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Zusammenfassung

Die Untersuchung von Abhängigkeitsstrukturen spielt in der heutigen Statistik eine

wichtige Rolle. Innerhalb der letzten Jahrzehnte wurden zahlreiche Abhängigkeitsmaße

eingeführt, sowohl für univariate als auch für multivariate Zufallsvektoren. In dieser

Thesis betrachten wir den Distanzkorrelationskoeffizienten, ein neues Abhängigkeitsmaß

für Zufallsvariablen beliebiger Dimension, welches von Székely, Rizzo und Bakirov [102]

and Székely und Rizzo [100] eingeführt wurde. Insbesondere definieren wir eine af-

fin invariante Version der Distanzkorrelation und berechnen diesen Koeffizienten für

zahlreiche Verteilungen: für die bivariate und die multivariate Normalverteilung, für

die multivariate Laplaceverteilung und für bestimmte bivariate Gamma- und Poisson-

verteilungen. Darüber hinaus zeigen wir eine nützliche Reihenentwicklung der Dis-

tanzkovarianz für die Klasse der Lancasterverteilungen auf und leiten eine Verallge-

meinerung eines Integrals her, welches in der Theorie der Distanzkorrelation eine fun-

damentale Rolle spielt.

Ferner untersuchen wir eine Problemstellung zum Clustern von Zufallsvariablen,

welches in Gaußschen graphischen Modellen mit niederem Rang auftritt. Im Falle fester

Stichprobengrößen stellen wir fest, dass dieses Problem mathematisch equivalent zum

Problem des Clustern von Daten in unabhängige Unterräume ist. In der asymptotischen

Situation leiten wir einen Schätzer her, welcher im Falle verrauschter Daten konsistent

die Clusterstruktur erfasst.





Abstract

The investigation of dependence structures plays a major role in contemporary statis-

tics. During the last decades, numerous dependence measures for both univariate and

multivariate random variables have been established. In this thesis, we study the

distance correlation coefficient, a novel measure of dependence for random vectors of

arbitrary dimension, which has been introduced by Székely, Rizzo and Bakirov [102]

and Székely and Rizzo [100]. In particular, we define an affinely invariant version of

distance correlation and calculate this coefficient for numerous distributions: for the

bivariate and the multivariate normal distribution, for the multivariate Laplace and

for certain bivariate gamma and Poisson distributions. Moreover, we present a useful

series representation of distance covariance for the class of Lancaster distributions and

derive a generalization of an integral, which plays a fundamental role in the theory of

distance correlation.

We further investigate a variable clustering problem, which arises in low rank Gaus-

sian graphical models. In the case of fixed sample size, we discover that this problem

is mathematically equivalent to the subspace clustering problem of data for indepen-

dent subspaces. In the asymptotic setting, we derive an estimator, which consistently

recovers the cluster structure in the case of noisy data.
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Chapter 1

Introduction

One of the essential problems in statistics is the investigation of the dependence struc-

ture between random variables. The mathematical study of these dependencies goes

back at least to Gauss’ Theoria combinationis observationum erroribus minimis obnox-

iae [28] and the theoretical literature on this topic, which has emerged since then, is

immense. The profound statistical analysis of the dependencies between random quan-

tities of any kind is indispensable in all contemporary nature and social sciences; even

outside the world of research, some of the ideas originated from this field are ubiqui-

tous. The undoubtedly most celebrated concept in daily life is the notion of correlation,

which alone brings up nearly one hundred million search results on Google.

The word correlation, which is colloquially often used as a synonym for Pearson cor-

relation, is actually used to describe various normalized dependence measures. These

coefficients attempt to quantify the strength of dependence between two random vari-

ables via one single number (usually in the interval ([−1, 1]). While, in general, this

single number is naturally not sufficient to express the potentially elaborate dependence

structure between two random variables, it is mostly easy to interpret and estimate,

which predestine those coefficients for the use in practice. During the last decades, a

vast amount for dependence measures between random variables and random vectors

have been proposed. Let us mention the Pearson correlation coefficient, Spearman’s

rank correlation coefficient [94], Goodman’s and Kruskal’s gamma [32] and the max-

imum information coefficient [77] as examples for measures in bivariate analysis. For

measures between multivariate distributions, we adduce the canonical correlation coef-

ficient [39] and the total correlation [111].

Each of the above mentioned coefficients has its advantages and disadvantages and it

is not trivial to decide which measure to choose in a certain application. In his 1959

paper, Rényi [76] postulates a set of seven properties, which - according to him - a

”natural” measure of dependence should fulfill.
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(i) δ(X, Y ) is defined for any pair of random variables X and Y , neither of them

being constant with probability 1.

(ii) δ(X, Y ) = δ(Y,X).

(iii) 0 ≤ δ(X, Y ) ≤ 1.

(iv) δ(X, Y ) = 0 if and only if X and Y are independent.

(v) δ(X, Y ) = 1 if either X = g(Y ) or Y = f(X) where g and f are Borel-measurable

functions.

(vi) If f : R→ R and g : R→ R are bijective functions, δ(f(X), g(Y )) = δ(X, Y ).

(vii) If the joint distribution of X and Y is normal, then δ(X, Y ) = |ρ(X, Y )|.

He further shows that the maximal correlation coefficient

m(X, Y ) = sup
f,g Borel-measurable

ρPearson(f(X), g(Y )),

introduced by Gebelein in 1941 [29] satisfies all of these postulates. Yet, while every

item in the preceding list obviously represent a desirable property of a dependence mea-

sure, the maximal correlation coefficient suffers from drawbacks in other respects. In

particular, both sample and population measure are nontrivial to determine, moreover

the calculation of the sample measures in practice is computationally hard.

Merely half a decade ago, Székely, Rizzo and Bakirov [102] and Székely and Rizzo

[100] introduced the distance correlation as a new measure of dependence. V(X, Y ),

the distance covariance between X and Y is defined to be the positive square-root of

V2(X, Y ) with

V2(X, Y ) ∝
∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2

‖s‖p+1 ‖t‖q+1
ds dt, (1.0.1)

where fX,Y is the joint characteristic function of (X, Y ), and fX(s) = fX,Y (s, 0) and

fY (t) = fX,Y (0, t) are the corresponding marginal characteristic functions. Then the

distance correlation coefficient between X and Y is given by

R(X, Y ) =
V(X, Y )√

V(X,X)V(Y, Y )
. (1.0.2)

Since the characteristic function fX,Y factorizes only in the case of independence, it can

be easily seen, that - as the maximal correlation coefficient - the distance correlation
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is 0 if and only if X and Y are independent. Moreover, different to the Pearson corre-

lation or the maximal correlation coefficient, it applies to random vectors of arbitrary

dimensions, rather than to univariate quantities only. Finally, and most importantly,

its sample measure is astonishingly simple to define and can be computed in reasonable

time. To evaluate it, we find the pairwise distances between the sample values for the

first variable, and center the resulting distance matrix; then do the same for the second

variable. The square of the sample distance covariance equals the average entry in

the componentwise or Schur product of the two centered distance matrices. Given the

theoretical appeal of the population quantity, and the striking simplicity of the sam-

ple version, it is not surprising that the distance covariance is experiencing a wealth

of applications, despite having been introduced only a few years ago. As examples of

the ubiquity of distance correlation methods in practice, we note the results on large

astrophysical databases [79], on familial relationships and mortality [53] and long-range

concerted motion in proteins [82].

While its sample measure is both easy to explain and compute, the calculation of the

population distance correlation coefficients remains an intractable problem generally.

For half a decade, Székely’s result on the distance correlation for the bivariate normal

distribution [102] has been the only success in that direction. Hence, the state of dis-

tance correlation theory until then that the empirical coefficients could be calculated

readily but their population counterparts were unknown, generally. On being given

random vectors X and Y , the fundamental obstacle in calculating the population dis-

tance correlation coefficient (1.0.2) is the computation of the singular integral (1.0.1).

In particular, the singular nature of the integrand precludes evaluation of the integral

by expanding the numerator, |fX,Y (s, t)− fX(s) fY (t)|2, and subsequent term-by-term

integration of each of the resulting three terms. The first part (Chapters 3-5) of this

work is dedicated to novel approaches to tackle these analytical problems. In particular,

we will derive the distance correlation coefficients for several multivariate distributions.

The second part of this work (Chapter 6) deals with dependence structures in a differ-

ent way. In particular, we will investigate systems, where groups of random variables

are linearly dependent, i.e. any of these random variables can be exactly or approxi-

mately expressed by a linear combination of the other variables in that group. This

phenomenon, which is denoted by the terms collinearity or multicollinearity, leads to

difficulties in many statistical problems. It classically arises as a problem in multiple

linear regression [113]. Aside other issues, it leads to an ill-conditioned (or even non-

defined) inverse covariance matrix of the predictor variables and hence often leads to a

poor estimate of the regression coefficients.

The motivation for the clustering task, we will consider in Chapter 6, originates from

15



the field of Gaussian graphical models (GGMs). Gaussian graphical models (GGMs)

[52, 62], also referred to as covariance selection models, provide a helpful framework

to explore the dependence structure of multivariate Gaussian data. First developed by

Dempster in 1972 [15], they recently became increasingly popular due to their impor-

tance for the analysis of high-dimensional data. In a GGM, the dependence structure

of a p-variate normally distributed random vector X = (X1, . . . , Xp)
t is represented

by a graph (V , E), where V = {1, . . . , p} corresponds to the p the univariate random

variables X1, . . . , Xp and E is a set of edges between these random variables expressing

the partial correlation structure. In particular, the set E will contain the edge (i, j)

if and only if the partial correlation between the corresponding random variables Xi

and Xj is not zero. In applications, these edges are often interpreted as ”direct” con-

nections, since the dependency between two variables connected by an edge cannot be

fully explained by the other variables in the model.

In particular in highdimensional graphical models, it seems unavoidable to find groups

of highly correlated genes or exact linear dependencies between random variables [88,

104]. But also in applications of low dimensional graphical models, collinearity can be

frequently observed. In their paper Graphical models for multivariate time series from

intensive care monitoring [27], Gather, et al. investigate the dependencies between

ten time series representing physiological variables from intensive care monitoring. For

their analysis, they apply graphical interaction models for multivariate time series [13],

which represents an extension of the concept of GGMs to multivariate time series. Al-

ready for these ten time series, Gather, et al. find highly associated groups and need

to deal with the problem of collinearity.

The issues of collinear groups of random variables in graphical models are twofold. On

one hand, collinearity reduces the accuracy of the estimation in the model as noted by

Bühlmann et al. [6] and Reid et al. [74]. On the other hand, the interpretation of

the edges in Graphical Model as direct associations is questionable, since the partial

correlations between groups of collinear groups of random variables are virtually 0, even

if the corresponding variables are highly correlated. For instance, Gather et al. [27]

denote , that they often ”...cannot identify known associations when a group of variables

is included which are only slightly different representations of the same physiological

process...”. In Chapter 6, we attempt to make a first step towards solving this problem.
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1.1 Related Literature

1.1.1 Distance Correlation

Székely, Rizzo and Bakirov [102] and Székely and Rizzo [100], in two seminal papers,

introduced the distance covariance and distance correlation as powerful measures of de-

pendence. In later papers, Rizzo and Székely [80, 81] and Székely and Rizzo [98, 96, 97]

gave applications of the distance correlation concept to several problems in mathemat-

ical statistics. In recent years, there have appeared an enormous number of papers in

which the distance correlation coefficient has been applied to many fields. In partic-

ular, the concept of distance covariance has been extended to abstract metric spaces

[64] and has been related to machine learning [90]; and there have been applications

to detecting associations in large astrophysical databases [66, 79] and to measuring

nonlinear dependence in time series data [116]. We refer to the introduction of this

thesis for further literature and details on the history of distance correlation. For a

mathematical review of the central theorems of distance correlation, see section 2.4.

1.1.2 Variable Clustering

Clustering refers to the task of partitioning given objects (such as data points or random

variables) into groups (or clusters), such that the objects in a group share certain

similarities. While there is a vast literature for data clustering, i.e. the clustering of

data points (see [43] for a review), the literature for variable clustering is comparatively

small. However, there are many problems in statistics, where the clustering of random

variables can be beneficial.

Particularly in applications, where dimension reduction is needed, variable clustering

techniques possess certain advantages compared to classical dimension reduction tech-

niques such as principal component analysis (PCA). While PCA is known to achieve

effective dimension reduction, the interpretation of the obtained factors can often be

difficult in practice, since these factors are typically functions of all random variables

under consideration (see e.g. [107, 83]). Variable Clustering, on the other hand, di-

vides the random variables into disjoint groups. Principal component analysis of these

disjoint clusters then yields factors with disjoint loadings enabling more facile interpre-

tation [61]. A similar objective was recently achieved by the celebrated sparse PCA

approaches [14, 91]. Moreover variable clustering techniques can be useful to detect

structural characteristics of the random variables under consideration, e.g. to find

groups which are highly related or contribute to the same functional system. Exam-

ples include gene pathway analysis [22, 117] or detection of functional regions of the

brain using fMRI data [106]. Finally, variable clustering has been applied to tackle the

problem of multicollinearity in regression. In particular, it has been recently proposed
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to combine variable clustering of the predictor variables and subsequent estimation of

the regression coefficients via group lasso [6] or sparse regression using cluster proto-

types [74]. Despite the substantial demand for variable clustering in applications, the

methodological literature on techniques for this task is astonishingly small. Maybe,

this is best reflected by the fact that many applied scientists refer to the VARCLUS

procedure [84] contained in the software SAS, an ad-hoc method, for which (to the best

knowledge of the author) no theoretical guarantees are known.

Most variable clustering techniques considered in literature are hierarchical approaches

based on some kind of similarity matrix, such as correlations [22, 42], partial corre-

lations [109] or mutual information [51] between the random variables. While these

methods lump together random variables which are similar in some bivariate sense,

these methods do not consider relations involving more than two covariates. In par-

ticular, hierarchical clustering based on the standard or squared correlation coefficient

is not effective for attacking the problem of collinearity. Recently, methods taking

more complex dependencies into account have been suggested. Bühlmann et al. [6]

perform hierarchical clustering using the canonical correlation coefficient, while Ferenci

and Kovács [25] exploit total correlation which represents a generalization of the mu-

tual information coefficient to random vectors.

The matroid approach is a particularly interesting procedure, which goes back to an

idea by Greene [35, 36] and has lately been considered by Woolston [114] in his PhD

thesis. He first determines the intrinsic rank of every possible subset of covariates

using some dependency criterion such as the variance inflation factor (VIF) or the

minimal eigenvalue of the covariance matrix. A subset of random variables with intrinsic

dimension j is then named a rank-j flat, if we are unable to add another covariate to

the subsets without increasing its rank. Hence, the rank-j flats are the maximal subsets

which can be represented by a j-dimensional projection. The rank-j flats yield several

possibilities to cluster the data into dependent subsets. For example every random

variable which is assigned to more than one flat could be clustered into the flat with

maximum or minimum rank. As Woolston remarks, the advantage of the matroid

approach compared to hierarchical procedures is, that it ”seeks not only to identify 1-

dimensional clusters of mutually correlated variable, but also higher dimensional near

dependencies in which collections of the observed variables are identified as falling close

to lower dimensional subspaces”. The drawback lies of course in its combinatorial

nature; for a p-dimensional data set, it requires to determine the intrinsic rank of 2p−1

subsets, which are already more than a million possibilities for p = 20.
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1.1.3 Subspace Clustering

The approach, which we are going to pursue in Chapter 6 is highly related to subspace

clustering, a method to categorize data being intensely investigated during the past two

decades. In the following, we introduce the reader to the problem of subspace clustering

and present two state-of-the-art methods. For a detailed overview over methods from

the machine learning and computer vision communities, see [108], for methods from

the data mining community, see [71].

Although many of the data available in e.g. computer vision are high-dimensional, it

can often be observed that the data lies in lower-dimensional structures. While tradi-

tional dimension reduction techniques such as PCA aim at finding one low-dimensional

subspace to fit the data, the intrinsic assumption of subspace clustering is, that we ob-

serve data points which are drawn from from a union of subspaces of lower dimension.

More specifically, consider we have given k linear subspaces of Rp S1, . . . , Sk of respec-

tive dimensions d1, . . . , dk as well as n samples Y1, . . . , Yn ∈ Rp which can be organized

in a data matrix Y = [Y1, . . . , Yn] ∈ Rp×n. The underlying assumption of subspace

clustering is, that for each i ∈ {1, . . . , n}, there is a fraction of the data points, which

lie in Si. Hence, there is a subset of indices Ci ⊂ {1, . . . , n}, such that for each l ∈ Ci,
it holds Yl ∈ Si. The aim of subspace segmentation is now, given the data Y , find the

number of subspaces k as well as their dimension di and recover the affiliation of the

data points to their respective subspaces (i.e. the index sets Ci). To enable the solu-

tion of this problem, one naturally has to impose some restrictions on the subspaces,

usually either disjointness of the subspaces (i.e. Si ∩ Sj = ∅ for i 6= j) or independence

of the subspaces, i.e. Si∩
⊕

j 6=i Sj = ∅ for all i. It is apparent that independence of the

subspaces implies disjointness of the subspaces, hence the latter assumption is stronger

than the first one.

A strategy to solve subspace clustering, which is particularly interesting for our purposes

has been proposed by Costeira and Kanade [12]. They consider a rank r skinny SVD

of Y = UΛV t, where r =
∑k

i=1 di. They then suggest composing the orthogonal

projection matrix on the rows (the so-called SIM or shape iteration matrix) of Y , i.e.

Q = V V t ∈ Rn×n.

It can now be shown [48, 63], that if the subspaces S1, . . . , Sk are independent, it holds

Qlm = 0 if Yl and Ym are in different subspaces,

where Qlm denotes the (l,m)-th entry of Q. Hence, in the absence of noise Q can be

directly used to obtain the segmentation of the data into their respective subspaces.
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For a data matrix which is contaminated by errors, such as e.g. noise or outliers, Liu et

al. [63] recently proposed a method closely related to [12]. In particular, they assume

that the observed data is given by

Z = Y + E,

where Y is as described above and E is an error matrix of some kind. As before they

aim at solving the subspace segmentation problem or equivalently finding the true SIM

Q. For this purpose, they consider the rank minimization problem

min
P,E

rank(P ) + λ‖E‖2,1, s.t. Z = ZP + E,

where ‖E‖2,1 =
∑n

l=1

√∑n
m=1 |Elm|2 is the `2,1-norm. Since this problem is NP-hard,

they replace the rank function by the nuclear norm, resulting in the following convex

optimization problem:

min
P,E
‖P‖? + λ‖E‖2,1, s.t. Z = ZP + E.

It can be proven, that in the case of noncontaminated data (e.g. E = 0), solving this

problem exactly recovers the SIM, i.e. P ? = Q. Moreover it can handle a fair amount of

outliers and sample-specific corruptions. For data corrupted by Gaussian noise, their

experiments suggests, that construction of an affinity matrix via P ? and using this

affinity matrix for subsequent spectral clustering can often deliver satisfactory results.

Another method, which solves subspace clustering via a convex optimization program

is sparse subspace clustering (SSC) [23]. It relies on the fact, that (under certain

conditions) every data point in a union of subspace-model can be reconstructed by a

combination of other points in the dataset, i.e. for any data point Yl in a subspace Si,

there is a vector cl = (cl1, cl2, . . . , cln)t satisfying

Yl = Y cl, cll = 0. (1.1.1)

The representation (1.1.1) is not unique in general, since possibly ni > di + 1; there

could even be nonzero elements referring to points not in the subspace Si for the case

of nonindendepent subspaces. However, as long as the number ni of data points in Si
exceeds the dimension di, there clearly exists a representation of the type (1.1.1) such

that all nonzero elements refer to elements of the same subspace Si (i.e. clm 6= 0⇒ Ym ∈
Si). The key observation of [23] is, that there are also sparse representations of that

kind (ideally involving exactly di nonzero element). [23] refer to such a representation

as a a subspace sparse representation. They show that for independent subspaces as well

as under mild conditions for disjoint subspaces, such a subspace sparse representation
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can be efficiently recovered by solving the convex optimization program

min ‖cl‖1 s.t. Yl = Y cl, cll = 0.

The segmentation can then be inferred via solving the optimization problem for all data

points:

min ‖C‖1 s.t. Y = Y C, diag(C) = 0,

since Clm is clearly 0, when Yl and Ym belong to different subspaces. In the case of

noise and/or outliers, they suggest the approach

min‖C‖1 + λe‖E‖1 +
λz
2
‖Z‖2

F ,

s.t. Y = Y C + E + Z, diag(C) = 0.

Similarly to [63], they then proceed by constructing an affinity matrix (e.g. A =

|C|+ |Ct|) and subsequent spectral clustering.

1.2 Outline and Contribution

Let us shortly sketch the outline of the remainder of this thesis and adduce the main

contributions. In Chapter 2, we state the mathematical foundations required in the

course of this work. In particular, we recapitulate some well-known facts about invariant

measures and the gamma function. We will further give a brief introduction into the

theory of zonal polynomials and into the main theorems of distance correlation.

We proceed in Chapter 3 by introducing an alternative version of distance corre-

lation, termed the affinely invariant distance correlation. We compute the population

version of the affinely invariant distance covariance for the multivariate normal and

derive several limit theorems, for the cases where either one or both of the dimensions

of the random vectors under consideration go to infinity. The chapter is concluded by

an application of our results on wind vector data.

Chapter 4 deals with an integral which is fundamental for the theory of distance

correlation. We derive an extension of this integral, which may potentially be used to

generalize the class of α-distance dependence measures to α outside the range (0, 2).

Subsequently, Chapter 5 deals with the computation of the distance correlation co-

efficients for random vectors, whose joint distributions are in the class of Lancaster

distributions. After giving several examples for Lancaster distributions, we state a

theorem, which facilitates the computation of the distance covariance immensely, for

distributions being in that class. We point out the significance of this results by calcu-

lating the distance covariance explicitly for the examples given in the beginning of this

chapter.
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Chapter 6 is dedicated to a novel approach for the clustering of random variables.

After motivating a specific clustering task by an application in low-rank Gaussian

Graphical models, we remark that this problem is highly related to the problem of

subspace clustering for data. It is further proven that the clustering can be exactly re-

covered in the noiseless case; when noise is included, we receive an asymptotic guarantee

to retain the clusters, for the setting where the sample size goes to infinity. Finally,

Chapter 7 summarizes the work and gives an outlook into possible future work.

The main contributions are:

• Definition of the affinely invariant distance correlation and proof of the consis-

tency of its sample measure (section 3.1). Computation of the affinely invariant

distance correlation for the multivariate normal (section 3.2). Derivation of sev-

eral limit theorems for the multivariate normal (section 3.3).

• Development of an formula for the distance covariance for the class of Lancaster

distributions. Explicit calculation of the affinely invariant distance correlation

coefficient for several distributions in that class, namely the bivariate and multi-

variate normal distributions, and for bivariate gamma and Poisson distributions

(Chapter 5).

• Computation of the regular distance correlation coefficient for the multivariate

normal (Appendix A.1) and the affinely invariant distance correlation for the

multivariate Laplace (Appendix A.2).

• Generalization of an fundamental integral appearing in the theory of distance

correlation (Chapter 4).

• Motivation of a novel approach to the clustering of random variables and deriva-

tion of a consistent procedure to recover the clustering in the case of noisy data

for the probabilistic PPCA model (Chapter 6).

1.3 Notation

To conclude this chapter, we give an overview over the notation throughout this the-

sis. This list is by no means complete; due to the diverse problems considered in this

thesis, it will be unavoidable to introduce additional notation in the respective chapters.

For a complex value z, the complex conjugate will be denoted by z̄ and |z| = zz̄. The

real part of z will be denoted by <(z), the imaginary part by =(z). For a column vector

s ∈ Rp, where p is positive integer, we will denote by |s|p the standard Euclidean norm
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of s, i.e. if s = (s1, . . . , sp)
′ then

|s|p = (s2
1 + · · ·+ s2

p)
1/2.

Moreover, for vectors u and v of the same dimension, p, we let 〈u, v〉p be the standard

Euclidean scalar product of u and v. For a matrix M ∈ Rm×n, M t will denote its

transpose and tr (M) its trace; the spectral norm of M will be denoted by ‖M‖, its

Frobenius norm by ‖M‖F . Moreover, denote by S(p) the space of symmetric p × p-

matrices and by O(p) the orthogonal group of matrices in Rp×p.

For jointly distributed random vectors X ∈ Rp and Y ∈ Rq, let ΣX and ΣY denote

their respective covariance matrices, further let

fX,Y (s, t) = E exp
[
i 〈s,X〉p + i 〈t, Y 〉q

]
be the joint characteristic function of (X, Y ), and let fX(s) = fX,Y (s, 0) and fY (t) =

fX,Y (0, t) be the marginal characteristic functions of X and Y , respectively.

Analogously, given a random sample (X1, Y1), . . . , (Xn, Yn) from jointly distributed

random vectors X ∈ Rp and Y ∈ Rq, we denote by SX and SY the usual sample

covariance matrices, further let

fnX,Y (s, t) =
1

n

n∑
j=1

exp
[
i〈s,Xj〉p + i〈t, Yj〉q

]
.

be the sample characteristic function. Finally, we write fnX(s) = fnX,Y (s, 0) and fnY (t) =

fnX,Y (0, t) for the respective empirical characteristic functions of the marginals.
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Chapter 2

Preliminaries

2.1 Invariant Measures

In the course of this thesis, we will require some measures, which are invariant under

certain transformations. The best-known measure of this type is of course the Lebesgue

measure λ, which is invariant under translation λ(A) 7→ λ(A+ r), r ∈ R. An extension

of the Lebesgue measure is the Haar measure, which can be defined on Lie groups (or

even more general, on locally compact topological groups). For an introduction into

Lie groups as well as for the following definition, see [49].

Definition 2.1.1. Let G be a Lie group. A nonzero Borel measure µ on G is called a

(left) Haar measure if it is invariant under left translation, i.e.∫
G

f(gx)dµ =

∫
G

f(x)dµ (2.1.1)

for integrable functions f : G 7→ R and elements g ∈ G.

Further, by Theorem 8.21 and 8.23 in [49]:

Theorem 2.1.2. Let G be a Lie group. Then there exists a Haar measure on G and

for any two Haar measures µ and ν on G, there is a c > 0, such that

cµ = ν,

hence the Haar measure is unique up to multiplication with a constant factor.

Since for p ∈ N, the orthogonal group O(p) is well-known to be a compact Lie group

[38], there exists a Haar measure µ on O(p). Due to the fact that µ is a Borel measure

and O(p) is compact, µ is finite. Hence, there exists a unique Haar measure µ∗, such

that ∫
O(p)

dµ∗ = 1.
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We will refer to that measure as the normalized Haar measure on O(p).

By the transition to polar coordinates for an x ∈ Rp, we will refer to the decomposition

x = r θ,

where r ∈ R+ and θ = (θ1, . . . , θp)
′ ∈ Sp−1.

In particular, we will make use of the following theorem [24, Proposition XVI.2.1].

Theorem 2.1.3. Let f be an integrable function on Rp, then∫
Rp

f(x)dx =

∫ ∞
0

∫
Sp−1

f(rθ) rp−1 dθdr,

where Sp−1 = {x ∈ Rp|x′x = 1} denotes the unit sphere and dθ refers to the unnormal-

ized surface measure on Sp−1.

A detailed treatment of the unnormalized surface measure on Sp−1 and its general-

izations can be found in section 2.1.4 of [68]. We just state the following well-known

facts.

Remark 2.1.4. Let dθ refer to the unnormalized surface measure on Sp−1. Then

(i) ∫
Sp−1

f(Oθ)dθ =

∫
Sp−1

f(θ)dθ (2.1.2)

for all integrable functions f : Sp−1 7→ R and orthogonal matrices O ∈ O(p).

(ii) The surface of the sphere in Rp is given by∫
Sp−1

dθ =
2πp/2

Γ(p/2)
.

2.2 The Gamma Function

The gamma function naturally arises in the evaluation of certain integrals and power

series, that we will encounter in this work. Although we assume the reader to be well-

acquainted with the definition and the properties of the gamma function, we state some

basic facts for easy reference (see e.g. [26]).

Theorem 2.2.1. The gamma integral

Γ(z) :=

∫ ∞
0

tz−1e−tdt (2.2.1)
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converges absolutely for <(z) > 0 and represents an analytical function in this area.

Theorem 2.2.2. The gamma function Γ is analytically continuable to the whole com-

plex plane with exception of the points

z ∈ S := {0,−1,−2,−3, . . .}.

For this area, it satisfies the functional equation

Γ(z + 1) = z Γ(z). (2.2.2)

In particular, it holds, for n ∈ N0

Γ(n+ 1) = n!.

Definition 2.2.3. Let k be a nonnegative integer. For α ∈ C, the rising factorial (α)k
is defined by

(α)k =
Γ(α + k)

Γ(α)
= α (α + 1) (α + 2) · · · (α + k − 1). (2.2.3)

Finally, we will need Stirling’s formula for positive real values [26].

Theorem 2.2.4 (Stirling’s formula). For x ∈ R+, it holds

Γ(x) =
√

2πxx−
1
2 e−x(1 +O(x−1)). (2.2.4)

2.3 Zonal Polynomials and Hypergeometric Func-

tions of Matrix Argument

Many integrals arising in the theory of multivariate statistics cannot be evaluated in

closed form expressions of elementary functions. For the computation of these integrals

and the formulation of the outcome in an efficient and reasonable way, we will need the

theory of zonal polynomials. To the best knowledge of the author, zonal polynomials

first show up in the well-known paper by James [44], where they are employed to express

a certain integral over the group of orthogonal matrices O(p). The theory was then

developed by James [45, 46, 47] and Constantine [10, 11]. In this work, we will mainly

follow the book of Muirhead [68, Chapter 7].

Definition 2.3.1. A partition κ is a vector of nonnegative integers (k1, . . . , kp) such

that k1 ≥ · · · ≥ kp. Moreover we will denote by |κ| the sum of the entries of κ, i.e.

|κ| = k1 + · · ·+ kp. The length of κ is the largest integer j such that kj > 0 and will be

denoted by `(κ).
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Definition 2.3.2. For two partitions κ = (k1, . . . , kp) and ι = (j1, . . . , jp) with |κ| =

|ι| = k, we write κ > ι if ki > ji for the first index i for which they are different. If

κ > ι, we will further say, that the monomial λk11 · · ·λ
kp
p is of higher weight than the

monomial λj11 · · ·λ
jp
p .

Example 2.3.3. Let κ = (3, 2, 2, 0) and ι = (3, 2, 1, 1). Then κ > ι and the monomial

λ3
1λ

2
2λ

2
3 is of higher weight than the monomial λ3

1λ
2
2λ3λ4.

Definition 2.3.4. Let κ = (k1, . . . , kp) be a partition with |κ| = k. The zonal polyno-

mial Cκ(Λ) is the unique function Cκ : S(p) 7→ R, such that:

(i) Cκ(Λ) is a symmetric polynomial in the eigenvalues λ1, . . . , λp of Λ.

(ii) Cκ(Λ) is homogeneous of degree |κ| in Λ: For any δ ∈ R,

Cκ(δΛ) = δ|κ|Cκ(Λ). (2.3.1)

(iii) The term of highest weight in Cκ(Λ) is λk11 · · ·λ
kp
p , i.e.

Cκ(Λ) = dkλ
k1
1 · · ·λkpp + terms of lower weight,

where dk is a constant.

(iv) Cκ(Λ) is an eigenfunction of the differential operator ∆Λ given by

∆Λ =

p∑
i=1

λ2
i

∂2

∂λ2
i

+

p∑
i=1

∑
j 6=i

λ2
i

λi − λj
∂

∂λi
,

i.e.

∆ΛCκ(Λ) = αCκ(Λ),

where α ∈ R is a constant which does not depend on Λ.

(v) For any nonnegative integer k,∑
|κ|=k

Cκ(Λ) = (tr Λ)k. (2.3.2)

Note, that by (i) of the above definition, we have

Cκ(K
′ΛK) = Cκ(Λ) (2.3.3)

for all K ∈ O(p), since the eigenvalues are not affected by the transition from Λ to

K ′ΛK.
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Further by Corollary 7.2.4 in Muirhead [68], we obtain:

Remark 2.3.5. If Λ is of rank r then Cκ(Λ) = 0 whenever `(κ) > r.

There is a natural extension of the zonal polynomials to nonsymmetric matrices [68, p.

237]. When X is positive definite and Y is symmetric, the eigenvalues of X1/2Y X1/2

and XY obviously coincide. Hence, we may then define

Cκ(XY ) := Cκ(X
1/2Y X1/2). (2.3.4)

Obviously, properties (i)−(v) also hold for this extended definition of zonal polynomials.

Moreover, by Theorem 7.2.5 in [68]:

Theorem 2.3.6. For any symmetric matrices Λ1,Λ2 ∈ Rp×p,∫
O(p)

Cκ(K
′Λ1KΛ2)dK =

Cκ(Λ1)Cκ(Λ2)

Cκ(Ip)
, (2.3.5)

where Ip = diag(1, . . . , 1) ∈ Rp×p denotes the identity matrix and the integral is with

respect to the normalized Haar measure on O(p).

For a partition κ with one part (i.e. κ = (k)), the value of the zonal polynomials can be

explicitly stated using the notion of the rising factorial (2.2.3) (see [37, Lemma 6.8]).

Theorem 2.3.7. Let λ1, . . . , λp be the eigenvalues of Λ. Then, for a partition (k) with

one part,

C(k)(Λ) =
k!

(1
2
)k

∑
i1+···+ip=k

p∏
j=1

(1
2
)ij λ

ij
j

ij!
, (2.3.6)

where the sum is over all nonnegative integers i1, . . . , ip such that i1 + · · ·+ ip = k. In

particular, on setting λj = 1, j = 1, . . . , p, we obtain from (2.3.6)

C(k)(Ip) =
(1

2
p)k

(1
2
)k
, (2.3.7)

Definition 2.3.8. For any α ∈ C and any partition κ = (k1, . . . , kp), the partitional

rising factorial is defined as

(α)κ =

p∏
j=1

(
α− 1

2
(j − 1)

)
kj
. (2.3.8)

While the concept of the zonal polynomials is already interesting for itself and yields a

wealth of applications, one leading motivation to define zonal polynomials is to extend

the usual generalized hypergeometric functions to functions of matrix arguments [46,

68, 37]:
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Definition 2.3.9. Let α1, . . . , αl, β1, . . . , βm ∈ C where −βi + 1
2
(j − 1) is not a non-

negative integer, for all i = 1, . . . ,m and j = 1, . . . , p. Then the lFm generalized

hypergeometric function of matrix argument is defined as

lFm(α1, . . . , αl; β1, . . . , βm;S) =
∞∑
k=0

1

k!

∑
|κ|=k

(α1)κ · · · (αl)κ
(β1)κ · · · (βm)κ

Cκ(S), (2.3.9)

where S ∈ S(p) is a p× p-symmetric matrix.

It is well-known [68], that the hypergeometric series (2.3.9) converges for all S if l ≤ m

and for ‖S‖ < 1 if l = m+ 1. A complete analysis of the convergence properties of this

series was derived by Gross and Richards [37], and we refer the reader to that paper

for the details.

For the case n = 1, S = s, we maintain the regular generalized hypergeometric functions

(of scalar argument), see [70], p.404 for reference:

lFm(α1, . . . , αl; β1, . . . , βm; s) =
∞∑
k=0

1

k!

(α1)k · · · (αl)k
(β1)k · · · (βm)k

sk. (2.3.10)

As already mentioned before, the convergence of hypergeometric functions has been

elaborately studied. In the course of this work, the use of Gauss’ Theorem for hyper-

geometric functions [70, 3] will be sufficient.

Theorem 2.3.10 (Gauss’ Theorem for hypergeometric functions). If <(c−a− b) > 0,

the series 2F1(a, b; c; s) as defined in (2.3.10) also converges for the special value s = 1

and

2F1(a, b; c; 1) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

.

It is clear from the definition of the hypergeometric functions lFm, that a multitude

of connections between the lFm with different parameters α1, . . . , αl, β1, . . . , βm can be

established. To obtain explicit expressions in terms of elementary functions, we need

to state some of these connections for the 2F1. It is easy to see, that

2F1(a+ 1, b+ 1; c+ 1;x) =
c

ab

d

dx
2F1(a, b; c). (2.3.11)

Moreover, there is a set of contiguous relations holding for the 2F1. In particular, we

have [2, p.94]:

2F1(a, b; c;x) = x(1− x)
(a+ 1)(b+ 1)

c(c+ 1)
2F1(a+ 2, b+ 2; c+ 2;x)

+
(c− (a+ b+ 1)x)

c
2F1(a+ 1, b+ 1; c+ 1;x) (2.3.12)
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and

c(1− z)
d

dx
2F1(a, b; c;x) = (c− a)(c− b)2F1(a, b; c+ 1;x)

+ c(a+ b− c)2F1(a, b; c;x). (2.3.13)

For many hypergeometric functions, explicit representations in terms of elementary

functions have been established; see [70] for a survey. Let us note that [2, 70]

2F1(1
2
, 1

2
; 3

2
; s2) = s−1 sin−1(s). (2.3.14)

By (2.3.11) and (2.3.14), we obtain

2F1(3
2
, 3

2
; 5

2
; s) = 1

2

(
s−3/2 sin−1(

√
s) + s−1(1− s)−

1
2

)
.

Inserting the latter equation and (2.3.14) into (2.3.12) gives us

2F1(−1
2
,−1

2
; 1

2
; s2) = s sin−1s+ (1− s2)1/2. (2.3.15)

Further, exploiting (2.3.13) yields

2F1(−1
2
,−1

2
; 3

2
; ρ2) =

3(1− ρ2)1/2

4
+

(1 + 2ρ2) sin−1 ρ

4ρ
. (2.3.16)

Finally, by repeated application of (2.3.13), it can be shown that for k = 2, 3, 4, . . .,

2F1(−1
2
,−1

2
; k + 1

2
; ρ2) = ρ−2(k−1)(1− ρ2)1/2Pk−1(ρ2) + ρ−(2k−1)Qk(ρ

2) sin−1 ρ, (2.3.17)

where Pk and Qk are polynomials of degree k.

2.4 Distance Correlation

The goal of this section will be mainly to introduce the reader to the concept of distance

correlation, a novel measure of independence introduced by Székely, et al. [102, 100].

We will further state some important recent results concerning the application of dis-

tance correlation to time series [116]. The distance covariance is defined for random

vectors X ∈ Rp and Y ∈ Rq of arbitrary dimension p and q and measures any kind

of dependencies between X and Y . It can be formulated via an integral involving

characteristic functions of these vectors.

Definition 2.4.1. The distance covariance between random vectors X ∈ Rp and Y ∈
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Rq with finite first moments is the nonnegative number V(X, Y ) defined by

V2(X, Y ) =
1

cpcq

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2

|s|1+p
p |t|1+q

q

dsdt, (2.4.1)

where |z| denotes the modulus of z ∈ C and

cp =
π

1
2

(p+1)

Γ
(

1
2
(p+ 1)

) = 1
2

∫
Sp−1

dθ, (2.4.2)

where dθ denotes the unnormalized surface measure on Sp−1.

The distance correlation R is then just a normalized version of the distance covariance,

in the way that R(X, Y ) = 1 if X = Y .

Definition 2.4.2. The distance correlation between X and Y is the nonnegative number

defined by

R(X, Y ) =
V(X, Y )√

V(X,X)V(Y, Y )
(2.4.3)

if both V(X,X) and V(Y, Y ) are strictly positive, and defined to be zero otherwise.

One can further specify sample measures for the distance covariance and the distance

correlation in analogous fashion. Particularly, given a random sample (X1, Y1), . . . , (Xn, Yn)

from jointly distributed random vectors X ∈ Rp and Y ∈ Rq and setting

X = [X1, . . . , Xn] ∈ Rp×n and Y = [Y1, . . . , Yn] ∈ Rq×n,

one can define:

Definition 2.4.3. The sample distance covariance is the nonnegative number Vn(X,Y )

defined by

V2
n(X,Y ) =

1

cpcq

∫
Rp+q

|fnX,Y (s, t)− fnX(s)fnY (t)|2

|s|1+p
p |t|1+q

q

dsdt,

where cp is the constant given in (2.4.2).

Definition 2.4.4. The sample distance correlation then is defined by

Rn(X,Y ) =
Vn(X,Y )√

Vn(X,X)Vn(Y ,Y )
(2.4.4)

if both Vn(X,X) and Vn(Y ,Y ) are strictly positive, and defined to be zero otherwise.

Both the sample distance covariance and the sample distance correlation can be proven

to be consistent.
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Theorem 2.4.5. If X and Y possess finite first moments, then, for n→∞

Vn(X,Y )
a.s.−→ V(X, Y ), Rn(X,Y )

a.s.−→ R(X, Y ).

Certainly the most prominent feature of distance correlation, is that it defines inde-

pendence, i.e. R(X, Y ) = 0 if and only if X and Y are independent. This property

is immediately clear from (2.4.1) along with the fact, that the characteristic function

of (X, Y ) coincides with the product of the marginal characteristic functions merely in

the case of independence.

However, it has to be noted that distance correlation is by far not the only measure

satisfying this property and there may exist measures with more tempting theoretical

characteristics, e.g. the maximal correlation coefficient [29, 76]. What makes distance

correlation stand out from the others is the striking simplicity of its sample measure,

which can be expressed as the Schur product of the centralized distance matrices [102].

Theorem 2.4.6. Let

akl = |Xk −Xl|p, āk· =
1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl, ā·· =
1

n2

n∑
k,l=1

akl,

and

Akl = akl − āk· − ā·l + ā··,

similarly define bkl = |Yk − Yl|q, b̄k·, b̄·l, b̄··, and Bkl, where k, l = 1, . . . , n. Then

V2
n(X,Y ) =

1

n2

n∑
k,l=1

AklBkl. (2.4.5)

This intriguingly simple version of the sample measure can be stated in an alternative

form that will prove useful in the following.

Corollary 2.4.7. Let

S1 =
1

n2

n∑
k=1,l=1

|Xk −Xl|p|Yk − Yl|q,

S2 =
1

n2

n∑
k=1,l=1

|Xk −Xl|p
1

n2

n∑
k=1,l=1

|Yk − Yl|q,

S3 =
1

n3

n∑
k=1

n∑
l,m=1

|Xk −Xl|p|Yk − Yl|q.
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Then

V2
n(X,Y ) = S1 + S2 − S3. (2.4.6)

Having defined distance covariance as well as its sample version, we now state the

most relevant properties of these measures. Property (i) and (ii) of the following have

already been mentioned before and are easy to prove, property (iii) is shown in [102,

p. 2779].

Theorem 2.4.8. (i) If X and Y possess finite first moments, then 0 ≤ R(X, Y ) ≤ 1

and R(X, Y ) = 0 if and only if X and Y are independent.

(ii) 0 ≤ Rn ≤ 1 .

(iii) If Rn(X,Y ) = 1, then p = q and there exist a vector a, a nonzero real number b

and an orthogonal matrix C, such that Y = a+ bCX.

The proof of Theorem 2.4.6 and thereby the simplicity of the sample measures es-

sentially rely on the fact, that a certain multidimensional singular integral involving

a parameter x can be evaluated to be a constant multiple of the euclidean norm of

x. The outcome of this integral is well-known and appears in many different fields of

probability and statistics see e.g. the books of Chilès and Delfiner [9] and Rachev et al.

[73]. A proof of a general form of this result, which is stated in the following lemma,

can be found in [99]:

Lemma 2.4.9. Suppose that α ∈ C satisfies 0 < <(α) < 2. Then, for all x ∈ Rd,∫
Rd

1− cos(〈t, x〉)
|t|d+α
d

dt = C(d, α) |x|αd , (2.4.7)

where

C(d, α) =
2πd/2 Γ(1− α/2)

α 2α Γ
(
(d+ α)/2

) . (2.4.8)

The integrals at 0 and∞ are meant in the principal value sense: limε→0

∫
Rd\{εB+ε−1BC},

where B is the unit ball (centered at 0) in Rd and BC is the complement of B.

As we have explained above, the preceding Lemma secures the simplicity of the sample

version of distance correlation and is hence fundamental for the idea of distance cor-

relation itself. This suggests, that studying the underlying Lemma 2.4.9 might lead to

both a better understanding of distance correlation and possible ways of generalizing

distance correlation. In the course of this thesis, we will present several extensions of

this integral.

Though the computation of the sample distance correlation is easy to perform for a

given data sample, the calculation of distance covariance and distance correlation for
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certain multivariate distributions represents a challenging problem since the integral

(2.4.1) is difficult to analytically evaluate even for simple bivariate distributions. This

means, however, that the physical interpretation of distance correlation is not clear and

one does not really know what exactly one estimates when determining the distance

correlation for a given data sample. For a better understanding of the concept of

distance correlation, the knowledge of its exact value for a wide class of multivariate

distributions is crucial. In their groundbreaking paper [102], Székely et al. state the

important result for the bivariate normal.

Theorem 2.4.10. If X and Y are standard normal with cor(X, Y ) = ρ, then

(i) R(X, Y ) ≤ |ρ|,

(ii) R2(X, Y ) =
ρ sin−1 ρ+

√
1−ρ2−ρ sin−1 ρ/2−

√
4−ρ2+1

1+π/3−
√

3
,

(iii) infρ 6=0
R(X,Y )

ρ
= limρ→0

R(X,Y )
ρ

= 1
2(1+π/3−

√
3)1/2

.

Besides the theoretical investigation of distance correlation, Székely et al. [102] show

the potential of this concept for applications. Most importantly, they propose a test for

independence, which has been shown to outperform the celebrated MIC [77] in various

settings, see [92] and [33] for reference.

Theorem 2.4.11. Suppose T (X, Y, α, n) is the test that rejects independence if

nV2
n(X,Y )

S2

> (Φ−1(1− α/2))2, (2.4.9)

where Φ(·) denotes the standard normal cumulative distribution function and S2 is

defined as in Corollary 2.4.7. Further let α(X, Y, n) denote the achieved significance

level of T (X, Y, α, n). For random vectors X and Y with finite first moments and all

0 < α ≤ 0.215, it holds

(i) limn→∞ α(X, Y, n) ≤ α.

(ii) supX,Y {limn→∞ α(X, Y, n)|V(X, Y ) = 0} = α.

Let us note, that there are other possibilities to define measures of independence, which

satisfy the pleasant properties given in Theorem 2.4.8. Székely et al. [102] suggest to

define a generalized distance correlation for random vectors X ∈ Rp, Y ∈ Rq via

V2(X, Y ;ω, ζ) =

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2ω(s)ζ(t)dsdt, (2.4.10)

where ω and ζ are suitable weight functions. A correlation measure Rω,ζ can then be

obtained by

Rω,ζ(X, Y ) =
V(X, Y ;ω, ζ)√

V(X,X, ω, ω)V(Y, Y, ζ, ζ)
.
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It should be noted, that ω and ζ should be chosen non-integrable, since,

lim
ε→0
Rω,ζ(εX, εY ) = ρ2(X, Y )

for real-valued X, Y and integrable weight functions ω and ζ. Hence, for uncorrelated

random variables X and Y , Rω,ζ(X, Y ) can be arbitrarily close to 0, even if X and Y

are dependent.

Though Székely and Rizzo prove in [101], that distance correlation is the unique measure

of the type V2(X, Y ;ω, ζ), which is scale-equivariant and invariant to all shift and

orthogonal transformations on X and Y , we will show in section 3.1 that there exist

other weight functions ω and ζ which lead to alternative dependence measures with

very interesting properties.

In the discussion of [100], Rémillard [75] proposes the use of the distance correla-

tion to explore nonlinear dependencies in time series data. Zhou [116] pursued this

approach recently and defined the auto distance covariance function and the auto dis-

tance correlation function, along with natural sample versions, for a strongly stationary

vector-valued time series:

Definition 2.4.12. Let X = (Xj)
∞
j=−∞ be a strictly stationary multivariate time series

of dimension p. Then the auto distance covariance function VX is, for k ≥ 0 defined as

VX(k) =
1

c2
p

∫
R2p

|fX0,Xk
(s, t)− fX0(s)fXk

(t)|2

|s|p+1
p |t|p+1

p

dsdt,

moreover, the auto distance correlation function RX is, for k ≥ 1, defined as

RX(k) =

√
VX(k)

VX(0)

if VX(0) is strictly positive, 0 otherwise.

Definition 2.4.13. Let X = (Xj)
n
j=1 be an observation of a strictly stationary multi-

variate time series of dimension p. Then the sample auto distance covariance function

VnX is, for k ≥ 0, defined as

VnX(k) =
1

c2
p

∫
R2p

|fnk (s, t)− fn(s)fn,k(t)|2

|s|p+1
p |t|p+1

p

dsdt,

where

fnk (s, t) =
1

n− k

n−k∑
j=1

exp
[
i〈s,Xj〉p + i〈t,Xj+k〉q

]
,
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is the empirical characteristic function of ((Xj, Xj+k))
n−k
j=1 and

fn(s) = fnk (s, 0), fn,k(t) = fnk (0, t)

are the respective marginal characteristic functions. With Y = (Xj)
n−k
j=1 and Z =

(Xj)
n
j=k+1, the sample auto distance correlation function RX is, for k ≥ 1 defined

as

[Rn
X(k)]2 =

VnX(k)√
VnY (0)VnZ(0)

,

whenever the denominator is strictly positive, 0 otherwise.

Furthermore, Zhou [116] is able to show the consistency of the sample auto distance

covariance functions under moderate assumptions that involve the physical dependence

measures δ(·, ·). For details on the physical dependence measures, the reader is referred

to [116] and [115].

Theorem 2.4.14. Suppose (E[|X|1+r0
p ])

1
1+r0 < ∞ for some r0 > 0 and

∑∞
k=0 δ(k, 1 +

r0) <∞. Then, for all k ≥ 0

VnX(k)
P−→ VX(k) as n→∞.
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Chapter 3

The Affinely Invariant Distance

Correlation

After having introduced the notion of distance correlation, we now extend the results

given in Section 2.4. In particular, we define an alternative version of distance corre-

lation, which does not only feature the desirable properties stated in Theorem 2.4.8,

but is also invariant under the group of affine transformations (Section 3.1). This mea-

sure is called the affinely invariant distance correlation. In the following, we derive

the population version of the affinely invariant distance correlation for the multivariate

normal, thereby widely generalizing the result of Székely et al. [102] stated in Theorem

2.4.10. In Section 3.3, we derive several limit theorems for the multivariate normal,

which have relevance for the application of distance correlation to high-dimensional

data. We close this chapter with an illustration of our results in Section 3.4, where

we apply the concept of affinely invariant distance correlation to a time series of wind

vector data. While being purely exploratory, the methods and the output presented in

the latter section indicate the potential of distance correlation for the investigation of

vector-valued time series. Finally, we mention that the statements given in this chapter

represent a slightly extended version of the paper [18] by Dueck, Edelmann, Gneiting

and Richards.

3.1 Definition and Properties

The goal of this section will be to define an alternative version of distance correlation

which satisfies a crucial group invariance property while retaining all important features

of standard distance correlation. To begin with, we point out an invariance property

of distance correlation which was already stated in [102] and [100].

Theorem 3.1.1. Let p and q be positive integers and X ∈ Rp and Y ∈ Rq be random
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vectors. Moreover let

X = [X1, . . . , Xn] ∈ Rp×n and Y = [Y1, . . . , Yn] ∈ Rq×n.

be a random sample from X and Y , respectively. Then for arbitrary constant vectors

a1 ∈ Rp, a2 ∈ Rq, nonzero number b1, b2 ∈ R and orthonormal matrices C1 ∈ Rp×p,

C2 ∈ Rq×q:

R(a1 + b1C1X, a2 + b2C2Y ) = R(X, Y )

and

Rn(a1 + b1C1X, a2 + b2C2Y ) = Rn(X,Y ).

Proof. By invariance of the Euclidean norm under orthogonal transformations,

we obtain

akl := |(a1 + b1C1Xk)− (a1 + b1C1Xl)|p = |b1C1(Xk −Xl)|p = |b1||Xk −Xl|p

and similarly

bkl := |(a2 + b2C2Yk)− (a2 + b2C2Yl)|q = |b2||Yk − Yl|q.

Hence, we can conclude by Theorem 2.4.6, that

V2
n(a1 + b1C1X, a2 + b2C2Y ) = |b1| |b2|V2

n(X,Y ).

It obviously follows, that

Rn(a1 + b1C1X, a2 + b2C2Y ) = Rn(X,Y ).

The respective equality for the population version is clear by the consistency of the

sample version and the uniqueness of the limit.

The above theorem states that distance correlation is invariant under certain orthogonal

transformations of (X, Y ). However, the distance correlation fails to be invariant under

the group of all invertible affine transformations of (X, Y ). This led Székely, et al.[102]

and Székely and Rizzo [100] to propose an affinely invariant sample version of the

distance covariance and distance correlation.

Definition 3.1.2. The sample affinely invariant distance covariance is the nonnegative

number Ṽn(X,Y ) defined by

Ṽ2
n(X,Y ) = V2

n(S
−1/2
X X, S

−1/2
Y Y ) (3.1.1)

if SX and SY are positive definite. otherwise.
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Definition 3.1.3. The sample affinely invariant distance correlation is defined by

R̃n(X,Y ) =
Ṽn(X,Y )√

Ṽn(X,X)Ṽn(Y ,Y )
, (3.1.2)

if the quantities in the denominator are strictly positive, and defined to be zero other-

wise.

We now adapt this proposal by introducing an affinely invariant population version of

distance correlation.

Definition 3.1.4. The affinely invariant distance covariance between random variables

X and Y with finite second moments is the nonnegative number Ṽ(X, Y ) defined by

Ṽ2(X, Y ) = V2(Σ
−1/2
X X,Σ

−1/2
Y Y ). (3.1.3)

Definition 3.1.5. The affinely invariant distance correlation between X and Y is the

nonnegative number defined by

R̃(X, Y ) =
Ṽ(X, Y )√

Ṽ(X,X)Ṽ(Y, Y )
, (3.1.4)

if both Ṽ(X,X) and Ṽ(Y, Y ) are strictly positive, and defined to be zero otherwise.

Clearly, the population affinely invariant distance correlation and its sample version

are invariant under the group of invertible affine transformations, and in addition to

satisfying this often-desirable group invariance property [21], they inherit the properties

of the standard distance dependence measures. In particular:

Theorem 3.1.6. (i) 0 ≤ R̃(X, Y ) ≤ 1 and, for populations with finite second mo-

ments and positive definite covariance matrices, R̃(X, Y ) = 0 if and only if X

and Y are independent.

(ii) 0 ≤ R̃n(X,Y ) ≤ 1 .

(iii) R̃n(X,Y ) = 1 implies that p = q, that the linear spaces spanned by X and Y

have full rank, and that there exist a vector a ∈ Rp, a nonzero number b ∈ R, and

an orthogonal matrix C ∈ Rp×p such that S
−1/2
Y Y = a+ bCS

−1/2
X X.

Our next result shows that the sample affinely invariant distance correlation is a con-

sistent estimator of the respective population quantity.

Theorem 3.1.7. Let (X, Y ) ∈ Rp+q be jointly distributed random vectors with positive

definite marginal covariance matrices ΣX ∈ Rp×p and ΣY ∈ Rq×q, respectively. Suppose
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that (X1, Y1), . . . , (Xn, Yn) is a random sample from (X, Y ), and let X = [X1, . . . , Xn] ∈
Rp×n and Y = [Y1, . . . , Yn] ∈ Rq×n. Also, let Σ̂X and Σ̂Y be strongly consistent

estimators for ΣX and ΣY , respectively. Then

V2
n(Σ̂

−1/2
X X, Σ̂

−1/2
Y Y )→ Ṽ2(X, Y ),

almost surely, as n→∞. In particular, the sample affinely invariant distance correla-

tion satisfies

R̃n(X,Y )→ R̃(X, Y ), (3.1.5)

almost surely.

Proof. As the covariance matrices ΣX and ΣY are positive definite, we may

assume that the strongly consistent estimators Σ̂X and Σ̂Y also are positive definite.

Therefore, in order to prove the first statement it suffices to show that

V2
n(Σ̂

−1/2
X X, Σ̂

−1/2
Y Y )− V2

n(Σ
−1/2
X X,Σ

−1/2
Y Y )→ 0, (3.1.6)

almost surely. By the decomposition (2.4.6), the left-hand side of (3.1.6) can be written

as an average of terms of the form∣∣Σ̂−1/2
X (Xk −Xl)

∣∣
p

∣∣Σ̂−1/2
Y (Yk − Ym)

∣∣
q
−
∣∣Σ−1/2

X (Xk −Xl)
∣∣
p

∣∣Σ−1/2
Y (Yk − Ym)

∣∣
q
.

Using the identity∣∣Σ̂−1/2
X (Xk −Xl)

∣∣
p

∣∣Σ̂−1/2
Y (Yk − Ym)

∣∣
q

=
∣∣(Σ̂−1/2

X − Σ
−1/2
X + Σ

−1/2
X )(Xk −Xl)

∣∣
p

∣∣(Σ̂−1/2
Y − Σ

−1/2
Y + Σ

−1/2
Y )(Yk − Ym)

∣∣
q
,

we obtain∣∣Σ̂−1/2
X (Xk −Xl)

∣∣
p

∣∣Σ̂−1/2
Y (Yk − Ym)

∣∣
q
−
∣∣Σ−1/2

X (Xk −Xl)
∣∣
p

∣∣Σ−1/2
Y (Yk − Ym)

∣∣
q

≤ ‖Σ̂−1/2
X − Σ

−1/2
X ‖ ‖Σ̂−1/2

Y − Σ
−1/2
Y ‖ |Xk −Xl|p |Yk − Ym|q

+ ‖Σ̂−1/2
X − Σ

−1/2
X ‖ |Xk −Xl|p

∣∣Σ−1/2
Y (Yk − Ym)

∣∣
q

+ ‖Σ̂−1/2
Y − Σ

−1/2
Y ‖

∣∣Σ−1/2
X (Xk −Xl)

∣∣
p
|Yk − Ym|q,

where the matrix norm ‖Λ‖ is the largest eigenvalue of Λ in absolute value. Now

we can separate the three sums in (2.4.6) and place the factors like ‖Σ̂−1/2
X − Σ

−1/2
X ‖

in front of the sums, since they appear in every summand. Then, ‖Σ̂−1/2
X − Σ

−1/2
X ‖

and ‖Σ̂−1/2
Y − Σ

−1/2
Y ‖ tend to zero and the remaining averages converge to constants

(representing some distance correlation components) almost surely as n → ∞, and

this completes the proof of the first statement. Finally, the property (3.1.5) of strong
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consistency of R̃n(X,Y ) is obtained immediately upon setting Σ̂X = SX and Σ̂Y =

SY .

Affinely invariant distance covariance can also be viewed as a generalized distance

covariance in the sense of (2.4.10). To see this, notice the following extension of Lemma

2.4.9.

Lemma 3.1.8. If 0 < α < 2, then for all x ∈ Rd∫
Rd

1− cos(〈t, x〉)
√
t′At

d+α
dt =

1√
det(A)

C(d, α)
(√

x′A−1x
)α
,

where

C(d, α) =
2πd/2Γ(1− α/2)

α2αΓ((d+ α)/2)

and Γ(·) is the complete gamma function.

Proof. Since A is symmetric and positive definite, we can find an orthogonal

matrix P and a diagonal matrix D such that A = P−1DP . Hence, we have A1/2 =

P−1D1/2P and A1/2, A−1/2 are symmetric. Therefore by substituting A1/2t → t, we

obtain ∫
Rd

1− cos(〈t, x〉)
√
t′At

d+α
dt =

1√
det(A)

∫
Rd

1− cos(〈A−1/2t, x〉)
|t|d+α
d

dt

=
1√

det(A)

∫
Rd

1− cos(〈t, A−1/2x〉)
|t|d+α
d

dt

=
1√

det(A)
C(d, α)|A−1/2x|αd .

where the last line follows by Lemma 2.4.9.

Motivated by this lemma, we define weight functions ωM1 and ωM2 via

ωM1(s) =

√
detM1

cp |M1/2
1 s|1+p

p

, ωM2(t) =

√
detM2

cq |M1/2
2 t|1+q

q

.

Then, making use of the notion of (2.4.10), we obtain

V2(X, Y ;ωM1 , ωM2) =

√
detM1 detM2

cpcq

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2

|M1/2
1 s|1+p

p |M1/2
2 t|1+q

q

dsdt. (3.1.7)
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Exploiting Lemma 3.1.8 and the proof of Székely [102, Theorem 1, pp. 7], we see that

a respective sample measure can be defined similarly to (2.4.5):

Definition 3.1.9. Let

akl = |M−1/2
1 (Xk −Xl)|p, āk· =

1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl, ā·· =
1

n2

n∑
k,l=1

akl,

and

Akl = akl − āk· − ā·l + ā··,

similarly bkl = |M−1/2
2 (Yk − Yl)|q, b̄k·, b̄·l, b̄··, and Bkl, where k, l = 1, . . . , n.

Now define V2
n(X,Y , ωM1 , ωM2) via

V2
n(X,Y , ωM1 , ωM2) =

1

n2

n∑
k,l=1

AklBkl. (3.1.8)

By the same arguments as in [102] and [100], we conclude that the sample version

V2
n(X,Y , ωM1 , ωM2) is consistent. Furthermore, it is clear by the proof of Theorem

3.1.7 that M1 and M2 in the sample version can be replaced by strongly consistent

estimators M̂1n and M̂2n of M1 and M2, respectively.

There are two important consequences of the preceding comments. First, note that the

affinely invariant distance covariance can be regarded as measure of the type defined

in (2.4.10), since

Ṽ(X, Y ) = V(X, Y, ωΣX
, ωΣY

).

Secondly, any choice of positive definite matrices M1 and M2 and strongly consistent

estimators M̂1n and M̂2n yields a measure of dependence

R(X, Y, ωM1 , ωM2) =
V(X, Y ;ωM1 , ωM2)√

V(X,X;ωM1 , ωM1)V(Y, Y ;ωM2 , ωM2)
,

and a respective consistent sample measure

Rn(X,Y , ωM̂1n
, ωM̂2n

) =
Vn(X,Y , ωM̂1n

, ωM̂2n
)√

Vn(X,X, ωM̂1n
, ωM̂1n

)Vn(Y ,Y , ωM̂2n
, ωM̂2n

)
,

which satisfy the crucial properties of distance correlation stated in Theorem 2.4.8.

Even more important, the asymptotic properties of the test statistic (2.4.9) are not

affected by the transition from Vn(X,Y ) to Vn(X,Y , ωM̂1n
, ωM̂2n

). Hence, a completely

analogous but different test can be stated for any pair of strongly consistent estimators

M̂1n and M̂2n. In particular, the affinely invariant distance correlation features a test
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analogous to Theorem 2.4.11. Noting the results of Kosorok [55], we raise the possibility

that M̂1n and M̂2n can be chosen in a judicious, data-dependent way so that the power

of the test for independence increases. In any case, tests for independence based on

distances are increasingly considered in the recent literature, see for examples the papers

by Heller et al. [40] and Székely and Rizzo [102].

3.2 The Affinely Invariant Distance Correlation for

Multivariate Normal Populations

We now consider the problem of calculating the affinely invariant distance correlation

between the random vectors X and Y where (X, Y ) ∼ Np+q(µ,Σ), a multivariate

normal distribution with mean vector µ ∈ Rp+q and covariance matrix Σ ∈ R(p+q)×(p+q).

Naturally, we have to assume, that ΣX and ΣY are nonsingular since otherwise the

affinely invariant distance covariance (3.1.3) does not exist. For the case in which

p = q = 1, i.e., the bivariate normal distribution, the problem was solved by Székely, et

al. in [102] and is stated in Theorem 2.4.10. In that case, the formula for the affinely

invariant distance correlation depends only on ρ, the correlation coefficient, and appears

in terms of the functions sin−1 ρ and (1 − ρ2)1/2. Using equation (2.3.15), this result

can be expressed as

R̃2(X, Y ) =
2F1

(
−1

2
,−1

2
; 1

2
; ρ2
)
− 2 2F1

(
−1

2
,−1

2
; 1

2
; 1

4
ρ2
)

+ 1

1 + π/3−
√

3
,

where 2F1 is the generalized 2F1-hypergeometric function.

We will see in Corollary 3.2.6, that the general case can be stated in terms of general-

ized hypergeometric functions of matrix arguments (see Definition 2.3.9), representing

natural generalizations of these functions. Furthermore, while the bivariate result is

just a function of the correlation coefficient ρ, we will see that the general result is a

symmetric function of the canonical correlation coefficients λ1, . . . , λp between the ran-

dom vectors X and Y . The proof of the theorems of these section will make heavy use

of the theory of zonal polynomials. We refer the reader to Section 2.3 and the chapter

7 of Muirhead [68] for further details.

It will prove useful to define Loewner’s partial ordering for symmetric matrices.

Definition 3.2.1. Let S(p) denote the space of symmetric p × p-matrices. Then

Loewner’s partial ordering on S(p) is defined by

A ≥` B ⇔ A−B is positive semi-definite.
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The following Lemma is well-known (see for example [93]).

Lemma 3.2.2. For symmetric matrices A,B ∈ S(p), A ≥` B implies αi ≥ βi, i =

1, . . . , p, where α1 ≥ . . . ≥ αp and β1 ≥ . . . ≥ βp are the eigenvalues of A and B

respectively.

As an immediate consequence of 3.2.2, we get

Lemma 3.2.3. For symmetric matrices A,B ∈ S(p), A ≥` B implies

(i) det(A) ≥ det(B)

(ii) tr (A) ≥ tr (B)

(iii) ‖A‖ ≥ ‖B‖.

Theorem 3.2.4 states the key result of this section which obtains an explicit formula

for the affinely invariant distance covariance in the case of a Gaussian population of

arbitrary dimension and arbitrary covariance matrix with positive definite marginal

covariance matrices.

Theorem 3.2.4. Suppose that (X, Y ) ∼ Np+q(µ,Σ), where

Σ =

(
ΣX ΣXY

ΣYX ΣY

)
with ΣX ∈ Rp×p, ΣY ∈ Rq×q, and ΣXY ∈ Rp×q. Then

Ṽ2(X, Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
q)k

C(k)(Λ), (3.2.1)

where

Λ = Σ
−1/2
Y ΣYX Σ−1

X ΣXY Σ
−1/2
Y ∈ Rq×q. (3.2.2)

Proof. We may assume, with no loss of generality, that µ is the zero vector. Since

ΣX and ΣY both are positive definite the inverse square-roots, Σ
−1/2
X and Σ

−1/2
Y , exist.

By considering the standardized variables X̃ = Σ
−1/2
X X and Ỹ = Σ

−1/2
Y Y , we may

replace the covariance matrix Σ by

Σ̃ =

(
Ip ΛXY

ΛXY
′ Iq

)
,

where

ΛXY = Σ
−1/2
X ΣXY Σ

−1/2
Y . (3.2.3)
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Once we have made these reductions, it follows that the matrix Λ in (3.2.2) can be

written as Λ = ΛXY
′ΛXY and that it has norm less than 1. Indeed, by the partial

Iwasawa decomposition [54, 8] of Σ̃, viz., the identity,

Σ̃ =

(
Ip 0

ΛXY
′ Iq

)(
Ip 0

0 Iq − ΛXY
′ΛXY

)(
Ip ΛXY

0 Iq

)
,

where the zero matrix of any dimension is denoted by 0, we see that the matrix Σ̃ is

positive semidefinite if and only if Iq−Λ is positive semidefinite. Hence, Λ ≤` Iq in the

Loewner ordering and therefore ‖Λ‖ ≤ 1 by Lemma 3.2.3.

We proceed to calculate the distance covariance Ṽ(X, Y ) = V(X̃, Ỹ ). It is well-known

[1] that the characteristic function of (X̃, Ỹ ) is

fX̃,Ỹ (s, t) = exp
[
− 1

2

(s
t

)′
Σ̃
(s
t

)]
= exp

[
−1

2
(|s|2p + |t|2q + 2s′ΛXY t)

]
,

where s ∈ Rp and t ∈ Rq. Therefore,∣∣fX̃,Ỹ (s, t)− fX̃(s)fỸ (t)
∣∣2 =

(
1− exp(−s′ΛXY t)

)2
exp(−|s|2p − |t|2q),

and hence

cpcq V2(X̃, Ỹ ) =

∫
Rp+q

(
1− exp(−s′ΛXY t)

)2
exp(−|s|2p − |t|2q)

ds

|s|p+1
p

dt

|t|q+1
q

=

∫
Rp+q

(
1− exp(s′ΛXY t)

)2
exp(−|s|2p − |t|2q)

ds

|s|p+1
p

dt

|t|q+1
q

, (3.2.4)

where the latter integral is obtained by making the change of variables s 7→ −s within

the former integral.

By a Taylor series expansion, we obtain(
1− exp(s′ΛXY t)

)2
= 1− 2 exp(s′ΛXY t) + exp(2s′ΛXY t)

=
∞∑
k=2

2k − 2

k!
(s′ΛXY t)

k.

Substituting this series into (3.2.4) and interchanging summation and integration, a

procedure which is straightforward to verify by means of Fubini’s theorem, and noting

that the odd-order terms integrate to zero, we obtain

cpcq V2(X̃, Ỹ ) =
∞∑
k=1

22k − 2

(2k)!

∫
Rp+q

(s′ΛXY t)
2k exp(−|s|2p − |t|2q)

ds

|s|p+1
p

dt

|t|q+1
q

. (3.2.5)
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To calculate, for k ≥ 1, the integral∫
Rp+q

(s′ΛXY t)
2k exp(−|s|2p − |t|2q)

ds

|s|p+1
p

dt

|t|q+1
q

, (3.2.6)

we change variables to polar coordinates, putting s = rxθ and t = ryφ where rx, ry > 0,

θ = (θ1, . . . , θp)
′ ∈ Sp−1, and φ = (φ1, . . . , φq)

′ ∈ Sq−1. By Theorem 2.1.3, the integral

(3.2.6) reads:∫ ∞
0

∫ ∞
0

∫
Sq−1

∫
Sp−1

r2k−2
x r2k−2

y exp(−r2
x − r2

y)(θ
′ΛXY φ)2kdθdφdrxdry,

which obviously separates into a product of multiple integrals over (rx, ry), and over

(θ, φ), respectively. The integrals over rx and ry are standard gamma integrals,

∫ ∞
0

∫ ∞
0

r2k−2
x r2k−2

y exp(−r2
x − r2

y)drxdry = 1
4

∫ ∞
0

∫ ∞
0

uk−3/2
x uk−3/2

y exp(−ux − uy)duxduy

= 1
4

[Γ(k − 1
2
)]2 =

[
(−1

2
)k
]2
π,

where the first transformation follows by substituting ux = r2
x, uy = r2

y.

The remaining factor is the integral∫
Sq−1

∫
Sp−1

(θ′ΛXY φ)2kdθdφ, (3.2.7)

where dθ and dφ are unnormalized surface measures on Sp−1 and Sq−1, respectively.

By a standard invariance argument,∫
Sp−1

(θ′v)2kdθ = |v|2kp
∫
Sp−1

θ2k
1 dθ,

v ∈ Rp. Indeed, denoting this integral by g(v), it follows by (2.1.2) that g(v) = g(Hv)

for all H ∈ O(p). By choosing H to be a specific orthogonal matrix such that Hv =

(|v|p, 0, . . . , 0)′ we obtain

g(v) = g
(
(|v|p, 0, . . . , 0)′

)
=

∫
Sp−1

(θ1|v|p)2kdθ

= |v|2kp
∫
Sp−1

θ2k
1 dθ.
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Setting v = ΛXY φ, we obtain∫
Sq−1

∫
Sp−1

(θ′ΛXY φ)2kdθdφ =
∫
Sq−1 |ΛXY φ|2kp

∫
Sp−1 θ

2k
1 dθdφ. (3.2.8)

=
∫
Sq−1 |ΛXY φ|2kp γp,kdφ, (3.2.9)

with

γp,k =

∫
Sp−1

θ2k
1 dθ.

To evaluate γp,k, we make the following considerations. Let V = (V1, . . . , Vp)
′ ∼

Np(0, Ip); by Muirhead [68, Theorem 1.5.7], the random vector V/(V ′V )1/2 is uniformly

distributed on the sphere Sp−1. Let U = V1/(V
′V )1/2; writing

U2 =
V 2

1

V ′V
≡ V 2

1

V 2
1 + (V 2

2 + · · ·+ V 2
p )
,

and noting that V 2
2 + · · · + V 2

p ∼ χ2
p−1 independently of V 2

1 ∼ χ2
1, it follows that

U2 ∼ Beta(1
2
, 1

2
(p− 1)), a beta distribution. Hence,

γp,k =

∫
Sp−1

dθ E(U2k) = 2cp−1

Γ(k + 1
2
)Γ(1

2
p)

Γ(k + 1
2
p)Γ(1

2
)

= 2cp−1

(1
2
)k

(1
2
p)k

, (3.2.10)

since 2cp−1 = 2πp/2

Γ(p/2)
is the surface area of Sp−1 (see Remark 2.1.4), the remaining factor

follows from the well-known moments of the beta distribution.

Therefore, in order to evaluate (3.2.9), it remains to evaluate

Jk(Λ) =

∫
Sq−1

|ΛXY φ|2kp dφ =

∫
Sq−1

(φ′Λφ)kdφ.

By the invariance of the surface measure under orthogonal transformations (see 2.1.2),

it follows that Jk(Λ) = Jk(K
′ΛK) for all K ∈ O(q). Integrating with respect to the

normalized Haar measure on the orthogonal group, we conclude by (2.1.1) that

Jk(Λ) =

∫
O(q)

Jk(K
′ΛK)dK =

∫
Sq−1

∫
O(q)

(φ′K ′ΛKφ)kdKdφ. (3.2.11)

We now make use of some properties of the zonal polynomials introduced in Section

2.3. By (2.3.2),

(φ′K ′ΛKφ)k = (trK ′ΛKφφ′)k =
∑
|κ|=k

Cκ(K
′ΛKφφ′),

where Cκ(K
′ΛKφφ′) is meant to be understood in the sense of (2.3.4). Therefore, by
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(2.3.5),∫
O(q)

(φ′K ′ΛKφ)kdK =
∑
|κ|=k

∫
O(q)

Cκ(K
′ΛKφφ′)dK =

∑
|κ|=k

Cκ(Λ)Cκ(φφ
′)

Cκ(Iq)
.

Since φφ′ is of rank 1 then, by Remark 2.3.5, Cκ(φφ
′) = 0 if `(κ) > 1; it now follows,

by (2.3.2) and the fact that φ ∈ Sq−1, that

C(k)(φφ
′) =

∑
|κ|=k

Cκ(φφ
′) = (trφφ′)k = (φ′φ)k = |φ|2kq = 1.

Therefore, ∫
O(q)

(φ′K ′ΛKφ)kdK =
C(k)(Λ)

C(k)(Iq)
=

(1
2
)k

(1
2
q)k

C(k)(Λ),

where the last equality follows by (2.3.7). Substituting this result at (3.2.11), we obtain

Jk(Λ) = 2cq−1

(1
2
)k

(1
2
q)k

C(k)(Λ).

Collecting together these results, we obtain

Ṽ2(X, Y ) =
1

cp cq

∞∑
k=1

22k − 2

(2k)!

([
(−1

2
)k
]2
π
)
γp,k Jk(Λ)

= 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

(2k)!

(1
2
)k (1

2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
q)k

C(k)(Λ).

By using the identity (2k)! = k! 22k (1
2
)k, we obtain the representation (3.2.1), as desired.

Remark 3.2.5. By Theorem 3.2.4, we see, that Ṽ(X, Y ) is just a function depending

only on the dimensions p and q and the eigenvalues of the matrix Λ, i.e. the squared

canonical correlation coefficients of the subvectors X and Y . For fixed dimensions this

implies R̃(X, Y ) = g(λ1, . . . , λr), where r = min(p, q) and λ1, . . . , λr are the canonical

correlation coefficients of X and Y . Due to the functional invariance the maximum

likelihood estimator (MLE) for affinely invariant distance correlation in the Gaussian

setting is hence defined by g(λ̂1, . . . , λ̂r), where λ̂1, . . . , λ̂r are the MLEs of the canonical

correlation coefficients.

Let us note, that by interchanging the roles of X and Y in Theorem 3.2.4, we would

obtain (3.2.1) with Λ in (3.2.2) replaced by

Λ0 = Σ
−1/2
X ΣXY Σ−1

Y ΣYX Σ
−1/2
X ∈ Rp×p.
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Since Λ and Λ0 have the same characteristic polynomial and hence the same set of

nonzero eigenvalues, and noting that Cκ(Λ) depends only on the eigenvalues of Λ,

it follows that C(k)(Λ) = C(k)(Λ0). Therefore, the series representation (3.2.1) for

Ṽ2(X, Y ) remains unchanged if the roles of X and Y are interchanged.

Corollary 3.2.6. In the setting of Theorem 3.2.4, we have

Ṽ2(X, Y ) = 4π
cp−1

cp

cq−1

cq

×
(

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ

)
− 2 3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; 1

4
Λ
)

+ 1
)
. (3.2.12)

Proof. It is evident that the partitional rising factorial introduced in (2.3.8)

satisfies

(1
2
)κ =

{
(1

2
)k1 , if `(κ) ≤ 1,

0, if `(κ) > 1.

Therefore, we now can write the series in (3.2.1), up to a multiplicative constant, in

terms of a generalized hypergeometric function of matrix argument, in that

∞∑
k=1

22k − 2

k! 22k

(1
2
)k(−1

2
)k(−1

2
)k

(1
2
p)k(

1
2
q)k

C(k)(Λ)

=
∞∑
k=1

22k − 2

k! 22k

∑
|κ|=k

(1
2
)κ(−1

2
)κ(−1

2
)κ

(1
2
p)κ(

1
2
q)κ

Cκ(Λ)

=
∞∑
k=1

1

k!

∑
|κ|=k

(1
2
)κ(−1

2
)κ(−1

2
)κ

(1
2
p)κ(

1
2
q)κ

Cκ(Λ)− 2
∞∑
k=1

1

k! 22k

∑
|κ|=k

(1
2
)κ(−1

2
)κ(−1

2
)κ

(1
2
p)κ(

1
2
q)κ

Cκ(Λ)

=
[

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ

)
− 1
]
− 2

[
3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; 1

4
Λ
)
− 1
]
.

Due to property (2.3.1) it remains to show that the zonal polynomial series expansion for

the 3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ

)
generalized hypergeometric function of matrix argument

converges absolutely for all Λ with Λ ≤` Iq in the Loewner ordering. By (2.3.7)

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ

)
≤

∞∑
k=0

22k

k! 22k

(−1
2
)k(−1

2
)k

(1
2
p)k

= 2F1

(
−1

2
,−1

2
; 1

2
p; 1
)
.

The latter series converges due to Theorem 2.3.10 and so we have absolute convergence

at (3.2.12) for all Σ with positive definite marginal covariance matrices.

Corollary 3.2.7. Let us consider the setting of Theorem 3.2.4 and set q = 1. Then

we have
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Ṽ2(X, Y ) = 4
cp−1

cp

(
2F1

(
−1

2
,−1

2
; 1

2
p;λ
)
− 2 2F1

(
−1

2
,−1

2
; 1

2
p; 1

4
λ
)

+ 1
)
, (3.2.13)

where λ := Λ ∈ R.

Proof. First note that c0c1
−1 = π−1. It is further evident, that

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
; s
)

= 2F1

(
−1

2
,−1

2
; 1

2
p, ; s

)

For cases in which q = 1 and p is odd, we can obtain explicit expressions for Ṽ2(X, Y ).

In such cases, the affinely invariant distance covariance in (3.2.13) can be expressed

as hypergeometric functions of the form 2F1(−1
2
,−1

2
; k + 1

2
; ρ2), k ∈ N, and we have

shown in Section 2.3, that these latter functions are expressible in closed form in terms

of elementary functions.

Let us consider again the case in which p = q = 1. Then λ = ρ2, where ρ is the Pearson

correlation coefficient and (3.2.13) and (2.3.15) yield

Ṽ2(X, Y ) =
4

π

(
2F1

(
−1

2
,−1

2
; 1

2
; ρ2
)
− 2 2F1

(
−1

2
,−1

2
; 1

2
; 1

4
ρ2
)

+ 1
)

=
4

π

(
ρ sin−1 ρ+

√
1− ρ2 − ρ sin−1 ρ/2−

√
4− ρ2 + 1

)
. (3.2.14)

For p = 3, we see by (2.3.16)

Ṽ2(X, Y ) =
8

π

(
3(1− ρ2)1/2

4
+

(1 + 2ρ2) sin−1 ρ

4ρ

− 3(1− (ρ2/4))1/2

4
+

(1 + ρ2) sin−1 ρ/2

2ρ
+ 1

)
, (3.2.15)

where we set λ = ρ2. Further, it is clear by (2.3.17), that, for q = 1 and p odd, the

affinely invariant distance covariance Ṽ2(X, Y ) can be expressed in closed form in terms

of elementary functions and the sin−1(·) function.

The appearance of the generalized hypergeometric functions of matrix argument also

yields a useful expression for the affinely invariant distance variance. In order to state

this result, we shall define for each positive integer p the quantity

A(p) =
Γ(1

2
p) Γ(1

2
p+ 1)[

Γ
(

1
2
(p+ 1)

)]2 − 2 2F1

(
−1

2
,−1

2
; 1

2
p; 1

4

)
+ 1. (3.2.16)
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Corollary 3.2.8. In the setting of Theorem 3.2.4, we have

Ṽ2(X,X) = 4π
c2
p−1

c2
p

A(p). (3.2.17)

Proof. We are in the special case of Theorem 3.2.4 for which X = Y , so that

p = q and Λ = Ip. By applying (2.3.7) we can write the series in (3.2.1) as

4π
c2
p−1

c2
p

∞∑
k=1

22k − 2

k! 22k

(1
2
)k(−1

2
)k(−1

2
)k

(1
2
p)k(

1
2
p)k

C(k)(Ip)

= 4π
c2
p−1

c2
p

∞∑
k=1

22k − 2

k! 22k

(−1
2
)k(−1

2
)k

(1
2
p)k

= 4π
c2
p−1

c2
p

( [
2F1

(
−1

2
,−1

2
; 1

2
p; 1
)
− 1
]
− 2

[
2F1

(
−1

2
,−1

2
; 1

2
p; 1

4

)
− 1
] )
.

By Theorem 2.3.10, the series 2F1(−1
2
,−1

2
; 1

2
p; z) also converges for the special value

z = 1, and then

2F1(−1
2
,−1

2
; 1

2
p; 1) =

Γ(1
2
p) Γ(1

2
p+ 1)[

Γ
(

1
2
(p+ 1)

)]2 ,
thereby completing the proof.

For cases in which p is odd, we can again obtain explicit values by using (2.3.15) and

the contiguous relation (2.3.13). This leads in such cases to explicit expressions for the

exact value of Ṽ2(X,X). In particular, if p = 1 then it follows from (2.4.2) and (2.3.15)

that

Ṽ2(X,X) =
4

3
− 4(
√

3− 1)

π
; (3.2.18)

and for p = 3, we deduce from (2.4.2) and (2.3.16) that

Ṽ2(X,X) = 2− 4(3
√

3− 4)

π
.

Hence, for q = 1 and p odd, (3.2.13) and the latter observation allows us to state the

affinely invariant distance correlation R̃(X, Y ) in terms of elementary functions. In

particular, combining (3.2.14) and (3.2.18) yields the result (2.4.10) stated by Szélely.

But even for cases where R̃(X, Y ) cannot be explicitly obtained, the representation

of the affinely invariant distance covariance and variance in Corollaries 3.2.6 and 3.2.8

enable the explicit and efficient calculation of the affinely invariant distance correlation

(3.1.4). For calculating the graphs in our illustrations, we use the algorithm of Koev and

Edelman [50] to evaluate the generalized hypergeometric function of matrix argument,
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Figure 3.1: The affinely invariant distance correlation for subvectors of a multivariate
normal population, where p = q = 2, as a function of the parameter r in three distinct
settings. The solid diagonal line is the identity function and is provided to serve as a
reference for the three distance correlation functions. See the text for details.

with C and Matlab code being available at these authors’ websites.

Figure 3.1 concerns the case p = q = 2 in various settings, in which the matrix ΛXY

depends on a single parameter r only. The dotted line shows the affinely invariant

distance correlation when

ΛXY =

(
0 0

0 r

)
;

this is the case with the weakest dependence considered here. The dash-dotted line

applies when

ΛXY =

(
r 0

0 r

)
.

The strongest dependence corresponds to the dashed line, which shows the affinely

invariant distance correlation when

ΛXY =

(
r r

r r

)
;

in this case we need to assume that 0 ≤ r ≤ 1
2

in order to retain positive definiteness.

In Figure 3.2, panel (a) shows the affinely invariant distance correlation when p = q = 2

and

ΛXY =

(
r 0

0 s

)
,
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Figure 3.2: The affinely invariant distance correlation between the p- and q-dimensional
subvectors of a (p+q)-dimensional multivariate normal population, where (a) p = q = 2
and ΛXY = diag(r, s), and (b) p = 2, q = 1 and ΛXY = (r, s)′.

where 0 ≤ r, s ≤ 1. With reference to Figure 3.1, the margins correspond to the dotted

line and the diagonal corresponds to the dash-dotted line.

Panel (b) of Figure 3.2 concerns the case in which p = 2, q = 1 and ΛXY = (r, s)′,

where r2 + s2 ≤ 1. Here, the affinely invariant distance correlation attains an upper

limit as r2 + s2 ↑ 1, and we have evaluated that limit numerically as 0.8252.

Note, that the exact formula given for the affinely invariant distance covariance in

Theorem 3.2.4 opens up the possibility to analytically study this measure in the case of

a multivariate normal population. In the following, we will use this result to investigate

the asymptotic behavior of the affinely invariant distance covariance and the affinely

invariant distance correlation, in particular in high-dimensional settings, where the

dimension p and q go to infinity.

3.3 Limit Theorems

In the course of this section, we study the limiting behavior of the affinely invariant

distance correlation measures for subvectors of multivariate normal populations.

Our first result quantifies the asymptotic decay of the affinely invariant distance corre-

lation in the case in which the cross-covariance matrix converges to the zero matrix, in
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Figure 3.3: The affinely invariant distance variance V(X,X) subject to the dimension
p. The horizontal line represents the level

√
2.

that

tr (Λ) = ‖ΛXY ‖2
F −→ 0,

where the matrices Λ = ΛXY
′ΛXY and ΛXY are defined in (3.2.2) and (3.2.3), respec-

tively.

Theorem 3.3.1. Suppose that (X, Y ) ∼ Np+q(µ,Σ), where

Σ =

(
ΣX ΣXY

ΣYX ΣY

)
with ΣX ∈ Rp×p and ΣY ∈ Rq×q being positive definite, and suppose that the matrix Λ

in (3.2.2) has positive trace. Then,

lim
tr (Λ)→ 0

R̃2(X, Y )

tr (Λ)
=

1

4 pq
√
A(p)A(q)

, (3.3.1)

where A(p) is defined in (3.2.16).

Proof. By Theorem 3.2.4, Ṽ2(X, Y ) is given by:

Ṽ2(X, Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
q)k

C(k)(Λ). (3.3.2)

We further note that Ṽ2(X,X) and Ṽ2(Y, Y ) do not depend on ΣXY , as can be seen from

their explicit representations in terms of A(p) and A(q) given in (3.2.17). In studying
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Figure 3.4: The affinely invariant distance variance between two bivariate random
variables with ΛXY = r Ip. The solid line represents the identity. The dashed lines
sketch the distance correlation for p = 1, 5, 10.

the asymptotic behavior of Ṽ2(X, Y ), we may interchange the limit and the summation

in the series representation (3.3.2). Hence, it suffices to find the limit term-by-term.

Since C(1)(Λ) = tr (Λ) then the ratio of the term for k = 1 and tr (Λ) equals

cp−1

cp

cq−1

cq

π

pq
.

For k ≥ 2, it follows from (2.3.6) that C(k)(Λ) is a sum of monomials in the eigenvalues

of Λ, with each monomial being of degree k, which is greater than the degree, viz. 1,

of tr (Λ); therefore,

lim
tr (Λ)→ 0

C(k)(Λ)

tr (Λ)
= lim

Λ→ 0

C(k)(Λ)

tr (Λ)
= 0. (3.3.3)

Collecting these facts together, we find

lim
tr (Λ)→ 0

R̃2(X, Y )

tr (Λ)
=

cp−1

cp

cq−1

cq
π
pq

Ṽ(X,X) Ṽ(Y, Y )
=

1

4 pq
√
A(p)A(q)

.

If p = q = 1 we are in the situation of Theorem 2.4.10 . Applying the identity (2.3.15),

we obtain

2F1(−1
2
,−1

2
; 1

2
; 1

4
) =

π

12
+

√
3

2
,

and (tr (Λ))1/2 = |ρ|. Thus we obtain

lim
ρ→ 0

R̃(X, Y )

|ρ|
=

1

2
(
1 + 1

3
π −
√

3
)1/2

,
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analogously to Theorem 2.4.10 (iii).

In the remainder of this section we consider situations in which one or both of the

dimensions p and q grow without bound. We will repeatedly make use the following

lemma.

Lemma 3.3.2. Let cp be defined as in (2.4.2), then

cp−1√
p cp
−→ 1√

2π
(3.3.4)

as p → ∞.

Proof. By the functional equation for the gamma function (2.2.2), we find that

c2
p−1

p c2
p

=
[Γ(p+1

2
)]2

2π Γ(p
2
) Γ(p

2
+ 1)

,

Now, by Stirling’s approximation (Theorem 2.2.4)

1

2 π
lim
p→∞

Γ(p+1
2

)2

Γ(p
2
)Γ(p

2
+ 1)

=
1

2 π
lim
p→∞

√
(p/2 + 1)p/2

(
(p+1)/2

e

)p/2+1(
(p+1)/2

e

)p/2
(p+ 1)/2

(
p/2+1
e

)p/2+1(
p/2
e

)p/2
=

1

2 π
lim
p→∞

√
(p+ 2)p

p+ 1
lim
p→∞

(p+ 1

p+ 2

)p/2+1

lim
p→∞

(p+ 1

p

)p/2
=

1

2 π
e−1/2 e1/2 =

1

2 π
.

Theorem 3.3.3. For each positive integer p, suppose that (Xp, Yp) ∼ N2p(µp,Σp),

where

Σp =

(
ΣX, p ΣXY, p

ΣYX, p ΣY, p

)
with ΣX, p ∈ Rp×p and ΣY, p ∈ Rp×p being positive definite and such that

Λp = Σ
−1/2
Y, p ΣYX, p Σ−1

X, p ΣXY, p Σ
−1/2
Y, p 6= 0.

Then

lim
p→∞

p

tr (Λp)
Ṽ2(Xp, Yp) =

1

2
(3.3.5)
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and

lim
p→∞

p

tr (Λp)
R̃2(Xp, Yp) = 1. (3.3.6)

In particular, if Λp = r2Ip for some r ∈ [0, 1], then tr (Λp) = r2p, and so (3.3.5) and

(3.3.6) reduce to

lim
p→∞

Ṽ2(Xp, Yp) =
1

2
r2 and lim

p→∞
R̃(Xp, Yp) = r,

respectively. The following corollary concerns the special case in which r = 1; we state

it separately for emphasis.

Corollary 3.3.4. For each positive integer p, suppose that Xp ∼ Np(µp,Σp), with Σp

being positive definite. Then

lim
p→∞

Ṽ2(Xp, Xp) =
1

2
. (3.3.7)

Proof of Theorem 3.3.3 and Corollary 3.3.4. In order to prove (3.3.5) we

study the limit for the terms corresponding separately to k = 1, k = 2, and k ≥ 3 in

(3.3.2).

For k = 1, on recalling that C(1)(Λp) = tr (Λp), the ratio of that term to tr (Λp)/p is

given by
c2
p−1

c2
p

π

p
,

which tends to 1/2 due to Lemma 3.3.2.

For k = 2, we first deduce from (2.3.2) that C(2)(Λp) ≤ (tr Λp)
2. Moreover, tr (Λp) ≤ p

because Λp ≤` Ip and Lemma 3.2.3. Thus, the ratio of the second term in (3.3.2) to

tr (Λp)/p is a constant multiple of

p

tr (Λp)

c2
p−1

c2
p

C(2)(Λp)

(1
2
p)2 (1

2
p)2

≤
c2
p−1

c2
p

p2

(1
2
p)2 (1

2
p)2

= 4
p

(p+ 1)2

c2
p−1

p c2
p

which, by Lemma 3.3.2, converges to zero as p → ∞.

Finally, suppose that k ≥ 3. Obviously the largest eigenvalue of Λp is equal to the small-

est eigenvalue of ‖Λp‖Ip, and so it follows from (2.3.6) that C(k)(Λp) ≤ ‖Λp‖k C(k)(Ip).

Further, note that tr (Λp) ≥ ‖Λp‖. Then by λp ≤` Ip and applying (2.3.7) and Lemma

3.2.3 we obtain

C(k)(Λp)

tr (Λp)
≤
‖Λp‖k C(k)(Ip)

‖Λp‖
= ‖Λp‖k−1C(k)(Ip) ≤ C(k)(Ip) =

(1
2
p)k

(1
2
)k
. (3.3.8)
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Therefore,

4π
p

tr (Λp)

c2
p−1

c2
p

∞∑
k=3

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
p)k

C(k)(Λp)

≤ 4π p
c2
p−1

c2
p

∞∑
k=3

22k − 2

k! 22k

(−1
2
)k (−1

2
)k

(1
2
p)k

.

By Lemma 3.3.2, each term pc2
p−1/(

1
2
p)kc

2
p converges to zero as p → ∞, and this proves

both (3.3.5) and its special case, (3.3.7). Then, (3.3.6) follows immediately.

Finally, we consider the situation in which q, the dimension of Y , is fixed while p, the

dimension of X, grows without bound.

Theorem 3.3.5. For each positive integer p, suppose that (Xp, Y ) ∼ Np+q(µp,Σp),

where

Σp =

(
ΣX, p ΣXY, p

ΣYX, p ΣY

)
with ΣX, p ∈ Rp×p and ΣY ∈ Rq×q being positive definite and such that

Λp = Σ
−1/2
Y ΣYX, p Σ−1

X, p ΣXY, p Σ
−1/2
Y 6= 0.

Then

lim
p→∞

√
p

tr (Λp)
Ṽ2(Xp, Y ) =

√
π

2

cq−1

q cq
(3.3.9)

and

lim
p→∞

√
p

tr (Λp)
R̃2(Xp, Y ) =

1

2q
√
A(q)

. (3.3.10)

Proof. By (3.2.1),

Ṽ2(Xp, Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
q)k

C(k)(Λp).

We now examine the limiting behavior, as p → ∞, of the terms in this sum for k = 1

and, separately, for k ≥ 2.

For k = 1, the limiting value of the ratio of the corresponding term to tr (Λp)/
√
p equals

π
cq−1

q cq
lim
p→∞

√
p

tr (Λp)

cp−1

p cp
C(1)(Λp) =

√
π

2

cq−1

q cq

by Lemma 3.3.2 and the fact that C(1)(Λp) = tr (Λp).
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For k ≥ 2, the ratio of the sum to tr (Λp)/
√
p equals

4π

√
p

tr (Λp)

cp−1

cp

cq−1

cq

∞∑
k=2

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k (1

2
q)k

C(k)(Λp)

≤ 4π

√
p

‖Λp‖
cp−1

cp

cq−1

cq

∞∑
k=2

22k − 2

k! 22k

(−1
2
)k (−1

2
)k

(1
2
p)k

‖Λp‖k

≤ 4π
√
p
cp−1

cp

cq−1

cq

∞∑
k=2

22k − 2

k! 22k

(−1
2
)k (−1

2
)k

(1
2
p)k

,

where we have used (3.3.8) to obtain the last two inequalities. By applying (3.3.4), we

see that the latter upper bound converges to 0 as p → ∞, which proves (3.3.9), and

then (3.3.10) follows immediately.

We illustrate special cases of our limiting results in Figure 3.3 and 3.4. Figure 3.3

gives the affinely invariant distance variance for dimensions p = 1, . . . , 5. For non-

integer values of p the graph shows the value of the representation (3.2.17), which is

continuous in p. The level of the limit
√

2 is marked by the horizontal dashed line.

Figure 3.4 plots the value of the affinely invariant distance correlation for random

variables X, Y ∈ Rp with ΛX,Y = r Ip. The solid lines marks the identity, while the

dashed lines represent the affinely invariant distance correlations for different values of

p. The line being farthest away from the identity corresponds to p = 1, the middle one

corresponds to p = 5, while the nearest graph sketches the affinely invariant distance

correlation for p = 10.

The results in this section have practical implications for affinely invariant distance

correlation analysis of large-sample, high-dimensional Gaussian data. In the setting of

Theorem 3.3.5, tr (Λp) ≤ q is bounded, and so

lim
p→∞

R̃(Xp, Y ) = 0.

As a consequence of Theorem 3.1.7 on the consistency of sample measures, it follows

that the direct calculation of affinely invariant distance correlation measures for such

data will return values which are virtually zero. In practice, in order to obtain values

of the sample affinely invariant distance correlation measures which permit statistical

inference, it will be necessary to calculate Λ̂p, the maximum likelihood estimator of Λp,

and then to rescale the distance correlation measures with the factor
√
p/tr (Λ̂p). In the

scenario of Theorem 3.3.3 the asymptotic behavior of the affinely invariant distance cor-

relation measures depends on the ratio p/tr (Λp); and as tr (Λp) can attain any value in

the interval [0, p], a wide range of asymptotic rates of convergence is conceivable. In all

these settings, the series representation (3.2.1) can be used to obtain complete asymp-

totic expansions in powers of p−1 or q−1, of the affinely invariant distance covariance
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or correlation measures, as p or q tend to infinity.

3.4 Time Series of Wind Vectors at the Stateline

Wind Energy Center

Recently, Zhou suggested the use of distance correlation for time series. In [116], he

defines the auto distance correlation function and shows the consistency of a respective

sample measure under moderate assumptions (see 2.4.12-2.4.14). It is straightforward

to extend these notions to the affinely invariant distance correlation.

Definition 3.4.1. Let X = {Xj}∞j=−∞ be a strictly stationary multivariate time series

of dimension p and let ΣX0 denote the covariance matrix of X0. Then the affinely

invariant distance covariance function is, for k ≥ 0, given by

ṼX(k) = VX̃(k),

where X̃ = (Σ
−1/2
X0

Xj)
∞
j=−∞ and VX̃ is defined as in 2.4.12. For an integer k, define the

affinely invariant auto distance correlation function as

R̃X(k) =

√
ṼX(k)

ṼX(0)
. (3.4.1)

We further extend the idea of Zhou to define cross distance covariance functions and

cross distance correlation functions between two jointly strictly stationary, vector-

valued time series, namely

Definition 3.4.2. Let X = (Xj)
∞
j=−∞ and Y = (Yj)

∞
j=−∞ be two strictly stationary

multivariate time series of dimensions p and q, respectively. Then the cross distance

covariance function VX is, for k ∈ Z, defined as

VX,Y (k) =
1

cp cq

∫
Rp+q

|fX0,Yk(s, t)− fX0(s)fYk(t)|2

|s|p+1
p |t|q+1

q

dsdt,

moreover, the cross distance correlation function RX is, for k ∈ Z defined as

[RX(k)]2 =
VX,Y (k)√
VX(0)VY (0)

if the denominator is strictly positive, 0 otherwise.

The affinely invariant cross distance covariance function and the affinely invariant cross

distance correlation function can the be defined in analogous fashion.
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Definition 3.4.3. Let X = (Xj)
∞
j=−∞ and Y = (Yj)

∞
j=−∞ be two strictly stationary

multivariate time series of dimensions p and q, respectively. Moreover let ΣX0 and ΣY0

denote the covariance matrices of X0 and Y0, respectively. Then the affinely invariant

cross distance covariance function VX is, for k ∈ Z, defined as

ṼX,Y (k) = VX̃,Ỹ (k),

where X̃ = 8Σ
−1/2
X0

Xj)
∞
j=−∞ and Ỹ = (Σ

−1/2
Y0

Yj)
∞
j=−∞. For an integer k, define the

affinely invariant cross distance correlation function as

[R̃X,Y (k)]2 =
ṼX,Y (k)√
ṼX(0)ṼY (0)

. (3.4.2)

The corresponding sample versions can be defined in the natural way, as in the case of

the non-affine distance correlation [116].

We illustrate these concepts on time series data of wind observations at and near the

Stateline wind energy center in the Pacific Northwest of the United States. Specifi-

cally, we consider time series of bivariate wind vectors at the meteorological towers at

Vansycle, right at the Stateline wind farm at the border of the states of Washington

and Oregon, and at Goodnoe Hills, 146 km west of Vansycle along the Columbia River

Gorge. Further information can be found in the paper by Gneiting, et al. [31], who

developed a regime-switching space-time (RST) technique for 2-hour-ahead forecasts

of hourly average wind speed at the Stateline wind energy center, which was then the

largest wind farm globally. For our purposes, we follow Hering and Genton [41] in

studying the time series at the original 10-minute resolution, and we restrict our anal-

ysis to the longest continuous record, the 75-day interval from August 14 to October

28, 2002.

Thus, we consider time series of bivariate wind vectors over 10, 800 consecutive 10-

minute intervals. We write V NS
j and V EW

j to denote the north-south and the east-west

component of the wind vector at Vansycle at time j, with positive values corresponding

to northerly and easterly winds. Similarly, we write GNS
j and GEW

j for the north-south

and the east-west component of the wind vector at Goodnoe Hills at time j, respectively.

Figure 3.5 shows the classical (Pearson) sample auto and cross correlation functions for

the four univariate time series. The auto correlation functions generally decay with the

temporal, but do so non-monotonously, due to the presence of a diurnal component.

The cross correlation functions between the wind vector components at Vansycle and

Goodnoe Hills show remarkable asymmetries and peak at positive lags, due to the
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Figure 3.5: Sample auto and cross Pearson correlation functions for the univariate
time series V EW

j , V NS
j , GEW

j , and GNS
j , respectively. Positive lags indicate observations

at the westerly site (Goodnoe Hills) leading those at the easterly site (Vansycle), or
observations of the north-south component leading those of the east-west component,
in units of hours.

prevailing westerly and southwesterly wind [31]. In another interesting feature, the

cross correlations between the north-south and east-west components at lag zero are

strongly positive, documenting the dominance of southwesterly winds.

Figure 3.6 shows the sample auto and cross distance correlation functions for the four

time series; as these variables are univariate, there is no distinction between the stan-

dard and the affinely invariant version of the distance correlation. The patterns seen

resemble those in the case of the Pearson correlation. For comparison, we also display

values of the distance correlation based on the sample Pearson correlations shown in

Figure 3.5, and converted to distance correlation under the assumption of bivariate

Gaussianity, using the results of Székely, et al. (Theorem 2.4.10) and Section 3.2; in

every single case, these values are smaller than the original ones.
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Figure 3.6: Sample auto and cross distance correlation functions for the univariate time
series V EW

j , V NS
j , GEW

j , and GNS
j , respectively. For comparison, we also display, in gray,

the values that arise when the sample Pearson correlations in Figure 3.5 are converted
to distance correlation under the assumption of Gaussianity; these values generally are
smaller than the original ones. Positive lags indicate observations at Goodnoe Hills
leading those at Vansycle, or observations of the north-south component leading those
of the east-west component, in units of hours.

Having considered the univariate time series setting, it is natural and complementary to

look at the wind vector time series (V EW
j , V NS

j ) at Vansycle and (GEW
j , GNS

j ) at Goodnoe

Hills from a genuinely multivariate perspective. To this end, Figure 3.7 shows the

sample affinely invariant auto and cross distance correlation functions for the bivariate

wind vector series at the two sites. Again, a diurnal component is visible, and there is

a remarkable asymmetry in the cross-correlation functions, which peak at lags of about

two to three hours.

In light of our analytical results in Section 3.2, we can compute the affinely invariant

distance correlation between subvectors of a multivariate normally distributed random

vector. In particular, we can compute the affinely invariant auto and cross distance
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Figure 3.7: Sample auto and cross affinely invariant distance correlation functions for
the bivariate time series (V EW

j , V NS
j )′ and (GEW

j , GNS
j )′ at Vansycle and Goodnoe Hills.

For comparison, we also display, in gray, the values that are generated when the Pearson
correlation in Figure 3.5 is converted to the affinely invariant distance correlation under
the assumption of Gaussianity; these converted values generally are smaller than the
original ones. Positive lags indicate observations at Goodnoe Hills leading those at
Vansycle, in units of hours.

correlation between bivariate subvectors of a 4-variate Gaussian process with Pearson

auto and cross correlations as shown in Figure 3.5. In Figure 3.7, values of the affinely

invariant distance correlation that have been derived from Pearson correlations in these

ways are shown in gray; the differences from those values that are computed directly

from the data are substantial, with the converted values being smaller, possibly sug-

gesting that assumptions of Gaussianity may not be appropriate for this particular data

set.

We wish to emphasize that our study is purely exploratory: it is provided for illustrative

purposes and to serve as a basic example. In future work, the approach hinted at here

may have the potential to be developed into parametric or nonparametric bootstrap

tests for Gaussianity. For this purpose recall that, in the Gaussian setting, the affinely

invariant distance correlation is a function of the canonical correlation coefficients, i.e.

R̃ = g(λ1, . . . , λr). For a parametric bootstrap test, one could generate B replicates

of g(λ?1, . . . , λ
?
r), leading to a pointwise (1 − α)-confidence band. The test would now

reject Gaussianity if the sample affinely invariant distance correlation function does not

lie within this band. For the nonparametric bootstrap test, one could obtain ensembles

R̃?
n by resampling methods, again defining a pointwise (1 − α)-confidence band and

checking if g(λ̂1, . . . , λ̂r) is located within this band.
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Following the pioneering work of Zhou [116], the distance correlation may indeed find

a wealth of applications in exploratory and inferential problems for time series data.
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Chapter 4

A Generalization of an Integral

Arising in Distance Correlation

In this chapter, we derive an extension of Lemma 2.4.9, which is known to be fun-

damental for the concept of distance correlation. The following result will generalize

Lemma 2.4.9 in two ways. First, we show that the regularization limε→0

∫
Rd\{εB+ε−1BC}

of the integral is not needed, since the integral converges absolutely under the stated

condition on α. Second, we show how the knowledge of Lemma 2.4.9 helps to solve a

more general integral, where we insert a truncated Maclaurin expansion of the function

cos(〈t, x〉) into the integrand. We further proof that this generalization is valid for all

α ∈ C such that 2(m − 1) < <(α) < 2m, where m is any positive integer. Let us

note, that the latter extension of this integral may be used to generalize the class of

α-distance dependence measures [102, p. 2784] to α outside the range (0, 2). The con-

tent of this chapter is adapted from the paper [20] by Dueck, Edelmann and Richards.

Throughout this chapter, we will denote the truncated Maclaurin expansion of the

cosine function by

cosm(v) :=
m−1∑
j=0

(−1)j
v2j

(2j)!
, (4.0.1)

where the expansion is halted at the mth (m ∈ N) summand. Further, we let

Ba = {x ∈ Rd : |x|d < a}

denote the ball which is centered at the origin and which is of radius a.

We will make frequent use of the following argument.
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Lemma 4.0.4. Let x ∈ Rd\{0} and let γd,k be defined as in (3.2.10). For α ∈ C,∫
Ba

〈t, x〉2k

|t|d+α
d

dt = |x|2kd γd,k(2k − α)−1a2k−α (4.0.2)

with absolute convergence if and only if <(α) < 2k.

Proof. Transformation to polar coordinates (see Theorem 2.1.3) yields∫
Ba

〈t, x〉2k

|t|d+α
d

dt =

∫ a

0

∫
Sd−1

r2k−α−1 〈θ, x〉2kdθdr.

By a standard invariance argument (see the proof of Theorem 3.2.4 for details), we see

that the latter integral is equal to

|x|2kd
∫ a

0

∫
Sd−1

r2k−α−1 θ2k
1 dθdr = |x|2kd γd,k

∫ a

0

r2k−α−1 dr.

By evaluation of the latter integral, we obtain the desired result.

Theorem 4.0.5 states the main result of this chapter, generalizing the integral stated in

Lemma 2.4.9.

Theorem 4.0.5. Let m ∈ N and x ∈ Rd\{0}. For α ∈ C,∫
Rd

cosm(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt = C(d, α) |x|αd , (4.0.3)

with absolute convergence if and only if 2(m− 1) < <(α) < 2m, where C(d, α) is given

in (2.4.8).

Proof. We shall establish the proof by induction on m. Consider the case in which

m = 1. To determine the range of convergence, we split the integral into two parts:∫
Rd

cos1(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt =

∫
Rd

1− cos(〈t, x〉)
|t|d+α
d

dt

=

∫
Ba

1− cos(〈t, x〉)
|t|d+α
d

dt+

∫
Rd\Ba

1− cos(〈t, x〉)
|t|d+α
d

dt. (4.0.4)

By applying (4.0.1) and interchanging integral and summation by means of Fubini’s

theorem, we see that the first integral equals∫
Ba

1− cos(〈t, x〉)
|t|d+α
d

dt =
∞∑
j=1

(−1)j+1

(2j)!

∫
Ba

〈t, x〉2j

|t|d+α
d

dt. (4.0.5)
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By Lemma 4.0.4, the j-th summand converges if and only if <(α) < 2j. Hence, for

<(α) < 2, inserting (4.0.2) yields∫
Ba

1− cos(〈t, x〉)
|t|d+α
d

dt =
∞∑
j=1

(−1)j+1

(2j)!
|x|2jd γd,j(2j − α)−1a2j−α. (4.0.6)

Since γd,j is obviously decreasing in j, this series converges if and only if <(α) < 2.

For the second integral in (4.0.4), we apply the bound |1 − cos(〈t, x〉)| ≤ 2 to deduce

that the integrand is integrable over R \Ba if and only if <(α) > 0. Consequently, for

m = 1, the integral converges for all x ∈ Rd\{0} if and only if 0 < <(α) < 2.

To conclude the proof for the case in which m = 1, we proceed precisely as did Székely,

et al. [102, p. 2771] to obtain the right-hand side of (4.0.3).

Next, we assume by inductive hypothesis that the assertion holds for a given pos-

itive integer m. Note that the right-hand side of (4.0.3), as a function of α ∈ C, is

meromorphic with a pole at each nonnegative integer α.

By (4.0.1),

cosm+1(v) = cosm(v) + (−1)m
v2m

(2m)!
.

For fixed a > 0, we decompose the integral (4.0.3) into a sum of three terms:∫
Rd

cosm(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt = T1 + T2 + T3, (4.0.7)

where

T1 =

∫
Ba

cosm+1(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt,

T2 =

∫
Rd\Ba

cosm(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt,

and

T3 =
(−1)m−1

(2m)!

∫
Ba

〈t, x〉2m

|t|d+α
d

dt.

We now determine the necessary and sufficient condition on the range of α for which

the decomposition (4.0.7) entails absolute convergence of the integral. In so doing, we

examine each term individually.

In the case of T1, we proceed as in (4.0.5)-(4.0.6) to find that the series converges

absolutely for all x ∈ Rd{0} if and only if <(α) < 2(m + 1). As regards the term T2

we know, by inductive hypothesis, that it converges absolutely if and only if <(α) >
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2(m− 1).

By Lemma 4.0.4 we find that T3 converges absolutely if and only if <(α) < 2m and

T3 =
(−1)m−1

(2m)!
γd,m |x|2md (2m− α)−1 a2m−α. (4.0.8)

Moreover, the last term in (4.0.8) exists for all α ∈ C such that <(α) 6= 2m and it is a

meromorphic function of α.

To summarize, T1 converges absolutely for <(α) < 2(m + 1); T2 converges absolutely

for <(α) > 2(m − 1); and T3 converges absolutely for <(α) < 2m. Therefore, the

decomposition (4.0.7) is valid for 2(m− 1) < <(α) < 2m, and it represents an analytic

function which equals C(d, α) |x|αd on the strip {α ∈ C : 2(m−1) < <(α) < 2m}. Hence,

by analytic continuation, we obtain for 2(m− 1) < <(α) < 2(m+ 1), <(α) 6= 2m,

C(d, α) |x|αd = T1 + T2 +
(−1)m−1

(2m)!
γd,m |x|2md (2m− α)−1 a2m−α. (4.0.9)

Now fix 2m < <(α) < 2(m + 1) and let a → ∞ in (4.0.9). It is apparent that T2 → 0

and a2m−α → 0; therefore, for 2m < <(α) < 2(m+ 1), we obtain

C(d, α) |x|αd = lim
a→∞

T1 =

∫
Rd

cosm+1(〈t, x〉)− cos(〈t, x〉)
|t|d+α
d

dt,

which concludes the proof.

As already stated in the introduction of this chapter Theorem 4.0.5 generalizes Lemma

2.4.9. We suppose that our extended version of this lemma may motivate the definition

of α-dependent measures where α is larger than 2. We further expect, that such a theory

will lead for sufficiently large <(α) to distance correlation analyses of data modeled by

random vectors which do not have finite first moments, e.g., the multivariate stable

distributions of index less than 2. Moreover, although the integral (4.0.3) diverges

for <(α) = 2m, our results raise the possibility of developing a theory of distance

correlation at the poles by modifying (4.0.3) to attain convergence as <(α) converges

to the poles.

Finally, we remark that our decomposition (4.0.7) was motivated by the ideas of

Gelfand and Shilov [30, p. 10].
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Chapter 5

Distance Correlation and Lancaster

Distributions

As we have already pointed out earlier in this work, the calculation of the population

version of the distance correlation or the affinely invariant distance correlation is non-

trivial. On the other hand, it is certain that the evaluation of these population measures

leads to a better understanding of distance correlation since it captures in which way

its value depends on other parameters of the distribution. For the multivariate normal,

for example, we could show that the affinely invariant distance correlation between X

and Y is a symmetric function in the canonical correlations between X and Y . More-

over, as indicated in Chapter 3, the knowledge of the distance correlation for certain

distribution opens up possibilities for further applications, such as high-dimensional

settings (section 3.3) or bootstrap testing (section 3.4).

When aiming to find the distance covariance for multivariate distributions, the straight-

forward way is to calculate the occurring integrals for every single distribution sepa-

rately, just as we did for the multivariate normal (section 3.2) or for the multivariate

Laplace (Appendix A.2). Another approach, which we pursue in this chapter, is to

calculate distance covariance for a class of multivariate distributions, containing vari-

ous common multivariate distributions as special cases. In particular, we calculate the

distance correlation coefficients for pairs (X, Y ) of random vectors whose joint distri-

butions are in the class of Lancaster distributions, a class of probability distributions

which was made prominent by Lancaster [59, 60] and by Sarmanov [85]. The distribu-

tion functions of the Lancaster family are well-known to have attractive expansions in

terms of certain orthogonal functions (Koudou [58]; Diaconis, et al. [16]). By applying

those expansions, we deduce series expansions for the corresponding characteristic func-

tions and then we obtain explicit expressions for the distance covariance and distance

correlation coefficients.
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Consequently we derive under mild convergence conditions a general formula for the

distance covariance for the Lancaster distributions. As examples, we apply the general

formula to obtain explicit expressions for the distance covariance and distance correla-

tion for the bivariate and multivariate normal distributions, and for bivariate gamma

and Poisson distributions. We remark that explicit results can also be obtained for cer-

tain negative binomial distributions and for other Lancaster-type expansions obtained

by Bar-Lev, et al. [4]; because the formulas derived here are fully representative of the

general case then we will omit the details for other cases. The content of this chapter

has been extracted from the paper [19] by Johannes Dueck, Dominic Edelmann and

Donald Richards.

5.1 The Lancaster Distributions

To recapitulate the class of Lancaster distributions we generally follow the standard

notation in that area, as given by Koudou [57, 58]; cf., Lancaster [60], Pommeret [72],

or Diaconis, et al. [16, Section 6].

Let (X , µ) and (Y , ν) be locally compact, separable probability spaces, such that L2(µ)

and L2(ν) are separable. Let σ, a probability measure on X × Y , have marginal

distributions µ and ν; then there exist functions Kσ and Lσ such that

σ(dx, dy) = Kσ(x, dy)µ(dx) = Lσ(dx, y)ν(dy).

We note that Kσ and Lσ represent the conditional distributions of Y given X = x, and

X given Y = y, respectively.

Let C denote a countable index set with a zero element, denoted by 0. Let {Pn : n ∈ C}
and {Qn : n ∈ C} be sequences of functions on X and Y which form orthonormal

bases for the separable Hilbert spaces L2(µ) and L2(ν), respectively. We assume, by

convention, that P0 ≡ 1 and Q0 ≡ 1.

Because the tensor product Hilbert space L2(µ⊗ ν) ≡ L2(µ)⊗L2(ν) is separable there

holds, for σ ∈ L2(µ⊗ ν), the expansion

σ(dx, dy) =
∑
m∈C

∑
n∈C

ρm,nPm(x)Qn(y)µ(dx) ν(dy), (5.1.1)

(x, y) ∈ X × Y . Letting δm,n denote Kronecker’s delta, the probability measure σ is

72



called a Lancaster distribution if there exists a positive sequence {ρn : n ∈ C} such that∫
Pm(x)Qn(y)σ(dx, dy) = ρm δm,n

for all m,n ∈ C; in particular, ρ0 = 1. The sequence {ρn : n ∈ C} is called a Lancaster

sequence, and the expansion (5.1.1) reduces to

σ(dx, dy) =
∑
n∈C

ρnPn(x)Qn(y)µ(dx)ν(dy).

Koudou [57, pp. 255–256] characterized the Lancaster sequences {ρn : n ∈ C} such that

the associated probability distribution σ is absolutely continuous with respect to µ⊗ ν
and has Radon-Nikodym derivative

σ(dx, dy)

µ(dx) ν(dy)
=
∑
n∈C

ρn Pn(x)Qn(y) ∈ L2(µ⊗ ν),

(x, y) ∈ X × Y .

In the sequel, we consider the case in which X = Rp and Y = Rq and the underlying

random vectorsX ∈ Rp and Y ∈ Rq have joint distribution σ and marginal distributions

µ and ν, respectively. We assume that µ, ν, and σ are absolutely continuous with

respect to Lebesgue measure or counting measure on the respective sample spaces

and we denote their corresponding probability density functions by φX , φY , and φX,Y ,

respectively. This yields the expansion,

φX,Y (x, y) = φX(x)φY (y)
∑
n∈C

ρn Pn(x)Qn(y). (5.1.2)

We will refer to (5.1.2) as the Lancaster expansion of the joint density function φX,Y .

5.2 Examples of Lancaster Expansions

In this section, we provide examples of Lancaster expansions (5.1.2) for the bivari-

ate and multivariate normal distributions, and for some bivariate gamma and Poisson

distributions. In the sequel, we denote by N0 the set of nonnegative integers.

5.2.1 The Bivariate Normal Distribution

Let (X, Y ) follow a bivariate normal distribution with mean 0 and covariance matrix

Σ =

(
1 ρ

ρ 1

)
,
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denoted by (X, Y ) ∼ N2(0,Σ). The joint probability density function of (X, Y ) is

φX,Y (x, y) =
1

2π
(1− ρ2)−

1
2 exp

(
−x

2 + y2 − 2ρ x y

2(1− ρ2)

)
,

x, y ∈ R, and the marginal density functions are given by

φX(x) = φY (x) =
1√
2π

exp
(
−1

2
x2
)
.

In this case, the index set C is N0. For n ∈ N0, let

Hn(x) = (−1)n exp
(

1
2
x2)
( d

dx

)n
exp

(
−1

2
x2
)
,

x ∈ R, denote the nth Hermite polynomial, n = 0, 1, 2, . . .. It is well-known that

the polynomials {Hn : n ∈ N0} are orthogonal with respect to the standard normal

distribution and form a complete orthogonal basis for the Hilbert space L2(X). Also,

the Lancaster expansion of φX,Y is given by the classical formula of Mehler: For x, y ∈ R,

φX,Y (x, y) = φX(x)φY (y)
∞∑
n=0

ρn

n!
Hn(x)Hn(y), (5.2.1)

and this series converges absolutely for all x ∈ R and y ∈ R.

We remark that there are numerous extensions of Mehler’s formula which represent

Lancaster-type expansions for generalizations of the bivariate normal distribution; for

such expansions, we refer to Srivastava and Singhal [95] and the references given there.

The details in those cases are similar to the results which we derive, and we can obtain

analogous formulas for the distance correlation coefficients for those distributions.

5.2.2 The Multivariate Normal Distribution

Let X ∈ Rp and Y ∈ Rq be random vectors such that (X, Y ) ∼ Np+q(0,Σ), a (p + q)-

dimensional multivariate normal distribution with mean vector 0 and positive definite

covariance matrix

Σ =

(
ΣX ΣXY

ΣY X ΣY

)
(5.2.2)

where ΣX , ΣY , and ΣXY = Σ′Y X are p× p, q × q and p× q matrices, respectively. We

denote by φX,Y the joint probability density function of (X, Y ), and by φX and φY the

marginal density functions of X and Y , respectively.

We now describe the Lancaster expansion of φX,Y , a result derived in [112]. In this
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case, the index set C is Np×q
0 , the set of p× q matrices with nonnegative integer entries.

For a matrix of summation indices N = (Nrc) ∈ Np×q
0 , define N ! =

∏p
r=1

∏q
c=1Nrc!.

For r = 1, . . . , p, let

N r q =

q∑
c=1

Nrc

and set N ∗ q = (N 1 q, . . . ,N p q). Similarly, for each c = 1, . . . , q, define

N qc =

p∑
r=1

Nrc

and set N q∗ = (N q1, . . . ,N qq). Further, we define

N q q =

p∑
r=1

q∑
c=1

Nrc,

and note that N q q =
∑p

r=1 N r q =
∑q

c=1 N qc.
Denoting by (ΣXY )rc the (r, c)th entry of ΣXY , we also define

ΣN
XY =

p∏
r=1

q∏
c=1

[(ΣXY )rc]
Nrc .

We now introduce the multivariate Hermite polynomials. For any p ∈ N, k = (k1, . . . , kp) ∈
Np

0, and x = (x1, . . . , xp) ∈ Rp, define xk = xk11 · · ·x
kp
p and define the differential opera-

tor, (
− ∂

∂x

)k

=

(
− ∂

∂x1

)k1
· · ·
(
− ∂

∂xp

)kp
.

The kth multivariate Hermite polynomial with respect to the marginal density function

φX is defined as

Hk(x; ΣX) =
1

φX(x)

(
− ∂

∂x

)k

φX(x). (5.2.3)

The Lancaster expansion of the multivariate normal density function φX,Y is given by

the generalized Mehler formula [112]:

φX,Y (x, y) = φX(x)φY (y)
∑

N∈Np×q
0

ΣN
XY

N !
HN∗ q(x; ΣX)HN q∗(y; ΣY ), (5.2.4)

with absolute convergence for all x ∈ Rp, y ∈ Rq.

To calculate the affinely invariant distance correlation coefficient between X and Y , as
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defined in equations (3.1.3) and (3.1.4), we need the Lancaster expansion of the joint

density function of the standardized random vectors X̃ = Σ
−1/2
X X and Ỹ = Σ

−1/2
Y Y .

It is straightforward to verify that (X̃, Ỹ ) ∼ Np+q(0,Λ) where

Λ =

(
Ip ΛXY

ΛXY
′ Iq

)

with ΛXY = Σ
−1/2
X ΣXY Σ

−1/2
Y , and then we deduce from (5.2.4) that the Lancaster

expansion for (X̃, Ỹ ) is

φX̃,Ỹ (x, y) = φX̃(x)φỸ (y)
∑

N∈Np×q
0

ΛN
XY

N !
HN∗ q(x; Ip)HN q∗(y; Iq). (5.2.5)

5.2.3 The Bivariate Gamma Distribution

The Lancaster expansion for a bivariate gamma distribution, which was derived by

Sarmanov [87, 86], can be stated as follows (cf., Kotz, et al. [56, pp. 437–438]).

For α > −1 and n ∈ N0, the classical Laguerre polynomial is defined by

L(α)
n (x) =

1

n!
x−α exp(x)

( d

dx

)n
xn+α exp(−x)

=
(α + 1)n

n!

n∑
j=0

(−n)j
(α + 1)j

xj

j!
,

(5.2.6)

x > 0, where (α)n = Γ(α + n)/Γ(α) denotes the rising factorial.

Let λ ∈ (0, 1), and let α and β satisfy α ≥ β > 0. Sarmanov [87, 86] derived for certain

bivariate gamma random variables (X, Y ) the joint probability density function,

φX,Y (x, y) = φX(x)φY (y)
∞∑
n=0

anL
(α−1)
n (x)L(β−1)

n (y), (5.2.7)

x, y > 0, where

an = λn
[

(β)n
(α)n

]1/2

, (5.2.8)

n = 0, 1, 2, . . .. The corresponding marginal density functions are

φX(x) =
1

Γ(α)
xα−1 exp(−x)

and

φY (y) =
1

Γ(β)
yβ−1 exp(−y),
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which we recognize as the density functions of one-dimensional gamma random variables

with index parameters α and β, respectively.

We remark that if α = β then the density function (5.2.7) reduces to the Kibble-Moran

bivariate gamma density function and Corr(X, Y ) = λ (Kotz, et al. [56, pp. 436–437]).

Also, (5.2.7) represents the Lancaster expansion for (X, Y ).

5.2.4 The Bivariate Poisson Distribution

For a > 0 and x, n ∈ N0, let

Cn(x; a) =
(an
n!

)1/2
n∑
k=0

(−1)k
(
n

k

)(
x

k

)
k!

ak
(5.2.9)

denote the Poisson-Charlier polynomial of degree n. For λ ∈ [0, 1], Koudou [58, Section

5] (cf., Bar-Lev, et al. [4], Pommeret [72]) shows that there exists a bivariate random

vector (X, Y ) with probability density function

φX,Y (x, y) = φX(x)φY (y)
∞∑
n=0

λnCn(x; a)Cn(y; a), (5.2.10)

x, y ∈ N0. The corresponding marginal density functions φX and φY are given by

φX(k) = φY (k) =
ak exp(−a)

k!
,

k ∈ N0, so that X and Y are distributed marginally according to a Poisson distribution

with parameter a. The series (5.2.10) is an expansion of Lancaster type, a special case

of (5.1.2), and the resulting distribution is called a bivariate Poisson distribution.

5.3 Distance Correlation Coefficients for Lancaster

Distributions

In this section, we derive a general series expression for the distance correlation coeffi-

cients for Lancaster distributions with density functions of the form (5.1.2). For a joint

density function φX,Y given by (5.1.2) and n ∈ C, we introduce the notation

Pn(s) = E exp(i 〈s,X〉)Pn(X), (5.3.1)

s ∈ Rp, and

Qn(t) = E exp(i 〈t, Y 〉)Qn(Y ), (5.3.2)
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t ∈ Rq. To verify that each expectation Pn(s) converges absolutely for all s ∈ Rp, we

apply the Cauchy-Schwarz inequality to obtain

|Pn(s)|2 = |E exp(i〈s,X〉)Pn(X)|2

≤
(
E| exp(i〈s,X〉)|2

)
·
(
E|Pn(X)|2

)
= 1,

because {Pn : n ∈ C} is an orthonormal basis for the Hilbert space L2(µ). Similarly,

|Qn(t)| ≤ 1 for all t ∈ Rq.

In the following result, we will use the notation

Aj,k =

∫
Rp

Pj(s)Pk(−s)
ds

|s|p+1
p

(5.3.3)

and

Bj,k =

∫
Rq

Qj(t)Qk(−t)
dt

|t|q+1
q

, (5.3.4)

j, k ∈ C, whenever these integrals converge absolutely.

We now state the main result.

Theorem 5.3.1. Suppose that the random vectors X ∈ Rp and Y ∈ Rq have the joint

probability density function (5.1.2). Then,

V2(X, Y ) =
1

γpγq

∑
j∈C,j 6=0

∑
k∈C,k 6=0

ρj ρkAj,k Bj,k, (5.3.5)

whenever the sum converges absolutely.

Proof. Rewriting the Lancaster expansion (5.1.2) in the form,

φX,Y (x, y)− φX(x)φY (y) = φX(x)φY (y)
∑

n∈C,n6=0

ρnPn(x)Qn(y),

and taking Fourier transforms on both sides of this identity, we obtain for all s ∈ Rp

and t ∈ Rq the expansion

fX,Y (s, t)− fX(s) fY (t) =
∑

n∈C,n6=0

ρnPn(s)Qn(t). (5.3.6)

This identity is valid subject to the requirement that we may interchange summation

and integration, which is justified by the assumption that the sum in the final result
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converges absolutely. Using (5.3.6) we deduce that

|fX,Y (s, t)− fX(s)fY (t)|2 =
(
fX,Y (s, t)− fX(s)fY (t)

)(
fX,Y (s, t)− fX(s)fY (t)

)
=

∑
j∈C,j 6=0

∑
k∈C,k 6=0

ρj ρk Pj(s)Pk(−s)Qj(t)Qk(−t).

Next, we integrate this expansion with respect to the measures ds/|s|p+1
p and dt/|t|q+1

q ;

this requires that we again interchange summation and integration which, by assump-

tion, we are able to do. On carrying through these procedures, we obtain (5.3.5).

5.4 Examples

In this section, we demonstrate the versatility of Theorem 5.3.1 by applying it to com-

pute the distance correlation coefficients for the bivariate normal, multivariate normal,

and bivariate gamma and Poisson distributions. We verify for each example the absolute

convergence of the series resulting from Theorem 5.3.1, for that convergence property

cannot in general be obtained from abstract Lancaster expansions. In developing each

example, we retain the corresponding notation in Section 5.2.

5.4.1 The Bivariate Bormal Distribution

In the sequel, we use the standard double-factorial notation,

n!! = n(n− 2)(n− 4) · · · =

{
n(n− 2)(n− 4) · · · 2, if n is even

n(n− 2)(n− 4) · · · 1, if n is odd

Proposition 5.4.1. Let (X, Y ) ∼ N2(0,Σ), a bivariate normal distribution with cor-

relation coefficient ρ. Then,

V2(X, Y ) = 4π−1

∞∑
l=1

((2l − 3)!!)2

(2l)!

(
1− 2−(2l−1)

)
ρ2l, (5.4.1)

and this series converges absolutely for all ρ ∈ (−1, 1).

Proof. Starting with the Lancaster expansion of the bivariate normal density

function, as given in (5.2.1), and using the definitions of Pn and Qn in (5.3.1) and
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(5.3.2), respectively, we obtain by substitution and integration-by-parts,

Pn(s) = Qn(s) =

∫ ∞
−∞

exp(isx)
1√
2π

exp
(
−1

2
x2
)
Hn(x)dx

= (is)n exp
(
−1

2
s2
)
,

s ∈ R. Therefore,

Aj,k = Bj,k = (−1)k ij+k
∫ ∞
−∞

sj+k−2 exp(−s2) ds,

=

{
(−1)k ij+k π1/2

(
1
2

)(j+k−2)/2
(j + k − 3)!!, if j + k is even

0, otherwise

since the latter integral is a moment of the N (0, 1
2
) distribution. By Theorem 5.3.1, we

obtain

V2(X, Y ) =
4

π

∑
j, k > 0
j+k even

ρj+k

j! k!

(
1
2

)j+k (
(j + k − 3)!!

)2
.

Setting j + k = 2l with l ≥ 1, the double series reduces to

V2(X, Y ) =
4

π

∞∑
l=1

ρ2l(1
2
)2l((2l − 3)!!)2

∑
j,k≥1
j+k=2l

1

j! k!

=
4

π

∞∑
l=1

ρ2l(1
2
)2l ((2l − 3)!!)2

(2l)!

2l−1∑
j=1

(2l)!

j! (2l − j)!

=
4

π

∞∑
l=1

ρ2l(1
2
)2l ((2l − 3)!!)2

(2l)!
(22l − 2),

which is the same as (5.4.1).

The absolute convergence of (5.4.1) can be verified by comparison with a geometric

series. Moreover, it is straightforward to verify that the series is identical with the

result obtained by Székely, et al. (see Theorem 2.4.10).

Having obtained V(X, Y ), we let ρ→ 1− to obtain the distance variances V(X,X) and

V(Y, Y ); here, we are applying a well-known result that if (X, Y ) ∼ N2(0,Σ) where

Var(X) = Var(Y ) and ρ = 1 then X = Y , almost surely. Exactly as in (3.2.18), we

obtain

V2(X,X) = V2(Y, Y ) =
4

3
− 4(
√

3− 1)

π
.
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5.4.2 The Multivariate Normal Distribution

In this subsection, we will make extensive use of the notation N r q, N qc, N ∗ q, N q∗,
and N q q from Subsection 5.2.2 for the multi-index matrix N ∈ Np×q

0 . We now establish

the following result.

Proposition 5.4.2. Let (X, Y ) ∼ Np+q(0,Σ), where Σ is given in (5.2.2). Then the

affinely invariant distance covariance, Ṽ2(X, Y ), is given by

Ṽ2(X, Y ) =
1

γp γq

∑
J 6=0

∑
K 6=0

AJ ,K BJ ,K
ΛJ
XY

J !

ΛK
XY

K!
, (5.4.2)

where the sums are taken over all non-zero J ,K ∈ Np×q
0 such that all components of

J∗ q + K∗ q and J q∗ + K q∗ are even,

AJ ,K =
Γ
(

1
2
(J q q + K q q − 1)

)
Γ
(

1
2
(J q q + K q q) + 1

2
p
) p∏
r=1

Γ
(

1
2
(J r q + Kr q + 1)

)
(5.4.3)

and

BJ ,K =
Γ
(

1
2
(J q q + K q q − 1)

)
Γ
(

1
2
(J q q + K q q) + 1

2
q
) q∏
c=1

Γ
(

1
2
(J qc + K qc + 1)

)
. (5.4.4)

Proof. In this case, the index set C is Np×q
0 , and we write the Lancaster expansion

(5.2.5) of (X̃, Ỹ ) in the form

φX̃,Ỹ (x, y)− φX̃(x)φỸ (y) = φX̃(x)φỸ (y)
∑
N 6=0

ΛN
XY

N !
HN∗ q(x; Ip)HN q∗(y; Iq).

To calculate the Fourier transform PN corresponding to X̃, we apply the definition

(5.2.3) of the multivariate Hermite polynomials and integration-by-parts to deduce

that for s ∈ Rp,

PN (s) =

∫
Rp

exp(i〈s, x〉)φX̃(x)HN∗ q(x; Ip) dx

= (−1)N q q ∫
Rp

exp(i〈s, x〉)
(
∂

∂x

)N∗ q
φX̃(x) dx

=

∫
Rp

φX̃(x)

(
∂

∂x

)N∗ q
exp(i〈s, x〉) dx

= (is)N∗ q ∫
Rp

φX̃(x) exp(i〈s, x〉) dx

= iN q q sN∗ q exp(−1
2
〈s, s〉).
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Similarly,

QN (t) = iN q q tN q∗ exp(−1
2
〈t, t〉),

t ∈ Rq. Therefore,∫
Rp

PJ(s)PK(−s) ds

|s|p+1
p

= (−1)K q q iJ q q+K q q ∫
Rp

sJ∗ q+K∗ q exp(−〈s, s〉) ds

|s|p+1
p

.

We now change variables to polar coordinates: s = rω, where r > 0 and ω =

(ω1, . . . , ωp) ∈ Sp−1, the unit sphere in Rp. By 2.1.3 the latter integral reduces to∫
R+

rJ q q+K q q−2 exp(−r2) dr ·
∫
Sp−1

ωJ∗ q+K∗ qdω.
The integral over R+ is evaluated by replacing r by r1/2, and we obtain its value as
1
2

Γ
(

1
2
(J q q + K q q − 1)

)
.

It is easy to see that the integral over Sp−1 equals zero if any component of J∗ q + K∗ q
is odd. For the case in which each component of J∗ q + K∗ q is even, we obtain∫

Sp−1

ωJ∗ q+K∗ qdω = A(Sp−1)E(ωJ∗ q+K∗ q),
where A(Sp−1) = 2πp/2/Γ(1

2
p) is the surface area of Sp−1 and ω now is a uniformly dis-

tributed random vector on Sp−1. It is well-known that the random vector (ω2
1, . . . , ω

2
p) ∼

D(1
2
, . . . , 1

2
), a Dirichlet distribution with parameters (1

2
, . . . , 1

2
); so, by a classical for-

mula for the moments of the Dirichlet distribution [56, p. 488],

E(ωJ∗ q+K∗ q) =
Γ(1

2
p)

[Γ(1
2
)]p

∏p
r=1 Γ(1

2
(J r q + Kr q + 1))

Γ(1
2
(J q q + K q q) + 1

2
p)

.

Collecting together these results, we obtain∫
Rp

PJ(s)PK(−s) ds

|s|p+1
p

= (−1)K q q (−1)(J q q+K q q)/2AJ ,K ,

where AJ ,K is given in (5.4.3). A similar expression can be obtained for∫
Rq

QJ(t)QK(−t) dt

|t|q+1
q

,

from which the final result (5.4.2) follows.

Similar to the bivariate normal case, the affinely invariant distance variance Ṽ2(X,X)

in the multivariate case can be calculated by taking p = q and ΛXY = ρIp, where
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−1 < ρ < 1, and then letting ρ→ 1− in the expression for Ṽ2(X, Y ).

We remark also that the distance covariance and distance correlation for non-standardized

jointly normal random vectors can be calculated using the arguments used earlier, and

we refer to Appendix A.1 for the explicit formula.

5.4.3 The Bivariate Gamma Distribution

Proposition 5.4.3. Suppose that the random vector (X, Y ) is distributed according to

a Sarmanov bivariate gamma distribution, as given by (5.2.7). Then,

V2(X, Y ) = 22(1−α−β) Γ(2α + 1)Γ(2β + 1)

Γ(α)Γ(β)

∞∑
j=1

∞∑
k=1

aj ak Aj,k(α)Aj,k(β), (5.4.5)

where

Aj,k(α) =
(α)j (α)k (1− α− j)j+k−2

j! k! (α− j + 2)j+k−2 Γ(α− j + 2)
2F1

(
−j − k + 2, 2α;α− k + 2; 1

2

)
.

Proof. By (5.2.7), there holds the expansion,

φX,Y (x, y)− φX(x)φY (y) = φX(x)φY (y)
∞∑
n=1

anL
(α−1)
n (x)L(β−1)

n (y),

x, y > 0. Then, it follows from (5.3.1) that for s, t ∈ R,

Pn(s) =

∫ ∞
0

exp(isx)L(α−1)
n (x)φX(x) dx

=
1

Γ(α)

∫ ∞
0

exp
(
− (1− is)x

)
xα−1 L(α−1)

n (x) dx.

By a direct calculation using (5.2.6), we obtain

Pn(s) =
(α)n
n!

(1− is)−α
(
1− (1− is)−1

)n
=

(α)n
n!

(1− is)−(α+n) (−is)n

and, analogously,

Qn(t) =
(β)n
n!

(1− it)−(β+n) (−it)n.

We now calculate the integral∫
R
Pj(s)Pk(−s)

ds

s2
≡ (α)j

j!

(α)k
k!

i−j+k
∫
R
g(s)ds, (5.4.6)
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where

g(s) = sj+k−2 (1− is)−(α+j) (1 + is)−(α+k), (5.4.7)

s ∈ R. To calculate the integral on the right-hand side of (5.4.6), we utilize Cauchy’s

beta integral [2, p. 48]: For a, u, v ∈ C such that Re(a) > 0 and Re(u+ v) > 1,∫
R
(1− is)−u (1 + ias)−v ds = 2π

Γ(u+ v − 1)

Γ(u)Γ(v)
au−1 (a+ 1)2−u−v. (5.4.8)

To differentiate the left-hand side of (5.4.8) m times with respect to a, we apply the

formula, ( ∂
∂a

)m
(1 + ias)−v = (−i)msm(v)m (1 + ias)−v−m;

by differentiating under the integral we obtain( ∂
∂a

)m ∫
R
(1− is)−u (1 + ias)−vds = (−i)m(v)m

∫
R
sm (1− is)−u (1 + ias)−v−m ds.

To differentiate the right-hand side of (5.4.8) m times with respect to a, we apply

Leibniz’s formula:( ∂
∂a

)m[
au−1 (a+ 1)2−u−v

]
=

m∑
l=0

(
m

l

)[( ∂
∂a

)m−l
au−1

]
·
[( ∂
∂a

)l
(a+ 1)2−u−v

]
.

Noting that (
m

l

)
=

(−1)l(−m)l
l!

,( ∂
∂a

)m−l
au−1 = (−1)m au−1−m+l (1− u)m

(u−m)l
,

and ( ∂
∂a

)l
(a+ 1)2−u−v = (−1)l (a+ 1)2−u−v−l (−2 + u+ v)l,
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we obtain( ∂
∂a

)m[
au−1 (a+ 1)2−u−v

]
= (−1)mau−1−m(a+ 1)2−u−v(1− u)m

m∑
l=0

(−m)l (−2 + u+ v)l
l! (u−m)l

al (a+ 1)−l

= (−1)mau−1−m(a+ 1)2−u−v(1− u)m 2F1

(
−m,−2 + u+ v;u−m;

a

a+ 1

)
,

where 2F1 denotes Gauss’ hypergeometric function (see section 2.3).

Comparing the derivatives of the left- and right-hand sides of (5.4.8), we obtain∫
R
sm (1− is)−u (1 + ias)−v−m ds = 2π (−i)m au−1−m(a+ 1)2−u−v Γ(u+ v − 1)

Γ(u)Γ(v)

× (1− u)m
(v)m

2F1

(
−m,−2 + u+ v;u−m;

a

a+ 1

)
.

Substituting a = 1, m = j + k − 2, u = α + j, and v = α + k −m ≡ α − j + 2, the

latter equation reduces to∫
R
g(s)ds = 2−2α+1 π (−i)j+k−2 Γ(2α + 1)

Γ(α + j)Γ(α− j + 2)

× (1− α− j)j+k−2

(α− j + 2)j+k−2
2F1

(
− j − k + 2, 2α;α− k + 2; 1

2

)
.

Therefore,∫
R
Pj(s)Pk(−s)

ds

s2
= 2−2α+1π (−1)j−1 (α)j (α)k

j! k!

Γ(2α + 1)

Γ(α + j)Γ(α− j + 2)

× (1− α− j)j+k−2

(α− j + 2)j+k−2
2F1

(
− j − k + 2, 2α;α− k + 2; 1

2

)
,

and similarly for Y . Substituting these expressions into Theorem 5.3.1 and simplifying

the outcome, we obtain the series (5.4.5) as a formal expression for V2(X, Y ).

Finally, we verify that (5.4.5) converges absolutely. By (5.4.7),∫
R
|g(s)| ds =

∫
R
|s|j+k−2 (1 + s2)−(2α+j+k)/2 ds.

Making the change-of-variables s2 = t/(1− t), the latter integral is transformed to∫ 1

0

t
1
2

(j+k−3) (1− t)α−
1
2 dt = B

(
1
2
(j + k − 1), α + 1

2

)
, (5.4.9)
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whereB(·, ·) is the classical beta function, and this integral converges absolutely because

j + k − 1 > 0 and α + 1/2 > 0 for all j, k ∈ N and α > 0. Hence, to establish that

(5.4.5) converges absolutely, we need only show that the series

∞∑
j=1

∞∑
k=1

aj ak
(α)j(β)j

(j!)2

(α)k (β)k
(k!)2

×B
(

1
2
(j + k − 1), α + 1

2

)
B
(

1
2
(j + k − 1), β + 1

2

)
(5.4.10)

converges absolutely.

By (5.2.8), 0 ≤ aj ≤ λj ≤ 1 for all j. Also, for j + k ≥ 3, it follows from (5.4.9) that

B
(

1
2
(j + k − 1), α + 1

2

)
≤
∫ 1

0

(1− t)α−
1
2 dt =

1

α + 1
2

.

Therefore, (5.4.10) is bounded above by

α2β2λ2
[
B
(

1
2
, α + 1

2

)]2
+

1

(α + 1
2
)2

∑
j, k≥1
j+k≥3

(α)j(β)j
(j!)2

(α)k (β)k
(k!)2

λj+k

≤ α2β2λ2
[
B
(

1
2
, α + 1

2

)]2
+

1

(α + 1
2
)2

( ∞∑
j=0

(α)j(β)j
(j!)2

λj
)( ∞∑

k=0

(α)k (β)k
(k!)2

λk
)

≡ α2β2λ2
[
B
(

1
2
, α + 1

2

)]2
+

1

(α + 1
2
)2

[
2F1(α, β; 1;λ)

]2
,

and it is well-known that this Gaussian hypergeometric series converges absolutely for

all α, β ∈ C and all λ ∈ [0, 1].

In calculating the distance variances V(X,X) and V (Y, Y ), only the marginal distribu-

tions are relevant. Therefore, we may assume that X and Y have any joint distribution

for which the marginal distributions are gamma with parameters α and β, respectively.

Letting β → α, the Sarmanov bivariate gamma distribution reduces to the Kibble-

Moran distribution, and then the joint characteristic function of (X, Y ) is(
(1− it1)(1− it2) + λt1t2

)−α
;

cf. [56, p. 436]. Next, we let λ→ 1−; then this characteristic function converges to(
1− i(t1 + t2)

)−α ≡ E exp
(
i(t1 + t2)X

)
,

proving that, for λ = 1, X = Y , almost surely. Therefore, the distance variance
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V(X,X) is a limiting case of V(X, Y ), viz.,

V2(X,X) =
1

γ2
1

∫
R2

|fX(s+ t)− fX(s)fX(t)|2 ds

s2

dt

t2

= lim
λ→1−

lim
β→α

1

γ2
1

∫
R2

|fX,Y (s, t)− fX(s)fY (t)|2 ds

s2

dt

t2

= lim
λ→1−

lim
β→α
V2(X, Y ).

Similarly,

V2(Y, Y ) = lim
λ→1−

lim
α→β
V2(X, Y ).

5.4.4 The Bivariate Poisson Distribution

Proposition 5.4.4. Suppose that the random vector (X, Y ) is distributed according to

a bivariate Poisson distribution, as given by (5.2.10). Then

V2(X, Y ) =
1

π

∞∑
j=1

∞∑
k=1

λj+k
((4a)j+k

j! k!

)
A2
jk, (5.4.11)

where

Ajk =

j−k∑
l=0
l even

(
j − k
l

)
(−1)l/2

l/2∑
n=0

(−1)n
Γ(n+ j − 1

2
l − 1

2
)

Γ(n+ j − 1
2
l)

× 1F1(n+ j − 1
2
l − 1

2
;n+ j − 1

2
l;−4a)

(5.4.12)

for j ≥ k, and Ajk = Akj for j < k.

Proof. By (5.2.10) and (5.3.1), we have

Pn(s) = Qn(s) = E exp(isX)Cn(X; a),

s ∈ R. Substituting the definition (5.2.9) of the Poisson-Charlier polynomials Cn into

the expectation and reversing the order of summation, we obtain

Pn(s) = Qn(s) =
∞∑
x=0

exp(isx)Cn(x; a)
e−aax

x!

=
(an
n!

)1/2

(1− eis)n exp
(
−a(1− eis)

)
.
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Therefore, for j, k ≥ 1,∫
R
Pj(s)Pk(−s)

ds

s2

=
(aj+k
j! k!

)1/2
∫
R
(1− eis)j (1− e−is)k exp

(
−a(1− eis + 1− e−is)

) ds

s2

=
(aj+k
j! k!

)1/2
∫
R
(1− eis)j (1− e−is)k exp

(
− 2a(1− cos s)

) ds

s2
. (5.4.13)

Because this integral is symmetric in j and k then we can assume, with no loss of

generality, that j ≥ k. We now write

(1− eis)j(1− e−is)k = (1− eis)j−k(1− eis)k(1− e−is)k

= (1− eis)j−k(2(1− cos s))k,

and apply the binomial theorem in the form,

(1− eis)j−k = (1− cos s− i sin s)j−k

=

j−k∑
l=0

(
j − k
l

)
(−i sin s)l(1− cos s)j−k−l.

Then, it follows that the integral in (5.4.13) equals

2k
j−k∑
l=0

(
j − k
l

)
(−i)l

∫
R

(sin s)l(1− cos s)j−l exp
(
− 2a(1− cos s)

) ds

s2
. (5.4.14)

Expanding the exponential term,

exp
(
− 2a(1− cos s)

)
=

∞∑
m=0

(−2a)m

m!
(1− cos s)m,

applying the half-angle identities, sin s = 2 sin 1
2
s cos 1

2
s and 1− cos s = 2(sin 1

2
s)2, and

integrating term-by-term, we deduce that (5.4.14) equals

2k
j−k∑
l=0

(
j − k
l

)
(−i)l

∞∑
m=0

(−2a)m

m!

∫
R

(2 sin 1
2
s cos 1

2
s)l(2(sin 1

2
s)2)j−l+m

ds

s2

=

j−k∑
l=0

(
j − k
l

)
(−i)l

∞∑
m=0

(−a)m

m!
2j+k+2m

∫
R

(cos 1
2
s)l(sin 1

2
s)2(j+m)−l ds

s2
. (5.4.15)

If l is odd then the latter integral is an odd function of s, so the integral equals 0. For

the case in which l is even, we apply the identity sin2 s = 1−cos2 s to write the integral
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in (5.4.15) as∫
R

(cos2 1
2
s)l/2(sin 1

2
s)2(j+m)−l ds

s2
=

∫
R

(1− sin2 1
2
s)l/2(sin 1

2
s)2(j+m)−l ds

s2
. (5.4.16)

To calculate the latter integral, we will expand the first term in the integrand by the

binomial theorem and then integrate termwise. Applying the formula (Gradshteyn and

Ryzhik [34, p. 483, 3.821(10)]),

∫
R
(sin 1

2
s)2k ds

s2
=

π, k = 1
(2k − 3)!!

(2k − 2)!!
π, k = 2, 3, 4, . . .

(5.4.17)

we find that (5.4.16) equals

l/2∑
n=0

(−1)n
∫
R

(sin 1
2
s)2(n+j+m)−l ds

s2
= π

l/2∑
n=0

(−1)n
(2(n+ j +m)− l − 3)!!

(2(n+ j +m)− l − 2)!!
.

Substituting this result into (5.4.15), and interchanging the order of summation over

m and n, we obtain

∫
R
Pj(s)Pk(−s)

ds

s2
= π

((4a)j+k

j! k!

)1/2
j−k∑
l=0
l even

(
j − k
l

)
(−1)l/2

×
l/2∑
n=0

(−1)n
∞∑
m=0

(−4a)m

m!

(2(n+ j +m)− l − 3)!!

(2(n+ j +m)− l − 2)!!
.

(5.4.18)

Writing each double factorial in terms of rising factorials, and simplifying the resulting

expressions, we find that (5.4.18) equals

π1/2
((4a)j+k

j! k!

)1/2
j−k∑
l=0
l even

(
j − k
l

)
(−1)l/2

×
l/2∑
n=0

(−1)n
Γ(n+ j − 1

2
l − 1

2
)

Γ(n+ j − 1
2
l)

1F1(n+ j − 1
2
l − 1

2
;n+ j − 1

2
l;−4a), (5.4.19)

where 1F1 denotes the confluent hypergeometric function.

We remark that the individual terms in this series can be calculated in a straightfor-

ward way by differentiating a simpler hypergeometric series. Note that each confluent

hypergeometric function in (5.4.19) is of the form 1F1(r− 1
2
; r;−4a) for r ∈ N; for r = 1,
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this latter function satisfies the well-known Kummer transformation [2, p. 191],

1F1(1
2
; 1;−4a) ≡ e−2a

0F1(1; a2);

and for r ≥ 1 we may differentiate this identity with respect to a, using the well-known

formula [2, p. 94],

1F1(r − 1
2
; r; a) =

(1)r−1

(1
2
)r−1

( ∂
∂a

)r−1

1F1(1
2
; 1; a).

Finally, we establish the absolute convergence of the resulting series for V2(X, Y ). On

applying to (5.4.13) the identity

|1− eis| = |1− e−is| =
(
2(1− cos s)

)1/2
= 2
(

sin2 1
2
s
)1/2

and the inequality

exp
(
− 2(1− cos s)

)
≤ 1,

s ∈ R, we obtain∣∣∣∣∫
R
Pj(s)Pk(−s)

ds

s2

∣∣∣∣ ≤ (aj+kj! k!

)1/2
∫
R
|1− eis|j|1− eis|k exp

(
− 2a(1− cos s)

) ds

s2

≤
((4a)j+k

j! k!

)1/2
∫
R

(
sin2 1

2
s
)(j+k)/2 ds

s2
.

By the Cauchy-Schwarz inequality,∫
R

(
sin2 1

2
s
)(j+k)/2 ds

s2
≡
∫
R

(
sin2 1

2
s
)j/2(

sin2 1
2
s
)k/2 ds

s2

≤
(∫

R

(
sin2 1

2
s
)j ds

s2

)1/2 (∫
R

(
sin2 1

2
s
)k ds

s2

)1/2

.

Because (2k − 3)!!/(2k − 2)!! ≤ 1 for all k ∈ N then it follows from (5.4.17) that∫
R

(
sin2 1

2
s
)j ds

s2
≤ π;

therefore, ∣∣∣∣∫
R
Pj(s)Pk(−s)

ds

s2

∣∣∣∣ ≤ ((4a)j+k

j! k!

)1/2

π,

and the same holds for the functions Qj. Substituting these bounds into the general
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series expansion (5.3.5), we obtain the upper bound

V2(X, Y ) ≤
∞∑
j=1

∞∑
k=1

(4λa)j+k

j! k!

=
(

exp(4λa)− 1
)2
<∞,

for all λ ∈ [0, 1] and a > 0. Therefore, the series (5.4.12) converges absolutely.

To calculate the distance variance, the argument given in the bivariate gamma case

remains valid here. By Koudou [58, p. 103], the characteristic function of (X, Y ) is

fX,Y (s, t) = exp
[
a(1− λ)(eis − 1) + a(1− λ)(ei t − 1) + aλ(ei (s+t) − 1)

]
.

Therefore,

lim
λ→1−

fX,Y (s, t) = exp
[
a(ei (s+t) − 1

]
≡ fX(s+ t),

so we obtain

V2(X,X) = V2(Y, Y ) = lim
λ→1−

V2(X, Y ).

In this chapter, we derived a formula for the population version of distance correlation

for random vectors (X, Y ) lying the class of Lancaster distributions. While this formula

still requires solving the nontrivial integrals (5.3.3) and (5.3.3) to obtain explicit results

for certain distributions, it enormously facilitates the calculation of these results by

delivering a tractable expansion of the distance correlation. The impact of this result

is twofold. On one hand, it enables the efficient evaluation of distance correlation

for numerous discrete and continuous distributions as we have shown in section 5.4.

On the other hand, the expansion of distance correlations in terms of integrals of

orthogonal polynomials and Lancaster coefficients in Theorem 5.3.1 may lead to better

understanding and physical interpretation of distance correlation.
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Chapter 6

Detecting Collinear Groups of

Random Variables in Low-rank

Models

After having considered the distance correlation and the affinely invariant distance

correlation in the preceding chapters, we now take a look at a specific variable clustering

problem in low rank models. In particular, our goal will be to detect groups of collinear

random variables, i.e. random variables which feature an exact or approximate linear

dependence. As our main result, we will show that we can indeed obtain an asymptotic

guarantee to retrieve these groups in a particular Gaussian setting (the PPCA model).

We first give a motivation for our clustering task based on a specific interpretation

problem in Gaussian graphical models. Subsequently, we discuss the set-up of this

task and formulate an explicit problem statement. We remark, that for fixed sample

size, the problem under consideration is mathematically equivalent to the problem of

subspace clustering for data in the case of independent subspaces. On these grounds,

we can show that the clustering can be exactly recovered in the noiseless case. When

the sample size goes to infinity, the equivalence to subspace clustering is not preserved.

However, for the case of known intrinsic dimension, we show that the clustering can

be asymptotically retrieved under moderate assumptions. For the probabilistic PCA

model, consistent estimators for the intrinsic dimension are available [89] and we can

hence transfer this result to the setting of unknown intrinsic dimension. We conclude

this chapter with a critical discussion of our results.

6.1 Motivation

In numerous applications, Gaussian graphical models (GGMs) are utilized to detect

meaningful associations between different quantities. In particular, edges in a GGM

are interpreted as ”direct” connections, since the dependence betweentwo variables
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connected by an edge cannot be fully explained by the other variables in the model.

However, it is often neglected that this interpretation crucially depends on two assump-

tions:

1.) All ”relevant” quantities are included in the model.

2.) There is no redundant information in the model.

If 1.) is not satisfied, we could mistake an edge for a direct connection, when there

is in fact a relevant variable not included in the model explaining the dependency be-

tween the variables connected by this edge. If 2.) is not satisfied, direct connections

could be missed out because of redundant variables. Let for example two variables X1

and X2 of a GGM be a slightly different representation of the same quantity. Then

X1 explains almost all the variance of X2 (and vice-versa), hence the partial correla-

tions between these two variables and the rest of the model are virtually zero, which

induces the absence of edges even if strong direct relations are present. Particularly

in large-dimensional applications, the observed dimension rarely matches the intrinsic

dimension of the problem and the interpretation of the GGM is questionable. This

chapter is a first step in developing methods to detect redundant variables in graphical

models and to use this knowledge to define a new graphical model which fits the intrin-

sic dimension of the problem and hence allows for the interpretation described above.

To point out the immense problems caused by redundant information, consider the

following example. Let X = (X1, X2, . . . , X6) be a random vector, such that these

six random variables correspond to the intrinsic dimension of the problem and the

graphical model (Figure 6.1) is regular and reveals direct associations. We now add

two more variables X7 and X8 via

X7 = aX1 + bX2 + ε, X8 = cX3 + dX4 + δ,

where a, b, c, d ∈ R. If ε = δ = 0, the structure of the graphical model is completely

destroyed (Figure 6.2), similar for small noise ε, δ. This problem occurs since the

three variables {X7, X1, X2} (or {X8, X3, X4} respectively) intrinsically live on a two-

dimensional subspace. Hence already two of these variables explain the third one and

all edges between these subsets and the rest of the model are eliminated. We suggest

an approach to tackle this problem consisting of two steps. First, we aim at detecting

groups of collinear random variables (in our example {X7, X1, X2} and {X8, X3, X4}).
Second, we propose to apply dimension reduction techniques to define a new graphical

model, which better suits the intrinsic dimension of the problem. This chapter is

dedicated to the first step of this approach.
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Figure 6.1: A regular Gaussian graphical
model with six nodes.

Figure 6.2: The structure of the GGM is
heavily affected from collinearity.

6.2 Notation

For two partitions α = {Ci}k1i=1 and β = {Bi}k2i=1, we will say that β is coarser than α if

any set in α is a subset of an element in β. Analously, we will say that β is finer than

α if any set in β is a subset of an element in α.

We will further use the following notation for matrices, which is due to [63]. For

a matrix M ∈ Rm×n, |M ]i,j denotes its (i, j)-th entry, |M ]i,: denotes its i-th row and

|M ];,j its j-th column. The notation M = [M1;M2; . . . ;Mk] refers to

M =


M1

M2

...

Mk


and analogously M = [M1,M2, . . . ,Mk] denotes:

M =
(
M1 M2 · · ·Mk

)
.

Moreover, it will prove useful to fix a notation for matrices which are 0 everywhere

except for certain subsets of the rows and columns. In particular, for M ∈ Rm×n, we

denote by |M ]S,T the m × n-Matrix whose entries are |M ]i,j for (i, j) ∈ S × T and

0 otherwise. Moreover |M ]S,: := |M ]S,{1,...,n} and |M ]:,T := |M ]{1,...,m},T . By |M ]l,S
(resp. |M ]S,l), we refer to the l-th row (resp. column) of |M ]:,S (resp. |M ]S,:). Finally,

by using the term ”block-diagonality”, we will refer to the property that a matrix is

block-diagonal (in the usual sense) up to permutation, more precisely note the following

definition.
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Definition 6.2.1. We say that a matrix M is block-diagonal with exactly k blocks,

whenever there exist two permutation matrices Q1 and Q2, such that Q1M Q2 has the

form

Q1M Q2 =


L1 0 0 0

0 L2 0 0

0 0
. . . 0

0 0 0 Lk


and for any i, there are no permutation matrices R1, R2, s.t.

R1 LiR2 =

(
K1 0

0 K2

)
.

Obivously rank(M) = rank(Q1M Q2) =
∑k

i=1 rank(Li).

6.3 Problem Statement

As already stated in the introduction to this chapter, our goal will be to detect groups

of collinear random variables. For this purpose, let Y = (Y1, . . . , Yp)
t be a random

vector distributed according to some distribution with mean (0, . . . , 0)t and covariance

matrix Γ. Moreover, suppose that there are m groups (or clusters) of collinear random

variables. The clusters will be denoted by C1, . . . , Cm, where for i ∈ {1, . . . ,m}, Ci is a

a subset of {1, . . . , p}, such that l lies in Ci, if the random variable Yl belongs to the i-th

group of collinear random variables. Apparently it holds C1 ∪C2 ∪ . . . Cm ⊂ {1, . . . , p}
and Ci ∩ Cj = ∅ for i 6= j. As mentioned before, the random variables affiliated to a

cluster Ci are assumed to be collinear, i.e. there are constants λl (l ∈ Ci) such that∑
l∈Ci

λlYl = 0

and hence the covariance matrix of the random variables affiliated to Ci does not have

full rank (i.e. rank(|Γ]Ci,Ci
) < |Ci|). Moreover the sets C1, . . . , Cm should account for

all the redundant information in the data, hence there is no collinearity among the vari-

ables expressed by the index set D = {1, . . . , p}\
⋃m
i=1Ci (i.e. rank(|Γ]D,D) = |D|). For

technical reasons, we will treat the random variables affiliated to D as single clusters

of size 1. Hence D = Cm+1 ∪ Cm+2 ∪ . . . ∪ Ck, with |Ci| = 1 for i ∈ {m + 1, . . . , k}
and k −m = |D|. This means, that for i ∈ {1, . . . , k}, Ci either refers to a low-rank

cluster (i.e. rank(|Γ]Ci,Ci
) < |Ci|) or to a single random variable being part of the

set D. To simplify the notation, we will denote, for i ∈ {1, . . . , k}, pi := |Ci| and

di = rank(|Γ]Ci,Ci
).
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Our goal will be in the following, given an i.i.d. sample Z = (Z(1), Z(2), . . . , Z(n)) drawn

from Y +E (where E is some noise variable), find the number of clusters k, as well as the

segmentation of the random variables, i.e. the index sets C1, . . . , Ck. It is apparent,

that this problem is ill-posed in general and we need additional assumptions on the

clusters to make this problem identifiable. To find assumptions, which suit the nature

of our problem, we reconsider the motivation for our clustering task. Since our goal is

to remove the collinearity, we should prefer a model, which accounts for all redundant

information. Hence the missing dimensionality in the clusters should add up to the

missing dimensionality of the model, which is expressed by
∑k

i=1(pi − di) = (p− d) or∑k
i=1 di = d, equivalently. The second goal is to identify the structure of the collinearity.

Hence, among all clusterings satisfying
∑k

i=1 di = d, we will assume that {Ci}ki=1 is the

finest, i.e. any other partition {Bi}mi=1 satisfying
∑k

i=1 di = d is coarser than {Ci}ki=1.

The existence of a partition satisfying
∑k

i=1 di = d is clear since for the trivial partition

C1 = {1, 2, . . . , p}, |Γ]C1,C1 = Γ and hence d1 = d. We will now show that there is a

unique finest clustering with that property. Interestingly, the preceding two conditions

will be sufficient to define the clustering, the resulting clusters will automatically either

satisfy rank(|Γ]Ci,Ci
) < |Ci| or |Ci| = 1.

Lemma 6.3.1. Let Y = (Y1, . . . , Yp) be a random vector with mean (0, . . . , 0)t, such

that the corresponding covariance matrix Γ satisfies rank(Γ) = d. Then there is a

unique finest partition {Ci}ki=1, such that
∑k

i=1 di = d, where di = rank(|Γ]Ci,Ci
).

Proof. As already pointed out above, the existence of a clustering satisfying∑k
i=1 di = d is trivial. If a finest clustering with

∑k
i=1 di = d exists, it is clear that this

partition is unique, since any other feasible partition is coarser. It remains to show

that there exists a finest clustering satisfying the desired property. Consider that the

statement is false; then there are two different partitions {Ci}k1i=1 and {Bi}k2i=1, such

that there exist no feasible partitions, which are finer than {Ci}k1i=1 or {Bi}k2i=1. Hence

there are two sets Cl and Bm, such that

{0} ( (Cl ∩Bm) ( Cl.

Let us define the subsets D1 and D2 by

D1 = (Cl ∩Bm), D2 = Cl\Bm.

It is now straightforward to show that

rank(|Γ]D1,D1) + rank(|Γ]D2,D2) = rank(|Γ]Cl,Cl
)

and hence the partition {(Ci)i 6=l, D1, D2} is a partition into k1 + 1 subsets such that
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the ranks of the respective blocks in Γ add up to d. This is an contradiction to the

assumption that there exists no finer feasible partition than {Ci}k1i=1.

We are now ready to formulate our problem statement.

Problem 6.3.2. Let Y = (Y1, . . . , Yp) be a random vector with mean (0, . . . , 0)t , such

that the corresponding covariance matrix Γ satisfies rank(Γ) = d. Consider observations

of the form

Z = Y + E,

where Y = (Y (1), Y (2), . . . , Y (n)) ∈ Rp×n is an i.i.d. sample drawn from Y and E is

a noise matrix (which will be specified in the respective subsections). Our goal is to

recover the finest partition {Ci}ki=1, such that
∑k

i=1 di = d, where di = rank(|Γ]Ci,Ci
).

Let us denote that - to the best knowledge of the author - there is only one existing

variable clustering method, which is suited to this problem. While other methods

intrinsically assume that the rank of all clusters in one, the matroid approach [114]

allows for clusters of arbitrary (low) rank j. Indeed, the clusters in our description

containing just one variable are exactly those rank-1-flats, which are not part of a

rank-j-flat with j > 1. A cluster Ci of low rank di < |Ci| is obviously a di-flat.

Moreover, one can show that the condition
∑k

i=1 di = d ensures, that this cluster is not

part of a rank-j-flat with j > di. In conclusion, our clustering task may be attacked

by the matroid approach, assigning each covariate to the flat with maximum rank.

However, the matroid approach is - due to its combinatorial nature - computationally

highly expensive and there are no known theoretical guarantees for this method. We

will now show a link of the problem under consideration to subspace clustering, which

enables a much more efficient solution in the case of clean data (i.e. E = 0.)

6.4 Inference

6.4.1 Inference for Clean Data

Consider for now that E = 0 and further assume the mild technical condition

rank(Y ) = rank(Γ), (6.4.1)

which holds true almost surely for distributions with a certain degree of regularity,

as long as n > d. Under this assumption, we immediately obtain rank(|Y ]Ci:) =

rank(|Γ]Ci,Ci
) = di for clusters Ci with i ∈ {1, . . . , k}. When we denote the linear

subspace spanned by the rows of rank(|Y ]Ci:) by Si, we realize that our problem is ana-

logue to the problem of subspace clustering as described in subsection 1.1.3, only that

the roles of the rows and the columns, i.e. of the component of the random vector and
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the samples are interchanged. In addition, we can show that our clustering constraints

guarantee the independence of the respective subspaces. For that purpose, we reca-

pitulate the definition of the independence of subspaces. To isolate this concept from

the concept of stochastic independence, we will refer to it as subspace-independence or

short S-independence.

Definition 6.4.1. For subspaces {Ui}ki=1 of a vector space V , we say that {Ui}ki=1 are

S-independent (subspace-independent), if for any i ∈ {1, 2, . . . , k}

Ui ∩
∑
j 6=i

Uj = {0}.

Lemma 6.4.2. Consider Problem 6.3.2 and further assume the condition (6.4.1). Then

the subspaces {Si}ki=1 spanned by the rows of |Y ]Ci,: are S-independent.

Proof. Assume, that {Si}ki=1 are not S-independent. Then there is some j ∈
{1, 2, . . . , k}, such that dim(Sj ∩

∑
i 6=j Si) > 0. Hence,

d = dim

(
k∑
i=1

Si

)
= dim

(∑
i 6=j

Si

)
+ dim(Sj)− dim

(
Sj ∩

∑
i 6=j

Si

)

< dim

(∑
i 6=j

Si

)
+ dim(Sj) ≤

∑
i 6=j

dim(Si) + dim(Sj) =
k∑
i=1

dim(Si).

This is a contradiction to the assumption that d =
∑k

i=1 di =
∑k

i=1 dim(Si).

The preceding lemma implies that, for fixed sample size n and clean data Y , our

method is equivalent to the subspace clustering problem described in 1.1.3 assuming

the independence of the respective subspaces {Si}ki=1. In particular, this ensures, that

the method by Costeira and Kanade [12] works in our setting, i.e. the clustering can

be recovered by the orthogonal projection on the column space of Y . For the sake of

completeness, we work out the details of this method. The following lemma is due to

[63, 12].

Lemma 6.4.3. Consider the setting of Problem 6.3.2 and further assume the condition

6.4.1. Let UΛV t denote the skinny SVD of Y and P = UU t the orthogonal projection

on the column space of Y . Then |P ]l,m = 0 if l and m do not belong to the same cluster

(i.e. |P ]Ci,Cj
= 0 for i 6= j).

Proof. Let us define an auxiliary matrix W by

|W ]l,m =

{
|P ]l,m if l and m belong to the same cluster,

0 else.
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Further define R = P −W . It is apparent that it suffices to show that R = 0.

W.l.o.g., we now assume that l ∈ Ci where l ∈ {1, . . . , p} and i ∈ {1, . . . , k} arbitrary.

It holds:

|P Y ]l,: = |Y |l,: ∈ Si.

Moreover, with C−i :=
⋃
j 6=iCj and noting that |W ]Ci,Cj

= 0 for i 6= j:

|W Y ]l,: = |W ]l,Ci
|Y ]Ci,: + |W ]l,C−i

|Y ]C−i,: = |W ]l,Ci
|Y ]Ci,: ∈ Si

and since |R]Ci,Cj
= 0 for i = j

|RY ]l,: = |R]l,Ci
|Y ]Ci,: + |R]l,C−i

|Y ]C−i,: = |R]l,C−i
|Y ]C−i,: ∈

∑
j 6=i

Sj.

Finally it also holds that |RY ]l,: = |P Y ]l,: − |W Y ]l,: ∈ Si. Lemma 6.4.2 yields that

Si ∩
∑

j 6=i Sj = {0}, hence RY = 0. Since the columns of P can be written as linear

combinations of Y , this implies that RP = 0 as well. Moreover RR = R (P −W ) =

−RW . Now, for any i ∈ {1, . . . , k}:

−|RR]Ci,Ci
= |RW ]Ci,Ci

= |R]Ci,Ci
|W ]Ci,Ci

+ |R]Ci,C−i
|W ]C−i,Ci

= 0.

Hence 0 = |RR]Ci,Ci
= |R]Ci,; (|R]Ci,;)

t. It follows, that |R]Ci,; = 0 for all i ∈ {1, . . . , k}
which implies R = 0.

Obviously, the theorem above states that our clusters {Ci}ki=1 are separated by the

zero-entries of the projection matrix P . However, it makes no statement about the

connectivity of the intra-cluster entries of that matrix. The following lemma addresses

this question.

Lemma 6.4.4. Consider the setting of Problem 6.3.2. For i ∈ {1, . . . , k}, consider an

arbitrary partition of Ci into non-empty sets D1 and D2 (i.e. D1∪D2 = Ci, D1∩D2 =

∅). Then |P ]D1,D2 6= 0.

Proof. Assume that |P ]D1,D2 = 0. It is easy to check, that

rank(|Y ]Ci,:) = rank(|P ]Ci,Ci
) = rank(|P ]D1,D1) + rank(|P ]D2,D2).

Moreover, since |P ]D1,: = |P ]D1,D1 ,

|Y ]D1,: = |P ]D1,D1|Y ]D1,:.

and |Y ]D2,: = |P ]D2,D2|Y ]D2,:. It follows that

rank(|Y ]Ci,:) = rank(|Y ]D1,:) + rank(|Y ]D2,:),
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Denoting the spaces spanned by the rows |Y ]D1,: and |Y ]D2,: by T1 and T2 respectively,

this implies dim(T1 +T2) = dim(Si) = dim(T1)+dim(T2). Hence, dim(T1)+dim(T2)+∑
j 6=i dim(Sj) = d. This is a contradiction to the assumptions, that {Ci}ki=1 is the finest

partition with that property.

Combining Lemma 6.4.3 and Lemma 6.4.4, we have that:

(i) The orthogonal projection P on the columns of Y is block-diagonal with exactly

k blocks.

(ii) |P ]Ci,Cj
= 0 for i 6= j.

Let us now consider the adjacency matrix A, whose (l,m)-th element al,m is given by

al,m = 1{pl,m 6=0},

where pl,m denotes the (l,m)-th element of P .

Obviously, (i) implies that the graph induced by A has exactly k connected components

and (ii) states that the clusters are not connected in the graph. Hence the connected

components of A coincide with the clusters {Ci}ki=1.

We are now ready to state the central theorem of this section.

Theorem 6.4.5. Consider the setting of Problem 6.3.2 and further assume the con-

dition 6.4.1. Let UΛV t denote the skinny SVD of Y and P = UU t the orthogonal

projection on the column space of Y . The clusters {Ci}ki=1 can then be exactly recov-

ered by finding the adjacency matrix A, whose (l,m)-th element al,m is given by

al,m = 1{pl,m 6=0},

where pl,m denotes the (l,m)-th element of P .

For the case of clean data (E = 0) considered in the current subsection, it is clear

that the orthogonal projection P and hence A, as well, can be exactly recovered. For

noisy data, the issue is much more involved, since P can naturally only be estimated.

Furthermore, even when P can be consistently estimated, we have no guarantee to

consistently retrieve the cluster structure, since the elements of A are obviously no

continuous functions in the elements of P .

6.4.2 Inference in the Case of Homogeneous Noise

In the following we will consider the case of noisy data. In particular, we are going

to assume that the error term E represents homogeneous noise, i.e. its columns are
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independently drawn from a random vector E = (E1, E2, . . . , Ep)
t with mean 0 and

covariance matrix E[E Et] = σ2 Ip, with some σ2 > 0. Moreover E and Y are assumed

to be independent. For convenience, we will additionally assume (6.4.1) for fixed n, yet

note that this condition is automatically fulfilled when n→∞.

Our aim will be to retrieve the clustering via Theorem 6.4.5, i.e. by constructing a con-

sistent estimator for the matrix A. First we will derive an estimator for the projection

matrix P without assuming any further condition. We will then show the asymptotic

normality of this estimator given the asymptotic normality of the respective sample

covariance matrix. Under this assumption, we will succeed to find a consistent estima-

tor for A, as long as the intrinsic dimension d of Y is known. Finally, in the case of a

Gaussian probabilistic PCA model, we can apply known estimators for the intrinsic di-

mension. By combining these with the derived estimator for A, we derive an asymptotic

guarantee to recover our cluster structure in the setting of unknown intrinsic dimension

d.

The following notation will prove useful (see [105]):

Definition 6.4.6. Let M be a symmetric q × q matrix. Then for some eigenvalue λ

of M , we call the unique orthogonal projection Qλ on the λ-eigenspace Eλ the eigen-

projection for M associated with λ. For a set of eigenvalues λ1, λ2, . . . , λd, we call the

orthogonal projection Qλ1,λ2,...,λd on the sum of the eigenspaces
∑d

i=1 Eλi the total eigen-

projection for M associated with λ1, λ2, . . . , λd. If λ1, λ2, . . . , λd are pairwise different,

we have

Qλ1,λ2,...,λd =
d∑
i=1

Qλi .

Under assumption (6.4.1), the orthogonal projection P = UU t on the column space of

Y obviously coincides with the orthogonal projection on the column space of Γ. Note,

that Γ can be decomposed as follows:

Γ = λ1v1v
t
1 + . . . λdvdv

t
d,

where λ1 ≥ λ2 . . . ≥ λd are the d non-zero eigenvalues of Γ (if we count with multiplicity)

and v1, . . . , vd are respective orthonormal eigenvectors. Then the covariance matrix

Σ = Γ + σ2 Ip of Z = X + E can be expressed as follows:

Σ = (λ1 + σ2)v1v
t
1 + . . . (λd + σ2)vdv

t
d + σ2vd+1v

t
d+1 + . . . σ2vpv

t
p,

where {vd+1, . . . , vp} is an orthonormal basis of ker(Γ).
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The total eigenprojection P for Γ associated with its non-zero eigenvalues is given by

P = v1v
t
1 + . . . vdv

t
d,

which is apparently the same as the total eigenprojection for Σ associated with its d

largest eigenvalues. In the following, we will show that the total eigenprojection for the

sample covariance matrix Σ̂n associated with its d largest eigenvalues a.s.-converges

to the total eigenprojection for Σ associated with its d largest eigenvalues . So, if the

dimension d of Γ is known, we obtain a consistent estimator for P . For i ∈ {1, . . . , p},
let us denote by µ̂in the i-th largest eigenvalue of Σ̂n and by v̂1

n, . . . , v̂
p
n corresponding

orthonormal eigenvectors.

For the eigenvalues and eigenprojections of symmetric matrices, it holds an important

continuity property [105, Lemma 2.1]:

Lemma 6.4.7. Let Mn be a q × q symmetric matrix with eigenvalues λ1(Mn) ≥
λ2(Mn) ≥ . . . ≥ λq(Mn). Let Pj,t(Mn) represent the total eigenprojection for Mn asso-

ciated with λj(Mn), . . . , λt(Mn) for t ≥ j. If Mn →M as n→∞, then

(i) λj(Mn)→ λj(M), and

(ii) Pj,t(Mn)→ Pj,t(M) provided λj−1(M) 6= λj(M) and λt(M) 6= λt+1(M).

It is straightforward to transfer this result to a.s.-convergence:

Lemma 6.4.8. Let Mn be a random q×q symmetric matrix with eigenvalues λ1(Mn) ≥
λ2(Mn) ≥ . . . ≥ λq(Mn). Let Pj,t(Mn) represent the total eigenprojection for Mn

associated with λj(Mn), . . . , λt(Mn) for t ≥ j. If Mn
a.s.→ M as n→∞, then

(i) λj(Mn)
a.s.→ λj(M), and

(ii) Pj,t(Mn)
a.s.→ Pj,t(M) provided λj−1(M) 6= λj(M) and λt(M) 6= λt+1(M).

This immediately implies the following theorem.

Theorem 6.4.9. Consider Problem 6.3.2, where E represents homogeneous noise, i.e.

its columns are independently drawn from a random vector E = (E1, E2, . . . , Ep)
t with

mean 0 and covariance matrix E[E Et] = σ2 Ip, with some σ2 > 0 where E and Y are

independent. Further assume, that the intrinsic dimension d is known. Define P̂n be

defined as the total eigenprojection of the sample covariance matrix Σ̂n associated with

its d-largest eigenvalues µ̂1
n, . . . , µ̂

d
n, i.e.

P̂n =
d∑
j=1

v̂jn(v̂jn)t, (6.4.2)
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where v̂1
n, . . . , v̂

d
n denote the corresponding orthonormal eigenvectors. Then, for n→∞

P̂n
a.s.−→ P.

We can further show that the asymptotic normality of the sample covariance matrix

Σ̂n leads to the asymptotic normality of the estimator P̂n. For this purpose, we assume

that the sample covariance matrix Σ̂n is asymptotically normal in the following sense:

vec(
√
n (Σ− Σ̂n))

D−→ N (0, K) as n→∞. (6.4.3)

where K is a p2 × p2-matrix.

As an example, assume that Z is generated by a (Gaussian) probabilistic PCA model

[103], which induces that E ∼ N (0, σ2Ip) and Y = WX where X ∼ N (0, Id) and

W ∈ Rp×d is an arbitrary rank-d matrix. Then Z is drawn from

Z = WX + E,

and Z ∼ N (0,WW t + σ2Ip). Since Z is normally distributed, it holds (see e.g. [105]):

vec(
√
n (Σ− Σ̂n))

D−→ N (0, (Ip2 + I(p,p)) (Σ⊗ Σ)) as n→∞, (6.4.4)

where Σ = WW t + σ2Ip and Σ̂n denotes the respective sample covariance matrix.

We will need the following notation. The set of positive eigenvalues of Γ will be denoted

by

L := {λ1, . . . , λd}.

For an eigenvalue λ of Γ, we denote the eigenprojection for Γ associated with this

eigenvalue by Pλ. The spectral norm of a matrix B will be denoted by ‖B‖. A ⊗ B
will denote the Kronecker product of A and B, vec(·) will denote the vec-operator and

I(p,p) the permuted identity matrix (also referred to as commutation matrix).

We will make use of the following rules (see [65, 69] for reference and further properties):

(i) Let A,B,C be p× p-matrices. Then,

vec(ABC) = (Ct ⊗ A) vec(B). (6.4.5)

(ii) Let A,B,C,D be p× p-matrices. Then,

(A⊗B) (C ⊗D) = (AC ⊗BD). (6.4.6)
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(iii) Let A and B be p× p-matrices. Then,

I(p,p) (A⊗B) = (B ⊗ A) I(p,p). (6.4.7)

By applying Lemma 4.1 in [105], we get

Lemma 6.4.10. If ‖Σ̂n − Σ‖ ≤ λd/2, then

P̂n = P −
∑
λ∈L

[Pλ (Σ̂n − Σ) (Σ− (λ+ σ2)Ip)
+ + (Σ− (λ+ σ2)Ip)

+ (Σ̂n − Σ)Pλ] + En,

where ‖En‖ ≤ λ1
λd

(
2‖Σ̂n−Σ‖

λd

)2 (
1− 2‖Σ̂n−Σ‖

λd

)−1

.

Now we are ready to prove the asymptotic normality of P̂n

Theorem 6.4.11. Consider Problem 6.3.2, where E represents homogeneous noise,

i.e. its columns are independently drawn from a random vector E = (E1, E2, . . . , Ep)
t

with mean 0 and covariance matrix E[E Et] = σ2 Ip, with some σ2 > 0 where E and Y

are independent. Further assume (6.4.3) and that the intrinsic dimension d is known.

Let P̂n be the estimator defined in Theorem 6.4.9. Then:

√
n vec(P̂n − P )

D−→ N (0, C K C) ,

where

C :=
∑
λ∈L

λ−1 (P0 ⊗ Pλ + Pλ ⊗ P0).

Proof. From assumption (6.4.3), we know that

√
n vec(Σ̂n − Σ)

D−→M,

where vec(M) ∼ N (0, K). Clearly, by Lemma 6.4.10

√
n(P̂n − P )

D−→ N = −
∑
λ∈L

[PλM (Σ− (λ+ σ2) Ip)
+ + (Σ− (λ+ σ2) Ip)

+M Pλ].

Exploiting property (6.4.5) yields:

vec(N) = −
(∑
λ∈L

(Σ− (λ+ σ2) Ip)
+ ⊗ Pλ + Pλ ⊗ (Σ− (λ+ σ2) Ip)

+
)
vec(M).

Noting that

Σ− (λ+ σ2) Ip =
∑
λ′∈L

(λ′ − λ)Pλ′ − λP0
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we obtain

vec(N) = −
(∑
λ∈L

{ ∑
λ′′∈L

(λ′ − λ)−1 Pλ′ ⊗ Pλ − λ−1 P0 ⊗ Pλ
}

+
{ ∑
λ′′∈L

(λ′′ − λ)−1 Pλ ⊗ Pλ′′ − λ−1 Pλ ⊗ P0

})
vec(M)

= −
(∑
λ∈L

λ−1 (P0 ⊗ Pλ + Pλ ⊗ P0)
)
vec(M).

Hence vec(N) is multivariate normal with covariance matrix

Cov(vec(N)) = C K C.

Corollary 6.4.12. Let us consider, we are in the setting of Theorem 6.4.11 and further

assume that Z is generated by a probabilistic PCA model. Hence E ∼ N (0, σ2Ip) and

Y = WX where X ∼ N (0, Id) and W ∈ Rp×d is an arbitrary rank-d matrix. Then

√
n vec(P̂n − P )

D−→ N

(
0,
∑
λ∈L

λ−2 σ2 (λ+ σ2) (P0 ⊗ Pλ + Pλ ⊗ P0)

)
.

Proof. By (6.4.4) and Theorem 6.4.11

√
n vec(P̂n − P )

D−→ N
(
0, C (Ip2 + I(p,p)) (Σ⊗ Σ)C

)
,

where

C :=
∑
λ∈S

λ−1 (P0 ⊗ Pλ + Pλ ⊗ P0).

Exploiting property (6.4.7) yields

C I(p,p) = I(p,p) C.

We get

C (Ip2 + I(p,p)) (Σ⊗ Σ)C = (Ip2 + I(p,p))C(Σ⊗ Σ)C.
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Now,by property (6.4.6):

C (Σ⊗ Σ)C

=
(∑
λ∈L

λ−1 (P0 ⊗ Pλ + Pλ ⊗ P0)
)(

Σ⊗ Σ
)(∑

λ′∈L

(λ′)−1 (P0 ⊗ Pλ′ + Pλ′ ⊗ P0)
)

=
(∑
λ∈L

λ−1 σ2 (λ+ σ2) (P0 ⊗ Pλ + Pλ ⊗ P0)
)(∑

λ′∈L

(λ′)−1(P0 ⊗ Pλ′ + Pλ′ ⊗ P0)
)

=
∑
λ∈L

λ−2 σ2 (λ+ σ2) (P0 ⊗ Pλ + Pλ ⊗ P0),

which completes the proof.

In the current chapter, we have constructed a consistent estimator for the orthogonal

projection P = U U t, when our data is corrupted by homogeneous noise. Moreover

we were able to show the asymptotic normality of this estimator under moderate as-

sumptions (6.4.3), in particular for Gaussian data generated by a probabilistic PCA

model. To find the adjacency matrix A, the problem is now to identify the structures

of the zeros in P via the consistent estimate P̂n. A possible approach could e.g. be

to construct a multiple hypothesis test for a certain dependence structure using the

asymptotic normality result 6.4.11.

We now pursue a different approach, namely identifying the adjacency matrix A via

hard thresholding of P̂n. While it is not clear, how to choose the threshold for fixed

n, we know from the asymptotic normal result that |pij − p̂(n)
ij | is of magnitude n−

1
2 ,

where pij and p̂
(n)
ij denote the (i, j)-th element of P and P̂n, respectively. Hence, for

fixed d, we can asymptotically find the zero-entries of P by setting all entries of P̂n
with absolute value smaller than bn to 0, where b−1

n = o(
√
n) (e.g. bn = c1n

− 1
4 with

arbitrary real constant c1). More precisely, we obtain

Corollary 6.4.13. Consider Problem 6.3.2, where E represents homogeneous noise,

i.e. its columns are independently drawn from a random vector E = (E1, E2, . . . , Ep)
t

with mean 0 and covariance matrix E[E Et] = σ2 Ip, with some σ2 > 0 where E and Y

are independent. Further assume (6.4.3) and that the intrinsic dimension d is known.

Let P̂n be the estimator defined in Theorem 6.4.9.

Now, for the (i, j)-th element of P̂n, denoted by p̂
(n)
ij , define the matrix Ân by

ânij = 1{|p̂(n)
ij |>bn}
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where bn is some positive real null sequence satisfying b−1
n = o(

√
n). Then

P(Ân = A)
n→∞−→ 1,

where A is defined in Theorem 6.4.5. Hence, for n → ∞, the clusters {Ci}ki=1 are

asymptotically recovered.

Proof. A is obviously a binary matrix. First consider an element aij (i, j ∈
{1, . . . , p}) of A, such that aij = 1. Then

P(ânij = aij) = P(1{|p̂(n)
ij |>bn}

= 1) = P(|p̂(n)
ij | > bn) ≤ P(|p̂(n)

ij − pij| < |pij| − bn).

The latter expression converges to 1, since pij is greater than 0, bn is a null sequence

and p̂ij is a consistent estimate for pij. Now consider aij = 0 and let c denote the ij-th

element of the diagonal of the covariance matrix in Corollary 6.4.12. Then

P(ânij = aij) = P(1{|p̂(n)
ij |>bn}

= 0) = P(|p̂(n)
ij | ≤ bn)

≤ P(|p̂(n)
ij − pij| ≤ bn) = P(

√
c−1n |p̂(n)

ij − pij| ≤
√
c−1n bn).

The latter expression converges to 1 since
√
c−1n bn →∞ and by Corollary 6.4.12

P(
√
c−1n |p̂(n)

ij − pij| ≤ x)
n→∞−→ 1− 2 Φ(−x),

where Φ denotes the cumulative distribution function of the Gaussian.

In applications, the intrinsic dimension d is naturally rarely known. However, there

exist numerous methods to choose an appropriate d in practice (see [7] for a survey).

However, for most of these methods, no statistical properties are known and we do not

know if these methods consistently estimate the intrinsic dimension. The probabilistic

PCA model represents an exception and dimensionality estimation is well studied in

this setting [5, 67, 89].

A consistent estimate d̂n for the intrinsic dimension is derived in [89]:

d̂n = arg min
k∈{1,...,p}

log

(( k∏
i=1

ui

)
×
( 1

p− k

p∑
i=k+1

ui

)p−k)
+
k

n
log n, (6.4.8)

where ui := 1
n

∑n
j=1(z2

ij) and zij represents the (i, j)-th element of the data matrix Z.

Combining this consistent estimate with Theorem 6.4.13, we immediately obtain an

asymptotic guarantee to recover the cluster structure for the probabilistic PCA model

in the case of unknown dimension d:
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Corollary 6.4.14. Consider Problem 6.3.2 and further assume that Z is generated by

a probabilistic PCA model. Hence E ∼ N (0, σ2Ip) and Y = WX where X ∼ N (0, Id)

and W ∈ Rp×d is an arbitrary rank-d matrix. Assume that the intrinsic dimension

d is not known. Let d̂n be the dimension estimator given in (6.4.8) and let P̃n be

defined as the total eigenprojection of the sample covariance matrix Σ̂n associated with

its d̂n-largest eigenvalues µ̂1
n, . . . , µ̂

d̂n
n , i.e.

P̃n =
d̂n∑
j=1

v̂jn(v̂jn)t, (6.4.9)

where v̂1
n, . . . , v̂

d̂n
n denote the corresponding orthonormal eigenvectors. Now, for the

(i, j)-th element of P̃n, denoted by p̃
(n)
ij , define the matrix Ãn

ãnij = 1{|p̃(n)
ij |>bn}

where bn is some positive real null sequence satisfying b−1
n = o(

√
n). Then

P(Ãn = A)
n→∞−→ 1,

where A is defined in Theorem 6.4.5.

6.5 Discussion and Outlook

In the preceding chapter, we have studied the problem of detecting groups of collinear

variables in low-rank models. Even though we were able to construct consistent esti-

mators to recover the cluster structure in certain settings, the obtained results are not

completely satisfactory. Consequently, we close this chapter with a critical discussion

of our investigations and an outlook to possible future work on this topic.

While the estimators in 6.4.13 and 6.4.14 are consistent, we did not achieve to show

any further statistical properties. In particular, we do not know anything more about

the quality of our estimation. In practice, the precision of the estimation may heav-

ily depend on the choice of the threshold parameter bn and the identification of the

dimension d. Concerning bn, methods need to be derived which select an appropriate

parameter for fixed sample size n. Moreover, the asymptotic normality result suggests

that choosing the same bn for every element of the matrix is not optimal. It is further

questionable if hard thresholding is the best way to identify the zeros in the projection

matrix P and other approaches need to be studied in the future. On the other hand,

statistical properties of estimators for the intrinsic dimension d are hardly known and
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most practical researchers use ad-hoc rules to select d. Yet, the consistency of our

technique relies on the exact identification of the intrinsic dimension. We suggest two

possible options to improve this situation. The first point is obviously the development

of better and more general estimators for the intrinsic dimension. Second, one could

attempt to investigate how heavily our approach depends on the right choice of d. It

would be important to know if we can still approximately recover the cluster structure,

when our choice for d is only slightly different from the actual dimension. Finally, note

that our approach identifies the dimension d and the zero-pattern of P successively.

Techniques to identify both quantities at a time may be considered in the future, e.g.

making use of estimation methods for simultaneously sparse and low rank matrices,

which attracted considerable interest recently [78, 110, 17].

A promising starting point to tackle the problem for fixed sample size n is certainly the

link to subspace clustering. Even more, since most of the subspace clustering methods

do not consider any generative model, but only assume, that we have given some data

Y ∈ Rp×n, those methods may be directly applied by transposing the data matrix,

hence swapping the roles of dimension p and sample size n. To put it another way,

when no generative model for the data matrix Y is assumed, the terms ”dimension”

and ”sample size” are somehow arbitrary definitions referring to the number of rows and

columns, respectively of the data matrix. Although subspace clustering may naturally

be a great help, one has to be careful when applying these methods. First of all,

statistical methods which assume some kind of generative model, such as MPPCA may

naturally not be applied. Moreover, one has to be attentive concerning the conditions

under which a method works, often there are implicit conditions which are natural to

assume for subspace clustering of data points, but which do not hold in our setting. For

example, the sparse subspace clustering algorithm (SSC) intrinsically assumes that the

number of samples ni in each subspace Si exceeds the dimension di without explicitly

mentioning this fact. Finally, while results for the quality of the estimation for fixed

sample size may be transferred, the link to subspace clustering can naturally not help

to derive asymptotic properties.

To close this discussion, let us briefly discuss the second and still open point of our

introductory motivation, the construction of a new graphical model, which does not

suffer from the specified interpretability deficits. For this purpose, let us reconsider

the example illustrated in Figures 6.1 and 6.2 of the introduction and choose ε =

δ = 0. Remind that our goal was to recover Figure 6.1 from Figure 6.2, i.e. to

recover the Graphical model consisting X1, . . . , X6 from the graphical model consisting

of X1, . . . , X8. Applying the methods derived in this chapter reveals the clustering

C1 = {X1, X2, X7}, C2 = {X3, X4, X8}, C3 = {X5}, C4 = {X6}
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and we know both the intrinsic dimension of the whole model and of each single cluster.

A possible way to proceed would certainly be to select a number of variables in each

cluster that corresponds to its intrinsic dimension. Yet, note that this approach does

not yield a unique solution. In particular, discarding any pair of random variables

from C1 and C2 yields a valid model and there are thus 3 · 3 = 9 possible choices

for a graphical model representing the right dimension and clustering. Unfortunately,

in general, each of this model features different edges both within the clusters and in

between the clusters. It is not obvious at all which additional assumption on our model

are required to obtain a unique solution.
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Chapter 7

Conclusion

In this thesis, we have dealt with complex dependence structures in two different ways.

On the one hand, we studied the distance covariance and the distance correlation, two

powerful dependence coefficients, which measure any kind of dependencies between

random variables. On the other hand, we investigated the task of clustering collinear

random variables in low rank systems.

With Chapters 3, 4 and 5, we hope to have contributed to the effective development

of the theory of distance correlation. Beside confirming the result for the bivariate

normal, which has already been shown by Székely, Rizzo and Bakirov [102], we suc-

ceeded in calculating the distance correlation for various other bivariate distributions,

namely the Laplace and certain types of Poisson and Gamma distributions. For the

setting of multivariate random variables, we introduced an affinely invariant version of

the distance correlation as an alternative measure of dependence. In addition to the

desirable properties of distance correlation, this coefficient is invariant under all invert-

ible affine transformations. Yet, both the regular distance correlation and the affinely

invariant distance correlation have its benefits (e.g. the regular distance covariance is

scale-equivariant, which makes it possible to view it as a scalar product), and it may

depend on the specific situation which measure to apply. An advantage of the affinely

invariant distance correlation above the regular distance correlation is certainly, that

its population version appears to be better interpretable. While we were able to get an

explicit and readily computable expression for the affinely distance covariance of the

multivariate normal distribution (which was employed both to obtain interesting limits

results and for an application on wind vector data), the respective result for the regular

distance covariance is much harder to handle. We were further able to give a useful

series representation for the distance covariance of Lancaster distributions, which sim-

plifies the computation of the population coefficients considerably. Finally, we derived

a generalization of an integral which is at the core of the theory of distance correlation.
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In Chapter 6, we attempted to make a first step towards resolving specific interpre-

tation problems in low rank Gaussian graphical models. In particular, we defined a

model considering multiple groups of collinear random variables and investigated the

task of recovering these groups from both noiseless and noisy data. For fixed sam-

ple size, we find that the model is mathematically equivalent to the widely noticed

model of subspace clustering of data in the case of independent subspaces. This opens

up the possibility to apply methods from the vast literature of subspace clustering to

help sorting out this problem; we suggest that further investigation of this link may

be rewarding. Yet, since the role of sample size and dimension in the subspace clus-

tering model and our model are swapped, the two models are not equivalent in the

asymptotic setting. In the situation, where the sample size goes to infinity, we derive a

consistent estimator, which asymptotically recovers the cluster structure for noisy data.

Our results on distance correlation offer several possibilities for further research. The

application on wind vector data in section 3.4 is purely exploratory and for illustrative

purposes. Yet, it introduces new concepts as the cross distance correlation function; a

sound mathematical investigation of the convergence properties of this function could

possibly lead to a better understanding of the distance correlation for dependent data.

Moreover the analysis in this section may have the potential to be developed into para-

metric or nonparametric bootstrap tests for Gaussianity. Similarly, the extension of the

integral given in Chapter 4 is purely theoretical. However, we raise the possibility, that

this integral may be used to generalize the class of α-distance dependence measures to

α outside the range (0, 2). Finally and most importantly, we hope that further research

based on the explicit formulas for the distance covariance in both finite-dimensional and

asymptotic settings, together with the series representation for the class of Lancaster

distributions will lead to a better physical interpretation of this coefficient.

The analysis of the clustering task in Chapter 6 is naturally by no means complete. The

given estimator for the case of noisy data undoubtedly requires further investigation.

In particular, the asymptotic normality of the preliminary estimator could possibly

induce a test for a particular dependence structure. However, it has to be noted that

this is a multiple testing problem and may be hard to tackle. Moreover, it is likely

that the consistency of the given estimator holds true for a large class of distributions

beyond the probabilistic PPCA setting. Finally, new approaches to solve this clustering

problems may be considered in the future; the link to subspace clustering is certainly

a promising starting point.
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Appendix A

Appendix

A.1 The Standard Distance Correlation for the Mul-

tivariate Normal Population

In Theorem 3.2.4 and Corollary 3.2.6 we calculated the affinely invariant distance covari-

ance for multivariate normal populations. Here, we consider the problem of deriving a

formula for the standard distance covariance and distance correlation. We remark, that

the following result is included in the preprint of the paper [18] by Dueck, Edelmann,

Gneiting and Richards which is available on the arXiv (http://arxiv.org/abs/1210.2482).

We first consider the case in which ΣX and ΣY are scalar matrices, say, ΣX = σ2
x Ip

and ΣY = σ2
y Iq with σx, σy > 0. Thus, suppose that (X, Y ) ∼ Np+q(µ,Σ), where

Σ =

(
ΣX ΣXY

ΣYX ΣY

)
=

(
σ2
x Ip ΣXY

ΣYX σ2
y Iq

)
.

Putting Λ = ΣYXΣXY , we follow the proofs of Theorem 3.2.4 and Corollary 3.2.6 to

obtain

V2(X, Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k! 22k

(1
2
)k (−1

2
)k (−1

2
)k

(1
2
p)k(

1
2
q)k

1

(σxσy)2k−1
C(k)(Λ)

= 4πσxσy
cp−1

cp

cq−1

cq

([
3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ/σ2

xσ
2
y

)
− 1
]

−2
[

3F2

(
1
2
,−1

2
,−1

2
; 1

2
p, 1

2
q; Λ/4σ2

xσ
2
y

)
− 1
])

.

Next we reduce the general case to the scalar case above. By Theorem 3.1.1, we see

113



that we may assume, without loss of generality, that ΣX and ΣY are diagonal matrices.

Now denote by σ2
x and σ2

y the smallest eigenvalues of ΣX and ΣY , respectively. Also,

let ΛX = ΣX − σ2
xIp and ΛY = ΣY − σ2

yIq; then, ΣX = ΛX + σ2
xIp and ΣY = ΛY + σ2

yIq.

Substituting these decompositions into the integral which defines V2(X, Y ), we obtain∫
Rp+q

(1− exp(s′ΣXY t))
2

exp(−s′ΣXs− t′ΣY t)
ds

|s|p+1
p

dt

|t|q+1
q

=

∫
Rp+q

(1− exp(s′ΣXY t))
2

exp(−s′ΛXs− t′ΛY t) exp(−σ2
x|s|2p − σ2

y|t|2q)
ds

|s|p+1
p

dt

|t|q+1
q

.

Next, we apply a Taylor expansion,

(1− exp(s′ΣXY t))
2

=
∞∑
k=2

2k − 2

k!
(s′ΣXY t)

k

and, writing ΛX = diag(λx1, . . . , λxp), we have

exp(−s′ΛXs) =
∞∑
l=0

(−1)l

l!
(s′ΛXs)

l

=
∞∑
l=0

(−1)l

l!
(λx1s

2
1 + · · ·+ λxps

2
p)
l

=
∞∑
l=0

(−1)l

l!

∑
l1+···+lp=l

(
l

l1, . . . , lp

) p∏
i=1

λlixis
2li
i .

Similarly, on writing ΛY = diag(λy1, . . . , λyq), we obtain

exp(−t′ΛY t) =
∞∑
m=0

(−1)m

m!

∑
m1+···+mq=m

(
m

m1, . . . ,mq

) q∏
j=1

λ
mj

yj t
2mj

j .

Integrating these series term-by-term, we find that the typical integral to be evaluated

is ∫
Rp+q

(s′ΣXY t)
k

p∏
i=1

s2li
i

q∏
j=1

t
2mj

j exp(−σ2
x|s|2p − σ2

y|t|2q)
ds

|s|p+1
p

dt

|t|q+1
q

.

By the substitution t 7→ −t, we find that this integral vanishes if k is odd, and so we

need to calculate∫
Rp+q

(s′ΣXY t)
2k

p∏
i=1

s2li
i

q∏
j=1

t
2mj

j exp(−σ2
x|s|2p − σ2

y|t|2q)
ds

|s|p+1
p

dt

|t|q+1
q

.

By transformation to polar coordinates s = rxθ and t = ryφ, where rx, ry > 0, θ ∈ Sp−1,
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and φ ∈ Sq−1, the integral separates into a product of multiple integrals over (rx, ry),

and over (θ, φ), respectively.

The integrals over rx and ry are standard gamma integrals:∫ ∞
0

∫ ∞
0

r2k+2l.−2
x r2k+2m.−2

y exp(−σ2
xr

2
x − σ2

yr
2
y)drxdry =

Γ(k + l.− 1
2
) Γ(k +m.− 1

2
)

4σ2k+2l.−1
x σ2k+2m.−1

y

,

where l. = l1 + · · · + lp and m. = m1 + · · · + mq. As for the integrals over θ and φ,

they are ∫
Sq−1

∫
Sp−1

(θ′ΣXY φ)2k

p∏
i=1

θ2li
i

q∏
j=1

φ
2mj

j dθdφ.

To evaluate these integrals, we expand (θ′ΣXY φ)2k using the multinomial theorem,

obtaining a sum of terms, each of which is homogeneous in θ and φ. Then we integrate

term-by-term by transforming the surface measures dθ and dφ to Euler angles [1, pp.

285–286]. The outcome is a multiple series expansion for the distance covariance. It

does not appear to be a series that can be made simple in the general case, but it does

provide an explicit expression in terms of Σ, p, and q.

A.2 The Affinely Invariant Distance Correlation for

the Multivariate Laplace Distribution

Let (X, Y ) ∼ Lp+q(Σ), i.e.

fX,Y (s, t) =
(

1 +
1

2

(
s

t

)′
Σ

(
s

t

))−1

,

where fX,Y is the characteristic function of (X, Y ). Hence, the characteristic functions

of the marginals are

fX(s) =
(

1 +
1

2
s′Σ11s

)−1

and fY (t) =
(

1 +
1

2
t′Σ22t

)−1

,

respectively. Therefore, the affinely invariant distance covariance between X and Y

can be computed as

cpcqṼ(X, Y ) =

∫
Rp+q

∣∣∣(1 +
1

2

(
s

t

)′
Σ

(
s

t

))−1

−
(
1 +

1

2
s′Σ11s

)−1 (
1 +

1

2
t′Σ22t

)−1
∣∣∣2

×
√
|Σ11| ds

√
|Σ22| dt

(s′Σ11s)(p+1)/2(t′Σ22t)(q+1)/2
.
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By substituting u =
√

1/2 Σ
1/2
11 s and v =

√
1/2 Σ

1/2
22 t, we obtain for the latter integral

2

∫
Rp+q

∣∣∣(1 + u′u+ v′v + 2u′Σ
− 1

2
11 Σ12 Σ

− 1
2

22 v
)−1

−
(
1 + u′u

)−1(
1 + v′v

)−1
∣∣∣2 du dv

(u′u)(p+1)/2(v′v)(q+1)/2
.

Now we change variables to polar coordinates, putting u = r1θ and v = r2φ where

r1, r2 > 0, θ = (θ1, . . . , θp)
′ ∈ Sp−1, and φ = (φ1, . . . , φq)

′ ∈ Sq−1. With Λ :=

Σ
− 1

2
11 Σ12 Σ

− 1
2

22 the integral is equal to

2

∫
Sp−1×Sq−1

∫
R+×R+

∣∣∣(1 + r2
1 + r2

2 + 2r1r2 θ
′ Λφ

)−1

−
(
1 + r2

1

)−1(
1 + r2

2

)−1
∣∣∣2dr1 dr2 dθ dφ

r2
1r

2
2

.

Again substituting u = r2
1 and v = r2

2 the latter integral equals

1

2

∫
Sp−1×Sq−1

∫
R+×R+

∣∣∣(1 + u+ v + 2
√
uv θ′ Λφ

)−1

−
(
1 + u

)−1(
1 + v

)−1
∣∣∣2du dv dθ dφ

u3/2 v3/2
.

Furthermore, we change coordinates to s = u
1+u

and t = v
1+v

. Observing that 1 + u =
1

1−s , 1 + v = 1
1−t and

1 + u+ v + 2
√
uv θ′ Λφ =

1− st+ 2 θ′Λφ
√
st
√

(1− s)(1− t)
(1− s)(1− t)

the inner integral transforms to∫
[0,1]×[0,1]

∣∣∣(1− st+ 2θ′ Λφ
√
st
√

(1− s)(1− t)
)−1 − 1

∣∣∣2 ((1− s) (1− t)
s t

)3/2

ds dt.

By expanding into negative binomial series, we obtain∣∣∣(1− st+ 2 θ′ Λφ
√
st
√

(1− s)(1− t)
)−1 − 1

∣∣∣2
=
(
1− st+ 2 θ′ Λφ

√
st
√

(1− s)(1− t)
)−2 − 2

(
1− st+ 2 θ′ Λφ

√
st
√

(1− s)(1− t)
)−1

+ 1

=
∞∑
k=2

(k − 1)
(
st− 2 θ′Λφ

√
st
√

(1− s)(1− t)
)k
.
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Moreover, by expanding into binomial series, the latter term reads

∞∑
k=2

(k − 1)
k∑
i=0

(
k

i

)
(st)k−i (−1)i (2 θ′Λφ

√
st
√

(1− s)(1− t))i.

Hence

Ṽ(X, Y ) =
1

2cpcq

∞∑
k=2

(k − 1)
k∑
i=0

(
k

i

)
(−1)i

(∫ 1

0

sk−i−3/2(1− s)(i+3)/2ds
)2

×
∫
Sp−1×Sq−1

(2 θ′Λφ)idθ dφ.

Since
∫
Sp−1×Sq−1(2 θ

′Λφ)idθ dφ vanishes for i odd, this can be written as

Ṽ(X, Y ) =
1

2cpcq

∞∑
k=2

(k − 1)

b k
2
c∑

j=0

(
k

2j

)(∫ 1

0

sk−j−3/2(1− s)j+3/2ds
)2

×
∫
Sp−1×Sq−1

(2 θ′Λφ)2jdθ dφ.

The integral with respect to s is a standard beta integral∫ 1

0

sk−j−3/2(1− s)j+3/2ds = B

(
k − j − 1

2
, j +

5

2

)
,

where B is the beta function. Moreover the integral with respect to the spheres is well

known to be

4cp−1cq−1

(1
2
)j (1

2
)j

(1
2
p)j(

1
2
q)j

C(j)(Λ),

where (α)j denotes the rising factorial and C(j)(·) is the top order zonal polynomial

with weight j. As a result, we finally find

Ṽ(X, Y ) = 2
cp−1 cq−1

cp cq

∞∑
k=2

(k − 1)

b k
2
c∑

j=0

22j

(
k

2j

)
B

(
k − j − 1

2
, j +

5

2

)2 (1
2
)j (1

2
)j

(1
2
p)j(

1
2
q)j

C(j)(Λ).

In the special case Σ = Ip+q, the affinely invariant distance covariance between X

and Y reduces to

2
cp−1 cq−1

cp cq

∞∑
k=2

(k − 1)B

(
k − 1

2
,
5

2

)2

> 0,

which is a strictly positive constant.
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[96] G. J. Székely and M. Rizzo. The distance correlation t-test of independence in

high dimension. Journal of Multivariate Analysis, 117:193–213, 2013.
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