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Zusammenfassung

Im Rahmen verschiedener Modelle diskretwertiger stochastischer Prozesse werden
statistische Methoden und Hypothesentests behandelt. Im Falle von ganzzahligen au-
toregressiven Prozessen erster Ordnung können zugrundeliegende stochastische Eigen-
schaften genutzt werden, um geeignete Teststatistiken für diverse Szenarien herzuleiten.
Drei verschiedene Tests werden eingeführt, welche die Abweichungen von empirischen
Schätzern der Dispersion, der verallgemeinerten Autokovarianz und der Schiefe von
den jeweiligen theoretischen Werten mit Hilfe der explizit berechneten asymptotischen
Verteilungen der Schätzer bewerten. Für diese Tests werden Simulationstudien und An-
wendungen auf echte Daten beschrieben, die das Verhalten der Test im Rahmen von
kleinen Datensätzen veranschaulichen.

In einem allgemeineren Zusammenhang wird ein weiterer Ansatz verfolgt, der sich auf
Erzeugendenfunktionen der Zufallsvariablen stützt. Die asymptotischen Eigenschaften
der resultierenden Teststatistik werden für eine sehr allgemeine Klasse Markovscher
Modelle, die eine Drift Bedingung erfüllen, hergeleitet. Darüberhinaus wird für einen
nichtparametrischen Schätzer der stationären Verteilung ein funktionaler Grenzwert-
satz bewiesen. Nachdem Zusammenhänge zwischen diesem Ansatz und demjenigen der
vorhergehenden Kapitel aufgezeigt werden, hebt eine Simulationsstudie die gute Leistung
dieser Tests in Anwendungen mit kleinen Anzahlen von Beobachtungen hervor.

Ein weiteres Kapitel hat einen speziellen nichtparametrischen Schätzer der Bedien-
zeitverteilung eines zeitdiskretenGI/G/∞-Warteschlangenmodells zum Gegenstand, wo-
bei angenommen wird, dass die verfügbaren Daten auf die Anzahlen der ankommenden
und abgehenden Kunden pro Zeitabschnitt beschränkt sind. Es wird gezeigt, dass dieser
sogenannte sequence-of-difference estimator einem funktionalen Grenzwertsatz auf einem
geeignet gewählten zugrundeliegenden Folgenraum gehorcht. Eine moving block boot-
strap Methode wird vorgeschlagen und die theoretischen Eigenschaften dieses Ansatzes
genauer beleuchtet.





Abstract

Statistical inference and hypothesis testing in the framework of several different mod-
els for discrete-valued stochastic processes is considered. In the case of integer-valued
autoregressive (INAR) processes of the first order, underlying stochastic properties can
be utilized to derive appropriate test statistics for certain scenarios. Three different
tests are introduced, evaluating the deviation of empirical measures of dispersion, gen-
eralized autocovariance and skewness of the data set from the theoretical value using
the explicitly calculated asymptotic distribution of the associated estimators. For each
of these test statistics, simulation studies as well as real data applications are provided,
showcasing the performance in small sample sizes.

In a more general setting, a different approach focusing on generating functions instead
of moment-based estimators is pursued. The asymptotic characteristics of the resultant
test statistic are derived for a very general class of Markovian models satisfying a drift
condition. Furthermore, a nonparametric estimator of the stationary distribution is
shown to obey a functional central limit theorem. After revealing the connections link-
ing this approach with several methods of the preceding chapters, a simulation study
highlights the strong performance of the tests in real data applications with a small
number of observations.

As a further topic, one specific instance of a nonparametric estimator of the service
time distribution of a discrete time GI/G/∞ queueing system is presented, where the
given information is assumed to be limited to the counts of arriving and departing
customers of the queue. It is shown that this so-called sequence of differences estimator
obeys a functional central limit theorem on an appropriately chosen underlying sequence
space. Finally, a moving block bootstrap method is proposed and the theoretical features
of this approach are investigated.
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1 Introduction
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In this thesis, we examine properties of discrete-valued stochastic processes of var-
ious forms. As their name suggests, these models constitute a variation of stochastic
processes, in which the time-dependent random variables are assumed to take on only
nonnegative integer values, i.e., counts. In order to demonstrate some of the defining
features, let us present an instructive example of such a data set. In Freeland (1998), the
time series plotted in 1.1 is reported, the data originated from the Worker’s Compen-
sation Board (WCB) of British Columbia. This organization is tasked with managing
the disability benefits for the workers in the heavy manufacturing industry of British
Columbia. The data represents the counts of a special subclass of short-term wage loss
claims. More precisely, the counts correspond to the number of workers each respective
month who received short-term disability benefits due to burn injuries.
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Figure 1.1: Plot of monthly claim counts of workers receiving short-term disability bene-
fits after sustaining burn injuries, as reported by the WCB British Columbia.

For example, the first two data points show that in January 1987, 6 workers collected
short-term disability benefits and in the following month, this number rose to 11. Since
burn related injuries take some time to heal, it seems sensible to assume that some of
the workers collecting benefits in February were among those counted in January. Thus,
the count data should exhibit some form of dependency over time, i.e., it is unlikely that
the counts are uncorrelated or even independent. Indeed, the empirical autocorrela-
tion function (ACF) and the empirical partial autocorrelation function (PACF), plotted
in Figure 1.2, uncover a significant deviation of the data from the null hypothesis of
independence (dashed lines). For more details on both of these function, see Section 2.6.

We are thus faced with the problem of finding a suitable mathematical model for a
sequence of counts which allows for serial dependence while its values remain in the range
of the nonnegative integers N0. The approaches under consideration in this thesis can be
roughly filed under two categories: The first approach is an integer-valued analogon to
the common autoregressive model, subsumed by the acronym INAR, the second employs
elements of (discrete-time) queueing theory for modeling purposes.
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Figure 1.2: Claim counts for Figure 1.1: Plot of ACF and PACF.

1.1 Integer-Valued Autoregressive Processes

The first approach is motivated by finding similarities in the dependency on the past of
the data at hand, y1, . . . , y96 say, with well-known stochastic processes. Looking at the
ACF and the PACF in Figure 1.2, the ACF decays exponentially, and the deviation of
the PACF from zero is only significant at lag 1. This pattern resembles that of the well
known (continuous) autoregressive process of first order (AR(1)) process (see Section
2.6), thus a first approach would be to fit the data of Figure 1.1 to such a model.

However, there are major differences between the data plot in Figure 1.1 and that
of an AR(1) process. The realizations y1, . . . , y96 are nonnegative, and they are integer
valued. Both of these characteristics stem from the nature of the data and should be
incorporated in an appropriate model. This motivates the introduction of the following
integer-valued autoregressive process: Starting with an AR(1) process (Yt)t∈Z satisfying
Yt = αYt−1 + εt, we need to first make sure that this process is nonnegative and that the
realizations are integer-valued, so we assume that εt ∈ N0 for all t ∈ Z. However, the
multiplication with a value of α /∈ Z would lead to values outside the integers, yet it is
well known that an AR(1) process is only stationary if α ∈ [0, 1), where α = 0 pertains
to the trivial case of i.i.d. random variables.

Hence, we replace the multiplication with the parameter α ∈ (0, 1) with a different
operation, the binomial thinning operator of Steutel and Van Harn (1979): If Y is
a discrete random variable with range N0 and if α ∈ (0, 1), then the random variable
α◦X :=

∑Y
i=1 Zi is said to arise from Y by binomial thinning , and the Zi are referred to as

the counting series, if they are independent and identically distributed (i.i.d.) Bernoulli
random variables with P(Zi = 1) = α, which are assumed to be independent of Y . So
each Z satisfies Z ∼ Bin(1, α), and α ◦ Y ∼ Bin(Y, α), where Bin(n, π) abbreviates the
binomial distribution with parameters n ∈ N and π ∈ (0, 1). Using the random operator
“◦”, let us define the integer-valued autoregressive process of first order (INAR(1)) in
the following way.

3



Definition 1.1.1 (INAR(1) Model). Let (εt)t∈Z be an i.i.d. process with range N0, let
Var[εt] <∞ and let α ∈ (0, 1). A process (Yt)t∈Z, which follows the recursion

Yt = α ◦ Yt−1 + εt for all t ∈ Z (1.1)

is said to be an INAR(1) process if all thinning operations are performed independently
of each other and of (εt)Z, and if the thinning operations at each time t as well as εt are
independent of (Ys)s<t.

Let us give an overview of existing literature concerned with the process of Defini-
tion 1.1.1 and its extensions. The INAR(1) process owes its denomination to the contri-
bution Al-Osh and Alzaid (1987), it was previously suggested as a discretized version of
an AR(1) process in McKenzie (1985). Note, however, that very similar processes were
already studied earlier in the context of branching processes, see, e.g., Pakes (1971), as
the recursion (1.1) may be interpreted as the result of a special branching process, in
which each member of the population at time t− 1 gives birth to exactly one offspring
with probability α and does not reproduce with probability 1−α. The older generation
then dies out, and an external migration component, distributed as εt, enters the popu-
lation. This connection to branching process theory is employed in some arguments in
this thesis, see for instance the proof of Theorem 4.2.6.

The “◦” operator used in Definition 1.1.1 stems from Steutel and Van Harn (1979), the
article which also uncovered the connection of INAR(1) processes and infinite divisibility
of random variables, see Theorem 2.3.5. This connection is part of the reasons to consider
the special case of Compound Poisson INAR(1) models in Chapters 4 and 5 in such
detail, note that the Compound Poisson distributions correspond exactly to the infinitely
divisible distributions on N0, cf. Theorem 2.3.3.

In the literature, the interest in INAR processes continued for some time after their
introduction. Further results were discussed in Alzaid and Al-Osh (1988) and extension
to both higher order INAR processes (see Alzaid and Al-Osh (1990) and Du and Li
(1991) as well as Chapter 7) as well as integer-valued ARMA models (see McKenzie
(1988)) were introduced. After a short hiatus, the interest began picking up again in the
2000s and the stream of contributions has not dried up since. Especially the application
to real data sets has been discussed in a variety of contexts. The dissertation Freeland
(1998) and the article Freeland and McCabe (2004) presented data obtained from short
term wage loss benefits, one of these time series is presented in Figure 1.1. For a further
discussion of these time series, the reader is referred to Section 5.1.3 and Section 6.4.3.
In Jung et al. (2005), monthly strike counts published by the U.S. Bureau of Labor
Statistics are fitted to an INAR(1) model, for further details we refer to Section 6.4.
As a last example, the contribution Weiß (2008) considers this model in the context
of download counts of a certain software package, where the number of downloads is
counted daily. This list is far from being complete, yet it conveys the message of the
versatile applicability of the model (1.1) quite well.

The basic INAR(1) model has been extended in various fashions to comply with ad-
ditional considerations. In Zheng et al. (2007), the Random Coefficient INAR(1) model
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is introduced, which allows the parameter α in (1.1) to be a random variable on its own.
Another possibility for generalizations consists in allowing for different thinning opera-
tions to replace the ”◦” operator, as discussed in Weiß (2008). The higher-order case
was also considered in Dion et al. (1995), which emphasized the connection to branching
process theory. For details on the approach and the results of the latter reference, the
reader is referred to Section 7.2.2. Another topic of discussion is the so-called dispersion
of the marginal distribution of the resulting processes as can be seen in Weiß (2009) (for
overdispersion) and Weiß (2013) (for underdispersion). This concept is taken up again
in Chapters 4 and 5.

In this thesis, a multitude of new research results for INAR(1) processes is presented.
One recurring theme is the following question: Having identified the INAR(1) process of
Definition 1.1.1 with a certain parametric choice such as εt ∼ Poi(λ) as a possible model
for a given data set {y1, . . . , yT }, is it also an appropriate model? No less than four
different statistical tests designed to answer this question (or variations of it) are put
forward in this thesis. The basic approach remains the same in all four cases: First, an
appropriate relation holding under the null hypothesis is identified. Then, an empirical
test statistic is constructed which is able to detect deviations from the theoretical value.
Finally, the asymptotic behavior of the test statistic is derived, allowing us to evaluate
the significance of deviations of the test statistic.

Even though they share one basic approach, the mathematical tools involved in the
derivations vary. The first three tests involve relations of joint moments of the processes,
and the calculation of these expressions is facilitated by using joint cumulants as shown
in Chapter 5. The necessary central limit theorems are derived via the classical notion
of strong mixing. The last test of Chapter 6 stands alone, it is also more general than its
predecessors. It utilizes empirical generating functions of random variables and is thus
able to serve as a goodness-of-fit test for a very large class of processes. The derivation
of the necessary central limit theorem does not rely on mixing, but on a more general
result for ergodic processes. Furthermore, the convergence in distribution in this case is
of a functional type, leading to a much more intricate structure of the proofs.

1.2 Discrete-Time Queueing Processes

A second approach for modeling data as given in Figure 1.1 considers discrete-time
queueing models for the underlying process. The history of queueing theory dates back
to Erlang (1909) and has since been established as a widely used approach in the assess-
ment of real-time events. The main idea behind a single node queueing model is easily
explained with the help of a sketch.

There is a certain arrival stream of customers coming from the outside, denoted by
A(t). Whenever a customer arrives and if at least one server out of a total of N servers
is available, the customer begins his service, the length of which is distributed according
to some service time distribution G. Should all servers be busy at the time of arrival,
the customer is placed in the queue and remains there until he receives service. When-
ever a customer has finished his service, he leaves the queue via the departure process

5



Arrival Queue Service Departure

A(t) G D(t)

Figure 1.3: Sketch of a General Queueing Model

D(t). Such a queueing model can be modeled both in continuous time and with discrete
time slots, in this thesis we will always assume the time to be discrete. Concerning
notation, the main characteristics of a queueing model are usually summarized in the
so-called Kendall notation of the form A/B/c/d. The first entry “A” governs the arrival
distribution, the entry “B” the service time distribution and the third, “c” reports the
number of servers. The entry “d” denotes the size of the waiting room. This notation
may be extended to include more information, for instance, the discipline of the queue
(e.g., ”first in, first out” or FIFO) can be added. However, such ramifications will not
be necessary in this thesis.

Let us discuss how the data of Figure 1.1 fits into the framework of a discrete-time
queueuing system: the time slots are the elapsing months, the arriving customers each
month represent the number of workers who suffered an accident involving burn injuries
in the course of the current month and now collect short-term wage loss benefits for the
first time. The service time corresponds to the duration of the healing period, i.e., the
time span in which the worker is ineligible for work due to his injuries. In this scenario,
the number of servers is infinite, as there is no (theoretical) limit to the number of
workers collecting short-term wage loss benefits. Hence, we are faced with a discrete-
time queue in which the arrival is independent, yet general; the service time is general, as
we have no preconception about the healing time of a worker and the number of servers
is infinite. In Kendall’s notation, this is a GI/G/∞-queue.

The nonparametric estimation of the service time distribution G within a discrete-
time GI/G/∞ queue has been previously considered in a number of publications. In
the continuous time case, which can always serve as an orientation, there are the early
contributions Brillinger (1974) and Brown (1970), where estimation techniques based on
observations of the arrival and departure process is considered. Furthermore, the articles
Bingham et al. (1989) and Hall and Park (2004) discuss the nonparametric analysis of
the system based on consecutive sequences of busy and idle periods, a related concept
and two additional approaches are the topic of Bingham and Pitts (1999). For a detailed
literature overview, the reader is referred to Wichelhaus and Langrock (2012).

In discrete time, literature is more scant, notable exceptions are given by Pickands
and Stine (1997) where knowledge about the queue length is assumed and Edelmann
and Wichelhaus (2014). The results of the latter contribution are discussed in detail
below, as they build the vantage point for the analysis of Chapter 3.

In particular, the idea of estimating the sequence of differences as a device to obtain
an estimation of the service time distribution was first put forward in Brown (1970),
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refined in Blanghaps et al. (2013) and applied to the discrete time case in Edelmann and
Wichelhaus (2014). The idea consist basically in circumventing the main matchmaking
problem, i.e., that departures can not be matched to their respective arrivals, by estimat-
ing a different distribution first, for which simply (and falsely) any departure is assumed
to have been caused by the latest possible arrival. Quite surprisingly, this distribution
stands in a very simple relation to the sought after service time distribution. From a
mathematical standpoint, both of these distributions may be represented as functionals
on the general space of sequences RN, and the main contribution of Chapter 3 is the proof
of the functional convergence of appropriately chosen estimators of these distributions.

1.3 Bibliographic Notes

Large parts of this thesis are based on a number of published articles of the author
in refereed journals. Two of these articles were co-authored by Prof. Dr. Christian
Weiß: Schweer and Weiß (2014), Schweer and Weiß (2015). Another article, Schweer
and Wichelhaus (2015a), was written in conjunction with Dr. Cornelia Wichelhaus. The
published contributions Schweer (2015a) and Schweer (2015b), the latter of which ap-
peared in a refereed conference proceedings volume, constitute solo efforts of the author.
In order to clarify the origin of the results, the source of each theorem, proposition,
lemma etc. is cited. If a theorem or a corollary remains unmarked, it states a new and
unpublished result. Unmarked lemmata may state either new results or a well-known
assertion, the difference should be clear from the context. In particular, unpublished
work can be found in Section 5.3, Section 4.2.4 and Section 7.2.

Concerning notation, this thesis follows the usual mathematical conventions, e.g.,
denoting the normal distribution with mean a and variance b by N (a, b), and so forth.
Furthermore, we set N = {1, 2, 3, . . . } and N0 = N ∪ {0}. Denotations exceeding the
scope of the “usual” are defined in the text and listed in the appendix of this thesis for
easy reference. In the same place, the reader can find a list of the acronyms and an
index of important keywords used in the text.
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2 Mathematical Prerequisites
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This chapter gathers together for easy reference a number of useful mathematical
concepts used in this thesis. As the focus is put on the collection of established results,
most of the proofs are omitted. They are included either if parts of the proof are used
in this thesis or if they are slight generalizations of existing results.

The topics of the particular sections vary, beginning with the function-analytic aspects
of sequence spaces. These abstract concepts provide the appropriate setting for parts of
the analysis in Chapter 3. Next, we discuss some properties of (joint) cumulants, which
simplify the explicit calculation of joint moments of INAR(1) processes significantly, see
Chapters 4 and 5. Characteristics of Compound Poisson distributions are collected in
the next section, these will turn out to be a natural candidate for consideration in the
framework of INAR(1) processes. The fourth part of this chapter is concerned with the
time-reversibility of stochastic processes, a concept which appears at numerous times
throughout this thesis.

The last two sections collect some well-known results for dependent data, the first
introduces the classical autocorrelation function and partial autocorrelation function.
The second provides two different central limit theorems for dependent data due to
Ibragimov (1962) and Billingsley (1999), both of which are employed at multiple times
throughout this thesis.

2.1 Sequence Spaces

For the nonparametric estimation of a probability distribution on the real numbers,
one usually considers convergence of these estimators in the so-called Skorokhod space
D[−∞,∞]. In this thesis, however, the considered distributions are of a discrete type
and it will therefore turn out to be convenient to consider convergence on sequence
spaces instead. One such example which we will use extensively is the Banach space

c0 =

{
x = (x1, x2, . . . ) ∈ RN

∣∣∣ lim
k→∞

xk = 0

}
. (2.1)

We equip this space with the norm ‖x‖c0 = supk∈N |xk|. This space is used for proving
functional central limit theorems of empirical distribution functions in Henze (1996), the
following exposition parallels that of Section 2 of this article.

The σ-algebra of Borel sets of c0 will be denoted by B′, it is generated by the ε-balls
S(x, ε) := {y ∈ c0 | ‖x − y‖c0 < ε}, where x ∈ c0 and ε > 0. Comparing this with
the smallest σ-algebra on c0 such that the projections x 7→ πk ◦ x := xk, k ∈ N, x ∈ c0

are measurable, denoted by B, it is easily seen that B = B′. Let Xn be a mapping
from the underlying sample space Ω (with associated σ-algebra A) into c0 for which
πk ◦ Xn =: Xn,k is a random variable. It follows that Xn is A-B-measurable, implying
that P ◦ (Xn)−1 is a Borel probability measure on c0. In order to show convergence in
distribution of a sequence to a random element in c0, it is well known that we need
to prove the weak convergence of finite-dimensional distributions and verify that the
sequence is tight (see, e.g., Billingsley (1999)).
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Recalling that a family of distributions Π is tight if for every ε > 0 there exists a
compact set K such that P(K) > 1 − ε for every P ∈ Π, it is clear that we need to
classify the compact sets in c0. It will turn out to be convenient to consider relatively
compact sets A of c0, for which the closure, denoted by A−, is compact. An ε-cover is a
cover of the space consisting of sets of diameter less than ε, and a metric space is called
totally bounded if it admits a finite ε-cover for every ε > 0. The relation between these
concepts is the following (cf. Theorem M5 in Billingsley (1999)): Since c0 is a Banach
space, the closure of any set is complete, and thus every totally bounded set is relatively
compact and vice versa. Let us formulate the key lemma in this context:

Lemma 2.1.1 (Hanche-Olsen and Holden (2010), Lemma 1). Let (X, d) be a metric
space and assume that for every ε > 0, there exists some δ > 0 a metric space (W,d′)
and a mapping Φ : X → W such that Φ(X) is totally bounded. Furthermore, assume
that whenever x, y ∈ X are chosen such that d′(Φ(x),Φ(y)) < δ, then d(x, y) < ε. Then
X is totally bounded.

This result allows for a very simple proof of the following assertion. Results of this
kind are usually subsumed under the name Arzelà-Ascoli theorem in honor of Cesare
Arzelà and Giulio Ascoli.

Lemma 2.1.2 (Cp. Henze (1996), Sect.2). A set A ⊂ c0 is totally bounded if and only
if

(i) A is pointwise bounded, i.e., it holds that supx∈A ‖x‖c0 <∞.

(ii) for all ε > 0 there exists an N such that

sup
x∈A

sup
k≥N
|xk| < ε.

Proof. Let us first assume that A is totally bounded. The existence of a finite ε-cover for
any ε > 0 implies the uniform boundedness of A and therefore the pointwise boundedness
of (i). Now, let ε > 0 and choose a corresponding cover {U(1), . . . , U(R)} with center
points y(j) ∈ U(j). Now choose N large enough so that

sup
k≥N
|y(j)k| < ε for j = 1, . . . , R,

which is possible since y(j) ∈ c0. Letting x ∈ A be arbitrary, it follows that there exists
a y(j) with ‖x− y(j)‖c0 < ε. Using this, we have

sup
k≥N
|xk| ≤ sup

k≥N
|xk − y(j)k|+ sup

k≥N
|y(j)k| ≤ 2ε,

proving condition (ii). Now, assume (i) and (ii) hold. Let ε > 0 and choose N as in (ii).
Consider the map Φ : A → RN , which maps x to the vector (x1, . . . , xN ). Employing
the uniform norm ‖ · ‖∞ on RN , by (i), Φ(A) is totally bounded. Now, assuming that
x, y ∈ A such that

‖Φ(x)− Φ(y)‖RN = sup
k≤N
|xk − yk| < ε,
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we find that

‖x− y‖c0 ≤ sup
k≥N
|xk − yk|+ sup

k≤N
|xk − yk| < 2ε,

and an appeal to Lemma 2.1.1 concludes the proof.

This can be translated into the following condition for tightness in the measurable
space (c0,B). We repeat the proof shown in Henze (1996) on the one hand to highlight
the usefulness of the considerations above and on the other hand to clear the pathway
towards possible generalizations.

Lemma 2.1.3 (Henze (1996), Lemma 2.1). Let Xn = (Xn,k)k∈N be a sequence of random
elements of (c0,B). Then Xn is tight if the following two conditions hold:

(i) For each positive δ and l ∈ N there is a finite constant M , such that

P (|Xn,l| ≤M) ≥ 1− δ, n ≥ 1. (2.2)

(ii) For each positive numbers δ, ε there exist integers n0 and l0 such that

P

(
sup
k≥l0
|Xn,k| > ε

)
≤ δ for all n ≥ n0. (2.3)

Proof. The necessity of the conditions is easily seen. Suppose (i) and (ii) hold and let
ε > 0. Let us define the sets

Aj :=

{
x ∈ c0

∣∣∣∣∣ sup
k≥l(j)

|xk| ≤
1

j

}
,

where l(j) is an integer chosen (depending on j and ε) such that Qn(Aj) ≥ 1− ε ·2−(j+1)

for all n. Condition (i) ensures the existence of constants M1, . . . ,Ml(1)−1 such that
Qn(Bk) ≥ 1 − ε/(2(l(1) − 1)) for all n, where Bk := {x ∈ c0| |xk| ≤ Mk} for all
k = 1, . . . , l(1)− 1. Now, we define

A := B1 ∩B2 ∩ · · · ∩Bl(1)−1 ∩
∞⋂
j=1

Aj ,

and with Lemma 2.1.2 it immediately follows from this construction that the closure K
of A is compact. We calculate

Qn(K) ≥ 1−Qn(AC) ≥
l(1)−1∑
i=1

(1−Qn(Bi)) +
∞∑
i=1

(1−Qn(Ai)) ≥ 1− ε,

concluding the proof.
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These considerations extend mutatis mutandis to a similar sequence space `1, the space
of all absolutely summable sequences, i.e., all sequences (xk)k∈N with

∑∞
k=1 |xk| < ∞.

More precisely, it is easily seen that the results also hold in the space

(`1)2 :=

{
(x, y) ∈ RN × RN

∣∣∣ ∞∑
k=1

(|xk|+ |yk|) <∞

}
,

equipped with the norm ‖(x, y)‖(`1)2 =
∑∞

k=1(|xk| + |yk|). The corresponding Borel
σ-algebra will be denoted by B1. We find the following analogon of Lemma 2.1.3:

Lemma 2.1.4. A sequence {Qn}n≥1 of probability measures on ((`1)2,B1) is tight if and
only if these two conditions hold:

(i) For each positive δ and each l1, l2 ∈ N, there exists a finite constant M such that

Qn
({
x ∈ (`1)2 | |x1(l1) |+ |x2(l2)| ≤M

})
≥ 1− δ.

(ii) For each positive δ, η > 0, there exists a l0 ∈ N such that

Qn

x ∈ (`1)2

∣∣∣∣∣∣
∑
k≥l0

(|x1(k)|+ |x2(k)|) ≤ η


 ≥ 1− δ.

2.2 Cumulants

The following exposition resembles that of Section 2.3 in Brillinger (1981) closely. Let us
consider a r-variate random variable (Y1, . . . , Yr) with E[Y r

i ] < ∞ for all i ∈ {1, . . . , r}.
We define the r-th order joint cumulant cum(X1, . . . , Xr) as follows:

cum(Y1, . . . , Yr) =
∑
π∈Πr

(−1)|π|−1(|π| − 1)!

|π|∏
i=1

E

 ∏
l∈Bi(π)

Yl

 , (2.4)

where Πr is the set of all possible partitions π of the set {1, . . . , r}, |π| denotes the
number of blocks in a partition π and Bi(π) denotes the i-th block in said partition, i.e.,⋃
iBi(π) = {1, . . . , r}. A special case of (2.4) is given for Yi = Y , then the definition

reduces to that of the rth order cumulant of a random variable Y , which we will denote
by κr(X) throughout this thesis. We now summarize the following properties:

Lemma 2.2.1 (Brillinger (1981), Theorem 2.3.1). Let (Y1, . . . , Yr) be a r-variate random
variable with E(Y r

i ) <∞ for all i ∈ {1, . . . , r}. Then

(i) If Yi = Y for all i ∈ {1, . . . , r}, then cum(Y, . . . , Y ) = κr(Y ).

(ii) If any group of Yi’s is independent of the remaining Yj’s, then cum(Y1, . . . , Yr) = 0.

(iii) The cumulant function is additive, i.e., cum(Y1 +Z1, . . . , Yr) = cum(Y1, . . . , Yr) +
cum(Z1, . . . , Yr).
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(iv) cum(a1Y1, . . . , arYr) = a1 · · · ar cum(Y1, . . . , Yr) for a1, . . . , ar constant.

(v) If r ≥ 2, then the r-th order joint cumulant is shift-invariant, i.e., for constants
c1, . . . , cr ∈ R it holds that cum(Y1 + c1, . . . , Yr + cr) = cum(Y1, . . . , Yr).

(vi) For any r ∈ N,

E [Y1 · · ·Yr] =
∑
π∈Πr

|π|∏
i=1

cum(YBi(π)),

where Πr and Bi(π) are as in (2.4) and where YBi(π) = (Ybi(π,1), . . . , Ybi(π,p)), with
Bi(π) = {bi(π, 1), . . . , bi(π, p)}.

(vii) Let X1,i, X2,i, . . . , Xr,i be sequences of nonnegative random variables, such that
Xi,j and Xk,l are independent for j 6= l for all i, k ∈ {1, . . . , r} and such that
E[(
∑∞

i=0Xj,i)
r] <∞ for j ∈ {1, . . . , r}. Then

cum

( ∞∑
i=0

X1,i,
∞∑
i=0

X2,i, . . . ,
∞∑
i=0

Xr,i

)
=
∞∑
i=0

cum (X1,i, X2,i, . . . , Xr,i) .

Proof. For (i) through (v), we refer to (Brillinger, 1981, Theorem 2.3.1), relation (vi)
is well-known. Concerning (vii), as the condition E[(

∑∞
i=0Xj,i)

r] <∞ ensures that the
expression is well-defined (Brillinger, 1981, Definition 2.3.1), we prove this statement via
application of the defining equation (2.4) of joint cumulants. In order to allow for the
changing of the order of integration (i.e., taking the mean) and summation, we apply
Lesbesgue’s monotone convergence theorem. Since the Xji’s are nonnegative and since
the arising expectations have an upper bound in max1≤j≤r {E [(

∑∞
i=0Xji)

r]} <∞, this
theorem is applicable. We first find with (iii) that

cum

( ∞∑
i1=0

X1,i,
∞∑
i2=0

X2,i, . . . ,
∞∑
ir=0

Xr,i

)
=
∞∑
i1=0

cum

(
X1,i1 ,

∞∑
i2=0

X2,i, . . . ,
∞∑
ir=0

Xr,i

)

= . . . =

∞∑
i1=0

· · ·
∞∑
ir=0

cum (X1,i1 , X2,i2 , . . . , Xr,ir) ,

which, using (ii), concludes the proof.

To give a better feeling for what cumulants do, notice that cum(X,X) = Var(X) as
well as cum(X,Y ) = Cov(X,Y ) provided the respective moments exist. Thus, cumulants
are close relatives of joint moments with rather nice mathematical aspects such as multi-
linearity. This makes their application in situations where the random variables in
question carry a lot of structure quite advantageous in comparison to the calculation of
raw joint moments. This is used, e.g., in the proof of Lemma 5.2.2 below.

Let us further record that the concept of overdispersion, which will be of great im-
portance throughout this thesis, can also be stated in terms of cumulants. The index of
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dispersion of a random variable X is defined as

IX :=
Var(X)

E[X]
. (2.5)

If IX = 1 (for instance in Poisson distributions), X is equidispersed, if it is larger than
1 then X is overdispersed . For IX < 1 the term underdispersed is used. In terms of
cumulants, this may be expressed via the fraction κ2(X)/κ(X).

After this side note, let us continue with the law of total cumulance. This was intro-
duced in Brillinger (1969) and is restated below. It extends the law of total expectation
E[X] = E[E[X|Y ]] and law of total variance Var(X) = E[Var(X|Y )] + Var(E[X|Y ])
(where X,Y are random variables on the same probability space with finite moments of
appropriate order) to cumulants:

Theorem 2.2.2 (Brillinger (1969), Theorem 1). Let (Y1, . . . , Yr) be a r-variate random
variable with E(Y r

i ) < ∞ for all i ∈ {1, . . . , r} and let X be a random variable defined
on the same probability space as the Yi’s. Then

cum (Y1, . . . , Yr) =
∑
π∈Πr

cum
(
cum(YB1(π)|X), . . . , cum

(
YBp(π)|X

))
,

where Πr, Bi(π) and YBi(π) are as in Lemma 2.2.1 (vi).

2.3 Compound Poisson Distributions

The following exposition is very closely modeled after the corresponding section of the
Appendix of Schweer and Weiß (2014). For the Compound Poisson distribution, we
adapt the notations and definitions from Chapter XII in Feller (1968).

Definition 2.3.1 (Compound Poisson Distribution). Let X1, X2, . . . be i.i.d. random
variables with range N and probability generating function (pgf) H(z), the compounding
distribution, where ν := deg(H(z)). Let N be Poisson distributed with mean λ > 0, i.e.,
N ∼ Poi(λ), independently of X1, X2, . . . Then ε := X1 + . . .+XN is Compound Poisson
distributed, denoted by ε ∼ ComPoiν(λ,H). The pgf of ε is given by

pgfε(z) = exp (λ(H(z)− 1)). (2.6)

The distribution of Definition 2.3.1 has also been referred to as Poisson-stopped
sum distribution, stuttering Poisson distribution, multiple Poisson distribution (John-
son et al., 2005, Sections 4.11 and 9.3), and as extended Poisson distribution of order ν
if ν < ∞ in Aki (1985). The ComPoiν-distribution includes several well-known distri-
butions as a special case. It is equidispersed if and only if ν = 1, and overdispersed
otherwise. Furthermore, the Compound Poisson distributions are closely linked to the
infinitely divisible distributions, defined as follows.

Definition 2.3.2 (Infinite Divisibility). Let H be a probability distribution on N0 with
pgfX(z) = H(z). Then H is infinitely divisible, if for each positive integer n, the n-th
root, n

√
H(z), is a pgf again.
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Whereas this definition uses pgfs for its formulation, one could equivalently define: H
is infinitely divisible if for each n ∈ N there exist n i.i.d. random variables X1n, . . . , Xnn

such that X1n + · · · + Xnn ∼ H. The link between such distributions and Compound
Poisson distributions is given by the next result.

Theorem 2.3.3 (Feller (1968), Sect. XII.2). Let G be a probability distribution on N0

with pgf G(z). Then the following statements are equivalent:

(i) G is infinitely divisible,

(ii) there exist λ > 0 and a pgf H(z) such that G ∼ ComPoi(λ,H),

(iii) G(1) = 1 and

log
G(z)

G(0)
=
∞∑
i=1

aiz
i, where ak ≥ 0,

∞∑
i=1

ak <∞.

There is another classification for these distributions that we want to mention here.
Let us first introduce the notion of discrete self-decomposability.

Definition 2.3.4 (Discrete Self-Decomposability). Let H be a probability distribution
on N0 with pgf H(z). Then H is discrete self-decomposable (DSD) , if for each α ∈ (0, 1)
there exists a pgf Hα(z) such that

H(z) = H(1− α+ αz)Hα(z). (2.7)

In Steutel and Van Harn (1979), the following deep result is shown.

Theorem 2.3.5 (Steutel and Van Harn (1979), Theorem 2.2). Let G be a probability
distribution on N0 with pgf G(z). Then G is discrete self-decomposable if and only
if G is infinitely divisible with G ∼ ComPoi(λ,H), where the sequence (n · hn)n∈N is
nonincreasing.

Proof. The entire assertion is contained in the cited reference, we only show that for the
canonical measure (rn)n∈N we have rn = λ(n+ 1)hn+1 for all n ∈ N. We calculate

−
∫ 1

z

∞∑
n=0

rnu
ndu =

∞∑
n=0

rn
n+ 1

(
−1 + zn+1

)
= λ(H(z)− 1).

The latter equality, together with elementary characteristics of power series concludes
the proof.

Example 1 (Poisson Distribution of Order ν, Negative Binomial Distribution).
If ν <∞ and if the compounding distribution is the uniform distribution on {1, . . . , ν},
i.e., if hx = 1/ν for all x = 1, . . . , ν, then the resulting distribution is also known as the
Poisson distribution of order ν, see Sections 9.3 and 10.7.4 in Johnson et al. (2005).
This distribution is abbreviated hereafter as Poiν(λ), where Poi1 = Poi.
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Also the negative binomial distribution NegBin(n, π) with n > 0 and π ∈ (0, 1) is
Compound Poisson, with λ := −n lnπ and hk = (1− π)k/(−k lnπ) for all k ∈ N. Here,
the Xi of Definition 2.3.1 follow the logarithmic series distribution LSD(π) (Johnson
et al., 2005, Chapter 5).

The requirement in Definition 2.3.1 that the X1, X2, . . . have the range N = {1, 2, . . .}
guarantees a unique representation of the associated Compound Poisson distribution.
This follows from (2.6) and

exp (λ(H(z)− 1)) = exp
(
λ(h0 − 1 + h1z + h2z

2 + . . .)
)

= exp

(
λ(1− h0)

(
−1 +

h1

1− h0
z +

h2

1− h0
z2 + . . .

))
,

which implies that for each choice of λ′ > 0 and H ′(z) with h′0 > 0 there exists a λ > 0

and a H(z) with h0 = 0 such that ComPoi(λ′, H ′)
D
= ComPoi(λ,H), as equality of the

pgfs implies equality in distribution. Thus, without loss of generality, we may assume
H(0) = 0 throughout this thesis, cp. p. 389 in Johnson et al. (2005).

The following two assertions are concerned with the raw moments of Compound Pois-
son distributions, so we first introduce some notation. Throughout this thesis, the
moments about the origin of a random variable ε are abbreviated as µε,k := E[εk] with
µε := µε,1. The central moments are denoted as µ̄ε,k := E[(ε− µε)k], with σ2

ε := µ̄ε,2.

Proposition 2.3.6 (Schweer and Weiß (2014), Proposition B.1). Let ε be ComPoi(λ,H)-
distributed according to Definition 2.3.1.

(i) A recursive scheme for the computation of P(ε = s) is given by

P(ε = 0) = e−λ, sP(ε = s) = λ
s−1∑
j=0

(s− j)hs−jP(ε = j) for s ≥ 1.

(ii) If the moments µX , r of Xi exist, then the cumulants of ε are given by

κε,r = λµX , r.

Part (i) was derived by Kemp (1967); an explicit expression for P(ε = s) is given on
p. 288 in Feller (1968). Part (ii) is considered in Section 2 of Aki et al. (1984), it follows
immediately from the cumulant generating function (cgf) cgfε(z) = λ (H(ez)− 1), also
see relation (2.6), where H(ez) is just the moment generating function (mgf) of Xi.
Note that part (ii) implies that the index of dispersion of ε equals E[X2

1 ]/E[X1], i.e., the
ComPoiν-distribution is equidispersed if and only if ν = 1, and overdispersed otherwise.

Example 2 (Poisson Distribution of Order ν). Let ε ∼ Poiν as given in Example 1.
Since the Xi are uniformly distributed, the raw moments µε,r = 1

ν

∑ν
x=1 x

r are easily
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computed, and from Proposition 2.3.6 (ii), we immediately obtain the cumulants of ε. In
particular,

µ̄ε,1 =
λ(ν + 1)

2
, µ̄ε,2 =

λ(ν + 1)(2ν + 1)

6
, µ̄ε,3 =

λν(ν + 1)2

4
,

µ̄ε,4 =
λ(ν + 1)(2ν + 1)(3ν2 + 3ν − 1)

30
+ 3σ4

ε . (2.8)

For further details on the relations between moments and cumulants, the reader is re-
ferred to Appendix 7 in Douglas (1980).

Example 3 (Negative Binomial Distribution). The negative binomial distribution with
parameter (n, π) of Example 1 satisfies

µ̄ε,1 =
n(1− π)

π
, µ̄ε,2 =

n(1− π)

π2
, µ̄ε,3 =

n(1− π)(2− π)

π3
,

µ̄ε,4 =
3n2(1− π)2 + n(1− π)(π2 − 6π + 6)

π4
. (2.9)

For these and further properties of the NegBin(n, π)-distribution, we refer to Chapter 5
in Johnson et al. (2005).

Another popular member of the ComPoi∞-family is Consul’s generalized Poisson dis-
tribution (also Lagrangian Poisson distribution), GP(θ, η), see Zhu and Joe (2003) and
Section 7.2.6 in Johnson et al. (2005) for details. Here, the compounding probabilities
are given by hx = η(ηx)x−1 e−ηx/x!, see Example 5.5. in Zhu and Joe (2003).

2.4 Time-Reversibility of Stochastic Processes

The concept of time-reversibility of stochastic processes will be of interest during various
stages of this thesis. Formally, a process is time-reversible if it obeys the following
definition.

Definition 2.4.1 (Time-Reversibility). A stochastic process (Yt)t∈Z is time-reversible
if the vector (Yt1 , Yt2 , . . . , Ytn) has the same distribution as (Yτ−t1 , Yτ−t2 , . . . , Yτ−tn) for
all t1, t2, . . . , tn, τ ∈ Z.

In order for a process to be time-reversible it should exhibit the same behavior whether
time passes normally or ”backwards”, or, to put it more eloquently,

Speaking intuitively, if we take a film of such a process and then run the film
backwards the resulting process will be statistically indistinguishable from
the original process.

Kelly (1979), p. 5.
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The criterion given in the definition is formulated for general stochastic processes. If
the underlying structure of the process is simpler, e.g., Markovian, the necessary and
sufficient conditions for time-reversibility can be stated much more succinctly, as shown
by Kolmogorov’s criterion.

Theorem 2.4.2 (Kelly (1979), Theorem 1.7). A stationary Markov chain (Yt)t∈Z on a
discrete state space S is time-reversible if and only if the transition probabilities, given
by P(Yt = l | Yt−1 = k) := pY (l|k) satisfy the relation

pY (j1|jn)pY (j2|j1) · · · pY (jn|jn−1) = pY (j1|j2) · pY (j2|j3) · · · pY (jn−1|jn) · pY (jn|j1),

for any finite sequence of states j1, j2, . . . , jn ∈ S.

It should be noted that time-reversibility of a process is a very rare characteristic
among stochastic processes. On the other hand, the time-reversible models are often
the most popular models. As an example, Weiss (1975) shows that the continuous
AR(p) process is time-reversible if and only if it is Gaussian, a very widely used model.
Since the question whether a given process is Gaussian is a crucial one in time series
analysis, this observation has lead to the following specification test by Ramsey and
Rothman (1996): Suppose that the process is time-reversible, then it necessarily holds
that E[Y i

t Y
j
t−k] = E[Y j

t Y
i
t−k] for any i, j, k ∈ N. In particular, in later parts of this thesis,

(see Section 5.2) we will be interested in generalized autocovariance function β(·) defined
by

β(k) := E
[
Y 2
t Yt−k

]
− E

[
YtY

2
t−k
]

for k ∈ N. (2.10)

If (Yt)t∈Z is time-reversible, it follows that β(k) = 0 for all k ∈ N0. The empirical
counterpart of β(·), computed from an observation Y1, . . . , YT of a stationary process
(Yt)t∈Z, is defined as

β̂T (k) :=
1

T − k

T∑
t=k+1

(
Y 2
t Yt−k − Y 2

t−kYt
)

for k ∈ {1, . . . , T1}. (2.11)

The resultant test for time-reversibility of (Yt)t∈Z checks the deviation of β̂T (k) from 0.

2.5 Central Limit Theorems for Dependent Data

At various instances throughout this thesis, we will be interested in deriving central limit
theorems (CLTs) for diverse functionals of discrete time series. The usual approach for
such theorems is the following: Supposing that the random variables Y1, . . . , YT are
identically distributed and independent, have mean zero and a finite variance σ2, it is
easily shown using characteristic functions (or similar techniques), that the convergence

1√
T

∑
Yi → N (0, σ2) holds in distribution. For the data we study in this thesis, however,

the assumption of independence is too strong as we want to allow the processes to depend
on their past realizations, hence the need for central limit theorems for dependent random
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variables. Note that the processes studied in this thesis are stationary as a rule, hence
the assumption of identically distributed random variables is not violated.

The general idea behind central limit theorems for dependent data usually boils down
to the assumption that the data, while dependent over time, become “more and more”
independent the further the data points are apart. In order to measure the level of
dependency within the data for a given stationary stochastic process (Yt)t∈Z, we define
the notion of strong mixing.

Definition 2.5.1 (α-Mixing). Let (Yt)t∈Z be a stationary stochastic process and define
the σ-algebras Fk(Y ) := σ(Yi ;−∞ < i ≤ k) and F l(Y ) := σ(Yi ; l ≤ i < ∞). Then
(Yt)t∈Z is α-mixing, if

αY (n) := sup
A∈Fk(Y );B∈Fk+n(Y )

|P(A ∩B)− P(A)P(B)| → 0 as n→∞. (2.12)

For each n ∈ N, the coefficient appearing in (2.12) are called α-mixing or strong
mixing coefficients (or weights). The notion of strong mixing is usually credited to
Rosenblatt (1956), and it should be pointed out that the number of different types of
mixing formulations has increased since then, necessitating specializations such as α-
mixing or β-mixing. Indeed, the excellent survey paper on mixing properties Bradley
(2005) lists no less than eight different types of strong mixing conditions. In this thesis,
we will make frequent use of the following central limit theorem for α-mixing stationary
processes.

Theorem 2.5.2 (Ibragimov (1962), Theorem 1.7). Let (Yt)t∈Z be a stationary and α-
mixing process with E[|Y0|2+δ] <∞ for some δ > 0 and where

∞∑
j=1

(αY (j))
δ

2+δ <∞. (2.13)

Then the series σ2 =
∑

j∈Z Cov(Y0, Yj) converges absolutely, and

√
T

(
1

T

T∑
i=1

Yi − E[Y0]

)
D→ N (0, σ2).

One of the reasons why α-mixing has gained such an importance is that it is invariant
under measurable maps, i.e., if (Yt)t∈Z is an α-mixing process and f is a measurable map,
then the process (f(Yt))t∈Z is α-mixing again. On the other hand, mixing conditions are
often difficult to verify directly. An alternative criterion is used in the following result.
For the first assertion we provide a sketch of the proof given in the cited reference, as
some of the arguments will be used again at later stages of this thesis.
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Theorem 2.5.3 (Billingsley (1999), Theorem 19.1). Let (Yt)t∈Z be a stationary and
ergodic process with E[Y 2

0 ] <∞. Let

∞∑
j=1

‖E [Yj − E[Y0] | F0(Y )]‖L2 <∞, (2.14)

where ‖X‖L2 = (E[|Y |2])
1
2 denotes the L2 norm. Then the series σ2 =

∑
j∈Z Cov(Y0, Yj)

converges absolutely, and

√
T

(
1

T

T∑
i=1

Yi − E[Y0]

)
D→ N (0, σ2).

Proof. without loss of generality, E[Y0] = 0. By the Cauchy-Schwarz inequality,

|E [Y0Yi]| ≤ E [|Y0| · |E [Yi|F0(Y )] |] ≤ ‖Y0‖L2 · ‖E [Yi|F0(Y )] ‖L2 , (2.15)

thus (2.14) shows that the series σ2 converges absolutely. The stationarity of (Yt)t∈Z
implies that E[(

∑n
i=1 Yi)

2] = nE[Y 2
0 ] + 2

∑n−1
i=1 (n− i)E[Y0Yi]. Direct calculations yield∣∣∣∣∣∣

∞∑
i=−∞

E[Y0Yi]−
1

n
E

( n∑
i=1

Yi

)2
∣∣∣∣∣∣ ≤ 2

∞∑
i=n

|E [Y0Yi] |+
2

n

n−1∑
i=1

∞∑
l=i

|E [Y0Yl] |, (2.16)

which implies 1
nE[(

∑n
i=1 Yi)

2] → σ2. For the former series in (2.16) the convergence to
zero is obvious, for the latter notice that we may rearrange the series due to absolute
convergence as follows,

1

n

n−1∑
i=1

∞∑
l=i

|E [Y0Yl] | =
∞∑

l=n−1

|E [Y0Yl] |+
n−1∑
j=1

(
1− n− j

n

)
|E [Y0Yj ] |,

and notice that limn→∞
n−j
n = 1 for each j ∈ N which, due to the dominated convergence

theorem, yields the result.

The condition (2.14) can be seen as an alternative form of the mixing condition (2.12),
in the sense that, under this condition, the dependence of the process on a given reference
state Y0 decays fast enough to 0 to be summable in the L2 norm. The advantage of this
condition in comparison to mixing conditions is that the conditional expectation is more
easily accessible if the structure of the process is simple. A useful inequality in the
context of (2.14) is given in the following Lemma, a consequence of Jensen’s inequality.

Lemma 2.5.4 (Billingsley (1999), eq. (19.25)). Let X be a random variable on (Ω,A,P)
with a finite second moment and let M and N be σ-algebras satisfying M ⊂ N ⊂ A.
Then

‖E [X|M]‖L2 ≤ ‖E [X|N ]‖L2 , ‖E [X|M]‖L2 ≤ ‖X‖L2 . (2.17)
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2.6 Autocovariance Function and Related Concepts

In order to assess the dependence of a given stochastic process on the past, there is a
multitude of functions available. In this section, we consider the three most popular
functions, the autocovariance function γ(·), the autocorrelation function ρ(·) and the
partial autocorrelation function ρpart(·). For a given stationary process (Yt)t∈Z, the first
two functions are easily defined:

γ(k) := Cov (Yt, Yt+k) and ρ(k) :=
γ(k)

γ(0)
for k ∈ Z.

Denoting Y := 1
T

∑T
i=1 Yi, the empirical counterparts are also easily established:

γ̂(k) :=
1

T − k

T−k∑
i=1

(
Yi − Y

) (
Yi+k − Y

)
and ρ̂(k) :=

γ̂(k)

γ̂(0)
for k ∈ {0, . . . , T − 1}.

Let us give an example. Let p ∈ N and let α1, . . . , αp ∈ (−1, 1) denote appropriately cho-
sen parameters, then a stationary stochastic process is called a continuous autoregressive
process of order p if it satisfies the recursion

Yt =

p∑
i=1

αiYt−i + εt, (2.18)

where (εt)t∈Z is a sequence of white noise random variables (note that in this case, εt
can take on values in R). Since E[ε0] = 0 it follows that E[Y0] = 0, and multiplication
of (2.18) with Yt−k on both sides and taking expectations γ(k) =

∑p
i=1 αiγ(k − i) for

any k ∈ N, the Yule-Walker equations. For instance, if (Yt)t∈Z is an AR(1) process with
parameter α ∈ (−1, 1), these immediately imply γ(k) = αkγ(0) for all k ∈ N0 and thus
ρ(k) = αk. The partial autocorrelation function is a little harder to define. Essentially,
ρpart(k) evaluates the correlation of the random variables Yt and Yt+k adjusted for the
intermediate values Yt+1, . . . , Yt+k−1.

Definition 2.6.1 (Partial Autocorrelation Function). Let (Yt)t∈Z be a stationary process
with E[Y 2

0 ] < ∞ and autocorrelation function ρ(·). Then ρpart(·) is called the partial
autocorrelation function if it satisfies ρpart(1) := ρ(1) and ρpart(k) = det(Uk)/det(Lk),
where the matrices (for k ≥ 2) are given by

Uk :=


1 ρ(1) . . . ρ(k − 2) ρ(1)
ρ(1) 1 . . . ρ(k − 3) ρ(2)

...
. . .

...
...

ρ(k − 1) . . . ρ(1) ρ(k)

 ,Lk :=


1 . . . ρ(k − 1)

ρ(1)
. . . ρ(k − 2)

...
...

ρ(k − 1) . . . 1

 .

It is quite obvious that ergodicity of the process together with appropriate moment
assumptions already yields consistency of the estimators γ̂(k) for any k ∈ N0, and the
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continuous mapping theorem immediately implies the consistency of ρ̂(k) and ρ̂part(k).
for any k ∈ N.

The asymptotic normality of the estimators can be treated similarly. If suffices to show
that the estimators for the autocovariance function γ(·) are jointly asymptotically normal
to provide inference for the asymptotic behavior of the ACF and PACF estimators. We
record this result together with two important consequences.

Theorem 2.6.2 (Romano and Thombs (1996), Theorem 3.2). Let (Yt)t∈Z be a stationary
process with √

T (γ̂(0)− γ(0), . . . , γ̂(K)− γ(K))
D→ N (0,T + U) ,

where the entries τi,j of the matrix T are given by

τi+1,j+1 =

∞∑
d=−∞

[γ(d)γ(d+ j − i) + γ(d+ j)γ(d− i)] ,

and where the entries ui,j of the matrix U are given by

ui+1,j+1 =

∞∑
d=−∞

cum(Y0, Yi, Yd, Yd+j).

Let q ≥ 1 and denote K := p+ q. Then

√
T (ρ̂(1)− ρ(1), . . . , ρ̂(K)− ρ(K))

D→ N
(
0,T′ + U′

)
,

where the entries of the matrix T′ are calculated from T via

τ ′i,j =
1

γ(0)2
(τi+1,j+1 − ρ(i)τ1,j+1 − ρ(j)τi+1,1 + ρ(i)ρ(j)τ1,1) ,

analogously for the matrix U′.

In the special case of autoregressive processes, we are able to explicitly calculate the
resulting covariance matrix of the estimator of the partial autocorrelation function.

Theorem 2.6.3 (Ku and Seneta (1996), Theorem 1). Let (Yt)t∈Z satisfy the conditions
of Theorem 2.6.2 and let the ACF satisfy the Yule-Walker equations

∑p
j=0 αjρ(i−j) = 0,

where α0 := −1 and where
∑p

i=1 |αi| < 1. Then

√
T (ρ̂part(p+ 1), . . . , ρ̂part(K))

D→ N (0,1q×q + Λ) ,

where 1q×q is the unity matrix and the entries of Λ are given by

di,j =
1

γ(0)2 (
∏p
i=1 1− ρpart(i)2)

2

2p∑
u=0

∑
m+n=u

αmαn

2p∑
r=0

∑
s+t=r

αsαtup+1+i−r,p+1+j−u.
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Proof. In (Ku and Seneta, 1996, Theorem 1), it is shown that if the random vector√
T (ρ̂(1) − ρ(1), . . . , ρ̂(K) − ρ(K)) converges in distribution to some random vector

(V (1), . . . , V (K)), then the random vector
√
T (ρ̂part(p + 1), . . . , ρ̂part(K)) converges in

distribution to the vector (W (p+ 1), . . . ,W (K)), where

W (k) =

∑p
m=0

∑p
n=0 αiαjV (k −m− n)∏p
i=1(1− ρpart(i)2)

. (2.19)

Here, V (0) := 0 and V (−k) := V (k) for k ≥ 1. The conditions are obviously fulfilled in
our case, and we further have E[V (k)] = 0 for each k ∈ Z. Using the approach of Ku
and Seneta (1996), we first write

V := (V (p+ q), . . . , V (−p+ 1))> ,W := (W (p+ 1), . . . ,W (p+ q))>

and the q × (2p+ q) matrix A := A′/(
∏p
i=1(1− ρpart(i)2)), where

A′ :=


0 . . . 0 1

∑
1 αmαn . . . . . .

∑
2p αmαn

0 . . . 1
∑

1 αmαn . . . . . .
∑

2p αmαn 0
...

...
1
∑

1 αmαn . . . . . .
∑

2p αmαn 0 . . . 0

 ,

where summing from 1, i.e., means for m+ n = 1. With these notations, we may write
(2.19) as W = AV, noticing that

p∑
m=0

p∑
n=0

αiαjV (k −m− n) =

2p∑
u=0

∑
m+n=u

αiαjV (k − u).

As V has a multivariate normal distribution with mean 0 so does W. Let the covariance
matrix of W be denoted by ΣW, then Theorem 2.6.2 implies ΣW = AT′A>+ AU′A>.
In Ku and Seneta (1996) it is shown that AT′A> = 1q×q, the entries of Λ remain to
be calculated. For this, we introduce the convenient functions (cp. eq. (3.4) in Ku and
Seneta (1996) and Property 3 in Choi (1990))

h(k) =

2p∑
u=0

∑
m+n=u

αmαnρ(k − u), (2.20)

with h(k) = 0 for k = p, p+ 1, . . . . Theorem 2.6.2 implies that di,j equals, omitting the
constant factors,

=

2p∑
u=0

∑
m+n=u

αmαn

2p∑
r=0

∑
s+t=r

αsαtup+1+i−r,p+1+j−u + h(p+ i)h(p+ j)

− h(p+ i)

2p∑
u=0

∑
m+n=u

αmαnu1,p+1+j−u − h(p+ b)

2p∑
r=0

∑
s+t=r

αsαtup+1+i−r,1,

cp. p. 627 in Ku and Seneta (1996), concluding the proof.
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3 Nonparametric Estimation in
Discrete-Time Queueing
Processes

25



The problem under consideration in this chapter is the estimation of the cumulative
distribution function (cdf) of the service time distribution G in a discrete-time GI/G/∞-
queue, i.e., a queueing model with an infinite number of servers, a general service time
distribution and a general i.i.d. batch arrival process (A(t))t∈Z. We assume that the
available information about the behavior of this queue consists only of the counts of
arrivals (A(t))t∈Z and departures (D(t))t∈Z from the queue in each time slot. More pre-
cisely, we consider a queue in which there is no possibility for the observer to distinguish
between any of the customers, so that the matching of any departure to its respective
arrival is impossible. Additionally, the number of customers present at the beginning of
the observation is also unavailable. Our goal is the estimation of the entire service time
distribution for which we assume no parametric form of any kind. Thus we are faced
with a nonparametric estimation problem for G, for which we merely assume a finite
mean and that its range is contained in N.

The solution we present to this problem in this chapter starts out with the nonpara-
metric estimation of a different distribution H and uses the surprisingly simple relation
between G and H. The nonparametric nature of the estimates necessitates the applica-
tion of functional approaches to the problem, which will be assumed to take place in the
sequence space c0. Since the resultant asymptotic expressions are rather involved and
depend on unknown parameters, a bootstrapping procedure is suggested and is shown
to be a viable option in our context under mild additional conditions. This chapter is
an extended version of the article Schweer and Wichelhaus (2015a).

3.1 Introduction and Statement of the Problem

We begin by precisely defining the queueing model and stating the first results. The
behavior of the queue is modeled as follows: denote the number of arrivals in the t-th time
slot, the time slot between time t and t+1, by A(t) and the number of departures in this
slot by D(t). In each time slot t ∈ Z, indistinguishable customers labeled Kt,1, . . . ,Kt,A(t)

arrive, where A(t) = 0 is interpreted as no customers arriving in the t-th time slot.
We assume that the sequence (A(t))t∈Z is i.i.d., has range N0 and that E[A(0)] < ∞.
Each customer Kk,j receives upon arrival a sojourn time Sk,j independently of all other
customers arriving or present at the queue, where Sk,j is distributed with cdf G(·), which
has range N and a finite mean, i.e.

∑∞
i=1(1 − G(i)) < ∞. Denoting the probability

masses of the distribution G by gj for j ∈ N, we thus have P(Sk,j = l) = gl for any
k ∈ Z, j, l ∈ N. Each customer Kk,j then remains in service exactly the number of time
steps that his service time Sk,j demands and then leaves the queue. We point out that
we make the assumption G(0) = 0 in order to ensure that each customer remains in the
queue for at least one time step. We limit our knowledge about the considered system
to the sequences (A(t))t∈Z and (D(t))t∈Z and we base our analysis of the behavior of
this system solely on this information, i.e., we do not assume to have any possibility of
matching the arrival of certain customers to their respective departures.

We define the “enlarged” process (ξ(t))t∈Z by ξ(t) := {St,1} × {St,2} × · · · × {St,A(t)},
the collection of all information given for the process in the t-th time slot, i.e., ξ(t)
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carries information about both the number of arrivals in the t-th time slot as well as
the service time distribution for these arrivals. Notice that ξ(t) ∈ NN ∪ {0} for each
t ∈ Z, where the state 0 represents the case of no arrivals in the t-th time slot. Since the
sequences of random variables (Sk,·)k∈Z and (A(t))t∈Z are i.i.d., it follows that the process
(ξ(t))t∈Z is stationary and ergodic. Furthermore, recall the definition of the σ-algebras
Fk(ξ) := σ (ξ(i) ;−∞ < i ≤ k) for k ∈ Z as in Section 2.5. With this construction, the
process (ξ(t))t∈Z is an element of the space {NN ∪ {0}}Z. We consider this Baire space
to be endowed with its product topology, and we denote the Borel-σ-algebra based on
the open sets of this topology by F∞(ξ).

Under the assumption that the system has started in the infinite past, it follows from
the construction of the process that we may express the queue length Y (t), i.e., the
number of customers in service during the t-th time slot by

Y (t) =

∞∑
j=0

A(t−j)∑
l=1

1{St−j,l>j}, (3.1)

where customers who leave during the t-th time slot are not considered to be in ser-
vice. From this representation and the assumption that the sequences (Sk,·)k∈Z and
(A(t))t∈Z are i.i.d., it follows that the queue length process is stationary. Furthermore,
the application of Wald’s equation (see (3.2) below) implies that under the assumption
of a finite mean of both service time distribution and arrival distribution, the stationary
distribution of the queue length process has a finite mean. Finally, we remark that we
may express the departure process as follows

D(t) =
∞∑
j=1

A(t−j)∑
l=1

1{St−j,l=j}.

Let us first record some important relations. First, a well-known result due to Wald
as well as Blackwell and Girshick states that if T,X1, X2, . . . are independent random
variables with finite variance, and if T has range N0 and the X1, X2, . . . are identically
distributed, then, with ST :=

∑T
i=1Xi,

E[ST ] = E[T ]E[X1] and Var (ST ) = E[X1]2 Var(T ) + E[T ] Var(X1). (3.2)

The former relation is called Wald’s equation. As immediate consequences of these
relations, we find that, for all t ∈ Z,

E[D(t)] =
∞∑
j=1

E

A(t−j)∑
l=1

1{St−j,l=j}

 = E[A(0)]
∞∑
j=1

gj = E[A(0)].

We used that the sequence (A(t))t∈Z is i.i.d. and the monotone convergence theorem.
Furthermore, if E[A(0)2] <∞,

Var(D(0)) =
∞∑
j=1

Var

A(−j)∑
l=1

1{S−j,l=j}

 =
∞∑
j=1

[
E[A(0)]gj(1− gj) + g2

j Var(A(0))
]
.
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Notice that max {E[A(0)],Var(A(0))} ≤ max
{
E[A(0)],E[A(0)2]

}
, and since the random

variable A(0) is discrete-valued, max
{
E[A(0)],E[A(0)2]

}
= E[A(0)2]. We may thus

conclude that Var(D(0)) ≤ 2E[A(0)2] and Var
(
D(0)1{Z(0)≤x}

)
≤ E[D(0)2] <∞.

Additionally, we note that in the popular case of Poisson distributed arrivals it holds
that Var(A(0)) = E[A(0)] and hence Var(D(0)) = Var(A(0)). Furthermore, in this case
we easily calculate, for s 6= 0,

Cov (D(0), D(s)) =
∞∑
j1=1

∞∑
j2=1

Cov

A(−j1)∑
l=1

1{S−j1,l=j1},

A(s−j2)∑
l=1

1{Ss−j2,l=j2}


=
∞∑
j1=1

gj1gj1+s

(
E[A(0)2]− E[A(0)]− E[A(0)]2

)
= 0, (3.3)

a quite surprising result. In order to give an explanation for this curious result, we need
to consider the time-reversibility of the process.

3.1.1 Time-Reversibility of the Queue Length Process

We now show that the special case of Poisson distributed arrivals A(t) leads to a time-
reversible queue length process (Y (t))t∈Z. Let us remark that this result was already
mentioned in passing in Pickands and Stine (1997) but no formal proof was given.

Lemma 3.1.1 (Cp. Pickands and Stine (1997), Sect. 2). Let A(t) ∼ Poi(λ) for all t ∈ Z
and some λ > 0 and let

∑∞
i=1(1−G(i)) <∞. Then (Y (t))t∈Z is time-reversible.

Proof. The finiteness of the expected service time immediately implies finiteness a.s. of
(Y (t))t∈Z. Let b(ta; tb1 , tb2) denote the number of customers arriving at the system in
time slot ta and departing in between the time slots tb1 and tb2 with ta ≤ tb1 ≤ tb2 . We
first notice that (setting ta = 0 without loss of generality)

P

(
r∑
l=1

1{S0,l∈{tb1 ,...,tb2}} = s

)
=

(
r

s

)tb2−tb1∑
l=0

gtb1+l

s1−
tb2−tb1∑
l=0

gtb1+l

r−s

.

Under the assumption of Poisson arrivals A(t), it follows that

P (b(0; tb1 , tb2) = s) =

∞∑
r=s

P (A(0) = r)

(
r

s

)tb2−tb1∑
l=0

gtb1+l

s1−
tb2−tb1∑
l=0

gtb1+l

r−s

= exp

−λ tb2−tb1∑
l=0

gtb1+l


(
λ
∑tb2−tb1

l=0 gtb1+l

)s
s!

,

hence b(0; tb1 , tb2) is Poisson distributed. Let B(ta1 , ta2 ; tb1 , tb2) =
∑ta2

i=ta1
b(i; tb1 , tb2),

then this number is Poisson distributed again as a sum of independent Poisson random
variables, this statement extends to cases where either ta1 = −∞ or ta2 =∞.
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Now, let n ∈ N, t1, . . . , tn and τ ∈ Z be arbitrary, without loss of generality we assume
t1 < t2 < · · · < tn. Additionally, we set t0 := −∞ and tn+1 :=∞. Then, it is easily seen
that

(Y (ti))i∈{1,...,n}
D
=

(
i∑
l=1

n∑
m=i

B(tl−1, tl; tm, tm+1)

)
i∈{1,...,n}

.

Similarly, we find that

(Y (τ − ti))i∈{1,...,n}
D
=

(
i∑
l=1

n∑
m=i

B(τ − tm+1, τ − tm; τ − tl, τ − tl−1)

)
i∈{1,...,n}

.

For any l ≤ m, B(tl−1, tl; tm, tm+1) is Poisson distributed with the parameter given by

λ
∑tl−tl−1

r=0

∑tm+1−tm
s=0 gtl−tm+r+s, similarly for B(τ−tm+1, τ−tm; τ−tl, τ−tl−1). Since the

summands appearing in the expressions of the distribution of (Y (t1), Y (t2), . . . , Y (tn))
and (Y (τ − t1), Y (τ − t2), . . . , Y (τ − tn)) are mutually independent, this shows equality
in distribution of these vectors and thus concludes the proof.

The result of Lemma 3.1.1 offers an explanation for the relation (3.3): the reversal of
time for a queue length process implies the switching of the roles of arrival and departure
process. Hence, if the queue length process is time-reversible, it necessarily follows that
both departure process (D(t))t∈Z and arrival process (A(t))t∈Z share the same features.
In particular, it follows that the departure process (D(t))t∈Z is not only uncorrelated
but independent.

From a probabilistic point of view, this is a rather nice result. Yet it complicates
matters for possible statistical inferences, as it implies that observations of the depar-
ture process alone do not contain any information about the service time distribution.
Estimators for the service time thus necessarily need to encompass both the arrival and
the departure process. One particular instance of such an estimator is studied in the
next section.

3.1.2 The Sequence of Differences

Let us first define the discrete-time sequence of differences (Z(t))t∈Z as

Z(t) := t−max{n < t | A(n) > 0} for t ∈ Z,

which corresponds to the time elapsed since the most recent arrival for each time instant.
As the next step, the following cdf H(·) and its estimator Ĥn(·) is defined for every x ∈ N,

H(x) :=
E
[
D(0)1{Z(0)≤x}

]
E[D(0)]

and Ĥn(x) :=

∑n
i=1D(i)1{Z(i)≤x}∑n

i=1D(i)
. (3.4)

Let us explain the rationale behind this estimated cdf by first considering the numerator:
In each time slot, it estimates the cdf of the time elapsed since the last arrival, but only
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if there was at least one departure during in this slot. Put differently, it estimates the cdf
of the service time distribution under the (obviously false) assumption that the nearest
possible arrival is accountable for the departure of each customer. In particular, this
distribution circumvents the underlying matchmaking problem by assuming the most
simple, albeit false model, note that if we could match each departure to its arrival, the
estimation of the service time would be trivial.

Given a realization of the arrival process (A(t))t∈{1,...,n} and the departure process
(D(t))t∈{1,...,n}, this distribution function can easily be established. Analogous to the
continuous time model (cf. Lemma 2 in Brown (1970)), it can now be shown that there
is a very simple relation linking H to the sought after service time distribution G. For
the discrete-time case, Edelmann and Wichelhaus (2014) showed that for every x ∈ N,

H(x) = 1− cx(1−G(x)), (3.5)

where c := P (A(0) = 0). Defining the estimator ĉn = 1
n

∑n
i=1 1{A(i)=0}, we obtain the

following estimator for the service time distribution,

Ĝn(x) := 1− ĉ−xn
(

1− Ĥn(x)
)
.

3.1.3 Ergodicity of the Sequences

The following result deals with the measurability of the random variables D(t) for t ∈ Z,
which is a crucial step towards the proof of ergodicity of this sequence.

Lemma 3.1.2. Let t ∈ Z and let N0 = N0 ∪ {∞} and let
∑∞

i=1(1 − G(i)) < ∞. Then
the functions

D(t) : {NN ∪ {0}}Z → N0,

(ξ(i))i∈Z 7→
∞∑
j=1

A(t−j)∑
k=1

1{St−j,l=j}

and

D(t) · 1{Z(t)≤x} : {NN ∪ {0}}Z → N0,

(ξ(i))i∈Z 7→ 1{Z(t)≤x}

∞∑
j=1

A(t−j)∑
k=1

1{St−j,l=j}

are F∞(ξ)-σ(N0)-measurable.

Proof. Recall that we equipped the space {NN ∪ {0}}Z with the product topology and
that we defined the Borel-σ-algebra based on the open sets of this topology as F∞(ξ).
Applying the usual construction, see, e.g., Ch. 3.14 in Aliprantis and Border (2006), we
find a base of the topology in the collection of sets of the form (with a slight abuse of
notation)

UN1,N2,t = · · · × {NN ∪ {0}} × Vt−N2 × Vt−N2+1 × · · · × Vt+N2 × {NN ∪ {0}} × . . .
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where

Vi = {ai,1} × {ai,2} × . . . {ai,N1} × N× N× . . .

or Vi = {0}. Here, ai,j ∈ N and N1, N2 ∈ N are arbitrary natural numbers. We now
define the mappings

D(t)M1,M2 : {NN ∪ {0}}Z → N0,(
A(i), Si,1, . . . , Si,A(i)

)
i∈Z
7→

M2∑
j=1

max{A(t−j),M1}∑
l=1

1{St−j,l=j},

for fixed natural numbers M1,M2. Now, let k ∈ N0 such that k ≤ M1M2. Then
(D(t)M1,M2)−1 ({k}) is a (finite) union of sets UM1,M2,t, where the entries aij of the Vi’s
satisfy the restrictions

|at−1,l1 = 1| = k1, . . . , |at−M2,lM2
= M2| = kM2 for 1 ≤ li ≤M1,

M2∑
i=1

ki = k,

if Vt−j = {0}, we consider the corresponding set empty. If k > M1M2 then the preimage
is the empty set, which is open. It follows that the preimage (D(t)M1,M2)−1 ({k}) of
any k ∈ N is an element of F∞(ξ). Since the set of integers is a generator for σ (N0), it
follows that the mapD(t)M1,M2 is F∞(ξ)-σ (N0)-measurable for all finite natural numbers
M1,M2.

Now, for any fixed M2, the sequence (D(t)M1,M2)M1∈N is a sequence of measurable
functions, thus limM1→∞D(t)M1,M2 := D(t)M2 is F∞(ξ)-σ(N0)-measurable where ∞
is included in the image as the limit might be unbounded. As yet another sequence of
measurable functions, the assertion follows for limM2→∞D(t)M2 := D(t). For the second
assertion, a similar argument shows measurability of 1{Z(t)≤x}. The result follows since
a product of measurable functions is measurable.

The ergodicity of the sequence
(
D(i)1{Z(i)≤x}

)
i∈Z, which is stationary due to the

model assumptions made for the i.i.d. sequences (Sk,·)k∈Z and (A(t))t∈Z now follows
immediately. We record it in the following Lemma, the result of which was shown with
a different proof in Lemma 2 in Edelmann and Wichelhaus (2014). Their proof follows
in the same vein as that of Lemma 1 in Brown (1970) and Proposition 3 in Blanghaps
et al. (2013).

Lemma 3.1.3 (Cp. Edelmann and Wichelhaus (2014), Lemma 2). Let x ∈ N, then the
sequences

(
D(i)1{Z(i)≤x}

)
i∈Z and (D(i))i∈Z are stationary and ergodic.

As a first consequence of Lemma 3.1.3, Birkhoff’s ergodic theorem yields, for all x ∈ N,

1

n

n∑
i=1

D(i)1{Z(i)≤x} → E
[
D(0)1{Z(0)≤x}

]
a.s.,
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so that Ĥn(x) → H(x) a.s. by the continuous mapping theorem. The relation between

G(x) and H(x) as well as between Ĝn(x) and Ĥn(x) is a continuous one (see (3.5)).
Additionally, the a.s. convergence ĉn → c is obvious since the sequence (A(t))t∈Z is
i.i.d. and we assumed Var(A(0)) <∞. We use the continuous mapping theorem to find

Ĝn(x)→ G(x) a.s.,

which holds pointwise for all x ∈ N. This shows the consistency of the estimator Ĝn(x)..

In particular, it follows that Ĝn(x)→ 1 for x→∞.

3.1.4 Moment Relations and Bounds

Let us now record some rather technical results of moment relations and inequalities
for various functions of the sequence of differences. These relations will be used in the
proofs throughout this chapter.

Lemma 3.1.4 (Schweer and Wichelhaus (2015a), Lemma 2.1). For i ≥ 1, k ≥ 1 and
j < i it holds that

a) E
[
1{Z(i)>k}

∣∣F0(ξ)
]

=

{
ck, i > k,

ci−11{Z(1)>k−i+1}, i ≤ k,

b) E

1{Z(i)>k}

A(i−j)∑
l=1

1{Si−j,l=j}

∣∣∣∣∣F0(ξ)

 =

{
0, j ∈ {1, . . . , k},
E[D(0)]gjc

k, j ∈ {k + 1, . . . , i− 1},

where the set {k + 1, . . . , i− 1} is considered empty if i ≤ k.

Proof. From the definition of the random variable Z(i) it is clear that we can write

Z(i) = 1{A(i−1)=0} (Z(i− 1) + 1) + 1{A(i−1)>0} = 1{A(i−1)=0}Z(i− 1) + 1.

This implies

1{Z(i)>k} = 1{1{A(i−1)=0}Z(i−1)>k−1} = 1{A(i−1)=0}1{Z(i−1)>k−1},

and with the tower rule for conditional expectations we find

E
[
1{Z(i)>k}

∣∣F0(ξ)
]

= E
[
E
[
1{A(i−1)=0}1{Z(i−1)>k−1}

∣∣Fi−2(ξ)
] ∣∣F0(ξ)

]
= cE

[
1{Z(i−1)>k−1}

∣∣F0(ξ)
]

for i ≥ 2, where the last equation used that Z(i − 1) is Fi−2(ξ)-measurable and that
A(i− 1) is independent of Fi−2(ξ). The case i = 2 is established directly. By definition,
E
[
1{Z(i)>0}

∣∣F0(ξ)
]

= 1 for all i ∈ N, and due to the measurability of the random
variables involved, E

[
1{Z(1)>k}

∣∣F0(ξ)
]

= 1{Z(1)>k} for all k ∈ N. This allows us to prove
relation a) for i ≥ 2 recursively. For i = 1 the statement is trivial.
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To prove b), we first consider the case j = 1 and i > 2. This expectation equals, with
the tower rule,

E

E
A(i−1)∑

l=1

1{Si−1,l=1}1{A(i−1)=0}1{Z(i−1)>k−1}

∣∣∣Fi−2(ξ)

 ∣∣∣∣∣F0(ξ)


= E

A(i−1)∑
l=1

1{Si−1,l=1}1{A(i−1)=0}

E
[
1{Z(i−1)>k−1}

∣∣∣F0(ξ)
]

= 0,

as Z(i− 1) is Fi−2(ξ)-measurable and A(i− 1), Si−1,· are independent of Fi−2(ξ). Just
as in the proof of the first assertion, this argumentation can be extended recursively
for all j ∈ {1, . . . , k}. Also as in the proof of the first assertion, the case i = 2 follows
directly, without invoking the tower rule. Now, if j ∈ {k + 1, . . . , i − 1} then i > k.
By the definition of Z(i), the random variable 1{Z(i)>k} depends only on the arrivals
A(i− 1), . . . , A(i− k) and is independent of the random variables A(i− k− 1), . . . , A(1).
Thus, we have

E

1{Z(i)>k}

A(i−j)∑
l=1

1{Si−j,l=j}

∣∣∣∣∣F0(ξ)

 = E
[
1{Z(i)>k}

∣∣∣F0(ξ)
]
E

A(i−j)∑
l=1

1{Si−j,l=j}

 .
As E[

∑A(i−j)
l=1 1{Si−j,l=j}] = E[A(0)]gj by Wald’s equation, cf. (3.2), and E[D(0)] =

E[A(0)], application of a) for the case i > k thus proves b).

The next result provides an upper bound for an expression which appears several times
during the course of this chapter.

Lemma 3.1.5 (Schweer and Wichelhaus (2015a), Lemma 2.2). Assuming all expressions
involved are finite, there exists a finite number K such that for each x ∈ N, 1 ≤ i ≤ x
and y ∈ N0,

Var

(ci−11{Z(1)>x−i+1} − cy(1−G(y))
) ∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}


≤
[
c2y(1−G(y))2 − 2cx+y(1−G(y)) + cx+i−1

] E[A(0)2]K

1− c
(1−G(i− 1)).

Proof. We simplify the notation in this proof by setting rj :=
∑A(i−j)

l=1 1{Si−j,l=j} and
Ri :=

∑∞
j=i rj , recall that the second moment of Ri is finite by (3.2). Let z ∈ N,

application of the law of total probability yields E[rqi+z|A(−z) > 0] = 1
1−cE[rqi+z] for

q ∈ N. For q = 1, E[rqi+z] = E[A(0)]gi+z by Wald’s equation. For q = 2, the same
equation and the inequalities established in the discussion following that expression for

Var (ri+z) = E[A(0)](gi+z − g2
i+z) + g2

i+z Var(A(0)) ≤ E[A(0)2]gi+z. (3.6)
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We obtain

E
[
r2
i+z

]
≤ E[A(0)2]gi+z + E[A(0)]2g2

i+z ≤ 2E[A(0)2]gi+z,

since Jensen’s inequality implies E[A(0)]2 ≤ E[A(0)2]. Together with the independence
of (At)t∈Z, this implies E[R2

i+z+1] ≤ 2E[A(0)2](1 − G(i + z)). Now, the event Z(1) = z
entails that A(0) = · · · = A(−z + 1) = 0 and A(z) > 0. Combining all of these results
with the linearity of the expectation, we find

E
[
R2
i |Z(1) = z

]
= E

[
R2
i+z+1

]
+ 2E [Ri+z+1]E[ri+z|A(−z) > 0] + E[r2

i+z|A(−z) > 0]

≤ 2E[A(0)2](1−G(i+ z)) +
2E[A(0)]2(1−G(i+ z))gi+z

1− c
+

2E[A(0)2]gi+z
1− c

.

As G(·) is a cdf, it is monotonously increasing in its argument and there exists a positive
constant K such that this expression is bounded by (KE[A(0)2](1 − G(i − 1))/(1 − c).
This bound holds for all z ∈ N and can thus be extended to conditions of the form
{z ∈ B ⊆ N} by the law of total probability. Setting A0 = {Z(1) > x− i+ 1} and
A1 = {Z(1) ≤ x− i+ 1}, we first have P(A0) = cx−i+1. The assertion is now an easy
consequence of the inequality Var(Ri) ≤ E[R2

i ] and the law of total probability, i.e.
E[R2

i ] = P(A0)E[R2
i |A0] + P(A1)E[R2

i |A1].

3.2 A Functional Central Limit Theorem for the Service
Time Estimator

The estimator Ĝn(x) was shown to be consistent in the previous section, thus ensuring
that it eventually converges to the true value G(x) for each x ∈ N. For application
purposes, such a result leaves something to be desired, since without knowledge of the
speed of convergence the practitioner cannot gauge the quality of the estimation. A
different problem is that each point x ∈ N is considered separately, yet one is usually
more interested in the behavior of the entire distribution. Both of these concerns will be
addressed by providing a functional central limit theorem for the service time estimator
at the end of this section.

3.2.1 Finite Dimensional CLTs

We first prove finite dimensional CLTs for the estimator of the distribution function
H, i.e., for a vector of the form (Ĥn(x1), . . . , Ĥn(xk)). Due to the special structure of
these estimators, see (3.4), it is necessary to first show CLTs for the numerator and
the denominator and then combine these results with an appropriate expansion of the
terms. The former results are shown in Theorem 3.2.1 and Corollary 3.2.2, respectively,
the latter in Theorem 3.2.4.

In view of the two CLTs given in Section 2.5, we opt for employing Theorem 2.5.3
rather than trying to prove a mixing condition for the sequences involved. The reason
for this is twofold: Firstly, the conditional expectation is more easily accessible as we
have a lot of structure within our processes and thus (2.14) can be shown to hold for
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both sequences involved in the estimator (3.4). We refer to the proofs of the following
theorems for details. Secondly, we remark that the establishment of classical mixing
conditions in the framework of the continuous time queuing model proved elusive for
Brown, as he states in his paper (cf. (Brown, 1970, p. 653)) that he ”has been unable
to verify the mixing conditions given by Billingsley [...]”. We point out that he referred
here to the first edition of Billingsley (1999), whereas the condition we apply here was
published 30 years later, in the second edition of this book. We further point out that
the mentioned mixing conditions are closely linked (yet not equal) to the concept of
α-mixing discussed in Section 2.5.

Theorem 3.2.1 (Schweer and Wichelhaus (2015a), Theorem 3.1). Let E[A(0)2] < ∞
and

∑∞
n=1

√
1−G(n) <∞. Then, for each x ∈ N,

√
n

(
1

n

n∑
i=1

D(i)1{Z(i)≤x} − E
[
D(0)1{Z(0)≤x}

]) D→ N (0, σ2
x),

where σ2
x = Var

(
D(0)1{Z(0)≤x}

)
+ 2

∑∞
j=1 Cov

(
D(0)1{Z(0)≤x}, D(j)1{Z(j)≤x}

)
.

Proof. Let x ∈ N. By Lemma 3.1.3, the sequence (D(i)1{Z(i)≤x})i∈Z is stationary and er-
godic. A direct implication of (3.2) is that the random variables D(i)1{Z(i)≤x} have finite
second moments. It remains to be seen that the condition (2.14) is satisfied. We remark
that σ

(
D(i)1{Z(i)≤x}; i ≤ k

)
⊂ σ (ξ(i); i ≤ k) = Fk(ξ), where the ξ(i)’s are the enlarged

process defined in Section 3.1. Using (2.17) and the stationarity of (D(i)1{Z(i)≤x})i∈Z,
it suffices to show that

∞∑
i=1

∥∥∥E [D(i)1{Z(i)≤x} − E
[
D(0)1{Z(0)≤x}

] ∣∣∣F0(ξ)
]∥∥∥

L2
<∞. (3.7)

First, let us consider the case i > x. In the first step, we separate the random
variable given by the conditional expectation in the expression above into its probabilistic
and deterministic parts. For instance, the arrivals occurring after the time slot 0 are
independent of F0(ξ) and, since i > x, so is the random variable 1{Z(i)≤x}. Similarly,
since the random variable 1{Z(i)≤x} is independent of the behavior of the process before
time i− x > 0, we have

E
[
D(i)1{Z(i)≤x}

∣∣∣F0(ξ)
]
− E

[
D(i)1{Z(i)≤x}

]
= E

[
1{Z(i)≤x}

] ∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j} − E
[
1{Z(i)≤x}

]
E

 ∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}

 .
Thus, as E[1{Z(i)≤x}] = 1 − cx, and ince the random variables Si−j1,· and Si−j2,· are
independent for j1 6= j2, we find with (3.6)∥∥∥E [D(i)1{Z(i)≤x} − E

[
D(0)1{Z(0)≤x}

] ∣∣∣F0(ξ)
]∥∥∥2

L2
≤ (1− cx)2 E[A(0)2](1−G(i− 1)).
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Now, let us consider the case i ≤ x. We will use a similar approach as above, separating
the conditional expectation in its probabilistic and deterministic parts. First,

E
[
D(i)1{Z(i)≤x}

∣∣∣F0(ξ)
]

=
∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}E
[
1{Z(i)≤x}

∣∣F0(ξ)
]

+ E

 i−1∑
j=1

A(i−j)∑
l=1

1{Si−j,l=j}1{Z(i)≤x}

∣∣∣F0(ξ)


=
∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}
(
1− ci−11{Z(1)>x−i+1}

)
+ E

 i−1∑
j=1

A(i−j)∑
l=1

1{Si−j,l=j}

 ,
the second equality used Lemma 3.1.4 and the fact that the random variables A(i), Si,l
are independent of F0(ξ) for i > 0. Since the tower rule for conditional expectations
implies that E[E[D(i)1{Z(i)≤x}|F0(ξ)]] = E[D(i)1{Z(i)≤x}], it follows that∥∥∥E [D(i)1{Z(i)≤x}

∣∣∣F0(ξ)
]
− E

[
D(i)1{Z(i)≤x}

]∥∥∥
L2

= Var
1
2

 ∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}
(
1− ci−11{Z(1)>x−i+1}

) ,

for which we find an upper bound using Lemma 3.1.5 and setting y = 0, notice that
G(0) = 0. We are now able to combine the results for the cases i > x and i ≤ x.
Changing the summation index for convenience, we obtain an upper bound for (3.7)√

E[A(0)2]

[
x−1∑
i=0

√
(1− 2cx + cx+i)

K

1− c
(1−G(i)) + (1− cx)

∞∑
i=x

√
1−G(i)

]
.

Since 1 − 2cx + cx+i ≤ 1 for all 0 ≤ i ≤ x − 1 this expression has an upper bound√
E[A(0)2]K

1−c
∑∞

i=0

√
1−G(i) and since

∑∞
i=0

√
1−G(i) < ∞ by assumption, this con-

cludes the proof.

We point out that the inequality (3.6), which is used at a crucial part of the proof
of Theorem 3.2.1, is not a very rough estimate. Apart from the upper bound on the
moments, it can not be improved upon without a loss of generality. To see this, consider
the very common assumption of Poisson distributed arrivals. In this case, the resul-
tant variance in (3.6) actually equals λgj rendering the upper bound found for (3.7)
sharp. The following result is an easy consequence of Theorem 3.2.1, it shows that the
denominator of the estimator (3.4) also obeys a CLT.

Corollary 3.2.2 (Schweer and Wichelhaus (2015a), Corollary 3.2). Let E[A(0)2] < ∞
and

∑∞
n=1

√
1−G(n) <∞. Then

√
n

(
1

n

n∑
i=1

D(i)− E[D(0)]

)
D→ N (0, σ2),

where σ2 = Var(D(0)) + 2
∑∞

j=1 Cov(D(0), D(j)).
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Proof. The sequence (D(t))t∈Z is stationary and ergodic by Lemma 3.1.3, the second
moment is finite due to the finiteness of E[A(0)2] and (3.2). Now,

E [D(i)|F0(ξ)] =
∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j} + E

 i−1∑
j=1

A(i−j)∑
l=1

1{Si−j,l=j}

 ,
so that similar to the proof of Theorem 3.2.1 we find that

∞∑
i=1

∥∥∥E [D(i)− E [D(0)]
∣∣∣F0(ξ)

]∥∥∥ =
∞∑
i=1

Var
1
2

 ∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}


(3.6)

≤
√
E[A(0)2]

∞∑
i=0

√
1−G(i),

which is finite by assumption.

Concerning the condition
∑∞

n=1

√
1−G(n) < ∞ employed in Theorem 3.2.1, it can

be shown that a simple moment condition on the distribution G implies this condition.
Indeed, it is easily seen that 1−G(n) ≤ 1

(n+1)2+ε
∑∞

j=1 gjj
2+ε for all n ∈ N and ε > 0, so

that the following result immediately follows.

Lemma 3.2.3 (Schweer and Wichelhaus (2015a), Lemma 3.3). Let X be a random
variable with distribution G. If E[|X|2+ε] < ∞ for some ε > 0, then it follows that∑∞

n=1

√
1−G(n) <∞.

In this section, we now piece together the asymptotic normality of Ĥn(xi) and ĉn.
The first crucial step is given by the following result.

Theorem 3.2.4 (Schweer and Wichelhaus (2015a), Theorem 3.4). Let x1, . . . , xl ∈ N,
l ∈ N, let E[A(0)2] <∞ and

∑∞
n=1

√
1−G(n) <∞. Then

√
n


ĉn − c

Ĥn(x1)−H(x1)
...

Ĥn(xl)−H(xl)

 D→ N (0,T′),

where the entries τ ′i,j of T′ are given as follows: τ ′1,1 = c(1− c),

τ ′1,k+1 =
1

E[D(0)]

∞∑
i=0

E
[
D(i)

(
1{Z(i)≤xk} −H(xk)

)
1{A(0)=0}

]
and

τ ′m+1,k+1 =
1

E[D(0)]2

∞∑
i=−∞

E
[
D(0)D(i)

(
H(xm)− 1{Z(0)≤xm}

) (
H(xk)− 1{Z(i)≤xk}

) ]
for k,m ≤ l.
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Proof. First, let us define
(
Ĥn(x1), . . . , Ĥn(xl)

)T
:= Hn, (H(x1), . . . ,H(xl))

T := H and

ηi(k) :=
D(i)

(
1{Z(i)≤k} −H(k)

)
E[D(0)]

, (3.8)

notice that E[ηi(k)] = 0 for all i ∈ N0, k ∈ N by (3.4). We expand, for each k ∈ N,

Ĥn(k)−H(k) =
1
n

∑n
i=1D(i)1{Z(i)≤k} −H(k) 1

n

∑n
i=1D(i)

1
n

∑n
i=1D(i)

,

which leads to

√
n (Hn −H) =

√
n

E[D(0)]
1
n

∑
D(i)


1
n

∑n
i=1 ηi(x1)

...
1
n

∑n
i=1 ηi(xl)

 . (3.9)

Now, let (t0, t1, . . . , tl) ∈ Rl+1 and consider the sequence of random variables

ϑi := t0
(
1{A(i)=0} − c

)
+

l∑
j=1

tj (ηi(xj)) .

It is obviously stationary and ergodic and has finite second moments by (3.2), we now
show that this sequence satisfies condition (2.14). Clearly,

σ (ϑi; i ≤ k) ⊂ σ (ξ(i); i ≤ k) = Fk(ξ).

By (2.17) and the triangle inequality of the L2-norm we calculate an upper bound for
(2.14):

∞∑
i=1

‖E [ϑi|F0(ξ)]‖L2

≤ |t0|
∞∑
i=1

∥∥E [1{A(i)=0} − c|F0(ξ)
]∥∥
L2 +

∞∑
i=1

l∑
j=1

|tj | ‖E [ηi(xj)|F0(ξ)]‖L2 .

Absolute convergence of the latter series is ensured by the proof of Theorem 3.2.1 and
Corollary 3.2.2 and the triangle inequality in L2. For the former series, notice that since
A(i) is independent of F0(ξ) for all i > 0,∥∥∥E [1{A(i)=0} − c

∣∣∣F0(ξ)
]∥∥∥

L2
= 0

for i > 0. This implies finiteness of the entire expression, and in conclusion that
1√
n

∑n
i=1 ϑi converges in distribution to a N (0, ξ)-distribution. For the calculation of

ξ we use the fact that E[ηi(xj)] = 0 for any i ∈ N0, j ∈ N as well as the independence of
1{A(i)=0} and η0(xj) for all xj and i > 0. Straightforward algebra yields
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ξ =
k∑

j1,j2=1

tj1tj2

[
E [η0(xj1)η0(xj2)] +

∞∑
i=1

(E [η0(xj1)ηi(xj2)] + E [ηi(xj1)η0(xj2)])

]

+
k∑

j1=1

tj1t0

[
E
[
η0(xj1)1{A(0)=0}

]
+
∞∑
i=1

E
[
ηi(xj1)1{A(0)=0}

]]
+ t20 Var

(
1{A(0)=0}

)
,

which is easily seen to be the variance of the random variable (t0, t1, . . . , tl) ·X, given by
X ∼ N (0,T′). As we chose (t0, t1, . . . , tl) ∈ Rl arbitrarily, we may apply the Cramér-
Wold device to show that

√
n(Hn −H) converges weakly to a multivariate normal dis-

tribution with zero mean and covariance matrix given by T′. This follows from (3.9)
and the application of Slutsky’s Lemma, as the factor in this expression converges a.s.,
concluding the proof.

The apparent differences in the expressions for the asymptotic covariances given in
Theorem 3.2.1 and the proof of Theorem 3.2.4 are only a matter of notation, as the
stationarity of the sequences involved ensures that, e.g.,

E [η0(k)η0(m)] +

∞∑
i=1

(E [η0(k)ηi(m)] + E [ηi(k)η0(m)]) =

∞∑
i=−∞

E [η0(k)ηi(m)] .

3.2.2 Tightness

In this section, we provide an important technical result for the proof of tightness. Note
that we do not have to make any further assumptions about our model for the assertion
to hold. Thus, our result remains applicable to a wide range of models.

Theorem 3.2.5 (Schweer and Wichelhaus (2015a), Theorem 4.1). Let E[A(0)2] < ∞
and

∑∞
n=1

√
1−G(n) <∞. Then

∑∞
x=1

∑∞
i=−∞ E[η0(x)ηi(x)] converges absolutely.

Proof. Let ηi(x) be defined as in (3.8) for i ∈ N0, x ∈ N. Clearly, it suffices to show
that

∑∞
x=1

∑∞
i=0 E[η0(x)ηi(x)] converges absolutely. Furthermore, applying the Cauchy-

Schwarz inequality as in (2.15) implies that

|E [η0(x)ηi(x)] | ≤ ‖η0(x)‖L2 · ‖E [ηi(x)|F0(ξ)] ‖L2 .

Using stationarity again, ‖η0(x)‖L2 = Var
1
2 (η1(x)), as E[η1(x)] = 0. The variance corre-

sponds exactly to the case i = 1 and y = x in Lemma 3.1.5, so that

E[D(0)]2E[η0(x)2] = E[D(0)]2‖η0(x)‖2L2 ≤
E[A(0)2]K

1− c
cx, (3.10)

as c2x(1−G(x))2− 2c2x(1−G(x)) + cx+i−1 = c2x(G(x)2− 1) + cx ≤ cx for each i, x ∈ N.
By the Weierstraß M-test,

∑∞
x=1 E[η0(x)2] converges absolutely, and furthermore the
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term ‖η0(x)‖L2 is uniformly bounded for each x ∈ N. In order to complete the proof,
we thus have to show absolute convergence of

∑∞
x=1

∑∞
i=1 ‖E [ηi(x)|F0(ξ)] ‖L2 .

Just as in the proof of Theorem 3.2.1, we separate the probabilistic part of the con-
ditional expectation from the deterministic part. Since we will be using the result of
Lemma 3.1.4, we use 1{Z(i)≤x} = 1− 1{Z(i)>x} and calculate, for each i, x ∈ N,

E
[
D(i)

(
H(x)− 1{Z(i)≤x}

)
|F0(ξ)

]
=

i−1∑
j=1

E

A(i−j)∑
l=1

1{Si−j,l=j}1{Z(i)>x}

∣∣∣∣∣∣F0(ξ)

− (1−H(x))

i−1∑
j=1

E

A(i−j)∑
l=1

1{Si−j,l=j}


+
(
E
[
1{Z(i)>x}

∣∣F0(ξ)
]
− (1−H(x))

) ∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}, (3.11)

where we used independence or measurability of the random variables (A(t)t∈Z and
(Sj,·)j∈Z with respect to F0(ξ), as the case may be. Now, the second term in (3.11) is de-
terministic, and for the first term Lemma 3.1.4 implies that this conditional expectation
is also deterministic. For the third term, we need to consider the cases i > x and i ≤ x
separately, beginning with the former case. Lemma 3.1.4 yields E

[
1{Z(i)>x}

∣∣F0(ξ)
]

= cx,
thus in this case (3.11) and the law of total expectation imply

E[D(0)] · ‖E [ηi(x)|F0(ξ)] ‖L2 = cxG(x) Var
1
2

 ∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}

 ,

noticing that 1 − H(x) = cx(1 − G(x)) by (3.5). Using the inequality (3.6) for this
variance, we find the upper bound cxG(x)

√
E[A(0)2]

√
1−G(i− 1) for each i > x. For

the case i ≤ x, Lemma 3.1.4 implies that E
[
1{Z(i)>x}

∣∣F0(ξ)
]

= ci−11{Z(1)>x−i+1}. Using
(3.11) as well as the law of total expectation again, we find

E[D(0)] · ‖E [ηi(x)|F0(ξ)] ‖L2

= Var
1
2

(ci−11{Z(1)>x−i+1} − cx(1−G(x))
) ∞∑
j=i

A(i−j)∑
l=1

1{Si−j,l=j}

 .

We find an upper bound for this variance by applying Lemma 3.1.5 with y = x, we
further notice that

c2x(1−G(x))2 − 2c2x(1−G(x)) + cx+i−1 = c2xG(x)2 + cx+i−1 − c2x ≤ (cxG(x) + cx/2)2.

Combining the cases i ≤ x and i > x and changing the summation index for convenience,
we find

E[D(0)]
∞∑
i=1

‖E [ηi(x)|F0(ξ)] ‖L2 ≤
√

E[A(0)2]K

1− c

( ∞∑
i=0

√
1−G(i)

)[
cxG(x) + c

x
2

]
,

and as c ∈ (0, 1) by assumption, it follows that
∑∞

x=1

∑∞
i=1 ‖E [ηi(x)|F0(ξ)] ‖L2 converges.

Absolute convergence of the expression is clear from the positivity of the variance, and
the proof is concluded by applying the Weierstraß M-test.
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3.2.3 Functional Central Limit Theorem

Let us introduce some convenient notation: We denote the sequences associated with
the cdf of the distributions G and H by G := (G(k))k∈N and H := (H(k))k∈N and the

respective estimators by Gn := (Ĝn(k))k∈N and Hn := (Ĥn(k))k∈N. In this section, we
are concerned with convergence in distribution in the separable Banach space c0 of (2.1).
We denote expressions of the type H − 1 as (H(k)− 1)k∈N while scalar multiplication
of the form aH denotes the sequence (aH(k))k∈N. With this notation, the process we
are interested in at first is an element of R× c0 given by

√
n[(ĉn, Hn− 1)− (c, H− 1)],

we choose this representation in order to make the application of the functional delta
method at the end of this section more transparent. For each k ∈ N,

√
n[Ĥn(k)−H(k)]

is a random variable and hence Borel-measurable due to Lemma 3.1.2, implying that the
process

√
n[(ĉn, Hn−1)−(c, H−1)], is a random element of R×c0. The following result

shows that this process converges weakly to a limiting random element W ∈ R× c0.

Theorem 3.2.6 (Schweer and Wichelhaus (2015a), Theorem 4.2). Let E[A(0)2] < ∞
and

∑∞
n=1

√
1−G(n) < ∞. Then there exists a Gaussian element W =

(
w, (Wk)k∈N

)
in R× c0 with zero mean such that E

[
w2
]

= c(1− c) as well as

E [wWm] =
1

E[D(0)]

∞∑
i=0

E
[
D(i)

(
1{Z(i)≤m} −H(m)

)
1{A(0)=0}

]
and

E [WkWm] =
1

(E[D(0)])2

∞∑
i=−∞

E
[
D(0)D(i)

(
H(m)− 1{Z(0)≤m}

) (
H(k)− 1{Z(i)≤k}

) ]
for k,m ∈ N. Moreover, in c0,

√
n[(ĉn, Hn − 1)− (c, H− 1)]

D→W.

Proof. The convergence of the finite-dimensional distributions was shown in Theorem
3.2.4. The tightness of the sequence remains to be established. Since marginal tightness
implies joint tightness, it suffices to show that the sequences

√
n(ĉn−c) and

√
n(Hn−H)

are tight. For the former this assertion is obvious, as the random variables 1{A(i)=0} are
i.i.d. with bounded variance and the classical CLT yields tightness of

√
n (ĉn − c).

For the latter sequence, we use Lemma 2.1.3. By Theorem 3.2.4 it follows that for
each l ∈ N,

√
n(Ĥn(l)−H(l)) converges weakly to a normal distribution with zero mean

and bounded variance (cf. Theorem 3.2.5), thus condition (2.2) is established. The proof
of the second condition is provided below, it is divided into three steps to make it more
comprehensible.

Step 1:
We show that, with the notation of the proof of Theorem 3.2.4 and Sn(k) :=

∑n
i=1 ηi(k),

it holds that
∑∞

k=1
1
nE
[
S2
n(k)

]
is finite. For this, let us recall that in the mentioned proof

we showed that the stationary and ergodic sequence (ηi(k))i∈Z satisfies the conditions of
Theorem 2.5.3. It can further be shown that, under the assumptions of this Theorem,
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for each n (cf. (2.16)):∣∣∣∣∣
∞∑

i=−∞
E[η0(k)ηi(k)]− 1

n
E
[
S2
n(k)

]∣∣∣∣∣ ≤ 2
∞∑
l=n

|E [η0(k)ηl(k)] |+ 2

n

n−1∑
i=1

∞∑
l=i

|E [η0(k)ηl(k)] |.

Furthermore,
|E [η0(k)ηl(k)] | ≤ ‖η0(k)‖L2 ‖E [ηl(k)|F0(ξ)]‖L2 ,

cf. (2.15) and, by (3.10),

E[D(0)] ‖η0(k)‖L2 ≤
√

(E[A(0)2]K)/(1− c)

for all k ∈ N. Both inequalities together with Theorem 3.2.5 yield∣∣∣∣∣
∞∑
k=1

∞∑
i=−∞

E[η0(x)ηi(x)]−
∞∑
k=1

1

n
E
[
S2
n(k)

]∣∣∣∣∣
≤ 2

E[D(0)]

√
E[A(0)2]K

1− c

∞∑
k=1

( ∞∑
l=n

‖E [ηl(k)|F0(ξ)]‖L2 +
1

n

n−1∑
i=1

∞∑
l=i

‖E [ηl(k)|F0(ξ)]‖L2

)
.

Since
∑∞

k=1

∑∞
l=1 ‖E [ηl(k)|F0(ξ)]‖L2 converges absolutely as shown in the proof of The-

orem 3.2.5, this expression is finite. As
∑∞

k=1

∑∞
i=−∞ E[η0(x)ηi(x)] is finite by the same

result, this implies finiteness of
∑∞

k=1
1
nE
[
S2
n(k)

]
and the convergence of the latter to

the former, since the entire expression tends to 0 for n→∞. For the former series this
is obvious, for the latter this follows from the dominated convergence theorem.

Step 2:
For any ξ > 0 we denote the event

{∣∣ 1
n

∑n
i=1D(i)− E[D(0)]

∣∣ ≤ ξ} by A(n, ξ) and the
complementary event by Ac(n, ξ). We observe that

E
[(
Ĥn(k)−H(k)

)2 ∣∣∣Ac(n, ξ)] ≤ E
[
Ĥn(k)−H(k)

∣∣∣Ac(n, ξ)] ≤ 1−H(k),

we used that E[Ĥn(k)|Ac(n, ξ)] ≤ 1, as we have Ĥn(k) ≤ 1 for each k, n ∈ N by definition
(cf. (3.4)). Additionally, we used that |Ĥn(k) −H(k)| ≤ 1 as both 0 ≤ Ĥn(k) ≤ 1 and
0 ≤ H(k) ≤ 1 hold for all k, n ∈ N.

Now let us consider the behavior of P (Ac(n, ξ)) as n increases, we follow the idea of
(Kachurovskii, 1996, Theorem 11). It holds that nP (Ac(n, ξ)) ≤ Var (

∑n
i=1D(i)) /(ξ2n)

by Chebyshev’s inequality. Recalling the results of Corollary 3.2.2 and the definition of
σ2 given therein, the ergodic and stationary sequence (D(t))t∈Z satisfies the conditions
of Theorem 2.5.3 and hence necessarily the inequality (2.16) with

Var

(
1√
n

n∑
i=1

D(i)

)
≤ σ2 + 2

∞∑
l=n

Cov (D(0), D(l)) +
2

n

n−1∑
i=1

∞∑
l=i

Cov (D(0), D(l))︸ ︷︷ ︸
=:C(n)

,
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notice that limn→∞C(n) = 0 can be shown as in Step 1. Combining these findings, we
have

nP (Ac(n, ξ))E
[(
Ĥn(k)−H(k)

)2 ∣∣∣Ac(n, ξ)] ≤ σ2 + C(n)

ξ2
(1−H(k)) . (3.12)

Now, for each k ∈ N,
√
n(Ĥn(k)−H(k)) is equal to (cf. (3.9)),

1√
n
Sn(k)

(
1 + E[D(0)]

(
1

1
n

∑n
i=1D(i)

− 1

E[D(0)]

))
=

1√
n
Sn(k)

(
E[D(0)]

1
n

∑n
i=1D(i)

)
.

With this, for each k ∈ N,

E

 1

n
S2
n(k)

(
E[D(0)]

1
n

∑n
i=1D(i)

)2
 = E

 1

n
S2
n(k)

(
E[D(0)]

1
n

∑n
i=1D(i)

)2

(1{A(n,ξ)} + 1{Ac(n,ξ)})


≤
(

E[D(0)]

E[D(0)]− ξ

)2

E
[

1

n
S2
n(k)

]
+ P (Ac(n, ξ))n E

[(
Ĥn(k)−H(k)

)2 ∣∣∣Ac(n, ξ)]
(3.12)

=

(
E[D(0)]

E[D(0)]− ξ

)2

E
[

1

n
S2
n(k)

]
+
σ2 + C(n)

ξ2
(1−H(k)) .

Step 3:
For the final step, let ε, δ > 0. Then, with Markov’s inequality,

P

(
sup
k≥l

√
n
∣∣∣Ĥn(k)−H(k)

∣∣∣ > ε

)
≤ 1

ε2

∑
k≥l

E

 1

n
S2
n(k)

(
E[D(0)]

1
n

∑n
i=1D(i)

)2


≤ 1

ε2

∑
k≥l

[(
E[D(0)]

E[D(0)]− ξ

)2

E
[

1

n
S2
n(k)

]
+
σ2 + C(n)

ξ2
(1−H(k))

]
,

we used Step 2 for the final inequality. By Step 1, the series
∑∞

k=1
1
nE
[
S2
n(k)

]
converges,

for the series
∑∞

k=1(1 − H(k)) convergence follows from (3.5). Now, let us define the
integer n0 := supk∈NC(k), which is possible as limn→∞C(n) = 0. As ξ is arbitrary but
fixed, it is clear that we are able to find l0 ∈ N such that the expression above is less than
δ for l ≥ l0 and n ≥ n0. Thus, (2.3) is satisfied as ε, δ > 0 were chosen arbitrarily. Since
both conditions (2.2) and (2.3) combined yield tightness of the sequence

√
n(Hn −H),

this concludes the proof.

3.2.4 The Functional Delta Method

In the preceding sections, we established the asymptotic behavior of the estimator Hn.
However, our original goal was the estimation of the service time distribution G, by (3.5)
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this is done via Ĝn(x) := 1 − ĉ−xn (1 − Ĥn(x)). In the proof of the consistency of the
estimator, the continuity of this mapping sufficed. In order to transfer the asymptotic
normality, we have to consider the differentiability of the function. Let us define the
mapping

φ : R× c0 → RN

(a, (xk)k∈N) 7→
(
xka

−k
)
k∈N.

It follows easily from (3.5) that
√
nφ (ĉn, (Hn − 1)) =

√
n (Gn − 1) , and thus that

√
n [φ (ĉn, (Hn − 1))− φ (c, (H− 1))] =

√
n (Gn − G) ,

our process of interest. Now,
√
n (Gn − G) ∈ c0 (since both Ĝn(·) and G(·) are cdfs, thus

both tend to 1). Therefore, the remaining step consists in applying a functional version
of the Delta theorem.

Theorem 3.2.7 (van der Vaart (2000), Theorem 20.8). Let D and E be normed linear
spaces. Let φ : Dφ ⊂ D → E be Hadamard differentiable at θ tangentially to D0, i.e.,
the derivative exists on D0. Let Tn : Ωn → Dφ be maps such that rn(Tn − θ) → T in
distribution for some sequence rn → ∞ and a random element T that takes its values
in D0. Then rn(φ(Tn)−φ(θ)) → φ′θ(T ) in distribution, where φ′θ denotes the Hadamard
derivative of φ at θ.

By this theorem, it suffices to show the existence of the Hadamard derivative at
θ = (c,H(1) − 1, H(2) − 1, . . . ) ∈ R × c0, denoted by φ′θ, on a subset Dφ ⊂ R × c0.
Thus, we define Dφ := {(a, (xk)k∈N) ∈ R× c0 |φ(a, (xk)k∈N) ∈ c0}, which is obviously is
not an empty set, as for instance, θ ∈ Dφ. This specificity is necessary because φ maps
to RN and not to c0, as for any sequence (xi)i∈N ∈ c0 it does not hold in general that
φ(a, (xk)k∈N) ∈ c0 for some a ∈ R. We now show that φ is Hadamard differentiable.

Lemma 3.2.8 (Schweer and Wichelhaus (2015a), Lemma 4.3). Let E[A(0)2] < ∞ and∑∞
n=1

√
1−G(n) < ∞. Then φ : Dφ 7→ c0 is Hadamard differentiable at the parameter

θ = (c,H(1)− 1, H(2)− 1, . . . ) tangentially to Dφ and

φ′θ
(
w, (xk)k∈N

)
=

(
xk
ck
− k1−H(k)

ck+1
w

)
k∈N

.

Proof. For any element (w, (xk)k∈N) ∈ Dφ we have that φ′θ(w, (xk)k∈N) ∈ c0. This
follows from limk→∞ c

−kxk = 0 and (k(1 − H(k))w)/ck+1 = (k(1 − G(k)w)/c, where
due to the inequality k(1 − G(k)) ≤ E[G] −

∑k
i=1 igi the latter expression tends to 0.

φ′θ as given is linear on Dφ, and as the projections πk of φ are continuous it follows
that φ′θ is continuous on Dφ. Following van der Vaart (2000), it remains to be seen that
‖[φ(θ+tht)−φ(θ)]/t−φ′θ(h)‖c0 → 0 as t→ 0, for every ht → h such that tht is contained
in the domain of φ for all small t > 0 and such that h ∈ Dφ. For convenience, we denote
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the first component of the vectors h ∈ R × cφ by h(0), the second by h(1) and so on,
similarly for ht. We calculate∥∥∥∥φ(θ + tht)− φ(θ)

t
− φ′θ(h)

∥∥∥∥
c0

= sup
k∈N

∣∣∣∣ ht(k)

(c+ tht(0))k
+ (1−H(k))

(c+ tht(0))−k − c−k

t
− h(k)

ck
− k1−H(k)

ck+1
h(0)

∣∣∣∣ .
Now, for each k it quite obviously holds that

lim
t→0

(c+ tht(0))−k − c−k

t
= lim

t→0

ck − (c+ tht(0))k

tck(c+ tht(0))k
= lim

t→0

−kht(0)

ck+1
.

Under the assumptions for h, ht, the expression above tends to 0 for t → 0, ht → h,
concluding the proof.

Using Lemma 3.2.8 together with Theorem 3.2.6 and Theorem 3.2.7 yields that

√
n [φ(ĉn,Hn − 1)− φ(c,H− 1)] =

√
n (Gn − G)

D→ φ′θ(W) = V.

At this point, we have collected all necessary pieces of the puzzle and can now assemble
them, resulting in the main theorem of this chapter.

Theorem 3.2.9 (Schweer and Wichelhaus (2015a), Theorem 1.1). Let E[A(0)2] < ∞
and

∑∞
n=1

√
1−G(n) < ∞. Then there exists a Gaussian sequence V = (Vk)k∈N in c0

such that E [Vk] = 0 and

E [VkVm] =
τk,m
ck+m

+ km(1−H(k))(1−H(m))
1− c
ck+m+1

− k(1−H(k))
τ1,m

ck+m+1
−m(1−H(m))

τ1,k

ck+m+1

with

τ1,m =
1

E[D(0)]

∞∑
i=0

E
[
D(i)

(
1{Z(i)≤m} −H(m)

)
1{A(0)=0}

]
and

τk,m =
1

(E[D(0)])2

∞∑
i=−∞

E
[
D(0)D(i)

(
H(m)− 1{Z(0)≤m}

) (
H(k)− 1{Z(i)≤k}

) ]
for k,m ∈ N. Moreover, in c0,

√
n (Gn − G)

D→ V.
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A short discussion of the assumptions of this theorem: First, we remark that the
condition

∑∞
n=1

√
1−G(n) < ∞ is a condition on the tail behavior of the service time

distribution G. As proven in Lemma 3.2.3, it can be replaced by a moment condition
on the distribution G, i.e., by assuming that G has finite moments of order at least 2 + ε
for some ε > 0. Thus, the moment conditions under which this result holds are very
mild. Additional to the condition on the tail behavior of G, we only assume finiteness
of the second moment of the arrival distribution. Due to this characteristic, it applies
to a wide range of discrete-time queues with an infinite buffer size. For instance, the
popular integer-valued auto-regressive models of the first order (cf. Chapters 4 and 5)
can be interpreted as GI/G/∞-models satisfying the condition

∑∞
n=1

√
1−G(n) <∞,

as the service time distribution is geometrical in this case.

A different application is given by considering a discretized version of the continuous
time M/G/∞ estimation problem discussed in Brown (1970). Suppose that we are
given arrival and departure points of a continuous time M/G/∞ process. We denote the
sequence of arrival points by {Acont.(t)}t∈Z, governed by a Poisson process of intensity
λ, and the departure points by {Dcont.(t)}t∈Z. Notice that Acont.(t), Dcont.(t) ∈ R in this
case. We now discretize the time domain with a certain step size h > 0 and define a
discrete version of this process by setting Adiscr.(i) := # {Acont.(t) ∈ [h(i− 1), hi) |t ∈ Z}
and similarly for Ddiscr.(t). Elementary properties of Poisson processes imply that the
Adiscr.(i)’s are i.i.d. according to a Poi(λh) distribution. The assumption that the
general (continuous) service time distribution G satisfies the conditions of Theorem
3.2.9, or alternatively the moment condition imposed by Lemma 3.2.3, implies that the
same assumption holds for the discretized version Gdiscr.. Hence, we can apply our main
result in this situation and obtain, for example, confidence bounds on the estimation
of G. Notice that we may choose the parameter h > 0 arbitrarily small, thus ensuring
that we can approximate the continuous G arbitrarily well. Furthermore, notice that
the smaller h > 0, the larger c = P (A(0) = 0) = exp(−λh) becomes, thus improving the
asymptotic variance of the estimator given in Theorem 3.2.9.

3.3 Moving Blocks Bootstrap

The results of the previous sections are difficult to apply in practice as the covariance
kernel established in Theorem 3.2.9 is very involved and depends on the a priori unknown
distributions H or G in a complicated manner. This problem was already pointed out
in the original article introducing this estimation technique, where it is stated that (cf.
(Brown, 1970, p. 653)) ”[w]ere one to verify the mixing conditions there would still
remain the difficulty of computing the covariance kernel of the limiting process”. We
address this problem by showing that bootstrapping techniques are available for the
estimation of the kernel of the limiting distribution and lead to correct results.

In our situation, we assume to be given data sets of the form (A(t))t∈{1,...,n} and
(D(t))t∈{1,...,n}. The covariance kernel established in Theorem 3.2.9 involves the param-
eter c. The estimator ĉn is based on i.i.d. observations of the arrival process and can
be established independently from the estimators Ĥn(·). We suggest using ĉn as plug-in
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estimate in the covariance kernel, we will not focus on this here.

Let us consider a bootstrap technique for the estimators Ĥn(·). Since we are not
dealing with i.i.d. random variables but rather with a stationary and ergodic sequence,
we will apply the moving blocks bootstrap resampling procedure as first introduced
by Künsch (1989). In order to do so, we fix a block size b for a set of data of size
n and denote k = n

b . We introduce the random variables {Ij}j∈{1,...,k} which are

i.i.d. uniformly distributed on {1, . . . , n − b + 1}. The bootstrap sample is then given
as {(XId+1, XId+2, . . . , XId+b)}d∈{1,...,k}. In order to keep the notation concise, we write
P∗, E∗ and Var∗ for the conditional probability, expectation and variance with respect
to {Ij}j∈{1,...,k}, respectively, and we abbreviate the bootstrap sample by {X∗i }i∈{1,...,n}.
Expressions like 1

n

∑n
i=1X

∗
i are thus shorthand for 1

k

∑k
d=1

1
b

∑b
i=1XId+i and so forth.

First, we prove a more general result than needed for our specific purposes, as this
general result is of interest on its own.

Theorem 3.3.1 (Schweer and Wichelhaus (2015a), Theorem 5.1). Let (Xi)i∈Z be a
stationary and ergodic sequence of random variables satisfying (2.14), E[X0] = 0 and
E[X4

0 ] < ∞. Let b = b(n) be a sequence of real numbers such that b = o(nα) with
α ∈ (0, 2/5). Then

sup
x∈R

∣∣∣∣∣P
[
√
n

(
1

n

n∑
i=1

Xi

)
≤ x

]
− P∗

[
√
n

(
1

n

n∑
i=1

X∗i − E∗[X∗i ]

)
≤ x

]∣∣∣∣∣→ 0

in probability.

Proof. First note that under the assumptions on the sequence b there exists a sequence M
such that M →∞, b2M2/n→ 0 and b/M4 → 0 as n→∞. Our goal is the application
of Theorem 3 in Radulović (2012). The first condition is satisfied, as the assumptions
of Theorem 2.5.3 are satisfied, thus Var (1/

√
n
∑n

i=1Xi)→ ρ2 > 0. Markov’s inequality
implies

bE
[
X2

11{|X1|>M}
]
≤ bE

[
X4

11{|X1|>M}
]
≤ b

M4
E
[
X4

1

]
,

which converges to 0 by assumption, proving the second condition. For the third
condition we show that with the notation Yi,b := (1/

√
b)
∑b+i−1

j=i Xj , the expression

(1/n− b+ 1)
∑n−b+1

i=1 Y 2
i,b converges in probability. Since the Xi (and thus the Yi,b) are

stationary, E[1/(n− b+ 1)
∑n−b+1

i=1 Y 2
i,b] = 1/b E[(

∑b
j=1Xj)

2]→ ρ2, as b→∞ by (2.16).

Now, since E[X4
i ] <∞ it follows that E[Y 4

i,b] <∞ and due to the stationarity of the Yi,b
we have

Var

[
n−b+1∑
i=1

Y 2
i,b

]
≤ (2b+ 1)(n− b+ 1) Var

[
Y 2

1,b

]
+ (n− b+ 1)

n−b+1∑
i=b

Cov
(
Y 2

1,b, Y
2
i,b

)
,

where we used the Cauchy-Schwarz inequality. Now, for any i ∈ N (including the
case i = 1), the multi-linearity of the covariance, the application of equation (13) in
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Bohrnstedt and Goldberger (1969) (notice that E[Xi] = 0 for all i) and the stationarity
of the Xi’s yield

Cov(Y 2
1,b, Y

2
i,b)

= 2

Cov (X1, Xi) +
b−1∑
j=1

b− j
b

Cov (X1, Xi−j) +
b−1∑
j=1

b− j
b

Cov (X1, Xi+j)

2

. (3.13)

Now, since E[Xi] = 0, Cov(X1, Xi) = E[X1Xi] ≤ ‖X1‖L2 · ‖E [Xi|F1(X)]‖L2 (cf.
(2.15)). Thus, we first have

Var
[
Y 2

1,b

]
≤ 2‖X1‖2L2

‖X1‖L2 + 2

b−1∑
j=1

‖E [Xj |F1(X)]‖L2

2

,

as b → ∞ this expression is bounded by the assumption of this theorem. For the
covariances we use the same argument, and discuss each summand in (3.13) separately.
Let i = b+ a for some a ∈ {0, 1, . . . , n− 2b+ 1}, then clearly ‖E [Xb+a|F1(X)]‖L2 tends
to 0. By dominated convergence,

lim
b→∞

b−1∑
j=1

b− j
b
‖E [Xb+a−j |F1(X)]‖L2 = lim

b→∞

b+a−1∑
j=a+1

j − a
b
‖E [Xj |F1(X)]‖L2 = 0,

for each value of a, as the series
∑∞

j=1 ‖E [Xj |F1(X)]‖L2 converges. Analogous argumen-
tation applies to the third summand in (3.13). Combining all of these results we find
that

Var

[
Y 2

1,b

n− b+ 1

]
≤ 2b+ 1

n− b+ 1
Var

[
Y 2

1,b

]
+
n− 2b+ 1

n− b+ 1
sup

i∈{b,...,n−b+1}
Cov

(
Y 2

1,b, Y
2
i,b

)
.

As n → ∞ (and thus b → ∞), the latter expression tends to 0. For the former expres-
sion, notice that b2/n → 0, thus (2b + 1)(n − b + 1) → 0. In conclusion, we showed
that E[(1/n− b+ 1)

∑n−b+1
i=1 Y 2

i,b]→ ρ2 and Var[(1/n− b+ 1)Y 2
1,b]→ 0, implying conver-

gence in probability. Thus, as argued in the proof of Theorem 2 in Radulović (2012), it
follows that

√
n
(

1
n

∑n
i=1X

∗
i − E∗[X∗i ]

)
converges to an asymptotically normal distribu-

tion N (0, ρ2) in probability. The assertion follows due to the continuity of the normal
distribution.

A general problem for the application of moving block bootstrap results is that there
is no canonical choice for the block length b. The theoretical optimal block length in a
different albeit similar situation to the one discussed here was calculated to the order
o(n1/3), we refer to (Lahiri, 2003, Corollary 7.1.). The conditions of Theorem 3.3.1 allow
for such a choice of b and we suggest to use this block length in practical applications.
However, we point out to the authors’ best knowledge there exists no result on the
theoretical optimal block length for the specific situation discussed in this paper.
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Returning to the problem at hand, we first construct the bootstrap samples of the
processes {D(t)1{Z(t)≤x}}t∈Z and {D(t)}t∈Z using the scheme described above, we denote
these samples by {(D(t)1{Z(t)≤x})

∗}t∈{1,...,n} and {(D(t))∗}t∈{1,...,n}. We now construct
the bootstrap estimator as

Ĥ∗n(x) :=

∑n
i=1

(
D(i)1{Z(i)≤x}

)∗∑n
i=1 (D(i))∗

and H∗(x) :=
E∗
[(
D(0)1{Z(0)≤x}

)∗]
E∗[(D(0))∗]

.

We denote (Ĥ∗n(x1), . . . , Ĥ∗n(xl))
T := H∗n and (H∗(x1), . . . ,H∗(xl))

T := H∗ in complete
analogy with the notation Hn and H in the proof of Theorem 3.2.4.

Corollary 3.3.2 (Schweer and Wichelhaus (2015a), Corollary 5.2). Let x1, . . . , xl ∈ N,
l ∈ N. Let b = b(n),M = M(n) be sequences of real numbers such that b,M → ∞,
b2M2

n → 0 and b
M4 → 0 as n→∞. Let the conditions of Theorem 3.2.9 be satisfied and

let E
[
A(0)4

]
<∞. Then

sup
x∈Rl

∣∣P (√n (Hn −H) ≤ x
)
− P∗

(√
n (H∗n −H∗) ≤ x

)∣∣→ 0

in probability.

Proof. Let (t1, . . . , tl) ∈ Rl. In the proof of Theorem 3.2.4 we showed that the stationary
and ergodic sequence (Xi)i∈Z with Xi :=

∑l
j=1 tj(ηi(xj)) satisfies the assumptions of

Theorem 2.5.3. All other conditions of Theorem 3.3.1 are satisfied, it remains to be seen
that E[X4

1 ] <∞. It is clear that we can find a constant C such that E[X4
1 ] ≤ CE[D(1)4].

Recall the notation of the r-th order cumulant introduced in Section 2.2, then with
Lemma 2.2.1 (iii),

κr(D(1)) =
∞∑
j=1

κr

A(1−j)∑
l=1

1{S1−j,l=j}

 .

Let r = 4 then κ4 = µ4 − 3µ2
2 in terms of central moments. For any j ∈ N, the variance

of
∑A(1−j)

l=1 1{S1−j,l=j} is finite by (3.6), for the fourth moment we calculate

E

A(1−j)∑
l=1

1{S1−j,l=j}

4 =

∞∑
m=1

P (A(0) = m)E

( m∑
l=1

1{S1−j,l=j}

)4
 ≤ gjE [A(1)4

]
.

Thus, κ4(D(1)) < ∞, the finiteness of the other cumulants follows analogously. As
E[D(1)4] can be written as a polynomial in the first four cumulants of D(1), this shows
that E[X4

1 ] < ∞. Application of the Cramér-Wold device as in the proof of Theorem
3.2.4 concludes the proof.
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4 INAR(1) Processes - Stochastic
Properties
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Let us begin this chapter by deriving first elementary characteristics of INAR(1) pro-
cesses according to Definition 1.1.1. Quite clearly, it is a homogeneous Markov chain
with 1-step transition probabilities

P(Yt = k | Yt−1 = l) =

min {k,l}∑
j=0

(
l

j

)
αj(1− α)l−jP(εt = k − j). (4.1)

Applying the recursion involved in Definition 1.1.1 iteratively leads to the representation
(cp. Alzaid and Al-Osh (1988), eq. (2.2))

Yt
D
=

∞∑
i=0

αj ◦ εt−j , (4.2)

where we used the notion of the i-time iteration of the ◦ operator, i.e., the application
of i independent thinning operations on a random variable X. This is defined as

αi ◦X := α ◦ α ◦ · · · ◦ α ◦X︸ ︷︷ ︸
i times

=

X∑
j=1

i∏
k=1

ξj,k, (4.3)

where ξa,b are mutually independent identically distributed Bernoulli random variables,
independent of X, with probability of success α for (a, b) ∈ N × {1, . . . , i}, where we
set α0 ◦ X := X. Note that in the cited reference, the random variable αi ◦ X does
not represent iterated thinning as we defined it above, but one single thinning with
parameter αi. As the resultant random variables are equal in distribution, however, the
result holds. A further useful relation for the joint distribution of the process is

(Yk, Yl)
D
=

(
Yk, α

l−k ◦ Yk +
l−k−1∑
s=0

αs ◦ εl−s

)
(4.4)

for any l, k ∈ Z, l ≥ k. This relation can be extended to higher order joint distributions
in an obvious manner.

From (4.4), it immediately follows that the autocovariance function γ(·) of an INAR(1)
process (Yt)t∈Z decays exponentially, i.e., γ(k) = αkγ(0), cf. eq. (3.3) in Al-Osh and
Alzaid (1987). This implies for the ACF that ρ(k) = αk. Similarly, it can be seen that
the PACF satisfies ρpart(1) = α and ρpart(k) ≡ 0 everywhere else, which corresponds to
the empirical behavior seen in the data of Figure 1.2. Hence, the INAR(1) model provides
the practitioner with a simple variation of the popular continuous AR(1) process, which
allows for the consideration of count data instead of real-valued observations.

The relation between the INAR(1) model and the queuing model of Chapter 3 can
also nicely be described. In the notation of that chapter, set gk = (1 − α)αk−1 and
thus G(k) = 1− αk, that is, assume a geometric service time distribution for the queue
with parameter α. Comparing (3.1) with (4.2), it is quite obvious that we have equality
in distribution and hence that the INAR(1) process is a special case of a discrete-time
queueing process. Indeed, for each time step t, the summand α ◦Yt−1 can be seen as the
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portion of customers who were present at time t− 1 and who remain at the queue until
time t. The εt random variables thus correspond to the arrivals A(t).

In this chapter, we focus on stochastic properties of the INAR(1) model. In the first
part, we derive closed expressions for joint moments and cumulants for these processes,
which will facilitate the calculation of asymptotic expressions of a number of statistics in
subsequent chapters. Furthermore, the question of conditions for the time-reversibility
of INAR(1) processes is shown to have a quite satisfying answer.

In the second part of this chapter, the special case of Compound Poisson INAR(1)
models is introduced and discussed in detail. We show that in this semi-parametric
setting, the derivation of important characteristics such as the stationary distribution or
mixing properties of the processes is possible. Additionally, we endeavor to highlight the
intricate way in which the notion of Compound Poisson distribution, infinite divisibility
and the class of possible marginal distributions of INAR(1) models are linked together.
Large parts of the following chapter consist of rearranged material from these articles:
Schweer and Weiß (2014), Schweer and Weiß (2015) and Schweer (2015b).

4.1 Stochastic Properties of INAR(1) Processes

In this first part, we make no assumption on the distribution of the arrivals (εt)t∈Z of
Definition 1.1.1 other than the existence of appropriate moments. Let us first discuss
the question of stationarity of INAR(1) processes. Due to their Markovian structure, we
first consider the irreducibility of these processes on the state space N0.

Lemma 4.1.1. Let (Yt)t∈Z be a INAR(1) process. Then (Yt)t∈Z is irreducible if and
only if P(ε0 = 0) ∈ (0, 1).

Proof. First, let P(ε0 = 0) ∈ (0, 1), thus there exists a k ∈ N with P(ε0 = k) ∈ (0, 1).
Let k0 ∈ N be arbitrary, define l := dk0/ke, i.e., the smallest integer larger than k0/k.
Let us assume the following behavior of the process: it is zero at some time point t, and
there are k arrivals at each time instant t + 1, t + 2, . . . , t + l and no departures, and
there are 0 arrivals at time t+ l+ 1 and l · k− k0 departures. The transition probability
is, with (4.1), bounded from below by the expression

α
k
2
l(l+1)+k0(1− α)l·k−k0

(
l · k − k0

k0

)
P(ε0 = 0)P(ε0 = k)l > 0.

Therefore, for any state l0 ∈ N, we have pY (0|l0) = (1 − α)l0P(ε0 = 0) > 0. Hence,
the process can move with a positive probability from any state l0 to any other state
k0, proving irreducibility of the Markov chain. For the converse assertion, assume that
P(ε0 = 0) /∈ (0, 1), so either P(ε0 = 0) = 0 or P(ε0 = 0) = 1. In the former case, the
state 0 can never be reached, in the latter, the state 0 is absorbing. Thus, (Yt)t∈Z is not
irreducible which concludes the proof.

As we pointed out in the introduction, INAR(1) processes are closely linked to a special
type of discrete-time branching process with immigration. This connection is exploited

53



in the next result, which holds for a slightly larger class than that of Definition 1.1.1, as
only finiteness of the first moment is assumed.

Lemma 4.1.2. Let (Yt)t∈Z be a process satisfying the recursion (1.1) with α < 1, let
E[εt] <∞ and let P(ε0 = 0) ∈ (0, 1). Then (Yt)t∈Z is a stationary Markov chain.

Proof. By Lemma 4.1.1 (which does not necessitate a finite second moment), (Yt)t∈Z
is irreducible, it is aperiodic because pY (k|k) ≥ αk · P(ε0 = 0) > 0, see formula (4.1).
Since it is also a branching process with immigration, where the offspring distribution
has mean α < 1, we conclude from Heathcote (1966) that the condition E[εt] < ∞ is
sufficient for a nontrivial stationary distribution to exist. Since the recursion is assumed
to be satisfied for all t ∈ Z, this concludes the proof.

This result allows for a very simple condition of stationarity of INAR(1) processes
of Definition 1.1.1: They only have to satisfy P(ε0 = 0) ∈ (0, 1). Clearly, this is not
a sufficient condition for stationarity, yet since it is much easier verified (and holds for
most cases), we opt to employ this condition throughout this thesis.

4.1.1 Moments and Cumulants of INAR(1) Processes

In this section, we collect a number of results concerned with joint moments and joint
cumulants of INAR(1) processes. As a first consequence of (4.2), we obtain, if µε, σε <∞,

µY =
µε

1− α
and σ2

Y =
σ2
ε + αµε
1− α2

, i.e., IY =
Iε + α

1 + α
, (4.5)

recalling the definition of the index of dispersion IY in (2.5). Like in Weiß (2012), we
introduce the notation

µ(s1, . . . , sr−1) := E[YtYt+s1Yt+sr−1 ] with 0 ≤ s1 ≤ . . . ≤ sr−1, r ∈ N.

In particular, the case r = 1 corresponds to the marginal mean µY = E[Yt].

Theorem 4.1.3 (Schweer and Weiß (2014), Theorem 3.3.1). Let (Yt)t∈Z be an INAR(1)
process with P(ε0 = 0) ∈ (0, 1), where the innovations (εt)t∈Z have existing moments µε,r
for r ≤ 4. Then

µ(k) = σ2
Y α

k + µ2
Y ,

µ(k, l) = (µ̄Y,3 − σ2
Y )αl+k + (1 + µY )σ2

Y α
l + µY σ

2
Y

(
αl−k + αk

)
+ µ3

Y ,

µ(k, l,m) = αm+l+k
(
µ̄Y,4 − 3µ̄Y,3 + σ2

Y (2− 3σ2
Y )
)

+ µ4
Y

+ (µ̄Y,3 − σ2
Y )
(

(2 + µY )αm+l + (1 + µY )αm+k + µY

(
αm+l−2k + αl+k)

))
+ (1 + µY )2σ2

Y α
m + µY σ

2
Y (1 + µY )

(
αm−k + αl

)
+ µ2

Y σ
2
Y

(
αm−l + αl−k + αk

)
+ σ4

Y

(
αm−l+k + 2αm+l−k

)
,

holds for any 0 ≤ k ≤ l ≤ m.
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Proof. (Yt)t∈Z is stationary by Lemma 4.1.2, and the mixed moment µ(s1, . . . , sr−1) for
the case r = 2 is easily derived using that the autocorrelation function equals ρY (k) = αk:

µ(k) = Cov[Yt, Yt+k] + µ2
Y = σ2

Y α
k + µ2

Y .

To obtain expressions for r > 2, we first have to consider the conditional moments,
recalling the notations of the raw moments µε,k and central moments µ̄ε,k of Section 2.3,

E[Y k
t |Yt−1, . . .] =E

 k∑
j=0

(
k

j

)
εk−jt (α ◦ Yt−1)j |Yt−1

 =
k∑
j=0

(
k

j

)
µε,k−jE

[
(α ◦ Yt−1)j |Yt−1

]
where the last factor is just jth moment of the binomial distribution Bin(Yt−1, α). Using
the formulae given on p. 110 in Johnson et al. (2005), we obtain

E[Yt|Yt−1, . . .] = αYt−1 + µε,

E[Y 2
t |Yt−1, . . .] = µε,2 + 2µεαYt−1 + αYt−1 + α2Yt−1(Yt−1 − 1)

= α2Y 2
t−1 + α(1− α)(1 + 2µY )Yt−1 + µε,2 as well as

E[Y 3
t |Yt−1, . . .] = µε,3 + 3µε,2αYt−1 + 3µε

(
αYt−1 + α2Yt−1(Yt−1 − 1)

)
+ αYt−1 + 3α2Yt−1(Yt−1 − 1) + α3Yt−1(Yt−1 − 1)(Yt−1 − 2)

= µε,3 + (1 + 3µε + 3µε,2)αYt−1 − 3(1 + µε)α
2Yt−1 + 2α3Yt−1

+ 3(1 + µε)α
2Y 2
t−1 − 3α3Y 2

t−1 + α3Y 3
t−1

= α3Y 3
t−1 + 3α2(1− α)(1 + µY )Y 2

t−1 + µε,3

+ α(1− α)

(
1− 2α+ 3µε + 3

µε,2
1− α

)
Yt−1, and

E[Y 4
t |Yt−1, . . .] = µε,4 + 4µε,3E [α ◦ Yt−1|Yt−1] + 6µε,2E

[
(α ◦ Yt−1)2|Yt−1

]
+ 4µεE

[
(α ◦ Yt−1)3|Yt−1

]
+ E

[
(α ◦ Yt−1)4|Yt−1

]
= µε,4 + 4µε,3αYt−1 + 6µε,2

(
αYt−1 + α2Yt−1(Yt−1 − 1)

)
+ 4µε

(
αYt−1 + 3α2Yt−1(Yt−1 − 1) + α3Yt−1(Yt−1 − 1)(Yt−1 − 2)

)
+ αYt−1 + 7α2Yt−1(Yt−1 − 1) + 6α3Yt−1(Yt−1 − 1)(Yt−1 − 2)

+ α4Yt−1(Yt−1 − 1)(Yt−1 − 2)(Yt−1 − 3)

= (1 + 4µε + 6µε,2 + 4µε,3)αYt−1 + (6µε,2 + 12µε + 7)α2(Y 2
t−1 − 1)

+ α3(Y 2
t−1 − Yt−1)[(4µε + 6) (Yt−1 − 2) + α(Y 2

t−1 − 5Yt−1 + 6)] + µε,4

=

(
1− 6α(1− α) + 4µε(1− 2α) + 6µε,2 + 4

µε,3
1− α

)
(1− α)αYt−1

+

(
7− 11α+ 12µε + 6

µε,2
1− α

)
(1− α)α2Y 2

t−1

+ 2 (2µY + 3) (1− α)α3Y 3
t−1 + α4Y 4

t−1 + µε,4.
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As a consequence, we obtain for the raw moments that

(1− α2)µY,2 = µε,2 + αµε(1 + 2µY ),

(1− α3)µY,3 = 3α2(1− α)(1 + µY )µY,2 + µε,3 + αµε

(
1− 2α+ 3µε + 3

µε,2
1− α

)
, (4.6)

(1− α4)µY,4 =

(
1− 6α(1− α) + 4µε(1− 2α) + 6µε,2 + 4

µε,3
1− α

)
αµε + µε,4

+

(
7− 11α+ 12µε + 6

µε,2
1− α

)
(1− α)α2µY,2 + 2 (2µY + 3) (1− α)α3µY,3.

Finally, we shall use the well-known relations (see, e.g., p. 450 in Douglas (1980))

µY,2 = µ̄Y,2 + µ2
Y = σ2

Y + µ2
Y ,

µY,3 = µ̄Y,3 + 3µY σ
2
Y + µ3

Y , (4.7)

µY,4 = µ̄Y,4 + 4µY µ̄Y,3 + 6µ2
Y σ

2
Y + µ4

Y .

Third-Order Moments:
To derive an explicit expression for µ(k, l) with 0 ≤ k ≤ l, we distinguish between the
following cases:

(i) l > k. Here, we have

µ(k, l) = E [YtYt+kE[Yt+l|Yt+l−1, . . .]] = αµ(k, l − 1) + µεµ(k) = . . .

= αl−kµ(k, k) + (1− α)µY µ(k)
l−k−1∑
j=0

αj = αl−k (µ(k, k)− µY µ(k)) + µY µ(k).

(ii) l = k > 0. Using the relations (4.6) and (4.7), we have

µ(k, k) = E
[
YtE[Y 2

t+k|Yt+k−1, . . .]
]

= α2µ(k − 1, k − 1) + α(1− α)(1 + 2µY )µ(k − 1) + µε,2µY

= α2µ(k − 1, k − 1) + (1− α)(1 + 2µY )σ2
Y α

k + (1− α2)µY µY,2

= . . . = α2kµ(0, 0) + (1− α)(1 + 2µY )σ2
Y

k−1∑
j=0

αk+j + (1− α2)µY µY,2

k−1∑
j=0

α2j

= α2k
(
µY,3 − (1 + 2µY )σ2

Y − µY µY,2
)

+ (1 + 2µY )σ2
Y α

k + µY µY,2

= α2k(µ̄Y,3 − σ2
Y ) + (1 + 2µY )

(
µ(k)− µ2

Y

)
+ µY µY,2,

which also holds for k = 0. So it follows that

µ(k, l) = αl−k
(
α2k(µ̄Y,3 − σ2

Y ) + (1 + µY )
(
µ(k)− µ2

Y

)
+ µY σ

2
Y

)
+ µY µ(k)

holds for any 0 ≤ k ≤ l.
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Fourth-Order Moments:
To derive an explicit expression for µ(k, l,m) with 0 ≤ k ≤ l ≤ m, we distinguish
between the following cases:

(i) m > l. Then, similar to above, we have

µ(k, l,m) = E [YtYt+kYt+lE[Yt+m|Yt+m−1, . . .]]αµ(k, l,m− 1) + µεµ(k, l) = . . .

= αm−l (µ(k, l, l)− µY µ(k, l)) + µY µ(k, l).

(ii) m = l > k. Then we have (using the above relation (4.6))

µ(k, l, l) = E
[
YtYt+kE[Y 2

t+l|Yt+l−1, . . .]
]

= α2µ(k, l − 1, l − 1) + α(1− α)(1 + 2µY )µ(k, l − 1) + µε,2µ(k)

= α2µ(k, l − 1, l − 1) + (α(1− α)µY (1 + 2µY ) + µε,2)µ(k)

+ (1− α)(1 + 2µY ) (µ(k, k)− µY µ(k))αl−k

= . . . = α2(l−k)µ(k, k, k) + (1− α2)µY,2µ(k)

l−k−1∑
j=0

α2j

+ (1− α)(1 + 2µY ) (µ(k, k)− µY µ(k))

l−k−1∑
j=0

αl−k+j

= α2(l−k) (µ(k, k, k)− µY,2µ(k)− (1 + 2µY ) (µ(k, k)− µY µ(k)))

+ (1 + 2µY ) (µ(k, k)− µY µ(k))αl−k + µY,2µ(k).

(iii) m = l = k > 0. Then we have (using the relations (4.6) and (4.7))

µ(k, k, k) = E
[
YtE[Y 3

t+k|Yt+k−1, . . .]
]

= α3µ(k − 1, k − 1, k − 1) + 3α2(1− α)(1 + µY )µ(k − 1, k − 1)

+ α(1− α)

(
1− 2α+ 3µε + 3

µε,2
1− α

)
µ(k − 1) + µε,3µY

= α3µ(k − 1, k − 1, k − 1) + 3(1− α)(1 + µY )(µ̄Y,3 − σ2
Y )α2k

+ (1− α2)σ2
Y (1 + 3µY + 3µY,2)αk + (1− α3)µY µY,3

= . . . = α3kµ(0, 0, 0) + 3(1− α)(1 + µY )(µ̄Y,3 − σ2
Y )

k−1∑
j=0

α2k+j

+ (1− α2)σ2
Y (1 + 3µY + 3µY,2)

k−1∑
j=0

αk+2j + (1− α3)µY µY,3

k−1∑
j=0

α3j

= α3k
(
µ̄Y,4 − 3µ̄Y,3 + σ2

Y (2− 3σ2
Y )
)

+ 3(1 + µY )(µ̄Y,3 − σ2
Y )α2k

+ σ2
Y (1 + 3µY + 3µY,2)αk + µY µY,3,
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which also holds for k = 0. So it follows that

µ(k, l,m) = αm+l−2k (µ(k, k, k)− µY,2µ(k)− (1 + 2µY ) (µ(k, k)− µY µ(k)))

+ αm−l(1 + µY ) (µ(k, l)− µY µ(k)) + αm−lσ2
Y µ(k) + µY µ(k, l)

= αm+l−2k
(
µ(k, k, k)− (σ2

Y + µ2
Y )σ2

Y α
k − (σ2

Y + µ2
Y )µ2

Y

− (1 + 2µY )
(
α2k(µ̄Y,3 − σ2

Y ) + (1 + µY )σ2
Y α

k + µY σ
2
Y

))
+ αm−k(1 + µY )

(
α2k(µ̄Y,3 − σ2

Y ) + (1 + µY )σ2
Y α

k + µY σ
2
Y

)
+ αm−lσ2

Y

(
σ2
Y α

k + µ2
Y

)
+ µY (µ̄Y,3 − σ2

Y )αl+k + µY (1 + µY )σ2
Y α

l + µ2
Y σ

2
Y (αl−k + αk) + µ4

Y

= αm+l−2k
(
µ(k, k, k)− (1 + 2µY )(µ̄Y,3 − σ2

Y )α2k

− (1 + 3µY + 3µ2
Y + σ2

Y )σ2
Y α

k − µ4
Y − µY (1 + 3µY )σ2

Y

)
+ (1 + µY )(µ̄Y,3 − σ2

Y )αm+k + (1 + µY )2σ2
Y α

m + µY (1 + µY )σ2
Y α

m−k

+ σ4
Y α

m−l+k + µ2
Y σ

2
Y α

m−l

+ µY (µ̄Y,3 − σ2
Y )αl+k + µY (1 + µY )σ2

Y α
l + µ2

Y σ
2
Y (αl−k + αk) + µ4

Y

= αm+l−2k
(
α3k

(
µ̄Y,4 − 3µ̄Y,3 + σ2

Y (2− 3σ2
Y )
)

+ (2 + µY )(µ̄Y,3 − σ2
Y )α2k + 2σ4

Y α
k + µY (µ̄Y,3 − σ2

Y )
)

+ (1 + µY )(µ̄Y,3 − σ2
Y )αm+k + (1 + µY )2σ2

Y α
m

+ µY (1 + µY )σ2
Y (αm−k + αl) + σ4

Y α
m−l+k

+ µY (µ̄Y,3 − σ2
Y )αl+k + µ2

Y σ
2
Y (αm−l + αl−k + αk) + µ4

Y

= αm+l+k
(
µ̄Y,4 − 3µ̄Y,3 + σ2

Y (2− 3σ2
Y )
)

+ σ4
Y (αm−l+k + 2αm+l−k)

+ (µ̄Y,3 − σ2
Y )
(

(2 + µY )αm+l + (1 + µY )αm+k + µY (αm+l−2k + αl+k)
)

+ (1 + µY )2σ2
Y α

m + µY (1 + µY )σ2
Y (αm−k + αl)

+ µ2
Y σ

2
Y (αm−l + αl−k + αk) + µ4

Y

holds for any 0 ≤ k ≤ l ≤ m.

We now consider a special case, the so-called Poisson INAR(1) model . In this model,
the arrivals (εt)t∈Z are assumed to be Poisson distributed, this is the most popular
instance of the INAR(1) family. Let us first show that in this case, the stationary
marginal distribution is also a Poisson distribution, Poi( λ

1−α). The following assertion is
well-known, yet the proof via a discrete-time queueing model seems to be a novel idea.

Lemma 4.1.4. Let (Yt)t∈Z be a Poisson INAR(1) process, where εt ∼ Poi(λ) for all
t ∈ Z. Then Y0 ∼ Poi( λ

1−α).
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Proof. As pointed out in the introduction of this chapter, an INAR(1) process is equal
in distribution to (3.1) when setting G(k) = 1 − αk. A closer look at the proof of
Lemma 3.1.1 reveals that Y0 =

∑0
i=−∞ b(i; 0,∞) =

∑∞
i=0 b(0; i,∞), hence Y0 is Poisson

distributed with parameter λ
∑∞

i=0

∑∞
l=i gl = λ

∑∞
i=0(1−G(i)), concluding the proof.

It is easily seen that in this case, we have µ̄Y,3−σ2
Y = 0 and, for higher order moments,

µ̄Y,4 − 3µ̄Y,3 + σ2
Y (2 − 3σ2

Y ) = 0, leading to a simplification of the results of Theorem
4.1.3.

Corollary 4.1.5 (Weiß (2012), Proposition 1). Let (Yt)t∈Z be a Poisson INAR(1) pro-
cess, where εt ∼ Poi(λ) for all t ∈ Z. Then

µ(k) = µY (αk + µY ),

µ(k, l) = µY α
l + µ2

Y (αl−k + αk + αl) + µ3
Y ,

µ(k, l,m) = µ2
Y

(
αm−l+k + 2αm+l−k

)
+ µY (1 + µY )2αm + µ4

Y

+ µ2
Y (1 + µY )

(
αm−k + αl

)
+ µ3

Y

(
αm−l + αl−k + αk

)
holds for any 0 ≤ k ≤ l ≤ m.

The next result presents a surprisingly simple relation for the joint cumulants of
Poisson INAR(1) processes. This relation was suggested and used in Pickands and
Stine (1997), however, these authors only gave a sketch of a proof. A more formal proof
is presented here.

Theorem 4.1.6 (Schweer and Weiß (2015), Theorem 2.1.1). Let (Yt)t∈Z be a Poisson
INAR(1) process, where εt ∼ Poi(λ) for all t ∈ Z. Let r ∈ N and i1 ≤ i2 ≤ · · · ≤ ir with
ij ∈ Z. Then

cum (Yi1 , . . . , Yir) =
λ

1− α
αir−i1 = µY α

ir−i1 .

Proof. The joint cumulant is well-defined as the marginal distribution of a Poisson
INAR(1) process is Poisson distributed (cf. Lemma 4.1.4) and thus all moments are
finite. Let j0 := 0 ≤ j1 ≤ j2 ≤ . . . jr and ji ∈ N0. Then we calculate, with (4.3),

cum
(
αj1 ◦ ε0, αj2 ◦ ε0, . . . , αjr ◦ ε0 | ε0

)
= cum

(
ε0∑
m=1

j1∏
k=1

ξm,k, . . . ,

ε0∑
m=1

jr∏
k=1

ξm,k

∣∣∣∣∣ ε0
)

= cum

(
ε0∑
m=1

j1∏
k=1

ξm,k, . . . ,

jr∏
k=1

ξm,k

∣∣∣∣∣ ε0
)

= ε0 cum

(
j1∏
k=1

ξ1,k, . . . ,

jr∏
k=1

ξ1,k

)
,

where the penultimate equation follows from the mutual independence of the random
variables ξa,b and Lemma 2.2.1 (ii). The last equation follows from relation (2.4). With
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Theorem 2.2.2 and the notation used there Lemma 2.2.1 (iv) shows that the following
calculations hold:

cum
(
αj1 ◦ ε0, αj2 ◦ ε0, . . . , αjr ◦ ε0

)
=
∑
π∈Πr

|π|∏
i=1

cum

jbi(π,1)∏
k=1

ξ1,k, . . . ,

jbi(π,pi)∏
k=1

ξ1,k

 · κ|π| (ε0)


= κ1 (ε0)

∑
π∈Πr

|π|∏
i=1

cum

jbi(π,1)∏
k=1

ξ1,k, . . . ,

jbi(π,pi)∏
k=1

ξ1,k

 = κ1 (ε0)E

[
r∏
l=1

jl∏
k=1

ξ1,k

]
. (4.8)

The penultimate equation exploited the fact that κ1(X) = κ2(X) = · · · = κr(X) for any
r ∈ N for Poisson distributed X, and the last equation uses Lemma 2.2.1 (vi). Due to
the mutual independence of the random variables ξ, and since ξum,k = ξm,k for any u ∈ N
for Bernoulli random variables, we conclude

cum
(
αj1 ◦ ε0, αj2 ◦ ε0, . . . , αjr ◦ ε0

)
= κ(ε0)

r∏
l=1

E

 jl∏
k=jl−1

ξ1,k

 = αjrκ(ε0). (4.9)

Now, since equality in distribution implies equality of the corresponding cumulants,
we apply (4.2) and Lemma 2.2.1 (vii) repeatedly (note the mutual independence of the
ε’s and the independence of εt of Ys for s < t). We obtain

cum (Yj1 , . . . , Yjr) = cum
(
Yj1 , α

j2−j1 ◦ Yj1 , . . . , αjr−j1 ◦ Yi1
)

= cum

( ∞∑
s=0

αs ◦ εj1−s,
∞∑
s=0

αj2−j1+s ◦ εj1−s, . . . ,
∞∑
s=0

αjr−j1+s ◦ εj1−s

)

=
∞∑
s=0

cum
(
αs ◦ εj1−s, αj2−j1+s ◦ εj1−s, . . . , αjr−j1+s ◦ εj1−s

)
,

and conclude the proof with an appeal to (4.9).

Note that the result of Theorem 4.1.6 can be used to extend the existing results for
the joint moments of Poisson INAR(1) processes as given in Weiß (2012), cp. Corollary
4.1.5, by applying Lemma 2.2.1 (vi). For general INAR(1) processes we find the following
corollary.

Corollary 4.1.7. Let (Yt)t∈Z be an INAR(1) process with P(ε0 = 0) ∈ (0, 1) and let
r ∈ N with E[Y r

t ] <∞. Let i1 ≤ i2 ≤ · · · ≤ ir with ij ∈ Z. Then

cum (Yi1 , . . . , Yir) =

∞∑
s=0

∑
π∈Πr

κ|π| (ε0)

|π|∏
i=1

cum

jbi(π,1)(s)∏
k=1

ξ1,k, . . . ,

jbi(π,pi)(s)∏
k=1

ξ1,k

 ,

where we denote the sets of indices {s, i2 − i1 + s, i3 − i1 + s, . . . , ir − i1 + s} :=
{j1(s), . . . , jr(s)}.

60



In comparison with the general result of Corollary 4.1.7, the simple relation of Theorem
4.1.6 becomes even more striking. On the other hand we would like to remark that the
direct calculation of joint cumulants via Corollary 4.1.7 might seem daunting, yet turns
out to be quite simple. We demonstrate this by giving a short example.

Example 4 (Joint Moments of INAR(1) Processes). First, the second order joint cu-
mulant corresponds to the covariance of two random variables. We calculate

cum (Y0, Yh) =
∞∑
s=0

(
cum

(
s∏

k=1

ξ1,k,
s+h∏
k=1

ξ1,k

)
κ1(ε0) + κ2(ε0)αsαh+s

)

=
∞∑
s=0

(
κ1(ε0)

(
αh+s − αsαh+s

)
+ κ2(ε0)αsαh+s

)
= αh

κ2(ε0) + ακ1(ε0)

1− α2
.

Now, from (4.6) together with (4.7) and recalling that Var(X) = κ2(X) and E[X] = κ(X)
for any random variable with existing second moment, we have that

Var(Y0) =
κ2(ε0) + ακ1(ε0)

1− α2
+
κ1(ε0)2 + 2ακ1(ε0)κ1(Y0)

1− α2
− κ1(Y0)2

=
κ2(ε0) + ακ1(ε0)

1− α2
+ κ1(ε0)2 1 + α

1− α
1

1− α2
− κ1(ε0)2

(1− α)2
=
κ2(ε0) + ακ1(ε0)

1− α2
,

so that cum(Y0, Yh) = αh Var(Y0), as already shown above. We used E[Y0] = E[ε0]/(1−α)
repeatedly in this calculation, this follows by taking expectations in (4.2).

4.1.2 Time-Reversibility

Let us discuss the time-reversibility of INAR(1) processes. Following the discussion in
the introduction of this chapter, an INAR(1) process is a special case of a GI/G/∞-
queueing system and thus Lemma 3.1.1 is applicable. This implies that if we assume
that the innovations (εt)t∈Z are i.i.d. according to the Poisson distribution Poi(λ) for
some λ > 0, the resulting INAR(1) process is time-reversible.

Lemma 4.1.4 allows for a very short proof of time-reversibility of a stationary Poisson
INAR(1) process. As an INAR(1) process (Yt)t∈Z is Markovian, it suffices to prove the
relation πY (k)pY (l|k) = πY (l)pY (k|l) for all l, k ∈ N0, where πY (k) := P(Y0 = k) denotes
the probability mass function (pmf) of the stationary distribution, and pY (l|k) := P(Y1 =
l|Y0 = k) denotes the transition probabilities. In fact, for any l, k ∈ N0 it follows with
(4.1) and Lemma 4.1.4 that

πY (k)pY (l|k) = exp(−2λ)
λk

(1− α)kk!

min{k,l}∑
j=0

(
k

j

)
αj(1− α)k−j

λl−j

(l − j)!

= exp(−2λ)
λl

(1− α)ll!

min{k,l}∑
j=0

(
l

j

)
αj(1− α)l−j

λk−j

(k − j)!
= πY (l)pY (k|l).
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The time-reversibility of Poisson INAR(1) processes was first shown in Walrand (1983).
The converse of this statement is also true.

Theorem 4.1.8 (Schweer (2015b), Theorem 19.1). Let (Yt)t∈Z be an INAR(1) process
with P(ε0 = 0) ∈ (0, 1). Then (Yt)t∈Z is time-reversible if and only if there exists a λ > 0
such that ε0 ∼ Poi(λ).

Proof. The sufficiency of the Poisson assumption is shown above. Now, let (Yt)t∈Z be
time-reversible and let i ∈ N. By Theorem 2.4.2 applied to the sequence j1 = 0, j2 =
1, j3 = i, it necessarily holds that pY (1|0)pY (i|1)pY (0|i) = pY (i|0)pY (1|i)pY (0|1). With
(4.1), this implies

P (ε0 = 1) [(1− α)P (ε0 = i) + αP (ε0 = i− 1)] (1− α)iP (ε0 = 0)

= P (ε0 = i)

[
(1− α)iP (ε0 = 1) +

(
i

i− 1

)
α(1− α)i−1P (ε0 = 0)

]
(1− α)P (ε0 = 0) ,

which, due to 1− α > 0, is equivalent to

P (ε0 = 1)P (ε0 = i− 1) = iP (ε0 = i)P (ε0 = 0) . (4.10)

Summation over i on both sides leads to P (ε0 = 1) = E[ε0]P (ε0 = 0). We assumed that
P(ε0 = 0) ∈ (0, 1), hence it holds that E[ε0] > 0 and therefore that P(ε0 = 1) > 0.
Applying (4.10) recursively,

P (ε0 = i) =
1

i
E[ε0]P(ε0 = i− 1) = · · · = 1

i!
E[ε0]iP(ε0 = 0).

Normalization yields P (ε0 = 0)−1 =
∑∞

l=0
1
l!E[ε0]l, concluding the proof.

Theorem 4.1.8 requires that P(ε0 = 0) ∈ (0, 1). We could also require that (Yt)t∈Z is
irreducible on N0, the equivalence of these conditions was shown in Lemma 4.1.1.

4.2 Compound Poisson INAR(1) Processes

Let us begin by demonstrating an alternative proof for Lemma 4.1.4 via pgfs. For this
we first calculate for any integer-valued random variable X and α ∈ (0, 1),

pgfα◦X(z) =

∞∑
k=0

E
[
zα◦X

∣∣X = k
]
P(X = k) =

∞∑
k=0

E[zξ1]kP(X = k) = pgfX(1− α+ αz),

where ξ1 denotes a thinning random variable, i.e., a Bernoulli random variable with
probability of success α. This argument may be extended to iterated applications of the
thinning operation, as long as the thinnings involved are executed independently. In this
case, the relation above shows that

pgfα◦(β◦X)(z) = pgfβ◦X(1− α+ αz) = pgfX(1− αβ + αβz),
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implying that

α ◦ (β ◦X)
D
= (α · β) ◦X (4.11)

for independent thinning operations. Now, by elementary properties of power series,
it follows that the pgf of the marginal distribution of an INAR(1) process pgfY (z) is
uniquely determined by the relation

pgfY (z) = pgfY (1− α+ αz) pgfε(z) for z ∈ [0, 1]. (4.12)

Using this relation, a second proof of Lemma 4.1.4 can be given.

Proof. Since ε ∼ Poi(λ), it follows that pgfε(z) = exp(λ(z − 1)), cf. Definition 2.3.1. It
is clear that setting PY (z) = exp( λ

1−α(z− 1)) is a solution to (4.12) and thus the unique
solution, concluding the proof.

We have just seen that for the Poisson INAR(1) model, the marginal distribution
of the observations and that of the innovations belong to the same distribution family,
the Poisson distribution. It should be noted, however, that the more general family of
Compound Poisson distributions has analogous invariance properties.

Lemma 4.2.1 (Schweer and Weiß (2014), Lemma B.4). Let Y1, Y2 be independent with
Yi ∼ ComPoiν(λi, Hi) (including the case ν =∞) and let α ∈ (0, 1). Then

(i) Y1 + Y2 ∼ ComPoiν(λ,H) with

λ = λ1 + λ2, λH(z) =

ν∑
x=1

(λ1h1;x + λ2h2;x)zx,

(ii) α ◦ Y ∼ ComPoiν(µ,G), where

µ = λ (1−H(1− α)) , µG(z) = λ
ν∑
j=1

αj

 ν∑
i=j

hi

(
i

j

)
(1− α)i−j

 zj .

Proof. The additivity property stated in part (i) follows from

pgfY1+Y2(z) = pgfY1(z) pgfY2(z) = exp (λ1H1(z) + λ2H2(z)− (λ1 + λ2))

= exp

(
(λ1 + λ2)

(
λ1

λ1 + λ2
H1(z) +

λ2

λ1 + λ2
H2(z)− 1

))
.

To prove the invariance with regard to binomial thinning as stated in part (ii), we
consider (recall that h0 := 0 may be assumed as shown in Section 2.3)

H(1− α+ αz) =
ν∑
j=0

zj
ν∑
i=j

hi

(
i

j

)
(1− α)i−jαj =:

ν∑
j=0

h̃jz
j ,
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where h̃0 =
∑ν

i=1 hi(1− α)i = H(1− α). Hence,

pgfα◦Y (z) = pgfY (1− α+ αz) = exp (λ (H(1− α+ αz)− 1))

= exp

λ(1− h̃0)

 ν∑
j=1

h̃j

1− h̃0

zj − 1

,
which completes the proof.

These invariance principles suggest that the consideration of Compound Poisson dis-
tribution in the context of INAR(1) processes yields nice mathematical properties. A
further connection between these two concepts can be established via discrete self-
decomposability, as can be gleaned from the similarity of the relations (2.7) and (4.12).
This motivates the following definition of the Compound Poisson integer-valued autore-
gressive process of first order (CPINAR(1)).

Definition 4.2.2 (CPINAR(1) Process). An INAR(1) process (Yt)t∈Z according to Def-
inition 1.1.1 is referred to as a CPINAR(1) process if there exists a λ > 0 and a pgf
H(z) with deg(H(z)) := ν ∈ N ∪ {∞} such that εt ∼ ComPoiν(λ,H) for all t ∈ Z.

Note that any CPINAR(1) process is stationary by Lemma 4.1.2, as Proposition 2.3.6
(i) implies that P(ε0 = 0) = exp(−λ) ∈ (0, 1) for any λ > 0, independent of the
choice of compounding distribution H(z). The general approach of Definition 4.2.2
comprises a number of specialized INAR(1) models within one model. The popular
Poisson INAR(1) model described above just corresponds to the case ν = 1. Further
models which are included in the above definition were considered in Jung et al. (2005),
Pedeli and Karlis (2011) (negative binomial innovations) and Schweer and Wichelhaus
(2015b) (finite compounding structure).

4.2.1 Forecasting

As a first consequence of the semi-parametric choice of Definition 4.2.2, the k-step-ahead
conditional distribution of a CPINAR(1) process for arbitrary k ∈ N is derived.

Theorem 4.2.3 (Schweer and Weiß (2014), Theorem 3.1.1). Let (Yt)t∈Z be a CPINAR(1)
process according to Definition 4.2.2. Then the conditional pgf of Yt+k given Yt satisfies

pgfYt+k|Yt(z) =
(

1− αk + αkz
)Yt
· pgfε(k)(z), (4.13)

where ε(k) is a ComPoiν(λ(k), H(k))-distributed random variable with

λ(k) = λ

k∑
i=1

(
1−H(1− αi−1)

)
,

λ(k)
(
H(k)(z)− 1

)
= λ

k∑
i=1

(
H(1− αi−1 + αi−1z)− 1

)
. (4.14)
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Note that the first equation in (4.14) is included in the second one for z = 0 (recalling
that H(k)(0) = 0 according to Definition 2.3.1).

Proof. We abbreviate Ck := λ(k)/λ and we prove the theorem by induction. The 1-step-
ahead conditional pgf is given by

pgfYt+1|Yt(z) = (1− α+ αz)Yt pgfε(z), (4.15)

i.e., (4.13) holds for k = 1 with C1 = 1 and H(1)(z) = H(z). Now, suppose that
equations (4.13), (4.14) hold for some k ≥ 1. For the (k+ 1)-step-ahead conditional pgf,
we calculate

pgfYt+k+1|Yt(z) = E
[
zYt+k+1

∣∣∣Yt] = E
[
E
[
zYt+k+1

∣∣∣Yt+1

] ∣∣∣Yt]
= E

[
pgfYt+k+1|Yt+1

(z)
∣∣∣Yt] (4.13)

= E
[
(1− αk + αkz)Yt+1 pgfε(k)(z)

∣∣∣Yt]
= E

[
yYt+1

∣∣∣Yt] pgfε(k)(z)
(4.15)

= (1− α+ αy)Yt pgfε(y) pgfε(k)(z),

where y := 1− αk + αkz. Re-substitution yields

pgfYt+k+1|Yt(z) =
(

1− α+ α(1− αk + αkz)
)Yt

pgfε

(
1− αk + αkz

)
pgfε(k)(z)

= (1− αk+1 + αk+1z)Yt pgfε

(
1− αk + αkz

)
pgfε(k)(z). (4.16)

Now, the last product on the RHS of (4.16) is the pgf of a sum of two independent
random variables ε∗ and ε(k), where (see Lemma 4.2.1 (ii))

ε(k) ∼ ComPoiν(λ(k), H(k)), ε∗ ∼ ComPoiν(µ∗, G∗) with

µ∗ = λ
(

1−H(1− αk)
)
, µ∗ (G∗(z)− 1) = λ

(
H(1− αk + αkz)− 1

)
.

Lemma 4.2.1 (i) yields that ε(k+1) := ε∗ + ε(k) is ComPoiν(λ(k+1), H(k+1))-distributed
with

Ck+1 = 1−H(1− αk) + Ck,

Ck+1

(
H(k+1)(z)− 1

)
=
(
H(1− αk + αkz)− 1

)
+ Ck

(
H(k)(z)− 1

)
. (4.17)

To conclude the proof, we apply (4.17) inductively.

As the CPINAR(1) model comprises a number of specialized INAR(1) models, this
forecasting result also includes some known results as a special case. For a Poisson
INAR(1) model (ν = 1), Theorem 4.2.3 implies that

ε(k) ∼ Poi

(
λ

1− αk

1− α

)
,
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this result is known from Theorem 1 in Freeland (2010). If ν =∞ with εt ∼ NegBin(n, π),
then formula (4.14) and Example 1 imply that

pgfε(k)(z) =
k−1∏
i=0

(
1 +

1− π
π

αi(1− z)
)−n

.

This particular result was also shown in formula (5.4) and Corollary 2 in Pedeli and
Karlis (2011) (setting s2 = 1 and β = n−1, λ1 = n(1− π)/π in their notation).

4.2.2 Stationarity

The CPINAR(1) process (Yt)t∈Z of Definition 4.2.2 is a homogeneous Markov chain,
where the 1-step transition probabilities are given by formula (4.1). We assume that
H ′(1) <∞ such that µε = E[εt] = λH ′(1) <∞ holds, see part (ii) of Proposition 2.3.6.
Note that H ′(1) < ∞ is always satisfied if ν < ∞, but also if we are concerned, e.g.,
with a negative binomial distribution, see Example 1. First, however, we need to prove
two rather technical upper bounds related to Lemma 1’ of Heathcote (1966), where it
was shown that whenever H ′(1) < ∞ holds, we also have

∑∞
i=0

(
1−H(1− αi)

)
< ∞.

This property, in turn, is of importance for Theorem 4.2.5.

Lemma 4.2.4 (Schweer and Weiß (2014), Lemma A.2.1). Let the pgf H(z) of the
ComPoi(λ,H)-distribution satisfy

∑∞
i=0

(
1−H(1− αi)

)
<∞, and let α ∈ (0, 1). Then

(i)
∑∞

i=0

(
1−H(1− αi + αiz)

)
<∞ for all z ∈ [0, 1],

(ii)
∏∞
i=0 exp

(
λ
(
H(1− αi + αiz)− 1

))
<∞ for all z ∈ [0, 1].

Proof. As H(z) is monotonically increasing in z on the interval z ∈ [0, 1], we have
1−H(1−αi+αiz) ∈

[
0, 1−H(1−αi)

]
. Hence, by the Weierstrass M-test, the expression∑∞

i=0

(
H(1− αi + αiz)− 1

)
converges if the term

∑∞
i=0

(
1−H(1− αi)

)
converges. So

part (i) follows from the assumption.

For the convergence of the infinite product in (ii), it suffices to show that the series

∞∑
i=0

∣∣exp
(
λ
(
H(1− αi + αiz)− 1

))
− 1
∣∣ (4.18)

converges. As H(1 − αi + αiz) ≤ 1 for all α ∈ (0, 1) and z ∈ [0, 1], we find that
0 < exp

(
λ
(
H(1− αi + αiz)− 1

))
≤ 1. Using the inequality exp(x) ≥ 1 + x, which

holds for all x ∈ R, we have

1− exp
(
λ
(
H(1− αi + αiz)− 1

))
≤ λ

(
1−H(1− αi + αiz)

)
.

By the Weierstrass M-test, the convergence of (4.18) is thus ensured by the convergence
of
∑∞

i=0

(
1−H(1− αi + αiz)

)
, which, in turn, was shown in part (i).
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We now present the main result of this section. As shown in Lemma 4.1.2, the condi-
tion H ′(1) <∞ guarantees that the CPINAR(1) process is an ergodic Markov chain, and
that it possesses a unique stationary marginal distribution. Properties of this stationary
marginal distribution, refining assertion (2) in Pakes (1971), are also studied.

Theorem 4.2.5 (Schweer and Weiß (2014), Theorem 3.2.1). Let (Yt)t∈Z be a CPINAR(1)
process according to Definition 4.2.2. If H ′(1) < ∞, then (Yt)t∈Z is an ergodic Markov
chain and it holds that Y0 ∼ ComPoiν(µ,G), where

µ = λ
∞∑
i=0

(
1−H(1− αi)

)
,

µ (G(z)− 1) = λ
∞∑
i=0

(
H(1− αi + αiz)− 1

)
for all z ∈ [0, 1].

In the case ν = 1, we obtain the well-known expressions µ = λ
1−α and G(z) = H(z) = z

for the stationary marginal distribution of a Poisson INAR(1) process, providing yet
another proof for Lemma 4.1.4.

Proof. With Proposition 2.3.6 (i), P(ε0 = 0) = exp(−λ) ∈ (0, 1), so Lemma 4.1.2 applies,
showing that a unique stationary distribution πY (k) := P(Yt = k) exists. It follows that
(cf. Theorem 7.1, Ch. XV in Feller (1968))

P (Yt+k = y|Yt)
k→∞−→ πY (y) for all y ∈ N0.

This is equivalent to the convergence of the respective pgfs, which by Theorem 4.2.3
results in(

1− αk + αkz
)Yt

exp
(
λ(k)

(
H(k)(z)− 1

))
k→∞−→ pgfY (z) for z ∈ [0, 1].

This, in turn, implies

pgfY (z) = lim
k→∞

exp
(
λ(k)

(
H(k)(z)− 1

))
for all z ∈ [0, 1],

as limk→∞(1− αk + αkz)Yt = 1. Using the result of Theorem 4.2.3, we find

pgfY (z) =
∞∏
i=1

exp
(
λ
(
H(1− αi−1 + αi−1z)− 1

))
= exp

(
λ

∞∑
i=1

(
H(1− αi−1 + αi−1z)− 1

))
, (4.19)

where the convergence of this expression is guaranteed by Lemma 4.2.4. By part (ii) of
Lemma 4.2.1, we know that

exp
(
λ
(
H(1− αi + αiz)− 1

))
= exp (µi (Gi(z)− 1)),
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where µi = λ
(
1−H(1− αi)

)
, and where Gi(z) satisfies

µiGi(z) = λ
ν∑
j=1

αij ν∑
r=j

hr

(
r

j

)
(1− αi)r−j

 zj .

Thus, we can rewrite pgfY (z) from (4.19) in the form

pgfY (z) = exp

( ∞∑
i=0

µi (Gi(z)− 1)

)
= exp (µ (G(z)− 1)),

where µ =
∑∞

i=0 µi = λ
∑∞

i=0

(
1−H(1− αi)

)
, and the expression µ(G(z) − 1) satisfies

the assertion.

If ν < ∞ then H ′(1) < ∞, and Theorem 4.2.5 yields for the stationary marginal
distribution of (Yt)t∈Z that pgfY (z) = exp (µ (G(z)− 1)) with G(z) =

∑ν
i=1 giz

i. The
parameters µ and g1, . . . , gν can be computed explicitly from λ and h1, . . . , hν (the ones
from the innovations’ distribution) by solving the following linear system of equations,
see Theorem 2.2 in Schweer and Wichelhaus (2015b):

g1 + . . .+ gν = 1,
λ

µ
− (1− α)g1 − . . .− (1− α)νgν = 0,

hk
λ

µ
− (1− αk) · gk + αk

ν∑
i=k+1

(
i

k

)
(1− α)i−kgi = 0 for k = ν, . . . , 2. (4.20)

Let us illustrate the application of Scheme (4.20) in the following example.

Example 5 (Finite Compounding Structure). Let us consider a CPINAR(1) process
(Yt)t∈Z, where H(z) = (1− h)z + hz2 with parameter h ∈ [0, 1] and λ > 0 is arbi-
trary. Obviously H(0) = 0 is satisfied, and we may apply the scheme (4.20) to explicitly
calculate the stationary distribution ComPoi(µ,G) of (Yt)t∈Z. We already know that

G(z) = g1z+g2z
2, and the third relation yields, for k = 2, g2 = λ

µ
h

1−α2 . With the second

relation we find that g1 = λ
µ

1+α−h(1−α)
1−α2 . Thus g1 + g2 = 1 necessitates

1 =
λ

µ

1 + α+ hα

1− α2
or

µ

λ
=

1 + α+ hα

1− α2
.

Combining these results we find explicit expressions for λ, g1 and g2:

µ = λ
1 + α+ αh

1− α2
, g1 = 1− h

1 + α+ αh
, g2 =

h

1 + α+ αh
.
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4.2.3 Mixing Properties

It is well known that each stationary, aperiodic and ergodic Markov chain with a count-
able range is necessarily α-mixing (see Definition 2.5.1) with certain weights αY (n)→ 0,
see, e.g., Theorem 3.2 in Bradley (2005). But the speed of convergence of αY (n) is not
clear in advance. This speed, however, is an essential prerequisite for further results,
such as the central limit theorem of Theorem 2.5.2.

Theorem 4.2.6 (Schweer and Weiß (2014), Theorem 3.4.1). Let (Yt)t∈Z be a CPINAR(1)
process according to Definition 4.2.2 and let H ′(1) <∞. Then (Yt)t∈Z is α-mixing with
exponentially decreasing weights αY (n).

Proof. Denote the stationary distribution of (Yt)t∈Z by πY (·). A CPINAR(1) process
(Yt)t∈Z satisfies all conditions required in Pakes (1971)1 for the subcritical case (Sec-
tion 2), as H ′(1) <∞ implies E[εt] <∞. Thus, it is geometrically ergodic, see Theorem 1
in Pakes (1971), i.e., there exist finite constants Mij such that

|P (Yt+k = i |Yt = j)− πY (i)| ≤Mij · αk

for each (i, j) ∈ N2
0. For such a geometrically ergodic, irreducible and aperiodic Markov

chain (see the proof of Theorem 4.2.5), Theorem 1 of Nummelin and Tweedie (1978)
implies the existence of finite constants Mj for j ∈ N0 such that

|P (Yt+k = i |Yt = j)− πY (i)| ≤Mj · αk. (4.21)

Since (Yt)t∈Z is a strictly stationary Markov chain satisfying (4.21), it is also β-mixing
(and thus α-mixing) at least exponentially fast as k → ∞, see Theorem 3.7 in Bradley
(2005).

Theorem 4.2.6 now allows us to apply an appropriate type of central limit theorem to
the considered CPINAR(1) process. Since our CPINAR(1) process as in Theorem 4.2.6
has exponentially decreasing weights αY (n), the condition (2.13) is satisfied for any
δ > 0. A concrete application of Theorem 2.5.2. is presented in Section 5.1.3 below.

4.2.4 Infinite Divisibility of the Marginal Distribution

As pointed out before, there is a striking similarity between the pgf of the marginal
distribution of an INAR(1) process (4.12) and the defining relation for discrete self-
decomposable distributions (2.7). In fact, it is easily seen that for any discrete self-
decomposable distribution H there exists a stationary INAR(1) process with marginal
distribution H. By Theorem 2.3.5, this statement can be extended to infinitely divisible
distributions under a certain restriction on the canonical measure. The question remains
whether this restriction is necessary, i.e., whether any infinitely divisible distribution is
also a marginal distribution of a stationary INAR(1) process. The following example
shows that the answer to this question is negative.

1Note that the requirement “a0 +a1 < 1” in Condition A of Pakes (1971) is not necessary for the proof
of his Theorem 1.
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Example 6 (Infinitely Divisible but not Marginal of INAR(1)). Let us assume there
exists a stationary INAR(1) process (Yt)t∈Z with marginal distribution ComPoi(µ,G)
with G(z) = z2, this distribution is infinitely divisible by Theorem 2.3.3. By (4.12), the
function F (z) = exp(µ(G(z)−G(1− α+ αz))) emerges as the unique candidate for the
pgf of the arrival distribution. We calculate

F (z) = exp (µ(z − 1)(1− α)[(1 + α)z + (1− α)])

=

∞∑
l=0

µl(1− α)l

l!

 l∑
k1=0

(
l

k1

)
(−1)l−k1zk1

 l∑
k2=0

(
l

k2

)
(1− α)l−k2((1 + α)z)k2

 .

It is easily seen that this is an absolutely convergent sum for z ≤ 1 and hence that F (z) =∑∞
i=0 aiz

i. For the coefficient of z0, we find that a0 = exp(−µ(1 − α)2). Moreover, for
the coefficient of z, simple calculation shows that

a1 =

∞∑
l=1

µl(1− α)l

l!

(
(−1)l−1

(
l

1

)
(1− α)l + (−1)l(1− α)l−1(1 + α)

(
l

1

))

= µ(1− α)
∞∑
l=1

µl−1(−1)l−1
(
(1− α)2

)l−1

(l − 1)!
((1− α) + (−1)(1 + α))

= −2µα(1− α) exp
(
−µ(1− α)2

)
.

Thus, a1 < 0 for any choice of µ > 0 and α ∈ (0, 1), showing that F (z) is not a pgf.
We may conclude that excluding trivial cases (i.e., excluding the possibility α = 0) there
exists no stationary INAR(1) process with a marginal distribution ComPoi(µ,G) of the
assumed form.

In order to complete the picture we now ask whether the class of marginal distributions
of stationary INAR(1) processes is a proper subset of the class of infinitely divisible
distributions. In the following extensive example, we show that the answer to this
question is also negative.

Example 7 (Marginal Distribution but not Infinitely Divisible). Let (Yt)t∈Z be a sta-
tionary INAR(1) process where εt ∼ Bin(1, p), i.e., Bernoulli random variables with a
probability of success p ∈ (0, 1). Using the relation (4.2) it is clear that the pgf of the
marginal distribution of (Yt)t∈Z can be written as

pgfY (z) =
∞∏
j=0

(
1− pαj + pαjz

)
,

the convergence of this infinite product can be shown as in Lemma 4.2.4 (ii). Now, we
check the infinite divisibility of the marginal distribution by invoking Theorem 2.3.3. We
calculate, noting that p > 0,

log

∏∞
j=0

(
1− pαj + pαjz

)∏∞
j=0 (1− pαj)

=

∞∑
j=0

log

(
1 +

pαjz

1− pαj

)
=: H(z).
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Choosing p ≤ 0.5 ensures pαjz
1−pαj ≤ 1 so that the series expansion of the logarithm log(1+

x) =
∑

n(−1)n+1xn/n is applicable. Thus H(z) =
∑

i aiz
i for some coefficients ai with

radius of convergence at least 1, note that log(1 + x) ≤ x holds for x > −1. The strict
positivity of the coefficients ai remains to be checked. It is clear that 2a2 = (d2/d2z)H(0),

where the derivative is evaluated at 0. Denoting fα(z) = 1 + pαjz
1−pαj , we calculate

d2

d2z

∞∑
j=0

log (fα(z)) =

∞∑
j=0

fα(z)
(

d2

d2z
fα(z)

)
−
(

d
dzfα(z)

)2
f2
α(z)

.

Evaluating this derivative at zero yields

2a2 = −
∞∑
j=0

(
pαj

1− pαj

)2

∈
[
− 1

(1− p)2

p2

1− α2
,− p2

1− α2

]
.

Hence, a2 < 0 and, by Theorem 2.3.3, the marginal distribution of (Yt)t∈Z is not in-
finitely divisible.

Similarly, we could arrive at the same result by invoking Proposition 2.3.6 (ii), which
shows in particular that the cumulants of Compound Poisson distributions are nonde-
creasing. Hence, the ratio of the variance to the mean, κ2,Y /κ1,Y of a Compound Poisson
distributed random variable Y is greater or equal to 1, i.e., Compound Poisson distri-
butions are never underdispersed. This concept will be of great interest in Section 5.1.
For now, it suffices to refer the reader to an example of an underdispersed INAR(1)
process discussed in Weiß (2013) which gives another example for the assertion we just
discussed.

With these examples, the relation between the class of infinitely divisible distributions
and the class of marginal distributions of stationary INAR(1) processes is now better un-
derstood. Yet the question remains whether we can find a concise characterization of the
intersection of these sets. In other words, what characterizes a distribution that is both
infinitely divisible and also arises as the marginal distribution of an INAR(1) process?
Are these distributions necessarily discrete self-decomposable (that this characteristic is
sufficient is clear)? Once again, we find a counter-example to this conjecture.

Example 8 (Marginal of INAR(1) and Infinitely Divisible but not DSD). Let (Yt)t∈Z be
the stationary INAR(1) process of Example 5. It is clear that the stationary distribution
of (Yt)t∈Z is infinitely divisible. For this distribution to be DSD, Theorem 2.3.5 neces-
sitates that the sequence (n · gn)n∈N be nondecreasing. However, this is only the case if
h < (1 + α)/(3− α) holds, hence we can choose values for h, α such that the stationary
distribution of (Yt)t∈Z is no longer DSD.
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5 INAR(1) Processes - Statistical
Inference
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Whereas Chapter 4 focuses on probabilistic results for INAR(1) processes, we now shift
our attention towards the statistical inference for these processes. More precisely, in this
chapter we assume to be given a data set similar to that of Figure 1.1 and we present
statistical tools designed to deal with such data. First, let us consider the parameter
estimation.

In contrast to the situation in Chapter 3, the dependency of an INAR(1) process on
the past is entirely described by the single parameter α ∈ (0, 1). Under the assumption
that the arrival distribution is parametrized by a functional of its first few moments,
it is clear from relation such as (4.6) that we can recover these moments from the
marginal moments and an estimation of α. Since the underlying structure of an INAR(1)
process resembles that of an AR(1) process closely it is hardly surprising that classical
estimation techniques from time series analysis (Conditional Least Squares, Yule-Walker
etc.) may be applied with satisfying results. We will not discuss details here, an extensive
discussion of several estimation approaches can be found in Al-Osh and Alzaid (1987).

The main question to address is the following one: Is the model we have chosen an
appropriate one? How should we assess a question such as this? For instance, given the
data (y1, . . . , y96) as shown in Figure 1.1, Freeland (1998) suggested that the Poisson
INAR(1) model is a good fit for this data. In view of the integer-valued data points
and the behavior of the ACF and PACF, an INAR(1) structure seems appropriate. Yet
the assumption of Poisson distributed innovations εt should be verified. In terms of the
classical hypothesis testing theory, we are faced with the following scenario: the null
hypothesis is given by

H0 : (y1, . . . , y96) stem from a Poisson INAR(1) process with α ∈ (0, 1) (5.1)

and the alternative hypothesis must needs be specified under additional considerations.
Obviously, there are other possible hypotheses for testing in the framework of INAR(1)
processes, a more general approach is presented in Chapter 6. The first section is based
on the article Schweer and Weiß (2014), whereas the second part follows Schweer and
Weiß (2015). The third section of this chapter contains unpublished material and has
a slightly different focus, it considers the asymptotic distribution of the dependency
functions introduced in Section 2.6. In this rather classical setting it is only fitting, yet
still surprising, that the classical findings of Quenouille (1949) are actually reproducible
in the case of the Poisson INAR(1) process.

5.1 Testing the Index of Dispersion

By Lemma 4.1.4, the marginal distribution of a stationary Poisson INAR(1) process
(Yt)t∈Z is Poisson distributed. Amongst many other things, this implies for the first and
second central moment of Yt that E[Yt] := µY is equal to Var(Yt) := σY for all t ∈ Z,
in other words, the marginal distribution is equidispersed. Let us define the empirical
index of dispersion similarly to its theoretical counterpart of (2.5) as follows:

IY =
σ2
Y

µY
, thus ÎY :=

S2
Y

Y
, (5.2)
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where S2
Y = 1

T

∑T
t=1(Yt−Y )2 =

(
1
T

∑T
t=1 Y

2
t

)
−Y 2

, the empirical variance. For a Poisson
INAR(1) process (Yt)t∈Z it thus holds that IY = 1. It turns out, however, that many
if not most real data sets consisting of count data show a large amount of empirical
overdispersion, i.e., ÎY > 1.

In the literature, several theories have been put forward in order to account for this
behavior. One explanation that is often used is the presence of positive correlation
between the monitored events, this would correspond to an additional dependency in
time of the εt in Definition 1.1.1. Other explanations focus on the variation in the
probability α, i.e., suggest replacing the fixed parameter α with a time-varying parameter
αt. In this thesis (and in the article Schweer and Weiß (2014)) a variation of the first
explanation is put forward, we refer the reader to Section 5.1.3.

Now, let us see whether Example 1.1 also fits the pattern just described. We calculate
y ≈ 8.604 and S2

y ≈ 11.24, so that Îy ≈ 1.306 and the data y1, . . . , y96 are indeed
overdispersed. We have about 31% of empirical overdispersion and the question arises
whether this is indicative of a violation of the equidispersion property of the Poisson
distribution. In terms of hypothesis testing, this means that we would like to test the
null hypothesis (5.1) against the alternative hypothesis

H1 : (y1, . . . , y96) stem from an overdispersed INAR(1) process with α ∈ (0, 1). (5.3)

The approach we employ is that of developing (asymptotic) distributional theory for
the estimator Îy and using these results for statistical inference on the data given Figure
1.1. We remark that in the case of i.i.d. counts, the index of dispersion has been analyzed
in detail in Rao and Chakravarti (1956) as well as in Böhning (1994).

5.1.1 Asymptotic Distribution of Index of Dispersion

The main result of this section, Theorem 5.1.2, makes use of the moment formulae
derived in Theorem 4.1.3, which hold for any stationary INAR(1) process (with existing
moments). Therefore, also Theorem 5.1.2 itself is formulated in a rather general way.
However, the essential mixing condition (2.13), which is required for Theorem 5.1.2 to
hold, is satisfied particularly for a CPINAR(1) process as in Theorem 4.2.6. It should
be pointed out that the much more general Theorem 6.1.2 provides a sufficient condition
for all INAR(1) processes with a finite mean and P(ε0 = 0) ∈ (0, 1). In the following
preliminary result, we consider moment expressions which will be important for our
asymptotic results.

Lemma 5.1.1 (Schweer and Weiß (2014), Lemma A.5.1). Let (Yt)t∈Z be an INAR(1)
process with P(ε0 = 0) ∈ (0, 1), µε,4 >∞ and let Xt :=

(
Yt − µY , Y 2

t − µ2
Y − σ2

Y

)
. Then

the series

σij = E [X0,iX0,j ] +

∞∑
k=1

(E[X0,iXk,j ] + E[Xk,iX0,j ])

converge absolutely for any 1 ≤ i, j ≤ 2 where Xk,i denotes the i-th entry of Xk.
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Furthermore, the following expressions hold:

σ11 = σ2
Y

1 + α

1− α
,

σ22 =
(
µ̄Y,4 − (1− 2µY )µ̄Y,3 − 2µY σ

2
Y − σ4

Y

) 1 + α2

1− α2
+ (1 + 2µY )(µ̄Y,3 + 2µY σ

2
Y )

1 + α

1− α
,

σ12 = σ21 =
1

2
(µ̄Y,3 − σ2

Y )
1 + α2

1− α2
+

1

2

(
µ̄Y,3 + σ2

Y (1 + 4µY )
) 1 + α

1− α
.

Proof. Using that γ(k) = σ2
Y α

k, we obtain that

σ11 = E
[
X2

0,1

]
+ 2

∞∑
k=1

E [X0,1Xk,1] = σ2
Y + 2

∞∑
k=1

γ(k) = σ2
Y

1 + α

1− α
.

Next, we have using results and notation of Theorem 4.1.3

E [X0,2Xk,2] = E
[
(Y 2

0 − µ2
Y − σ2

Y )(Y 2
k − µ2

Y − σ2
Y )
]

= µ(0, k, k)− (µ2
Y + σ2

Y )2

= α2k
(
µ̄Y,4 − 3µ̄Y,3 + σ2

Y (2− 3σ2
Y )
)

+ µ4
Y + (1 + µY )2σ2

Y α
k

+ (µ̄Y,3 − σ2
Y )
(

(2 + µY )α2k + (1 + µY )αk + µY (α2k + αk)
)

+ µ2
Y σ

2
Y (αk + 2) + σ4

Y (1 + 2α2k)− (µ2
Y + σ2

Y )2 + 2µY (1 + µY )σ2
Y α

k

= α2k
(
µ̄Y,4 − 3µ̄Y,3 + σ2

Y (2− 3σ2
Y ) + 2(1 + µY )(µ̄Y,3 − σ2

Y ) + 2σ4
Y

)
+ αk

(
(µ̄Y,3 − σ2

Y ) (1 + 2µY ) + (1 + µY )2σ2
Y + 2µY (1 + µY )σ2

Y + µ2
Y σ

2
Y

)
+ σ4

Y + 2σ2
Y µ

2
Y + µ4

Y − (µ2
Y + σ2

Y )2

= α2k
(
µ̄Y,4 − (1− 2µY )µ̄Y,3 − 2µY σ

2
Y − σ4

Y

)
+ αk(1 + 2µY )(µ̄Y,3 + 2µY σ

2
Y ),

which implies the expression for σ22 = E[X2
0,2]+2

∑∞
k=1 E[X0,2Xk,2]. We further calculate

E [X0,1Xk,2] = E
[
(Y0 − µY )(Y 2

k − µ2
Y − σ2

Y )
]

= µ(k, k)− µY (µ2
Y + σ2

Y )

= (µ̄Y,3 − σ2
Y )α2k + (1 + µY )σ2

Y α
k + µY σ

2
Y (1 + αk) + µ3

Y − µY (µ2
Y + σ2

Y )

= α2k(µ̄Y,3 − σ2
Y ) + αkσ2

Y (1 + 2µY ),

and

E [X0,2Xk,1] = E
[
(Y 2

0 − µ2
Y − σ2

Y )(Yk − µY )
]

= µ(0, k)− µY (µ2
Y + σ2

Y )

= (µ̄Y,3 − σ2
Y )αk + (1 + µY )σ2

Y α
k + µY σ

2
Y (αk + 1) + µ3

Y − µY (µ2
Y + σ2

Y )

= αk(µ̄Y,3 + 2µY σ
2
Y ).

With this, we find

σ12 = µ̄Y,3 + 2µY σ
2
Y +

∞∑
k=1

(
α2k

(
µ̄Y,3 − σ2

Y

)
+ αk

(
µ̄Y,3 + σ2

Y (1 + 4µY )
))
,

which completes the proof.
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With the results of the previous Lemma, we are now able to prove the main result of
this section.

Theorem 5.1.2 (Schweer and Weiß (2014), Theorem 4.1.1). Let (Yt)t∈Z be a INAR(1)

process, which is also α-mixing with weights αY (n). Let E[Y
2(2+δ)
t ] <∞ for some δ > 0,

and let the mixing condition (2.13) hold. Then

√
T (ÎY − IY )

D−→ N
(
0, σ2

)
as T −→∞,

where

σ2 =
1 + α

1− α
(µY − σ2

Y )

(
µ̄Y,3
µ3
Y

−
σ4
Y

µ4
Y

)
+

1 + α2

1− α2

(
µ̄Y,4
µ2
Y

−
µ̄Y,3
µ3
Y

(µY + σ2
Y ) +

σ4
Y

µ3
Y

(1− µY )

)
.

Proof. As in the proof of Lemma 5.1.1, we consider the vector-valued process defined
by Xt :=

(
Yt − µY , Y 2

t − µ2
Y − σ2

Y

)
which obviously satisfies E[Xt] = 0. The conditions

required by Theorem 5.1.2 are chosen such that Theorem 2.5.2 is applicable, see the

discussion at the end of Section 4.2.3 (note that E
[
Y

2(2+δ)
t

]
< ∞ implies finiteness of

E
[
|Y 2
t − µ2

Y − σ2
Y |2+δ

]
). Using this result together with the Cramér-Wold device, we

conclude that

1√
T

T∑
t=1

Xt
D−→ N (0,Σ) with Σ =

(
σ11 σ12

σ21 σ22

)
,

where the σij are given as in Lemma 5.1.1. In a final step, we can apply the Delta
theorem to derive the asymptotic behavior of ÎY from formula (5.2). For this purpose,
we introduce the function

g : R2 → R, g(y1, y2) :=
y2

y1
− y1.

For this function, we find g
(
Ȳ , 1

T

∑T
t=1 Y

2
t

)
= ÎY as well as g(µY , µ

2
Y + σ2

Y ) = IY .

Furthermore,

D := grad g(µY , µ
2
Y + σ2

Y ) =

(
−
σ2
Y

µ2
Y

− 2,
1

µY

)
.

We calculate for DΣD>

=
1 + α

1− α

[
(1 + 2µY )(µ̄Y,3 + 2µY σ

2
Y )

µ2
Y

+ σ2
Y

(
σ2
Y

µ2
Y

+ 2

)2

−
µ̄Y,3 + σ2

Y (1 + 4µY )

µY

(
σ2
Y

µ2
Y

+ 2

)]

+
1 + α2

1− α2

(
1

µ2
Y

(
µ̄Y,4 − (1− 2µY )µ̄Y,3 − 2µY σ

2
Y − σ4

Y

)
−
µ̄Y,3 − σ2

Y

µY

(
σ2
Y

µ2
Y

+ 2

))
=

1 + α

1− α
(µY − σ2

Y )

(
µ̄Y,3
µ3
Y

−
σ4
Y

µ4
Y

)
+

1 + α2

1− α2

(
µ̄Y,4
µ2
Y

−
µ̄Y,3
µ3
Y

(µY + σ2
Y ) +

σ4
Y

µ3
Y

(1− µY )

)
.

Application of the Delta theorem completes the proof.
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Since a Poisson INAR(1) process has existing moments up to any order, and since it
satisfies the mixing condition (2.13), see Section 4.2.3, we can apply Theorem 5.1.2 in
this case. Remembering that for Y ∼ Poi(λ) we have λ = σ2

Y = µ̄Y,3 = µ̄Y,4 − 3σ4
Y , the

following Corollary 5.1.3 is an immediate consequence.

Corollary 5.1.3 (Schweer and Weiß (2014), Corollary 4.1.2). Let (Yt)t∈Z be a Poisson
INAR(1) process with εt ∼ Poi(λ) for all t ∈ Z. Then

√
T (ÎY − 1)

D−→ N
(

0, 2
1 + α2

1− α2

)
as T −→∞.

Theorem 5.1.2 shows that ÎY is an asymptotically unbiased estimator of IY . If com-
puted from a time series of finite length T , however, we expect this estimator to be
negatively biased. Our conjecture relies on the well-known fact that S2

Y is generally neg-
atively biased David (1985): E[S2

Y ] = σ2
Y −Var[Ȳ ]. For AR(1)-like models, we compute

Var[Ȳ ] =
σ2
Y

T
+

2σ2
Y

T

α

1− α

(
1− 1

T

1− αT

1− α

)
.

This increases in α if T > 1, so we expect ÎY to be visibly biased for large α and small
T . In fact, we can give a precise result on the bias of ÎY :

Proposition 5.1.4 (Weiß and Schweer (2015), Remark A.3.1). Let (Yt)t∈Z be a Poisson
INAR(1) process with εt ∼ Poi(λ) for all t ∈ Z. Then

E
[
ÎY

]
≈ 1− 1

T

1 + α

1− α
.

Proof. The bias correction is obtained based on the second-order Taylor expansion of
the function g from the proof of Theorem 5.1.2. We obtain the derivatives

∂2

∂x2
1

g(x1, x2) =
2x2

x3
1

,
∂2

∂x1∂x2
g(x1, x2) = − 1

x2
1

,
∂2

∂x2
2

g(x1, x2) = 0.

So the Hessian of g, evaluated in (µY , µ
2
Y + σ2

Y ) = (µY , µY + µ2
Y ), is given by

Hg(µY , µY + µ2
Y ) =

(
2(1+µY )
µ2Y

− 1
µ2Y

− 1
µ2Y

0

)
.

Hence, the function g is twice differentiable and Taylor’s theorem may be applied. Taking
expectations, this implies

TE
[
ÎY − 1

]
≈ E

1

2

(
1√
T

T∑
i=1

Xt

)
Hg(µY , µY + µ2

Y )

(
1√
T

T∑
i=1

Xt

)>
≈ 1

2
(σ11h11 + 2h12σ12 + h22σ22) =

1 + α

1− α

[
1 + µY
µY

− 1 + 2µY
µY

]
= −1 + α

1− α
,

concluding the proof.

78



The result of Corollary 5.1.3 is important if we want to test the null hypothesis (5.1)
against the alternative (5.3) (as it would be the case for a CPINAR(1) model with ν ≥ 2).
Based on the asymptotic result in Corollary 5.1.3, we will reject H0 on significance level β
if the observed value of the index of dispersion, Îy, exceeds the critical value

1 + z1−β

√
2

T

1 + α2

1− α2
, (5.4)

where z1−β denotes the (1 − β)-quantile of the N (0, 1)-distribution. Alternatively, we
can check if the p-value,

1− Φ

(√
T

2

1− α2

1 + α2
(Îy − 1)

)
, (5.5)

falls below β, where Φ denotes the distribution function of the N (0, 1)-distribution. If
a hypothetical value for the dependence parameter α is not available, we recommend to
use a plug-in approach, i.e., to replace α by ρ̂y(1).

5.1.2 Power Analysis

Let us now exemplify how Theorem 5.1.2 can be applied to analyze the power of the
test for overdispersion described above with regard to the alternative of a certain type
of CPINAR(1) model with ν ≥ 2. As the alternative model, we consider a CPINAR(1)
model with negative binomial innovations (Example 1). This three-parameter model is
particularly well-suited for a theoretical power analysis, since 1) it allows us to control
the marginal mean µY , the true index of dispersion IY and the autocorrelation level α
separately from each other (remember the properties in (4.5)); 2) it allows for the full
range of (µY , IY , α); and 3) it includes the null model at least as a boundary case. For
the case of Poiν-distributed innovations with ν ≥ 2 (Example 1), in contrast, the range
of (µY , IY , α) is restricted by the relation between IY and α given in (4.5) as well as
Iε = (2ν + 1)/3. Therefore, a further analysis of the Poiν-INAR(1) model is postponed
to the application presented in Section 5.1.3.

To be able to evaluate the expressions in Theorem 5.1.2, we use formula (2.9) for the
central moments of the Negative Binomial innovations (and later formula (2.8) for the
case of the Poiν-innovations), formula (4.7) to switch between central and raw moments,
and formula (4.6) to obtain the observations’ moments from the innovations’ moments.
The graphs in Figure 5.1 show the asymptotic approximations of selected power functions
computed in this way, the critical value (5.4) assumes the significance level β = 0.05.

Figure 5.1 (a) shows, as expected, that the power of the dispersion test becomes better
if T is increased. It is, however, interesting to see that also in the Negative Binomial case,
the actual mean µY is nearly without effect on the power of the test (Figure 5.1 (b), for
the Poisson case, an analogous property is known from Corollary 5.1.3). In contrast, see
Figure 5.1 (c), increasing the autocorrelation level α of the underlying INAR(1) process
leads to a clear deterioration of the power, which can only be compensated by increasing
the length T of the time series. As an example, see Figure 5.1 (d), if α = 0.8, we have
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Figure 5.1: Asymptotic power against IY for NegBin-INAR(1) models.

to choose T = 400 to reach the same power as in the case (α, T ) = (0.2, 100), i.e., the
sample size has to be quadrupled. This deterioration of the power as α increases appears
plausible if we look at the asymptotic variance in Corollary 5.1.3: Under the null, we
have more and more noise if α increases, which, in turn, makes our test less sensitive
towards overdispersion.

5.1.3 Application: A Time Series of Claims Counts

In this section, we consider the concrete application of the test (5.4) to the real data
set of Figure 1.1, and also the finite-sample performance of the test is considered in this
context. Let us begin by applying the test for overdispersion, recalling that the empirical
mean and variance are given by ȳ ≈ 8.604 and s2

y ≈ 11.24, respectively, so the data are

empirically overdispersed with Îy ≈ 1.306. About 31 % of empirical overdispersion seems
quite high, but is this already a significant violation of the equidispersion property of
the Poisson distribution?

We apply the test for overdispersion described in Section 5.1.1 with significance level
β = 0.05. Plugging-in ρ̂y(1) ≈ 0.452 instead of α, we compute the critical value according
to formula (5.4) as 1.292, i.e., the observed value Îy ≈ 1.306 leads to a rejection of the null
hypothesis of a Poisson INAR(1) model. However, in view of having observed about 31 %
of empirical overdispersion, it might be surprising that this was a quite narrow decision,
also the p-value of about 0.0424 according to formula (5.5) is only slightly below 0.05.
But remembering that the asymptotic variance in Corollary 5.1.3 is a strictly increasing
function in α, also see the discussion of Figures 5.1 (c,d) above, it is clear that the
sensitivity of the test becomes worse for increasing α. So dispersion ratios computed
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Figure 5.2: Plot of claim counts from Figure 1.1, with 1-step-ahead forecasts (median and
95 % interval; left part) and k-step-ahead forecasts (k = 1, . . . , 10; median
and 95 % interval; right part), respectively.

from dependent data y1, . . . , yT have to be interpreted with caution, especially if T is
not particularly large.

Weiß (2009) fitted the so-called INARCH(1) model to the data, which is an AR(1)-like
model with overdispersion. In addition, we now also consider the CPINAR(1) model
with the innovations being NegBin(n, π)-distributed (i.e., infinite compounding struc-
ture) as well as being Poiν(λ)-distributed (i. e., finite compounding structure with uni-
form compounding distribution), see Example 1. All models are fitted with a conditional
maximum likelihood (CML) approach to the data yT , . . . , y2 given y1. Estimates and
approximate standard errors are computed by using R’s optim, which is initialized with
the moment estimates for the respective parameters: µ̂ε and σ̂2

ε are obtained from ȳ, s2
y

by using relation (4.5), then the moment formulae (2.9) and (2.8) are applied. The
probabilities required for the Poiν(λ)-innovations (which, in turn, are necessary for the
transition probabilities (4.1)) are computed by using the recursive scheme in Proposi-
tion 2.3.6 (i). Results are summarized in Table 5.1.

Model Par. 1 Par. 2 Par. 3 AIC BIC

Poi-INAR(1) 0.396 5.232 485.4 490.5
(α, λ) (0.068) (0.612)

INARCH(1) 0.483 4.486 482.0 487.2
(α, β) (0.090) (0.777)

NegBin-INAR(1) 0.426 14.785 0.748 485.3 493.0
(α, n, π) (0.075) (13.160) (0.158)

Poi2-INAR(1) 0.466 3.092 483.2 488.3
(α, λ) (0.069) (0.428)

Poi3-INAR(1) 0.524 2.078 487.7 492.8
(α, λ) (0.062) (0.305)

Table 5.1: Claim counts from Figure 1.1: CML estimates for diverse models.

Table 5.1 shows that the NegBin-INAR(1) model only leads to a slight improvement
in the AIC compared to the Poi-INAR(1) model, but its BIC is clearly worse and, in
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particular, the standard error for the parameter n is rather large. So we conclude that
this model is not appropriate for the data. The Poi2-INAR(1) model, in contrast, leads
to a clear improvement in both AIC and BIC, while orders ν ≥ 3 are not appropriate
for the data. So among the considered CPINAR(1) models, the Poi2-INAR(1) model
is the best choice. It has to be mentioned that the INARCH(1) model as proposed by
Weiß (2009) leads to further improved values of AIC and BIC, but this model has the
practical disadvantages that neither expressions for the stationary marginal distribution
nor for the k-step-ahead conditional distributions with k ≥ 2 are known. For the Poiν-
INAR(1) models with their finite compounding structure, in contrast, these distributions
are easily computed according to Example 5 and Theorem 4.2.3, respectively (see the
next paragraph for further details). In addition, its model parameters have an intuitive
interpretation. The estimate for α can be understood as the rate of claimants in a
month t that continue collecting benefits also in month t+ 1. The fitted Poiν-model for
the innovations might be interpreted in view of Definition 2.3.1 as follows: N describes
the number of accidents (having the estimated mean λ̂), and the distribution of the
number of persons being injured per accident is approximated by a uniform distribution
on {1, . . . , ν}.
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Figure 5.3: Claim counts from Figure 1.1: Histogram with marginal distribution from
fitted Poi- and Poi2-INAR(1) model, respectively.

Let us illustrate the above-mentioned practical advantages of the Poi2-INAR(1) model.
Figure 5.3 shows the marginal distributions of the CML-fitted Poi- and Poi2-INAR(1)
model, respectively (the latter being computed according to the Scheme of Example 5),
and compares them to a histogram of the data. Obviously, the marginal distribution of
the Poi2-INAR(1) model leads to a much better fit to the overdispersed data. We also
used the CML-fitted Poi2-INAR(1) model for forecasting, by evaluating the respective
conditional pgf from Theorem 4.2.3 via numerical series expansion. From these forecast
distributions, we computed the median (solid lines in Figure 5.2) as well as the limits
of a 95 % prediction interval (dashed lines) at each point in time, thus guaranteeing
coherent forecasts, cf. Section 2 in Freeland (2010). In the left part of Figure 5.2, the
1-step-ahead forecasts at each time t are shown, being obtained by conditioning on
y1, . . . , yT−1. In most cases, the actual observations are rather close to the predicted
median value, and none of the observations is beyond the interval limits, which again
indicates the goodness of our CML-fitted Poi2-INAR(1) model. In the right part of
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Figure 5.2, each prediction is conditioned on the last observation in our time series, yT ,
while we increased the prediction horizon from k = 1 to 10. As expected due to the
geometrical ergodicity, cf. (4.21), the k-step-ahead forecast distribution converges rather
quickly to the stationary marginal distribution (as plotted in Figure 5.3 (b)) such that
the forecasts remain constant for k ≥ 5.

T mean s.d. s.d.a skew. q̂0.05 q0.05,a q̂0.95 q0.95,a r.r.α r.r.α̂ r.r.a
100 0.977 0.162 0.166 0.421 0.731 0.727 1.262 1.273 0.044 0.038 0.050
250 0.991 0.104 0.105 0.265 0.828 0.827 1.169 1.173 0.047 0.042 0.050
500 0.995 0.074 0.074 0.191 0.878 0.878 1.120 1.122 0.047 0.043 0.050

1000 0.998 0.052 0.053 0.143 0.914 0.914 1.086 1.086 0.049 0.047 0.050

Table 5.2: Simulated Poi-INAR(1) with (α, λ) = (0.40, 5.1), i.e., µY = 8.5 and IY = 1,
and significance level β = 0.05 (100,000 repl.): empirical and asymptotic
properties of ÎY ; empirical rejection rates.

Finally, we present some results from a simulation study to investigate the goodness
of our asymptotic approximations according to Theorem 5.1.2 and Corollary 5.1.3. The
choice of the shown Poi- and Poi2-INAR(1) models is motivated by the fitted models
according to Table 5.1, and the model parameters are chosen such that all models have
the same marginal mean, µY = 8.5. Columns 2–9 of Tables 5.2 and 5.3 consider stochas-
tic properties of ÎY and show both the empirically observed results as well as the values
obtained from the asymptotic approximation. Columns ≥ 10 show the rates of rejecting
the null hypothesis of a Poi-INAR(1) with parameters (α, λ), where the critical value ac-
cording to (5.4) was computed either with the true α or by plugging-in α̂ := ρ̂y(1). The
rejection rate being expected from the respective asymptotic approximation (“r.r.a”)
equals the significance level 0.05 for the Poi-INAR(1) model in Table 5.2, while it equals
the asymptotic power in the case of Table 5.3, also see the power graphs in Figure 5.4.

1.4 1.5 1.6
0.
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0.6

0.8

1.

HΛ,ΑL=

H0.47,3.0L

T=1000
T=500
T=250
T=100

ΜY=8.5

Figure 5.4: Asymptotic power against IY for Poi2-INAR(1) model (dashed line: model
from Table 5.3).

The stochastic properties considered in columns 2–9 of Tables 5.2 and 5.3 show that the
asymptotic normal approximation gives values being close to the empirically observed
ones, at least for T ≥ 250. In accordance with the result of Propostition 5.1.4, we
notice a (moderate) negative bias especially for T = 100. The goodness of the normal
approximation is also confirmed by the respective quantile plots (not shown).
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T mean s.d. s.d.a skew. q̂0.05 q0.05,a q̂0.95 q0.95,a r.r.α r.r.α̂ r.r.a
100 1.413 0.251 0.258 0.532 1.041 1.029 1.855 1.879 0.665 0.683 0.735
250 1.436 0.161 0.163 0.327 1.187 1.185 1.714 1.722 0.952 0.959 0.950
500 1.445 0.115 0.116 0.237 1.264 1.263 1.643 1.644 0.999 0.999 0.997

1000 1.449 0.082 0.082 0.170 1.318 1.319 1.588 1.588 1.000 1.000 1.000

Table 5.3: Simulated Poi2-INAR(1) with (α, λ) = (0.47, 3.0), i.e., µY = 8.5 and IY =
1.454, and signif. level β = 0.05 (100,000 repl.): emp. and asympt. properties
of ÎY ; emp. and asympt. rejection rates.

The empirical rejection rates in Table 5.2 (false rejections) are even below the chosen
significance level of β = 0.05. The empirical rejection rates in Table 5.3 express the power
of the dispersion test, and these values are close to the ones expected from the asymptotic
approximation. The latter is displayed in Figure 5.4, where increasing values for IY are
obtained through decreasing the autocorrelation parameter α according to formula (4.5)
(remember the discussion in Section 5.1.2). In a nutshell, our asymptotic results lead to
reasonable approximations also for finite T .

5.2 Testing Time-Reversibility in INAR(1) processes Via
Moments

In the previous section, we developed a statistical test for the hypothesis (5.1) based on
the characteristic that a Poisson INAR(1) process has a Poisson marginal distribution.
This characteristic is not the only unique feature of a Poisson INAR(1) process, since by
Theorem 4.1.8 these processes are the only time-reversible INAR(1) processes. In Section
2.4 we presented one possibility to derive a test to check a given time series for time-
reversibility. This approach is discussed in detail here, including the explicit calculation
of the asymptotic distributions and the consideration of bias correction. We will also
present a second approach, which evaluates the marginal skewness of the observations
y1, . . . , yT , motivated in part by the same idea as the test based on (5.2) in Section 5.1.

5.2.1 Testing via Generalized Autocovariances

Let us now describe the first approach in detail. Using the moment formulae from
Theorem 4.1.3, we can explicitly calculate the values of the generalized autocovariance
function β(·) of (2.10) in terms of the moments of (Yt)t∈Z. In particular,

β(k) = αk(1− αk)
(
µ̄Y,3 − σ2

Y

)
for k ∈ N0. (5.6)

Note that for the Poisson INAR(1) model, we have µ̄Y,3 = σ2
Y so that β(k) ≡ 0, corre-

sponding to Theorem 4.1.8. Since αk → 0 for increasing k, it seems advisable to check
whether β(1) = 0 or not in the proposed test.

Asymptotic characteristics of the estimator β̂T (k) as defined in (2.11) can be inferred
from two results. Firstly, all moments of (Yt)t∈Z exist because the marginal distribution
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is Poisson-distributed. Secondly, a Poisson INAR(1) process is geometrically ergodic
and α-mixing with exponentially decreasing weights by Theorem 4.2.6. With Birkhoff’s
ergodic theorem, it follows that β̂T (k) is a consistent estimator of β(k), and the classical
CLT of Theorem 2.5.2 leads to the following result.

Theorem 5.2.1 (Schweer and Weiß (2015), Theorem 3.1.1). Let (Yt)t∈Z be a Poisson
INAR(1) process, with εt ∼ Poi(λ) for all t ∈ Z, let µY = λ/(1−α) and let k ∈ N. Then

√
T − k · β̂T (k)

D→ N
(
0, σ2

k

)
,

where

σ2
k = E

[(
Y 2

0 Y−k − Y0Y
2
−k
)2]

+ 2
∞∑
t=1

E
[(
Y 2

0 Y−k − Y0Y
2
−k
) (
Y 2
t Yt−k − YtY 2

t−k
)]
.

For the case k = 1, which is of special interest according to the discussion above, we
explicitly calculate the asymptotic variance.

Lemma 5.2.2 (Schweer and Weiß (2015), Lemma 3.1.2). Let the conditions and nota-
tions of Theorem 5.2.1 hold. Then

σ2
1 = 4µ2

Y (1− α)2

[
2

α

1 + α
+ µY

(1− α)(1 + α)2

1 + α+ α2

]
.

Proof. Note that the expressions in σ2
1 consist of terms of the form E[Y0YaY1YtYbYt+1]

with a ∈ {0, 1} and b ∈ {t, t + 1} due to stationarity and t ∈ N0. For each term, we
apply Lemma 2.2.1 (vi) to convert the expectation into an expression of the cumulants,
finding

E[Y0YaY1YtYbYt+1] =
∑
π∈Π6

∏
B∈π

cum(Yi ; i ∈ B). (5.7)

Let t > 0, and define the summands of the latter expression as νπ(a, b) for each π ∈ Π6.
We calculate

νπ(0, t) + νπ(1, t+ 1)− νπ(0, t+ 1)− νπ(1, t) =: νπ

by using Theorem 4.1.6, i.e., we evaluate this expression for different forms of partitions π
separately. We denote each partition in an obvious manner. For instance, the notation
(123)(456) stands for the partition consisting of two blocks, where the three random
variables with the three lowest indices, represented by 1, 2 and 3, respectively, are in
one block, and the other random variables are contained in the second block. So, for
a = 0 and b = t, this corresponds to the summand ν(123)(456)(0, t) = cum(Y0, Y0, Y1) ·
cum(Yt, Yt, Yt+1).

Note that a and b correspond to the second and fifth index, all other indices are equal.
Hence, for any partition π ∈ Π6, for which none of either the highest or the lowest
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indices of any block is either 2 or 5, it holds that νπ = 0, for example, ν(123456) = 0.
Furthermore, if only one of the highest or lowest index of any block of a given partition
π ∈ Π6 is either 2 or 5, it also holds that νπ = 0. For example,

ν(14)(2356) = µ2
Y α

t(αt+1 + αt − αt+1 − αt) = 0.

Thus, it suffices to consider only those partitions π ∈ Π6, in which both 2 and 5 appear
as either the highest or the lowest index of any block, given that these blocks contain at
least two elements. In what follows, these partitions are referred to as the “remaining
partitions”. We list the calculation for all possible partitions separately in ascending
order with respect to the number of blocks in the partitions. When using letters instead
of numbers, we want to express that a certain relation holds for all possible permutations
of a given partition, e.g., (a)(bcdef) stands for the partitions (1)(23456), (2)(13456),
(3)(12456) and so forth. Note that we have already shown that ν(123456) = 0, it similarly
follows that

∑
π=(a)(bcdef) νπ = 0.

Remaining partitions νπ(a, b)

(15)(2346),(16)(2345), (25)(1346), (26)(1345) µ2
Y α

t+1+b−a

(135)(246),(136)(245), (145)(236), (146)(235) µ2
Y α

t+1+b−a

(1)(2345)(6) µ3
Y α

b−a

(12)(34)(56) µ3
Y α

t+1−b+t−1+a

(12)(35)(46), (12)(36)(45) µ3
Y α

t+1+b−t−1+a

(13)(24)(56), (14)(23)(56) µ3
Y α

t+1−b+t+1−a

(13)(25)(46), (13)(26)(45), (15)(23)(46), (16)(23)(45) µ3
Y α

t+1+b−t+1−a

(14)(25)(36), (14)(26)(35), (15)(24)(36),
(15)(26)(34), (16)(24)(35), (16)(25)(34) µ3

Y α
t+1+b+t−1−a

(2)(56)(134) µ3
Y α

2t−b−a+1

(6)(12)(345) µ3
Y α

b+a−1

(6)(13)(245), (6)(23)(145), (1)(45)(236), (1)(46)(235) µ3
Y α

b−a+1

(6)(14)(235), (6)(15)(234), (6)(24)(135), (6)(25)(134)
(6)(25)(346), (1)(26)(345), (1)(35)(246), (1)(36)(245) µ3

Y α
b−a+t

(6)(15)(236), (6)(15)(246), (4)(16)(235), (5)(16)(245)
(1)(25)(136), (1)(25)(146), (4)(26)(135), (4)(26)(145) µ3

Y α
t+1+b−a

In the case (ab)(cd)(e)(f), we first take a closer look at the remaining partitions. Here,
some partitions cancel each other out, i.e., ν(12)(45)(3)(6) + ν(1)(23)(4)(56) + ν(12)(3)(4)(56) +
ν(1)(23)(45)(6) = 0. We continue with the list:
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Remaining partitions νπ(a, b)

(5)(6)(12)(34) µ4
Y α

b+a−1

(1)(3)(24)(56) µ4
Y α
−b−a+2t+1

(4)(6)(13)(25), (4)(6)(15)(23), (1)(3)(25)(46), (1)(3)(26)(45) µ4
Y α

b−a+1

(3)(6)(14)(25), (3)(6)(15)(24), (1)(4)(25)(36), (1)(4)(26)(35) µ4
Y α

b−a+t

(3)(4)(16)(25), (3)(4)(15)(26) µ4
Y α

b−a+t+1

(1)(6)(24)(35), (1)(6)(25)(34) µ4
Y α

b−a+t−1

(1)(235)(4)(6), (1)(245)(3)(6) µ4
Y α

b−a

(1)(25)(3)(4)(6) µ5
Y α

b−a.

Now, we can conclude from (5.7) that, for t > 0,

E[(Y 2
0 Y−1 − Y0Y

2
−1)(Y 2

t Yt−1 − YtY 2
t−1)]

= −µ2
Y (1− α)2

(
8α2t + µY

[
4αt+1 + 8α2t−1 + 8α2t + 6α3t−1

]
+ µ2

Y

(
4αt + 2α2t−2(1 + α)2

)
+ µ3

Y α
t−1
)
. (5.8)

Next, let us consider the case t = 0. It is quite clear that the same approach is
viable, since the calculations are almost entirely analogous, we refrain from presenting
the considerations in a s much detail as above. Note that in this case, the ordering is
altered in the sense that we consider the expectation E[Y0Y0YaYbY1Y1] with a, b ∈ {0, 1}.
We denote νπ(a, b) and νπ in analogy to the case t > 0. All except the third and fourth
indices are equal. Hence, for any partition π ∈ Π6, for which none of either the highest
or the lowest indices of any block is either 3 or 4, it holds that νπ = 0. For example,
ν(123456) = 0. Furthermore, certain pairs of partitions cancel each other out. This
happens if there is a partition in which 3 is either the highest or lowest index in one
block and 4 is not, and if there is the corresponding partition in which 4 is the respective
highest or lowest index and 3 is not. For example, ν(13)(2456) + ν(14)(2356) = 0.

The fact that ν(123456) = 0 and ν(a)(bcdef) = 0 follows analogously as before. The
remaining partitions in the case (ab)(cdef) are (12)(3456), (34)(1256) and (56)(1234).
For partitions of the form (abc)(def), we find ν(123)(456) = µ2

Y (2α − 2), ν(124)(356) =
µ2
Y (2α− 2α2) and ν(125)(346) = ν(126)(345) = ν(134)(256) = ν(156)(234) = µ2

Y (α− α2).

The case (a)(b)(cdef) yields the summands ν(1)(2)(3456) + ν(1234)(5)(6) = 2µ3
Y (1 − α).

For the partitions (ab)(cd)(ef), (a)(bc)(def) and (ab)(cd)(e)(f), we provide the following
list, where a× b means that the term b corresponds to νπ(a, b) for a different partitions.

Form of partition νπ(a, b)

(ab)(cd)(ef) 1× µ3
Y α

b−a, 2× µ3
Y α

2−b−a, 2× µ3
Y α

b+a

4× µ3
Y α

2−b+a, 6× µ3
Y α

2+b−a

(a)(bc)(def) 2× µ3
Y α
−a+1, 4× µ3

Y α
−a+2,4× µ3

Y α
b+1,

2× µ3
Y α

b, 2× µ3
Y α

b, 8× µ3
Y α

b−a+1

(ab)(cd)(e)(f) 2× µ4
Y α

b+a, 2× µ4
Y α

2−b−a, 2× µ4
Y α

b−a,
4× µ4

Y α
−b+a+1, 8× µ4

Y α
b−a+1.
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For the penultimate case, (a)(b)(c)(def), the remaining partitions are (1)(2)(5)(346),
(1)(2)(4)(356), (2)(5)(6)(134) and (1)(5)(6)(234) leading to the expression 4µ4

Y (1 − α).
For the final case (a)(b)(c)(d)(ef), the remaining partition is (1)(34)(2)(5)(6) and we
obtain ν(1)(34)(2)(5)(6) = 2µ5

Y (1− α). In total, we have∑
π∈Π6

νπ = 2µ2
Y (1− α)

(
4α+ µY (2 + 6α+ 6α2) + µ2

Y (2 + 6α) + µ3
Y

)
.

Combining all of these results yields

σ2
1 = µ2

Y (1− α)

[
8α+ µY (4 + 12α+ 12α2) + µ2

Y (4 + 12α)

+ 2µ3
Y + 2

∞∑
t=1

E[(Y 2
0 Y−1 − Y0Y

2
−1)(Y 2

t Yt−1 − YtY 2
t−1)]

]

= 4µ2
Y (1− α)

[
2α+ µY (1 + 3α+ 3α2)− 4

α2

1 + α
− µY

(
2α2 + 4α+

3α2

1 + α+ α2

)]
= 8µ2

Y

α(1− α)2

1 + α
+ 4µ3

Y

(1− α)3(1 + α)2

1 + α+ α2
,

concluding the proof.

Theorem 5.2.1 together with Lemma 5.2.2 gives an explicit expression for the asymp-
totic distribution of

√
T − 1 · β̂T (1) under the null hypothesis of a Poisson INAR(1)

model. Using this result, we could design a corresponding test procedure. However, an
initial simulation study showed that the true variance of

√
T − 1 · β̂T (1) for finite T is

larger than the asymptotic one, and that this true variance converges only slowly for in-
creasing T . Therefore, to make our test also applicable to short time series, we continue
with deriving the exact variance of β̂T (1).

Corollary 5.2.3 (Schweer and Weiß (2015), Corollary 3.1.3). Let (Yt)t∈Z be a Poisson
INAR(1) process with εt ∼ Poi(λ) for all t ∈ Z, let µY = λ/(1− α) and let T ∈ N with
T ≥ 3. Then

Var
(√

T β̂T+1(1)
)

= σ2
1+

2µ2
Y

T

[
µY (µY + 2α)2(1− αT ) + 2[µY (1 + α) + 2α]2

1− α2T

(1 + α)2
+ 6α2µY

1− α3T

(1 + α+ α2)2

]
.

Proof. We begin by noticing that for any p ∈ [0, 1) and any N ∈ N with N ≥ 2,

N−1∑
t=1

(
1− t

N

)
pt−1 =

1

1− p
− 1

N

1− pN

(1− p)2
=

∞∑
t=1

pt−1 − 1

N

1− pN

(1− p)2
. (5.9)
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Now, the process (Yt)t∈Z is stationary and it is easily seen that E[β̂T (1)] = 0. Thus, the
variance equals

E
[
(Y 2

0 Y−1 − Y0Y
2
−1)2

]
+ 2

T−1∑
t=1

T − t
T

E
[
(Y 2

0 Y−1 − Y0Y
2
−1)(Y 2

t Yt−1 − YtY 2
t−1)

]
.

By (5.8), E
[
(Y 2

0 Y−1 − Y0Y
2
−1)(Y 2

t Yt−1 − YtY 2
t−1)

]
is an expression consisting of terms

with coefficients αt−1, (α2)t−1 and so forth, thus (5.9) is applicable. We find

= E
[
(Y 2

0 Y−1 − Y0Y
2
−1)2

]
+ 2

∞∑
t=1

E
[
(Y 2

0 Y−1 − Y0Y
2
−1)(Y 2

t Yt−1 − YtY 2
t−1)

]
+

1

T

[
16µ2

Y α
2 1− α2T

(1 + α)2
+ 4µ3

Y α

(
2α(1− αT ) + 4(1 + α)

1− α2T

(1 + α)2
+ 3α

1− α3T

(1 + α+ α2)2

)]
+

1

T

[
8µ4

Y α(1− αT ) + 4(1− α2T ) + 2µ5
Y (1− αT )

]
,

concluding the proof.

The finite-sample performance of the presented asymptotic approximation is analyzed
in Section 5.2.3 below.

5.2.2 Testing Skewness in INAR(1) Processes

Looking at relation (5.6), we find another possibility to check for Poisson-distributed
innovations. Although originally designed as a time-reversibility test, β̂T (k) also com-
pares the marginal skewness and variance of the process. Therefore, in analogy to the
empirical dispersion index in (5.2), we define

θY :=
µ̄Y,3
σ2
Y

and θ̂Y :=
mY,3

S2
Y

,

where S2
Y = 1

T

∑T
t=1(Yt− Ȳ )2 and mY,3 = 1

T

∑T
t=1(Yt− Ȳ )3. Using the result of Lemma

4.1.4, if (Yt)t∈Z is a Poisson INAR(1) process, it follows that Y0 is Poisson distributed,
and thus that θY = 1. In order to show the asymptotic normality of θ̂Y , we first consider
the vector-valued process Xt := (Yt − µY , Y 2

t − µY − µ2
Y , Y

3
t − µY − 3µ2

Y − µ3
Y ) with

E[Xt] = 0. Since (Yt)t∈Z is α-mixing with exponentially decreasing weights αY (n) by
Theorem 4.2.6, so is (Xt)t∈Z, and we conclude with Theorem 2.5.2 that

1√
T

T∑
t=1

Xt
D→ N (0, T).

Here, T has the entries τi,j with

τi,j = E[X0,iX0,j ] +
∞∑
k=1

(E[X0,1Xk,j ] + E[Xk,iX0,j ]) ,

where Xk,j denotes the j-th entry of Xk. We calculate the expressions for the entries
τi,j explicitly, noting that τ1,1, τ1,2 and τ2,2 were already calculated in Lemma 5.1.1.
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Lemma 5.2.4 (Schweer and Weiß (2015), Lemma 3.2.1). Let (Yt)t∈Z be a Poisson
INAR(1) process with εt ∼ Poi(λ) for all t ∈ Z and µY = λ/(1− α). Then

τ1,3 = µY
(
1 + 6µY + 3µ2

Y

) 1 + α

1− α
,

τ2,3 = µY
(
1 + 6µY + 3µ2

Y

)
(1 + 2µY )

1 + α

1− α
+ 6µ2

Y (1 + µY )
1 + α2

1− α2
,

τ3,3 = µY
(
1 + 6µY + 3µ2

Y

)2 1 + α

1− α
+ 18µ2

Y (1 + µY )2 1 + α2

1− α2
+ 6µ3

Y

1 + α3

1− α3
.

Proof. For τ1,3, we consider E[Y0Y
3
k ] =

∑
π∈Π4

∏|π|
i=1 cum(YBi(π)), where Π4 and Bi(π)

are defined as in (2.4). Denote the summands of the latter expression as ρπ for each
π ∈ Π4 and recall approach of the second part of the proof of Lemma 5.2.2. With
Theorem 4.1.6, we find the following list:

Form of partition ρπ
(abcd) 1× µY αk
(a)(bcd) 1× µ2

Y , 3× µ2
Y α

k

(ab)(cd) 3× µ2
Y α

k

(a)(b)(cd) 3× µ3
Y , 3× µ3

Y α
k

(a)(b)(c)(d) 1× µ4
Y .

Due to the symmetry of the expressions, the same calculations hold for E[Y 3
0 Yk], and

they also hold for k = 0. We thus conclude that

τ1,3 = E[Y 4
0 ]− µ2

Y − 3µ3
Y − µ4

Y +

∞∑
k=1

(
E[Y 3

0 Yk] + E[Y0Y
3
k ]− 2µ2

Y − 6µ3
Y − 2µ4

Y

)
= µY

(
1 + 6µY + 3µ2

Y

)
(1 + 2

∞∑
k=1

αk) = µY
(
1 + 6µY + 3µ2

Y

) 1 + α

1− α
.

For the calculation of τ2,3, we proceed analogously:

Form of partition ρπ
(abcde) 1× µY αk
(a)(bcde) 5× µ2

Y α
k

(ab)(cde) 1× µ2
Y , 3× µ2

Y α
k, 6× µ2

Y α
2k

(a)(b)(cde) 1× µ3
Y , 9× µ3

Y α
k

(a)(bc)(de) 3× µ3
Y , 6× µ3

Y α
k, 6× µ3

Y α
2k

(a)(b)(c)(de) 4× µ4
Y , 6× µ4

Y α
k

(a)(b)(c)(d)(e) 1× µ5
Y .

Due to the symmetry of the expressions, the same calculations hold for the expectation
E[Y 2

0 Y
3
k ], and they also hold for k = 0. The assertion for this entry now follows from

easy calculations, analogous to the case above. Finally, we calculate τ3,3:
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Form of partition ρπ
(abcdef) 1× µY αk
(a)(bcdef) 6× µ2

Y α
k

(ab)(cdef) 6× µ2
Y α

k, 9× µ2
Y α

2k

(abc)(def) 1× µ2
Y , 9× µ2

Y α
2k

(a)(b)(cdef) 15× µ3
Y α

k

(a)(bc)(def) 6× µ3
Y , 18× µ3

Y α
k, 36× µ3

Y α
2k

(ab)(cd)(ef) 9× µ3
Y α

k, 6× µ3
Y α

2k

(a)(b)(c)(def) 2× µ4
Y , 18× µ4

Y α
k

(a)(b)(cd)(ef) 9× µ4
Y , 18× µ4

Y α
k, 18× µ4

Y α
2k

(a)(b)(c)(d)(ef) 6× µ5
Y , 9× µ5

Y α
k,

(a)(b)(c)(d)(e)(f) 1× µ6
Y .

This list extends to the case k = 0, and easy calculations conclude the proof.

Lemma 5.2.4 is now applied to derive a closed-form expression for the asymptotic
distribution of θ̂Y . In addition, we also develop an expression to correct the bias for
small T in analogy to Remark A.3.1 in Weiß and Schweer (2015).

Theorem 5.2.5 (Schweer and Weiß (2015), Theorem 3.2.2). Let (Yt)t∈Z be a Poisson
INAR(1) process with εt ∼ Poi(λ) for all t ∈ Z and µY = λ/(1− α). Then

√
T (θ̂Y − 1)

D→ N
(

0, 8
1 + α2

1− α2
+ 6µY

1 + α3

1− α3

)
for T →∞.

An improved approximation for the mean of θ̂Y is given by

E
[
θ̂Y

]
≈ 1− 2

T

3 + 2α+ 3α2

1− α2
.

Proof. We introduce the function

f : R3 → R, f(y1, y2, y3) :=
y3 − 3y1y2 + 2y3

1

y2 − y2
1

=
y3 − y3

1

y2 − y2
1

− 3y1.

It is easily seen that, on the one hand f(µY , µ
2
Y +µY , µ

3
Y + 3µ2

Y +µY ) = 1, on the other

hand f( 1
T

∑T
t=1 Yt,

1
T

∑T
t=1 Y

2
t ,

1
T

∑T
t=1 Y

3
t ) = θ̂Y . We readily find

∂

∂y1
f(y1, y2, y3) =

2y1(y3 − y3
1)

(y2 − y2
1)2

− 3y2
1

y2 − y2
1

− 3,

∂

∂y2
f(y1, y2, y3) =

y3
1 − y3

(y2 − y2
1)2

and
∂

∂y3
f(y1, y2, y3) =

1

y2 − y2
1

,

and thus that

D := grad f(µY , µ
2
Y + µY , µ

3
Y + 3µ2

Y + µY ) =
1

µY

(
3µ2

Y − µY ,−1− 3µY , 1
)
.
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In order to simplify notation, we abbreviate some polynomials appearing in the following
calculation by A := 1 + 6µY + 3µ2

Y , B := 1 + 2µY , C := 1 + 3µY and D := µY (3µY − 1).
The dependence on the parameter µY is omitted in a slight abuse of notation. We
calculate

µ2
Y DTDT = τ1,1D

2 + C2τ2,2 + τ3,3 + 2Dτ1,3 − 2DCτ1,2 − 2Cτ2,3

=
1 + α

1− α
µY
(
D2 +B2C2 +A2 + 2AD − 2BCD − 2ABC

)
+ 2

1 + α2

1− α2
µ2
Y

(
C2 − 6C(1 + µY ) + 9(1 + µY )2

)
+ 6µ3

Y

1 + α3

1− α3
.

Simple manipulations yield C2 − 6C(1 + µY ) + 9(1 + µY )2 = (C − 3(1 + µY ))2 = 4.
Furthermore, notice that, in our notation, D = BC − A. Applying this relation yields
D2 + B2C2 + A2 + 2AD − 2BCD − 2ABC = 0, and thus concludes the proof of the
asymptotic result. The bias correction is derived in the same way as in Proposition
5.1.4. First, the Hessian of f(y1, y2, y3) is computed and (µY , µ

2
Y + µY , µ

3
Y + 3µ2

Y + µY )
is inserted into this Hessian, leading to

Hf =

8 + 2
µY

+ 12µY −9− 4
µY

2
µY

−9− 4
µY

2
µ2Y

+ 6
µY

− 1
µ2Y

2
µY

− 1
µ2Y

0


Then, with ZT := 1√

T

∑T
t=1 Xt, we find, using the formulae for τi,j from Lemma 5.2.4,

E
[

1

2
Z>THfZT

]
= −2

3 + 2α+ 3α2

1− α2
.

Let us now analyze the finite-sample performance of the presented asymptotic ap-
proximation. In the following sections, we summarize the results of a simulation study
designed to demonstrate the behavior of the estimators and tests developed above. The
first two parts of this section deal with the finite-sample performance of the asymptotic
results 5.2.1 and 5.2.5. The third part provides a power analysis for the tests developed
here, and compares their ability to detect violations from the Poisson assumption with
the test based on the empirical dispersion index (5.2) of Section 5.1.

5.2.3 Finite-Sample Performance of the generalized autocovariance

To analyze the finite-sample performance of the asymptotic result of Theorem 5.2.1 and
Corollary 5.2.3, a simulation study was done with 10,000 replications per scenario. We
only show some illustrative results here. The empirically observed means and standard
deviations nearly perfectly coincide with their theoretical values (given by 0 and Corol-
lary 5.2.3, respectively). Approximate normality becomes visible not only by checking
the empirical quantiles, but also from the rejection rates being summarized in Table 5.4.
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Size (specified parameters) Size (estimated parameters)
α T \ λ 0.5 1 2 4 0.5 1 2 4
0.3 100 0.050 0.055 0.060 0.057 0.048 0.054 0.052 0.052

250 0.048 0.056 0.054 0.053 0.051 0.051 0.051 0.052
500 0.055 0.051 0.053 0.049 0.052 0.049 0.053 0.048

1000 0.051 0.051 0.049 0.052 0.053 0.049 0.049 0.050
0.5 100 0.062 0.055 0.054 0.059 0.045 0.045 0.044 0.055

250 0.055 0.048 0.054 0.052 0.051 0.044 0.050 0.050
500 0.052 0.050 0.049 0.053 0.053 0.050 0.050 0.053

1000 0.056 0.049 0.051 0.052 0.054 0.049 0.050 0.050
0.7 100 0.049 0.050 0.058 0.061 0.040 0.043 0.054 0.059

250 0.052 0.052 0.058 0.059 0.045 0.047 0.055 0.057
500 0.050 0.052 0.054 0.057 0.047 0.047 0.053 0.057

1000 0.052 0.051 0.051 0.056 0.049 0.049 0.050 0.055

Table 5.4: Simulated sizes if testing null of Poisson INAR(1) process (5 % level, two-sided
test) via β̂T (1).

Columns 3–6 show the sizes if testing the null of a Poisson INAR(1) process (5 % level,
two-sided test) with specified parameters, and columns 7–10 the sizes if the parameter
values for (λ, α) are estimated from the same data. In any case, the observed sizes are
very close to the nominal level 0.05, confirming the good performance of our asymptotic
approximations.

λ 0.5 1 2 4
α T sim. asymp. sim. asymp. sim. asymp. sim. asymp.

0.3 100 0.921 0.915 0.923 0.915 0.924 0.915 0.914 0.915
250 0.968 0.966 0.971 0.966 0.966 0.966 0.966 0.966
500 0.984 0.983 0.980 0.983 0.986 0.983 0.988 0.983

1000 0.992 0.991 0.992 0.991 0.992 0.991 0.989 0.991

0.5 100 0.887 0.873 0.887 0.873 0.886 0.873 0.879 0.873
250 0.950 0.949 0.948 0.949 0.951 0.949 0.953 0.949
500 0.977 0.975 0.974 0.975 0.980 0.975 0.978 0.975

1000 0.988 0.987 0.989 0.987 0.987 0.987 0.991 0.987

0.7 100 0.821 0.770 0.811 0.770 0.813 0.770 0.806 0.770
250 0.912 0.908 0.915 0.908 0.917 0.908 0.915 0.908
500 0.952 0.954 0.962 0.954 0.947 0.954 0.970 0.954

1000 0.981 0.977 0.977 0.977 0.976 0.977 0.982 0.977

Table 5.5: Simulated mean of θ̂Y vs. asymptotic approximations for Poisson INAR(1)
process.

5.2.4 Finite-Sample Performance of θ̂Y

To analyze the finite-sample performance of the asymptotic result according to Theo-
rem 5.2.5, we continued the simulation study from Section 5.2.3. Let us first compare
the empirically observed means and standard deviations with their asymptotic approx-
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λ 0.5 1 2 4
α T sim. asymp. sim. asymp. sim. asymp. sim. asymp.

0.3 100 0.316 0.376 0.380 0.432 0.475 0.526 0.626 0.677
250 0.221 0.238 0.258 0.273 0.314 0.333 0.412 0.428
500 0.161 0.168 0.187 0.193 0.230 0.235 0.296 0.303

1000 0.118 0.119 0.134 0.136 0.162 0.166 0.213 0.214

0.5 100 0.359 0.459 0.456 0.536 0.565 0.665 0.762 0.866
250 0.265 0.290 0.312 0.339 0.394 0.420 0.523 0.548
500 0.194 0.205 0.228 0.240 0.291 0.297 0.379 0.387

1000 0.142 0.145 0.167 0.170 0.205 0.210 0.272 0.274

0.7 100 0.477 0.662 0.597 0.802 0.805 1.025 1.120 1.367
250 0.355 0.419 0.445 0.507 0.579 0.649 0.782 0.865
500 0.268 0.296 0.334 0.358 0.425 0.459 0.579 0.611

1000 0.203 0.209 0.244 0.253 0.315 0.324 0.428 0.432

Table 5.6: Simulated standard deviation of θ̂Y vs. asymptotic approximations for Poisson
INAR(1) process.

imations, see Tables 5.5 and 5.6. The approximations for the mean tend to give lower
values than empirically observed in the simulation study (especially if the autocorrela-
tion parameter α is large), but the difference rapidly decreases with increasing sample
size. The asymptotic standard deviations are, in contrast, larger than the simulated ones
(again stronger if α is large), so we expect a test being designed on these approximations
to be conservative. In fact, looking at the empirical sizes in Table 5.7 (columns 3–6),
these values are always below the nominal level of 5 %, i.e., the rate of false rejections
is even better than required by design. Again, the effect of using estimated parameters
for the null model (columns 7–10) is small.

Size (specified parameters) Size (estimated parameters)
α T \ λ 0.5 1 2 4 0.5 1 2 4

0.3 100 0.026 0.030 0.032 0.033 0.025 0.028 0.031 0.033
250 0.035 0.039 0.039 0.042 0.033 0.039 0.038 0.042
500 0.040 0.042 0.043 0.044 0.040 0.042 0.043 0.044

1000 0.047 0.044 0.045 0.048 0.046 0.043 0.044 0.048

0.5 100 0.023 0.029 0.026 0.029 0.019 0.028 0.025 0.029
250 0.032 0.035 0.036 0.040 0.033 0.035 0.036 0.040
500 0.037 0.037 0.047 0.044 0.038 0.037 0.047 0.044

1000 0.043 0.044 0.045 0.050 0.044 0.044 0.044 0.049

0.7 100 0.020 0.020 0.021 0.027 0.017 0.017 0.019 0.025
250 0.027 0.029 0.031 0.034 0.024 0.028 0.030 0.035
500 0.032 0.038 0.037 0.038 0.032 0.037 0.038 0.039

1000 0.042 0.040 0.042 0.050 0.042 0.041 0.041 0.050

Table 5.7: Simulated sizes if testing null of Poisson INAR(1) process (5 % level, two-sided
test) via θ̂Y .
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5.2.5 Power Analysis

In Proposition 5.1.4, it is shown that if Y1, . . . , YT stem from a Poisson INAR(1) process,
then the distribution of ÎY can be approximated by a normal distribution with

E
[
ÎY

]
≈ 1− 1

T

1 + α

1− α
and Var

(
ÎY

)
≈ 2

T

1 + α2

1− α2
.

These relations can be utilized to test the null of a Poisson INAR(1) model against the
alternative of an INAR(1) model with differently distributed innovations. In addition to
this dispersion test, we developed two further tests for this situation: the reversibility
test β̂T (1) in Section 5.2.1, and the skewness test θ̂Y in Section 5.2.2. For all these tests,
the finite-sample properties under the null hypothesis have been shown in simulations
to fit reasonably well to those properties being expected from asymptotic results, see
the previous sections. In this section, we will compare the power of all three tests under
diverse alternative scenarios.

n 1 2 8

α T Î β̂T (1) θ̂Y Î β̂T (1) θ̂Y Î β̂T (1) θ̂Y
0.3 100 0.556 0.370 0.394 0.576 0.324 0.351 0.611 0.227 0.225

250 0.869 0.542 0.723 0.894 0.488 0.666 0.920 0.310 0.427
500 0.987 0.738 0.938 0.992 0.639 0.909 0.996 0.412 0.673

1000 1.000 0.890 0.999 1.000 0.832 0.998 1.000 0.560 0.907

0.5 100 0.385 0.414 0.257 0.408 0.350 0.229 0.407 0.155 0.132
250 0.698 0.641 0.524 0.709 0.569 0.446 0.736 0.267 0.251
500 0.921 0.847 0.792 0.937 0.781 0.709 0.948 0.440 0.421

1000 0.996 0.971 0.968 0.998 0.943 0.935 0.998 0.685 0.662

0.7 100 0.226 0.328 0.126 0.232 0.217 0.109 0.226 0.105 0.065
250 0.435 0.646 0.276 0.437 0.489 0.218 0.450 0.124 0.124
500 0.677 0.884 0.460 0.693 0.782 0.370 0.693 0.201 0.193

1000 0.922 0.985 0.736 0.921 0.963 0.607 0.933 0.461 0.323

Table 5.8: Simulated power for alternative εt ∼ NegBin(n, 2/3), i.e., with Iε = 1.5.

As the first alternative, we assume the innovations to be negative binomially dis-
tributed, i.e., εt ∼ NegBin(n, π), such that the innovations’ mean equals n(1 − π)/π,
their dispersion index 1/π. This assumption implies that the means of Î and θ̂Y are
increased compared to the null situation, while the mean of β̂T (1) is decreased towards
negative values. Since the most obvious difference between a Poisson distribution and
a negative binomial one is overdispersion, we expect the test based on Î to perform
particularly well. Looking at Tables 5.8 and 5.9, it becomes clear, however, that this
statement does not universally hold. While the Î-test is always superior if α = 0.3, the
β̂T (1)-test is often superior if α ≥ 0.5 (and if the innovations’ mean is small, say ≤ 1). In
fact, the degradation of the Î-test’s power for increasing α was one of the disadvantages
pointed out by Weiß and Schweer (2015).

In view of our results here, the application of the β̂T (1)-test can be recommended as
a remedy in situations with a low mean and a high α. It is also worth pointing out
that the θ̂Y -test, which considers the skewness of the counts, is also rather sensitive
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n 0.5 1 4

α T Î β̂T (1) θ̂Y Î β̂T (1) θ̂Y Î β̂T (1) θ̂Y
0.3 100 0.879 0.615 0.739 0.922 0.598 0.729 0.952 0.434 0.523

250 0.998 0.845 0.978 0.999 0.812 0.974 1.000 0.621 0.851
500 1.000 0.957 1.000 1.000 0.942 1.000 1.000 0.779 0.985

1000 1.000 0.996 1.000 1.000 0.991 1.000 1.000 0.922 1.000

0.5 100 0.736 0.700 0.565 0.787 0.659 0.535 0.830 0.352 0.332
250 0.972 0.920 0.905 0.984 0.894 0.865 0.992 0.635 0.625
500 1.000 0.992 0.993 1.000 0.987 0.989 1.000 0.862 0.876

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.983 0.990

0.7 100 0.497 0.634 0.323 0.527 0.517 0.271 0.539 0.162 0.141
250 0.836 0.939 0.637 0.857 0.891 0.556 0.881 0.301 0.301
500 0.979 0.996 0.890 0.988 0.989 0.816 0.994 0.639 0.488

1000 1.000 1.000 0.992 1.000 1.000 0.979 1.000 0.941 0.752

Table 5.9: Simulated power for alternative εt ∼ NegBin(n, 1/2), i.e., with Iε = 2.

towards the Negative Binomial alternative provided that the innovations’ mean is small.
As a final remark concerning Tables 5.8 and 5.9, we point out that the reported values
were calculated with respect to a fully specified model. We also considered the case
with estimated null parameters, but since the use of estimated parameters had nearly
no influence on the power values, these results are not reported here.

As another type of alternative, we consider the Good INAR(1) model discussed in
Weiß (2013) with parameters (q′, ν) chosen such that the Good-distributed innovations
exhibit equidispersion, even though they are not Poisson distributed. So the innovations
share mean and variance with Poisson-distributed innovations, but higher-order moments
differ, as can be seen in Table 5.10.

Good(q′, ν) Poi(λ)
q′ ν Mean Var. Skew. Exc. λ Mean Var. Skew. Exc.

–2.51 –2.65 0.500 0.500 1.455 2.335 0.5 0.500 0.500 1.414 2.000
–1.96 –2.91 1.000 1.000 1.103 1.571 1 1.000 1.000 1.000 1.000
–1.51 –3.55 2.000 2.000 0.926 1.289 2 2.000 2.000 0.707 0.500
–1.25 –5.25 4.000 4.000 0.800 0.961 4 4.000 4.000 0.500 0.250

Table 5.10: Comparison of higher-order moments of Poisson and Good distributions.

For this reason, we expect the dispersion test to perform badly, but the skewness test
to be sensitive to this type of alternative situation, especially with an increasing mean.
The resulting simulated power values are summarized in Table 5.11.

First of all, the power values are much lower than in the previous alternative situations,
but this is reasonable since the considered Good model deviates only little from the
Poisson model. Now looking at the power values, we indeed realize that the Î-test
completely fails, while both the β̂T (1)-test and the θ̂Y -test are sensitive to this type of
alternative. In most cases, the θ̂Y -test performs better, with the best performance for
small α and large innovations’ mean. However, as in the case of negative binomially
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(q′, ν) (–2.5119, –2.6470) (–1.9560, –2.9135) (–1.2498, –5.2489)

α T Î β̂T (1) θ̂Y Î β̂T (1) θ̂Y Î β̂T (1) θ̂Y
0.3 100 0.040 0.058 0.037 0.054 0.069 0.049 0.058 0.076 0.108

250 0.048 0.061 0.048 0.054 0.072 0.064 0.060 0.091 0.174
500 0.055 0.067 0.054 0.058 0.074 0.084 0.061 0.107 0.290

1000 0.056 0.065 0.065 0.060 0.081 0.107 0.061 0.166 0.486

0.5 100 0.039 0.069 0.029 0.043 0.063 0.036 0.045 0.070 0.061
250 0.042 0.056 0.040 0.051 0.068 0.054 0.053 0.081 0.104
500 0.049 0.067 0.051 0.053 0.076 0.066 0.055 0.118 0.148

1000 0.053 0.067 0.055 0.053 0.085 0.074 0.058 0.192 0.247

0.7 100 0.034 0.052 0.019 0.038 0.053 0.026 0.037 0.063 0.036
250 0.042 0.060 0.027 0.047 0.063 0.039 0.046 0.062 0.057
500 0.046 0.064 0.035 0.046 0.067 0.043 0.049 0.071 0.075

1000 0.049 0.061 0.045 0.052 0.080 0.055 0.051 0.096 0.110

Table 5.11: Simulated power for alternative εt ∼ Good(q′, ν).

distributed innovations, the β̂T (1)-test fares best in situations with a low mean and a
high α.

5.3 Asymptotics for ACF and PACF of Poisson INAR(1)
processes

We now return to more classical theory and consider the asymptotic distribution of
the functions introduced in Section 2.6. In particular, we show in this section that the
results of Theorems 2.6.2 and 2.6.3 hold in the case of INAR(1) processes. The α-mixing
property shown in 4.2.6 together with a bound on the fourth moment of the arrival turns
out to be sufficient for this assertion.

In what follows, we restrict ourselves to the special case of Poisson INAR(1) processes
for two connected reasons. First of all, this restriction allows for an explicit calculation
of the resultant terms due ot the surprisingly simple result of Theorem 4.1.6. Secondly,
we can show that in this case a very classical result dating back to Quenouille (1949)
holds.

Theorem 5.3.1. Let (Yt)t∈Z be a Poisson INAR(1) process, where εt ∼ Poi(λ) for all
t ∈ Z. Then √

T (γ̂(0)− γ(0), . . . , γ̂(K)− γ(K))
D→ N (0,T + U) ,

where the entries τi,j of the matrix T are given by

τi+1,j+1 = γ(0)2

[(
1 + α2

1− α2
+ (j − i)

)
αj−i +

(
1 + α2

1− α2
+ (j + i)

)
αi+j

]
.

and the entries ui,j of the matrix U are given by

ui+1,j+1 = γ(0)αj
(

1 + α

1− α
+ j − i

)
.
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Proof. As shown in Theorem 4.2.6, INAR(1) processes with Poisson innovations are
α-mixing with exponentially decreasing weights αY (n) and all moments exist, thus The-
orem 2.5.2 is applicable, implying joint convergence of the estimators for the autoco-
variance function, where the asymptotic variance matches that given in Theorem 2.6.2,
cf. Theorem 3.1 in Romano and Thombs (1996). For τi,j with j ≥ i, we find

1

γ(0)2

∞∑
d=−∞

[γ(d)γ(d+ j − i) + γ(d+ j)γ(d− i)] =
∞∑

d=−∞

[
α|d|α|d+j−i| + α|d+j|α|d−i|

]

=

∞∑
d=1

α2d+j−i +

−1∑
d=i−j

αj−i +

∞∑
d=0

α2d+j−i +

∞∑
d=1

α2d+i+j +

i−1∑
d=−j

αi+j +

∞∑
d=0

α2d+i+j

=

(
1 + α2

1− α2
+ (j − i)

)
αj−i +

(
1 + α2

1− α2
+ (j + i)

)
αi+j .

Similarly, with Theorem 4.1.6, we find

ui+1,j+1 =
∞∑

d=−∞
cum(Y0, Yi, Yd, Yd+j) = γ(0)

i−j∑
d=−∞

αi−d + γ(0)
∞∑
d=1

αd+j + γ(0)

j−i−1∑
d=0

αj

= γ(0)αj
(

1 + α

1− α
+ j − i

)
.

This result allows the application of Theorems 2.6.2 and 2.6.3, implying that the esti-
mators of the ACF and PACF are jointly asymptotically normal as well. For the covari-
ance matrices of the asymptotic distributions, those of the empirical ACF corresponding
to Theorem 2.6.2 are easily derived. For the estimator of the PACF, we now show that
the covariance matrix has a surprisingly simple structure. Indeed, we show that the
sample partial autocorrelations ρ̂part(k), ρ̂part(k+ 1), . . . are asymptotically independent
for k ≥ 2 for an underlying Poisson INAR(1) process.

Theorem 5.3.2 (Cp. Mills and Seneta (1991), Sect. 3). Let (Yt)t∈Z be a Poisson
INAR(1) process where εt ∼ Poi(λ) for all t ∈ Z and let K ≥ 2. Then

√
T (ρ̂part(2), . . . , ρ̂part(K))

D→ N (0,Σ) ,

where Σ is the matrix with entries σi,j for i, j ≥ 2 given by

σi,j =

{
1 + αi

γ(0)(1+α)2
for i = j,

0 else.

Proof. For the partial autocorrelation function of a Poisson INAR(1) process we have
ρpart(1) = ρ(1) = α, see Definition 2.6.1, and γ(0) = λ

1−α . The conditions of Theorem
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2.6.3 are clearly satisfied, and recalling that α0 := −1 and α1 = α, we calculate with
Theorem 5.3.1

σ1,1γ(0)(1− α2)2 =
2∑

u=0

∑
m+n=u

αmαn

2∑
r=0

∑
s+t=r

αsαtα
max{2−u,2−r}

(
1 + α

1− α
+ |u− r|

)
=

1 + α

1− α
[
α2 − 2α3 + α4 − 2α3 + 4α3 − 2α4 + α4 − 2α4 + α4

]
− 2α3 + 2α4 − 2α3 − 2α4 + 2α4 − 2α4

=
1 + α

1− α
(
α2 − α4

)
− 4α3 = α2(1− α)2 and, similarly,

σ1,2γ(0)(1− α2)2 =
1 + α

1− α
[
α3 − 2α4 + α5 − 2α3 + 4α4 − 2α5 + α4 − 2α4 + α5

]
+ α3 − 4α4 + 3α5 + 4α4 − 4α5 + α4 + α5

=
1 + α

1− α
(
α4 − α3

)
+ α3 + α4 = 0.

Finally, if i > 2 and recalling the function h(·) of (2.20),

σ1,iγ(0)(1− α2)2 =
1 + α

1− α
h(i+ 1) + αi+1[i− 2(i− 1) + (i− 2)]

+ αi+2(−2(i+ 1) + 4i− 2(i− 1)) + αi+3(i+ 2− 2(i+ 1) + i) = 0,

recalling Property 3 (a) in Choi (1990), that h(k) = 0 for k = p, p+1, . . . . The remaining
entries of the matrix Σ can be established from these calculations, as on the one hand,
the expression is symmetric in i and j, so that the above result hold for the entries (i, 1)
as well. On the other hand, letting (a, b) be an arbitrary entry of the matrix with b ≥ a,
it is clear that

∞∑
d=0

αmax{a+1−u,b+1−r+d} +

∞∑
d=1

αmax{b+1−r,a+1−u+d}

= αa

( ∞∑
d=0

αmax{1−u,b−a+1−r+d} +

∞∑
d=1

αmax{b−a+1−r,1−u+d}

)
.

This implies that Σ is a diagonal matrix with the asserted structure.

We remark that this result coincides with the findings of Mills and Seneta (1991),
even though their result in equation (6) looks a little different. This difference is due to
a mistake in the calculation there, as can easily be seen by calculating their expression
(6) from (4). We provided a theoretical foundation for the celebrated Quenouille’s test,
cf. Quenouille (1949). By our calculations, for large T it holds approximately that

T

r∑
k=2

ρ̂part(k)

σ̂k,k
∼ χ2

r ,

where χ2
r denotes the chi-squared distribution with r degrees of freedom and where σ̂k,k

denotes a consistent estimate of the matrix entry σk,k as defined in Theorem 5.3.2.
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6 Goodness-of-Fit Testing in
Markovian Models
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In Chapters 4 and 5 three specification tests for INAR(1) processes were introduced,
which were designed to detect the deviation of a given data sample from the assumption
of a Poisson INAR(1) model. In this chapter, a similar problem is addressed in a more
general framework. We suppose that we are presented with a count data time series
which exhibits an AR(1)-like structure in terms of ACF and PACF such as the motivating
example in the introduction. However, we now refrain from assuming the structure of
the underlying model to adhere to the recursion (1.1), and allow a general Markovian
structure. For instance, we now include the INARCH(1) model, which assumes Yt to be
conditionally Poisson distributed with

Yt
∣∣ Yt−1, Yt−2, . . . ∼ Poi (β + α · Yt−1) for all t ∈ Z. (6.1)

The naming of these models evolved from Ferland et al. (2006), where a more general
class of INGARCH(p,q) models was considered, one of the first instances of the name
INARCH(1) process can be found in Weiß (2010). In many variations both in name
and formulation, the INARCH(1) model of (6.1) has been previously considered, leading
to many modifications. One such instance can be found in Zeger and Qaqish (1988),
another one in Xu et al. (2012).

Other candidates for models describing count data and exhibiting an AR(1)-like struc-
ture of the ACF and PACF abound, for instance the Random Coefficient INAR(1) model
of Zheng et al. (2007) or variations of INAR(1) models with different thinning opera-
tions as those of Weiß (2008). Yet, asides from these differences, all of the models just
discussed satisfy

Pθ (Yt = l | Yt−1 = k, Yt−2 = j, . . . ) = Pθ (Yt = l | Yt−1 = k) := pθ(l|k), (6.2)

where θ = (θ1, . . . , θd) ∈ Θ ⊆ Rd, the parameter space and where the probability measure
Pθ is a function of the underlying parameter θ. Additionally, the stationary distribution,
which may be assumed to exist, will be denoted by Pθ(Y0 = k) := πθ(k) to emphasize
the dependence on the parameter θ. We are now interested in setting up a statistical
test for the hypothesis

H
(s)
0 : f = pθ0 against H

(s)
1 : f 6= pθ0 , (6.3)

where θ0 is the true parameter. Moreover, it would be even better to have at hand a
test for the composite hypothesis

H0 : f ∈ {pθ|θ ∈ Θ} against H1 : f /∈ {pθ|θ ∈ Θ} . (6.4)

In two seminal contributions, Neumann (2011) and Fokianos and Neumann (2013),
tests are established for both scenarios (6.3) and (6.4) in the context of Poisson count
processes. The first article derives the asymptotic normality of certain test statistics,
providing easily implemented goodness-of-fit tests. However, these test statistics are not
suitable to detect local alternatives in general. In the second article, an alternative test
statistic based on Pearson residuals is proposed which can be shown to have nontriv-
ial power against local alternatives. Both works consider a nonlinear model allowing
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for a wide range of models, cf. eq. (1.1) in Fokianos and Neumann (2013). It should
also be noted that both approaches can be extended to higher and even infinite order
dependencies, see for instance Remark 4 in Neumann (2011).

Relaxing the distributional assumption of a Poisson count process is necessary to
account for more general models. For instance, consider the NegBin-INARCH(1) model
of Xu et al. (2012), where Yt follows the recursion (6.1) with a conditional Negative
Binomial distribution. Another set of models exceeding this scope, amongst many others,
is the Compound Poisson INAR(1) model studied in Schweer and Weiß (2014).

In Meintanis and Karlis (2014), a goodness-of-fit test based on the joint probability
generating function (jpgf) for the INAR(1) process is suggested, note that Baringhaus
and Henze (1992) considered a similar test in the case of i.i.d. count data. For a stationary
process (Yt)t∈Z the jpgf is given by ψ(u, v; θ) := Eθ

[
uY0vY1

]
for all u, v ∈ [0, 1]. For T +1

consecutive counts {y1, . . . , yT+1}, its empirical counterpart is based on the T pairs of
consecutive observations at hand, and is defined as

ψ̂T (u, v) :=
1

T

T∑
i=1

uyivyi+1 for u, v ∈ [0, 1], (6.5)

the so-called empirical joint probability generating function (ejpgf). One possible test
statistic is then given by

WT,a(y1, . . . , yT+1; θ) := T

∫ 1

0

∫ 1

0

(
ψ̂T (u, v)− ψ(u, v; θ)

)2
uavadudv, (6.6)

where a ≥ 0 is a weighting factor. The null hypothesis (6.3) is rejected for large values
of the statistic (6.6) with θ = θ0, for the null hypothesis (6.4) with θ = θ̂T .

In this chapter, we derive the asymptotic properties of this statistic for a general
class of Markovian models satisfying a drift condition, resulting in a goodness-of-fit
test. Additionally, we show that there exists a surprising connection between this test
and those of previous chapters. An application of the resulting test in the second part
reveals the usefulness of this approach. This chapter is largely based on the article
Schweer (2015a).

6.1 Introduction and Main Results

The following definition provides the framework for the processes under consideration in
this chapter.

Condition 1 (Drift condition).
(Yt)t∈Z is a time-homogeneous, irreducible, aperiodic first order Markov chain on the
sample space N0 with finite mean and satisfies (6.2) for some θ = (θ1, . . . , θd) ∈ Θ ⊆ Rd.
Furthermore, there exists a function V : N0 → R, a finite set A ⊂ N0, b < ∞ and
δ ∈ (0, 1) such that V (x) ≥ 1 for all x ∈ N0 and

Eθ [V (Yt)|Yt−1 = y] ≤ V (y)(1− δ) + b1{y∈A} for all y ∈ N0.
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A large class of processes satisfying the drift condition can be defined as follows,
based on an idea by Grunwald et al. (2000): A process (Yt)t∈Z is called an integer-
valued conditional linear autoregressive process of first order (INCLAR(1)) if it is a
time-homogeneous, irreducible, aperiodic first-order Markov chain on N0 with finite mean
satisfying

Eθ[Yt|Yt−1] = αYt−1 + λ (6.7)

for some α ∈ (0, 1), λ > 0. We now show that each INCLAR(1) process satisfies
Condition 1.

Lemma 6.1.1 (Proposition 3, Grunwald et al. (2000)). Let (Yt)t∈Z be an INCLAR(1)
process satisfying (6.7). Then Condition 1 holds for (Yt)t∈Z.

Proof. Define the function V (x) := x + 1 and further choose δ > 0 such that the set
A := {0, 1, . . . , b(λ+ δ)/(1− δ − α)c} is not empty, where b·c denotes the floor function
which maps r to the highest integer value smaller than r. Now, it is easily seen that
y ∈ N0\A implies λ+1+αy ≤ (1−δ)(y+1) and thus that E[V (Yt)|Yt−1 = y] ≤ V (y)(1−δ)
holds for y ∈ N0 \A. It is clear that E[V (Yt)|Yt−1 = y] is uniformly bounded for y ∈ A,
concluding the proof.

6.1.1 Asymptotics for the Empirical Joint Probability Generating
Function

We begin this section by showing that Condition 1 implies the α-mixing of the process
involved. This result has as a consequence, that Theorem 4.2.6 can be extended to a
more general class of processes.

Theorem 6.1.2 (Schweer (2015a), Theorem 1). Let (Yt)t∈Z be a process satisfying Con-
dition 1. Then (Yt)t∈Z is α-mixing with exponentially decreasing weights αY (n).

Proof. By Theorem 2 of Popov (1977), each process satisfying Condition 1 is geometri-
cally ergodic. From this, the assertion follows with the proof of Theorem 4.2.6.

One implication among many others of the preceding assertion is that (Poisson)
INARCH(1) processes are α-mixing with exponentially decreasing weights, this was pre-
viously shown to hold in Neumann (2011). The mixing property of Theorem 6.1.2 allows
for the establishment of the asymptotic behavior of the ejpgf. In Theorem 6.1.6, both
cases pertaining to the null hypotheses (6.3) and (6.4) are considered separately, this
structure is reflected in the presentation of the necessary assumptions.

Assumption (A1).

(i) The true data generating process satisfies Condition 1.

(ii) It holds that Eθ0 [|Y0Y1|2+ξ] for some ξ > 0.

If the hypothesis is of a composite nature, it is necessary to estimate the parameter
θ0. The following assumption ensures an appropriate behavior of both the estimator and
the test statistic as the number of observations increases.
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Assumption (A2).

(i) The sequence of estimators θ̂T of θ ∈ Θ ⊆ Rd satisfies the expansion

θ̂T − θ0 =
1

T

T∑
i=1

l(Yi, Yi+1; θ0) + rT ,

where rT = oP(T−
1
2 ) and where l(θ; i) = (l(θ; i)1, . . . , l(θ; i)d) is a measurable func-

tion of (Yi+1, Yi, . . . ) and θ such that, for all k ∈ {1, . . . , d}, Eθ0 [l(θ0; i)k] = 0,
Eθ0 [l(θ0; i)2+δ

k ] <∞ for some δ > 0 and, if (Yt)t∈Z is α-mixing with exponentially
decreasing weights, the same holds for (l(θ0; t)k))t∈Z.

(ii) The function ψ(u, v; θ) as a function of θ is twice continuously differentiable for
all u, v ∈ [0, 1]2 at the point θ0.

(iii) The series
∑∞

k,l=0 kl
∂
∂θPθ0(Y0 = k, Y1 = l) and

∑∞
k,l=0

∂2

∂2θ
Pθ′(Y0 = k, Y1 = l)

converge, where θ′ ∈ Θ.

Assumption (i) can easily seen to be satisfied if l(θ0; i) is a function of a finite number
of Yi’s only. The usual estimation techniques for count data times series, i.e., conditional
maximum likelihood, conditional least squares, Yule-Walker estimators and the moment
estimators employed in Chapter 5 satisfy the latter assumption for many useful models.
Part (ii) and (iii) constitute higher order assumptions on the process (Yt)t∈Z and its
dependency on the parameter θ ∈ Θ. Given the structure of the proof, assumptions of
this kind seem inevitable, thus the following two lemmata show they may be verified for
specific models.

Lemma 6.1.3 (Schweer (2015a), Example 1). Let (Yt)t∈Z be a Compound Poisson
INAR(1) process as in Definition 4.2.2, where εt ∼ ComPoi(λ,Hθ) for all t ∈ Z, such

that Hθ is twice differentiable in the parameter θ and ∂2

∂2θ
Hθ(1 + ε) is finite for some

ε > 0. Then (Yt)t∈Z satisfies Assumptions (A2) (ii) and (iii).

Proof. First of all, we calculate from (4.15)

ψ(u, v; θ) = Eθ
[
uY0vY1

]
= Eθ

[
uY0E

[
vY1
∣∣Y0

]]
= pgfY (u(1− α+ αv)) pgfε(v),

which, by Theorem 4.2.5 may be rewritten as

ψ(u, v; θ) = exp

(
λ

∞∑
i=0

[Hθ(1− αi + αiu(1− α+ αv))− 1]

)
exp(µ(Hθ(v)− 1)).

This immediately implies Assumptions (A2) (ii). For part (iii), a sufficient condition is

the existence of an ε′ > 0 such that ∂
∂θψ(1+ε′, 1+ε′; θ0) <∞ and ∂2

∂2θ
ψ(1+ε′, 1+ε′; θ′) <

∞ for θ′ ∈ Θ. Again, this follows from the equation above, as we may simply choose ε′

so that ε′(1 + 2α) < ε.
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Lemma 6.1.4 (Schweer (2015a), Example 1). Let (Yt)t∈Z be a Poisson INARCH(1)
process as in (6.1). Then (Yt)t∈Z satisfies Assumptions (A2) (ii) and (iii).

Proof. All moments of (Yt)t∈Z are finite (cf. Ferland et al. (2006)), hence we may consider
the joint mgf

Eθ [exp (sY0 + tY1)] = Eθ
[
exp (sY0)E

[
exp (tY1)

∣∣Y0

]]
= exp (β (exp(t)− 1))Eθ [exp (Y0(s+ α(exp(t)− 1)))] , (6.8)

where the second equality follows from (6.1) since Y1 given Y0 is Poisson distributed,
and the mgf of X ∼ Poi(λ) satisfies mgfX(t) = pgfX(et) = exp(λ(et−1)). The last term
of (6.8) may be expressed in terms of the moments of Y0 as

∑∞
i=0 Eθ[Y i

0 ]xi/i!, where
x := s + α(exp(t) − 1). From Example 2 in Weiß (2009) it can easily be seen that for
each i ∈ N, Eθ[Y i

0 ] is a twice continuously differentiable function in θ = (β, α). Now,
substituting s := log(u) and t := log(v) in (6.8) proves that Assumption (A2) (ii) holds
for fixed u, v > 0, the special cases u = 0 and v = 0 can be dealt with by calculating
ψ(0, v; θ) and ψ(u, 0; θ) directly, using (6.1). Similarly, ∂2

∂2θ
Eθ[exp(ε(Y0 + Y1))] can be

seen to be finite for some ε > 0. As in Lemma 6.1.3, this suffices for (A2) (iii).

Using Assumptions (A1) and (A2), the first result of this chapter can be shown, which
provides a functional central limit theorem for the integrands of (6.6). This proof deals
with convergence in distribution in the Banach space C[0, 1]2 of all continuous real func-
tions g on the square [0, 1]2, equipped with the uniform norm ‖g‖∞ = sup0≤u,v≤1 |g(u, v)|.
As in the more commonly used space C[0, 1], convergence in distribution is shown by
proving convergence of the finite-dimensional distributions and proving tightness of the
sequences involved. Tightness criteria in C[0, 1]k are hard to come by. The classical
reference for such criteria is Bickel and Wichura (1971). However, their results are
not applicable in the context of Theorem 6.1.6, as the condition of vanishing along the
lower boundary does not hold for the processes under consideration. As a remedy, a
generalization of Theorem 12.3. in Billingsley (1968) is given in the following lemma.

Lemma 6.1.5 (Schweer (2015a), Lemma A.1). Let (Xn(u, v))n∈N with u, v ∈ [0, 1] be a
sequence of random elements of C[0, 1]2. Let there exist constants γ0, γ1, γ2, γ3 > 0 and
α1, α2, α3 > 1, continuous increasing functions F1, F2 on [0, 1] and a finite nonnegative
measure F3 on [0, 1]2 with continuous marginals such that

(i) E[|Xn(0, 0)|γ0 ] <∞,

(ii) E[|Xn(u2, 0)−Xn(u1, 0)|γ1 ] ≤ |F1(u2)− F1(u1)|α1 for all u1, u2 ∈ [0, 1],

(iii) E[|Xn(0, v2)−Xn(0, v1)|γ2 ] ≤ |F2(v2)− F2(v1)|α2 for all v1, v2 ∈ [0, 1] and

(iv) E[|Xn(u2, v2) −Xn(u2, v1) −Xn(u1, v2) + Xn(u1, v1)|γ3 ] ≤ F3([u1, u2] × [v1, v2])α3

for all u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2.

Then the sequence (Xn(u, v))n∈N is tight in C[0, 1]2.
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The proof is omitted, it follows immediately from Theorem 1 in Lachout (1988) to-
gether with the restatement in terms of moments, cf. eq. (12.51) in Billingsley (1968).
Note that the first condition is in place to ensure that the probability of the sequence
exceeding a given bound is low enough. For brevity, the presentation of this result
is restricted to the 2-dimensional case. To simplify notation, we introduce the func-
tions ak(u, v) := uYkvYk+1 − ψ(u, v; θ0) and bk(u, v) := l(θ0; k) · ( ∂∂θψ(u, v; θ0))> for each
u, v ∈ [0, 1], k ∈ Z, where l(·) is given as in Assumption (A2).

Theorem 6.1.6 (Schweer (2015a), Theorem 2).

(i) Let Assumption (A1) be satisfied. Then for each (u1, v1), (u2, v2) ∈ [0, 1]2, the
series

κ1(u1, v1;u2, v2) =
∑
k∈Z

Eθ0 [a0(u1, v1)ak(u2, v2)]

converges absolutely. Furthermore,

√
T
(
ψ̂T (u, v)− ψ(u, v; θ0)

)
D→ Ψ1,

a zero mean Gaussian element in C[0, 1]2, with covariance function κ1(·).

(ii) Let Assumptions (A1) and (A2) be satisfied. Then for (u1, v1), (u2, v2) ∈ [0, 1]2,
the series

κ2(u1, v1;u2, v2) =
∑
k∈Z

Eθ0 [(a0(u1, v1)− b0(u1, v1)) (ak(u2, v2)− bk(u2, v2))]

converges absolutely . Furthermore,

√
T
(
ψ̂T (u, v)− ψ(u, v; θ̂T )

)
D→ Ψ2,

a zero mean Gaussian element in C[0, 1]2 with covariance function κ2(·).

Proof. Let us begin with (i). Define

AT (u, v) :=
√
T (ψ̂T (u, v)− ψ(u, v; θ0)) =

1√
T

T∑
i=1

ai(u, v),

by (6.5) and the stationarity of (Yt)t∈Z,

Eθ0
[
|AT (0, 0)|2

]
= Varθ0

(
1√
T

T∑
i=1

1{Yi=0,Yi+1=0}

)
. (6.9)

Now, let u1, u2 ∈ [0, 1] with u1 < u2. The function
∑∞

k=0 ku
k−1Pθ0(Y0 = k, Y1 = 0) is

a power series in u which converges at u = 1, as E[Y01{Yi+1=0}] is finite. Thus, Abel’s
uniform convergence test ensures that summation and derivation may be interchanged,
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yielding ∂
∂uψ(u, 0; θ0) = Eθ0 [Y0u

Y0−11{Yi+1=0}]. For the function ψ̂T (u, 0) similar argu-
ments apply. It follows that AT (u, 0) is continuously differentiable in u on the interval
[0, 1], and the mean value theorem yields the existence of a c ∈ (u1, u2) such that
(AT (u2, 0)−AT (u1, 0))/(u2 − u1) = ∂

∂uAT (c, 0). It follows that

Eθ0
[
|AT (u2, 0)−AT (u1, 0)|2

]
≤ |u2 − u1|2 sup

c1∈[0,1]
Varθ0

(
1√
T

T∑
i=1

Yic
Yi−1
1 1{Yi+1=0}

)
.

(6.10)

An analogous expression can be obtained for Eθ0 [|AT (0, v2) − AT (0, v1)|2]. Now, let
u1, u2, v1, v2 ∈ [0, 1], with u1 < u2, v1 < v2. Since Eθ0 [Y0Y1] is bounded by assumption,

Abel’s uniform convergence test implies ∂2

∂u∂vψ(u, v; θ0) = Eθ0 [ ∂2

∂u∂vu
Y0vY1 ], similar argu-

ments apply to ψ̂T (u, v). Hence, using the mean value theorem twice (first in the first,
then in the second argument of the function),

Eθ0
[
|AT (u2, v2)−AT (u2, v1)−AT (u1, v2) +AT (u1, v1)|2

]
≤ |v2 − v1|2 |u2 − u1|2 sup

c2,c3∈[0,1]
Varθ0

(
1√
T

T∑
i=1

YiYi+1c
Yi−1
2 c

Yi+1−1
3

)
. (6.11)

For any fixed c1, c2, c3 ∈ [0, 1], the stationary sequences appearing in the variances
above, (1{Yt=0,Yt+1=0})t∈Z in (6.9), (Ytc

Yt−11{Yt+1=0})t∈Z in (6.10) and the third sequence,

(YtYt+1c
Yt−1
2 c

Yt+1−1
3 )t∈Z in (6.11) are all functions of (Yt)t∈Z and thus α-mixing with

exponentially decreasing weights, cf. Lemma 6.1.2. Now, each element of these sequences
has finite moments of order at least 2 + ξ for some ξ > 0. For the first sequence, this is
obvious; for the second and third use Eθ0 [|YtYt+1c

Yt−1
2 c

Yt+1−1
3 |2+ξ] ≤ Eθ0 [|YtYt+1|2+ξ] for

any c2, c3 ∈ [0, 1] and employ the assumption. Using Theorem 2.5.2, it follows that all
of these variances are uniformly bounded for all T ∈ N and all c2, c3 ∈ [0, 1], and with
Lemma 6.1.5 it follows that the sequence AT is tight on C[0, 1]2.

For the finite-dimensional distributions, let l ∈ N and (u1, v1), . . . , (ul, vl) ∈ [0, 1]2 and
let r1, . . . , rl ∈ R. Then the sequence

∑l
j=1 rjai(uj , vj) is α-mixing with exponentially de-

creasing weights and it has finite moments of order at least 2+ξ by assumption. Theorem
2.5.2 yields asymptotic normality of the random variable 1√

T

∑T
i=1

∑l
j=1 rjai(uj , vj), and

application of the Cramér-Wold device shows the convergence of the finite-dimensional
distributions. The asserted covariance structure follows immediately, cp. the proof of
Theorem 3.2.4.

For assertion (ii), first define

BT (u, v) :=
1√
T

T∑
i=1

bi(u, v),

then with the Cauchy-Schwarz inequality,

Eθ0 [|BT (u, v)|2] ≤
∥∥∥∥ ∂∂θψ(u, v; θ0)

∥∥∥∥2 d∑
k=1

Eθ0

 1

T

(
T∑
i=1

l(θ0; i)k

)2
 ,
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where ‖ · ‖ denotes the Euclidean norm. By Theorem 6.1.2, (Yt)t∈Z is α-mixing with
exponentially decreasing weights and due to the assumptions on l(·), Theorem 1.7 in
Ibragimov (1962) is applicable. This shows that the summands converge for T →∞ and
are uniformly bounded in T by C1 :=

∑d
k=1

∑
t∈Z Eθ0 [l(θ0; 0)kl(θ0; t)k], which is finite.

Hence, the finite-dimensional distributions can be shown to converge in an analogous
fashion as in part (a) of this theorem.

With Abel’s uniform convergence criterion, the assumption implies uniform conver-
gence of

∑∞
k,l=0 ku

k−1lvl−1 ∂
∂θPθ0(Y0 = k, Y1 = l) on [0, 1]2. Thus, summation and differ-

entiation may be exchanged, yielding that the function ∂3

∂u∂v∂θψ(u, v; θ0) is continuous

in u, v on [0, 1]2, similarly for ∂2

∂u∂θψ(u, v; θ0) and ∂2

∂v∂θψ(u, v; θ0). As a first consequence,

Eθ0 [|BT (0, 0)|2] ≤ C1‖ ∂∂θψ(0, 0; θ0)‖2 <∞. Application of the mean value theorem as in
the proof of Theorem 6.1.6 (a) implies

Eθ0 [|BT (u2, 0)−BT (u1, 0)|2]

C1|u2 − u1|2
≤ sup

c4∈[0,1]

∥∥∥∥ ∂2

∂u∂θ
ψ(c4, 0; θ0)

∥∥∥∥2

.

The supremum is finite, as it is taken over a compact set. It is obvious that an analogous
result can be shown for Eθ0 [|Bn(0, v2)−B(0, v1)|2]. Now, for the last condition of Lemma
6.1.5, applying the mean value theorem twice yields

Eθ0
[
|BT (u2, v2)−BT (u2, v1)−BT (u1, v2) +BT (u1, v1)|2

]
≤ C1 |u2 − u1|2 |v2 − v1|2 sup

c5,c6∈[0,1]

∥∥∥∥ ∂3

∂u∂v∂θ
ψ(c5, c6; θ0)

∥∥∥∥2

,

implying tightness of the sequence. Taylor’s theorem, applicable to the function ψ(u, v; θ)
w.r.t. the parameter θ by assumption, yields the existence of a random vector θ̃ ∈ Θ on
the line segment between θ0 and θ̂T such that

ψ(u, v; θ̂T )

= ψ(u, v; θ0) + (θ̂T − θ0)

(
∂

∂θ
ψ(u, v; θ0)

)>
+

1

2
(θ̂T − θ0)

∂2

∂2θ
ψ(u, v; θ̃)(θ̂T − θ0)>.

Abel’s uniform convergence criterion shows that both ∂
∂θψ(u, v; θ0) and ∂2

∂2θ
ψ(u, v; θ′)

are bounded on [0, 1]2. Since the estimator θ̂T is
√
T -consistent, Slutsky’s lemma implies

Pθ0

(
sup

(u,v)∈[0,1]2

∣∣∣∣∣rT
(
∂

∂θ
ψ(u, v; θ0)

)>
+

√
T

2
(θ̂T − θ)

∂2

∂2θ
ψ(u, v; θ̃)(θ̂T − θ)>

∣∣∣∣∣ ≥ ε
)
→ 0.

for T → ∞, recall the definition of rT in Assumption (A2) (i). Both of these results
together show that

√
T (ψ̂T (u, v)−ψ(u, v; θ̂T )) = AT (u, v)−BT (u, v)+oP(1) holds. Since

the sum of two tight sequences is tight again, this concludes the proof.

It should be noted that in the special cases of INAR(1) and Poisson INARCH(1)
processes, a similar result as that of Corollary 6.1.7 is shown in Hudecová et al. (2015),
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Theorem 4.1 and Theorem 4.4, respectively, with two differences: First, the authors
use the particular structure of these models to obtain semi-parametric estimates of the
marginal pgf under the null hypothesis, whereas here the structure is nonparametric,
rendering the result viable in a much more general setting. Second, the authors consider
the one-dimensional empirical probability generating function (epgf) instead of the (two-
dimensional) ejpgf. For further comparisons of these two approaches within a simulation
study, the reader is referred to Section 6.4.3.

In view of establishing asymptotic distributional results, Theorem 6.1.6 immediately
implies the convergence in distribution of statistics (6.6) to

∫ 1
0

∫ 1
0 Ψ1(u, v)2uavadudv and∫ 1

0

∫ 1
0 Ψ2(u, v)2uavadudv, respectively. It is well known (cf. for instance the paragraph

preceding Theorem 2.1 in Baringhaus and Henze (1992)) that the distribution of the
latter integral coincides with that of

∑
j≥1 λ1;jZ

2
1;j , where the Z1;j ’s are independent

standard normal random variables. The λ1;j ’s are the eigenvalues of the integral operator
associated with the covariance function κ1(u1, v1;u2, v2)(u1v1)a(u2v2)a, i.e.∫ 1

0

∫ 1

0
κ1(u1, v1;u, v)(u1v1)a(uv)ag1;j(u, v)dudv = λ1;jg1;j(u1, v1), for u, v ∈ [0, 1].

(6.12)
Here, g1;j(u, v) denotes a continuous eigenfunction for each j ∈ N, defined on [0, 1]2.
This leads to the following result.

Corollary 6.1.7 (Schweer (2015a), Corollary 3).

(i) Let Assumption (A1) be satisfied. Then there exist eigenvalues, denoted by λ1;j,
satisfying (6.12) for the covariance function κ1(u1, v1;u2, v2)(u1v1)a(u2v2)a such
that

WT,a(Y1, . . . , YT+1; θ0)
D−→
∑
j≥1

λ1;jZ
2
1;j ,

where the Z1;j’s denote independent standard normal random variables and where
the series converges in the L2-sense.

(ii) Let Assumptions (A1) and (A2) be satisfied. Then there exist eigenvalues, denoted
by λ2;j, satisfying (6.12) for the covariance function κ2(u1, v1;u2, v2)(u1v1)a(u2v2)a

such that
WT,a(Y1, . . . , YT+1; θ̂T )

D−→
∑
j≥1

λ2;jZ
2
2;j

where the Z2;j’s denote independent standard normal random variables and where
the series converges in the L2-sense.

The eigenvalues present in the formulation of Corollary 6.1.7 depend on the particular
transition probabilities given by the model (6.2) as well as on the unknown parameter θ0.
We strongly believe that the explicit calculation of these eigenvalues is either extremely
difficult or entirely impossible. Hence, the use of a resampling technique is advised
in order to establish quantiles of the asymptotic distributions of the statistics given in
Corollary 6.1.7. Since the underlying structure of the processes considered is a parametric
one, a parametric bootstrap approach is employed, see Section 6.3.
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6.1.2 Asymptotics for the Empirical CDF of the Stationary
Distribution

Turning towards the possible application of these results, it is clear that one obsta-
cle is given by the necessity to calculate Eθ[uY0vY1 ] =

∑∞
k,l=0 u

kvlπθ(k)pθ(l|k). For
models satisfying (6.2), the transition probabilities pθ(k, l) are readily available. Un-
fortunately, the same does not hold true for the stationary distribution πθ(k) or its cdf
Πθ(x) =

∑x
k=0 πθ(k). There are notable exceptions to this rule, see for instance Theorem

4.2.5. However, there are no general results available for the stationary distribution of
processes satisfying Condition 1. One possibility to circumvent this problem is to esti-
mate the stationary distribution nonparametrically. The necessary distributional theory
is provided by the following Theorem 6.1.8 in the form of a functional central limit the-
orem. As this theorem is dealing with discrete distributions, we consider the space c0 of
(2.1), cf. Section 2.1.

Theorem 6.1.8 (Schweer (2015a), Theorem 3). Let (Yt)t∈Z be a process satisfying Con-

dition 1 with parameter θ ∈ Θ and assume that Eθ[Y 2+ξ
0 ] < ∞, where ξ > 0. Then

for all x, y ∈ N0, the sequences σ2
xy =

∑
i∈Z [Pθ (Y0 ≤ x, Yi ≤ y)−Πθ(x)Πθ(y)] converge

and there exists a zero mean Gaussian element Ξ of c0 such that Eθ[Ξ(x)Ξ(y)] = σ2
xy.

Furthermore,

√
T

(
1

T

T∑
i=1

1{Yi≤x} −Πθ(x)

)
D→ Ξ.

Proof. (Yt)t∈Z is α-mixing with exponentially decreasing weights by Theorem 6.1.2, im-
plying the same characteristic for the sequence (1{Yt≤x})t∈Z for any x ∈ N0. The mo-
ments of this sequence are trivially bounded, so that the CLT of Theorem 2.5.2 is appli-
cable. Similar to the proof of Theorem 6.1.6, this result is extended to the multivariate
case, proving the convergence of the finite-dimensional distributions.

Lemma 2.1.3 provides two sufficient and necessary conditions for tightness in c0. The

first condition is satisfied since
√
T
(

1
T

∑T
i=1 1{Yi≤x} −Πθ(x)

)
converges in distribution

to a normal distribution with zero mean and bounded variance for each x ∈ N0. The
second condition necessitates that for each positive numbers δ, ε there exist integers T0

and l0 such that

Pθ

(
sup
k≥l0

√
T

∣∣∣∣∣ 1

T

T∑
i=1

1{Yi≤k} −Πθ(k)

∣∣∣∣∣ > ε

)
≤ δ for all T ≥ T0. (6.13)

Since (1{Yt≤k})t∈Z is α-mixing, Davydov’s inequality (cf. eq. (2.2) in Davydov (1968))
implies the upper bound

∣∣Covθ
(
1{Y0≤k},1{Yi≤k}

)∣∣ ≤ 12Eθ
[∣∣1{Y0≤k} −Πθ(k)

∣∣4] 1
2
α(i)

1
2 ≤ 12(1−Πθ(k))

1
2α(i)

1
2 .
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Now, let δ, ε > 0. With Markov’s inequality,

Pθ

(
sup
k≥l0

√
T

∣∣∣∣∣ 1

T

T∑
i=1

1{Yi≤k} −Πθ(k)

∣∣∣∣∣ > ε

)
≤
∞∑
k≥l0

Pθ

(
√
T

∣∣∣∣∣ 1

T

T∑
i=1

1{Yi≤k} −Πθ(k)

∣∣∣∣∣ > ε

)

≤ 1

ε2

∞∑
k≥l0

Varθ

(
1√
T

T∑
i=1

1{Yi≤k}

)
≤ 1

ε2

(
1 + 24

T−1∑
i=1

T − i
T

√
α(i)

) ∞∑
k≥l0

√
1−Πθ(k),

the last inequality follows by Davydov’s inequality and the stationarity of (1{Yt≤k})t∈Z.
The former series converges as the weights α(i) are exponentially decreasing by Theorem
6.1.2, the latter series

∑∞
k≥1

√
1−Πθ(k) converges under the assumption of existing

moments up to order 2 + ξ for the distribution Πθ (cf. Lemma 3.2.3). Thus it is possible
to chose a l0 large enough so that the RHS of the expression above is less than δ, proving
(6.13) and rendering Lemma 2.1.3 applicable.

6.2 Auxiliary Results

In this section, several results extending the scope of Corollary 6.1.7 and Theorem 6.3.2
are recorded. In Section 3 of Meintanis and Karlis (2014), the authors point out that
letting a grow large in (6.6) means putting more weight on higher values of u, v. Since
the moments of a random variable can be recovered via the one-sided derivative of the
pgf evaluated at points tending to one, it is expected that the limiting behavior of the
statistics should be connected to deviations of the corresponding moment estimators. In
the following two results, two different types of such connections are proven.

As the integrands in the expression (6.6) are two-dimensional functions, the following
generalization of Proposition 1.1. of Baringhaus et al. (2000) will be employed. The
proof is essentially the same as that of Corollary 1a, Ch. V of Widder (1946).

Proposition 6.2.1 (Cp. Baringhaus et al. (2000), Proposition 1.1). Let the function
g : [0,∞) × [0,∞) → R be measurable and integrable over compact subsets and let∫∞

0

∫∞
0 g(s, t)e−ase−atdsdt be finite for each a > 0. Denote the Gamma function by Γ(·).

If for some γ1, γ2 ≥ 0 and some real constant A

lim
s,t→0

g(s, t)Γ(γ1 + 1)Γ(γ2 + 1)s−γ1t−γ2 = A,

then

lim
a→∞

aγ1+γ2+2

∫ ∞
0

∫ ∞
0

g(s, t)e−ase−atdsdt = A.

Proof. First, we note that by the definition of the Gamma function and integration by
substitution,

Γ(γ + 1) =

∫ ∞
0

e−ttγdt = aγ+1

∫ ∞
0

e−attγdt for a ≥ 0. (6.14)
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This immediately shows that

aγ1+γ2+2

∫ ∞
0

∫ ∞
0

g(s, t)e−ase−atdsdt−A

= aγ1+γ2+2

∫ ∞
0

∫ ∞
0

e−ase−at
(
g(s, t)− Asγ1tγ2

Γ(γ1 + 1)Γ(γ2 + 1)

)
dsdt. (6.15)

Let us separate the latter integral in several parts. With T > 0, the integral over
[0, T ]× [0, T ] is bounded by

sup
0≤t,s≤T

(
g(s, t)Γ(γ1 + 1)Γ(γ2 + 1)s−γ1t−γ2 −A

)
·
∫ T

0

∫ T

0

e−as(as)γ1e−at(at)γ2

Γ(γ1 + 1)Γ(γ2 + 1)
dsdt,

the latter integral is bounded by 1 due to (6.14). Concerning the remaining integrals of
6.14, the assumption implies that g(s, t) = o(eε1s+ε2t) for ε1, ε2 > 0 by Theorem 2.2(a)
in Widder (1946). This shows that all of these integrals can be bounded by expressions
of the form

M1
aγ1+γ2+1

a− ε1
e(ε1−a)T ,

which converge to 0 as a→∞. In summary, the expression (6.15) is bounded the supre-
mum sup0≤t,s≤T (g(s, t)Γ(γ1 + 1)Γ(γ2 + 1)s−γ1t−γ2 −A) independently of T , so letting
T → 0 concludes the proof.

In order to see why the preceding result is of use when dealing with statistics of the
form (6.6), perform the substitution s := − log(u) and t := − log(v) which yields

WT,a(y1, . . . , yT+1; θ)

= T

∫ ∞
0

∫ ∞
0

(
ψ̂T
(
e−s, e−t

)
− ψ

(
e−s, e−t; θ

))2
e−(a+1)se−(a+1)tdsdt.

6.2.1 Connection to the Index of Dispersion

Under the assumption of (Yt)t∈Z being a Poisson INAR(1) process (see (1.1)), two pa-
rameters are of interest, the mean of the observations λ and the thinning operator α.
Since the marginal distribution of a Poisson INAR(1) process is Poisson distributed by
Lemma 4.1.4, it holds that λα = Covθ(Y0, Y1) =: γ(1), so that a different choice for the
governing parameter is possible, θ = (λ, γ(1)). Now, recalling that the data is implicitly
assumed to be in pairs of the form (Y1, Y2), (Y2, Y3) and so forth, there are actually two
estimators for λ, given by λ̂T,1 := 1

T

∑T
i=1 Yi and λ̂T,2 := 1

T

∑T
i=1 Yi+1, corresponding

to the respective position of the data in the pair of observations. For γ(1), the Yule-
Walker estimator is given by γ̂T (1) := (

∑
YiYi+1)/T − λ̂T,1λ̂T,2. This meticulousness in

the choice of estimators is necessary, because the result of Proposition 6.2.2 does not
deal with asymptotic results but holds for finite T . Other choices of estimators for this
situation only lead to comparable results when letting T grow at at a rate proportional
to a, cp. the statement and assertion of Proposition 6.2.3. Throughout this section, let
Ra(s, t) denote a generic, infinite collection of terms, each of which is in O(sxty) for some
x, y satisfying x+ y > a.
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Proposition 6.2.2 (Schweer (2015a), Proposition 4.1). Let θ̂T = (λ̂T,1, λ̂T,2, γ̂T (1)) be
given as above and let (Yt)t∈Z be a Poisson INAR(1) process. Then

lim
a→∞

a6WT,a

(
Y1, . . . , YT+1; θ̂T

)
=

14

T

 T∑
i=1

Y 2
i −

T∑
i=1

Yi −
1

T

(
T∑
i=1

Yi

)2
2

+O

(
1

T

)
.

Proof. Taking hints from the proof of Theorem 4.1. in Baringhaus et al. (2000), first
write

ψ̂T (e−s, e−t) =
1

T

T∑
i=1

e−sYie−tYi+1 =

∞∑
ϑ1,ϑ2=0

(−1)ϑ1+ϑ2

ϑ1!ϑ2!

(
1

T

T∑
i=1

Y ϑ1
i Y ϑ2

i+1

)
sϑ1tϑ2 ,

similarly for ψ(e−s, e−t; θ̂T ). In the resultant expression for ψ̂T (e−s, e−t)−ψ(e−s, e−t; θ̂T ),
it is clear that the coefficient of the term s0t0 is zero. The coefficients of the terms s, t
and st are zero by the definition of λ̂T,1, λ̂T,2 and γ̂T (1), respectively. For ϑ1 = 2, ϑ2 = 0,

define SY,T ;1 := 1
T

∑T
i=1 Y

2
i −Eθ̂T [Y 2

0 ]. Since Eθ̂T [Y 2
0 ] = λ̂2

T,1+λ̂T,1 it holds that SY,T ;1 6= 0
with positive probability, similarly comments apply for the case ϑ1 = 0, ϑ2 = 2. Hence,

(
ψ̂T (e−s, e−t)− ψ(e−s, e−t; θ̂T )

)2
e−se−t =

[
1

2
SY,T ;1s

2 +
1

2
SY,T ;2t

2 +R2(s, t)

]2

e−s−t

=
1

4
S2
Y,T ;1s

4 +
1

4
S2
Y,T ;2t

4 +
1

2
SY,T ;1SY,T ;2s

2t2 +R4(s, t).

It follows with Proposition 6.2.1, that

lim
a→∞

Ta6

∫ ∞
0

∫ ∞
0

(
ψ̂T (e−s, e−t)− ψ(e−s, e−t; θ̂T )

)2
e−se−te−as−atdsdt

= T
Γ(5)

4

(
S2
Y,T ;1

)2
+ T

Γ(5)

4

(
S2
Y,T ;2

)2
+ T

Γ(3)2

2

(
S2
Y,T ;1

) (
S2
Y,T ;2

)
.

Since S2
Y,T ;1 = S2

Y,T ;2 +O(1/T ), this concludes the proof.

The connection between this limiting expression and the index of dispersion of (Yt)t∈Z
and its empirical counterpart of (5.2) can now be evaluated directly. From Proposition
6.2.2 and some algebra,

lim
a→∞

a6WT,a

(
Y1, . . . , YT+1; θ̂T

)
= 14

(
1

T

T∑
i=1

Yi

)2

·
(√

T (ÎY − 1)
)2

+O

(
1

T

)
.

The latter expression converges almost surely to a constant by the ergodicity of (Yt)t∈Z,
hence this expression showcases the connection between the goodness-of-fit test in this
special case and the test for Poissonity established in Corollary 5.1.3.
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6.2.2 Testing for Time-Reversibility

In general, the characteristic of a stochastic process being time-reversible is not common,
yet most of the popular models share it. For instance, in continuous time it is well
known that an AR(p) process is time-reversible if and only if the innovation distribution
is Gaussian. We show a similar result to hold for AAINAR(p) processes in 7.1.2 with
the Poisson distribution replacing the Gaussian distribution. Using this, a test for time-
reversibility could be used as a validation test for a Poisson INAR(1) process.

If a stochastic process (Yt)t∈Z is time-reversible, it follows immediately that the jpgf is
symmetric (cf. Section 2.4), i.e., ψ(u, v; θ0) = ψ(v, u; θ0). Hence, it would be sensible to
reject the null hypothesis of (Yt)t∈Z being a time-reversible process if the (nonparametric)
statistic

VT,a(Y1, . . . , YT+1) := T

∫ 1

0

∫ 1

0

(
ψ̂T (u, v)− ψ̂T (v, u)

)2
uavadudv,

exceeds a certain critical value. It should be noted that under the null hypothesis,

ψ̂T (u, v)− ψ̂T (v, u) = (ψ̂T (u, v)− ψ(u, v; θ0))− (ψ̂T (v, u)− ψ(u, v; θ0)), (6.16)

so that the results of Section 6.1.1 and Section 6.3 are (almost) directly applicable.
Furthermore, the following result highlights the connection between the statistic and
the moment-based criterion of (5.6), cf. (2.10).

Proposition 6.2.3 (Schweer (2015a), Proposition 4.2). Let (Yt)t∈Z be a time-reversible
process satisfying Condition 1 and let all moments of Y0 exist. Let β̂T (1) denote the

estimator defined in (2.11) and let a4

T → 0 as a→∞. Then

lim
a,T→∞

a8VT,a(Y1, . . . , YT+1) = lim
T→∞

6
(√

T · β̂T (1)
)2
.

Proof. Similar to the proof of Proposition 6.2.2, note that

ψ̂T
(
e−s, e−t

)
− ψ̂T

(
e−t, e−s

)
=

∞∑
ϑ1,ϑ2=0

(−1)ϑ1+ϑ2

ϑ1!ϑ2!

[
1

T

T∑
i=1

(
Y ϑ1
i Y ϑ2

i+1 − Y
ϑ2
i Y ϑ1

i+1

)]
sϑ1tϑ2 ,

so that the square of this expression equals

∑
x,y

(sx − tx) (sy − ty)
(
Y x

1 − Y x
T+1

) (
Y y

1 − Y
y
T+1

)
x!y!T 2

+
∑
x

(sx − tx)
(
Y x

1 − Y x
T+1

)
x!T 2

R3(s, t)

+
∑
x

(sx − tx)
(
Y x

1 − Y x
T+1

)
(s− t)st

x!T 2

T∑
i=1

(
Y 2
i Yi+1 − YiY 2

i+1

)
+ s2t2

(s− t)2

4T 2

(
T∑
i=1

(
Y 2
i Yi+1 − YiY 2

i+1

))2

+R6(s, t),
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where the indices x, y range between 1 and 3. In view of Proposition 6.2.1 it is clear
that the terms of interest are those with the lowest exponents of s, t. For the first line
in the expression above, this term is given by ((s− t)(Y1 − YT+1)/T )2 with the limiting
behavior

lim
a,T→∞

Ta8

∫ 1

0

∫ 1

0

(
(s− t)(Y1 − YT+1)

T

)2

e−a(s+t)dsdt = lim
a,T→∞

2a4 (Y1 − YT+1)2

T
= 0,

as a4/T → 0 by assumption. For terms with higher order exponents a similar argument
applies, so that all the terms of the first sum converge to zero as a, T → ∞. For the
second line, consider the term with the lowest exponent for s, t:

lim
a,T→∞

Ta8

∫ 1

0

∫ 1

0
2

(
−t3s+ 2t2s2 − s3t

)
(Y1 − YT+1)

T 2

T∑
i=1

(
Y 2
i Yi+1 − YiY 2

i+1

)
e−a(s+t)dsdt

= lim
a,T→∞

−4 (Y1 − YT+1)
a2

√
T

[
1√
T

T∑
i=1

(
Y 2
i Yi+1 − YiY 2

i+1

)]
.

Since (Yt)t∈Z is α-mixing and all moments exist, the latter factor is asymptotically normal
by Theorem 2.5.2. Slutsky’s lemma together with a2/

√
T → 0 implies the convergence

of this expression to 0, similar comments apply to higher order exponents. It is easily
seen that the limiting behavior of the remaining term

lim
a,T→∞

Ta8

∫ 1

0

∫ 1

0
s2t2

(s− t)2

4T 2

(
T∑
i=1

(
Y 2
i Yi+1 − YiY 2

i+1

))2

e−a(s+t)dsdt

coincides with the assertion and that the higher order terms all converge to zero by
analogous arguments as used before in this proof.

Similar to the above, this result links the goodness-of-fit test based on the statistic
VT,a(Y1, . . . , YT+1) (in the special case of a Poisson INAR(1) process, which satisfies the
conditions by Lemma 4.1.4 and Theorem 4.1.8) to that established by Theorem 5.2.1. It
is noteworthy that in this special case, the resulting covariance kernel of the integrand
of the statistic VT,a may be explicitly calculated. We state the result here, mainly in
order to show the complexity of the resulting structures.

Corollary 6.2.4. Let (Yt)t∈Z be a Poisson INAR(1) process and let f(x) := exp(λx).
Then for each (u1, v1), (u2, v2) ∈ [0, 1]2, the series

σ(u1, v1;u2, v2) =

A(u1, u2; v1, v2) + 2B(u1, u2; v1, v2)
∞∑
k=0

Ck(u1, u2; v1, v2)Dk(u1, u2; v1, v2)

converges absolutely, where

A(u1, u2; v1, v2) = f

(
αu1u2v1v2 − 2 + α

1− α

)
[2f (u1u2 + v1v2)− 2f (v1u2 + u1v2)] ,
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B(u1, u2; v1, v2) = f

(
u1 + u2 + v1 + v2 − 3 +

α(u1v1 + u2v2)− 1− α
1− α

)
,

Ck(u1, u2; v1, v2) = f

(
αk

(1− αu1v1)(1− αu2v2)

1− α

)
and

Dk(u1, u2; v1, v2) =
[
f
(
αk(−v1 − u2 + α(u1v1u2 + v1u2v2) + (1− α)v1u2)

)
− f

(
αk(−u1 − u2 + α(u1v1u2 + u1u2v2) + (1− α)u1u2)

)
− f

(
αk(−v1 − v2 + α(u1v1v2 + v1u2v2) + (1− α)v1v2)

)
+ f

(
αk(−u1 − v2 + α(u1v1v2 + u1u2v2) + (1− α)u1v2

) ]
.

Furthermore,

√
T
(
ψ̂T (u, v)− ψ̂T (v, u))

)
D→ Ψ3,

a zero mean Gaussian element in C[0, 1]2, with covariance function σ(u1, v1;u2, v2).

Proof. Using (6.16), Theorem 6.1.6 (i) may be applied. The sum and difference of jointly
normal distributions is normally distributed again, and the sum of two tight sequences is
tight again, this proves the convergence in distribution on C[0, 1]2. Only the covariance
kernel remains to be calculated, yielding

σ(u1, v1;u2, v2)

= κ1(u1, v1;u2, v2)− κ1(v1, u1;u2, v2)− κ1(u1, v1; v2, u2) + κ1(v1, u1; v2, u2),

and each of these summands satisfies (barring a permutation of the argument)

κ1(u1, v1;u2, v2) =
∑
k∈Z

Eθ0
[
uY01 vY11 uYk2 v

Yk+1

2

]
.

Since (Yt)t∈Z is an INAR(1) process, successive conditioning of the expectations leads to

E
[
zY00 zY11 · · · z

Yk+1

k+1

]
= pgfY

(1− α)
k∑
j=0

αj
j∏
i=0

zi + αk+1
k+1∏
i=0

zi

pgfε(zk+1)

k∏
r=1

pgfε

(1− α)

r−1∑
j=0

αj
r∏

i=r−j
zk+1−i + αr

k+1∏
i=k+1−r

zi

 . (6.17)

Setting z2 = · · · = zk−1 = 1, this relation simplifies to

E
[
zY00 zY11 zYkk z

Yk+1

k+1

]
= pgfY

(1− α)

z0 + z0z1

k−1∑
j=1

αj + αkz0z1zk

+ αk+1z0z1zkzk+1

 · pgfε(zk+1)·

117



pgfε ((1− α)zk + αzkzk+1) · · · pgfε

(1− α)

k−3∑
j=0

αj + (1− α)αk−2zk + αk−1zkzk+1

 ·
pgfε

(1− α)
k−2∑
j=0

αjz1 + (1− α)αk−1z1zk + αkz1zkzk+1

 .

In our case, it holds that pgfY (z) = exp( λ
1−α(z− 1)) and pgfε(z) = exp(λ(z− 1)). Thus,

we obtain

= (z0 + z1 + zk + zk+1 − 3) +
1

1− α
(α(z0z1 + zkzk+1)− 1− α)

+ αk−1

(
α(z0z1zk + z1zkzk+1)− (z1 + zk) + (1− α)z1zk +

(1− αz0z1)(1− αzkzk+1)

1− α

)
.

Now, let us consider special cases. First, (6.17) yields

E
[
zY00 zY11 zY22

]
= exp

[
λ

(
z0 + z1 + z2 − 2− 1

1− α
+ α(z0z1 + z1z2 − z1) +

α2z0z1z2

1− α

)]
,

furthermore,

E
[
zY00 zY11

]
= pgfY ((1− α)z0 + αz0z1)) pgfε(z1)

= exp

(
λ

[
z0 + z1 − 1− 1

1− α
+
αz0z1

1− α

])
.

In total, these results imply the assertion.

6.3 Parametric Bootstrap

Looking at the resultant covariance structure in Theorem 6.1.6 and especially in Corol-
lary 6.2.4, it is reasonable to assume that this structure is not available to us explicitly.
Hence, in order to apply these results in practice, we establish an appropriate form of re-
sampling technique, i.e., we employ a bootstrapping procedure similar to that of Section
3.3.

For the implementation of such a (parametric) bootstrap procedure, first note that
the statistic (6.6) can be explicitly calculated with

∫ 1
0 u

xdu = 1
1+x . For an underlying

process (Yt)t∈Z and a realization (y1, . . . , yT+1),

WT,a(y1, . . . , yT+1; θ) =
1

T

T∑
i,j=1

1

(yi + yj + a′)(yi+1 + yj+1 + a′)

− 2

T∑
i=1

∞∑
k,l=0

πθ(k)pθ(l|k)

(yi + k + a′)(yi+1 + l + a′)
+ T

∞∑
k1,k2,l1,l2=0

πθ(k1)pθ(l1|k1)πθ(k2)pθ(l2|k2)

(k1 + k2 + a′)(l1 + l2 + a′)
,

(6.18)
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recalling the notation of (6.2) and setting a′ := a + 1. Algorithm 1 is formulated for
testing the (composite) null hypothesis (6.4), it can easily be modified for the situation
(6.3).

Algorithm 1 (Bootstrap).

(i) Estimate the parameter θ by θ̂T based on the realization (y1, . . . , yT+1), where θ̂T
satisfies Assumption (A2) (i).

(ii) Compute the test statistic W0 := WT,a(y1, . . . , yT+1; θ̂T ) given in (6.18).

(iii) Generate stationary bootstrap data (Y ∗1 , . . . , Y
∗
T+1) by using (6.2) with fθ̂T .

(iv) Estimate the parameter θ̂T by θ̂∗T based on the realization (Y ∗1 , . . . , Y
∗
T+1), where θ̂∗T

satisfies Assumption (A2∗) (i) below.

(v) Compute the test statistic W ∗ := W ∗T,a(Y
∗

1 , . . . , Y
∗
T+1; θ̂∗T ) given in (6.18).

(vi) Repeat steps (v)-(vii) B times to obtain the sequence of statistics W ∗1 , . . .W
∗
B.

Denoting the corresponding order statistics by W ∗(1) ≤ W ∗(2) ≤ · · · ≤ W ∗(B), the null
hypothesis is then rejected at a significance level β if W0 > W ∗(B·(1−β)). In the algorithm,

the notation W ∗T,a(·) denotes the expression (6.18), where the measure Pθ is replaced
with the measure P∗θ conditional on the realization (y1, . . . , yT+1). Similar comments
apply to E∗, Var∗, Cov∗ as well as ψ∗(u, v; θ). The notation R∗T = oP∗(aT ) is used if
P∗(‖R∗T ‖/|aT | > ε) → 0 in probability for all ε > 0. Quite obviously, the bootstrap
process also needs to adhere to a certain set of assumptions in order for theoretical
results to be available.

Assumption (A1∗).

(i) The (stationary) bootstrap process satisfies Condition 1 for θ = θ̂T .

(ii) The function ψ(u, v; θ) is continuous as a function of θ for all u, v ∈ [0, 1]2.

(iii) It holds that θ̂T → θ0 almost surely.

(iv) It holds that E∗
θ̂T

[|Y ∗0 Y ∗1 |2+ξ] for some ξ > 0.

It should be pointed out that the assumption of stationarity is not a very strong one as
the structure imposed by the drift condition implies geometric ergodicity, cf. Theorem
6.1.2. Thus, starting at some point and simulating an appropriate pre-run to later
discard should be enough to fulfil this assumption in practice, see Section 6.4.

Furthermore, we record the following result, which considers the mixing behavior of
the bootstrapped process resulting from Algorithm 1. It turns out that this process
maintains the mixing behavior of the true data generating process.
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Lemma 6.3.1 (Schweer (2015a), Lemma B.1). Let Assumption (A1∗) hold. Then the
conditionally Markov chain (Y ∗t )t∈Z is conditionally α-mixing with exponentially decreas-
ing weights α∗(n). Furthermore, α∗(n)→ α(n) almost surely, where α(n) are the weights
defined in Theorem 6.1.2.

Proof. By Assumption (A1∗), (Y ∗t )t∈Z satisfies Condition 1 for θ = θ̂T , hence Theorem
6.1.2 applies, proving the mixing condition for the bootstrap process for finite T , for large
T the assumption on the convergence θ̂T → θ implies (a.s.) the mixing condition. The
continuity of the jpgf in θ implies the a.s. convergence ψ(u, v; θ̂T ) → ψ(u, v; θ0). Since
the transition and stationary probabilities of (Y ∗t )t∈Z can be continuously recovered from
the jpgf, this implies the a.s. convergence of these probabilities. As both processes are
(conditionally) Markovian, these considerations imply the assertion.

As in Section 6.1.1, the more difficult situation of assessing the statistics (6.6) with
an estimated parameter requires stronger assumptions concerning the behavior of the
considered estimator ans well as the underlying (bootstrap) process.

Assumption (A2∗).

(i) The sequence of estimators θ̂∗T satisfies the expansion

θ̂∗T − θ̂T =
1

T

T∑
i=1

l∗(θ̂T ; i) + r∗T ,

where r∗T = oP∗(T
− 1

2 ) and where l∗(θ; i) is a measurable function of (Y ∗i+1, Y
∗
i , . . . )

and θ such that E∗
θ̂T

[l∗(θ0; i)k] = 0, Eθ̂T [l∗(θ0; i)2+δ
k ] < ∞ for some δ > 0 and, if

(Y ∗t )t∈Z is conditionally α-mixing with exponentially decreasing weights, the same
holds for (l∗(θ0; t)k))t∈Z for all k ∈ {1, . . . , d}.

(ii) The series
∑∞

k,l=0 kl
∂
∂θP

∗
θ̂T

(Y0 = k, Y1 = l) converges.

The main bootstrap result can now be formulated, providing the analogon of Corol-
lary 6.1.7 for the bootstrapped statistics. The idea of the proof stems from (Rajarshi,
1990, Theorem 2.2.).

Theorem 6.3.2 (Schweer (2015a), Theorem 3.1). Let Assumptions (A1) and (A2) be
satisfied and let the notation of Corollary 6.1.7 hold.

(i) If Assumption (A1∗) is satisfied, then, almost surely,

W ∗T,a(Y
∗

1 , . . . , Y
∗
T+1; θ̂T )

D−→
∑
j≥1

λ1;jZ
2
1;j ,

where the series converges in the L2-sense.
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(ii) If Assumption (A1∗) and Assumption (A2∗) are satisfied, then, almost surely,

W ∗T,a(Y
∗

1 , . . . , Y
∗
T+1; θ̂∗T )

D−→
∑
j≥1

λ2;jZ
2
2;j ,

where the series converges in the L2-sense.

Proof. A closer look at the proof of Theorem 6.1.6 (a) reveals that tightness of the process
follows analogously under Assumption (A1∗), when replacing P with the conditional P∗
and so forth. Thus, let (u, v) ∈ [0, 1]2, by continuous mapping theorem it follows that
ψ∗(u, v; θ̂T ) → ψ(u, v; θ0) almost surely. By Assumption (A1∗), there exists a set E
in the underlying σ-algebra of the process, such that θT (ω) → θ holds surely for each
ω ∈ E, with Pθ0(E) = 1.

Let ω ∈ E be arbitrary but fixed and let ε > 0. By Theorem 6.1.2, the weights α∗(j)
decrease exponentially, so that

∑∞
j=1 α

∗(j) < ∞. Since α∗(j) → α(j) for T → ∞, an
integer t1(ω) may be chosen such that 2

∑∞
j=t1(ω) α

∗(j) < ε and 2
∑∞

j=t1(ω) α(j) < ε for
all T ≥ t1(ω). By Lemma 6.3.1, the bootstrap process is α-mixing for ω ∈ E, thus
Lemma 1.2. in Ibragimov (1962) is applicable (note that ψ∗(u, v; θ̂T ) ≤ 1), yielding
Cov∗

θ̂T
(uY

∗
0 vY

∗
1 , uY

∗
j vY

∗
j+1) ≤ Cα∗(j). As the next step, choose t2(ω) so that T ≥ t2(ω)

implies ∣∣∣Cov∗
θ̂T

(
uY
∗
0 vY

∗
1 , uY

∗
j vY

∗
j+1

)
− Covθ0

(
uY0vY1 , uYjvYj+1

)∣∣∣ < ε

2t1(ω)− 1

for all j = 0, 1, 2, . . . , t1(ω). Now, the variance of
√
T (ψ̂∗T (u, v)− ψ∗(u, v; θ̂T )) calculates

due to stationarity to Var∗
θ̂T

(uY
∗
0 vY

∗
1 ) + 2

∑T−1
j=1 (T − j) Cov∗

θ̂T
(uY

∗
0 vY

∗
1 , uY

∗
j vY

∗
j+1)/T . By

the exponential decrease of α∗(j) the series
∑T−1

j=1 j|Cov∗
θ̂T

(uY
∗
0 vY

∗
1 , uY

∗
j vY

∗
j+1)| converges

for T →∞ and there is a t3(ω) such that this expression is less than εT for all T ≥ t3(ω).
Choosing a T ≥ max{t1(ω), t2(ω), t3(ω)} and recalling the notation of Theorem 6.1.6, it
follows that∣∣∣∣∣∣κ1(u1, v1;u2, v2)−

T−1∑
j=−T+1

T − j
T

Cov∗
θ̂T

(
uY
∗
0 vY

∗
1 , uY

∗
j vY

∗
j+1

)∣∣∣∣∣∣
≤

t1(ω)−1∑
j=−t1(ω)+1

∣∣∣Covθ0
(
uY0vY1 , uYjvYj+1

)
− Cov∗

θ̂T

(
uY
∗
0 vY

∗
1 , uY

∗
j vY

∗
j+1

)∣∣∣
+ 2

∞∑
j=t1(ω)

∣∣Covθ0
(
uY0vY1 , uYjvYj+1

)∣∣+
1

T

T−1∑
j=1

j
∣∣∣Cov∗

θ̂T

(
uY
∗
0 vY

∗
1 , uY

∗
j vY

∗
j+1

)∣∣∣
+ 2

T−1∑
j=t1(ω)

∣∣∣Cov∗
θ̂T

(
uY
∗
0 vY

∗
1 , uY

∗
j vY

∗
j+1

)∣∣∣ < Cε,
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showing that the asymptotic variances of the bootstrapped ejpgf coincide with that of
the true ejpgf. Since the moment condition of Assumption (A1∗) is in place, Theorem 1
in Ekström (2014) is applicable, hence it follows that

√
T
(
ψ̂∗T (u, v)− ψ∗(u, v; θ̂T )

)
D→ Ψ1

in C[0, 1]2 almost surely. Quite analogously, we can show that under Assumption (A1∗)
and Assumption (A2∗) it holds that

√
T
(
ψ̂∗T (u, v)− ψ∗(u, v; θ̂∗T )

)
D→ Ψ2

in C[0, 1]2 almost surely. Using the reasoning preceding Corollary 6.1.7 concludes the
proof.

6.3.1 Effect of Simulating the Stationary Distribution

In this section, the particular case is discussed where the calculation of the statistics
WT,a(y1, . . . , yT+1; θ′) and W ∗T,a(Y

∗
1 , . . . , Y

∗
T+1; θ′) is complicated because the stationary

distribution of the process is not analytically available, cp. the discussion in Section
6.1.2. A remedy is suggested below. Since the result of Theorem 6.1.8 is used, the
following additional assumption besides those listed above needs to be in place for its
applicability:

Assumption (A3∗). For any fixed θ′ ∈ Θ, it holds that Eθ′ [Y 2+ξ
0 ] <∞, where ξ > 0.

Under this assumption, the following steps can be added to Algorithm 1 between steps
(i) and (ii) and steps (iv) and (v), respectively, replacing θ′ and Yi with θ̂T and yi or θ̂∗T
and Y ∗i where appropriate.

Algorithm 2 (Simulating the Stationary Distribution).

(i)∗ Generate stationary bootstrap data (Y ∗∗1 , . . . , Y ∗∗S ) by using (6.2) with pθ′.

(iv)∗ Calculate the statistic ŴS,T,a(Y1, . . . , YT+1; θ′) by replacing πθ′(k) with the estima-

tor π̂θ′(k) := 1
S

∑S
i=1 1{Y ∗∗i =k} for all k ∈ N0.

Certainly, the implementation of these additional steps leads to a higher volatility of
the calculated test statistics on the one hand, and a higher computational demand on
the other hand. The following Lemma addresses the former concern in the more intricate
case of testing the hypothesis (6.4), the easier case (6.3) then follows directly. Note that
the proof draws heavily from Theorem 6.1.8.

Lemma 6.3.3 (Schweer (2015a), Lemma 3.2). Let (Yt)t∈Z satisfy Condition 1, with

Eθ[Y 4+ξ
0 ] <∞, where ξ > 0. Let θ ∈ Θ. Then for large T it holds almost surely that

E
[(
WT,a(Y1, . . . YT+1; θ)− ŴS,T,a(Y1, . . . , YT+1; θ)

)2
]

= O

(
T 2

S

)
.
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Proof. Recall the denotation of (6.2) and of π̂θ(k). First, it follows from (6.18) that

WT,a(Y1, . . . , YT+1; θ̂T )− ŴS,T,a(Y1, . . . , YT+1; θ̂T )

= T
∑ pθ(l1|k1)pθ(l2|k2) (πθ(k1)πθ(k2)− π̂θ(k1)π̂θ(k2))

(k1 + k2 + a′)(l1 + l2 + a′)

− 2
∑ pθ(l|k) (πθ(k)− π̂θ(k))

(Yi + k + a′)(Yi+1 + l + a′)
.

Employing the triangle inequality, these two series can be dealt with separately, begin-
ning with the second series. Here, the nonnegativity of the random variables Yi together
with the triangle inequality yields the following upper bounds:

Eθ

∣∣∣∣∣∣2
T∑
i=1

∞∑
k,l=0

pθ(l|k) (πθ(k)− π̂θ(k))

(Yi + k + a′)(Yi+1 + l + a′)

∣∣∣∣∣∣
2 ≤ CT 2

S

∞∑
k=0

Varθ

(
1√
S

S∑
i=1

1{Y ∗∗i ≤k}

)
,

the latter series is bounded by the proof of Theorem 6.1.8. With an analogous argumen-
tation, there exists an upper bound for the first series of the form

T 2C

∞∑
k1,k2=0

Varθ[π̂θ(k1)π̂θ(k2)].

The exact expression for the variance of a product of random variables is provided
in eq. (5) in Bohrnstedt and Goldberger (1969) and Eθ[(π̂θ(k1) − fθ(k1))2(π̂θ(k2) −
fθ(k2))2] ≤ |Covθ(π̂θ(k1), π̂θ(k2))| (since |π̂θ(k1) − fθ(k1)| ≤ 1 holds deterministically).
Thus, this expression is bounded from above by

CT 2

S

∞∑
k1,k2=0

∣∣∣∣∣Covθ

(
1√
S

S∑
i=1

1{Y ∗∗i ≤k1},
1√
S

S∑
i=1

1{Y ∗∗i ≤k2}

)∣∣∣∣∣ .
An argument very similar to that proving (6.13) shows that this is bounded by

CT 2

S

(
1 + 24

S−1∑
i=1

S − i
S

√
α(i)

) ∞∑
k1,k2=0

(1−Πθ(k1))
1
4 (1−Πθ(k2))

1
4 .

The latter series converges under the assumption of existing moments of order 4 + ξ for
G (see Lemma 3.2.3) and the assertion follows by Chebyshev’s inequality.

It should be noted that this result merely serves as an orientation for finding appro-
priate values for S in Algorithm 2. In practice, the choice of S will most often be guided
by the computational aspects mentioned above. This is discussed in detail for the spe-
cial case of the Poisson INARCH(1) model below, including an approach for reducing
the computational times. Furthermore, an empirical simulation study providing more
insight into this topic is also given there.
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Figure 6.1: Plot of monthly numbers of work stoppages (strikes) leading to 1000 or
more workers being idle in this period, reported by the US Bureau of Labor
Statistics.

6.4 An Application to Real Data

In order to assess the performance of the proposed tests, an application to a real data
set is given in this section. The data example (y1, . . . , y108) is given by monthly strikes
counts published by the U.S. Bureau of Labor Statistics for the period January 1994
to December 2002, thus totaling 108 observations. The data is plotted in Figure 6.1,
each count represents a work stoppage in the United States which lead to 1000 or more
workers being idle in this period. The corresponding ACF and PACF are reported in
Figure 6.2. This time series was already studied in Jung et al. (2005), where the authors
came to the conclusion that an INCLAR(1) model seems an appropriate fit for the date
in view of the exponential decay of the autocorrelation function. Their findings suggested
that the Poisson INAR(1) model is not a good fit for the data and employed a Negative
Binomial INAR(1) model and a Random Coefficient INAR(1) model as alternatives.

In Table 6.1, the results of fitting different INCLAR(1) models to the strike count
data are reported. Three scenarios are considered, the (Poisson) INARCH(1) model of
(6.1), the Poisson INAR(1) process, i.e., (1.1) with Poisson innovations, and the INAR(1)
process with a Poisson distribution of order 2 of Example 1. All models are fitted with
a conditional maximum likelihood (CML) approach to the data y108, . . . , y2 given y1.
Estimates and approximate standard errors are computed by using R’s optim, which is
initialized with the moment estimates for the respective parameters. The probabilities
required for the Poi2(λ)-innovations are computed by using Proposition 2.3.6.

Comparing the different fitted models in terms of AIC and BIC it becomes clear
that the INARCH(1) model fares best amongst the models under consideration, yet the
results for the Poi2-INAR(1) model show that this model is also an adequate fit. The
classical Poisson INAR(1) model receives the worst AIC and BIC values, thus suggesting
that this model should be rejected.
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Figure 6.2: Strike counts from Figure 6.1: Plots of ACF and PACF.

Model Par. 1 Par. 2 AIC BIC

INARCH(1) 1.8114 0.6364 464.3 469.7
(β, α) (0.386) (0.081)

Poi(λ)-INAR(1) 2.4603 0.5061 473.1 478.5
(λ, α) (0.299) (0.056)

Poi2(λ)-INAR(1) 1.4296 0.5696 467.6 473.0
(λ, α) (0.199) (0.051)

Table 6.1: Strike counts from Figure 6.1: CML estimates for diverse models.

6.4.1 Simulation Study

In the INARCH(1) case, the application of the test presented in this chapter involves
simulating the stationary distribution via the Algorithm 2, hence an empirical simulation
study discussing the effect of this procedure is presented. First, a Poisson INARCH(1)
process of length T = 100 as given in (6.1) is simulated with the parameter θ = (β, α)
chosen to be β = 1.8114 and α = 0.6364 in order to resemble the (possibly) true
parameters of the data example given above (cf. Table 6.1). Concerning stationarity, the
bootstrap time series is started in Y0 ∼ Poi(β ·(1−α)) for want of a better approximation
of the true stationary distribution and a total number of T+500 realizations is simulated,
where the first 500 are discarded. In view of the geometrical ergodicity of (Yt)t∈Z (cf.
Theorem 6.1.2) it may be assumed that the influence of the initialization is negligible.

Then, the statistics ŴS,T,a(Y1, . . . , YT+1; θ) are calculated B = 1000 times according to
Algorithm 2 provided for varying values of a and S. In Table 6.2, the sample variance
as well as the difference between the maximum and the minimum of the statistics for
the respective parameter values are reported.

From Table 6.2 it can be easily seen that, not surprisingly, a higher value of S yields

125



S = 104 S = 106

a max−min sample variance max−min sample variance

0 0.0273 1.936 · 10−5 0.0047 4.186 · 10−7

2 0.0072 1.559 · 10−6 0.0012 3.883 · 10−8

4 0.0032 2.510 · 10−7 0.0005 8.435 · 10−9

6 0.0016 6.778 · 10−8 0.0003 2.667 · 10−9

8 0.0009 2.352 · 10−8 0.0002 9.355 · 10−10

10 0.0005 9.053 · 10−9 0.0001 3.951 · 10−10

Table 6.2: Simulated statistics ŴS,T,a(Y1, . . . , YT+1; θ) for INARCH(1) process with
varying a, S.

better results both for the variances as well as for the maximal differences for all studied
values of a, in accordance with Lemma 6.3.3. The variances improve at a faster rate
with increasing S than the maximal differences, again for all values of a. For each
choice of S and with increasing a, the variances and the maximal differences decline.
Such a behavior is expected when looking at the expression (6.18). In summation, the
result of Table 6.2 suggest that the usage of Algorithm 2 achieves reasonable results for
appropriate choices of S.

6.4.2 Goodness-of-fit Test for Strike Count Data

The goal of this section consists in applying the test based on (6.18) to test the goodness-
of-fit of the INARCH(1) model for the strike count data. The parameters β, α are
estimated by the CML estimators β̂T , α̂T , using R’s optim which is initialized with the
respective moment estimators of the parameters. Using these estimates, an INARCH(1)
process with parameters β̂T , α̂T and length S = 106 is simulated and used to estimate
the stationary distribution, and the statistic Ŵ106,107,a(y1, . . . , y108; θ̂107) is calculated.
In the next step, the same procedure is applied to the bootstrap variables (Y ∗1 , . . . , Y

∗
T+1)

which are generated as described in Algorithm 1. Concerning stationarity, the comments
of the previous section apply mutatis mutandis. Estimating θ̂ by the CML estimator θ̂∗T ,

the statistic Ŵ ∗106,107,a(Y
∗

1 , . . . , Y
∗

108; θ̂∗107) is calculated. For B = 1000 replications, the
p-value is reported in Table 6.3 for five different values of a.

The choice of S = 106 represents a good compromise between accuracy and compu-
tational speed and is supported by the results of the previous section, cp. Table 6.2.
Note that the simulation of the INARCH(1) process is achieved with a small C++ script,
which employs a suitable modification of the Box-Muller method to simulate Poisson
distributed random variables. This script decreases computing times, one single simula-
tion of 106 realizations takes roughly 0.6 second, whereas for 107 realizations more than
6 seconds elapse.

For the second scenario, an underlying Poisson INAR(1) process is assumed, governed
by unknown parameters λ0, α0. The hypothesis (6.4) is tested using Algorithm 1. As
before, the parameters are estimated using conditional maximum likelihood estimators
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λ̂T , α̂T . For B = 1000, the bootstrapped parameters α̂∗T and λ̂∗T are again estimated with
the conditional likelihood method, the results of this procedure are reported in Table
6.3. The third scenario is handled analogously to the second one with one difference:
For the calculation of the stationary distribution as well as the transition probabilities,
the results of Proposition 2.3.6 and Theorem 4.2.5 are used. It should be noted that all
of the models and the estimation method chosen satisfy the Assumptions (A1) through
(A2∗), cf. Lemmata 6.1.3 and 6.1.4.

Model a statistic critical value p-value

0 0.00492 0.03347 0.512
2 0.00117 0.00463 0.321

INARCH(1) 6 0.00028 0.00076 0.191
8 0.00002 0.00037 0.689
10 0.00015 0.00020 0.084

0 0.01886 0.01535 0.033
Poi(λ)-INAR(1) 2 0.00501 0.00282 0.011

10 0.00021 0.00011 0.009

0 0.80792 1.02489 0.376
Poi2(λ)-INAR(1) 2 0.53182 0.60359 0.344

10 0.18372 0.18831 0.243

Table 6.3: Strike counts: p-values and critical values of statistic W107,a(y1, . . . , y108; θ̂107)
for diverse models.

For the first scenario discussed, Table 6.3 shows that all values of a lead to the same
result: That the null hypothesis of (y1, . . . , yT+1) stemming from an INARCH(1) pro-
cess is not rejected. The p-value behaves rather erratically with respect to the weight
parameter a, however, such a behavior is expected when taking into account the find-
ings of previous sections. For instance, a closer look at the values for a = 10, Table 6.2
suggests that variations of Ŵ106,107,10(y1, . . . , y108; θ̂107) of order 0.0001 are unlikely but
possible. Comparing this with the discrepancy between the calculated statistic and the
critical value in Table 6.3 shows that such a variation would be large enough to let the
statistic exceed the critical value, thus producing a rejection of the null hypothesis. On
the other hand, the comparison of the respective values for a = 0, e.g., shows that here
the variations of Ŵ106,107,0(y1, . . . , y108; θ̂107) are too small for such occurrences. Thus,
these findings should make it clear that in the case of high weight parameters a, the
procedures introduced in this chapter should only be applied with caution.

For the second scenario, the estimation of the stationary distribution is not necessary.
The p-values of the statistics recommend rejection of the null hypothesis of a Poisson
INAR(1) process across the board of a values. Even though this assessment matches
that of Jung et al. (2005), it is nevertheless surprising how strongly the goodness-of-fit
test of (6.6) rejects this null hypothesis, given that the time series consists of merely 107
pairs of observations.

In the third case, where the null hypothesis is given by a Poi2-INAR(1) process, the
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result is yet again easily interpreted, the tests suggests not to reject the null hypothesis
for all values of a. In contrast to the behavior of the p-value of the statistic for the
INARCH(1) null hypothesis, the p-value decreases only slowly with increasing a. The
higher smoothness is to be expected since in this case, the stationary distribution is
explicitly available and does not need to be simulated. The decreasing p-value could,
in connection with Proposition 6.2.2 be seen as an indicator that there is a discrepancy
between the asymptotic moments of the data and of those of the Poi2-INAR(1) process.
On the other hand, since T = 107 is a very short realization, such interpretations should
always be taken with a grain of salt.

6.4.3 Comparison with Hudecová et al. (2015)

In Hudecová et al. (2015), a goodness-of-fit test very similar to the one discussed above
was considered. As an application, the authors analyzed several time series previously
considered in Freeland (1998). For five count data time series, the appropriateness of
a stationary Poisson INAR(1) model was tested and the p-value reported. In order to
assess differences in performance, the procedure of the previous section was carried out
for three selected time series for the same weights a as well as the same number of
bootstrap samples, the results are reported in Table 6.4. The bold font values are those
calculated from Algorithm 1, the others from Table 3 of Hudecová et al. (2015).

values of a

series 0 1 2 5 10

# 1 0.575 0.602 0.598 0.639 0.655
0.653 0.652 0.698 0.771 0.862

# 3 0.005 0.002 0.000 0.000 0.000
0.020 0.002 0.001 0.000 0.000

# 4 0.233 0.216 0.256 0.316 0.376
0.270 0.270 0.295 0.386 0.506

Table 6.4: Claim counts data: Comparison of p-values of statistic (6.6) to the statistic
of Hudecová et al. (2015).

The results in Table 6.4 corroborate those of Freeland (1998) in that for the series #1
and #4, the null hypothesis of a Poisson INAR(1) model is not rejected. For series #
3, this model seems to be inappropriate. Comparing the p-values, it can clearly be seen
that even though there is not a large difference, the p-values calculated from Algorithm
1 are lower across the entire range of series and weights a. It should be noted that
after comparing their simulation results for various different models and varying weight
parameters a, the authors in Hudecová et al. (2015) conclude that it ”seems that it is not
possible to generally recommend one particular value of a”. As Table 6.4 indicates that
both of the goodness-of-fit tests behave similarly, it seems likely that the same assertion
could hold true in the case of the statistics (6.6).
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7 Higher Order Integer-Valued
Autoregressive Processes
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The INAR(1) model as discussed in Chapters 4 and 5 can be seen as an integer-
valued version of the continuous AR(1) model, which is quite easily extended to a higher
order AR(p) model, cf. (2.18). It is therefore not surprising that the modeling of higher
order autoregressive structures has been considered in the literature. Indeed, the first
contributions considering INAR(p) processes (with p > 1) were published shortly after
the introduction of the INAR(1) model in McKenzie (1985) and Al-Osh and Alzaid
(1987). However, the two most prominent attempts, given by Alzaid and Al-Osh (1990)
and Du and Li (1991), differ substantially so that there exists no canonical extension of
the INAR(1) process. In terms of popularity, there does not seem to be a large difference
between the two formulations when comparing the number of times these articles were
cited. As of this writing (April 2015), the web page scholar.google.com reports 161
citations for the article Alzaid and Al-Osh (1990) and 166 for Du and Li (1991).

In this chapter, we will present both formulation and discuss various merits and dis-
advantages of both models. In order to avoid confusion, we use the initials of their
respective creators as prefixes to mark the respective model, i.e., we discuss the integer-
valued autoregressive process of p-th order in the formulation of Al-Osh and Alzaid
(AAINAR(p)) and the integer-valued autoregressive process of p-th order in the formu-
lation of Du and Li (DLINAR(p)). We begin with a short analysis of the properties of
the former process, focusing especially on its behavior with respect to time-reversibility.
This characteristic is a recurring motif in this thesis, and for INAR(p) processes, it
leads to an interesting result. The first part shows that AAINAR(p) processes behave
in analogy to the INAR(1) process, i.e., they are time-reversible if and only if the arrival
distribution is Poisson distributed, cf. Theorem 4.1.8.

The DLINAR(p) process on the other hand behaves very differently in relation to
time-reversibility, as shown in Theorem 7.2.10, it is only time-reversible in trivial cases.
Additionally, we consider several other aspects of DLINAR(p) process, such as the sta-
tionary distribution and joint cumulants. Since the ACF of this process satisfies the
Yule-Walker equations, some parts of the theory of previous chapters can easily be gen-
eralized to this setting. Finally, let us point out that several parts of this chapter are
directly lifted from the contribution Schweer (2015b).

7.1 The INAR(p) Model of Al-Osh and Alzaid

Definition 7.1.1 (AAINAR(p) Process). Let (εt)t∈Z be an i.i.d. process with range N0,
let σ2

ε < ∞. Let p ∈ N, α1, . . . , αp ∈ [0, 1) with
∑p

i=1 αi < 1. A process (Yt)t∈Z, which
follows the recursion

Yt =

p∑
i=1

αi ◦ Yt−i + εt for all t ∈ Z (7.1)

is said to be an AAINAR(p) process, if the conditional distribution of the vector (α1 ◦
Yt, α2 ◦ Yt, . . . , αp ◦ Yt) given Yt = yt is multinomial with parameters (α1, α2, . . . , αp, yt)
and if, given Yt = yt, the random variables ai ◦ Yt and εt are independent of Yt−k and
its survivals (and the thinning operations) aj ◦ Yt−k for i, j = 1, 2, . . . , p and k > 0.
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7.1.1 First Properties

In order to keep the expositions of this chapter and that of Chapter 4 parallel, let us
record some properties of the AAINAR(p) process shown in Alzaid and Al-Osh (1990). It
is quite clear that the defining recursion (7.1) directly generalizes the recursion (1.1). Yet
an AAINAR(p) process is not Markovian for p ≥ 1 as its present realization depends on
the thinning operations in the p time steps before. Concerning the stationary distribution
of an AAINAR(p) process (Yt)t∈Z with parameters αj , this can be written down by first
defining the weights

w0 := 1 and wj :=

min(j,p)∑
i=1

αiwi−j ,

which allows for the following representation of the process (cf. Theorem 2.1 in Alzaid
and Al-Osh (1990))

Yt
D
=

∞∑
j=0

wj ◦ εt−j . (7.2)

Concerning the joint distribution of the process, it can be shown (cf. eq. (3.8) of
Alzaid and Al-Osh (1990)) that the covariance structure resembles that of a Gaussian
ARMA(p, p − 1) process. In this sense, this model is not a true generalization of the
AR(p) process (2.18).

Finally, let us discuss the relationship between this model and the classical branching
processes. The original article presents the following heuristic model: Consider a bio-
logical population of a species in which we count only the number of members able to
reproduce. Let us assume that these members can give birth to at most one offspring
which is able to reproduce, and let us further assume that the reproductive span of
each member is split into p periods without overlap. Then, if the probability of each
member reproducing within the ith period of the reproductive span is αi, and if there
is an immigration process εt from the outside, the resulting total of members follows an
AAINAR(p) process of Definition 7.1.1.

7.1.2 Concerning Time-Reversibility

In their Section 5.2., Alzaid and Al-Osh (1990) show the time-reversibility of AAINAR(2)
processes with Poisson innovations and indicate how this result may be established in
higher-order autoregressive structures. In the next theorem it is shown that the converse
assertion is also true, the proof generalizes the approach of Theorem 4.1.8 AAINAR(p)
processes of a general order.

Theorem 7.1.2 (Schweer (2015b), Theorem 19.2). Let (Yt)t∈Z be a time-reversible
AAINAR(p) process with p > 1 and let P(ε0 = 0) ∈ (0, 1). Then (Yt)t∈Z is time-
reversible if and only if ε0 ∼ Poi(λ) for some λ > 0.
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Proof. Sufficiency of the assertion remains to be shown. First, let p = 2, and define the
vector-valued process Yt := (Yt, α2 ◦ Yt−1). and denote P(ε0 = k) := pε(k). As shown in
Section 4 of Alzaid and Al-Osh (1990), this process is Markovian. Denote the transition
probabilities of this process by P(Yt = (a1, a2)|Yt−1 = (b1, b2)) := pY((a1, a2)|(b1, b2))
for a1, a2, b1, b2 ∈ N0. Now, the event {Yt = 0} implies that {αj ◦ Yt = 0} for j = 1, 2
and any t ∈ Z by the definition of the thinning operation. Now, {Yt = 0} implies that
{α2 ◦ Yt−2 = 0} for any t ∈ Z, since by Definition 7.1.1, Yt = α1 ◦ Yt−1 + α2 ◦ Yt−2 + εt
and all random variables are assumed to be nonnegative. Therefore, for any i ∈ N0,

P ({Y−1 = 0, Y0 = 0, Y1 = 1, Y2 = i, Y3 = 0, Y4 = 0, α2 ◦ Yt = 0; t = −2,−1, . . . , 3})
= P (Y−1 = 0, Y0 = 0, Y1 = 1, Y2 = i, Y3 = 0, Y4 = 0)

Using the time-reversibility of (Yt)t∈Z and the Markovian structure of (Yt)t∈Z, the ar-
gumentation above implies for every i ∈ N0 that

P(Y−1 = (0, 0),Y0 = (0, 0),Y1 = (1, 0),Y2 = (i, 0),Y3 = (0, 0),Y4 = (0, 0)) =

= P(Y−1 = (0, 0),Y0 = (0, 0),Y1 = (i, 0),Y2 = (1, 0),Y3 = (0, 0),Y4 = (0, 0)). (7.3)

Furthermore, by Definition 7.1.1, it holds that

pY((a, 0)|(b, 0)) =

min(a,b)∑
l=0

pε(a− l)
b!

l!(b− l)!
(1− α1 − α2)b−lαl1 for a, b ∈ N0,

implying pY((0, 0)|(0, 0)) > 0. Following Alzaid and Al-Osh (1990), the process (Yt)t∈Z
is a stationary Markov process on the state space N2

0, under the assumption pε(0) > 0
it follows that it is both irreducible and aperiodic, cp. Lemma 4.1.1. Hence, each state
(a, b) ∈ N0 is positive recurrent and, in particular, pY((0, 0)) > 0. This implies that
(7.3) is equivalent to

pε(1) [pε(i)(1− α1 − α2) + pε(i− 1)α1] pε(0)(1− α1 − α2)i

= pε(i)

[
pε(1)(1− α1 − α2)i + pε(0)

(
i

i− 1

)
(1− α1 − α2)i−1α1

]
(1− α1 − α2)pε(0).

This last expression is easily seen to be equivalent to (4.10), as 1− α1 − α2 > 0. Thus,
the proof of Theorem 4.1.8 applies mutatis mutandis, proving the assertion for p = 2.

Now, let p > 2. Replace the process (Yt)t∈Z with the process (see Sect. 4 in Alzaid
and Al-Osh (1990))

Y∗t =

(
Yt,

p∑
i=2

αiYt+1−i,

p∑
i=3

Yt+2−i, . . . , αp ◦ Yt−1

)
.

For the sequence of events Y∗−p+1 = (0, 0, . . . , 0) = Y∗−p+2 = · · · = Y∗0, together with
Y∗−p+1 = Y∗3 = · · · = Y∗p+2 and Y∗1 = (1, 0, . . . , 0) as well as Y∗2 = (i, 0, . . . , 0), a short
moment of reflection should convince the reader that an extension of (7.3) holds. Again,
this relation can be shown to be equivalent to (4.10), concluding the proof.
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Hence we find that while certain characteristics of the AAINAR(p) model do not
generalize the behavior of the INAR(1) model as anticipated, it still mimics the time-
reversibility of the INAR(1) process rather well. In the remainder of this chapter we
will discuss several ways in which the formulation of Du and Li (1991) differs from this
behavior.

7.2 The INAR(p) Model of Du and Li

In this section a competing formulation for an INAR(p) process given in Du and Li
(1991) is considered.

Definition 7.2.1 (DLINAR(p) Process). Let (εt)t∈Z be an i.i.d. process with range N0,
let σ2

ε < ∞. Let p ∈ N, α1, . . . , αp ∈ [0, 1) with
∑p

i=1 αi < 1. A process (Yt)t∈Z, which
follows the recursion (7.1) for all t ∈ Z is said to be an DLINAR(p) process, if all
thinning operations are mutually independent and if the (εt)t∈Z are independent of all
thinning operations and the random variable εt is independent of Yt−k and its survivals
(and the thinning operations) aj ◦ Yt−k for j = 1, 2, . . . , p and k > 0.

In contrast to the AAINAR(p) model, this process is a p-th order Markov chain. For
the transition probabilities, the definition implies (cf. Bu and McCabe (2008), (2))

pY (a|b1, . . . bp)

=
∑

lk≤bk,
∑
lk≤a

P
(
ε0 = a−

∑
li

)(b1
l1

)
αl11 (1− α1)b1−l1 · · ·

(
bp
lp

)
α
lp
p (1− αp)bp−lp (7.4)

for a, bi ∈ N0. For a representation of this process similar to that of (7.2) we refer to the
next section. The ACF of a DLINAR(p) process can be shown to coincide with that of
a Gaussian AR(p) process as it satisfies

ρ(k) =

p∑
i=1

αiρ(k − i) for k ≥ 1 (7.5)

(cf. eq. (3.5) in Du and Li (1991)), demonstrating another crucial difference between
these models.

7.2.1 Stationary Distribution

In this section, we concern ourselves with the stationary distribution of DLINAR(p)
processes. It will turn out that these may be represented in a fashion similar to the
quasi-linear representations of (4.2) and (7.2) but with certain differences. Let us begin
by defining the following functions fi(ε,α), with arguments ε, a random variable and α,
the shorthand notation for the parameter vector (α1, . . . , αp), where

f0 (ε,α) = ε and fi (ε,α) :=
∑

i1,...,ik≥1∑
il=i

[(αi1 · · ·αik) ◦ ε] . (7.6)
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With the help of these functions, we can state the first result on the stationary distri-
bution.

Lemma 7.2.2. For a stationary DLINAR(p) Process it holds that

Yt
D
=
∞∑
i=0

fi (εt−i,α) , (7.7)

where the thinning operations within each fi(εt−i,α) are mutually independent.

Proof. We start this proof with an induction argument for an altered process. Let
ε′p ≡ 0 for all p > 0 and let (Y ′−p, . . . , Y

′
−1) = (0, 0, . . . , 0). Let the process (Y ′t )Z

satisfy Definition 7.2.1 for t ≥ 0, then Y ′0 ∼ ε0 = f0(ε0,α). Now, we assume that

Yt
D
=
∑t

i=0 fi(εt−i,α) for some t ∈ N, where the thinning operations in each fi(εt−i,α) are
mutually independent. Denoting the thinning operations involved by ◦t if the thinning
operator is applied at time t, we find for all i = 0, 1, 2, . . .

Y ′t+1
D
=

p∑
j=1

αj ◦t+1
∑

i1,...,ik≥1∑
il=i

[
(αi1 · · ·αik) ◦t+1−i1−j ε′t+1−i−j

]
D
=

p∑
j=1

∑
i′1,...,i

′
k≥1;i′1=j∑
i′l=i+j

[(
αi′1 · · ·αi′k

)
◦t+1 ε′t+1−i−j

]
,

for the latter equality notice that the thinning operations at different times (notice that
j > 0) and apply (4.11). Rearranging yields

Y ′t+1
D
=

p∑
j=1


t+1∑
m=1

∑
i′1,...,i

′
k≥1;i′1=j∑
i′l=m

[(
αi′1 · · ·αi′k

)
◦ ε′t+1−m

]+ ε′t+1

D
=

t+1∑
m=1

 ∑
m1,...,mk≥1∑

ml=m

[
(αm1 · · ·αmk) ◦ ε′t+1−m

]+ ε′t+1
D
=

t+1∑
m=0

fm
(
ε′t+1−m,α

)
,

(7.8)

where the second equality in distribution is due to the fact that the thinning operations in
the resulting sum are executed mutually independently, for any given fixed j ∈ {1, . . . , p}
by induction assumption, for varying j due to the independence of the εt for all t ∈ Z.
The independence of the thinning operations at different time instants given by Defi-
nition 7.2.1 shows the induction step. As a result, both (Y ′t )t∈N and (Yt)t∈Z are p-th
order irreducible and aperiodic Markov chains, i.e., the vectors (Y ′t+1, . . . , Y

′
t+p)t∈N and
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(Yt+1, . . . , Yt+p)t∈Z are irreducible and aperiodic Markov chains on Np. Since the re-
spective transition probabilities are equal, both Markov chains have the same stationary
distribution if it exists. Thus, it follows that the stationary distribution of (Y ′t )t∈N and
(Yt)t∈Z are equal.

For any process (Yt)t∈Z to be stationary, we necessarily have to initialize it at some
point t0 with the stationary distribution (if it exists). For the DLINAR(p) process
(Yt)t∈Z we have just shown that we may use the stationary distribution of (Y ′t )t∈N for
this purpose. Thus, Y0 ∼

∑∞
i=0 fi(εt−i,α) with independent thinning operations. It is

easily seen that the considerations of (7.8) and following it hold for t → ∞ and in the
limit as well (if it exists). This concludes the proof.

The similarities between the result of Lemma 7.2.2 and the representations (4.2) and
(7.2) are obvious, yet the following results will highlights essential differences. Let us
first calculate the pgf of the functions fi(·) of (7.6).

Lemma 7.2.3. For all i ≥ 0 and all t ∈ Z we have

pgffi(εt−i,α)(z) = pgfεt

 ∏
i1,...,ik≥1∑

ij=i

1−
k∏
j=1

αij +

k∏
j=1

αijz


 .

Proof. First, we notice that by (4.11), for independent thinning operations,

pgfα1◦α2◦···◦αk◦X(z) = pgfX

(
1−

k∏
i=1

αi +
k∏
i=1

αiz

)
.

Moreover, we have for any α, β ∈ [0, 1], X as above and ξi, ζi mutually independent
Bernoulli random variables with E[ξi] = α, E[ζi] = β that

pgfα◦X+β◦X(z) =

∞∑
l=0

E
[
zα◦X+β◦X |X = l

]
P(X = l) =

∞∑
l=0

E
[
z
∑l
i=1 ξi+

∑l
i=1 ζi

]
P(X = l)

=
∞∑
l=0

(
E
[
zξ1
]
E
[
zζ1
])l

P(X = l) = pgfX ((1− α+ αz)(1− β + βz)) ,

where the penultimate equation holds due to the mutual independence of the ξi, ζi as
well as their independence of X. We now calculate for each i ≥ 0,

pgffi(εt−i,α)(z) = pgf∑[(αi1 ···αik)◦εt−i](z) = pgfεt

 ∏
i1,...,ik≥1∑

ij=i

1−
k∏
j=1

αij +

k∏
j=1

αijz


 .

Since the εt were assumed to be i.i.d., this proves the assertion for all t ∈ Z.
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With these results we are able to state the main result of this section. It shows that
the assumptions made on DLINAR(p) processes in Definition 7.2.1 suffice to ensure the
existence (and the form) of the stationary distribution as given by Lemma 7.2.2.

Theorem 7.2.4. Let (Yt)t∈Z be a DLINAR(p) process as given in Definition 7.2.1. Then
the stationary distribution of (Yt)t∈Z exists and is given by (7.7).

Proof. Any stationary process satisfying Definition 7.2.1 necessarily satisfies (7.7) as
well, and thus, by Lemma 7.2.3 we formally have

pgfYt(z) =
∞∏
i=0

pgfεt

 ∏
i1,...,ik≥1∑

ij=i

1−
k∏
j=1

αij +
k∏
j=1

αijz


 . (7.9)

At this point, it is unclear whether the above expression converges for any z ∈ [0, 1] or
not. At the same time, if the above expression can be shown to converge for all z ∈ [0, 1],
it is immediately clear that the random variable generated from this pgf is that of the
stationary distribution (as the εt are assumed to be i.i.d.).

Quite obviously it holds that pgfYt(1) = 1. The argument of pgfεt in (7.9) is a
monotonically increasing function in z, and each pgfεt(z) is monotonically increasing
in z. Thus by the Weierstrass M-test, (7.9) converges or diverges with pgfYt(0). This
infinite product converges absolutely or diverges with the infinite series

∞∑
i=0

1− pgfεt−i

 ∏
i1,...,ik≥1∑

ij=i

1−
k∏
j=1

αij



 (7.10)

as each term of the product in (7.9) is positive and less than unity, also see the proof of
Lemma 4.2.4. Notice that for each M ∈ N and probabilities p1, . . . , pM we can show the
following inequality by induction:

M∏
i=1

(1− pi) ≥ 1−
M∑
i=1

pi.

Now, referring to Lemma 1 in Heathcote (1965)1 we find that under the assumption
E[εt] <∞, a sufficient condition for (7.10) to converge is the convergence of

∞∑
i=0

1−
∏

i1,...,ik≥1∑
ij=i

1−
k∏
j=1

αij


 ≤ ∞∑

i=0

∑
ik∑
ik=i

k∏
j=1

αij <∞. (7.11)

1We acknowledge that a later paper Heathcote (1966) corrected a mistake made in the cited Lemma 1.
However, this mistake concerns only the necessary condition, not the sufficient condition, which is
all that is needed for this proof.
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For the summands of the RHS of this expression, we have

∑
i1,...,ik≥1∑

ij=i

k∏
j=1

αij =
∑

i1,...,ik≥1∑
ij=i

∏
1≤l≤p

α
lj
l =

∑
∑
j·lj=i

(∑p
j=1 lj

l1, . . . , lp

) ∏
1≤l≤p

α
lj
l .

It is easily seen that

⋃
n∈N

{
(l1, . . . , lp) ∈ Np|

p∑
i=1

li = n

}
=
⋃
n∈N

{
(l1, . . . , lp) ∈ Np|

p∑
i=1

i · li = n

}
.

With the multinomial theorem, we find the following upper bound for (7.11):

∞∑
i=0

1−
∏

i1,...,ik≥1∑
ij=i

1−
k∏
j=1

αij


 ≤ ∞∑

i=0

(
p∑
l=1

αl

)i
,

where convergence is ensured due to
∑p

l=1 αl < 1. This concludes the proof.

7.2.2 Connections to Branching Process Theory

In connection with an DLINAR(p) process (Yt)t∈Z, several contributions such as Dion
et al. (1995), Silva and Silva (2006) as well as the original contribution Du and Li (1991)
have employed the following matrix:

M =


α1 α2 α3 · · · αp
1 0 0 · · · 0

0 1 0
...

...
...

. . .
...

0 · · · 0 1 0

 .

Defining Zt := (Yt, Yt−1, . . . , Yt−p) and It = (εt, 0, . . . , 0), it is easily seen that, in distri-
bution, 

Yt+1

Yt
...

Yt−p+1

 D
=


α1 α2 · · · αp
1 0 · · · 0
...

. . .
...

0 · · · 1 0

 ◦


Yt
Yt−1

...
Yt−p

+


εt
0
...
0

 . (7.12)

Here, the “◦” operator is applied to matrices in the same fashion that multiplication
is applied in the usual matrix multiplication, and, for iterations of this procedure we
will use the exponent “◦t” instead of t to mark this difference. Let us record some
consequences of this representation of the process.
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Lemma 7.2.5 (Cp. Dion et al. (1995)). Let (Yt)t∈Z be an DLINAR(p) process as given
by Definition 7.2.1. Then the following holds:

(i) The process (Zt)t∈Z is a multitype Galton-Watson process with immigration vectors
It = (εt, 0, . . . , 0) and matrix of offspring M.

(ii) Let Z0 = (i1, . . . , ip) be any vector of nonnegative integers, then

Zt
D
=

t−1∑
ν=0

Yt,ν + Xt
D
=

t−1∑
s=0

M◦s ◦ It−s + M◦t ◦ Z0, (7.13)

where Yt,ν is a ν-th generation multitype Galton-Watson process (without immi-
gration) with random initial vector distributed as It−ν . Xt is a t-th generation
multitype Galton-Watson process with fixed initial vector (i1, . . . , ip). The random
vectors on the right of (7.13) are independent.

(iii) For any t ∈ Z,

Zt
D
=

∞∑
ν=0

M◦ν ◦ It−ν .

(iv) Let mi,j(ν) denote the (i, j)-th entry of the matrix M◦ν . Then, for 1 ≤ i ≤ p and
ν ∈ N,

mi,1(ν) ◦ εt
D
= fν−i+1(εt,α),

where we define f−i(εt,α) := 0 for i ∈ N.

Proof. The assertion (i) is almost precisely Proposition A Dion et al. (1995), with two
small differences. First, we replaced the name Bienamé-Galton-Watson-process with
immigration with the name multitype Galton-Watson, as this is the name employed by
Mode (1971) to which the cited paper refers. Second, the matrix of offspring means
becomes the matrix of offspring, as the DLINAR(p) model discussed here is restricted
to Bernoulli offspring distributions. We refer to the comment in Dion et al. (1995) after
Corollary 1. For (ii), we use (i), the first equation follows with eq. (2.7.2) in Mode (1971)
or eq. (7) in Dion et al. (1995). The second equation follows by iteratively applying
(7.12). The condition

∑p
i=1 αi < 1 implies that the spectral radius of the matrix M is

less than unity (cf. Proposition B in Dion et al. (1995)). The resultant expression of
(iii) can be found in eq. (9) in Dion et al. (1995) as well as eq. (4a) in Silva and Silva
(2006). Now, we use induction over ν to show (iv). For ν = 1, the statement clearly
holds, as f0(εt,α) = εt and f1(εt,α) = α1 ◦ εt. Assume the statement holds for some
ν ∈ N. Simple matrix multiplication of M ◦M◦ν yields the equations

m1,1(ν + 1)
D
=

p∑
i=1

αi ◦mi,1(ν) and mi,1(ν + 1) = mi−1,1(ν) for i = 2, . . . , p.
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The latter equations shows that the statement holds for i = 2, . . . , p. For the former we
find, similarly to the proof of Lemma 7.2.2,

m1,1(ν + 1) ◦ εt
D
=

p∑
i=1

αi ◦mi,1(ν) ◦ εt
D
=

p∑
i=1

αi ◦ fν−i+1 (εt,α)
D
= fν+1(εt,α).

The justifications for these equalities are the same as the ones given in the proof of the
referenced Lemma.

We conclude this section with the following remark: On p. 131 in Dion et al. (1995),
it is stated that

Yt
D
= Poi

(
λ

1−
∑p

i=1 αi

)
.

However, it is clear from Theorem 7.2.4 that this result cannot hold, as the resultant pgf
is that of a Compound Poisson distribution, not a Poisson distribution (excepting the
well known results in case p = 1). The mistake made in the cited paper seems to be in
the derivation of the stationary distribution from their equation (10). Their derivation
only holds if, for Poisson random variables εn−ν , the sum

∑d
i=1mi1(ν) ◦ εn−ν is Poisson

distributed again. From Lemma 7.2.3 we can see that this is only satisfied in degenerate
cases, or if d = 1.

7.2.3 Joint Cumulants of DLINAR(p) Processes

In the following sections we will derive asymptotic results similar to those of Section 5.3
for DLINAR(p) processes, and it is quite clear that we need explicit expressions for the
joint cumulants of DLINAR(p) processes. The first relation is an immediate consequence
of the argumentation leading up to (4.8).

Lemma 7.2.6. Let t ∈ Z, let εt ∼ Poi(λ) and let 0 ≤ i ≤ j ≤ k ≤ l. Then

cum (fi(εt,α), fj(εt,α), fk(εt,α), fl(εt,α)) = λE [fi(1,α)fj(1,α)fk(1,α)fl(1,α)] ,

where 1 denotes a constant random variable with value 1.

We point out that the calculation of the expression E[fi(1,α)fj(1,α)fk(1,α)fl(1,α)]
is very complex for p ≥ 2. In the case p = 1, a closed expression is calculated in (4.9).
The result of Lemma 7.2.6 can now be employed to calculate the fourth joint cumulant
of DLINAR(p) processes.

Theorem 7.2.7. Let (Yt)t∈Z be a Poisson DLINAR(p) Process, where εt ∼ Poi(λ) for
all t ∈ Z. Then, for i, j, k, l ∈ Z with i ≤ j ≤ k ≤ l, the fourth joint cumulant of the
process calculates to

cum (Yi, Yj , Yk, Yl) = λ

∞∑
ν=0

E [fν(1,α)fν+j−i(1,α)fν+k−i(1,α)fν+l−i(1,α)] .
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Proof. Notice that Yt = e1 · Zt, where e1 = (1, 0, . . . , 0). Using Lemma 7.2.5 (ii), we
have

(Yi, Yj , Yk, Yl) = (e1 ◦ Zi, e1 ◦ Zj , e1 ◦ Zk, e1 · Zl)
D
=(

e1 · Zi, e1 ·
j−i−1∑
s=0

M◦s ◦ Ij−s + e1 ·M◦j−i ◦ Zi,

e1 ·
k−i−1∑
s=0

M◦s ◦ Ik−s + e1 ·M◦k−i ◦ Zi, e1 ·
l−i−1∑
s=0

M◦s ◦ Il−s + e1 ·M◦l−i ◦ Zi

)
.

Using the multilinearity of the cumulant function (see Lemma 2.2.1) together with the
mutual independence of the random vectors in (7.13), we find

cum (Yi, Yj , Yk, Yl) = cum
(
e1 · Zi, e1 ·M◦j−i ◦ Zi, e1 ·M◦k−i ◦ Zi, e1 ·M◦l−i ◦ Zi

)
.

With Lemma 7.2.5 (iii), it follows that(
e1 · Zi, e1 ·M◦j−i ◦ Zi, e1 ·M◦k−i ◦ Zi, e1 ·M◦l−i ◦ Zi

)
D
=

(
e1 ·

∞∑
ν=0

M◦ν ◦ Ii−ν , e1 ·M◦j−i ◦
∞∑
ν=0

M◦ν ◦ Ii−ν ,

e1 ·M◦k−i ◦
∞∑
ν=0

M◦ν ◦ Ii−ν , e1 ·M◦l−i ◦
∞∑
ν=0

M◦ν ◦ Ii−ν

)
,

which, together with

e1 ·M◦a ◦ Ib = (m1,1(a),m2,1(a), . . . ,mp,1(a)) ◦ Ib = fa(εb,α)

implies

cum (Yi, Yj , Yk, Yl)

=
∞∑
ν=0

cum (fν(εi−ν ,α), fν+j−i(εi−ν ,α), fν+k−i(εi−ν ,α), fν+l−i(εi−ν ,α)) .

We used Lemma 7.2.5 (iv) and Lemma 2.2.1 (v) repeatedly. Both results are applicable,
as E[Y 4

i ] <∞. Application of Theorem 7.2.6 yields the result.

In order to generalize the findings of Section 5.3 to DLINAR(p) processes, it suffices
to show that the conditions of both Theorem 2.6.2 and Theorem 2.6.3 are satisfied. Note
that the assumption

∑p
i=1 αi < 1 was shown in Proposition B of Dion et al. (1995) to be

equivalent to the statement that the spectral radius of the matrix A is less than unity.
The latter statement implies convergence of the series of

∑∞
i=0 Ai, hence Theorem 1

ofSilva and Silva (2006) is applicable. Together with (7.5), we have proven the following
assertion:

Theorem 7.2.8. Let (Yt)t∈Z be a Poisson DLINAR(p) process with εt ∼ Poi(λ) for all
t ∈ Z. Let q ≥ 1 and denote K := p + q. Then (Yt)t∈Z satisfies the conditions of both
Theorem 2.6.2 and Theorem 2.6.3.
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7.2.4 Concerning Time-Reversibility

Let us now show the following analogue of Theorem 7.1.2. In this section, we abbreviate
the sequence of states Y0 = a1, Y1 = a2, . . . Yl = al by writing a1, a2, . . . , al.

Lemma 7.2.9 (Schweer (2015b), Lemma 19.1). For p > 1, let (Yt)t∈Z be a time-
reversible DLINAR(p) process and let P(ε0 = 0) ∈ (0, 1). Then there exists a λ > 0
such that ε0 ∼ Poi(λ) .

Proof. First, let p = 2. By the time-reversibility of the process (Yt)t∈Z, it follows that
for any i ∈ N0, P

(
0, 0, 1, i, 0, 0

)
= P

(
0, 0, i, 1, 0, 0

)
. Using the Markovian structure of

(Yt)t∈Z, the notation of (7.4) and the fact that pY (0) > 0 as well as pY (0|0) > 0 (which
is deduced analogously as in Theorem 7.1.2), this is equivalent to

pY (0|0, i)pY (0|i, 1)pY (i|1, 0)pY (1|0, 0) = pY (0|0, 1)pY (0|1, i)pY (1|i, 0)pY (i|0, 0),

reminiscent of Kolmogorov’s criterion of Theorem 2.4.2. With simple manipulations,
this is equivalent to (4.10) as (1− α2) > 0 by Definition 7.2.1. For p > 2, consideration
of the sequence 0, 0, . . . , 0, 1, i, 0, . . . , 0 and its inverse where the dots represent p zeroes,
yields an equivalent relation as above, as (1 − αk) > 0 holds for all k = 3, . . . , p. The
assertion follows analogously to Theorem 4.1.8.

At first glance, since the result of Lemma 7.2.9 is exactly analogous to that of Theorem
7.1.2 there doesn’t seem to be a difference in the characteristics of DLINAR(p) processes
and AAINAR(p) processes with respect to time-reversibility. However, the following
result shows that a DLINAR(p) process is time-reversible only if the parameters take on
degenerate values, i.e., if it is in fact an INAR(1) process.

Theorem 7.2.10 (Schweer (2015b), Theorem 19.3). Let (Yt)t∈Z be a time-reversible
DLINAR(p) process with p > 1 and α1 > 0 and let 0 < P(ε = 0) < 1. Then αj = 0 for
j = 2, . . . , p.

Proof. Let p = 2 and let (1− α1) := α1, (1− α2) := α2. Since (Yt)t∈Z is time-reversible,
the transition probabilities necessarily satisfy P

(
0, 0, 1, 3, 2, 0, 0

)
= P

(
0, 0, 2, 3, 1, 0, 0

)
.

By (7.4) and the fact that pY (0|0), pY (0) > 0, this is equivalent to

α2
5α1

2λ

 ∑
l1≤3,l2≤1
l1+l2≤2

λ2−l1−l2

(2− l1 − l2)!

(
3

l1

)
αl11 α1

3−l1αl22 α2
1−l2

(λ3

6
α1 +

λ2

2
α1

)
=

α2
4α1

λ2

2

[
λα1

3α2
2 + 2α1

3α2α2 + 3α1
2α1α2

2
](λ3

6
α1

2 + λ2α1α1 + λα2
1

)
. (7.14)

This, in turn (recall that λ > 0 and α1, α2 > 0 by Definition 7.2.1, is equivalent to
1
2α1α

2
1α2 = 0. Since α1 > 0, this implies the assertion for p = 2.

Now, let p > 2 be arbitrary but fixed. It remains to be seen that αj = 0 for j = 2, . . . , p
which is done by first showing that α2 = 0 and then proceeding inductively. An appeal
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to (7.4) reveals that the relations considered in the first part of this proof hold similarly
for the sequence 0, 0, . . . , 0, 1, 3, 2, 0, . . . , 0 and its inverse, here the first and last p entries
are 0. Since there are at most three consecutive nonzero states in these sequences, the
relation of the transition probabilities is equivalent to that of (7.14) save for the factors
of the form e−kλ for some k, pY (0|0, 0), pY (0|0, 0, 0) and so forth and

∏p
i=3 αi

6. By (7.4),
pY (0|0, 0), pY (0|0, 0, 0) etc. are all larger than zero, and αi, e

−λ > 0 by definition. Thus,
time-reversibility of the process and α1 > 0 implies α2 = 0.

Now, let 2 < k ≤ p, and let αi = 0 for 1 < i < k, it is shown that this implies αk = 0.
Consider the sequence of states

0, 0, . . . , 0︸ ︷︷ ︸
p times

, 1, 3, 0, . . . , 0︸ ︷︷ ︸
k−2 times

, 2, 0, . . . , 0, 0︸ ︷︷ ︸
p times

and its inverse. For a time-reversible process, the transition probabilities for this se-
quence has to equal the transition probability of its inverse. With (7.4) and recalling
that αi, e

−λ, pY (0|0, 0), pY (0|0, 0, 0) etc. are all larger than zero, this relation is equivalent
to

α1
3αk

4
(
λα1

3αk
2 + 3α1α1

2αk
2 + 2α1

3αkαk
) λ5

12

=α1
5αk

5

(
λ2

2
αk + λαk

)(
λ3

6
α1 +

λ2

2
α1

)
λ.

This relation can be simplified to yield 0 = 1
2α1αk. The assertion thus follows by

induction over k.

It may be pointed out that the result of Theorem 7.2.10 is only partial in the sense
that α1 > 0 was assumed. In the author’s opinion, this is a quite natural assumption for
DLINAR(p) processes, and the investigation is stopped at this point. However, given
the previous result, the author conjectures the following assertion to be true:

Conjecture 1 (Schweer (2015b), Conjecture 19.1). Let (Yt)t∈Z be a DLINAR(p) process
with p > 1 and αj > 0 for some j ∈ {1, . . . , p} and let 0 < P(ε = 0) < 1. Then (Yt)t∈Z
is time-reversible if and only if αl = 0 for l ∈ {1, . . . , p}, l 6= j.

To illustrate why the conjecture contains the reverse implication as well, consider the
result of Lemma 7.2.9 for the case p = 2. It shows that for time-reversibility of the
process, either α1 = 0 or α2 = 0 has to hold. The case α1 = 0 is clearly a degenerate
case, and it can indeed be shown quite easily that it has the same stationary distribution
as that of the corresponding INAR(1) process (i.e., with α = α2) and that it is time-
reversible. Similar arguments apply to higher order autoregressive structures.
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5.2 Simulation study: ÎY in Poi-INAR(1) model . . . . . . . . . . . . . . . . . 83
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