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Abstract

We develop a misspecification test for the multiplicative two-component GARCH-

MIDAS model suggested in Engle et al. (2013). In the GARCH-MIDAS model a

short-term unit variance GARCH component fluctuates around a smoothly time-

varying long-term component which is driven by the dynamics of an explanatory

variable. We suggest a Lagrange Multiplier statistic for testing the null hypothesis

that the variable has no explanatory power. Hence, under the null hypothesis the

long-term component is constant and the GARCH-MIDAS reduces to the simple

GARCH model. We derive the asymptotic theory for our test statistic and investi-

gate its finite sample properties by Monte-Carlo simulation. The usefulness of our

procedure is illustrated by an empirical application to S&P 500 return data.
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1 Introduction

The financial crisis of 2007/8 has highlighted the need for a better understanding of the

interplay between risks in financial markets and economic conditions. Among others,

Christiansen et al. (2012), Paye (2012) and Conrad and Loch (2014) provide recent evi-

dence for the counter-cyclical behavior of financial volatility.1 In particular, Conrad and

Loch (2014) show that changes in the secular component of stock market volatility can

be anticipated from variables such as the term spread, housing starts or survey expec-

tations on future industrial production. These findings are clearly relevant from a risk

management perspective. Prior to the last financial crisis, risk management exclusively

focused on short-run risks – such as Value at Risk at the one or 10-day horizon – and,

hence, failed to address the risk that risk will change (Engle, 2009). Determining these

long-term risks, however, requires statistical models which allow for effects of changes in

relevant economic variables on the conditional variance of asset returns.

For this reason, an increasing amount of empirical studies has employed the GARCH-

MIDAS framework introduced by Engle et al. (2013) (see, e.g., Asgharian et al., 2013,

Conrad and Loch, 2014, 2015, Dorion, 2013, Opschoor et al., 2014). In a GARCH-MIDAS

specification, the conditional variance consists of two multiplicative components, whereby

economic conditions enter through the smooth long-term component around which a

short-term unit variance GARCH component fluctuates. Besides predictive evidence,

however, it is still an open question whether and which macroeconomic and financial vari-

ables are significant drivers of volatility. This is the case because standard procedures

for misspecification testing in GARCH models do not cover the case of (exogenous) ex-

planatory variables. As most of them also require additive separability of the additional

component under the alternative, their adaption to a general GARCH-MIDAS structure

is not straightforward.2

We develop a misspecification test for the multiplicative two-component GARCH-

MIDAS model. In particular, we propose a Lagrange Multiplier (LM) statistic for testing

the null hypothesis that the long-term component is constant. Thus, under our null

hypothesis, the GARCH-MIDAS model reduces to a simple GARCH. Note that Wald-

type tests like simple t- or F -tests are not straightforward to employ in this context, as

1Their findings complement and extend the earlier work of Officer (1973) and Schwert (1989).
2For recent results on properties and estimation of GARCH models with explanatory variables that

enter in an additive fashion see Han and Kristensen (2014) and Han (2015).
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there exists no asymptotic theory yet for the general case of macroeconomic effects in

the GARCH-MIDAS model. The most recent theoretical results by Wang and Ghysels

(2015) are specific to long-term components that are driven by realized volatility and

only hold in a restrictive parameter space which does not admit our null hypothesis. For

our LM test statistic, we provide a detailed derivation of the asymptotic properties. The

arguments in the derivation rely on the results for the quasi-maximum likelihood estimator

(QMLE) for pure GARCH models in Francq and Zaköıan (2004). The structure of the

proof follows similar lines as the arguments in the proof of Theorem 2 in Halunga and

Orme (2009), who consider general misspecification tests for GARCH models. However,

Halunga and Orme (2009) focus on estimation effects from the correct specification of

the conditional mean and consider additive components only. In our set-up, the volatilty

components are multiplicative, causing substantial differences in the likelihood and test

statistic. For simplicity, we assume that returns have mean zero, thus abstracting from

estimation effects from the mean. In order to derive the asymptotic distribution of the

test statistic, we require the standard assumptions on the GARCH parameters and the

innovation term for the pure GARCH model. In addition, our test needs assumptions

on the moments of the explanatory variable as well as on the observed (return) process.

In a Monte-Carlo simulation, we find good size and power properties in finite samples.

Moreover, we illustrate the usefulness of our procedure by an empirical application to

S&P 500 return data.

Our test statistic is also closely related to the ‘ARCH nested in GARCH’ test for

evaluating GARCH models as proposed by Lundbergh and Teräsvirta (2002). While

it is possible to consider their ‘nested ARCH component’ as our long-term component

with a specific choice for the explanatory variable, the specification of their short-term

component is fundamentally different from ours. Under the alternative, in their short-

term component the squared observations are not divided by the long-term component,

which implies that the short-term component is not a GARCH process and, thereby,

leads to a different test indicator. In the Monte-Carlo simulation, we show that even if

we modify their test in order to allow for a general explanatory variable, the difference in

the specification of their short-term component leads to a considerable loss in power in

comparison to our test statistic. The loss in power is the stronger the larger the ARCH

parameter is and the more the long-term component fluctuates.

Finally, our work complements recent research on misspecification testing in mul-

tiplicative component models of the smooth transition type by Amado and Teräsvirta
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(2015), in the Realized GARCH model by Lee and Halunga (2015) and on the estimation

of semiparametric multiplicative component models by Han and Kristensen (2015).

The plan of the paper is as follows. In Section 2, the GARCH-MIDAS model is

introduced and the LM test statistic is derived. This section also contains the main

asymptotic results. Section 3 provides some finite sample evidence in a Monte-Carlo

study. In Section 4, we illustrate how the test can contribute to modeling S&P 500 return

data. Section 5 concludes. All proofs are contained in the Appendix.

2 Model and Test Statistic

In Section 2.1, we first introduce the GARCH-MIDAS specification of Engle et al. (2013)

and then discuss the null hypothesis of our test. We derive the likelihood function and the

test indicator in Section 2.2 and present our main result on the asymptotic distribution

of the test statistic in Section 2.3. Finally, Section 2.4 provides a comparison with the

‘ARCH nested in GARCH’ test.

2.1 The GARCH-MIDAS Model

We define the log-returns as given by

εt = σ0tZt, (1)

where Zt is independent and identically distributed (i.i.d.) with mean zero and variance

equal to one. σ2
0t is measurable with respect to the information set Ft−1 and denotes the

conditional variance of the returns. We consider the following multiplicative decomposi-

tion of σ2
0t into a short-term and a long-term component:

σ2
0t = h̃∞0t τ̃ 0t (2)

The terminology of decomposing σ2
0t into a short- and a long-term component follows

Engle et al. (2013). In our setting, the long-term component is the one that is driven

by (exogeneous) explanatory variables and, typically, is smoother than the short-term

component.

The short-term component is specified as a mean-reverting unit variance GARCH(1,1):

h̃∞0t = (1− α0 − β0) + α0

ε2t−1

τ̃ 0,t−1
+ β0h̃

∞
0,t−1 (3)
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On the other hand, the long-term (MIDAS) component depends on the K lagged values

of a (nonnegative) explanatory variable xt:

τ̃ 0t = σ2
0 + π̃0

K∑

k=1

ψ0kxt−k (4)

with MIDAS weights ψ0k ≥ 0 summing to one. A common choice for determining the

ψ0k is the Beta weighting scheme. In this case, ψ0k = ψ0k(ω01, ω02), whereby the param-

eters ω01 and ω02 determine the Beta weights. The sign of the effect of xt on long-term

volatility can be inferred from the parameter π̃0. Note that in equation (4) we consider a

specification in which the explanatory variable and the returns are observed at the same

frequency. Alternatively, one might also assume that the explanatory variable is observed

at a lower frequency than the returns (see, e.g., Conrad and Loch, 2014). Nevertheless,

our long-term component can be considered as a MIDAS specification in the sense that

it parsimoniously models the dependence of τ̃ 0t on (possibly) many lags of xt in terms of

only two parameters ω01 and ω02 via the flexible weighting scheme ψ0k(·).
Following Conrad and Loch (2014), we denote the model with (exogenous) explanatory

variables as GARCH-MIDAS-X. Engle et al. (2013) and Wang and Ghysels (2015) consider

a specification with the realized volatility, RV
(N)
t =

∑N−1
j=0 ε

2
t−j , of the last N days as the

explanatory variable. We refer to this model as GARCH-MIDAS-RV. The long-term

component can then be rewritten as

τ̃ 0t = σ2
0 + π̃0

N+K−1∑

l=1

c0lε
2
t−l,

where the c0l’s are combinations of the ψ0k’s and
∑N+K−1

l=1 c0l = N
∑K

k=1 ψ0k = N (see

Wang and Ghysels, 2015).3 In other words, in this alternative representation the squared

returns can be considered as being the explanatory variables.

For the specific case of a GARCH-MIDAS-RV model, Wang and Ghysels (2015) pro-

vide conditions for the strict stationarity of εt and establish consistency and asymptotic

normality of the QMLE. However, the proof of the asymptotic normality of the QMLE

rests on the assumption that π̃0 > 0 and ψ0k > 0 for k = 1, . . . , K and, hence, their

framework does not directly allow us to test the null that the lagged RV
(N)
t are jointly

insignificant (see Assumption 4.3 in Wang and Ghysels, 2015). In addition, there is no

3Let νt =
√
h̃∞0tZt. Then, εt =

√
τ̃0tνt can be interpreted as a semi-strong ARCH process with

multiplicative GARCH error (see Wang and Ghysels, 2015).
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asymptotic theory for the general GARCH-MIDAS-X model yet. We circumvent these

problems by deriving an LM test for the hypothesis that xt does not affect the long-term

component. The LM test requires estimation of the model under the null only. To derive

our test statistic, we re-parameterize equation (2) as follows:

σ2
0t = h̃∞0t τ̃ 0t = (σ2

0h̃
∞
0t )

(
τ̃ 0t
σ2
0

)
= h̄∞0t τ 0t

The short-term component can then be expressed as

h̄∞0t = ω0 + α0

ε2t−1

τ 0,t−1
+ β0h̄

∞
0,t−1 (5)

with ω0 = σ2
0(1 − α0 − β0) (provided that α0 + β0 < 1). We denote the vector of true

parameters in the short-term component as η0 = (ω0, α0, β0)
′. Similarly, the long-term

component can be rewritten as

τ 0t = 1 +
K∑

k=1

π0kxt−k = 1 + π′
0xt (6)

with π0k = σ−2
0 π̃0ψ0k, π0 = (π01, . . . , π0K)

′ and xt = (xt−1, . . . , xt−K)
′.

Using this notation, we are interested in testing H0 : π0 = 0 against H1 : π0 6= 0.

Under H0 the long-term component is equal one and the GARCH-MIDAS-X reduces to

the nested GARCH(1,1) with unconditional variance σ2
0 = ω0/(1 − α0 − β0). Note that

equation (5) is specified such that we can write

h̄∞0t = ω0 + (α0Z
2
t−1 + β0)h̄

∞
0,t−1

which means that εt/
√
τ 0t =

√
h̄∞0tZt follows a GARCH(1,1) both under the null and

under the alternative.

We make the following assumptions about the data generating process under H0.

Assumption 1. η0 ∈ Θ where the parameter space is given by Θ = {η = (ω, α, β)′ ∈
R

3|0 < ω < ω, 0 < α, 0 < β, α+ β < 1}.

Assumption 2. As defined in equation (1), let Zt be i.i.d. with E[Zt] = 0 and E[Z2
t ] = 1.

Further, Z2
t has a nondegenerate distribution and κZ = E[Z4

t ] <∞.

Assumptions 1 and 2 imply that
√
h̄∞0tZt is a covariance-stationary process with uncon-

ditional variance σ2
0. Further, by Jensen’s inequality, they imply that E[ln(α0Z

2
t +β0)] < 0

which ensures that under the null εt is strictly stationary and ergodic (see, e.g., Francq

and Zaköıan, 2004). Finally, the assumption on the existence of a fourth-order moment

of Zt is necessary to ensure that the variance of the score vector exists.
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2.2 Likelihood Function and Partial Derivatives

We denote the processes that can be constructed from the parameter vectors η = (ω, α, β)′

and π = (π1, . . . , πK)
′ given initial observations for εt and xt by h̄t and τ t. It is im-

portant to distinguish between the observed quasi-likelihood which is based on h̄t =
∑t−1

j=0 β
j(ω + αε2t−1−j/τ t−1−j) + βth̄0 and the unobserved quasi-likelihood function based

on h̄∞t =
∑∞

j=0 β
j(ω + αε2t−1−j/τ t−1−j) which depends on the infinite history of all past

observations. The unobserved Gaussian quasi-log-likelihood function can be written as

L∞
T (η,π|εT , xT , εT−1, xT−1, . . .) =

T∑

t=1

l∞t (7)

with

l∞t = ln(f(εt|η,π)) = −1

2

[
ln(h̄∞t ) + ln(τ t) +

ε2t
h̄∞t τ t

]
. (8)

Similarly, conditional on initial values (ε0, h̄0 = 0,x0) the observed quasi-log-likelihood

can be written as

LT (η,π|εT , xT , εT−1, xT−1, . . . , ε1, x1) =
T∑

t=1

lt (9)

with

lt = ln(f(εt|η,π)) = −1

2

[
ln(h̄t) + ln(τ t) +

ε2t
h̄tτ t

]
. (10)

2.2.1 First derivatives

In the following, we consider the unobserved log-likelihood function. We define the average

score vector evaluated under the null and at the true GARCH parameters as

D∞(η0) =


 D∞

η
(η0)

D∞
π
(η0)


 =

1

T

T∑

t=1

d∞
t (η0) =

1

T

T∑

t=1


 d∞

η,t(η0)

d∞
π,t(η0)


 ,

where d∞
η,t(η0) = ∂l∞t /∂η

∣∣
η
0
,π=0

and d∞
π,t(η0) = ∂l∞t /∂π

∣∣
η
0
,π=0

. Next, we derive explicit

expressions for d∞
η,t(η0) and d∞

π,t(η0). First, consider the partial derivative of the log-

likelihood with respect to η:

∂l∞t
∂η

=
1

2

[
ε2t

h̄∞t τ t
− 1

](
1

h̄∞t

∂h̄∞t
∂η

+
1

τ t

∂τ t
∂η

)
(11)

with ∂τ t/∂η = (∂xt/∂η)
′π. Under the null hypothesis, the long-term component reduces

to unity and the short term component simplifies to h∞t = h̄∞t |π=0 = ω + αε2t−1 + βh∞t−1.
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Note that h∞t corresponds to the standard expression of the conditional variance in a

GARCH(1,1). We then distinguish between

d∞
η,t(η) =

∂l∞t
∂η

∣∣∣∣
π=0

=
1

2

[
ε2t
h∞t

− 1

]
y∞
t (12)

with

y∞
t =

1

h̄∞t

∂h̄∞t
∂η

∣∣∣∣
π=0

=
1

h∞t

∞∑

i=0

βis∞t−i, (13)

where s∞t = (1, ε2t−1, h
∞
t−1)

′, and the corresponding quantity which is evaluated at η0:

d∞
η,t(η0) =

1

2

[
ε2t
h∞0,t

− 1

]
y∞
0,t, (14)

with h∞0,t = ω0 + α0ε
2
t−1 + β0h

∞
0,t−1 and y∞

0,t = (h∞0,t)
−1
∑∞

i=0 β
i
0s

∞
0,t−i.

The partial derivative with respect to π leads to:

∂l∞t
∂π

=
1

2

[
ε2t

h̄∞t τ t
− 1

](
1

h̄∞t

∂h̄∞t
∂π

+
1

τ t

∂τ t
∂π

)
, (15)

whereby the partial derivative of h̄∞t is given by

∂h̄∞t
∂π

= −α
∞∑

j=0

βj ε
2
t−1−j

τ 2t−1−j

∂τ t−1−j

∂π
. (16)

Since ∂τ t/∂π = xt + (∂xt/∂π)
′
π, we have ∂τ t/∂π|π=0 = xt and, hence,

d∞
π,t(η) =

∂l∞t
∂π

∣∣∣∣
π=0

=
1

2

[
ε2t
h∞t

− 1

]
r∞t (17)

with

r∞t = xt − α
1

h∞t

∞∑

j=0

βjε2t−1−jxt−1−j . (18)

Similarly as before, the corresponding expression evaluated at η0 is given by:

d∞
π,t(η0) =

1

2

[
ε2t
h∞0,t

− 1

]
r∞0,t (19)

with

r∞0,t = xt − α0
1

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−j . (20)

In summary, we have

D∞(η0) =
1

T

T∑

t=1

d∞
t (η0) =

1

2T

T∑

t=1

[
ε2t
h∞0,t

− 1

]
 y∞

0,t

r∞0,t


 . (21)
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Using that under H0: E[ε
2
t/h

∞
0,t] = E[Z2

t ] = 1, it follows that E[d∞
t (η0)|Ft−1] = 0 and

Var[d∞
t (η0)] = Ω =


 Ωηη Ωηπ

Ωπη Ωππ




=


 E[d∞

η,t(η0)d
∞
η,t(η0)

′] E[d∞
η,t(η0)d

∞
π,t(η0)

′]

E[d∞
π,t(η0)d

∞
η,t(η0)

′] E[d∞
π,t(η0)d

∞
π,t(η0)

′]




=
1

4
(κZ − 1)


 E[y∞

0,t(y
∞
0,t)

′] E[y∞
0,t(r

∞
0,t)

′]

E[r∞0,t(y
∞
0,t)

′] E[r∞0,t(r
∞
0,t)

′]


 . (22)

In the proof of Theorem 1 we will show thatΩ is finite and positive definite. This will allow

us to apply a central limit theorem for martingale difference sequences to 1√
T

∑T
t=1 d

∞
t (η0).

2.2.2 Second derivatives

In the subsequent analysis we also make use of the following second derivatives:

∂d∞
η,t(η)

∂η′ = −1

2

ε2t
h∞t

y∞
t (y∞

t )′ +
1

2

[
ε2t
h∞t

− 1

]
∂y∞

t

∂η′ (23)

and

∂d∞
π,t(η)

∂η′ = −1

2

ε2t
h∞t

r∞t (y∞
t )′ +

1

2

[
ε2t
h∞t

− 1

]
∂r∞t
∂η′ . (24)

We then define

Jηη = −E

[
∂d∞

η,t(η0)

∂η′

]
=

1

2
E[y∞

0,t(y
∞
0,t)

′] (25)

and

Jπη = −E

[
∂d∞

π,t(η0)

∂η′

]
=

1

2
E[r∞0,t(y

∞
0,t)

′]. (26)

Note that d∞
η,t(η0) corresponds to the score of observation t in a standard GARCH(1,1)

model and ∂d∞
η,t(η0)/∂η

′ to the respective second derivative. Under Assumptions 1 and 2,

it then directly follows from the results for the pure GARCH model in Francq and Zaköıan

(2004) that Jηη is finite and positive definite. Finally, note that Ωηη = 1
2
(κZ − 1)Jηη and

Ωπη = 1
2
(κZ − 1)Jπη. If Zt is normally distributed, then κZ = 3 and Ωηη = Jηη and

Ωπη = Jπη, respectively.

2.3 The LM Test Statistic

The LM test statistic will be based on the observed quantity Dπ(η̂) =
1
T

∑T
t=1 dπ,t(η̂),

where η̂ is the QMLE of η0 estimated under the null. We derive the asymptotic dis-

tribution of the test statistic in three steps. In the first step, we derive the asymptotic

9



normality of the average score evaluated at η0. We then show that the lower part of the

score evaluated at the QMLE can be related to the average score evaluated at η0 in the

following way:
√
TD∞

π
(η̂) = [JπηJ

−1
ηη

: I]
√
TD∞(η0) + oP (1) (27)

In the final step it is necessary to show that the observed quantity
√
TDπ(η̂) has the same

asymptotic distribution as
√
TD∞

π
(η̂). The LM statistic follows the usual χ2 distribution.

Since the test statistic will be based on the QMLE of η0, we can rely on the following

result from Francq and Zaköıan (2004). If Assumptions 1 and 2 hold and the model is

estimated under the null, the QMLE of the GARCH(1,1) parameters will be consistent

and asymptotically normal:

√
T (η̂ − η0)

d−→ N (0, (κZ − 1)J−1
ηη
) (28)

In the following theorem, we derive the asymptotic distribution of the average score

evaluated at η0. In order to ensure the finiteness of the covariance matrix of the average

score we assume that xt has a finite fourth moment. Additionally, we assume that the

long-term component is minimal in the sense that no equivalent representation which is

of lower order exists.

Assumption 3. xt ≥ 0 is strictly stationary and ergodic with E[|xt|4] < ∞. There exist

no a1, . . . , aS for the long-term component (6) such that
∑K

k=1 π0kxt−k =
∑S

s=1 asxt−s with

S < K.

For simplicity, we also assume that the explanatory variable takes nonnegative values

only. This assumption is in line with the GARCH-MIDAS-RV model or the specification

of Lundbergh and Teräsvirta (2002) with xt = ε2t/h0t (see Section 2.4). For testing

the GARCH-MIDAS-RV against the simple GARCH model, Assumption 3 requires that

under the null the observed process has a finite eighth moment: E[|εt|8] < ∞. The

corresponding constraints on the parameters of the GARCH(1,1) are provided in Francq

and Zaköıan (2010), equation (2.54). Further, Conrad and Loch (2014) have shown that

nonnegative explanatory variables such as the unemployment rate or disagreement among

forecasters are important predictors of financial volatility. Other potential variables could

be interest rates, the VIX or measures of political uncertainty. However, in order to allow

for variables that take negative values, it is straightforward to extend our results to the

case that the long-term component is given by some general nonnegative function τ 0t =

f(π′
0xt). For example, Opschoor et al. (2014) employ the specification τ 0t = exp (π′

0xt)

10



with the Bloomberg Financial Conditions Index as the explanatory variable. In addition,

see Remark 2 below.

Theorem 1. If Assumptions 1-3 hold, then

√
TD∞(η0)

d−→ N (0,Ω). (29)

In the proof we use the fact that Ωηη is finite and positive definite which follows from

Theorem 2.2 in Francq and Zaköıan (2004).

Next, we consider the asymptotic distribution of the relevant lower part of the score

vector evaluated at η̂. As an intermediate step, we show that Jπη can be consistently

estimated by

− 1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′ ,

where η̃ = η0 + oP (1). The result is presented in Proposition 1 in the Appendix. For

doing so, the following Assumption 4 is required which ensures that Jπη(η) is finite with

a uniform bound for all η ∈ Θ.

Assumption 4. E[|εt|4(1+s)] <∞ for some s > 0.

Note that in general ε2t = h̄∞0t τ 0tZ
2
t depends on η0 and π0. Under the null, ε

2
t = h∞0,tZ

2
t

depends on η0 only. In the proof of Proposition 1 we will use this observation to argue

that E[sup
η
|εt|4(1+s)] = E[|εt|4(1+s)].

Theorem 2. If Assumptions 1-4 hold, then

√
TD∞

π
(η̂)

d−→ N (0,Σ), (30)

with

Σ = Ωππ − JπηJ
−1
ηη
Ω′

πη

=
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)

′]− E[r∞0,t(y
∞
0,t)

′]
(
E[y∞

0,t(y
∞
0,t)

′]
)−1

E[y∞
0,t(r

∞
0,t)

′]
)
. (31)

Note that the covariance matrix Σ in equation (31) takes the same form as in Lund-

bergh and Teräsvirta (2002). The actual test statistic will be based on the observed

quantity Dπ(η̂). The following theorem states the test statistic and its asymptotic dis-

tribution.
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Theorem 3. If Assumptions 1-4 hold, then

LM = TDπ(η̂)
′Σ̂−1Dπ(η̂)

=
1

4T

(
T∑

t=1

[
ε2t

ĥt
− 1

]
r̂t

)′

Σ̂−1

(
T∑

t=1

[
ε2t

ĥt
− 1

]
r̂t

)
a∼ χ2(K) (32)

where η̂ = (ω̂, α̂, β̂)′ is the vector of parameter estimates from the model under the null,

ĥt = ω̂ + α̂ε2t−1 + β̂ĥt−1, r̂t = xt − α̂/ĥt
∑t−1

j=0 β̂
j
ε2t−1−jxt−1−j and

Σ̂ =
1

4T
(κ̂Z − 1)




T∑

t=1

r̂tr̂
′
t −

T∑

t=1

r̂tŷ
′
t

(
T∑

t=1

ŷtŷ
′
t

)−1 T∑

t=1

ŷtr̂
′
t


 (33)

with κ̂Z = 1/T
∑T

t=1(ε
2
t/ĥt − 1)2 is a consistent estimator of Σ.

Remark 1. Essentially, the test statistic checks for a correlation between the squared

standardized residuals from the model estimated under the null and the elements of the K-

dimensional vector r̂t. In empirical applications, the true MIDAS lag length is unknown.

Although the LM statistic can be easily computed for a variety of K’s, our simulation

experiments have shown that choosing K = 1 is typically sufficient in order to detect

whether xt has an effect on long-term volatility or not. Given that in applications the

explanatory variable is likely to be persistent, this result is not surprising because for

persistent xt all entries of r̂t will basically carry the same information so that choosing

K = 1 is sufficient.4 These considerations also suggest that our test is not suited for

selecting the true lag order of the GARCH-MIDAS-X.

Remark 2. Our result can be directly extended to the case that the long-term component

is given by some general nonnegative function τ 0t = f(π′
0xt) with f(0) = 1. In this

situation, it directly follows that equation (20) can be rewritten as

r∞0,t = f ′
0 · (xt − α0

1

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−j), (34)

where f ′
0 = ∂τ t

∂π′xt
|π=0. The expression for y∞

0,t is not affected. Since the factor f ′
0 cancels

out in equation (32), the LM statistic remains unchanged. Note that in this case we can

drop the assumption that xt is a nonnegative explanatory variable.

Moreover, it is straightforward to construct a regression version of our test (see also

Lundbergh and Teräsvirta, 2002). The corresponding test statistic is given by

L̃M = T
SSR0 − SSR1

SSR0

, (35)

4In the extreme case that xt is constant, r̂t collapses to a vector of zeros.
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where SSR0 =
∑T

t=1(ε
2
t/ĥt − 1)2 and SSR1 is the sum of squared residuals from a re-

gression of (ε2t/ĥt − 1) on r̂′t and ŷ′
t, where ŷt is obtained by inserting the respective

estimated quantities in equation (12). Hence, L̃M is simply T times the uncentered R2

of the regression.

Remark 3. Finally, it is interesting to consider two special cases that are nested within

our framework when there are no GARCH effects, i.e. when α0 = β0 = 0 and h̄∞0t = ω0. In

this case, the model under H0 has constant conditional and unconditional variance equal

to σ2
0 = ω0. Under the alterative, the conditional variance is given by Var[εt|Ft−1] = σ2

0τ t.

Without GARCH effects and under H0, the average score in equation (21) can be rewritten

as

D∞(η0) =
1

2T

T∑

t=1

[
ε2t
σ2
0

− 1

]
 σ−2

0

xt


 . (36)

Then, the regression-based test simplifies to regressing the squared returns on a constant

and xt and to computing TR2 which resembles the Godfrey (1978) test for multiplicative

heteroskedasticity. Finally, the Engle (1982) test for ARCH effects is obtained if we choose

xt−k = ε2t−k.

2.4 Relation to LM test of Lundbergh and Teräsvirta (2002)

Next, we compare our test statistic to the Lundbergh and Teräsvirta (2002) test for

misspecification in GARCH models. Their test is based on the following specification εt =√
h∞0t ξ0t =

√
h∞0t τ 0tZt, where h

∞
0t and τ 0t are defined as before. However, Lundbergh and

Teräsvirta (2002) make the specific choice of xt = ξ20t = ε2t/h
∞
0t for the explanatory variable

in the long-term component τ 0t in equation (6). Because under this assumption ξ20t =
√
τ 0tZt follows an ARCH(K), Lundbergh and Teräsvirta (2002) refer to this specification

as ‘ARCH nested in GARCH’ and test the null hypothesis H0 : π0 = 0. Although the

‘ARCH nested in GARCH’ is remarkably similar to the GARCH-MIDAS-X, there is an

important conceptual difference. Since the short-term component is based on h∞0t (instead

of h̄∞0t ), the squared observation ε2t−1 is not divided by τ 0t. Because of this,
√
h∞0tZt

follows a GARCH(1,1) process under the null but not under the alternative.5 Moreover,

5The observation that h∞0t does not follow a GARCH process under the alternative is closely related

to the argument in Halunga and Orme (2009) that the alternative models considered in Lundbergh and

Teräsvirta (2002) are not “recursive” in nature.
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it follows that ∂h∞t /∂π = 0 and, hence, in the Lundbergh and Teräsvirta (2002) setting

equation (20) reduces to r∞0,t = (ε2t−1/h
∞
0,t−1, ε

2
t−2/h

∞
0,t−2, . . . , ε

2
t−K/h

∞
0,t−K)

′. Thus, their

LM test statistic is based on [
ε2t

ĥt
− 1

]
r̂LTt , (37)

where ĥt = ω̂ + α̂ε2t−1 + β̂ĥt−1 and r̂LTt has entries ε2t−k/ĥt−k, k = 1, . . . , K. Intuitively,

equation (37) is used to test whether the squared standardized returns are still correlated,

i.e. follow an ARCH process.

In the following section, we will compare the ‘ARCH nested in GARCH’ test of Lund-

bergh and Teräsvirta (2002) to our new test in situations in which the true data generating

process (DGP) is a GARCH-MIDAS-X. We implement a regression-based version of the

test as in equation (35) but with r̂LTt instead of r̂t. We denote the test statistic by L̃MLT .

In addition, we consider a modified version of the Lundbergh and Teräsvirta (2002) test,

in which we allow for a general regressor xt. In this case, equation (20) is simply given

by r∞0,t = xt = r̂LT,mod
t . We denote the corresponding test statistic L̃MLT,mod. Since

r̂t − r̂LT,mod
t = α̂/ĥt

∑t−1
j=0 β̂

j
ε2t−1−jxt−1−j , our new test, L̃M , and L̃MLT,mod can be ex-

pected to perform similarly if, for example, α̂ ≈ 0. On the other hand, we expect that

our test will have better power properties than the modified Lundbergh and Teräsvirta

(2002) test when the ARCH effect is strong. Moreover, the expression for r̂t − r̂LT,mod
t

suggests that the difference in power between our new test and the modified Lundbergh

and Teräsvirta (2002) test should be stronger in situations in which xt (and, hence, the

long-term component) is more volatile.6

3 Simulation

In this section, we examine the finite sample behavior of the proposed test in a Monte-

Carlo experiment. We simulate return series with T = 1000 observations and use M =

1000 Monte-Carlo replications. The innovation Zt is assumed to be either standard nor-

mally distributed or (standardized) t-distributed with seven degrees of freedom.

6Amado and Teräsvirta (2015) discuss testing the null of no remaining ARCH effects in multiplicative

time-varying GARCH models. Our test is closely related to the model they discuss in Section 4.4 of their

paper. However, they provide no asymptotic theory for the test with exogenous explanatory variables.
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3.1 Size properties

We first discuss the size properties of the different versions of the test statistic. Three

alternative GARCH(1,1) specifications are considered. These three specifications reflect

different degrees of persistence (Low: L, Intermediate: I, High: H) in the conditional

variance, whereby we measure persistence by α0 + β0. We keep β0 fixed at 0.9 and

increase α0 from 0.05 to 0.09. ω0 is always chosen such that under the null σ2
0 = 1.

L: h̄0t = 0.05 + 0.05
ε2t−1

τ 0,t−1
+ 0.90h̄0,t−1

I: h̄0t = 0.03 + 0.07
ε2t−1

τ 0,t−1
+ 0.90h̄0,t−1

H: h̄0t = 0.01 + 0.09
ε2t−1

τ 0,t−1
+ 0.90h̄0,t−1

Table 1: Empirical size.

Zt ∼ N (0, 1) Zt ∼ t(7)

L I H L I H

1% 0.9 1.2 1.3 0.7 0.9 0.7

LM 5% 4.6 5.0 5.2 3.1 3.8 3.9

10% 9.0 9.7 10.2 7.2 7.4 7.3

1% 0.9 1.2 1.3 0.7 0.9 0.7

L̃M 5% 4.6 5.0 5.2 3.1 3.7 3.9

10% 9.0 9.7 10.1 7.2 7.4 7.2

1% 0.9 1.2 1.3 0.9 1.1 1.1

L̃MLT 5% 5.2 5.2 5.1 3.4 3.8 3.9

10% 10.2 10.0 10.6 6.7 7.1 7.4

Notes: Entries are rejection rates in percent over the 1000 repli-

cations at the 1%, 5% and 10% nominal level. The model for

the conditional variance is a GARCH(1,1) with β0 = 0.90. L, I

and H refer to GARCH models with low (α = 0.05), intermediate

(α = 0.07) and high (α = 0.09) persistence. ω is chosen such that

σ2
0 = 1.

Under the null, we test for remaining ARCH effects by choosing xt = ε2t/ĥt. In Table 1,

we report the empirical size of the LM test given in equation (32), the regression version

of the test, L̃M , and the Lundbergh and Teräsvirta (2002) test statistic L̃MLT . For the
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three test statistics we have to choose the dimension of r̂t and r̂LTt , respectively. We opt for

a dimension of one, which implies that the model under the alternative has an ‘ARCH(1)’

long-term component.7 As Table 1 shows, the empirical size of all three versions of the

test statistic is very close to the nominal size when Zt is normally distributed. In case

of Student-t distributed errors, the three test statistics are slightly undersized. For the

L̃MLT test statistic, this is an observation also made in Lundbergh and Teräsvirta (2002)

and Halunga and Orme (2009).

3.2 Power properties

In order to consider a realistic example under the alternative, we base the long-term com-

ponent on actual data. As an explanatory variable, we use the squared daily VIX index,

V IXt, for the period October 2010 to October 2014.8 In addition, we construct monthly

and quarterly rolling window versions of the squared VIX as V IX
(N)
t = 1

N

∑N−1
j=0 V IXt−j,

with N = 22 and N = 65. Figure 1 shows the evolution of the VIX and its rolling window

versions over the sample period. The spikes in the third quarter of 2011 correspond to

the financial turmoil during the European sovereign debt crisis.

0

1

2

3

4

5

6

7

IV I II III IV I II III IV I II III IV I II III

2011 2012 2013 2014

VIX

VIXROLLING22

VIXROLLING65

Figure 1: The figure shows the evolution of V IXt (blue), V IX
(22)
t (red) and V IX

(65)
t

(green) for the period October 2010 to October 2014. The three variables are presented

in daily units.

7The results presented below are robust with respect to increasing the dimension of r̂t and r̂LT
t . The

corresponding tables are available upon request.
8More specifically, we define V IXt as 1/365 times the squared VIX index so that the squared annu-

alized observations are transformed to daily units. The sample is chosen such that T = 1000.
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The long-term component is given by τ 0t = 1 + 0.5
∑K

k=1 ψ0k(ω01, ω02)xt−k, whereby

we specify the MIDAS weights via the following Beta weighting scheme:9

ψ0k(ω01, ω02) =
(k/(K + 1))ω01−1 · (1− k/(K + 1))ω02−1

∑K
j=1 (j/(K + 1))ω01−1 · (1− j/(K + 1))ω02−1

. (38)

Table 2 presents the results of the Monte-Carlo simulations. The LM and the L̃M test

statistics are based on r̂t with xt ∈ {V IXt, V IX
(22)
t , V IX

(65)
t }. We present size-adjusted

rejection rates for two versions of the Lundbergh and Teräsvirta (2002) test. The modified

Lundbergh and Teräsvirta (2002) test, L̃MLT,mod, is based on r̂LT,mod
t but uses the same

xt as in LM and L̃M . As before, L̃MLT is based on r̂LTt with xt = ε2t/ĥt and, hence, tests

for ‘ARCH nested in GARCH’. In all four test statistics we choose K = 1. We denote

the true MIDAS lag length in the data generating processes under the alternative by K⋆.

We simulate processes with K⋆ ∈ {1, 5, 22}. Thus, the results for size-adjusted power in

Table 2 illustrate the performance of the test statistics when K is correctly chosen but

also when K < K⋆.

We first consider the squared VIX as the explanatory variable, i.e. we choose xt =

V IXt. The parameters in the Beta weighting scheme are given by ω01 = 1 and ω02 = 10.

These values ensure that the ψ0k decay monotonically from the first lag. In the GARCH

equation we employ models with α0 = 0.09 (high persistence) and α0 = 0.07 (intermediate

persistence). Besides the size-adjusted power for different values of K⋆, we also report the

following variance ratio: V R = Var(ln(τ 0t))/Var(ln(τ 0th̄0t)), which reflects the fraction

of the variance of the log conditional variance that is due to the variance of the log

long-term component.10 For example, for K⋆ = 1 and α0 = 0.09, 12.4% of the total

conditional variance is due to the long-term component. When α0 is decreased to 0.07,

the V R increases to 29.5%. Intuitively, decreasing α0, means reducing the variability with

which the short-term component fluctuates around τ 0t.

First, consider the case where α0 = 0.09. For K⋆ = 1, the LM and the L̃M tests reject

the null hypothesis in 57.2% of the simulations at the nominal 5% level. In contrast, the

rejection rate of the modified Lundbergh and Teräsvirta (2002) test, L̃MLT,mod, is 34.8%

only. When K⋆ is increased to 5 and 22, the long-term component is based on a weighted

average of the values of the VIX during the last week or month. That is, the long-term

9For a detailed discussion of the Beta weighting scheme see Ghysels et al. (2006).
10This variance ratio has been employed in Conrad and Loch (2014) as a measure for the relevance of

the long-term component. For example, using the realized volatility as an explanatory variable, they find

a V R of roughly 13% for data on the S&P 500 for the period 1973 to 2010.
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Table 2: Empirical size-adjusted power for long-term components based on the VIX.

xt V IXt V IX
(22)
t V IX

(65)
t

ω01 = 1, ω02 = 10

α0 = 0.09 α0 = 0.07 α0 = 0.09

K⋆ 1 5 22 1 5 22 1 1

1% 34.8 33.1 21.1 44.7 42.7 29.9 14.3 9.9

LM 5% 57.2 54.8 39.2 66.5 64.6 51.5 36.1 26.5

10% 66.4 64.8 50.7 75.6 74.2 63.0 47.2 35.4

1% 34.8 33.0 21.3 44.5 42.7 29.9 14.4 10.1

L̃M 5% 57.2 54.7 39.0 66.6 64.6 51.7 36.1 26.6

10% 66.4 64.8 50.8 75.6 74.2 62.9 47.1 35.6

1% 16.0 15.9 13.0 32.6 32.0 27.1 6.6 4.7

L̃MLT,mod 5% 34.8 34.1 30.3 59.2 58.1 51.1 18.9 15.4

10% 44.2 43.3 38.6 71.1 70.0 65.6 27.1 23.8

1% 0.9 0.9 0.9 1.0 1.0 0.9 0.9 0.8

L̃MLT 5% 5.9 5.9 5.4 5.6 5.6 5.3 4.8 4.6

10% 10.3 10.5 10.3 10.5 10.7 10.8 9.5 9.4

V R 12.4 12.3 12.1 29.5 29.4 29.0 12.0 10.5

Notes: The table reports the size-adjusted power. The specification of the long term

component is given by τ0,t = 1 + 0.5
∑K

k=1 ψ0k(ω01, ω02)xt−k with Beta weighting

scheme (see equation (38)). The GARCH parameters are β0 = 0.9 and ω0 = 1−α0−
β0. Innovations Zt are standard normal distributed. K⋆ denotes the true MIDAS lag

length in the DGP. All test statistics are based on K = 1.

component becomes less variable and, hence, more difficult to detect. Consequently, the

power of all three tests deteriorates. Although, the LM and the L̃M test still have

considerably higher power than L̃MLT,mod, the difference in power is decreasing when the

long-term component gets smoother. Next, when α0 is decreased to 0.07, this increases

the power of the three tests. For example, for K⋆ = 1 the size-adjusted power at the

nominal 5% level is 66.5% for the LM test. Clearly, with lower α0 and thus less volatile

GARCH component, the long-term component can be detected more easily. As before,

increasing K⋆, i.e. increasing the smoothness of the long-term component, reduces the

power of the tests. In line with the arguments at the end of Section 2.4, the difference

in the power of the LM and L̃MLT,mod statistics is less strong when α0 is decreased to
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0.07. Again, the difference in power is the larger the smoother the long-term component

(i.e. the smaller K⋆) is. Finally, the last two columns of Table 2 show the rejection rates

for the case that the long-term component is based on the monthly and quarterly rolling

window versions of the squared VIX. Then, even forK⋆ = 1 the long-term components are

very smooth and the lowest V R’s are observed.11 As expected, the size-adjusted powers

are the lowest for these two cases. Note that in all eight scenarios the original version of

the Lundbergh and Teräsvirta (2002) test, L̃MLT , has no power to detect deviation from

the null.

We performed the same analysis as in Table 2 for the case of Student-t distributed

innovations Zt (see Table 5 in the Appendix). As the table shows, for each specification the

t distributed innovations decrease the V R in comparison to the one that we obtained for

normally distributed innovations. The lower V R’s then lead to a loss of power, i.e. under t

distributed innovations the long-term component is more difficult to detect. However, all

qualitative results regarding the different versions of the test statistics remain unchanged.

We also performed simulations in which we increased K such that it approaches the true

lag length, say K⋆ = 5 or K⋆ = 22. As discussed in Remark 1, given the smoothness of

our explanatory variable, this did not lead to gains in power relative to simply choosing

K = 1.12

In Table 3, we investigate the effects of changing the weighting scheme, ψ0k, on the

power of the test statistics. In the first two columns the weighting scheme is given by

ω01 = 1 and ω02 = 5, i.e. the weights are still monotonically decreasing, but more slowly

than before. This implies that the long-term component becomes less volatile and, hence,

the power of the tests decreases (compare columns one and two of Table 3 with columns

two and three of Table 2). In columns three and four of Table 3 the parameters ω01 and ω02

are chosen such that the weighting schemes are hump-shaped. For example, comparing

column one with column three of Table 3 suggests that for the same lag length K⋆ = 5,

replacing a monotonically decaying weighting scheme with a hump-shaped one decreases

the power of all versions of the test. Again, for all specifications the size-adjusted power

of the L̃M test is higher than the one of L̃MLT,mod.

11Note that the model based on the V IX
(N)
t with lag length K⋆ = 1 can be thought of as representing

a long-term component based on the V IXt as the explanatory variable but with K⋆ = N and weights

equal to 1/N . Thus, by ‘selecting’ an appropriate explanatory variable one can always ensure that K = 1

is sufficient in the test.
12The first order autocorrelation of V IXt is 0.95.
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Table 3: Empirical size-adjusted power for different weighting schemes.

xt = V IXt α0 = 0.09

ω01 = 1, ω02 = 5 ω01 = 3, ω02 = 5 ω01 = 3, ω02 = 20

K⋆ 5 22 5 22

1% 28.2 13.8 19.8 16.7

LM 5% 49.2 29.9 38.6 33.8

10% 60.6 39.8 50.2 45.2

1% 28.2 13.7 19.7 16.7

L̃M 5% 49.2 29.9 38.7 34.0

10% 60.6 39.9 50.2 45.2

1% 15.0 10.8 12.7 11.7

L̃MLT,mod 5% 32.8 27.4 30.0 28.6

10% 41.7 35.8 38.5 36.8

1% 0.9 0.9 0.9 0.9

L̃MLT 5% 5.8 5.3 5.2 5.3

10% 10.5 10.0 10.4 10.4

V R 12.2 11.9 12.2 12.1

Notes: See Table 2.

In summary, the size-adjusted power of the newly proposed test, LM , is higher the

more volatile the long-term component is and the less volatile the short-term component

fluctuates around the long-term component (i.e. the lower α0 is).

4 Empirical Application

Finally, we apply our test and estimate a GARCH-MIDAS-X model for daily log-returns

on the S&P 500 for the period January 2000 to October 2014. As explanatory variables,

we employ the squared VIX, realized volatility as well as the ADS Business Conditions

Index (see Aruoba et al., 2009).13 As before, we construct monthly rolling window ver-

sions of all three variables denoted by V IX
(22)
t , RV

(22)
t and ADS

(22)
t . Since ADS

(22)
t can

take positive as well as negative values, we specify a ‘log-version’ of equation (4) for the

13Dorion (2013) shows that a GARCH-MIDAS model based on the ADS Business Conditions Index is

informative for the valuation of options.
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long-term component with ln(τ̃ 0t) = σ2
0 + π̃0

∑K
k=1 ψ0kxt−k.

14 We estimate the GARCH-

MIDAS-X models using a restricted Beta weighting scheme (i.e. we impose ω01 = 1 in

equation (38)) and select a MIDAS lag length of 252 (i.e. one year of lagged observa-

tions). Table 4, Panel A, shows the estimates of the parameters of interest for the three

GARCH-MIDAS-X models. First, note that for all three cases the ARCH/GARCH pa-

rameter estimates are basically the same. The estimates of π̃ are positive for the V IX
(22)
t

and RV
(22)
t , but negative for the ADS

(22)
t . That is, higher expected/realized volatility

leads to an increase in long-term volatility, while an improvement in business conditions

reduces long-term volatility. These findings are perfectly in line with the counter-cyclical

behavior of long-term volatility as observed in Conrad and Loch (2014). The estimated

weighting parameters ω2 imply slowly decreasing weights for the V IX
(22)
t and RV

(22)
t , but

rapidly decaying weights for the ADS
(22)
t .15 However, strictly speaking the parameter

estimates and standard errors reported in Panel A do not allow us to formally test the

null that the explanatory variables have no significant effect on long-term volatility, since

the asymptotic theory is either not available or does not permit this null hypothesis.

Figure 2, left, shows the estimated long-term component (
√
τ̃ t) as well as the condi-

tional volatility (
√
h̃tτ̃ t) based on the ADS

(22)
t at an annualized scale. The figure clearly

reveals that the long-term component based on ADS
(22)
t captures the increase in financial

market volatility during the Great Recession, but not during the European sovereign debt

crisis. Figure 2, right, allows for a comparison of all three long-term components. Note

that the long-term components based on the V IX
(22)
t and RV

(22)
t – which are based on

an estimated weighting parameter around two – are much smoother than the long-term

component based on the ADS
(22)
t . This is also reflected in the corresponding variance

ratios which are below 20% for the former variables but above 40% for the latter. This

suggests that it should be more easy to detect the effect of the ADS
(22)
t on long-term

volatility, than the effect of the V IX
(22)
t and RV

(22)
t . This intuition is confirmed in Ta-

ble 4, Panel B, which presents the test results. Both versions of our test reject the null

that the three variables have no significant effect on long-term volatility at the 1% or 2%

level. In stark contrast, the modified Lundbergh and Teräsvirta (2002) test rejects only

14Recall from Remark 2 that our test statistic applies to this situation as well.
15Originally, we also estimated models with the daily V IXt, RVt and ADSt as explanatory variables.

However, for the V IXt and RVt the estimated MIDAS weights were declining so quickly, that the τ̃ t

components were effectively given by the VIX or the realized volatility of the last day and, hence, highly

volatile. In this sense, they no longer represented a smooth ‘long-term’ component.
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Table 4: GARCH-MIDAS-X for S&P 500 returns.

xt V IX
(22)
t RV

(22)
t ADS

(22)
t

Panel A: Parameter Estimates

α 0.091
(0.012)

0.091
(0.012)

0.088
(0.011)

β 0.885
(0.018)

0.885
(0.017)

0.885
(0.013)

π̃ 0.281
(0.111))

0.261
(0.087)

−0.708
(0.100)

ω2 2.453
(1.931)

1.900
(1.026)

15.552
(10.883)

V R 17.2 19.3 42.7

Panel B: Misspecification Tests

LM 6.40
[0.01]

6.50
[0.01]

5.42
[0.02]

L̃M 6.40
[0.01]

6.50
[0.01]

5.42
[0.02]

L̃MLT,mod 1.78
[0.18]

1.98
[0.16]

9.75
[0.00]

Notes: The table presents estimation results for the GARCH-

MIDAS-X model with ln(τ̃0t) = σ2
0 + π̃0

∑252
k=1 ψ0kxt−k. All esti-

mations are based on daily data from January 2000 to October

2014. We include a restricted Beta weighting scheme (ω01 = 1).

The numbers in parentheses are Bollerslev-Wooldridge robust

standard errors. The reported LM tests for misspecification are

based on K = 1. Numbers in brackets are p-values.

in the case of the ADS
(22)
t . This result confirms our findings from Section 3 that our test

is more sensitive to smooth movements in the long-term component. In summary, in all

three cases the newly proposed LM test clearly rejects the null of a constant long-term

component and, thereby, confirms the GARCH-MIDAS-X specifications.

5 Conclusions

We develop a Lagrange Multiplier test for the null hypothesis of a GARCH volatility

against the alternative of a GARCH-MIDAS specification. The test provides a first solu-

tion to statistically evaluate if there is a separate long-term time-varying volatility com-

ponent driven by a macroeconomic explanatory variable, besides the standard short-term

GARCH part. We derive the asymptotic properties of our test and study its finite sample
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Figure 2: The left figure shows the conditional volatility
√
h̃tτ̃ t (blue line) and the long-

term volatility component
√
τ̃ t (red line) based on the ADS

(22)
t . The right figure provides

a comparison of the long-term volatility components based on the V IX
(22)
t (blue), RV

(22)
t

(green) and ADS
(22)
t (red). Both figures are for the January 2000 to October 2014 period

and graph the volatilities at an annualized scale. Shaded areas represent NBER recession

periods.

performance. In an application to S&P 500 returns, we find that the test provides useful

guidance in model specification.

There are several interesting extensions that we would like to address in future work.

Clearly, we could allow for asymmetries in the short-term component. More importantly,

it would be interesting to extend our test to the case that the explanatory variable varies

at a different frequency than the returns. Also, the case of more than one explanatory

variable at a time could be explored.
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A Proofs

Proof of Theorem 1. First, we show that Ω is finite and positive definite. From Francq

and Zak̈ıoan (2004) it follows that Ωηη is finite and positive definite. What remains to

be shown is that Ωππ is finite and positive definite. If this is true, then by the Cauchy-

Schwarz inequality the “off-diagonal matrices” will also be finite and positive definite.

Finiteness of Ωππ:

Recall from equation (22) that Ωππ = 1
4
(κZ − 1)E[r∞0,t(r

∞
0,t)

′]. It follows from Assump-

tion 2 that 0 < κZ − 1 < ∞. Moreover, ||E[r∞0,t(r∞0,t)′]|| is finite if E[||r∞0,t(r∞0,t)′||] < ∞.16

A typical element of the K × 1 vector r∞0,t is given by

r∞0,kt = xt−k − α0
1

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−k−j . (39)

First, E[|xt−k|2] <∞ by Assumption 3. Second,


E

∣∣∣∣∣

∑∞
j=0 α0β

j
0ε

2
t−1−jxt−1−k−j

h∞0,t

∣∣∣∣∣

2



1/2

≤


E

∣∣∣∣∣

∞∑

j=0

α0β
j
0ε

2
t−1−j(

ω0 + α0β
j
0ε

2
t−1−j

)xt−1−k−j

∣∣∣∣∣

2



1/2

(40)

≤
∞∑

j=0


E

∣∣∣∣∣
α0β

j
0ε

2
t−1−j(

ω0 + α0β
j
0ε

2
t−1−j

)xt−1−k−j

∣∣∣∣∣

2



1/2

(41)

≤
∞∑

j=0


E

∣∣∣∣∣∣

(
α0β

j
0

ω0
ε2t−1−j

)s/4

xt−1−k−j

∣∣∣∣∣∣

2


1/2

(42)

≤ α
s/4
0

ω
s/4
0

(
E
[
ε2st−1−j

])1/4 (
E
[
|xt−1−k−j |4

])1/4

∞∑

j=0

β
js/4
0 <∞.

The arguments used above are similar to the ones in Francq and Zak̈ıoan (2004, Eq. (4.19),

p.619). In particular, in equation (40) we use that h∞0,t ≥ ω0+α0β
j
0ε

2
t−1−j . In equation (41)

we use Minkowski’s inequality. Next, in equation (42) we use the fact that w/(1+w) ≤ ws

for all w > 0 and any s ∈ (0, 1). Finally, Assumption 1 implies that there exists some

s > 0 such that E
[
ε2st−1−j

]
< ∞ (see Proposition 1 in Francq and Zak̈ıoan, 2004, p.607).

By Assumption 3, E
[
|xt−1−k−j |4

]
<∞.

This implies E[|r∞0,kt|2] < ∞ and E[|r∞0,ktr∞0,jt|] < ∞ by Cauchy-Schwarz inequality

which means that Ωππ is finite.

16Throughout the paper || · || denotes the euclidean norm.
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Positive definiteness of Ωππ:

As κZ −1 > 0, it remains to show that c′E[r∞0,t(r
∞
0,t)

′]c > 0 for any non-zero c ∈ R
K×1.

Assume the contrary, i.e., there exists a c 6= 0 such that c′E[r∞0,t(r
∞
0,t)

′]c = 0. This implies

E[(c′r∞0,t)
2] = 0 and, thus, c′r∞0,t = 0 a.s.. Hence, there exists a linear combination of

r∞0,1t, . . . , r
∞
0,Kt which equals zero a.s., i.e.,

0 =
K∑

k=1

ck

(
xt−k −

α0

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−k−j

)
a.s. (43)

Using that 0 < β0 < 1 by Assumption 1 and rearranging, this requires

c′xt =

[
α0

h∞0,t
(1− β0L)

−1L

]
(ε2tc

′xt) a.s., (44)

where L denotes the lag operator. Clearly, the operator in square brackets cannot have

an eigenvalue of 1. Moreover, Assumption 2 imposes Z2
t and, therefore, also ε2t to be

non-degenerate. Hence, the only way to fulfill the above equation is by c′xt = 0 a.s..

This would imply that we can write cK = −∑K−1
k=1 ck/cKxt−k and, hence, τ 0t would have

a representation which is of the order K − 1. However, this contradicts Assumption 3.

Thus, Ωππ must be invertible and hence positive definite.

Next, E[d∞
t (η0)|Ft−1] = 0. From Francq and Zaköıan (2004) and Assumptions 1-3 it

then follows that d∞
t (η0) is a stationary and ergodic martingale difference sequence with

finite second moment. Applying Billingsley’s (1961) central limit theorem for martingale

differences gives the result.

The following proposition will be used in the proof of Theorem 2.

Proposition 1. Under Assumptions 1-4, we have that

− 1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′
P−→ Jπη = −E

[
∂d∞

π,t(η0)

∂η′

]
, (45)

where η̃ = η0 + oP (1).

Proof of Proposition 1. We obtain (45) by showing that Jπη(η) = −E
[
∂d∞

π,t(η)

∂η′

]
is finite

with a uniform bound for all η ∈ Θ. Then a uniform weak law of large numbers (see, e.g.,

Theorem 3.1. in Ling and McAleer, 2003) implies

sup
η

∣∣∣∣
∣∣∣∣−

1

T

T∑

t=1

∂d∞
π,t(η)

∂η′ − Jπη(η)

∣∣∣∣
∣∣∣∣ = oP (1).
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Equation (45) follows from the triangle inequality and the fact that η̃ = η0 + oP (1).

Using equation (24) we obtain

∣∣∣∣
∣∣∣∣
∂d∞

π,t(η)

∂η′

∣∣∣∣
∣∣∣∣ ≤ 1

2

(∣∣∣∣
ε2t
h∞t

∣∣∣∣ · ||r∞t || · ||(y∞
t )′||+

∣∣∣∣
ε2t
h∞t

− 1

∣∣∣∣ ·
∣∣∣∣
∣∣∣∣
∂r∞t
∂η′

∣∣∣∣
∣∣∣∣
)

≤ C|ε2t + ω|
(
||r∞t || · ||(y∞

t )′||+
∣∣∣∣
∣∣∣∣
∂r∞t
∂η′

∣∣∣∣
∣∣∣∣
)
. (46)

The last inequality follows with a generic constant 0 < C <∞ and h∞t ≥ ω > 0.

First, consider the three elements of ||(y∞
t )′||. To simplify the notation note that

∂h̄∞

t

∂η
|π=0 =

∂h∞

t

∂η
. Since

∂h∞

t

∂ω
= 1/(1 − β), we have | 1

h∞

t

∂h∞

t

∂ω
| ≤ 1/(ω(1 − β)) < ∞. Then

α
∂h∞

t

∂α
=
∑∞

j=0 αβ
jε2t−1−j ≤ h∞t and, therefore, | 1

h∞

t

∂h∞

t

∂α
| ≤ 1/α < ∞. Finally,

∂h∞

t

∂β
=

∑∞
j=0 jβ

j−1(ω + αε2t−1−j). We then obtain

∣∣∣∣
1

h∞t

∂h∞t
∂β

∣∣∣∣ ≤
∣∣∣∣∣
1

β

∞∑

j=0

jβj(ω + αε2t−1−j)

ω + βj(ω + αε2t−1−j)

∣∣∣∣∣

≤ 1

βωs

∞∑

j=0

j
∣∣βjs(ω + αε2t−1−j)

s
∣∣ , (47)

where we again use the fact that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). It

follows that ||(y∞
t )′|| ≤ C ′(1 +

∑∞
j=0 j

∣∣βjs(ω + αε2t−1−j)
s
∣∣) for some constant C ′ > 0.

Hence, using Cauchy-Schwarz inequality, the first summand in equation (46), i.e.

E
[
sup

η
|ε2t + ω| · ||r∞t || · ||(y∞

t )′||
]
, can be bounded from above by the terms

√
E[sup

η
|ε2t + ω|2]E[sup

η
||r∞t ||2] (48)

and

sup
η

∞∑

j=0

jβjsE[sup
η
(ω + αε2t−1−j)

s|ε2t + ω| ||r∞t ||] ≤

sup
η

∞∑

j=0

jβjs
√
E[sup

η
(ω + αε2t−1−j)

2s|ε2t + ω|2]E[sup
η
||r∞t ||2]. (49)

The finiteness of (48) follows from Assumption 4 and similar arguments as in the proof

of Theorem 1. The finiteness of (49) follows by applying Hölder’s inequality, since for the

elements in the sum which involve expectations of the squared observations we have

E[sup
η
(ω + αε2t−1−j)

2s|ε2t + ω|2] ≤
(
E[sup

η
(ω + αε2t−1−j)

2(1+s)]
)s/(1+s) (

E[sup
η
|ε2t + ω|2(1+s)]

)1/(1+s)
(50)

and Assumption 4 applies again.
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Using the Cauchy-Schwarz-Inequality for the two factors in the second term in (46),

we are left with the need to show that E
[
sup

η

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2
]
is finite. This follows from

∂r∞t
∂η′ =

∂

∂η′xt −
∂

∂η′

(
1

h∞t

∞∑

j=0

αβjε2t−1−jxt−1−j

)

=
∂

∂η′xt −
1

h∞t

( ∞∑

j=0

αβjε2t−1−j

∂

∂η′xt−1−j

)

+

(
1

h∞t

∞∑

j=0

αβjε2t−1−jxt−1−j

)
(y∞

t )′ − 1

h∞t

∞∑

j=0

xt−1−j

(
∂

∂η′αβ
jε2t−1−j

)
(51)

The first two terms vanish in the GARCH-MIDAS-X with exogenous explanatory variable

xt as
∂xt

∂η′
= 0 or in the GARCH-MIDAS-RV with xt−t = ε2t−k.

Remark 4. There also exists a bound for E
[
sup

η

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2
]
in the case of xt with ele-

ments xt−k =
ε2
t−k

h∞

t−k

(the ‘ARCH nested in GARCH’ case). Here, in the first two terms in

equation (51) we have
∂xt−k

∂η′
= − εt−k

(h∞

t−k
)2

∂h∞

t−k

∂η′
and, hence, explicit bounds for terms of this

type can be obtained as before.

Boundedness of the norm of the third term follows for all η in expectation with a com-

bination of the argument directly above and the considerations in the proof of Theorem 1.

The fourth term can be written as:

1

h∞t




0
∑∞

j=0 β
jε2t−1−jxt−2−j α

∑∞
j=0 jβ

j−1ε2t−1−jxt−2−j

0
∑∞

j=0 β
jε2t−1−jxt−3−j α

∑∞
j=0 jβ

j−1ε2t−1−jxt−3−j

...

0
∑∞

j=0 β
jε2t−1−jxt−1−K−j α

∑∞
j=0 jβ

j−1ε2t−1−jxt−1−K−j




(52)

Hence, for typical elements of the second and third column it follows that

Esup
η

∣∣∣∣∣
1

h∞t

∞∑

j=0

βjε2t−1−jxt−1−k−j

∣∣∣∣∣

2

<∞

and

Esup
η

∣∣∣∣∣
1

h∞t
α

∞∑

j=0

jβj−1ε2t−1−jxt−1−k−j

∣∣∣∣∣

2

<∞

by similar arguments as used before.
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Proof of Theorem 2. First, consider a mean value expansion of
√
TD∞

η
(η̂) around the

true value η0

0 =
√
TD∞

η
(η̂) =

√
TD∞

η
(η0) +

1

T

T∑

t=1

∂d∞
η,t(η̃)

∂η′

√
T (η̂ − η0) (53)

with η̃ = η0+oP (1). Under Assumptions 1 and 2, Francq and Zaköıan (2004) have shown

that

− 1

T

T∑

t=1

∂d∞
η,t(η̃)

∂η′
P−→ Jηη = −E

[
∂d∞

η,t(η0)

∂η′

]
(54)

and, hence, equation (53) can be written as

√
T (η̂ − η0) = J−1

ηη
D∞

η
(η0) + oP (1). (55)

Similarly, a mean value expansion of
√
TD∞

π
(η̂) around the true value η0 leads to

√
TD∞

π
(η̂) =

√
TD∞

π
(η0) +

1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′

√
T (η̂ − η0). (56)

Combining equation (55) and Proposition 1 leads to

√
TD∞

π
(η̂) =

√
TD∞

π
(η0)− JπηJ

−1
ηη

√
TD∞

η
(η0) + oP (1) (57)

= [−JπηJ
−1
ηη

: I]
√
T


 D∞

η
(η0)

D∞
π
(η0)


+ oP (1) (58)

= [−JπηJ
−1
ηη

: I]
√
TD∞(η0) + oP (1). (59)

Applying Theorem 1 gives the asymptotic distribution

√
TD∞

π
(η̂)

d−→ N (0, [JπηJ
−1
ηη

: I]Ω[JπηJ
−1
ηη

: I]′) (60)

which has the form of AΩA′ in Halunga and Orme (2009, p.372/373). The covariance

matrix can be written as

Σ = [−JπηJ
−1
ηη

: I]Ω[−JπηJ
−1
ηη

: I]′

= Ωππ + JπηJ
−1
ηη
ΩηηJ

−1
ηη
J′
πη

− JπηJ
−1
ηη
Ωηπ −ΩπηJ

−1
ηη
J′
πη
.

Finally, using equations (22), (25) and (26) the expression for Σ simplifies to:

Σ =
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)

′]− E[r∞0,t(y
∞
0,t)

′]
(
E[y∞

0,t(y
∞
0,t)

′]
)−1

E[y∞
0,t(r

∞
0,t)

′]
)
. (61)
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Proof of Theorem 3. We show that

√
TDπ(η̂) =

√
TD∞

π
(η̂) + oP (1). (62)

Hence, the observed quantity
√
TDπ(η̂) will have the same asymptotic distribution as

the unobserved
√
TD∞

π
(η̂). The asymptotic distribution of the test statistic then follows

directly from Theorem 2. Standardization with the consistent estimator Σ̂ instead of the

theoretical Σ, has no effect on the final χ2-distribution of the LM test statistic. This can

be easily seen from similar considerations as the ones outlined above and below in detail.

Since

sup
η
||
√
TD∞

π
(η)−

√
TDπ(η)|| ≤

1√
T

T∑

t=1

sup
η
||d∞

π,t(η)− dπ,t(η)||, (63)

we establish equation (62) by showing that

1√
T

T∑

t=1

sup
η
||d∞

π,t(η)− dπ,t(η)|| = oP (1). (64)

Consider the following decomposition:

2(d∞
π,t(η)− dπ,t(η)) =

(
ε2t
h∞t

− 1

)
r∞t −

(
ε2t
ht

− 1

)
rt

=

(
ε2t
h∞t

− 1

)
r∞t −

(
ε2t
ht

− 1

)
rt +

[(
ε2t
ht

− 1

)
r∞t −

(
ε2t
ht

− 1

)
r∞t

]

=

(
ε2t
h∞t

− ε2t
ht

)
r∞t +

(
ε2t
ht

− 1

)
(r∞t − rt)

= ε2t

(
ht − h∞t
h∞t ht

)
r∞t +

(
ε2t
ht

− 1

)
(r∞t − rt) +

[(
ε2t
h∞t

− 1

)
(r∞t − rt)−

(
ε2t
h∞t

− 1

)
(r∞t − rt)

]

= ε2t

(
ht − h∞t
h∞t ht

)
r∞t + ε2t

(
ht − h∞t
h∞t ht

)
(r∞t − rt) +

(
ε2t
h∞t

− 1

)
(r∞t − rt)

Since ht ≥ ω > 0 and h∞t ≥ ω > 0 we have

||d∞
π,t(θ)− dπ,t(θ)|| ≤ 1

ω

{
|ε2t + ω| ||r∞t − rt||+ ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣+ ε2t ||r∞t − rt||
∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣
}
.

First, note that

r∞t − rt = −α 1

h∞t

∞∑

j=t

βjε2t−1−jxt−1−j . (65)
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Next, consider a typical element:

(
Esup

η
|r∞k,t − rk,t|2

)1/2
=


Esup

η

∣∣∣∣∣α
1

h∞t

∞∑

j=t

βjε2t−1−jxt−1−k−j

∣∣∣∣∣

2



1/2

≤
∞∑

j=t


Esup

η

∣∣∣∣∣
αβjε2t−1−j

ω + αβjε2t−1−k−j

xt−1−k−j

∣∣∣∣∣

2



1/2

≤
∞∑

j=t


Esup

η

∣∣∣∣∣

(
αβj

ω
ε2t−1−j

)s/4

xt−1−k−j

∣∣∣∣∣

2



1/2

≤
(
E[|εt−1−j |2s]

)1/4 (
E[|xt−1−k−j|4]

)1/4

sup
η

(α
ω

)s/4 ∞∑

j=t

βjs/4

=
(
E[|εt−1−j |2s]

)1/4 (
E[|xt−1−k−j|4]

)1/4

sup
η

(α
ω

)s/4 (βs/4)t

1− βs/4
(66)

which shows that Esup
η
||r∞k,t − rk,t||2 = O(βts/2).

Hence,

Esup
η
|ε2t | ||r∞t − rt|| ≤

√
Esup

η
|ε4t |Esupη

||r∞t − rt||2 = O(βts/4)

by Assumption 1 and equation (66). Therefore, 1√
T

∑T
t=1Esupη

|ε2t | ||r∞t −rt|| = o(1) and,

hence, by Markov’s inequality 1√
T

∑T
t=1 supη

|ε2t | ||r∞t − rt|| = oP (1).

For the treatment of the second term we use the fact that
∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤
αs

ωs

∞∑

j=t

(βs)jε2st−j , (67)

where again we use that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). Then,

Esup
η
ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤ Esup
η
||ε2t r∞t ε2st−j || supη

αs

ωs

∞∑

j=t

(βs)j

≤
√
Esup

η
||r∞t ||2E|ε4t ε4st−j| supη

αs

ωs
(βs)t

∞∑

j=0

(βs)j

=
√
Esup

η
||r∞t ||2E|ε4t ε4st−j| supη

αs

ωs(1− βs)
(βs)t

= O((βs)t). (68)

The last line follows because it can be shown by similar arguments as in the proof of

Theorem 1 that Esup
η
||r∞t ||2 < ∞ and because Hölder’s inequality and Assumption 4
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imply that E|ε4tε4st−j| ≤
(
E|ε4(1+s)

t |
)1/(1+s) (

E|ε4(1+s)
t−j |

)s/(1+s)

< ∞. Equation (68) implies

that
1√
T

T∑

t=1

Esup
η
ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ = o(1), (69)

and, again, by Markov’s inequality 1√
T

∑T
t=1 supη

ε2t ||r∞t || |(h∞t − ht)/h
∞
t | = oP (1).

The third term can be treated as follows:

1√
T

T∑

t=1

sup
η
ε2t ||r∞t − rt||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤

√√√√ 1

T

T∑

t=1

sup
η
ε4t ||r∞t − rt||2

T∑

t=1

sup
η

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣
2

≤
{

1√
T

T∑

t=1

sup
η
ε2t ||r∞t − rt||

}{
T∑

t=1

sup
η

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣

}

because
∑T

t=1 w
2
t ≤

{∑T
t=1wt

}2

when wt ≥ 0 for all t. Above, we have already shown

that
∑T

t=1Esupη
ε2t ||r∞t − rt|| = O(1) and Esup

η

∣∣∣h
∞

t −ht

h∞

t

∣∣∣ = O(βts).
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B Simulation: size-adjusted power for t distributed

innovations

The following table provides simulation results on the size-adjusted power for the case

that the innovation Zt is t distributed with 7 degrees of freedom.

Table 5: Empirical size-adjusted power for t distributed innovations.

xt V IXt V IX
(22)
t V IX

(65)
t

ω01 = 1, ω02 = 10

α0 = 0.09 α0 = 0.07 α0 = 0.09

K⋆ 1 5 22 1 5 22 1 1

1% 24.3 20.0 14.6 30.0 28.6 18.7 14.9 10.5

LM 5% 39.7 34.5 28.4 48.3 46.7 37.9 26.2 22.1

10% 52.7 46.5 39.2 60.8 59.3 47.7 39.4 32.4

1% 24.3 19.9 14.5 30.0 28.5 18.7 14.9 10.5

L̃M 5% 39.8 34.5 28.4 48.3 46.7 37.9 26.3 22.4

10% 52.7 46.5 39.2 60.7 59.4 47.8 39.4 32.4

1% 10.3 9.2 8.3 20.1 19.6 16.4 5.4 3.9

L̃MLT,mod 5% 27.4 25.9 24.6 43.0 42.8 38.5 18.5 16.8

10% 37.3 35.0 32.9 53.8 52.9 49.4 26.3 24.2

1% 1.0 1.1 1.1 1.0 1.0 1.2 1.0 1.0

L̃MLT 5% 5.5 5.5 5.6 5.3 5.3 5.3 5.7 5.4

10% 9.9 9.8 9.7 9.9 10.0 10.0 9.6 9.7

V R 10.0 9.9 9.8 23.0 22.9 22.5 9.7 8.5

Notes: Innovations Zt are Student-t distributed with 7 degrees of freedom. Otherwise

see Table 2.
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