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Abstract

Intercellular signaling is a defining property of multicellular organisms, yet the
spatio-temporal dynamics remain poorly understood. The subject of this work
is the design of an efficient numerical algorithm for simulations of intercellular
signaling in multicellular 3D environments modeled by coupled systems of partial
differential equations (PDE) and ordinary differential equations (ODE).

The PDE part of these systems consists of reaction-diffusion equations and de-
scribes the concentration distribution of diffusible messengers, e.g. cytokines. In-
tracellular dynamics are described by a small number of ODEs per cell. Thus,
every single iteration of a commonly used decoupling scheme has similar compu-
tational costs than solving the coupled PDE/ODE system at once. We therefore
develop an efficient multilevel preconditioner for the coupled system. The compu-
tational cost of both coupled and decoupled solution methods are investigated for
model problems of different coupling strength.

To keep the computational costs of the 3D simulations moderate, we use methods
for adaptive mesh refinement. We discretize the system by different time meshes
for the PDE and the ODE part to reduce the number of computationally expen-
sive PDE time steps. Reliable a posteriori error estimations for coupled PDE/ODE
systems are derived by means of the ’Dual Weighted Residual’ (DWR) method.
The discretization error is split into the contributions of the PDE and the ODE
part. We compute local error indicators in space and time and set up an effi-
cient adaptive mesh refinement method. The described methods are validated by
numerical tests for several biologically motivated model problems.

We apply the developed numerical methods and simulate cytokine signaling be-
tween T cells in lymph nodes, which regulates the adaptive immune response in
the human body. The numerical results show that, despite the high diffusivity
of cytokines, highly localized cytokine concentrations with large gradients occur,
which enables short-range cell-to-cell communication.
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Zusammenfassung

Die Signalübertragung zwischen Zellen ist von entscheidender Bedeutung für
mehrzellige Lebewesen, jedoch ist über die Dynamiken in Raum und Zeit nur
wenig bekannt. Der Fokus dieser Arbeit liegt auf der Erstellung eines effizien-
ten numerischen Algorithmus zur 3D-Simulation von interzellulärer Signalübertra-
gung, die durch gekoppelte Gleichungssysteme von partiellen Differentialgleichun-
gen (PDE) und gewöhnlichen Differentialgleichungen (ODE) modelliert wird.

Der PDE-Teil dieser Systeme besteht aus Reaktions-Diffusionsgleichungen und
beschreibt die Konzentrationsverteilung diffusibler Botenstoffe, z.B. Zytokine. Die
intrazellulären Vorgänge werden durch wenige ODEs pro Zelle beschrieben. Die
Berechnungskosten für ein gekoppeltes Verfahren für das gesamte PDE/ODE Sys-
tem sind daher ähnlich hoch, wie die Kosten für jede einzelne Iteration der gewöhn-
lich verwendeten entkoppelten Verfahren. Aus diesem Grund entwickeln wir einen
effizienten Mehrgitter-Vorkonditionierer für das gekoppelte System. Die Effizienz
sowohl gekoppelter als auch entkoppelter Lösungsverfahren wird für verschieden
stark gekoppelte Modellprobleme untersucht.

Um die Berechnungskosten der 3D-Simulationen moderat zu halten, verwen-
den wir adaptive Gitterverfeinerungsstrategien. Wir diskretisieren die Gleichung
mit unterschiedlichen Zeitgittern für den PDE- und den ODE-Teil, um die An-
zahl der kostenintensiven PDE-Zeitschritte zu reduzieren. Auf Basis der dual-
gewichteten Residuenmethode (DWR) wird ein verlässlicher a posteriori Fehler-
schätzer hergeleitet. Der Diskretisierungsfehler wird in die Beiträge des PDE-
und ODE-Anteils aufgeteilt. Wir berechnen lokale Fehlerindikatoren in Raum und
Zeit und verwenden diese für eine effiziente adaptive Gitterverfeinerungsstrategie.
Die beschriebenen Methoden werden anhand einer Reihe biologisch motivierter
Modellprobleme durch numerische Tests validiert.

Wir verwenden die entwickelten numerischen Methoden für die Simulation von
Zytokinsignalen zwischen T-Zellen in Lymphknoten. Zytokinsignale regulieren die
adaptive Immunantwort im menschlichen Körper. Die numerischen Ergebnisse
zeigen, dass sich trotz hoher Diffusivität der Zytokine große Gradienten ausbilden,
die eine zielgerichtete Kommunikation zwischen benachbarten Zellen ermöglichen.
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1 Introduction

In this work, we design an efficient numerical algorithm for simulating intercellular
signaling in multicellular 3D environments.

Cellular signaling has been mathematically described by a variety of different mod-
els mostly relying on large systems of ordinary differential equations (ODE) [40].
These earlier models were extended by partial differential equations (PDE) to ac-
curately describe concentration gradients [13, 19, 26, 44, 62]. In these receptor
based models the concentration distributions of small signaling proteins are de-
scribed by PDEs, i.e. reaction-diffusion equations, coupled on the cell surfaces
with ODEs for the intracellular dynamics.

In this thesis, we focus on two parts of an effective method for solving coupled
PDE/ODE systems, namely a coupled multilevel solver and adaptive mesh refine-
ment. With the developed numerical methods, we gain insight into the competition
of T helper cells for cytokines as part of the immune response.

Fully Coupled Multilevel Solver

In literature, there are mainly two strategies for implicit solvers of nonlinear sys-
tems: the linearization based approaches considered in this thesis i.e. of Newton-
type and nonlinear methods such as the nonlinear multigrid method [12, 29].
Newton-type methods provide a flexible and reliable framework and can be ex-
panded by nonlinear methods such that for instance a nonlinear multigrid can be
used as a preconditioner [47].

A decoupled solution scheme is often used when restrictions on accuracy can be
relaxed in order to allow an easier numerical treatment of complicated problems.
Such an approach makes it possible to reuse existing solvers and is widely used
in numerical methods for coupled systems, see [23, 25, 33, 48, 49, 61]. In case of
strongly coupled equations, this strategy can only be implemented at high com-
putational cost through very small time steps or a higher number of iterations in
the splitting scheme. Additionally, the size of the discretized PDE/ODE system
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1 Introduction

is only slightly larger than the discretization of the PDE part alone, due to the
small number of ODEs compared to the degrees of freedom for a discretization of
the computational domain. We study the effect of splitting the linearization in a
Newton-type solver and present a systematic comparison of coupled and decou-
pled solution schemes for PDE/ODE systems. A quantitative index based on a
sensitivity analysis is used to compute the strength of the coupling.

It is well known [11, 29] that multilevel preconditioners are among the most effi-
cient solving techniques for PDE. Therefore, we present a coupled solving scheme
based on a Krylov-type solver preconditioned by a linear multigrid method. In
particular, the transfer operators and smoother of the multigrid algorithm have
been specifically adjusted to the formulation of the considered coupled problem.

Adaptive Mesh Refinement

We investigate adaptive mesh refinement strategies to efficiently reduce the size
of the discretized problem while preserving the accuracy of the approximation. A
wide variety of adaptive methods exist, which are commonly used in the finite
element context. The aim of these methods is mostly the reduction of local gra-
dients or error reduction with respect to global norms. One is often interested
in a specific quantity, e.g. the number of receptors at the final time point of the
simulation for cellular signaling during the immune response. The Dual Weighted
Residual (DWR) Method for a posteriori error estimation with respect to a given
quantity of interest has been derived by Becker and Rannacher [8] and has been
generalized for nonlinear parabolic problems by Schmich and Vexler [59]. Local-
ized error indicators obtained by the DWR method allow to set up a versatile
algorithm for adaptive mesh refinement and the equilibration of temporal and
spatial discretization errors.

In this thesis, we extend the space-time Galerkin methods developed by Schmich
and Vexler to coupled PDE/ODE systems in which a coarser temporal discretiza-
tion is used for the PDE part of the system. This approach reduces the number of
computationally expensive time steps of the PDE part and preserves the same ac-
curacy by an increased number of cheaper ODE time steps. To cope with the insta-
bilities triggered by inexact starting values, we derive the Galerkin finite element
spaces corresponding to a temporal discretization by a damped Crank-Nicolson
time stepping scheme, based on previous work by Goll et al. [28].

Space-time Galerkin methods have already been applied successfully to create
adaptive grids, e.g. in the simulation of incompressible flows [7, 9, 37]. Coupled

2



PDE/ODE systems, emerging from cellular signaling, differ from previously in-
vestigated problems by the fast diffusivity of the PDE compared to the timescale
of the activation process. We show in this thesis that the DWR method can be
used as a reliable a posteriori error estimator for such systems and assess when,
depending on the diffusivity, significant gains in accuracy by adaptive grids can
be expected.

Application: Cytokine signaling between T cells

Intercellular signaling is a defining property of multicellular organisms. In particu-
lar, the adaptive immune response relies on cell-to-cell communication of T helper
cells by uptake and release of diffusible cytokines. Cytokines are small proteins,
which play an important role in cell signaling. The regulation of the cytokine levels
is key to type and strength of the immune response. Critically high values of cy-
tokine can cause severe damage to the mammalian immune system, see Rochman
et al. [55]. Quantitative understanding of such cytokine-driven cellular decisions
is beginning to emerge [13, 24, 66], yet the underlying spatio-temporal cytokine
dynamics remain poorly understood.

A combined mathematical and theoretical study by Busse et al. [13] has identified
secretion and uptake of the cytokine interleukin-2 (IL-2) as a possible mechanism
mediating immune suppression by ’regulatory T cells’. The model captures IL-
2 signaling in the initial phase after antigen stimulation before the initiation of
cell division (up to 30 hours). The proposed system of equations consists of a
reaction diffusion equation describing the distribution of IL-2 in the intercellular
area coupled with ODEs for the intracellular processes controlling IL-2 uptake and
release.

A long-standing question in immunology has been how the spatial range of cy-
tokine signaling is controlled in realistic multicellular geometries. In particular, the
observation that diffusible messengers regulate the adaptive immune responses to
infection has been puzzling because the long-range action of cytokines on neighbor-
ing cells would compromise the specificity of an immune response. It has therefore
been suggested by Davis et al. [20] that cytokine is channeled through the tight
synapse between two immune cells and that the synapse has an important function
for IL-2 signaling. With the developed numerical methods we compute cytokine
secretion and uptake within a population of immune cells in three-dimensional en-
vironments. We find by our numerical simulations that despite the high diffusivity
of cytokines short-range spatial gradients occur. The rate of competitive cytokine
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1 Introduction

uptake by cells causes highly localized cytokine concentrations with large gradients
that result in short-range cell-to-cell communication.

Outline:

The outline of this thesis is as follows:

Notation and Mathematical Model

In Chapter 2, we introduce basic notation, which will be used in this thesis, and
give a brief introduction to coupled PDE/ODE systems for cellular signaling. Ex-
emplarily, we present a biological model, which describes T cell interaction during
the adaptive immune response. The existence and uniqueness of the solutions of
the corresponding coupled PDE/ODE system is proven.

Discretization

In Chapter 3, the coupled equation is discretized in space and time by means of
the Galerkin finite element method. We present a temporal discretization which
corresponds to the damped Crank-Nicolson time marching scheme. Furthermore,
we extend this discretization for different time meshes for the PDE and the ODE
parts. The spatial discretization is performed by a standard finite element ap-
proach.

Coupled and Decoupled Linear Solver

In Chapter 4, we analyze the sensitivities of the coupling of PDE/ODE systems.
We investigate both coupled and decoupled solving methods and interpret the
results depending on the strength of the coupling. Existing multilevel precondi-
tioners are extended for fully coupled solving schemes. The efficiency of these
methods is shown numerically.

A Posteriori Error Estimation

In Chapter 5, we derive an a posteriori error estimator based on the DWR method
for coupled PDE/ODE equations to estimate both the temporal and the spatial
error with respect to a quantity of interest. Subsequently, we present an adaptive
algorithm for successive mesh refinement of the spatial and temporal grids to
equilibrate spatial and temporal errors from both the PDE and the ODE parts of
the system. We motivate the investigation of a series of model problems in 2D
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and 3D for intercellular signaling and display the effectivity of the estimated error
indicators.

Application: Three-dimensional gradients of cytokine signaling between T
cells

In Chapter 6, the developed numerical methods are applied to simulate large
three-dimensional immune cell cluster and help to provide a better quantitative
understanding of the molecular mechanism of the immune response. We conclude
the chapter with an analysis of the signal range of T helper cells in large-scale
simulations with over 2000 cells.

Conclusion and Outlook

Finally, we summarize in Chapter 7 the presented results and give an outlook to
extensions for future work.
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2 Notation and Mathematical
Model

In this chapter, we present the basic notation for this thesis and exemplarily present
a PDE/ODE system modeling cellular signaling. We begin in Section 2.1 with the
basic notation for this thesis. We give a brief introduction in Section 2.2 to systems
of partial differential equations (PDE) coupled with ordinary differential equations
(ODE) for intercellular signaling. A model for T cell interaction in the lymph node
during the immune response is presented exemplarily in Section 2.3. We conclude
the chapter in Section 2.4 with the proof of existence and uniqueness of the model.

2.1 Basic notations

For d ∈ {2, 3}, let Ω ⊆ Rd, be an open bounded domain with boundary ∂Ω. We
denote by n the outer unit normal vector to ∂Ω.

The standard Lebesgue space Lp(Ω), 1 ≤ p < ∞, consists of all measurable func-
tions u : Ω→ R which are Lebesgue-integrable to the p-th power. It is a Banach
space with the norm

||u||Lp(Ω) =

∫
Ω

|u(x)|p dx

 1
p

, 1 ≤ p <∞.

In the special case of p = 2 the space L2(Ω) becomes a Hilbert space with the
inner product

(u, v)L2(Ω) :=

∫
Ω

u(x)v(x) dx.

7



2 Notation and Mathematical Model

We denote the Sobolev spaces by Wm,p(Ω),m ∈ N, 1 ≤ p <∞, which are defined
as the space of functions whose distributional derivatives of order up to m are in
Lp(Ω). They are Banach spaces with the norm

||u||Wm,p(Ω) :=

∑
|α|≤m

||∂αu||pLp(Ω)

 1
p

.

By α = (α1, ..., αd) ∈ Nd we denote a multi-index. We use the following notation

|α| :=
d∑
j=1

αj, ∂α :=
∂|α|

∂xα1
1 ...∂x

αd
d

.

In case of p = 2, the Sobolev space Hm(Ω) := Wm,2(Ω) is a Hilbert space with the
inner product

(u, v)Hm(Ω) :=
∑
|α|≤m

(∂αu, ∂αv)L2(Ω).

We drop the subscripts in case p = 2 to shorten the notation

(u, v) := (u, v)L2(Ω), ||u|| := ||u||L2(Ω).

The space Ck,α(I,X) with k ∈ N and 0 < α ≤ 1 denotes the space of functions
from Ī into any given space X, whose derivatives up to order k are α-Hölder
continuous on Ω. For a shorter notation, we set Ck := Ck,1(Ω,R).

Let I := (0, T ) with 0 < T < ∞ be a bounded time interval. We denote by
Lp(I,X) the space of Lp-integrable functions f from I into X for any Banach
space X and 1 ≤ p <∞. It is itself a Banach space equipped with the norm

||f ||Lp(I,X) :=

∫
I

||f(t)||pX dt

 1
p

, 1 ≤ p <∞.

For a detailed derivation of these spaces, we refer to Wloka [69]. We use the shorter
notation ((., .)) for the scalar product on L2(I × Ω)

((u, v)) := (u, v)L2(I×Ω).
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2.2 Coupled PDE/ODE systems modeling cellular signaling

2.2 Coupled PDE/ODE systems modeling cellular
signaling

Cellular signaling has been modeled by a variety of different mathematical mod-
els, mostly relying on large systems of ordinary differential equations (ODE), see
Kestler et al. [40]. In many cellular signaling pathways concentration gradients
emerged, either because of the geometry of the cells [19], a competition between
the cells for the signaling proteins [13] or biological reactions which enable pattern
formation [44, 62]. To accurately model concentration gradients in the intercellular
area, these earlier models were extended by partial differential equations (PDE).
In these receptor based models, the concentration distribution of diffusible mes-
sengers are modeled by PDEs, i.e. reaction-diffusion equations, coupled on the cell
surfaces with ODEs for the intracellular dynamics.

A model for intercellular signaling consists of PDEs for the interaction between
the cells in the intercellular area Ω coupled with ODEs for intracellular processes.
We denote by Nc the number of cells in Ω and indicate by Γi the boundary of each
cell i for i = 1, . . . , Nc. The outer boundary of Ω is denoted by Γout. We indicate
the union of all cell boundaries Γi by Γ.

(a) 8 interacting cells with surfaces Γi (b) Intercellular area Ω
(sliced for visualization)

Figure 2.1: Model setup
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2 Notation and Mathematical Model

Depending on the type of intercellular signaling, different nonlinear operators de-
scribe the dynamics in the intercellular area (AΩ), e.g. degradation, the dynamics
on the cell surfaces (AΓi

) of each cell and the intracellular processes (Bi). We
denote the solution of the PDE part by u and the vector of solutions of the ODE
part by v.

∂tu− µ∆u+AΩ(u) = 0 in Ω,

µ∂nu+AΓi
(u, vi) = 0 on Γi, for all 1 ≤ i ≤ Nc

µ∂nu = 0 on Γout,

∂tvi + Bi(ũi, vi) = 0, for all 1 ≤ i ≤ Nc

(2.1)

with given initial values u(0) = u0 and v(0) = v0. We denote the average of u on
the surface of Γi by ũi and the associated ODE values with this cell by vi

ũi(t) =

∫
Γi
u(t, s) ds
|Γi|

. (2.2)

Similar systems arise in different applications, e.g. in closed-loop cardiovascular
simulations, where the PDE part is coupled with the ODE part on the surfaces
for in- and outflow, see Moghadam et al. [48].

Variational Formulation and Notation

For a variational formulation, we introduce the Hilbert space V p = H1(Ω) for the
PDE part of the equation and the vector space V o = Rn for the ODE part, where
n denotes the number of ordinary differential equations in the system. Let V p′ be
the topological dual of V p, then V p ↪→ L2(Ω) ↪→ V p′ constitutes a Gelfand triple.
We combine the two vector spaces V p and V o to the product space V , such that

V := V p × V o.

Additionally, we define the product space L by

L := L2(Ω)× V o,

which contains e.g. the initial values of the system. We define the operators
ā : V × V p → R and b̄ : V × V o → R by a multiplication of the equations (2.1)

10



2.2 Coupled PDE/ODE systems modeling cellular signaling

with test functions φ ∈ V p and ψ ∈ V o,

ā

((
u
v

)
;φ

)
:= (A(u, v), φ)Ω +

∑
1≤i≤Nc

(AΓi
(u, vi), φ)Γi

,

b̄

((
u
v

)
;ψ

)
:=

∑
1≤i≤Nc

(Bi(ũi, vi), ψi).

We introduce the following function spaces for time dependent functions

W p := {u(t) ∈ L2(I, V p), ∂tu(t) ∈ L2(I, V p′) ; t ∈ I},
W o := {v(t) ∈ L2(I, V o), ∂tv(t) ∈ L2(I, V o) ; t ∈ I}.

The product space W is defined by

W := W p ×W o.

The product spaces W p and W o are embedded in the respective spaces of contin-
uous functions. Thus, W ⊂ C(I, V ) holds true, see Wloka [69]. We define the
operators a : W ×W p → R and b : W ×W o → R by integration over time of ā
and b̄,

a(w;φ) :=

T∫
0

ā(w(t);φ(t)) dt,

b(w;ψ) :=

T∫
0

b̄(w(t);ψ(t)) dt.

We then write equation (2.1) for all t > 0 in the following weak formulation for a

solution w =

(
u
v

)
∈ W , such that

((∂tu, φ)) + µ ((∇u,∇φ)) + a(w;φ) + (u(0), φ(0)) = (u0, φ(0)), ∀φ ∈ W p,

T∫
0

(∂tv · ψ) + b(w;ψ) dt+ (v(0), ψ(0)) = (v0, ψ(0)), ∀ψ ∈ W o,
(2.3)

11



2 Notation and Mathematical Model

where
(
u0

v0

)
∈ L denote the initial values of the system. With w̄, ϕ̄ ∈ V and

w,ϕ ∈ W and the notation

w̄ =

(
ū
v̄

)
, w =

(
u
v

)
, ϕ̄ =

(
φ̄
ψ̄

)
, ϕ =

(
φ
ψ

)
,

we can combine the two semi-linear forms to obtain the operators F̄ : V ×V → R

and F : W ×W → R, such that

F̄(w̄; ϕ̄) := µ(∇ū,∇φ̄) + ā(w̄; φ̄) + b̄(w̄; ψ̄),

F(w;ϕ) := µ((∇u,∇φ)) + a(w;φ) + b(w;ψ).
(2.4)

We restate equation (2.3) with initial value w0 :=

(
u0

v0

)
in the shorter notation:

Given w0 ∈ L, find w ∈ W , such that:

((∂tw,ϕ)) + F(w;ϕ) + (w(0), ϕ(0)) = (w0, ϕ(0)), ∀ϕ ∈ W. (2.5)

Given appropriate parameters, the solution converges in time to a unique steady
state. A solution scheme for the computation of the steady state has the advantage
of being independent of a specific temporal discretization. In Chapter 4, we test
some parts of the algorithm by a direct computation of such a steady state w̄ ∈ V ,
such that

F̄(w̄;ϕ) = 0, ∀ϕ ∈ V. (2.6)

2.3 A model for intercellular signaling

Exemplarily, we focus in this thesis on a model for interleukin-2 expression by
T helper cells, developed by Busse et al. [13]. Interleukin concentrations in the
intercellular area regulate the type and strength of the immune response. The
model consists of a reaction-diffusion equation, which describes the distribution of
IL-2 between the T helper (Th) cells in the intercellular area Ω, coupled with ODEs
for the intracellular processes by a Robin boundary condition. In this section, we
display the mathematical model and explain the used parameters. The biological
role of Th cells as part of the adaptive immune system is explained in more detail
in Section 6.1.
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2.3 A model for intercellular signaling

This system is prototypical for all receptor based model for intercellular commu-
nication by diffusing messengers. Other coupled PDE/ODE models for cellular
signaling consist, e.g. of a larger PDE/ODE system, which describe the inter-
action with multiple diffusing proteins and more detailed intracellular processes
[19, 26], or allow for receptor gradients on the cell surface [44, 62].

We use the following notation:

• u(t, s) : I × Ω → R describes the concentration distribution of IL-2 in the
intercellular area.

• Ri, Ci and Ei : I → R describe the number of IL-2 receptors (IL-2R), built
IL-2/IL-2R receptor-complexes and internalized complexes for each of the
simulated Th cells. The receptors are distributed homogeneously on the cell
surfaces.

The mathematical model consists of a PDE

∂tu(t, x) = µ∆u(t, x)− kdu(t, x) for all (t, x) in (0, T ]× Ω,

µ∂nu(t, s) = qi(t, s)− konRi(t)u(t, s) + koffCi(t) for all (t, s) in (0, T ]× Γi,

∂nu(t, s) = 0 for all (t, s) in (0, T ]× Γout,

(2.7a)

coupled with three ODEs for each Th cell

∂tRi(t) = w0
i + w1

i

Ci(t)
3

K3 + Ci(t)3
− konRi(t)ũi(t)

− kiRRi(t) + koffCi(t) + krecEi(t) for all cells i = 1, . . . , Nc,

∂tCi(t) = konRi(t)ũi(t)− (koff + kiB)Ci(t),

∂tEi(t) = kiBCi(t)− (krec + kdeg)Ei(t),

ũi(t) =

∫
Γi
u(t, s) ds
|Γi|

,

(2.7b)

with the initial conditions

u(0, x) = 0 for all x ∈ Ω,

Ri(0) =
w0
i

kiR
for all cells i = 1, . . . , Nc,

Ci(0) = 0,

Ei(0) = 0.

(2.7c)
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2 Notation and Mathematical Model

We consider two cell types which share the same receptor dynamics but differ in
the IL-2 secretion rate:

• Secreting Th cells, which omit IL-2 with the secretion rate qi > 0 and

• Responding Th cells with qi = 0.

We consider fixed evenly distributed positions of the Th cells during the course of
the simulations, as depicted in Figure 2.1(a).

Figure 2.2: Intracellular receptor dynamics (picture taken from Thurley et al.
[65])

The receptor dynamics depend on the IL-2 concentration in the surrounding
medium, averaged over the cell surface Γi, because of the homogenous receptor
expression. At the cell surface, IL-2 is bound to IL-2R molecules (Ri) forming IL-
2/IL-2R complexes (Ci). Each Th cell has an uptake of IL-2 proportional to konRi

on its surface. Receptor dynamics involve binding rates (kon) of IL-2 by unbound
receptors and unbinding rates by bound receptors (koff ), as well as internalization
of bound and unbound receptors (kiC , kiR) and recycling and degradation of bound
receptors (krec, kdeg).

The expression of receptors Ri is regulated through a Hill Function, which consti-
tutes a feedback term for the system. Because the feedback induced IL-2 receptor
expression rate w1

i is much larger than the ordinary receptor expression rate w0
i ,

a Th cell with enough receptor-complexes Ci strongly up-regulates the number of
free receptors Ri. If this ’activation’ takes place, the cell captures more IL-2 than
other Th cells with less free receptors. Internalized receptor-complexes enter an
endosomal pool Ei, from which free receptors are recycled. Thus, receptor dynam-
ics are governed by a set of nonlinear differential equations. The parameters of the
system have been measured and estimated by Busse et al. [13], see Table 2.1. In

14



2.4 Existence and uniqueness

Table 2.1: Biological parameters, taken from Busse et al. [13]

Symbol Value Parameter

qi 0-22000 mol./h IL-2 secretion rate per cell
µ 36000 µm2/h Diffusion coefficient of IL-2
kd 0.1/h Extracellular IL-2 degradation
w0
i 150 mol./cell/h Antigen stimulated IL-2 receptor expression rate

w1
i 3000 mol./cell/h Feedback induced IL-2 receptor expression rate

K 1000 mol./cell Half-saturation constant of feedback expression
kon 111.6 /nM/h IL-2 association rate constant to IL-2 receptors
koff 0.83/h IL-2 dissociation rate constant from IL-2 receptors
kiR 0.64/h Internalization rate constant of IL-2 receptors
kiC 1.7/h Internalization rate constant of receptor complexes
krec 9/h Recycling rate constant of IL-2 receptors
kdeg 5/h Endosomal degradation constant IL-2 receptors
r 5µm Cell radius
d 5µm Cell to cell distance

the lymph node all T cells move slowly [56] and have the same neighbors during
the course of hours. Thus, the model assumes fixed positions of the cells during
the course of the simulations to reduce computational costs.

Remark 2.1. To study the dynamical process and validate the model, we compute
the entire trajectory. Nevertheless, the simulations converge to a stable steady state
during the course of the simulations. Therefore, we consider direct computations
of the steady state (2.6) in Section 4.3.2 as well.

2.4 Existence and uniqueness

This proof follows closely the proof of Marciniak-Czochra and Ptashnyk [45] for a
similar system. We assume, as usual for biological systems, positive values for all
constants. The following notation is used throughout the proof:

v :=

 v1

...
vNc

 and vi :=

Ri

Ci
Ei

 for all 1 ≤ i ≤ Nc.

15



2 Notation and Mathematical Model

Theorem 2.1. Let Ω ⊂ R3 be a bounded domain with piecewise smooth boundaries.
There exists a unique solution u ∈ W p∩C0,β/2(Ī , C0,β(Ω̄,R)) where β ∈ (0, α] and
vi ∈ W o ∩ C1(Ī , V o) to the system (2.7), if the starting values u0 and v0 have
positive values and satisfy u0 ∈ H1(Ω) ∩ C0,α(Ω̄,R).

Proof. Existence: The existence of a solution of the system (2.7) in V can be
shown using the Schauder fixed point theorem, as detailed by Marciniak-Czochra
and Ptashnyk [45]. We obtain the positivity of solutions u(t) ≥ 0, v(t) ≥ 0 and
their boundedness, such that u(t) ≤ c and |v(t)| ≤ c for all t ∈ I .

Uniqueness: We suppose that there exist two solutions to the problem w1 and

w2, with w1 :=

(
u1

v1

)
and w2 :=

(
u2

v2

)
. We denote the components of the vectors

vk and the average concentrations of uk on the cell surface by

vk =

 vk1
...
vkNc

 , vki =

Rk
i

Ck
i

Ek
i

 , ũki :=

∫
Γi
uk ds

|Γi|
, for k ∈ {1, 2}.

We use the weak formulation of system (2.7) and test with u := u1 − u2. The
following holds for the PDE part of the system, after integrating over time from 0
to any t ∈ Ī.

t∫
0

∫
Ω

(
1

2
∂t|u|2 + µ|∇u|2 + kd|u|2) dx dt

=

t∫
0

∑
1≤i≤Nc

∫
Γi

((koffC
1
i − konR1

iu
1)− (koffC

2
i − konR2

iu
2), u) ds dt.

We obtain for the ODE part of the system, with the notation Ri := R1
i −R2

i , Ci :=
C1
i − C2

i and Ei := E1
i − E2

i and ũi = ũ1
i − ũ2

i , that

∂tRi = w1
i

C1
i (t)3

K3 + C1
i (t)3

− w1
i

C2
i (t)3

K3 + C2
i (t)3

− (konR
1
i ũ

1
i − konR2

i ũ
2
i )

−kiRRi + koffCi + krecEi

∂tCi = (konR
1
i ũ

1
i − konR2

i ũ
2
i )− (koff + kiB)Ci

∂tEi = kiBCi − (krec + kdeg)Ei.
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2.4 Existence and uniqueness

We integrate over time and add the three equations for each cells, such that

|Ri|+ |Ci|+ |Ei| ≤
τ∫

0

c0w
1
i |Ci|+ 2kon

(
max
[0.T ]

∣∣ũ1
i

∣∣ · |Ri|+ max
[0,T ]

∣∣R2
i

∣∣ · |ũi|) dt

+

τ∫
0

kiR |Ri|+ (2koff + 2kiB) |Ci|+ (2krec + kdeg) |Ei| dt,

where c0 denotes the Lipschitz-constant of the Hill function. The Gronwall lemma
leads us to

|Ri|+ |Ci|+ |Ei| ≤ c̃

τ∫
0

|ũi| dt. (2.8)

Using the above estimate and kon ≥ 0, we obtain for positive δ1 and δ2

t∫
0

∫
Ω

(
1

2
∂t|u|2 + µ|∇u|2 + kd|u|2) dx dt ≤ koff c̃

1

2δ1

∑
1≤i≤Nc

t∫
0

τ∫
0

|ũi|2 dτ dt

+
δ1

2

t∫
0

∫
Γ

|u|2 ds dt+ 2c̃kon max
[0.T ]×Γ

∣∣u2
∣∣︸ ︷︷ ︸

:=c1

1

2δ2

∑
1≤i≤Nc

t∫
0

τ∫
0

|ũi|2 dτ dt

+
δ2

2

t∫
0

∫
Γ

|u|2 ds dt− kon
∑

1≤i≤Nc

min
[0,T ]

R2
i

t∫
0

∫
Γi

|u|2 ds dt.

We use a boundary trace embedding theorem, see e.g. Adams and Fournier [1]

∫
Γ

|u|2 ds ≤ cs(Ω)

∫
Ω

|u|2 dx+

∫
Ω

|∇u|2 dx

 (2.9)

and obtain the boundedness of ũi by the H1-norm of u by (2.9) and the continuous
embedding of L2 in L1 with a constant ce

|ũi|2 ≤
1

|Γi|2

∫
Γi

|u| ds

2

≤ ce

|Γi|2
∫
Γi

|u|2 ds ≤ cecs

|Γi|2︸︷︷︸
:=c′

∫
Ω

|u|2 + |∇u|2 dx. (2.10)
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2 Notation and Mathematical Model

We obtain by using (2.9) and (2.10) that

1

2

∫
Ω

|u|2 dx+ (µ− cs
δ1

2
− c′c1

δ2

2
)︸ ︷︷ ︸

:=c2

t∫
0

∫
Ω

|∇u|2 dx dt

+ (kd − cs
δ1

2
− c′c1

δ2

2
)︸ ︷︷ ︸

:=c3

t∫
0

∫
Ω

|u|2 dx dt

≤ (koff c̃c
′Nc

2δ1

+ c1c
′
s

Nc

2δ2

)︸ ︷︷ ︸
:=c4

t∫
0

τ∫
0

∫
Ω

|u|2 + |∇u|2 dx dτ dt.

We choose δ1 and δ2 small enough, such that c2 and c3 take positive values. Now
we take the supremum over t ∈ Ī to obtain with c5 := max(c4,

c4
c2
, c4
c3

)

1

2

∫
Ω

|u|2 dx+ c2

T∫
0

∫
Ω

|∇u|2 dx dt+ c3

T∫
0

∫
Ω

|u|2 dx dt

≤ c5

τ∫
0

1

2

∫
Ω

|u|2 dx+ c2

T∫
0

∫
Ω

|∇u|2 dx dt+ c3

T∫
0

∫
Ω

|u|2 dx dt

 dτ .

We use Gronwall again to conclude with:

1

2

∫
Ω

|u|2 dx+ c2

T∫
0

∫
Ω

|∇u|2 dx dt+ c3

T∫
0

∫
Ω

|u|2 dx dt ≤ 0.

Therefore, u1 = u2 in [0, T ]× Ω holds true. Equation (2.8) implies that R1
i = R2

i ,
C1
i = C2

i and E1
i = E2

i .
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3 Discretization

In this chapter, we describe the discretization of the weak formulation of cou-
pled PDE/ODE-systems. The temporal and spatial discretizations are derived by
means of the Galerkin finite element method.

Firstly, we present a semi-discretization in time in Section 3.1 by a Galerkin
method, which corresponds to the damped Crank-Nicolson method. We deal with
the spatial discretization of the semi-discrete problem in Section 3.2. In Section
3.3, we present a simplified time stepping scheme for the adjoint equation arising
from a posteriori error analysis.

3.1 Temporal discretization

To introduce semi-discretizations in time, we subdivide the time interval Ī = [0, T ]
by time points tm for 0 ≤ m ≤M such that

0 = t0 < ... < tm < ...tM = T

with subintervals Im := (tm−1, tm] of length km := tm − tm−1. Thus, we obtain a
partition Tk = {0} ∪ {Im | 1 ≤ m ≤ M} of the time interval Ī. We introduce a
shorter notation for the space-time L2 scalar product on the interval Im on the
product space W ,

((w, z))m :=

∫
Im

w(t) · z(t) dt.

To deal with the discontinuities in the solution w ∈ W , we introduce the standard
notation for the limits from above wm,+, the limits from below wm,− and the jumps
[w]m of w at time point tm by

wm,+ = lim
ε↘0

w(tm + ε), wm,− = lim
ε↘0

w(tm − ε), [w]m = wm,+ − wm,−.
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3 Discretization

3.1.1 The damped Crank-Nicolson scheme

We first quote the well known Crank-Nicolson time marching scheme in which
wmk := wk(tm) denotes the approximated value of the semi-discretized solution wk
at time tm:

Given w0 ∈ L, find wmk ∈ V for m ≤M , such that:

(w0
k − w0, ϕ) = 0 ∀ϕ ∈ L, (3.1a)

(wmk − wm−1
k , ϕ) +

km
2

(
F̄(wmk ;ϕ) + F̄(wm−1

k ;ϕ)
)

= 0 ∀ϕ ∈ V. (3.1b)

We obtain from (3.1a) that a well posed semi-discrete problem needs initial data
w0 ∈ L . Even for initial data in V , optimal convergence order is usually not
obtained.

In the next chapters, we discretize and numerically solve PDE/ODE systems mod-
eling intercellular signaling (2.5). The initial values u0 of the PDE part of the
model are set to a constant zero, see Section 2.3 with initial conditions (2.7c).
The constant initial values model the biological fact that the simulation starts in
the same moment in which the signaling cells start secreting diffusible messengers.
A spatially constant u0 does violate the boundary condition of robin type, which
prescribes for secreting cells a non-zero normal derivative on the cell surfaces.
Therefore, the problem is not well posed at the initial time point.

Due to the incompatibility of the initial values, we have to replace at least two
of the Crank-Nicolson steps by an implicit Euler scheme to ensure the optimal
convergence rate, see Luskin and Rannacher [42, 51]. Several implicit Euler steps
may be necessary depending on the type of the irregularity. Let J0 be the set of
indices in which we use the implicit Euler scheme and J1 the set of indices for the
Crank Nicolson scheme, i.e. J0 ∪ J1 = {1, ...,M}. The damped Crank-Nicolson
scheme can then be formulated as:

Given an initial condition w0 ∈ L, find wmk ∈ V such that the following holds for
all m ≤M :

(w0
k, ϕ) = (w0, ϕ) ∀ϕ ∈ L, m = 0,

(wmk , ϕ) + kmF̄(wmk ;ϕ) = (wm−1
k , ϕ) ∀ϕ ∈ V, m ∈ J0, (3.2)

(wmk , ϕ) +
km
2

(
F̄(wmk ;ϕ) + F̄(wm−1

k ;ϕ)
)

= (wm−1
k , ϕ) ∀ϕ ∈ V, m ∈ J1
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3.1 Temporal discretization

We construct the temporal discretization in a patch-wise structure to easily eval-
uate the second order interpolations in Section 5.2. Therefore, we select the index
sets J0 and J1 such that for an even index m the adjacent index m− 1 is part of
the same index set: m ∈ Js ∩ 2N ⇒ m − 1 ∈ Js for s ∈ {0, 1}. Necessarily, the
total number of indices M has to be chosen as an even number.

3.1.2 Galerkin version of the damped Crank-Nicolson
scheme

The damped Crank-Nicolson method is interpreted as a Galerkin method to derive
accurate error estimates. We follow the derivation by Goll et al. [28] and set up
Galerkin spaces with different polynomial spaces on each of the time intervals as
trial and test spaces of the Galerkin method. As in the previous section, we set up
the two sets of indices J0 and J1 to indicate the use of the implicit Euler method
for indices in J0 and the use of the Crank-Nicolson method for indices in J1.

We define the following semi-discrete spaces ˆ̄Xr−1
k (Y ) and X̄r

k(Y ) for a given func-
tion space Y and r ≥ 1 by making use of the sub intervals Im

ˆ̄Xr−1
k (Y ) :=

{
ϕk : Ī → Y

∣∣∣ ϕk|Im ∈ Pr−1(Im, Y ), 1 ≤ m ≤M,ϕk(0) ∈ L
}
,

X̄r
k(Y ) :=

{
ϕk : Ī → Y

∣∣∣ ϕk|Im ∈ Pr(Im, Y ), [ϕk]m−1 = 0,

ϕk|In ∈ Pr−1(In, Y ),m ∈ J1, n ∈ J0, ϕk(0) ∈ L
}
.

(3.3)

Pr(Im, Y ) denotes the space of polynomials of degree lower or equal to r on Im
with values in Y . The semi-discrete space X̄r−1

k (V ) is used both as trial and test
space for the discontinuous Galerkin method DG(r-1) of degree r− 1. In contrast,
the trial and test spaces of the continuous Galerkin method CG(r) of degree r,
damped by the DG method, are chosen differently: the space X̄r−1

k (V ) is only
used as the test space and ˆ̄Xr

k(V ) is used as the trial space.

We restate the damped Crank-Nicolson scheme in a Galerkin version:

Given w0 ∈ L, find wk ∈ X̄1
k(V ) such that for all ϕk ∈ ˆ̄X0

k(V ) the following holds

((∂twk, ϕk)) + F̄(wk;ϕk) +
∑
m∈J0

([wk]m−1, ϕ
m−1,+
k ) + (wk(0)− w0, ϕ

0,−
k ) = 0. (3.4)
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3 Discretization

We approximate the integrals on the time intervals either by the box rule or by
the trapezoidal rule∫

Im

(wk(t), ϕk(t)) dt ≈ km(wk(tm), ϕk(tm)), m ∈ J0,∫
Im

(wk(t), ϕk(t)) dt ≈
km
2

(
(wk(tm), ϕk(tm)) + (wk(tm−1), ϕk(tm−1))

)
m ∈ J1,

(3.5)
and obtain again the time stepping scheme (3.2) of the damped Crank-Nicolson
scheme, with the notation wmk := wk(tm).

3.1.3 Different time meshes for the PDE and the ODE part

The main computational effort in solving coupled PDE/ODE systems comes from
solving the PDE part. We show in Section 5.5.7 numerical results in which a
finer time mesh of the ODE part can significantly reduce the discretization error.
Balancing the errors between the ODE and the PDE part allows for a coarser
time stepping in the PDE part of the system and therefore reduce the overall
costs of solving the system to a certain accuracy. To the knowledge of the author,
this thesis presents the first coupled solver approach which makes use of different
temporal discretizations for the two parts of a coupled PDE/ODE system.

The strategy of an additionally refined temporal discretization of the ODE part is
frequently used for segregated solving schemes, see e.g. Moghadam et al. [48]. In
a segregated solving scheme the ODE part can be solved by higher order Runge-
Kutta or backward differentiation formulas. Since we focus in this thesis on coupled
solver approaches, we simplify the implementation by using the same time scheme
but different time meshes for both parts of the system.

We subdivide each of the M time intervals Im = (tm−1, tm] of the discretized PDE
into M s

m new subintervals Ijm. Therefore, we construct a partition of the time
intervals Im for each 1 ≤ m ≤ M by the time points tjm with 1 ≤ j ≤ M s

m such
that

tm−1 = t0m < t1m < ... < tjm < ... < tM
s
m

m = tm.

The interval Im is subdivided into subintervals Ijm := (tj−1
m , tjm] of length kjm =

tjm − tj−1
m .
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3.1 Temporal discretization
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Figure 3.1: Different meshes in the temporal discretization for a coupled system
with M s = 4
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3 Discretization

We introduce the notation Mp for the number of time steps of the PDE part and
M o for the number of time steps of ODE part to distinguish the time stepping
schemes of the PDE and the ODE part.

Mp := M, M o :=
∑
m≤M

M s
m.

We denote the sums over all time intervals in a simplified notation by
∑

m≤M . In
this thesis, the sums over all time intervals start always with m = 1. Analogously,
the sums over all subintervals of an interval Im are denoted by

∑
j≤Ms

m
. The sums

over the subintervals of Im start with j = 1. We note that a patch-wise structure of
the temporal discretization is needed for the second order interpolations in Section
5.2. Therefore, we choose even values for M s

m. To shorten notation, we denote the
beginning of each subintervals by t0m := tm−1 and the inner product on each time
interval Ijm by

((w, z))m,j =

∫
Ijm

w(t) · z(t) dt.

Due to the different discretization, the point values of wk :=

(
uk
vk

)
at the inter-

mediate time points tjm are obtained differently for the PDE than for the ODE
part. The linear interpolation on the time interval Im of the PDE part uk yield
approximate intermediate values of uk at the time points tjm. The intermediate
values of the ODE part on the other hand are directly available because of the
finer temporal discretization

um,jk := uk(t
j
m) =

tm+1 − tjm
km+1

um−1
k +

tjm − tm
km+1

umk , vm,jk := vk(t
j
m). (3.6)

We formulate the damped Crank-Nicolson with different time meshes for the two
parts as a Galerkin method. This enables us to derive error representations in
Chapter 5. Therefore, we define the trial and test spaces X̂r−1

k (Y ) and Xr
k(Y ) for
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3.1 Temporal discretization

a given product space Y = Y p × Y o, e.g. Y := V , by

X̂r−1
k (Y ) :=

{(φk
ψk

)
: Ī → Y

∣∣∣ φk|Im ∈ Pr−1(Im, Y
p),

(
φk(0)
ψk(0)

)
∈ L,

ψjk|Ijm ∈ Pr−1(Ijm, Y
o), 1 ≤ m ≤M, 1 ≤ j ≤M s

m

}
.

Xr
k(Y ) :=

{(φk
ψk

)
: Ī → Y

∣∣∣ [φk]m−1 = 0, [ψk]
jm−1
m = 0,

(
φk(0)
ψk(0)

)
∈ L,

φk|Im ∈ Pr(Im, Y p), ψk|Ijmm ∈ Pr(I
jm

m , Y o), 1 ≤ jm ≤M s
m,m ∈ J1,

φk|In ∈ Pr−1(In, Y
p), ψk|Ijnn ∈ Pr−1(Ij

n

n , Y
o), 1 ≤ jn ≤M s

n, n ∈ J0

}
.

(3.7)

A notation for jumps of the solution at the intermediate time points is introduced
by

vl,j,+ = lim
ε↘0

v(tjl + ε), vl,j,− = lim
ε↘0

v(tjl − ε), [v]jl = vl,j,+ − vl,j,−.

We discretize the system of equations (2.3) with the test space X1
k(V ) ⊂ L2(I, V )

and the trial space X̂0
k(V ) ⊂ L2(I, V ) to obtain the Galerkin formulation:

Given w0 ∈ L, find wk =

(
uk
vk

)
∈ X1

k(V ) such that for all ϕk =

(
φk
ψk

)
∈ X̂0

k(V )

the following holds

((∂twk, ϕk)) + F̄(wk;φk) +
∑
m∈J0

([uk]m−1, φ
m−1,+
k )

+
∑
m∈J0,
j≤Ms

m

([vk]
j−1
m , ψm,j−1,+

k ) + (wk(0)− w0, ϕ
0,−
k ) = 0.

(3.8)

We approximate the temporal integrals on the time intervals either by the box
rule or by the trapezoidal rule.∫

Ijm

(wk(t), ϕk(t)) dt ≈ kjm(wk(t
j
m), ϕk(t

j
m)), m ∈ J0,

∫
Ijm

(wk(t), ϕk(t)) dt ≈
kjm
2

(
(wk(t

j
m), ϕk(t

j
m)) + (wk(t

j−1
m ), ϕk(t

j−1
m ))

)
, m ∈ J1.
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3 Discretization

In the following time marching scheme, we use the notation wm,jk for the approxi-
mated value at time point tm,jk . The PDE part of the solution um,jk is obtained at
the intermediate time points tm,jk by the linear interpolation (3.6) of uk. The time
marching scheme resulting from the Galerkin formulation (3.8) reads as follows:

Given initial values w0 ∈ L, find wmk =

(
umk
vmk

)
∈ V for all 1 ≤ m ≤ M and

1 ≤ j ≤M s
m such that the following holds for all φ ∈ V p, ψ ∈ V o

(w0
k, ϕ) = (w0, ϕ), for all ϕ ∈ L

(umk , φ) + kmµ(∇umk ,∇φ)

+
∑
j≤Ms

m

kjmā(wm,jk ;φ) = (um−1
k , φ), m ∈ J0,

(vm,jk , ψ) + kjmb̄(w
m,j
k ;ψ) = (vm,j−1

k , ψ) m ∈ J0, 1 ≤ j ≤M s
m

(umk , φ) +
1

2
kmµ(∇um−1

k +∇umk ,∇φ)

+
1

2

∑
j≤Ms

m

kjm

(
ā(wm,jk ;φ) + ā(wm,j−1

k ;φ)
)

= (um−1
k , φ), m ∈ J1

(vm,jk , ψ) +
1

2
kjm

(
b̄(wm,jk ;ψ) + b̄(wm,j−1

k ;ψ)
)

= (vm,j−1
k , ψ), m ∈ J1, 1 ≤ j ≤M s

m.

(3.9)

Remark 3.1. We note that the PDE and ODE part are strongly coupled in the
time marching algorithm for different time meshes for the two parts (3.9). The
discretized solution of the PDE part umk at time point tm is coupled to all of the in-
termediate values vjk for j ≤M s

m of the ODE part of the solution. The ODE values
vjk are coupled to umk as well. In a coupled solving approach, which we describe in
Chapter 4, a finer time mesh of the ODE part increases the number of degrees of
freedoms of the ODE part. Depending on the coupling, most degrees of freedoms of
the ODE part are directly coupled to the PDE part. Hence, the discretization with
a refined ODE time mesh results in a discrete PDE/ODE system, which needs to
be solved as often as without the fine ODE time discretization. Only the number
of ODEs, which are coupled in the discrete system to the PDE, is increased.

3.2 Spatial discretization

We discretize the infinite dimensional function space V by means of finite ele-
ments. To this end, we subdivide the domain Ω into disjoint open form-regular
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3.2 Spatial discretization

quadrilateral or hexahedron shape-regular cells K (depending on the dimension of
Ω), following e.g. Ciarlet [18]. All cells together form the spatial mesh Th = {K}
of the domain, where h is a parameter depending on the diameter of the mesh cells
(e.g. the maximum of the diameters). The union of the closure of the mesh cells
covers the computational domain Ωh so that Ω̄h :=

⋃
K∈Th K̄. For s ∈ N, s ≥ 1,

we construct the finite dimensional subspaces V s
h ⊂ V p

V s
h :=

{
u ∈ C0(Ω̄h)

∣∣∣ u|K ∈ Qs(K), for all K ∈ Th
}
,

where Qs denotes the usual space of isoparametric finite elements. The space Qs

is defined as the tensor product polynomial up to degree s on a reference square
or cube K̂, mapped by a transformation of the same polynomial space onto the
cell K.

We introduce hanging nodes between a refined cell and its neighbors, see Rhein-
boldt and Mesztenyi [53] for the adaptive mesh refinement of the triangulation Th,
see Chapter 5. Only one hanging node is allowed per edge. No degrees of freedom
are connected to the hanging nodes, instead they are eliminated by interpolation.

We then define the spatially discretized spaces Xr,s
kh and X̂r−1,s

kh by

Xr,s
kh := Xr

k(V s
h × V o),

X̂r−1,s
kh := X̂r−1

k (V s
h × V o).

(3.10)

We obtain the fully discretized version of problem (2.5) by:

Given w0 ∈ V s
h × V o, find wkh =

(
ukh
vkh

)
∈ X1,s

kh such that for all ϕkh =

(
φkh
ψk

)
∈

X̂0,s
kh the following holds

((∂twkh, ϕkh)) + F̄(wkh;φkh) +
∑
m∈J0

([ukh]m−1, φ
m−1,+
kh )

+
∑
m∈J0,
j≤Ms

m

([vkh]
j−1
m , ψm,j−1,+

k ) + (wkh(0)− w0, ϕ
0,−) = 0.

(3.11)

We use the notation wmkh := wkh(t
m) and wm,jkh := wkh(t

m,j), which are defined by
linear interpolation analogously to (3.6). We obtain a fully discrete time marching
scheme for a given s ∈ N, a spatially discretized version of (3.9):

Given initial values
(
u0

v0

)
∈ V s

h × V o, find wmkh =

(
umkh
vmkh

)
∈ V s

h × V o for all
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3 Discretization

1 ≤ m ≤ M such that the following holds for all φh ∈ V s
h , ψ ∈ V o and for all

1 ≤ m ≤M , 1 ≤ j ≤M s
m:

(u0
kh, φh) = (u0, φh, ),

(v0
kh, ψ) = (v0, ψ),

(umkh, φh) + kmµ(∇umkh,∇φh) +
∑
j≤Ms

m

kjmā(wm,jkh ;φh) = (um−1
kh , φh) m ∈ J0

(vm,jkh , ψ) + kjmā(wm,jkh ;ψ) = (vm,j−1
kh , ψ), m ∈ J0,

(umkh, φh) +
1

2
kmµ(∇um−1

kh +∇umkh,∇φh) (3.12)

+
1

2

∑
j≤Ms

m

kjm

(
ā(wm,jkh ;φh) + ā(wm,j−1

kh ;φh)
)

= (um−1
kh , φh), m ∈ J1,

(vm,jkh , ψ) +
1

2
kjm

(
b̄(wm,jkh ;ψ) + b̄(wm,j−1

kh ;ψ)
)

= (vm,j−1
kh , ψ), m ∈ J1.

We denote the spatially discretized space of the PDE part V p by V p
h . Since all

computations in this thesis employ discretizations consisting of Q1 elements, we
select the spatially discretized space V p

h as V 1
h .

V p
h := V 1

h

Additionally, a steady state of the system (2.5) is directly computed in Section
4.3.2. For this reason, we discretize the stationary equation (2.6) with finite ele-

ments and solve the following system for wh :=

(
uh
vh

)
∈ V p

h × V o,

µ(∇uh,∇φh) + ā(wh;φh) = 0, for all φh ∈ V s
h ,

b̄(wh;ψ) = 0, for all ψ ∈ V o.
(3.13)

3.3 Dual time marching scheme

In Chapter 5, we locally estimate the error a posteriori and adapt the grid in time
and space. Therefore, we consider the dual problem for a given functional J ∈ W ′

(5.11) to the coupled system of equations (2.5):
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3.3 Dual time marching scheme

Find a dual solution z ∈ W for a given linear functional J ∈ W ′ and a solution of
the primal problem w ∈ W such that the following holds

−((ϕ, ∂tz)) + F ′(w;ϕ, z) + (ϕ(T ), z(T )) = J(ϕ), ∀ϕ ∈ V. (3.14)

In contrast to the primal problem, the formulation of the Galerkin scheme of the
dual problem yields a different time stepping scheme. The dual time marching
scheme differs for adaptively refined time discretizations or when the time step-
ping scheme switches between the Crank-Nicolson scheme and the implicit Euler
scheme, e.g. when m ∈ J1 and m + 1 ∈ J0. Secondly, the coupling between
the PDE and the ODE part in function b̄′u results in an especially complicated
formulation if different time meshes are used for the two parts of the equation.

In Goll et al. [28] and in Schmich and Vexlers work [59], the derived algorithm
is completely implemented to ensure the adjoint consistency of the time stepping
scheme, i.e. whether the calculated discrete adjoint corresponds to a discretization
of the continuous adjoint. Adjoint inconsistencies can reduce the convergence of
algorithms relying on the dual solution, e.g. in the context of optimization, see
Sachs et al. [57].

Hartmann [31] derived the dual time stepping scheme of the Crank-Nicolson
method for the adjoint of the discrete Galerkin formulation. The derived method
is only first-order accurate in time on adaptively refined time discretizations. Fur-
ther, he showed in [32] that for use in the dual weighted residual method mainly
the approximation properties of the discrete dual solution are important: The dual
solution itself is only needed to a certain accuracy.

We apply a dual time marching scheme, which we obtained by a discretization
of the adjoint of the Galerkin formulation. This discretization corresponds to the
time stepping scheme used for the primal problem in (3.12). In the numerical
computation in Section 5.5, we were able to obtain reliable and precise error es-
timations with our discretized dual solutions. Therefore, we assume that for the
PDE/ODE systems considered in this thesis the effect of adjoint inconsistencies
can be neglected in the context of the Dual Weighted Residual method.

To compute the discretized dual solution zkh ∈ X̂0,1
kh , we use the following dual

time marching scheme:

Find zm =

(
zmu
zmv

)
∈ V p

h × V o for all m ≤ M with the starting values at the final
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3 Discretization

time point T :

(φh, z
M
u ) := Jp,1(φh), (ψ, zMv ) := Jo,1(ψ),

such that there holds for any φh ∈ V p
h , ψ ∈ V o:

• for all m ∈ J0 and for all j ≤M s
m:

(φh, z
m
u ) + kmµ(∇φh,∇zmu ) + kmā

′
u(w

m;φh, z
m
u )

+
∑
j≤Ms

m

kjmb̄
′
v(w

m,j;φh, z
m,j
v )− Jp,2(φh) = (φh, z

m+1
u ), (3.15a)

(ψ, zm,j−1
v ) + kj−1

m ā′v(w
m;ψ, zmu )

+kj−1
m b̄′v(w

m,j−1;ψ, zm,j−1
v )− Jo,2(ψ) = (ψ, zm,jv ),

(3.15b)

• for all m ∈ J1 and for all j ≤M s
m:

(φh, z
m
u ) +

1

2
kmµ(∇φh,∇zmu ) +

1

2
kmµ(∇φh,∇zm+1

u )

+
1

2
kmā

′
u(w

m;φh, z
m
u ) +

1

2
kmā

′
u(w

m+1;φh, z
m+1
u ) (3.15c)

+
1

2
kmb̄

′
u(w

m;φh, z
m
v ) +

1

2
kmb̄

′
u(w

m+1;φh, z
m+1
v )− Jp,2(φh) = (φh, z

m+1
u ),

(ψ, zm,j−1
v ) +

1

2
kj−1
m ā′v(w

m,j−1;ψ, zmu ) +
1

2
kj−1
m ā′v(w

m,j;ψ, zmu )

+
1

2
kj−1
m b̄′v(w

m,j−1;ψ, zm,j−1
v ) +

1

2
kj−1
m b̄′v(w

m,j;ψ, zm,jv )− Jo,2(ψ) = (ψ, zm,jv ).

(3.15d)

• for m = 0 :

(φh, z
0
u) = (φh, z

1
u)

(ψ, z0
v) = (ψ, z1

v)
(3.15e)

We point out that we use in equation (3.15c) a coarse approximation of the ODE
part of the dual solution. A coarse trapezoidal rule, which uses only values of the
dual solution at the start and end point of each interval Im is applied instead of
taking the sum over all intermediate time points tjm.

We found that these coarser approximations became necessary in many of the
computed examples in Section 5.5. When we used the finer approximations at all
intermediate time points, we observed instability issues of the PDE values of the
dual solution during the Crank-Nicolson time stepping (m ∈ J1). These oscillations
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3.3 Dual time marching scheme

were never observed for the primal problem. We avoid the instabilities by using
the trapezoidal rule for the dual problem (3.15c). Not all available information of
the ODE part of the solution is used, but the time marching scheme still solves
the system of equations (2.5) with an error of order O(k2

m). Thus, the order of the
method is not reduced. The ODE part of equation (3.15d) is solved on the finer
time grid.
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4 Coupled and Decoupled Linear
Solvers

The results in this chapter have been submitted for publication and are available
as a preprint [15].

In Chapter 3.1, we discretized the non-stationary coupled problem (2.5) in time
with a damped Crank-Nicolson Scheme. In this chapter, we compare solution
schemes for the arising nonlinear coupled discrete system (3.12) to be solved on
each time interval Im. Additionally, we investigate solution schemes for stationary
computations of a steady state (2.6), which enables to measure the performance
independently of a chosen temporal discretization.

We introduce a joint notation for both resulting discrete nonlinear systems by the
operators Ah : V p

h × V o → V p
h and Bh : V p

h × V o → V o with corresponding right
hand sides fh ∈ V p and gh ∈ V o, such that

Ah(u, v) = fh, (4.1a)
Bh(u, v) = gh. (4.1b)

We use the index h to indicate the dependence of the operator Bh on the dis-
cretization through the coupling with the PDE part.

Often if a numerical scheme for solving coupled equations, e.g. multiphysics prob-
lems, is developed, decoupled methods are favored. A decoupled solution scheme
allows solving both parts of the system with a solver at hand, possibly tuned to
solve that specific part of the problem. The coupling can be implemented in an
external (to the two solvers) framework allowing an easy implementation of the
more complex coupled problem. This approach is widely used to solve coupled sys-
tems, see [23, 25, 33, 48, 49, 61]. The two solvers are used iteratively to solve the
coupling of the system. These decoupled methods are much easier to implement
but have serious drawbacks. Fixed point iterations tend to converge very slowly
or not at all if the system is strongly coupled. The large iterative error in this
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4 Coupled and Decoupled Linear Solvers

strategy can only be reduced at high computational costs through very small time
steps or a higher number of iterations between the two solvers. Other publications
avoid decoupled methods for these reasons and instead develop a coupled solver
scheme [34, 39]. Since the ODE part in systems for modeling the simulation of
intercellular signaling does lead to a small discretization compared to the PDE
part, it is not clear if a splitting method can outperform a coupled scheme. In
case of a strong nonlinear coupling of the system, many iterations of the decoupled
solution scheme can be avoided by using a fully coupled solver.

The effectivity of a coupled solution method depends on the impact of the coupling.
Therefore, we first analyze the sensitivities of the coupled system in Section 4.1.
We present coupled and decoupled solution schemes in Section 4.2 and discuss
numerical results in Section 4.3.

4.1 Sensitivity analysis of the coupled system

Let Sh : vh 7→ uh and Th : uh 7→ vh denote respectively the solution operator
for the decoupled PDE part and ODE part of the discretized system of equations
(4.1). With this notation, we can write the system (4.1) as

u = Sh(v), (4.2a)
v = Th(u). (4.2b)

In a fixed point iteration, the PDE part of the equation (4.2) is solved for a given
value of v, then the ODE part of the equation (4.2) is solved with the resulting
value of u. The cycle is iterated until a given tolerance is reached. This process
can also be written as a composition of the two operators:

un+1 = Sh
(
Th(u

n)
)
. (4.3)

A fixed point iteration to solve the system (4.1) has a slow convergence rate (typ-
ically only linear) and the number of fixed point iterations depends on the nature
of the coupling and the model parameters. Nevertheless, a decoupled linear solver
can be considered advantageous as part of a Newton scheme. Thus, instead of
solving the update of the solution by using the Jacobian of the full system, one
updates iteratively the two decoupled parts. We present these two solution schemes
in the following sections, in which we compare two different strategies to solve the
Newton update.
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4.1 Sensitivity analysis of the coupled system

We continue by presenting a sensitivity approach to decide whether a fixed point
iteration or the full system update should be used. As shown later, the choice
depends on the actual model parameter and the method gives a quantitative index
that can be used for practical implementations. The results shown here use the
well known fact that a fixed point iteration can converge only if a specific condition
on the iteration operator is fulfilled.

Considering the formulation (4.3), we write the Jacobian of the fixed point operator
as

J =
∂Sh
∂v

∂Th
∂u

. (4.4)

According to the Banach fixed point theorem, the following criterion has to be
fulfilled for the convergence of the fixed point iteration

‖J‖ < 1, (4.5)

in some norm ‖ · ‖. A more convenient criterion is the substitution of the norm
with the spectral radius of the matrix J ,

|λmax(J)| < 1. (4.6)

If this condition is fulfilled a simple fixed point approach converges, therefore this
criterion has been used, e.g. by Haftka et al. [30], to define whether the coupling
of the system (4.1) is strong. Depending on the parameters, we show in Section
4.3.2 that the PDE/ODE systems for intercellular signaling are strong coupled
and thus a full coupling is more effective than a decoupled method. Decoupled
methods can still converge for strong coupled systems if embedded in a Newton’s
scheme, but require a large number of fixed point iterations, as we show in our
numerical results.

We proceed with the calculation of the largest eigenvalue of the Jacobian J . We
differentiate therefore the discretized operators Ah and Bh and obtain the sensi-
tivity equations

A′h,u(û, v̂)uδv + A′h,v(û, v̂)δv = 0, ∀δv ∈ V o, (4.7a)

and

B′h,v(û, v̂)vδu +B′h,u(û, v̂)δu = 0, ∀δu ∈ V p
h . (4.7b)
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4 Coupled and Decoupled Linear Solvers

We introduce the notation

uδv :=
∂u

∂v
(δv), vδu =

∂v

∂u
(δu)

for the sensitivities. In the decoupled system, uδv indicates the variation of the
PDE solution, which perturbs the solution of the ODE system, and equivalently
vδu denotes the variation of the ODE system for a perturbation of the PDE system.

Since the sensitivities in the linear solver strongly depend on the used time stepping
scheme, we consider only the sensitivities for a computation of the steady state.
Then, the equations (4.7a) are stationary PDEs to be solved for each component
of δv, while the ODE part (4.7b) consists of algebraic equations solved for each δu.
Therefore, we compute the sensitivity matrices ∂Sh/∂v as a N o ×Np matrix and
∂Th/∂u as a Np × N o matrix, where N o denotes the number of ODE equations
and Np the dimension of the PDE discretization.

Remark 4.1. In the PDE/ODE system presented in Section 2.3, the coupling
between the two parts appears only at the boundaries Γi and only with the first
two components of v. Thus, the product ∂Sh/∂v ∂Th/∂u decouples into a block
diagonal matrix consisting of 2 × 2 matrices for each biological cell. In addition,
we need to calculate the sensitivities (4.7b) only for the restriction of δu on the
boundaries Γi, which are nonetheless algebraic equations. Therefore, the major
costs to calculate the sensitivities are given by the PDE part (4.7a).

For nonlinear systems of equations, the sensitivity analysis depends on a given
point of linearization (û, v̂). We compute an approximate numerical solution of
the system (4.1) for characteristic values of the parameters and choose the solution
as point of linearization.

Remark 4.2. We evaluated the PDE/ODE model modeling IL-2 signaling (2.7)
with the presented sensitivity analysis. For different numbers, size and distribution
of biological cells, as well as moderate secretion rates q in the biological range, see
Busse et al. [13], there exists a unique stationary state. Thus, it is possible to
use a stationary solver to directly compute this steady state. We obtain maximal
eigenvalues λ of the sensitivity matrix such that

5 < λ < 100.

This analysis therefore shows quantitatively that the interaction between the PDE
and the ODE part of the system of equations (2.7) is strong.

36



4.2 Numerical schemes

4.2 Numerical schemes

In this section, we present different approaches for a solver of a strongly coupled
PDE/ODE system. The different solvers are numerically compared to each other
in Section 4.3.

4.2.1 Nonlinear solvers

There are mainly two strategies for implicit solvers of coupled systems:

• nonlinear methods, among them the nonlinear multigrid method also called
’full approximation scheme’ (FAS), see Brandt or Hackbusch [12, 29],

• linearization based approaches, e.g. by Newton or Picard iterations, see a
comparison by Paniconi and Putti [50].

These methods can be used in a combined approach, where for instance a Newton-
type method can be used as smoother for a FAS and a linear or a nonlinear multi-
grid can be used as a preconditioner for a Newton-type method, see Cai and Keyes
[14]. Nevertheless, the comparison and discussion of advantages and disadvantages
of these strategies, that depend on many aspects like e.g. the accuracy of the Ja-
cobian approximation, see Mavriplis [47], is not the focus of our work.

Newton-type methods provide a flexible and reliable framework for nonlinear prob-
lems by solving a series of linear equations with a quadratic convergence rate and
thus much faster than Picard-methods. Since in the considered PDE/ODE system
the linearization is not a critical point, we consider a Newton-type method pre-
conditioned by a linear multigrid and study the effect of splitting the linearization
in the following sections.

Fully Coupled Newton’s Method

To apply Newton’s method, we linearize the system and solve in each Newton step
the system(

A′h,u(u
n, vn) A′h,v(u

n, vn)
B′h,u(u

n, vn) B′h,v(u
n, vn)

)(
δun+1

δvn+1

)
=

(
fh − Ah(un, vn)
gh −Bh(u

n, vn)

)
, (4.8)

to obtain the Newton updates δun+1 and δvn+1, with which we calculate the next
iterates un+1 = un + δvn and vn+1 = vn + δvn+1. We write A′h,u and A′h,v for the
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4 Coupled and Decoupled Linear Solvers

derivatives of Ah with respect to u and v and analogously B′h,u and B′h,v for the
derivatives of Bh.

Decoupled Inexact Newton’s Method

Secondly, we consider a decoupled solution scheme for the linear systems defined
in each Newton-step. In a typical decoupled scheme, the two systems are solved
iteratively in separate solvers. The coupled system is solved in each Newton step
by this decoupled scheme until the residual of the system fulfills a certain accuracy
or a maximum of iterations is reached.

A standard algorithm for a decoupled Newton’s method is shown in Algorithm
4.1, which iterates until the approximated solution fulfills a prescribed accuracy
(TOLnewton). In this scheme, we solve in each time step m with a Newton type
method the solution for the next time step (un+1, vn+1) by calculating a few it-
erations of the decoupled subsystems. The decoupled system is solved for each
Newton step n by the following fixed point iteration(

A′h,u(u
n, vn) A′h,v(u

n, vn)
0 B′h,v(u

n, vn)

)(
δui+1

δvi+1

)
=

(
fh − Ah(un, vn)

gh −Bh(u
n, vn)−B′h,v(un, vn)δui

)
,

(4.9)

until the Newton updates (δui+1, δvi+1) fulfill the linear residual of the system
(4.8) to an accuracy (TOLfixpoint).

Algorithm 4.1: Decoupled algorithm: inexact Newton scheme
n = 0
repeat

i = 0
repeat

compute Newton updates (δui+1, δvi+1) by solving (4.9)
evaluate the residual resiter of the linear system (4.8)
i = i+ 1

until resiter < TOLfixpoint or i = MAXfixpoint

update the iterate un and vn by δun+1 and δvn+1

evaluate the residual resnewton of the nonlinear system (4.1)
n = n+ 1

until resnewton < TOLnewton
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A common approach to accelerate such a solution process is a quasi-Newton iter-
ation in which the Jacobian matrix is only approximated. In this way the costs
per Newton iteration are reduced, while the number of Newton iterations increase.
A trade-off between accuracy and total costs can reduce the computing time with
respect to a full Newton method. Such a quasi-Newton scheme is obtained if a
low accuracy (TOLfixpoint) or a small maximum number of fixed point iterations
(MAXfixpoint) is chosen. This decoupled method is compared for different pa-
rameters in numerical tests of Section 4.3.2 to the fully coupled Newton method.

4.2.2 Multigrid Schemes

In this section, we introduce a multilevel preconditioner which can cope with the
strong coupling between PDE and ODEs. Such a coupling arises in the solver of the
linear subsystems if the fully coupled Newton method is used instead of a splitting
scheme. Coupled problems are commonly preconditioned by block precondition-
ing approaches, e.g. by simple block diagonal methods or a preconditioning of
the Schur complement, see Mandel [43]. We do not use a block preconditioning
approach because of the much smaller discretization of the ODE part. Instead, we
set up a coupled preconditioner based on the linear multigrid method.

Since the condition number of the discrete problem depends on the refinement
level, it is well known [11, 29] that the most efficient preconditioner for the PDE
block is a multilevel preconditioner. We compare this approach to the previously
described decoupled solution scheme in Figure 4.1. We consider a hierarchy of
meshes {Tl}0≤l≤L, where the index 0 denotes the root mesh, i.e. the coarsest mesh
from which all other meshes are derived by global or local refinement. In this
section, we use the following notation for the system matrix of (4.8)

Kl :=

(
A′,lh,u A′,lh,v
B′h,u B′h,v

)
, (4.10)

where the index l indicates the grid refinement level. Note, that we do not use the
notation with superscript l in the blocks of the ODE part. In fact, B′h,v does not
depend on the mesh level, while B′h,u does depend on the mesh level through the
coupling term ũh on the cell boundary. To reduce the computational costs, and
simplify the implementation, we use the following approximation: the coupling
ODE/PDE block is calculated at each level with the term ũh computed at the
finest level. In this way, the whole ODE part does not depend on the refinement
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4 Coupled and Decoupled Linear Solvers

level l. We have observed that this modification does not influence considerably
the performance of the multilevel algorithm. The aim of the algorithm is to solve
the system KL corresponding to the finest mesh level L

KLwL = fL. (4.11)

Instead of system (4.11), one solves the following preconditioned system (4.12) with
a Krylov space method like the conjugate gradient method (CG) or the generalized
minimal residual (GMRES) method. We use a GMRES solver because of the
asymmetry of the system matrix, but a different Krylov method as, e.g., the BiCG
or BiCGStab would also be appropriate for our purpose. In the preconditioned
system

P−1KLwL = P−1fL, (4.12)

the operator P−1 is chosen as a possible cheap approximation of the inverse of AL.
In our case P−1 is given by a multigrid algorithm.

We apply the well known V-cycle multigrid algorithm described by Algorithm 4.2.
The convergence of the V-cycle multigrid algorithm has been shown, see Bramble
[11]. We show numerically in Section 4.3.2 that the efficiency of the preconditioner
developed in this thesis is independent of the mesh size. The principal components
of the algorithm are the transfer operators and the smoothing operator.

Transfer Operators

We use the following notation for the transfer operators

Rl−1
l : Vl → Vl−1 (restriction), P l−1

l : Vl−1 → Vl (prolongation). (4.13)

The restriction and prolongation operators act only on the PDE part, i.e. the finite
element discretization, while the ODE part is transferred by the identity in both
directions. The restriction and prolongation for the PDE part are implemented as
intergrid transfers induced by the natural embedding of hierarchical meshes, see
Janssen and Kanschat [38]. The restriction of the whole residual is given in matrix
notation by the application of the operator(

Rl−1
l 0
0 I

)
, (4.14)
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4.2 Numerical schemes

Algorithm 4.2: Multilevel algorithm: V-cycle
Function MG(l, yl)

if l = 0 then
Solve on the coarsest grid
x0 := K−1

0 f0

return x0

else
Presmoothing
ȳl := Sl(yl)
Calculation of defect
dl := fl −Klȳl
Restriction of defect
dl−1 := Rl−1

l rl
Defect equation
wl−1 :=MG(l − 1, dl−1)
Prolongation of defect
wl := P l

l−1wl−1

Correction
x̄l := ȳl + wl
Postsmoothing
xl := Sl(x̄l)

return xl

where I ∈ Rn×n denotes the identity matrix of the ODE part. The prolongation
of the whole residual is defined analogously.

Smoothers

In case of strong coupled problems, a common strategy for the smoothing process
is to consider the full coupling only at the coarsest level and to smooth the two
parts separately (decoupled) on the finer levels. Since in our case the ODE part
is small compared to the PDE one, we expect that the marginally more expen-
sive smoothing of the whole coupled system on all mesh levels would be efficient,
given the strong coupling. Therefore, we compare smoothing the whole system
to smoothing only the PDE part. For this comparison every efficient smoother
would be appropriate, we choose the incomplete LU factorization (ILU). The two
smoother are denoted S1 and S2:
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4 Coupled and Decoupled Linear Solvers

S1: incomplete factorization (ILU) of the whole matrix Al,

S2: incomplete factorization (ILU) of the PDE block as part of a Block Gauss
Seidel scheme.

We apply three smoothing iterations in each pre- and postsmoothing step of the
V-cycle, see Algorithm 4.2.

4.3 Numerical results

In this section, we make a comparison of the different numerical schemes pre-
sented in the previous section. The following computations were performed by
using the C++ library deal.II, developed by Bangerth et al. [6], and applying the
UMFPACK library [21] as direct solver on the coarsest mesh level .

We consider the following test problem: we approximate the IL-2 signaling of
eight evenly positioned T cells in a 3D environment modeled by system (2.7). The
configuration is displayed in Figure 2.1(a). The responding T cells are marked in
white and the secreting T cell in purple (q = 2, 500 molecules/h). There exists a
unique stationary state for this test problem. We obtain a maximal eigenvalue of
the sensitivity matrix of λ = 8.88 with the methods of Section 4.1, which indicates
a strong coupling between the PDE and the ODE part.

4.3.1 Multigrid preconditioners

We compare the different smoothers S1 and S2 in a series of numerical tests for a
stationary solver of system (3.13), to avoid an influence on the comparison by the
time stepping scheme. We compute the number of GMRES steps over all Newton
steps (Σn) and the average reduction rate (r) of the residual in each GMRES step.
The Newton scheme is iterated until an accuracy of 10−6 is reached. The number
of Newton steps is independent of the grid refinement, since it depends only on the
coupling, the nonlinearity of the equation and the accuracy of the solver. Each of
the seven resulting Newton steps is solved for an accuracy of 10−11.

We refine the grid globally until the finest grid with 885673 degrees of freedom,
compared to 367 on the coarse grid for the PDE part. Additionally 24 degrees of
freedom of the ODE part are coupled to the PDE part. Next, we apply the two
smoothers S1 and S2 in the multilevel scheme. We compare two main approaches:
smoothing only the PDE part or smoothing the whole matrix. Since the coupling
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4.3 Numerical results

Table 4.1: Reduction rates of different preconditioners

MG-S1 (ILU) MG-S2 (Bl.-ILU)

L log10 r Σs log10r Σs
2 2.00 46 1.41 69
3 1.92 51 1.27 77
4 1.85 54 1.21 81
5 1.81 54 1.15 84
Notation: Σs total GMRES iterations

r average reduction rate
L refinement level

between the PDE and the ODE part in the system is strong, we expect that an
effective smoother for the coupled system yields better results. In fact, it can be
observed that the coupled ILU smoother S1 is 35% more effective than S2 with
much higher reduction rates. Therefore, we apply the smoother S1 in the following
sections.

Remark 4.3. We note that the higher effectivity of a coupled smoother, compared
to to a smoother which acts only for the PDE part, is connected to the type of
smoothing. The ILU iterations, for which we showed results in this section, yield
a good approximation of the inverse of the system matrix Kl. Smoother with less
computational cost, e.g. Jacobi iterations, can give effective approximations for
the inverse of the Laplace operator but are not well suited for a coupled PDE/ODE
system. A numerical investigation showed that a solver with a coupled Jacobi
smoother needs 8% more iterations than a simple Jacobi smoother which acts only
on the PDE part. Thus, the large gain in efficiency for a coupled smoother, as
presented in this section, is only observed when effective smoothing techniques for
PDE/ODE systems are applied.

4.3.2 Comparison of coupled and decoupled schemes

In this section, we compare the described coupled and decoupled scheme with each
other in different test cases. Hence, the two approaches are:

• a Newton-type method in which the linearized coupled system (4.8) is solved
by a GMRES solver preconditioned by the multigrid method described in
Section 4.2.2 with smoother S1,
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4 Coupled and Decoupled Linear Solvers

• a Newton-type method in which the linearized system is solved in a decou-
pled manner by a fixed point iteration defined by the system (4.9). The PDE
block is solved by a GMRES solver preconditioned by a multigrid method
following the implementation of Janssen and Kanschat [38]. The solver of
choice for the symmetric part would be the conjugate gradient method (CG),
but we use for a direct comparison instead the GMRES method. We have
observed nevertheless that, in combination with the preconditioner, both
solvers have similar performance.

We compare the two approaches in Figure 4.1.

To make the schemes comparable, we use a Newton-type method with the same
accuracy of the GMRES solver of TOLfixpoint = 10−11 for both linearized systems.
Thus, the number of Newton steps to solve the nonlinear problem is independent
of the approach and we can compare the total number of GMRES steps to solve
for an accuracy of TOLnewton = 10−6. We compare the two solution schemes
first in a stationary solver independent of a time stepping scheme and then in a
non-stationary solver.

Figure 4.1: Comparison of multigrid schemes for nonlinear PDE/ODE systems
(a) coupled scheme

Newton-method
↓

Krylov-solver
↓

Multigrid-preconditioner
↓

PDE/ODE Smoother

(b) decoupled scheme

Newton-method
↓

Fixed point iteration
↙ ↘

Direct solver Krylov-solver
↓

Multigrid-preconditioner
↓

PDE Smoother

Stationary solvers

We compare the two solution schemes in a stationary computation of the test
problem (2.6) in a setup of eight Th cells. The tests consist of simulations with
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4.3 Numerical results

biological parameters that correspond to strong coupling and of simulations with
artificial parameters which correspond to a weakly coupled system.

• In the simulations with biological parameters, the maximal value of the
eigenvalues of the sensitivity matrix is λ = 8.88. We expect thus a strong
PDE/ODE coupling and hence that the decoupled approach is far less effec-
tive than the coupled one.

• A weakly coupled test case is created artificially by increasing the parameter
kd from 0.1 to 1000. The consequent increment of the degradation of u
diminishes the influence of the uptake of the cells which depends on the
components of v. Thus, the PDE part is ’decoupled’ from the ODE part: the
sensitivity analysis yields a maximal eigenvalue of λ = 0.01, which indicates
that the coupling is very weak.

In Table 4.2, we compare the number of Newton steps (n) and the number of total
GMRES iterations (Σs) needed to obtain a solution of accuracy (TOLnewton). In
each Newton step, the decoupled scheme described in Algorithm 4.1 is iterated
until a residual resiter < TOLfixpoint is reached without a given maximum for the
number of fixed point iterations MAXfixpoint. The average GMRES iterations
per Newton step is denoted by s̄ and the sum over all GMRES steps by Σs. We
globally refine the coarse grid three times up to a number of 114929 degrees of
freedom.

Table 4.2: Coupled vs decoupled solver

biological problem λ = 8.88 modified problem λ = 0.01
decoupled coupled decoupled coupled

L s n̄ Σn s n̄ Σn s n̄ Σn s n̄ Σn

2 7 748 5236 7 6.6 46 3 11 33 3 7 21
3 7 921 6444 7 7.3 51 3 11 33 3 7 21
4 7 957 6699 7 7.7 54 3 11.7 35 3 7 21
Notation: Σn GMRES iterations in all Newton steps

s Newton steps
n̄ average GMRES iterations per Newton step
L refinement level
λ largest eigenvalue of the sensitivity matrices

The results show that the number of Newton steps is independent of the used
solution scheme due to the high accuracy TOLfixpoint demanded of the decoupled
solver. This accuracy comes at great cost for the decoupled solver, the sum of
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GMRES iterations is significantly higher (by a factor of more than 100) for the
strong coupled biological problem. The coupled solution scheme is very efficient
both for the strong and weak coupled problem. The multigrid preconditioner of
the coupled scheme reduces the number of GMRES iterations even in the strong
coupled problem to around seven. The decoupled approach is more competitive
for the weak coupled problem, though the coupled solver is still 40% faster.

Non-stationary solvers

We solve in this section the time-dependent system (2.7) for 20 hours until a near
stationary solution is reached. In each time step, a coupled nonlinear system (3.12)
has to be solved. In contrast to the stationary case, the strength of the coupling
is reduced when using small time steps.

We choose the maximum number of fixed point iterations in each Newton step
(MAXfixpoint) between one and four and compare the fully coupled Newton
method to the decoupled quasi-Newton scheme.

Table 4.3: Decoupled and coupled schemes of the non-stationary problem

∆t = 0.1 ∆t = 0.01
MAXfixpoint Σs Σn Σs Σn

decoupled 1 1393 3375 5566 14016
2 754 3792 3395 15217
3 547 4363 2880 21153
4 448 4775 2871 23658

coupled 356 1799 2868 11299
Notation: Σs Newton steps in all time steps

Σn GMRES iterations in all Newton steps
MAXfixpoint max. iterations per Newton step

In Table 4.3 we report the number of computed newton steps (Σn) and the number
of computed GMRES steps (Σs) over all time steps. The results are listed for
computations on a once refined spatial grid (2189 degrees of freedom) with 200
(∆t = 0.1) or 2000 (∆t = 0.01) time steps.

A higher maximal number of fixed point iterations per Newton step increases the
accuracy of the linear solver and thus reduces the number of Newton steps. The
decoupled solution scheme with a maximum of four fixed point iterations result in
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4.3 Numerical results

near the same number of Newton steps compared to the coupled solution scheme
but with more than twice the number of computed GMRES steps. Nevertheless,
it can be observed that the number of total GMRES steps decreases with a re-
duced number of allowed fixed point iterations per Newton step. Thus, more than
one fixed point iteration per Newton step should be avoided if the quasi-Newton
method is still converging.

As already remarked, the effectiveness of the decoupled solver depends on the
strength of the coupling and thus on the size of the time step. In fact for time steps
∆t = 0.1, the coupled solver needs around half of the iterations of the decoupled
solver. For smaller time steps (∆t = 0.01), the iterations of the coupled solver are
reduced by 20% compared to the decoupled solver with MAXfixpoint = 1.

Remark 4.4. The use of a higher order time scheme, e.g. the Crank-Nicolson
scheme, allows for larger time steps, and hence leads to a stronger coupling during
the time integration. Since the coupled solution method is more effective (even for
small time steps) in the implicit Euler scheme, it is even better in a higher order
scheme.
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5 A Posteriori Error Estimation
and Mesh Adaptation

The error estimator developed in this chapter is an extension of the error estimator
for nonlinear parabolic PDE, developed by Schmich and Vexler [59], for coupled
PDE/ODE equations. It is based on the Dual Weighted Residual (DWR) method
developed by Becker and Rannacher [8]. We apply the DWR method to obtain
accurate and reliable a posteriori error estimations and extend it for different time
meshes of the PDE and the ODE part.

We estimate the discretization error with respect to a functional J ∈ W ′ of a
computed solution wkh ∈ X1,1

kh compared to an exact solution w ∈ W of a coupled
PDE/ODE system. Additionally, we separate the error of the spatial discretization
ηh from the error of the time discretization ηk. We distinguish between the error
of the time discretization of the PDE part ηpk and the ODE part ηok.

J(w)− J(wkh) ≈ ηpk + ηok + ηh

We begin this chapter by presenting in Section 5.1 a general a posteriori error
representation based on the DWR method. We evaluate the error estimator in
Section 5.2 and localize the element-wise contributions for local mesh refinement
in Section 5.3. In Section 5.4 we present an adaptive space-time mesh refinement
strategy, which makes use of different time meshes for the PDE and the ODE part
of the system. We conclude the chapter with Section 5.5 and present numerical
results for adaptive mesh refinements in a series of 2D and 3D model problems.

5.1 A posteriori error representation

In this section, we recall an a posteriori error representation by Schmich an Vexler
[59], which is based on the DWR method developed by Becker and Rannacher [8].
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To this aim, we define the two operators B : W ×W → R and B̃ : W ∪X1
k(V )×

W ∪ X̂0
k(V )→ R with the notations (2.4) by

B(w;ϕ) :=((∂tw,ϕ)) + F(w;ϕ) + (w(0), ϕ(0)),

B̃(wk;ϕk) :=((∂twk, ϕk)) + F(wk;ϕk) +
∑
m∈J0

([uk]m−1, φ
m,+
k )+∑

m∈J0,
j≤Ms

m

([vk]
j−1
m , ψm,j−1,+

k ) + (wk(0), ϕ0,−
k ).

with wk :=

(
uk
vk

)
and ϕk =

(
φk
ψk

)
. The non-discretized solution w ∈ W of

(2.5), the semi-discretized solution wk ∈ X1
k(V ) of (3.8), and the fully discretized

solution wkh ∈ X1,1
kh of (3.11) are given in a more compact formulation by

B(w;ϕ) = (w0, ϕ(0)), ∀ϕ ∈ W,
B̃(wk;ϕk) = (w0, ϕ

0,−
k ), ∀ϕk ∈ X̂0

k(V ),

B̃(wkh;ϕkh) = (w0, ϕ
0,−
kh ), ∀ϕkh ∈ X̂0,1

k .

(5.1)

This enables us to define the corresponding Lagrange functionals L : W ×W → R

and L̃ : X1
k(V ) ∪W × X̂0

k(V ) ∪W → R by

L(w; z) := J(w)−B(w; z) + (w0, z(0)),

L̃(wk; zk) := J(wk)− B̃(wk; zk) + (w0, z
0,−
k ),

L̃(wkh; zkh) := J(wkh)− B̃(wkh; z) + (w0, z
0,−
kh ).

(5.2)

The stationary points of the Lagrange functionals are the primal solutions w,wk
and wkh together with the dual solutions z, zk and zkh

L′(w; z)(δw, δz) = 0, ∀(δw, δz) ∈ W ×W,
L̃′(wk; zk)(δwk, δzk) = 0 ∀(δw, δz) ∈ X1

k(V )× X̂0
k(V ),

L̃′(wkh; zkh)(δwkh, δzkh) = 0, ∀(δwkh, δzkh) ∈ X1,1
kh (V )× X̂0,1

kh (V ).

(5.3)
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The dual solutions z ∈ W, zk ∈ X̂0
k(V ) and zkh ∈ X̂0,1

kh can be computed by solving
the adjoint problems

B′w(w;ϕ, z) = J(ϕ), ∀ϕ ∈ W,
B̃′w(wk;ϕk, zk) = J(ϕk), ∀ϕk ∈ X1

k(V ),

B̃′w(wkh;ϕkh, zkh) = J(ϕkh), ∀ϕkh ∈ X1,1
kh ,

(5.4)

where B′w denotes the derivative of B in the direction of w. The corresponding
residuals operators ρ : X1

k(V )× X̂0
k(V )∪W → R and ρ∗ : X1

k(V )× X̂0
k(V )∪W ×

X1
k(V )→ R of the primal and dual equations are defined by

ρ(w)(δz) := L̃′z(w; z, δz) = −B̃(w; δz) + (w0, δz(0)),

ρ∗(w, z)(δw) := L̃′w(w; z, δw) = −B̃′w(w; z, δw) + J(δw).

We denote the respective PDE and ODE part of the vectors w, z, δw and δz and
the residuals ρ and ρ∗ by

ρ =

(
ρ(u)

ρ(v)

)
, w =

(
u
v

)
, δw =

(
δu
δv

)
,

ρ∗ =

(
ρ∗,(u)

ρ∗,(v)

)
, z =

(
zu
zv

)
, δz =

(
δzu
δzv

)
.

(5.5)

With this notation, we write the two parts of the residual operators ρ and ρ∗ by

ρ(w)(δz) = ρ(u)(w)(δzu) + ρ(v)(w)(δzv),

ρ∗(w, z)(δw) = ρ∗,(u)(w, z)(δzu) + ρ∗,(v)(w, z)(δzv).
(5.6)

We separate the influence of the temporal and spatial discretization on the goal
functional J by

J(w, z)− J(wkh, zkh) = (J(w, z)− J(wk, zk)) + (J(wk, zk)− J(wkh, zkh)). (5.7)

We recall the abstract error representation of Becker and Rannacher [8] and the
extension for time-dependent equations by Schmich and Vexler [59] and apply it
to the Lagrange functionals (5.2).

Theorem 5.1. Let (w, z) ∈ W ×W , (wk, zk) ∈ X1
k(V )× X̂0

k(V ) and (wkh, zkh) ∈
X1,1
kh × X̂

0,1
kh be solutions of (5.3) with a three times differentiable Lagrange func-

tional L̃. Then the following error representations hold for the temporal and spatial
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discretization error

J(w)− J(wk) = 1
2

(ρ(wh)(z − ϕk) + ρ∗(wk, zk)(w − ψk)) +R1 (5.8a)
J(wk)− J(wkh) = 1

2
(ρ(wkh)(zk − ϕkh) + ρ∗(ukh, zkh)(wk − ψkh)) +R2, (5.8b)

for arbitrarily chosen (ϕk, ψk) ∈ X1
k(V ) × X̂0

k(V ) and (ϕkh, ψkh) ∈ X1,1
kh × X̂0,1

kh .
The remainder terms R1 and R2 are defined by

R1 :=

1∫
0

L̃′′′(xk + sek; ek, ek, ek)s(s− 1) ds

R2 :=

1∫
0

L̃′′′(xkh + sekh; ekh, ekh, ekh)s(s− 1) ds

with the notation

x :=

(
w
z

)
, xk :=

(
wk
zk

)
, xkh :=

(
wkh
zkh

)
,

and the errors

ek := x− xk, ekh := xk − xkh.

Proof. The additional jump terms in L̃ compared to L vanish for a continuous
solution w ∈ W , such that

J(w) = L(w, z) = L̃(w, z). (5.9)

It follows with (5.1) and identity (5.9) that

J(w)− J(wk) = L̃(x)− L̃(xk),

J(wk)− J(wkh) = L̃(xk)− L̃(xkh).

We obtain from (5.3) that L̃′(x;x) = 0. Since X1
k(V ) * W , we can not follow

directly that L̃′(x;xk) = 0. Instead, the validity of this equation has to be shown
by a density argument, for details see Schmich [58]. Thus, we use of L̃′(x; ek) = 0
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and obtain with the main theorem of calculus

L̃(x)− L̃(xk) =

1∫
0

L̃′(xk + sek)(ek) ds+ 1
2
L̃′(xk; ek)− 1

2
L̃′(xk; ek)− 1

2
L̃′(x; ek).

We use the fact that the last two terms are an approximation of the first one by
the trapezoidal rule

1∫
0

f(s) ds = 1
2
f(0) + f(1) + 1

2

1∫
0

f ′′(s) · s · (s− 1) ds,

and obtain that for any yk ∈ X1
k(V )× X̂0

k(V ) holds

L̃(x)− L̃(xk) = 1
2
L̃′(xk;x− yk) +

1∫
0

L̃′′′(xk + sek; ek, ek, ek)s(s− 1) ds.

The error representation (5.8a) is then obtained with the definition of the residuals
ρ and ρ∗. The derivation of the error representation (5.8b) follows analogously.

Remark 5.1. Theorem 5.1 assumes that the domain Ω coincides with the com-
putational domain Ωh. A small additional discretization error arises, due to the
approximation of the curved boundaries Γi by isoparametric finite elements. This
error can be approximated by additional terms, derived by Bangerth and Rannacher
[5]. Since this error is small in our application, compared to the spatial and tem-
poral discretization errors, we neglect this additional error.

5.2 Evaluation of the error estimator

Theorem 5.1 is not yet useful for error estimation because it contains several terms
which need to be approximated. As proposed by Schmich and Vexler [59], we
approximate the error representation (5.8) by neglecting the error term of higher
order and replace the unknown semi-discrete solutions (wk, zk) in the residual by
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(wkh, zkh)

J(w)− J(wk) ≈
1

2

(
ρ(wkh)(z − ϕk) + ρ∗(wkh, zkh)(w − ψk)

)
, (5.10)

J(wk)− J(wkh) =
1

2

(
ρ(wkh)(zk − ϕkh) + ρ∗(wkh, zkh)(wk − ψkh)

)
.

There are several possible methods for approximating the interpolation error in
time z − ϕk and space zk − ϕkh, see Becker and Rannacher [8]. We choose here
to use local post-processing of the computed solution through patch-wise higher
order interpolation, which circumvents the need for higher order Galerkin spaces
for the solution of the adjoint problem. Therefore, we define the approximate the
primal and dual interpolation errors denoted by Π

(w)
k and Π

(z)
k in the following

way:

Π
(w)
k wkh ≈ w − ψk, Π

(z)
k zkh ≈ z − ϕk,

Π
(w)
h wkh ≈ wk − ψkh, Π

(z)
h zkh ≈ zk − ϕkh.

We define the temporal approximations

Π
(w)
k : X1,1

kh → X2,1
kh ∩ C

0(I, V ), Π
(w)
k :=

{
i
(1)
k ψkh − id, if t ∈ Im,m ∈ J0

i
(2)
2k ψkh − id, if t ∈ Im,m ∈ J1,

Π
(z)
k : X̂0,1

kh → X̂1,1
kh , Π

(z)
k := i

(1)
k − id,

and the spatial approximations by

Π
(w)
h : X1,1

kh → X1,2
kh , Π

(w)
h := i

(2)
2h − id,

Π
(z)
h : X̂0,1

kh → X̂0,2
kh , Π

(z)
h := i

(2)
2h − id,

where id denotes the identity on the corresponding space. The PDE and ODE
part of the interpolation operators Π

(w)
k and Π

(z)
k are denoted by

Π
(w)
k =

(
Π

(w),p
k

Π
(w),o
k

)
, Π

(z)
k =

(
Π

(z),p
k

Π
(z),o
k

)
.

The linear interpolations in time i(1)
k are defined separately on the PDE part as

i
(1),p
k and on the ODE part as i(1),o

k . They are obtained on each time interval Im or
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Ijm by

i
(1),p
k ukh(t) :=

tm − t
km

um−1 +
t− tm−1

km
um, for all t ∈ Im,

i
(1),o
k vkh(t) :=

tjm − t
kjm

vm,j−1 +
t− tj−1

m

kjm
vm,j, for all t ∈ Ijm.

We separate the second order interpolations i(2)
2k into an interpolation on the PDE

part i(2),p
2k and an interpolation on the ODE part i(2),o

2k analogously. The patch-wise
structure of the time grid is used to define

i
(2),p
2k φkh(t) :=


(tm−t)(tm+1)
km(km+km+1)

φm−1
kh + (t−tm−1)(tm+1−t)

kmkm+1
φmkh

+ (t−tm)(t−tm−1)
km+1(km+km+1)

φm+1
kh

if m− 1∈ 2N

(tm−1−t)(tm)
km(km+km+1)

φm−2
kh + (t−tm−2)(tm−t)

km−1km
φm−1
kh

+ (t−tm−1)(t−tm)
km(km−1+km)

φmkh
, if m ∈ 2N,

i
(2),o
2k ψkh(t) :=



(tjm−t)(tj+1
m )

kjm(kjm+kj+1
m )

ψm,j−1
kh + (t−tj−1

m )(tj+1
m −t)

kjmk
j+1
m

ψm,jkh

+ (t−tjm)(t−tj−1
m )

kj+1
m (kjm+kj+1

m )
ψm,j+1
kh

, if j − 1 ∈ 2N

(tj−1
m −t)(tjm)

kj−1
m (kj−1

m +kjm)
ψm,j−2
kh + (t−tj−2

m )(tjm−t)
kj−1
m kjm

ψm,j−1
kh

+ (t−tj−1
m )(t−tj−2

m )

kjm(kj−1
m +kjm)

ψm,jkh

, if j ∈ 2N.

We assume that a patch structure of the spatial mesh exists as well, i.e. eight adja-
cent cells in 3D can be combined to one macro cell. Thus, a quadratic interpolation
operator i(2)

2h is applied piecewise on each patch of cells.

At last, we define a computable error estimation by η = ηpk+ηok+ηh, which consists
of an estimation ηh of the spatial discretization error and estimations ηpk and ηok
for the PDE and the ODE temporal discretization errors. The error estimations
are evaluated by

ηpk := 1
2
(ρp(wkh)(Π

(z),p
k zukh) + ρ∗,(p)(wkh, z

u
kh)(Π

(w),p
k ukh),

ηok := 1
2
(ρo(wkh)(Π

(z),o
k zvkh) + ρ∗,(o)(wkh, z

v
kh)(Π

(w),o
k vkh),

ηh := 1
2
(ρ(wkh)(Π

(z)
h zkh) + ρ∗(wkh, zkh)(Π

(w)
h wkh).
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5.3 Localization of the error estimations

The aim of this section is to localize error estimations into elementwise contribu-
tions for local mesh refinement. Therefore, we split the error estimations ηpk, η

o
k and

ηh into their contributions on each time interval Im. The localized error indicators
are denoted by ηpk,m, η

o
k,m and ηh,m on each time interval Im, such that

ηpk =
M∑
m=1

ηpk,m, ηok =
M∑
m=1

ηok,m, ηh =
M∑
m=1

ηh,m.

Before we define the localized error indicators in (5.12), we introduce the following
notations. We use the abbreviations am and bm for the time integrals of the
operators ā and b̄ over each interval Im:

am(w; z) :=

∫
Im

ā(z(t); z(t)) dt,

bjm(w; z) :=

∫
Ijm

b̄(w(t); z(t)) dt.

The respective PDE and ODE part of the local residuals ρm and ρ∗m and the vectors
wkh, zkh, δw and δz are denoted by

ρm :=

(
ρpm
ρom

)
, wkh :=

(
ukh
vkh

)
, δw :=

(
δu
δv

)
,

ρ∗m :=

(
ρ∗,pm
ρ∗,om

)
, zkh :=

(
zukh
zvkh

)
, δz :=

(
δzu
δzv

)
.

We split the local primal residuals ρm(wkh)(δz) and dual residuals ρ∗m(wkh, zkh)(δw)
into a PDE and an ODE part

ρm(wkh)(δz) = ρpm(wkh)(δzu) + ρom(wkh, zkh)(δzv),

ρ∗m(wkh, zkh)(δw) = ρ∗,pm (wkh, zkh)(δu) + ρ∗,om (wkh, zkh)(δv).

The local primal residuals ρm for all 0 ≤ m ≤M are defined as follows:
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5.3 Localization of the error estimations

• for m ∈ J0,m = 0:

ρp0(wkh)(δzu) :=− (u0 − ukh(0), δz0,−
u ),

ρo0(wkh)(δzv) :=− (v0 − vkh(0), δz0,−
v ),

• for m ∈ J0,m > 0:

ρpm(wkh)(δzu) :=− ((∂tukh, δzu))m − µ((∇ukh,∇δzu))m − am(wkh; δzu)

− ([ukh]m−1, δz
m−1,+
u ),

ρom(wkh)(δzv) :=−
∑
j≤Ms

m

(
((∂tvkh, δzv))m,j − bjm(wkh; δzv)− ([vkh]

j−1
m , δzm,j−1,+

v )
)
.

• for m ∈ J1,m > 0:

ρpm(wkh)(δzu) := −((∂tukh, δzu))m − µ((∇ukh,∇δzu))m − am(wkh; δzu),

ρom(wkh)(δzv) := −
∑
j≤Ms

m

(
((∂tvkh, δzv))m,j − bjm(wkh; δzv)

)
.

We assume that the functional J(w) is linear and of the form

J(w) := Jp(u) + Jo(v),

Jp(u) := Jp,1(u(T )) +

∫
I

Jp,2(u) dt,

Jo(v) := Jo,1(v(T )) +

∫
I

Jo,2(v) dt,

(5.11)

with functionals Jp,1 ∈ V p′ and Jo,1 ∈ V o′, which depend only on the value at the
final time point T and time dependent functionals Jp,2 ∈ W p′ and Jo,2 ∈ W o′.

The local dual residuals ρ∗m for all 0 ≤ m ≤M are defined by:

57



5 A Posteriori Error Estimation and Mesh Adaptation

• for m = M :

ρ∗,pM (wkh, zkh)(δu) :=Jp,1(δu(tM))− µ((∇ukh,∇δu))m − a′m,u(wkh; zkh, δu)

− b′M,u(wkh; zkh, δu)− (δu(tM), zu;M,−
kh ),

ρ∗,oM (wkh, zkh)(δv) :=Jo,1(δv(tM))−
∑
j≤Ms

m

(
aj ′m,v(wkh; zkh, δv) + bj ′m,v(wkh; zkh, δv)

)
−

∑
j≤Ms

m−1

(δv(tjM), [zvkh]
j
M)− (δv(tM), zv;M,−

kh ).

• for 0 < m < M :

ρ∗,pm (wkh, zkh)(δu) :=Jp,2(δu)− µ((∇ukh,∇δu))m − a′m,u(wkh; zkh, δu)

− b′m,u(wkh; zkh, δu)− (δu(tm), [zukh]m),

ρ∗,om (wkh, zkh)(δv) :=Jo,2(δv)−
∑
j≤Ms

m

(
aj ′m,v(wkh; zkh, δv) + bj ′m,v(wkh; zkh, δv)

)
− (δv(tjm), [zvkh]

j
m).

• for m = 0:

ρ∗,p0 (wkh, zkh)(δu) :=− (δu0,+, [zukh]0),

ρ∗,o0 (wkh, zkh)(δv) :=− (δv0,+, [zvkh]0).

We can then define the local error indicators for m ≤M by

ηpk,m :=
1

2

(
ρpm(wkh)(Π

(z),p
k zukh) + ρ∗,pm (wkh, zkh)(Π

(w),p
k ukh)

)
,

ηok,m :=
1

2

(
ρom(wkh)(Π

(z),o
k zvkh) + ρ∗,om (wkh, zkh)(Π

(w),o
k vkh)

)
,

ηh,m :=
1

2

(
ρm(wkh)(Π

(z)
h zkh) + ρ∗m(wkh, zkh)(Π

(w)
h wkh)

)
.

(5.12)

To localize the error indicators ηh,m on each cell of the mesh, we use the notation
ηh,K,m for the cell wise contributions at time point tm for a mesh cell K ∈ Th with

ηh,m =
∑
K∈Th

ηh,K,m.

As usual in the DWR method, the residual is integrated by parts to exploit oscilla-
tory behavior of the residuals. Therefore, we replace ((∇u,∇ϕ))m in the local and
dual residual such that the cell wise contributions of the residuals are obtained

58



5.4 Refinement strategies

by evaluating the corresponding cell and the surrounding edges. The jump of the
normal derivative of u between to neighboring cells K and K ′ with common edge
Γ is denoted by [n · ∇u] := n · (∇uh|K∩Γ −∇uh|K′∩Γ).

((∇u,∇ϕ))m =
∑
K∈Th

∫
Im

(−∆u, ϕ)K +
1

2
([n · ∇u], ϕ)∂K\∂Ωh

+ (n · ∇u, ϕ)∂K∩∂Ωh
dt

We do not use different spatial grids for different time points in this thesis. Thus,
we are not interested in the time dependence of the spatial error. Therefore, we
sum over the contributions of all time intervals to obtain

ηh,K =
∑
m≤M

ηh,K,m. (5.13)

The computed local error indicators ηh,K enable us to set up a strategy for an
adaptive refinement of the spatial mesh .

5.4 Refinement strategies

In this section, we present a mesh refinement strategy in Algorithm 5.1 for space-
time adaptivity based on the above a posteriori error estimates. We aim to com-
pute the functional value J(w) to a given accuracy TOL, such that

|η| = |ηh + ηpk + ηok| ≤ TOL.

We refine the discretization locally until the estimated error is reduced below the
given accuracy. In each cycle the subsequent refinement is chosen with the aim of
equilibrating the discretization errors in space and time. We set the equilibration
parameter to κ1 = 4 for our computations such that

1

κ1

≤ ηh
ηk
≤ κ1,

is ensured during each step of the mesh refinement process. Additionally, we
have the option to balance the estimated error indicators ηpk and ηok due to the
different temporal discretization between the PDE and the ODE part. There exist
a multitude of different options how to achieve a balancing between the two error
indicators. Therefore, we set a second equilibration parameter κ2, e.g. κ2 = 1. We
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5 A Posteriori Error Estimation and Mesh Adaptation

select the additional refinement of the ODE time mesh, such that

ηok ≤ κ2η
p
k.

In the case of a large estimated error in the PDE part, such that ηpk � ηok, we
use the same time mesh for the PDE and the ODE part. A coarser refinement in
the ODE time mesh than in the PDE time mesh would only slightly reduce the
computational effort, while eventually reducing the accuracy of the PDE part due
to the coupling.

There are several techniques available for the refinement of both the spatial and
the temporal discretization. E.g. Richter [54] proposed an optimal mesh refine-
ment strategy based upon the minimization of the product of expected error and
the computational effort for obtaining a solution on the new mesh. The drawback
of the strategy is, that if in some cells the error is largely overestimated this ap-
proach refines too few cells. This could lead to a multitude of mesh refinement
cycles. Therefore we avoid Richter’s minimization strategy and choose a simpler
strategy, which refines both in the spatial grid Th and in the temporal grid Tk a
subset consisting of a fixed percentage of the total number of cells. Additionally
to the cells with the largest localized error indicators we refine some of their neigh-
bors as well to ensure the patch-wise structure of the grid. All cells are refined
simultaneously in each patch, which consist of 2d cells in the spatial grid and of 2
time intervals in the temporal grid. To maintain the regularity of the spatial grid
and to minimize the number of hanging nodes, we make sure that two neighboring
cells do not differ from each other by more than one refinement level.

The different temporal discretization between the PDE part and the ODE part
is described by the number of time steps M s

m of the ODE part during one time
step of the PDE part. In principal M s

m could be chosen on each interval Im
separately by evaluating the ratio between the localized error indicators ηpk,m and
ηok,m. Coupled solution schemes on a fine ODE time mesh have small computational
costs compared to a refinement of the PDE time mesh. Therefore, we refine all
time intervals Im with the same number of ODE time steps (M s). We set the
parameter M s, approximately, as the fraction of the error indicators:

M s ≈ ηok
ηpk
. (5.14)

We note that in Algorithm 5.1 the ODE time mesh is refined even if the estimated
error of the temporal discretization is small compared to the error of the spatial
discretization. As we already emphasized a computation on refined ODE time
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meshes comes with few additional costs. Therefore, the algorithm delays a refine-
ment of the PDE time mesh up to the point until the temporal discretization error
exceeds the spatial discretization error.

Algorithm 5.1: Adaptive mesh refinement algorithm

Select a initial temporal and spatial discretization
n = 0

repeat
compute the primal solution wkn,hn by solving (3.12)
compute the dual solution zkn,hn by solving (3.15)
evaluate the error indicators ηpkn,m, η

o
kn,m

for each time step m via (5.12)
evaluate the error indicators ηh,K for each cell K ∈ Thn via (5.13)
if |η| ≤ TOL then

return
end
if |ηh| ≥ κ1|ηpkn + ηokn| then

Adapt the spatial discretization
else if |ηpkn + ηokn| ≥ κ1|ηh| then

Adapt the temporal discretization
else

Adapt both the temporal and the spatial discretization
end
if κ2|ηpkn| ≥ |η

o
kn
| then

Adapt the time discretization of the ODE part of the equation
end
n = n+ 1

Depending on the solving method and the nonlinearity of the equation, there are
limits to the number of ODE time steps per PDE time step M s. We were able
to obtain fast and reliable solver for parameters M s of up to 1000 by using a
coupled solution approach, see Chapter 4. Commonly used PDE solvers, such as
preconditioned CG or GMRES-methods, are not well suited to solve equations
resulting from coupled PDE/ODE equations. A few lines of coupled ODEs do not
significantly change the properties of the system and a reasonable performance of
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the solver is still observed. On the other hand, the number of ODEs is increased
by a large parameter M s, see Remark 3.1. When such a system is solved on a
coarse spatial mesh Th, the size of the PDE part can be equal or even smaller than
the number of coupled ODE equations. Specialized PDE solvers are not suitable
in such cases. We note that for highly nonlinear problems, even independently of
the used linear solver, a large parameter M s can significantly increase the number
of Newton steps for large time steps of the PDE part. Hence, we advise to set
a maximum for the parameter M s and achieve further reduction of the temporal
error by refinement of both the PDE and the ODE time mesh.

5.5 Numerical results

In this section, we present numerical results for adaptive mesh refinement based
on the previously derived error indicators. We begin this section by discussing
implementation details in Section 5.5.1 and heuristic error indicators in Section
5.5.2. We motivate in Section 5.5.3 the investigation of a series of model problems
in 2D and 3D based on the nonlinear PDE/ODE system presented in Section 2.3.
We display the effectivity of adaptive temporal grids in Section 5.5.4 and show
that the advantage of spatial adaptive grids relates closely to the diffusion rate of
the investigated PDE/ODE system in Section 5.5.5. In Section 5.5.6, we test the
proposed mesh adaptation strategy on 2D and 3D applications and discuss the
effectivity of adaptive grids compared to grids obtained by heuristic oder global
refinement strategies. The effectivity of different time discretizations between the
PDE and the ODE part is investigated in Section 5.5.7 and possible applications
are discussed.

To evaluate the quality of the error estimator, we define the effectivity index of an
estimated error η by the ratio between the estimated and the actual error:

Ieff =
η

J(w)− J(wkh)
.

Since we do not know the exact solution w of the considered model problems, we
have to approximate it by computations on fine grids and extrapolation. Therefore,
the ’actual’ error J(w)− J(wkh) can only be roughly estimated, especially on fine
grids.
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5.5 Numerical results

5.5.1 Implementation aspects

The domain is discretized by piecewise semi linear isoparametric finite elements
(Q1). We compute a primal solution wkh ∈ X1,1

kh and a dual solution z ∈ X̂0,1
kh .

In each time step of both the primal and the dual solving process, a nonlinear
coupled problem needs to be solved in terms of the definitions in (3.10). We apply
the coupled solution techniques detailed in Chapter 4. These coupled solution
schemes enable us to neglect iterations errors, which would inevitably occur in
decoupled schemes.

Depending on the choice of the quantity of interest J , both the time discretization
of the primal problem and the dual problem have to cope with irregular initial
data. Since the dual time stepping is solved on the temporal discretization of the
primal problem, but backwards in time, damping steps are necessary both at the
beginning and at the end of the time interval. Hence, we choose a symmetric time
stepping such that for md damping steps the set of indices J0 is given by

J0 := {1, ...,md} ∪ {M + 1−md, ...,M}.

We keep the number of implicit Euler steps md constant for each mesh refinement
cycle.

Rannacher [51] showed that, depending on the severity of the irregularity of the
initial conditions, two or more damping steps are necessary. We made the obser-
vation in our computations that the starting conditions (especially for the adjoint
problem) could not be sufficiently smoothed with two damping steps. Therefore,
we use in our computations six damping steps to avoid a loss of accuracy by the
lack of strong A-stability of the Crank-Nicolson method.

5.5.2 Heuristic error indicators

We compare in the next sections adaptively refined discretizations with discretiza-
tions obtained by uniform refinement. The a posteriori error estimation based on
the DWR method provides reliable error indicators for a given quantity of inter-
est. A mesh refinement algorithm based on these dually weighted error indicators
enables a fast error reduction.

Heuristic error indicators allow for adaptive mesh refinement without solving an
additional dual problem. They do rely on smoothness properties of the measured
solution and therefore have the drawback that they cannot detect the influence of
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the discretization error on the evaluation of a given functional. Especially in the
case of localized quantities of interest, e.g. point evaluations, heuristic indicators
do not produce suitable discretizations.

Sharp upper bounds for the error in the L2(I,H1(Ω))-norm for the parabolic heat
equation (5.15) have been derived by Verfürth [68].

∂tu−∆u = f in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u =u0 in Ω.

(5.15)

Verfürth showed that the error of the solution approximated in time by the Crank-
Nicolson scheme and in space by finite elements is bounded in L2(I,H1)-norm from
above by a temporal error indicator η̃k and a spatial error indicator η̃h, such that

T∫
0

||u− ukh||2H1(Ω) dt ≤ c(η̃2
h + η̃2

k). (5.16)

The constant c in (5.16) depends only on the geometry of the finite element ap-
proximations. The error indicators consist of local error indicators η̃h,K for each
cell K of the spatial mesh, indicators η̃h,∂K for the edges of each cell K of the
spatial mesh and indicators η̃k,m for each time interval Im,

η̃2
h :=

∑
K∈T

(
η̃2
h,K + η̃2

h,∂K

)
,

η̃2
k :=

∑
m≤M

η̃2
k,m

with the local indicators defined by

η̃2
h,K :=

∑
m≤M

kmh
2
K ||f −

umkh − um−1
kh

km
+

1

2
(∆umkh + ∆um−1

kh )||2L2(K), (5.17)

η̃2
h,∂K :=

∑
m≤M

kmhK ||
1

2
[n · ∇umkh + n · ∇um−1

kh ]∂K\∂Ω||2L2(E), (5.18)

η̃2
k,m := km||∇(umkh − um−1

kh )||2L2(Ω). (5.19)

The jump along the face for each cell K ∈ Th is denoted by [·]∂K . The a pos-
teriori analysis of Verfürth [67] further showed that similar bounds hold true for
nonlinear systems. The same edge residuals η̃h,∂K and temporal error indicators
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η̃k,m are obtained for nonlinear systems without convective terms. It is known
that edge residuals dominate the cell residuals η̃h,K for lower order finite element
discretizations, see Carstensen and Verfürth [16]. Therefore, we neglect the cell
residuals for the heuristic error indicators used in this thesis.

In the following sections, we compute the heuristic error indicators for spatial mesh
refinement by η̃h,∂K . Since the ODE part of the solution is not spatially resolved,
the spatial gradients in the heuristic error indicators η̃k,m can only be evaluated for
the PDE part. Heuristic error bounds for the time discretization error in L2-norm
are obtained by measuring the variation of the solution on the time mesh, see e.g.
Hartmann [8, 31]. Thus, we apply the following error indicators for the temporal
discretization error of the ODE part by

η̃2
k,o :=

∑
m≤M

km||(vmkh − vm−1
kh )||2L2 .

The balance of the heuristic error contributions of ODE part with the PDE part
depends on the given quantity of interest. In this thesis, we simply add over
both ODE and PDE contributions to obtain local error indicators for the adaptive
refinement of the time mesh. We compute the efficiency of adaptively refined
discretizations obtained by the heuristic indicators and by dually weighted error
indicators in the following sections and compare the results.

5.5.3 Discussion of model problems

Space-time Galerkin methods have already been applied successfully to create
adaptive grids in the simulation of incompressible flows by Bänsch [7], Hoffman
[37], and Besier and Rannacher [9]. Other applications include the acoustic wave
equation by Bangerth and Rannacher [4], a propagating flame by Schmich and
Vexler [59], and the Black-Scholes equation by Goll et al. [28]. In all publica-
tions it was shown that adaptive discretizations yield significant gains in accuracy
compared to heuristic or global mesh refinement strategies. Both the control of
the discretization error and the increased accuracy compensated for the additional
computational work of solving the adjoint equation and evaluating the local error
indicators.

The large class of problems resulting from coupled PDE/ODE systems has, to the
knowledge of the author, never been adaptively discretized with error indicators
obtained by the DWR method. The aim for the next sections is firstly to show
that the DWR method can be used as a reliable a posteriori error estimator for
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coupled PDE/ODE systems and secondly to assess in which cases a significant
gain in accuracy by adaptive grids can be expected.

The coupled PDE/ODE models for cellular signaling differ from the previously
investigated problems mainly by the enormously fast diffusivity of the PDE com-
pared to the time scales of the processes governed by the ODE part. While the
receptors (ODE part) increase during the course of multiple hours, the proteins
(PDE part) diffuse in the intercellular area with a diffusion coefficient of 36,000
µm2/h. The diffusion coefficient ranges between 360,000 and 150 µm2/h on similar
spatial scales in PDE/ODE models for cellular signaling, see [19, 22, 26, 64]. The
intracellular processes governed by the ODEs take place on similar time scales, i.e.
multiple hours of ligand-binding. Furthermore many applications result in similar
PDE/ODE systems. E.g. Moghadam et al. [48] simulated cardiovascular net-
works in which the Navier-Stokes equation (PDE) is coupled with an ODE system
modeling blood in- and outflow.

The high diffusivity of proteins renders spatial simulations dispensable in many
intracellular pathways. A study by Claus et al. [19] investigated receptor-ligand
interactions in the intracellular SMAD signaling pathway both by a full spatial
modeling of the cytoplasm and an ODE model. The ODE model simplified the
former PDE part with homogeneously distributed ligand concentrations by assum-
ing infinitely fast diffusion. The study showed, for a diffusion coefficient of 54,000
µm2/h and regularly shaped cells, that the simplified ODE model produces similar
results compared to the more elaborate PDE/ODE system. On the other hand,
the same comparison for models with a lower diffusivity (3,600 µm2/h) showed sig-
nificantly different results for the PDE/ODE system. Therefore, the necessity of
local spatial mesh refinement clearly depends on the given diffusion rate compared
to the reaction speed.

To show the efficiency over a large variety of different models, we investigate the
efficiency of adaptively refined discretizations with respect to the diffusion rate in
two model problems. Firstly, we simulate the model presented in Section 2.3 with
a diffusion rate of 36,000 µm2/h. We solve the same system in a second model
problem but with a diffusion rate of only 1 µm2/h. This emulates the simulation
of a receptor-ligand system with low diffusion rate, e.g. the NFκB intracellular
pathway simulated by Terry and Chaplain [64].

We consider both two and three-dimensional models, because 2D models allow
us a more detailed study of local spatial mesh refinement due to the reduced
computational costs. We compose the setup for the 2D model problems of four cells
including one secreting cell. The setup of the 3D model problems are composed
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Figure 5.1: Three dimensional model problem

of eight cells including two secreting cells. The cells are arranged as depicted in
Figure 5.1. We choose a secretion rate of q = 3, 500 molecules/h.

We display in Figure 5.3 the distribution of IL-2 concentration in the extracellular
area for both a diffusion coefficient of 36,000 and 1 µm2/h, visualized by the VisIt
software [17]. One clearly sees the higher cytokine-levels around the secreting cell
in the lower left corner. The reduced diffusion coefficient gives rise to much sharper
gradients between the T cells. We compare the average Interleukin concentrations
on the cell surface and the receptor levels during the activation process for 15
hours in Figure 5.4. The figure shows the higher receptor levels of the activated
cell compared the three non-activated cells. The results are displayed for a diffusion
coefficient of 36,000 µm2/h. We observe a similar time course in the case of slower
diffusivity, though with slightly slower receptor increase and therefore a delayed
process of activation.

The DWR method gives us the opportunity to approximate the error of a given
quantity of interest. In the following sections, we consider two different goal func-
tionals for a given solution w ∈ W . Firstly, we define the functional JR as the sum
over all receptors at the final time point T = 15 h of the simulations:

JR(w) :=
∑
i≤Nc

Ri(T ).

The number of ligand free receptors is closely connected to the number of activated
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cells in general and can be approximately measured in biological experiments, see
Busse et al. [13]. Therefore, solving the IL-2 pathway with respect to the functional
JR precisely computes the number of activated cells after the activation process.
Secondly, we define the functional JI :

JI(w) :=

∫
A

u(T ),

where A ⊂ Ω denotes a square of two µm width in the lower right corner of
the extracellular area Ω. The concentration level of cytokines is usually measured
globally after the end of the experiment for biological ’in vitro simulations’ in petri
dishes. The functional is of lesser biological relevance but emulates the structure
of more localized PDE/ODE applications, e.g. the pressure at a specific point of
a cardiovascular network.

Figure 5.2: The highlighted area A ⊂ Ω denotes the lower right corner of the
extracellular area (width 2 µm)

To assess the influence of residual errors onto errors of the quantity of interest
JR, we display the corresponding dual solutions in Figure 5.5. The dual solution
can be interpreted as the sensitivity of the goal functional to perturbations of the
solution. Even though the functional JR measures the number of receptors only at
the final time point, especially the ODE part of the equation acts a great influence
during the first hours of the activation process. On the other hand, the PDE part
of the equation is not part of the quantity of interest. Thus, the dual solution
shows that the PDE part only influences the functional during the final hours
significantly.
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(a) biological diffusivity, µ = 36,000 µm2/h (b) decreased diffusivity, µ = 1 µm2/h.

Figure 5.3: Distribution of IL-2 concentration at T=15h
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Figure 5.4: Time course of the receptor number and average IL-2 concentration at
the surface for the activated cell (marked gold) and the non-activated
cells (marked grey) of the model problem in 2D for µ = 36,000 µm2/h.
Solid lines indicate averages, blurred regions standard deviations.
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Figure 5.5: Dual solution of the model problem in 2D for µ = 36, 000µm2/h and
the functional JR: time course of the receptor number and average IL-
2 concentration at the surface for the activated cell (marked gold) and
the non-activated cells (marked grey). Solid lines indicate averages,
blurred regions standard deviations.

5.5.4 Adaptive temporal refinement

To check for independent error estimations ηk and ηh, we observe the behavior of
the spatial error estimate ηh under adaptive temporal mesh refinement. We note
that the results of different time discretizations for the ODE part of system are
found in Section 5.5.7.

We denote the number of time steps by M and the number of degrees of freedom
of the PDE part by Np and of the ODE part by N o. The total number of degrees
of freedom, which has to be solved by the non-stationary solver, is obtained by
M · (Np +N o). We consider a fine spatial discretization of the 2D model problem
with Np = 33405 to ensure that the temporal error is dominant. The intracellular
dynamics of the four cells are described by N o = 12 degrees of freedom.

We display the results for a diffusion coefficient of µ = 36,000 µm2/h and the
quantity of interest J = JR. The results are presented in Table 5.1. We observe
that the spatial error remains unchanged, while the temporal error is reduced in
each step of the adaptive mesh refinement cycle. The spatial error dominates the
temporal error after four temporal mesh refinement cycles. To check the effectivity
of the error estimates, we approximate the exact solution of the goal functional by
J(w) ≈ 3013.0032 by computation on a highly refined discretization. We observe
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that both the dominant temporal error in the first cycles and the dominant spatial
error in the later cycles are effectively estimated by comparison of the estimated
error to the exact error |J(w)− J(wkh)|.

Table 5.1: Invariance of ηh under adaptive temporal mesh refinement and effec-
tivity of the temporal error estimator ηk for the 2D model problem
with µ = 36,000 µm2/h and J = JR

M Np ηk ηh J(w)− J(wkh) Ieff

150 33405 4.52 · 10−1 6.40 · 10−3 5.69 · 10−1 0.80
372 33405 2.22 · 10−2 7.06 · 10−3 3.52 · 10−2 0.83
768 33405 2.14 · 10−3 7.07 · 10−3 6.75 · 10−3 1.36
1602 33405 −2.88 · 10−4 7.07 · 10−3 5.87 · 10−3 1.16

To assess the efficiency of adaptively refined temporal meshes, we compare the
mesh refinement strategy based on error indicators obtained by the DWR method
to heuristic error indicators (see Section 5.5.1) and uniform mesh refinement. A
comparison of the error reduction by mesh refinement is shown in Figure 5.6.
Adaptive temporal mesh refinement by the DWR method is clearly more efficient
than uniform mesh refinement. Using heuristic error indicators does not lead to
an efficient refinement of the temporal discretization. We compare the temporal
discretizations in Figure 5.7 and observe that the heuristic error indicators lead to
a coarse temporal grid near the final time point T = 15h. Since the ODE part of
the solution is approaching a steady state, the heuristic methods indicate no mesh
refinement near the final time point. In contrast, the error indicators based on the
DWR method sense effectively the dependence of the goal functional JR on the
final time point. Hence, the temporal discretization in last hours is not coarsened
even though it is approaching a steady state.

5.5.5 Adaptive spatial refinement

In this section, we observe the behavior of the temporal error estimate ηk under
spatial mesh refinement. We evaluate the effectivity of the error estimates obtained
by the DWRmethod and the efficiency of the adaptive mesh refinement strategy for
the model problems presented in Section 5.5.3. We compare this mesh refinement
strategy with heuristic and uniform mesh refinement schemes.
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Figure 5.6: Comparison of the error |J(w) − J(wkh)| in the 2D model problem
with µ = 36,000 µm2/h and J = JR for different temporal mesh
refinement strategies
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Figure 5.7: Temporal discretizations after six refinement cycles used for the com-
putations of the 2D model problem with µ = 36,000 µm2/h and
J = JR
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Global quantity of interest J = JR

We begin the evaluation of the error estimator of the 2D model problem with the
diffusion coefficient µ = 36,000 µm2/h and the sum over the receptors of all biolog-
ical cells as quantity of interest J = JR. We check for independent temporal and
spatial error estimates by observing the behavior of the temporal error estimate
ηk under adaptive spatial mesh refinement. The results are presented in Table 5.2.

Table 5.2: Invariance of ηk under adaptive temporal mesh refinement and effec-
tivity of the temporal error estimator ηh for the 2D model problem
with µ = 36,000 µm2/h and J = JR

M Np ηk ηh J(w)− J(wkh) Ieff

1500 165 9.50 · 10−3 1.86 · 100 1.92 · 100 0.97
1500 336 9.45 · 10−3 7.79 · 10−1 7.71 · 10−1 1.02
1500 740 9.40 · 10−3 4.11 · 10−1 4.05 · 10−1 1.04
1500 1749 9.38 · 10−3 2.08 · 10−1 1.88 · 10−1 1.15
1500 4050 9.37 · 10−3 8.83 · 10−2 8.50 · 10−2 1.15
1500 9711 9.37 · 10−3 3.93 · 10−2 4.29 · 10−2 1.13
1500 23597 9.37 · 10−3 1.65 · 10−2 2.43 · 10−2 1.06

We consider a fine temporal discretization with M = 15000 to ensure that the
spatial error is dominant. While the spatial error is reduced in each step of the
adaptive mesh refinement cycle, we observe that the temporal error converges to
a fixed value. The spatial error indicators estimate the ’exact’ error closely. Since
the exact solution w is not known and was only numerically approximated, the
effectivity of the error estimator is only approximately evaluated.

Next, we compare the efficiency of adaptively refined spatial grids to heuristic error
estimates (see Section 5.5.1) and uniform mesh refinement. We show the spatial
discretizations after six refinement cycles based on dually weighted error estimates
and simple heuristic methods in Figure 5.8. The goal functional JR causes a spatial
mesh refinement near the surface of the cells. Heuristic error indicators give rise
to a similar discretization since the solution expresses large gradients in the same
area.
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(a) Adaptive (b) Heuristic

Figure 5.8: Spatial discretizations after seven refinement cycles of the 2D model
problem with µ = 36,000 µm2/h and J = JR
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Figure 5.9: Comparison of the error |J(w) − J(wkh)| in the 2D model problem
with µ = 36,000 µm2/h and J = JR for different spatial mesh refine-
ment strategies
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A comparison of the error reduction by mesh refinement is shown in Figure 5.9. We
see that adaptive temporal refinement by the DWR method, heuristic refinements
and the uniform refinement all lead to similar error reductions. We conclude
that adaptive discretizations yield no significant advantage over globally refined
discretizations for coupled PDE/ODE systems with a large diffusion coefficient
and a non spatially localized quantity of interest.

Remark 5.2. The DWR method senses the high sensitivities of the goal functional
JR to perturbations of the solution on the whole spatial domain for model problem
with high diffusivity. These strong sensitivities result in a mesh refinement, which
depends mainly on the local residuals and not on the dual weights. Thus, the mesh
obtained by dually weighted error indicators near coincides with the mesh obtained
by heuristic error indicators. Since most parts of the mesh are refined by both
indicators, a uniform mesh refinement shows no significant drawback.

Localized quantity of interest J = JI

In this section, we investigate the efficiency of adaptive spatial discretizations
derived by the DWR method for the localized quantity of interest JI . We consider
the 2D model problem with both a diffusion coefficient of µ = 36,000 µm2/h and
µ = 1 µm2/h to evaluate the spatial error estimator for a range of diffusivity.

We approximately compute the exact solution of the goal functional by J(w) ≈
0.03286 for µ = 36,000 µm2/h and J(u) ≈ 0.03466 for µ = 1µm2/h to compare
the computed error indicators to the ’exact’ error. To measure mainly the spatial
error indicators, we refine the temporal discretization sufficiently by M = 1500.
We display the results for µ = 1 µm2/h in Table 5.3 and observe reliable error
indicators after one refinement cycle and efficiency indicators Ieff which converge
to one.

We compare the spatial discretizations for a high diffusion coefficient of µ = 36,000
µm2/h after six refinement cycles in Figure 5.10. The heuristic error indicators
do not result in a refinement of the spatial discretization near area A ⊂ Ω, in
contrast to the error indicators obtained by the DWR method. Even though the
dually weighted error indicators lead to a high refinement of the spatial mesh of
area A ⊂ Ω, a comparison of the error reduction rates in Figure 5.12 yields that
all mesh refinement strategies result in a similar error reductions. Thus, uniform
spatial mesh refinement is for high diffusivity the most efficient refinement strategy,
even for the localized goal functional JI .
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Table 5.3: Effectivity of the temporal error estimator ηh for the 2D model prob-
lem with µ = 1 µm2/h and J = JI

M Np ηk ηh J(u)− J(ukh) Ieff

1500 165 1.57 · 10−5 4.60 · 10−1 3.98 · 10−2 11.55
1500 322 6.18 · 10−6 2.82 · 10−2 1.79 · 10−2 1.58
1500 620 1.37 · 10−5 6.25 · 10−3 4.57 · 10−3 1.37
1500 1228 1.67 · 10−5 1.69 · 10−3 1.26 · 10−3 1.36
1500 2406 1.75 · 10−5 4.77 · 10−4 3.97 · 10−4 1.25
1500 4744 1.83 · 10−5 2.50 · 10−4 2.20 · 10−4 1.22
1500 9553 1.95 · 10−5 1.24 · 10−4 1.27 · 10−4 1.13

Spatial discretizations for a low diffusion coefficient of µ = 1 µm2/h show a more
localized refinement pattern, see Figure 5.11. Only the error indicators obtained by
the DWR method refine the spatial mesh of area A ⊂ Ω sufficiently. A comparison
of the error reduction rates of the spatial mesh refinement strategies in Figure 5.13
displays a strong advantage of the DWR method over heuristic error indicators.
The lack of refinement of the spatial mesh near area A by the heuristic error
indicators reduces the error reduction rate of the corresponding strategy greatly.
Even a uniform mesh refinement is more favorable than the heuristic scheme.

High and low diffusion coefficients distinctively influence the effectivity of spatial
discretizations by the DWR method. The extra effort for computing the dual solu-
tion can be justified only for low diffusion coefficients by a significantly increased
error reduction rate. In contrast, problems with high diffusivity are effectively
solved by uniform mesh refinement. Even spatially localized goal functionals de-
mand a fine spatial discretization of the whole domain.

Remark 5.3. The results in this section display the difference of the sensitivities
of the goal functional JI for low and high diffusivity of the 2D model problem.
While the heuristic error indicator indicate mesh refinement near the gradients of
the solution, the DWR method senses the high sensitivities of the localized goal
functional to perturbations of the solution in area A. The solution in area A,
for the model problem with high diffusivity, is dependent on a high accuracy of
the whole intercellular area Ω. Thus, the computational domain is near uniformly
refined. In contrast, the sensitivities of the solution for the model problem with
low diffusivity in area A are highly localized. Heuristic methods instead indicate
refinement near the gradients of the solution. Hence, the heuristic indicators are
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(a) Adaptive (b) Heuristic

Figure 5.10: Spatial discretizations after seven refinement cycles of the 2D model
problem with µ = 36,000 µm2/h and J = JI

(a) Adaptive (b) Heuristic

Figure 5.11: Spatial discretizations after seven refinement cycles of the 2D
model problem with µ = 1 µm2/h and J = JI
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not able to sense the high dependence of the goal functional JI on the area between
A and the secreting cell in the lower left corner. Therefore, the DWR method
provides local error indicators for an effective local mesh refinement.

5.5.6 Space-time error balancing

In this section, we make use of both temporal and the spatial error indicators to
obtain efficient space-time discretizations. We balance the temporal and spatial
discretization errors, as described in Algorithm 5.1. Both two and three dimen-
sional model problems are considered. We do not use different time meshes for the
ODE part of the system and refer to the corresponding investigation in Section
5.5.7.

Two dimensional model problems

We focus on the 2D model problem with µ = 36,000 µm2/h and J = JR and
compare the following mesh refinement strategies:

• ’uniform’: global mesh refinement on the whole domain.

• ’adaptive in time’: uniform spatial mesh refinement and adaptive refinement
of the time mesh based on the temporal error indicators.

• ’adaptive in space’: uniform temporal mesh refinement and adaptive refine-
ment of the spatial mesh based on the spatial error indicators.

• ’fully adaptive’: balancing of the spatial and temporal errors by Algorithm
5.1.

The error reduction rate of the different mesh refinement strategies are displayed in
Figure 5.14. As already indicated by Section 5.5.5, uniform spatial mesh refinement
is a reasonable strategy for the model problem with high diffusivity. A faster error
reduction rate is obtained by adaptively chosen time discretizations.

We display the error estimations of the fully adaptive algorithm in Table 5.4.
The spatial discretization is refined in each refinement cycle, due to the large
spatial error indicators, while the temporal discretization is refined only twice.
The error indicators for the adaptive discretizations both in space and in time
closely approximate the exact errors obtained by a comparison of the computed
functional value J(wkh) to an approximated functional value J(w) ≈ 3013.0032.
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Figure 5.12: Comparison of different spatial mesh refinement strategies for the
reduction of the error |J(w)− J(wkh)| in the 2D model problem for
a high diffusion coefficient µ = 36, 000µm2/h and localized quantity
of interest J = JI
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Figure 5.13: Comparison of different spatial mesh refinement strategies for the
reduction of the error |J(w) − J(wkh)| in the 2D model problem
for a low diffusion coefficient µ = 1µm2/h and localized quantity of
interest J = JI
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Figure 5.14: Comparison of different space-time mesh refinement strategies for
the 2D model problem with µ = 36,000 µm2/h and J = JR

Table 5.4: Adaptive mesh refinement for the 2D model problem with µ = 36,000
µm2/h and J = JR

M Np ηk ηh J(w)− J(wkh) Ieff

150 165 4.50 · 10−1 1.78 · 100 2.47 · 100 0.90
150 353 4.56 · 10−1 6.68 · 10−1 1.32 · 100 0.85
366 747 1.99 · 10−2 3.44 · 10−1 4.10 · 10−1 0.89
366 1485 1.97 · 10−2 1.53 · 10−1 1.61 · 10−1 1.07
366 2890 1.93 · 10−2 7.37 · 10−2 8.80 · 10−2 1.06
366 5829 1.81 · 10−2 3.34 · 10−2 5.34 · 10−2 0.96
762 11310 2.27 · 10−3 1.72 · 10−2 1.50 · 10−2 1.30
762 22674 2.18 · 10−3 8.18 · 10−3 7.47 · 10−3 1.39
762 43549 2.00 · 10−3 4.01 · 10−3 4.00 · 10−3 1.50
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Three dimensional model problems

After testing several two dimensional problems, we focus now on the more realistic
three dimensional model problems. Exemplarily, we display in Table 5.5 the effec-
tive error indicators for the model problem with diffusion coefficient µ = 36,000
µm2/h and J = JR. The functional value J(w) of the exact solution has been ap-
proximated on a highly refined discretization by J(w) = 4900.9. Only the spatial
discretization is refined, in all three refinement cycles, due to the small temporal
discretization errors.

Table 5.5: Adaptive refinement for the 3D model problem with µ = 36,000 µm2/h
and J = JR

M Np ηk ηh J(w)− J(wkh) Ieff

300 2189 0.60 39.5 34.3 1.17
300 8497 0.58 15.3 11.9 1.33
300 31111 0.59 6.68 6.92 1.05
300 120555 0.58 3.32 3.95 0.99

We display the error reduction rates of the adaptive mesh refinement strategy in
Figure 5.15(a). The study of two dimensional model problems already showed
that for high diffusion coefficients, adaptive discretization do not improve the
accuracy compared to uniform mesh refinement. The advantage of the adaptive
mesh refinement strategy relies here on accurately estimating the small temporal
discretization error. Therefore, it indicates correctly that precise computations are
possible on a coarse time mesh.

These results are contrasted in Figure 5.15(b) by the error reduction rates of the
model problem with low diffusion coefficient µ = 1 µm2/h and localized quantity of
interest J = JI . The ’true’ functional value J(w) ≈ 0.0427 has been approximately
computed on a fine discretization. To obtain an error reduction of factor 10,
the use of uniformly refined grids increases the number of degrees of freedom
25-fold, compared to discretizations created by two adaptive refinement cycles.
We conclude, for models with slow diffusion, that the adaptive mesh refinement
strategy based on the DWR method is even more effective in three dimensions
than in the two dimensional results in Section 5.5.5.
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(a) µ = 36,000 µm2/h and J = JR
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Figure 5.15: Comparison of the error |J(w)−J(wkh)| for two 3D model problems
and different mesh refinement strategies

5.5.7 Different time meshes for the PDE and the ODE part

In this section we present the effectivity of error estimations for different time
discretizations in the ODE and the PDE part. Moreover, we display the efficiency
of a refined temporal ODE discretization compared to other approaches and discuss
possible applications.

Effectivity of the error indicators

To assess the effectivity of the error indicators obtained by the DWR method for
different time meshes of the PDE and the ODE part, we devise a simple 2D model
problem. We choose the same setup and parameters as in the last sections for
µ = 36,000 µm2/h and J = JR. To reduce the coupling between the PDE and the
ODE part, we change the following parameters: kon = 1 /nM/h, T= 1 h and q = 1
mol./h, and thereby obtain dominating errors in the ODE part of the PDE/ODE-
system. The ’exact’ quantity of interest for the evaluation of the effectivity indices
was computed as J(w) ≈ 442.96256 on a fine discretization. We display the results
in Table 5.6.

Firstly, we note the near exact error indicators ηok of the ODE part of the equation.
The parameters have been chosen such that the coupling of the ODE part to the
PDE part is weak and the nonlinearities are reasonable. Thus, the resulting system
poses a rather easy task for the error estimator ηok of the dominating ODE time
discretization error. We observe that ηok is reduced iteratively by increasing the
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Table 5.6: Effectivity of the temporal error estimator ηok for the 2D model problem
with µ = 36,000 µm2/h, kon = 1 /nM/h, T= 1 h and q = 1 mol./h
and J = JR for a maximum of 10 ODE time steps per PDE time step

Mp M o Np ηpk ηok ηh J(w)− J(wkh) Ieff

10 10 165 5.03 · 10−3 1.00 · 101 −9.28 · 10−7 9.80 · 100 1.02
10 100 165 4.17 · 10−3 1.01 · 100 −7.51 · 10−7 1.01 · 100 1.00
22 220 165 3.45 · 10−4 6.44 · 10−1 −9.03 · 10−7 6.43 · 10−1 1.00
46 460 165 −2.60 · 10−5 4.02 · 10−2 −1.01 · 10−6 4.02 · 10−2 1.00
94 940 165 −4.14 · 10−6 2.47 · 10−3 −1.03 · 10−6 2.46 · 10−3 1.00

Table 5.7: Effectivity of the temporal error estimator ηok for the 2D model problem
with µ = 36,000 µm2/h, kon = 1 /nM/h, T= 1 h and q = 1 mol./h
and J = JR for a maximum of 100 ODE time steps per PDE time step

Mp M o Np ηpk ηok ηh J(w)− J(wkh) Ieff

10 10 165 5.03 · 10−3 1.00 · 101 −9.28 · 10−7 9.80 · 100 1.02
10 1000 165 4.10 · 10−3 1.04 · 10−1 −8.12 · 10−7 1.05 · 10−1 1.01
22 2200 165 3.19 · 10−4 6.46 · 10−2 −9.88 · 10−7 6.49 · 10−2 1.00
46 4600 165 −2.57 · 10−5 4.03 · 10−3 −1.10 · 10−6 4.00 · 10−3 1.00
94 9400 165 −4.97 · 10−6 2.47 · 10−4 −1.13 · 10−6 2.46 · 10−4 1.00

number of ODE time steps M o. A temporal discretization of ten ODE time steps
for each PDE time step reduces the error by the same factor. The maximum
number of ODE time steps for each PDE time step has been selected as M s = 10
on all time intervals Im. We call to mind the discussion in Section 5.4 in case of a
coupled solving scheme: Time discretizations with a much larger refinement level in
the ODE part make a carefully chosen linear solver necessary. To demonstrate the
reliable performance of the error indicators even for time discretizations of widely
different refinement levels, we display the efficiencies for a maximum number of
100 ODE refinement steps per PDE time step in Table 5.7.
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Efficiency of time meshes for the PDE and the ODE part

Next, we evaluate the efficiency of time meshes for the PDE and the ODE part for
the biologically motivated 2D-problem with µ = 36,000 µm2/h. We apply the full
adaptive mesh refinement, see Algorithm 5.1, and check in each refinement cycle
if the ratio between PDE and ODE steps needs to be adapted. The results of the
refinement algorithm are displayed in Table 5.8. Steeper error reduction rates are
observed in Table 5.4 than for the previously used refinement algorithm without
different time meshes for the PDE and the ODE part.

Table 5.8: Adaptive algorithm for the 2D model problem with µ = 36,000 µm2/h
and J = JR

Mp M o Np ηpk ηok ηh J(u)− J(ukh) Ieff

150 150 165 −4.78 · 10−2 4.98 · 10−1 1.78 · 100 2.47 · 100 0.90
150 1500 165 −6.03 · 10−2 2.12 · 10−2 1.74 · 100 1.98 · 100 0.86
150 1500 351 −5.56 · 10−2 2.09 · 10−2 6.01 · 10−1 8.02 · 10−1 0.70
150 1500 746 −5.39 · 10−2 2.08 · 10−2 3.00 · 10−1 3.93 · 10−1 0.67
150 1500 1478 −5.30 · 10−2 2.08 · 10−2 1.26 · 10−1 2.00 · 10−1 0.46
150 1500 2919 −5.24 · 10−2 2.08 · 10−2 6.74 · 10−2 1.37 · 10−1 0.26
366 3660 5851 −1.21 · 10−2 4.47 · 10−3 3.32 · 10−2 1.68 · 10−2 1.52
366 3660 11287 −1.20 · 10−2 4.47 · 10−3 1.64 · 10−2 2.31 · 10−3 3.82

We observe that the temporal error of the PDE part of the equation ηpk is by a
factor ten smaller than the error of the ODE part of the equation ηok. Therefore,
the adaptive algorithm refines the temporal discretization such that ten ODE time
steps are computed for each PDE time step. The temporal error is even reduced
by a factor of more than 20, which diminishes the temporal error for the following
iterations. Consequently only the spatial error has to be reduced by spatial mesh
refinement and a coarser temporal discretization suffices. In many iteration cycles,
the error indicators for the temporal and the spatial discretization nearly cancel
each other out. Thus, the ’true’ error is underestimated by the sum of the error
indicators, even though a fast error reduction is achieved.

We compare the error reduction rates of this approach to the earlier results in
Section 5.5.6 without different time meshes for the PDE and the ODE part in
Figure 5.16. We note that the same error reduction is achieved in both algorithms,
in the first refinement cycles, because the spatial discretization error dominates
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the temporal error. In the later cycles, when the temporal discretization becomes
relevant, the customized temporal discretization for the ODE and the PDE part
enhances the error reduction rate.
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Figure 5.16: Comparison of the error |J(w)− J(wkh)| in the 2D model problem
with µ = 36,000 µm2/h and J = JR for mesh refinement strategies
with and without different time meshes for the PDE and the ODE
part

We conclude that different time discretizations for the two parts of a system of
equations can greatly reduce the computational effort. The error indicators ob-
tained by the DWR method prove to be reliable even in nonlinear strongly cou-
pled biological applications and can be put to use in an adaptive mesh refinement
strategy. A large error in the less computational expensive part of the system is
efficiently reduced by only refining the necessary part of the temporal discretiza-
tion.

Remark 5.4. We remark that the error reduction by the different time meshes
of the PDE and the ODE part comes with little additional costs. The refined
time mesh of the ODE part adds additional degrees of freedom to the ODE part
of the solution vector in a coupled solution scheme, see Section 3.1.3. Hence,
the total number of degrees of freedom is only slightly enlarged. Different time
meshes for the two parts of a coupled system reduce the error significantly if the
computationally less expensive part of the system is responsible for a larger part
of the time discretization error. Specifically tailored time meshes reduce the error
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most efficiently for systems in which the outcome of the goal functional is dependent
on one part of the system and the two parts are only weakly coupled to each other.

86



6 Application: Three-dimensional
Gradients of Cytokine Signaling
between T cells

In this chapter, we apply the developed numerical methods and simulate large
clusters of immune cells. The numerical results provide a better quantitative
understanding of the molecular mechanism of the immune response.

We explain in Section 6.1 the role of T cells as part of the adaptive immune
response. In Section 6.2 we include the immunological synapse, which has an
important function for cytokine signaling, in the presented model of Section 2.3.
We conclude the chapter with numerical results in Section 6.3. We investigate
the dependence of cytokine signaling between T helper cells on the presence of
regulatory T cells. Further, we analyze of the signal range of T helper cells in
large-scale simulations with over 2000 cells.

The results in this chapter have been accepted for publication [65].

6.1 IL-2 signaling of T cells as part of the
adaptive immune response

The molecular mechanism of the immune response is the subject of intense re-
search in medicine and biology. The adaptive immune response relies on selective
expansion of clones of T and B cells. Cell-to-cell communication is a defining
property of multicellular organisms. In particular, the release, sensing and uptake
of cytokines, small signaling proteins, by cells is essential for the regulation of
the mammalian immune system [55]. High levels of cytokines, so-called ’cytokine
storms’, can cause severe damage to the human body. Adaptive immune responses
must be rapid and effective in the case of strong infection, but also carefully con-
trolled to avoid autoimmune diseases. Cytokine concentrations regulate critical
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6 Application: Three-dimensional Gradients of Cytokine Signaling between T cells

processes such as the type and strength of the immune response. Quantitative
understanding of such cytokine-driven cellular decisions is beginning to emerge
[13, 24, 27, 60, 66], yet the underlying spatio-temporal cytokine dynamics remain
poorly understood. Cytokines act in heterogeneous environments, typically with
high cell-densities. It is not known how they diffuse under such conditions and in
turn regulate immune responses.

An important cytokine with corresponding receptor expression is interleukin(IL)-2.
It is secreted by T helper (Th) cells early after antigenic stimulation and taken up
by high-affinity IL-2 receptors (IL-2R) on Th cells and regulatory T (Treg) cells.
Proliferation and differentiation of Th cells are tightly regulated by the interplay
of regulatory T cells and the Th cells itself. Experimentally tested models for
the IL-2R dynamics are available [13, 24, 66]. Th cells recognize an antigen of
an antigen-presenting cell (APC) and then activate responding T cells as part
of the immune response. Regulatory T cells instead suppress the activation of
the responding T cells. Understanding the role of regulatory T cells is important
for the treatment of auto immune diseases and cancer. The success of organ
transplantations and cancer immunotherapy is directly linked to the suppressing
activity of regulatory T cells.

A combined experimental and theoretical study [13] has identified secretion and
uptake of IL-2 as a possible mechanism mediating immune suppression by regula-
tory T cells. The model captures IL-2 signaling in the initial phase after antigen
stimulation where the cells are primed for proliferation but have not yet entered
initiated cell division (up to 30 hours). The coupled PDE/ODE system is dis-
played in Section 2.3. Secreting Th cells represent cells which have recognized
the antigen of an APC before the start of the simulations. APC recognition is
not part of the model, instead the spatial positions of the secreting Th cells are
chosen randomly. APCs themselves do not express IL-2 receptors but constitute
simply ‘excluded volumes’ with respect to the IL-2 dynamics. We do not consider
the APC in the extracellular area to focus on the role of IL-2 uptake by T cells
by a simplified spatial discretization. Regulatory T cells are distinguished from
responding T cells by higher receptor expression rates w0

i and w1
i (Table 6.1).

Table 6.1: Biological parameters for regulatory T cells, see [13]

Symbol Value Parameter

w0
i 1000 mol./cell/h Antigen stimulated IL-2 receptor expression rate

w1
i 8000 mol./cell/h Feedback induced IL-2 receptor expression rate

r 5µm Cell radius
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6.2 Immunological synapse and model adaptation

Figure 6.1: Model scheme: activated Th cells release cytokine molecules into the
immunological synapse (IS).

Upon receiving an antigen stimulus, only about one quarter of a Th cell population
releases IL-2 molecules. The activation of the other T cells is decided by their
competition for IL-2 with the regulatory T cells, which thus inhibit activation by
absorbing IL-2. Th cells release IL-2 into the extracellular medium and regulatory
T cells express high affinity IL-2 receptors. The responding Th cells express high
levels of IL-2 receptors only if activated. As index of activation, we therefore
consider the number of receptors Ri + Ci after the time necessary to reach a
stationary condition. The competition between T cells is significantly influenced
by their spatial position relative to IL-2 sources. Thus, the secreting Th cells have
a great advantage regarding activation compared to responding Th cells, since they
emit IL-2 with a secretion rate qi.

6.2 Immunological synapse and model adaptation

The model for T cell interaction published by Busse et al. [13] (see Section 2.3)
assumed homogeneous secretion of the cytokine over the cell surface. However, T

89



6 Application: Three-dimensional Gradients of Cytokine Signaling between T cells

Figure 6.2: Setup of the 3D-simulation of a T cell population

cells release IL-2 and other cytokines in a polarized fashion into the immunological
synapse. Immunological synapses are formed between immune cells by surface
proteins after antigen recognition and have been observed between T cells and APC
(Figure 6.1). Many cytokines are secreted preferentially into the immunological
synapse and a range of cytokine receptors have been found to be specifically located
in the immunological synapse, too. Therefore, it is likely that the synapse has
an important function for cytokine signaling, beyond its role for T cell receptor
signaling on which theoretical studies have focused, see Davis et al. [20].

We analyze a model of cytokine secretion and uptake in the immunological synapse,
represented by a small cylindrical region between a Th cell and an opposed APC
or second Th cell (Figure 6.3). The distance between cells is in the range of 10
to 40 nm. Not all cytokine molecules escape into the extracellular space (qeff ),
potentially reaching other nearby cells. Cytokine molecules may also induce signals
to the secreting cell by binding to receptors at the cell itself. With a synapse
length of 20 nm and a cell diameter of 10, 000 nm, it is not possible to accurately
include the synapse in the 3D-grid. Instead, we implement the synapse by polarized
secretion on a single grid point on the cell surface of a secreting cell which is
randomly chosen, see Figure 6.3(b). Periodic boundary conditions are considered
on the outer boundary Γout instead of free boundary conditions. By this addition,
we avoid artificial behaviors in the corners of the intercellular area Ω to have a
more biological depiction of large cell clusters.
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6.2 Immunological synapse and model adaptation

(a) Model (b) Discretization

Figure 6.3: Cytokine molecules are released into the immunological synapse (IS)
between a Th cell and an opposed antigen presenting cell (APC).
The synapse is discretized by polarized secretion, the opposed cell is
omitted in the discretization.

In a further addition to the model described in Section 2.3, only the activation
of non-secreting Th cells and regulatory T cells is considered. Therefore the IL-2
secretion rate (q) of the Th cells upon antigen recognition is replaced by a smaller
effective secretion rate (qeff ). The rest of the secreted interleukin is used for
the activation of the cell itself (autocrine signaling). The intracellular processes
of secreting Th cells are neglected, only activation of other cells is considered
(paracrine signaling). In recent experiments by Höfer et al. [36], it was determined
that one quarter of T cells release IL-2 molecules by antigen stimulation with
a secretion rate of q = 36, 000 molecules/h. Simulations of the immunological
synapse, see Thurley et al. [65], estimated an effective secretion rate of qeff =
3, 500 molecules/h.
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6.3 Numerical results

Earlier numerical computations of the competition of T cells for IL-2 were pub-
lished by Busse et al. [13] in 2010. They performed two-dimensional simulations to
analyze the dynamics and pattern formation of the intercellular signaling between
up to 170 cells. We use the developed numerical methods in this thesis, consisting
of the coupled solver developed in Chapter 4 and the adaptive refinement strate-
gies of Chapter 5, for an efficient computation of the signaling between up to 2000
cells in realistic 3D environments. We present in this section results that show the
important influence of 3D effects in cell interactions and bring new insights into
the study of the immune response.

Graphs were visualized by Matlab [46]. Visualizations of the three dimensional
data were created by Marcus Schaber and Lisa Kolb of the Visualization and
Numerical Geometry Group of the Heidelberg University, see [41].

6.3.1 IL-2 signaling of T helper cells

It is unknown under which conditions the cytokine molecules that escape the
synapse can transmit a paracrine signal. To investigate the origins and conse-
quences of spatially inhomogeneous dynamics of cytokine signaling, we perform
extensive three-dimensional simulations of a T cell population. We simulate the
IL-2 dynamics for a large number of T cells (216 cells in a volume of 1 nl). After
antigenic stimulation in a fraction of T cells and subsequent IL-2 secretion, the
IL-2 concentration increases rapidly and nearly homogeneously for several hours.
Analysis of the time course (Figure 6.5) shows that IL-2R expression is upregu-
lated in non-secreting T cells in response to the increased IL-2 concentration in
the first hours after antigenic stimulation. High IL-2 receptor levels cause a fast
IL-2 uptake from the medium and as a result concentration gradients occur. In
large parts of the simulated region, the IL-2 concentration reaches a steady-state
at around 10 pM while locally it is more than twice as large. This inhomogeneity
in IL-2 concentration corresponds to receptor upregulation (activation) of non-
secreting Th cells (IL-2R+ cells with more than 4000 receptors). These cells are
found near the regions with high IL-2 concentration.

However we see in Figure 6.5, as the IL-2R are being upregulated, IL-2 becomes
increasingly depleted in the medium. As a result, only a fraction of the cells receive
a sufficient IL-2 stimulus to sustain high IL-2R expression, whereas the remaining
cells downregulate IL-2R expression (IL-2R− cells). Interestingly, the time courses
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6.3 Numerical results

Figure 6.4: Spatiotemporal cytokine dynamics of an Th cell cluster showing the
IL-2 concentration at indicated time points. 59 of the 162 non-
secretory cells are activated after 30 hours.

Figure 6.5: Time course of the receptor number and average IL-2 concentration
at the surface. Solid lines indicate averages, blurred regions standard
deviations. The black line indicates the average IL-2 concentration
in the simulated region.
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6 Application: Three-dimensional Gradients of Cytokine Signaling between T cells

of IL-2 concentrations at the surfaces of the cells show only small differences be-
tween IL-2R+ and IL-2R− cells: In the beginning, IL-2 equally rises near IL-2R+

and IL-2R− cells, but as IL-2 depletion sets in, the cells that eventually become
IL-2R− cells receive slightly less IL-2. Later at steady-state, the IL-2 concentra-
tion is somewhat higher in the microenvironment of IL-2R− cells, because they do
not consume as many IL-2 molecules.

This form of local bistability, which occurs in the expression of IL-2R on Th
cells, was observed already in Busse et al. [13]: Based on a quasi-stationary state
assumption, they showed that in the model without regulatory T cells, the IL-
2R expression rate responds to the increase of the secretion rate in a digital way
and the cells are activated only after a certain threshold is exceeded. A small
bistable region around the threshold is observed. These findings were supported
by experimental data by Busse et al. Here we find that the extended model (see
Section 6.2) qualitatively reproduces the predicted bistable system behavior in 3D
simulations.

The simulations indicate the amount of IL-2 escaping from the immunological
synapse can sustain paracrine signaling in at least a fraction of surrounding cells.
However, competition for the cytokine can cause heterogeneity in the response of
a cell population and result in IL-2 levels that are much lower than local concen-
tration peaks. The paracrine cytokine signals are not only characterized by these
cytokine gradients, but also by a rapid temporary cytokine boost occurring in the
first hours after stimulation. Such a temporary cytokine signal has been observed
by single-cell experiments by Sojka et al. [63] and recently by ELISA experiments
[66], although with conflicting time-scales. Single cell experiments evoked a peak
in the number of IL-2 secreting cells at one to six hours after antigen stimulation,
while Tkach et al. [66] report a peak in the IL-2 concentration measured after 50
hours. Our simulations point to an IL-2 peak in the first 10 hours after stimu-
lation, and thus support the earlier suggestion by Sojka et al. [63] that ELISA
studies have limitations in reflecting the time-course of cytokine signals in the
living organism.

6.3.2 Competitive uptake by regulatory T cells

Regulatory T cells mediate immune tolerance and are critical for the prevention
of autoimmune reactions. They express high levels of IL-2R but do not secrete
IL-2. To study the effect of regulatory T cells on the IL-2 dynamics after ac-
tivation of conventional Th cells, we simulate a T-cell population consisting of
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antigen-stimulated IL-2 secreting and non-secreting Th cells as well as 33% reg-
ulatory T cells in a random configuration shown in Figure 6.2. Compared to the
situation in the absence of regulatory T cells, the IL-2 concentration attains a
spatially inhomogeneous steady state more rapidly, with the overall IL-2 concen-
tration being lower (Figure 6.6 and 6.7). Importantly, the non-secreting Th cells
do not permanently upregulate IL-2R in the presence of regulatory T cells because
the regulatory T cells bind IL-2 themselves and thus suppress the paracrine IL-
2 signal. The comparison with the simulations without regulatory T cells imply
that Th cells require for sustained IL-2 signaling both a temporarily strong and a
stable weak IL-2 stimulus. The insight that Th cells can sustain IL-2 signaling at
low cytokine concentration, but only after initial stimulation with high cytokine
concentration, is a spatio-temporal phenomenon similar to hysteresis: Active cells
express more cytokine receptors, which bind more cytokine molecules even at lower
concentration and thus stabilize the active state once it is achieved. Regulatory
T cells can suppress prolonged IL-2 signaling in Th cells by inhibiting the strong
initial IL-2 signal and the resulting upregulation of the IL-2 receptors.

Figure 6.6: Time course of the receptor number and average IL-2 concentration at
the surface, including regulatory T cells. Solid lines indicate averages,
blurred regions standard deviations

Having established that an effective paracrine IL-2 signal is possible in our model,
and that it can be suppressed by regulatory T cells, we analyze in Figure 6.8
to which extent IL-2 secretion rate, cell-to-cell distance and the fraction of IL-2
secreting cells shape the spatio-temporal dynamics. Without regulatory T cells,
the number of activated Th cells increases linearly with the effective IL-2 secretion
rate qeff , until, eventually, all cells in the simulated region become active. By
contrast, the presence of regulatory T cells creates a threshold at an effective
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secretion rate of qeff ≈ 18, 000 molecules/h, below which there is no paracrine
IL-2 signaling between Th cells. The same pattern is observed if we vary the
fraction of cytokine secreting cells instead of the effective secretion rate. Hence the
presence of regulatory T cells changes the paracrine IL-2 dynamics from a gradual
to an all-or-none response: Either the paracrine signal is completely suppressed
by competitive uptake or the suppression is overrun and all cells are activated.
However, effective IL-2 secretion rates are around 3, 500 molecules/h, which is
likely to be too small to overcome the suppression of the regulatory T cells in a
physiological setting.

Figure 6.7: Spatiotemporal cytokine dynamics of a coculture of both T helper
and regulatory T cells at indicated time points

Within the physiological range range from 2 to 20µm, the cell-to-cell distance
does not influence the number of Th cells that become activated by paracrine
IL-2 signaling. This is the case because cytokine molecules can reach nearby
cells rapidly by diffusion compared to the slower time scales of changes in IL-2R
expression and IL-2 internalization. Therefore the exact cell-to-cell distance is
unimportant for the number of activated Th cells, which is in agreement with
recent experimental data [66].

Regulatory T cells efficiently suppress paracrine IL-2 signals, because they express
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Figure 6.8: Fraction of activated Th cells (IL-2R+ cells) after 30h simulation time
with and without the suppression of regulatory T cells.

high levels of IL-2R, preventing a strong cytokine signal. The suppression of IL-2
signals is an important mechanism contributing to immune tolerance mediated by
regulatory T cells. In line with earlier work by Feinerman et al. [24] and Busse et
al. [13], this suggests that the IL-2 uptake by regulatory T cells avoids autoimmune
diseases even in the case of strong infection.

6.3.3 Long-range signals of IL-2 secretor cells

Our simulations yielded global elevations in IL-2 concentration only temporarily
before the target cells expressed high levels of IL-2R. Beyond this point, only
short-range IL-2 gradients with local concentrations were observed. Generally, we
expect that the balance between cytokine secretion, dilution through diffusion in
the three-dimensional extracellular space and cellular consumption will determine
the signaling range. To understand the interplay of these three factors, we sim-
ulated a single IL-2-secreting Th cell surrounded by non-secreting Th cell which
all are potential responders to the IL-2 (Figure 6.9). Although we use the specific
parameters for IL-2 here, this model is of more general interest to situations with
few signaling cells and many responder cells (e.g., IL-4 secreting Th cells in a B
cell population).

We simulated the signal range during Th cell activation for varying values of
qeff with (Figure 6.10). We found that for the estimated effective secretion rates
(qeff = 3, 500 molecules/h), high IL-2 concentrations are restricted to the mi-
croenvironment of the cytokine secreting cell. Remarkably, although secretion is
polarized through the synapse, the cytokine concentration is higher along the en-
tire surface of the secreting cell, including the pole opposite to the synapse, than at
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Figure 6.9: Large-scale simulation (2198 Th cells) with one IL-2 secreting Th cell
placed in the center

Figure 6.10: Simulations for varying values of qeff with the signal range deter-
mined by the distance from the center to the most distant activated
cell, normalized by the cell-to-cell distance (15µm).

nearby cells. For larger secretion rates (of the order to 106 molecules/h), the IL-2
signal reaches hundreds of cells. However, with the estimated IL-2 secretion rate,
hundreds of secreting cells would be needed to realize such a high rate. Therefore,
IL-2 from an individual producer will act locally whereas large clusters of activated
cells could cause long-range signals. Very high secretion rates (3 ·106 molecules/h)
evoke an organ-wide cytokine signal. The spatial range scales linearly with the log-
arithm of the secretion rate. Thus, the cell population recognizes relative rather
than absolute increases of the secreted cytokine molecules.
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In this thesis, we developed an adaptive numerical solver for accurate 3D-
simulations of intercellular signaling modeled by coupled PDE/ODE systems. The
proposed method uses Galerkin finite element discretizations in space and time.
The temporal Galerkin space corresponds to the damped Crank-Nicolson method
and was extended in this thesis for different time meshes of the PDE and the ODE
part of the system.

Both decoupled and coupled solution schemes were considered for solving the linear
subsystems arising in each iteration of Newton’s method. We showed that the
interaction between the PDE and the ODE part of the biological system is strong
by a quantitative sensitivity analysis. A comparison with a decoupled scheme
showed the better performance of the coupled scheme especially for systems with
large eigenvalues of the sensitivity matrices, e.g. by large time steps. We compared
the performance of different multigrid preconditioners for coupled solving schemes
based on a Krylov-type solver. The number of necessary Krylov iterations was
reduced by considering the coupling of the system in the smoothing iterations.

We derived an a posteriori error estimator by means of the DWR method for
coupled PDE/ODE systems with different time meshes for the two parts of the
system. We demonstrated in a numerical investigation of a series of two and three
dimensional model problems that the estimated errors can be used as a reliable a
posteriori error estimator. Significant gains in accuracy were obtained for systems
with low diffusion coefficients by adaptively refined grids, based on error indicators
derived by the DWR method, compared to uniformly refined grids. Adaptively
determined temporal discretizations, differently chosen for PDE and ODE part,
significantly reduced the computational effort.

The developed numerical methods were used for simulations of the competition
between T cells for cytokines in realistic 3D environments. In our simulations,
the spatial distribution of cytokine secretion and uptake within a population of
immune cells had a huge impact on the cellular response. The numerical results
brought new insights into rapid adaptive immune responses in the human body.
We found that, despite the high diffusivity of cytokines, localized cytokine sinks
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and sources occurred. Cytokine signaling was specifically targeted to neighboring
cells, which resulted in short-range cell-to-cell communication. However, collective
secretion by many producing cells also allowed cytokines to signal over multicellular
distances.

Based on the results achieved in this thesis, we present several ideas for further
research:

Parameter estimation by experimental data

Given recent developments in micro fluidic devices and cell culture on structured
surfaces, the investigation of the spatio-temporal dynamics of cytokine signaling
is being attempted now by Adutler-Lieber et al. [2]. Reliable data obtained by
experiments in synthetic cellular micro-environments would enable the develop-
ment of a more accurate model for T cell interaction by parameter estimation and
model adaptation.

Homogenization techniques

In the simulation of large cell clusters a geometry including all individual cells
with their respective surface largely expands the spatial discretization even on
coarse grids. There exist analytical approaches which derive a macroscopic model
using homogenization techniques by Marciniak-Czochra and Ptashnyk [45]. These
techniques allow for coarser discretizations. So far only analytical work exists for
cell cluster of the same cell type. For applying homogenization techniques to cell
clusters consisting of multiple cell types, e.g. as the application considered in this
thesis, a new analytical framework which makes use of stochastic homogenization
has to be developed.

Application of the numerical methods for different PDE/ODE systems

Coupled PDE/ODE systems are found as well in many other applications like
combustion, microelectronics, biology and medicine [3, 10, 35, 48]. In these appli-
cations the ODE part is coupled with the PDE part on the whole computational
domain. A different solver should be considered to apply the adaptive mesh re-
finement methods derived in this thesis on systems with a much larger ODE part,
compared to the systems considered in this thesis.
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A posteriori analysis of decoupled solution methods

In this thesis, we showed that error indicators obtained by the DWR method
estimated the error of different time meshes for the PDE and the ODE part of
the system closely. We applied the presented accurate coupled solution method
as implicit solver and could thus neglect iteration errors. In many applications
like coupled PDE systems, a decoupled solution scheme is more advantageous
than a coupled scheme. Iteration errors arise in decoupled solution schemes and
have to be controlled. Rannacher and Vihharev [52] presented an a posteriori
error analysis which balances discretization and iteration errors. The investigation
focused on stationary PDEs, but the methods could be extended to non-stationary
applications. The control of the iteration error in each time step would extend the
applicability of different time meshes for different parts of the system to decoupled
solution schemes.
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