also weak misfolding (yellow) or the unfolding of structures which are smaller than one repeat (blue) is 
observed. (f) In presence of Hsp42 (5μM), second or subsequent stretching mostly showed native-like 
unfolding, but no tight misfolds. (h)-(i) Stretching-relaxation experiments for sMBP. (h) Unfolding curve 
for natively-folded sMBP. (i) Repetitions of second pulls in presence of Hsp42 shows either native-like 
unfolding events or the unfolded sMBP remained in the unfolded state (curve not shown). (j) Statistics on 
core unfolding force show that presence of Hsp42 decreases the core unfolding force for both 4MBP and 
sMBP. Fatemeh Moayed (AMOLF institute, Amsterdam) performed the single-molecule experiments and 
prepared this figure. 
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In this approach, four repeats of Maltose Binding Protein (4MBP) are tethered 

between two spheres by using a DNA spacer to prevent bead-bead interactions. 

Stretching the 4MBP-construct by pulling on one bead results in a force which is 

measured on the second bead (Figure 21a). The first stretching of the folded 4MBP 

construct starts with a gradual unfolding transition. This is followed by the distinct 

unfolding of the four remaining core structures, which is apparent by sudden changes 

in extension in the force-extension curves (Figure 21b and c). After relaxation to low 

force, predominantly tightly aggregated or weakly misfolded structures are formed. 

This becomes obvious during subsequent pulling during which the constructs either 

cannot be unfolded (tightly misfolded species) or only by applying high forces 

(weakly misfolded species) (Figure 21d and e). Fatemeh Moayed (AMOLF institute, 

Amsterdam) did single-molecule experiments in presence of Hsp42 to study its 

influence on MBP aggregation. Testing Hsp26 would require heat-induced activation, 

which is not possible in this setup. The first stretching curve was similar in presence 

and absence of Hsp42. Thus, Hsp42 does not bind to native MBP, or, if it does, it 

cannot stabilize MBP against forced unfolding. Subsequent pulls, however, show two 

important effects of Hsp42 (Figure 21f and g). Firstly, although weak misfolds were 

still present, tight aggregates were not detected any more, showing that Hsp42 

prevents the formation of non-native contacts. Secondly, the portion of structures 

with native-like unfolding features increased substantially. Thus, interactions with 

Hsp42 promote native-like structures.  

To further investigate the nature of the Hsp42-client interaction, the experiment was 

repeated using a single-MBP construct, which can refold but cannot aggregate during 

relaxation. After the first stretching, 1MBP is allowed to relax, and either the core 

structure of MBP refolds fully or it stays unfolded, while its carboxyterminal part 

(core terminus) does not refold at all (transition from folded (F) to (1)) (Figure 21h). 

The second pull reports on which of those two options has occurred (termed as 

‘native-like unfolding’ when 1MBP fully refolded). Similarly, in presence of Hsp42, the 

second pull after unfolding and relaxation of 1MBP indicated either no refolding or a 

native core fold (Figure 21i).  

Interestingly, for both, the 4MBP- and the 1MBP-construct, less unfolding force was 

required to unfold the refolded core states in presence of Hsp42 (Figure 21j). This 

observation suggests that Hsp42 bound to and destabilized the core structure, 

possibly by binding to small unfolded peptide segments at the core termini, or by 

interfering with the core fold in a different manner. 

Altogether, these findings provide further evidence that Hsp42 binds near-native 

folded structures.  
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3.3 The NTE of Hsp26 or Hsp42 and the unfolded C-terminus of 
heat-aggregated MDH represent the major interaction sites  

In order to further specify the interactions between Hsp26 or Hsp42 and heat-

misfolded substrates, I employed HX and crosslinking approaches. In addition, HX 

might reveal conformational changes within sHsps upon substrate binding. 

3.3.1 HX of Hsp26 and Hsp42 upon substrate binding 

In HX experiments I analyzed Hsp26 and Hsp42 in their free states and complexed 

with MDH substrate.  

 

Figure 22: Deuteron incorporation into sHsps after 30 s incubation in D2O at 30°C. HX patterns of free 
Hsp26 (a) or Hsp42 (b) and difference in deuteron incorporation between MDH-complexed and free 
Hsp26 (c) or Hsp42 (d) are shown. The data were corrected for deuteron losses due to back-exchange 
using a 100% deuterated control (i.e. protein in which all exchangeable protons have been replaced by 
deuterons). NTE: N-terminal extension, CTE: C-terminal extension, Pr-like: Prion-like domain, unstr: 
unstructured domain. 

During complex formation an excess of sHsps was used yielding soluble complexes. 

Free sHsps were separated via size exclusion chromatography. Fractions containing 
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MDH/sHsp complexes were combined, incubated with MagneHisTM Ni-Particles and 

HX was performed at 30°C using the bead-bound material. After 30 s the D2O-buffer 

was removed, low pH quench buffer containing pepsin was added and the tubes were 

transferred to ice. After 1 min pepsin digest, the peptides were injected into the mass 

spectrometer coupled HPLC setup.  

For both sHsps N- and C-terminal extensions (CTE was only detected for Hsp26) 

displayed stronger proton/deuteron exchange than the α-crystallin domains, 

indicating high flexibility of those regions (Figure 22a and b). Upon substrate 

interaction, changes in HX profiles were noticed for both sHsps (Figure 22c and d). In 

Hsp26 two peptides became deprotected, indicating changed conformational states 

with increased flexibility. This is Phe11-Phe21 within the NTE and Val132-Leu140, a 

segment partially comprising the loop connecting β-strands 5 and 7 in the ACD 

(Figure 22 and Figure 23).   

 

Figure 23: Differences in HX exchange in sHsps upon substrate binding. Homology model for the α-
crystallin domain of Hsp26 and Hsp42 based on the structure of wheat Hsp16.9 (PDB ID 1GME). Upon 
MDH binding Val132-Leu140 of Hsp26 is substantially deprotected (red), whereas Ile282-Phe296 of 
Hsp42 showed increased HX protection (blue). 

Increased HX protection was detected for Tyr33-Leu62 in the NTE, caused either by 

conformational changes or direct substrate interaction. For Hsp42 increased HX 

protection was noticed throughout the NTE and parts of the ACD with Ala217-Asp239 

and Ile282-Phe296 showing the strongest effects for the respective domains (Figure 

22d). Remarkably, this ACD segment corresponds to the one of Hsp26 showing 

increased HX (Val132-Leu140), suggesting that this loop of the ACD is particularly 

sensitive to substrate complexation (Figure 23).  

In conclusion, the NTEs of Hsp26 and Hsp42 seem primarily involved in substrate 

interaction. 

3.3.2 DSS-crosslinking of heat-induced MDH/sHsp complexes 

HX of MDH/sHsp complexes suggested that the NTE is the major substrate binding 

site in Hsp26 and Hsp42. To more precisely identify the interaction sites between 
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MDH and sHsps, DSS-crosslinking experiments were performed and MDH-sHsp 

crosslinks were analyzed by MS (Appendix Table 6).  The use of a mixture of 

deuterated and undeuterated DSS facilitated the identification of crosslinked 

peptides. DSS crosslinks lysine residues with maximal Cα-Cα-distances of less than 

30 Å. 

 

Figure 24: DSS-crosslinking of native MDH, MDH aggregates and MDH/sHsp complexes. MDH (native or 
aggregated) and MDH/Hsp26 1:5 complexes were incubated with or without DSS at 30°C for 15 or 
60 min. Crosslink products were analyzed by western blotting using MDH and Hsp26 specific antibodies. 
Crosslinks between MDH and Hsp26 are indicated by asterisks. 

In pre-experiments DSS crosslinking followed by western blot analysis revealed 

multiple crosslinked products for complexes between MDH and Hsp26 (Figure 24). 
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Accordingly, MS analysis could identify various MDH-Hsp26 crosslinks (Figure 25 and 

Appendix Table 6).  

 

Figure 25: Specific interactions of Hsp26 with exposed, flexible MDH segments. MDH-Hsp26 interaction 
sites were determined by DSS crosslinking and MS analysis. (a) Linear representation of crosslinks 
between lysine residues (blue dots) of Hsp26 and MDH. NTE: N-terminal extension, ACD: α-crystallin 
domain, CTE: C-terminal extension. (b) HX-heat map of MDH from the heat-induced MDH/Hsp26 (1:5 
ratio) complex. Peptic peptides are colored according to their exchange behavior. Gray regions could not 
be detected. Lysine residues of MDH that were crosslinked to two or more lysines of Hsp26 are presented 
as balls and sticks. 

Involved residues comprised only a subset of theoretically available lysines (indicated 

by blue dots in Figure 25a), demonstrating specificity of detected interaction sites. 

Hsp26 crosslinked to specific lysines within MDH (Lys134, Lys 216, Lys278, Lys306 

and Lys312), with lysine residues 134, 306, 312 clustered in close proximity in the 

structure of native MDH.  All crosslinked lysines are located in regions which showed 

strong deprotection in the aggregated state, and thus large unfolding. HX of those 

peptides was strongly decreased upon sHsp binding, but still stayed high compared to 

other MDH peptides (Figure 25b). This holds in particular true for Ile292-Met314, 

located in an exposed C-terminal α-helix, which contains two major Hsp26 crosslink 

sites. In Hsp26 lysine residues of all three domains were crosslinked to MDH (Figure 

25a). Both lysines of the NTE, two out of twelve and two out of six lysines of the ACD 

and the CTE were crosslinked to MDH substrate, respectively. ACD-MDH crosslinks 

were only observed at higher excess of Hsp26, suggesting that the ACD offers 
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additional substrate binding sites (Appendix Table 6). Most crosslinks were formed to 

the NTE, with Lys45 as a major substrate binding site, and Lys50.  

 

Figure 26: DSS-crosslinking of native MDH, MDH aggregates and MDH/sHsp complexes. MDH (native or 
aggregated) and MDH/Hsp42 1:5 complexes were incubated with or without DSS at 30°C for 15 and 
60 min. Crosslink products were analyzed by western blotting using MDH and Hsp42 specific antibodies. 

Notably, Lys45 is located in the central thermosensor region of Hsp26 NTE, which 

undergoes heat-shock induced conformational changes thereby activating Hsp26 

(Franzmann et al., 2008). Other major crosslink sites to substrates include Lys151, 

located in a loop connecting β5 and β7 in the ACD and Lys195 and Lys198 in the CTE 

(Appendix Table 6). 

For Hsp42, DSS-crosslinking with MDH in heat-induced complexes followed by 

western blot analysis did not show distinct crosslink bands, but only a slightly 
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changed smear of crosslink products compared to aggregated MDH or Hsp42 alone 

(Figure 26). MS determination identified multiple MDH-MDH and Hsp42-Hsp42 

crosslink products but no single MDH-Hsp42 crosslink. Considering that the N-

terminal 171 aa of Hsp42 do not contain lysine residues, it appears likely that this 

region is primarily involved in substrate interaction.  

3.4 The prion-like domain of Hsp42 couples substrate binding 
and CytoQ formation 

Previously described HX and crosslinking experiments indicated that Hsp42 binds 

substrates predominantly via its N-terminal region. Notably, compared to all known 

sHsps the NTE of Hsp42 is unusually elongated. The finding, that this region is crucial 

for the formation of cytosolic aggregates (CytoQ) in vivo (Specht et al., 2011) (see 

chapter 1.2.1.7), prompted us to further explore the features of this unique domain.   

3.4.1 Hsp42 NTE harbors two intrinsically disordered subdomains  

Interestingly, based on bioinformatic prediction the NTE of Hsp42 comprises two 

types of so-called intrinsically disordered domains (IDD) (Figure 27).  

 

Figure 27: Folding index of Hsp42 according to its primary sequence. According to its sequence features, 
Hsp42 harbors two intrinsically disordered domains (IDD): an N-terminal ‘prion-like domain’ (aa 1-86), 
which is enriched in Gln/Asn and Tyr residues, and an ‘unstructured domain’ (aa 87-242), containing 
mainly acidic aa and few large hydrophobic and aromatic residues. unstruct: unstructured domain; ACD: 
α-crystallin domain; CTE: C-terminal extension. 
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IDDs are characterized by low hydrophobicity, high mean charge and often low 

sequence complexity (Malinovska et al., 2012), and they are able to self-interact and 

undergo multiple weak interactions with other cellular factors.   

The first type of IDD within Hsp42 is called a ‘prion-like domain’ and includes the first 

86 aa. This is followed by a region that I termed as ‘unstructured domain’, the second 

type of IDD (aa 87-242) (Figure 27). The prion-like domain is enriched in Gln/Asn 

and Tyr residues, whereas the unstructured domain is enriched for acidic amino acids 

and hardly contains hydrophobic and aromatic residues (Alberti et al., 2009). Which 

of both subdomains is crucial for CytoQ formation, and if this is directly linked to 

substrate binding remained unexplored. 

3.4.2 The prion-like domain of Hsp42 mediates substrate interaction and 
CytoQ formation 

We set out to dissect the functions of the prion-like and the unstructured subdomain 

of Hsp42 NTE. For this purpose two Hsp42 deletion variants were generated, lacking 

either subdomain. The effects on CytoQ formation and Hsp42 localization were 

studied in vivo (Stephanie Miller, unpublished data). I purified Hsp42 wt and both 

deletion variants and characterized them in vitro (chapters 3.4.3-3.4.7). 

The results of the in vivo experiments performed by Stephanie Miller are summarized 

in Table 1. Deletion of the first 86 residues, corresponding to the predicted length of 

the prion-like domain, produced an Hsp42 variant which was unstable upon 

expression in yeast cells. Hence, we expressed an Hsp42Δ1-99 variant, omitting a C-

terminal highly acidic peptide, and an Hsp42Δ100-242 variant, lacking almost the 

entire unstructured domain. As described in the introduction chapter, proteotoxic 

stress leads to the appearance of cytosolic (CytoQ) and nuclear (INQ) aggregates in 

yeast cells.  

Table 1: Overview of the effects on CytoQ formation, localization of Hsp42 and substrate binding caused 
by deleting the prion-like or the unstructured subdomain of Hsp42 NTE. 

 
CytoQ 

Co-localization with 
INQ                   CytoQ 

Substrate 
binding 

Hsp42 wt yes no yes yes 
Hsp42Δ1-99 no no no no 

Hsp42Δ100-242 yes, but smaller 
and more 

yes yes yes, 
increased 
binding 
capacity 

Live cell imaging, using mCherry-VHL as aggregation-prone reporter, showed, that 

the deletion of Hsp42 abrogates CytoQ formation, only producing a single INQ inside 
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the nucleus (Specht et al., 2011). Expression of Hsp42Δ1-99 in hsp42Δ cells did not 

restore CytoQ formation and exclusive INQ formation was detected. Accordingly, 

Hsp42Δ1-99 did not co-aggregate or change cellular localization during heat stress 

but remained diffusely distributed. The Hsp42Δ100-242 variant was able to restore 

the generation of cytosolic aggregates. However, smaller and more cytosolic 

aggregates were observed compared to Hsp42 wt, suggesting defects in aggregate 

coalescence or differences in substrate interaction. In contrast to Hsp42 wt, 

Hsp42Δ100-242 co-localized with both, CytoQ (as for Hsp42 wt) and INQ. In addition, 

this deletion variant was already present in the nucleus at non stress conditions, 

whereas Hsp42 wt is excluded from the nucleus. In order to test substrate binding 

capacities of Hsp42 variants, in vivo co-precipitations were performed (Stephanie 

Miller, unpublished data). Hsp42Δ1-99 could not bind any substrate, explaining the 

loss of the ability to form CytoQ. In contrast, increased amounts of misfolded 

mCherry-VHL co-precipitated with Hsp42Δ100-242 compared to Hsp42 wt, 

indicating a higher substrate binding capacity. 

In summary, the results showed that the prion-like domain of Hsp42 couples 

substrate binding and CytoQ formation, whereas the unstructured domain seems to 

have regulatory functions, controlling Hsp42 localization and the substrate binding 

capacity. 

3.4.3 Hsp42 oligomerization depends on the prion-like domain 

To better understand how the deletions of either subdomain affect the structure of 

oligomeric Hsp42 and to study their influence on chaperone activity, Hsp42 wt and 

both deletion variants were purified. Oligomer sizes were determined by static light 

scattering (Figure 28a). Hsp42 wt was a mixture of 8-14mers (325-575 kDa), with 

10mers representing the most populated state. This oligomer size is in agreement 

with previous reports (12-16mers) in which the molecular weight was determined by 

size exclusion chromatography (Haslbeck et al., 2004). Hsp42Δ100-242 formed 

higher oligomers consisting of 28-38 subunits with 36mer as most populated state, 

while Hsp42Δ1-99 contained 4-6mers (4mers as most populated state). Negative 

stain electron microscopy confirmed that Hsp42Δ100-242 oligomers (20-25 nm 

diameter) are bigger and also more regularly shaped than Hsp42 wt oligomers (15-

20 nm diameter) (Figure 28b).  

Thus, deletion of the prion-like domain strongly reduces oligomer size, suggesting a 

major function in oligomerization. In contrast, the deletion of the unstructured 

domain promotes self-interactions, possibly mediated by the prion-like domain. 
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Figure 28: The prion-like domain is involved in Hsp42 oligomerization. (a) The oligomeric states of 
Hsp42 wt and Hsp42 deletion constructs were determined by static light scattering measurements. (b) 
Negative stain electron microscopy. Hsp42Δ100-242 forms more regular and bigger oligomers compared 
to Hsp42 wt. 

Differences in the oligomeric states could result from conformational changes within 

Hsp42 variants. To test for structural properties, HX experiments were performed. 

Similar HX patterns were observed for all identified peptides in Hsp42 wt and Hsp42 

variants (Figure 29), indicating that deletion of the N-terminal subdomains did not 

change the conformational state of Hsp42.  
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Figure 29: The HX pattern is similar for all Hsp42 variants. Relative proton/deuteron exchange in 
Hsp42 wt and Hsp42 deletion constructs after 30 s of incubation in D2O at 30°C. The data were corrected 
for deuteron losses due to back-exchange using a 100% deuterated control (i.e. protein in which all 
exchangeable protons have been replaced by deuterons). 

3.4.4 Surface-exposed hydrophobic patches are presented by the prion-
like domain 

We further characterized Hsp42 wt and deletion variants by incubation with 8-

Anilinonaphthalene-1-sulfonic acid (ANS), a fluorescent probe, which binds to 

hydrophobic surfaces leading to increased ANS fluorescence. While Hsp42 wt and 

Hsp42Δ100-242 enhanced fluorescence to a similar extent, Hsp42Δ1-99 showed 

much reduced fluorescent signal indicating a great loss of hydrophobic surfaces 

(Figure 30). Since hydrophobic surfaces are supposed to bind misfolded proteins, 

these results are consistent with the suggestion that the prion-like domain is the 

major site for substrate interaction and triggers aggregate assembly.  
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Figure 30: Overall surface hydrophobicity of Hsp42 variants probed by ANS fluorescence. The surface 
hydrophobicity of Hsp42Δ1-99 is strongly reduced compared to Hsp42 wt. 

3.4.5 The prion-like domain is crucial for Hsp42 chaperone activity and 
the unstructured domain has regulatory functions 

The chaperone activity of Hsp42 variants was determined by measuring their ability 

to suppress the formation of large aggregates. Turbidity measurements showed that 

Hsp42Δ1-99 was not able to prevent the formation of large MDH or luciferase 

aggregates at 47°C or 43°C, respectively (Figure 31). In contrast, Hsp42Δ100-242 

could efficiently reduce aggregate formation, similar to Hsp42 wt.  

In addition, I used the FRET approach, described in chapter 3.2.2, to monitor heat-

induced MDH aggregation in presence and absence of Hsp42 variants (Figure 32). In 

this approach signal increase indicated the appearance of aggregates a few minutes 

earlier than in turbidity measurements, illustrating a higher sensitivity of this assay. 

The measurements revealed that Hsp42Δ100-242 is more efficient than Hsp42 wt 

since already substoichiometric Hsp42:MDH ratios resulted in maximal suppression 

of aggregation. The higher chaperone activity of Hsp42Δ100-242 might be linked to 

changes in the organization of MDH/Hsp42 complexes. Indeed, negative stain 

electron microscopy showed that heat-induced complexes between MDH and 

Hsp42Δ100-242 (20-25 nm) appeared smaller and more regular than with Hsp42 wt 

(35-40 nm) (Figure 33). This observation is consistent with in vivo findings, since 

expression of Hsp42Δ100-242 in hsp42Δ cells generated more and smaller cytosolic 

aggregates compared to Hsp42 wt (see chapter 3.4.2).  
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Figure 31: Hsp42Δ1-99 cannot prevent the formation of turbid, insoluble MDH and luciferase aggregates. 
(a)-(c) MDH (0.5 µM) was denatured for 30 min at 47°C in absence or presence of Hsp42 variants at 
various ratios (0.25–2.5 µM). As a control 2.5 µM sHsps were heated alone. The formation of turbid MDH 
aggregates was followed at 550 nm. (d)-(f) Luciferase (0.1 µM) was denatured at 43°C in absence or 
presence of Hsp42 variants (0.1 µM or 0.5 µM) and the formation of turbid aggregates was followed at 
600 nm. As a control 0.5 µM sHsps were heated alone. Luci: luciferase. For comparison with Hsp42 wt 
graphs previously shown in Figure 9a and d are included. 
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Figure 32: Hsp42Δ1-99 is inactive, whereas Hsp42Δ100-242 is highly active in keeping misfolded proteins 
apart. Co-aggregation of MDH-YFP (FRET donor) and MDH labeled with 7-diethylcoumarin-3-carboxylic 
acid (FRET acceptor) at 47°C causes specific FRET increase. Presence of Hsp42Δ1-99 (b) hardly affects 
FRET efficiencies, whereas Hsp42Δ100-242 (c) reduces the FRET signal already at lower concentrations 
compared to Hsp42 wt (a). The Hsp42 wt graph shown in Figure 12b is included. 

 

Figure 33: Complexes of MDH with Hsp42Δ100-242 are smaller and more regular than with Hsp42 wt. 
Negative stain electron microscopy pictures of MDH (0.5 µM), which was aggregated alone (left) or in 
presence of a 3-fold excess of Hsp42 wt (middle) or Hsp42Δ100-242 (right) for 30 min at 47°C.  
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Figure 34: Hsp42Δ1-99 cannot facilitate the chaperone-mediated refolding of heat-induced MDH and 
luciferase aggregates. (a)-(c) MDH (0.5 µM) was denatured for 30 min at 47°C in absence or presence of 
Hsp42 variants at various ratios (0.25 – 2.5 µM). MDH refolding from aggregated or sHsp-complexed 
states was initiated at 30°C by addition of the S. cerevisiae bi-chaperone system (2 µM Ssa1, 1 µM Sis1, 
0.1 µM Sse1, 1 µM Hsp104) and 1 µM GroEL/GroES. (d)-(f) Luciferase (0.1 µM) was denatured for 15 min 
at 43°C in absence or presence of Hsp42 variants at various ratios (0.05 – 0.5 µM). Luciferase refolding 
from aggregated or sHsp-complexed states was initiated at 30°C by addition of the S. cerevisiae bi-
chaperone system (2 µM Ssa1, 1 µM Sis1, 0.1 µM Sse1, 1 µM Hsp104) and 1 µM GroEL/GroES. MDH and 
luciferase activities were determined at the indicated time points. The enzymatic activity of native MDH 
and luciferase was set at 100%. The Hsp42 wt graphs previously shown in Figure 10a and d are included. 
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Accordingly, chaperone-mediated disaggregation and refolding showed that 

Hsp42Δ1-99 did not facilitate the reactivation of heat-induced MDH or luciferase 

aggregates (Figure 34). The latter was even slightly inhibited when Hsp42Δ1-99 was 

included. In contrast, Hsp42Δ100-242 could promote MDH disaggregation similar to 

Hsp42 wt. Reactivation of luciferase was more efficient when heat-induced complexes 

were formed with Hsp42Δ100-242 (Figure 34). Despite higher chaperone activity of 

Hsp42Δ100-242 and smaller complex sizes, disaggregation and refolding of heat-

induced complexes with MDH was still Hsp104-dependent (Figure 35). 

 

Figure 35: The disaggregation of heat-induced complexes between MDH and Hsp42Δ1-99 (a) or 
Hsp42Δ100-242 (b) is still Hsp104-dependent. MDH (0.5 µM) was denatured for 30 min at 47°C in 
absence or presence of sHsps at various ratios (0.25 – 2.5 µM). MDH refolding from aggregated or sHsp-
complexed states was initiated at 30°C by addition of the S. cerevisiae bi-chaperone system (2 µM Ssa1, 
1 µM Sis1, 0.1 µM Sse1) and 1 µM GroEL/GroES. MDH activities were determined at the indicated time 
points. The enzymatic activity of native MDH was set at 100%. 

Together, these results indicate that the prion-like domain is also crucial for the 

chaperone activity in vitro, whereas the unstructured domain seems to be involved in 

negative regulation of Hsp42 activity. Attempts to purify and characterize the isolated 

prion-like domain failed due to a high aggregation tendency of this subdomain (data 

not shown). 

3.4.6 Hsp42 lacking the unstructured domain is more efficient in 
stabilizing native-like structures in heat-denatured MDH 

In chapter 3.2 I performed HX-MS to study heat-induced MDH/sHsp complexes. 

Hsp26 and Hsp42 were shown to protect denatured MDH from HX. MDH peptides 

derived from complexes with sHsps often exhibit two populations after HX: a native-

like (low exchanging) and an aggregate-like (high exchanging) population. Increasing 

amounts of sHsps present during complex formation caused a shift of the populations 

towards the native-like state (Figure 18).  
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Figure 36: Hsp42Δ100-242 efficiently protects unfolded regions of aggregated MDH from HX. Relative 
proton/deuteron exchange in MDH co-aggregated with either Hsp42Δ1-99 (a) or Hsp42Δ100-242 (b) 
was determined after 30 s labeling. The data were corrected for deuteron losses due to back-exchange 
using a 100% deuterated control (i.e. protein in which all exchangeable protons have been replaced by 
deuterons). MDH/sHsp complexes were formed by incubation for 30 min at 47°C.  

Now, HX was used to compare the chaperone activities of Hsp42 wt and Hsp42Δ100-

242 at highest resolution possible. Heat-induced complexes between MDH and Hsp42 

deletion constructs at different ratios were formed, and HX patterns were compared 

to those of aggregated and Hsp42 wt-complexed MDH (Figure 36 and Figure 37). 

Hsp42Δ1-99 hardly protected denatured MDH from HX and there were only minor 

effects regarding shifts of bimodal populations (Figure 38). This is in agreement with 

the observed loss of chaperone activity of this mutant. In contrast, Hsp42Δ100-242 

very efficiently protected MDH from HX. A three-fold excess of Hsp42Δ100-242 was 

sufficient to find all bimodal peptides in the native-like state, whereas for Hsp42 wt a 

five-fold excess was necessary to see a similar trend. In addition, a substantial 

fraction of MDH peptides (113-129, 270-291, 292-308) still exhibited aggregate-like 

HX even at high excess of Hsp42 wt (Figure 38). 
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Figure 37: HX-heat map of MDH in heat-induced MDH/sHsp complexes. Peptic peptides are colored 
according to their exchange behavior. Gray regions could not be identified. The ratio of sHsps vs. MDH 
during substrate denaturation is given.  

Thus, these data confirm our previous findings that the deletion of the unstructured 

domain leads to increased activity compared to Hsp42 wt, while deletion of the prion-

like domain abolishes Hsp42 chaperone function. 
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Figure 38: Hsp42Δ100-242 stabilizes segments of bound MDH in a native-like state. Bimodal distribution 
of isotope peaks of indicated MDH peptides derived from MDH/Hsp42 wt (a), MDH/Hsp42Δ1-99 (b) and 
MDH/Hsp42Δ100-242 complexes. Left panels: Intensity versus m/z diagrams for different peptic MDH 
fragments after 30 s HX at 30°C. Right panels: Fractions of native-like and aggregate-like populations 
calculated for respective peptides. The spectra of one representative peptide are shown.  
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3.4.7 Higher chaperone activity of Hsp42Δ100-242 is not due to higher 
subunit exchange 

Previous studies showed that increased chaperone activity of sHsps can be caused by 

enhanced quaternary dynamics (Ahmad et al., 2008; Peschek et al., 2013). Therefore, 

a FRET approach was used to test if increased subunit exchange is the molecular 

basis for the higher chaperone activity of the Hsp42Δ100-242 deletion mutant.  

 

Figure 39: Subunit exchange kinetics of Hsp42 wt and Hsp42Δ100-242. Shown are the temporal changes 
in the donor fluorescence intensities due to reversal FRET upon adding an excess of unlabeled Hsp42 wt 
(a) or Hsp42Δ100-242 (b) to FRET-equilibrated oligomers of both variants labeled with 7-
diethylaminocoumarin-3-carboxylic acid and NBD-X. Fitting to an exponential two-phase association 
equation yielded two rates each. For Hsp42 wt: kfast 0.1066 min-1; kslow: 0.007129 min-1; for Hsp42Δ100-
242: kfast 0.1514 min-1; kslow: 0.009707 min-1. 

Hsp42 wt and Hsp42Δ100-242 were labeled with the amine-reactive dyes 7-

diethylaminocoumarin-3-carboxylic acid and succinimidyl 6-(N-(7-nitrobenz-2-oxa-

1,3-diazol-4-yl)amino) hexanoate (NBD-X). The donor- and acceptor-labeled proteins 

were mixed and incubated at 25°C over night. Addition of a ten-fold excess of 

unlabeled protein caused an increase of donor fluorescence with time (Figure 38). 
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Using an exponential two-phase association equation, two rate constants were 

obtained. The fast rate might originate from dissociation of dimeric subunits, whereas 

the slow rate might be caused by dimer to monomer conversion. With a fast rate of 

0.1514 min-1 for Hsp42Δ100-242, subunit exchange seems somewhat faster than for 

Hsp42 wt (0.1066 min-1). It remains unclear, if this difference is sufficient to explain 

the higher chaperone activity of the deletion mutant, or if subunit exchange is 

decisive at all.  

3.5 Disassembly of the dimeric replication initiator protein 
RepE by the DnaK chaperone system 

As already described, the Hsp70-mediated disassembly of the native, oligomeric 

substrates seems mechanistically related to the disaggregation process. An example 

for such a native Hsp70 substrate is the replication initiation protein RepE, which 

initiates the replication of the mini-F-plasmid in E. coli. In the dimeric state, RepE 

binds to the promotor of its gene repressing its own transcription (negative 

feedback). As a monomer RepE binds to a segment within the F plasmid replication 

origin ori2 and initiates plasmid replication (Masson and Ray, 1986; Wada et al., 

1987). As its monomerization strictly depends on DnaK and DnaJ (Ishiai et al., 1994; 

Kawasaki et al., 1990), RepE is a suitable substrate for studying chaperone-mediated 

disassembly. Using a genetic screen, a RepE mutant (RepE54) was isolated that is 

independent of DnaK/DnaJ in replication initiation. In addition, crystal structures for 

RepE54 and RepE wt in complex with their respective DNA-segment containing the 

RepE binding sites were solved (Komori et al., 1999; Nakamura et al., 2007). 

Comparing the two structures showed that there are striking differences of the 

relative orientation of the N- and of the C-terminal domains between the RepE 

monomer and the dimer.  

In previous work from this laboratory (done by Wolfgang Rist and Fernanda 

Rodriguez) RepE wt and RepE54 were studied by HX-MS. The proteins were diluted 

1:50 into D2O-buffer. At certain time points an aliquot was drawn, quenched by 

lowering the pH to 2.2 and the temperature to 0°C, and immediately injected into the 

rapid-desalting HPLC-setup, which was connected to a MS. Higher deuteron 

incorporation into RepE wt as well as partial proteolysis showed that monomeric 

RepE54 is more stable and more tightly packed than the dimer (data not shown). In 

addition, HX on peptide level revealed protection of region 96-128 in RepE wt 

compared to RepE54 (Figure 40), indicating that this might be the dimer interface.  
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Figure 40: Lower deuteron incorporation in some regions of RepE54 indicates conformational 
rearrangements during the monomerization process. Shown is the difference of deuteron incorporation 
into RepE54 (monomer) and RepE wt (dimer). Negative values indicate segments of the protein that 
exchange less in the monomer, whereas positive values indicate regions that exchange more in the 
monomer. This experiment was performed by Fernanda Rodriguez. 

This suggestion was confirmed in later studies when the crystal structure of dimeric 

RepE wt was solved (Nakamura et al., 2007) (dimer interface: aa 97-111, 121-128, 

141-146) (Figure 41). There were also some peptides (aa 5-28, 151-164, 219-240) 

which exchanged more in the RepE dimer, indicating conformational changes that led 

to higher flexibility in those regions (Figure 40). The enhanced flexibility of dimeric 

RepE wt might be necessary for binding to inverted repeat operator DNA, since 

modelling of two RepE monomers on IR-DNA revealed a large sterical hindrance 

which excludes simultaneous binding (Komori et al., 1999). Two helix-turn-helix 

motifs in RepE54, namely α3-turn-α4 (aa 64-92) and α3’-turn-α4’ (aa 168-242) are 

critical for binding to iteron DNA (Komori et al., 1999). However, HX did not show any 

differences in those regions when comparing RepE wt and RepE54. This indicates 

similar binding to DNA. In agreement, iteron and operator DNA possess 8 common 

base pairs and the α3’-turn-α4’ (aa 168-242) motif is also critical for dimeric RepE wt 

to bind to IR-DNA (Matsunaga et al., 1995). The crystal structure of dimeric RepE wt 

in complex with IR-DNA revealed differences in the relative orientation of the N- and 

the C-terminal domain enabling the binding of dimeric RepE wt to operator DNA 

(Nakamura et al., 2007). During the reorientation an interdomain β-sheet in RepE54, 

comprising β1 (aa 17-20) and β1’ (aa 146-149), is disrupted. This is consistent with 

the deprotection of peptide 5-28, which contains β1 (Figure 40 and Figure 41). A 

peptide including β1’ was not found in HX experiments. Concomitantly, the linker 

connecting the two domains (aa 133-159) undergoes secondary structure alterations: 
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The long α5 helix found in the linker of dimeric RepE is changed to a shorter α5 helix, 

a loop structure, and a β1’ strand. Peptide 140-146 is located in the loop region of the 

linker. Thus, the slight deprotection of aa 140-146 in monomeric RepE54 (Figure 41) 

could be attributed to the described structural alterations in the linker. The 

protection observed in region 152-164 might also arise from changes in the linker 

region.  

 

Figure 41: Structure of monomeric RepE54 (upper panel, PDB ID 1REP) and dimeric RepE wt (lower 
panel, PDB ID 2Z9O) (Komori et al., 1999; Nakamura et al., 2007). The coloring is according to the HX 
behavior. Regions that exchange significantly more deuterons in RepE54 are colored red, whereas regions 
that exchange significantly less deuterons are colored green. 

Additionally, the RepE dimer structure revealed the partial unfolding of α1 (aa 22-26) 

in the monomer. Since peptide 5-28 comprises both, β1’ and α1, the lower 
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accessibility of β1’ in monomeric RepE54 (see above) could compensate for the 

increased accessibility of α1 due to partial unfolding. This explains why peptide 5-28 

appears protected in RepE54 during HX. Except for the conformational changes 

mentioned above, there were no obvious differences between the crystal structures 

of monomeric RepE54 and dimeric RepE wt. In HX, however, peptide 219-240 was 

markedly deprotected in RepE wt. 

Overall, the HX data are consistent with changes observed in the RepE X-ray 

structures, and together this provides good information about structural differences 

of dimeric RepE wt and monomeric RepE54. Moreover, HX revealed increased 

flexibility at the C-terminus of RepE wt, indicating additional conformational changes 

during dimer disassembly. In the present study, we wanted to figure out how the 

DnaK-chaperone system acts on RepE, finally causing monomerization. For this 

purpose the interaction of DnaK and DnaJ with RepE were studied. 

3.5.1 DnaK cannot bind to RepE wt or RepE54 in presence of their DNA-
binding elements 

In the first experiment, performed by Fernanda Rodriguez, specific crosslinking was 

used to study the binding of DnaK to RepE wt or RepE54. For this purpose a 

DnaK Q424C variant was utilized, in which glutamine 424, located close to the 

substrate binding pocket of DnaK, was replaced by cysteine. DnaK Q424C was labeled 

with a cysteine-specific UV-activatable heterobifunctional crosslinker (BPIA) and the 

activity of this variant was attested in luciferase disaggregation assays (data not 

shown). When RepE monomer or dimer was incubated with DnaK Q424C and 

irradiated with UV light, new specific bands appeared running at the expected height 

of a RepE-DnaK complex (Figure 42). Western blot analysis proved that the bands 

contained both, RepE and DnaK. However, when incubating RepE wt or RepE54 and 

DnaK Q424C in presence of IR- or DR-DNA, respectively, RepE-DnaK complex 

formation was not observed any more.  

In previous work from our laboratory (done by Stefan Rüdiger), peptide library 

scanning revealed four potential DnaK binding sites in RepE (aa 39-42, 126-142, 224-

227, 238-242). Two possible regions are located in the N-terminus of RepE and two in 

the C-terminus. Binding of DNA occurs via residues 200-219 in RepE wt and via 

residues 75-87 and 200-219 in RepE54 (Komori et al., 1999; Nakamura et al., 2007). 

Thus, both C-terminal putative DnaK binding sites (224-227, 238-242) are located 

close to the DNA binding residues. DNA bound to RepE might therefore sterically 

hinder the binding of DnaK. 
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Together, these experiments showed that dimeric RepE wt as well as monomeric 

RepE54 can bind DnaK, but that binding is prevented in presence of IR- or DR-DNA, 

respectively. 

 

Figure 42: BPIA-labeled DnaK Q424C crosslinks to RepE wt and RepE54 in absence of IR-DNA or DR-DNA, 
respectively. RepE wt (a) or RepE54 (b) were incubated with BPIA-labeled DnaK-Q424C for 1 h at 30°C in 
presence or absence of IR- or DR-DNA. Crosslinked products were separated by SDS-PAGE and analyzed by 
western blotting using RepE and DnaK specific antibodies. The crosslinked RepE-DnaK product is 
indicated by asterisks. This experiment was performed by Fernanda Rodriguez. 

3.5.2 Only dimeric RepE wt but not monomeric RepE54 binds DnaJ 

Next, the ability of RepE wt or RepE54 to bind DnaJ was determined indirectly, by 

using single-turnover ATPase experiments (Figure 43). This assay was performed by 
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Fernanda Rodriguez. We exploited that ATP hydrolysis by DnaK is synergistically 

stimulated by DnaJ and substrate binding. Besides RepE, the native DnaK substrate 

σ32 was tested as a positive control (Rodriguez et al., 2008). Together with DnaJ, 

RepE wt stimulated ATP hydrolysis of DnaK similar to σ32 (Figure 43a). This is in 

agreement with previous results from steady-state ATPase measurements (Cuéllar 

et al., 2013). In contrast, RepE54 hardly increased ATPase rates, indicating that the 

affinity of monomeric RepE to bind DnaJ is drastically reduced. In addition, a deletion 

construct of RepE only harboring the first 144 residues was tested. This variant did 

not stimulate ATP hydrolysis (Figure 43b), which can be explained by a loss of the 

ability to bind to DnaJ, DnaK or to both. 

 

Figure 43: Only dimeric RepE wt binds DnaJ. Single turnover experiments of DnaK ATPase activity in 
presence of σ32, dimeric RepE wt, monomeric RepE54 (a) or RepE 1-144 (b) in presence or absence of 
DnaJ. This experiment was performed by Fernanda Rodriguez.  

In summary, these results suggest that only dimeric RepE wt can bind DnaJ, whereas 

monomeric RepE54 cannot. Lacking ATPase stimulation by RepE 1-144 indicates that 

the binding site for DnaJ and/or DnaK might be located in the C-terminal part of RepE. 

3.5.3 Binding of DnaJ induces conformational changes within the DNA-
binding region in RepE wt 

In order to determine the binding site of DnaJ in RepE wt, I performed footprinting 

HX MS analysis. RepE wt was incubated for 10 s at 30°C in D2O-based buffer in 

presence or absence of DnaJ. The exchange was quenched by lowering the pH to 2.2 

and the temperature to 0°C, and the protein was injected into the MS-coupled HPLC-

setup. Presence of DnaJ did not lead to pronounced protection of any RepE peptide 

(Figure 44a). Yet, complete sequence coverage was only obtained for the C-terminal 

part of RepE wt. For the N-terminal part many peptides could not be detected mainly 

due to disturbing signals from DnaJ derived peptides. Binding of DnaJ in the N-
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terminal region would therefore not be obvious in this HX analysis. Instead, higher 

deuteron incorporation was detected in the C-terminal part of RepE, mainly for 

peptide 184-204 (Figure 44a). The increased HX indicates DnaJ-induced 

conformational changes. These changes could not be observed when using RepE54, 

confirming that DnaJ can only bind to dimeric RepE wt but not to monomeric RepE54 

(Figure 44b).  

 

Figure 44: Binding of DnaJ resulted in deprotection in a DNA-binding region of RepE wt. Difference in 
deuteron incorporation of RepE wt (a), RepE54 (b), RepE-Y133A-P137A-F138A (c) or RepE-F146A-F150A 
(d) in presence and absence of DnaJ. Peptides in gray could not be detected. 

Using peptide library scanning (performed by Stefan Rüdiger), four putative DnaJ 

binding sites were identified in RepE wt (aa 96-116, 133-138, 146-150, 200-206). 

Three RepE variants were generated (by Fernanda Rodriguez), which possessed 

point mutations in one of the potential DnaJ binding sites: RepE-Y133A-P137A-

F138A, RepE-F146A-F150A, RepE-R200A-P202A-R205A-R206A. The first two 

variants could be purified, the latter was degraded upon expression in E. coli. HX 

analysis of RepE-Y133A-P137A-F138A and RepE-F146A-F150A in presence of DnaJ 

revealed a similar deprotection in peptide 184-204 as observed for RepE wt, 

suggesting that both variants were still able to bind DnaJ. This is in agreement with 

previous studies (Cuéllar et al., 2013), which demonstrated that the deletion 

construct RepE 1-139 is capable of binding DnaJ. Region 96-116 is the only potential 
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DnaJ binding site which is included in RepE 1-139. Although peptide 97-115 is not 

markedly protected in HX (Figure 44a) the other results suggest that aa 96-116 could 

represent the DnaJ binding site in RepE wt. 

Interestingly, the region which is deprotected in RepE wt upon binding of DnaJ 

comprises parts of the DNA-binding site. Accordingly, HX of RepE wt in presence of 

IR-DNA caused some protection throughout RepE, with highest protection in peptide 

184-204 (Figure 45) (this HX experiment was performed by Fernanda Rodriguez).   

 

Figure 45: Binding of IR-DNA mostly protects peptide 184-204. RepE wt was incubated in D2O-based 
buffer for 30 s at 30°C in presence or absence of IR-DNA. The difference in deuteron incorporation 
between both conditions is shown.This experiment was performed by Fernanda Rodriguez. 

The observed DnaJ-induced changes might influence the DNA binding affinitiy of 

RepE. To test possible effects of DnaJ binding on the binding affinity of RepE to 

promotor DNA, gel retardation assays were performed in which RepE wt and Cy3-

labeled IR-DNA were incubated in presence or absence of DnaJ (Figure 46).    

 

Figure 46: DnaJ enhances the binding of RepE wt to promotor DNA. Gel retardation assay of Cy3-labeled 
RepE promotor-DNA mixed with RepE wt alone or together with increasing amounts of DnaJ. Either 
RepE wt and Cy3-labeled promotor-DNA were pre-incubated before adding DnaJ or RepE wt and DnaJ 
were pre-incubated before adding the promotor-DNA. 
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In absence of DnaJ, RepE-DNA complexes were detected when using a four-fold 

excess of RepE wt over IR-DNA (Figure 46a). In presence of DnaJ, RepE-DNA complex 

formation was observed already at lower RepE concentrations and increasing 

amounts of DnaJ enhanced substrate binding (Figure 46b). This is consistent with 

previous findings (Kawasaki et al., 1992). When RepE and DnaJ were pre-incubated 

before adding DNA, the observed effects were greater compared to pre-incubation of 

RepE and DNA and subsequent addition of DnaJ (Figure 46b). These results exclude 

that DnaJ-induced changes lead to reduced affinity of RepE for DNA. In fact, binding of 

DnaJ to RepE even enhances its binding to IR promotor DNA. 

Taken together, DnaJ binding seems to induce conformational changes in parts of the 

DNA-binding region of RepE. These changes might be needed to enable the binding of 

DnaK to RepE. Gel retardation assays indicated DnaJ-promoted binding of RepE wt to 

DNA. In addition, the results indirectly suggest that region 96-116 might include the 

DnaJ binding site in RepE wt. 

3.5.4 Concerted DnaJ and DnaK binding induces major structural 
changes in dimeric RepE wt 

Next, I performed HX footprinting trying to identify the DnaK binding site in RepE wt. 

In these experiments DnaK was immobilized on POROS 20 AL medium to avoid that 

overlapping DnaK peptides would reduce the number of detected RepE peptides. The 

immobilized DnaK was packed in a column, pre-incubated with ATP and loaded with 

His10-RepE. After incubation for 30 min, D2O-buffer was injected into the column. 

After 60 s at 30°C, HX was quenched and the protein was simultaneously eluted by 

using ice-cold, low pH quench buffer. To have a comparable reference, HX with His10-

RepE alone was performed using a Ni-NTA column (for details see Material and 

Methods). Presence of DnaK and ATP did not lead to prominent changes in the HX 

pattern of RepE wt.  However, some protection in C-terminal peptide 227-241, which 

contains a putative DnaK binding site (aa 238-242; based on peptide library 

scanning), was observed (Figure 47a).  

Subsequently, the effects on RepE wt by the combined binding of DnaJ and DnaK were 

studied using HX. For this experiment the complex between His10-RepE and DnaJ was 

formed by incubation for 10 min at 30°C. Then the same procedure was followed as 

described for the experiment with DnaK alone. The HX pattern in presence of 

chaperones was strikingly different compared to RepE wt alone. The DnaJ-induced 

deprotection of peptide 184-204 (Figure 44) could not be observed when DnaK was 

included (Figure 47b). Consistently, there was no difference observed for this peptide 

when comparing dimeric and monomeric RepE (Figure 41).  
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Figure 47: Concerted binding of DnaJ and DnaK leads to pronounced conformational changes in RepE wt. 
Difference in deuteron incorporation of RepE wt in presence and absence of DnaK (a) or DnaJ and DnaK 
(b). Both experiments were performed in presence of ATP. Peptides in gray could not be detected. 

The regions including the dimer interface (aa 97-115, 116-132, 140-149) remained 

basically unchanged. However, aa 84-93, located in helix α4 very close to the dimer 

interface, exchanged considerably less deuterons. Peptide 6-28, which was strongly 

protected in RepE54 compared to the dimer, could not be detected in this set of 

experiments. However, binding of DnaK and DnaJ caused strong deprotection in the 

C-terminal region (aa 213-224, 227-241, 241-251), indicating marked conformational 

changes (Figure 47b). This was unexpected, since monomeric RepE54 displayed a 

strong protection of peptide 220-240 (Figure 41). These differences imply that 

presence of the nucleotide exchange factor GrpE and possibly of iteron DNA is 

required to induce further conformational changes, causing monomerization of 

dimeric RepE wt. 

In summary, HX footprinting experiments indicate that DnaK binding could occur in 

aa 238-242 in RepE wt, a putative binding site for DnaK identified by peptide library 

scanning. Simultaneous binding of DnaK and DnaJ resulted in major conformational 

changes, including the protection of α4 near the dimer interface and deprotection of 

wide C-terminal parts in RepE wt. Yet, HX patterns of the chaperone-bound RepE wt 

and RepE54 still considerably differed.   

3.5.5 DnaK can bind to promotor DNA-complexed RepE wt when DnaJ 
and GrpE are present 

In order to test if presence of DnaJ alone or together with GrpE enables the binding of 

DnaK to IR-DNA-bound RepE wt, I performed BPIA-crosslinking experiments using 

DnaK Q424C (as described in chapter 3.5.1).  
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Figure 48: BPIA-labeled DnaK-Q424C can crosslink to promotor DNA-complexed RepE wt when DnaJ and 
GrpE are present. RepE wt was incubated with different combinations of BPIA-labeled DnaK-Q424C, DnaJ, 
GrpE and RepE promotor DNA for 1 h at 30°C. Crosslinked products were separated by SDS-PAGE and 
analyzed by western blotting using RepE and DnaK specific antibodies. The crosslinked RepE-DnaK 
product is indicated by asterisks. 
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RepE wt and DnaJ were pre-incubated for 10 min at 30°C, before the complex was 

mixed with different combinations of DnaK Q424C, GrpE and IR-DNA. The protein 

solutions were irradiated with UV light. As observed in chapter 3.5.1, the incubation 

of DnaK Q424C and RepE wt alone resulted in the formation of a DnaK-RepE wt 

crosslinking product (Figure 48, asterisk), which was strongly reduced in presence of 

IR-DNA. The addition of either DnaJ or GrpE could not restore the formation of the 

DnaK-RepE wt crosslinking product when promotor DNA was present. Only the 

concomitant presence of DnaJ and GrpE re-established crosslinking between IR-DNA-

complexed RepE wt and DnaK Q424C (last lane in Figure 48). Thus, the concerted 

action of DnaJ and GrpE seems to allow the binding of DnaK to dimeric RepE wt 

during it is bound to promotor DNA. 

 

 

 





4 Discussion and Outlook 

In this thesis, the structure of heat-induced amorphous aggregates was studied using 

MDH as thermolabile model protein. The influence of yeast sHsps Hsp26 and Hsp42 

on aggregation and on the architecture of heat-aggregates was determined. Moreover, 

with respect to its role in CytoQ formation, the structure-function relationship of 

Hsp42 was further explored. The chaperone-mediated disaggregation of protein 

assemblies was addressed by investigating the monomerization of the RepE dimer, 

representing a minimal model aggregate. 

4.1 Structural analysis of heat-induced protein aggregates and 
interactions between yeast sHsps and aggregating proteins 

How does the structure of heat-induced aggregates look like? So far, predominantly 

methods like electron microscopy, CD or FTIR spectroscopy and dye binding were 

used to address this question. To obtain more detailed insights, I performed HX to 

examine the structure of heat-induced MDH aggregates. Substantial, global 

deprotection of amide protons of the peptide backbone was observed in heat-induced 

MDH aggregates. This finding indicates that most regions were largely unfolded, 

providing potential binding sites for chaperones. A remaining core structure was not 

detected. Only Ala228-Phe236, located at the MDH dimer interface, displayed low HX 

even in the aggregated state. However, deprotection of other dimer interface peptides 

reason against the maintenance of the entire interface region. Segments exhibiting 

reduced deuteron incorporation were not detected. Thus, enhanced β-sheet 

structures, as often observed in other amorphous aggregates (Chang et al., 2009; 

Kendrick et al., 1998; Okuno et al., 2007), were likely not present. In addition, 

peptides that are involved in tight hydrophobic interactions in the aggregate would 

be expected to protect those regions from HX. Possibly, such segments are very sticky 

and might have gone lost during experimental procedures, or they were not detected 

due to impaired ionization. 

In vivo, sHsps are among the first chaperones that associate with misfolded 

polypeptides, modulating their aggregation. As reported for other sHsps (Haslbeck 

et al., 2005; Mogk et al., 2003), Hsp26 and Hsp42 were found to form stable 

complexes with heat-denatured substrates (Figure 20), creating a reservoir of 

refolding-competent misfolded species (Ehrnsperger et al., 1997; Lee et al., 1997; 

Veinger et al., 1998). Substrate release requires downstream processing by ATP-
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dependent Hsp70 and Hsp100 chaperones (Haslbeck et al., 2005; Mogk et al., 2003). 

Compared to pure aggregates, the co-aggregation of sHsps increases the distance 

between substrate molecules and keeps misfolded regions apart (Figure 12). This is 

in agreement with a better susceptibility of sHsp-substrate complexes to proteolysis 

(Basha et al., 2012). The enhanced spacing of misfolded conformers might improve 

the accessibility for chaperones, sustaining efficient disaggregation and refolding. In 

addition, it might reduce the force that Hsp100 chaperones need to extract misfolded 

species from the aggregate or enable Hsp70 to act alone (Mogk et al., 2003). 

How do sHsps influence the structure of aggregates at the molecular level? HX 

showed that Hsp26 and Hsp42 globally protect heat-induced MDH aggregates from 

HX in a concentration-dependent manner. Binding of sHsps to unfolded MDH 

segments is one reason for reduced deuteron incorporation. In addition, the detailed 

analysis of HX data revealed that many regions of sHsp-complexed MDH exist as a 

mixture of two populations: a low exchanging and a high exchanging population. In 

the low exchanging population the degree of deuteron incorporation (indicated by 

the position of the mass/charge isotope peaks; Figure 17) corresponds quite 

precisely to the one in the native state (referred to as ‘native-like’). The HX of the 

high-exchanging population is similar to that of the aggregated state. This structural 

heterogeneity was observed for most of the detected peptides and has not been 

reported in a previous study in which sHsp-substrate complexes were studied by HX 

(Cheng et al., 2008). The high similarity between the HX of the low exchanging 

population and of the same peptide from native MDH renders the possibility unlikely 

that this particular HX pattern originates from sHsp binding to the respective MDH 

regions. Thus, these observations indicate that sHsps retain native-like structure in 

bound MDH substrate molecules. This is in agreement with earlier findings 

suggesting that two core regions in MDH are preserved by pea sHsp PsHsp18.1, and 

wheat sHsp TaHsp16.9 (Cheng et al., 2008). In the present study, the comparison of 

sHsp-complexed and aggregated MDH showed that the degree of MDH protection by 

sHsps is larger and more global than previously noticed. The appearance of a mixture 

of the two populations might be explained by different scenarios: At 

substoichiometric MDH:sHsp ratio, not all MDH molecules are bound by sHsps and 

thus this portion aggregates. Additionally, interactions with sHsps might be 

insufficient to preserve native-like structures. When using an excess of sHsps over 

MDH, binding of sHsps to different substrate segments might occasionally fail to 

efficiently retain native-like states. The latter suggestion would assume that 

productive preservation of native-like structures requires binding of sHsps to specific 

parts of denaturing MDH.  

The findings from HX were substantiated by single-molecule measurements on MBP, 

which revealed that binding of Hsp42 suppresses tight interactions between 
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misfolded moieties and promotes native-like substrate folds. Similar to SecB 

(Bechtluft et al., 2007) and Trigger Factor (Mashaghi et al., 2013), Hsp42 does not 

seem to interact with completely folded native structures. Or, if any of those 

chaperones would interact, they would at least not significantly stabilize native MBP 

against forced unfolding. In presence of Hsp42 tight misfolds between misfolded MBP 

repeats were absent, which is consistent with observations from turbidity and FRET 

experiments. Though, weak misfolds were still measured, indicating that the 

suppression is not complete, possibly because client monomers have a very high 

effective local concentration in this approach. Prevention of the formation of tight 

aggregates has also been observed with SecB and Trigger Factor by using this assay. 

SecB was shown to keep MBP in an extended state, whereas Trigger Factor (Bechtluft 

et al., 2007; Mashaghi et al., 2013) promotes partially folded states, in which 

segments smaller than one MBP repeat retained some structural elements. In 

contrast, Hsp42 was observed to bind and stabilize only the near-native core 

structure of MBP, confirming results from HX.  

Remaining native-like structures could additionally increase the distance between 

misfolded conformers in presence of sHsps (as observed by FRET). The enhanced 

spacing together with preserved native-like folds might be the reason for increased 

solubility of sHsp-substrate complexes and their improved reactivation by ATP-

dependent chaperones. 

Where are the preferred sHsp binding sites in heat-denaturing substrates? Based on 

HX, binding sites cannot be unambiguously assigned. DSS crosslinking experiments 

identified the C-terminal region of MDH as a major site for sHsp interaction. This 

region is located at the periphery of the MDH dimer and is surface-exposed. 

Corresponding peptides show highest HX in the aggregated state and remained 

partially deprotected upon sHsp binding. One could imagine that these MDH sites 

unfold early upon heat treatment and are immediately bound by sHsps. This allows 

sHsps to capture early unfolding MDH intermediates, protecting the remaining part of 

complexed substrates from further unfolding and keeping parts of the substrate in a 

native-like state. This hypothesis is in agreement with previous findings, in which MS 

studies of pea Hsp18.1/substrate complexes revealed that the native quaternary 

structure of bound substrate proteins is at least partially retained (Stengel et al., 

2012). 

The co-aggregation of Hsp26 and Hsp42 with denaturing substrates was shown to 

differ in vivo: Hsp42 associates with misfolded species at physiological mild heat 

stress (37°C), whereas Hsp26 only binds to unfolded polypeptides upon severe heat 

shock (45°C) (Specht et al., 2011). Accordingly, in in vitro assays, Hsp42 is 

constitutively active, but Hsp26 requires temperature-induced activation (Haslbeck 
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et al., 1999). Concerning MDH, no major differences were detected between Hsp26 

and Hsp42. Both sHsps similarly suppressed the formation of big aggregates in 

turbidity and centrifugation assays, and the degree of MDH protection was 

comparable for Hsp26 and Hsp42. Only the FRET approach revealed that lower 

Hsp42 concentrations were needed to reduce the aggregation-caused FRET signal, 

suggesting a higher efficiency (Figure 12). When luciferase was used, clearly varying 

efficiencies were observed: Higher amounts of Hsp26 were required to suppress the 

formation of large turbid aggregates compared to Hsp42. In accordance, a previous 

study suggested that Hsp42 is the more efficient chaperone (Haslbeck et al., 2004). 

Furthermore, this is in agreement with observations that sHsps are less efficient with 

larger proteins, as they roughly bind equal amounts of their own weight (Basha et al., 

2012), and luciferase has a higher molecular weight than MDH.  

sHsp-bound MDH molecules did not exhibit enzyme activity, but smaller and more 

soluble complexes allowed for faster and more efficient MDH reactivation by ATP-

dependent yeast chaperones. This is in agreement with earlier findings for other 

model substrates (Cashikar et al., 2005; Haslbeck et al., 2005). Despite facilitated 

reactivation, MDH disaggregation from sHsp-substrate complexes remained Hsp104-

dependent. This contrasts with observations for E. coli chaperones. Here, the DnaK 

machinery alone was shown to reactivate proteins from small, soluble sHsp-substrate 

complexes. Only large, insoluble aggregates with incorporated sHsps required the 

complete DnaK-ClpB bi-chaperone system (Mogk et al., 2003).  

Where are the substrate binding sites within Hsp26 and Hsp42 and does substrate 

binding induce conformational changes in sHsps? In absence of substrate, HX of 

Hsp26 and Hsp42 revealed highly flexible N- and C-terminal extensions, displaying 

high deuteron incorporation. This is in accordance with HX profiles determined for 

other sHsp family members (Basha et al., 2013; Cheng et al., 2008; Wintrode et al., 

2003) and it explains the inability to resolve NTEs in X-ray crystallography (Basha 

et al., 2012). Interestingly, substrate binding induced the deprotection of two 

peptides located in the NTE and the ACD of Hsp26 (Figure 22). In how far these 

conformational changes might be functionally relevant, remains to be solved in 

further experiments. Upon substrate interaction, protection was mainly observed in 

N-terminal regions of the yeast sHsps, suggesting that these are the major binding 

sites. More specifically, DSS crosslinking revealed that Lys45 of Hsp26 formed most 

interactions with bound substrate. Remarkably, this residue is part of the 

thermosensor region in the middle domain of Hsp26 which undergoes a 

conformational change upon heat-activation (Franzmann et al., 2008). Consistently, 

deletion of N-terminal residues in Hsp26 was shown to affect substrate interaction 

(Haslbeck et al., 2004). DSS crosslinks between MDH and Hsp42 were not detected. 
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This might be explained by the absence of lysine residues (required for DSS-

crosslinking) in the N-terminal 171 aa of Hsp42, implying that this region is primarily 

involved in substrate interaction. This suggestion was confirmed by co-

immunoprecipitation experiments in vivo (done by Stephanie Miller; see below). Two 

more crosslinking approaches were tried to specify the Hsp42 substrate binding 

sites: Two Hsp42 mutants were generated, in which Gln20 or Arg35 of the Hsp42 

prion-like domain were replaced by lysines, as respective changes exist in Hsp42 

homologs. Still, no MDH-Hsp42 DSS-crosslinks could be detected. Furthermore, the 

use of acidic-specific crosslinkers did not reveal MDH-Hsp42 interaction sites.  

Altogether, these findings are in agreement with previous studies, reporting that the 

N-terminal arm is the major, but not exclusive player in substrate recognition 

(Ahrman et al., 2007; Jaya et al., 2009; McHaourab et al., 2009). 

 

Figure 49: Hsp26 and Hsp42 sequester proteins early during aggregation. Thereby they preserve native-
like structure of bound substrates and increase the distance between misfolded protein molecules, 
suppressing the formation of tight, large aggregates. These features contribute to facilitate chaperone-
mediated disaggregation. 

Summarized, the results show that sHsps do not simply suppress the formation of 

large aggregates. They associate fast with denaturing proteins by interacting with 

exposed, unfolded segments and protect the substrate from global unfolding 

preserving native-like substrate fold, or allow the refolding of denatured misfolded 

proteins back to native-like structures (Figure 49). Retained or regained native-like 
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structure and sHsp-caused spacing of misfolded proteins should contribute to 

facilitate chaperone-mediated disaggregation.  

4.2 The prion-like domain of Hsp42 couples substrate binding 
and phase transition of misfolded proteins 

Strikingly, Hsp42 is an outstanding sHsp as it exhibits two highly remarkable 

features: Firstly, Hsp42 contains an unusually long N-terminal domain. Secondly, via 

this domain, Hsp42 participates in the organized deposition of protein aggregates in 

yeast. More precisely, the NTE of Hsp42 was shown to be required for the 

sequestration of misfolded proteins in cytosolic aggregates (CytoQ) (Miller et al., 

2014). This process has cytoprotective functions, since hsp42Δ cells show severe 

growth disadvantage to wt cells during repetitive stress. So far, the molecular basis 

promoting CytoQ formation was unknown. Intriguingly, based on bioinformatic 

prediction, Hsp42 NTE can be divided into two prototypes of intrinsically disordered 

domains (IDD): A prion-like domain (enriched in Gln/Asn and Tyr) and an 

unstructured domain (high net charge, low hydrophobicity) (Alberti et al., 2009). 

IDDs are able to mediate self-interaction of proteins and interactions with other 

cellular factors. In so-called ‘phase transitions’, these properties allow the formation 

of self-organizing compartments, in which components can associate and dissociate. 

In addition to membrane-surrounded compartments, such self-organizing assemblies 

enable the clustering and orchestration of distinct cellular processes, and are thus 

crucial for homeostasis. In recent years, a number of those membrane-free 

compartments were described that are formed upon environmental stresses 

including heat, starvation and oxidative stress (Han et al., 2012; Kato et al., 2012; 

Narayanaswamy et al., 2009; Weber and Brangwynne, 2012). Often, these represent 

RNA granules, in which RNA-binding proteins mediate self-interaction via prion-like 

domains as well as the binding of mRNAs (Buchan, 2014). Similarly, Hsp42 acts as 

cytosolic protein aggregase, promoting the controlled phase separation during heat 

shock induced CytoQ formation.  In this study, we dissected the roles of each of the 

IDDs of the Hsp42 NTE in this process. We found that the prion-like domain mediates 

substrate binding and triggers the generation of cytosolic aggregates, while the 

unstructured domain has regulatory function. Counter-intuitively, in vitro, Hsp42 

shows normal chaperone activity, suppressing the formation of large aggregates 

when present at sufficiently high levels. I found that this function is also mediated by 

the prion-like domain. 

Initially, the analysis of Hsp42 deletion constructs revealed that the prion-like 

subdomain of Hsp42 NTE is essential for generating cytosolic aggregates (Stephanie 
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Miller, unpublished data). But is the prion-like domain also sufficient for triggering 

CytoQ formation? Domain swapping experiments showed that replacing the NTE of 

Hsp26 by the prion-like domain of Hsp42 could not restore CytoQ formation in 

hsp42Δ cells, suggesting for an additional role of the unstructured domain (Stephanie 

Miller, unpublished data). However, an Hsp42 deletion mutant lacking the 

unstructured domain was still able to generate cytosolic aggregates (Figure 50a). 

Thus, the prion-like domain is required, but not necessarily sufficient for CytoQ 

formation. Accordingly, in vitro, Hsp42Δ1-99 was not able to perform its chaperone 

functions, i.e. it did not suppress the formation of large aggregates or facilitate 

disaggregation. Lacking activity of Hsp42Δ1-99 is due to the fact that the prion-like 

domain is needed for substrate interaction, as shown in co-precipitation experiments 

(Stephanie Miller, unpublished data). In agreement, ANS binding indicated the 

exposure of hydrophobic surfaces by the prion-like domain.  

 

 

Figure 50: The prion-like domain of Hsp42 couples substrate binding and phase transition of unfolded 
protein substrates resulting in CytoQ formation. (a) Phenotypic effects and subcellular localization at 
heat shock conditions are shown for all Hsp42 variants. Hsp42 is colored dark red and the aggregates 
blue. (b) Domain organization of Hsp42 with the NTE subdomains (prion-like and unstructured domain) 
shown in yellow, the ACD in blue and the CTE in violet. Numbers of aa residues at domain boundaries are 
indicated. The prion-like domain (rod-shaped) mediates self-interaction of Hsp42 (oligomerization), binds 
unfolded protein substrates and promotes their sequestration at CytoQ.  

More detailed investigation of the isolated prion-like domain was not possible, since 

its high aggregation propensity hampered the purification. Surprisingly, deletion of 

the unstructured domain resulted in enhanced Hsp42 activity: In HX, increased 

protection of bound MDH substrate was observed. Furthermore, Hsp42Δ100-242 
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efficiently reduced the aggregation-caused FRET signal of substrates in vitro, and the 

formation of smaller substrate complexes was detected by EM. Consistently, in vivo, 

Hsp42Δ100-242 generated more, though smaller, aggregates, which persisted for 

longer times after stress release (Figure 50a). In addition, deletion of the 

unstructured domain resulted in increased substrate binding capacity of Hsp42. The 

reason for the prolonged existence of the aggregates generated by Hsp42Δ100-242 

remains to be investigated, since Hsp70/Hsp100-mediated substrate reactivation 

kinetics in vitro seems to be unaffected (Figure 34 and in vivo luciferase refolding 

assays by Stephanie Miller, unpublished data). 

In conclusion, these results indicate that the prion-like domain is required for Hsp42 

activity, whereas the unstructured domain has a negative regulatory function. 

How does the unstructured domain of the NTE modulate Hsp42 activity? Given the 

enhanced substrate binding capacity of Hsp42Δ100-242, the unstructured domain 

could act as a spacer restricting substrate access. Furthermore, it is required to 

localize Hsp42 to the cytosol, as Hsp42Δ100-242 was shown to accumulate inside the 

nucleus, in contrast to Hsp42 wt which is cytosolic (Stephanie Miller, unpublished 

data). Deletion of the unstructured domain results in higher oligomers, whereas 

deleting the prion-like domain yields smaller Hsp42 oligomers. Thus, besides the ACD 

(Wotton et al., 1996) the prion-like domain is involved in the oligomerization of 

Hsp42. The oligomer state of sHsps per se does, however, not report on its activity. 

For human HSPB1 (Hsp27), the dissociation of bigger oligomers into dimers results in 

enhanced activity (Shashidharamurthy et al., 2005). In other cases, as for wheat 

Hsp16.9, pea Hsp18.1, and the αB-crystallin, sHsp activation is accompanied by an 

increase of the oligomeric state (Benesch et al., 2003; Stengel et al., 2010; Sun and 

Liang, 1998). HX did not reveal any differences between the Hsp42 deletion variants, 

but the number of detected peptides is limited, which prevents to draw conclusions. 

Also, ANS binding to Hsp42Δ100-242 did not increase, excluding the possibility that 

enhanced substrate binding could arise from exposure of more hydrophobic surfaces, 

as seen during the activation of other sHsps (Peschek et al., 2013). Finally, quite 

similar rates for subunit exchange have been determined for Hsp42Δ100-242 and 

Hsp42 wt. Thus, the molecular basis for increased substrate binding and chaperone 

activity remains elusive and requires further investigation. For the human sHsp 

HspB6, an internal deletion of the NTE also increases chaperone activity (Heirbaut 

et al., 2014), suggesting a more widespread role of internal NTE segments in sHsp 

activity control. Regarding its negative regulatory function, the unstructured domain 

of Hsp42 might also provide a binding site for the prion-like domain, which could be 

displaced upon substrate binding.  
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Interestingly, other factors that interact with protein aggregates in yeast, Mca1 and 

Ubp2, also contain prion-like domains (Alberti et al., 2009; Hill et al., 2014; Lee et al., 

2010; Oling et al., 2014). These factors do not promote aggregate assembly, but 

facilitate protein disaggregation. The prion-like domain of Mca1 (Yca1) is essential for 

binding to aggregates (Lee et al., 2010). This might either occur by direct interactions 

with the misfolded proteins or by contacts with the prion-like or the unstructured 

domain of Hsp42 in Hsp42-substrate complexes.  

Which are the common features of CytoQ and RNA granules? Similar to the formation 

of RNA granules, it is a prion-like domain mediating the Hsp42-dependent 

sequestration of misfolded proteins in CytoQ. It becomes more and more obvious that 

prion-like domains play a crucial role in phase transitions: This is not only true for 

the formation of RNA granules but also - as demonstrated in this study - for protein 

aggregates. In further agreement with RNA granule formation, the accumulation of 

misfolded substrates, mainly originating from newly synthesized proteins, is needed 

for CytoQ formation (Stephanie Miller, unpublished data). In RNA granules, the prion-

like domains exclusively mediate self-association, while mRNA is bound via separate 

RNA binding domains. In contrast, in Hsp42 the prion-like domain couples both 

activities, binding of substrate and their organized sequestration in cytosolic 

aggregates. The prion-like domain of Hsp42 should not exhibit highly ordered cross-

β-structure, due to the lack of expanded Gln/Asn stretches and presence of structure-

interfering proline residues (Toombs et al., 2010). These sequence features might 

enable the dual activity of the prion-like domain during CytoQ formation: Efficient 

self-assembly, but still allowing the interaction with a variety of misfolded protein 

substrates (Figure 50b). This assumption is supported by the finding that replacing 

the Hsp42 NTE by the prion-forming NM-domains of Sup35 does not restore CytoQ 

formation in hsp42Δ cells (Stephanie Miller, unpublished data). One could speculate 

that substrate binding might induce conformational changes in the prion-like domain, 

facilitating self-assembly and triggering CytoQ formation. 

In summary, these results suggest that the prion-like domain of Hsp42 mediates 

substrate binding and promotes the aggregation of misfolded proteins into CytoQ 

compartments, whereas the unstructured domain has some regulatory function. The 

stimulated organized sequestration of deleterious polypeptide species protects the 

cellular environment and might coordinate protein quality control factors acting on 

and clearing aggregates. The search for further potential factors involved in this 

process and a deeper study of the unstructured domain, might reveal more details 

about the mechanisms that control CytoQ formation and its regulation.                               
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4.3 Chaperone-mediated disassembly of the native, dimeric 
DnaK substrate RepE 

The disassembly of protein aggregates by ATP-dependent chaperones was studied 

using the native Hsp70-substrate RepE. As a dimer RepE represses its own 

transcription, as a monomer it initiates the replication of the mini-F plasmid in E. coli. 

Monomerization of RepE is mediated by the concerted action of DnaK, DnaJ and GrpE. 

HX was used to study RepE wt and RepE54, a constitutively monomeric variant. 

Increased deuteron incorporation into RepE wt indicated that dimeric RepE is less 

compact than monomeric RepE54. This is in accordance with the determined crystal 

structures of RepE54 and RepE wt in complex with their respective DNA-binding 

elements (Komori et al., 1999; Nakamura et al., 2007). In dimeric RepE wt the N- and 

C-terminal domains are reoriented relative to each other, which is accompanied by 

the disruption of an interdomain β-sheet (comprising β1 and β1’) and secondary 

structural changes in the linker connecting both domains (Figure 41). These changes 

are reflected in HX (see chapter 3.5.1, Figure 40). In addition, HX revealed a strong 

deprotection of C-terminal peptide 219-240 in RepE wt compared to RepE54. 

Structural differences in this region were however not obvious in the crystal 

structures of both RepE variants. This discrepancy might be explained by the fact that 

the crystal structures were determined in complex with the respective DNA binding 

region, which might lead to further conformational rearrangements. In addition, HX is 

performed in solution, whereas crystal structure determination is not. Thus, the 

environmental conditions differed.  

Do DnaK and DnaJ interact with dimeric RepE wt and monomeric RepE54? 

Crosslinking experiments showed that DnaK can bind to both, dimeric and 

monomeric RepE, but only in absence of the respective DNA-binding element. Close 

proximity of the DNA binding site and a putative DnaK binding site suggests that 

bound DNA could hinder DnaK binding at the C-terminus of RepE. In contrast, DnaJ 

only binds to RepE dimers but not to RepE54 monomers as was demonstrated 

indirectly by measuring the synergistic stimulation of the ATPase activity of DnaK by 

DnaJ and substrate binding, and by HX experiments (see chapter 3.5.3). One 

explanation for this result could be that the stable binding by the DnaJ dimer requires 

two binding sites in RepE – one site per RepE monomer. This observation is 

contradictory to a previous work in which the authors claimed that DnaJ can bind two 

RepE54 monomers (Cuéllar et al., 2013). Specific crosslinking, similar to experiments 

with DnaK Q424C, could be performed to further attest the binding of DnaJ to 

monomeric or dimeric RepE. 
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Where are the DnaK and DnaJ binding sites in RepE and does chaperone binding 

induce conformational changes within the substrate? The binding site of DnaJ was not 

obvious in HX experiments, since none of the detected RepE peptides showed 

pronounced protection in presence of the cochaperone. DnaJ was shown to mainly 

bind substrates by interactions with aa side chains, and not by backbone contacts 

(Rüdiger et al., 2001). Therefore, DnaJ binding may not lead to alterations in HX. As 

observed for RepE wt, two RepE variants, carrying mutations in C-terminal putative 

DnaJ binding sites (RepE F146A-R150A and RepE R200A-P202A-R205A-R206A), 

caused the deprotection of peptide 184-204 in presence of DnaJ. They were thus able 

to interact with DnaJ. Binding of DnaJ might occur in the N-terminal part of RepE wt, 

which contains another putative DnaJ binding site (aa 96-116, identified by peptide 

library scanning). This is in agreement with previous findings showing that RepE 1-

139 is able to bind DnaJ (Cuéllar et al., 2013). The DnaJ-induced deprotection of C-

terminal peptide 184-204 in helix α3’ indicates enhanced solvent accessibility due to 

structural alterations (Figure 51a). These results are consistent with findings of a 

previous study in which the authors speculated about a DnaJ-induced conformational 

change in the RepE dimer, increasing the intermolecular distance (Cuéllar et al., 

2013). Interestingly, the deprotected region includes parts of the DNA binding site 

close to a putative DnaK binding site (Figure 51a). Consistently, peptide 184-204 is 

slightly protected in presence of operator DNA (IR-DNA).  

 

Figure 51: Regions that are markedly protected or deprotected in dimeric RepE wt upon binding of DnaJ 
and DnaK. The structure of dimeric RepE wt bound to operator DNA is shown (PDB ID 2Z9O) (Nakamura 
et al., 2007). The coloring is according to the HX behavior. (a) Regions that exchange more deuterons 
upon DnaJ are colored yellow, regions that exchange less deuterons upon DnaK binding are colored light 
blue. (b) Regions that exchange more deuterons upon simultaneous DnaK/DnaJ binding are colored red, 
regions that exchange less are colored dark blue. 

Although the presence of DnaJ even enhances the binding of RepE to IR-DNA (Figure 

46) (Cuéllar et al., 2013), one could speculate about a DnaJ-induced conformational 
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change, rendering the DnaK binding site more accessible in DNA-complexed RepE wt. 

HX of RepE wt in presence of DnaK resulted in slight protection of peptide 227-241, 

which includes parts of the presumable DnaK binding site (238-242)(Figure 51a).  

Concerted binding of DnaJ and DnaK induced pronounced conformational changes: 

While deuteron incorporation at the dimer interface was unchanged, parts of helix α4 

close to the dimer interface became markedly protected (Figure 51b). This finding 

could indicate a stabilization of this helix, which might be implicated in the 

monomerization mechanism. In addition, a strong deprotection of the C-terminal part 

of RepE wt was observed (Figure 51b). In contrast, HX comparing RepE wt and 

RepE54, showed a marked protection in C-terminal peptide 220-240. These 

deviations might result from the fact that GrpE was not included though it is required 

for the monomerization of RepE (Kawasaki et al., 1990). Likely, we see a transition 

state, which might be passed on the way to monomerization. Also, presence of iteron 

DNA might cause additional conformational changes. This idea is consistent with a 

previous hypothesis suggesting that the RepE dimer could be remodeled to a 

premonomer by chaperones. Upon binding to iteron DNA it could further be modified 

to adapt a very similar or identical conformation as monomeric RepE54 (Zzaman and 

Bastia, 2005). Finally, crosslinking experiments demonstrated that the concomitant 

presence of DnaJ and GrpE enabled the binding of DnaK to DNA-complexed RepE wt.  

In conclusion, I suggest the following mechanism (Figure 52):  

 

Figure 52: Suggested interactions of dimeric RepE with components of the DnaK chaperone system 
during monomerization. DnaK cannot bind to IR-DNA-complexed RepE dimers. Binding of DnaJ leads to 
increased binding affinity of RepE for IR-DNA and might facilitate the access of DnaK to its binding site. 
Only concomitant presence of DnaJ and GrpE enables the binding of DnaK to RepE, which results in RepE 
monomerization. DnaK-bound RepE monomers represent transition states, which bind to DR iteron-DNA, 
thereby assuming their final monomeric conformation and releasing DnaK. IR: inverted repeat; DR: direct 
repeat.  

In absence of cochaperone and nucleotide exchange factor, DnaK is not able to bind 

DNA-complexed RepE wt, possibly due to blocking of the DnaK binding site by DNA. 

Binding of DnaJ, most likely to the N-terminal region (aa 96-116), leads to enhanced 

affinity of RepE wt for DNA. Simultaneously, a conformational change might be 
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induced in the C-terminal region (aa 184-204) comprising parts of the DNA binding 

site. Deprotection of this segment indicates increased flexibility, which could facilitate 

the access of DnaK to its binding site (maybe in aa 238-242). However, binding of 

DnaK to RepE seems only possible in presence of both, DnaJ and GrpE. Chaperone-

mediated monomerization of the RepE dimer includes the reorientation of the N- and 

C-terminal domains resulting in sterical hindrance of the N-terminal domains. This 

conformational change causes the release of the RepE monomers from operator DNA. 

In order to avoid the reformation of the dimer, DnaK could remain bound to 

monomeric RepE. This hypothesis is supported by the fact that DnaK is able to bind 

monomeric RepE54. Subsequent binding of the RepE monomer to iteron DNA is 

accompanied by the release of DnaK and initiates the replication of the mini-F 

plasmid.  

Confirmation of the suggested chaperone binding sites may be achievable by 

performing site-specific crosslinking with cysteines introduced close to the possible 

binding sites. Alternatively, RepE variants, mutated in the potential interaction sites, 

could be tested for their ability to bind to DnaJ or DnaK. Such experiments should 

allow an unambiguous identification of the binding sites. To gain better insights into 

the mechanism of RepE monomerization and to verify the assumptions above, further 

HX experiments with RepE wt are required. They should include the complete DnaK 

chaperone system (DnaK/DnaJ/GrpE) and the respective DNA binding elements. 

Binding of DnaJ alone as well as the concerted binding of DnaJ and DnaK led to 

deprotection in RepE, which might indicate higher flexibility in these regions. If DnaJ 

would really bind in the N-terminal part of RepE wt, the induced conformational 

change would occur distant from the DnaJ binding site. Interestingly, similar 

observations were made for the heat shock transcription factor σ32: DnaK and DnaJ 

are both able to induce local destabilization of secondary structure elements in parts 

of σ32 which are not close to the respective chaperone binding site (Rodriguez et al., 

2008). One might speculate that this is a more general phenomenon and that DnaK 

and DnaJ have similar effects on other native or misfolded protein substrates or even 

protein aggregates.   

 

 

 





5 Material and Methods 

5.1 Material 

5.1.1 Software and equipment 

Computer software 

Adobe Acrobat 9 Pro Adobe Systems Inc. 

Adobe Photoshop CS5 Adobe Systems Inc. 

Adobe Illustrator CS3 Adobe Systems Inc. 

Analyst QS with BioAnalyst extensions Applied Biosystems/MDS SCIEX 

Astra software Wyatt Technology Co. 

Image J National Institutes of Health 

ImageReader LAS-4000 FUJIFILM Co. 

ImageReader LAS-3000 FUJIFILM Co. 

Multi Gauge FUJIFILM Co. 

Prism 5 GraphPad Software, Inc. 

PyMol Delano Scientific 

UltraVIEW ERS Imaging Suite PerkinElmer 

 

Equipment 

Agarose gel chamber and trays ZMBH workshop 

ÄKTA purifier system Amersham Pharmacia Biotech/GE 
Healthcare 

ÄKTA purifier system micro Amersham Pharmacia Biotech/GE 
Healthcare 

Balances PG603-S and PB1502-S Mettler-Toledo International, Inc. 

Black-Ray B-100AP UV lamp Ultraviolet Products 

Centrifuges 5424 and 5424R Eppendorf AG 

Centrifuges Biofuge pico/ Multifuge 3SR Heraeus Instruments GmbH 

Centrifuge Sorval RC6 Thermo Scientific Inc. 

Criterion™ Cell, electrophoresis chamber Bio-Rad Laboratories, Inc. 

EM900 microscope  Zeiss 

FLA-3000 Fluorescent Image Analyzer FUJIFILM Co. 

French Pressure Cell SLM/Aminco 
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GenoSmart gel documentation system VWR 

HPLC pumps: 1100 Series Capillary 
Pump and 1100 Series Binary Pump 

Agilent Technologies, Inc. 

Incubator MIR-254 SANYO Electric Biomedical Co. Ltd. 

Intelli-Mixer neolab 

ImageQuant LAS-4000, biomolecular 
imager 

FUJIFILM Co. 

ISF1-X (Climo-Shaker) Kuhner 

LS 55 Fluorescence Spectrometer PerkinElmer 

LS6000 IC scintillation counter Beckman 

Lumat LB 9507 Berthold Technologies Gmbh & Co. KG 

Magnetic stirrer MR 3001 K Heidolph 

Microwave KOR 6D07 Daewoo 

MiniDawn instrument Wyatt Technology Co. 

Mini Trans-Blot® Cell Bio-Rad Laboratories, Inc. 

Mini-PROTEAN Cell, electrophoresis cell Bio-Rad Laboratories, Inc. 

NanoDrop ND-2000 Thermo Scientific Inc. 

Novaspec Plus GE Healthcare 

Orbitryp Elite mass spectrometer Thermo Scientific Inc. 

pH-Meter FE20 and pH-electrode LE438 Metter-Toledo International, Inc. 

Power supply ST 606 T Gibco BRL Life technologies, Inc. 

QSTAR Pulsar I Hybrid MS/MS System Applied Biosystems/MDS SCIEX 

Shaker 3018 GFL 

Sonifier S-450 BRANSON 

Spectrophotometer SPECORD 205 Analytik Jena AG 

Spectrophotometer UV-1601 Shimadzu 

Speed-Vac Bachofer 

Thermomixer comfort Eppendorf AG 

T-Gradient Thermocycler Biometra GmbH 

Tpersonal Thermocycler Biometra Gmbh 

Trans-Blot® Turbo™ Bio-Rad Laboratories, Inc. 

UltiMate 3000 RSLCnano System  Thermo Scientific Inc. 

Vortex-Genie 2 neoLab 

Western blot apparatus midi/maxi ZMBH workshop 

 

Chromatography columns and materials 

Amylose resin New England Biolabs 

BioBasic-8, 50 x 0.5 mm Thermo Scientific Inc. 
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CNBr-activated Sepharose 4 Fast Flow Amersham Pharmacia Biotech/GE 
Healthcare 

MagneHis™ Ni-Particles Promega 

Ni-NTA agarose Qiagen 

PD-10 desalting columns Amersham Pharmacia Biotech/GE 
Healthcare 

POROS 10 R1 Applied Biosystems 

POROS 20 AL Applied Biosystems 

Protino Ni-IDA sepharose Macherey-Nagel 

Sephacryl S-300 16/60 Amersham Pharmacia Biotech/GE 
Healthcare 

SP-Sepharose Amersham Pharmacia Biotech/GE 
Healthcare 

Superdex 200 10/3000 GL Amersham Pharmacia Biotech/GE 
Healthcare 

Superdex 200 HiLoad 16/600 Amersham Pharmacia Biotech/GE 
Healthcare 

Superose 6 10/300 GL Amersham Pharmacia Biotech/GE 
Healthcare 

WTC-0305N5 Wyatt Technology Co. 

 

5.1.2 Expendable items 

Amicon Concentrators Millipore 

Cellulose acetate filters, pore size 0.2 μm Sartorius AG 

Cellulose dialysis tubing Fisherbrand 

Costar 96 well plates Corning Incorporated 

Criterion™ TGX™ Precast Gels, various 
percentages, 18 and 26 wells 

Bio-Rad Laboratories, Inc. 

Cuvettes Sarstedt AG & Co. 

Low protein binding tubes, 1.5 ml Sarstedt AG & Co. 

Lumat PP tubes, 5 ml Greiner Bio-One International AG 

Microcentrifuge tubes, 1.5 ml, 2 ml Sarstedt AG & Co. 

PCR tubes, 200 ml Sarstedt AG & Co. 

Petri dishes Greiner 

Polypropylene conical centrifuge tubes, 
15 ml, 50 ml 

Sarstedt AG & Co. 

PVDF membrane, Roti-PVDF Carl Roth GmbH + Co. KG 

RunBlue SDS-PAGE Precast Gels 
8x10 cm, various percentages, 12 and 17 
wells 

Expedeon Ltd. 
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Scintillation vials Zinsser Analytic 

Slide-A-Lyzer dialysis cassettes Thermo Scientific Inc. 

Sterile filters Filtropur, 0.2 µM Sarstedt AG & Co. 

Sterile bottle filters Sarstedt AG & Co. 

Vivaspin concentrators Sartorius AG 

Whatman Paper, 3 mm Schleicher & Schuell BioScience GmbH 

 

5.1.3 Chemicals 

If not stated otherwise, all chemicals were analytical grade and obtained from 

AppliChem, Fluka, Merck, Roth or Sigma-Aldrich. Only high purity solvents (HPLC 

grade) were used. 

Enzymes and protease inhibitors 

Aprotinin AppliChem 

DNase I Sigma-Aldrich Co. 

Leupeptin AppliChem 

Malate dehydrogenase Roche 

Apomyoglobin Sigma-Aldrich Co. 

Pepsin Roche 

Pepstatin A AppliChem 

Phenylmethylsulfonyl Fluoride (PMSF) Thermo Scientific Inc. 

Phusion®High-Fidelity DNA polymerase New England Biolabs GmbH 

PreScission protease Sigma-Aldrich Co., Lab collection 

Pyruvate kinase Sigma-Aldrich Co. 

Restriction enzymes New England Biolabs, Thermo Scientific 
Inc. 

T4 DNA Ligase Thermo Scientific Inc. 

Ulp1 Lab collection 

 

Standards and kits 

Bio-Rad Protein Assay Dye Reagent 
Concentrate (5 x Bradford reagent) 

Bio-Rad Laboratories, Inc. 

GenElute™ Gel Extraction Kit Sigma-Aldrich Co. 

GenElute™ Miniprep Kit Sigma-Aldrich Co. 

GenElute™ PCR purification Kit Sigma-Aldrich Co. 

GeneRuler 1 kb DNA Ladder (#SM0312) Thermo Scientific Inc. 
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PageRuler Prestained Protein Ladder  

(#26616) 

Thermo Scientific Inc. 

QIAquick Gel Extraction Kit QIAGEN GmbH 

QIAprep Spin Miniprep Kit QIAGEN Gmbh 

QIAquick PCR Purification Kit QIAGEN GmbH 

Trans-Blot® Turbo™ 5x Transfer Buffer Bio-Rad Laboratories, Inc. 

 

Antibiotics 

All antibiotic stock solutions were sterile-filtered. The final concentrations are 

indicated. 

Ampicillin 100 µg/ml in water Carl Roth GmbH  

Chloramphenicol 20 µg/ml in 100% ethanol Sigma-Aldrich Co. 

Gentamycin 20 µg/ml in water Carl Roth GmbH 

Kanamycin 50 μg/ml in water Carl Roth GmbH 

Spectinomycin 50 µg/ml water Abcam 

Tetracyclin 25 µg/ml 50% ethanol Merck 

 

Other chemicals and reagents 

Bromphenol Blue Bio-Rad Laboratories, Inc. 

D2O (99.9%) Carl Roth GmbH  

ECF Substrate GE Healthcare Life Sciences 

Luciferin (sodium salt) AppliChem GmbH 

 

5.1.4 Media 

All media were autoclaved. For the preparation of agar plates the medium was 

supplemented with 2% (w/v) agar prior to autoclaving. 

LB (Luria-Bertani) medium 10 g/l tryptone 

 5 g/l yeast extract 

 5 g/l NaCl 

  

2x YT medium 16 g/l tryptone 

 10 g/l yeast extract 

 5 g/l NaCl 
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5.1.5 Antibodies, primers, plasmids and strains  

Antibodies 

Table 2: All antibodies are listed that were used in this study. The appropriate dilutions are indicated.  

Antibody Generated in Dilution Source 

α-Hsp42 rabbit 1 : 10 000 J. Buchner/M. 
Haslbeck 

α-Hsp26 rabbit 1 : 4000 Lab collection 

α-MDH rabbit 1 : 1000 Lab collection 

α-RepE rabbit 1 : 10 000 Lab collection 

α-DnaK rabbit 1 : 10 000 Lab collection 

Alkaline 
Phosphatase 
coupled anti-
rabbit-IgG (H+L)  

goat 1 : 20 000 Vector 
Laboratories, Inc. 

 

Primers 

All primers were custom synthesized by Sigma-Aldrich. 

Table 3: The nucleotide sequences of all primers that were used in this study are listed. 

Name Sequence Source 

F_3 MDH-YFP-A GGCCATCATATGGCGAAAGTGGCGGTGCTGGGTGCGAG
C 

This 
study 

H_4 MDH-YFP-B GGCCATCTCGAGCTTGTACAGCTCGTCCATGCCGAGAGT This 
study 

A2_MBP-Pre-
Scission-Hsp42 
fw 

aacaacaacaacaataacaataacaacaacctcgggCTTGAGGTTCT
CTTCGAGGGGCCCgtaccggaattcATGAGTTTTTATCAACC
A 

This 
study 

B2_MBP-Pre-
Scission-Hsp42 
rev 

TGGTTGATAAAAACTCATgaattccggtacGGGCCCCTCGAA
GAGAACCTCAAGcccgaggttgttgttattgttattgttgttgttgtt 

This 
study 

13_Fw EcoRI 
HSP42 

gcacGaattcATGAGTTTTTATCAACCATCCC Stephanie 
Miller 

49_Rv 
HSP42FLAG 
BamHI 

gcacGgatccTCACTTGTCATCGTCGTCCTTGTAATCATTT
TCTACCGTAGGGTTGGGA 

Stephanie 
Miller 

141_Fw_Hsp42_
ND99_EcoR1 

gcacGaattcATGGTGGGTGACAGCGGCACT Stephanie 
Miller 

2 direct repeats 
of RepE iteron 

ctgtCTGTGA CAAATTGCCC TTAAccCTGT 
GACAAATTGC CCTCAGatacTGAGGGCAATTTGTCACAG 

This 
study 
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DNA, hairpin ggTTAAGGGC AATTTGTCAC Agacag 

Inverted repeat 
of RepE iteron 
DNA, hairpin 

ctgtCTGTGA CAAATTGCCC TTAAccCTGT 
GACAAATTGC CCTCAGatac CTGAGGGCAA 

TTTGTCACAG ggTTAAGGGC AATTTGTCAC Agacag 

This 
study 

 

Plasmids 

Table 4: All plasmids that were used in this study are listed. Their antibiotic resistances are indicated. 

Label Name Resistance Source 

pSU12 pET24a(+) Kn Lab collection 

pSU61 pET24a(+)-MDH-YFP Kn This study 

pSU33 pCA528-Hsp26 Kn Sebastian Specht 

pSM020 pMalE-Hsp42-FLAG Amp Stephanie Miller 

pSU34 pMalE-Hsp42-FLAG (Pre-Scission 
cleavage site) 

Amp This study 

pSM046 pRS303-pHsp42-
Hsp42deltaUnstrucuturedDFLAG-
Termhsp42 

Amp Stephanie Miller 

pSU64 pMalE-Hsp42Δ1-99-FLAG (Pre-
Scission cleavage site) 

Amp This study 

pSU65 pMalE-Hsp42Δ100-242-FLAG 
(Pre-Scission cleavage site) 

Amp This study 

pSU9 pCA528-RepEwt Kn Fernanda 
Rodriguez 

pSU10 pMPM-A4-RepEwt-C10His Amp Fernanda 
Rodriguez 

pSU5 pCA528-RepE54 Kn Fernanda 
Rodriguez 

pSU7 pCA528- RepEwt-Y133A-P137A-
F138A 

Kn Fernanda 
Rodriguez 

pSU8 pCA528- RepEwt-R200A-P202A-
R205A-R206A 

Kn Fernanda 
Rodriguez 

pSU6 pCA528-RepEwt-F146A-R150A Kn Fernanda 
Rodriguez 

 

Strains 

Table 5: All strains that were used in this study are listed. 

Name Genotype Source 

XL1-Blue recA1 endA1 gyrA96 thi-1 Stratagene 
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hsdR17 supE44 relA1 lac [F´ 

proAB lacIqZDM15 Tn10 (Tetr)] 

BL21 Rosetta F- ompT lon hsdSB(rB m B) gal 

dcm pRARE (CmR) l(DE3) 

Novagen 

ArcticExpress™ 
(DE3)RIL strain 

E. coli B F– ompT hsdS(rB– mB–) dcm+ 
Tetr gal λ(DE3) endA Hte [cpn10cpn60 
Gentr] [argU ileY leuW Strr] 

Stratagene 

 

5.2 Methods 

5.2.1 Molecular biology methods  

Agarose gel electrophoresis 

For the preparation of flat bed agarose gels, agarose powder was mixed with 0.5 x 

TBE buffer (0.8% or 1% w/v) and heated in the microwave until the agarose was 

completely dissolved. After cooling down to 50-60°C, ethidium bromide (3 µl of a 1% 

(w/v) stock solution per 50 ml) was added and the gels were poured in a flat bed tray 

with combs to generate loading pockets. When the gels were solid, DNA samples were 

mixed with DNA gel loading buffer, applied to the gel and DNA fragments were 

separated by electrophoresis at 180 V in 0.5 x TBE running buffer. The DNA 

fragments were visualized by using a UV documentation system. For size 

determination 1 µl of the GeneRuler 1 kb DNA ladder co-migrated next to the DNA 

samples.  

TBE buffer 45 mM Tris 

 60 mM boric acid 

 1 mM EDTA 

  

6 x DNA loading dye 40% (w/v) sucrose 

 0.2% (w/v) Orange G 

 

Polymerase chain reaction (PCR) 

The total volume of the PCR reaction mix was 50 µl and contained 1 x Phusion buffer, 

2% (v/v) DMSO, 50-100 ng template DNA, 200 µM of dNTP mix, 10 pmol of each 

primer (forward and reverse) and 1 U DNA Phusion polymerase. For site-directed 

mutagenesis E. coli cells from a colony grown on a LB agar plate served as a template. 
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The temperature cycling steps are listed below. The PCR reaction product was 

purified by using the GenElute™ PCR purification or the QIAquick PCR Purification 

Kit.  If needed, PCR products were separated by agarose gel electrophoresis and the 

appropriate DNA fragment was isolated by applying the GenElute™ Gel Extraction or 

the QIAquick Gel Extraction Kit according to the manufacturer’s instructions. For site-

directed mutagenesis the QuikChange® PCR protocol (Braman et al., 1996) was 

followed. Upon completion of the PCR reaction, the methylated template DNA was 

digested by 10 U DpnI for 1 h at 37°C and the reaction mix was transformed into 

E. coli XL1-Blue. 

10 x Phusion buffer 200 mM Tris pH 8.8 

 100 mM (NH4)2SO4 

 500 mM KCl 

 1% (v/v) Triton X-100 

 20 mM MgSO4 

 

Step Temperature Time Cycles 

Denaturation 98°C 5 min  

Denaturation 98°C 40 s  

Annealing 50-60°C 40 s 30 x 

Elongation 72°C 15 s/kb  

Elongation 72°C 5 min  

 

Restriction digest of DNA 

The total volume of the restriction digest mixture was 80 µl, containing DNA 

fragments generated by PCR or vector DNA (maximal amounts of 3 µg). Buffer 

conditions and relative concentrations of restriction enzymes in a double digest were 

used according to the manufacturer’s recommendation. The digest was performed for 

1.5 h at 37°C. The restriction digested DNA fragments were separated by agarose gel 

electrophoresis and purified by the GenElute™ Gel Extraction or the QIAquick Gel 

Extraction Kit according to the manufacturer’s instructions.  

Ligation of DNA fragments 

The ligation of restriction digested DNA fragments was carried out in a total volume 

of 20 µl using 1 x ligation buffer and 1 µl T4 DNA Ligase. At least a 5-fold molar excess 

of insert over vector DNA was used. The ligation was carried out for 30-60 min at RT. 
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As a religation control, only restricted vector was present during ligation. 

Subsequently, the ligation mixture was transformed into E. coli XL1-Blue. 

2 x ligation buffer 132 mM Tris pH 7.6 

 20 mM MgCl2 

 2 mM DTT 

 2 mM ATP 

 15% PEG 6000 

    

Preparation of competent cells and transformation of E. coli 

For the preparation of CaCl2-competent E. coli cells, cells were grown at 30°C in 50 ml 

LB-medium supplemented with the appropriate antibiotics. When the culture 

reached an OD600 of approximately 0.3, cells were incubated on ice for 10 min and 

centrifuged for 10 min at 4500 rpm and 4°C. The supernatant was discarded, cells 

were resuspended in 50 ml ice-cold, sterile 100 mM CaCl2 solution and centrifuged 

for 10 min at 4500 rpm and 4°C. The supernatant was discarded and cells were 

resuspended in 1 ml ice-cold, sterile 100 mM CaCl2 solution containing 15% glycerol. 

Cells were split into 50 µl or 100 µl aliquots and snap-frozen in liquid nitrogen. 

For the transformation procedure, an aliquot of CaCl2-competent E. coli cells were 

thawed on ice and 1 µl of plasmid DNA or 20 µl ligation mixture was added. Cells and 

DNA were gently mixed, incubated on ice for 30 min and transferred to 42°C for 90 s. 

After cooling on ice for 1 min, 500 µl of LB medium was added and cells were 

incubated at 37°C during shaking for 1.5 h. Subsequently, the cells were plated on LB-

agar containing the appropriate antibiotics and incubated at 37°C over night. 

Isolation of plasmid DNA from E. coli  

Plasmid DNA was purified from E. coli cells using the GenElute™ Miniprep Kit or the 

QIAprep Spin Miniprep Kit according to the manufacturer’s instructions. Plasmid DNA 

originating from a cloning experiment was sent to GATC Biotech AG for sequencing. 

Plasmids constructed in this study 

pSU61 was constructed by cloning MDH-YFP amplified by PCR from pDS56-MDH-YFP 

into pET24a(+) via NdeI (5’) and XhoI (3’) restriction sites. 

In order to build pSU34, the Enterokinase cleavage site in pSM020 was changed to a 

PreScission cleavage site by QuikChange® PCR using primers A2_MBP-Pre-Scission-

Hsp42 fw and B2_MBP-Pre-Scission-Hsp42 rev.  
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pSU64 was obtained by amplifying Hsp42Δ1-99 by PCR from pSU34 using primers  

141_Fw_Hsp42_ND99_EcoR1 and 49_Rv HSP42FLAG BamHI. The PCR product was 

cloned into pSU34 via EcoRI (5’) and BamHI (3’) restriction sites, replacing Hsp42 wt-

FLAG. 

To generate pSU65, Hsp42Δ100-242FLAG was amplified by PCR from pSM046 using 

primers 13_Fw EcoRI HSP42 and 49_Rv HSP42FLAG BamHI. The PCR product was 

cloned into pSU34 via EcoRI (5’) and BamHI (3’) restriction sites, replacing Hsp42 wt-

FLAG. 

5.2.2 Protein purification 

If not stated otherwise, all proteins were purified from E. coli BL21 STAR [DE3] 

rosetta. After cell harvest, cells were resuspended in the appropriate buffer and 

DNase I and protease inhibitors (PMSF, Aprotinin, Leupeptin and Pepstatin A) were 

added. Cells were lysed via French press and centrifuged 2 x at 17 000 rpm for 30 min 

at 4°C. Proteins whose purification is not described here were either taken from the 

stock of the lab or were purified according to existing protocols. 

Purification of His6-MDH 

His6-MDH was expressed from pDS56-MDH (lab collection) in E. coli XL1 blue placIq. 

Cells were grown at 37°C in 2 x YT containing ampicillin and spectinomycin. At 

OD600 0.6, protein production was induced by adding 0.1 mM IPTG. After incubation 

at 20°C over night, cells were resuspended in MDH buffer, lysed and centrifuged. The 

supernatant was incubated with Ni-IDA for 1 h at 4°C, washed with 4 CV MDH buffer, 

with 2 CV of high salt MDH buffer and eluted with 200 mM imidazole in MDH buffer. 

MDH containing fractions were dialysed against MDH buffer containing 10% glycerol.  

MDH buffer 50 mM Tris-HCl pH 7.6 

 150 mM KCl 

 20 mM MgCl2 

 2 mM DTT 

  

High salt MDH buffer 50 mM Tris-HCl pH 7.6 

 1 M KCl 

 20 mM MgCl2 

 2 mM DTT 
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MDH-YFP-His6 

MDH-YFP was expressed from pSU61 with a C-terminal His6-tag. Protein production 

and Ni-IDA chromatography was done as described for His6-MDH, followed by size 

exclusion using a Superdex75 16/60 column equilibrated in MDH buffer. 

Purification of Hsp26 

pCA528-Hsp26 was transformed into E. coli BL21 STAR [DE3] rosetta. Cells grew at 

37°C in 2 x YT medium containing kanamycin and chloramphenicol. When the cell 

culture reached OD600 0.6, Hsp26 production was induced by adding 0.5 mM IPTG at 

30°C.  After 3.5 h, cells were harvested, resuspended in lysis buffer, lysed and 

centrifuged. The supernatant was removed and the pellet was resuspended in 

denaturing buffer. After stirring for 2 h at RT the sample was centrifuged 

(17 000 rpm, 30 min, 4°C) to remove insoluble compounds. The supernatant was 

incubated with Ni-IDA for 1 h at 4°C, washed with 10 CV of denaturing buffer, and 

with 2 CV of 2 M urea buffer. Protein was eluted with 250 mM imidazole in 2 M urea 

buffer and Hsp26 containing fractions were pooled. Ulp1 was added to cleave the 

SUMO-tag during dialysis against lysis buffer at 4°C over night. Then, the protein was 

incubated with Ni-IDA for 1 h at 4°C to remove the cleaved tag and loaded onto a 

Sephacryl S-300 HR 16/60 column equilibrated with lysis buffer. Hsp26 containing 

fractions were pooled and concentrated using a Vivaspin concentrator (cut-off 

10 kDa). 

Lysis buffer 40 mM HEPES-KOH pH 7.5 

 150 mM KCl 

 5% glycerol 

 5 mM β-mercaptoethanol 

  

Denaturing buffer 40 mM HEPES-KOH pH 7.5 

 150 mM KCl 

 8 M urea 

 5 mM β-mercaptoethanol 

  

2 M urea buffer 40 mM HEPES-KOH pH 7.5 

 150 mM KCl 

 2 M urea 

 5 mM β-mercaptoethanol 
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Purification of Hsp42 wt, Hsp42Δ1-99 and Hsp42Δ100-242 

C-terminally FLAG-tagged Hsp42 and its deletion variants were cloned into pMal-c2E 

creating a C-terminal fused Maltose binding protein (MBP)-tag. The Enterokinase 

cleavage site in pMal-c2E was changed to a PreScission cleavage site by site-directed 

mutagenesis. The resulting plasmids, pSU34, pSU64 and pSU65, were each 

transformed into ArcticExpressTM. Cells were grown in 2 x YT medium supplemented 

with ampicillin and gentamycin at 37°C to OD600 0.9. Cell cultures were cooled down 

to 13°C, 0.5 mM IPTG was added and protein was expressed at 13°C over night. Cells 

were resuspended in Hsp42 buffer, lysed and centrifuged. The soluble extract was 

incubated with amylose resin and the manufacturer’s protocol was followed. In brief, 

the resin was washed with water and equilibrated with Hsp42 buffer. Soluble cell 

extract was incubated with the amylose resin for 1 h at 4°C, unbound protein was 

washed using Hsp42 buffer and protein was eluted with 20 mM maltose. Hsp42 

containing fractions were pooled and the MBP-tag was cleaved at 4°C over night by 

PreScission protease, followed by size exclusion using a Sephacryl S-300 HR 16/60 

column equilibrated in Hsp42 buffer. Fractions containing Hsp42 were unified and 

concentrated by dialysis against Hsp42 buffer containing 10% (w/v) PEG 20 000 

using a dialysis tube with the pore size 3500 MWCO. 

Hsp42 buffer 50 mM Tris-HCl pH 7.5 

 200 mM NaCl 

 2 mM DTT 

 10% glycerol 

 

Purification of RepE wt, RepE54 and RepE point mutants 

pCA528 carrying RepE wt, RepE54, RepE-F146A-R150A, RepE- Y133A-P137A-F138A 

or RepE-R200A-P202A-R205A-R206A (pSU5, pSU6, pSU7, pSU8 and pSU9) were 

transformed into E. coli BL21 STAR [DE3] rosetta. Cells were grown at 37°C in 2 x YT 

supplemented with kanamycin and chloramphenicol. When the cell culture reached 

OD600 0.7, 1 mM IPTG was added at 30°C. After 4 h, cells were harvested, 

resuspended in lysis buffer, lysed and centrifuged. Soluble cell extract was incubated 

with Ni-NTA for 1 h at 4°C and washed with 20 CV wash buffer containing 20 mM 

imidazole, 20 CV high salt buffer and 20 CV ATP buffer. Protein was eluted with 

200 mM imidazole in wash buffer. Subsequently, RepE containing fractions were 

pooled, diluted 5-fold using dilution buffer, incubated with Ulp1 for 2 h at 4°C and 

loaded onto a 10 ml SP-Sepharose (self-packed) equilibrated with buffer A. RepE was 

eluted with a 15 CV gradient from 100 mM to 1 M NaCl by mixing buffer A and B. 

RepE-Y133A-P137A-F138A was strongly degraded, so that purification was not 
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possible for this construct. His10-RepE was purified from pSU10 similar to the other 

RepE variants. However, the addition of Ulp1 was omitted. 

Lysis buffer 40 mM Na2HPO4/NaH2PO4 pH 7.9 

 450 mM NaCl 

 0.1 mM EDTA 

 7 mM β-mercaptoethanol 

 10% glycerol 

  

Wash buffer 40 mM Na2HPO4/NaH2PO4 pH 7.9 

 100 mM NaCl 

 10% glycerol 

  

High salt buffer 40 mM Na2HPO4/NaH2PO4 pH 7.9 

 1 M KCl 

 10% glycerol 

  

ATP buffer 40 mM Na2HPO4/NaH2PO4 pH 7.9 

 100 mM NaCl 

 10% glycerol 

 10 mM ATP 

 25 mM MgCl2 

  

Dilution buffer 40 mM Na2HPO4/NaH2PO4 pH 7.9 

 100 mM NaCl 

 10% glycerol 

  

Buffer A 40 mM HEPES-KOH pH 6.6 

 100 mM NaCl 

 0.1 mM EDTA 

 7 mM β-mercaptoethanol 

 10% glycerol 

  

Buffer B: Buffer A but 1 M NaCl 
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5.2.3 Protein analysis 

Determination of protein concentrations 

Protein concentrations were determined by using Bradford reagent (Bio-Rad 

Laboratories, Inc.) following the manufacturer’s instructions. BSA was used to create 

a standard curve (Bradford, 1976). 

SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate and analyze proteins based on their ability to move within an electrical 

current, which is a function of the length of their polypeptide chains or of their 

molecular weight (Laemmli, 1970). Criterion™TGX™Precast Gels (Bio-Rad 

Laboratories, Inc.) or RunBlue SDS-PAGE Precast Gels 8x10 cm (Expedeon) of 

different percentages were used, depending on the size of the proteins to be 

separated. If not stated differently, protein samples were mixed with sample buffer 

and incubated for 5 min at 95°C. Samples were applied onto the gel and separated at 

constant voltage of 150-180 V SDS running buffer (for Expedeon gels) or RunBlue 

Rapid buffer (for RunBlue gels). 

4 x SDS sample buffer 200 mM Tris-HCl pH 6.8 

 8% (w/v) SDS 

 0.4% (w/v) bromphenole blue 

 40% (v/v) glycerol 

 7% (v/v) β-mercaptoethanol 

  

SDS running buffer 193 mM glycine 

 25 mM Tris 

 0.1% (w/v) SDS 

  

RunBlue Rapid buffer 30 mM MOPS pH 8.2 

 60 mM Tris 

 0.1% (w/v) SDS 

 6.5 mM sodium bisulfite 
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Visualization and analysis of proteins separated by SDS-PAGE 

Coomassie staining 

For visualizing of all proteins after a SDS-PAGE, the SDS gel was incubated in 

Coomassie staining solution for at least 30 min at RT on the shaker. Unbound dye was 

removed by incubation and shaking in destaining solution at RT. 

Coomassie staining solution 40% (v/v) methanol 

 0.25% (w/v) Coomassie Brilliant Blue  R-
250 

 10% (v/v) acetic acid 

  

Destaining solution 40% (v/v) methanol 

 10% (v/v) acetic acid 

  

Western blot analysis 

Western blot analysis was performed to specifically visualize a distinct protein in a 

protein mixture or at low concentrations (Renart et al., 1979; Towbin et al., 1979). 

After separation by SDS-PAGE, proteins were transferred from the SDS gel onto a 

PVDF membrane using the Trans-Blot Turbo system from Bio-Rad according to the 

manufacturer’s protocol. To reduce unspecific binding of primary and secondary 

antibodies, the membrane was incubated with TBS-T containing 3% (w/v) BSA for 

1 h at RT or at 4°C over night on the shaker. The primary antibody was diluted in TBS-

T containing 3% (w/v) BSA to the appropriate concentration and added to the 

membrane. After incubation for 1-2 h at RT or at 4°C over night on the shaker, the 

membrane was washed 3 x for 10 min with TBS-T. Then the membrane was 

incubated with the appropriate dilution of the secondary antibody in TBS-T for at 

least 1 h. After washing the membrane 3 x for 10 min with TBS-T, the membrane was 

transferred onto a clean glass plate and coated with ECF solution (GE Healthcare) in 

order to visualize the desired protein. After 10 min, the reaction was stopped by 

drying the membrane within two layers of whatman paper. The fluorescent product 

was detected using the FLA-3000 Fluoroimager or LAS-4000 imaging system (both 

FUJIFILM Co.).   

TBS-T 10 mM Tris 

 150 mM NaCl 

 pH adjusted to 8.0 with HCl 

 0.5% (v/v) Tween-20 
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5.2.4 Biochemical methods 

HKM buffer 50 mM HEPES-KOH pH 7.6 

 50 mM KCl 

 5 mM MgCl2 

 2 mM DTT 

 

Aggregation assays 

Heat-induced protein aggregation was either detected by observing the light 

scattering signal or by centrifugation of the heat-treated sample and analysis of the 

supernatant and pellet fractions. 

For light scattering measurements 0.5 µM His6-MDH or 0.1 µM luciferase in HKM 

buffer was denatured at 47°C or 43°C, respectively, in absence or presence of various 

sHsp concentrations. Turbidity was measured at an excitation and emission 

wavelength of 550 nm or 600 nm for His6-MDH or luciferase, respectively 

(PerkinElmer fluorescence spectrometer). 

For centrifugation assays His6-MDH (2 µM) in HKM buffer was denatured for 30 min 

at 47°C in presence or absence of sHsps followed by 30 min centrifugation 

(14 000 rpm, 4°C). Supernatants and pellets were analyzed by SDS-PAGE followed by 

Coomassie staining. 

Disaggregation and refolding of thermally aggregated MDH 

His6-MDH (0.5 μM) was denatured at 47°C for 30 min in HKM buffer in presence or 

absence of sHsps. Protein disaggregation and refolding were started by diluting 

aggregated protein or sHsp-substrate complexes and chaperones 1:1 in HKM buffer 

containing 0.1 mg/ml BSA (final concentrations: 2 µM Ssa1, 1 µM Sis1, 0.1 µM Sse1, 

1 µM Hsp104, 1 µM GroEL, 1 µM GroES). The reactivation occurred at 30°C in 

presence of an ATP-regenerating system (3 mM phosphoenolpyruvate; 20 µg/ml 

pyruvate kinase; 2 mM ATP) and was monitored as published previously (Mogk et al., 

2003) using an Amersham Biosciences Novaspec Plus™ spectrophotometer.  

Disaggregation and refolding of thermally aggregated luciferase 

Luciferase (0.1 µM) was dentured at 43°C for 15 min in HKM buffer in presence or 

absence of sHsps. Protein disaggregation and refolding were started by diluting 

aggregated protein or sHsp-substrate complexes and chaperones 1:1 in HKM buffer 

(final concentrations: 2 µM Ssa1, 1 µM Sis1, 0.1 µM Sse1, 1 µM Hsp104). The 
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reactivation occurred at 30°C in presence of an ATP-regenerating system (3 mM 

phosphoenolpyruvate; 20 µg/ml pyruvate kinase; 2 mM ATP) and was monitored as 

published previously (Goloubinoff et al., 1999) using a spectrophotometer (Analytik 

Jena AG, Shimadzu).  

3H labeling of His6-MDH and size exclusion chromatography of sHsp-substrate 

complexes after incubation with GroEL-trap 

Radioactive labeling was performed by incubating His6-MDH in HKM buffer with N-

Succinimidyl [2,3-3H] propionate (Amersham; 40 Ci/mmol) for 3 h at RT. Free 

unreacted N-Succinimidyl [2,3-3H] propionate was removed by dialysis against HKM 

buffer. 1 µM 3H-MDH and 5 µM of sHsps were heat treated for 30 min at 47°C. The 

formed sHsp-substrate complexes were incubated for 10 min at 30°C with 2 mM ATP 

in presence or absence of 14 µM GroEL-trap. As a control 3H-MDH was aggregated in 

presence of 2 mM ATP and 14 µM GroEL-trap for 30 min at 47°C. All samples were 

separated at RT by SuperoseTM 6 10/300 GL size exclusion chromatography in HKM 

buffer containing 5% (v/v) glycerol. Collected fractions were quantified by 

scintillation counting (LS6000 IC scintillation counter, Beckman). 

Förster energy resonance transfer during thermal aggregation of MDH 

MDH (Roche) was labeled with 7-diethylcoumarin-3-carboxylic acid succinimidyl 

ester (Molecular Probes) according to the manufacturer’s protocol. The labeled MDH 

and a C-terminally YFP-tagged MDH variant (each 0.25 µM) were mixed in pre-heated 

HKM buffer and the FRET signal was recorded at 527 nm in a PerkinElmer 

fluorescence spectrometer at 47°C. 

Static light scattering 

Static light scattering measurements were performed at RT by use of a miniDawn 

instrument coupled to WTC-0305N5 (both Wyatt Technology Co.) size exclusion 

chromatography runs in HKM buffer. 50 µM solutions of Hsp42 wt or variants were 

injected and molar masses were determined by Astra software (Wyatt Technology 

Co.). 

Subunit exchange of Hsp42 wt and Hsp42Δ100-242 

Hsp42 wt and Hsp42Δ100-242 in HKM buffer were labeled with 7-

diethylaminocoumarin-3-carboxylic acid succinimidyl ester and Succinimidyl 6-(N-

(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoate (NBD-X, SE) (both Thermo 

Fisher Sci.) for 2 h at RT according to the manufacturer’s protocol. Unreacted dye was 
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separated by PD10 columns and subsequent dialysis against HKM buffer. The donor- 

and acceptor-labeled proteins (each 1 µM in HKM buffer) were mixed and incubated 

at 25°C over night. A 10-fold excess of unlabeled protein was added and fluorescence 

spectra were recorded at 30°C in the range 440-640 nm at an excitation of 420 nm 

using a PerkinElmer fluorescence spectrometer. The observed increase of donor 

fluorescence with time was fitted using an exponential two phase association 

equation in Prism 5 (Graphpad Software).  

Binding of 1-Anilino-8-napthalene-sulfonate (ANS) 

The stock of 100 mM ANS was dissolved in DMSO. 10 µM of Hsp42 wt or deletion 

variants in PBS buffer were mixed with 1 mM ANS and incubated for 15 min at 30°C. 

Fluorescence spectra were recorded using PerkinElmer fluorescence spectrometer at 

30°C in the range of 440 to 540 nm with an excitation at 424 nm. 

Electrophoretic mobility shift assay (EMSA) 

The EMSAs were performed in HKM buffer in a total volume of 15 µl. 80 nM Cy3-

labeled hairpin DNA (either 2 direct repeats of RepE operator DNA or inverted 

repeats of RepE promotor DNA, both as hairpin structure), 160 or 320 nM RepE wt or 

RepE54, 640 nM DnaK/1 mM ATP, 160 nM DnaJ and 320 nM GrpE were mixed as 

indicated and incubated for 30 min at 30°C. The samples were run on a 1% agarose 

gel (without ethidium bromide) at 150 V and the fluorescent DNA was detected using 

the LAS-3000 Fluoroimager. 

Crosslinking experiments using benzophenone-4-iodoacetamide (BPIA) 

The labeling of DnaKQ424C with BPIA crosslinker was performed according to the 

manufacturer’s protocol. DnaKQ424C was dialyzed against HKM buffer lacking DTT, a 

20-fold excess of a 100 mM BPIA stock in DMSO was added during vortexing. After 

incubation for 2.5 h at RT, unreacted BPIA was removed by dialysis against HKM 

buffer. Crosslinking experiments were performed in 25 mM HEPES-KOH pH 7.6, 

50 mM KCl, 5 mM MgCl2 in a total volume of 25 µl. 6 µM DnaKQ424C-BPIA, 6 µM 

RepE wt, 6 µM DnaJ, 6 µM GrpE, 12 µM RepE promotor DNA and 5 mM ATP were 

mixed in the indicated combinations and incubated for 1 h at 30°C. When RepE and 

DnaJ were present, RepE and DnaJ were mixed and pre-incubated for 10 min at 30°C. 

Subsequently, the proteins were crosslinked by irradiating with UV light (365 nm, 

100 W) at a distance of 3 cm for 10 min on ice. 
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Transmission negative stain electron microscopy 

Heat-induced aggregates or sHsp/protein complexes were formed as described in the 

aggregation assays. Images were recorded using a Zeiss EM900 microscope. 

5.2.5 Amide hydrogen exchange 

Immobilization of proteins 

Immobilization of pepsin on POROS 20 AL 

160 mg pepsin (Roche) was dissolved in 4 ml 50 mM sodium citrate pH 4.4, mixed 

with 0.5 g POROS 20 AL medium and incubated for 5 min at RT in the overhead 

shaker. Two crumbs of NaBH3CN were added. Then, 4 ml of 2 M Na2SO4 were slowly 

(distributed over 2 h) pipetted into the suspension and the mixture was incubated at 

4°C over night. The addition of 160 µl 2 M Tris-HCl pH 7.6 was followed by 4 h of 

incubation at 4°C in the overhead shaker. The medium with immobilized pepsin was 

washed 6-8 times with 0.1% HCO2H by centrifugation for 3 min at 700 rpm and 

stored in 0.1% HCO2H with 0.05% NaN3 at 4°C. 

Immobilization of DnaK on CNBr-activated sepharose 

DnaK was immobilized on CNBr-activated Sepharose 4 Fast Flow (Amersham 

Pharmacia) according to the manufacturer’s instructions. In short, DnaK was dialyzed 

against coupling buffer (200 mM NaHCO3, pH 8.3, 500 mM NaCl). 250 mg CNBr-

activated Sepharose was suspended in cold 1 mM HCl, incubated for 30 min, washed 

with 15 volumes cold 1 mM HCl and equilibrated with coupling buffer. The pre-

activated gel was then mixed with DnaK and incubated for 4 h at RT in the overhead 

shaker. The reaction was stopped by washing with 1 M ethanolamine for 2 h at RT. 

The medium with immobilized DnaK was washed with HKM buffer, HKM buffer with 

1 M NaCl and HKM buffer with 0.05% NaN3 and stored at 4°C. 

Column packing 

In this study the trap column and the pepsin column were self-packed according to a 

procedure similar to published protocols (Southan et al., 1999). Tubing, HPLC fittings, 

unions, filters, and screens were obtained from Upchurch. The analytical column was 

a BioBasic-8 (50x0.5 mm) column from Thermo Scientific. 

For the trap column POROS 50 R1 bulk material (Applied Biosystems) was packed 

into a 2x20 mm column body. For the pepsin column POROS AL 20 material with 
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immobilized pepsin was packed into four 2x20 mm column bodies, which were 

connected after the packing procedure. 

Preparation of D2O-based buffers and fully deuterated protein controls  

For the preparation of D2O-based buffers, 500 µl of the 10 x concentrated buffer was 

prepared using H2O. The buffer was frozen in liquid nitrogen and lyophilized using a 

vacuum centrifuge. The dried buffer was dissolved in 500 µl of D2O and dried in the 

vacuum centrifuge. The procedure was repeated three times. Prior to use, the 10 x 

buffer stocks were diluted using D2O. 

Fully deuterated controls were obtained by denaturing the protein in 6 M GdmCl in 

the usual buffer for 1 h at 30°C. Then the prodecure was followed as described for 

D2O-based buffers. The final volume in which the protein was dissolved was similar to 

the starting volume.  

In-line peptic digestion/Rapid-desalting HPLC setup 

The setup consisted of two HPLC pumps (Agilent 1100 Series), a Theodyne injection 

valve (Model 7725i) with a 200 µl steel sample loop and a 2-position/10-port valve 

with microelectric actuator (Valco C2-1000EP6) as published (Rist et al., 2003). For 

sample loading and desalting 0.05% TFA was pumped with 400 µl/min by pump A. 

For eluting proteins, pump B pumped 90% ACN containing 0.05% TFA with 

17.5 µl/min. Deuterated, quenched samples were loaded via the injection valve and 

passed through the pepsin column by pump A. The resulting peptic fragments were 

then trapped on a reversed-phase trap column. After 3 min of desalting, the 10-port 

valve was switched to elute the peptides with organic solvent from pump B. The 

peptides were further separated by the analytical column and transferred into the 

electrospray ion source of the quadrupole time-of-flight mass spectrometer (QSTAR 

Pulsar, Applied Biosystems) using the following gradient: 0-10 min: 15-55% B, 10-

11 min: 55-100% B, 11-12 min: 100-15% B (with A: 0.05% TFA and B: 90% ACN with 

0.05% TFA). The whole setup was immersed in an ice bath to minimize back 

exchange. 

Amide hydrogen exchange experiments 

Setup for amide hydrogen exchange experiments with RepE 

The amide hydrogen exchange reactions were initiated by a 20 to 50-fold dilution of 

100 pmol protein into D2O-based HKM buffer and incubation at 30°C. After a certain 

time, the reaction was quenched by decreasing the temperature to 0°C and the pH to 
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2.2 using quench buffer (500 mM K-phosphate buffer, pH 2.2). The quenched sample 

was injected into the MS-coupled HPLC setup. 

For HX of RepE wt or RepE variants in presence of DnaJ, 100 pmol RepE and 

200 pmol DnaJ were pre-incubated for 10 min at 30°C before performing the HX for 

30 s at 30°C.  

For HX of RepE wt and DnaK, immobilized DnaK packed in a column and RepE-His10 

were used. In each experiment, the column packed with DnaK was washed with HKM 

buffer alone and then with HKM buffer containing 1 mM ATP. After incubation for 

5 min at 30°C and another wash with HKM buffer, 300 pMol RepE-His10 was loaded 

and the column was incubated for 30 min at 30°C. Unbound protein was removed by 

washing with HKM buffer and D2O-based buffer was loaded onto the column. After a 

certain time, the HX was quenched and the protein was simultaneously eluted with 

ice-cold, low pH quench buffer (500 mM K-phosphate buffer, pH 2.2). The eluted 

protein was injected into the mass spectrometer-coupled HPLC setup.  

Here, HX of His10-RepE alone was done by using a Ni-NTA column. The procedure was 

similar as described for immobilized DnaK, but incubation with ATP was omitted. 

After the experiment, the Ni-NTA was regenerated by washing the column with 0.1 M 

NiCl2. 

Setup for amide hydrogen exchange experiments with heat-induced aggregates 

Native His6-MDH (2 µM, 400 µl), thermally aggregated His6-MDH or sHsp-MDH 

complexes (both formed for 30 min at 47°C) in HKM buffer were incubated with 50 µl 

MagneHis™ Ni-Particles (Promega) for 15 min at RT in the overhead shaker. The 

supernatant was removed and the beads were washed with HKM buffer. D2O-based 

HKM buffer was added to initiate amide proton-deuteron exchange at 30°C. After 30 s 

the exchange reaction was quenched by adding ice-cold low pH quench buffer 

(500 mM K-phosphate buffer, pH 2.2) containing pepsin (25 µg/ml, Roche). Protein 

was digested from the Ni-Particles for 1 min on ice. Quenched, digested samples were 

injected into the HPLC setup with online peptic digest and analyzed on an 

electrospray ionization quadrupole time-of-flight mass spectrometer as described 

above. For HX experiments in which changes within sHsps upon substrate binding 

were determined, the sHsp-MDH complexes were formed at a ratio of 1 to 2.5 or 2 for 

Hsp26 or Hsp42, respectively. Before binding to the Ni-Particles, the excess of free 

sHsps was separated by SuperoseTM 6 10/300 GL size exclusion chromatography. 
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Data analysis of amide hydrogen exchange experiments 

Analysis of deuteron incorporation into peptides was performed by using AnalystQS 

software (Applied Biosystems) as described (Rist et al., 2003). For the calibration of 

the mass spectrometer apomyoglobin was used (Sigma-Aldrich Co.). The deuterium 

content of the peptides was obtained by calculating the average mass difference 

between the isotopic envelopes of the deuterated and the undeuterated peptides. In 

order to correct for deuterium losses due to back-exchange, a 0% deuterium control 

(i.e. peptides of the unexchanged protein) and a 100% deuterium control (i.e. 

peptides of the fully deuterated protein) were used according to the following 

formula (Zhang and Smith, 1993): 

𝐷 =  
< 𝑚 >  − < 𝑚0% >

< 𝑚100% >  − < 𝑚0% >
∙ 𝑁 

Here, D is the number of deuterons present in a particular peptic peptide after 

incubation of the protein in D2O, N is the total number of exchangeable amide 

hydrogens in this peptide and <m> is the experimentally determined average mass. 

<m0%> and <m100%> are the average molecular masses of the same peptide obtained 

by analysis of the non-deuterated and the fully deuterated controls, respectively.  

5.2.6 Crosslinking mass spectrometry 

DSS crosslinking  

Native His6-MDH (5 µM, 200 µl), thermally aggregated His6-MDH or sHsp-MDH 

complexes (both formed for 30 min at 47°C) in HKM buffer were mixed with 2.7 µl 

DSS stock solution (1.25 mM each of DSS-d0 and 1.25 mM DSS-d12 in DMF; Creative 

Molecules, Canada). Samples were incubated for 30 min at 30°C in an Eppendorf 

Thermomixer mixing at 300 rpm. Remaining crosslinker was quenched by adding 

aqueous NH4HCO3 to a final concentration of 90 mM and incubation for 10 min at 

35°C and 600 rpm. RapiGest™ SF Surfactant (Waters), urea and NH4HCO3 were added 

to final concentrations of 1 µg/µl, 8 M and 300 mM, respectively. Samples were 

sonicated for 1 min, DTT was added (10 mM final concentration) followed by 30 min 

incubation at 37°C and 600 rpm. Aqueous iodacetamide (GE Healthcare) solution was 

added to a final concentration of 15 mM. After incubation for 30 min at RT in the dark, 

DTT was added (final concentration 10 mM) for 5 min at RT. Subsequently, lysyl 

endopeptidase (mass spectrometry grade; Wako Chemicals) was added at an enzyme-

to-substrate ratio of 1:100, followed by incubation for 6 h at 37°C and 600 rpm. The 

solution was adjusted to 2 M urea and trypsin (Thermo Scientific Inc.) was included at 

a 1:50 enzyme-to-substrate-ratio. After incubation over night at 37°C and 600 rpm, 

samples were acidified to 2% formic acid and purified by solid-phase extraction using 
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50 mg Sep-Pak tC18 cartridges (Waters) according to the manufacturer’s protocol. 

The eluate was evaporated to dryness in a vacuum centrifuge.  

Fractionation of crosslinked peptides by size exclusion chromatography 

Samples were solved in 50 µl of SEC mobile phase (water/acetonitrile/trifluoroacetic 

acid, 70:30:0.1) and size exclusion chromatography was performed as previously 

described (Leitner et al., 2012).  Briefly, crosslinked peptides were separated on a 

Superdex Peptide PC 3.2/30 column using a GE ÄKTA micro system. The flow rate 

was set to 50 µl/min using the SEC mobile phase (water/acetonitrile/trifluoroacetic 

acid 70:30:0.1). UV absorption at 215 nm and 280 nm was recorded and 100 µl 

fractions were collected. Crosslinked peptides eluted at retention volumes 0.9-1.4 ml 

and were evaporated to dryness using a vacuum centrifuge. 

Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) 

Peptides were reconstituted in 0.1% TFA and analyzed by an Orbitrap Elite mass 

spectrometer coupled to an UltiMate 3000 RSLCnano System (both Thermo Scientific 

Inc.). After trapping, samples were loaded on a 75 μm x 250 mm Acclaim PepMap 

(Thermo Scientific Inc.) column with buffer A (0.1% formic acid (FA), 1% acetonitrile 

(ACN), 98.9% H2O) and eluted with buffer B (0.1% FA, 10% H2O, 89.9% ACN). Peptide 

separation was achieved with a 300 nl/min flow rate using the following gradient: 0-

3 min: 4% B, 3-90 min: 4-45% B, 90-95 min: 45-95% B, 95-101 min 95% B. The mass 

spectrometer was operated in data dependent mode with the top 20 most intense 

ions (resolution: 60 000) selected for fragmentation in the range of m/z 350-1600 by 

collision induced dissociation at 40%. Singly and doubly charged peptides as well as 

unassigned were excluded and dynamic exclusion duration was set to 60 s, list size of 

500 and a mass window of 20 ppm. 

Data analysis of crosslinked peptides 

Resulting Thermo Xcalibur . raw files were converted to mzXML format using 

MSConvert (ProteoWizard version 3.0). Crosslinked peptides were analyzed using 

xQuest and xProphet as previously described (Leitner et al., 2014). In brief, masses of 

12.07531 Da difference for DSS-d0 and DSS-d12 were paired requiring a charge state 

of 3-7 within a 1 min retention time window of triggering. Spectra were searched 

against a database containing the UniProt entries of the target proteins as well as the 

reverse sequence. For xQuest the following search parameters were used:  Two 

maximal missed cleavages, peptide length: 4-50 amino acids, fixed modifications: 

carbamidomethylated Cys, variable modification: oxidized Met, number of variable 

modification: 1, mass shift of the light crosslinker: 138.0680796, mass shift of mono-
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links: 156.0786442 and 155.0964278 Da, MS1 tolerance: 10 ppm, MS2 tolerance: 

0.2 Da for common and 0.3 Da for crosslink ions. For filtering the search results a 

target/decoy false discovery rate of 5% was estimated using xProphet as described 

(Walzthoeni et al., 2012); the following filtering criteria were used: MS1 mass 

tolerance window: -4 to 7 ppm, ld score > 20, min delta score of 0.95. 
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Appendix 

 

Figure 53: Hsp26 and Hsp42 globally reduce HX in sHsp-complexed MDH. (a) Difference in deuteron 
incorporation between heat-induced MDH/Hsp26 complexes and aggregated (left panel) or native (right 
panel) MDH. (b) Difference in deuteron incorporation between heat-induced MDH/Hsp42 complexes and 
aggregated (left panel) or native (right panel) MDH. The number of deuterons relative to the total 
number of exchangeable deuterons in the respective peptide is shown. Peptides in gray could not be 
detected. 
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Figure 54: sHsps stabilize segments of bound MDH in a native-like state. Bimodal distribution of isotope 
peaks of indicated MDH peptides derived from MDH/Hsp26 (a) and MDH/Hsp42 (b) complexes. Left 
panels: Intensity versus m/z diagrams for different peptic MDH fragments after 30 s HX at 30°C. Right 
panels: Fractions of native-like and aggregate-like populations calculated for respective peptides. 

 

 

 

Figure 55: Deuteron incorporation into sHsps after 30 s incubation in D2O at 30°C. Difference in deuteron 
incorporation between MDH-complexed and free Hsp26 (a) or Hsp42 (b). The data were corrected for 
deuteron losses due to back-exchange using a 100% deuterated control (i.e. protein in which all 
exchangeable protons have been replaced by deuterons). NTE: N-terminal extension, CTE: C-terminal 
extension, Pr-like: Prion-like domain, unstr: unstructured domain. The number of deuterons relative to the 
total number of exchangeable deuterons in the respective peptide is shown.  
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Figure 56: Hsp42Δ1-99 hardly protects heat-induced MDH aggregates from HX. Difference in deuteron 
incorporation between heat-induced MDH/Hsp42Δ1-99 complexes and aggregated (left panel) or native 
(right panel) MDH in (a) absolute deuterons and (b) deuterons relative to the total number of 
exchangeable deuterons in the respective peptide. Peptides in gray could not be detected. 
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Figure 57: Hsp42Δ100-242 efficiently reduces HX in sHsp-complexed MDH. Difference in deuteron 
incorporation between heat-induced MDH/Hsp42Δ100-242 complexes and aggregated (left panel) or 
native (right panel) MDH in (a) absolute deuterons and (b) deuterons relative to the total number of 
exchangeable deuterons in the respective peptide. Peptides in gray could not be detected. 
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Figure 58: Hsp42Δ100-242 stabilizes segments of bound MDH in a native-like state. Bimodal distribution 
of isotope peaks of indicated MDH peptides derived from MDH/Hsp42Δ1-99 (a) and MDH/Hsp42Δ100-
242 (b) complexes. Left panels: Intensity versus m/z diagrams for different peptic MDH fragments after 
30 s HX at 30°C. Right panels: Fractions of native-like and aggregate-like populations calculated for 
respective peptides. 
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Table 6: Crosslink products between MDH and Hsp26 after DSS crosslinking of MDH/Hsp26 complexes 
were identified by mass spectrometry. 
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