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Zusammenfassung / Abstract

In dieser Doktorarbeit wird ein Sample nahegelegener, kompakter, elliptischer Galaxien mit hohen zen-
tralen stellaren Geschwindigkeitsdispersionen untersucht. Mittels qualitativ hochwertiger photometrischer
und spektroskopischer Daten analysieren wir ihre strukturellen Eigenschaften und erstellen orbit-basierte
dynamische Modelle um den Beitrag der stellaren und dunklen Materie sowie den Beitrag des super-
massiven schwarzen Lochs zum Gesamtmassenbudget zu ermitteln. Wir zeigen, dass unser Sample
kompakter elliptischer Galaxien AusreiSer in der Population lokaler elliptischer Galaxien darstellt, ihre
Eigenschaften jedoch konsistent sind mit denen massiver und nicht-sternentstehender Galaxien bei
Rotverschiebungen von z =~ 2. Wir nehmen an, dass sich unser Sample seit z = 2 passiv weiteren-
twickelt hat, was uns ermdglicht diese Relikte nun in prazedenzloser Ausfiihrlichkeit zu untersuchen.
Alle unsere Objekte sind scheibenférmig und rotieren schnell, bar einer druckunterstitzten Bulge Kom-
ponente, mit einem dominanten stellaren Massenanteil innerhalb des effektiven Radius. Wir finden ein
Ubermassives schwarzes Loch in einer unserer Galaxien vor und vermuten, dass noch weitere Ent-
deckungen in unserem Sample folgen werden. Dies deutet stark darauf hin, dass das Wachstum eines
supermassiven schwarzen Lochs nicht unmittelbar an das Wachstum eines Bulges gebunden ist. Ab-
schliessend zeigen wir, dass drei von sieben Galaxien in unserem Sample in ein dunkles Halo eingebettet
sind, mit eindeutigen Hinweisen fir ein sehr massives Halo in insbesondere einem Objekt. Das dunkle
Halo in diesem Object, NGC 1281, stellt innerhalb von 5 effektiven Radien 90 Prozent der Gesamtmasse
dar. Die Verteilung der dunklen Materie ist jedoch nicht in Einklang zu bringen mit jenen, die im Rahmen

kalter, dunkler Materie Simulationen prognostiziert werden.

In this thesis, a sample of nearby, compact, elliptical galaxies with high central stellar velocity dispersions
are studied. By means of high quality photometric and spectroscopic observations, we analyse their
structural properties and construct state-of-the-art orbit-based dynamical models to constrain their
total mass budgets, including the contribution of stars, dark matter and a supermassive black hole.
We demonstrate that our sample of compact ellipticals are outliers of the local population of elliptical
galaxies, but their properties are consistent with massive and non-starforming galaxies at much earlier
times (z ~ 2). We postulate that our sample has passively evolved since z = 2, which allows us to
investigate these relic galaxies in unprecedented detail. All our objects are disky fast-rotators, devoid
of a prominent pressure supported bulge, with a dominant stellar mass component inside one effective
radius. We were able to detect an over-massive supermassive black hole in one galaxy and suspect that
more will be detected in our sample. This strongly indicates that the growth of a supermassive black
hole is not necessarily linked to the growth of a bulge. Finally, we show that at least three out of seven
galaxies in our sample are embedded in a dark halo, with unambiguous evidence for a very massive
dark halo in one particular object. The dark halo in this object, NCG 1281, constitutes 90 per cent of
the total mass content within 5 effective radii, and the dark matter distribution cannot be reconciled

with that predicted by cold dark matter simulations.
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Chapter

Introduction

1.1 Galaxies

Galaxies are among the largest scale structures in the universe, held together by the gravitational forces
of its constituents, namely stars, interstellar gas and dark matter. They come in a variety of shapes and
sizes, spanning multiple orders of magnitude in mass. While some of them are rather isolated, most of
them are gravitationally bound to even larger structures, commonly referred to as galaxy groups, which
in turn are associated with galaxy clusters and superclusters. Despite their association with the afore-
mentioned larger scale structures, galaxies are usually treated as single building blocks of the universe,
which have evolved in space and time through internal processes and external interactions. But, their

formation and evolution into the structures that we commonly observe today is no coincidence.

Investigations by Edwin Hubble already indicated that the bulk of galaxies are made up of three individual
classes, where each object can be placed into one of these according to their shape and appearance
[Hubble, 1926]. Following Hubble, galaxies can be divided into: (i) Elliptical, featureless galaxies, (ii)
flattened, spiral galaxies and (iii) lenticular galaxies which are also flattened, consisting of a bulge and
an outer disk but devoid of any prominent spiral features. This morphological classification, also known
as the Hubble Sequence of Galaxies or commonly referred to as Hubble’s Tuning Fork, represents one of
the earliest attempts to characterise and link galaxies and to draw conclusions about their evolutionary
history. Despite improvements in observational facilities, leading to the detection of finer substructures
such as bars, rings, tighter and looser spiral arms as well as irregular and dwarf galaxies, the Hubble
Sequence Of Galaxies has proven to be an efficient, easy and robust tool for the characterisation and

understanding of these objects.

On the left hand side of the Hubble tuning fork (Fig. 1.1) are the ellipticals, starting with the most
spherical objects which have an ellipticity of ¢ =1 - b/a = 0, where b and a are the apparent minor
and major axis lengths. The fork itself is comprised of barred (bottom) and non-barred spiral galaxies

(top), while lenticular galaxies are usually placed where the two prongs of the fork meet each other.



Chapter 1: Introduction 2
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Figure 1.1: The revised Hubble Sequence of Galaxies, also commonly known as the Hubble Tuning Fork.
Credit: Kormendy & Bender [1996].

Hubble realised that the different classes in his tuning fork illustrate a continuous sequence of galaxies
with increasing structural complexity from the left to the right, and therefore concluded that these
objects do not represent the end stage of different galaxy formation channels but rather depict different
epochs in the evolution of galaxies of one and the same formation channel. According to Hubble,
ellipticals (also labeled as "early-type galaxies") evolve into spiral galaxies (also referred to as "late-type
galaxies"). This simple yet powerful description of galaxy evolution, however, turned out to be false. We
now know that the Hubble Sequence Of Galaxies is more than just a morphological sequence but also
tightly coupled to the different physical properties of galaxies, such as their luminosity, mass, colour,
star formation rate etc. For instance, stars in ETGs are generally older than their counterparts in LTGs.
LTGs do also show a higher rate of specific star formation in contrast to ETGs, which have depleted much
of their gas reservoir. Moreover, LTGs are rotationally supported whereas the most massive elliptical
galaxies do not show any significant amount of net rotation at all. These arguments are difficult to
reconcile with an evolution from the left to the right in the Hubble Tuning Fork. On the contrary, we have
now gathered a body of evidence, from an observational as well as theoretical point of view, that LTGs

are more likely to evolve into ETGs than the other way round.

The details of this evolution, however, remain elusive and provide the overall motivation for this work.
In the following subsections, the state of affairs in galaxy formation and evolution will be presented:
Sec. 1.2 will revisit the progress in our understanding of the physical properties of the apparently very
uniform population of local (< 100 Mpc) ETGs, and in particular of its stellar content. We will trace their
evolution back in time, to redshifts of z ~ 2, and uncover their drastic growth in mass and size. This, in
turn, yields information regarding the feasibility of different formation and evolution mechanisms. We
will highlight the success and shortcomings of these mechanisms.

Supermassive black holes will be discussed in Sec. 1.3, where we illustrate the tight relationship between
their masses and several host galaxy properties and hence their importance in shaping the evolution
of galaxies. However, these relations, also commonly known as the "black hole scaling relations", break
down at higher redshift indicating that we yet lack a complete theory in which black hole and galaxy
grow in lockstep.

Sec. 1.4 then covers dark matter, the principal mass component of galaxies, which is responsible for

the large-scale evolution of galaxies in a universe where structures grow hierarchically. We will focus on
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efforts and difficulties to constrain the dark matter content in galaxies, which is necessary to provide the
missing link between baryonic and non-baryonic matter. And finally introduce the sample of compact,
elliptical galaxies with high central velocity dispersions in Sec. 1.5, which are powerful laboratories to gain
insight into the role of stars, black holes and dark matter, and key for a more thorough understanding

of galaxy formation and evolution in general.

1.2 Early-Type Galaxy Evolution

1.2.1 Scaling Relations And Fundamental Plane

Early-type galaxies constitute only a small fraction of the total galaxy population (~ 20%), but comprise
a majority of the total stellar mass (~ 60%) [Fukugita et al., 1998; Hogg et al., 2002; Bell et al., 2003;
Baldry et al., 2004]. In addition, most ETGs are more abundant in dense environments, while LTGs
seem to prefer less dense populated regions in space [Dressler, 1980]. Understanding how the bulk
of stellar mass ended up in a rather small and apparently very uniform sample of galaxies, and why
these preferentially are found in cluster-like environments poses one of the most difficult but important

challenges in the field of galaxy formation and evolution.

Too seek insight into the processes which drive this evolution, and further propelled by the advent
of large scale sky surveys such as the Sloan Digital Sky Survey (SDSS) [York et al., 2000; Stoughton
et al., 2002; Abazajian et al., 2003], statistically meaningful samples of ETGs have been investigated.
As indicated earlier, the Hubble Sequence of Galaxies does not only depict a continuous sequence in
morphology, but also in physical parameter space. Galaxy properties vary smoothly as a function of
morphology. More interestingly, though, many of these parameters are narrowly correlated. Strong
correlations between velocity dispersion and luminosity [Minkowski, 1962; Faber & Jackson, 1976], half-
light radius and luminosity [Kormendy, 1977], the strength of the Mgy line and the velocity dispersion
[Terlevich et al., 1981; Dressler, 1984; Burstein et al., 1987; Bender et al., 1993] and between colour and
magnitude [Faber, 1973; Sandage & Visvanathan, 1978a,b; Bower et al., 1992] have been found. These
investigations culminated in the discovery of the "Fundamental Plane" (FP) [Djorgovski & Davis, 1987;
Dressler et al., 1987], a relation between effective size, effective velocity dispersion and effective surface
brightness. The FP can be used as a tool for the determination of distances, but more importantly
holds clues concerning galaxy evolution. Since two of the three parameters are approximately distance

independent, the relation is generally expressed in terms of:
Re oo I;° (.

The measurement of the coefficients of this relation, by e.g. minimising the scatter in R,, yields best-
fitting values of 1.2 < a <15 and b ~ 0.8 [e.g. Jorgensen et al., 1996; Pahre et al., 1998; Bernardi et al.,
2003; Hyde & Bernardi, 2009] (Fig. 1.2). Assuming that ETGs are systems in virial equilibrium (i.e. in
a state where the time averaged potential and kinetic energies are in balance), however, one would
expect:

G Mayn ™' o Myyn L R?RL™ o« Mgy IRL™" o 02 (12)
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Figure 1.2: The Fundamental Plane in r-band of ~ 50 000 early-type galaxies from the SDSS (DR4). Credit:
Hyde & Bernardi [2009].

and ergo a =2 and b = 1. Non-homology (i.e. variations in their structural and orbital properties) cannot
account for a significant deviation from the virial predictions. And the difference, also commonly known
as the "tilt" of the FP, is therefore interpreted as a gradual change of the dynamical mass-to-light ratio
(Mayn/L = Y4yn) as a function of e.g. stellar mass. The change in Yqyy, again, is explained by either
a change in the stellar populations (e.g. brighter and more massive galaxies tend to be more metal rich,
even if metallicity alone cannot account for the tilt) and hence in the stellar mass-to-light ratio (Y,) or in
the dark matter fraction of ETGs along the FP [e.g. Renzini & Ciotti, 1993]. While it is difficult to dissect
the contributions of dark matter and Y, to the tilt of the FP, the tightness is remarkable and hints at
processes which are very effective in producing a uniform galaxy population where the stellar structure
and content are closely related to the underlying total mass. Most recent investigations point at strong
variations in the stellar M/L, also partially attributable to changes in the stellar initial mass function
(IMF), as the main driver of the observed tilt [e.g. Cappellari et al., 2006; Treu et al., 2010; Auger et al.,
2010a; Cappellari et al., 2013a] [but see e.g. Padmanabhan et al., 2004, arguing the contrary]. Therefore,

understanding the stellar populations becomes key to our understanding of ETGs in general.

1.2.2 The Growth Of Early-Type Galaxies

The stellar populations of a galaxy present a fossil record of its evolutionary history. Stellar age estimates
of present-day ETGs indicate a very old stellar population (> 10 Gyr) [Bower et al., 1992; Gallazzi et al.,
2006; Jimenez et al., 2007; Graves et al., 2009a,b]. In the "monolithic collapse" model [Eggen et al.,
1962], galaxies are assumed to form very early and on short time scales from the collapse of large,
Jeans-unstable gas clouds [Jeans, 1902] in a single star burst event [Larson, 1969]. Depending on the

relative timescales of star formation and the dissipative nature of the collapse, ETGs or LTGs are
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formed. If the collapse is dissipationless, the motion of stars - which emerge through the gravitational
collapse of small gas instabilities in the cloud - is random, resembling systems which look like ETGs.
On the other hand, if the release of gravitational energy during the collapse can be dissipated through,
e.g. radiative cooling, then angular momentum conservation during the shrinking phase will result in a
rotationally supported system of stars, similar to LTGs. According to this picture, though, ETGs should
have formed very early and are expected to undergo a long phase of passive evolution with little to no
structural evolution. While the old stellar populations of present-day ETGs match the predictions of the
monolithic collapse scenario, observations at higher redshift draw a vastly different picture and point
at inconsistencies between both, model and observations. First, the number density of ETGs steadily
increases since z =1, in contrast to modelling expectations where it is assumed to remain constant
[Kauffmann & Charlot, 1998]. The growth in number density is accompanied by a "downsizing" effect
[Cowie et al., 1996], which shows that less massive systems quenched star formation later and entered
the red, passive ETG branch only recently. Second, studies at redshift z ~ 2 reveal a population of
massive, red galaxies [Franx et al., 2003; van Dokkum et al., 2003]. These are presumably descendants
of the submillimeter galaxy population at z = 3 [see Toft et al., 2014, and references therein] where the
intense star formation rates have been triggered by gas-rich major mergers at even higher redshifts
[Khochfar & Silk, 2006; Naab et al., 2007; Wuyts et al., 2010], or products of Toomre unstable disks
[Toomre, 1964] which are fuelled by cold gas from the intergalactic medium (IGM) along filaments through
the halo [Birnboim & Dekel, 2003; Keres et al., 2005; Dekel et al., 2009; Dekel & Burkert, 2014]. While
these massive ETGs are found to be very compact at z ~ 2 [Daddi et al., 2005; Truijillo et al., 2006; Zirm
et al., 2007; van der Wel et al., 2008; van Dokkum et al., 2008; Szomoru et al., 2010; Newman et al.,
2012; van der Wel et al., 2014], following their evolution through cosmic time by tracing a population
of galaxies at constant number density shows that their sizes increase by a factor of 4-5 while their
masses nearly double [e.g. Bezanson et al., 2009]. Since star formation is already quenched at z >~ 2 for
roughly 50 per cent of this massive galaxy population [Williams et al., 2009], it is insufficient to explain
the mass and size growth [Kriek et al., 2006; Toft et al., 2007; Cimatti et al., 2008; Kriek et al., 2008].
Moreover, most of the mass is added in the outer parts which promotes and inside-out growth [Hopkins
et al., 2009a; van Dokkum et al., 2010; Auger et al., 2011; Pérez et al., 2013; Patel et al., 2013] (Fig. 1.3).
Also, the compact, quiescent galaxies at higher redshift are found to be much more flattened and disky
than their potential counterparts today [Toft et al., 2005; Trujillo et al., 2006; van Dokkum et al., 2008;
van der Wel et al., 2011; Szomoru et al., 2012], with Sérsic indices n < 4 in most cases (i.e. with shallower

surface brightness distributions than the classical de Vaucouleurs profile [de Vaucouleurs, 1948]).

The stellar populations in the remote regions of present-day ETGs should therefore provide information
concerning the violent growth in size and mass since z = 2, which cannot be explained by a simple
passive evolution of the stellar populations, as suggested by the monolith collapse scenario. Spatial
colour information, a tracer of stellar population gradients, have been a useful tool to understand the
stellar build-up of ETGs and suggest that ETGs are bluer towards the outer parts [Franx et al., 1989;
Peletier et al., 1990a,b]. However, the lack of suitable spectral data inhibits to break the degeneracy
between age and metallicity which can equally well account for the colour change [Worthey et al., 1994].
Spectral information of z = 0 ETGs are now ample, but usually confined to the stellar populations
in their central regions due to the rapid decline in their surface brightness distributions [Rawle et al.,
2008; Graves et al., 2009a,b; Tortora et al., 2010; Kuntschner et al., 2010]. Recently, however, data

well beyond the effective radius have become available which show a decrease in metallicity and an
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Figure 1.3: Left: The mass evolution of early-type galaxies since z = 2, within different distances from
the centre. The mass increase is due to mass addition beyond 5kpc. Right: The mass-size evolution
of early-type galaxies since z = 2, following a relation similar to R, o< M,?. Credit: van Dokkum et al.

[2010].

increase in a-abundance towards the most outer parts [Greene et al., 2012, 2013; La Barbera et al.,
2012] [but see: Sanchez-Blazquez et al., 2007, for contradicting results]. Lower metallicities indicate
lower gravitational potential wells in which the stars have formed [Larson, 1974], while the high «-
abundance traces the relative abundance of Type Il to Type | Supernovae (SNe) and therefore hints at
rapid formation timescales [Matteucci & Greggio, 1986; Thomas et al., 2005a]. These results indicate a
two-phase growth, where the recent mass-size evolution of ETGs since z ~ 2 is likely to be of extra-
galactic nature, with a central, flat and massive component which has formed early (z > 2) followed
by a subsequent assembly of stars from smaller galaxies through cannibalism, which have then been

deposited in the outer parts leading to a puffed up massive host.

1.2.3 The Merging Hypothesis

Faced by an increasing amount of observables which could not be reconciled with predictions of the
monolithic collapse theory, alternative formation and evolution scenarios have been put forward. Based
on observations of tidal tails and irregularities during mergers of galaxies, the idea of hierarchical merging
has emerged [Toomre & Toomre, 1972; Toomre, 1977]. Adopted and put into a cosmological framework -
where hierarchical merging becomes a natural outcome of the purely gravitational interactions between
luminous galaxies which are embedded in massive dark halos [White & Rees, 1978] - numerical N-
body simulations of equal mass (spiral-)mergers have been carried out, which can reproduce spheroids
that share many of the physical properties of today’s ETG population [Barnes, 1988, 1989; Kauffmann
et al., 1993; Kauffmann, 1996; Barnes & Hernquist, 1996]. Shortcomings to this picture however remain,
concerning e.g. the higher phase space density in ellipticals in contrast to the lower phase space
density in spiral galaxies [Ostriker, 1980; Carlberg, 1986]. If today’s ETG population is a remnant of spiral
galaxy interactions, then the phase space density should be conserved or decline during the merging
process, according to the collisionless Boltzmann equation. Shortcomings have been alleviated, e.g. i)

by assuming more concentrated progenitors to solve the phase space discrepancy [Hernquist, 1993], ii)
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by considering dissipational and dissipationless mergers to recover the tilt in the FP [Robertson et al.,
2006; Hopkins et al., 2009b] and iii) by allowing equal and non-equal mass mergers [Naab et al., 1999;
Bendo & Barnes, 2000; Naab & Burkert, 2003] to account for the observed variety in the kinematic
and photometric properties of brighter, boxy, slow-rotating and fainter, disky, fast-rotating ETGs [Davies
et al., 1983; Bender, 1988; Kormendy & Bender, 1996] [but see also: Cox et al., 2006]. However, these
simulations imply strong assumptions regarding the dynamical structure and physical properties of the
progenitors, namely i) their bulge-to-disk fractions, the bulge- and disk parameterisation as well as non-
rotating dark matter halos which have to serve as a storehouse for the removal of angular momentum
from the baryonic matter through resonant interactions ii) non-negligible gas fractions, and prescriptions
for star formation, black hole accretion and SNe feedback and iii) the spin-alignment and orientation
of the progenitors. More importantly, though, these simulations cannot explain the strong mass-size
evolution and the stellar population characteristics of present-day ETGs and their likely progenitors at
z = 2, which raise a purely wet (i.e. gas-rich) or dry (i.e. gas-poor) major merger scenario into question.
Major mergers are not only rare [Bundy et al., 2007, 2009; Hopkins et al., 2010b; Man et al., 2012] but
to reconcile both the mass-size relation of ETGs at high and low redshift, the required level of mergers
would result in an overabundance of massive galaxies in the local universe, in conflict with the galaxy
stellar mass function [McLure et al., 2013]. Moreover, binary mergers of disk galaxies fail to reproduce
the detailed dynamical properties of a large sample of local ETGs [Cappellari et al., 2007] - such as the
relationship between their intrinsic ellipticity (€;,+-) and anisotropy parameter () [Burkert et al., 2008]

- as well as the masses and metallicities of typical ellipticals [Naab & Ostriker, 2009].

Based on the assumption of a two-phase growth, as promoted by the observations, numerical merger
remnants of highly unequal mass mergers have been studied [Bournaud et al., 2008; Naab et al., 2009;
Oser et al., 2010, 2012; Lackner et al., 2012; Hilz et al., 2012, 2013; Bédorf & Portegies Zwart, 2013]. There
is now a general agreement that dry minor mergers with mass ratios of ~ 1:5 can indeed recover the
mass-size evolution, in contrast to equal-mass mergers which will result in a comparable evolution in
mass and size (Fig. 1.4). But, doubling the mass since z = 2 would thus require ~ 5 minor mergers for
each progenitor. For a ~ 10!? - 101! M, progenitor the minor companion would still have a significant
mass at which gas-rich systems are more common than gas-poor at those redshifts. This should result
in more recent nuclear star formation activity, increasing the central stellar densities, which however is
in contrast to the lower central densities that are commonly observed in regular, massive present-day
ETGs. In addition, the minor merging process is governed by dynamical friction [Chandrasekhar, 1943]
which ultimately leads to an orbital decay of the smaller merging partner until it is dispersed by the
tidal forces of the larger host. The orbital decay and merging process for highly unequal mass mergers,
however, will not only take several Gyrs [e.g. Colpi et al., 1999], but i) the rate of minor mergers since z =
2 is too low [Lotz et al., 2011], ii) their contribution to the mass-size evolution most likely overestimated
[Newman et al., 2012; Cimatti et al., 2012; Oogi & Habe, 2013] and iii) successive minor merging events
would yield an increased scatter in ETG scaling relations, stronger than currently observed [Nipoti et al.,
2012].

Hopkins et al. [2010a] examined the contribution of various processes which might contribute equally
well to this evolution, including major and minor mergers, adiabatic expansion through significant mass
loss e.g. due to quasar feedback [Fan et al., 2008, 2010], the presence of stellar M/L gradients (which

can induce differences between the measurement of the optical effective radius and the stellar mass
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Figure 1.4: The simulated mass-size evolution of massive galaxies for equal and non-equal mass mergers,
including and excluding a dark matter halo. Credit: Hilz et al. [2013].

effective radius) as well as redshift dependencies in e.g. the stellar mass estimates. Each of these
processes will yield a different path in the mass-size plane and hence a galaxy population with different
characteristics. By limiting the impact of each mechanism, through comparison with different observa-
tional properties of ETGs trough redshift, one can reconstruct a track where the contribution of each
channel is then optimally weighted to recover the observational constraints. As indicated earlier, minor
merging alone cannot account for the evolution - even though it is the dominant driver - and each of
the remaining mechanisms apparently has a non-negligible role in explaining the evolution. Certainly,
minor and major merging is not only mandatory in a universe where structures grow hierarchically (see
Sec. 1.4) but also required given the strong growth in size and mass and the morphological transition
from flat, disky and rotationally dominated structures to more spherical and pressure supported sys-
tems [e.g Chang et al., 2013]. However, given the many additional mechanisms that had to be taken into
account in the simulations of Hopkins et al. [2010a] to recover their evolution, it remains puzzling how
galaxies can fine-tune these in order to evolve into a uniform population that obeys such remarkably

tight scaling relations.

An alternative interpretation of the observations indicates that other factors, such as the appearance
of a significant population of quenched ETGs at later epochs, might be important too, to account for
the extreme increase in the number density of ETGs with time [Valentinuzzi et al., 2010; Cassata et al.,
201; Poggianti et al., 2013; Newman et al., 2012; Carollo et al., 2013; Cassata et al., 2013]. With decreasing
redshift, the average size of ETGs increases; the decrease in the number density of compact ETGs,
however, cannot sustain the increase in the total number density of ETGs at 0 < z < 1. This might
hint at two distinct physical processes that drive the evolution of ETGs. An early phase, which - as
outlined above - is generally attributed to the successive minor merging growth of quiescent, compact

ETGs since z < 2, and an independent late phase at z < 1.5 where massive and already larger galaxies
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join the ETG population by bypassing the compact phase.

Summary:

ETGs are comprised of a uniformly old stellar population, which has evolved passively for the last 10 Gyr.
The analysis of stellar population gradients indicates that stars in the remote regions have formed in
different environments than the bulk of stars in the centre. This is supported by observations of ETGs
through cosmic time, where the violent growth in their sizes since z >~ 2 outpaces their mass growth
and hints at processes which have changed their structural properties more efficiently than their total
stellar mass content. This is at odds with the monolithic collapse scenario, where galaxies are assumed
to undergo little structural evolution since their formation. Mergers, as expected in a hierarchically
growing universe, can recover many properties of todays ETGs. Dissipationless major mergers can
reproduce boxy, slow-rotating galaxies while dissipative mergers tend to result in fast-rotating, disky
galaxies. But major mergers are rare and cannot recover the mass-size evolution of ETGs. Simulations
of dissipationless minor mergers have been able to grow galaxy sizes while increasing their masses
only moderately. However, the minor merging rate is inefficient in both time and number and the
(observational) mass and size contribution due to minor merging most likely insufficient to explain the
pace in the overall mass-size evolution. Additional processes are therefore necessary, but simulations
show that these have to be fine-tuned in order to recover the tight scaling relations, such as the FP.
Finally, observations at high redshift are prone to many systematic uncertainties. In particular tracing
the number density through cosmic time as a function of size is difficult, but most recent observations
can be interpreted as a two-channel evolution where compact ETGs at z ~ 2 evolve mainly through
(minor-)merging events and get company by a population of already larger ETGs at 0 < z < 1, which

have evolved differently.

1.3 Supermassive Black Holes

1.3.1 The Black Hole Scaling Relations

Pioneering work via ground based detections have provided unambiguous evidence for the presence
of supermassive black holes (SMBH) in the centre of most, if not all, galaxies [Sargent et al., 1978;
Tonry, 1984; Kormendy, 1988]. While initial detections based only on a handful of galaxies [Kormendy &
Richstone, 1995], where measurements were barely feasible, the advent of the Hubble Space Telescope
(HST) quickly propelled the exploration and identification of more objects. After two decades of black
hole mass estimates via dynamical modelling [e.g. Magorrian et al., 1998], reverberation mapping [e.g.
Wandel et al., 1999] and maser kinematics [e.g. Kuo et al., 2011], their masses have been constrained in
more than 90 galaxies and we have gained deeper insight into their role and significance in the formation

and evolution of stellar systems.

As intuitively anticipated, the most massive black holes tend to reside at the most luminous/massive
galaxies. More interesting, though, is the discovery of correlations between the dynamically inferred
black hole masses and several host galaxy properties. These correlations link the central black hole
mass (M,) to the stellar velocity dispersion (o< o-2) [Gebhardt et al., 2000; Ferrarese & Merritt, 2000;
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Figure 1.5: The black hole scaling relations. Left: Black hole mass vs. bulge luminosity relation. Right:

Black hole mass vs. effective velocity dispersion. The solid line denotes a least-squares fit to the data.

BH monsters, i.e. massive outliers (faint points) are excluded from the fits. Credit: Kormendy & Ho
[2013].

Tremaine et al., 2002], bulge luminosity (o< L}:}) [Marconi & Hunt, 2003; Gultekin et al., 2009; McConnell
& Ma, 2013; Kormendy & Ho, 2013], bulge mass (x M:1) [Haring & Rix, 2004] and total luminosity
(< L9:9) [Lasker et al., 2014a,b], and are usually summarised by the term "black hole scaling relations"
(BHSR) (Fig. 1.5).

The scaling relations are powerful tools when it comes to determining black hole masses from the
more easily measurable dispersion and luminosity, but they also seem to imply a tight co-evolution
between the black hole and its host, which would provide additional constraints on galaxy evolution
models. The discovery of such an intimate link yielded a wide spectrum of theories, trying to explain
the processes that might have led to this co-evolution. Since the gravitational influence of the black
hole - given by the black hole sphere of influence (Rsor = G M o~2), i.e. the region where the
gravitational pull of the black hole dominates - is too small to have a significant impact on the large
scale evolution of the galaxy, the theories range from complex active galactic nuclei (AGN)' feedback
mechanisms to hierarchically motivated evolution scenarios. For instance, Silk & Rees [1998] and Fabian
[1999] link this to a direct coupling between black hole and galaxy, leading to a mutual regulation of
black hole and spheroid growth. Here, gas-rich mergers at high redshift will drive black hole and galaxy
growth. Once the central black hole enters the AGN mode - by accreting mass from a surrounding disk,
where material looses angular momentum through dissipative events [Shakura & Sunyaeyv, 1973] - the
radiative, thermal and mechanical feedback of the AGN, which is many times higher than the binding
energy of the galaxy itself (Epg ~ 0.1Msc? > Ega ~ M,0?) [Fabian, 2012], will eject matter from
its vicinity and consequently stop further black hole growth and star formation in the centre [but see
also Miralda-Escudé & Kollmeier, 2005, for the irrelevance of AGN feedback to establish the BHSR].

1By the term AGN we include quasars (unless mentioned otherwise) which represent the more luminous and powerful mode
of AGN in general, with mass accretion rates of Mo > LEgaqa/nc?, where Lpqq = “S% is the Eddington luminosity and 7
a typical radiative efficiency of 0.1.
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Figure 1.6: The emergence of the black hole scaling relations from an initially uncorrelated distribution
of galaxies with central SMBHSs, following a hierarchical merger tree. Credit: Jahnke & Maccio [2011].

Alternatively, Peng [2007] as well as Jahnke & Maccio [2011] reduce the relations to hierarchical galaxy-
galaxy mergers. Following a ACDM merger tree, the black hole scaling relations emerge as a result of a
purely statistical convergence process without the need of any physical coupling (Fig. 1.6). More intuitive
theories, on the other hand, try to trace the relations back to a co-evolving black hole and bulge, which

are simultaneously fed by material during subsequent galaxy-galaxy mergers [Kormendy et al., 2011].

Since the prediction of very tight scaling relations is common to all aforementioned theories, the true
origin that links and regulates black hole and galaxy growth still remains unknown. However, internal
processes, such as secular evolution [see: Kormendy & Kennicutt, 2004, for a review], will move galaxies
differently in the mass-size plane than external processes [see: Cappellari et al., 2013b], such as merging
(as is expected if the BHSR arise solely through an averaging of galaxy properties due to merging). But,
the sample of available black hole masses is strongly clustered in their host galaxy properties and most
importantly in the mass-size plane [van den Bosch et al., 2015]. Such being the case, the current crop

of local black hole masses is insufficient to distinguish between the different co-evolutionary paths.

1.3.2 Black Hole Demographics At High Redshift

As an alternative, investigating the black hole demographics at higher redshifts could be helpful in
ruling out individual scenarios, as for instance Jahnke & Maccio [2011] predict an increased scatter with
increasing lookback time. However, the aforementioned theories appear to be at odds with the evolution
of black hole mass vs. host galaxy velocity dispersion over cosmic time. Based on broad emission line
widths to constrain the black hole masses of AGN at high redshift, the correlation between black hole

mass and host galaxy properties are significantly offset by AloghM, = 0.62 + 0.1, already at z ~ 0.5
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[Woo et al., 2006, 2008](Fig. 1.7). Similarly, Jahnke et al. [2009] find no evolution in the relation between
black hole mass and galaxy total stellar mass. But as galaxies at high redshift are disk dominated, this
strongly implies an evolution in the black hole mass-bulge mass relation, with processes being at work
which have redistributed mass from the disk to the bulge since z = 2 efficiently.

More recent studies even go one step further and claim an evolution in both the M, - M, and M, -
My, relation [Merloni et al., 2010; Bennert et al., 2011], and evidence for very massive black holes at
even higher redshifts (3 < z < 6) have mounted in the meantime [e.g. Fan et al., 2001, 2003; Barth
et al., 2003; Walter et al., 2004; Willott et al., 2005; Greene et al., 2010a].

The detection of black holes in the range of M, > 109 Mg at z = 6, i.e. at times where the universe
was less than 10 per cent of its current age [e.g. Mortlock et al., 2011; Wu et al., 2015], is not only a
challenge for theories which predict a mutual growth of black hole and host galaxy, but also to models
of black hole formation and evolution itself. To grow so rapidly they warrant a constant, ceaseless
accretion at the Eddington rate (assuming a common radiative efficiency of ~ 0.1), which appears to be
very unlikely. Thus, alternative scenarios have been explored, including massive black hole seeds - e.g
either through the formation and subsequent collapse of massive, metal-free Population lll stars [e.g.
Omukai & Nishi, 1998; Bromm et al., 1999; Abel et al., 2000, 2002; Madau & Rees, 2001; Tan & McKee,
2004] or the direct collapse of protogalactic, molecule-free gas in dark halos [Haehnelt & Rees, 1993;
Loeb & Rasio, 1994; Bromm & Loeb, 2003] - which then grow through mergers [Petri et al., 2012] and/or
by temporarily super Eddington accretion rates [Volonteri & Rees, 2005; Wyithe & Loeb, 2012]. Note
though that photoionisation by massive population lll stars can evacuate their vicinity and expel gas
totally if the surrounding dark halo is not massive enough [Whalen et al., 2004; Kitayama et al., 2004],

thus leaving no fuel for the later growth of the black hole, whereas it remains to be seen if the paucity
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of cloud fragmentation and molecular hydrogen can be maintained in the direct collapse scenario [e.g.

Dijkstra et al., 2008][but see: Volonteri, 2010, for a detailed review of early black hole formation].

The detection of SMBHs at high redshifts indicates that massive black holes do not follow the mass
assembly history of their hosts, thus questioning both a causal and non-causal relation between both
[Shields et al., 2006; Vestergaard, 2009; Vestergaard & Osmer, 2009]. At the same time, however,
numerous studies [e.g. Richstone et al., 1998] show that the peak of AGN activity (2 < z < 3) [Richards
et al., 2006] roughly coincides with the peak in the star formation rate (SFR) density [Boyle & Terlevich,
1998; Hopkins & Beacom, 2006; Madau & Dickinson, 2014]. While both black hole accretion and star
formation rate depend on a cold gas supply, which is more abundant at higher redshift than at lower,
the spatial scales at which star formation and black hole accretion work are substantially different and
it remains difficult to bridge both. Moreover, a correlation between the peak of AGN activity and the
culmination in the cosmic star formation history is at variance with our intuitive understanding of AGN
feedback, which is assumed to remove gas and hence quench star formation efficiently.

In any case, the quasar distribution function shows that massive black holes have formed very early
(Fig. 1.8), and were overwhelmingly more numerous at high redshift than at low redshift. Thus it is
obvious that many (potentially over-)massive black holes should be lurking in present-day galaxies and
that this may alter the currently adopted black hole scaling relations. In fact, recent detections of
over-massive black holes in galaxies with small bulges [Greene et al., 2008; Rusli et al., 2011; McConnell
et al., 2011; Husemann et al., 2011; Bogdén et al., 2012; van den Bosch et al., 2012; Walsh et al., 2015] and
under-massive black holes in galaxies with large bulges [Nowak et al., 2008; Schulze & Gebhardt, 2011]
question the current picture of a tight, universal relation and point out that the physical mechanisms

of a putative co-evolution are far from being well understood.
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The discovery of massive outliers, however, puts more at stake than just our understanding of the
underlying black hole physics, but also our understanding of galaxy formation and evolution in general.
Semi-analytical models have successfully implemented AGN feedback loops, which can in principle
not only explain the coupling between SFR and black hole growth and the black hole-host galaxy co-
evolution but are also essential to recover e.g. the exponential decline in the galaxy stellar mass
function at the upper end [Di Matteo et al., 2005; Bower et al., 2006; Croton et al., 2006; Somerville
et al., 2008]. Therefore, investigating the (statistical and physical) shortcomings and uncertainties in the
quantification of the black hole scaling relations, i.e. its universality and functional form and/or validity
at the high- and low mass end, is important. Currently, the shortcomings of the black hole scaling
relations are most evident in the restricted sample of dynamically inferred black hole masses, with less
than a hundred measurements to date; the non-negligible scatter; the unaddressed role and significance
of the outliers, the only sparsely sampled massive side of this relation, which is due to the steep decline
in the number of galaxies with very high velocity dispersion [Sheth et al., 2003; Bezanson et al., 2011],
and the sparse sampling in host galaxy properties in general. Furthermore, there is a discrepancy in the
prediction of the M, — ¢ and M, — L relation, which becomes apparent at the high mass end [Lauer
et al., 2007].

As a consequence, more measurements are necessary to overcome the limitations and to get a better

insight into the nature and extent of the black hole-galaxy connection, if there is any.

Summary:

Relations between the masses of supermassive black holes in the centres of galaxies and their host
galaxies’ properties indicate a tight coupling between both. Theoretical arguments based on AGN feed-
back or averaging of galaxy properties - by means of random hierarchical mergers in the context of
a cold dark matter dominated universe - have been successful in explaining this link. Observations
at higher redshift, however, show strong deviations from the currently adopted scaling relations and
indicate that massive black hole formation has preceded galaxy formation. Moreover, the quasar distri-
bution function shows that many (over-)massive black holes must still be lurking in the centres of nearby
galaxies. Indeed, recent detections over- and under-massive black holes question a tight universal re-
lation. Increasing the sample of black hole masses (at high and low redshift) will be helpful to further
explore the link and relation between black hole and host galaxy, and could be able to discriminate

between the different formation and coupling mechanisms.

1.4 Dark Matter Halos

141 Evidence And Nature

Dark matter is a natural, ubiquitous element in the universe. Due to it's non-interacting nature with
electromagnetic radiation, though, it has defied an easy and early detection and we had and still have to
rely on indirect measurements to establish its presence. First indications were based on the motion of
stars in the Milky Way (MW) disk [Oort, 1932] and the motion of galaxies within the Coma cluster [Zwicky,

1937]. In particular Zwicky’s investigations have provided unambiguous evidence for the existence of
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dark matter. Based only on simple virial arguments, he found an average galaxy mass of M = 5 x
1019 Mg, in the Coma cluster. Given the cluster’s total luminosity, this implied an astonishing mass-to-
light ratio of ~ 500, clearly suggesting the presence of an unknown dark component. Corroborating
evidence for dark matter in individual galaxies have followed [Ostriker et al., 1974; Einasto et al., 1974],
with the most compelling evidence based on extended, flat HI rotation curves in spiral galaxies [Rubin
et al., 1980; van Albada et al., 1985].

Dynamically independent measurements of anisotropies in the cosmic microwave background (CMB)
[Spergel et al., 2003], combined with distance measurements of Type la SNe [Riess et al., 1998; Perimutter
et al., 1999], have lent further support for the presence of dark matter. With the establishment of a
standard cosmological model, in which dark energy and dark matter dominate the universe, accounting
for ~ 95% of the total mass-energy content and hence vastly outnumbering the mass-energy content
of baryonic matter (~ 5%) [Komatsu et al., 2009], the search for the nature of dark matter has started.
Stellar remnants, i.e. brown dwarfs, white dwarfs, neutron stars and ordinary black holes (in contrast
to their supermassive kin) have been put forward as a plausible explanation for dark matter. However,
mass and chemical abundance arguments strongly disfavour such a scenario. First, to account for the
total dynamical mass, as measured by the motion of MW disk stars and its associated globular clusters
(GCs) and satellite galaxies [Kochanek, 1996; Wilkinson & Evans, 1999] a significant amount of stellar
remnants would be necessary. But this, in turn, would lead to an over-abundance of heavy elements
generated and ejected during the nucleosynthesis of many massive stars, such as carbon and nitrogen,
which would be far in excess than current observations indicate [Gibson & Mould, 1997]. Second, the
Massive Compact Halo Object (MACHO) survey [Alcock et al., 1996], has monitored over 20 million
stars in the Magellanic Cloud and Galactic bulge in order to detect gravitational micro-lensing effects,
triggered by faint stellar remnants in the foreground. While the detections favour a non-negligible
amount of dark stellar remnants that could account for up to 30 per cent of the total halo mass, a
non-baryonic component is nonetheless necessary [Gates et al., 1996]. Third, the lower mass end of
the stellar remnants has been ruled out, too. Given conservative estimates of a mass function below
the hydrogen burning limit, the mass density in brown dwarfs is assumed to be only in the order of a

few per cent of the halo mass density. [Graff & Freese, 1996].

Non-baryonic dark matter - and particularly cold dark matter [Blumenthal et al., 1984], which is generally
associated with weakly interacting massive particles (WIMPs) as predicted by supersymmetric extensions
of the standard model of particle physics [e.g. Wess & Zumino, 1974] - is therefore not only vital but
also the most promising candidate. In this picture, the collisionsless, massive dark matter particles
cool down due to the expansion of the universe. Their cross-sections drop rapidly and they fall out of
thermal equilibrium before the epoch of recombination. Primordial dark matter density inhomogeneities
first grow linearly and collapse as soon as a critical over-density is reached. Amplified by gravitational
interactions, they grow independently from the radiation dominated hot plasma and structures build up
hierarchically in a bottom-up fashion, giving rise to a dark halo mass function which is well approximated
by the Press-Schechter formalism [Press & Schechter, 1974] (Fig. 1.9). By the time baryonic matter
decouples from the radiation field, it is attracted by the gravitational potential wells of the underlying
dark matter halos and can start to collapse. The outcome of this primordial gas collapse depends on

the rate of radiative cooling. The collapsing gas is initially shock-heated and will try to reach hydrostatic
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Figure 1.9: The co-moving number densities of halos (solid lines) with different masses (numbers next to

solid lines), derived from the Press-Schechter theory for the evolution of the dark halo mass function.

The results are in agreement with cosmological /N-body simulations and show the hierarchical build-up
of dark halos, with more massive halos forming later. Credit: Efstathiou [1995].

equilibrium, but baryonic structure formation on galaxy scales can start if radiative cooling of the gas

is efficient [Binney, 1977; Rees & Ostriker, 1977; Silk, 1977].

1.4.2 Dark Halo Structure And Properties

While the search for WIMPs is under way [e.g. CDMS Il Collaboration et al., 2010], cosmological N-body
simulations within this standard cold dark matter paradigm (ACDM) have been developed [White &
Rees, 1978; White & Frenk, 1991]. These simulations do not only allow for a detailed study of the hier-
archical build-up of virialised dark matter halos, showing a remarkable agreement with the analytical
Press-Schechter theory, but also for an analysis of their structural properties. According to high res-
olution simulations which span multiple orders of magnitude in mass, the profiles of dark halos are
well approximated by a self-similar density distribution following a nearly spherical Navarro-Frenk-White

(NFW) profile [Navarro et al., 1996, 1997]:

(;c cre
plr) = Pt 13)

(r/rs)(L+71/rs)?

with 75 being the scale radius of the halo where the profile changes its slope from p o -1to p -3,
perit = 3H?(2)/87G being the critical density in an Einstein-de Sitter universe and J,. reflecting a

characteristic contrast density. The total mass of the halo is then given by:
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800 Perit 7”:2300

Mg = 3

(1.4)
where 7500 is the radius within which the mean halo density reaches 200 times the critical density?
and related to the scale radius r; via the concentration parameter ¢ (r200 = 7s¢). The NFW profile is
formally a two parameter family and fully described by its total mass M2y and halo concentration ¢
(respectively ps = d. perit and 1), but reduces to a one parameter function as mass and concentration
have been shown to be tightly correlated [e.g. Bullock et al., 2001; Duffy et al., 2008; Macci¢ et al., 2008].

Certainly, a complete model of galaxy formation must be able to recover both, the evolution and dis-
tribution of galaxies and of dark matter. The abundance of dark halos of a given mass, i.e. the dark
halo mass function, is given by cosmological N-body simulations and well approximated by the Press-
Schechter theory and its extensions, as mentioned above. Here, the total dark mass in the universe is
distributed among halos which span many orders of magnitude in mass. On the other hand, the stellar
mass function, well defined by large photometric and spectroscopic surveys, indicates that most of the
stellar mass is locked-up in galaxies which span only a small range (of about three orders of magnitude)
in mass [e.g. Li & White, 2009]. This can be interpreted as evidence that the efficiency of galaxy and
star formation is tightly coupled to its host dark halo environment, with less massive halos being less
capable to form stars, due to e.g. the inability to contain gas which is expelled during SNe driven winds
[Larson, 1974; Dekel & Silk, 1986]. The most forward approach to statistically link stars and dark matter,
without worrying about the detailed underlying physics, is through the method of abundance matching
(AM) [Vale & Ostriker, 2004]. In this case, (sub-)halos in a numerical N-body simulation are populated
by (satellite-)galaxies, assuming e.g. a one-to-one relation between the stellar and halo mass function.
Given the steeper fall-off of the stellar mass function at the high mass end and the shallower slope
at the low mass end, the stellar-to-halo mass relation (SHM) (or respectively the offset between both
mass functions) cannot be constant, but will be a complex function with a peak in the star formation
efficiency at a host halo mass of about 1012 Mg [Moster et al., 2010; Guo et al., 2010; Behroozi et al.,
2010].

1.4.3 Controversies, Difficulties And Challenges

Despite this non-triviality to link the dark and luminous matter content of galaxies, the ACDM cos-
mological model has been successful in explaining the large scale structures of the universe [Springel
et al., 2006; Spergel et al., 2007] (Fig. 1.10) while the NFW profile appears to be a fair assumption of
dark matter structures at the largest galactic scales [e.g. Buote et al., 2007; Schmidt & Allen, 2007]. Yet,
discrepancies emerge as we move to scales where individual galaxy halos are resolved by means of high
resolution simulations. The NFW profile predicts a linear increase in the density distribution towards
the centre and therefore the presence of a cusp [see also: Navarro et al., 2004]. The quantification
of the slope of the central density distribution in numerical N-body simulations is a much debated
issue and highly depends on the resolution limit of the simulations as well as on the analytical fitting

functions, but even though various authors report different values for the inner slope [e.g. Moore et al.,

2Actually. in the Einstein-de Sitter cosmology (©2,, =1, Q) = 0), the collapsed halo is defined by a radius 178 within which
the mean halo density is only ~ 178 times the critical density at that redshift [Peebles, 1980].
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1999b; Klypin et al., 2001] (ranging from -0.8 to -1.5) the lack of a density plateau is well established.
This, however, is in contrast to observations of the dark matter density profiles in dwarf and low sur-
face brightness (LSB) galaxies. Dominated by dark matter, these objects serve as powerful laboratories
for the investigation of dark matter structures on galaxy scales and reveal the presence of a core-like
central dark matter density distribution (p o 0) [e.g. Moore, 1994; McGaugh & de Blok, 1998]. In ad-
dition to the "core-cusp" issue, the discrepancies reach further into the regime of MW sized galaxies,
where the lack of an appreciable amount of smaller dark matter sub-halos - also known as the "Missing
Satellites Problem” - poses a challenge for structure formation within the ACDM framework [Kauffmann
et al., 1993; Klypin et al., 1999; Moore et al., 1999a]. As indicated earlier, ACDM posits that dark halos
grow hierarchically with the smallest structures forming first. Given their high concentrations, reflecting
the background density at the halo formation epoch, and the non-negligible time for the accretion of
smaller substructures due to dynamical friction, a significant amount of smaller dark matter halos are
expected to have survived as satellite galaxies [e.g. Diemand et al., 2008; Springel et al., 2008]. This,
again, is at odds with the small number of satellites currently observed in the Local Group [Mateo, 1998].
Solutions to this problem include i) a bias due to technical limitations to detect faint companions which
populate the lower end of the galaxy luminosity function, ii) the inefficiency of low mass dark halos
to form stars [e.g. Bullock et al., 2000] and iii) the underestimation of satellite circular velocities [e.g.
Pefiarrubia et al., 2008]. Recent detections of new satellites [e.g. Willman et al., 2005; Zucker et al.,
2006] and volume completeness corrections [e.g. Koposov et al., 2008] seem to be able to mitigate
the discrepancy. Conversely, modern simulations report an increase in the abundance of subhalos [e.g.
Madau et al., 2008] and an accordance between observations and theory therefore recedes into the
distance. Furthermore, even if a sizeable fraction of the satellite galaxy population has not been able
to sustain its baryonic matter in order to form stars due to e.g. photoheating [Crain et al., 2007], the
sheer number of predicted massive dark sub-halos should heat up and tidally disturb the host galaxy’s
stellar disk [Moore et al., 1999a]. Additional arguments based on the anisotropic orbital alignment of
the brightest MW satellite galaxies [Lynden-Bell, 1976; Kroupa et al., 2005] further increase the friction
between both models and simulations. These ought to be distributed isotropically to first order in

cosmological simulations, unless they have been accreted, for instance, along cosmic web filaments
[Libeskind et al., 2005].

Unfortunately, the situation of massive host galaxies is not very comforting either, in particular in the
case of ETGs. Since we lack extended dynamical tracers, such as Hl in LTGs, we rely on other dynamical
measurements, such as the motion of stars to infer the host’s gravitational potential. In a way, this
is even preferable; in contrast to cold gas which settles in a plane and is easily disturbed by density
perturbations, stars are effectively collisionsless, probe the potential in all three dimensions and are
present at all radii. However, due to the rapid decline of their SB distribution we are usually confined
to probe the stellar kinematics only out to 1-2 effective radii, a region which is still dominated by the
stellar mass [Kronawitter et al., 2000; Gerhard et al., 2001]. Kinematic information at larger radii, where
the dark halo is expected to dominate the mass profile and hence the orbit distribution, are preferable
but expensive; one needs high signal-to-noise (S/N) spectra to be able to reliably exploit the information
in the higher order Gauss-Hermite moments of the line-of-sight velocity distribution (LOSVD) [van der
Marel & Franx, 1993; Bender et al., 1994], which are crucial to break the mass-anisotropy degeneracy in
the dynamical models [Gerhard, 1993]. It is therefore notoriously difficult within this small spatial extent

to dissect the dark and luminous matter contribution to the total mass budget and, as a consequence,
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Figure 1.10: Comparison of the large scale galaxy distribution as observed from several galaxy surveys
and predicted by cosmological simulations within the ACDM framework. Credit: Springel et al. [2006].

dynamical studies of ETGs cannot discriminate between a cored or cuspy dark halo, which seem to be
able to recover the dynamics equally well [e.g Mamon & tokas, 2005a,b; Thomas et al., 2007]. Different
approaches to split up the stellar and dark content have been employed, e.g. by carrying out stellar
population synthesis (SPS) fits or line index measurements to independently constrain the stellar M/L
[e.g. Cappellari et al., 2006; Thomas et al., 2011]. These indicate a dark matter fraction of ~ 10 - 30
per cent in ETGs within one effective radius. However, the recovery of the stellar M/L still depends on
the choice of an IMF, which is basically untested beyond the local neighbourhood. And the contribution
of dark matter could erode if one assumes that the IMF is not universal but rather varies across the
spectrum of ETGs.

Indeed, recent studies faced difficulties to explain the systematic increase of the total M/L (including
luminous and dark matter) as a function of velocity dispersion with an increase in the dark matter
fraction only. Independent results from stellar dynamics, spectral synthesis fits to IMF sensitive features
and gravitational lensing now promote a variation towards a more bottom-heavy IMF with increasing
stellar velocity dispersion [e.g. Auger et al., 2010b; van Dokkum & Conroy, 2010, 2012; Conroy & van
Dokkum, 2012; Treu et al., 2010; Cappellari et al., 2012; Spiniello et al., 2012; Dutton et al., 2012, 2013;
Tortora et al., 2013], and leave even less room for dark matter [but see: Clauwens et al., 2014; Smith,
2014, for a critical discussion regarding the ATLAS3? results].

In principle, other tracers which map the dark halo potential can be employed as well, and observations
of i) the hot interstellar medium (ISM) in X-ray [e.g. Forman et al., 1985; Mushotzky et al., 1994; Humphrey
et al., 2006], ii) globular clusters (GCs) [e.g. Huchra & Brodie, 1987; Coté et al., 2003; Woodley et al.,
2010] and ii) planetary nebulae (PNe) [e.g. Ciardullo et al., 1993; Hui et al., 1995; Arnaboldi et al., 1996;
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Méndez et al., 2001; Douglas et al., 2007; Napolitano et al., 2011] have been carried out to obtain large
scale kinematic information. However, i) X-ray gas is usually scarce in ETGs and even if present it
is questionable if hydrostatic equilibrium holds [Diehl & Statler, 2007], ii) the usually modest number
of GCs is insufficient to tightly constrain the freedom in the orbital distribution [but see: Schuberth
et al., 2010]. Moreover, GCs might have formed during violent mergers of gas rich galaxies and do
not necessarily need to be dynamically relaxed in the host potential [Bournaud et al., 2008], and iii) it
is possible that PNe do not trace the bulk of the underlying stellar population and are therefore not
suitable representatives of the overall gravitational potential of the host [Dekel et al., 2005; Sambhus
et al., 2006][but see e.g. Coccato et al., 2009]. Thus, studies of individual galaxies based on both GCs
and PNe are at discord [Romanowsky et al., 2003; Pierce et al., 2006] and investigations even if based

on the same single tracer can be ambiguous [Romanowsky et al., 2003; Dekel et al., 2005].

Accordingly, stellar kinematics remain the most reliable tracer for a dynamical investigation of dark
matter in ETGs and current efforts focus on increasing the range in spatial information [e.g Weijmans
et al., 2009], in contrast to studies in the amalgamated literature which are confined to the the inner-

most regions.

Summary:

We have indirect observational evidence for the presence of cold, non-baryonic dark matter, indepen-
dently from galaxy and cluster dynamics and investigations of the CMB. Theoretical models predict that
primordial gas has settled in the peaks of the underlying gravitational potential wells of small dark mat-
ter substructures. The gravitational collapse of the gas gave rise to stars and galaxies, which have grown
since then hierarchically by the gravitational clustering of bigger and bigger structures. Collisionsless
N-body simulations have provided insight into this hierarchical build-up and enabled a detailed analysis
of the structural properties of dark matter halos. These are well described by a NFW profile. However,
the simulations are at odds with observations on the level where individual galaxies are resolved. The
dark matter density distributions do not agree and an underabundance of satellite galaxies is observed.
Moreover, in ETGs, the detection of dark matter becomes highly difficult due to the lack of extended
dynamical tracers. Stellar dynamics have been the most reliable kinematic tracer and investigations of
large samples of ETGs indicate that dark matter is present. However, the degeneracy between stars
and dark matter is strongly affecting the results and indications of variations in the stellar IMF will fur-
ther add to this inaccuracy. Hence, we currently fall short in determining the structural properties of
dark matter halos in ETGs on an individual basis. Investigating the link between galaxies and their host
dark halos in particular and the role of the dark halo in the formation and evolution of ETGs in general

therefore proves to be difficult.

1.5 Compact, Elliptical, High Central Velocity Dispersion Galaxies

To understand the formation and evolution of ETGs and the content and link between their luminous
and dark matter, we need reliable measurements of their masses and sizes through cosmic time. In
fact, the feasibility of the different evolutionary paths for ETGs since z ~ 2 (e.g. only minor merging vs.

minor merging and internal processes vs. the appearance of additional quenched ETGs at later times)
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will also stem from our ability to reliably quantify their physical properties. At low redshift, we have
gathered an astonishing amount of observations which have resulted in the findings presented above,
although with the corresponding caveats. At high redshift, however, measurements are sparse. To
understand their stellar populations and stellar mass content we rely on measurements of their spectral
energy distribution (SED). But besides being hampered by many systematic uncertainties [Conroy et al.,
2009], for measurements at redshift z = 2 the spectra moves into the near-infrared (NIR), where
suitable spectrographs have only recently become available [e.g. Vernet et al., 201, VLT X-shooter].
On the other hand, the measurement of sizes (and hence a thorough quantification of the mass-size
evolution) becomes difficult too. Investigations with the HST have addressed initial concerns regarding
the reliability of their compactness, due to shallow imaging and hence missing of low SB wings [e.g.
Buitrago et al., 2008; Szomoru et al., 2012], but the pace in the mass-size evolution will nevertheless
strongly be affected by differences in measurement and fitting techniques as well as sample selection
effects. Naturally, the same issues strongly affect any attempt to investigate the black hole mass and
dark matter content and profile of galaxies at high redshift. Dynamical models to constrain both rely
on deep imaging and a wealth of high spatial and spectral resolution measurements of the LOSVD, but

neither for the centre nor for the remote regions is this feasible with current observational facilities.

Ideally, one would like to investigate the likely progenitors of today’s ETG population in the local universe
and thus in more detail (at both the smallest and largest spatial scales to study its stellar and dark
content as well as its black hole), which is currently not possible for their analogues at higher redshifts.
Early efforts to find old, compact, high velocity dispersion galaxies at low redshift (z ~ 0) turned out
to be largely unsuccessful [e.g. Trujillo et al., 2009; Taylor et al., 2010], with only a handful detections.
Given the stochastic nature of mergers, though, a non-negligible fraction (< 5 per cent) of these galaxies
is assumed to survive [Hopkins et al., 2009b]. A complete lack of these relic galaxies would point at
inconsistencies with the minor merger scenario for the growth and evolution of ETGs, and whether this
dearth is real or rather driven by incompleteness and sample selection effects of large surveys, such
as SDSS, is a matter of debate [e.g. Poggianti et al., 2013]. However, more recent investigations now
hint at a good agreement between the observed and predicted number density of these objects of ~
10~5Mpc—2 in the present-day universe [Damjanov et al., 2014; Quilis & Truijillo, 2013].

The Hobby-Eberly Telescope Massive Galaxy Survey [van den Bosch et al., 2015, HETMGS] was a long-slit
spectroscopic survey to measure the stellar velocity dispersions of ~ 1000 galaxies. The goal was to
find galaxies with the highest stellar velocity dispersions and hence largest spheres of influence that
could be resolved by follow-up high spatial resolution observations to robustly measure their black hole
masses. Interestingly, the HETMGS discovered a sample of compact, elliptical, high central velocity
dispersion galaxies in the nearby volume (< 100 Mpc), which bear resemblance to the compact galaxies
at high redshift.

An analysis of these compact, elliptical, high central velocity dispersion galaxies is the theme of this
thesis and important for various reasons, which will help to gain further insight into the aforementioned
challenges regarding galaxy and black hole (co-)evolution as well as the connection between baryonic

and non-baryonic matter:

i) While this sample is still too small to be statistically meaningful, it could allow for a first, unprece-

dented and detailed investigation of the putative progenitors of today’s massive ETG population.
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ii) With respect to the evolution of the stellar content of ETGs (as outlined in Sec. 1.2), we can in-
vestigate their stellar population properties and thus infer their ages, formation timescales and
formation environments. This will not only provide a link between the massive, quenched ETG pop-
ulation at z = 2 and their likely progenitors at even higher redshifts, but also enable us to further
constrain the characteristics of stellar populations which are assumed to join the host at later times

(as expected if the mass-size evolution is driven by minor mergers).

iii) Their dynamical and photometric structures and build-up hold clues of their recent evolutionary
history. Investigating these fossil records will yield information concerning their violent or non-

violent growth through cosmic time.

iv) Literature black hole masses are heavily biased towards the densest systems, tracing a tight locus
in their host galaxies’ properties [van den Bosch et al., 2015, Fig. 8]. A secondary goal of the
HETMGS was to increase the diversity in the properties of their hosts, which is crucial to investigate
the nature and tightness of the BHSR at 2 = 0 and to probe the different black hole formation
channels. Increasing the diversity in their host galaxies’ properties is key to measurements of black
hole masses at higher redshift, too, as the BHSR are used as calibrators of secondary and tertiary
black hole mass measurement methods (e.g. reverberation mapping). The compact, elliptical, high
central velocity dispersion galaxies are not only ideal to increase the leverage in the BHSR, but they
will also enable us to dynamically measure the black hole masses of the progenitors of today’s
ETG population and in this way to simultaneously investigate the black hole co-evolution at higher
redshift.

v) These galaxies are very compact, with effective sizes of 1 < R, < 3 kpc. Combining deep imaging
and wide-field integral field unit (IFU) measurements of their LOSVD out to several effective radii,
we can probe the regions where the dark halo dominates, necessary to break the degeneracy
between the stellar and dark mass. Constraining their dark matter content and profile will provide
the missing link between baryonic and non-baryonic matter in galaxies, crucial to our understanding

of structure formation and evolution in general.

This thesis is organised as follows:

In Chapter 2, we set the stage for a thorough and comprehensive analysis of our compact galaxy
sample by studying the two galaxies MRK1216 and NGC1277. We introduce the data and our methods.
The data quality for these particular objects is worse than for the remaining sample and therefore
outlines the limits of our analysis. We derive their total mass profiles and the contributions of black
hole, stars and dark matter to the total mass budget. We discuss the implications of the inferred black
hole masses for models of black hole-galaxy co-evolution. We present a dark halo detection and, in
addition, investigate their photometric and dynamical structures in order unveil the processes that have

dictated their recent evolution.

In Chapter 3, we focus on the compact, early-type galaxy NGC1281. Based on wide-field integral field
unit kinematics, we tightly constrain it dark and luminous matter content. Moreover, we investigate its
stellar content by means of spectral synthesis fits. In particular IMF sensitive features are used to trace

the dwarf-to-giant star ratio. The spectral analysis implies a strong spatial variation in the IMF, while the
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dynamical analysis hints at a massive dark halo which, however, is at odds with the dark halo profile

that is predicted by cold dark matter simulations.

We present an analysis of the structural and dynamical properties of a larger sample of compact, ellip-
tical, high central velocity dispersion galaxies in Chapter 4. We show that these galaxies substantially
deviate from the local ETG population, and provide ample evidence for a tight connection to the massive
and passive ETG population at z = 2, which are thought to be the progenitors of today’s most massive
ellipticals. In addition, we investigate their total mass density profiles and the growth of the largest
galaxies in our sample, which yield additional information concerning their formation and evolution

mechanisms.

Finally, a summary is given in Chapter 5, followed by prospects for future work and concluding remarks.






Chapter

MRK 1216 & NGC1277 - An orbit-based

dynamical analysis of compact, elliptical,

high central velocity dispersion galaxies

Abstract

We present a dynamical analysis to infer the structural parameters and properties of the two nearby,
compact, elliptical, high central velocity dispersion galaxies MRK1216 and NGC1277. Combining deep
Hubble Space Telescope imaging, wide-field integral field unit stellar kinematics, and complementary
long-slit spectroscopic data out to three effective radii, we construct orbit-based models to constrain
their black hole masses, dark matter content and stellar mass-to-light ratios. We obtain a black hole
mass of log(Me/M) = 10.1f8é for NGC1277 and an upper limit of log(Me/M.) = 10.0 for MRK 1216,
within 99.7 per cent (30) confidence. The stellar M/L span a range of Ty = 6.57]2 in NGC1277 and
YTy = 1.8752 in MRK1216 and are in good agreement with single stellar population models of a single
power-law Salpeter initial mass function. Even though our models do not place strong constraints on
the dark halo parameters, they suggest that dark matter is a necessary ingredient in MRK 1216, with

21’%8 per cent to the total mass budget within one effective radius.

a dark matter contribution of 2
NGC1277, on the other hand, can be reproduced without the need for a dark halo, and a maximal dark
matter fraction of 13 per cent within the same radial extent. In addition, we investigate the orbital
structures of both galaxies, which are rotationally supported and consistent with photometric multi-
Sérsic decompositions, indicating that these compact objects do not host classical, non-rotating bulges
formed during dissipative events or through violent relaxation. Finally, both MRK 1216 and NGC1277 are
anisotropic, with a global anisotropy parameter § of 0.33 and 0.58, respectively. While MRK 1216 follows
the trend of fast-rotating, oblate galaxies with a flattened velocity dispersion tensor in the meridional
plane of the order 8, ~ 6, NGC1277 is highly tangential anisotropic and seems to belong kinematically

to a distinct class of objects.

25
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2.1 Introduction

The highest velocity dispersion galaxies (¢ > 300 kms~1!) are typically large and massive galaxies.
Examples are the central brightest cluster galaxies (BCGs) such as M87 and NGC4884. These object
are very round, have half-light radii larger than R, > 8kpc and absolute magnitudes brighter than
Mg > -25.5. Surprisingly, the Hobby-Eberly Telescope Massive Galaxy Survey [van den Bosch et al.,
2015, HETMGS] found several small galaxies with very high central velocity dispersions. In van den Bosch
et al. [2012, hereafter vdB12], six such objects were highlighted with sizes smaller than R. < 3kpc and

central stellar velocity dispersions higher than o. > 300 kms™1.

These features indicate extremely high dynamical mass densities for which there are two possible
explanations, assuming reasonable stellar densities: over-massive black holes that weigh a significant
fraction of the total baryonic galaxy mass, or high stellar mass-to-light ratios which would increase the
stellar dynamical mass considerably but imply a stellar initial mass function (IMF) much more bottom-

heavy than a Salpeter IMF.

According to the orbit-based dynamical models of vdB12, NGC1277 hosts an over-massive SMBH and
possesses a stellar IMF that is consistent with a Chabrier IMF, ruling out a Salpeter IMF at 3¢. Interestingly,
Emsellem [2013, hereafter E13] showed a hand-picked alternative model with a smaller black hole and a
Salpeter-like IMF and no dark matter, which produces a reasonable fit. Furthermore, spatially resolved
spectroscopic data along NGC1277's major axis have been obtained and investigated in Trujillo et al.
[2014, hereafter T14] and Martin-Navarro et al. [2015b], which indicate a uniformly old stellar population,
high constant a-abundance and bottom heavy IMF. Their reconstructed stellar mass-to-light ratio of T
~ 7 is consistent with the values reported in vdB12, but much lower than the Y, = 10 adopted by E13.

Clearly, all these differences call for a re-examination of NGC1277’s stellar and central dark component.

Dark matter is not expected to be an important contributor at kpc to sub-kpc scales, but is nonetheless
a key ingredient in many early-type galaxies [Rix et al., 1997; Cappellari et al., 2006; Thomas et al.,
2007; Cappellari et al., 2013a] that needs to be taken into account in any dynamical analysis due to its
degeneracy with the stellar mass-to-light ratio and hence with the black hole mass (M,) [Gebhardt &
Thomas, 2009]. Most studies that aimed to constrain the halo contribution to the overall mass profile
either used long-slit spectroscopic observations or spatially limited integral field unit (IFU) data that rarely
go beyond ~ 1-2 effective radii (R.). The effective radius is only a relative scale that neither guarantees
nor excludes the coverage of a substantial amount of dark matter. However, the SAURON and ATLAS3?
survey found a mean dark matter contribution of about 30% inside 1 R., which corresponds to a mean
absolute scale of only < 5kpc. The aforementioned HETMGS’s compact galaxy sub-sample, though,
should provide more interesting constraints in this regard. Their apparent sizes are relatively small
and thus allow us to obtain detailed two dimensional stellar kinematics out to several effective radii
(which at the same time also corresponds to a larger absolute coverage of up to 10 kpc, given their
mean distance) to study their mass profiles and hence to probe the existence of dark matter, which is

assumed to dominate the mass budget in these remote regions.

The aim of this chapter is to set the stage for an investigation of compact, high-dispersion galaxies from

the HETMGS by combining long-slit spectroscopy with the HET, high-spatial resolution imaging with the
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HST and large-field, medium- and low-resolution spectroscopic observations with the PPAK IFU at Calar

Alto. In doing so, we want to tackle several issues.

1. dynamically infer the black hole mass, mass-to-light ratio and dark matter content of each galaxy,

2. identify the dynamically hot and cold components to see whether violent relaxation or dissipative

events played an important role in the recent evolution of these objects,

3. analyse the stellar populations to obtain and further constrain reliable stellar mass-to-light ratios

and IMF slopes as well as to gain insight into their formation histories,

4. compare our results with the current picture of how galaxies and their constituents scale and

evolve.

In this chapter, we focus on orbit-based dynamical models of only two objects, namely MRK 1216 and
NGC1277, with effective radii smaller than 2.5kpc and exceptional central dispersion peaks of o. >
300 kms~! (Table 2.1). The PPAK observations of both were taken with the V1200 medium-resolution
grating, covering a wavelength range of 3400-4840 A. This restricted range makes a stellar population
analysis not very suitable for answering IMF related questions. In addition, the kinematics for these
two galaxies are currently available to a radius of ~ 15" only, due to a much shorter exposure strategy
compared to the rest of the sample. Nevertheless, the wide-field IFU data presented here still covers

these objects out to ~ 3 R, (i.e. > 5kpc) which should be sufficient for a dynamical examination.

The chapter is organised as follows: In Section 2.2 we present the photometry. Section 2.3 covers
the stellar kinematics. In Section 2.4 we carry out a dynamical analysis to constrain the black hole
mass, stellar mass-to-light ratio and dark matter content of both galaxies. Section 2.5 rounds up and
discusses the results. Section 2.6 highlights uncertainties and potential error sources, followed by a

brief summary in Section 2.7.

Throughout this chapter, we adopt 5th year results of the Wilkinson Microwave Anisotropy Probe (WMAP)
[Hinshaw et al., 2009], with a Hubble constant of Hy = 70.5 kms™! Mpcfl, a matter density of ), =

0.27 and a cosmological constant of 2, = 0.73.

2.2 Photometry

In this section, we present the photometric data, consisting of high-spatial resolution imaging with the
HST. The first part of this paragraph covers the reduction and combination of dithered HST exposures
to a final, super-sampled image. The second part then describes the photometric analysis of MRK 1216
and NGC1277.

2.21 HST Imaging

We obtained single orbit imaging of MRK 1216 with the HST WFC3 in /- (F814W) and H-band (FI60W), as
part of program GO: 13050 (Pl: van den Bosch). The data set comprises three dithered images in [-band
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Table 2.1: Photometric properties of MRK1216 and NGC1277. (1) Morphological classification according

to the NED, (2) Hubble flow distance, (3) scale at this distance, (4) effective radius in arcsec or (5) kpc,

measured by a circular aperture that contains half of the light , (6) extinction corrected total luminosity

of the HST FI60W (MRK1216) and F814W (NGC 1277) exposures, (7) peak and effective velocity dispersion
in the PPAK data, and (8) adopted inclination.

MRK 1216 NGC1277

Type E SO

Distance [Mpc] 94 £+ 2 7N +1

Distance Scale [kpc/arcsec] 0.45 £ 0.01 0.34 + 0.01
R, [arcsec] 5.1 3.5
R, [kpc] 23 12
Luminosity [log(La)] M1 10.3
oc | o [kms™1] 338+£8/308+7 355+7/317+£5

Inclination [deg] 70 75

with a total integration time of 500 seconds and seven images in H-band with a total integration time
of 1354 seconds. The H-band images consist of three dithered full- and four sub-array exposures. The
16" x 16" sub-array images are short 1.7 second exposures, to mitigate a possible saturation in the 450

seconds full-frames of the high surface brightness nucleus.

For the photometric as well as the dynamical analysis, we give preference to the deep HST H-band
exposures, mainly due to less dust susceptibility in the near-infrared (NIR) and the fact that the inferred
stellar mass-to-light ratios become a weaker function of the underlying stellar populations [Bell & de
Jong, 20071; Cole et al., 2001].

The reduction and combination of the individual FI6OW exposures is performed via Astrodrizzle [Gon-
zaga et al., 2012] in two major steps. First, a bad pixel mask for each flat-field calibrated image is
generated, which then again is used during combination of dithered exposures, while correcting for
geometric and photometric distortions. Both the deep full- and sub-array exposures in FI6OW are
dominated by galaxy light of the huge stellar halo and hence the standard sky subtraction routine in
Astrodrizzle (consisting of iterative sigma-clipping of uniformly distributed pixels) overestimates the
background flux. We therefore measure the background flux separately in all the frames, manually,
before combining the images. For the full-frames, the background level is measured in the less contam-
inated corners of each image, while the background flux in the sub-frames is estimated by measuring
the flux difference between the (already) sky subtracted full-frames and the different sub-frames. We
don’t reach the sky/noise dominated regions in the full-frames, but the surface brightness (SB) in the
corners of each image (where the sky estimates have been performed) is more than 10 magnitudes
below the central SB, and will thus have little impact on the accurate recovery of the central stellar

light/mass.

Fig. 2.1 (top panel) shows the match of the surface brightness profiles of MRK 1216 after subtraction of
sky background in the full- and sub-array exposures. Once the sky values have been determined, we
combine the frames via Astrodrizzle and obtain a super-sampled image with a resolution of 0.06” /pixel
and a FOV of 1.5 arcmin? (Fig. 2.2).

For the photometric analysis, we adopt a CANDELS point-spread function (PSF) [van der Wel et al., 2012].
In brief, the PSF has a size of 0.17” FWHM and has been generated with TinyTim [Krist, 1995] for the
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Figure 2.1: Top: Surface brightness comparison of the sky subtracted HST (FI60W) H-band full- and
sub-frames of MRK1216. The sky of the full-frames was calculated by iterative sigma-clipping of non-
contaminated regions. The sky of the sub-frames was inferred by matching their non-sky subtracted
SB profile with the sky subtracted SB profile of the full-exposures. At radii beyond 5”, the SB of the
sub-exposures are noise dominated. Bottom: Fits to the final, HST H-band image, showing the match
with a single Sérsic, multi-Sérsic and multi-Gaussian expansion. The single Sérsic overestimates both
the SB measurement at the inner- and outermost radii. The MGE accurately reproduces the SB in the
inner parts but is more extended, whereas the multi-Sérsic fit represents a fair match at all radii.

FI60W filter. The PSF is created in the centre of the WFC3 detector, to minimise distortion, and is 10
x sub-sampled. Resampling it back to the original HST IR scale of 0.13"/pixel, and applying a kernel
to replicate the effects of inter-pixel capacitance, creates a synthetic star in the centre of each frame.
The final PSF is then obtained by drizzling the images and thus the PSFs. In this way, we produce a

point-spread function at the same scale as our final science image.

High-resolution imaging of NGC1277 is available in the Hubble Legacy Archive. Observations of this
galaxy have been carried out in program GO: 10546 (PI: Fabian), resulting in three dithered exposures in
R- (F625W) and V-band (F550M) with a total integration time of 1654s and 2439s respectively. In contrast
to the /- and H-band images of MRK 1216, the redder R-band does not have a significant advantage over
the V-band. The leverage between the two filters is small and consequently both are equally subject to
the effects of extinction (see Section 2.2.3). Here, we employ the V-band photometry because of its

longer exposure time and for the sake of consistency with the modelling results of vdBI2.

The F550M flat-field calibrated images have been sky subtracted, cosmic ray rejected, corrected for
photometric and geometric distortions via Astrodrizzle before being combined into a final image with a

resolution of 0.05”/pixel. The PSF of these observations was recovered with TinyTim, created in each
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Figure 2.2: Left: HST H-band image of MRK 1216, which covers a field of ~ 150 00" (i.e. ~ 70 kpc?), with

a final scale of 0.06" /pixel. Right: Contour map of the same image. The MGE contours are over-plotted

in black. The bottom left plot shows the accurate reproduction of the surface brightness profile within
the central 15 0" (~ 3 R.).

of the three individual, dithered exposures and drizzled to match the resolution of the corresponding

science frame.

2.2.2 MRKI1216

MRK 1216 is a sparsely investigated early-type galaxy (ETG) (R.A.: 08" 28™ 4°, Decl.: -06° 56'22") with
strong excess of UV radiation in its centre [Markarian, 1963]. A few redshift measurements have been
carried out for this object [Petrosian et al., 2007; Jones et al., 2009], which translate to a Hubble flow
distance of 94 + 2Mpc. Given its distance, 1" is equivalent to 450 £ 10 pc/arcsec. The final, combined
HST image thus covers a field of view (FOV) of 65 kpcz.

To examine its photometric properties, structure and morphology we decompose the galaxy into mul-
tiple Sérsic components using Galfit [Peng et al., 2002]. The analysis is done for 3 different scenarios:
First, a single Sérsic fit is carried out to obtain the single Sérsic index and thus the overall steepness
of the light profile. Second, we perform a bulge-disk decomposition, if possible. Although such a de-
composition is a matter of debate, we do this for comparison with literature studies, where similar
procedures have been carried out to relate central black hole masses to bulge luminosities. Third, we

execute a fit with multiple Sérsic components that best matches the light profile '.

A single Sérsic fit to MRK1216's H-band image has an apparent magnitude of mpy vege = 10.47, an
effective radius of R, = 6.34”, a projected axis ratio (b/a) = 0.58 and a single Sérsic index of n =
4.93. Residuals of this fit are strong. In comparison to the SB measurement, the single Sérsic fit shows
an excess of light in the very centre and also tends to overpredict the light of the large outer halo (Fig.

2.1, bottom panel).

'All magnitudes presented throughout this section are corrected for Galactic extinction [Schlafly & Finkbeiner, 2011]; 0.017
mag in H-band and 0.431 mag in V-band. The sizes are semi-major axis radii, unless mentioned otherwise.



Chapter 2: MRK1216 & NGC1277 31

Table 2.2: Sérsic decomposition of MRK1216’s HST (FI60W) H-band image. The columns represent the

number of Sérsics for a given fitting scenario (1), their apparent total magnitude (extinction corrected)

(2), their effective semi major axis radius (3), the corresponding Sérsic index (4) and their apparent
flattening (5).

# of components mag [H, Vegal R, [arcsec] n q
1 10.49 6.34 493 0.58
1 10.89 3.42 361 0.56
2 n.77 17.22 096 0.88
1 13.19 0.40 127  0.81
2 12.77 1.34 099 0.57
3 11.32 5.59 161  0.52
4 11.60 19.31 1.05 0.99

We further investigate the stellar structure by gradually increasing the number of Sérsic components.
A two-component model yields a very centrally concentrated (R, = 3.42") bulge with a Sérsic index of
n = 3.61 - although remarkably flat (¢ = 0.56) - which is embedded in a (close to) exponential, round and
very extended (R.= 17.22") stellar disk/envelope with a Sérsic index of n = 0.96. Pronounced residuals
remain, hinting at a more complex stellar composition. Even so, the bulge of the two-component fit
will serve as an upper limit to the bulge luminosity. According to this fitting scenario, we obtain a
bulge-to-total luminosity ratio of B/T = 0.69.

A decent fit is obtained with at least four Sérsic components, resulting in notably lower and less
prominent residuals. In this case, the outer stellar disk/envelope persists, whereas indications of a
bulge-like component totally disappear (Table 2.2). All components show rather low Sérsic indices,
which complicates any attempt of a morphological interpretation. We therefore do not present a unique
classification but rather stick to the conclusion that MRK 1216 is indeed a compact ETG, harbouring a
complex, flat substructure, that is embedded in a round, extended stellar halo. As the innermost
component is too small to be considered a bulge, we adopt the luminosity of the second innermost
Sérsic as a conservative lower limit of a bulge luminosity, which accounts for 12 per cent of the total

light and extents to 1.34” (or roughly 0.3 R.).

Our orbit-based dynamical models need a stellar mass model, from which we can infer the stellar
gravitational potential. This is accomplished by deprojecting the surface brightness distribution of a
galaxy which however is a non-unique task, as has been convincingly illustrated by Rybicki [1987]. Even
the surface brightness distribution of an axisymmetric stellar system only provides information about
its density outside a so-called "cone of ignorance". This means that in principle, and unless the galaxy is
observed edge-on, there could be a family of "konus densities" [Gerhard & Binney, 1996] which alter the
intrinsic mass distribution but are invisible to the observer as they project to zero surface brightness.
Making use of physically and observationally motivated criteria for the luminosity profile of axisymmetric
galaxies, van den Bosch [1997] found that the addition of mass due to konus densities cannot be arbitrary
and is most likely confined to be less than 10 per cent for (cusped) ellipticals, implying a marginal
role in the dynamics of early-type galaxies. We employ a similar, empirically motivated approach by
parameterising the surface brightness distribution of galaxies with a set of multiple, two-dimensional
Gaussian functions (MGE: Monnet et al. 1992; Emsellem et al. 1994). Although a set of Gaussians does

not form a complete set, the MGE method has been very successful in the recovery of the surface
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Table 2.3: Multi-Gaussian-Expansion of MRK1216’s HST (FI60W) H-band image. The columns display the
number of each Gaussian, beginning with the innermost one (1), the central surface density (2), the
dispersion (3) and the corresponding Sérsic index (4) as well as the apparent flattening (5).

# of components I [Lg pc 2] o larcsec] n q
1 89721.780 0.094 05 0.72
2 65370.124 0.230 0.5 0.77
3 27564.339 0.458 0.5 0.73
4 14178.182 0.919 0.5 0.59
5 5276.4998 1.71 0.5 0.55
6 2018.3083 3.208 0.5 0.52
7 770.32639 5.905 0.5 054
8 201.40331 9.848 0.5 0.67
9 64.074064 14.72 0.5 0.96

o

17.126964 29.80 0.5 0.99

brightness profiles and features of realistic multi-component galaxies [Cappellari, 2002]. We obtain
the intrinsic luminosity density by deprojecting the parameterised surface brightness distribution for
a given/assumed set of viewing angles, adopting an absolute magnitude of 3.32 for the Sun in H-band
[Binney & Merrifield, 1998]. In the case of an MGE, the deprojection can be performed analytically while

the gravitational potential is then obtained by means of a simple, one-dimensional integral.

Our final MGE contains 10 components with a fixed position angle (PA) of 70.2° (measured counter-
clockwise from the y-axis to the galaxy major axis, with the image aligned N.-E., i.e. north is up and
east is left) and a common centre, as listed in Tab. 2.3. The flattest Gaussian has an axis ratio of ¢ =
0.52, which forces the lower boundary of possible inclinations to be greater than 59° (with 90° being
edge-on), assuming oblate axial symmetry (see Section 2.6). A dust disc would be helpful in further
constraining the inclination of the galaxy, although it would also pose a major concern for the modelling

of the stellar mass, but is not evident in either of the H- and /-band images of MRK1216.

Fig. 2.2 shows the combined, final H-band image of MRK 1216 (left) and its contour map (right). Over-
plotted are contours of the MGE (black) as well as an excerpt of the central 15 arcsec? (~ 3 R,). The
MGE reproduces the SB profile within the central 40 arcsec?, but tends to overpredict it at the largest
radii. Note that the SB profile lacks any PA twists. The PA is almost constant within 30" from the centre
(APA < 2°) and changes only at larger radii where it is virtually unconstrained as the round outer halo

has close to zero ellipticity.

2.2.3 NGC1277

Given several redshift measurements, NGC1277 is located at a Hubble flow distance of 71 & 1Mpc and
deeply embedded in the Perseus cluster. It is classified as a lenticular SO galaxy [Marcum et al., 2001]
without any noticeable substructures or prominent features besides the clearly visible central dust disk
with a semi-major axis radius of 0.13 kpc and a flattening of ¢ = 0.3. The presence of dust complicates
the recovery of the central stellar mass and hence the black hole mass in NGC1277 (see Section 2.6),

but assuming that this nearly edge-on disk traces the PA of its host, we can pin down the inclination of
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the galaxy to 75°. As in the case of MRK 1216, photometry shows that a superposition of galaxies can

be ruled out as an explanation for the observed high velocity dispersions.

The SB profile of NGC1277 shows a flattened, regular structure with no significant changes in the PA
with increasing distance from the centre (APA < 2°). A single Sérsic fit to its V-band image reveals a
moderate Sérsic index of n = 2.24, a small effective radius of R. = 3.9” and a projected axis ratio
(b/a) of 0.53. The total V-band magnitude is my, yeqgq = 13.39. This rather simple fitting scenario is,
of course, an under-representation of NGC1277’s stellar complexity, leading to strong residuals in the
centre - where the luminosity profile shows an excess of light when compared to the Sérsic - and at

larger radii.

A further decomposition with two components improves the fit significantly. Here, a flat (b/a = 0.52),
inner (R, = 2.85”) bulge-like component (n = 2.25) is embedded in a rather flat (b/a = 0.50), outer
(R. =10.35") disk like component (n = 0.37). The fit has a bulge-to-total ratio of B/T" = 0.75.

An acceptable fit can be obtained with (at least) 4 Sérsics, as listed in vdB12. An interpretation of
the various components, however, is difficult, except for the outermost component which resembles
a round stellar halo. None of the components has a high Sérsic index, making it difficult to find any
photometric evidence for the presence of a bulge. Devoid of a distinct spheroid component in this
multi-Sérsic fit of NGC1277, we again adopt the bulge of the two-component decomposition as an
upper limit to the bulge luminosity (B/T = 0.75) whereas the luminosity of the second innermost

Sérsic in the four component decomposition will serve as a lower limit (B/T = 0.24).

For the stellar mass model we make use of the V-band Multi-Gaussian-Expansion of vdB12 with a fixed
PA of 92.7°. E13 provided an alternative MGE, based on the R-band image of NGC1277. The difference
between the two parameterisations, though, is of little account. Both MGEs reproduce the surface
brightness profile equally well, and we refer the reader to E13 for an illustration of the 2D isophotes.
There is basically not enough leverage between the wide R-band and medium V-band filter to obtain
any colour information that would also minimise the effect of obscuration by the central dust disc. The
MGE of E13 in R-band yields a lower total luminosity while increasing the central surface brightness only
slightly. These values however do not change the inferred stellar dynamical masses substantially (Sec.
24.2.2).

2.3 Stellar Kinematics

This section covers the HET long-slit and PPAK IFU observations. After sketching the reduction of the
individual data sets, we extract and present the kinematics which in turn are used as input for our

orbit-based dynamical models.

2.3.1 PPAK

Large-field, medium-resolution (V1200) observations of both galaxies have been carried out at the 3.5
m telescope at Calar Alto, with the Potsdam Multi Aperture Spectrograph (PMAS) [Roth et al., 2005] in the
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PPAK mode [Verheijen et al., 2004; Kelz et al., 2006]. The observing details of this run are outlined in
Sec. 2.3.3. The PPAK IFU consists of 382 fibers, which are bundled to a hexagonal shape. Each fiber has
a diameter of 2.7”, resulting in a FOV of roughly 1.3 arcmin?. Using a 3 dither-pointing strategy, the 331
science fibers have a 100% covering factor across the entire FOV. An additional 36 fibers are used to
sample the sky, while the remaining 15 fibers are used for calibration purposes. The V1200 grating has
a resolving power of R = 1650, at 4000 A. The spectral resolution across the nominal 3400 - 4840 A
spectral range and FOV is homogenised to 2.3 A FWHM based on measured line widths in the arc lamp
exposure. This spectral resolution corresponds to an instrumental velocity dispersion of 85 kms™1.
The low sensitivity at the blue end and vignetting at the red end reduce the useful spectral range to
3650 - 4620 A.

The reduction of the PPAK data follows the reduction procedure of the Calar Alto Legacy Integral Field
Spectroscopy Area (CALIFA) survey. An extensive overview of the reduction pipeline is given in Sdnchez
et al. [2012] and Husemann et al. [2013]. The data reduction steps by the pipeline include bias subtrac-
tion, straylight subtraction, cosmic ray rejection with PyCosmic [Husemann et al., 2012], optimal fiber
extraction, fiber flat-fielding, flexure correction, wavelength calibration and flux calibration. The sky
subtraction is done by averaging the spectra of 36 dedicated sky fibers which are located 72" away
from the PPAK FOV centre. Given our compact objects’ sizes, the sky fibers should be free from any
contamination of the galaxy itself. To exclude any potential contamination by field stars or low-surface
brightness objects, the sky spectrum is constructed by taking the mean of only the 30 faintest sky
fibers. The resulting sky spectrum is then subtracted from its associated science exposure. Finally, the
3 dither-pointings are resampled to the final data cube with a 1” sampling using a distance-weighted

interpolation algorithm as described in Sanchez et al. [2012].

To measure reliable stellar kinematics, we first spatially bin the data with the adaptive Voronoi tes-
sellation technique, as implemented by Cappellari & Copin [2003]. At the cost of spatial resolution,
we co-add spectra into (Voronoi-) zones to reach a minimum S/N of 25 in each bin, after applying a
minimum S/N cut of 4 for each spaxel. The binning process, however, is not straightforward. Spectra of
grouped pixels are assumed to be uncorrelated, which is not true for our data. Due to the three-point
dither-pattern of the PPAK observations, correlated errors during binning appear. In the most general
case, each spaxel contains information from a number of different fibers (as each fiber contributes to
more than just one pixel). Hence, the noise in adjacent spaxels is correlated and spatial covariances
have to be taken into account during the S/N estimates of co-added spectra. A correction for the
correlation of the S/N in the data has been applied by quantifying the ratio of the real error - directly
estimated from residuals of full spectrum continuum fitting - to the analytically propagated error of

binned spectra. The ratio can be characterised by a logarithmic function [Husemann et al., 2013]:
€real [ €bin = 1+ rlogn 2.)

with o = 1.38 and n as the number of spaxels in each bin. The ratio increases rapidly for small bins,
indicating a high correlation between adjacent spaxels, and flattens out for spatially bigger bins, where

the correlation between spaxels becomes less.

Once the effect of noise correlation has been taken into account, we adopt the Indo-US stellar library

with 328 spectral templates [Valdes et al., 2004]. A non-negative linear combination of these templates
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is then convolved with a Gaussian line-of-sight velocity distribution (LOSVD) and fitted to each spectrum
in the range of 3750 - 4550 A (covering prominent stellar absorption line features such as the Balmer
and Calcium H- and K lines), while using additive Legendre polynomials of 15th order. In this way, we
derive the mean line-of-sight velocity v, velocity dispersion ¢ and higher order Gauss-Hermite velocity
moments hg and h4 (which represent asymmetric and symmetric departures from a Gaussian LOSVD)
per bin on the plane of the sky. Sky lines are masked beforehand and corresponding uncertainties of the
kinematic moments are determined by means of 100 Monte Carlo simulations (see also Falcén-Barroso

et al., in prep. for a full description of the CALIFA stellar kinematics pipeline).

23.2 HET

In addition to the medium-resolution wide-field PPAK data, HET long-slit kinematics along the major
axis are in hand. Observations were carried out, using the Marcario Low Resolution Spectrograph (LRS)
[Hill et al., 1998]. The LRS is a classical long-slit spectrograph with a slit length of 4’. We made use of the
G2 grating and a slit width of 1”, covering a wavelength range of 4200-7400 A. This configuration has a
resolution of R = 1300 which corresponds to a spectral resolution of 4.8 A FWHM (i.e. an instrumental
velocity dispersion of 108 km s™!), at a pixel scale of 0.475” . Single exposures of 900 s have been taken
for each galaxy, in good weather and seeing conditions of 1 arcsec, resulting in a total of 3 individual
(apparent) major axis profiles each for MRK 1216 and NGC1277.

The reduction of the HET data is accomplished by a dedicated and fully automated pipeline [van den
Bosch et al., 2015], following a standard reduction practice of bad pixel and cosmic ray masking, overscan
and bias subtraction, flat fielding correction and wavelength correction. From the reduced data, we then
extract kinematic information by applying an updated version of the pPXF code [Cappellari & Emsellem,
2004] with a set of 120 spectral templates from the MILES stellar library [Sanchez-Blazquez et al., 2006;

Falcon-Barroso et al., 2011].

The PSF and positioning of our observations are crucial for an accurate determination of the modelling
parameters, such as black hole mass and stellar mass-to-light ratio. We recover a reliable PSF in each
data set of both galaxies by iteratively fitting a PSF convolved, reconstructed (slit) image to the MGE of
the high-resolution HST data. The PSF in turn is expanded by multiple, round Gaussians and the (slit)

images are well reproduced in all cases by a PSF with one or two components (Tab. 2.4)

2.3.3 MRK1216

On December 5, 2011, we obtained PPAK data using the medium-resolution V1200 grating. The seeing
was ~ 1 arcsec. Two science exposures, 900 seconds each, were taken per pointing, resulting in a total

exposure time of 1.5 hours on-source.

Fig. 2.3 displays the two-dimensional line-of-sight kinematics. Reliable data are available out to a
major-axis radius of 15”. The kinematic maps show fast and regular rotation with a maximum velocity
of 182 kms™1. The velocity dispersion has a very pronounced peak of about 338 kms™! in the centre,
indicating a very high mass concentration and hinting at the presence of a SMBH. Superimposed are

contours of constant surface brightness from the same data cube.
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Table 2.4: Reconstructed point-spread functions of MRK1216’s and NGC1277's PPAK and HET data. The

rows display the individual data sets with the slit numbers appended (1), the point-spread function of

MRK 1216 for this particular data set, expanded by a set of multiple Gaussians with weight and dispersion
(2), and the same for NGC1277 (3).

Data MRK 1216 NGC1277
[weight] [arcsec] [weight] [arcsec]

PPAK 0.771.34 0.751.21
0.23 3.72 0.25 2.44

HET 1 0.55 1.19 1.00 0.83
0.45 3.39

HET 2 0.78 0.69 1.00 0.83
0.22 1.89

HET 3 0.64 1.10 1.00 0.83
0.36 3.77

One out of our three HET long-slit kinematics along the apparent major axis will be illustrated in Fig.
2.6. The velocity and velocity dispersion profiles are in agreement with the PPAK data, revealing a

1 and a peak in velocity dispersion of 345 kms™1.

rotation with a maximum velocity of 219 kms™
Furthermore, we measure strong hs moments that appear to be anti-correlated with v, commonly

observed in axisymmetric galaxies.

2.3.4 NGC1277

PPAK data of NGC1277 have been obtained in the same run as data of MRK1216. The observing strategy,
setup as well as data processing and reduction are also identical, resulting in the kinematic maps in
Fig. 2.4. Similar to MRK 1216, the kinematic data of NGC1277 are limited to a radius of ~ 15”. The
maps reveal very fast rotation around the short axis, peaking at 276 kms~1, and an extraordinarily flat

I and

rotation curve out to several effective radii. The peak in velocity dispersion is about 355 kms™
hence considerably lower than the dispersion in the (three major axis) HET slits (415 km s 1) (Fig. 2.7).
Moreover, the central iy measurements are also lower in the PPAK data cube. The difference, though,
is largely attributable to the difference in spatial resolution between both data sets (see Section 2.6 for

the reliability of the individual measurements and the recovery of the black hole mass).

We observe the same anti-correlation between hs and v, which is expected in the case of axial sym-
metry and reasonable given NGC1277’s apparent flatness and strong rotation around its short axis. We
superimpose its contours of constant surface brightness from the same data cube, with slight irreg-
ularities due to extensive masking of nearby objects and the presence of faint fore- and background

stars.

2.4 Dynamical Analysis

We introduce our orbit-based dynamical modelling technique which fits the observed line-of-sight kine-

matics and the photometry, simultaneously. We hereby constrain the intrinsic contributions of black
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Figure 2.3: Top: PPAK IFU stellar kinematic maps of MRK1216, showing the mean velocity (v), velocity

dispersion (), hs and hs. The maps show fast rotation around the short axis of 182 kms™' and a

central velocity dispersion of 338 kms™!. Given its effective radius of ~ 5", the PPAK data covers

the kinematics out to ~ 3 R.. Overplotted are contours of constant surface brightness from the same

observing run. Bottom: Corresponding uncertainty maps. Maps are oriented N.-E., i.e. north is up and
east is left.
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Figure 2.4: Top: PPAK IFU stellar kinematic maps of NGC 1277 with contours of constant surface bright-
ness, revealing a very fast rotation of 276 kms™' and a peak in velocity dispersion of 355 kms™*.
NGC1277 has an effective radius of ~ 3.5”, and the data thus covers the kinematics out to ~ 4R..

Bottom: Corresponding uncertainty maps. All maps are oriented N.-E..
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hole, stars and dark matter to the overall mass budget and infer the orbital structure of both galaxies.

2.41 Schwarzschild’s Method

Schwarzschild’s orbit superposition method [Schwarzschild, 1979] has proven to be a reliable technique
to recover in great detail the dynamical and structural properties of galaxies. The basic idea behind
this modelling approach is as simple as it is striking: The motion of astronomical objects, e.g. stars, is
governed by the underlying gravitational potential, which in turn can be a sum of not only visible matter
but also any non-visible components. This means that once a gravitational potential is assumed, a
representative library of orbits can be calculated in that potential that thoroughly samples all integrals of
motion (4 in the case of spherical systems and 3 in axisymmetric or triaxial configurations). By assigning
weights to the orbits we can then compute their combined properties and compare them to present-
day observables, which represent a snapshot of a certain gravitational and dynamical configuration.
The implementation of Schwarzschild’s method then probes a set of gravitational potentials and tests
whether there is a steady-state superposition of orbits in that potential that matches the full LOSVD

and the (intrinsic and projected) light/mass distribution.

A wealth of Schwarzschild codes exist. Starting with the modelling of spherical galaxies (e.g. Ro-
manowsky et al. 2003), to axisymmetric galaxies (e.g. Cretton et al. 1999; Gebhardt et al. 2003; Valluri
et al. 2004; Thomas et al. 2004; Chanamé et al. 2008) right up to the modelling of triaxial systems (van
den Bosch et al. 2008, vdB08 hereafter). In what follows, we make use of the triaxial implementation
of Schwarzschild’s method. This code represents a very flexible way to reproduce not only all available
data but at the same time to recover the internal dynamical structure of galaxies [van de Ven et al.,
2008], to constrain their intrinsic shapes [van den Bosch & van de Ven, 2009], their SMBH masses
[van den Bosch & de Zeeuw, 2010], their (constant) mass-to-light ratios [Lasker et al., 2013], as well as
their dark matter fractions and profiles [Weijmans et al., 2009]. For a detailed overview of the working
principles, we refer the reader to vdB08. Here, we confine ourselves to a brief description of the main

steps:

1. The implementation begins with a surface brightness distribution that has been parameterised
with a set of Gaussians (see Section 2.2.2 and 2.2.3). Once a set of viewing angles are chosen,
a de-projection of the surface brightness, corresponding to the surface mass density, can be
carried out which yields the intrinsic stellar mass distribution and hence the stellar gravitational
potential of the galaxy. For a triaxial deprojection three viewing angles are needed to pin down
the shape and orientation of the triaxial ellipsoid. On the other hand, in the axisymmetric case,
the intermediate to long axis ratio - i.e. the flattening (g), which is then directly related to the

inclination (i) - remains the only free parameter.

2. Within this potential, a representative library of orbits is calculated. In this work, the library
consists of more than 7500 orbits (dithering excluded), given by the 9 starting points (in each of
the radial and angular directions) at each of the 31 logarithmically sampled equipotential shells
between 0.003" and 150”.

3. During orbit integration, intrinsic and projected quantities are stored and then PSF convolved for

comparison with the data.
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4. For a given potential, x? statistics is used to find a non-negative, linear superposition of orbits
that matches the set of kinematic and photometric observables simultaneously. To ensure self-
consistency, the models must be able to reproduce the intrinsic mass grid and aperture masses.
The masses are constrained to an accuracy of 2 per cent, which reflects the usual uncertainties in
the surface brightness parameterisation by the MGE. More precisely, the mass is allowed to vary
within the boundaries while we recover the spatially binned 2D LOSVD in a least-squares sense
by finding the optimal set of orbital contributions to the Gauss-Hermite moments [Gerhard, 1993;
van der Marel & Franx, 1993; Rix et al., 1997].

5. A reiteration of the steps (i - iv) is carried out for differing gravitational potentials, including the

presence of an SMBH and dark matter.

For multiple reasons we do not employ regularisation during the construction of the Schwarzschild
models. First, we hereby make sure that our models are unbiased with respect to regularisation. Second
and more importantly, it is not possible to accurately determine a proper level of regularisation that is
needed a priori. Third, it has been shown that regularisation changes neither the values of the best-
fitting parameters nor the orbital weights significantly, as long as reasonable values are chosen and an
over-smoothing of the distribution function (DF) is prevented [Verolme et al., 2002; van den Bosch et al.,
2008; van den Bosch & de Zeeuw, 2010]. And finally, while regularisation can be helpful in individual
cases to find the set of orbital weights that best fits the velocity moments and to prevent the weights
from varying rapidly, it decreases the degrees of freedom at the same time and leads to an artificial
narrowing of the x? contours and thus to smaller confidence intervals for the recovered parameters
(but see Valluri et al. 2004, Thomas et al. 2005b and Morganti et al. 2013 for a more detailed discussion

of the effects of regularisation in their individual models).

In the case of MRK 1216 and NGC 1277, the photometry and kinematics are consistent with oblate axial
symmetry (see: Section 2.6). In constructing dynamical models we will therefore restrict ourselves to

an axisymmetric stellar system 2.

2.4.2 Mass Profiles
2.4.21 MRK1216

We consider three gravitational sources; the central black hole mass M,, the stellar mass M, (which
is the deprojected, intrinsic luminosity density times the constant stellar mass-to-light ratio Y,), and
a spherically symmetric dark matter component with an NFW profile [Navarro et al., 1996] with con-
centration c¢pps and total virial mass Mppr=Magg. In the case of MRK 1216, the final models will thus
probe a four parameter space in log(Me/My) € [7, 1], Ty € [0.5, 3], cpar € [5, 15] and log(fpar)
= log(Mpar/M,) € [-9, 5]. The search in parameter space is mainly motivated by observational and
theoretical constraints on: the stellar mass-to-light ratio for SSP models with a Kroupa and Salpeter IMF

[Vazdekis et al., 1996]; the black hole mass from predictions of the black hole scaling relations [Gultekin

2The modelling machinery itself is triaxial, but oblate axisymmetric models can be run in the triaxial limit (i.e. intermediate-
to long-axis ratio (b/a) = 0.99). Although the orbits in axisymmetric galaxies are dominated by tube orbits, our slightly triaxial
models still benefit from a non-negligible amount of additional triaxial orbit families (e.g. box orbits).
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et al., 2009] and the dark halo parameters from investigations of Bullock et al. [2001], Moster et al.
[2010] and Maccio et al. [2008] (see also Section 2.5.3).

By design, we do not explore the inclination space. As has been shown in Krajnovi et al. [2005] and
van den Bosch & van de Ven [2009], it is not possible to infer the inclination angle by means of two-
dimensional line-of-sight stellar kinematics, alone, unless kinematic features exist (e.g. kinematically
decoupled cores) that put additional constraints on the intrinsic shape of galaxies. Even in the case of
three integral axisymmetric orbit-based models, different inclinations above the lower limit that is given
by the photometry are able to fit the LOSVD almost equally well. However, we can further constrain
the inclination by simple observational arguments. Although the flattest Gaussian in our MGE limits
the minimum possible inclination for the projection in an oblate axisymmetric case (Section 2.2.2), the
deprojection of Gaussians close to the lower inclination limit of 59° generates intrinsically flat galaxies
with unphysical axis ratios of ¢ = b/a < 0.2. On the other hand, an edge-on configuration (even though
possible) appears to be unlikely, too. MRK 1216 is much rounder than expected for a flat, oblate system
that is observed at 90°, with an axis ratio that quickly converges to unity beyond 1 R.. We therefore
choose an inclination of 70° that is in between these two extreme cases. To assess the reliability and
robustness of our results with respect to changes in the inclination, we also explore models with a
close to edge-on configuration of 85° and find that our parameter constraints are affected by less than
5 per cent. The upper limit of the stellar mass-to-light ratio increases by ~ 0.1 when increasing the
inclination, which in turn leads to insignificant changes in the derived values for the black hole and dark
halo values. In general, the results are very robust with respect to variations in the inclination. Changes
in the parameter estimation, and in particular in the stellar mass-to-light ratio, are only significant if a
large range of inclinations is probed or respectively the minimal observed axis ratio ¢ is larger than 0.7,

which translates to lower inclination limits of i < 45° [see also Cappellari et al., 2006].

We bi-symmetrise the observed kinematics beforehand. Although being fairly symmetric, the sym-
metrisation reduces noise and systematic effects which helps for the recovery of the higher order
Gauss-Hermite moments in the models. The PA for the bi-symmetrisation is obtained by using the
weighted first and second moments of the intensity distribution in the PPAK data (PAg;, = 70.7°), and
turns out to be in excellent agreement with the PA that is inferred from the high-resolution imaging
(PALhot = 70.2°).

We construct ~ 200 000 models to constrain the best-fitting parameters as well as all parameters
within a relative likelihood of three standard deviations. Figure 2.5 (top left) shows the enclosed mass
distribution of MRK 1216, derived from our entire set of models. The solid lines represent the stellar

mass (red), black hole mass (blue), dark matter content (green) and total mass (black) for the best fit.

The dashed lines indicate 30 confidence intervals for one degree of freedom. Based on these models,
we obtain a total stellar mass of log(M,/M,) = 11.3f8:%, a black hole mass of log(M./M,) = 9.4'_"8:2
and a dark halo mass of log(Mpy /M) = 14275 3. Neither the black hole nor the DM halo parameters
are very well constrained. The best fitting dark halo dominates at radii larger than 15" (i.e. > 7kpc),
which is at the edge of the extent of our kinematic data. Interestingly, models without any dark matter

are not able to recover the observations and can be ruled out.

Figure 2.5 (middle left) is a slice through the M, - Ty plane, i.e. we plot every combination of black

hole mass and stellar mass-to-light ratio, marginalised over the dark halo parameters cpyr and fpas.
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Figure 2.5: Top: Intrinsic enclosed mass profiles of MRK1216 and NGC1277. Solid lines represent best-
fitting values, dashed lines are 30 confidence intervals. The dotted vertical lines indicate the minimum
and maximum extent of the kinematic data for each galaxy. For NGC1277, we also depict an earlier
estimate of the black hole mass from vdB12. Middle: Confidence contours of black hole mass vs. stellar
mass-to-light ratio. Bottom: Confidence contours of dark matter fraction vs. stellar mass-to-light ratio.
The lines denote the 68.3 (white), 95 (grey) and 99.7 (black) per cent quantiles of a XQ distribution with
two degrees of freedom. As a reference, we overplot stellar mass-to-light ratio predictions of SSP models
with a (single) power-law Salpeter IMF [Vazdekis et al., 1996, 2012] in the respective bands.
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Figure 2.6: First column: PPAK IFU (bi-symmetrised) velocity, velocity dispersion, hs & h4 maps

of MRK1216, overplotted with contours of constant surface brightness. Second column: Best-fitting

Schwarzschild model with a reduced X2 of 0.31. Third column: Bad model with log(Mpar/Mg) = -9.

Fourth column: One out of the three simultaneously fitted HET long-slit data with corresponding errors,

best-fitting Schwarzschild model (red) and bad model (dashed). The IFU maps are oriented N.-E., i.e.
north is up and east is left.

As is already visible in the enclosed mass profile plot, the best-fitting black hole mass is log(M./M ) =
9.4. While we obtain an upper limit of log(AM,/M) = 10.0, the black hole is unconstrained at the lower
boundary of the grid, at log(M./M,) = 7. We therefore carry out additional tests at the lower end of
the parameter space (M,/M, = 0) which show that the presence of a black hole is not required, as
models with no black hole are able to match the data as well. The stellar mass-to-light ratio in H-band
spans a range of 1.0 - 2.3. The best-fitting model favours Y i = 1.8. For comparison, stellar population
synthesis (SPS) models with a single power-law Salpeter stellar initial mass function (IMF) [Vazdekis et al.,

1996] predict a stellar mass-to-light ratio of 1.7 (assuming solar metallicity and an age of ~ 13 Gyr).

The bottom left panel in Figure 2.5 is analogous to the middle panel and displays the goodness-of-fit
contours for the dark matter fraction fpas and H-band stellar mass-to-light ratio Y7, marginalised
over all remaining parameters. We observe closed contours that clearly call for a non-negligible amount
of dark matter. The halo concentration in the models is unconstrained and can adopt any value within
the range that is probed. The best fitting dark halo has a concentration of cpyr = 10, a mass of
log(Mpnr/Mg) = 14.2 and a scale radius of r5 = 110 kpc.

The corresponding best-fitting Schwarzschild model kinematics of MRK1216 are shown in Figure 2.6.
The plots display fits to the first four kinematic moments of the PPAK data, and one of the three
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simultaneously fitted individual HET long-slits. Our models can accurately recover the kinematics of
the PPAK and HET data, in particular the peak in the velocity dispersion profile and the flat and rapidly
rotating velocity curve beyond 5”. For illustration purposes we add a bad model to the plots. The bad
model was chosen by following the ridge of minimum 2 beyond the 3o confidence level and displays
the predicted kinematics for the best-fitting model without a dark halo. The relative likelihoods of the
two models are separated by Ax? = x7 — X} w/odm = 15 and the differences in the figures are barely
distinguishable. Despite these similarities, we will show that dark matter is a necessary ingredient to
successfully recover the observational constraints and well in line with our current understanding of

the stellar build-up and properties of elliptical galaxies (see Section 2.5.3).

2.4.22 NGC1277

For the dynamical analysis of NGC1277, our models explore the parameter ranges in log(M./M) €
71, Yy € [210], cpar € 5, 15), log(fpar) = log(Mpar /M) € [-9, 5] and @ € [75]. In contrast to
vdB12, the freedom of the models is further restrained by fitting the PPAK and HET data at the same
time. As in the case of MRK1216, we present the mass distribution, the black hole mass vs. stellar
mass-to-light ratio and dark matter fraction vs. stellar mass-to-light ratio plots, which outline the limits

for the individual parameters.

Figure 2.5 (top right) shows the enclosed mass profile with a total stellar mass of log(M, /M) = 111701,
a black hole mass of log(M,/M,) = 10.175-2 and a dark halo mass of (Mpy/M,) = 126715, at a
significance of 30. The kinematic data of NGC1277 show the same problems as the data of MRK1216,
leading to poor constraints on the dark halo parameters. The vertical dotted line displays the extent of
our kinematic information and illustrates the inability to constrain the dark matter halo, which becomes
dominant only at larger radius for the best-fitting model. Here, the presence of dark matter is not

necessary to fit the observed velocity moments.

We present contours of x? as a function of M, and Yy in Figure 2.5 (middle right). Despite the low
resolution data, the black hole mass is well constrained (see also Sec. 2.5.2.1 and 2.6). We obtain an
upper limit of log(Me/M) = 10.2 and a lower limit of log(M./M) = 9.9. The best-fitting V-band stellar
mass-to-light ratio is Ty = 6.51‘}‘_? and consistent with the mass-to-light ratio that is predicted from
spectral synthesis fits [Vazdekis et al., 2010; Ricciardelli et al., 2012; Vazdekis et al., 2012] of NGC1277's
deep, optical long-slit observations (T14), assuming a single power-law Salpeter IMF (see Section 2.6).
Models with a black hole mass of log(Me/M ) ~ 9 - as suggested by the scaling relation between black
hole mass and bulge luminosity M, — L gy [Gultekin et al., 2009; McConnell & Ma, 2013; Kormendy &

Ho, 2013] - are clearly disfavoured and not able to recover the data (see also Section 2.5.2.1 and 2.5.2.2).

The confidence intervals for the dark halo are shown in the bottom right panel of Figure 2.5. In contrast
to MRK1216, the 99.7 per cent contours cannot rule out models without dark matter. The best-fitting
NFW profile has a concentration of cpar = 10, a dark halo mass of log(Mpas/M,) = 12.6 and a scale

radius of 75 = 33 kpc.

In Fig. 2.7, we show the bi-symmetrised PPAK kinematics, one of the three individual but simultaneously
fitted HET long-slit kinematics, the best-fitting model and a bad model of NGC1277. Note that one of the

three long-slit kinematics is identical with the data presented in vdB12. In this case, the PPAK velocities
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Figure 2.7: First column: PPAK IFU (bi-symmetrised) velocity, velocity dispersion, hs & hs maps of

NGC1277, oriented N-E with contours of constant surface brightness overplotted. Second column: Best-

fitting Schwarzschild model with a reduced x? of 0.55. Third column: Bad model with log(M, /M) = 9.5

and Ty = 8.3. Fourth column: One out of the three simultaneously fitted HET data with corresponding
errors, best-fitting Schwarzschild model (red) and bad model (dashed).

and dispersions are fitted exceptionally well. Problems arise in fitting the HET velocity dispersion as
the peak in the HET data differs by ~ 60 km s~ from the peak in the PPAK cube (Section 2.3.4). The
best fit predicts a slightly lower central dispersion in NGC 1277, which matches the PPAK data but is in
contrast to the HET observations (see Section 2.6). We also emphasise that even though the h4 values
of the good model are slightly off along the minor axis, they are still within the measurement errors.
For the illustration of a bad model we explicitly chose a model with a higher mass-to-light ratio and a
black hole mass that is about a factor of 2 smaller than the lower limit. The Ax? of this fit is ~ 50 and
well beyond the 30 boundary. The difference between observed and modelled kinematics are most
pronounced in the second and fourth column where the bad model clearly fails to fit o and hy4 in the
centre. The deviation in h4 along the minor axis is also much stronger. In contrast to the good model,
the bad model fails to reproduce the kinematics within the measurement errors, by underestimating

the number of stars with line-of-sight velocities close to the average velocity.

Overall, our models are in good agreement with the results of vdB12, with tighter constraints especially
on the lower end of stellar mass-to-light ratios and hence a slightly decreased upper limit of the black
hole mass. This effect is mainly driven by lower estimates of the dark halo content that is constrained
by the wide-field IFU data and higher stellar mass-to-light ratios which then propagate towards the

centre.
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2.5 Discussion

We summarise the findings and take a closer look into the results of our orbit-based dynamical models,
their orbital structures and how they compare to the photometric analysis. In addition, we place the
black hole masses back into the scaling relations, discuss the significance of our dark halo detections

and finish with a concluding remark concerning the origin and evolutionary history of both galaxies

2.5.1 Orbital Structure

Apart from inferring the mass distribution, orbit-based dynamical models also allow a detailed probe
of the orbital structure of galaxies. We can not only inspect the amount of mass that is assigned to
each particular orbit, or orbit family in general, but also quantify the system’s degree of anisotropy,
which holds important clues about the processes that shaped its evolution [Bender et al., 1992]. The
anisotropy profiles of early-type galaxies have been investigated extensively. While data and techniques
differ, ranging from long-slit observations and spherical models [Kronawitter et al., 2000; Gerhard et al.,
2001] to more general axisymmetric models [Gebhardt et al., 2003] that make use of the full 2D spectral
information [Cappellari et al., 2007], there is a common agreement, namely that luminous, round and
slowly rotating early-type galaxies are almost isotropic whereas oblate, fast-rotating galaxies span a
large range of anisotropy profiles. The orbital structures in the dynamical models, though, have not
been linked to the many and varied components that are observed via photometric decompositions of
high resolution imaging, which also provide an independent record of a galaxy’s evolutionary history.
In the first part of this subsection we aim to provide this link by mapping the components in phase
space to the multi-Sérsic components in Section 2.2.2 and 2.2.3. In the second part, we then present a
direct comparison between the orbital distribution of the two compact objects in this work and a more

general and representative sample of early-type galaxies.

In Figure 2.8 and 2.9, we show the orbital mass weights as a function of average radius (¥) and spin
(\. = J./(¥ x &) - where J, is the average specific angular momentum of the orbits along the short
z-axis and & their average dispersion - and further examine the orbital structures by inspecting the
ratio of radial to tangential velocity dispersion (0. /o: = 4 /203/(02 + 7)) and the occupation fractions
of the individual orbit families [de Zeeuw, 1985; Statler, 1987; de Zeeuw & Franx, 1991]. The averages

are time averages per single orbit, which the Schwarzschild models keep track of.

Deciphering the mass distribution among the orbits as a function of angular momentum will provide
the necessary link to the photometric components. Hitherto, only two other galaxies have been in-
vestigated in a similar manner. Walsh et al. [2012] presented the SO galaxy NGC 3998 which showed a
very clear non-rotating bulge and a non-maximal rotating disk. And Lyubenova et al. [2013] presented
the E5 galaxy FCC 277 with a nuclear star cluster, which showed both a pro- and retrograde disk and
a non-rotating component. A direct comparison to the photometric structures, though, was not within

the scope of those investigations and has therefore been omitted so far.
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In what follows, we present the orbital configuration only for the best-fitting models, but the general

trend is preserved for most models that are within the statistical 30 uncertainties.

2.5.11 MRK1216

MRK 1216 rotates rapidly (~ 220 km s~!) around the short axis. It is thus a fast-rotating, oblate early-type
galaxy. The two-component photometric decomposition contains a small, flattened and massive bulge
and an outer exponential envelope, with a bulge-to-total ratio of B/T" = 0.69. However, the dynamical
decomposition is not as straightforward as matching directly to these two Sérsic components; there is a
large, extended, rotating structure (A, = 0.0 - 0.5) beyond 10”; two, more centrally located, moderately
rotating structures (A, = 0.1 - 0.5) between 1”and 5”; an inner (8”) rapidly (A, ~ 0.7) and outer (>
20”) maximally rotating component (A, ~ 1), as well as some mass in two counter-rotating and one
outer (> 10”) non-rotating structure (Fig. 2.8, left panel). The orbital structure is devoid of a massive,
non-rotating component which harbours a major fraction of the stellar mass and hence we conclude
that MRK1216 does not contain a classical, non-rotating bulge. If anything, we identify the moderately
rotating component at ~ 1”7 as the bulge, with a dynamical B/T of 13 per cent, which however is in

sharp contrast to the photometric B/T of the two-component decomposition.

Remarkably, the multiple component photometric fit of MRK 1216 with four Sérsics (Section 2.2.2) is in a
much better agreement with the dynamical decomposition. The outer three photometric components
can be mapped onto the 3 mildly rotating distinct components in the orbital configuration at ~ 1, 4”and
15”. All these photometric components have low (n ~1) Sérsic indices that are normally associated with
an exponential disk, except for the outermost component that resembles an envelope with close to
zero ellipticity. Adopting Sérsic component number two as the bulge gives a photometric B /T of 12 per
cent (Sec. 2.2.2), which is in very good agreement with the dynamical B/T of 13 per cent. Moreover,
the component around 15" carries a mass of 30 per cent and is almost as massive as the large,
outer component in the photometry with a contribution of 35 per cent to the total mass. The most
notable difference is between the third and most massive Sérsic in the photometry and the dynamical
substructure at 4”, which ought to contribute 45 per cent of the total stellar mass but only constitutes
20 per cent in the orbital configuration. We also note that the innermost photometric component is
too small (0.4”) to be resolved by the dynamics while the rapidly rotating structure (A, ~ 0.7) at 8" has
no photometric counterpart at all. Finally, the maximally rotating structure (A, ~ 1) at 20" is beyond
the reach of our kinematic data and merely a result of an extrapolation, but is expected to correspond

to a disky component whereas the photometry at those radii are dominated by the round outer halo.

MRK1216’s radial anisotropy profile is simple and almost isotropic with oscillations of only 30 per cent
around o,./o; = 1(Fig. 2.8, right panel). The largest deviation from isotropy appears within the central
1”7, which is attributable to the strong gravitational perturbation of the axisymmetric potential due to
the presence of a black hole and hence the requirement of a non-negligible amount of stars in box
orbits. Most of the mass resides in short-axis tube orbits whereas long-axis tube orbits, which are vital
orbit types for triaxial and prolate systems [van de Ven et al., 2008; van den Bosch & van de Ven, 2009;
van den Bosch & de Zeeuw, 2010], are totally absent.
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Figure 2.8: Orbital structure of MRK1216 for the best-fitting model. Top left: Mass distribution along
all orbits as a function of angular momentum along the short z-axis and radius. Mass located above
(below) the red (blue) line is rotating strongly prograde (retrograde). Bottom left: Local mass fraction
as a function of average radius, divided into a non-rotating bulge-like (.| < 0.1), prograde rotating
disk-like (A, > 0.1) and retrograde rotating (A, < -0.1) component. This classification is based on the
net angular momentum of the orbits along the z-axis. The long tick marks denote the effective radius
of the photometric components in the multi-Sérsic fit. Top right: Profile of radial vs. tangential velocity
dispersion. Bottom right: Mass fraction per orbit type as a function of radius. The vertical solid line
denotes the predicted black hole sphere of influence. The orbital distribution below 0.4” is not resolved
by the data and merely extrapolated by the models.

2.5.1.2 NGC1277

NGC1277 is also a flat, fast-rotating ( ~ 300 km s 1) early-type galaxy and, as expected, our best-fitting
dynamical model reveals a simple structure where most of its stars (> 80 per cent) reside in strongly
rotating orbits between 1and 20" (Fig. 2.9, left panel). We distinguish at least three individual compo-
nents in phase space; a highly rotating one (A, = 0.7 - 1) between 5" and 10”, containing 65 per cent
of all stars; one moderately rotating and very extended component (A, = 0.1 - 0.5) between 0.5” and
3", which contains 23 per cent of the stellar mass, and a centrally located non-rotating one at 2", that
harbours 3 per cent of all stars. The remaining 9 per cent are distributed among the tiny substructures
at various positions. The lack of a massive, non-rotating (A, = 0) component in the dynamical de-
composition suggests that this galaxy does not contain a pressure supported bulge. Moreover, due to
the absence of a distinct, central, non-rotating component, this result does also not match with what
we see and anticipate based on our results in the photometric two-component decomposition (Section
2.2.3), which has a bulge and an exponential disk with a B/T = 0.75. The massive bulge in the two-
component fit is located around ~ 3", where most of the mass in the orbital decomposition resides in
rotating structures. While the massive bulge in the photometry could indeed be mildly rotating, similar
to our identification of the dynamical bulge in the orbital structure of MRK 1216, the mass fractions at

these radii are simply at odds and disfavour the simple two-component decomposition.



Chapter 2: MRK1216 & NGC1277 48

1.0T T T ] 2.0T T T i ]
t[NGe 1277 ‘ : . NGC 1277 |1
0.5F . 15F ]
------------------------------------------ b"‘ 4
< 00fF 4 X 1 - e .
-------------------------------------------------------------------------- ° /\
-0.5F . 3
-1.0[ 1 } 0.0f } R N
[ .. ,L Prograde JD?SK) il ] [ Short—Axis Tube Orbits ]
.~ " Retrogrode =imimimi= Box Orbits == == == =
r . +" Non—Rototing (Bulge) ——— r Long—Axis Tube Orbits
08F . K 4 _os8f . .
c L * /! -g L 2 4
o F S S 9 + g i
= . S
S 0.6 C “‘4" T s 0.6 N f 7]
o F 9} \ <) g
a -
L L ® i
8 04F 4 2oa4fF i .
L S 4 ]
L g L \ & i
L 5 L T i
0.2F B 0.2F \ @ B
L L \ )
r \
0.0L 0.0l e . i
0.01 0.10 1.00 10.00
Radius [arcsec] Radius [arcsec]

Figure 2.9: Orbital structure of NGC1277 for the best-fitting model. Top left: Mass distribution along the

orbits as a function of average angular momentum and radius. Bottom left: Local mass fraction as a

function of radius for the individual components (see caption in Figure 2.8). Top right: Velocity anisotropy

profile. Bottom right: Mass distribution along individual orbit types. Here again, radii below 0.4” are not
resolved by our observations and have therefore to be treated with care.

The orbital structure is also not consistent with the 1D photometric analysis of NGC 1277 from Kor-
mendy & Ho [2013], as they connected their inner flattened bulge with the outer round halo (> 20”)
as a single component, which is more luminous than the disk in their analysis (B/T = 0.55). In the
dynamical decomposition, however, these two components (i.e. bulge and outer halo) do not appear to
be connected and most of the mass resides in the extended flat and rapidly spinning component (A, >
0.7).

In contrast, the overall dynamical structure has an intriguing resemblance to the multi-component Sér-
sic fit, which hints at an inner, exponential disk (n ~ 1) with a small contribution to the overall stellar
mass (24 per cent); and most of the mass (53 per cent) settled in a flat, outer disk-like component
that resembles the extended highly rotating structure in our orbital decomposition. Even though the
low Sérsic index of the second innermost component in the photometric fit is usually associated with a
disky component, we cannot rule out the existence of a mildly rotating, flattened spheroidal component.
Given the match in the orbital and photometric decomposition, we therefore adopt this component as
a lower limit to the bulge, with a B/T = 0.24 (see Sec. 2.2.3 and 2.5.2.2). The innermost photometric
component (< 0.5”) is not resolved by our observations and, unfortunately, our stellar kinematics do
not reach out to large enough radii to determine the dynamical structure of the outer halo that is ex-
pected at 15 and beyond. However, these substructures contain only a minor fraction (23 per cent) of

the total stellar mass of this object.

Considering that the dynamical models of NGC1277 are also axisymmetric, with deviations from axial

symmetry close to the black hole, the resemblance between both galaxies in the mass weights of the
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different orbit types is no surprise. Unlike MRK 1216, however, NGC 1277 is mildly radially anisotropic in
the immediate vicinity of the black hole and becomes strongly tangentially anisotropic beyond (Fig. 2.9,

right panel).

Dynamical orbit based decompositions are a good tool for unravelling components in phase space.
In this work, we could trace back the spinning orbital components of MRK1216 and NGC1277 to the
flattened, low Sérsic components in the photometry, which are commonly associated with rotating
structures. Moreover, our models show that the two compact galaxies are rotationally supported while
both the orbital and photometric structures indicate the lack of a central pressure supported, massive
spheroidal component. A small, mildly rotating bulge could be present, given the match in mass and
location of the second component in the photometric multi-Sérsic fits and the dynamical substruc-
tures. However, taking into account their flattening, low Sérsic index, small mass fraction and rotational
support, these structures more likely correspond to rotating discs (maybe even thick disks), and can

only be considered as a modest lower limit of a putative bulge (see e.g. Sec. 2.5.2.2).

It is also worth noting that although the models rely on the more general MGE, which is completely
independent from the Sérsic fits and devoid of any physical interpretation, the orbital substructures
bear no resemblance to it. The location and mass weights of the orbital structures do not match
the individual Gaussians, which is most pronounced in Fig. 2.9 where the overall structure is clearly

comprised of less than ten components.

Nevertheless, more decompositions are needed to get a better understanding. For instance, drawing
boundaries between the substructures in phase space is not trivial, while the photometric models are
often plagued by strong degeneracies between the individual components in the fit. In our case, the
issue of connecting photometric and dynamical structures is most prominent in MRK 1216, where the
mismatch in mass between the most massive photometric component in the multi-Sérsic fit and the
mildly rotating orbital component at 4” is worrisome, while some minor components in the dynam-
ical structure do not seem to have a photometric counterpart at all. Given that our Schwarzschild
method is capable to recover the distribution function and hence the rich, internal dynamical structure
of ETGs [van de Ven et al., 2008], this might hint at difficulties in a) recovering the stellar build-up by
multi-component Sérsic fits to the photometry and/or in b) simply associating flat, (high-) low Sérsic
components with (non-)rotating dynamical structures. Surely, modelling limitations, such as the as-
sumption of axisymmetry (but see also Sec. 2.6) will also have a non-negligible effect on the recovery
of the internal dynamics and their subsequent interpretation. More tests are therefore necessary, op-
timally of mock galaxy kinematics of purely rotational or pressure supported dynamical systems, to
assess the robustness of our approach and the range of A\, values that can be associated with these
structures. This, in turn, will yield valuable information regarding the reliability and physical interpreta-

tion of photometric decompositions.

2.5.1.3 Classification And Comparison

In Emsellem et al. [2007, 2011], early-type galaxies were separated into two classes of systems based

on their specific stellar angular momentum. Fast rotators reveal a high specific angular momentum,
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comprise the majority of early-type galaxies, are close to axisymmetric in most cases and span a large
range of anisotropy profiles [Cappellari et al., 2007], in contrast to slow rotators which appear to be
nearly isotropic. MRK1216 and NGC1277 are both fast rotators, as is expected by their rapid rotation
around the apparent short axis, with a specific angular momentum A of 0.34 (0.41) and 0.25 (0.53)

within one (three) effective radii.

To facilitate a comparison between the dynamical structure of the two compact galaxies in this work and
a more general and representative sample of galaxies, such as presented within the SAURON framework,
we follow the procedure and notation in Cappellari et al. [2007] and show the relation between the global
anisotropy parameter 6 = 1- II,, /I, [Binney & Tremaine, 1987] and the anisotropy parameter 3, =
1-1I,. /I rR, which describes the shape of the velocity dispersion tensor in the meridional plane. The
values in this work have been measured within 3 R,, i.e. ~ 6 kpc and 3.5 kpc for MRK 1216 and NGC1277
respectively. The measurements are based on a larger relative scale, in contrast to the SAURON sample
which usually covers the kinematics only out to ~ 1 R,, but corresponds much better to the SAURON

measurements of typically larger ETGs in an absolute sense.

We confirm the picture of diverse anisotropy profiles of fast-rotating systems in Fig. 2.10. Here, MRK 1216
is located in a region that is populated by the bulk of fast-rotating galaxies in the SAURON sample. It's
only slightly tangential anisotropic in the ¢ — r plane, which leads to the conclusion that most of its
anisotropy can be traced back to a flattening of the velocity dispersion tensor in the meridional plane.
While MRK1216 follows the trend presented in Cappellari et al. [2007], that fast-rotating early-type
galaxies are mainly flattened oblate systems, NGC1277 is an outlier in every aspect and appears to
belong (kinematically) to a totally different class of objects. It is flattened in z-direction, but also shows
a substantial amount of tangential anisotropy in the plane orthogonal to the symmetry axis, which is
necessary to account for the high and extended amplitude in rotational velocity. In the SAURON sample
only one galaxy, NGC4550 (5, = 0.43 and § = 0.56), is highly dominated by tangential dispersion. In
contrast to NGC1277, though, NGC 4550 consists of two massive counter-rotating disks.

The difference between the two compact galaxies in our sample is not only a difference of orbital
structure but also of sheer size (see Table 2.1), with MRK 1216 being almost twice as large as NGC1277.
Taking into account the similarity between MRK 1216 and the SAURON galaxies, this may indicate that
MRK 1216 has already entered a path of becoming a regular, fast-rotating elliptical whereas NGC1277 is

still in its infancy.

2.5.2 Black Hole
2.5.2.1 Masses

A credible determination of M, requires a very thorough analysis. In the most optimal case, this is
done by dynamical modelling of high-spatial resolution data that can resolve the black hole sphere of
influence (Rsor = GM,/0?), i.e. the region where the gravitational pull of the black hole dominates.
However, even state-of-the-art adaptive optics can resolve Rgor only for a limited number of galaxies,
unless the black hole is either very nearby or very massive. The sphere of influence of NGC1277 is

about 1.6”- as measured from the best-fitting black hole mass of log(M,/M) ~ 10.1 and the effective
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Figure 2.10: Anisotropy in the meridional plane (8.) vs. global anisotropy () of MRK1216 (blue) and

NGC1277 (red), measured by our orbit-based dynamical models of the wide-field PPAK IFU and long-slit

HET data within 3 R.. MRK 1216 follows the bulk of axisymmetric, fast-rotating ETGs in the SAURON sam-

ple (green), with a flattened velocity dispersion tensor in z-direction. NGC 1277 exhibits a distinct kine-

matic structure. Besides a flattening in the meridional plane, NGC1277 is highly tangentially anisotropic
in the plane orthogonal to the symmetry axis.

velocity dispersion in the PPAK data (Table 2.1) - and hence at the edge of being resolved by the HET
kinematics. But this measurement of the sphere of influence is based on the assumption that the
stellar density is well approximated by an isothermal sphere, and changes drastically if we adopt a
more conservative estimate based on the region where the enclosed stellar mass equals the black hole
mass, which yields Rgor = 0.9” (Fig. 2.5). Moreover, even if the sphere of influence is resolved, our

1" and

measurements still rely on the seeing limited dispersion peak and h4 values within the central
caution should be exercised regarding the black hole mass reliability in NGC 1277 (but see also Section

2.6 for a more in-depth discussion of the black hole mass).

Nevertheless, the gravitational, and consequently the dynamical, influence of the black hole is clearly
imprinted in the observed velocity moments. The rapid rise and distinct peak in the velocity dispersion
profile as well as the positive values in h, indicate a strong mass excess within the central arcseconds.
The high h4 values imply an LOSVD with heavy tails and a considerable amount of rapidly rotating
stars in the very centre, and these features can - as far as the models are concerned - be solved best
with a central black hole mass of log(M,/M) ~ 10.1. Models with an ordinary SMBH of log(Me/M)
~ 9, as suggested by M, — Lpygc, are not able to recover the photometric and kinematic properties,
as they fail to either fit the dispersion profile and/or the fourth Gauss-Hermite moment. In particu-
lar, the robustness of the hy measurement eliminates the possibility of a more moderate black hole

measurement in favour of a higher mass-to-light ratio, as illustrated in Fig. 2.7.

The same, however, cannot be said for MRK1216. Although the best-fitting model favours an over-

massive SMBH, the total absence of a black hole cannot be ruled out. Models with and without a black
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hole provide an almost equally good fit to the kinematics and thus are not able to discern between the
various black hole mass scenarios, which is why (for the time being) our measurements can only be
regarded as an upper limit. Upcoming high spatial resolution spectroscopic observations with NIFS (PI:
Walsh) that resolve the sphere of influence will be able to tell the difference and show whether or not
MRK 1216 follows the trend of NGC1277.

2.5.2.2 Scaling Relations

We place both black hole masses back onto the M, — Lpyg4. relation (Fig. 2.11). To this end, we utilise
the compilation of Sani et al. [2011] with bulge-disk decompositions of 57 galaxies, based on Spitzer/IRAC
3.6 pm mid-infrared imaging. The use of mid-infrared data has not only the advantage of less dust
extinction susceptibility but is also a better tracer of the underlying stellar mass. To this sample, we add
10 black hole masses with 2MASS K-band luminosities and bulge-to-total ratios if available; five from disk
galaxies, as presented in Kuo et al. [2011] and Greene et al. [2010b]; two in brightest cluster galaxies (BCG),
published in McConnell et al. [2011]; one from a low-luminosity elliptical [Kormendy et al., 1997]; one from
a high-dispersion lenticular galaxy [Rusli et al., 2011] and one from a recent merger galaxy [Kormendy
et al., 2009], investigated in Gultekin et al. [2011]. The solid line in Figure 2.11 represents the black hole
mass-bulge luminosity relation (M, — Lpyi4e) derived in Sani et al. [2011], based on their bulge-disk
decompositions of literature black hole host galaxies and a linear regression fit to the data. The blue
and red error bars mark our findings for MRK1216’s and NGC1277’s black hole mass with a statistical
uncertainty of 30. Their K-band bulge luminosities are based on the photometric decompositions in
Section 2.2.2 and 2.2.3 of the HST H- and V-band images (using the second innermost component
of the multi-Sérsic fit as a lower limit to the bulge luminosity while the bulge in the two-component
Sérsic fit serves as an upper limit) and their total 2MASS K-band luminosities. The figure illustrates
the exceptional position of NGC1277. The best-fitting black hole mass remains a significant outlier
from this relation and the 3o lower bound, log(M,/M;) = 9.9, still overshoots the upper 99.7 per
cent confidence envelope of the relation by at least one order of magnitude. Similarly, and given the
difficulties in identifying a bulge in both the dynamical and photometric decompositions (Sec. 2.2.3 and
2.5.1.2), NGC1277 is an outlier in the black hole mass-total luminosity relation in K-band [Lasker et al.,
2014b], where the upper 3o bound of this relation barely touches the lower 3¢ limit of the black hole

mass.

Interestingly, the black hole measurement in NGC 1277 is consistent with estimates of the scatter in the
M, — Lpuige and M, — o relation in the optical [Gultekin et al., 2009; McConnell & Ma, 2013; Kormendy
& Ho, 2013]. The best-fitting black hole mass is an outlier by a factor of ~ 8 (4) with respect to the mean
predicted black hole mass in the My — Lpyige (Me — 0) relation, but still within a 30 (20) confidence

if the intrinsic/cosmic scatter of 0.44 (0.38) dex is taken into account.

The consistency between the black hole mass of NGC1277 and the M — L gy 4 relation in the optical is a
result of a larger intrinsic scatter when compared to the relation in the mid-infrared, and expected if the
black hole mass-bulge luminosity relation is just a tracer of a more fundamental link between black hole
mass and bulge mass [Marconi & Hunt, 2003; Haring & Rix, 2004]. As NGC 1277 becomes an outlier in the
tighter relation in the mid-infrared this could be interpreted i) as a hint for a different formation channel

that lacks the physical interplay and causal link between the black hole and the spheroidal component
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Figure 2.11: My — L3.6,Buige plot from Sani et al. [2011], with Spitzer/IRAC 3.6 pm bulge-disk decom-

positions and dynamical black hole mass measurements (including 1o errors) for 57 galaxies. The red

and blue error bars represent 3¢ statistical uncertainties of NGC1277's and MRK1216’s black hole mass.

The lower limit for the black hole mass in MRK1216 is consistent with no black hole. For the K-band

bulge luminosities we adopt their total 2MASS K-band luminosities and the bulge-to-total ratios from
our photometric multi-component decompositions of the HST V- and H-band images.

of its host [Silk & Rees, 1998] or ii) as an indication that the black hole mass-bulge luminosity relation
is tightly coupled to the structural evolution and emergence of massive galaxies since z = 2, a path
which NGC1271 and a larger sample compact, elliptical, high central velocity dispersion galaxies in the
nearby universe have avoided (see Chap. 4). In fact, by means of high spatial resolution observations
with NIFS, Walsh et al. [2015] find a black hole mass of log(Me/M,) = 9.51‘8:% in NGC 1271, another
compact, elliptical, high central velocity dispersion galaxy. The black hole mass in NGC 1271 is consistent
with predictions of the black hole scaling relations based on its stellar velocity dispersion, but highly
inconsistent with predictions based on its bulge luminosity, being one order of magnitude larger than
expected. This is in agreement with the theory put forward in this chapter, namely that these objects are
rotationally supported and devoid of a pressure supported bulge component, which might have formed
through a few major and numerous minor merging events, as is currently claimed for the evolution of

massive elliptical since z = 2.

An alternative but speculative example for an over-massive black hole formation channel is presented
by Shields & Bonning [2013]. Based on gravitational radiation recoil during the final stages of two massive
black hole mergers and the accompanied velocity kicks [Merritt et al., 2004], they argue that a massive
black hole in a nearby galaxy could have been ejected and recaptured by NGC1277. The probability of
mergers which could produce kicks that exceed the escape velocity of the host is non-negligible [Lousto
et al., 2010], but the ejected black hole would be accompanied by a hypercompact stellar system (HCSS)
with a stellar mass of Mpyccs < 1072x M, [Merritt et al., 2009]. Consequently, we ought to observe
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a considerable number of these free floating, compact stellar systems already in the Virgo cluster. The

lack of any such observational evidence questions the likeliness of this scenario.

A different idea has been put forward by EI3, to reconcile the black hole in NGC1277 with predictions
of the scaling relations. Here, individual dynamical models from /N-body realisations have been chosen
to match the HET and HST data in the very centre and over a wide radial range. A hand-picked
model without dark matter and a black hole mass of log(M,e/M ) = 9.7 shows an acceptable fit to the
kinematics. However, no parameter search was done to find a best-fit model and confidence intervals.
In particular, the models fail to fit all kinematic moments simultaneously and especially the fourth
Gauss-Hermite moment, which seems to be the key discriminator between the various black hole mass

scenarios.

The presence of a bar was also discussed briefly as an alternative explanation of the very distinctive
kinematic moments. For instance, a model with no black hole but an edge-on bar was able to overcome
the problem of fitting h4 while a model with an end-on bar was a good fit to the remaining data. The
truth could lie somewhere in between these two opposing bar configurations, with a more moderate
black hole mass in addition. However, it is worth noting that we were not able to find any evidence
for the presence of a bar in any of the data sets. Although limited by the spatial resolution of our
kinematic observations, we see a clear trend for an anti-correlation between hs and v. The presence
of a bar should break this trend over its projected length, as has been shown by N-body simulations
of bar-unstable disks by Bureau & Athanassoula [2005] and observations of edge-on spiral galaxies
[Chung & Bureau, 2004]. We also thoroughly inspected the high-resolution HST data and performed
photometric decompositions with Galfit that included a bar. The decompositions, however, resulted in
visually and statistically worse fits. Even though we do not rule out the possibility of a small (i.e. <17)
end-on-bar, which would not be resolved by the currently available data, we raise concerns that a) this
would be a special and unlikely case and b) that the same argument could be easily applied to a number
of other dynamical black hole measurements. Finally, high-resolution spectroscopic observations with
NIFS (PI: Richstone) have already been carried out for NGC 1277, which will shed light on this argument.

2.5.3 Dark Matter Halo
2.5.3.1 Dark Halo Detection

Based on our orbit-based models of the wide-field IFU data and the HET long-slit kinematics, we have
no clear evidence for the presence of a dark halo in NGC1277. In MRK1216, on the other hand, the
data can only be recovered with the addition of dark matter. We note, though, that the detection is
only of a weak statistical nature. The best-fitting model without a dark halo deviates by Ax? =15 from
the overall best-fitting model, which is slightly beyond the 30 confidence limit, as has been shown in
Fig. 2.5. Given the four kinematic moments of the PPAK data and the three HET slits that are fitted
simultaneously, the mean deviation per kinematic moment and bin is ~ 0.04 between both models and
the predicted velocity moments are barely distinguishable in the IFU maps as well as in the major axis
profiles of the long slits (Fig. 2.6). The difference in the relative likelihoods of both models is mostly
attributable to the IFU kinematics, which account for 2/3 of the Ax?. This is in contrast to e.g. the
statistically stronger black hole detection in NGC1277, where the difference between our best-fitting



Chapter 2: MRK1216 & NGC1277 55

model and a model with a black hole mass of log(M,/M) = 9.7 is driven by a few central bins with a

Ax? of 25 and clearly visible in the mismatch of the central velocity moments (Fig. 2.7).

In the case of MRK 1216, one would expect the outer bins to be the driver of the x? difference, where the
lack of the dark halo should lead to the most prominent deviation between a model with and without a
dark halo. We show that this is not the case. In Fig. 2.12 we present the Ax? of the PPAK data between
the best-fitting model without a halo and the overall best-fitting model as a function of radius. The
plot reveals the central region (< 5”) as the cause of the sz difference. In addition to the statistical
claim, this is a clear indication for additional dark mass that can be explained as follows: The absence
of a dark halo naturally leads to an increase in the stellar mass-to-light ratio which mitigates the effects
of missing mass in the outer parts. This is illustrated in Fig. 2.12, where the simple mass-follows-light
model presents an equally good fit to the outer kinematics as the overall best-fitting model with a
halo. The rise in constant mass-to-light ratio however leads to a mismatch between data and model (or

best-fitting model and best-fitting model w/o a halo) in the central regions.

A natural way to resolve this issue and to make the mass-follows-light models fit the outer and inner
data points would be a radially increasing mass-to-light ratio that adopts the best-fitting value for the
central regions and steadily increases towards the outer parts to account for the outer bins. Indications
for such a trend should be imprinted in the colour profiles of galaxies [Bell & de Jong, 2001; Bruzual &
Charlot, 2003], attributable to variations in age and/or metallicity of the galaxy’s stellar population as is
expected if galaxies grow inside-out [Pérez et al., 2013; Patel et al., 2013]. We have therefore inspected
the colour profiles of NGC1277 and MRK 1216 based on SDSS g — ¢ and HST F814W-FI60W imaging, but
the lack of a significant trend with increasing distance from the centre in both does not promote the use
of a stellar mass-to-light-ratio gradient in our models. This is also in accordance with the spectroscopic
results of T14 for NGC1277, which suggests a uniformly old stellar population with almost constant
metallicity and a/Fe values. Even though spatial gradients in the colours (e.g. Franx et al. 1989; Tamura
& Ohta 2003) and stellar population properties (e.g. Greene et al. 2013) of individual ETGs have been
observed, which would justify the assumption of a radially varying T, the analysis of a large sample of
late- and early-type galaxies suggests that gradients for Y, are in general negative [Tortora et al., 2011],
which in turn would further increase the dark mass and hence the discrepancy between our models

with and without a dark halo [see e.g. McConnell et al., 2013].

In principle, variations in the IMF could conceal a colour gradient in both compact objects while effec-
tively increasing the stellar mass-to-light ratio. A recent study of radial trends in the IMF of individual,
massive, high-dispersion galaxies however argues the converse and indicates that the observed trend
of a bottom-heavy IMF is only a local property - confined to the central region of a galaxy - followed by
a decrement of the IMF slope with increasing distance from the centre, and hence a radially decreasing

stellar mass-to-light ratio [Martin-Navarro et al., 2015a].

Even if MRK 1216 and NGC 1277 did not assemble in the same way as the most massive ellipticals did and
just evolved passively (see Section 2.5.4), there is currently no comprehensive theory of star formation

that could explain the tendency of a more bottom heavy IMF in the less dense outskirts of galaxies.
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Figure 2.12: Total x? difference of MRK1216’s PPAK data, between the best-fitting model without a dark
halo and the overall best-fitting model, as a function of distance from the centre.

2.5.3.2 Dark Halos In Elliptical Galaxies

The results for the dark matter halos in our analyses are puzzling, in particular in the light of other
orbit-based dynamical models with a similar extent in the stellar kinematic information of the full LOSVD
(e.g. Rix et al. 1997; Thomas et al. 2007). While those investigations provided unambiguous evidence for
the presence of dark matter in elliptical galaxies, we can only partially confirm this trend. For instance,
Weijmans et al. [2009] examined the two early-type galaxies NGC 3379 and NGC 821. Based on SAURON
data out to four effective radii, they obtained a dark matter contribution of at least 8 and 18 per cent
to the total mass budget within one R.. They also predicted a dark matter fraction of 30-50 per cent

within four R, and concluded that dark matter is necessary to explain the observed kinematics.

In particular NGC 3379, with a small effective radius of ~ 2kpc, is easily comparable to our compact
objects, where we provide a similar relative and absolute coverage of the LOSVD. But we can only
present a dark halo detection in MRK1216. Moreover, the relative contribution of dark matter to the
total mass profile within one effective radius is 2 - 52 per cent and represents a considerable spread
when compared to the values that have also been observed in e.g. the SAURON sample (~ 30 per cent)
[Cappellari et al., 2006], or that is predicted by spherical representations of early-type galaxies under
the ACDM framework [Napolitano et al., 2005]. For NGC 1277, the reverse is true as the models are able
to recover the observations without the need of any dark matter and predict a maximal dark matter

fraction of only 13 per cent within one effective radius.
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2.5.3.3 NFW Profiles

The aforementioned numbers are based on the assumption that the dark halo profile in both galaxies
is well described by a spherically symmetric NFW profile. As a further check of this hypothesis, we
compare our results with a semi-analytic approach of Moster et al. [2010] that links the stellar mass
of a galaxy to the mass of its dark matter halo. By comparing the galaxy mass function with the
halo mass function they obtained a well-defined stellar-to-halo mass (SHM) relation, which enables the

determination of a halo mass for a given stellar mass and vice versa.

In Figure 2.13 we overplot all results of our orbit-based dynamical models that are enclosed by the
99.7 per cent confidence limit and thus immediately test the consistency of our models with the stan-
dard cold dark matter paradigm (ACDM), which is the underlying cosmological model that defines the
halo mass function. There is a small range of overlap between the predictions of our models and the
SHM relation that would imply consistency with ACDM, but we also see a wide coverage of allowed
halo masses due to the inability of our models to constrain the parameter space in cpa and fpas
effectively. A different quantification of the SHM relation in terms of late- and early-type galaxies [Dut-
ton et al., 2010] does not change anything in this respect, as the halo masses of both MRK1216 and

NGC1277 still overshoot the upper and lower bound of these relations by about one order of magnitude.

The difficulty in detecting a dark halo in both galaxies, in particular in NGC1277, and in constraining
the dark halo parameters cannot simply be attributed to the use of larger 30 confidence intervals
in our study. More probably, the obstacle can be traced back to their compactness and high stellar
masses within the small spatial extent that is probed by the available kinematic data. Given our best-
fitting results, stellar masses are of the order of log(M, /M) = 1.1 within 7 and 5kpc for MRK 1216
and NGC1277 respectively. The contribution of a NFW halo to the total mass profile within the same
range can be estimated to be of the order of log(M, /M) = 10.5 and 10.2 for MRK 1216 and NGC 1277,
assuming that the mass-concentration relation [e.g. Bullock et al., 2001; Duffy et al., 2008; Maccio et al.,
2008] and stellar-to-halo mass relation [e.g. Moster et al., 2010; Guo et al., 2010; Behroozi et al., 2010]
holds. Accordingly, the dark halo would constitute ~ 25 per cent of the total mass budget in MRK 1216
and only ~ 13 per cent in NGC 1277, which would explain the statistically weak detection in the former

and our struggle to verify the presence of dark matter in the latter.

2.5.4 The Origin Of Compact, Elliptical, High Central Velocity Dispersion Galax-

es

MRK 1216 and NGC1277 are unusual and rare galaxies in the nearby universe. Their detection was a
result of the selection criteria of the HETMGS [van den Bosch et al., 2015] which, based on the sphere
of influence argument, naturally looked for dense, high-dispersion objects that could possibly host very
massive SMBHs. Still, the number of objects that are similar to both, even in the HETMGS, are limited
and questions regarding their origin and evolution arise. Typically, the stellar populations are the first
resort for exploring the (stellar) evolutionary history of a galaxy, but this would only be feasible for

the long-slit spectroscopic data due to the short wavelength coverage of our IFU observations. We
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Figure 2.13: Stellar-to-halo mass (SHM) relation from Moster et al. [2010] (black line). Overplotted are

stellar-to-halo mass predictions of MRK1216 (blue) and NGC1277 (red), derived from our entire set of

Schwarzschild models. The plot displays upper and/or lower limits in the relevant range of Mago = 10"
-10%5 Mg. In the case of NGC 1277, the lower limit is consistent with no dark matter.

therefore focus on the already available data and find hints for a rather unremarkable and quiet past

in their photometric and structural properties.

MRK 1216 is an isolated galaxy in the field, which has only two other galaxies within a search radius of
1Mpc at its distance. It has no tidal signatures or asymmetries and any recent galaxy-galaxy interaction
can therefore be ruled out. Given its compact shape and rotationally supported dynamical structure,
an active merging history seems to be unlikely, too. Violent relaxation due to collisionless 1:1 or 1:2
mergers, for instance, commonly yields boxy, slow rotating ellipticals [e.g Burkert & Naab, 2003; Naab &
Burkert, 2003; Naab et al., 2006], which is at odds with the rapid rotation and dynamical characteristics
of MRK 1216 and NGC1277. We emphasise, though, that this formation scenario also fails in reproducing
the detailed dynamical properties of massive ETGs in general [Burkert et al., 2008; Naab et al., 2014].
Similarly, violent relaxation due to dry (i.e. gas-poor) unequal mass mergers have been shown to be able
to recover the photometric and kinematic properties of disky, fast-rotating ellipticals [Naab & Burkert,
2003; Naab et al., 2014]. However, unequal mass mergers tend to increase the galaxy size drastically
[Naab et al., 2009; Oser et al., 2010; Hilz et al., 2013; Bédorf & Portegies Zwart, 2013], and are thus hard
to reconcile with the sizes observed in both compact objects. On the other hand, dissipative equal
mass mergers can reproduce fast-rotating ETGs [Naab et al., 2014], while also recovering the tilt in the
FP [e.g. Robertson et al., 2006; Cox et al., 2006]. However, both MRK 1216 and NGC 1277 are outliers in
the FP (see Fig. 4.6) and the non-negligible gas fractions involved in the merging process are expected to
boost star formation activity, which is in contrast to the uniformly old age and star formation history of
NGC1277 (T14 and ?) unless the merging event has taken place at z > 2. As a result, the aforementioned

simulated merger scenarios - which actually have been tailored to test and recover the formation and
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evolution mechanisms of today’s population of ETGs - fail to understand the two compact galaxies in

this work.

In any case, this brings up the idea whether these two objects are representatives of a galaxy popula-
tion that has (at some point) taken a significantly different path than the present-day massive galaxy
population, which has grown in mass and size since z = 2 [van Dokkum et al., 2010] presumably through
successive (minor and major) merging events. In fact, stellar age estimates of the present-day massive
galaxy population [McDermid et al., 2015] are consistent with the inferred stellar ages of NGC 1277, and
the range of allowed stellar mass-to-light ratios in our dynamical models cannot rule out the trend of a
more bottom-heavy IMF with increasing stellar velocity dispersion, which is also commonly observed for
the most massive ellipticals. Accordingly, both galaxies would present unaltered and passively evolved
analogues of the quiescent galaxy population at much earlier times, which are thought to constitute

the cores of today’s massive ellipticals.

Indeed, the two galaxies are quantitatively similar to the quiescent galaxies at z = 2 . Those are also
found to be small [Daddi et al., 2005; Trujillo et al., 2006; Zirm et al., 2007; van Dokkum et al., 2008; van
der Wel et al., 2008, 2014], possess extremely high dispersions [van Dokkum et al., 2009] and generally
have a disk-like structure [van der Wel et al., 2011]. T14 were able to go beyond a simple structural,
photometric and kinematic comparison by carrying out a stellar population analysis of NGC1277. Based
on long-slit spectra out to ~ 3 R, they found that NGC 1277 consists of a uniformly old stellar population
(> 12 Gyr), formed during a very short-lived era at z > 3 with an intense star formation rate. This again
is in good agreement with spectroscopic investigations of Kriek et al. [2006, 2009] and Toft et al. [2012]
for individual quiescent galaxies at z ~ 2. Those have also very old stellar populations, with the bulk
of their mass already assembled at z > 3, and are absent of any significant star formation. Recently,
evidence has even mounted for a further evolutionary link with the sub-millimeter galaxies (SMGs) at
z > 3 [Toft et al., 2014]. The SMGs not only provide the necessary ages and compact sizes but also
the intense star formation rates - which could have been triggered by gas-rich (major) mergers at high
redshifts [Naab et al., 2007; Wuyts et al., 2010] - to explain the old stellar populations of the quiescent
galaxies at z = 2 (but see also Williams et al. 2014; Dekel & Burkert 2014 and Barro et al. [2014] for an

alternative formation channel)

The resemblance between NGC1277 and MRK1216 and the quiescent galaxies at higher redshifts is
remarkable. Nevertheless, we need to go beyond single anecdotal examples if we want to underpin
the claim that the compact galaxies, found in the HETMGS, are passively evolved descendants of the
quiescent population at z < 2. It is encouraging though that we have found 18 compact, high-dispersion,
early-type galaxies in total, which will enable us to investigate in detail their photometric, structural,

kinematic and stellar evolutionary properties.

2.6 Uncertainties

Our orbit-based dynamical analysis and its implications are afflicted by a number of moderate concerns,

which we would like to highlight here.
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* During the construction of our dynamical models we have assumed axisymmetric stellar systems.
The models are robust with respect to changes in the inclination (Section 2.4.2.1) but the orbital
structures can change rapidly when the assumption of axial symmetry is relaxed. Even mild tri-
axiality would alter the observed phase space structures in Fig. 2.8 and 2.9 noticeably, leading
also to variations in the derived values of e.g. the black hole mass [van den Bosch & de Zeeuw,
2010]. In this respect, even the slightest twist in the PA can be interpreted as a deviation from
axisymmetry. An MGE with a fixed PA for all Gaussians (Sec. 2.2.2) is a necessary but insufficient
condition for the assumption of axial symmetry, as triaxial deprojections cannot be ruled out.
However, the body of evidence that has been presented throughout this chapter, namely the fast
and regular rotation around the short axis, the anti-correlation between v and hg, the negligible
mis-alignment between the kinematic and photometric PA and results from shape inversions of a
large sample of fast-rotating early-type galaxies [Weijmans et al., 2014], show that axial symmetry

is a justified assumption of the intrinsic shape of both compact objects.

* Tightly linked to the black hole mass is the stellar mass-to-light ratio which in turn is degenerate
with the dark matter halo [Gebhardt & Thomas, 2009]. The determination of Y, is therefore
crucial in constraining the black hole, if the black hole sphere of influence is not resolved [Rusli
et al.,, 2013]. In our set of dynamical models, the stellar mass-to-light ratio is assumed to be
constant throughout the observed range of kinematics. This is also supported by the lack of
colour gradients in both galaxies and an only mild change in the stellar population properties of
NGC 1277 within a radial extent of ~ 3 effective radii (T14).

Despite emerging evidence for strong systematic variations in the IMF of early-type galaxies [e.g
Auger et al., 2010b; Dutton et al., 2011; Cappellari et al., 2012; Spiniello et al., 2012], predictions
of SSP models with a single power-law Salpeter IMF [Vazdekis et al., 1996, 2012] are consistent
with our orbit-based dynamical models of both NGC1277 and MRK1216. This has formerly been
excluded at the 3¢ level for NGC1277 in vdB12. Whereas those conclusions based on spectral syn-
thesis fits of NGC1277’s single SDSS aperture [Cid Fernandes et al., 2005] with Bruzual&Charlot
models [Bruzual & Charlot, 2003], our values for the stellar mass-to-light ratios are derived from
fits to the spatially resolved long-slit spectra (T14) based on MIUSCAT [Vazdekis et al., 2012; Riccia-
rdelli et al., 2012] SPS models. Both approaches have been shown to provide similar answers, and
the difference between the T, values quoted in vdB12 and the values in this work is attributable
to the choice of a lower mass cut-off of 0.01 Mg in the former and 0.1 Mg in the latter. We con-
sider the values reported here as a conservative estimate. Hence the strong tendency towards
a more bottom-heavy IMF in high dispersion galaxies [Treu et al., 2010; van Dokkum & Conroy,
2012; Conroy & van Dokkum, 2012; Ferreras et al., 2013; La Barbera et al., 2013; Spiniello et al.,
2014] cannot be ruled out by our orbit-based dynamical analysis of MRK 1216 and NGC1277, and
would indeed favour the presence of a more moderate black hole mass. However, according to
our Schwarzschild models, the upper range of possible mass-to-light ratios implies that the IMF
in these two objects can only be more massive by ~ 15 and 25 per cent at most in NGC1277
and MRK'1216, respectively, with respect to a Salpeter IMF. While this is largely consistent with the
observed scatter in the relation between IMF slope and velocity dispersion in the aforementioned
studies, exotic variations of the IMF - as predicted e.g. by the best-fitting relation in Treu et al.

[2010] and Spiniello et al. [2014], which implies a shift in T, by ~ 40 per cent for a stellar velocity
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1

dispersion of 300 kms™" - can be excluded.

* A major concern in the modelling of NGC1277 remains the nuclear dust ring. Although contami-
nated regions have been generously masked while constructing the luminous mass model, this is
by no means an appropriate physical account of dust extinction. Since our orbit-based dynamical
models measure the enclosed mass within a given radius, an underprediction of the stellar mass
in the nucleus will obviously bias the measurement towards higher black hole masses, although
it would take a considerable amount of mass to be screened by dust (> 50% of the stellar mass

within 1”) to bring the black hole in line with the scaling relations.

* The biggest concern in the recovery of the individual mass contributions and in particular for the
black hole mass in NGC1277, though, remains the accuracy of the kinematic measurements. E13
has shown that the detection of an over-massive SMBH entirely hinges on the dispersion peak
and the positive iy values in the centre. This is easily verified by our models, where most of the
x? difference between the best-fitting model and a model with a more moderate black hole mass
of log(Me/M) = 9.5 (Fig. 2.7) is attributable to the fits to o and hy4 that contribute 3/4 of the
Ax?. In particular, the seeing limited measurements within 1” in the HET long-slits are the driver
of this difference and question the reliability of the black hole mass estimate. Moreover, dust
obscuration could also affect the measurement of the LOSVD, even though modest dust mass
assumptions show that this is only significant for the large scale kinematics [Baes & Dejonghe,
2001].

The PPAK observations, although limited by their spatial resolution, provide an independent way
to assess the accuracy of the HET measurements and the models in vdB12. As has been shown
in Section 2.3.4, the central dispersion in the PPAK cube is considerably lower than the peak
observed in the HET data. As a result, models that fit the combined data set predict a velocity
dispersion that matches the PPAK data but slightly fails to do so for the peak in the HET data
(Section 2.4.2.2). In addition, the central hy; moments in the PPAK data, while still positive, are
slightly below the HET measurements (Fig. 2.14), which is of concern considering that those values
have been key in discriminating between the various black hole mass scenarios (Sec. 2.5.2.1). In
principle, we could try to reconcile both data sets and let them meet in the middle. However,
quantifying the offset between the long-slit and IFU kinematics is a non-trivial task, which is why
we follow a different route and check the inter-consistency between both by fitting the PPAK data
individually.

We display the results of these test models in Figure 2.15, and show Ax? = x? — x2,., as

a function of black hole mass and dark halo mass (marginalising over all remaining parameters).
The model predictions for NGC1277 based on the PPAK data are shown on top with the predictions
based on both data sets - already illustrated in Fig. 2.5 - plotted below. While the inferred values
for the dark halo are identical, the PPAK only models of NGC1277 yield a black hole mass of
log(Me/M) = 10.01’813. This is largely in agreement with the values derived in Section 2.4.2.2
and vdB12, although with a decreased lower limit for the black hole mass by a factor of two,
and now consistent with the black mass in E13, which was previously ruled out. Here again, the

main contribution to the Ax? between our best-fitting model and models that are ruled out by
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Figure 2.14: Comparison between one of the three HET long-slit (black) and PPAK IFU measurements

(red) of the fourth Gauss-Hermite moment in NGC1277. The HET measurements have been obtained

along the apparent major axis. The PPAK measurements correspond to the values of the Voronoi-binned
data, for which the bin centroids are located within a 1” wide strip along the major axis.

the statistical 30 uncertainties comes from the velocity dispersion and the fourth Gauss-Hermite
moment. In contrast to our fiducial models, however, which fitted both data sets simultaneously,
the main driver in the fits to ¢ and h4 cannot be traced back to the seeing limited innermost
data points but is more uniformly distributed, as highlighted in the second and fourth row of Fig.
2.7.

We thus ascribe the decreased lower limit to the larger spatial resolution of the PPAK kinematics
which is not able to resolve the sphere of influence of the massive black hole. For our conclusions
we choose to give no preference to either one of the measurements and stick to the fiducial
models in Section 2.4.2.2. Due to the lingering issues between both data sets, though, the very

careful reader can adopt a lower limit of log(Me/M,) = 9.6 (but see also the next two points).

In the case of MRK1216, the difference between the PPAK and HET kinematics is marginal (Sec.
2.3.3). Although the best-fitting model in Fig. 2.6 seems to be slightly off the measured HET
dispersion, it is still well within the measurement errors. Hence, fits to the PPAK data alone do
not show any difference in the derived values for black hole mass, stellar mass-to-light ratio and
dark halo mass. We therefore do not present a comparison similar to Fig. 2.15 but rather refer

the reader to the detailed analysis and modelling results in Section 2.4.2.1 and 2.5.3.1.

* In Morganti et al. [2013], Monte Carlo simulations of mock galaxy kinematics are utilised to esti-
mate appropriate confidence intervals. Based on their made-to-measure particle code nmagic,
they advocate the use of larger Ax? values to be able to recover their model galaxy parameters.

While these findings are certainly interesting, there are significant differences in the modelling
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Figure 2.15: Comparison of the inferred values for black hole mass and dark matter halo based on

NGC1277’s orbit-based models of the PPAK data only (top) and the combined PPAK+HET data set (bot-

tom). The red dot marks the best-fitting value. The horizontal line denotes a Ax? difference of 9, which
corresponds to statistical 30 uncertainties for one degree of freedom.

approach as well as in the kinematic data set. The investigations of Morganti et al. [2013] are
based on a single case study and more extensive tests are necessary to verify the reliability of
their adopted confidence levels. The uncertainties in our parameter estimation are based on the
commonly used Ax? values. After marginalising over the orbital weights as well as over e.g. T,
cand f, we obtain formal 3¢ errors of the black hole mass with a Ax? of 9. Alternatively, we can
make use of the expected standard deviation of x? for our parameter estimation, as promoted
by e.g. van den Bosch & van de Ven [2009] in the case of IFU kinematics. The standard devia-
tion in x2 is 1/(2 x (N — M)), where N is the number of kinematic constraints (i.e. the four
kinematic moments v, o, hs and hy in each bin) and M the number of free parameters in our
models, namely the dark halo parameters ¢ and f as well as the black hole mass M, and stellar
mass-to-light ratio Y. As a result, we obtain a lower limit for the black hole mass in NGC1277 of

log(Me/M) = 9.6, which again is well in line with the estimate of the black hole mass based on
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models of the PPAK only data and the black hole mass that was put forward by E13. Applying the
same argument to MRK 1216, however, would imply consistency with models which do not contain
a dark halo.

* Finally, we point out that all uncertainties presented here are solely statistical errors. A large un-
certainty factor in any measurement of the black hole mass remains the estimate of systematic
errors. These are hard to quantify and can arise not only through the use of modelling assump-
tions such as a constant mass-to-light ratio, axial symmetry and the adoption of a spherical NFW
halo, but also through technical limitations as for instance a stellar template mismatch and the
influence of the wavelength range that is used to infer the LOSVD. It is beyond the scope of this
chapter to derive an assessment of each of these factors but we acknowledge that their total
contribution most likely overshoots our statistical errors. Still, to provide a conservative estimate
of the black hole mass - by taking into account the effects of systematic uncertainties - we simply
follow the practice of Kormendy & Ho [2013] and adopt a 1o error of A log M= 0.117 (the mean
of all literature 1o black hole mass uncertainties). For NGC1277, this yields a black hole mass of
log(Me /M) = 10.1'_"0:?1 within a 30 confidence interval, or log(M, /M) = 10.01‘8:3 if the fits to
the PPAK data only are taken into account.

2.7 Summary

We have performed a detailed analysis of a suite of kinematic and photometric information of the
two compact, nearby, high central velocity dispersion galaxies MRK1216 and NGC1277. Our analysis
combined three different but complementary data sets; high spatial resolution imaging with the HST,
low-resolution, long-slit spectroscopic observations with the HET and medium-resolution spectroscopic
observations with the PPAK IFU.

We first analysed the reduced and combined HST images with multiple Sérsic components to infer the
structure and morphology of each galaxy. Both galaxies show a very compact, early-type structure
without any noticeable substructures. By means of a multi-component decomposition, we obtained
estimates for a bulge luminosity. A decent fit was obtained with at least four components in both
cases. We further parameterised the observed light distribution with a set of multiple Gaussians, which

in turn was used to build axisymmetric dynamical models.

Kinematic information was extracted by fitting the binned spectra with a set of stellar libraries. The
observations revealed a distinct central peak in the velocity dispersion - hinting at a very high mass
concentration in the nucleus of both galaxies - and a fast and regular rotation around the short axis

that is consistent with axial symmetry.

Our dynamical models rely on a triaxial implementation of Schwarzschild’s orbit superposition method.
Probing a wide range of parameters, we infer upper and lower limits for the individual gravitational
contributions of black hole mass, stellar mass and dark matter halo. For NGC1277 we obtained good
constraints on the black hole mass of log(Me/M,) = 10.1f8j§0 for the best fitting model, consistent

with former measurements of vdB12. Even for high stellar mass-to-light ratios, the lower limit on the
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black hole is considerably higher than predictions of the M, — L gy4 relation in the mid-infrared. In the
case of MRK 1216, we only obtain an upper limit of log(M,/M) = 10.0. High-resolution spectroscopic
observations are thus needed to resolve the sphere of influence and to place firm constraints on its

black hole mass.

Despite kinematic information out to > 5kpc, we were not able to constrain the dark halo parameters
significantly. The models predict a dark matter contribution of up to 52 per cent in MRK1216 and 13
per cent in NGC1277 within one effective radius. Models without a dark halo are formally excluded at
the 30 level in MRK1216, only. The difference between the best-fitting model without a halo and the
overall best-fitting model is mainly driven by data points within 5”. We show that this difference is
due to an increase in the constant mass-to-light ratio in the dark-halo-free models to account for the
outer kinematics, which then propagates towards the centre and leads to the observed mismatch. A
radially increasing mass-to-light ratio could indeed recover the data without the need of a dark halo.
But, if anything, recent investigations of massive early-type galaxies suggest a radially decreasing stellar

mass-to-light ratio.

The stellar mass-to-light ratios span a range of 5.0 - 8.0 in V-band in NGC1277 and 1.0 - 2.3 in H-band
in MRK1216. The best-fitting models are in good agreement with predictions of SSP models with a single
power-law Salpeter IMF. Higher mass-to-light ratios - as have been observed in high dispersion galaxies -

cannot be excluded. Nevertheless we place upper limits on possible deviations from the derived values.

The orbital structure is rotationally supported in both galaxies, which is consistent with the multi-
component Sérsic decompositions of the deep HST images. This is highly indicative that MRK 1216 and
NGC1277 do not possess any pressure supported classical bulges that have formed through violent
relaxation in late (i.e. z < 2), equal mass mergers. Successive minor and dissipative major merging
events are unlikely too, as these tend to increase the galaxy size drastically and should yield more recent
star formation activities, which are in contrast to their uniformly old stellar age estimates. Taking into
account their compact, featureless and regular structures as well as their high dispersions and rapid
rotation, these compact objects might well be unaltered descendants of the quiescent galaxy population
atz = 2.






Chapter

The massive dark halo of the compact,

early-type galaxy NGC 1231

Abstract

We investigate the compact, early-type galaxy NGC1281. Based on high spatial resolution imaging and
wide-field integral field unit observations, we construct out orbit-based dynamical models and hereby
constrain its dark and luminous matter content. Under the assumption of mass-follows-light, our
models predict a stellar M/L of T, = 2.8 + 0.1 in H-band. This mass-to-light ratio is not only higher
than expected from stellar population synthesis models with a Salpeter IMF, but the models clearly fail
to recover the line-of-sight velocity distribution and hence call for a significant amount of dark matter
in this galaxy. Models with a dark halo recover the kinematics well and indicate that NGC1281 is a dark
matter dominated galaxy with a contribution of up to 90 per cent to the total enclosed mass within
5 effective radii (= 7kpc), irrespective of the exact halo parameterisation. When parameterising the
dark matter halo with a spherical NFW profile, we find a dark halo mass of 11.4 < log(Mp/Mg) < 1.8
within 7kpc and a stellar M/L of 0.6 - 1.1 in H-band. However, this stellar mass-to-light ratio is much
lower than predicted by an old stellar population based on a canonical Kroupa (Y, = 1.3) or Salpeter
(T4= 1.7) IMF. Moreover, the halo mass within the kinematic extent is one order of magnitude larger
than expected from simulations within the ACDM framework and an extrapolation of the dark halo
profile yields cluster-sized dark halo masses of 10'® M. Adopting a stellar mass-to-light ratio of 1.7,
as indicated by our stellar population synthesis fits, yields a more reasonable dark halo to stellar mass
ratio of log(Mago/M,) = 2.5 within 7kpc, but these models fit the kinematics worse and deviate from
the best-fitting NFW model by more than 50. A non-NFW dark halo profile might solve the discrepancy
between the unphysical consequences of the best-fitting dynamical models and models based on more
reasonable assumptions for the dark halo and stellar mass-to-light ratio, which are disfavoured according

to our parameter estimation.

67
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3.1 Introduction

In the cold dark matter paradigm (ACDM), galaxies form via cooling of gas in the potential wells of
extended, virialised dark matter haloes. While this picture has been very successful in describing
the local, large scale structures of the universe [Springel et al., 2006; Spergel et al., 2007], conflicts
arise between the predictions and observations on galaxy scales as the resolution of cosmological N-
body simulations steadily increase. The poster child of these lingering discrepancies is the "core-cusp"
problem where the central dark matter density distribution of dwarf and low surface brightness galaxies
indicate a cored-like behaviour [Moore, 1994; McGaugh & de Blok, 1998], in contrast to the simulations
which show a clear cusp [Navarro et al., 1996]. However, the Galaxy, too, stubbornly refuses to provide
evidence of a significant amount of massive dark subhalos, commonly known as the "Missing Satellites
Problem" [Kauffmann et al., 1993; Klypin et al., 1999; Moore et al., 1999a; Boylan-Kolchin et al., 2011].

Efforts to reconcile both, models and observations, have focused on complex baryonic feedback pro-
cesses on the theoretical side. Issues on the observational side however are manifold. Although proof
for the presence of dark matter in galaxies dates back to the 80s, based on extended neutral gas discs
that map the dark halo at many effective radii in late-type galaxies [Rubin et al., 1980; van Albada et al.,
1985], the detection of halos in early-type galaxies (ETGs) is not as straightforward due to the lack of
similar features. Different tracers have therefore been employed - e.g. planetary nebulae [Douglas
et al., 2007; Coccato et al., 2009], globular clusters [C6té et al., 2003] and hot X-ray gas [Humphrey
et al., 2006] - but the dynamical modelling of each of these brings along its own set of assumptions
and leads to partially conflicting answers [e.g. Romanowsky et al., 2003; Pierce et al., 2006]. The bulk of
work has therefore focused on the analysis of stellar kinematics with two-integral axisymmetric Jeans
models or state-of-the-art orbit-based dynamical models which are more conclusive and indicate that
dark matter is a key ingredient in galaxies [Rix et al., 1997; Cappellari et al., 2006; Thomas et al., 2007;
Cappellari et al., 2013a]. The spatial coverage of the stellar kinematics, however, is usually limited to
regions where the stellar mass is assumed to dominate the total mass budget, and the attempt to break
the degeneracy between the stellar and dark mass in these regions is therefore complicated. As a con-
sequence, the halo parametrisation remains a matter of debate and the amount of dark matter strongly
varies between no dark matter in some individual cases and a more typical dark matter contribution

of up to ~ 50 per cent to the total enclosed mass within one effective radius.

In this chapter, we present orbit-based dynamical models of the compact, early-type galaxy NGC1281.
The data acquisition and analysis of NGC1281 has been carried out as part of a larger program that
aims at the detailed study of compact, elliptical, high central stellar velocity dispersion galaxies [see
Chapter 2; van den Bosch et al. 2015; Walsh et al. 2015]. The program'’s target sample was a result of
the Hobby-Eberly Massive Galaxy Survey (HETMGS), which based on the sphere of influence argument
looked for dense, high central velocity dispersion galaxies that are candidates for hosting (over-)massive
supermassive black holes (SMBH). We yet lack high spatial resolution spectroscopic observations which
will enable us to resolve the dynamics close to the SMBH, but complementary data sets of high spa-
tial resolution imaging and integral-field unit (IFU) observations are now available to study its internal
structure and large scale mass distribution. In particular the wide-field IFU data presented here extends
to ~ 5 effective radii (R.) (= 7kpc) which should be sufficient for a dynamical constraint on the dark

matter halo.
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This chapter is organised as follows: Section 3.2 presents the data, consisting of deep HST imaging and
wide-field PPAK IFU stellar kinematics. In Section 3.3, we construct out orbit-based dynamical models
of NGC 1281 to constrain its stellar and dark content. We discuss the reliability and significance of our

findings in Section 3.4 and summarise our results in Section 3.5.

Throughout this chapter we adopt 5th year results of the Wilkinson Microwave Anisotropy Probe (WMAP)
[Hinshaw et al., 2009], with a Hubble constant of Hy = 70.5 kms™! Mpc’l, a matter density of (23 =

0.27 and a cosmological constant of 2 = 0.73.

3.2 Data

3.2.1 HST Imaging

For brevity, we refer the reader to Sec. 2.2, which covers in detail the data acquisition and reduction

pipelines. Here, we confine ourselves to only a brief description of the main steps.

Photometric data of NGC1281 have been obtained by the HST WFC3 in H-band (FI60W), as part of
program GO: 13050 (PI: van den Bosch), resulting in a total of three dithered full- and four sub-array
exposures with a total integration time of ~ 1400s. The purpose of the 1.7s short sub-array exposures
is to mitigate the effect of saturation in the nucleus of the long 450s full-arrays. The seven flat-field
calibrated exposures are reduced and combined via Astrodrizzle [Gonzaga et al., 2012] to obtain a
super-sampled image with a resolution of 0.06"/pixel, while correcting for geometric and photometric

distortions.

For the photometric analysis, we make use of the point-spread function (PSF) of the Cosmic Assembly
Near-Infrared Deep Extragalactic Survey (CANDELS) [van der Wel et al., 2012]. The PSF is created with
TinyTim [Krist, 1995] in the FI60W filter and drizzled to replicate the final PSF at the desired plate scale
of 0.06".

NGC1281 is a compact, elliptical galaxy in the Perseus cluster with an E5 morphological classification
according to the NASA/IPAC Extragalactic Database (NED). Redshift measurements of this object place
it at a Hubble-flow distance of 60 + 1Mpc, at which 1” corresponds to an absolute scale of 0.29 kpc. A
circular aperture that contains half of the light has a size of R,/ = 4.5". The galaxy has a total apparent
magnitude of My vega = 10.57 . We further investigate its photometric properties by carrying out a
single- and two Sérsic decomposition of the high-resolution H-band imaging while generously masking
any contamination by fore- and background objects. A single Sérsic fit has an apparent magnitude of
My vega = 10.37 with an effective (semi major axis) radius of 6.8”, a projected axis ratio (¢ = b/a) of
0.63 and a single Sersic index of n = 3.9. Residuals of this fit are strong and show an overestimation of
the outer and inner SB profile. Moreover, the residuals also reveal the presence of a central dust disk
with an apparent minor to major axis ratio of 0.35 and a semi-major axis length of 0.3 kpc. Assuming
that this intrinsically flat disk traces the position angle (PA) of its host, we can infer the inclination of

this galaxy to be 70°. A fit with two Sérsic components improves the fit considerably. Here, a rather

'All magnitudes presented throughout this chapter are corrected for Galactic extinction based on SDSS re-calibrated values
[Schlafly & Finkbeiner, 2011] of infrared dust maps [Schlegel et al., 1998]
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Figure 3.1: Left: HST H-band image of NGC1281, which covers a field of 150 0", with a final scale of
0.06"/pixel. Right: Contour map of the same image. The MGE contours are over-plotted in black. The
bottom left plot shows the accurate reproduction of the surface brightness profile within the central 30
2
arcsec”.

Table 3.1: Multi-Gaussian-Expansion of NGC1281's HST (FI60W) H-band image. The columns display the
number of each Gaussian, beginning with the innermost one (1), the central surface density (2), the
dispersion (3) and the corresponding Sérsic index (4) as well as the apparent flattening (5).

# of components I [Lopc 2] o [arcsec] n q
1 14972711 0.15 0.5 0.58
2 5002.1391 0.40 05 0.99
3 19213.442 0.78 05 0.60
4 6795.0136 1.49 0.5 0.65
5 2058.1459 1.83 0.5 0.99
6 1515.6123 5.04 05 0.52
7 464.61811 9.64 05 0.59
8 59.584718 15.71 05 0.90

flat (¢ = 0.7), inner (R.= 1.7"), bulge-like component (n = 2.2) with a magnitude of My vcgq = 11.61
is embedded in a flat (¢ = 0.6), outer (R.= 10"), disk-like (n = 1.3) component with a magnitude of
M vega = 10.97. The fit has a bulge-to-total ratio (B/T) of 0.55.

To obtain a stellar mass model, we parameterise it's surface brightness profile by a set of multiple
Gaussians [MGE; Monnet et al., 1992; Emsellem et al., 1994]. In our case, the MGE consists of 8 Gaussians
with a common centre and a fixed position angle (PA) of 69°, measured counter-clockwise from the y-
axis to the galaxy major axis, with the image aligned N.-E. (i.e. north is up and east is left). In Fig. 3.1, we
illustrate the deep HST H-band image (left) and the MGE parameterisation (right). The MGE accurately
reproduces the SB profile of this object throughout the whole radial extent. There is no position angle
twist in the photometric profile and the PA varies by less than 3° between the inner- and outermost

isophotes.



Chapter 3: NGC1281 7

NGC 1281 — PPAK (Data & Errors)

v+ Av o + Ao h3 + Ah3 h4 + Ah4
20} H § 3 3
o P & &
3 2 3 g
10F ~| : N ~
3 3 g g
I 3 § T 7
@ 0
o
10} i
-20 |
20F 3
10} N
o 3
L)
@ 0
° I
-10} ]
-20
-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 O 10 20 -20 -10 0 10 20
arcsec arcsec arcsec arcsec

Figure 3.2: Top: PPAK IFU stellar kinematic maps of NGC 1281, of the mean velocity v, velocity dispersion

o, and Gauss-Hermite moments h3 and h4. The maps show fast rotation around the short axis of 183

kms™! and a central velocity dispersion of 268 kms ™. Overplotted are contours of constant surface

brightness from the same data cube. The empty region above the centre is generously masked due to

the presence of a bright foreground star. Bottom: Corresponding uncertainty maps. Maps are oriented
N.-E., i.e. north is up and east is left.

3.2.2 PPAK Kinematics

Kinematic data of NGC1281 have been obtained at the 3.5m telescope at Calar Alto, with the Potsdam
Multi Aperture Spectrograph (Roth et al. 2005) in the PPAK mode (Verheijen et al. 2004, Kelz et al. 2006),
making use of the low-resolution V500 grating. This setup has a resolving power of R = 850 at 5400 A
and a spectral resolution of 6.3 A FWHM across the nominal 3745 - 7500 A spectral range, corresponding
to an instrumental velocity dispersion of 150 kms—!. The PPAK IFU consists of 382 2.7 diameter fibres,
which are bundled to a hexagonal shape and cover a field of view (FOV) of 1.3/ x 1.3’. 331 of the total
382 fibres are science fibres that provide a 100 per cent covering factor with a 3 dither-pointing strategy

while 36 fibres, located 72" away from the centre, are used to sample the sky.

The observing strategy was defined by the overall goal to acquire wide-field stellar kinematics out to
several effective radii. This was accomplished on January 5 and 6, 2013 with a total exposure time of
6 hours on-source, achieved by 3 complete runs with 3 dither-pointings of 2400s each, divided into 2

frames a 1200s.

The data reduction follows the dedicated reduction pipeline of the Calar Alto Legacy Integral Field
Spectroscopic Area (CALIFA) Survey [Sanchez et al., 2012; Husemann et al., 2013] and includes bias
and straylight subtraction, cosmic ray rejection [Husemann et al., 2012], optimal fibre extraction, fibre
flat-fielding, flexure correction and wavelength and flux calibration using spectrophotometric standard
stars. The sky spectrum is the mean of only the 30 faintest sky fibres - to exclude any contamination

by stars or low SB brightness objects - and subtracted from its associated science exposure. The 3
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dither-pointings are then resampled to the final data cube with a 1” sampling using a distance-weighted

interpolation algorithm [Sanchez et al., 2012].

We extract the line-of-sight velocity distribution (LOSVD) by fitting the spatially binned spectra [Cappel-
lari & Copin, 2003] with a non-negative, linear combination of stellar templates [Cappellari & Emsellem,
2004] from the Indo-U.S. stellar library [Valdes et al., 2004] in the vignetting and sensitivity limited
useful spectral range of 4200-7000 A. The spectra were binned to reach a minimum S/N of 40 in each
Voronoi zone, resulting in a total of 167 bins that cover the stellar kinematics of NGC1281 out to ~ 25"
(i.e. 5 effective radii or roughly 7kpc). Fig. 3.2 displays the two-dimensional mean line-of-sight velocity
v, the velocity dispersion ¢ and the higher order Gauss-Hermite moments hs and hy per bin on the
plane of the sky. The kinematic maps reveal extended, fast and regular rotation around the short axis,
with a maximum velocity of ~ 183 kms~!. The peak in velocity dispersion is ~ 268 kms~! and drops
to 135 kms~! for the outermost bins. Moreover, we measure a strong anti-correlation between v and
hs, as is expected for axisymmetric systems [Bureau & Athanassoula, 2005; Chung & Bureau, 2004],
and throughout positive hy values within the whole radial extent. Errors on the kinematic moments
are small, with mean values of 9 kms~! and 15 kms~!for v and ¢ and 0.05 and 0.06 for hs and hy
respectively. The radial increase in the measurement errors is due to NGC 1281's compactness. The
surface brightness and hence the S/N of the individual spaxels drops rapidly and the outermost bins

cannot accumulate enough spaxels to reach the target S/N.

To replicate the PSF of the PPAK observations, we fit a PSF convolved, reconstructed image to the MGE
of the HST high-resolution data. The PSF is expanded by multiple, round Gaussians and in our case the
image is well reproduced by two components with a dispersion of 1.53” and 5.39” and corresponding

weights of 84% and 16% respectively.

3.3 Dynamical Analysis

3.3.1 Schwarzschild Models

The dynamical analysis relies on a triaxial implementation of Schwarzschild’s orbit superposition method
[van den Bosch et al., 2008]. Based on a non-negative, linear super-position of orbits in a given gravita-
tional potential, we fit the observational constraints and hereby infer the contributions of the underlying
gravitational constituents, consisting of black hole, stars and dark matter to the total mass budget. The
reliability of this approach has been tested extensively and proven to be a powerful method to infer the

internal mass distribution and dynamical structure of galaxies [van de Ven et al., 2008].

For our mass model, we consider three gravitational sources; the stellar mass M,, which is the depro-
jected intrinsic luminosity density times a constant stellar-mass-to light ratio T, the black hole mass
M, of a central SMBH and the dark halo, parameterised by a spherically symmetric NFW profile [Navarro
et al., 1996] with concentration cpjs and total viral mass M par=Magg. The models cover a large range
in parameters space of Y, € [0.4, 3.0, log(M./M¢) € [8.0,10.4], cpar € [6, 16] and log(Mpas/M,) €
[-2, 6].
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Within these mass models we calculate a representative orbit library, consisting of 7533 orbits sampled
along 31 logarithmically spaced equipotential shells out to 150”. Every shell is used as a starting point for
9 orbits in each of the radial and angular direction. During orbit integration the projected and intrinsic
quantities are stored and PSF convolved for comparison with the data. Finally, the models recover the
binned LOSVD in a least-square sense by linearly adding up the contributions of the orbital building
blocks.

Here, we restrict ourselves to an oblate axisymmetric stellar system. Given the fast and regular rotation
around its apparent short-axis, the negligible variation in the photometric PA and the results of shape
inversions of a large sample of fast-rotating ETGs [Weijmans et al., 2014], axial symmetry is a well
justified assumption of the intrinsic shape of NGC1281. Hence, the inclination is the only free viewing
parameter that is needed to deproject the MGE-parameterised surface brightness and to infer the
stellar mass density and hence the stellar gravitational potential of the galaxy (assuming an absolute
magnitude for the sun in H-band of 3.39).

The flattest Gaussian in our fit has an axis ratio of ¢ = 0.52 (Table 3.1), which implies possible inclinations
of 60° - 90° (with 90° being edge-on). In our case, though, the inclination is reasonably well constrained
by the central dust disc to be 70°. Nevertheless, to assess the reliability of our results with respect to
changes in the inclination, we have also probed a more edge-on view of 80° and found no significant

deviations (< 5 per cent) for the parameter constraints that are reported below.

3.3.2 Modelling Results

The results of our orbit-based dynamical models are presented in Fig. 3.3. The top panel shows the
total enclosed intrinsic mass (black), the stellar mass (red), the dark matter content (green) and the
black hole mass (blue) as a function of radius. The solid lines denote the values for the best-fitting
model, with the dashed lines indicating the statistical 30 uncertainties for one degree of freedom. We
obtain a stellar mass of log(M,/Mg) = 10.6f8'&, a dark halo mass of log(Mpn/M,) = 4.5t};g and
a black hole mass of log(M,/Mg) = 10.0f8:%. At small radii (< 3”) the black hole is the dominant
contributor to the total mass budget but quickly released from its role by the dark halo, which already
takes over at ~ 4.5” (i.e. 1 R, or roughly 1.3kpc). The total enclosed mass within the kinematic extent
is log(Mror/Mz) = 16702,

We show the black hole mass and dark matter content as a function of stellar mass-to-light ratio in the
middle and bottom panel. Here, the white, grey and black lines denote 68, 95 and 99 per cent quantiles
of a x? distribution with two degrees of freedom. Both the black hole mass and the dark halo mass
are tightly constrained which is a result of the narrow predictions for the stellar mass-to-light ratio in
H-band of T,= 0.6 - 1.1. Note that although the contours of the dark halo mass are well defined, the
exact halo shape is not. Within the statistical uncertainties, the models can adopt any concentration
within the range that is probed. Moreover, the scale radius is 200” < r, < 3500” (i.e. 60kpc < ry <

1000 kpc) and hence promotes a constant density slope of the dark halo within the kinematic extent.

Clearly models without a dark halo cannot recover the details of the LOSVD. We illustrate this in Fig. 3.4,
where we present (from left to right) the data, the overall best-fitting model (cpar =10, log(Mp s/ M)
= 4.5, log(Me/Mz) = 10.0 and T,= 0.76) and the best-fitting model without a halo (Y,= 2.8, cpys =
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Figure 3.3: Top: Intrinsic enclosed mass distribution of NGC1281 as a function of radius. Solid lines
represent best-fitting values and dashed lines 30 confidence intervals. The dotted vertical lines indicate
the resolution limit and the extent of the kinematic observations. Middle: Confidence contours of black
hole mass vs. stellar mass-to-light ratio. Bottom: Confidence contours of halo mass vs. stellar mass-to-
light ratio. The white, grey and black lines represent 1-, 2- and 3¢ confidence intervals for two degrees
of freedom. The white triangle denotes the best-fitting dynamical model. The black triangle denotes
the best-fitting model with a stellar M/L of 1.7, consistent with the stellar M/L inferred from the stellar
population analysis. As a reference we overplot predictions of stellar mass-to-light ratios in H-band from
SPS models with a Salpeter or Kroupa IMF assuming an age of 14 Gyr and solar metallicity.
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Figure 3.4: First column: PPAK IFU data consisting of the mean line-of-sight velocity v, velocity dispersion

o, h3 and h4. All maps are oriented N.-E., i.e. north is up and east is left. Second column: Overall best-

fitting Schwarzschild model predictions with a reduced x? of 0.45. Third column: Best-fitting model

without a halo, i.e. mass-follows-light (MFL). Models without a dark component cannot recover the

LOSVD, and the best-fitting model w/o a halo deviates from the best-fitting dynamical model (which
includes a massive dark halo) by Ayx? = 80.

15, log(Mpnr /M,) = -2.0 and log(Me/Mg) = 8.3). The difference between the overall best-fitting model
and the bad model is Ax? > 80, with most of the x? difference attributable to the fit to v, o and hs.

Thus, the bad model is excluded at more than 5¢.

The best-fitting dynamical model prefers an extremely massive SMBH, a massive dark halo and a very
low stellar mass-to-light ratio. Fig. 3.4 points at the outer velocity moments as the driver of these
detections, and indeed model predictions beyond 1-2 R, show strong deviations from the observations

if more typical values for the stellar mass-to-light ratio, dark halo and black hole are adopted.

The strong constraints by the remote kinematic measurements are further exemplified in Fig. 3.5
where we provide a direct comparison between our fiducial models and test models which only fit the
data within 1 R.. Both panels present the X2 contour levels of halo mass log(Mpas/M,) vs. H-band
stellar mass-to-light ratio Y, with the test models on top and the fiducial models on the bottom. The

plot provides unambiguous evidence for the power of the wide-field IFU kinematics, which are able
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Figure 3.5: Comparison of the inferred values for the dark halo and stellar mass-to-light ratio of

NGC1281’s orbit-based models. Top: Test models that are confined to fit the kinematic data within

one effective radius. Bottom: Fiducial models that fit the available kinematic data out to 5 R.. The

white, grey and black line denotes 1-, 2- and 3o confidence intervals for two degrees of freedom. Test

and fiducial models show similar best-fitting parameters, but the large-scale kinematics provide tighter
constraints for the stellar mass-to-light ratio and the dark halo mass.

to effectively break the degeneracy between the dark halo and the stellar mass-to-light ratio. The
massive dark halo is tightly constrained and the remarkably small, constant stellar mass-to-light ratio
then propagates inwards and yields an unreasonably massive SMBH to explain the total dynamical mass
in the centre. We also emphasise that the influence of the massive dark halo is already noticeable within
the central 5”, where the sharp rise in the enclosed mass profile can only be explained by an additional
dark component. In this region, the test models yield dark halo masses which are in agreement with

the dark halo masses of the fiducial models though with larger uncertainties.
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3.4 Discussion

3.4.1 Alternative Halo Parameterisations

The dark halo mass in NGC1281 is based on the assumption that the dark matter density profile is
well approximated by a spherically symmetric NFW profile. To assess the robustness of the results
with respect to changes in the halo parameterisation, we have constructed models with a spherical
logarithmic halo which possesses a flat central density core and gives rise to an asymptotic constant
circular velocity at very large radii. In Fig. 3.6 we plot the enclosed total mass as a function of radius
for models with a NFW halo, a cored-logarithmic halo (CL) and, in addition, for models where mass-
follows-light (MFL). The upper and lower line for each halo parameterisation corresponds to the upper

and lower bound 3¢ statistical uncertainty in the respective set of models.

Within the uncertainties the CL halo has a core radius of 60” < r. < 110” (i.e. 17kpc < r. < 32kpc)
and a circular velocity of 1700 km s7! < v, <3200 kms~!. Here again, the models prefer a constant
slope for the dark matter density distribution and yield a stellar mass-to-light ratio of 0.8 < Y, <1in
H-band.

The total enclosed mass of the NFW and CL models are in excellent agreement, being about 11.4 <
log(Mror/Mg) < 11.8 within 25” (~ 5 R, or 7kpc), and the slight deviations are most likely an effect
of the coarse sampling strategy in the latter. The simple mass-follows-light models fail to keep pace
and predict a total enclosed mass of 10.9 < log(Mror/Mg) < M.1 within the same spatial extent.
Moreover, the best-fitting MFL model has a mass-to-light ratio of 2.8 and deviates by Ay? = 80 from
the best-fitting NFW and CL models, as illustrated in Fig. 3.4.

3.4.2 Implications And Caveats

According to our orbit-based dynamical models of the wide-field IFU data, NGC 1281 cannot be recovered
without the presence of a dark halo (Fig. 3.4 and 3.5). Models with a dark halo provide a good fit to the
LOSVD and yield a total enclosed mass of 1.4 < log(Mror/Mg) < 11.8 within the kinematic extent,
irrespective of the adopted dark halo parameterisation (Fig. 3.6). Given it’s total luminosity and a stellar
M/L of <1 (as indicated by our best-fitting dynamical models), this results in a dark matter contribution
of 90 per cent to the total enclosed mass within 5 R, (= 7kpc). Adopting an optimistic stellar M/L of ~
2 in H-band would still imply a substantial halo-to-stellar mass ratio of 0.8. Based on these arguments,
we can conclude that NGC1281 is embedded in a massive dark halo, even if we would choose to remain

ignorant regarding the details of its dark halo profile, black hole mass and stellar M/L.

3.4.2.1 The Dark Halo Profile

We obtain tight predictions for the total dark halo mass of log(Mpa/M,) = 4.5t};§. The dark halo is
hence not only one order of magnitude larger than the stellar mass within a comparatively small spatial
extent of 5 R, (= 7kpc), but also more than one order of magnitude larger than what is expected if the

mass-concentration relation [Maccio et al., 2008] and stellar-to-halo mass relation [Dutton et al., 2010]
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Figure 3.6: Enclosed total intrinsic mass as a function of radius for models with a NFW halo (solid), a
cored-logarithmic halo (dash dot) and mass-follows-light models (long dash). The dotted vertical lines
denote the lower resolution limit and the maximum of the PPAK kinematics. The upper and lower line
for each halo assumption corresponds to the upper and lower bound of the statistical 3o uncertainties.
The cored-logarithmic and NFW halo parameterisations are in excellent agreement whereas the mass-
follows-light models clearly underestimate the total enclosed mass at the maximum kinematic extent.

holds. In the context of ACDM cosmology, though, this is very unlikely and in clear contrast to what
has been observed so far based on results of weak gravitational lensing [Mandelbaum et al., 2006],
satellite kinematics [More et al., 2011] and halo abundance matching [Moster et al., 2010]. Consequently,
a spherical NFW profile cannot be a fair assumption of the dark halo profile of this galaxy. The results
for the NFW halo in our dynamical models can only be considered as an attempt to recover the high
total enclosed dynamical mass (Mror) - which is not possible for simple MFL models - without an
interpretation of the physical consequences for the values of choice. This is also illustrated by the
preference of a constant dark matter density slope - in both the NFW and CL case - since the models
try to maximise the dark matter contribution within the observational extent. Moreover, the necessity
of a rapidly rising dark halo contribution leads to a tension between the stellar mass and dark mass in
the central parts, and this tension can only be dissipated by significantly decreasing the stellar mass-
to-light ratio to unrealistically low values (Sec. 3.4.2.3), which in turn calls for an unreasonably massive
SMBH (Sec. 3.4.2.4).

In principle, the constant density slope could still be explained by an NFW profile if, e.g. the halo was
stripped by the Perseus cluster environment. As the outer halo gets stripped, the collisionless dark
matter particles could relax and the halo would puff up in the shallower gravitational potential well,
similar to what has been predicted for the collisionless stellar components of dwarf NFW halos during
the tidal disruption in MW-like potentials [Pefarrubia et al., 2006]. The relaxation and puff up of the

dark matter halo could then shift the turnover radius further away, making it hard to constrain with
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our limited FOV. But even if the halo is truncated, this does not solve the discrepancy between the halo
mass of NGC1281 and the halo masses that are predicted within the ACDM framework. The dark halo
of NGC1281 within 25" is still over-massive, and the relaxation due to stripping would imply that the

unstripped halo was even more concentrated and massive before within the same spatial extent.

3.4.2.2 The Constant Stellar M/L

The most restrictive condition in our dynamical models is the assumption of a constant Y. The stellar
mass-to-light ratio in NGC1281is 0.6 < T, < 1.1and significantly lower than expected from an old stellar
population (> 10 Gyr) of a canonical Kroupa IMF (T, = 1.3) or Salpeter IMF (Y, = 1.7) (see Sec. 3.4.2.3).
A radial variation of the stellar mass-to-light ratio, however, could mitigate the effect of missing mass

in the remote regions and lower the predictions for additional dark mass while increasing 1.

To this end we constructed dynamical models with a T, gradient, covering single slopes of x € [-0.5,
0.5]. The functional form of the stellar mass-to-light ratio is then given by log(Y,) = log(Y4,0) + £ X
log (r/7¢), with r being the radius in arcseconds and Y, ¢ the pivot stellar M/L at o = 0.1”. The models
include a SMBH and a NFW halo and the sampling in parameters space has not changed with respect
to our fiducial models in Sec. 3.3.2. We found that models with slopes of x € [-0.1, 0.3] can recover
the observations very well. The best-fitting model with a slope is a statistically better fit than the
best-fitting fiducial model (Ax? = 20), but this is expected given the increased freedom in the spatial
variation of the stellar mass-to-light ratio. In general, the slopes are positive and driven by the need
of a substantial amount of dark mass. The radial increase of the stellar mass-to-light ratio, however,
cannot account for a significant fraction of the total dynamical mass due to the rapid decline of the
stellar surface density of NGC1281. Hence the predictions for the dark halo mass decrease only by 0.5
-1.0 dex, with the best-fitting model now located at log(Mpas/M,) = 4, log(Me/Me) =10.0, T =
0.8 and k = 0.1.

Moreover, a positive slope of 0.1 - 0.3 induces a change in the stellar mass-to-light ratio from 0.8 in
the centre to 1.4 - 4.2 in the outermost regions. The existence of such gradients should be imprinted
in the colour profiles of galaxies [Bell & de Jong, 2001], attributable to strong variations in their stellar
population properties, but is not evident in the g — ¢ colour profile of NGC1281 based on archival SDSS
imaging (Fig. 3.7). The profile shows only a very gentle drop within 2 effective radii of about 0.1 mag,
indicative of a negative gradient with an expected variation in the stellar M/L of 0.2 [Zibetti et al., 2009],

which shows that the use of a constant T, was a reasonable choice.

3.4.2.3 The Stellar IMF

NGC1281 is a compact, elliptical, high central velocity dispersion galaxy and bears resemblance to the
compact objects at redshift z = 2, which are thought to be the progenitors of the inner parts of today’s
massive elliptical galaxies. It is also very similar to NGC1277, another high-dispersion galaxy which hosts
an over-massive SMBH for its modest dimensions [van den Bosch et al., 2012]. The IMF of these objects
could be significantly different from the IMF observed in the local volume, and indeed the universality of

the IMF has been questioned recently, based on results from gravitational lensing [e.g. Treu et al., 2010],
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Figure 3.7: SDSS g — i colour profile of NGC1281. The first line is the mean PSF FWHM of the two

particular SDSS bands and the second line denotes two effective radii as measured from the circular

aperture of the high-resolution HST imaging. Within this range, the colour decreases only by ~ 0.1 mag
and suggests no significant stellar M/L gradient.

stellar dynamics [e.g. Cappellari et al., 2012] and SPS fits to gravity sensitive features in the integrated
spectra of ETGs [e.g. van Dokkum & Conroy, 2010]. These results suggest a bottom heavy IMF with
increasing velocity dispersion which should in general lead to stellar mass-to-light ratios larger than
those predicted by a Salpeter IMF, assuming that the shape of the IMF in these objects is similar to
what is observed in the Galaxy. However, we have shown that models with high Y, can be excluded as
they are not able to recover the features of the LOSVD and miss to replicate the high dynamical mass
of NGC1281, if the dark halo is parameterised by NFW or CL.

To obtain an independent measurement of the stellar M/L and to asses the reliability of the stellar
M/L in our dynamical set of models with a NFW profile, we have carried out a line-strength analysis of
NGC 1281 based on our PPAK observations. The analysis suggests a very old (~ 14 Gyr) stellar population
throughout the galaxy (Fig. 3.8). The metallicity decreases from solar in the centre to -0.17 dex at 3
R., and the IMF slope, parameterised following Vazdekis et al. [1996] and La Barbera et al. [2013], varies
from I', = 2.3 in the central regions to I, = 1.3 in the outskirts. Given these best-fitting stellar
population parameters - and under the assumption of a bimodal IMF - the expected radial variation in
the H-band stellar M/L is AT, = 0.4, where the extra variation of 0.2 with respect to the variation
indicated by the colour profile (Fig. 3.7) is related to the fact that we allowed the IMF to vary. Although
different IMF parameterisations could lead to different M/L values (while fitting equally well the strength
of gravity-sensitive features), a M/L as low as inferred from the dynamical analysis (Y, = 0.7) is only
possible under the assumption of a very young (~ 5 Gry) stellar population. However, the presence of
such a young stellar component is ruled out by the line-strength analysis and the SDSS g — 7 colour

profile.



Chapter 3: NGC1281 81

14.4
14.2
14.0
13.8
13.6

Age [Gyr]

-0.05
-0.10
-0.15

|
©
o
(@]

Metallicity [dex]

0.3F
0.2F
0.1F
3.0
2.5

a/Fe [dex]

2.0

1.5
1.0

IMF Slope [I,]

1.8
1.6
1.4
1.2

Salpeter IMF o

Th

Kroupa IMF 4

ERE R

o
(@)

10 15 20
Radius [arcsec]

Figure 3.8: Stellar population properties of NGC 1281. The top three panels represent the age, metallicity

and a-abundance as a function of radius. The fourth panel depicts the IMF slope. Under the assumption

of a bimodal IMF, these stellar population properties can be turned into a stellar mass-to-light ratio

(bottom panel). Constrained by the uniformly old stellar population, the resulting stellar mass-to-light

ratio ranges between 1.7 (centre) and 1.3 (outskirts) and cannot be reconciled with the dynamical stellar
M/L of 0.7 - 1.1 in the NFW models.

Adopting a stellar mass-to-light ratio of 1.7, as indicated by the stellar populations, is capable to decrease
the halo-to-stellar mass ratio to log(Mpas/M,) = 2.5 (Fig. 3.3). Yet, fixing Y, provides a worse fit to
the kinematics than our best-fitting dynamical model. The best-fitting model with Y, = 1.7 deviates by
Ax? > 30 from our overall best-fitting model, and it remains elusive why one should prefer a model

which is excluded by a significance of more than 5¢.

Finally, we emphasise that - by tracing gravity-sensitive features in the spectra - the IMF slope strongly
varies between the inner- and outermost regions. This shows that the systematic variation of the
IMF might be a local, rather than a global property, which is tightly linked to the high stellar velocity

dispersion regions [Martin-Navarro et al., 2015a].
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3.42.4 The Black Hole

The models predict the presence of a black hole of log(Me/Mg) = 101‘8:%, but we strongly emphasise
that this measurement is solely driven by the tight constraints for the dark halo and hence the stellar
mass-to-light ratio. This cascade issue starts with the necessity to recover the high total enclosed
mass with a steeply rising NFW halo, which already dominates the total mass budget beyond 1 R.. The
massive dark halo drives down the stellar M/L by about a factor of 2-3, when compared to our stellar
population analysis, to relieve the tension for the dynamical mass within the effective radius. This,
in turn, yields a tension between the low stellar dynamical mass and the total dynamical mass in the
centre, which gives rise to the unrealistically massive SMBH. Here again, the SMBH is more massive than
expected and overshoots the upper bound of the M-¢ relation [Gultekin et al., 2009; McConnell & Ma,
2013; Kormendy & Ho, 2013] by one order of magnitude.

Positive outliers from the currently adopted black hole scaling relations have been detected before.
However, those with the strongest deviations from the predictions are usually also the most massive
black holes located in the most massive galaxies, such as the brightest cluster galaxies (BCGs) NGC 3842
and NGC4889 [McConnell et al., 2011]. According to our models, the black hole in NGC1281 would
comprise 20 per cent of the total baryonic mass. This is not only in contrast to the black hole scaling
relations but would also pose a major difficulty for galaxy evolution, as it is not clear how such a massive

black hole could have grown in a small galaxy that seems to be devoid of a very active merging history.

3.5 Summary

We have performed a dynamical analysis of the compact, elliptical galaxy NGC1281. Based on high
spatial resolution imaging and wide-field IFU stellar kinematics, we constructed orbit-based dynamical
models to constrain the contribution of stars, black hole and dark matter to its total mass budget. In
particular the large-scale kinematics out to 5 R, (~ 7kpc) provide strong constraints for the dark and

luminous mass in this object.

According to our models, NGC1281 is a dark matter dominated galaxy with a dark matter fraction of up
to 90 per cent to the total enclosed mass within the kinematic extent, irrespective of the exact halo
parameterisation. Even if our stellar M/L is underestimated due to the adoption of a NFW profile, which
might not be a good proxy for the dark halo profile in this galaxy, a super-Salpeter IMF with a stellar
M/L of ~ 2 would still imply a dark matter fraction of 80 per cent within the bounds of the kinematic
data. Simple mass-follows-light models imply a stellar mass-to-light ratio of 2.8, but these models are
not able to recover the high total enclosed dynamical mass and clearly fail to recover the features of
the LOSVD.

Assuming that the dark halo profile can be parameterised by a spherical NFW halo, this yields a total
dark halo mass of log(Mpa/Me) = 15.0ﬂ'_g. However, this halo mass is typically ascribed to the halo
of galaxy clusters and in contrast to findings based on ACDM cosmology. The massive dark NFW halo,
in turn, tightly constrains the stellar mass-to-light ratio in this object. The stellar mass-to-light ratio is
0.6 < T, < 11 and hence considerably lower than expected from our spectral analysis of its stellar

populations. This result, however, arises from a tension between the dark and luminous matter. The
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models need to recover the high total enclosed dynamical mass with a steeply rising NFW profile, which
in turn leads to an over-estimation of dynamical mass in the inner parts that is solved by diminishing
the stellar M/L.

A radial variation in the stellar mass-to-light ratio has been considered and models with a positive slope
provide a good fit to the kinematics, but they cannot account for a significant fraction of total enclosed
mass due to the rapid decline of the stellar surface brightness. Moreover, the positive slopes predict a
variation in the stellar M/L, which should translate into a strong variation in colours. The lack of such a

colour gradient, however, endorses the employment of a constant T,.

The models predict a SMBH mass of log(Me/Mg) = 101‘8:1, but the black hole sphere of influence
is not resolved by our observations. The detection is merely a result of the unrealistically low stellar
mass-to-light ratio, which propagates inwards and predicts the presence of a massive SMBH to recover

the central dynamical mass.






Chapter

The structural and dynamical properties
of compact, elliptical, high central

velocity dispersion galaxies

Abstract

We present deep Hubble Space Telescope imaging and wide-field integral field unit stellar kinematics of
seven compact, elliptical, high central velocity dispersion galaxies in the local universe, and construct
orbit-based dynamical models to constrain their luminous and dark matter contribution to the total
mass profile as well as their total mass density slopes. We first show that our galaxies are strong outliers
in the Fundamental Plane of local early-type galaxies (ETGs), and significant outliers in the present-day
mass-size relation. They are, however, consistent with the mass-size relation of compact, massive and
passive galaxies at redshift z = 2, so-called "red nuggets" which are thought to be the progenitors of
today’s most massive elliptical galaxies. The compact sizes of our nearby galaxies imply high central
stellar mass surface densities, which are in agreement with the stellar mass surface densities of the
massive galaxy population at higher redshift. The dominance of the stellar mass component translates
into high total mass density slopes, exceeding v = 2.1. In merger simulations these high density slopes
can be triggered by in-situ star formation during gas-rich major mergers of disk galaxies. The largest
galaxies in our sample have already grown via disproportional mass accumulation in the remote regions,
consistent with theories of the evolution of massive galaxies since z = 2 within which they form through
numerous minor merging events. This all supports that we can use our sample of nearby galaxies as
local analogues of the high redshift nuggets. In this way, we can show that the dark matter fraction
within the effective radius is lower at higher redshift as the smaller effective radius encompasses less

of the dark volume.
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41 Introduction

The structural and dynamical properties of early-type galaxies (ETGs) are key to our understanding of
their formation and evolution. The homogenous properties of the most massive ellipticals, including
their evolved stellar populations and high metallicities [e.g. Bower et al., 1992; Gallazzi et al., 2006;
Jimenez et al., 2007; Graves et al., 2009a,b; Kuntschner et al., 2010], boxy isophotes and high Sérsic
indices [e.g. Kormendy & Bender, 1996; Kormendy et al., 2009], isotropic velocity distributions and non-
rotating, pressure supported velocity profiles [e.g. Binney, 1978; Davies et al., 1983; van der Marel, 1991;
Emsellem et al., 2007; Cappellari et al., 2007; Emsellem et al., 2011], are considered as cornerstones,
which a successful theory of galaxy formation and evolution has to be able to reproduce. Understanding
the formation and evolution of ETGs in general - i.e. of the entire population of disky, fast-rotators and
boxy, slow-rotators - becomes even more important when considering that more than half of the stellar
mass in the universe is confined to this class of objects and the spheroidal components of disk galaxies
[Fukugita et al., 1998; Hogg et al., 2002; Bell et al., 2003; Baldry et al., 2004], which closely resemble

elliptical galaxies of similar luminosity.

Monolithic collapse [Eggen et al., 1962] has long been considered the principal formation mechanism
for galaxies in general and the population of ETGs in particular. However, the advent of deeper imaging
and the possibility to obtain K-band number counts [Kauffmann & Charlot, 1998] as well as galaxy
luminosity functions [Faber et al., 2007] at high redshift (z ~ 1) has effectively ruled out this simple
formation scenario. An alternative to the monolithic collapse theory for the formation and evolution
of ETGs is provided by the merging paradigm [Toomre & Toomre, 1972; Toomre, 1977] which, within
a cosmological framework [White & Rees, 1978], predicts a hierarchical build-up of galaxies through
successive minor and major merging events. Considerable efforts have therefore been made in devel-
oping high-resolution N-body simulations of dissipational and dissipationless (un-)equal mass mergers
of (disk-)galaxies [Barnes, 1988, 1989; Barnes & Hernquist, 1996; Hernquist, 1992, 1993; Naab & Burkert,
2003; Jesseit et al., 2005; Robertson et al., 2006; Cox et al., 2006]. While these simulations have been
remarkably successful in reproducing the global photometric and kinematic properties of disky, fast-
rotating and boxy, slow-rotating ellipticals, discrepancies remain in recovering the detailed dynamics of
the most massive, slow-rotating ellipticals [Burkert et al., 2008] as well as their chemical abundance
ratios [Naab & Ostriker, 2009].

The issue of reproducing massive ETGs in the local universe is even more severe if their structural and
morphological transformation through cosmic time is taken into account. By tracing back a population
of galaxies at constant number density [van Dokkum et al., 2010], their detailed mass and size evolution
can be recovered, indicating that the likely progenitors of today’s red, massive galaxy population have
been considerably smaller and denser at earlier times [e.g. Daddi et al., 2005; Trujillo et al., 2006; Zirm
et al., 2007; van der Wel et al., 2008; van Dokkum et al., 2008; Szomoru et al., 2010, 2012; van der Wel
et al., 2014]. Star formation was already quenched for a large fraction of this galaxy population (also
commonly referred to as "red nuggets") and hence is unable to explain their drastic growth in size (~
4x) and mass (~ 2x) since z = 2 [Kriek et al., 2006; Toft et al., 2007; Cimatti et al., 2008; Kriek et al.,
2008, 2009; Williams et al., 2009; van Dokkum et al., 2010]. Moreover, these galaxies are disky [Toft
et al., 2005; Trujillo et al., 2006; van der Wel et al., 2011; Chang et al., 2013], with small Sérsic indices, and
have high velocity dispersions [van Dokkum et al., 2009; Bezanson et al., 2011; Toft et al., 2012; van de
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Sande et al., 2013]. Here again, monolithic collapse fails to understand their evolution, as their present-
day descendants would be too small and too low in number density [Kriek et al., 2008; Bezanson et al.,
2009]. On the other hand, binary mergers of equal mass (disk-)galaxies result in a comparable growth
in size and mass (M « R.) [Hilz et al., 2012, 2013] and the required level of mergers would consequently
lead to an overestimation of the local galaxy mass function at the upper end [McLure et al., 2013]. In
addition, the dearth of passively evolved red nuggets in the local universe is at odds with the stochastic
nature of major merging [Trujillo et al., 2009; Taylor et al., 2010], in which a non-negligible number is
expected to survive unaltered [Hopkins et al., 2009b; Quilis & Truijillo, 2013].

Focus has therefore shifted to a two-phase growth, in which the assembly history of massive galaxies
is dominated by an initial dissipative stage, where stars are formed in-situ, followed by an inside-out
growth through few major and numerous minor merging events [Naab et al., 2009; Hopkins et al., 2009a;
van Dokkum et al., 2010; Oser et al., 2010, 2012; Lackner et al., 2012; Hilz et al., 2012, 2013; Pérez et al.,
2013; Patel et al., 2013; Bédorf & Portegies Zwart, 2013].

The theoretical efforts are motivated by snapshots in the evolution of ETGs, provided by objects in the
local universe and observational progress in obtaining photometric and spectroscopic data of galaxies
at higher redshift (z < 2). These, however, are notoriously difficult and expensive with current obser-
vational facilities and have only recently become available [e.g Vernet et al., 2011]. More importantly
though, deriving accurate measurements of stellar masses for galaxies at z = 2, for instance, relies on
fits to their spectral energy distribution (SED), which is basically untested at these redshifts. Similarly,
stellar dynamical masses, the gold standard which does not suffer from the systematic uncertainties in
stellar population synthesis (SPS) models [Conroy et al., 2009], are currently based on the measurement
of the central velocity dispersions only [Kriek et al., 2009; van Dokkum et al., 2009; van de Sande et al.,
2011; Toft et al., 2012; Bezanson et al., 2013; van de Sande et al., 2013] and viral mass estimators which
are calibrated for the population of nearby ellipticals [Cappellari et al., 2006]. Hence, our understanding
of the evolution of ETGs is prone to many systematic uncertainties in deriving accurate measurements

as well as limited by the lack of spatially resolved kinematics and modelling assumptions.

Optimally, one would like to study the progenitors of today’s massive galaxy population in the local
universe, where high-resolution photometric and spectroscopic data will enable a detailed investigation
of their structural and dynamical properties, such as their sizes and masses and their luminous and
dark matter content. In this chapter, we present a small sample of nearby, compact, high central
velocity dispersion galaxies (including MRK1216, NGC1277 and NGC1281, which have been studied in
detail in Chapter 2 and 3), which bear resemblance to the likely progenitors of today’s massive galaxy
population at redshift z = 2. Given high spatial resolution photometric observations with the H5T and
medium resolution spectroscopic observations with the PPAK IFU, we can measure their structural and
kinematic properties which in turn yield information regarding their origin and (non-)violent growth.
Moreover, the high quality of the suit of available photometric and kinematic data allows us to carry out
orbit-based dynamical models, in order to derive accurate measurements of their luminous and dark

matter content.

In Section 4.2 we briefly revisit the data acquisition and reduction pipelines and depict the data, con-
sisting of deep HST imaging and wide-field IFU stellar kinematics. We exploit the wealth of photometric

and spectroscopic information in Sec. 4.3, where we employ the fundamental plane (FP) and the specific
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stellar angular momentum to characterise and classify the galaxies in our sample. We derive accurate
stellar and dark masses by means of our orbit-based dynamical models in Sec. 4.4. We discuss our
results in Sec. 4.5, drawing a comparison to galaxies at high redshift. Finally, we summarise our findings
in Sec. 4.6.

Throughout this chapter we adopt 5th year results of the Wilkinson Microwave Anisotropy Probe (WMAP)
[Hinshaw et al., 2009], with a Hubble constant of Hy = 70.5 kms™! Mpc’l, a matter density of (23 =

0.27 and a cosmological constant of 2 = 0.73.

4.2 Data

4.2.1 HST Imaging

We covered the photometric pipeline in detail in Sec. 2.2. For the sake of completeness, we encapsulate

the most relevant information.

Single orbit imaging of six compact, high central velocity dispersion galaxies have been obtained with
the HST WFC3 in H-band (FI60W), as part of program GO: 13050 (PI: van den Bosch). The data consists
of three dithered full- and four sub-array exposures with a total integration time of ~ 1400 seconds
for each galaxy. The full-arrays are 450 seconds long exposures, covering a nominal field of view (FOV)
of 136" x 123”. The 1.7 seconds short 16” x 16" sub-array exposures of the high surface brightness

nucleus serve the single purpose of mitigating possible saturation in the long full-arrays.

Observations in the near-infrared (NIR) FI6OW filter have been chosen to minimise the effect of dust
extinction and line blanketing while being aware that the NIR is also a better tracer of the stellar mass.
Contamination from more recent starbursting events is minimal at longer wavelengths and the stellar
mass-to-light ratio (Y,) thus becomes a weaker function of the underlying stellar populations [Bell &
de Jong, 2001; Cole et al., 2001].

The reduction and combination of the exposures is carried out via Astrodrizzle [Gonzaga et al., 2012].
Here, flat-field calibrated images are corrected for geometric distortions and drizzled onto a reference
frame, where they are aligned according to the pointing information provided in the header of the
respective files. The aligned images are then combined; the final output image is weighted by the
exposure times of the individual input images. This final output image is then drizzled back onto
the original, geometrically distorted but flat-field calibrated images to identify cosmic rays and bad
pixels. The sky level in the individual exposures is determined by iterative sigma-clipping of uniformly
distributed pixels. However, both the deep full- and sub-array exposures are dominated by galaxy light,
either from the nucleus or the extended stellar halo of these objects. We therefore determine the
sky level manually in less contaminated regions of the full-array exposures, while the background flux
for the sub-array exposures is derived by measuring the flux difference between the sky subtracted

full-arrays and the non-sky subtracted individual sub-arrays.

We present the final output of the photometric pipeline in Fig. 4.1, where we show four objects, namely
NGC1270, NGC1271, NGC 2767 and UGC 2698. We refer the reader to Sec. 2.2.2 and 3.2.1, for the images
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Figure 4.1: HST H-band image of NGC1270 (top left), NGC1271 (top right), NGC 2767 (bottom left) and
UGC 2698 (bottom right), with a FOV of ~ 150 O (i.e. > 50kpc?, given the distance of the closest
object) and a final scale of 0.06" /pixel.

and details of MRK 1216 and NGC 1281 respectively, and to van den Bosch et al. [2012] for an illustration
of the HST V-band (F550M) image of NGC1277, based on archival HST data (GO: 10546; Pl:Fabian) The
specifics of NGC1277's photometric data are also summarised in Sec. 2.2.1 and 2.2.3.

In Sec. 4.4, we derive accurate stellar masses via our orbit-based dynamical models, which in turn
need a stellar mass model within which a representative library of orbits can be calculated. The stellar
mass model is obtained from a deprojection of the SB distribution for a given set of viewing angles. We
parameterise the SB with a set of multiple, two-dimensional Gaussian functions [MGE; Monnet et al.,
1992; Emsellem et al., 1994]. The Gaussians do not form a complete set and the deprojection is not
unique, even for an axisymmetric stellar system [Rybicki, 1987], but the SB distributions of realistic
multi-component galaxies are commonly well reproduced [Cappellari, 2002] and the MGE method is

convenient, since the convolution with the point-spread function (PSF) as well as the deprojection can
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Table 4.1: Photometric and kinematic properties of the sample of seven compact, elliptical, high central
velocity dispersion galaxies, based on their HST WFC3 FI60W imaging, except for NGC 1277 (see footnote).
The columns depict the galaxy (1), the effective major axis radius from a single Sérsic fit (2), the flattening
of the single Sérsic (3), the effective radius measured from a circular aperture that contains half of the
light (4), the effective radius measured along the major axis of a best-fitting ellipse that contains half of
the light, which we adopt as their trues sizes throughout this chapter (5), the total apparent magnitude
(extinction corrected) in H-band (except for NGC1277) (6), the adopted distance (7), the PPAK velocity
dispersion within the best-fitting ellipse that contains half of the light (8) the PPAK central velocity
dispersion (9), the specific stellar angular momentum within one (10) and three effective radii (11).
Ga|a><)’ Re,ser b/a Re,circ Re,ell mag D Oe Oc >\r71 >\r,3
[kpc] [kpc] [kpc] [HVegal [Mpc] kms=! kms™!
MRK1216 | 28 £ 01 058 23+£01 3.0x0.1 10.49 94 + 2 288 338+8 036 0.40
NGC1270 | 21+ 01 068 18+£0.1 22+0. 9.88 69 £+ 1 321 400+7 030 0.37
NGC1271 | 21£01 043 14+01 20+£0.1 10.78 80 £ 2 244 303+£6 050 0.63
NGC1277' | 13+ 01 052 12401 13401 13.80 VA== 293 355+7 026 0.51
NGC1281 | 20+ 0.1 063 14+£01 17+£01 10.57 60 £ 1 220 268 £5 037 0.53
NGC2767 | 28 £ 01 075 19+£01 23 +£01 10.62 74 £1 200 240 £7 036 0.57
UGC2698 | 41+ 01 073 29+01 34+£01 10.05 89 +2 294 365+£5 019 023

be handled analytically. The details of the MGE of the four galaxies displayed in Fig. 4.1 are given in
Appendix A. All MGEs have been obtained with a constant position angle (PA) and a common centre
for each galaxy. This is a necessary though insufficient condition for the deprojection in an oblate
axisymmetric case, but reasonable given their small variation in the PA (APA < 2°) and the acceptable
reproduction of their SB profiles. Only NGC 2767 shows a variation of APA ~ 16° between the isophotes
at 1and 3 R, (see Fig. 4.4), which might indicate that this galaxy is slightly triaxial.

The PSF has been adopted from the Cosmic Assembly Near-Infrared Deep Extragalactic Survey CANDELS
[van der Wel et al., 2012], and has a size of 0.17" FWHM (see Sec. 2.2.1).

We further analyse the photometry by carrying out single Sérsic fits, but derive accurate sizes also
in terms of the major axis radius of a best-fitting circular and elliptical isophote that contains half of
the light. We adopt the elliptical effective radii as their true sizes throughout this chapter unless men-
tioned otherwise. As pointed out by Hopkins et al. [2010a] and illustrated in Cappellari et al. [2013a],
this measurement of the effective radius is less prone to inclination effects. Given the high quality of
our photometric observations, and in contrast to observations of the red, massive galaxy population
at higher redshifts [e.g. van der Wel et al., 2014], we can follow the low SB wings down to more than 10
magnitudes below the central SB (see e.g. Fig. 2.1), and therefore do not need to rely on parameterised
fits to derive accurate sizes. We present the photometric and kinematic properties of our sample in
Table 4.1.

Note, that the effective radii, based on the measurement of a best-fitting ellipse that contains half of
the light rather than a circular aperture, are systematically larger. Consequently, the effective velocity
dispersions (see Sec. 4.2.2 and Tab. 4.1), as well as the stellar and dark matter fractions within the
effective radius, change slightly with respect to the values reported in Chap. 2 and 3 for MRK1216,
NGC1277 and NGC1281. This, however, does not affect our conclusions in those sections regarding their

classifications as fast rotators and e.g. their status as outliers in the black hole scaling relations.
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4.2.2 PPAK Kinematics

The stellar kinematics of MRK 1216, NGC1277 and NGC1281 have been presented in Sec 2.3 and 3.2.2.
Here, we cover the data acquisition and reduction pipeline for the remaining galaxies, yielding the wide-
field IFU kinematics which in turn are used for the kinematic analysis and as input for our orbit-based
dynamical models. For a more detailed overview, though, we refer the reader to Sec. 2.3.1, where the

kinematic pipeline is discussed in depth.

Spectroscopic data of the four remaining galaxies have been obtained at the 3.5m telescope at Calar
Alto, with the Potsdam Multi Aperture Spectrograph [PMAS; Roth et al., 2005] and the PPAK fiber module
[Verheijen et al., 2004; Kelz et al., 2006], making use of the low-resolution V500 grating. In brief, this
setup has a resolving power of R = 850 at 5400 A and a spectral resolution of 6.3 A FWHM across
the nominal spectral range of 3745 - 7500 A, which corresponds to an instrumental velocity dispersion
of 0 =150 kms™!. The PPAK module consists of 382 fibres, each with a diameter of 2.7" projected
on the sky. These are bundled to a hexagonal shape, covering a FOV of ~ 1.30J'. A total of 36 fibres,
bundled in pairs of 6 fibres each, are located 72" away from the centre with the purpose to sample the
sky. The remaining fibres are science fibres and provide a 100 per cent covering factor when used with

a 3-point dither pattern.

The wide-field IFU observations were taken over several nights between October 8 - 10, 2012, and
January 4 - 6, 2013. For each galaxy, we obtained data with a total of 6 hours on-source integration,
split into 3 complete runs with 3 dither-pointings of 2400 seconds each, divided into two frames & 1200

seconds.

The data reduction follows a dedicated pipeline which has been developed for the Calar Alto Legacy
Integral Field Spectroscopy Area Survey (CALIFA) [Sanchez et al., 2012; Husemann et al., 2013] and
includes bias subtraction, flat-fielding, cosmic ray cleaning, extraction of spectra, wavelength calibration,
sky subtraction, and flux calibration using spectrophotometric standard stars. Spectra from the 3

‘l//

pointings were then combined and resampled into a data cube with a 1" sampling, using a distance-

weighted interpolation algorithm, followed by a correction for differential atmospheric refraction.

The 2D line-of-sight velocity distribution (LOSVD) has been extracted by fitting the spatially binned
spectra [Cappellari & Copin, 2003] with a non-negative, linear combination of stellar templates [Cappel-
lari & Emsellem, 2004], in the vignetting and sensitivity limited useful spectral range of 4200 - 7000 A.
This spectral range covers important absorption features, including H3, Mgb and Fe 5015. The spectra
were binned to reach a minimum S/N of 40 in each Voronoi zone, which is deemed sufficient to reliably
extract the higher order Gauss-Hermite moments h3 and h4 [van der Marel & Franx, 1993; Bender et al.,
1994], excluding spaxels with a S/N < 4. For the stellar templates, we make use of the Indo-U.S. stellar
library [Valdes et al., 2004] with a nominal spectral resolution of 1.2 A FWHM. Sky and emission line
features have been generously masked and Legendre polynomials of 15th order have been used for the

fitting process.

'The values reported here for NGC1277 correspond to the measurements based on archival HST F550M photometry. For the
H-band size estimate, we make use of the 2MASS photometry. This yields a major axis radius of the half light isophote of 1.4 kpc.
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Table 4.2: Reconstructed point-spread functions of the PPAK data. The rows display the PSF of each
galaxy, which has been expanded by two Gaussians with weight and dispersion.

NGC1270 NGC 1271 NGC 2767 UGC 2698
[weight] [arcsec] [weight] [arcsec] [weight] [arcsec] [weight] [arcsec]
0.83 118 0.84 147 0.77 119 0.83 149
017 6.00 0.16 6.00 0.23 5.67 017 6.67
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Figure 4.2: Top: PPAK IFU stellar kinematic maps of NGC1270, showing the mean velocity v, velocity

dispersion o, and Gauss-Hermite moments h3 and h4. The maps show fast rotation around the short

axis of 171 kms ™! and a central velocity dispersion of 400 kms™*. Overplotted are contours of constant

surface brightness at 1 and 3 effective radii, derived from the deep HST photometry. The holes depict

masked objects (either stars or galaxies). Bottom: Corresponding uncertainty maps. Maps are oriented
N.-E., i.e. north is up and east is left.

We recovered the PSFs of the kinematic observations by convolving the deconvolved MGE with two round
Gaussians in order to match the collapsed PPAK data cubes. The details of the PSFs are summarised
in Table 4.2.

We display the resulting stellar kinematics in Fig. 4.2 - 4.5. In order to illustrate the extent of the
kinematic data and to facilitate a direct comparison with the photometry, we overplot contours of
constant SB at 1 and 3 R,, given the measurements from the high spatial resolution imaging. All four
objects show fast and regular rotation around the short axis with velocities up to 233 kms™!, (in the
case of NGC1271) and an exceptional velocity dispersion peak of up to 400 km s~ *(for NGC 1270). Only
UGC 2698, the largest elliptical in our sample, is rotating moderately with a velocity of ~ 100 kms~1.
Moreover, we observe a strong anti-correlation between v and hs in all galaxies, which is indicative of

axial symmetry [Chung & Bureau, 2004; Bureau & Athanassoula, 2005].

The corresponding small errors are determined via Monte Carlo simulations by adding random Gaussian
noise to the spectrum based upon the PPXF model residuals. Within the effective radius, the measure-

ment errors are less than 10 kms™! for v and o, but reach values of up to 30 kms™! for the outermost
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Figure 4.3: Same as Fig. 4.2, but for NGC1271.
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Figure 4.4: Same as Fig. 4.2, but for NGC2767. The measurements of the LOSVD at ~ 3R. and
beyond are unreliable, and larger errors (white shaded regions) have been assigned to exclude those
measurements from the fitting process in the dynamical models.
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Figure 4.5: Same as Fig. 4.2, but for UGC2698.

bins well beyond 3 R., as those bins cannot accumulate enough spaxels to reach the target S/N. This is
most pronounced in NGC 2767 where the velocity dispersion measurements beyond 3 R, show a sud-
den, unphysical increase. A look at the spectral fits in these regions reveals that these measurements
are unreliable, fitting noise rather than signal, which is why we chose to assign those bins particularly
large errors and hence effectively excluded them from the fitting process in our orbit-based dynamical

models in Sec. 4.4.

4.3 Classification

431 Fundamental Plane

Provided with the wealth of information in the deep photometric and spectroscopic data, we can already
analyse important structural and kinematic properties of our sample. For this purpose, we derive their
locations in the fundamental plane of ETGs, based on their central velocity dispersions in the PPAK data
cube (o.), their effective radii (Re 1) in the HST imaging and their average surface brightnesses within
this region (I..). Fig. 4.6 illustrates the edge-on projection of the H-band FP, derived from an orthogonal
error-weighted fit of more than 300 nearby elliptical galaxies, and the corresponding 1o scatter in this
relation [Zibetti et al., 2002]. Overplotted are the measurements of the seven compact galaxies in our
sample. Given the lack of HST H-band photometry for NGC1277, we made used of archival 2MASS

imaging to derive the respective photometric parameters.

All galaxies are clear outliers in the FP, except NGC1271, which is consistent with the 1o lower bound
of this relation. We emphasise, though, that the velocity dispersion o, in the PPAK data cube can only
be considered as a conservative estimate of the central velocity dispersion in these objects. In fact,

measurements of the central velocity dispersion of NGC1271 based on adaptive optics (AO) assisted
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Figure 4.6: The edge-on projection of the H-band fundamental plane of elliptical galaxies in the local

universe, with the associated 1o scatter [Zibetti et al., 2002]. Over-plotted are the locations of the seven

compact galaxies in our sample. For NGC1277 we rely on 2MASS H-band photometry, in contrast to the

HST H-band observations for the rest of the sample. All galaxies are clear outliers in the FP, except

NGC1271. The velocity dispersion in the PPAK data cube, however, is underestimated and NGC1271

becomes an outlier, too, when the central velocity dispersion of the AO assisted observations are taken
into account (black arrow).

observations with Gemini North's Near-Infrared Integral Field Spectrograph (NIFS) reveal a velocity dis-
persion of 396 km s~ 1 in the centre [Walsh et al., 2015]. Even if the central velocity dispersion in the
NIFS data cube is super-resolved with respect to the literature long-slit observations employed in the
Zibetti et al. [2002] sample, it partially compensates for the sudden rise in the velocity dispersion profile
of these objects which is clearly not resolved in the PPAK data cube with its 2.7 fibre and a PSF of ~
3” FWHM. This indicates that indeed all compact ellipticals in our sample are inconsistent with the FP

of ETGs in the local neighbourhood, and merely consistent with the associated 3¢ scatter.

Assuming that our size measurement is a fair estimate of the intrinsic effective radius in these objects,
the associated errors become comparatively small and are solely related to the adopted cosmology
and corresponding uncertainty in distance, with a mean of Alog(R,) = 0.1. Likewise, the measurement
errors of the central velocity dispersion are in the range of 5 - 10 kms ™1, yielding errors of the order
of A(log(o,) - (0.88/1.38) x log(I.)) = 0.02.

4.3.2 Specific Stellar Angular Momentum

Efforts to classify the population of ETGs have so far used the shape of their isophotes [Kormendy
& Bender, 1996], the deficit/excess of light in their centre [Kormendy et al., 2009] or the amount of
ordered versus random motion [Davies et al., 1983]. But while the latter attempt has been shown to be

susceptible to projection effects [Burkert & Naab, 2005], the former tries to encompass the dynamical
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Figure 4.7: Left: Measurement of the specific stellar angular momentum of the compact, elliptical, high

central velocity dispersion galaxies as a function of radius. The angular momentum profiles are already

flattened for all galaxies, except NGC 1277, beyond 2 effective radii. The profile of UGC 2698, the largest

galaxy in the sample, has been extrapolated to the last radial point, since the IFU observations cover

the stellar kinematics only out to ~ 2.5 R.. Right: The specific stellar angular momentum at 1R, as a

function of apparent ellipticity. All galaxies are fast rotators, as is expected from their fast and regular
rotation.

state and evolutionary history of galaxies purely based on information encoded in their photometric
profiles. The SAURON and ATLAS3P surveys have conducted a large photometric and spectroscopic
analysis of a volume-limited, representative sample of ellipticals in the nearby universe. They define a
new parameter )\, - the specific stellar angular momentum - which is effective in discriminating between
the two classes of slow- and fast-rotating ETGs [Emsellem et al., 2007]. This classification scheme does
not only provide a good estimate of the amount of large-scale rotation in galaxies, but more importantly
is tightly related to the orbital configuration of galaxies [Cappellari et al., 2007] and hence is assumed
to encompass information regarding their mass assembly history [e.g. Burkert et al., 2008; Naab et al.,
2014].

We show the specific angular momentum profile in Fig. 4.7 (left panel) and the angular momentum at
1 R, as a function apparent ellipticity (right panel), based solely on the PPAK kinematics extracted in
Sec. 2.3.1, 3.2.2 and 4.2.2. All galaxies exhibit a flattened angular momentum profile already beyond ~
2 R., except NGC1277, which is the fastest rotating galaxy in our sample with a peak velocity of 276

kms~—! and a flat extended velocity curve out to several effective radii (Sec. 2.3.4).

The criterion for discriminating between fast- and slow rotators has been slightly revised, based on
the larger ATLAS3P sample. According to Emsellem et al. [2011], fast rotators have a specific angular
momentum of A, > 0.31 x+/e within one effective radius, where ¢ is the apparent ellipticity and 0.31
a factor to account for the trend of increasing A, with €, with one and the same )\, value being able
to yield vastly different anisotropies. Nevertheless, even UGC2698, the slowest rotating galaxy in our
sample, remains a fast rotator. The apparent ellipticity is ¢ = 0.3 within 1 R, and remarkably close
to the axis ratio of the single Sérsic fit (Table 4.1). The threshold thus increases to A, = 0.17, which,
however, is still below the measurement of the specific angular momentum in UGC2698 (A, = 0.19) at
1 R..
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4.4 Dynamical Analysis

441 Schwarzschild Models

We construct orbit-based dynamical models for the four remaining galaxies in our sample. For this
purpose, we make use of the triaxial Schwarzschild code of van den Bosch et al. [2008]. The working
principles and details of this method are discussed in Sec. 2.4. Here, we confine ourselves to a brief

description of the main steps.

We start with a mass model within which a representative orbit library is being calculated. The orbit
library comprises 7533 orbits, sampled along 31 logarithmically spaced equipotential shells between
0.003” and 150”, where every shell is used as a starting point in each of the radial and angular direc-
tions. The orbits are numerically integrated and their projected and deprojected quantities are stored
and PSF convolved for comparison with the data. We find a non-negative, linear superposition of the
orbits that best matches the observational constraints, i.e. the binned LOSVD and the intrinsic and
aperture masses provided by the MGE, in a x2-sense. The contributions of the individual gravita-
tional constituents are then varied, and the aforementioned steps are reiterated, in order to assess the

confidence intervals of the parameters of interest.

Our mass model includes the stellar mass component M, which is the deprojected, intrinsic luminosity
density times the constant stellar mass-to-light ratio T, the mass of a supermassive black hole M,
and a dark matter component which is parameterised by a spherically symmetric NFW profile [Navarro
et al., 1996, 1997] with concentration cpys and total virial mass Mpys = Msgg. The concentration is
usually not well constrained by our orbit-based dynamical models (see e.g. Sec. 2.4.2.1, 2.4.2.2 and
3.3.2), which is why we fix the concentration to ¢pas = 10. Our models thus probe the three parameter
space in T, € [0.5,3], log(M./M,) € [7,10.4] and log(Mpys/M,) € [-2,5]. For all galaxies, we assume
an oblate axisymmetric shape. Given their fast and regular rotation around the short axis, the anti-
correlation between v and hs, the lack of a position angle twist (except for NGC 2767, but see below)
and results from shape inversions of a large sample of fast-rotating galaxies [Weijmans et al., 2014],
axial symmetry is a well justified assumption of the intrinsic shape of these objects. Note, though, that
NGC2767 might still be slightly triaxial. Despite its rapid rotation around the short axis with ~ 200
kms™!, the misalignment of the PA between the inner and outermost isophotes is non-negligible (Sec.
4.2.1 and Fig. 4.4) and more extensive tests will have to be carried out to recover the intrinsic shape of
this object.

Under the assumption of oblate axial symmetry, the inclination ¢ is the only viewing parameter that is
needed to pin down the intrinsic shape of the galaxy. Usually, the inclination is treated as another fitting
parameter in the models, but difficult to constrain unless distinct kinematic features exist [Krajnovi
et al,, 2005; van den Bosch & van de Ven, 2009]. Models with different inclinations can therefore
reproduce the LOSVD equally well, but the inclination will only have a significant role for the recovery
of the stellar mass-to-light ratio (and hence also for the recovery of the black hole and dark halo mass)
if highly face-on projections are allowed [Cappellari et al., 2006], which however is not the case for
our sample. The minimum angle for the deprojection in an axisymmetric case is given by the flattest

Gaussian in the respective MGE. For all galaxies, except NGC1271, the possible range of inclinations is
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at least 60° < ¢ < 90°, with 90° being edge-on. Slightly more face-on projections of 54° are allowed
for UGC2698. On the other hand, the flattest Gaussian in NGC1271 has a flattening of ¢ = b/a =
0.23, which implies that this galaxy has to be viewed more edge-on than 76°. We therefore adopt
an inclination of 65° for NGC1270, NGC 2767 and UGC2698, and an inclination of 85° in the case of
NGC1271.

4.42 Modelling Results

We present our modelling results in Fig. 4.8 - 4.11, where we show contours of Ax? for the dark halo
parameter log(Masoo/M,) and the H-band stellar mass-to-light ratio T,in solar units. The red dot
marks the location of the best-fitting model and the vertical line denotes Ax? = 9, i.e. the statistical
30 model fitting uncertainty for the respective parameter. We do not show the parameter constraints
for the black hole mass, since the PPAK kinematics are not able to resolve the black hole sphere of

influence. We briefly highlight here the interesting aspects of the modelling results for each galaxy:

» NGC1270

We obtain a stellar mass-to-light ratio of Y,= 2.2f8:%, i.e. a total stellar mass of log(M,) =
11.5f8:g, and a dark halo mass of log(Mag/M,) = 072, The models yield a dark halo contribution
of only 171% per cent to the total mass budget within one effective radius. More importantly
though, and despite kinematic data out to ~ 5 R,, they cannot provide unambiguous evidence
for the presence of a dark halo and rather prefer a best-fitting stellar M/L which is higher than
expected from its uniformly old stellar population with an age > 10 Gyr, super solar metallicity
and under the assumption of a single power-law Salpeter stellar initial mass function (IMF) [Ferré-
Mateu et al., 2015]. The best-fitting model has a black hole mass of log(M/M) = 9.2, but the
black hole is virtually unconstrained at the lower end of the parameter space and we therefore

only refer to the upper limit of log(M./M) = 10.3.

* NGC1271

NGC1271 is a slightly smaller but more flattened and also more rapidly rotating galaxy (Tab. 4.1).
Here again, our wide-field IFU data cover the kinematics out to at least 3 R, (or 6 kpc respectively),
but our orbit-based dynamical models cannot discriminate between models with and without a
dark halo. The models yield parameter constraints of log(Mago/M,) = -1.5722 and log(M./M,,)
= 8.9195. Similarly, the best-fitting stellar M/L is high, T, = 2.0703, and the lower bound is
merely consistent with predictions of stellar population synthesis (SPS) fits with a single power-
law Salpeter IMF and an old stellar population (> 10 Gyr) [Ferré-Mateu et al., 2015]. The dark halo

contribution to the total mass budget within one effective radius is Ofg per cent.

* NGC2767

Interestingly, the models can break the degeneracy between the stellar M/L and the dark halo
in NGC2767. Although the spatial extent of the LOSVD has been constrained to less than 3 R,
(i.e. less than 6 kpc), given the poor spectral fits for the recovery of the outer velocity moments
(Sec. 4.2.2), we are able to rule out models devoid of dark matter. The dark halo parameter is

tightly constrained to log(Mago/M,) = 1.0f8:§ and the dark halo contribution to the total mass
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Figure 4.8: Orbit-based dynamical models of NGC1270. The figures show the fitting parameters
log(Mpar/Mg) and T, as a function of Ax?. The best-fitting parameters are marked by a red dot.
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Figure 4.9: Same as Fig. 4.8, but for NGC1271.
budget is 6fi per cent within one effective radius. Yet, the stellar M/L with T,= 2.1J_r8::2,) is still

super-Salpeter and, as expected, the black hole mass is not constrained at all with log(Me/M)
=8.0"%70.

UGC2698

UGC2698 is the most massive galaxy in our sample, with YT, = 15705 and hence a total stellar
mass of log(M,) = 115751, It's also the largest galaxy, being more than twice as large as NGC 1270
or NGC1271 and also considerably larger than NGC2767. Our kinematic data reaches out to ~ 2.5
R., but still covers a similar extent in an absolute scale as the other galaxies. However, despite

this coverage of the stellar kinematics, we can neither constrain the black hole nor the dark halo.
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Figure 4.10: Same as Fig. 4.8, but for NGC 2767.
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Figure 4.11: Same as Fig. 4.8, but for UGC 2698.

We obtain an upper limit of the black hole mass of log(AM,/M) < 10.3 and an upper limit of the
dark halo of log(Mano/M,) < 2.0, with a dark matter contribution of 12713 per cent to the total

mass budget within one effective radius.

45 Discussion

451 The Mass-Size Relation

Massive ETGs have grown significantly in stellar mass and half-light size since redshift z = 2 [e.g. Trujillo
et al.,, 2006; Franx et al., 2008; van Dokkum et al., 2008, 2010; van der Wel et al., 2008, 2014]. The
progenitors of today’s massive galaxy population are also found to be more flattened and disky [e.g.
Toft et al., 2005; Trujillo et al., 2006; van der Wel et al., 2011; Chang et al., 2013], very compact [e.g.
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Figure 4.12: Mass-size relation of early-type galaxies at different redshifts, derived from the CANDELS/3D-

HST survey [van der Wel et al., 2014]. The sizes of the compact galaxies have been derived from the

deep HST H-band images, based on a best-fitting elliptical isophote that contains half of the light. The

total stellar masses have been derived from our orbit-based dynamical models. All galaxies are outliers
from the local mass-size relation.

Zirm et al., 2007; Buitrago et al., 2008; van Dokkum et al., 2008; Szomoru et al., 2010] with little to no
ongoing star formation [e.g. Williams et al., 2009] and exceptional central velocity dispersion peaks [e.g.
van Dokkum et al., 2009].

Descendants of the compact, red, massive galaxy population are rare in the local universe [Trujillo
et al., 2009; Taylor et al., 2010; Saulder et al., 2015]. The agreement, however, between the photometric
and kinematic properties of our compact, elliptical, high central velocity dispersion sample and the
red nuggets is remarkable and suggests that these objects are actually passively evolved analogues.
Corroborating evidence has been provided by the investigation of their dynamical structures in Sec.
2.5.1 and 2.5.4, indicating that these galaxies have not undergone a recent, active phase of a few major
and numerous minor mergers, which is assumed to be the main driver of the mass and size evolution of
massive ellipticals since z = 2 [e.g. Naab et al., 2009; Oser et al., 2010; Lackner et al., 2012; Oser et al.,
2012; Hilz et al., 2012, 2013; Bédorf & Portegies Zwart, 2013]. Furthermore, the stellar populations of
NGC 1277 [Truijillo et al., 2014] and NGC 1281 (Sec. 3.4.2.3) have been investigated in detail and stellar age
estimates and star formation histories have also been derived for the remaining galaxies in our sample
(except for UGC 2698) in Ferré-Mateu et al. [2015], showing that they are comprised of a uniformly old
stellar population (> 10 Gyr) without a recent (i.e. <10 Gyr) star formation event that might have been

triggered by e.g. gas-rich "wet" mergers.

All galaxies in our sample are outliers in the FP of local ETGs (Fig. 4.6). By means of our orbit-based
dynamical models, though, we have derived accurate total stellar masses and are now in a position to

locate their position in the mass-size relation, both of which are viewed as basic parameters in theories
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of galaxy formation and evolution. Fig. 4.12 exhibits our measurements of the seven compact galaxies
in our sample, with the associated uncertainties in mass and size. Accurate measurements of stellar
masses and sizes of a significant sample of galaxies through cosmic time have been obtained as part of
the 3D-HST+CANDELS survey [van der Wel et al., 2014], where ETGs are distinguished as non actively
forming stars through colour-colour selections. We overplot their mass-size relations in the redshift
range 0 < 2z < 3, obtained assuming a log-normal distribution with scatter o(log R.), intercept A
and slope «, and the relation being parameterised by R.[kpc] = A (M, /5 x 1010 M_)*. The figure
convincingly demonstrates the affiliation of our compact objects with the sample at z > 2. All galaxies
are significant outliers from the mass-size relation at z = 0 and a Kolmogorov-Smirnov test rules out
the null hypothesis that the compact galaxies have been drawn from the same parent distribution of
local ETGs,, at better than 95 per cent confidence. NGC1281 is the only outlier from our sample, being
consistent with the mass-size relation at z ~ 1. However, this is based on fits with a NFW profile
which, as has been shown in Chap. 3, is not a fair assumption of the dark halo of NGC1281, yielding
unreasonably low stellar mass-to-light ratios and consequently a low total stellar mass. Adopting a
stellar M/L of 1.7, as suggested by the stellar population analysis, implies an increase of the stellar mass

by a factor of ~ 2.5 and would move NGC1281 on top of the mass-size relation at z = 2.25.

It is worth noting that an overestimation of the stellar masses, due to an overestimation of the stellar
M/L in the dynamical models, will affect our conclusions only marginally. Decreasing the stellar M/L by a
factor of two, roughly consistent with expectations of their old stellar populations based on a Chabrier
IMF, moves the galaxies towards the stellar mass-size relation at 1.25 < z < 1.75, but the sample still

remains a significant outlier from the present-day mass-size relation.

452 The Stellar Mass Surface Density

By virtue of the deep, high spatial resolution HST photometry, we can obtain accurate surface density
profiles over a wide spatial range, out to regions where the SB is already more than 10 magnitudes
below the central SB (see e.g. Fig. 2.1). Having constrained the stellar M/L dynamically (Sec. 2.4, 3.3
and 4.4), we can now turn the surface brightness profiles into surface mass density profiles, which are

shown in Fig. 4.13.

The central stellar mass surface densities of the red, massive galaxy population at high redshift (light
grey) are 2-3 times higher than for local ETGs (dark grey) [Bezanson et al., 2009; Szomoru et al., 2012,
2013]. This is a result of their remarkable compactness. The high stellar surface mass densities are
assumed to be triggered by gas-rich major mergers at even higher redshift [Naab et al., 2007; Wuyts
et al., 2010] of presumably even more compact, starbursting submillimeter galaxies (SMGs) [Toft et al.,
2014] or by dynamical instabilities which feed galaxies with cold gas from the intergalactic medium (IMG)
[Birnboim & Dekel, 2003; Keres et al., 2005; Dekel et al., 2009; Dekel & Burkert, 2014].

The central stellar surface mass densities of our sample are in agreement with the values provided by
the bulk of galaxies at high redshift. Considering that our compact galaxies are outliers in the local mass-
size relationship (Fig. 4.12), this is expected. Self-evidently, the stellar mass surface density profiles are
also steeper, with a sharp fall-off at large radii. Only two galaxies in our sample, MRK 1216 and UGC 2698,

show a more extend profile, consistent with the density profiles of local ETGs in the remote regions.
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Figure 4.13: Stellar mass surface density profiles of massive ETGs at high (light grey) and low (dark grey)

redshifts [Szomoru et al., 2013]. Overplotted are the stellar mass surface density profiles of the compact,

elliptical galaxies, based on deep HST photometry and our orbit-based dynamical models of the wide-

field IFU stellar kinematics. The stellar mass surface density profiles of our sample are consistent with
those at high redshift.

These two objects, however, are at the same time two of the largest and most massive galaxies in our
sample, with sizes and masses more than twice as large as for instance NGC1277. This indicates that
they have already grown considerably with respect to the rest of the sample and might have already
entered the path of becoming a regular ETG, also promoted by our orbital analysis of MRK 1216 which
closely follows the relationship between 3, and ¢ of a sample of nearby ETGs (see Sec.2.5.1.3). Moreover,
the extended surface mass density profiles of MRK1216 and UGC 2698 suggest that the growth in mass
(and consequently in size) has been deposited in the outer parts. Indeed, integrating the density profile
shows that the mass content in the outer regions has grown disproportionally, with ~ 40 per cent of
the total stellar mass already being located beyond 5 kpc in MRK 1216 and UGC 2698, in contrast to e.g.
NGC1277 which only harbours 10 per cent of the total stellar mass at these radii.

The small sizes, density profiles and the disproportional growth in mass in the remote regions of the
largest galaxies in our sample, endorse the theory in which our galaxies are expected to form the cores
of massive, present-day ellipticals. As suggested by the density profiles, the evolution into massive
spheroids is closely related to the accretion of low surface density material in the outer parts, while at
the same time decreasing the central densities. Applying simple virial arguments, Bezanson et al. [2009]
show that major merging cannot reduce the central surface mass densities, whereas minor merging
may account for the decrease. Note though that subsequent minor merging events are expected to
increase the scatter in ETG scaling relations [Nipoti et al., 2012], which is not observed. Additional
processes such as adiabatic expansion due to significant mass loss during AGN feedback [Fan et al.,

2008, 2010] could thus have a non-negligible role.
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453 Stellar And Dynamical Masses

Deriving accurate masses is crucial to test the structural evolution of galaxies at high redshift. Yet, mass
measurements of galaxies at z ~ 2 are sparse. Literature studies have so far focused on measurements
of the central velocity dispersion [Kriek et al., 2009; van Dokkum et al., 2009; van de Sande et al., 2011;
Toft et al., 2012; Bezanson et al., 2013; van de Sande et al., 2013] and employed virial mass estimators
[Cappellari et al., 2006] to derive their dynamical masses, while relying on SPS modelling to assess their

stellar mass content.

The high quality of our photometric and spectroscopic observations allow us to construct orbit-based
dynamical models (Sec. 4.4), which are not affected by the systematic uncertainties and limitations of
the aforementioned methods. We can therefore place tight constraints on the stellar and dynamical
masses of our compact galaxy sample and - considering the striking similarities to the sample of red,

massive and passive galaxies at z = 2 - gain insight into the structural properties of the red nuggets.

We present the ratio of stellar to dynamical mass within the effective radius in Fig. 4.14 (left). The mean
ratio of low and high redshift galaxies are given by the horizontal lines [van de Sande et al., 2013]. The
figure confirms and extends the notion that our compact galaxies are dominated by stellar mass within
the effective radius. Only NGC1281 is an outlier. While this galaxy is dark matter dominated at large
radii, the contribution of the stellar mass to the total mass budget is most likely underestimated within 1
R. (Chap. 3). When excluding NGC 1281 from the sample, we obtain a mean ratio of stellar to dynamical
mass of 0.86 (highlighted by the black star) which is very close to the mean value of 0.9 inferred for

massive, quiescent galaxies at z ~ 2.

The trend of an increasing stellar contribution with increasing redshift has been ascribed to the de-
crease in the effective radius and hence to the lower dark matter contribution within this small spatial
extent, which is less steep than the stellar mass profile in these highly compact objects. Cosmological,
hydrodynamical simulations confirm this picture in which the dark matter fraction decreases within the
effective radius due to both the decrease in the effective radius and the increase in the baryonic den-
sity as a result of highly dissipational mergers which lead to compact stellar remnants [Hopkins et al.,
2009b]. We emphasise, however, that the stellar and dynamical masses of the high redshift sample
have been obtained under two assumptions, i) the adoption of Chabrier IMF [Chabrier, 2003], and ii) a
virial mass estimate where non-homology is accounted by a Sérsic dependent virial factor [Cappellari
et al., 2006]. To qualitatively assess the robustness of the latter approach, we compare the virial mass
estimate of our galaxies within the effective radius to our dynamical mass estimate within the same
spatial extent in Fig. 4.14 (right). The virial mass estimator systematically overpredicts the dynamical
masses and hence the stellar mass fraction within the effective radius. On the other hand, variations of
the IMF are not taken into account and the assumption of a Chabrier IMF might underpredict the stellar
mass fraction. Our dynamical models present a major advance in this respect as they do not rely on
the assumption of a stellar IMF, even though we assume that a NFW profile is a reasonable assumption
of the dark halo profile in these galaxies. In fact, the range of stellar M/L in our models is systematically
higher than expected of an old stellar population with a Chabrier or canonical Kroupa IMF (Y, ~ 1.3)
[Kroupa, 2001], being able to even exclude them in individual cases. The range of stellar M/L is also
partially exceeding expectations of a Salpeter IMF (Y, ~ 1.7) and, as a consequence, we cannot exclude

the possibility of a more bottom-heavy IMF in these objects. Note, though, that the observed trend of
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Figure 4.14: Left: Stellar mass vs. dynamical mass for the compact, elliptical, high central velocity

dispersion galaxies, measured by our orbit-based dynamical models within the elliptical isophote that

contains half of the light. The horizontal lines depict the ratio for local and high-redshift galaxies [van

de Sande et al., 2013], and the star indicates the mean value of our sample. The stellar mass fraction

to the total mass budget is much higher for the compact galaxies. Right: Comparison of the dynamical

mass within the effective radius from the virial mass estimator and our orbit-based dynamical models.
The locally calibrated virial mass estimator systematically overpredicts the dynamical mass.

a more bottom-heavy IMF is not necessarily an artefact of the stellar populations of our sample and
thus of high redshift galaxies, but could simply be related to the claimed systematic variation of the IMF
with increasing stellar velocity dispersion [Auger et al., 2010b; Treu et al., 2010; van Dokkum & Conroy,
2010, 2012; Conroy & van Dokkum, 2012; Cappellari et al., 2012; Spiniello et al., 2012; Dutton et al., 2012,
2013; Tortora et al., 2013].

We conclude that caution should be exercised when interpreting the evolution of the luminous and
dark matter fractions within one effective radius; our findings indicate that the locally calibrated virial
mass estimator is not a good proxy for the dynamical mass in these compact stellar systems, while the
adoption of Chabrier IMF might underestimate their stellar masses. The stellar M/L of our orbit-based
dynamical models are not exceeding a Salpeter-like IMF by much. Thus, the stellar populations of high
and low redshift galaxies should not be fundamentally different, if our galaxies are indeed passively
evolved analogues of high redshift red nuggets. Nevertheless, the decrease in size might not be the
sole responsible for the decrease in the dark matter fraction and the increase in the stellar mass
fraction. A contribution due to the systematic variation of the stellar IMF can affect the measurements,
in particular for galaxies with high stellar velocity dispersions (as is the case for our sample and the red

nuggets at redshift z = 2) where the variation of the IMF is expected to be the strongest.

4.5.4 The Total Mass Density Slope

Rather than dissecting the contribution of luminous and dark matter to the total mass budget, we can
investigate the total mass profile, which is assumed to hold additional clues regarding the formation
and evolution of galaxies. To this end, we illustrate the total mass density profiles as a function of

radius and the total mass density slopes in Fig. 4.15. The slopes have been derived by a least squares,
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Figure 4.15: Left: The total mass density profiles of our compact, elliptical, high central velocity dispersion

galaxies from our best-fitting dynamical models. The density profiles fall off steeper than the isothermal

density profile, with p oc 7~ 2. Right: The total mass density slopes as a function of radius. The density

slopes are consistent with the relation between slope and effective radius of a large sample of SLOAN
lens galaxies [Auger et al., 2010a], except again for NGC1281.

power-law fit to the total mass density profile of the best-fitting dynamical model, while the associated
errors mark the maximum and minimum deviation from this slope of all models within the statistical
30 uncertainty. The black lines on the left hand side depict density profiles with slopes of v = 0, 1 and
« = 2, which corresponds to an isothermal density profile that is commonly observed for ETGs from
both lensing and dynamics [e.g. Koopmans et al., 2006, 2009; Auger et al., 2010a; Barnabé et al., 2009,
20M]. Even though our galaxies follow the relation between slope and effective radius of a large sample
of SLOAN Lens ETGs [Auger et al., 2010a], the total mass density slopes are higher than the isothermal
profile and reflect the dominance of the baryonic density profiles within a few effective radii in these

objects.

Interestingly, Remus et al. [2013] analysed a suite of total mass density slopes of galaxies formed via
three different channels, i) binary mergers of (un-)equal mass spiral galaxies with varying gas fractions,
ii) hydrodynamical, cosmological simulations within which spheroidal galaxies undergo several minor
and major merging events and iii) hydrodynamical, cosmological simulations of central cluster galaxies.
While their merging scenarios have been carried out in order to understand the formation mechanisms
of local ellipticals, important information can be extracted concerning the formation of our compact
sample and hence also the formation of the red, massive galaxy population at z = 2. Binary mergers
with (and without) a significant fraction of gas fail in reproducing the total mass density slopes of typical
Coma ellipticals [Thomas et al., 2007], but they are able to recover the high density slopes of our galaxies
with v > 2.1. The cosmological simulations are also capable to recover a large range of density slopes,
depending on the dissipational nature of the merging events and the amount of stars that are formed
in-situ, which increase the central baryonic density profile. However, given the subsequent accretion of
smaller satellite galaxies, they also grow substantially in size and are generally larger than our galaxies

and the red nuggets at high redshift (see Remus et al. 2013, Fig.8 ).
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While the purely wet binary mergers are an unlikely formation scenario for present-day ellipticals [see
also Burkert et al., 2008], they are qualitatively a plausible formation mechanism of compact, massive
ellipticals at high redshift and thus for our sample. Actually, gas-rich disk mergers are more frequent at
high redshift, and necessary to explain the old stellar populations and short formation timescales of the
massive red galaxy population at z = 2. SMGs at 3 < z < 6, for instance, are poster childs of gas-rich,
compact and disky systems. Toft et al. [2014] show that their comoving number densities match the
number densities of the red nuggets if their duty cycles are of the order of 42 Myr. The gas-rich major
mergers would also be able to explain the positive deviation of the density slopes from v = 2.1 of our
compact galaxies. Given its dissipative nature, gas condenses in the centre of galaxies and gives rise
to starburst events which increase the central stellar mass densities and hence the total mass density

slope in these regions while keeping the galaxies compact.

4.6 Summary

In this chapter, we have carried out a detailed investigation of the photometric and kinematic properties
of a sample of seven compact, elliptical, high central velocity dispersion galaxies in the nearby universe
(< 100 Mpc). Based on deep HST imaging and wide-field IFU kinematics, we have shown that all seven
objects are outliers in the FP of local ETGs. They are also disky fast rotators with sizes and central

stellar velocity dispersions that resemble the population of massive and passive galaxies at z = 2.

We carried out orbit-based dynamical models to constrain their stellar mass-to-light ratios, black hole
mass and dark matter content. The IFU kinematics cannot resolve the black hole sphere of influence
and we can thus only present upper limits of the black hole mass. Despite kinematic data out to
several effective radii, dark matter is only evident in three galaxies. The stellar mass-to-light ratios are
in agreement with SPS models of a Salpeter IMF. However, we see a trend towards super-Salpeter values
and can exclude stellar M/L based on an old stellar population of a single power-law Chabrier or Kroupa

IMF in some individual cases.

By means of our orbit-based dynamical models, we could tightly constrain their stellar masses. We
showed that our sample is highly inconsistent with the mass-size relation of ETGs in the present-day
universe. They are, however, consistent with the mass-size relation of the red massive galaxy population
at z = 2, a.k.a. red nuggets, which are assumed to be the progenitors of today’s most massive ellipticals.
Moreover, their central stellar mass surface densities are higher by a factor of 2-3 in comparison to
the stellar mass surface densities of local, massive ETGs, and in agreement with the stellar mass
surface densities of the red nuggets. The body of evidence presented throughout this chapter thus
strongly indicates, that we have found passively evolved analogues of the red nuggets which provide an

unprecedented view of the structural and dynamical properties of high redshift galaxies.

Adopting an NFW profile, we also constrained their dark halo contribution to the total mass budget.
Within one effective radius, these compact, elliptical, high central velocity dispersion galaxies are highly
dominated by the stellar component with a stellar-to-dynamical mass ratio of 0.82. Literature studies
of stellar-to-dynamical mass ratios of z = 2 galaxies have been obtained via virial arguments and SPS
models adopting a Chabrier IMF. Assuming that our galaxies are indeed passively evolved analogues

of the massive galaxy population at z = 2, we show that the virial mass estimator systematically
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overpredicts the dynamical masses while a Chabrier IMF might underpredict the total stellar mass. The
high stellar-to-dynamical mass ratios are clearly driven by the low amount of dark matter due to the
decrease in effective radius. Our dynamical results suggest that the stellar populations of high and
low redshift galaxies are not fundamentally different. However, the systematic variation of the IMF with
increasing stellar velocity dispersion has to be taken into account, given that our sample and the sample

of massive and passive ETG at z = 2 exhibit exceptional stellar velocity dispersions.

The total mass density slopes of our sample exceed the density slope of an isothermal profile. This
is driven by the high stellar mass concentration and the negligible contribution of dark matter within
a few effective radii. Our total mass density slopes, while taking into account their compact sizes, are
in agreement with the density slopes of gas-rich disk merger simulations. This provides corroborating
evidence that the progenitors of our galaxies (and consequently the red nuggets) must have been disky,
compact and gas rich systems, consistent with the population of submillimeter galaxies at even higher

redshift (z > 3), which provide the necessary ages and star formation timescales.



Chapter

Summary & Outlook

5.1 Summary

The overall objective of this thesis was to investigate in detail a sample of compact, elliptical galaxies
with exceptional central velocity dispersions in the nearby universe. Motivation for this research came
from the discovery of an over-massive supermassive black hole (SMBH) in one of our objects, and their
striking resemblance to the compact, massive and quiescent galaxy population at z = 2. Moreover, our
interest in these object has been fuelled by the challenge to provide unambiguous dynamical evidence
for the presence of dark matter in the population of ETGs in general. To this end, we obtained deep high
spatial resolution imaging with the HST, low spectral resolution long-slit spectroscopic observations with
the HET and wide-field medium spectral resolution spectroscopic observations with the PPAK IFU, to
analyse their photometric and kinematic properties. By means of state-of-the-art orbit-based dynamical
models, we constrained the contribution of stars, a supermassive black hole and dark matter to the
total mass budget and gained further insight into their stellar and dark structure and their formation

and evolution histories.

Here, we briefly recapitulate our findings:

» Chapter 2

We started with the analysis of two compact galaxies, namely MRK 1216 and NGC 12177, to present
our data and to outline our methods. We performed a Sérsic decomposition of the deep HST
photometry to understand their stellar structure. Improved fits to their surface brightness profiles
indicate that these objects are comprised of multiple low-Sérsic components, which are generally
associated with highly rotating structures, consistent with the observed fast and regular rotation
around the short axis. The line-of-sight velocity distributions (LOSVD) have been extracted, which

show exceptional central velocity dispersion peaks that hint at high mass concentrations.

We carried out orbit-based dynamical models to obtain estimates of the stellar and dark masses
in both objects. We confirm the presence of an over-massive black hole in NGC1277 and present

an upper limit of the black hole mass in MRK1216. The stellar mass-to-light ratios are in agreement
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with stellar population synthesis (SPS) models of a canonical Kroupa or Salpeter stellar initial mass
function (IMF), but also consistent with a systematic variation of the IMF with increasing stellar
velocity dispersion. Despite kinematics which cover the LOSVD out to ~ 3 effective radii in both
objects, we can only present a dark halo detection in MRK 1216. The orbit-based dynamical models
also allowed us to inspect their orbital structures, which hold additional information regarding their
mass assembly history. Both galaxies show multiple, rotating substructures which could be linked
to the multi-Sérsic decompositions, showing that simple single or two Sérsic fits are not a good

proxy of the stellar structure even if they provide acceptable fits to the photometry.

Moreover, only MRK 1216 follows the tight relation of a large sample of nearby ETGs between the
anisotropy in the meridional plane (8,) and the global anisotropy parameter (), whereas NGC1277
is a strong outlier. This might indicate that MRK1216 has already entered a path of becoming a
regular ETG. However, taking into account their uniformly old stellar populations, rapid rotation,
the absence of tidal signatures and their relatively small sizes, a recent active merging history
can be ruled out, nonetheless. Numerous minor mergers, the favoured evolution scenario for the
mass and size growth of massive, quiescent galaxies since z = 2, would have increased their
sizes dramatically. On the other hand, remnants of simulated dry major (disk-)mergers yield boxy,
slow-rotating galaxies. Wet (disk-)mergers are successful in recovering many of their physical
parameters, but they are expected to evolve galaxies towards the FP and the non-negligible gas
fractions should result in more recent star formation activity, which however is at odds with
the stellar populations and star formation histories of these two compact objects unless they
have happened more than 10 Gyr ago. Thus all formation scenarios which aim to recover the
population of today’s ETGs cannot reproduce the physical properties of the two compact objects

in this work.

Interestingly, their properties are in excellent agreement with the properties of the red nuggets at
redshift z = 2. These are thought to be the progenitors of today’s massive ellipticals and might
have formed through wet mergers of highly disky, compact, starbursting galaxies at even higher
redshift.

+ Chapter 3

We expanded our knowledge of compact, elliptical, high central velocity dispersion galaxies by
studying NGC1281, a highly peculiar object in the Perseus cluster. Here again, the photometric
and kinematic data show that this galaxy is very compact and rapidly rotating around the short
axis, while the dispersion peak indicates a high concentration of mass in the centre. Our orbit-
based dynamical models provided clear evidence for the presence of a massive dark halo, as
simple mass-follows-light models failed to recover the observational constraints. The dark halo in
NGC 1281 constitutes ~ 90 per cent of the total dynamical mass within 5 effective radii (~ 7 kpc),
irrespective of the exact halo parameterisation. However, parameterising the dark halo with a
spherical NFW profile yields unreasonably low stellar M/L and an over-massive SMBH. Moreover,
extrapolating the dark profile results in a cluster-sized dark halo, which would have to embedded
in the Perseus cluster halo itself. The discrepancy stems from the necessity to recover the high,
enclosed total dynamical mass within a very small spatial extent. This is accomplished by a
massive dark halo. The massive dark halo, in turn, propagates into the central regions (i.e. <

1 R.), where the tension between the stellar and dark mass is relieved by lowering the stellar
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M/L. The stellar M/L, however, gives rise to an over-massive SMBH in the very centre, to recover
the central dynamical mass. At the same time, the line-strength analysis of NGC1281 suggests
that this galaxy is comprised of an old stellar population, with a radial decrease in metallicity and
a-abundance. The uniformly old stellar population cannot be reconciled with the low stellar M/L
in the dynamical models, providing corroborating evidence for the fact that NFW is not a fair
approximation of the dark halo profile in this object. As an aside, we traced the gravity-sensitive
features in the spectra and showed that the systematic variation of the IMF is only a local property,

which is confined to the high stellar velocity dispersion region.

* Chapter 4

We concluded with an investigation of the structural and dynamical properties of a total of seven
compact, elliptical, high central velocity dispersion galaxies. By virtue of the high quality photo-
metric and spectroscopic observations, we have derived accurate measurements of their sizes,
total apparent magnitudes, surface brightness profiles, LOSVDs, central and effective velocity dis-
persions and specific stellar angular momenta as a function of radius. All galaxies in our sample

are compact and fast-rotating, with an exceptional central velocity dispersion peak.

They are outliers in the Fundamental Plane of nearby ETGs. We constrained their stellar M/L,
black hole mass and dark matter content with orbit-based dynamical models. We show that all
compact galaxies in our sample are strong outliers from the mass-size relation in the present-day
universe, but consistent with the mass-size relation of massive, quiescent galaxies at z ~ 2. The
stellar mass surface density profiles are also in line with the surface density profiles of galaxies at
high redshift. In combination with literature studies of their stellar populations and star formation
histories, this is indicative that we have found a sample of objects which are passively evolved
analogues of the red nuggets, available for a study in unprecedented detail which is currently not

possible for their counterparts at high redshift.

The surface mass density profiles of two of the largest galaxies in our sample illustrate that they
have already grown via disproportional mass accumulation in the remote regions (i.e. > 5kpc),
as is expected if they grow via minor mergers. As a matter of fact, our two largest galaxies have
already quadrupled their mass content beyond 5 kpc and grown in size by a factor of ~ 3, while
their total masses have only increased by a factor of 2 with respect to the most compact and
least massive objects in our sample. We also showed that all objects are dominated by stellar
mass within the effective radius. The mean dark matter fraction within one effective radius in
our sample, and consequently for the population of massive and quiescent galaxies at z ~ 2, is
much lower than observed for typical ETGs in the local universe. This is owed to the decrease
of effective radius as a function of lookback time and hence the decrease of the volume which
encompasses dark matter. In addition, we demonstrated that studies of galaxies at high redshift,
based on virial arguments as well as on assumptions of the IMF, are prone to many systematic

uncertainties.

The stellar mass-to-light ratios in our dynamical models are systematically higher than anticipated
from an old stellar population with a Chabrier IMF. While they don’t exceed expectations based on
a single power-law Salpeter IMF by much, suggesting that the IMF of high and low redshift galaxies
are not fundamentally different, they support recent claims in which the IMF varies systematically

as a function of stellar velocity dispersion.
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Finally, we investigated the total mass density slopes which are steeper than expected from
an isothermal density profile. This is in agreement with the relation between slope and effective
radius of a large sample of ETGs which act as gravitational lenses. Simulations show that compact
outliers from the isothermal density profile are well reproduced by wet major mergers of compact
(disk-)galaxies. This suggests that our sample, and analogue the population of massive, quiescent
ETGs at z = 2, might have formed through merging of gas-rich galaxies at even higher redshifts,

with the submillimeter galaxy population at z > 2 as likely progenitors.

5.2 Outlook

This thesis, in combination with efforts based on the extensive data set which has been acquired as part
of this work, has accomplished a detailed examination of the passively evolved progenitors of today’s
most massive galaxies. As a result, we gained insight into their structural properties, constrained their
stellar and dark content as well as their black hole masses. However, a significant number of topics
haven’t been addressed yet which will provide the basis for future work and enable us to obtain a more
complete picture regarding i) the evolution of massive ETGs, ii) the link between their luminous and

dark matter and iii) the role of their supermassive black hole.

The over-massive SMBHs in our compact galaxy sample have provided a first (purely dynamical) glimpse
at the black hole demographics at higher redshifts. Our findings indicate that the growth of a black
hole is not inevitably connected to the growth of a bulge component. At the same time, they question
the method of decomposing galaxies photometrically into a simple bulge and disk component, as the
photometric decompositions are at odds with the orbital structures in the dynamical models. An
interesting aspect for future investigations would thus be the assessment of the robustness of the
photometric and orbital analysis, which could be tested in recovering simulated galaxies from their
mock kinematic and photometric data. This will also shed light on e.g. the validity of the black hole
mass-bulge luminosity relation, where bulge luminosities have generally been obtained by means of a

two-component decomposition [but see Lasker et al., 2014a,b].

A more fundamental concern regarding the black hole scaling relations arises from the poor sampling in
the host galaxy parameter space. The current crop of black hole masses is concentrated at log(Me/M)
= 8 [Gultekin et al., 2009; McConnell & Ma, 2013; Kormendy & Ho, 2013]. Likewise, the sample occupies
a tight locus in the size-luminosity relation [van den Bosch et al., 2015]. Increasing the diversity in
the sample of dynamically constrained black hole masses is therefore crucial to discriminate between
various black hole formation channels. For instance, massive elliptical galaxies are more abundant in
dense environment than spiral galaxies [Dressler, 1980]. The black holes in early-type galaxies (ETGs)
are therefore expected to grow significantly during mergers, whereas the growth of SMBHs in late-type
galaxies (LTGs) is presumably dominated by the presence of non-axisymmetric features (e.g. bars) which
can efficiently funnel cold material towards the centre [e.g. Shlosman et al., 1989; Hopkins & Quataert,
2010]. In fact, the dominance of different black hole growth mechanisms seems to be reflected in the
different quantifications of the black hole scaling relations, with an intercept that differs by a factor of
two if early- and late-type galaxies are fitted individually [McConnell & Ma, 2013] and a larger intrinsic

scatter at the low mass end [Greene et al., 2010b]. Current efforts to increase the sample size, but
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more importantly the sample diversity, are therefore under way. We have proposed to dynamically
measure the black hole mass in 28 galaxies in the northern hemisphere, with GEMINI/NIFS. The sample
covers a wide range of host galaxy properties and the black hole spheres of influence are expected to
be resolved, based on their distance and central velocity dispersion measurements in the Hobby-Eberly
Telescope Massive Galaxy Survey (HETMGS). Hereby, we aim to obtain a more complete census of local

SMBHs and a better understanding of the role of the black hole in the evolution of galaxies.

We have shown for three out of seven galaxies in our sample that they are embedded in a dark halo. In
one out of these three galaxies, the difference between the model kinematics with and without a dark
halo can be clearly distinguished, whereas the difference in the two remaining galaxies is statistical in
nature, even though with a confidence of more than 3. The difficulty in establishing the presence of
dark matter in the remaining objects can be traced back to two effects, i) the compactness of their stellar
mass distribution and ii) the comparatively small spatial extent of the kinematic data in an absolute
sense. Given their compactness and high stellar mass densities, the mean dark halo contribution
to the total mass budget within 1R, is ~ 10% for our sample, and at the percentage level for the
most compact objects (except NGC1281). Our orbit-based dynamical models are thus not capable to
distinguish between models with and without a dark halo, as the additional mass is easily compensated
by a marginal increase in the stellar M/L. The dark matter fractions within the effective radius are well
in line with expectations for the dark mass of a spherical NFW halo, assuming that the stellar-to-halo
mass and mass-concentration relation holds. Accordingly, a spherical NFW halo would contribute ~ 50
per cent to the total mass budget at 8 kpc or ~ 5 R, for the most compact galaxies in our sample with
stellar masses of the order of log(M, /M) = 11.2f8:%. Our kinematic data, however, is only at the edge
of probing this region, where the dark halo is assumed to dominate the mass budget, and we thus fall
short in providing unambiguous evidence for dark matter. Consequently, a larger spatial coverage in
absolute terms is necessary, which could in principle be accomplished with even longer exposure times

to push the remote spaxels above the S/N threshold.

In this respect, the recently commissioned Multi Unit Spectroscopic Explorer (MUSE) at the VLT presents
an interesting alternative, even though it is located in the southern hemisphere and inappropriate for
follow up observations of the galaxies presented in this paper, except for MRK1216. The Narrow-Field
Mode (NFM) of MUSE offers exquisite observations at a spatial resolution of < 0.05” FWHM, that would
be able to spatially resolve the kinematics close to the black hole in local, high stellar velocity dispersion
galaxies. On the other hand, the Wide-Field Mode (WFM) provides a field field of view (FOV) of " x 7,
at a spatial resolution of < 0.4” FWHM, to obtain corresponding wide-field stellar kinematics that can

probe the faint, dark matter dominated regions of compact galaxies (> 10 kpc).

The number of compact, elliptical galaxies with high central velocity dispersions is limited. We have
examined seven objects in this work. Data, consisting of high spatial resolution photometric and medium
resolution spectroscopic observations, are available for another eleven objects, as part of our dedicated
strategy to inspect these highly interesting objects. Even though a non-negligible sample of compact,
high stellar velocity dispersion galaxies have been detected in the meantime [Saulder et al., 2015],
moving to higher redshifts to assess the structure and properties of galaxies through cosmic time is
therefore inevitable. However, it has been demonstrated in this thesis that virial mass estimators and
stellar population synthesis fits to the spectral energy distribution of high redshift galaxies are affected

by systematic uncertainties. The highly sensitive MUSE is already capable to obtain spatially resolved



Chapter 5: Summary & Outlook 114

spectroscopic observations of galaxies to redshifts of, at least, z ~ 0.5 [e.g. Bacon et al., 2015]. The
resulting gas- and stellar kinematics in combination with deep photometric data will not only allow us
to examine the mass and size evolution of massive ETGs in the last 5 Gyr, but also to inspect their
dynamical state and orbital structure, which in turn hold important information regarding their growth

and mass assembly history.



Appendlx

Multi-Gaussian Expansion

We present the Multi-Gaussian Expansion tables of the four compact, elliptical, high central velocity
dispersion galaxies in Chapter 4, based on their high spatial resolution HST WFC3 imaging in the FI60W
filter. The expansions have been carried out under the well justified assumption of axisymmetry, i.e.

with the same position angle for each Gaussian in the fit and a common centre.

The SB has been parameterised by multiple, two-dimensional Gaussians:

roo 1 ’ 1
L@ ) = Ty exp(—5 (2 + 7)) (A1)
where I ; is the central surface brightness, a;- the dispersion along the projected major axis and q
the apparent flattening of each Gaussian component.

The total luminosity of each Gaussian is obtained as:

L=2ml; 0;2 q; (A.2)

In an oblate axisymmetric case, i.e. intrinsic axis ratio of b/a = 1, the inclination i is the only free
parameter to pin down the shape of the ellipsoid. The MGE, however, can only be deprojected for
inclinations where:

cos?i < q;zm (A3)
i.e. the minimum projected axis ratio in the MGE sets the lower inclination limit for the deprojection.
If an inclination has been chosen, the intrinsic luminosity density in cylindrical coordinates reads as:

/I 1 2
_ 470 exp(——,z(R2 + 2—2)) (A.4)
\[27T )54, 20 45

where o; and g; now denote the intrinsic dispersion and flattening.

vi(R,z) =
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Table A.l: Multi-Gaussian-Expansion of NGC1270’s HST (FI60W) H-band image, at a fixed PA of 15.79°

(measured counter-clockwise with the image alligned N.-E., i.e. north is up and east is left). The columns

display the number of each Gaussian, beginning with the innermost one (1), the surface density (2), the
dispersion (3) and the corresponding Sérsic index (4) as well as the apparent flattening (5).

# of components | [Lopc 2] o [arcsec] n q

1 132650.63 0.0064185 0.5 0.8222
2 10396.35 0.0168376 0.5 0.8222
3 85954.096 0.0414933 0.5 0.8222
4 9920.5893 0.0505985 0.5 0.4932
5 3298.0476 0.0632146 0.5 0.5504
6 59060.875 0.0965869 0.5 0.8222
7 23800.900 0.856513 0.5 0.4932
8 37170.248 0.2123836 0.5 0.8222
9 4930.3207 0.2215776 0.5 0.5504
10 31960.227 0.4307827 0.5 0.4932
n 20537.720 0.4485513 0.5 0.8222
12 5809.7194 0.6049265 0.5 0.5504
13 21023.362 0.7641875 0.5 0.4932
14 9924.2282 0.9039556 0.5 0.8222
15 5891.1042 11583093 0.5 0.4932
16 5004.4278 13904290 0.5 0.5504
17 461.03988 1.6387519 0.5 0.4932
18 4200.7103 17415806 0.5 0.8222
19 2973.7113 2.7819705 0.5 0.5504
20 1559.1539 3.2420697 0.5 0.8222
21 1137.9496 49798336 0.5 0.5504
22 486.49005 5.8586783 0.5 0.8222
23 82.034219 6.7569947 0.5 0.8734
24 269.26023  8.1735058 0.5 0.5504
25 128.65376 10.255221 0.5 0.8222
26 36.916334 12.659926 0.5 0.5504
27 172.84216 13.991969 0.5 0.8734
28 28.695641 17.455523 0.5 0.8222
29 56.629717 18.794065 0.5 0.8734
30 2.0365826 19.598942 0.5 0.5504
31 52685361 28.983736 0.5 0.8222
32 0.8015330 47.058876 0.5 0.8222
33 0.0973425 76.200890 0.5 0.8222
34 0.0067910  133.39539 0.5 0.8222
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Table A.2: Multi-Gaussian-Expansion of NGC1271's HST (FI60W) H-band image, at a fixed PA of -50.33°

(measured counter-clockwise with the image alligned N.-E., i.e. north is up and east is left). The columns

display the number of each Gaussian, beginning with the innermost one (1), the surface density (2), the
dispersion (3) and the corresponding Sérsic index (4) as well as the apparent flattening (5).

# of components | [Lg pc 2] o [arcsec] n q

1 230496.20 0.0027964 0.5 0.7099
2 257728.75 0.0083482 0.5 0.7099
3 37821.357 0.0085383 0.5 0.3871
4 249528.15  0.0219926 0.5 0.7099
5 32818.108  0.0230908 0.5 0.3871
6 206350.03  0.0524812 0.5 0.7099
7 25704.838 0.0583863 0.5 0.3871
8 138708.32 0.154338 0.5 0.7099
9 17971.886 0.13910M 0.5 0.3871
10 73308.817 0.2347042 0.5 0.7099
1 1106.4584  0.3053897 0.5 0.2306
12 11016.363 0.3122273 0.5 0.3871
13 127.37304  0.3466723 0.5 0.5630
14 30084.962 0.4438694 0.5 0.7099
15 5957.7905 0.6698236 0.5 0.3871
16 9398.8290 0.7880591 0.5 0.7099
17 2387.7957 11340874 0.5 0.2306
18 283.10339  1.2429302 0.5 0.5630
19 2198.4864 1.3257718 0.5 0.7099
20 26913108 13734856 0.5 0.3871
21 376.45613 21359594 0.5 0.7099
22 2833.7146  2.6606259 0.5 0.2306
23 10421296  2.6808934 0.5 0.3871
24 421.99088 3.0412323 0.5 0.5630
25 44909802 3.3646646 0.5 0.7099
26 1662.8757 4.7949390 0.5 0.2306
27 339.62298 5.0444393 0.5 0.3871
28 25906886 55258174 0.5 0.7099
29 379.00630 5.8343182 0.5 0.5630
30 416.63526  7.4099059 0.5 0.2306
31 89.536758 9.1488333 0.5 0.3871
32 186.49363  9.4947538 0.5 0.5630
33 30.234870  10.695552 0.5 0.2306
34 43743138  13.976030 0.5 0.5630
35 19.819043  15.893208 0.5 0.3871
36 3.1560776 19.791912 0.5 0.5630
37 3.6448137 26.733833 0.5 0.3871
38 0.5431667 43.834568 0.5 0.3871
39 0.0635840  71.363441 0.5 0.3871
40 0.0042027 124.74500 0.5 0.3871
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Table A.3: Multi-Gaussian-Expansion of NGC 2767’s HST (FI60W) H-band image, at a fixed PA of 160.79°

(measured counter-clockwise with the image alligned N.-E., i.e. north is up and east is left). The columns

display the number of each Gaussian, beginning with the innermost one (1), the surface density (2), the
dispersion (3) and the corresponding Sérsic index (4) as well as the apparent flattening (5).

# of components [ [Le pe?] o [arcsec] n q
1 142261.74 0.0040270914 0.5 0.5078
2 111923.70 0.010818732 0.5 0.5078
3 10231.425 0.014512836 0.5 0.9697
4 80694.007 0.027046913 0.5 0.5078
5 16425.577 0.050174858 0.5 0.9697
6 53379.802 0.063659951 0.5 0.5078
7 20556.490 0.13654891 0.5 0.9697
8 31657.638 0.14301355 0.5 0.5078
9 16728.229 0.30962077 0.5 0.5078
10 19078.409 0.31209078 0.5 0.9697
n 96.765684 0.58891261 0.5 0.8976
12 12024.207 0.6186744 0.5 0.9697
13 7525.1008 0.64534992 0.5 0.5078
14 4941.8373 1.0928043 0.5 0.9697
15 2945.2114 1.2887121 0.5 0.5078
16 1251.8233 1.770199 0.5 0.9697
17 212.08281 2.2011206 0.5 0.8976
18 993.79779 2.4714198 0.5 0.5078
19 182.11160 2.7081838 0.5 0.9697
20 10.333052 41408405 0.5 0.9697
21 287.07583 4.5836735 0.5 0.5078
22 255.18233 5.2089229 0.5 0.8976
23 41395413 7.2246799 0.5 0.6159
24 69.971297 8.2245197 0.5 0.5078
25 299.32149 8.9505949 0.5 0.6159
26 148.59086 9.4196787 0.5 0.8976
27 14.399325 14.302497 0.5 0.5078
28 37.200869 14.563405 0.5 0.8976
29 2.6924723 21.027004 0.5 0.8976
30 2.5054515 24140549 0.5 0.5078
31 0.36469752 39.855518 0.5 0.5078
32 0.042577507 65.638718 0.5 0.5078
33 0.0029336188 116.82428 0.5 0.5078
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Table A.4: Multi-Gaussian-Expansion of UGC 2698’s HST (FI60W) H-band image, at a fixed PA of 108.61°

(measured counter-clockwise with the image alligned N.-E., i.e. north is up and east is left). The columns

display the number of each Gaussian, beginning with the innermost one (1), the surface density (2), the
dispersion (3) and the corresponding Sérsic index (4) as well as the apparent flattening (5).

]

# of components [ [Le pc™ o [arcsec] n q

1 55810.516 0.0076895948 0.5 0.7116
2 67019.099 0.022569373 0.5 0.7116
3 24594631 0.023466641 0.5 0.8130
4 69635.380 0.058516044 0.5 0.7116
5 17781.965 0.059566658 0.5 0.8130
6 606.51355 0.097973973 0.5 0.8210
7 62086.800 0.13766874 0.5 0.716
8 11562.277 0.14219986 0.5 0.8130
9 680.90388 0.29516813 0.5 0.8210
10 44358.659 0.29694510 0.5 0.716
n 6758.9329 0.32137993 0.5 0.8130
12 25361.368 0.58743846 0.5 0.716
13 210.10926 0.62657946 0.5 0.5907
14 3485.2714 0.69107431 0.5 0.8130
15 666.55370 0.78152096 0.5 0.8210
16 11380.483 1.0811795 0.5 0.7116
17 1601.8227 1.4212409 0.5 0.8130
18 544.39725 1.8710355 0.5 0.8210
19 3872.9430 1.8729647 05 0.716
20 453.40098 2.3259153 0.5 0.5907
21 632.28189 2.8216743 0.5 0.8130
22 984.72294 3.0745850 0.5 0.716
23 363.26004 4.0747910 0.5 0.8210
24 183.27843 4.8415961 05 0.716
25 215.41008 5.3892035 0.5 0.8130
26 538.69574 5.4710727 0.5 0.5907
27 23.416082 7.4750586 0.5 0.716
28 194.46055 8.1753931 0.5 0.8210
29 312.35828 9.8433704 0.5 0.5907
30 63.155683 9.9492970 0.5 0.8130
31 1.3767565 12.042072 0.5 0.7116
32 78.331756 15.188533 0.5 0.5907
33 80.967136 15.317646 0.5 0.8210
34 15.513297 17.851410 0.5 0.8130
35 5.6794414 21.912840 0.5 0.5907
36 25.778210 26.985287 0.5 0.8210
37 3.2160768 31.019604 0.5 0.8130
38 6.1471613 45.168034 0.5 0.8210
39 0.56064874 52.422665 0.5 0.8130
40 1.0649699 72.552956 0.5 0.8210
41 0.081551607 86.635925 0.5 0.8130
42 0.12779005 14.01669 0.5 0.8210
43 0.0095982972 142.47255 0.5 0.8130
44 0.0073986472 186.72150 0.5 0.8210
45 0.0006708539 253.51215 0.5 0.8130
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