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Abstract

Understanding tumor development crossing multiple spatial-temporal scales is of great

practical importance to better �ghting against cancers. It is hard to attack this problem

with pure biological means. In recent decades, computer-based modeling and simulation

techniques have been playing an increasingly important role in addressing it. After

reviewing the literature, however, we notice that existing tumor models are either

highly simpli�ed or too complicated to be scaled to large tumor systems.

In light of these problems, we have developed a software environment TUGME to

facilitate the multi-scale modeling and simulation of tumor development based on the

agent-based method. The most important feature of this software environment is its

�exibility which enables straight-forward model reuse and extension. Tumor models of

TUGME are hybrid as discrete and continuous approaches are coupled to model the

discrete and continuous nature of the tumor system. TUGME is highly modularized,

thus changing one module only requires few or no modi�cations to the others.

Using TUGME, we have simulated the avascular growth of a multicellular tumor

spheroid system of the tumor cell line, EMT6/Ro. Our tumor models treat individual

tumor cells as single agents. The cell morphology and topology are represented by a 3D

Voronoi tessellation. Cell motion, which is driven by mechanical interactions between

a cell and its surroundings, is modeled using Newton's second law. Oxygen and glucose

are treated as nutrients for cell energy production. Their transport and metabolism by

cells are described by reaction-di�usion equations. Cell proliferation is de�ned consid-

ering the availability of both oxygen and glucose as well as the availability of space as

its controllers. Based on these models, a series of simulations have been carried out.

Good agreements between our simulations and experiments indicate the applicability

of TUGME and the validity of our tumor models. In addition, the investigation of

the invasive tumor morphology under di�erent nutrient conditions shows that a lower

nutrient concentration gives rise to a rougher tumor surface.

One of the key challenges of agent-based multi-scale cancer modeling and simulation is

the sharp increase of the computational cost of model solving with increasing system

size (the number of tumor cells). According to our tests, the main computational

bottleneck of our tumor models consists in solving the linear system of cell motion. To

better understand this problem, we look into the properties of the matrix of the linear

system. Our conclusion is that its matrix is extremely sparse, symmetric and positive-

de�nite. These properties can help �nd a more e�cient solver for the linear system.

This work can be important reference for people who intend to work on individual-cell-

oriented cancer modeling.



�A journey of thousands of miles may not be achieved through accumulation of each

single step, just as the enormous ocean may not be formed gathering every brook or

stream.�

XUN Kuang



Zusammenfassung

Das Verständnis der Entwicklung von Tumoren auf verschiedenen räumlich-zeitlichen

Ebenen ist von herausragender praktischer Bedeutung für die Bekämpfung von Krebs.

Es ist schwierig, dieses Problem alleine mit biologischen Mitteln in Angri� zu nehmen.

In den letzten Jahrzehnten haben computergestützte Modellierung und Simulation-

stechniken eine zunehmend wichtige Rolle dabei gespielt, das Problem anzugehen. Nach

Sichtung der Literatur haben wir allerdings festgestellt, dass bereits vorhandene Tu-

mormodelle entweder in hohem Maÿe vereinfacht oder andererseits zu kompliziert sind,

um auf groÿe Tumorsysteme skaliert werden zu können.

Im Lichte dieser Probleme haben wir eine Software-Umgebung, TUGME, entwickelt, die

die Multiskalen-Modellierung und die agentenbasierte Simulation der Tumorentwick-

lung erleichtert. Das wichtigste Merkmal dieser Software-Umgebung ist ihre Flexibil-

ität, die die einfache Wiederverwendbarkeit und Erweiterung der Tumormodelle er-

möglicht. Die TUGME zugrunde liegenden Tumormodelle sind hybrid, da diskrete

und kontinuierliche Methoden gekoppelt wurden, um die sowohl diskrete als auch kon-

tinuierliche Natur von Tumorsystemen zu modellieren. TUGME ist in hohem Grade

modularisiert, sodass Änderungen an einem Modul nur wenige bis keine Modi�kationen

an den anderen erfordern.

Unter Verwendung von TUGME haben wir das avaskuläre Wachstum eines mehrzelli-

gen Tumorsystems der Tumorzelllinie EMT6/Ro simuliert. In unseren Tumormodellen

betrachten wir einzelne Tumorzellen als Agenten. Die Zellmorphologie und Zelltopolo-

gie werden durch eine dreidimensionale Voronoi-Tessellation abgebildet. Bei der Mod-

ellierung der Zellbewegung, die durch mechanische Interaktionen zwischen einer Zelle

und ihrer Umgebung bestimmt ist, wird vom zweiten Newtonschen Gesetz ausgegangen.

Sauersto� und Glukose werden als Nährsto�e für die Zellenergieerzeugung betrachtet.

Ihr Transport und Metabolismus durch Zellen werden durch Reaktionsdi�usionsgle-

ichungen beschrieben. Die Zellproliferation wird durch die Verfügbarkeit von Sauersto�,

Glukose sowie ausreichend Platz bestimmt. Auf diesen Modellen basierend wurde eine

Reihe von Simulationen durchgeführt. Übereinstimmungen zwischen unseren Simula-

tionen und Experimenten belegen die Anwendbarkeit von TUGME und die Gültigkeit

unserer Tumormodelle. Darüber hinaus zeigt die Untersuchung der invasiven Tumor-

Morphologie unter verschiedenen Nährsto�bedingungen, dass eine niedrigere Nährstof-

fkonzentrationen eine rauere Tumorober�äche verursacht.

Eine Schlüsselherausforderung der agentbasierten Multiskalen-Simulation von Krebs

sind die mit zunehmender Systemgröÿe (Anzahl an Tumorzellen) einhergenden extrem



steigenden Rechenkosten. Der ausschlaggebende Engpass in den numerischen Berech-

nungen besteht unseren Tests zufolge darin, das lineare Gleichungssystem der Zellbe-

wegung zu lösen. Um dieses Problem besser zu verstehen, untersuchen wir die Eigen-

schaften der Matrix des linearen Gleichungssystem. Unsere Schlussfolgerung ist, dass

diese Matrix extrem dünn besetzt, symmetrisch und positiv-de�nit ist. Diese Eigen-

schaften können dabei helfen, einen leistungsfähigeren Löser für das lineare System zu

�nden. Diese Arbeit stellt eine wichtige Referenz für Forscher dar, die beabsichtigen,

im Bereich der Modellierung von Krebs auf der Skala einzelner Zellen zu arbeiten.
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Chapter 1

Aim and Structure of the Thesis

1.1 Motivation

Cancer has been longtime the second killer to human beings right after the cardio-

vascular diseases. According to the latest statistics by the World Health Organization

(WHO), 8.5 million people died of cancer in 2012, and the annual cancer cases may

increase from 14 million in 2012 to 22 million within 2 decades. Nowadays, worldwide

people face the threat of a variety of cancers. Hence, there is no need to emphasize the

importance of cancer research.

Numerous key advances have been made over the more than two century history of

cancer research (reviewed in [8]). Some signi�cant discoveries have profoundly reshaped

our understandings of cancers. For example, the discovery of viruses causing the avian

cancer by Peyton Rous in 1911 [9] has led us to the �nding that the incidence of

cancers is closely related to cell chromosomes, where the genetic information is encoded

and passed from cells to cells via cell replication. Alterations in a certain fragment

of a DNA sequence (gene mutations) are particularly responsible for the incidence

of a cancer. These DNA fragments were termed genes whose expression synthesizes

a variety of proteins that are vital for living organisms. Cancer related genes were

later classi�ed into proto-oncogenes and cancer suppressor genes. Furthermore, some

substances (carcinogens) have been found having a strong capability to cause damages

to cell genomes, hence, avoiding exposure to them can help decrease the possibility of

developing cancers. However, it is not possible to eradicate cancer completely from

our life and many cancers remain causing high morbidity and mortality, even though,

substantial breakthroughs in medical equipments enable us to detect a cancer in its

much earlier stage, which has been helping both avoid a proportion of fatal cancers

today and improve the life-span and quality of persons with a cancer. As a result, cancer

1
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research has been much more motivated for innovations of caner therapy strategies

nowadays.

Understanding the working mechanisms of cancer cells can be of great help to better

�ghting against them. Furthermore, more and more investigations have gradually un-

covered the fact that the development of a cancer (tumorigenesis) is multi-factorial and

multi-scale by nature [2�4, 10, 11]. Hence, a systematic understanding [11�14], crossing

multiple spatial-temporal scales, becomes critical. Unfortunately, current experiments

in the laboratory are restricted to very �nite spatial-temporal scales of the tumor world

for the imitations of spatial-temporal resolution of current apparatuses for both car-

rying out experiments and conducting measurements. Pure experimental investigation

(or the wet-lab experimentation) is di�cult to shed light on the micro-scale biological,

biochemical and biophysical processes of single cells.

Computer-based modeling and simulation (the dry-lab experimentation) is believed

to be a potential auxiliary to the traditional biological experiments for systematically

investigating complex systems like tumors in systems biology. With the fast boost

of both computer hardware and software in the past two decades, computer-based

modeling and simulation has been playing a more and more important role in the

research of challenging biological problems, since computer models are much more

�exible and controllable, and it can cover a much wider temporal-spatial scale of the

investigated problem compared with the traditional experimental means.

However, modeling and simulation of complex multicellular cancer systems currently

is also very challenging. The challenges come from two general aspects, namely model

establishment and model solving. Model establishment involves modeling methodology

choosing and model �delity control. Model solving includes the requirements of com-

puter hardware like memory as well as the time needed for carrying out simulations.

These two aspects are actually closely coupled. It is obviously that model complexity

determines the computational cost of model solving. Inversely, the computer hardware

limits the complexity of a model, since a model can not be solved or takes too long time

to solve is practically useless. Therefore, model establishment is the key to multi-scale

cancer modeling.

After reviewing abundant cancer models on the market, we notice that some problems

are important but have not or well addressed by now. They include: 1) reusing of

current models is almost as di�cult as establishing a new one; 2) most models are either

oversimpli�ed for reducing the computational cost of model solving or too complex

to model large tumor systems; and 3) there was basically no easy to use software

environment specially tailored for multi-scale cancer modeling and simulation at the

time (in 2011) when we started this project. Obviously, reusing models based on a
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software environment is very helpful for carrying out computer-model-based cancer

research in many aspects, including decreasing the risks of making errors during model

development, reducing various costs of creating a new model, avoiding the waste of

building similar models and so on.

In light of these questions, this thesis is aimed at developing a software environment

to facilitate agent-based multi-scale cancer modeling and simulation by enabling easy

model reuse and extension. Furthermore, under the help of this environment, it is

expected to �nd some of the underlying working mechanisms of tumor cells and to

give predictions of possible death/survival conditions of them, which would help both

broaden our views of complex cancer systems and promote the innovation of cancer

treatment strategies.

1.2 Structure of the Thesis

In this project, an agent-based multi-scale tumor growth modeling and simulation en-

vironment TUGME (TUmor Growth Modeling Environment) is proposed. TUGME is

designed for easy model reuse and extension. It allows users to carry out simulation

experiments to test hypotheses about caner and cancer cells by either directly using

the default models or implementing the model interfaces provided.

Chapter 2 begins with a brief introduction to the experimental (in vivo and in vitro

cancer models) means of cancer research in the laboratory. After that, the main ad-

vantages and disadvantages of these means are summarized. In the second section of

this chapter, we introduce the conceptions of computer-based modeling and simulation

and summarize its advantages compared with the traditional experimental approaches.

Then, prevalent cancer modeling approaches are comparatively introduced. Finally,

we end this chapter with a short review of some existing software tools that could be

applied to agent-based cancer modeling.

In chapter 3, fundamental conceptions of cancers and tumors are introduced. Then,

tumorigenesis is brie�y introduced by highlighting some of the key transformations

essential for the �nal incidence of a cancer. The �nal section of this chapter is focused

on reviewing some of the critical biological, biochemical and biophysical traits of cancers

and cancer cells.

In chapter 4, we introduce the details of the design and implementation of TUGME.

First, the general perspectives of TUGME are summarized. Second, the basic design

principles of TUGME are highlighted. Third, TUGME is highly modularized. The
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functionalities of its modules and their inter-dependences are introduced in details.

Finally, the basic steps using TUGME to carry out a simulation is introduced.

In chapter 5, a concrete tumor model is developed based on TUGME. Then, the multi-

cellular tumor spheroid (MTS) growth of the cell line EMT6/Ro is simulated with this

model. Three properties of the modeled EMT6/Ro tumors are particularly investigated

in our simulations, namely the cell population, the distribution of nutrients and the

invasive morphology of MTS tumors. Good agreements between our simulations and

published experiments indicate the validity of our tumor model as well as the practical

applicability of TUGME.

In chapter 6, the computational complexity of carrying out agent-based multi-scale

cancer modeling and simulation is discussed mostly based on the model developed in

chapter 5. We evaluate the computational bottleneck of our model and try to �nd out

a better solution by testing di�erent options for solving the modular parts of our tumor

model. Finally, we end this chapter by concluding our results and the expecting the

further endeavors of agent-based multi-scale cancer modeling.

In chapter 7, a summary of the thesis is given and a discussion of possible avenues for

further research based on TUGME are prospected.



Chapter 2

Cancer Modeling

In this chapter, �rstly, popular cancer research means are introduced, including the

in vivo, in vitro and in silico models. Particularly, the general advantages and dis-

advantages of these approaches are brie�y introduced. After that, the advantages

of computer-based cancer modeling and simulation are brie�y summarized. Thirdly,

general approaches, including the continuous, the discrete and the hybrid methods,

for establishing computational models are comparatively reviewed. Speci�cally, single

cell representation methods are highlighted. Finally, the agent-based cancer modeling

method is introduced and some existing software libraries, which can be applied to

agent-based cancer modeling, are brie�y reviewed.

2.1 Physical Models of Cancer

Basic cancer research by biologists is mainly carrying out experiments in the laboratory

(the so-called wet-lab experiments [15]). In general, the experimental materials are

various types of cancer cells, which are either injected into living animals like mice

to induce tumors within them (in vivo tumors) or cultivated in culture medium with

properly supplied nutrients like glucose (in vitro tumors). Research directly based on

in situ and metastasis tumors within the body of persons with a cancer can seldom

done as a set of very strict regulations have to be passed.

In vivo environment (the body of animals) is obviously mostly similar to human bodies.

Hence, experimental results drawn based on the in vivo tumors are usually believed

more reliable. However, many aspects of the in vivo environment are hardly controllable

to researchers, especially the individual-tumor-dependent factors as well as the intrinsic

randomness. Compared with in vivo environment, the environment of in vitro tumors

5
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can be better controlled, but it is relatively less real for the absence of normal tissue

cells that surround in vivo tumor tissues. In general, easy to control and limited

e�ects of secondary factors of in vitro environment allow a more direct investigation

of individual factors (univariate analysis), which makes the in vitro tumors popular

among experimental oncologists.

Tumor monolayer is prevalent in vitro, where tumor cells grow on a Petri dish with

necessary nutrients for sustaining cell growth and proliferation. One important charac-

teristic of tumor monolayers is that all cultured cells have basically the even accessibility

to nutrients, hence, distinct tumor cell dynamics are considered as the result of all other

factors except nutrients. It is an important experimental means for investigating and

analyzing the growth and invasion mechanisms of tumors [16, 17]. Besides, tumor

monolayers have been widely used as test systems to investigate the curative e�ects of

anti-cancer drugs, radiotherapy, and chemotherapy etc [18, 19].

Unfortunately, tumor monolayers can not represent many aspects of actual tumor cell

aggregates, for example, the 3D structure and the biological and biophysical properties

of closely related to the 3D structure as it has been discussed in [20]. Multicellular

tumor spheroids (MTSs) �rst used to investigate the e�ects of radiotherapy on tumor

cells by Sutherland et al. in 1971 [21] are now prominently applied to cancer research.

MTSs are thought to be more real and suitable in vitro tumor models for preserving

the 3D structure of real tumor cell aggregates. Furthermore, signi�cant di�erences or

even contradictory phenomena have been indeed observed by conducting comparative

experiments using tumor monolayers and MTSs [22�24]. MTSs provide an alternative

with intermediate complexity between tumor monolayers and in vivo tumors, and more

importantly, they can be used to model the avascular growth of real tumors that are

too small to detect clinically. In addition, quantitative measurements of MTSs are very

important references for validating the in silico cancer models.

No matter the in vivo or the in vitro tumors, they are basically sort of physical models

of actual tumors. Hence, inevitable random factors as well as the di�erences of the

biological, biochemical and biophysical environment between the body of human beings

and animals or between the human body and the culture medium may signi�cantly

a�ect the credibility of experimental results. Examples are the rare successful cases

of the tryouts of anti-cancer drugs with persons with a cancer for various reasons like

drug toxicity [25�27] or ine�cient drug delivery [28, 29], while these drugs may have

shown a false image of promising curative e�ects in the tests with in vivo and in vitro

tumors. Understanding the failures of anti-tumor drugs is now a hot research area in

cancer research.
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Anyway, there is no doubt that both the in vivo and in vitro approaches have played and

will continue playing an irreplaceable role in cancer research. However, cancer is such

complicated a system that a systematic understanding needs comprehensive insights

into multiple spatial-temporal scales of the tumor world. Unfortunately, it is getting

increasingly clear that traditional biological means face severe challenges in doing so

for the limitations of resolution in space and time, especially at the micro level, of

current apparatus in both carrying out experiments and conducting measurements [30].

As a matter of fact, it has become a common problem for many research areas in

biology [12, 31, 32].

In recent decades, with the boost in both computer hardware and software, computer-

based modeling and simulation techniques have been playing a more and more im-

portant role in the research of many scienti�c problems including complex biological

systems like cancer. Compared with the traditional biological means, computer mod-

eling and simulation has intrinsic �exibility, which allows the possibility of shedding

light on the micro-world of tumors. Since Zeigler et al. systematically introduced for

the �rst time the theory of modeling and simulation in 1976 [33], it has underwent

an exponential growth in last two decades in numerous disciplines, such as military,

economics, biology.

Considering the long-term characteristic of the tumorigenesis process, much more re-

search has focused on a speci�c growth stages (avascular, vascular and tumor metas-

tases) of tumors. This project is initially started with the modeling and simulation of

the avascular growth stage. This is not to say that avascular tumor growth is more

important than the other two stages. As a matter of fact, the other two stages are of

more practical relevance to cancer therapy. Nevertheless, when attempting to inves-

tigate complex systems like cancers, it is wise to �rst try to understand parts of the

entire system as well as possible before linking them together as a whole, especially

when the parts are already complex too. Avascular tumor growth is relatively simple

to model and is thought to in�uence the later two more important stages signi�cantly.

Moreover, more experimental data about avascular tumors are available, which facili-

tates quantitatively validating in silico tumor models. While experimental data about

vascular tumor growth and tumor metastases are relatively lacking for various di�cul-

ties in obtaining vascular tumors in vivo and in vitro and conducting experiments and

measurements on them. Finally, the computational cost of solving tumor models on

computers is worthy of special considerations. As tumorigenesis lasts long, too compli-

cated models can be impossible to solve within a reasonable time using single desktop

computers.
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2.2 Computational Cancer Models

2.2.1 Brief Introduction to Computer-based Modeling and Simula-

tion

The conception of model in computer-based modeling and simulation is completely

di�erent from that of a physical model which is a physical replica of the corresponding

real-world system. In computer-based modeling and simulation, models conceptually

abstract the features or traits of relevance of the real-world system. They are usually

described by mathematical equations and are called theoretical models. A theoretical

model should be established exactly ful�lling goals the modeler. Speci�cally, all and

only features that are of particular interest to the modeler should be extracted from

the target system, and those of irrelevance should be neglected. For example, features

like the weight and the height of individuals are usually not considered for a population

model, since they are considered to be not critically relevant.

Actual physical systems are of two general types, namely the static systems and the

dynamic systems. The state of a static system does not change over time, hence, static

systems are relatively easier to understand. The state of a dynamic system varies

over time. The mechanisms regulating the dynamics of a complex dynamic system can

involve a lot of nonlinearly coupled factors. Furthermore, some dynamic systems involve

intrinsic randomness, for example, Brownian motion [34]. The randomness of dynamic

systems is modeled based on pseudo-random numbers that are generated by computer

algorithms. Markov Chain Monte Carlo (MCMC) is a typical type of method to model

the dynamic this kind of systems [35]. Models are static and dynamic correspondingly

depending on the type of the modeled systems.

Some models are hard to solve by hand. For example, many time-dependent PDEs

(RDE models) can be very hard to solve analytically, however, numerical solutions

can be got much easily with algorithms that can be implemented and executed on

computers. Using computers to solve theoretical models is a process termed computer-

based simulations (or computer simulations).

Computer-based simulations (dry-lab experimentations) and wet-lab experimentations

are closely related. Behavioral rules of theoretical models are basically assumptions

on the workings of the investigated system. Since computer programs should be un-

ambiguous, these rules should be de�nite. However, these rules should be proposed

based on the known knowledges or theories of the studied system rather than random

conjectures. Simulations allow a layout of the evolving process of the modeled system,
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which may be never or hardly observed directly with experimental means in the lab-

oratory. For this kind of systems, simulations, on the one hand, can help us better

understand their dynamics. On the other hand, new insights gained from simulations

can be used to direct the wet-lab experiments. Figure 2.1 illustrates the interplay

between computer-based modeling and simulation and the wet-lab experimentation.

Figure 2.1: Diagram illustrating the relationship between dry-lab and wet-lab ex-
periments. On the one hand, models should be built based on the basic knowledge
(theories) of the real system, which is abstracting its traits of relevance. On the
other hand, models are used to test hypotheses and more importantly to make pre-
dictions on the modeled system. By comparing simulation results with experimental
data, models get validated, meanwhile, the knowledge about the studied system gets

accumulated. Image adapted from Ref. [1].

A simulation is to solve a theoretical model under the help of computers. The theoretical

model has to be implemented using either basic programming languages like C, C++,

Jave etc or domain-oriented modeling languages, such as SIMULA [36] and GPSS [37].

A detailed introduction about domain-oriented modeling languages can be found in [38].

Basic programming languages allow full �exibility of any applications, however, the

programming skills are required mastering. Domain-oriented languages are usually

easy to learn, whereas, they are tailored for certain application domains.

2.2.2 Bene�ts of Modeling and Simulation

Though several obvious advantages of conducting computer-based cancer modeling have

been mentioned early in this thesis, systematically summarizing all possible bene�ts

would better motivate this project. These bene�ts include:

� Theoretical models are highly simpli�ed. A neatly-de�ned theoretical model

should encapsulate only features of signi�cantly relevance, neglecting those of
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irrelevance or weakly related. Obviously, neat models are much easier to control

and analysis.

� Theoretical models are fully-controllable. All mechanisms that regulating dy-

namics of a theoretical model should be de�nitely de�ned by the modeler. These

mechanisms can be changed by the modeler for testing di�erent hypotheses or

other purposes. More importantly, singular analysis of a speci�c parameter ex-

cludes the e�ects of secondary factors, which may signi�cantly blur the results of

the wet-lab experiments, in computer-based modeling and simulation. Besides,

simulation results are completely repeatable even for models with randomness.

� The costs of developing a new theoretical model usually is much lower than that

of creating a new physical model or making a real-world system. Furthermore,

an actual system may not be available or allowed to conduct experiments with it.

For example, it has a lot of very strict procedures to go through before testing

an anti-cancer drug on persons with cancers.

� Theoretical models can be reused and modi�ed, while this is basically impossi-

ble for physical models or real-life tumors. Theoretical models are conceptually

described and exist as computer programs. Reusing them is less expensive than

creating a new one, not to mention creating a new physical model or a real-life

tumor.

� Simulations could take a much shorter period of time than that of the physical

models and the real-life systems. Hence, long-term dynamics of a system, for

example, the star forming process [39], which is very di�cult to be directly inves-

tigated by experimentations in the laboratory, could be studied within a much

shorter period of time via computer-based simulations. Tumor growth can evolve

for years in reality. Simulations of tumor growth taking days or even weeks would

be of great practical value.

� High performance computing (HPC) based on high performance computers, such

as super computers and cloud computers, provides techniques that can be applied

to computer-based modeling and simulation to speed up the simulation process.

Though HPC-based cancer modeling is still in its infant stage, wide applications

and remarkable success of HPC-based simulations in many domains, such as mil-

itary, industry and scienti�c research, indicate that this is a promising direction.

A �rst try done by Kang et al. shows the feasibility of this idea [40].

� With the advances in computer-based modeling and simulation, the method-

ology for model development and description has formed up a number of the

so-called speci�cations of formalisms, such as discrete event system speci�cation
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(DEVS) [33, 41] and the agent-based method (ABM) [42�44]. These diverse for-

malisms are of great help to e�cient model construction. ABM is prevalent in

single-cell-oriented tumor modeling.

2.2.3 Tumor Models and Cell Representation

Generally there are three classes of approaches for cancer modeling: namely the con-

tinuum, the discrete and the hybrid [3, 45�47]. Each type of approach has it own

characteristics which make it proper for investigating certain features of tumors and

tumor cells.

Continuum models are generally realized by Ordinary di�erential Equations (OREs) or

Partial Di�erential Equations (PDEs). They are usually applied to study the large scale

properties, such as the population and the volume of tumor tissues [48] or the density

of tumor cells [49]. Reaction-Di�usion Equations (RDEs) are commonly adopted to

model the transport and metabolism of nutrients [50�53], where the di�usion term and

the reaction term correspondingly model the molecular di�usion and consumption by

cells.

Continuum models have many valuable advantages. First of all, they can be scaled to

very large tumors without substantially increasing the computational cost of modeling

solving. Secondly, they can be solved e�ciently on computers, since there are many

classical methods particularly for solving complex PDEs numerically. The disadvan-

tage of continuum models is that the discreteness of individual tumor cells is di�cult

to explicitly model. As the basic building units of a tumor tissue, cells are discrete

by nature. Cellular membranes separate the inner cell world from the surroundings.

Behaviors of cells, such as growth, proliferation, movement and death, are individual-

cell-based. Furthermore, tumor cells are heterogeneous [54]. To take into account the

discrete nature, the discrete approach has been proposed naturally.

The discrete approach enables much higher �exibility in representing individual tumor

cells compared with the continuum approach. Its basic idea is to treat each tumor cell

as an individual object, where cell growth, proliferation, motion, death, interactions can

be explicitly modeled as the behaviors of the individual cell objects. ABM is naturally

adopted. However, the discrete approach isn't versatile in representing all the aspects

of tumors or tumor cells. For example, the transport and metabolism of biochemical

molecules are too ine�cient to realize with the discrete approach. The hybrid approach,

which naturally integrates the continuum and discrete approaches, gradually becomes

the favor of tumor modelers in recent years [3, 44�47, 55].
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The hybrid approach is far more complicated than mechanically combining the contin-

uum and the discrete approaches. Its key is to couple the continuous processes with

the discrete processes properly because these processes are quanti�ed by continuous

and discrete variables. As the tumor growth involves multiple spatial-temporal scales,

these variables have to be mapped consistently.

As tumor cells persistently interact with each other, cell-cell topology and three dimen-

sional cell geometry are important for high �delity hybrid models. Di�erent strategies

can be adopted to represent individual cells with respect to cell topology and geometry.

Generally, they can be classi�ed into two types, namely the lattice-based method and

the lattice-free method.

Cellular automaton (plural form cellular automata, CA) [56�58] is a lattice-based

method mostly used. CA partition the 3D space (two-dimensional (2D) area) into

many much smaller compartments, lattice cells, using a variety of grids. Lattice cells

usually are identical in shape, for example, cubes in three dimensions (squares in two

dimensions), when regularly structured grids are applied. Besides, Each tumor cell

can occupy one or several single lattice cells depending on the resolution of single cell

representation. CA models neatly represent individual cells in the shape, the size, the

neighborhood etc, on which many cell behavior rules could be de�ned easily based. For

example, cell motion could be de�ned as a discrete jump from one lattice cell to its

direct neighbors. However, this is unrealistic. On the one hand, the neighborhood of

lattice cells is arti�cially determined by the structure of the grid adopted; On the other

hand, cells move continuously rather than jump discretely in reality.

In contrast, the lattice-free approach frees the single cell representation from the lattice

grids, which enables continuous varying the shape, the size and the location etc of

single tumor cells. The lattice-free approach increases the model �delity in terms of

more precisely representing many sing cell properties which are believed to in�uence

and be in�uenced by tumor growth dynamics [59�61].

2.2.4 The Agent-based Method and Software Tools

ABM is a powerful technique for model design in computer-based simulations. On

the one hand, simulation is often utilized to investigate agent systems, for example

multi-agent systems (MAS) [62]. On the other hand, ABM has been widely used as

a standard model design method for a wide range of applications in computer-based

simulations [62�64].
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An agent is a computer system capable of autonomous action in its environment. Agents

can be thought as objects with strong notion of autonomy [65]. Normal objects of

systems encapsulate states and corresponding state-updating operation methods. In

contrast, an agent has the ability to actively sense the changes in its environment, to

deal with the perceived information and to make decision for its further actions (see

�gure 2.2). In a word, an agent is not only passively a�ected by its environment, but

also actively change the environment for its own preference.

Environment

Agent-A Agent-B

Perception Perception

Actions Actions

Interactions

Figure 2.2: Diagram illustrating agent-agent and agent-environment interactions.

Agent-based applications basically consist of a common environment and a set of agents

within it (see �gure 2.2). In an agent-based system, an agent interacts with other agents

(its neighbors) as well as its environment. Like a society, an agent-based system allows

agents to achieve collective goals via cooperations and coordinations, and to achieve

individual aims through competitions. ABM is very powerful for model description.

Agents of an agent-based system may share some properties and also can vary sig-

ni�cantly in some properties and behaviors. Besides, a complex agent can be further

decomposed into sub-agents too.

With such high �exibility and strong description capability, ABM has a wide range of

applications, which has stimulated the emergence of software environments or toolkits

to facilitate construction of agent-based models. Here, some of them are brie�y reviewed

from the perspective of the possible application in agent-based cancer modeling.

The software tools listed in table 2.1 are representative with respect to the way of

constructing an agent-based model. One may �nd more software tools for general

applications of agent-based modeling and simulation like FLAME or SWARM. However,
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Name Main features Ref.

Biocellion Biocellion works more as a framework specially emphasizing
on speeding up multicellular systems simulations by paral-
lelization using high performance computing (HPC) algo-
rithms. Interfaces are left for de�ning single cell properties
and cell behavior, such as cell sizes and shapes, cell growth,
division, death and movement, physical interactions and cell-
environment exchange of molecules. In addition, PDEs are
used for modeling the extracellular environment evolution,
where corresponding solvers are provided.

[40]

CellSys Individual tumor cells are treated as biophysically isotropic,
elastic and adhesive spheroids in three dimensions (circles in
two dimensions). Each spheroid is mapped to an agent un-
dergoing cell movement, division, physical interactions with
its ECM (extracellular matrix), neighbors and environment.
Di�usion and metabolism (consumption or production) of
nutrients, growth factors, metabolic products etc are mod-
eled by mathematical equations. Besides, CellSys allows dif-
ferent types of cells.

[66]

FLAME FLAME is a general framework for conducting agent-based
modeling and simulation. Agents are de�ned following
the concept of X-Machine, which is characterized by state,
state transition functions, and input and output messages.
FLAME is redesigned for being capable of handling larger-
scale systems by exploring several levels of parallelism.

[67]

SWARM SWARM models are hierarchically de�ned. Each SWARM
model is a swarm of multiple types of agents. A model is
a super agent, which consists of smaller agents. Besides,
agents interact with others by scheduling discrete events as
what is done in discrete event simulation (DES) [68].

[69]

Table 2.1: Software tools for agent-based modeling and simulation.

we are more interested in those tools that are particularly tailored for agent-based

cancer modeling like CellSys and Biocellion, since more general-purpose tools usually

ask for more programming endeavors for specialized applications. CellSys was initially

published right in the year (in 2011) when we started this project. We design and

implement a new software environment particularly for agent-based multi-scale cancer

modeling and simulation instead of using CellSys directly for the reasons: 1) we want

to explicitly model the dynamic changes of single cell morphology as well as its e�ects

on the development of tumors using lattice-free methods; 2) we want to explicitly

model the tumor cell motion driven by the mechanical interactions between cells and

their surroundings; 3) we want a software environment that its models can be reused

and extended easily for testing di�erent hypotheses. Unfortunately, CellSys doesn't

ful�ll these perspectives very well, especially model reuse. Biocellion is designed to
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take the advantages of high performance computers to speed up multicellular system

simulations, however, it has just been published recently. Furthermore, it doesn't

explicitly take cell morphology and cell topology into account.





Chapter 3

Introduction to Cancer

Development

This chapter starts with a brief introduction to the basic conceptions of tumors and

cancer as well as their relationship. Secondly, the development of a tumor is introduced

by highlighting several critical transformations during this process. Finally, we review

some important aspects of cancer cell biology that are particularly interesting to most

cancer modelers.

3.1 Tumors and Cancer

A tumor is a lump or a mass of tissue characterized by out-of-controlled cell division.

Tumor tissues are neoplastic, since they do not produce meaningful functionalities to

the host as what normal (or healthy) tissues do. Tumors, most likely staying localized

and being separated by a interface from the neighboring healthy tissues, are usually

considered to be benign. Benign tumors are normally harmless except those at criti-

cal host sites, for example, a benign brain tumor may cause functional disruptions to

neighboring nerves because of its physical constriction on them. In contrast, tumors,

consisting of cells capable of invading surrounding normal tissues and spreading to dis-

tant host sites, forming secondary tumors (cancer metastases) (see �gure 3.1) wherever

preferable, are thought to be malignant. A malignant tumor is fatal to the host because

of its uncontrolled growth and metastases, which cause functional failures to the in situ

as well as the secondary-tumor-colonized tissues or organs. Only malignant tumors can

be called cancer while benign ones cannot.

16
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Figure 3.1: Liver metastatic colon carcinomas (white). Colon carcinoma cells colo-
nize the liver and trigger several secondary tumors in it. Image adapted from Ref. [2]

Cancer is actually a general name of a group of diseases. By now, more than ten

general types of cancers have been discovered in human beings. A malignant tumor

is a cancer, whereas, not every cancer necessarily grows into a malignant tumor. For

example, leukemia is a kind of cancer that only causes an abnormal high number of

white blood cells in the blood stream. To avoid misunderstanding, we mean malignant

tumors when using the term cancer and vice versa in the rest of this thesis.

3.2 Multi-stages of Tumorigenesis

The development (the onset and the progression) of a cancer has to undergo several

critical transformations, which include, 1) the variation from healthy cells to abnor-

mal cells, 2) the tumor-driven growth of blood vessels (angiogenesis), and 3), the local

invasion and distant migration of tumor cells (tumor metastases, the malignant trans-

formation of tumors). In general, these series of transformations indicate increasing

degrees of malignancy of a tumor. Theoretically, stopping any of these transformations

may prevent the occurrence of a cancer.

The onset of a tumor is characterized by various types and degrees of gene lesions, which

transform normal cells to abnormal ones that deviate from the normal cell proliferation

routine to a certain extend. Because of this, cancer is widely accepted as a gene

disease [70, 71]. As a matter of fact, the starting point of almost all actual cancers

are not clear to us, since early stage tumors are small and without evident symptoms,

hence, they are rarely noticed in this stage, and most clinically detectable tumors

are of the size with about one hundred millions (108) cells. Investigations on cells of

mature tumors show that they have possessed some common capabilities, the hallmarks

of cancer cells [4, 54], such as losing some of the normal cell proliferative regulating

mechanisms and intentionally neglecting the apoptosis signals.
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Early stage tumors are avascular, which means no particular blood vessels exist for

them. Hence, nutrients like glucose (metabolic products) of cells are mainly transported

by molecular di�usion from (to) the surrounding normal tissues. An avascular solid

tumor normally can not grow too large. Although, its cell proliferation is out of control,

which theoretically enables them unlimited proliferative potential, many actual solid

tumors are found with inner necrosis (a type of cell death di�erent from apoptosis [72,

73]), which may be due to the ine�cient supply of energy-producing nutrients like

glucose and oxygen, since the availability of ATP may change the way of cell death

from apoptosis to necrosis [74]. When cell proliferation and cell death balance out each

other, the avascular tumor growth reaches a saturation [7, 75].

It seems that tumor cells are not �satis�ed�with the growth saturation. They try to �nd

ways to survive and to expend. The aberrant cell proliferation actually facilitates the

accumulation of further genetic damages and epigenetic variations. As a result, tumor

cells get more and more uncontrollable and aggressive during the tumor growth. In the

later stage of avascular tumor growth, tumor cells start to release some growth factors

(GFs) to promote the growth of blood vessels (angiogenesis). With the stimulus of

these GFs, blood vessels of normal tissues grow to tumor cells. By doing so, on the one

hand, a tumor can acquire its own blood vessels that of course can help its transport of

nutrients and metabolic products more e�ciently. On the other hand, some tumor cells

try to get rid of the bondage of the in situ tumor and to seek a new place of residence via

the blood circular system (the distant migration). Meanwhile, some tumor cells escape

from the in situ tissue and invade the neighboring normal tissues (local invasion).

Tumor cell local invasion and distant migration (tumor metastases) are the essential

and most critical transformations (malignant transformations) of a tumor. Before this

transformation, a tumor is actually still benign. However, the benign stage tumor of a

cancer is radically di�erent from the common benign tumors introduced in section 3.1,

since it is almost destined to cause a cancer sooner or later, while a common benign

tumor grows very slow and will be very likely keeping benign all its life-time. even it

also has a very low probability of malignant transformation.

Tumorigenesis a process can never be �nished over night but usually last for years or

even decades. It has been conjectured that the duration of the actual tumor growth

duration is always much shorter than the interval between the carcinogenic stimulus

and the clinical occurrence of the tumor [76]. Statistics on the cancer incidence rate of

di�erent ages show a sharp increase after certain age, which may be explained by the

long-term characteristic of tumorigenesis [2].
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3.3 Cancer Biology

Tumorigenesis is multi-factorial, however, most research of oncologists has concentrated

on genetic factors that contribute to the survival and proliferation of individual tumor

cells. Tumorigenesis is actually an extremely complicated process, involving complex

biochemical reactions as well as biomechanical interactions at multiple spatial-temporal

scales of the tumor world [4, 10, 54, 77] (see �gure 3.2). From the point of view of cancer

treatment, understanding these biochemical reactions and biomechanical interactions

may also help promote innovation of new cancer therapies.

Figure 3.2: Schematic illustration of the spatial-temporal scales involved in tumori-
genesis. Image adapted from Ref. [3]

3.3.1 The Randomness of Cancer Incidence

Since the revolutionary discovery of genes (proto-oncogenes) in normal avian genomes

that have the potential to cause a cancer [78], it has been getting more and more clear

that some mutations in certain genes, such as the activation of oncogenes like KRAS

or the deactivation of cancer-suppressor genes like the p53 gene, are essential to the

incidence of some cancers. Besides, genes, maintaining the genomic integrity of cells

and sustaining a normal stromal environment for cells, are also responsible for the

occurrence of cancers [79].

Mutations in genes may provide cells with new capabilities, however, most of these

abilities hardly facilitate the survival of a species in a constantly changing environ-

ment. Whereas, many new traits of tumor cells actually facilitate tumorigenesis. For

example, uncontrolled cell replication is a new ability for tumor cells, which helps the
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accumulation of both tumor cells population growth and further gene mutations in the

o�spring tumor cells. The former gives rise to the increase of tumor size and the later

may mount tumor cells further capabilities to survive and to spread.

Although, a variety of carcinogens have a high probability to cause various types of

gene mutations to mammalian cells, which may be responsible to few cases of cancer

incidence, most current human cancers are thought as an unlucky result of random hit

of gene lesions to cell genomes.[2].

For normal somatic cells, the gene mutation probability (or mutation rate) of a single

gene is very low (about 2.5 × 10−8 mutations per nucleotide site or 175 mutations

per diploid genome per generation [80]). Furthermore, only very small parts of human

genomes (about 3.5% [2]) are actually going to be expressed as genes (dominant genes),

and only certain genes (proto-oncogenes and tumor-suppressor genes) are particularly

relevant to human cancers. Hence, random gene mutations can only rarely hit the

cancer related genes. Take human breast and colorectal cancers as examples, most of

the identi�ed gene mutations are not harmful in either of the cases, and mutant genes

responsible for these two cancers are quite di�erent too [81].

Our body is equipped with various self-protecting mechanisms that normally prevent

us from developing cancers or other diseases. Cells are mounted with an elaborate

repair apparatus, which constantly monitors cell genomes and �x the damages in DNA

sequences as well as it can. Even if the self-repair procedure fails, most cells would

initialize a suicide programme that is part of the cell cycle controlling mechanisms.

For example, in the intestinal crypts of mouse, stem cells that have su�ered genetic

damages rapidly go into apoptosis, without halting their proliferation or attempting to

�x the damage[2]. Besides, our immune system is in charge of preventing the devel-

opment of various diseases by protecting against invading or infectious pathogens and

eliminate damaged cells. It is believed that it plays dichotomous roles of possibly both

antagonizing and enhancing tumor development and progression [82].

However, no protecting system can be infallible. These protecting mechanisms of cells

could make mistakes of but certainly not limited to: 1) catastrophic damages to cell

genomes that could possibly exceed the repair capacities of cells; 2) damages could hap-

pen to the genes related to the repair mechanisms themselves; 3) some gene mutations

could enable cells to disguise themselves to escape from the hunt of the immune system

agents.

All of these reasons leave the possibility of developing a tumor. The scenario could be,

1) a random mutation in a certain gene gives a normal cell an initial growth advantage

to replicate itself more times than usual; 2) then, another gene mutation might provide
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one of the survival o�spring of this cell with further reproductive advantages; 3) with

iterations of this process over many generations of cell division, a lot of gene mutations

can be accumulated in the survival o�spring cells. Though, most of them will die out

�nally, it is possible that one of the o�spring happens to accumulate such mutations in

certain critical genes that it becomes immortal.

3.3.2 The Cancer Stem Cell Theory

CSCs (Cancer Stem Cells) represent those special cancer cells that show specially the

stem-cell-like capabilities [83, 84]. The inspiration of this theory is the experimental

observation that only a minority subset of cells in many cancers have the capability to

induce new tumors in vivo and in vitro. The CSC hypothesis can be treated as a part of

the theory of cancer cell heterogeneity [83, 85] which generally declares that not all cells

within a tumor are equal and individual tumor cells show distinct traits from others,

for example it has been found that di�erent cells inherited from a same origin may have

very distinct invasive capabilities [86]. During the development of a tumor, genetic and

epigenetic changes are both accumulated [87, 88] in its cells. Heterogeneous types of

cells within one tumor is of no surprise considering the random hit of gene damages.

However, tumor heterogeneity shows surprisingly grouped characteristics, which can

never be explained by pure randomness. A pioneer work on tumor heterogeneity was

done by Gloria H. Heppner in 1984 [89]. In recent decades, cell lineage analysis enables

us to look into cell genes, which provides us an molecular level understanding of the

tumor cell heterogeneity.

Stem cells have two common but critical traits, namely the ability to self-renew and to

di�erentiate. Self-renewal means that at least one of the daughter cells of a stem cell

division still keeps its stem cell properties. Stem cell di�erentiation means the non-stem

daughter cell becomes mature cells building the organ within which they reside. Stem

cells are usually thought as the reservoir of mature cells of organs. Cell telomere is well-

known for marking the proliferative capacity of mammalian cells. It is shortened during

cell proliferation for normal cells, which regulates their the mitosis and apoptosis. The

telomerase activity, which maintains the length of cell telomeres, is very active, which

gives common stem cells inde�nite proliferative potential. The interesting thing is that

CSCs have been found an active telomerase activity like common stem cells.

The CSC theory has changed our view of tumorigenesis and cancer chemotherapy pro-

foundly [90]. With this theory, only the CSCs are proper to be called as tumorigenic

cells, since the other cells di�erentiated from CSCs have very de�nite proliferative po-

tential and will die out �nally in some days or weeks [83], even though, they may acquire
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some genetic and epigenetic mutations during this period of time. These di�erentiated

cells may be better called nontumorigenic cells, since it is CSCs that basically give

rise to the growth of a tumor tissue. CSCs population takes very small portion of the

overall cell population of a tumor, hence, the tumor tissue bulk basically consists of

these nontumorigenic cells, while the point is killing these cells instead of CSCs is not

able to eliminate cancers, which may explain the failures of many anti-cancer drugs,

which have successfully shrunk tumor size initially, however, eventually failed to cure

a cancer for gradually acquired drug resistance. CSCs are able to di�erentiate. This

means that they may adapt the cell proliferation according the drugs for survival, which

may explain the acquired drug resistance of tumor cells during cancer treatments with

drugs. In a word, therapies targeting CSCs would be very promising for curing cancer

completely.

Although, challenging voices come consistently from researchers observing incompatible

or even contradictory experimental results [91�99] since the born of CSC hypothesis,

more and more people increasingly accept it an important theory explaining tumorigen-

esis, since even more positive evidences have been obtained in extensive experiments of

various cancer cells lines. By now, CSCs have been identi�ed by monitoring some puta-

tive CSC markers, such as CD133 and CXCR4 [100, 101] or testing their tumor-inducing

capabilities, within a lot of cancers, including human brain tumors [102], breast can-

cer [103], head and neck squamous cell carcinoma (HNSCC) [104], lung cancer [105],

colorectal cancer [106, 107], pancreatic cancer [108], hepatocellular carcinoma [109],

melanomas [110], nasopharyngeal carcinoma [111] and etc.

3.3.3 Genotypes and Phenotypes of Cancer Cells

Genes and gene mutations are just part of the story of the tumorigenesis, since they

just characterize the genotype of individual cells. The actual phenotype of a tumor and

its cells is a joint result of cellular genes, cellular epigenetic traits and the in�uence of

the environment. The relationship among them is very interesting. Genotypes indicate

genes that may be expressed, the cellular environment a�ects which genes are to be

expressed and epigenetic traits regulate how genes are expressed.

Gene expression is the process through which protein molecules are synthesized accord-

ing to the genetic information encoded in cell genomes. The synthesized proteins are

the main cell-life regulators. First, proteins are essential building blocks of components

of cells and tissues; Second, most chemical reactions in intra- and extra-cellular vol-

ume can be performed only under the catalysis of various types of enzymes of proteins;

Third, proteins regulate (e.g. as promoters or inhibitors shown in �gure 3.3 for tumor
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cells) various biological processes of cells. An altered gene may result in a protein with

complete di�erent functions that vary the behavior of a cell more or less. Epigenetic

traits themselves are sheer consequences of varied gene expressions. Although epige-

netic traits are not caused by gene mutations, they can be inherited by the o�spring

cells.

Figure 3.3: Some regulators (cytokines) closely relevant to tumorigenesis. Image
adapted from Ref. [4]

Since a cell varies its behavior according to changes in the extracellular environment, it

must be able to sense the changes of the environment, to deal with the perceived signals

and �nally to decide its further actions accordingly. Research has reported that there

are some particular protein molecules residing on the cellular membranes, and they

function as receptors of information transmitted by the corresponding molecules in the

extracellular environment. The whole process that a cell receives, processes a signal,

and decides its further actions is referred as a signaling pathway in molecular cell biology

(see a schematic illustration of a cell signaling pathway shown in �gure 3.4). Lots of

cell signaling pathways that have been reported particularly up- or down-regulated

(activated or deactivated) in human tumor cells [54, 112�117].

Tumor phenotypes vary signi�cantly compared with that of normal tissues. Normal

tissue cells are designated to cooperate with each other to perform certain functions.

The cooperation is performed via cell-cell signal transduction. The fate of a normal

cell, to proliferate, to pause proliferation, to di�erentiate, to die (apoptosis) etc, are not

actually determined by the cell itself but its neighbors or more speci�cally the whole

tissue or the organs [118, 119]. Cell-cell cooperations is the basis of the biological

homeostasis of a normal tissue or organ, which is essential for them to perform normal
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Figure 3.4: Schematic illustration of the general steps of a cell signaling pathway.
Particularly, decision making is basically to determine which genes are to be expressed.

functions. However, tumor cells are found lost partially or fully these capabilities [118].

Their neoplastic growth results in a multicellular aggregate. However, this does not

mean that tumor cells do not cooperate at all, since at least tumor angiogenesis indicates

that they can work together for the survival of themselves.

3.3.4 The Aberrant Cancer Cell Proliferation

The cell proliferation is a process, through which a mother cell grow and divide into

two daughter cells. The daughter cells can further divide by repeating basically the

same proliferation programme as their mother cells do. Hence, the cell proliferation

process is termed a cell cycle.

The normal cell cycle is generally divided into two phases, the interphase and mitosis.

The interphase can be further divided into sub-phases, which are the G1 phase (Gap-

one), the S phase (Synthesize) and the M phase (Mitosis). Figure 3.5 shows an entire

cell cycle. A cell cycle starts from the G1 phase. During which, it grows larger nearly

doubling its original volume and prepares materials for substance synthesis in the next

phase, the S phase. During this phase, a cell mainly synthesizes various proteins and

doubles tis DNAs. After this phase, it enters the G2 (Gap-two) phase, during which

it grows to the size and synthesizes substances for cell division. Following this phase,

the cell enters the M phase, through which it �nally divides into two. As it is shown

in this �gure, there is a special phase, G0 phase, which stands for a cell cycle pause.

For most somatic cells, they rest at this state until receiving a command to perform

cell proliferation, which means they are alive and able to resume cell cycle when it is

needed.
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Interphase

Mitosis

Figure 3.5: Diagram illustrating the phases of an entire cell division cycle. G1, S,
G2 and M separately represent the gap-1, the synthesis, the gap-2 and the mitosis
phases. G0 stands for the state that cell cycle is suspended. Healthy cells temporarily
rest in the G0 state and can be waken up to proliferate again when it is necessary.
Tumor cells keep this ability, however, G0 state tumor cells can undergo a special
death programme, tumor necrosis, for some reasons not fully understood. Necrotic

tumor cells are dead, hence, they can't resume cell cycle anymore.

The cell cycle of normal cells is well regulated by the so-called cell cycle control mech-

anisms [120, 121]. In each phase of a cell cycle, there is a so-called checkpoint at which

cell cycle correctness is checked (see �gure 3.6). At the end of the G1 phase, a cell checks

(the G1-phase checkpoint) whether there are damages in its DNA and determines to

proceed its cell cycle or suspend it to �x the errors. If everything is correct, it leaves the

phase by entering the S phase. During the S phase, it needs to check the correctness

(the S-phase checkpoint) of the synthesized DNA. Similarly, if an error is found, its

cycle control mechanisms perform the according �xing programme. At the end of the

G2 phase, the cell readies itself for mitosis by �nally checking whether all DNAs has

been correctly replicated (the G2-phase checkpoint). If the self-�xing programme fails

to �x the cell cycle errors, the cell usually initializes a suicide programme.

The control mechanisms decide cell division and cell fate. Normal cells can divide

for only a limited number of times before entering the programmed death procedure,

apoptosis, even no error occurs. Besides, the control mechanisms only allow normal

cells to divide when it is needed, for example, to compensate the loss of cell death or

other reasons like a lesion to a tissue. Under the regulation of these mechanisms, the

number of cells of a normal tissue keeps dynamically balanced, which is important for

maintaining the biological homeostasis of the tissue.

Though much is known about the cell cycle process and its regulating mechanisms for

normal cells, there is still much to be uncovered for the variations of cell cycle of cancer

cells in regards to the development of cancers, since it is found that tumor cells lost

some of the normal cell cycle control mechanisms because of various forms of genetic
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Figure 3.6: Diagram illustrating the phases of an entire cell cycle and the corre-
sponding checkpoints. Checkpoints impose cell cycle control to guarantee that a cell
has correctly completed all the requisite steps of one phase before entering the next

one.

lesions [70], which makes their proliferation aberrant from the normal procedures. In

other words, the tumor cell cycle is out of control, which is treated as one of the most

important hallmarks of tumor cells [4, 54]. Out-of-control cell cycle is obviously a

very general description of the traits of the cancer cell cycle. It would be more clear

to list the speci�c cell cycle behavior manifested by tumor cells. The G1 phase is

particularly interesting to cancer researchers, since cancer cells are found still sensitive

to various stimulus in this phase [2] and mistakes in it may lead to cancer [121]. Some

cell cycle checkpoints may be defective hence be skipped by tumor cells [122]. Some

tumor cells can avoid entering the apoptosis programme of normal cells and therefore

they obtain inde�nite proliferative potential. The famous �nding on the normal cell

cycle times control is that cell cycle shortens the length of cell telomeres, which makes

the proliferated somatic cells gradually lose the potential to proliferate and �nally die

(apoptosis) [123]. For these cells, an enzyme, telomerase, whose activity maintains the

length of cell telomeres, is repressed with low activities, while the activity telomerase

is highly activated in many cells of advanced tumors [124�126], which is similar to that

of immortal cells [127]. And this observation provides a molecular level explanation to

the aberrant tumor cell cycle (immortality of CSCs).

3.3.5 Cancer Cell Metabolism

The avascular tumor growth usually reach a growth saturation, which means mainly

that the population (or the tumor size) stays relatively stable after a certain stage of
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its progression. Figure 3.7 shows an experimental tumor (volume) growth curve with

saturation. As one can see from the �gure, tumors initially grow exponentially, then

the growth slows down and �nally reach a a platea.

Figure 3.7: A tumor growth curve replenishing several tumor cell lines. The red
diamond and the green triangle represent prostate and breast tumors from patients.

Image adapted from Ref. [5].

Avascular tumors in growth saturation often show layered structures with cells of dis-

tinct proliferating states. As it is shown in �gure 3.8, a core of necrotic cells resides

inside a tumor, surrounding it is a rim of quiescent cells (in the G0 phase), which is

further covered by an out layer of actively proliferating cells.

Figure 3.8: Diagram illustrating the three-layer structure of solid tumors consisting
of the necrotic core (N) of dead cells, the quiescent rim (Q) of resting cells and the
proliferating front layer (P) of actively growing and dividing cells. The outermost
layer represents the healthy tissue. For avascular tumors, nutrients can be merely
transported by molecular di�usion from the healthy tissue. So does the tumor cell
metabolic products which are transported from the interior to the outer space of

tumors.

There are a lot of possible reasons responsible for this phenomenon. The most popular

one is the ine�cient supply of nutrients for lack of tumor-own blood vessels. Cell be-

havior like growth, proliferation, di�erentiation, death, motion etc consumes a variety

of biochemical molecules as nutrients for synthesizing new cellular components (pro-

teins, DNA and etc) and producing energy. Driven by a variety of overactive growth
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factors, tumor cells show much faster cell proliferation rate compared with that of the

normal [128]. One of the consequences of this is nutrient depletion in the interior of a

tumor, for example, inner hypoxia (depletion of oxygen) is commonly detected in most

solid tumors. One possible explanation to this is that vascular supply of oxygen is in-

su�cient to sustain the fast proliferation of tumor cells, since there is no special blood

vessel for early tumor tissues. To get understand this phenomenon, understanding the

energy metabolism of tumor cells has been a hot direction in cancer research.

The energy metabolism of tumor cells have been found varies signi�cantly compared

with that of normal cells [129�131]. This trait of tumor cells was �rst reported by

Otto Warburg and named as the Warburg e�ect [129]. Normal cells under su�cient

oxygen experience aerobic respiration oxygen, which breaks down glucose into carbon

dioxide and water via the biochemical reaction 3.1 (see �gure 3.9 (A)). Under the con-

dition of insu�cient oxygen, however, normal cells are limited to using only glycolysis

(anaerobic respiration), which breaks down glucose into lactate through the biochemical

reaction 3.2 (see �gure 3.9 (B)). The aerobic respiration is much more energy production

e�cient than the anaerobic respiration, since it produce 36 ATP molecules consuming

one glucose molecule while glycolysis only produces 2 ATP molecules in comparison

(see �gure 3.9). The point is that Warburg discovered that tumor cells produce energy

relying largely on glycolysis even when they are exposed to adequate oxygen. This

unusual energy metabolism of tumor cells seems to be contradictory to the reality that

fast tumor growth needs more energy. However, tumor cells have found another way

to partially compensate the ine�ciency of energy production by consuming glucose in

an extremely high rate.

C6H12O6 + 6O2 − > 6H2O + 6CO2 (3.1)

C6H12O6 − > 2C3H6O3 (3.2)

3.3.6 Cancer Cell Biophysics and Biomechanics

The development of a tumor involves a variety of changes of biomechanical and biophys-

ical properties of tumor cells, e.g. tumor cell are more sti�er [132] that normal cells,

which is closed related to the mechanical interactions between tumor cells and their

surroundings, such as neighboring cells, the ECM and the extracellular �uid (ECF).

Furthermore, this alternations are found in turn may signi�cantly in�uence complex

physiology of tumors and tumor cells, such as the survival, proliferation, invasion, mi-

gration tumor cells and tumor metastases. Besides, measurements of cell biophysical
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Figure 3.9: Metabolism of glucose in normal and cancer cells: aerobic versus anaero-
bic respiration. (A) With adequate oxygen, glucose is broken down into carbon dioxide
in healthy cells via aerobic respiration, generating as many as 36 ATP molecules per
glucose molecule. (B) In cancer cells and healthy cells short of oxygen, glucose is
broken down into the lactate via anaerobic respiration, generating 2 ATP molecules

per glucose molecule. Image adapted from Ref. [2]

property variances can be used as indicators of the cell biological state to identify types

and stages of a tumor [2, 132].

In vitro, cultivated normal cells need to anchor to the solid substrate to survive and grow

(anchorage dependence), and they stop proliferating when they get in contact (contact

inhibition). These control mechanisms are essential to normal tissues for maintaining

their biological homeostasis, which is essential for a normal tissue to perform its func-

tions. However, tumor cells show a much stronger survival and proliferation ability

compared with that of normal cells. They divide much faster and can gather together

forming up a lump of multi-layer cells on culture dishes, that means contact inhibition

of normal cells does not work for them. It seems that they have much stronger willing
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to gather together, however, their gathering is obvious not for performing a speci�cally

function meaningful to the host but rather mostly harmful.

Some proteins synthesized by cells are released into the extracellular environment. Part

of these proteins assemble and form a network structure, the ECM, which builds connec-

tions among cells. Some other part of theses proteins reside on the cellular membranes

functioning as receptors, like cell signaling pathway receptors, that bind with corre-

sponding ligands (another type of proteins) on the neighboring cell membrane forming

up connections between cells. Cell-cell and cell-ECM connections help form and sustain

complex structures of tissues. Tumor cell transformation involves signi�cant variances

in the ECM. For example, they are found lost the ability to assemble a functional tissue

structure as normal cells do. This variances are thought to facilitate tumor cell local

invasion and metastases [10, 16, 17, 133].

Some other types of proteins assemble in inner cellular space creating polymeric biomolecules,

the cytoskeleton. The cytoskeleton contains several di�erent forms including actin mi-

cro�laments, intermediate �laments, and microtubules [134]. In eucaryotic cells, they

generally work together connecting the cellular membrane and the nucleolus to sustain

the rigidity and morphology of single cells [10, 134, 135]. Besides, in concert with acces-

sory proteins, the cytoskeleton also plays an important role in some cellular processes,

such as mechanotransduction, mitosis and locomotion [2, 10, 136].

Since tissue cells are undergoing proliferating rather than in a equilibrium state, they

change and are changed by the extracellular environment biophysically. During this pro-

cess, the degree of malignancy of cells generally increase, which facilitate survival and

progression of tumor cells. Cell-cell contact and the extracellular environment factors

can a�ect the expression and distribution of some integrin molecules [137]. A typical

alteration of tumor cells is that their cellular membranes become less rigid than that

of normal cells, which allows them to undergo easier shape deformation [138]. Besides,

strong competition for space has been detected between cells in tumor tissues [128],

which could be caused by enhanced cell proliferation. This space competition indicates

high stress tension among cells in tumor tissues, and it has been found that stress play

a important role in determining the growth of tumors [139�142].





Chapter 4

The Design and Implementation of

TUGME

In this chapter, the design and implementation of the software environment TUGME

(TUmor Growth Modeling Environment) are introduced in details. In the �rst section,

we summarize the general perspectives of this software environment. Then, basic design

principles for ful�lling the goals of TUGME are highlighted in the second section.

Thirdly and most importantly, modules of TUGME are separately introduced in details.

Finally, key steps associated with conducting a simulation with TUGME are brie�y

introduced.

Jörg Eisele as the co-developer of this project has contributed to the design and imple-

mentation of TUGME for his master study. Speci�cally, he introduced the C++ traits

features to our project, set up DUNE and implemented the module Biomechanics of

TUMGE.

4.1 General Perspectives of TUGME

General Perspectives of TUGME include:

� TUGME allows multiple spatial-temporal scales modeling and simulation of the

tumor growth process. As it has been emphasized several times in the early

chapters, tumor growth is a multiple spatial-temporal scale problem. TUGME

is expected to �ll the gaps between some certain spatial-temporal scales. The

spatial scale covers from micrometers to centimeters, and the time scale ranges

from seconds to months.

31
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� Tumor models of TUGME are radically course-grained. Though agent-based

method �exibly allows one to create more �ne-grained tumor models at sub-

cellular scales, modeling mature tumors using these models is very challenging

for the explosive increase of the computational cost of model solving. Specially,

TUGME is designed to facilitate tumor growth modeling and simulation from the

single cell level to a multicellular tumor tissue. Hence, sub-cellular details aren't

explicitly considered.

� TUGME is expected to be a tumor growth modeling and simulation framework.

Its most important feature is the �exibility for easy model reuse and extension.

This feature is highly emphasized during its design and implementation.

4.2 Basic Design Principles of TUGME

Considering the complexity of designing and implementing a software environment like

TUGME, it isn't wise to be too ambitious in the beginning but rather to split a complex

problem into smaller ones that can be addressed one after another. Flexibility for easy

model reuse and extension is the mostly emphasized feature of TUGME. To do so,

several important techniques are adopted during the design and implementation of

TUGME.

First of all, data structures and algorithms are separated. Doing so overall is of great

help from the perspective of �exibility, however, it may need to sacri�ce memory e�-

ciency and performance of the code. An algorithm may be inherently coupled with a

speci�c type of data structure to perform its best e�ciency. However, it is very common

that large data sets are shared by di�erent algorithms, whereas, no one data structure

can best meet the requirements of all of them. For example, the cell-cell neighboring

information is a large data set that is needed by several modules of TUGME. In this

case, separating data structures and algorithms makes the maintaining of the code

easier. In fact, this technique is very commonly applied in large software projects in

computer science.

Secondly, functionalities are split into modules (modularization). Modularization is

also very commonly used in software development in computer science. Several very

basic rules are important to follow for modularization. First, each module usually im-

plements one speci�c functionality and a complex module can be further divided into

sub-modules, which makes it easier to design, implement and maintain. Second, de-

pendences between modules are usually minimized so that modi�cations to one module

doesn't ask for modi�cations to the others related.
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Thirdly, dynamic and static polymorphisms are widely used. In TUGME, complex

functionalities are decomposed into functions and a hierarchic structure of C++ classes

is introduced with multi-layer abstraction, which enables �exibility of di�erent imple-

mentations inheriting from di�erent super classes. The trick is known as dynamic

polymorphism in software development. It is �exible, however, not very e�cient with

respect to program execution. In contract, static polymorphism (generic programming)

is more e�cient since the template arguments are speci�ed at compiling time instead

of running time. However, it makes the code more di�cult to understand and pushes

the users to specify the template arguments explicitly.

Finally, C++ traits is widely applied associated with generic programming to provide

type information of the �elds of C++ classes. With traits, one doesn't need to know the

actual type (C++ int, double, bool etc.) of a �eld of a C++ class, since it is wrapped

and normally termed fieldNameType, which helps keep the consistence of �eld types.

4.3 Modules of TUGME

TUGME currently consists of �ve main modules:

Cells de�nes the interface and implementation of single cell agents.

Morphology&topology provides the interface for calculating the morphological and

topological information of cells.

Biomechanics models the cell-cell and cell-environment mechanical interactions as well

as biomechanics-driven cell motion.

Biochemicals models the transport and metabolism of biochemical molecules.

Cell_cycle models cell proliferation and dynamics associated.

Generally, each module of TUGME models a separate aspect of tumor tissues or cells.

In the next section, these modules are to be introduced in details one by one.

4.3.1 Brief Introduction to DUNE

TUGME is implemented using the computer programming language C++. It is ba-

sically built on a software tool named DUNE (the Distributed and Uni�ed Numerics

Environment) [143]. We begin this section with a brief introduction to DUNE.
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DUNE is a C++ software tool for solving partial di�erential equations (PDEs) with

grid-based methods. DUNE is highly modularized. Its modules used by TUGME

include:

� dune-common contains implementations of basic data structure types, basic func-

tionalities, some constants etc, on which the other modules are built based. Hence,

most functions of this module normally aren't directly called by users.

� dune-geometry is a module mainly for coordinate mapping between local (mapped)

and global (physical) coordinates.

� dune-grid contains implementations of a variety of grids, structured, unstructured,

conforming, non-conforming, periodic boundary grids etc. A DUNE grid is a

container of entities, which are constructed recursively from low to high levels.

Iterators are provided for accessing but not storing the entities at di�erent levels,

hence, random accessing is basically impossible in most cases. In addition, data

can be attached to grids and writers are provided for data output, for example,

VTK format output �les are supported and can be visualized using VTK and

Paraview [144].

� dune-istl is the abbreviation of the Iterative Solver Template Library. This

module provides implementations of block vectors, block matrix, sparse matrix

etc. More importantly, many linear system solvers, such as the preconditioned

BiCGStab (stabilized bi-conjugate gradient method), the preconditioned CG (the

conjugate gradient method), superLU, are implemented or integrated in it.

� dune-localfunctions provides a separate library of shape functions that can be

reused by di�erent FEM implementations. Specially, general C++ interfaces of

shape functions are contained.

� dune-pdelab provides discretization schemes and solvers for PDE problems based

on DUNE. This module is built based on the modules introduced above of DUNE.

Hence, it calls the functions of these modules directly.

DUNE has other modules, for example, dune-fem [145], however, TUGME currently

only uses the modules introduced above. In the next sections, where speci�c functional-

ities of DUNE are used, we will introduce more details about how the involved modules

of DUNE are adopted in TUGME.

http://www.vtk.org/
http://www.paraview.org/


Chapter 4. The Design and Implementation of TUGME 35

4.3.2 Cell Agents: Cell Types and States

In TUGME, each single cell is modeled as an individual agent, which is characterized

by a set of variables and the corresponding state-updating methods.

To facilitate model reuse in TUGME, the agent model of single cells is split into multiple

levels of C++ classes, which indicates di�erent degrees of abstraction of cell models.

The data members of cell agents basically mark the state of a cell or distinguish it

from others. Some data members are shared by di�erent models, while some others are

model-dependent. A cell model at a higher abstraction level holds data members shared

by the lower level ones, which is realized via C++ class inheritance. For example, cell

position (coordinate) is a common state variable for all cell models in TUGME, while

the variable (isCSC), distinguishing CSCs from common tumor cells, is necessary only

by cell models considering CSC features. Hence, coordinate is a member of the cell

model at the highest abstraction level, while isCSC is a member of the cell models at

a lower abstraction level.

In TUGME, cell is the C++ class of the agent model of single cells at the highest

abstraction level, as it is shown in �gure 4.1. Currently, it has these data members

listed in table 4.1. The UUID, as it is named, is to provide an identi�er that uniquely

marks each cell universally, which is left for parallel simulations. The UID is a local

unique identi�er which can only guarantee the uniqueness in sequential simulations.

As many agent-based tumor models do [60, 61, 146�148], each tumor cell is treated

as a sphere in the absence of biomechanical stimuli in TUGME, where the sphere

is characterized by its center of mass (coordinate) and its radius. In addition, cell

volume is monitored during cell growth and division. Obviously, the volume of a cell

with no shape deformation is its spherical volume, while its actual volume varies for

deformation on the cellular membrane and cell growth.

Field names Data types

UUID BOOST_UUID

UID STT::UIDType

coordinate STT::coordinate3DType

radius BTT::NumberType

celltype cellType: healthy or tumor

Table 4.1: Data members of the cell agent class (cell) in TUGME. STT and BTT are
its template arguments. BTT represents the basicTraitsType, where the very funda-
mental data types are declared. STT stands for superTraitsType, which dynamically
integrates all traits of the C++ classes of a tumor model in TUGME. UIDType is
actually a C++ unsigned long int type. coordinate3DType is a triple of numbers

of NumberType, and NumberType is the C++ double type.
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Figure 4.1: The hierarchical structure of the C++ classes of agent models of sin-
gle cells. All cell agent classes in TUGME have to inherit from the basic class cell
directly (e.g., voroCell and xCell) or indirectly (e.g., voroStemCell). Although
C++ allows multiple inheritance, for example, zCell in this �gure, this isn't allowed
in TUGME, since it can be seen clearly from this �gure that zCell inherits cell

repeatedly from both voroCell and xCell. CSCellProperties de�nes the CSC fea-
tures. It is separated from voroStemCell for the possibility that one needs to model
CSC properties without considering the morphology and topology of tumor cells.
xCell, yCell and zCell don't exist actually, they are just general representations of

possible cell agent classes that may be implemented in the future.

Since cell is at the highest abstraction level, all other cell agent classes have to inherit

from it in TUGME. Currently, there are two cell agent classes actually provided, namely

voroCell and voroStemCell as it is shown in �gure 4.1, both inheriting from cell

directly or indirectly. One of the basic assumptions of voroCell is to represent a

multicellular tumor tissue using a 3D radical Voronoi tessellation. This assumption is

based on an observation of a striking similarity in shape between the 3D radical Voronoi

tessellation cells and some real tissue cells as it is shown in �gure 4.2. As a matter of

fact, Voronoi tessellations have been used in the topological analysis in cell biology [149�

151], epithelial tissue renewal [152] as well as cancer modeling [47, 148, 153, 154].

Figure 4.3 is a brief version of voroCell. For complex data members, for example a

C++ vector, �getAsRefXXX()� methods are provided for data access. There are actu-

ally two overloaded methods for each data member. One of them returns a reference to

the corresponding data member with full modi�cation authority. This design actually

breaks the information hidden rule of object-oriented programming (OOP). The un-

derlying idea is that calling this type of methods in the cases when data modi�cation

is necessary can avoid copying larger data sets, which can be very time-consuming.

For example, copying a C++ vector with a large number of elements. In the case,

when one only needs to access the data without modi�cations, another type of methods
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Figure 4.2: The shape similarity between 3D radical Voronoi cells and human kidney
epithelial cells. The �gure on the left is a section cutting through a 3D radical Voronoi
tessellation, where the convex polygon of green edges is a Voronoi cell. The �gure on
the right is an image of Madin-Darby canine kidney (MDCK) epithelial tissue cells
obtained with confocal microscopy adopted from reference [6]. The MDCK epithelial

tissue cell shows the polyhedron-like shape.

should be called to get a constant reference to the target data. Theoretically, modular-

ization asks for modules interacting with each other only through interfaces. Here, the

agent class is a special module because it basically only stores single cell information,

while all the functionalities of tumor cells are modeled in other modules (see �gure 4.3)

that inevitably need to access this module for the the formation of single cells. Obvi-

ously, this situation is due to modularization, and it can be avoided by integrating the

functionalities into the cell agent class. However, doing so would de�nitely result in an

extremely complex cell agent class which is much more di�cult to maintain than the

current one. The even worse thing is that doing so would almost lose all the �exibility

of modularization.

Figure 4.3: The Voronoi cell agent class voroCell.



Chapter 4. The Design and Implementation of TUGME 38

In order to distinguish between CSCs and common tumor cells, CSCellProperties

is introduced. Inheriting from it, the CSC features can be modeled, for example,

voroStemCell in �gure 4.1. In CSCellProperties, CSCs are assumed to have an

inde�nite proliferative potential, and they di�erentiate with a certain probability during

their proliferation, which is modeled by setting at least one of the daughter cells of a

CSC to be still a CSC. In contrast, the proliferative potential of a common tumor cell

is very limited. If a common tumor cell is the daughter of a CSC, it is endued with the

highest proliferative potential, and the proliferation potential reduces by one after each

cell division. When using up its proliferative potential, a common tumor cell undergoes

apoptosis. Besides, the daughter cells of a common tumor cell are currently assumed

to be only common tumor cells, since we assume that common tumor cells can not

dedi�erentiate into CSCs.

Beside the cell agent class, a C++ class named systemState is introduced in TUGME

as a counterpart to the multicellular tumor system. This class basically maintains all

the state information of the whole tumor system and the settings of simulations. First

of all, all the objects of cell agents are stored in this class. Secondly, the computational

domain boundary of the simulated tumor system and the boundary condition type are

stored here too. Finally, the class also keeps part of the simulation log. states (data

structure type: vector<cells>) is used to store the objects of cell agents. Since vector

can be randomly accessed by its index which is treated as a temporary identi�er (TID)

of tumor cells. It is temporary because the position of the object of a tumor cell may

be changed for inserting newly born and deleting dead ones.

By now, we have mentioned three di�erent identi�ers, including the UUID, the UID and

the TID. This may be confusing. First, the UUID and the UID have basically the same

functionality but for di�erent situations. Speci�cally, the UID is to uniquely mark a

cell in sequential simulations, while the UUID is for parallel and distributed simulations.

Second, the TID is actually the index number indicating the position where the object

of a tumor cell agent is stored in states. The TID instead of the UID is currently used

to access the object of a cell agent when it is known. We strongly suggest to use the

TID whenever it is known, since accessing an object of a cell agent using either the UID

or the UUID instead of the TID is search-dependent, which isn't time e�cient (O(N))

compared with that of using the TID (O(1)). Since the parallel version of this project

is still in development, the UUID isn't used in current sequential simulations.

We use the C++ vector instead of other data structures, like the C++ map (the map

or the hash_map) or the list, because of its high access e�ciency. During the running

of simulations, the cell agent object is accessed very frequently both sequentially and

randomly. One case is that a cell needs to know the state information of its neighbors
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for deciding its next-step actions. The other case is that a newly generated cell needs to

be added to the system. And the third case is that dead cells need to be removed from

the system. The list is suited to inserting or deleting elements at random positions,

while it has to be accessed sequentially. The map can be accessed randomly by its keys,

however, its accessing (inserting and deleting) e�ciency depends largely on the hash

function of the key. Besides, for each single element, the vector is the most memory

e�cient, since each of its element only needs the memory for the data of the element

itself, while an element of the map needs extra memory for its key and an element of the

list needs extra memory for its pointers. However, the vector needs to preallocate

space (the vector capacity) for its elements, hence, extra memory space is required

beyond what is actually needed. And when the capacity of the vector is depleted,

reallocating space is needed. Theoretically, reallocating memory could happen at any

time when an element is added, which can be expensive for the vector with a large

number of elements. However, the default mechanism of C++ actually avoids doing so

too frequently.

Inserting an element to the vector is restricted only to its end (push_back()), since

the cost of doing so is constant O(1). Deleting (erase()) an element from it normally

needs to shift the elements after the given element, whose average cost is O(n). The

exception is to delete the last element (pop_back()), whose average cost is also O(1).

In order to reduce the cost of deleting some randomly locating elements from states,

a tricky algorithm is developed. The basic idea is to avoid deleting an element locating

within (not at the end of) states by element replacement to take the advantage of the

constant cost of deleting the last element of the vector. As it is shown in �gure 4.4,

the to be deleted element is replaced by the last element that should not be deleted.

Figure 4.4: Diagram illustrating the basic idea of avoiding element shift when re-
moving an element from a C++ vector by element replacement.

The trick is put forward by the co-developer, Jörg Eisele, of this project. It is extended
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by taking into account the deleting operations of dead cells and inserting of newly born

cells together in order to further reduce the deleting and inserting operations. The

pseudo-code of the �nal algorithm is shown in �gure 4.5.

Figure 4.5: Pseudo-code showing the algorithm of adding and deleting elements
from the C++ vector storing the single cell agents. V1 and V2 stores the agents of

existing and newly generated cells separately.

The overhead introduced by this algorithm comes from element replacement. Theo-

retically, all information of an element should be copied from the replacing cell to the

one to be replaced. However, transient information, e.g. the Voronoi information that

has to be recalculated in every simulation step, doesn't need to copy. Furthermore,

copying this kind of information may be actually very time-consuming. To avoid this

overhead, we introduce a speci�c method named copyCellInfo() that only copies the

useful single cell information. Since, users may introduce new data members to sin-

gle cell agent models, it is their responsibility to decide whether the newly introduced

variables should be actually copied or not by rewriting the copyCellInfo() method.

The time cost for inserting and deleting some elements from the C++ vector, list

and map has been tested in order to see more precisely their performance di�erences.
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Figure 4.6: The performance test of three di�erent C++ standard data structures,
namely the vector, the list and the map. Two operations are tested, which are
sequential inserting and random deleting. For the vector and the list, inserting
is done only to the end in stead of to a random position, since the stored position
of cell agent object in vector doesn't matter in TUGME. Theoretically, the cost of
inserting an element to any position of the list would be no di�erence, however, it
varies signi�cantly for the vector (O(1) versus O(n) averagely, where n is the size of
the vector). The upper left panel shows the CPU time to add certain numbers, 103,
104, 105 and 106, of elements to the vector, the list and the map. The rest three
panels (the upper right, the lower left, and the lower right) show the CPU time of
randomly deleting di�erent numbers, 0.1%, 1% and 5%, of elements from di�erent size,
103, 104, 105 and 106, of these data structures. vector_1 and vector_2 separately
represent our optimized deleting method and the standard C++ deleting mechanism.

Results are shown in �gure 4.6. As it is shown in this �gure, the algorithm proposed

by us signi�cantly reduces the CPU time for randomly deleting elements from the

vector compared with the default deleting mechanism of C++. The highest speed-up

between them is about 104 (see the lower right panel of this �gure). Obviously, the

more elements to be deleted, the larger the speed-up will be. Though, the optimized

method needs a little bit longer CPU time compared with that of the list for random

deletion operations, whereas, it outperforms the map. In a word, our optimized method

allows the vector a performance of random deletion similar to the list and the map,

which de�nitely helps improve the simulation e�ciency of TUGME.
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4.3.3 Cell Morphology and Topology: Cell Shape Deformation and

Neighborhood

As it has bee mentioned in section 4.3.2, the 3D radical Voronoi tessellation (a type

of weighed Voronoi tessellations) is used to represent the multicellular tumor tissue.

Speci�cally, each convex polyhedral Voronoi cell mimics a tumor cell in terms of tumor

cell shape (the cell morphology) and the neighboring relationship with other cells (the

cell topology).

4.3.3.1 Introduction to Voronoi Tessellations

For a given set of points P in a space S, a common Voronoi tessellation is de�ned as a

partition that divides the space S into many connecting but non-overlapping sub-spaces

(subSi, S =
⋃N−1
i=0 {subSi}, N is the number of points in P , see a 2D example shown in

�gure 4.7) according to the neighboring relationship of the given points. The common

Voronoi tessellation can be described theoretically by equation 4.1, where ps stands for

a single point within the sub-space subSi, pi and pj are points from the point set P .

As �gure 4.7 shows, equation 4.1 de�nes an area in two dimensions (a volume in three

dimensions). Any point ps within subSi is closer to the point pi than to any other

points in P .

d(ps, pi) 5 d(ps, pj), i ∈ N, ∀j ∈ N & j 6= i, for ∀ps ∈ subSi (4.1)

Figure 4.7: Image illustrating a 2D common Voronoi tessellation. White dots stand
for the position of the Voronoi cell (the spherical center of tumor spheres in three
dimensions). Convex polygons bounded by green line segments represent Voronoi
cells (convex polyhedra in three dimensions). The green line segment (edges of poly-
gons) stands for the contact interface between two directly neighboring cells. In three
dimensions, these contact interfaces are replaced by convex polygonal areas. A 3D
radical Voronoi tessellation with two cells can be seen in �gure D.1 in appendix E of

this thesis.
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The radical Voronoi tessellation is one type of the so-called weighted Vovonoi tessella-

tions, since the interface between two neighboring cells is weighted by their radii. One

3D scenario is that each point in the point set P represents the mass center of a tumor

cell sphere with the radius R. Equation 4.1 is modi�ed into equation 4.2 in order to

describe the radical Voronoi tessellation, where the new introduced terms Ri and Rj

stand for the radii of two neighboring cells. Figure 4.8 illustrates a single common

Voronoi polygonal cell (on the left) and a radical Voronoi cell (on the right) in two

dimensions. As it is shown in this �gure: 1) both common and radical Voronoi cells are

convex polygons; 2) edges of radical Voronoi ploygons are shifted from the cells with a

large radius to the ones with a small radius compared with that of the common Voronoi

polygons. One can easily understand this from their theoretical descriptions which are

equations 4.1 and 4.2,

d2(ds, pi)−R2
i 5 d2(ds, pj)−R2

j , i ∈ N, ∀j ∈ N & j 6= i, for ∀s ∈ subSi (4.2)

Figure 4.8: Diagrams comparatively illustrating a single polygonal Voronoi cell of
the common and radical Voronoi tessellation in two dimensions. The green areas
bounded by solid red line segments represent the Voronoi cell and the dashed yellow
line segments indicate the neighborhood between cells. Blue circles indicate the de-
fault spherical periphery of single cells. For the common Voronoi cell (on the left),
the solid red line segments and its corresponding dashed yellow line segments equally
bisect each other perpendicularly. In contrast, for the radical Voronoi cells (on the
right), solid red line segments have been shifted towards the smaller radius cells though
they are still perpendicular to the dashed yellow line segments and equally bisected

by them.

Another possibility for the weighted Voronoi tessellation could be theoretically de-

scribed by equation 4.3, which isn't called radical Voronoi tessellations anymore, since

it produces polygons of curved edges in two dimensions or curved surfaces in three

dimensions for neighboring cells with di�erent radius sizes. Hence, Voronoi cells aren't
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always convex anymore according to this de�nition.

d2(ps, pi)

R2
i

5
d2(ps, pj)

R2
j

, i ∈ N, ∀j ∈ N & j 6= i, for ∀s ∈ subSi (4.3)

This is quite easy to prove. Supposing that the coordinates of points ps, pi and pj are

(x, y), (xi, yi) and (xj , yj) in two dimensions, equations 4.2 and 4.3 can be reformulated

into equations 4.4 and 4.5 correspondingly. Comparing these two derived equations,

one can see that directly, equation 4.4 doesn't involve the second or higher order of

the variable x or y. Hence, for two speci�c points pi and pj , the interface between

the two neighboring Voronoi cells is a straight line. However, equation 4.5 leads to

curved interfaces for the second order of both x and y (Ri 6= Rj) are involved. This

conclusion can be generalized to the three dimensional case very easily, where polygons

with curved edges in two dimensions are replaced by polyhedra with curved surfaces.

2xxi + 2yyi +R2
i = 2xxj + 2yyj +R2

j (4.4)

(x2 − 2xxi + y2 − 2yyi)

R2
i

− (x2 − 2xxj + y2 − 2yyj+)

R2
j

5
(x2
j + y2

j )

R2
j

− (x2
i + y2

i )

R2
i

(4.5)

4.3.3.2 Calculating the Radical Voronoi Tessellations in Three Dimensions

The calculation of the radical Voronoi tessellation in three dimensions is complex and

can be very time-consuming for a large number of points (cells). Most algorithms for

the tessellation calculation is based on the idea that the Voronoi tessellation is the

dual of the Delaunay triangulation [155]. By searching around software libraries for

doing so, several packages are found on the market, such as QHull [156], Triangle [157],

libvoronoi, Voronoi++ and Boost polygon library. However, they aren't suited to

systems involved large number of points. Fortunately, a package named Voro++ [158],

which is particularly designed for research problems in materials science, physics, and

engineering that frequently involve large systems of particles, ful�lls our perspectives

very well.

Voro++ is adopted to calculate the three dimensional radical Voronoi tessellation in

TUGME. It is an open source software library written in C++. Several features of

Voro++ are particularly interested and useful with respect to the implementation of

TUGME. First, wide use of the object-oriented and the generic programming techniques

allows it to be easily integrated into other C++ programs like TUGME. Second, it

http://www.qhull.org/
http://www.cs.cmu.edu/~quake/triangle.voronoi.html
http://libvoronoi.sourceforge.net/
http://github.com/rlux/voronoi
http://www.boost.org/doc/libs/1_55_0/libs/polygon/doc/index.htm
http://math.lbl.gov/voro++/
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calculates each cell independently, which make it easier to be parallelized. Third, it is

well optimized for high e�ciency as the author has declared. Last but not the least,

Voro++ �exibly allows three boundary types, the periodic, the non-periodic and the

free boundary condition types (see �gure 4.9).

Figure 4.9: Illustration of 3D radical Voronoi tessellation with non-periodic (the
leftmost panel), periodic (the middle panel) boundaries and Voronoi cells of dodeca-

hedral shapes (the rightmost panel).

Di�erent boundary condition types are important for the serious use of Voronoi tes-

sellations, since the default Voronoi algorithms can not precisely deal with cells next

to the computational domain boundary, which usually results in abnormal Voronoi

cell shapes. This boundary condition problem can be attacked by imposing a static

boundary, which cuts the boundary Voronoi cells sti�y. The leftmost panel in �gure 4.9

illustrates a radical Voronoi tessellation of this case with a cubic computational domain.

The other way to handle this problem is to adopt the periodic boundary condition. In

this case, the whole computational space should be �lled with roughly uniformly dis-

tributed cells, otherwise the volume of some Voronoi cells may be abnormally large.

The middle panel in �gure 4.9 shows a radical Voronoi tessellation of this case with a

cubic domain too. The third scheme is to de�ne a default shape for single cells, for

example, a regular polyhedron. This scheme actually abandons the domain boundary

and is more �exible to use for many problems like tumor modeling. The rightmost

panel in �gure 4.9 illustrates a radical Voronoi tessellation of this case, where each cell

is a regular dodecahedron by default. All these three boundary types are supported by

TUGME.

Voro++ allows installation on Linux operation systems like Ubuntu and Debian or

direct use of its original source code [158]. In TUGME, we introduce a C++ class,

voroPP (see �gure 4.10), which wraps the original source code of Voro++. We do so

instead of installing Voro++ on our systems for reasons including: 1) the functionalities

provided by Voro++ aren't easy to use directly; 2) the data structures used by Voro++

are particularly optimized for high executive e�ciency, however, they aren't direct to

use and not suited to frequent access; and 3) part of the original source code may need
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to be modi�ed in certain conditions, for example, adjusting its computational tolerance.

Figure 4.10: The voroPP interface. This class wraps the Voro++ source code. The
data structure types for storing the Voronoi information are declared in a traits named
voronoiTratis (not shown here). wall_initial_shape is an inner class of voroPP.
It de�nes the default shape (a dodecahedron) for individual radical Voronoi cells.

The input of the voroPP interface is very simple, including the coordinate and the radius

of tumor cells. The output Voronoi tessellation information is much more complicated,

where data structures of TUGME for storing them are specially tailored for high ac-

cessing e�ciency. Besides, the interface is responsible for converting the data structures

of Voro++ into that of TUGME, which is done during calculating the Voronoi infor-

mation. Two main points have to be emphasized here. First, the converting process

is transparent to users. Hence, users just need to know how to access the data struc-

tures of TUGME instead of understanding the original code of Voro++. Second, data

structure conversion doesn't introduce too much computational cost, since comparing

to the time needed by Voronoi tessellation calculation, it can be neglected according to

the our practical using experience with Voro++.

Table 4.2 shows the Voronoi information of each cell and the corresponding data struc-

tures in TUGME. The Voronoi information is part of the variables of the voroCell

class. To access the Voronoi information correctly, one has to understand the data

structures declared in voronoiTraits. For those who want to rewrite the cell class,

the way of how the coordinate, the radius of tumor cells and the system boundaries and

the boundary type are stored in systemState class should remain consistent with the

existing implementation in order to make sure that voroPP can work correctly. Detailed

explanations on how these data structures are associated and how they can be accessed

correctly can be found in appendix E of this thesis.
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Variable (set) types Data structures

Voronoi cell volume C++ double

Neighbors C++ vector

Areas of contact faces C++ vector

Normal vectors of contact faces C++ vector

Vetices of contact faces Matrix (C++ vector of C++ vector)
Vetices of cell polyhedra C++ vector

Table 4.2: The Voronoi information of single cells.

4.3.4 Cell Mechanics: Cellular Mechanical Interactions and Motion

4.3.4.1 Force Types

Tumor cells are assumed to have the following fundamental physical properties:

� Isolated cells tend to be spherical in a environment absent of mechanical stimuli.

� Cells deform under loads (e.g. pressures from its neighbors).

� Cells are physically viscoelastic.

� Cells move in an over-damped manner.

� Cell rotation is neglected.

These properties characterize the cell-cell and cell-environment mechanical interactions.

A tumor cell needs to increase its volume for division, doing which it pushes its contact

neighbors through the cellular membrane. According to Newton's third law, both of

the involved cells bare the force simultaneously. In reality, contact cells try to move

away from each other to ease the tension of pressure of the cellular membranes. The

actual moving direction of a cell is the joint result of forces from all the surroundings,

including the neighboring cells, the ECM, the ECF etc [159�161]. Besides, isolated

cells in culture solution have been observed conducting random motion in the absence

of biochemical stimuli [162, 163], which indicates the existing of a random force. In a

word, tumor cells constantly exert forces to each other during tumor growth.

To investigate tumor cell mechanics and its e�ects on the growth of multicellular tumors,

several types of forces are explicitly considered in TUGME. Table 4.3 gives their names

and the major biophysical sources.

The cell-cell contact force is due to the contact of two neighboring cells. Cytoskeletons

that connect the cellular membrane and nucleolus (eucaryotic cells), keeps the rigidity

of cells and at the same time they can reorganize themselves to ease the tension of
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Force names Symbols Sources

Cell-cell contact force Fcij cytoskeletons, the cellular membrane

Cell-cell friction force Ffij cellular membranes

Cell-E friction force Ffi the ECM, the ECF etc.
Random force Fri the ECF

Table 4.3: Tissue and cell mechanical forces.

stresses or pressures [142]. When a cell undergoes deformation, it gives a repulsive

force back to the contact neighbor for recovering its original shape (probably spher-

ical). The cellular membrane, consisting of the phospholipid bilayer with embedded

proteins, also contributes to cell rigidity [164, 165]. Repulsion is one aspect of cell-cell

mechanical interactions. Adhesion also exists between contact cells, which is especially

apparent when they try to move away from each other. The contact force here in-

cludes both the repulsive and adhesive e�ects. Cell-cell friction force is to model the

�ction e�ect between two contact cells moving relatively, as the cellular membrane is

obviously not smooth. Cell-E friction force is the dragging e�ect from the extracellular

materials like the ECM, the ECF. The ECM provides mechanical support to maintain

the multicellular structures which may need to reorganize for cell motion.

4.3.4.2 Force Models

To establish physically reasonable models for the forces listed in table 4.3 is very chal-

lenging in reality. Taking the contact force Fcij as an example, on the one hand,

it depends on mechanical properties of materials, such as geometry, face properties

like roughness of contact objects [166]; On the other hand, tumor cells show complex

biomechanical properties combining the elasticity, plasticity and viscosity. Cellular

membranes deform elastically under small loads. The viscosity of cells is determined

by many aspects, generally including the cytoplasm, the ECM connections, the ECF

and bindings between receptors and ligands on cellular membranes [10, 161, 167].

Hertz �rstly established a model for the contact force between a spheroid and a plane (or

more general two spheroids) [168]. The most fundamental assumptions of the Hertzian

theory includes:

� Surfaces of contact objects are continuous and non-conforming

� Surfaces of contact objects are frictionless

� No adhesion between contact objects exists.
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� Loads exerted on objects are small (small deformation), hence, the deformation

is elastic.

Considering these strict assumptions of the Hertzian theory and the mechanical prop-

erties of tumor cells, the Hertzian theory is thought to be too rough to model the

contact force between tumor cells in reality. Johson Kendall and Roberts put forward a

variation of the Hertzian theory by introducing the adhesion e�ect for the experimental

observation of a contact area larger than what is predicted by the Hertzian theory [169].

The new theory is termed the JRK contact model, which can be described theoretically

by the following equations:

|Fcij | =
Eija

3
ij

Rij
−
√

6σπEija3
ij

a3
ij =

Rij
Eij

(|Fcij |+ 3σπRij +
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6σπRij |Fcij |+ (3σπRij)2)

1

Eij
=

3

4
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]
1

Rij
=

1

Ri
+

1

Rj

(4.6)

where Ri and Rj are the radii of the contact objects, aij measures the radius of the

contact area, σ is the surface contact energy density, Ei and Ej stand for the Young's

module, νi and νj represent the Poisson ratio.

Unfortunately, the JKR model is very complex to treat two cases separately: contact

objects approaching and leaving each other. To avoid this complexity, Beyer and Meyer-

Hermann [170] approximated the JKR model based on the virtual overlap hij = Ri +

Rj − dij (see �gure 4.11), which reads:

|Fcij | ≈ Eij
√
Rijh

3/2
ij −

√
6πσEij(Rijhij)

3/4 (4.7)

Figure 4.11: Diagram illustrating the overlap hij between two contact spheroids
where Ri and Rj are the radii of the two spheroids separately. dij measures the

distance between cells.
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The approximated JKR model is applied to model the contact force Fcij between cells

in our model. A possible JKR force curve versus the overlap between contact cells is

shown in �gure 4.12.
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Figure 4.12: An approximated JKR force curve versus the virtual overlap hij be-
tween two neighboring cells. The portion of the curve above the light gray line in-
dicates a repulsive e�ect, while the below counterpart indicates the adhesion e�ect.
The idea is that contact cells tend to attract each other when they are in contact,
meanwhile, they also push each other when they undergo shape deformation. For
small overlaps, the adhesion (viscosity) force dominates, while with the decrease of
cell-cell distance (hij increases). Cell elastic repulsion force sharply increases with
the increment of cell shape deformation. The right cross point between the force
curve and the x-axis indicates a zero JKR force, which is considered to be a result
of balancing between the adhesion and the repulsion forces, which can be thought as
a preferred distance between cells within tissues. Larger than this hij , the repulsion

force starts to dominate.

The friction (Ffij) between contact cells is modeled to be proportional to the relative

velocity vi−vj (vi and vj (see equation 4.8) designate the absolute velocity of cell i and

cell j) of the involved cells but has the opposite direction. For the force (Ffi ) of friction

by the ECM and the ECF, a Stokes friction approach is applied (see equation 4.9).

More details on the friction coe�cients γi and γij can be found in appendix A. The

random force Fri is currently left unimplemented since its e�ect to the over-damped cell

motion is believed to be such small that can be neglected. We keep the term in case a

modeler is interested in modeling it in some particular cases.

Ffij =− γij · (vi − vj) (4.8)

Ffi =− γi · vi (4.9)

The mechanical interactions between cells and simulation domain boundaries have to

be dealt with particularly, since the cells next to the boundaries directly a�ect their

neighboring cells and so forth. We have mentioned three types of boundary conditions

are supported by TUGME in section 4.3.3.2, namely the periodic boundary, the non-

periodic boundary and the free boundary.
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The default simulation domain is a rectangular box characterized by its lower left and

upper right corners. In the non-periodic boundary case, the six faces of the box are the

boundaries. In TUGME, the six faces are treated as virtual cells with the TIDs from

-1 to -6. For those cells next to one of these boundaries, the contact and friction forces

are modeled as between them and their images treating the corresponding boundary

face as a mirror. But, the velocity of the boundaries keeps zero. One may argue to

simply specify these forces to be zero, however, our intention is to try our best to take

into account the e�ect of boundaries instead of nothing considering the important roles

of mechanical interactions between tumor cells and the surrounding healthy cells in

reality. Of course, one can change our implementation very easily. As a matter of

fact, in order to minimize the e�ects of the boundaries to the behavior of our tumor

model, we usually make the simulation domain size much larger than the size of the

modeled multicellular tumor system so that no tumor cells can reach the simulation

domain boundaries during a simulation. This is done by �lling outer tumor space with

healthy cells when no default shape is de�ned for Voronoi cells. Hence, the boundaries

only a�ect the healthy cells directly. In this case, if a healthy cell moves out of the

simulation domain, it is removed from the system completely. The advantage of doing

so is to provide an environment more realistically mimicking that of real tumors. The

disadvantage is that one has to introduce proper rules to deal with the healthy cells.

In the case of the periodic boundary condition. problems get easier, since the contact

and friction force models can be applied directly between a cell and its image. However,

the periodic boundary condition only works for certain domain shapes, for example,

rectangular boxes and spheres aren't applicable. Similar to the case of the non-periodic

boundary condition, the outer tumor space is also �lled with healthy cells. The key

di�erence is that healthy cells will not be moved out of the simulation domain. With

the growth of the tumor tissue, their space is compressed gradually by tumor cells,

hence, rules of how healthy cells have be dealt with during tumor growth is even

more important, otherwise, the tension between them and tumor cells can become

unrealistically large.

One may think of that introducing healthy cells in the above two cases are too clumsy.

In order to avoid doing that and to deal with the wired shape of cells next to the sim-

ulation domain boundary, the third type of domain boundary is provided in TUGME.

In this case, a default shape for Voronoi cells is pre-de�ned, for example, the regular

dodecahedron is used by default in TUGME. According to this design, an isolated cell

has 12 neighbors by default. Currently, we set the TID of these cells to be -1 and do

not model their mechanical interactions with tumor cells. Hence, this boundary results

in a free biomechanical environment for the modeled multicellular tumors.
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In order to allow di�erent models for the forces considered in TUGME, an interface (see

�gure 4.13) is introduced. Currently, two implementations of this interface are provided,

namely the Hertz model and the JRK model, which are distinguished according to how

the cell-cell contact force is modeled.

Figure 4.13: Diagram illustrating the interface for modeling the mechanical forces
of single tumor cells.

Based on the forces given in table 4.3, the cell motion is modeled in an over-damped

manner using Newton's second law (see equations 4.10, Fti is the total force on cell i, and

Ni is the set of neighbors of cell i). By replacing force terms with their corresponding

models, equation 4.10 can be reformulated into equation 4.11. For each cell, the only

unknown variable in this equation is its velocity v(x, y, z).

Fti =
∑
j∈Ni

Fcij + Ffi +
∑
j∈Ni

Ffij = ma = mv̇ = 0 (4.10)

and

∑
j∈Ni

Fcij =

γi +
∑
j∈Ni

γij

 · vi −∑
j∈Ni

γij · vj (4.11)

As one can see from equation 4.11, the motion equations of all cells are coupled via

their velocity, which results in a system of linear equations. For a tumor system with

N cells, the degree of freedom of the linear system is 3N . More details about how the

linear system of cell motion is derived can be found in appendix A of this thesis.
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4.3.4.3 Solving the Linear System of Cell Motion Using DUNE

For a tumor system with millions of cells, the degree of freedom of the linear system

is very large. It is usually too time-consuming and memory-expensive to solve such a

large system analytically, while a numerical solution, ful�lling the expected accuracy,

is more realistic to conduct. As it has been mentioned in section 4.3.1, DUNE provides

a lot of solvers for numerically solving linear systems. The preconditioned BiCGStab

solver is applied to solve our linear system of cell motion considering its performance

and stability.

4.3.5 Nutrients and Metabolic Products: the Transport and Metabolism

of Biochemicals

4.3.5.1 The RDE Model

In TUGME, the transport and metabolism of biochemical molecules are modeled by

RDEs. Di�usion is the major way, through which many biochemical molecules are

transport within tumor tissues. No matter for the avascular or the vascular tumors,

this holds for cells locating far away from blood vessels. Similar RDE models have

been widely used in lots of cancer models [3, 51, 55, 58, 146�148, 171, 172] for not only

nutrients but also other biochemical molecules like GFs.

The RDE model takes the form:

∂tc(x, t) = ∇ · [D(x, t) · ∇c(x, t)]− r(x, t), in Ω ∈ Rd × (0, T ) (d = 3) (4.12)

where c(x, t) represents the concentration of molecules over space and time. The di�u-

sion coe�cient D(x, t) and the reaction (source) term r(x, t) measures the di�usivity in

extracellular space and the consuming (producing) rate by tumor cells of biochemical

molecules. Ω ∈ Rd is the spatial domain that the equation works within, and d is the

spatial dimension. (0, T ) is the time interval.

4.3.5.2 Solving the RDEs Using DUNE

DUNE, applied to solve our linear system of cell motion, provides the basic implementa-

tion of FEM in its module DUNE-pdelab, which signi�cantly reduces the programming

work of implementing FEM in TUGME. however, this doesn't mean that DUNE-pdelab

has done everything for practical applications. First of all, random accessing the results

of RDEs isn't properly supported by DUNE, which is a very important requirement
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for TUGME, since tumor cells need to constantly evaluate their biochemical condi-

tions such as the concentration of oxygen. Second, some implementation details are

exposed to users, for example, inter-mapping between the physical computational do-

main (global) and the local computational domain, which increases the work of users.

For these reasons, we introduce interfaces for TUGME wrapping DUNE-pdelab code.

An interface named RCDProblem is introduced for de�ning a reaction-di�usion problem

of a molecule. As a tool, DUNE-pdelab is actually designed for general RDE problems,

like reaction-convection-di�usion problems. RCDProblem basically keeps the generality

of DUNE-pdelab at the same time tries to minimize the work of users during imple-

menting a speci�c RDE model. As it is shown in �gure 4.14, this interface integrates the

basic aspects needed to de�ne a reaction-convection-di�usion problem. Three di�erent

types of boundary conditions are supported, namely the Dirichlet boundary condition,

the Neumann boundary condition, and the �ow boundary condition. Currently, the

model of oxygen, glucose, cell metabolites and GFs are provided. Implementation of a

new model can be done very easily by referring to one of the four existing ones. From

the �gure, one may notice that GeneriProblem, which is a inner C++ class of the class

RCDProblemFEM. It seems screwball to have both GeneriProblem and RCDProblem. The

underlying idea of this design is to hide the implementation details of DUNE, since

GeneriProblem is called directly by the DUNE routines involving the local domain

which is mapped from the global domain (the physical domain), while RCDProblem is

global-domain-oriented. The �nal thing needs to be emphasized is that its the user's

responsibility to not only de�ne a speci�c reaction-convection-di�usion problem, but

also implement the class similar to the C++ class multiRCDProblems, since this class

should be de�ned based on all the types of biochemical molecules considered.

When implementing a speci�c RDE model like RDofOxygen, one has to specify the

parameters (terms) of the RDE. For a RDE with all its terms explicitly formulated, it

is trivial to �ll the corresponding terms of RCDProblem with the explicitly expressions.

However, for the tumor system, some terms may too complex to be explicitly formulated

as they are dynamically a�ected by both the properties (or the state) of tumor cells

and the way of how a modeler deals with them.

First of all, the di�usion coe�cientD(x, t) basically depends both on physical properties

of the molecule itself and the environment. In a free space, it can be described by the

equation (the Stokes-Einstein equation):

D =
KT

6πηr
(4.13)
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Figure 4.14: Diagram illustrating the relationship between the C++ classes of RDE
models in TUGME.

where η represents the viscosity of the environment, r represents the radius of the

spherical particle, K is the Boltzman constant and T measures the absolute tempera-

ture of the environment. According to this theory, the actual mobility of a molecule is

a�ected by the viscosity of the environment, its size and the temperature of the envi-

ronment. Unfortunately, the space of a tumor tissue isn't free for molecules like oxygen

and glucose to di�use, since the existence of the cellular membranes, the ECM, other

molecules in the extracellular environment. The actual di�usion coe�cients measured

in experiments [173, 174] within tumor tissues of both oxygen and glucose are smaller

compared with that in water. Obviously, the experimentally measured di�usion coe�-

cient within tumor tissues is an averaged value at a large spatial-temporal scale. If one

thinks about the di�usion process at the sub-cellular scale, the di�usion coe�cient of a

molecule regarding two directions, parallel and perpendicular to the cellular membrane,

can di�er signi�cantly. Unfortunately, no measurement about this has been done by

now. However, one can see our point from this argument. Similar problems will be

also confronted for determining the reaction r(x, t), which is to be discussed in the next

section soon. The actual di�usion coe�cient used in simulations with TUGME is the

experimentally measured value within tumor tissues.
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Secondly, The boundary conditions act as the source of nutrients or the drainage sys-

tem of cell metabolites. It is well-known that the circulatory system plays the key

role in transporting nutrients and cell metabolites. For avascular tumors the boundary

condition of RDE should be speci�ed according to the distribution of blood vessels in

the normal healthy tissues surrounding a tumor. For a mature tumor, problems get

much more complicated, for tumor-promoted angiogenesis should have formed blood

vessel networks for it. Since we currently focus on avascular tumors only, the Dirichlet

boundary condition is applied based on the assumption that the concentrations of nu-

trients in healthy tissues should keep at a dynamically stable level, which is essential for

healthy cells to perform their normal functions. In addition, the molecular metabolism

of healthy cells surrounding a tumor tissue isn't explicitly taken into account if healthy

cells are taken into account, since we assume that their blood vessel network is e�cient

enough to maintain the biological equilibrium in terms of nutrients and metabolites

given that an avascular tumor is usually still not so malignant to signi�cantly a�ect its

surrounding healthy tissues.

Finally, as FEM is grid-based, the size of the grid cells (elements) a�ects both the

modeling accuracy and the time expense for solving RED. Theoretically, a �ner grid

can give a better modeling accuracy and the actual grid size is usually chosen as coarse

as possible as long as the expected accuracy is ful�lled in order to save the compu-

tational cost. However, a tumor tissue is rather complex than free. It involves other

processes, dynamically interacting with the reaction-di�usion process of molecules. In

TUGME, a 3D lattice, named the Yasp-grid in DUNE, is applied. The Yasp-grid is

one of the simplest grids provided by DUNE. The elements of the Yasp-grid are non-

overlapping rectangular boxes. For the size of the grid element, we recommend that

it should be larger than the largest volume of single tumor cells, the reason under the

recommendation is to be introduced in details in the next section.

4.3.5.3 Up- and Down-scaling of Biochemicals

The metabolism of nutrients and metabolites happens at a smaller (upper) spatial-

temporal scale compared with that of the RDE model. Hence, up- and down-scaling is

necessary to �ll the gaps between spatial-temporal scales.

Up-scaling is the process that tumor cells evaluate the biochemical condition of its envi-

ronment, since its life behavior needs energy, which can only be produced via biochem-

ical reactions (tumor cell aerobic or anaerobic respiration introduced in section 3.3.5)

within cells. In TUGME, the biochemical conditions mean the concentrations of chem-

ical molecules, which may be nutrients, metabolites, GFs etc. Speci�cally, the solution
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of the RDE models is to be accessed. The concentration at a certain position (point)

can be directly evaluated, however, how to properly do so over a volume (the volume

of an entire tumor cell), is something di�erent. The way we deal with this problem

is to use the molecular concentration at the mass center of a tumor cell to represent

the biochemical conditions of the whole cell volume. The underlying considerations

include: 1) the RDE model is already a coarse-grained approximation; and 2) our ex-

perience with the concentrations of the involved chemical molecules is that there is a

concentration gradient within the simulation domain (e.g. from the tumor periphery

to its center) but no local sharp �uctuations, which indicates no signi�cant variation of

molecular concentrations within the volume of a single tumor cell. An alternative idea

to do so may be to evaluate the molecular concentrations at a certain number of points

uniformly distributed on the cellular surface or within the cellular space, then average

them. However, it isn't supported by TUGME currently as we don't see signi�cant

bene�ts to the overall accuracy of our coarse-grained tumor models.

Another problem for evaluating the concentrations of biochemical molecules is associ-

ated with the implementation of FEM in DUNE. To evaluate the concentration at a

given point in DUNE, one needs to know the the grid element, within which the given

point locates. In other words, a scheme is needed to correctly map the coordinate of

the given point to the corresponding grid element. For regularly structured grids like

the Yasp-grid used by us, it is usually not very di�cult to �nd such a mapping scheme,

while doing so for irregularly structured grids is usually very di�cult.

In TUGME, concentration evaluation is implemented in the C++ class named duneYas-

pGridRandAccessHelper. In this class, each grid element is given an unique ID (a non-

negative integer), which corresponds to the index of the C++ vector, where pointers

pointing to the grid elements are properly stored. The pointer is used instead of the

grid element itself, because DUNE does not allow to store grid elements out of where

the grid is declared. the vector instead of the map is used, since it is more e�cient.

However, we admit that the vector can only work for very few types of grids, otherwise

the map is recommended. A snapshot of part of the original source code for evaluating

molecular concentration at a given point (position) is shown in �gure 4.15.

Down-scaling is the process that the reaction term r(x, t) is determined for the RDE

model, which can be very challenging. First of all, we want to declare that we approx-

imate r(x, t) at a spatial-scale larger than that of single tumor cells for two general

reasons. First, evaluating r(x, t) at a spatial-scale smaller than single cells asks for

too much computational complexity. Take oxygen as an example, it can only be de-

termined when the position of the mitochondria within cells is known, since oxygen

metabolism is mainly performed within the mitochondria. Modeling the motion of the
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Figure 4.15: A snapshot of part of the TUGME source code for evaluating the
concentration of a biochemical molecule at a give position.

mitochondria within a cell de�nitely increases much more computational cost. Second,

a more precise r(x, t) does make too much sense to signi�cantly improving the general

accuracy of our tumor growth model. A more precise r(x, t) enables us to see the in-

homogeneous distribution of biochemical molecules within a tumor cell, however, we

have declared that before this di�erence is normally too small to signi�cantly a�ect the

overall behavior of individual tumor cells.

Basic assumptions of the method for evaluating r(x, t) in TUGME include: 1) chemical

molecules are uniformly distributed within a single tumor cell; 2) r(x, t) is averaged

over the volume that is large enough to accommodate at least one tumor cell; and 3)

single cells are treated as the very basic (smallest) units with respect to the metabolism

of biochemical molecules.

To do the space average for biochemical molecules, the entire simulation domain is

partitioned into much smaller sub-volumes. According to our assumptions, the size of

the sub-volume should be larger than the volume of single tumor cells. Besides, sub-

volumes should be non-overlapping and fully divide the whole simulation domain. The

grid for space partition can be just simply a lattice like the FEM Yasp-grid or �ner.

The grid we used is a regular lattice, which is de�ned by dividing each of the FEM

Yasp-grid element into 8 equal rectangles. Figure 4.16 illustrates the FEM Yasp-grid

(black) for and the grid for space average of biochemical molecules (blue) with respect

to the radical Voronoi tessellation of the tumor tissue in two dimensions (noticing that

the FEM Yasp-grid element is divided into 4 equal rectangles in two dimensions as it

is shown in this �gure).

Mathematically, the approximating method of r(x, t) can be described by the equation,

ri(x, t) =

Ki−1∑
j=0

uj

Vsuv_Vi ·∆t
(4.14)

where index i marks the sub-volume (sub_V ) and Vsuv_Vi stands for its volume. Ki is

the number of tumor cells locating within the sub-volume. uj stands for the amount of
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Figure 4.16: Diagram illustrating the up- and down-scaling of biochemical
molecules.

nutrients consumed by cell j during the time period ∆t. One could imagine that r(x, t)

is actually a piecewise function, and each piece of function is constant with the sub-

volume sub_Vi. The 1D case of the approximated reaction term ri(x, t) is schematically

illustrated in �gure 4.17. It is a piecewise function (not continuous over space). To make

a it continuous, one could use methods like interpolation or l2-projection. However,

this has not been done in TUGME, since it is actually not continuous as most chemical

reactions can perform at certain organelles within cells. Besides, as a coarse-grained

model, we think our approximation of ri(x, t) should be reasonable enough.

Figure 4.17: Illustration of the piecewise characteristic of the reaction function
ri(x, t) averaged over space and time.

If thinking further about equation 4.14, one may see that ri(x, t) actually is a function of

both the tumor cell density (number of cells Ki within the sub-volume sub_Vi) and the

metabolic rate (the total amount of molecules divided by the time-step duration) of the

involved biochemical molecules by tumor cells within the sub-volume. The fortunate

thing is that the cell density can be measured directly via experiments in the laboratory.

In our simulations, the tumor cell density is controlled by limiting the cell radius (or

diameter) within a range that has been measured in experiments. One needs to �nd

out a reasonable cell radius range for di�erent types of tumors. The unfortunate thing

is that the metabolic rate of most nutrients like oxygen and glucose seems to be very

di�cult to model using a simple rule, since the actual metabolism rate of biochemical
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molecules may depend on many factors, such as: 1) the availability the biochemical

molecule itself; 2) the availability of biochemical molecules that can react with the

molecule; and 3) the state of cells (proliferating, quiescent, necrotic) [175, 176]. Take

oxygen as an example, the interaction between tumor cells and oxygen forms a feedback

loop as it is shown in �gure 4.18. On the one hand, cell consumption decreases the

concentration of oxygen; On the other hand, lower oxygen concentrations may change

the behavior of cells, like the conversion from proliferation to quiescence for the short

of energy, which in turn reduces the metabolic rate of oxygen. Tumor cells undergo this

conversion is believed bene�cial to cell survival. These reasons can reduce the accuracy

of the measurements of the molecular metabolic rate, since the most prevalent way

for measuring the metabolic rate used by current biological experimentalists in the

laboratory is to average the amount of molecular consumption or production over a

group of cells, however, the cell groups may actually consist of cells in distinct states,

such as proliferating, quiescent and even necrotic. As far as we know, there is still no

measurement carried out based on individual tumor cells. Besides, no experiment has

been done to measure how much the concentration of a biochemical molecule can a�ect

their metabolic rate by tumor cells of di�erent states.

Figure 4.18: Diagram illustrating the non-linear interaction between tumor cells
and nutrients. Most cell life behaviors need the support of energy, which is gener-
ated by biochemical reactions consuming nutrients, such as oxygen and glucose. Cells
uptake nutrients from the extracellular environment and release metabolic products
back. If molecular di�usion can not compensate the loss of consumption of nutri-
ents, the nutrient concentration will continuously decline. Tumor cells suspend cell
cycle and enter a so-called quiescent state (tumor cell quiescence) for short of energy
when the nutrient concentration below certain thresholds. Doing so, tumor cells may
survive for its nutrient consumption rate reduces in the quiescent state. If the nu-
trient concentration gets even lower, tumor cells die (tumor cell necrosis, which is

energy-independent) for energy depletion.

4.3.6 Cell Cycle: Cell Proliferation and Death

In TUGME, tumor cell cycle is modeled by a series of phases, correspondingly mimick-

ing the phases of an entire cell cycle in reality. Single cell behaviors, such as cell volume
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growth, metabolism, division and the cell cycle control, are modeled by discrete events

associated with the corresponding phases.

The cell cycle model is a key module in TUGME, since it directly determines the growth

dynamics of the multicellular tumor systems, while the other modules a�ect the cell

cycle dynamics. Basically modeling tumor growth is to investigate the cell behavioral

mechanisms in terms of joint regulations of biological, biochemical and biophysical

processes of high relevance. Hence, the cell cycle model may vary signi�cantly for a

variety of hypotheses. For example, if CSCs and common tumor cells are separately

considered, the cell cycle model should at least distinguish the proliferation potential

between these two types of cells. The cell cycle module of TUGME is expected to

facilitate testing di�erent hypotheses by enabling easy implementations of di�erent cell

cycle models.

In TUGME, the cell cycle model is hierarchically organized consisting of interfaces and

implementations as it is shown in �gure 4.19. In general, there are two types of cell

cycle models in terms of how real cell cycle phases are modeled. The �rst type simply

splits cell cycle into the G1 phase and the rest phases SG2M . The second type of

models consists of exactly the real cell cycle phases, namely the G1, S, G2 and M

phases.

The G1 phase is always explicitly modeled because it is particularly important to tumor

cell proliferation, which has been introduced early in section 3.3.4 in chapter 2. This

is also why we merge the rest S, G2 and M phases as one in the �rst general type of

cell cycle models. We provide the second general cell cycle model type in case some

users are interested in modeling some detailed dynamics of full cell cycle phases. Beside

these phases, a state whenG1-phase tumor cells suspend the proliferation temporarily is

treated as a special phase named theG0 phase. It is important to model the mechanisms

controlling transitions between the G1 and the G0 phases, since the period of time that

tumor cells stay in the G0 phase directly a�ects the overall cell proliferation rate or

the growth rate of a tumor. Besides, tumor cell necrosis is modeled as a separate state

that di�ers to the apoptosis of normal somatic cells. In a word, a tumor cell can be in

only one of the three states, namely the proliferating, the quiescent, and the necrotic

states. If the CSC theory is considered, CSCs di�erentiate into common tumor cells

which can undergo apoptosis too.

De�ning the phases and/or the states for cells are just part of the work of establishing

a cell cycle mode. The next step is to explicitly de�ne the cell cycle rules. First of

all, one needs to specify a distribution type that the duration of each cell cycle phase

obeys, as the cell cycle phase duration isn't �xed but random. The phase duration

distribution of all the phases are Gaussian distributions but with di�erent means and
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Figure 4.19: Diagram illustrating the interface and several implementations of cell
cycle models. The symbol �#� indicates a protected �eld of a C++ class.

standard divinations in our cell cycle models. A Gaussian distribution allows negative

values, which is obviously unrealistic for modeling the phase duration. This problem is

handled by replacing all the negative random numbers with zero. Secondly, cell volume

growth has to be modeled properly. It is de�ned by increasing the cell volume instead

of its radius or diameter with a constant rate in our model. The growth rate is actually

calculated by dividing the volume di�erence between the mature and the newly born

tumor cells by the duration of the G1 phase. Since the radii of the mature and newly

born tumor cells are parameters that do not change once speci�ed for a model and

τG1 is a random number, the actual volume growth rate varies from cell to cell. The

volume growth of tumor cells is restricted in the G1 phase, since an actual tumor cell

undergoes signi�cant volume growth in this phase and has slight volume growth in the

rest phases except the M phase [2]. Theoretically, this growth model can be described

by the equation 4
3πR

3
M = 2 · 4

3πR
3
Y based on the assumption of spherical cell shape,

where RM and RY stand for the radii of the mature and newly born cells separately.

Thirdly, one needs to de�ne the mechanisms that control the behavior of tumor cells

according to the biological, biochemical and biophysical conditions.
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In TUGME, two cell cycle controlling rules are de�ned distinguished by how the con-

versions between the proliferating and quiescent state of tumor cells is modeled. The

�rst rule is relatively simple, where a newly born cell enters the G1 phase directly and

it can de�nitely complete this phase without disruptions by �nally entering the G0

phase without checking any conditions. In the G0 phase, a checkpoint is implemented,

where it can advance into three states: 1) switching to necrosis when the corresponding

thresholds are met; 2) staying in the G0 state when the quiescent thresholds are satis-

�ed; 3) otherwise, advancing into the S phase (resuming the cell cycle) when the cell

manages to pass all requirements for proceeding its division. The general procedures

of this version of the cell cycle model are shown in �gure 4.20.

Figure 4.20: Flowchart illustrating the phase transitions of an entire cell cycle.

The second rule is characterized by allowing the inter-switch between the G1 phase and

the G0 phase, which is impossible in the �rst case. According to this rule, a newly born

cell is initially set in the G1 phase too. However, cells are designated to switch from

the G1 phase to the G0 state once the quiescent conditions are met, and G0-state cells

can switch back (resuming the cell cycle) if the corresponding conditions are satis�ed.

The main steps of the G1 phase and the G0 state of this cell cycle controlling rule are

illustrated in �gure 4.21 and 4.22.

Finally, a dividing cell is replaced by two daughter cells at the end of its division (the

SG2M or M phase). The radius of each daughter cell is set such that each of them

has exactly half of the spherical volume of the mother cell. They are initially placed

within the volume of the mother cell, which mimicking the daul-bell shape of a real

cell at the end of its division. The daughter cells are assumed to have no preference in

orientation and start to adjust their positions according to the biomechanical condition

right after separating from each other. Hence, they are placed within the mother cell
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Figure 4.21: Flowchart illustrating the state transitions in the G1 phase.

Figure 4.22: Flowchart illustrating the state transitions in the G0 state.

with a random orientation chosen from the uniform distribution in three dimensions.

Figure 4.23 illustrates how the daughter cells are placed within the mother cell with a

given orientation.

4.3.7 Interdependences Between Modules of TUGME

The modules of TUGME are coupled for data interdependences. First, the cell agent

module stores the basic information, such as the position, the radius and the Voronoi

information of all tumor cells. Hence, all the other modules of TUGME basically

require to access it. Second, the Voronoi information can only be calculated when the

positions and radii of cells are provided. Third, cell-cell and cell environment mechanical

interactions and cell motion can be done only when the Voronoi information is available.

Fourth, RDE models need to know the consumption or production of the considered
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Figure 4.23: Diagram illustrating the relative position of two newly generated
daughter cells relative to their mother cell.

biochemical molecules by tumor cells. Finally, cells decide their behavior based on the

biochemical and biomechanical conditions.

Since the Voronoi information is treated as part of the basic cell information, it is

stored in the cell agents instead of the Morphology&Topology module (the upper left

module in �gure 4.24). Hence, the explicit dependences between it and the modules

Biomechanics (the lower left module) and Cell_cycle (the lower right module) become

implicit and are replaced by the explicit dependences between the Cells module (the

module in the center) and Biomechanics and Cell_cycle modules correspondingly.

Since the amount of nutrients (or metabolites) consumed (produced) by tumor cells

during cell cycle has been stored in the Cell_cycle module and the Biochemicals

module provides interfaces for accessing the solution of RDEs, these two modules are

explicitly interdependent in TUGME.

Figure 4.24: Diagram illustrating the interdependences between modules of
TUGME. The dashed gray arrows represent the theoretical data �owing directions,

while the solid orange arrows stand for the actual ones.
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4.4 Conducting Simulations Using TUGME

4.4.1 Initialization of Simulations

Parameter space sampling is often required in computer-based modeling and simulation.

Varying model parameters sometimes requires changes to the source code, which is

clumsy for programming languages like C++, since this results in recompiling of the

source code. A common way to handle this problem is to introduce a con�guration �le

and put the frequently changing parameters in this �le so that changes can be made

easily to it without modifying the source code. Furthermore, automatic con�guration

�le generation is sometimes used for complex models with a large and complex sampling

space of model parameters.

In TUGME, we also introduce a con�guration �le, for example, named con�g.ini, and

a routine is provided to generate the con�guration �le with default parameter settings.

Currently, users can change the parameter settings only manually. Figure 4.25 shows

a snapshot of part of the con�guration �le. The indicating meaning of each parameter

in this con�guration �le can be understood easily via their names, otherwise, one can

turn to the source code, where comments on these parameters would be more helpful.

Hence, detailed explanations to them need not be given here at all. As one can see, the

con�guration �le is a typical INI formatted �le. The INI format is a prevalent standard

for con�guration �les for many software libraries. In TUGME, a parser is implemented

based on the Property Tree Library of the boost library to parse this con�guration �le.

Figure 4.25: A snapshot of part of a con�guration �le.

http://www.boost.org
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Beside the con�guration �le, the initial state of the tumor cells and/or the surrounding

healthy cells is put in a �le too (see the snapshot of part of the initial �le shown in

�gure 4.26). As it is shown in the �gure, the �rst column represent the cell UID. The

second to forth columns together designate the coordinate of cells in three dimensions.

The �fth column gives the radius of cells. The �nal column speci�es whether a cell is a

CSC cell (1) or a common tumor cell (0). A special routine is provided in TUGME for

automatically generating this �le. The routine is to generate the given number of cells

whose positions obey the uniform distribution within the given tumor tissue domain

that is speci�ed in the con�guration �le.

Figure 4.26: A snapshot of part of an initial �le.

4.4.2 Control of Simulations

Simulations using TUGME are advanced by simulation time in a time-step manner,

where the time-step size can be �xed or adjusted depending on the schemes chosen.

For the �xed time-step mechanism, as it is named, the time-step size is �xed during

each simulation run, however, it can be changed for di�erent simulation runs. It is

speci�ed at the very beginning of each simulation in the con�guration �le. In contrast,

the variable time-step scheme allows for changing the time-step size over simulation

steps.

The variable time-step size is actually self-adapting. Its basic idea can be described by

the formula min(Tmax, Dmax/vmax), where Tmax, Dmax and vmax separately represent

the maximal time-step size, the maximal time-step displacement, both of which are

speci�ed in the con�guration �le, and the maximal cell velocity (vmax) which is got by

solving the linear system of cell motion.
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The time-step size can a�ect two important but theoretically incompatible aspects of

simulations, namely the accuracy and the e�ciency. The �xed time-step size scheme is

obviously very simple to implement. For few systems evolving with a intrinsic temporal

pace, one may be able to �nd a reasonable time-step size by testing di�erent ones.

However, for most real systems, a reasonable time-step size may be not feasible. In

contrast, the self-adapting scheme is much more �exible. Although the implementation

is more complex, it is often used.

The interdependences between the modules of TUGME determine the order, in which

they are called in each simulation step. A simulator that advances simulations sequen-

tially is provided in TUGME. Flowchart 4.27 illustrates the main executing procedures

of the sequential simulator. From this �owchart, one can see the stop policy of simula-

tions of TUGME is simulation time. In fact, the start and end time(s) of a simulation

are speci�ed in the con�guration �le. And the default unit for time is seconds.

Figure 4.27: Flowchart illustrating the main work �ow of simulations using
TUGME.
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4.4.3 Data Output and Visualization

For computer-based modeling and simulation, simulation data collection and visualiza-

tion are important. One may do data analysis during the running of simulations and

outputs the statistical results directly. For small and simple problems, this method

works �ne, since it usually would not increase the computational cost too much. How-

ever, it isn't proper to do so for problems involving complex statistics collections, since

it may signi�cantly drag simulations down. For this kind of problems, the values of

variables of interest are usually written into �les as raw simulation results, which allows

one to analyze them �exibly without changing the original source code of models. The

disadvantage is that outputting large data sets is very time-consuming.

Data visualization is necessary since it gives modelers the �rst impression of simulation

results and it is needed for result presentation. Run-time data visualization is �ne if

visualization is to show the raw result �les but not to directly access the memory of

model variables. However, this may be not feasible for programs with a large amount

of data sets, since accessing them may take long then that of the simulation itself.

TUGME provides methods to collect the information of models during the running of

simulations. The information covers almost every model aspect, in which the modelers

may be interested. First, one can access the basic information of single tumor cells,

including the position (the spherical center), the radius, the type (tumor of healthy

cells), the stem cell marker (yes or no), the cell cycle phase, the polyhedral volume and

the number of neighbors etc. Second, cells can be visualized using currently two tools,

namely Paraview [144] and Pov-Ray. As it is shown in �gure 4.28, these two tools show

some distinguish ideas for rendering objects. Paraview integrates the VTK for viewing

the VTK format �les, where points is the basic building unit of lines. Linking line seg-

ments end to end gives planes or polygons in two dimensions and connecting polygons

in three dimensions produces polyhedra. However, curved surfaces, for example, a 3D

sphere, are constructed by points in Paraview. The number of points used depends

on the image resolution speci�ed by users, which results in large �les for high quality

(resolution) images. Besides, it allows to generate videos directly with a set of �gures

whose names are ordered. In contrast, Pov-Ray supports de�ning a sphere by specify-

ing its center and its radius, which allows users to create very high quality images with

curved surfaces without substantially increasing its size. The interface of Paraview is

much more user friendly, for example, it is easy to change the viewing orientation in

Paraview, while the viewing orientation has to be speci�ed by users in the input �le

of Pov-Ray and changes usually have to be made manually. Details about these two

viewing tools are out of the discussion of this thesis. Finally, the concentration of bio-

chemical molecules modeled by RDEs can also visualized by Paraview. Our molecular

http://www.paraview.org/
http://www.povray.org/
 http://www.vtk.org/
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Figure 4.28: Visualization of the radical Voronoi polyhedra and the distribution of
biochemical molecules using Paraview (above) and Pov-Ray (below) in three dimen-
sions. Blue line segments in this �gure are the edges of the radical Voronoi polyhedra.
Colors of the above right panel indicate the concentration gradient (from red (high) to
blue (low)) of biochemical molecules within simulation domain. Three panels below
from left to right are tumor cell spheres, corresponding radical Voronoi polyhedra and

the merger of them.

concentration �le writer wraps the VTK format �le writer (VTKWriter) provided by

DUNE.



Chapter 5

Case Study: Modeling the Growth

of the EMT6/Ro MTSs

This chapter introduces how to construct a concrete tumor model using TUGME. Fur-

thermore, a series of simulations are carried out based on the models established by

us to investigate the in�uences of biochemical and biomechanical factors on the overall

growth of a multicellular tumor by treating them as the main cell cycle controllers. The

parameters of our models are set speci�cally according to the EMT6/Ro mammary car-

cinoma cell line, since abundant experimental data about this cell line are available. We

look at the population, the distribution of biochemical molecules as well as the morphol-

ogy of tumor tissues under di�erent oxygen and glucose conditions. Our simulations

are compared with the experiments in the laboratory. In general, good agreements

between our simulation results and the experimental data indicate the applicability of

TUGME as well as the validity of our models.

5.1 Introduction

The ultimate goal of creating a computer model is to replace the real system which

is di�cult or impossible to study directly. Computer-model-based system research

is generally to uncover the working mechanisms of the investigated system so that

its behavior can be predicted. How well a computer model representing the physical

system from the point of view of supporting its intended use indicates the �delity of

the model. Obviously, model �delity is the key thing that concerns a modeler, since it

directly in�uences the quality of simulation results.

71
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In general, a set of standard programmes have been established for model quality

control in computer-based modeling and simulation. These standards are termed

VV&A [1, 177, 178]. VV&A is the abbreviation of (model) veri�cation, validation

and accreditation. Veri�cation is mainly to check whether a model is correctly imple-

mented as what it is designed by the modeler. Validation corresponds to the �delity

control of a model. Finally, accreditation is the process to decide based on both veri-

�cation and validation information whether a model is practically useful according to

the acceptability criteria.

Tumor model VV&A is still very challenging currently from the point of view of both

model validation and accreditation. Validation is very hard for cancer modeling because

of the shortage of the experimental data that can be actually used by cancer modelers,

since most experimental oncologists seem to be more interested in the molecular working

mechanisms within single cells. Besides, cells of di�erent tumors usually show distinct

phenotypes. Consequently, most current cancer modelers can only study few types of

tumors. For cancer model accreditation, the problem is even worse, since there are

hardly any criteria to the best of our knowledge. In a word, the VV&A of cancer

computer models still in its very infant stage.

In order to validate our models, we simulate the growth of the EMT6/Ro mammary

carcinoma, more speci�cally, the avascular growth of EMT6/Ro MTSs, since abundant

experimental data are available about this cell line [7, 175, 176, 179�186].

5.2 The Model

As TUGME is designed to be a simulation framework, its interfaces can be imple-

mented �exibly by users, which usually asks for modi�cations to some of its modules.

For example, if one wants to introduce a new biochemical molecule as the cell cycle

controller, the cell cycle model should be modi�ed. In addition, the transport and

metabolism of the molecule should be implemented too. The basic way to construct a

tumor model in TUGME is to choose one implementation (if several ones are provided)

for each modular interface and then assemble them together. Of course, the implemen-

tations of a modular interface can be the default ones provided by TUGME or those

implemented by users themselves, however, it is the user's responsibility to guarantee

the compatibility of the chosen implementations.

TUGME consists of �ve modules, as it has been detailedly introduced in section 4.3

in chapter 4. By now, two cell agent models are available, namely voroCell and

voroStemCell which additionally takes into account the stem cell features of tumor
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cells compared with voroCell. For representing the morphology of single cells and

topology of multiple cells, the radical Voronoi tessellation (the voroPP interface) is

provided with three types of boundary conditions. The cell motion is treated over-

damped using the Newton's second law, where two cell-cell contact force models are

provided, namely HertzModel and JRKModel. The transport and metabolism models of

biochemicals, including oxygen, glucose, cell metabolites and GFs are provided. Finally,

several cell cycle models are provided, and they are distinguished by how the cell

cycle phases are modeled, whether CSC features are taken into account and how the

switch between the G1 and G0 phases are handled. Based on the current models of

each module in TUGME, many combinations of them may be reasonable to carry out

simulations. Furthermore, some parameters of a model can be varied too. In a word, a

lot of possible cancer models can be constructed by just directly assembling the existing

implementations of the modules provided by TUGME.

The models used in our serious simulations consist of the following modular models.

First, the cell agent model is voroStemCell. Second, the periodic boundary condition

is applied. Third, the JRKModel model is chosen for modeling the cell-cell mechan-

ics. Forth, oxygen and glucose are taken into account as the biochemical controllers

of tumor cell cycle, and the physical volume of cells is treated as the biomechanical

controller (see �gure 5.1). Finally, based-on the de�ned biochemical and biomechanical

cell cycle controllers, the cell cycle model that consists of the G1 and the SG2M phases

are embodied with the rule that a cell �nishes the G1 phase by directly entering the

G0 phase. Speci�cally, the thresholds for tumor cell quiescence and necrosis of both

oxygen and glucose are given such that a tumor cell will change its cell cycle state

at the G0 phase when one of the concentrations of oxygen and glucose drops below

its corresponding thresholds. Satisfying all the biochemical requirements, a cell can

only enter the SG2M phase after its physical volume is no less then the given volume

threshold for cell division. Figure 5.1 shows more details about this cell cycle model.

5.3 Parameter Settings

Most parameters of our models are summarized in table 5.1.
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Figure 5.1: Flowchart illustrating the state transitions of an entire cell cycle consid-
ering oxygen, glucose and cell volume as controllers. A Tumor cell becomes necrotic
if one of the concentrations of oxygen and glucose drops down to the de�ned necrotic
thresholds. Similar checks on cell quiescence are done after the necrotic conditions
have been passed (necrotic conditions are not met). If the quiescent requirements on
the concentrations of both oxygen and glucose are satis�ed (quiescent conditions are
not met either), the volume of the cell is checked to guarantee that it can proceed
its cell cycle only when it has actually obtained enough volume for its division. Once
passing this �nal checkpoint, it can de�nitely �nish the rest cell cycle phases and �-
nally divides into two daughter cells which immediately start the next cell cycle from
the G1 phase. Since CSC features are taken into account. The daughter cells may be
a CSC or a common tumor cell, which depends on the type of the mother cell. After

using up the proliferative potential, a common tumor cell executes apoptosis.
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5.4 Results and Discussion

Based on the parameters given in table 5.1, a series of simulations of di�erent conditions

of oxygen and glucose are carried out. The simulation results are presented as follows.

5.4.1 Population Growth

We look at the growth dynamics of tumor cell population and compare our results with

the experimental data by Freyer and Sutherland [7]. We neglect the tumor growth of

the �rst 3 days by setting the initial tumor cell number according to the experiments.

We do so because it is said that tumors undergo nothing particularly interesting but

only exponential growth during this period of time [7].

Figure 5.2 illustrates the cell population growth curves and the corresponding exper-

imental results under the four conditions introduced in the beginning of this section.

Our simulation results agree with the experiments in all cases.
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Figure 5.2: The cell population growth curves of tumors under di�erent conditions
of oxygen and glucose concentrations, namely 0.28 and 16.5 (case a), 0.07 and 16.5
(case b), 0.28 and 0.8 (case c), 0.07 and 0.8 (case d) (the unit is mmol · L−1). The
dashed red lines are the simulation results. The solid blue diamonds and green circles

are the corresponding experimental results taken from Ref. [7].
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5.4.2 Distribution of Nutrients

To analyze the dynamics of oxygen and glucose, their distribution over the simula-

tion space and time are presented in �gure 5.3. This �gure shows some important

phenomena. First, clear concentration gradients for both oxygen and glucose have be

obtained from the boundary to the geometric center of the simulation domain. Sec-

ond, after some days (about 7-12 days), an inner lower plateau starts to form up

inside tumor tissues, which corresponds to tumor necrosis (the gray inner regions of

the tumor tissues shown in �gure 5.4). Similar oxygen concentration gradients have

been observed in experiments with the same tumor cell line but di�erent oxygen and

glucose conditions [183, 184, 188]. Third, the di�usion distance of oxygen obtained

from our simulations are about 200-250µm, which agrees well with that measured in

experiments [184, 189].

5.4.3 Invasive Morphology

Besides, we also investigate the invasive morphology of growing tumors. The radical

Voronoi tessellations of multicellular tumor tissues of our simulations are shown in

�gure 5.4. From this �gure one can get a �rst impression of the morphological di�erences

between tumors in di�erent simulation conditions.

To quantitatively evaluate the surface roughness of tumor tissues, we calculate the cell

number density, which is normalized and plotted (dashed red lines) in �gure 5.5. For

doing so, we assume a hyperbolic tangent function (A · tanh(x/δ + B) + C). This

functional form is expected for the interface between two densities. In particular, we

estimate the half width δ form the �t (solid blue lines) to the normalized cell density

curves. A larger δ indicates a rougher surface. The value of δ (see �gure 5.6) in the

four simulated cases shows that the tumor surface gets rougher with the boundary

conditions getting lower for both oxygen and glucose.

We have not taken part of the cells inner tumors into account in evaluating the tumor

surface roughness, since the cell density increases for tumor necrotic core, which is

because necrotic cells are designated to undergo volume shrinkage in our models. We

believe doing so does not a�ect the investigation on the tumor surface roughness.
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Figure 5.3: Molecular distributions of glucose and oxygen during simulations. Four
lines from the above to the bottom (solid blue, dashed green, dashed red, and dashed
cyan) in the 8 panels of this �gure represent the concentrations of oxygen and glucose

on day 0, 9, 16 and 23 separately.
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Day 7 Day 14 Day 21

(a)

(b)
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Figure 5.4: Illustration of the growth morphology of the simulated MTSs under
di�erent conditions of oxygen and glucose. Cases (a), (b), (c), (d) from the top to the
bottom represent the four conditions of oxygen and glucose introduced in �gure 5.2.
The light gray region stands for the MTS necrotic core, which is surrounded by the
dark brown rim of quiescent cells. The green layer consists of actively proliferative

cells.

5.4.4 Discussion

We have constructed computational cancer models using TUGME. These models are

characterized by considering dynamics at multiple spatial-temporal scales of the tumor-

world using continuum and discrete approaches. In these models, individual cells un-

dergo proliferation to grow and replicate themselves, which is controlled by the bio-

physical and biochemical conditions of the environment.

Figure 5.2 shows that tumors grow at a relatively fast rate for nearly 9-11 days in

cases (a), (b) and (c) and for about 7 days in case (d). According the statistics of our

simulation results, the cell number doubling times in our simulations are larger than

the de�ned cell cycle duration (24 h) of our model, the reason is that some cells are

temporarily trapped in the G0 phase because of not e�ciently getting enough volume

for cell division. This phenomenon re�ects that the space competition between tumor
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Figure 5.5: Comparison the MTS surface roughness under di�erent nutrient condi-
tions. Panels (a), (b), (c) and (d) represent four simulated cases. The dashed red lines
are the simulation results averaged over 10 simulation runs under the same condition
but di�erent number of initial tumor cells. The solid blue lines are the corresponding
curves �tted using the hyperbolic tangent formula A · tanh(x/δ +B) +C. A larger δ

indicates a rougher surface. The averaged values of δ are plotted in �gure 5.6.

cells can be so �erce during this fast growth stage that cell proliferation is a�ected. The

initial cell number doubling times measured in experiments are 20-24 h [7], however,

they are about 27-30 h in our simulations. Our explanation to this phenomenon is as

follows. First, it can be easily seen from �gure 5.2 that the cell population growth curves

agree quite well with the experiment data, which indicates that the the cell number

doubling times in our simulations are reasonable. The starting point of our simulation

corresponds to roughly the third day of experiments, whose initial doubling times have

been measured in the very beginning (the �rst day). Our simulation results conference

with the conclusion that the growth rates slow as the tumor spheroids grow [7].

Our simulations indicate possible conditions for EMT6/Ro cells to undergo quiescence

and necrosis. Speci�cally, the glucose concentration below the threshold 0.14mmol·L−1

or the oxygen concentration below the threshold 0.016mmol·L−1 lead to cell quiescence.

Even lower concentrations such that glucose concentration is below the threshold 0.016

mmol · L−1 or oxygen concentration below the threshold 0.0082 mmol · L−1 result in

cell necrosis. The value of the oxygen necrotic threshold (0.0082 mmol · L−1) is taken
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Figure 5.6: Evaluation of the MTS surface roughness. The averaged values of δ are
18.8, 27.1, 26.2, 42.8 (µm) in the cases (a), (b), (c) and (d) with standard deviations

2.9, 3.9, 2.2, 5.5.

from [176]. All other three parameters are assumed and adjusted in order to make our

simulations agree with experiments.

For the nutrient that dominates tumor cell necrosis, its concentration level of the in-

ner plateau (see �gure 5.3) is below its corresponding necrotic threshold instead of

zero, which indicates that the concentration of plateau of nutrients may be necrotic-

threshold-dependent. Necrotic tumor cells are nutrient-independent, hence, there is a

sharp decrease of nutrient consumption during the transition from quiescent to necrotic

stat of cells, which results in a small �uctuation of nutrient concentrations during sim-

ulations. Since, the necrotic thresholds for oxygen and glucose are actually very small,

their concentrations may drop below zero in our simulations, which is impossible in

reality. We notice that this unrealistic phenomena only shortly occur at initial stage

of tumor necrosis. After the plateau forming up, the concentration level of the plateau

keeps above zero, which can be seen from �gure 5.3 clearly.

The metabolic rates of nutrients by tumor cells directly determine their distribution

over space and time. In the table 5.1, we have de�ned the averaged metabolic rates

for oxygen and glucose. Obviously, they are valid only when both oxygen and glucose

are su�cient for tumor cells, since the metabolic rate of oxygen and glucose varies

signi�cantly when one of them is not e�ciently perfused [129, 175, 176]. Some tumor

models assume that the metabolic rate of nutrients reduces by half for the quiescent cell

compared with that of the proliferating cell. This assumption is too coarse compared

with the roughly 100 times di�erences of the glucose metabolism found by Warburg

in experiments [129]. In fact, we have tried this strategy in our early simulations,
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which sometimes led to abnormal �uctuations to both oxygen and glucose concentra-

tions during simulations. The side e�ect of the �uctuation is that some tumor cells

are frequently switch between the actively proliferative and quiescent states, which is

obviously not realistic. Our strategy to this problem is that the metabolic rates of

oxygen and glucose by tumor cells are varied according the concentration levels of each

other. For example, when glucose is su�cient, its metabolic rate may be doubled once

the oxygen concentration level is extremely low (approaching the necrotic threshold of

oxygen). In general, the metabolic rate may have at most 6 times variations (Umax
Umin

,

Umax and Umin stand for the largest and the smallest metabolic rate) for oxygen and

24 times for glucose in our model. And the rule is generally developed based on the

experimental measurements published in [175].

Besides, one may also notice that tumor necrosis is triggered when one of the con-

centration of oxygen and glucose drops below the de�ned necrotic threshold in our

simulations, which means that tumor cell necrosis actually happens even one of oxy-

gen and glucose concentration is still much higher than their corresponding necrotic or

even quiescent threshold (see the glucose concentration in cases (a) and (b) and the

oxygen concentration in cases (c) and (d)). This is just our rule of interactions between

tumor cells and nutrients. Some researchers may think that our rule is not realistic

since they think tumor cells are able to survive as long as one of oxygen and glucose

is still su�cient. Hence, only both of oxygen and glucose concentrations being criti-

cally low can lead to tumor cell necrosis. The underlying idea our rule is that tumor

necrosis can actually happen when the oxygen level is high (at least not low enough to

cause cell necrosis) for some solid tumors in reality. Hence, our inference would be that

whether tumor cells can survive with only one of oxygen and glucose being su�ciently

supplied may be cell-type-dependent. We do not declare that the rule used by us is

universally applicable. One has to vary the rule accordingly. Furthermore, only the

necrotic threshold of oxygen are taken from experiments, while all the other thresholds

are assumed. We believe that experimental measurements of the critical concentration

level of oxygen and glucose or other biochemicals for tumor cell quiescence and necrosis

would be promising to improve the validity our tumor models.

Another observation of our simulation is that the correlation between nutrient supply

conditions and the tumor growth morphology. Although the growth of tumors in our

model was jointly in�uenced by both of the biomechanics and nutrients, the cases that

nutrients dominate tumor growth obtained a better agreement with experiments in cell

population dynamics (case (b), (c) and (d) shown in �gure 5.2). The surface roughness

of tumors in these cases points to the conclusion that a worse nutrient supply generally

gives rises to a rougher the tumor surface. Our explanation to this phenomenon is that

ine�cient nutrient supply allows tumor cells di�erent growth advantages, especially
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those on the tumor surface (surface cells). Cells with larger growth advantages grow

fast, which results in more �uctuations to the tumor surface. Furthermore, the further

a branch of surface cells extends, the more growth advantages of the involved cells may

get. The sparse distribution of proliferating cells on tumor surface shown in �gure 5.4

partially proves the validity of this explanation. Besides, this explanation agrees with

the �nding that the tumor surface roughness is mainly due to contour cells that posses

higher proliferating probability [190]. Our conclusion is not contradictory to that the

tumor invasive morphology is a�ected by the biomechanical interactions between cells,

which has been discussed in other models [60]. We believe that the invasive morphology

of a tumor may vary if the biomechanical e�ects from normal cells surrounding the

tumor tissue are not considered, since surface cells have more free space to move in this

case.

5.5 Conclusion

We developed a multi-scale computational model for the multi-scale modeling of 3D

tumor tissue growth, integrating continuum and discrete approaches for modeling dif-

ferent aspects of tumors. Cells in the model undergo proliferation interacting with

each other and the environment biomechanically and biochemically. Simulation of the

EMT6/Ro cell line showed the validity of the model as well as the joint e�ects of both

biomechanics and nutrients on the tumor invasive morphology.

Angiogeneis is a critical step for the malignant transformation of tumors. The growth of

tumors with a blood vessel network is of more practically relevance. Hence, modeling

the blood vessel growth and specifying more real boundary conditions for RDEs of

nutrients would be of interest. Another extension would be to introduce more cell cycle

controllers, such as some cell metabolic products and some GFs.





Chapter 6

Computational Complexity of

Agent-based Multi-scale Cancer

Modeling

One of the main challenges of agent-based multi-scale cancer modeling is the explosive

growth of the computational cost of model solving with increasing tumor system size

and model complexity. Current models have to comprise a lot between model complex-

ity and �delity. We investigate the computational complexity of agent-based multi-scale

cancer modeling and simulation using a model that has been introduced in chapter 5 of

this thesis. We evaluate optional methods for attacking the computational bottleneck

of our models and choose the best one in terms of the performance and the stability.

This work can be important reference for researchers working on single-cell-oriented

cancer modeling.

6.1 Introduction

6.1.1 Multi-scale Complexity of Tumor Growth

Cancer is widely accepted as a gene disease. Its development involves mutations or

lesions to certain genes which are generally categorized into the proto-oncogenes and

the tumor suppressor genes. The expression of these altered genes may give rise to new

capabilities to tumor cells [4]. To perform its functionalities, a cell needs energy which

is generated by biochemical reactions consuming nutrients like glucose and oxygen. In-

ner necrosis is common to solid tumors, which is believed to be tightly related to the

84
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ine�cient supply of oxygen [191, 192], since most tumor cell necrosis is found accom-

panied by hypoxia (the depletion of oxygen). In addition, cells interact mechanically

with its nearest neighbors, the ECM and the extracellular materials. These biomechan-

ical interactions are thought to in�uence the growth, invasion and metastases of tumor

cells [10, 16, 17, 133, 137, 159].

Tumor systems are multi-scale by nature, involving the micro-scale dynamics of molecules

and atoms to the macro-level dynamics of multicellular tissues and organs [4]. The dy-

namics of di�erent spatial-temporal scales are not independent but rather nonlinearly

coupled, producing the complex physiology of tumor systems. This complexity requires

a holistic understanding [31], since single scale investigation is insu�cient to uncover

cross-scale mechanisms. Most research e�orts by oncologists have focused on uncov-

ering the molecular mechanisms regulating the behavior of individual tumor cells, for

example, some cell signaling pathways have been reported particularly up- or down-

regulated (activated or deactivated) in certain tumor cells [112, 113, 115�117], which

has promoted developing new anti-cancer drugs by targeting these signaling pathways.

However, molecular-scale mechanisms solely are not enough to explain the acquirement

of drug resistance of cancer cells during chemotherapy. The mechanisms of how the fac-

tors except genetic reasons, like the cell-cell mechanical interactions, nutrients supply,

pH values and various ions in intra- and inter-cellular space, a�ecting the growth and

survival of tumor cells at multiple spatial-temporal scales are still not well understood.

It is di�cult to address this problem with traditional biological means due to the lim-

itations of spatial-temporal resolution of current apparatuses for both carrying out

experiments and conducting measurements. As an auxiliary method, computer-based

modeling and simulation has been playing an increasingly important role in investigat-

ing the problem with the rapid advances of both computer hardware and software in

past two decades.

6.1.2 Simulation Time and Wall-clock Time

Two conceptions, namely simulation time and simulation wall-clock time, in computer-

based modeling and simulation are worthy of special attention, when the computational

cost of model solving particularly concerns a modeler. Simulation time is a measure-

ment of the evolving time of the real system, while the time needed for running a

simulation is termed simulation wall-clock time. These two conceptions are important,

because wall-clock time can be much shorter, roughly the same as and longer than

simulation time. These three cases correspond to three categories of simulations which
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are faster-than-real-time simulations, real-time simulations and slower-than-real-time

simulations.

This classi�cation is important with respect to the purposes of simulations. Faster-

than-real-time simulations allow to investigate processes whose evolution time can be

too long (hundred years or even longer) to study directly with some other methods.

For example, many cosmological problems fall into this category. Another application

of faster-than-real-time simulations would be to see the long-term consequence of a

dynamic process. For example, relatively short-term (months or several years) e�ects

of low-dose ionizing radiations are practical to study in reality [193], however, long-

term e�ects (decades or even longer) of even lower-dose ionizing radiations are still

di�cult to study directly in the laboratory. Real-time simulations are usually used to

predict short term dynamics of systems. For example, real-time cancer simulations are

used to test the e�ects of therapies and to predict the survival time of people with

a cancer [194]. Slower-than-real-time simulations are commonly used to investigate

very small spatial-temporal scale system dynamics, for example, various biochemical

reactions, performing within tissue cells, which are too fast to monitor with current

experimental apparatuses. Most molecular dynamics (MD) simulations fall into this

category.

6.2 The Model

Tumor models used in the following tests have been detailedly introduced in chapter 5.

And most parameters remain the same and those varied here for certain tests will

be clari�ed particularly. As these models are coarse-grained, simulations based on

TUGME are expected to be faster-than-real-time or at least to be real-time. In other

words, the simulation wall-clock time should be no longer than the actual growth time

(simulation time) of the simulated tumors.

6.3 Evaluating the Computational Cost of Model Solving

As a clinically detectable tumor usually comprises about 108 cells, our tumor models

consist at least 104 cells.

All tests have been executed on a desktop computer with an Intel quad-core CPU,

i5-3470, with 6M cache and up to 3.6 (base frequency 3.2) GHz single core frequency.

The available RAM is 16 GB with designed frequency 1600 GHz. The operating system



Chapter 6. Computational Complexity of Agent-based Multi-scale Cancer Modeling 87

(OS) is Debian GNU/Linux 7 with Linux kernel version number 3.2.0-4-amd64. The

gcc version number is 4.6.3 (Debian 4.6.3-14).

6.3.1 Calculating the 3D Radical Voronoi Tessellation

The CPU time for calculating the 3D radical Voronoi tessellation using Voro++ has

been tested under di�erent numbers of cells. Figure 6.1 shows the results of this test. A

linear relation between the CPU time and the cell number is shown clearly in this �gure.

This result is of no big surprise to us, since Voro++ calculates the Voronoi information

of each cell independently, even though calculating the Voronoi information of two

neighboring cells can be done together as the neighboring relationship is symmetric.

By doing so, Voro++ doesn't store the Voronoi information of the cell calculated.

The original goal of this design is to minimize the memory usage and to facilitate

parallelizing this calculating process. As a result, Voro++ requires to recalculate the

Voronoi information whenever it is needed.
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Figure 6.1: Performance test of the Voro++ package. Red dots are the results of
our test. The solid green line is the linear least-square �tting. The slop of this line is

about 6.176 ∗ 10−5.

6.3.2 Solving the Linear System of Cell Motion

To �nd a proper numerical solver for our linear system of cell motion, the performance of

several numerical solvers provided by DUNE has been comparatively tested. The tested

solvers are the preconditioned stabilized bi-conjugate gradient method (BiCGStab), the

preconditioned conjugate gradient method (CG), the preconditioned gradient method

and the preconditioned loop method. The preconditioners include Gauss-Seidel (GS),

Jacobi (diagonal) (Jac), incomplete LU factorization (decomposition) (ILU(0) and
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ILU(1)), successive over-relaxation (SOR) and symmetric successive over-relaxation

(SSOR).

Figure 6.2 and table 6.1 show the results of this test. Di�erent solvers under di�erent

preconditioners (actually working ones) show distinct e�ciency of convergence. In

general, several conclusions can be drawn from the results. They are:

� CG and BiCGStab show similar e�ciency and they clearly outperform the other

solvers under the same preconditioner.

� The loop solver shows the worst e�ciency of convergence under the same precon-

ditioner compared with the other tested solvers.

� CG is not as stable as the other tested solvers. Its CPU time �uctuates largely

especially when it is preconditioned by Jac for large systems (see the upper right

panel in �gure 6.2).

� ILU(1) outperforms the rest preconditioners for all tested solvers.

� SSOR shows the worst performance for all tested solvers.

� In many cases (see panels in �gure 6.2 except the upper right one), GS and SOR

show very similar performance for the same solver.

� For BiCGStab, ILU(0), GS and SOR show similar performance (see the upper

left panel in �gure 6.2).

Two preconditioners, GS and SOR, do not work with CG, which correspond to the

empty columns in table 6.1 of CG. The reason is that CG requires a symmetric matrix

of a linear system, however, these two preconditioners yield an asymmetric matrix when

they are applied on a symmetric matrix like ours of the linear system of cell motion.

The cases when solvers sometimes fail to get a solution are marked as �failed� in this

table. As one can see from this table, these failures occur only for large systems. The

failure is de�ned by failing to reach the given accuracy within 8,000 iterations.

Some properties of the matrix of a linear system are essential to guarantee the exis-

tence of a solution (the convergence of numerical solvers). And some properties may

signi�cantly a�ect the rate of convergence of numerical solvers. Take the CG solver

as an example, it requires the matrix to be symmetric and positive-de�nite. Hence,

theoretically, one needs to mathematically prove that the matrix of a linear system

ful�lls the requirements of a solver before applying it. In the next section, we are going

to discuss some of the important properties of the matrix of our linear system of cell

motion.
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Figure 6.2: Performance test of four linear system numerical solvers, namely
BiCGStab, CG, Gradient and Loop preconditioned by GS, Jac, (ILU(0) and ILU(1)),

SOR, SSOR. Corresponding data can be found in table 6.1.

Table 6.1: Performance test of preconditioned linear system numerical solvers.

CPU time
Solver

GS Jac ILU(0) ILU(1) SOR SSOR
2.7103 0,419 0.474 0.445 0.43 0.414 0.471
2.2104 3.933 4.229 3.768 3.717 3.863 4.811
1.7105 33.907 40.780 31.877 30.231 33.96 45.285

BiCGStab

1.0106 226.323 275.398 226.515 166.705 221.469 346.464
2.7103 � 0.42 0.41 0.44 � 0.44
2.2104 � 4.17 3.72 3.73 � 4.26
1.7105 � 37.19 31.51 30.92 � 41.79

CG

1.0106 � 262.23 201.94 163.14 � 304.83
2.7103 0.51 0.72 0.48 0.46 0.48 0.8
2.2104 4.93 8.32 4.20 3.99 4.97 8.67
1.7105 49.25 failed 40.03 34.25 51.20 121.19

Gradient

1.0106 268.23 failed failed 185.27 269.60 1642.72
2.7103 0.64 0.79 0.53 0.45 0.55 3.85
2.2104 6.16 8.6 4.76 4.12 5.89 48.16
1.7105 69.19 102.5 35.58 35.67 70.19 601.32

Loop

1.0106 433.97 684.25 failed 216.01 454.98 failed
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First of all, the matrix of our linear system is symmetric, since the neighboring relation-

ship between tumor cells is symmetric. The matrix actually takes the form (detailed

derivations can be found in appendix A)

Mij =


γi +

∑
k∈Ni

γik if i = j

−γij if i 6= j and if j ∈ Ni

(0)3×3 otherwise

(6.1)

where γi is the friction from the ECF on cell i, γij is the friction from contact neigh-

boring cell j and Ni is the number of contact neighbors.

However, the symmetry of the tumor cell neighborhood is not perfectly guaranteed

by the Voro++ package for the numerical accuracy limitations of computers. As it is

declared by the author of Voro++, this problem may happen when the contact area

between two direct neighboring cells is extremely small. Since a numerical tolerance is

given, where values smaller than this tolerance are replaced by zeros by Voro++. This

problem indeed occurred in our initial test of Voro++. In order to overcome it, we

made the tolerance of Voro++ much smaller than its default value. Afterwards, this

problem has not occurred in our further tests. Furthermore, physical variables (like the

contact force between tumor cells) related to the cell neighboring relationship usually

vanish when the contact area between cells becomes extremely small according the the

cell-cell contact force model. Thus, even though this problem happens in reality, it

would not a�ect the overall accuracy of our model too much. In a word, we assume

that the matrix of our linear system of cell motion is symmetric.

Secondly, our linear system matrix is very sparse. From equation 6.1, one can see that

for any row i (it actually represents three rows of the three directions of cell velocity in

three dimensions) of the matrix, only the elements, whose corresponding cells actually

neighbor to cell i, are non-zero. Hence, the averaged number of neighbors of tumor

cells indicates the sparsity of our linear system matrix.

To quantitatively see the sparsity of the matrix of our linear system, the averaged

number of neighbors of single tumor cells of di�erent cell radius sizes, changing within

its theoretical size range, has been evaluated. The simulation domain size is �xed to

be 400×400×400 (µm). The number of cells increases from 18,000 to 64,000 (doubled

twice), which roughly corresponds to the decrease of the cell radius size from 9.1 to

6.25 (µm). According to our test, the averaged number of neighbors of a single tumor

cell is around 15 with a standard deviation of about 4, which means that there are

on average about 15 non-zero elements in each row of the matrix of our linear system

of cell motion. Another important point is that this number almost keeps unchanged
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even if the cell density is doubled in our test. Comparing this number with the number

of tumor cells (more than 104) in our serious simulation indicates that the matrix is

actually extremely sparse. Figure 6.3 shows the matrix sparsity of two small tumor

systems.

Figure 6.3: Illustration of the matrix sparsity of the linear system of cell motion.
The two panels represent di�erent matrix sizes, 75×75 and 3000×3000, which corre-
spond to the tumor systems of 25 and 1000 cells. Blue square dots, which look much
larger in size in the left panel than that in the right panel because of the rescale of the
�gures according to the computational domain size, except those diagonal ones, in
this �gure represents a 3×3 matrix, indicating the neighboring relationship between

cells of i (row) and j (column).

Thirdly, the matrix of the linear system of cell motion is positive-de�nite. The detailed

mathematical proof of this conclusion can be found in appendix B.

The larger the condition number of the matrix of a linear system, the worse it is

conditioned. A bad conditioned matrix indicates that a small perturbation of b may

lead to a large variation of the numerical solution of the system of the form Ax = b.

Hence, it is important to evaluate the condition number of the matrix of a linear system.

The condition number of a matrix depends on the type of the norm (‖ · ‖) applied.
Here, we choose the l2 norm which is usually noted as ‖ · ‖2. As the matrix M of our

linear system of cell motion is symmetric and positive-de�nite, its condition number

can be formulated as:

κ(M) =
λmax
λmin

(6.2)

where λmin and λmax are the minimal and the maximal eigenvalues of M respectively.

Next, we will evaluate λmin and λmax of the matrix of our linear system based on the

Rayleigh quotient [195], the inequality is:

λmin 6
xᵀMx

‖x‖22
. 6 λmax (6.3)
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According the derivation in appendix B, one can get:

vᵀMv = 6πµ

N∑
i=1

Ri‖vi‖22 + η
∑

((i,j)∈E)∧(i<j)

Aij‖(13×3 −Pij
⊥) · (vi − vj)‖22. (6.4)

Supposing that Rmin is the minimal radius of tumor cells, one can get:

vᵀMv > 6πµRmin

N∑
i=1

‖vi‖22 = 6πµRmin‖v‖22 (6.5)

when

vi = vj (∀i, j ∈ N) ∧ (i 6= j) (6.6)

where N is the total number of cells.

Similarly, one can get:

vᵀMv 6 6πµRmax‖v‖22 + η
∑

((i,j)∈E)∧(i<j)

Aij‖(13×3 −Pij
⊥) · (vi − vj)‖22 (6.7)

where Rmax is the maximal cell radius and

E = {(i, j) : (1 ≤ i ≤ N) ∧ (j ∈ Ni)} ⊂ I × I, I = {1, 2, ... , N} . (6.8)

Supposing that Amax is the maximal contact area between cells and λPmax is the maximal

eigenvalue of the projection matrix 13×3 −Pij
⊥ (λPmax = 1), one can get:

vᵀMv 6 6πµRmax‖v‖22 + ηAmax
∑

((i,j)∈E)∧(i<j)

‖(vi − vj)‖22. (6.9)

Applying the triangle inequality twice to ‖(vi−vj)‖22, The inequality 6.9 can be refor-

mulated into:

vᵀMv 6 6πµRmax‖v‖22 + ηAmax
∑

((i,j)∈E)∧(i<j)

2(‖vi‖22 + ‖vj‖22). (6.10)

Since the neighboring relationship is symmetric, the above inequality can be reformu-

lated as:

vᵀMv 6 6πµRmax‖v‖22 + ηAmax
∑

((i,j)∈E)

(‖vi‖22 + ‖vj‖22). (6.11)

Supposing that the maximal number of neighboring cells is Nmax, which means that

each term ‖vi‖22 (1 6 i 6 N) can repeatedly show up at most 2Nmax times in the
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summation
∑

((i,j)∈E)(‖vi‖22 + ‖vj‖22). Hence, the inequality 6.11 can be reformulated

into:

vᵀMv 6 6πµRmax‖v‖22 + ηAmax2Nmax

N∑
i=1

‖vi‖22 (6.12)

which equals to:

vᵀMv 6 (6πµRmax + 2ηAmaxNmax)‖v‖22. (6.13)

According to the inequality 6.3, 6.5 and 6.13, one can get:

λmin = 6πµRmin,

λmax = 6πµRmax + 2ηAmaxNmax.
(6.14)

Hence, the condition number of the matrix of the linear system of cell motion is:

κ(M) =
6πµRmax + 2ηAmaxNmax

6πµRmin
. (6.15)

From this equation, one can directly see that the condition number of the matrix of our

problem is bounded since all the parameters except Nmax in this equation are constant.

As we have mentioned early that the averaged number of neighboring cells is about 15

with a standard deviation about 4, Nmax is also a �nite integer.

More importantly, the condition number is independent on the system size (the number

of cells), which indicates that the number of iterations needed by the numerical solvers

of linear systems should has an upper limit. In order testify this inference, we look

at the number of iterations over increasing the system size. The result is shown in

�gure 6.4. From this �gure, one can see clearly that the number of iterations stops

increasing at the system size of roughly 104 cells.

6.3.3 Solving RDEs Using FEM

Although the RDE model of biochemicals like oxygen and glucose is continuous, they

have to be solved by problem discretization over space and time, since our simulations

are advanced in a time-step manner. We use FEM (the Finite Element Method) to

solve the RDEs of both oxygen and glucose. DUNE, used to solve the linear system of

cell motion, is actually designed to do this. We call its FEM interfaces directly.

Here, we discuss the spatial-temporal scale that is reasonable for cancer modeling, since

FEM is a grid- or mash-based coarse-grained method. For normal reaction-di�usion

processes with well-mixed molecules and a domain free for molecules to react and

di�use, a �ner grid normally gives rises to a better solution of FEM. However, a mul-

ticellular tumor tissue is obviously not a free space for oxygen or glucose molecules
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Figure 6.4: Number of iterations (averaged over 10 samples) needed by the numer-
ical solver (BiCGStab) to converge with increasing the system size (the number of

tumor cells).

to react and di�use. The grid size of FEM is highly relevant to the spatial-scale at

which the RDE model works, since various substances, such as the ECM, the cellu-

lar membranes and the organelles within cells, may signi�cantly a�ect the di�usion of

biochemical molecules and most biochemical reactions only take place at some speci�c

organelles of cells, for example, cellular respiration is basically performed within the

cell mitochondria. The experimentally measured di�usion coe�cients of both oxygen

and glucose are smaller than that in water [173, 187]. Obviously, these experimen-

tally measured di�usion coe�cients are the approximation at the macro-scale. Hence,

it is isotropic in all directions in three dimensions. However, if the size of the FEM

grid cell is smaller than that of single tumor cells, which means the spatial-scale of the

model is smaller than single tumor cells, the di�usion coe�cient should not be isotropic

anymore, as it obviously di�ers in the directions of parallel and perpendicular to the

cellular membrane. This micro-scale heterogeneity of the di�usion coe�cient is actu-

ally hard to measure in experiments. Furthermore, we believe that anisotropic di�usion

coe�cients do not make too much sense for the overall accuracy of the coarse-grained

cancer models like ours. Hence, we strongly recommend to use a FEM grid with its

cell (the grid element) size larger than that of single tumor cells. Of course, the FEM

grid should not be too coarse either considering the accuracy of the solutions. We use

a grid whose grid cell volume is about 8 times of that of a single tumor cell in average

in our serious simulations.
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6.3.4 Performing Cell Proliferation

The CPU time needed for performing cell proliferation depends directly on the number

of cells and the complexity of the cell cycle model. Our experiences of this is that

performing cell cycle to all cells currently does not take too much of the overall CPU

time compared with the other modular parts of our tumor model. One can see this

from the test to be discussed in the next section.

6.3.5 Computational Bottlenecks

To �nd out the potential computational bottleneck of our tumor models, we look at

the CPU time needed for solving each module of our models. Speci�cally, the modules

include: calculating the 3D radical Voronoi tessellation, solving the linear system of cell

motion, solving the RDEs of both oxygen and glucose and conducting cell proliferation.

The numerical solver and preconditioner for solving the linear system of cell motion

are BiCGStab and ILU(1). The computational domain size is 1000×1000×1000 (µm)

with the initial tumor cell number 3.5 ∗ 105, which corresponds to an actual tumor of

about 1 mm in diameter. The number of tumor cells is 4.62577 ∗ 105 at the end of

the test. The FEM grid is a 30 × 30 × 30 lattice. The result of this test is averaged

over 100 simulation steps and shown in �gure 6.5. This �gure shows that solving the

linear system of cell motion actually takes about 81% of the overall CPU time of each

simulation step. Obviously, it is the computational bottleneck. Calculating the Voronoi

tessellation and solving the RDEs of both oxygen and glucose take averagely about 11%

and 7% of the entire CPU time of each simulation step separately. And cell cycle takes

only about than 1% of the CPU time.

If our tumor models are used to simulate the growth of tumors with more than 106 cells,

the simulation time step size has to be much larger than the total CPU time (about

110 seconds) needed for model solving in each simulation step in order to achieve

faster-than-real-time simulations. Real-time tumor simulations may be also useful to

predict the growth and invasion of tumor tissues in order to anticipate the survival time

of persons with a cancer. Otherwise, our tumor models can only be used for cancer

system analysis, for example, analyzing some of the working mechanisms within tumor

cells.
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Figure 6.5: CPU time required by model solving. VT stands for calculating the 3D
radical Voronoi tessellation. LS stands for solving the linear system of cell motion.
RD is solving the RDEs of oxygen and glucose. CC represents performing cell pro-
liferation. The number of tumor cells is 4 ∗ 105. The FEM grid applied to solve the
RDEs is a 30 × 30 × 30 lattice. The condition for numerical solvers to converge is

theoretically described by ‖bi+1 − b‖2 < ‖b‖2 · 10−10.

6.4 Summary

This chapter generally shows the possible computational complexity, which agent-based

multi-scale cancer modeling may involve. If faster-than-real-time simulations are ex-

pected, the tumor model complexity has to be properly controlled, otherwise, innovative

approaches are required to speed up simulations, like making use of the computational

powder of high-performance computers whose computational potential has not been

well explored in cancer modeling by now.

Our simulations have been focused on the growth of avascular tumors, whose size is

much smaller than that of a clinically detectable tumors (with more than 108 cells). It

is not di�cult to anticipate that the computational challenges of modeling tumors of

that size according to the tests presented in this paper when single-cell-oriented tumor

models are applied. In general, these is no doubt that current computational challenges

will become even severe for large tumor systems. More importantly, new challenges will

show up gradually with increasing tumor size, for example, the memory cost of models

may easily exceed the memory limit of a single computer.





Chapter 7

Summary and Future Work

7.1 Summary

A tumor is multi-scale and multi-factorial by nature. Understanding its working mech-

anisms at multiple spatial-temporal scales is of great help to the innovation of cancer

therapies. Inspired by the wide application of the modeling and simulation techniques

in investigating complex systems, we aim at attacking the tumor development problem,

which is very hard to study by traditional biological means, by building cancer models

and carrying out simulations on computers.

7.1.1 Development of a Tumor Growth Modeling and Simulation

Software Environment

Some biological, biochemical and biophysical properties di�er for distinct types of tu-

mors, which requires to change the tumor model accordingly. Model modi�cations

may also be required for testing di�erent hypotheses. Model reuse can help reduce the

costs of developing new models and avoids repeatedly creating similar ones. Aiming at

facilitating model reuse, we have developed an agent-based multi-scale tumor growth

modeling and simulation software environment TUGME. Models in TUGME use dis-

crete and continuous approaches to couple the biological, biochemical and biophysical

processes of multicellular tumor systems. The spatial scale of models is restricted

from individual cells, which are modeled by single agents, to multicellular tumor tis-

sues, which have the size (the diameter) of several centimeters. The temporal scale of

models is limited from seconds to months. TUGME is implemented using the C++

programming language. It is basically built on an existing software DUNE, which is

designed for numerically solving PDEs using grid-based methods. TUGME is highly

97



Chapter 7. Summary and future work 98

modularized, which makes it easy to maintain and extend. In chapter 4, the modules

of TUGME and how to use it to build a tumor model and to carry out a simulation

have been introduced in details.

7.1.2 Modeling the Growth of the EMT6/Ro MTSs

To show that TUGME is actually applicable, we have developed a tumor model by as-

sembling the modular parts provided by TUGME to simulate the growth of MTSs of a

tumor cell line, EMT6/Ro in chapter 5. In our model, each cell interacts biochemically

and biomechanically with its surroundings, such as other cells and the extracellular

materials. The morphological deformation of individual cells and the neighboring re-

lationship among cells are represented by a 3D Voronoi tessellation. Driven by the

mechanical forces, cells move in an over-damped manner, which is described by New-

ton' second law, where the linear equations of cell motion of all cells are coupled by

cell velocity, which results in a linear system. Oxygen and glucose are taken as the

nutrients that directly a�ect cell proliferation. The transport and metabolism of them

are realized by RDEs, where the transport and cell metabolism of nutrient molecules

are modeled as molecular di�usion and reaction respectively. Based on the model, a

series of simulations have been carried out and simulation results are compared with

experimental results. A good agreement of the tumor cell population growth between

our simulations and experiments shows both the validity of our model and the practi-

cal applicability of TUGME. We also look at the dynamics of oxygen and glucose over

simulation space and time, which is only partially compared with related experimental

data, since no one-to-one experiment has been found. Besides, we discuss the in�uences

of nutrient conditions on the invasive morphology of tumors. Our general conclusion is

that a less e�cient nutrient supply gives rise to a rougher tumor surface.

7.1.3 Evaluating the Computational Cost of Agent-based Multi-scale

Tumor Modeling

One of the main challenges of conducting agent-based multi-scale tumor simulations is

the growth of the computational cost with increasing the size and the complexity of

models. The computational challenge signi�cantly restricts the application of current

tumor models. In chapter 6, we have investigated this problem by evaluating the

computational bottleneck of our tumor model developed in chapter 5. For our model,

the bottleneck consists in solving the linear system of cell motion, which takes about

81% of the total CPU time of each simulation step. This result can be important

reference to people working on single-cell-oriented cancer modeling. In addition, we
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have tested several linear system numerical solvers in order to �nd the best one in

terms of the performance and the stability. According to our tests, the BiCGStab

method preconditioned by the ILU(1) preconditioner outperforms the other numerical

solvers we have tested. We have looked at some important properties of the matrix

of our linear system of cell motion. In general, it is extremely sparse, symmetric and

positive-de�nite. This result may help �nd more e�cient numerical solvers for the

linear system of cell motion.

7.2 Future Work

7.2.1 Testing Di�erent Hypotheses About Cell Dynamics

Multi-factors directly or indirectly in�uence the development of a tumor. The models

used in our simulations are relatively simple compared with the complexity of actual

tumor systems. Hence, there is a very large space to vary our tumor models, for

example, developing more realistic cell cycle rules by introducing more controllers of

relevant. Our nearest future work will generally focus in this direction.

7.2.2 Modeling Dynamics of Advanced Tumors

Angiogenesis after the avascular tumor growth stage is very interesting to many cancer

researchers, since it is critical for tumor malignant transformation and blocking it would

theoretically stop the incidence of a cancer in reality. Since angiogenesis is believed

driven by various GFs released by tumor cells, the production and transport of these

GFs can be easily modeled using the RDE interfaces of TUGME. The challenges of

doing so may be de�ning a proper distribution for the blood vessel network within the

normal tissues surrounding a tumor.

7.2.3 Modeling Drug Delivery

Some anti-cancer drugs, which have shown promising curative e�ects in laboratory

experiments, failed in clinical tests for many reasons, like its ine�cient delivery and/or

toxicity. Valid cancer models would be of great practical value to testing the curative

e�ects, the toxicity, the delivery etc of these drugs. The RDE interface of TUGME can

be adopted to model drug delivery. More importantly, drug delivery can be modeled

coupled with tumor growth, which would generally enable more persuasive simulation

results than solely modeling the the drug delivery process.
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7.2.4 Extending TUGME for Parallel Simulations

Modeling the growth of a tumor starting from one or several cells to a mature tumor of

millions of cells would be very meaningful to better understanding its whole developing

process. However, according to the tests presented in chapter 6, it would be very time-

consuming to model a tumor system with more than millions of cells using current

models similar to that provided by TUGME on a single computer. One way to address

this problem is to parallelize the model to take advantage of the high performance

computers. The most important direction of our future work is to extend TUGME with

parallel simulation support. As a matter of fact, the current implementation of TUGME

has already partially considered the requirements of model parallelization, for example,

the UUID is only used in the parallel simulation case. Model parallelization usually

requires system partition, which further leads to the so-called boundary problems of

sub-systems. Take tumor model as an example, one cell needs to know the information

of its direct neighbors that may be assigned to another sub-system. Besides, load-

balance closely related to system partition is a key problem in parallel simulations. In

a word, model parallelization is much more complex to implement compared with the

sequential one.



Appendix A

Derivation of the Linear System of

Cell Motion

This work is initially done by Jörg Eisele and then reformulated by the author of the

thesis.

In 3D space, Stokes friction coe�cient of cell i can be formulated in the tensor form,

γi = 6πµRi13×3,

where µ is the dynamic viscosity of the ECM. R is cell radius, and 13×3 is the identity

matrix in three dimensions. The Stokes friction force on cell i exerted by the ECM is

Ffi = −γi · vi.

The friction Ffij on cell i exerted by the neighboring cell j is proportional to the relative

velocity between them:

Ffij = −γij · (vi − vj) ,

where vi and vj stand for their velocities. The friction is characterized by the friction

coe�cient

γij = c‖P‖ + c⊥P⊥ ,

where c‖ and c⊥ are the friction coe�cients parallel and orthogonal to contact face

between cell i and cell j, and

P⊥ = n · nᵀ
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projects vectors on the vector space spanned by a vector

n = (n1, n2, n3)ᵀ

normal to the interface between cell i and cell j, and

P‖ = 13×3 −P⊥

projects vectors on the vector space spanned by the contact face between cell i and cell

j. It is assumed that c⊥ = 0 and c‖ = ηAij , where η is the contact friction coe�cient,

and Aij is the contact area. The friction coe�cient between cells can be reformulated

into:

γij = ηAij(13×3 −P⊥).

In summary, the total force on cell i is

Fti =
∑
j∈Ni

Fcij −
∑
j∈Ni

γij (vi − vj)− γivi ,

where Fcij is the contact force on cell i exerted by cell j, and Ni is the set of neighbors

of cell i.

Assuming that cell motion is over-damped, and that is Fti = 0. According to the

Newton's second law, one gets

0 = Fti =
∑
j∈Ni

Fcij −
∑
j∈Ni

γij (vi − vj)− γivi .

The equation can be reformulated as

∑
j∈Ni

Fcij = γivi +
∑
j∈Ni

γij (vi − vj) ,

Combining like terms, it is �nally reformulated as

∑
j∈Ni

Fcij = (γi +
∑
j∈Ni

γij )vi −
∑
j∈Ni

(γij vj) .

Equations of motion of all cells together result in the linear system:

Fc = Mv ,
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where the block vector

Fc =


∑

k∈Ni
Fc1k∑

k∈N2
Fc2k

...∑
k∈NN

FcNk

 ∈
(
R3
)N

(N is the total number of cells) and the block matrix

M ∈
(
R3
)N × (R3

)N
with

Mij =


γi +

∑
k∈Ni

γik if i = j

−γij if i 6= j and if j ∈ Ni

(0)3×3 otherwise.

and

v =


v1

v2

...

vN

 ∈
(
R3
)N

with

vi = (ni1, ni2, ni3)ᵀ

Thus, vectors Fc and v consist of N blocks, each representing a cell. Each block has 3

entries, which represent x, y and z coordinates associated with the corresponding cell.

M is a matrix of N ×N blocks. And each of these blocks is a 3× 3 matrix.

The time-step size is dynamically adjusted according to the velocity of cells. It is chosen

such that the maximal displacement of cells is controlled to ensure both accuracy and

e�ciency. The idea is that the maximal timestep displacement MTD (see table 5.1) is

�xed for all cells during each time step. Hence, the time-step size ∆t is calculated by

dividing MTD using the maximal cell velocity Vmax: ∆t = MTD/Vmax.

Theoretically, the matrix of the linear system of cell motion is symmetric and very

sparse. There are e�cient algorithms speci�cally optimized for solving large sparse

linear systems. DUNE, the Distributed and Uni�ed Numerics Environment is a modular

toolbox for solving partial di�erential equations (PDEs) with grid-based methods [143].

Many linear system solvers have been implemented or integrated in this toolbox, such

as the preconditioned conjugate gradient (CG) method, the preconditioned biconjugate

gradient stabilized (BiCGStab) method and superLU. We have tested the performance

of some these solvers under di�erent preconditioners for our linear system of cell motion,



Appendix A. Derivation of the liner system of cell motion 104

and the results have been presented in chapter 6.3.2. Considering both of the e�ciency

and the stability of them, we have actually used the preconditioned BiCGStab solver

with the ILU(1) preconditioner.



Appendix B

Positive-de�niteness of the Matrix

of the Linear System

A matrix M is positive-de�nite if and only if the inequality

xᵀMx > 0, ∀ x 6= 0 (B.1)

is ful�lled. For the linear system of cell motion, x is the velocity v of cells.

According to the derivation of the linear system of cell motion introduced in appendix A,

the target inequality can be reformulated as:

vᵀMv =
N∑
i=1

vᵀ
i ·

γi · vi +
∑
j∈Ni

γij · (vi − vj)

 > 0, ∀ v 6= 0 (B.2)

where v is the block vector of cell velocity and vi is the velocity of cell i (TID). Ni is

the set of the TID of neighboring cells. Expending the middle part of inequality B.2,

one gets:
N∑
i=1

vᵀ
i · γi · vi +

N∑
i=1

∑
j∈Ni

vᵀ
i · γij · (vi − vj). (B.3)

To facilitate the derivation, we de�ne a set

E = {(i, j) : (1 ≤ i ≤ N) ∧ (j ∈ Ni)} ⊂ I × I, I = {1, 2, ... , N} (B.4)
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based on the neighboring relationship of cells, where N is the number of cells. Based

on this de�nition, formula B.3 can be reformulated into:

N∑
i=1

vᵀ
i · γi · vi +

∑
((i,j)∈E)∧(i<j)

[vᵀ
i · γij · (vi − vj) + vᵀ

j · γji · (vj − vi)]. (B.5)

as the neighboring relationship is symmetric.

According the de�nition of Pij
⊥, one can get:

Pji
⊥ = (−nij) · (−nᵀ

ij) = (nij) · (nᵀ
ij) = Pij

⊥ (B.6)

where nij is the normalized normal vector of the contact face between cell i and cell j.

Hence, one gets:

γji = ηAji(13×3 −Pji
⊥) = ηAij(13×3 −Pij

⊥) = γij (B.7)

since equation Aji = Aij holds as Aij is the contact area between cells.

Based on equation B.7, formula B.5 can be reformulated into:

N∑
i=1

vᵀ
i · γi · vi +

∑
((i,j)∈E)∧(i<j)

[vᵀ
i · γij · (vi − vj)− vᵀ

j · γij · (vi − vj)]. (B.8)

Combining like terms in formula B.8, one gets:

N∑
i=1

vᵀ
i · γi · vi +

∑
((i,j)∈E)∧(i<j)

[(vi − vj)
ᵀ · γij · (vi − vj)]. (B.9)

Replacing γi and γij with their de�nitions in formula B.9 results in:

N∑
i=1

vᵀ
i · 6πµRi13×3 ·vi +

∑
((i,j)∈E)∧(i<j)

[(vi−vj)
ᵀ · ηAij(13×3−Pij

⊥) · (vi−vj)] (B.10)

which can be further reformulated into:

N∑
i=1

vᵀ
i ·6πµRi13×3·vi+

∑
((i,j)∈E)∧(i<j)

[(vi−vj)ᵀ·ηAij ·(13×3−Pij
⊥)ᵀ·(13×3−Pji

⊥)·(vi−vj)],

(B.11)

since equation

(13×3 −Pij
⊥)ᵀ · (13×3 −Pij

⊥) = (13×3 −Pij
⊥)2 = 13×3 −Pij

⊥ (B.12)
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holds for the symmetric projection matrix 13×3 −Pij
⊥.

Formula B.11 now can be �nally reformulated into:

6πµ
N∑
i=1

Ri‖vi‖22 + η
∑

((i,j)∈E)∧(i<j)

Aij‖(13×3 −Pij
⊥) · (vi − vj)‖22. (B.13)

The value of the term 6πµ
∑

i∈N Ri‖vi‖22 (‖ · ‖2 stands for the l2 norm of a vector) of

formula B.13 is always positive for non-zero velocity v, as π is a positive constant, µ is

a positive parameter and Ri is positive. The value of the rest term of this formula is

non-negative since η and Aij are positive. Hence, the value of the entire formula B.13

is positive, which is that the inequality

vᵀMv > 0, ∀ v 6= 0 (B.14)

holds.



Appendix C

Brief Introduction to Finite

Element Method

Most partial di�erential equation (PDE) models of real systems are hard or even impos-

sible to solve analytically, while an approximated solution using numerical methods is

more practical to get. Though a lot of computations can be involved for the numerical

methods to solve PDEs, it can be easily done (implemented) on computers. The Finite

Element Method (FEM) is one of those numerical methods commonly adopted.

In order to explain the basic idea of FEM, a very simple PDE in one dimension (1D)

is used here. The PDE reads:

− u′′(x) = f(x), in I = (a, b), a, b ∈ R

u(a) = u(b) = 0
(C.1)

where u(x) denotes the variable of interest evolving over space. f(x) represents a term

that can in�uence the values of u(x). I ∈ R1 is the spatial interval that the equation

works within.

The basic idea of FEM is to construct a piecewise function uh(x) to approximate u(x),

that is uh(x) ≈ u(x), using a set of piecewise functions ϕi(x) that are de�ned on

the non-overlapping sub-intervals (elements) Ii (i ∈ (1, 2..., N), N is the number of

elements) which is a partition of the computational interval I. Normally, the set of

piecewise functions are chosen such that they actually de�ne a functional space Vh,

and they are the basis of the functional space. The way to construct uh(x) is to linear

combine of the basis functions, which is the famous ansatz equation:

uh(x) =
i=N∑
i=0

αiϕi(x) (C.2)
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where ϕi(x) is the basis function i, and N is the dimension of Vh. Once the basis

functions are chosen. The problem of �nding u(x) now changes to �nding the coe�-

cients αi (i ∈ (0, 1, ..., N)). Since u(x) are zero at the end points a, b of the e�ective

computational interval I, the ansatz equation can be simpli�ed into:

uh(x) =

i=N−1∑
i=1

αiϕi(x). (C.3)

After this simpli�cation, the number of unknowns is reduced from N + 1 to N − 1.

For ϕi(x) (i ∈ (0, 1, ..., N)), being the basis of the functional space Vh is only one

important characteristic. Some other characteristics are important for reducing the

calculations necessary for solving αi (i ∈ (0, 1, ..., N)). The other characteristic is

described as:

ϕi(x) =

 1, x = xi, i ∈ (0, N + 1)

0, otherwise
(C.4)

where xi is a point within the computational domain. The reason why this characteristic

can help reduce calculations will be explained next.

The so-called hat functions are typical piecewise basis functions commonly used in

implementing FEM. In 1D case, one typical expression of the hat functions is given by

ϕi(x) =


x−xi−1

xi−xi−1
, i ∈ Ii

xi+1−x
xi+1−xi , i ∈ Ii+1

0, otherwise.

(C.5)

The graph of hat functions look like hats as it is shown in �gure C.1, where ϕi(x) is

nonzero only in the interval Ii (xi − xi−1) and Ii+1 (xi+1 − xi).

Figure C.1: Hat functions ϕ(x) in 1D case. Ii is the sub-interval i.

To carry out FEM, the �st step is to reformulate the original PDE to the so-called weak

form. In this example, it is multiplied by a so-called test function v(x) and integrated
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on its both sides. This yields:∫
I
−u′′(x) · v(x) =

∫
I
f(x) · v(x). (C.6)

When test functions are strongly forced to vanish at the end points a, b of the e�ective

computational interval I, the equation C.6 can be further reformulated into its weak

form by applying the rule of integration by parts on the left hand side. This yields:∫
I
u′(x) · v′(x) =

∫
I
f(x) · v(x). (C.7)

From �gure C.1, one can �nd that all the basis functions except ϕ0(x) and ϕN (x)

actually vanish at a, b of I. Hence, the test functions can be the basis functions beside

the two exceptions, where the rest basis function de�nes a new functional space Vh,0.

This method is also called Galerkin method.

For each test function ϕj(x) (j ∈ (1, 2, ..., N − 1)), replacing uh(x) by the ansatz C.3

and reordering the items, the weak form of the PDE now is changed into:

i=N−1∑
i=1

αi

∫
I
ϕ′i(x) · ϕ′j(x) =

∫
I
f(x) · ϕj(x). (C.8)

Denoting
∫
I ϕ
′
i(x) · ϕ′j(x) = aij and

∫
I f(x) · ϕj(x) = bj separately. Obviously, aij is

equivalent to aji. Hence, one can get the linear system of equation

Mᵀα = Mα = b (C.9)

where M = (aij)(N−1)×(N−1), α = (α1, α2, ..., α(N−1))
ᵀ and b = (b1, b2, ..., b(N−1))

ᵀ.

Now, one can see why the property expressed by C.4 can reduce the calculations.

According to the de�nition given by C.5, one can get the results easily (supposing

j > i):

ϕi(x) =


∫
I ϕ
′
i(x) · ϕ′j(x) =

∫
Ii−1+Ii

ϕ′i(x) · ϕ′j(x), j = i∫
I ϕ
′
i(x) · ϕ′j(x) =

∫
Ii
ϕ′i(x) · ϕ′j(x), j = i+ 1

0, otherwise

(C.10)

and

bj =

∫
I
f(x) · ϕj(x) =

∫
Ii−1+Ii

f(x) · ϕj(x). (C.11)

It is obvious that more partitions (larger N) will produce better approximation of

u(x), however, the computational costs will increase accordingly. In reality, one could

try di�erent number of partitions and compare the solutions in order to get an accepted
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one. Besides, the matrix M is symmetric and very sparse, which can be seen easily

from equation C.10. These two characteristics can contribute signi�cantly to reduce

the computational cost of solving large linear systems.

Using the simple 1D case example, we have explained the basic ideas of FEM. For PDEs,

for example, RDEs (time-dependent PDEs), the ideas developed in the above section

have to be extended. Next, the derivation of FEM for solving RDEs is introduced.

A general form of the RDE can be described as:

∂u

∂t
= ∆u+ f, in Ω ∈ Rd × (0, T ) (d = 3)

u = gD, on ∂ΩD

∂u

∂n
= gN , on ∂ΩN

and u = u0 in Ω at t = 0

(C.12)

where Ω is the space, within which the equation works. ∂ΩD and ∂ΩD represent the

Dirichlet and the Neumann (natural) boundary condition separately.

The weak form of this RDE reads:∫
Ω

∂u

∂t
v +

∫
Ω
∇u · ∇v =

∫
Ω
fv +

∫
∂Ω
∇u · v. (C.13)

If the test functions v are also forced to vanish at the system boundaries ∂Ω. This

weak form can be �nally simpli�ed into,∫
Ω

∂u

∂t
v +

∫
Ω
∇u · ∇v =

∫
Ω
fv. (C.14)

For this PDE, since ansatz takes the form:

uh =

j=NI∑
j=1

αj(t)ϕj +

j=NI+NB∑
j=NI

αj(t)ϕj (C.15)

where NI and NB are the number of partitioning points for problem discretization

within the and on the boundary of the system space respectively, the derivative on

time t of uh reads:

∂uh
∂t

=

j=NI∑
j=1

∂αj(t)

∂t
ϕj +

j=NI+NB∑
j=NI

∂αj(t)

∂t
ϕj . (C.16)
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Replacing u and ∂u
∂t in equation C.14 accordingly using equations C.15 and C.16 and

reordering the items, one can get:

j=NI∑
j=1

∂αj(t)

∂t

∫
Ω
ϕjϕi +

j=NI∑
j=1

αj(t)

∫
Ω
ϕ′jϕ

′
i =

∫
Ω
fϕi

−
j=NI+NB∑
j=NI

∂αj(t)

∂t

∫
Ω
ϕjϕi −

j=NI+NB∑
j=NI

αj(t)

∫
Ω
ϕ′jϕ

′
i.

(C.17)

This equation can be reformulated into a linear system of semi-discrete ordinary di�er-

ential equations (ODEs), which takes the form:

A
∂α

∂t
+ Mα = b (C.18)

where A = (aij)NI×NI
with aij =

∫
Ω ϕjϕi, M = (aij)NI×NI

with mij =
∫

Ω ϕ
′
jϕ
′
i and

b = (b1, b2, ..., bNI
)ᵀ with bi =

∫
Ω fϕi−

∑j=NI+NB
j=NI

∂αj(t)
∂t

∫
Ω ϕjϕi−

∑j=NI+NB
j=NI

αj(t)
∫

Ω ϕ
′
jϕ
′
i.

Since time t is continuous, it has to be discretized over time to solve the linear sys-

tem C.18. The point is to eliminate the derivative of αi over time based on the temporal

discretization. There are lots methods for doing so, such as the Runge�Kutta method

family. Details of them are out of this brief introduction to FEM.



Appendix D

3D Radical Voronoi Cells Versus

Realistic Tumor Cells

The 3D radical Voronoi tessellation is physically quanti�ed as the Voronoi information

listed in table 4.2. Compared to the lattice-based models, this model enables much more

�exibility and accuracy of cell morphology and cell-cell topology as it has been discussed

in sections 2.2.3. However, it does mean that the 3D radical Voronoi tessellation is

perfect for representing realistic tumor tissues.

Cell-cell topology can be precisely represented by the topology of Voronoi cells, since

two physically neighboring tumor cells will de�nitely be neighbors in the Voronoi tessel-

lation. However, some Voronoi information is only a approximation. First, the volume

of a Voronoi cell is a rough approximation of the volume of a tumor cell. Second, the

area of contact surface between cells is not accurate either. According the algorithm of

the Voronoi tessellation, the entire computational domain is fully divided by Voronoi

cells, in other words, each point in the domain belongs to at least one and only one

Voronoi cell. However, the intra-cell space (extracellular space) exits in realistic tumor

tissues. Hence, the Voronoi cell volume takes part of the extracellular space as the

volume of tumor cells. As a result, the contact area between Voronoi cells is also larger

than that of realistic tumor cells.

Figure D.1 shows the possibility of the inaccuracy of representing a tumor tissue using

a 3D radical Voronoi tessellation. According to the algorithm of the radical Voronoi

tessellation, the polyhedra of these three groups of spheroids are exactly the same in the

three cases. In other words, the polyhedral volume and contact area between polyhdra

correspondingly equal in these cases. However, the realistic volume of these spheroids

is quite di�erent, which can be comparatively seen from this �gure. For the area of

contact surfaces, the two spheroids do not contact each other at all in the case of small
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radii (see the right most panel of this �gure), while their corresponding Voronoi cells are

obvious in contact with each other. The possible inaccuracy of the Voronoi tessellation

indicates that one has to choose the proper Voronoi information in serious simulations.

Larger radii Medium radii Smaller radii

Figure D.1: Radical Voronoi tessellations of two spheroids of di�erent radii. These
spheroids in di�erent groups have the same coordinates but di�erent radii.



Appendix E

Data Representation in TUGME

As it has been introduced early in section 4.3.2 in chapter 4 of this thesis, agent objects

of alive cells are stored in a C++ vector (states, data structure type: vector<cell>)

in TUGME. When randomly accessing states, we notice that it is very ine�cient to

do so using the UUID or the UID of cells, since one has to search over it by checking

the UUID or the UID when each cell is accessed until �nding the targeted one. To solve

this problem, the position, where the cell object is stored in states, is used as the

temporary identi�er (TID) of cells. It is temporary because the system is dynamically

changing, during which the agent objects of dead cells are removed from it and the

agent objects of newly born cells are added into it. However, within each simulation

time step, the TID does change. One can access the agent object e�ciently with the

TID (states[TID]).

For each cell, its Voronoi information (see table 4.2) is accessed using the similar idea.

The neighbors (neighbors, data structure type: vector<TID>), the area of the contact

faces (areas, data structure type: vector<double>) with neighbors, the normalized

normal vector of the contact faces (nnvectors, data structure type: vector<coordiante3D-

Type>, coordiante3DType represents the coordinate in three dimensions) are stored in

C++ vectors separately too. The same position within these vectors indicates the

same neighbor. Taking the ith element of them for example, neighbors[i], areas[i],

nnvectors[i] return the TID, the area and the normalized normal vector of the con-

tact face between current cell and its ith neighbor. One can see immediately that

states[neighbors[i]] returns the agent object of the ith neighbor. Accessing the

vertex of the Voronoi polyhedra is a little bit more complicated. A matrix like the

data structure (vertices, data structure type: vector<vector<VID�, VID is the iden-

ti�er of the coordinate of a vertex) is used to store this information via the surfaces

of each cell. All vertices of all Voronoi cell polyhedra are stored in one C++ vector
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(coordinates, data structure type: vector<coordiante3DType>). coordinates[i]

returns the coordinate of the ith vertex, where i is the vertex identi�er (VID). For a

cell, vertices[i] returns the vector that holds the VIDs of vertices of the contact

face with the ith neighbor (please keep in mind that i is not the TID of the cell but

the position in these vectors, neighbors, areas, nnvectors and vertices, and it is

the neighbors[i] that actually returns the TID of the ith neighbor of the current

cell). vertices[i][j] returns the VID of the jth vertex of the contact face with the

ith neighbor. Hence, coordinates[vertices[i][j]] actually returns the coordinate

(data structure type: coordiante3DType) of the vertex.

The design using identi�ers instead of the real data makes the access of them indirect,

while it saves the memory cost signi�cantly, especially for the data that are shared

among several cells, hence, has to be repeatedly stored by all the holders, for example

each vertex of the Voronoi polyhedra is shared by at least three Voronoi cells. In

addition, it is obviously that this design improves the access e�ciency to these data

structures too.
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