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Abstract

Accessing the relative changes in protein abundance is essential for a proper
understanding of the various processes underlying disease progression and
development. Nowadays, mass spectrometry-based proteomics allows for the
identification of several thousand proteins in a single analysis. Unfortunately,
mass spectrometry is inherently not quantitative, which is why additional
techniques for protein quantification have to be developed.

To measure quantitative changes in protein abundance, biological samples
need either to be labeled using stable isotopes or protein abundances have to
be computed using so called label-free techniques.

Label-based quantification approaches are costly and the number of samples
that can be quantified against each other is limited. Furthermore, depending
on the sample, the introduction of the labels can be elaborate. Label-free
quantification is not confronted with these limitations; principally, an unlimited
number of samples can be quantified without the introduction of isotopes.

Yet these advantages have their price: The development of label-free quan-
tification algorithms is not trivial and requires profound knowledge both in
bioinformatics and mass spectrometry. Namely the design of systems flexible
enough to quantify data deriving from different mass spectrometric systems
and proteomic workflows require additional experience and time.

Existing software solutions for the quantitative analysis of data obtained by
liquid chromatography followed by mass spectrometry largely lack two main
properties that are important for their routine application: (i) usability by
non-informaticians and (ii) flexibility with regard to instrumentation and/or
workflow. Today, no software exists for the quantification of data from state-
of-the-art LC-MALDI-MS systems. LC-MALDI-MS is a widely used system
for routine applications in proteomics and as well in other fields of diagnostics.
In contrast to LC-ESI-MS, the decoupling of liquid chromatographic sample
separation and mass spectrometric sample analysis allows to separate MS1 and
MS2 in time, thereby providing unique possibilities for advanced and dynamic
data acquisition mostly unused today.

In order to quantify data acquired by LC-MALDI-MS and to take full
advantage of the mentioned LC-MALDI-MS specific features, a novel software
suite termed MSQBAT was developed and evaluated. MSQBAT is a platform
independent software suite for MS1-based, label-free protein quantification. In
contrast to other software solutions, MSQBAT is highly flexible and suited for
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the quantification of mass spectrometric data from various instrumental setups
and proteomic workflows, such as (Ge)LC-MALDI-MS and (Ge)LC-ESI-MS.

Quantification capabilities were evaluated using spike-in experiments an-
alyzed using both different proteomic workflows and instruments. Human
proteins were spiked in variable concentrations into a complex E.coli back-
ground proteome and processed using both an LC-MS and a GeLC-MS approach.
Samples were chromatographically separated on a nanoACQUITY UPLC ®

system using a 120 minutes gradient and subsequently analyzed by an AB
SCIEX TOF/TOF™ 5800 system and an AB SCIEX QTRAP® 6500 system.
Furthermore, a publicly available quantification benchmark data set [1] has
been used to evaluate LC-ESI-MS quantification capabilities.

Obtained results show that MSQBAT can be applied to quantify data
deriving from both LC-/GeLC-MALDI-MS and LC-/GeLC-ESI-MS workflows
with high accuracy. Therefore, this software suite has a range of application
outperforming all currently available solutions.
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Zusammenfassung

Das Wissen über relative Änderungen der zellulären Proteinmengen ist essen-
tiell für unser Verständnis von zellbiologischen Prozessen, die beispielsweise
für die Entstehung und Entwicklung diverser Krankheiten verantwortlich sind.
Massenspektrometie basierte Proteomik erlaubt heutzutage die Identifikation
tausender Proteine in einer einzigen Analyse. Unglücklicherweise ist die Massen-
spektrometrie grundsätzlich kein quantitatives Verfahren, weswegen zusätzliche
Techniken zur Proteinquantifizierung erforderlich sind.

Um quantitative Änderungen in der Expression von Proteinen messen zu
können, müssen biologische Proben entweder mit stabilen Isotopen markiert wer-
den oder die Proteinabundanz muss durch markierungsfreie, computergestützte
Methoden berechnet werden.

Isotopen-basierte Methoden zur Proteinquantifizierung sind kostspielig und
die Anzahl der Proben, die gleichzeitig verglichen und somit quantifiziert werden
können, ist limitiert. Weiterhin kann sich die Einführung der Markierung,
je nach Probenmaterial, als sehr aufwendig bzw. unmöglich gestalten. Bei
markierungsfreien Methoden treten diese Probleme nicht auf; prinzipiell kann
eine unlimitierte Anzahl Proben analysiert und quantifiziert werden, ohne dass
die Einführung von Isotopen nötig ist.

Diese Vorteile gegenüber markierungsbasierten Verfahren haben allerdings
ihren Preis: Die Entwicklung von Algorithmen zur markierungsfreien Quan-
tifizierung ist nicht trivial und erfordert detaillierte Kenntnisse sowohl der
Bioinformatik als auch der Massenspektrometrie. Insbesondere das Entwerfen
von Systemen, die flexibel genug sind um Daten verschiedener Systeme quanti-
fizieren zu können, erfordert zusätzliche Erfahrung und ist sehr zeitaufwändig.

Existierenden Softwarelösungen zur quantitativen Auswertung von Daten,
die durch Flüssigkeitschromatographie gefolgt von Massenspektrometrie gewon-
nen wurden, mangelt es heute fast ausnahmslos an zwei wichtigen Eigenschaften,
die für eine routinemäßige Anwendung nötig sind: (i) Benutzerfreundlichkeit
– speziell für Nicht-Informatiker – und (ii) die bereits erwähnte Flexibilität
bezüglich Probenvorbereitung und/oder verwendeter Instrumente. So existiert
heute beispielsweise keine Software zur quantitativen Auswertung von Daten,
die durch neuste LC-MALDI-MS Geräte gewonnen wurden. LC-MALDI-MS
ist ein weit verbreitetes System für proteomische Anwendungen und wird
auch in anderen Bereichen der Diagnostik eingesetzt. Im Gegensatz zu LC-
ESI-MS bietet das System durch die Entkoppelung von chromatographischer
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Probenauftrennung und massenspektrometrischer Probenanalyse einzigartige
Möglichkeiten der erweiterten und dynamischen Datenakquise, die bis heute
größtenteils ungenutzt bleiben.

Um Daten, die durch LC-MALDI-MS gewonnen wurden, quantitativ auszu-
werten und um von den genannten LC-MALDI-MS spezifischen Eigenschaften
voll zu profitieren, wurde eine neue Softwarelösung names MSQBAT entwi-
ckelt und evaluiert. MSQBAT ist eine platformunabhängige Softwarelösung
zur markierungsfreien, MS1-basierten Proteinquantifizierung. Im Gegensatz zu
existierenden Lösungen bietet MSQBAT die Möglichkeit, proteomische Daten,
die sowohl durch verschiedenste Probenvorbereitungsarten als auch durch un-
terschiedliche Analyseinstrumente gewonnen wurden, mit hoher Genauigkeit
zu quantifizieren.

Die Möglichkeiten zur Proteinquantifizierung wurden durch Spike-in Experi-
mente evaluiert, die mit Hilfe verschiedener Arbeitsabläufe und auf verschiede-
nen Geräten prozessiert wurden. Humane Proteine wurden in unterschiedlichen
Mengen in ein komplexes E.coli Hintergrundproteom gemischt und anschließend
in einem LC-MS beziehungsweise GeLC-MS Ansatz analysiert. Die Proben
wurden auf einem nanoACQUITY UPLC ® System mit einem 120 Minuten Gra-
dienten chromatografisch aufgetrennt und anschließend durch ein AB SCIEX
TOF/TOF™ 5800- beziehungsweise ein AB SCIEX QTRAP® 6500 System
analysiert. Darüber hinaus wurden öffentlich verfügbare Benchmark-Daten [1]
zur Evaluierung der Kompatibilität mit LC-ESI-MS Daten herangezogen.

Die gewonnenen Ergebnisse zeigen, dass die in dieser Arbeit entwickelte
Softwarelösung MSQBAT LC-/GeLC-MALDI-MS sowie LC-/GeLC-ESI-MS
Daten mit hoher Genauigkeit quantifizieren kann. Die neuentwickelte Software
verfügt somit über ein Einsatzspektrum, dass über dasjenige aller zur Zeit
veröffentlichter Lösungen hinausgeht.
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The Concept of Tumor Heterogeneity
and Cancer Stem Cells

How do cancer cell populations change over time? Why does a tumor
form metastases in distant organs and what is the reason for tumor
relapse after treatment? These questions have tremendous impact

on the general understanding of this disease and treatment strategies. In
the last decade, different models have been developed addressing cancer cell
heterogeneity and its development over time.

1.1 Models of Tumor Progression
Models describing tumor formation, progression and recurrence have been
evolving over the years. Common to all of them is the underlying fact that
cancer is a genetic disease and that tumor progression is driven by a sequence
of genetic alterations, which eventually lead to uncontrolled and malignant cell
proliferation [2, Chapter 2, Chapter 7], [3].

1.1.1 Stochastic model

The simplest and oldest concept is the stochastic model: All cells are equal and
only chance determines which cells will be hit by the number of genetic and/or
epigenetic changes required for malignant transformation (Figure 1.1a). These
cells (re-)gain the ability for unlimited and rapid proliferation; the specific trait
targeted by cytotoxic, anti-proliferative chemotherapeutics. The problem of
frequent and severe tumor relapse has ever since highlighted the incompleteness
of both the model and the available treatment procedures.
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4 I. Introduction

(a) All cells have the same tumor ini-
tiating capacity. Tumor cells themselves
might be heterogeneous in many aspects,
but all cells are equal in terms of tumor
maintenance and metastasis initiation. Ac-
cording to this model, the genetic and epige-
netic changes leading to tumor development
and progression of malignancy are opera-
tive in all cells within the tumor. Existing
therapeutics aiming at the tumor bulk are
mainly based on this model.

(b) Only a subpopulation of the tumor
bulk has tumor initiating capacity Tu-
mor cells are heterogeneous, also with re-
spect to tumor maintenance and metastasis
initiation capacity. According to this model,
certain cells are biologically and function-
ally distinct from the bulk of the tumor cells
and must be specifically targeted by cancer
treatments to achieve permanent cure.

Figure 1.1: Tumor heterogeneity. Adapted from [4].

1.1.2 Clonal evolution

The model of clonal evolution is a more advanced concept reflecting Darwin’s
ideas of evolution as a constant progress of adaptation and selection. While
tumor initiation is still assumed to be a random event, tumor progression follows
the rules of Darwinian evolution: A cell that gained a survival advantage by
a random genetic/epigenetic change establishes a branch of dominant clones
outperforming “normal”, healthy cells in terms of proliferation. Over time, this
branch accumulates more and more mutations increasing its abilities to survive
and expand. This increasing “Darwinian fitness” can indicate tumor progression
into a malignant cancer, which overcomes tissue barriers and eventually forms
metastases at distant sites (Figure 1.2). Clonal evolution explains the observable
steps of tumor progression, but fails to provide a thorough explanation for
tumor relapse.
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Figure 1.2: Clonal evolution as a model of tumor progression. Tumor
initiation is a random event, but genetic and epigenetic changes establish clonal
branches of tumor cells which outperform healthy cells in terms of proliferation.
These branches follow the principles of Darwinian evolution and accumulate more
and more “beneficial” mutations over time. Only cells from a dominant branch
possess the ability to maintain the tumor and to establish metastases at distant sites.
Adapted from [5].



6 I. Introduction

1.1.3 Cancer stem cells

The term “cancer stem cell (CSC)” was first used in the early 1980s, when the
idea of cancer as a disturbed function of stem cells arose [6, 7]. Since that
time, the concept of CSCs has been developed further and was supported by
the discovery of the heterogeneous nature of tumors. Within a certain tumor,
many different kinds of tumor cells exist, and a tumor is therefore comprised
of a highly heterogeneous and differentiated cell population both on the level
of genetics and epigenetics [8–15] (see Figure 1.1). Initiated by research on the
hematopoietic system and on leukemia, a concept established that a tumor is
not only a collection of heterogeneous cells, but a cell population organized in
a hierarchical manner [16–19]. Within this hierarchy, only very few cells have
unlimited proliferative capacities and possess stem cell-like properties. These
features are not only required for the maintenance and growth of the primary
tumor cell population, but also for the initiation of metastases in distant sites.
The vast majority of the tumor bulk, however, consists of differentiated cells
that do not contribute to tumor maintenance or metastasis initiation. This
model as well tightens the parallels of a tumor to a healthy organ, which is
grown and maintained by a fine and granular regulation of self-renewal and
differentiation1 [4, 25, 47–52] (Figure 1.3).

1.1.4 Union of models

Since its emergence, the CSC model has evolved to cover a broader range of
tumor characteristics, especially within the fields of epithelial-mesenchymal
transition (EMT) and metastasis [42, 54, 55]. Step-by-step, all these models of
tumor progression could be united into one concept:

1Leukemia was also the first cancer where CSCs could be successfully isolated [16, 20–23].
Characterization of CSCs in solid tumors followed later in the early 2000s, namely in cancer
entities deriving from brain [24], breast [25], ovarian [26], prostate [27–29], colon [30–33],
liver [34, 35], lung [36], pancreas [37], and others [38–40]. Until then, CSCs where solely
defined as tumor cells that show an elevated rate of tumorgenesis after being transplanted
into immunodeficient mice. The approach chosen for CSC validation led to the controversy
whether the whole CSC hypothesis was only an artifact resulting from xenograft experiments
[41–43]. Final proof was reached only after confirmation by complementary experiments
using genetically modified mouse models and linage tracing of cancer cells [29, 44–46].
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Figure 1.3: Hierarchical lay-
out of a cell population. Cells
are organized hierarchically, with
the stem cells at the apex of the
hierarchy. Stem cells possess long-
term self-renewal capacity and are
slowly proliferating. They give rise
to progenitor cells, which prolifer-
ate more frequently and in turn
give rise to fully differentiated tis-
sue cells that might have only a
limited life span. This hierarchy
can be found in numerous healthy
organs and has been proven to be
present in many cancer tissues as
well. Adapted from [53].

As the model of clonal evolution can be seen as an extension to the stochastic
model, both can be united. Tumor initiation is a stochastic event hitting one
single cell. Acquiring additional mutations is again a random event. Only if
the initial mutation and additional changes hit the same cell, this cell may
establish a dominant clone and start to form a tumor cell population. More and
more random mutations in cells of this branch are needed to promote tumor
progression. Importantly, multiple branches may exist at the same time and
might be competing against each other. As new branches arise, some branches
become extinct. All branches concurrently building the tumor cell population
represent tumor heterogeneity and possess different levels of fitness against
therapy and general survival not only in the current setting but also in new
environments (Figure 1.4a). These concepts could also be integrated into the
CSC model:

• Random mutations drive the clonal evolution of a tumor. Just like muta-
tions can lead to an increase in function through the activation of specific
genes, these mutations can lead to a gain in stem cell properties, e.g., by
activating embryonic stem cell-associated genes like nanog, oct4, sox2
and c-myc [56]. A CSC does not necessarily derive unidirectionally from a
somatic stem cell. Stem cell properties might be acquired by any progen-
itor or fully differentiated cell during tumor progression (tumorigenesis is
a multi-step process [2, Chapter 11]). This theory stands in contrast to
the idea that only stem cell (like) cells may be transformed into cancer
stem cells and stand at the beginning of tumorigenesis [42] (see Figure 1.3
and Figure 1.4b).
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(a) Union of stochastic model and
clonal evolution. The stochastic model
and the model of clonal evolution of tumor
progression may be unified if each root of
a dominant clonal branch is initiated by a
random mutation event.

(b) Union of clonal evolution and the
CSC model. The model of clonal evolu-
tion and the model of CSCs may be unified
if each root of a dominant clonal branch is
maintained by a biologically and function-
ally distinct population of tumor stem cells.

Figure 1.4: Union of models of tumor progression. Adapted from [53].

• Along with the initial transplantation assays, which were performed to
prove the CSCmodel, the definition of metastasis initiating cells (MICs) was
introduced and understood to be a subtype of “normal” CSCs. Importantly,
both cell types are not necessarily mutually exclusive [57–59].

• The degree of differentiation versus stemness can be seen more as contin-
uous and does not necessarily underlie a distinct and sharp separation
of cell populations [60]. A tumor cell hierarchy might be more or less
shallow and change over time (Figure 1.5).

• In close relation to EMT, stem cell properties can be acquired or lost.
The transition from a “normal” tumor cell into a CSC is thought to be a
bidirectional and reversible process and depends only on the plasticity of
the cells [61–64]. This plasticity may be developed to different degrees
and contribute strongly to both tumor heterogeneity and hierarchical
layout (Figure 1.6).
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Figure 1.5: Stemness versus differentiation. The relative amount of CSCs
within a tumor cell population is variable and might increase with tumor progression.
The majority of cells from a late-state CML in blast crisis, for example, has acquired
stemness properties and a clear hierarchy of cells is not present anymore [65]. Adapted
from [55].

Figure 1.6: Bidirectional transition into CSCs. Cancer stemness is a reversible
process and can be acquired also by progenitor or fully differentiated cells. The
frequency of occurrence and reversion depends on cell plasticity. Adapted from
[60, 62].
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Figure 1.7: Cancer ther-
apy and tumor relapse. A
conventional cancer therapy
might not be successful on the
long run, since it fails to reach
CSCs, which are responsible for
tumor relapse. A targeted ther-
apy approach, which selectively
aims at the CSCs, might spare
the majority of tumor cells but
ultimately lead to tumor regres-
sion and prevent from a relapse
due to the elimination of CSCs.
Adapted from [66, 67].

1.2 Therapy Failure and Targeted Therapy

Just like normal adult stem cells, CSCs are defined by the typical functional stem
cell properties, which are (i) long term self-renewal capacity, (ii) multipotency,
and, most importantly in this context, (iii) the ability to reversibly enter a
quiescent or dormant state [68].

This “hibernation” protects them efficiently against radiation and cytotoxic
drugs used in almost all cancer therapies [61, 69–74]. Cytotoxic drugs aim
at a property that is shared among all tumors – excessive cell proliferation.
While these drugs can be successfully applied for tumor debulking and lead to
impressive short term results, this approach fails to succeed on the long run
and tumor relapse is often only a matter of time. Additionally, the patient not
only faces the same illness again but often gets confronted with a much more
aggressive form of the tumor showing a decreased responsiveness to treatment.

Failure of therapy and tumor relapse seem to be a direct consequence of
dormant CSCs [56, 64, 75]. Consequently, first approaches to activate these cells
to make them responsive to therapy have shown promising results and have laid
the foundation to a more selective therapy, for which the term targeted therapy
is used [76–81]. Therapies specifically directed against the “root of cancer”
might result in much more durable responses and even a cure of metastatic
cancer [74, 82] (see Figure 1.7).



2

Biomarkers

The identification of CSCs represents today’s major challenge concerning
the establishment of effective and widely applicable targeted therapies.
Identifying CSC-specific properties allowing screening, sorting or otherwise

targeting this subpopulation has proven to be exceedingly difficult [83]. These
properties, or more generally speaking, any property, that can be used to
distinguish CSCs from other cells is called a biomarker.

According to the National Institute of Health, a biomarker is defined as
“a characteristic used to measure and evaluate objectively normal biological
processes, pathogenic processes, or pharmacological responses to a therapeutic
intervention”. “Examples of biomarkers include everything from pulse and
blood pressure through basic chemistries to more complex laboratory tests of
blood and other tissues” [84–86]. In cancer research, mainly RNA, DNA or
proteins serve as biomarkers.

A convenient biomarker needs to provide sufficient sensitivity and specificity
to accurately distinguish its characteristics. Furthermore, it is necessary that
the biomarker can be accessed and read easily in a non-invasive manner, for
example in urine or blood. If the biomarker should not only be diagnostic but
have a therapeutic value as well, for example via the application in targeted
therapy, it needs to fulfill some additional requirements: In this case the
biomarker needs to be a targetable molecule that is upregulated in the disease
state and ideally not present in the healthy situation. Furthermore, it needs to
be accessible via the vasculature [87–90].

Identifying biomarkers that do not only have diagnostic value but also
provide accessible targets for therapy is a challenging but also promising task
of today’s cancer research.
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Figure 2.1: The -omics cascade. Four different entities mediate the expression
of a phenotype: The genome provides the pool of all phenotypes that are possible
to a cell. Only a small fraction of the genome is transcribed at a time. The
trascriptome contains everything that is actually transcribed from genomic DNA
into transcriptomic RNA. The Proteome is the collection of all proteins that are
actually translated from mRNA. Proteins are the unions of action inside a cell.
The metabolome represents the communication and cross talk within an organism.
Metabolites are small chemical molecules that are produced by a machinery of
proteins. More than all the other entities in the -omics cascade, the metabolome
not only covers an isolated time point of action, but also connects the system in the
dimension of time. Adapted from [91].

2.1 Biomarker Discovery
In the past decade, the rapid development of next-generation sequencing tech-
niques has raised the search for biomarkers to another level. These sequencing
techniques can be applied in a high-throughput fashion and their costs have
decreased significantly in the last years. Nevertheless, the initial hope that
large-scale whole genome and exome sequencing could complete our knowledge
of the molecular mechanisms of cancer development and therefore help to
discover cancer’s weak points, has been frustrated over time.

It is obvious, that there is much more between an organism’s genome and
its phenotype. Differences on the genomic level are much smaller then we
initially expected: The number of human genes is currently estimated to be
approximately 23,000, “coming dangerously close to the numbers found for
worms (20,000) and flies (14,000)” [92]. Furthermore, the process of translation
is regulated to a variable degree and a linear correlation between the tran-
scription of a gene and its occurrence as a protein is often not given [93–96].
This is due to intermediate processes such as post-transcriptional- and post-
translational modifications that influence parameters such as RNA-stability
or protein degradation. For instance, more than 60% of the 23,000 putative
open reading frames (ORFs) in the human genome encode more than one splice
variant (often tens to hundreds), and these in turn are frequently subject to
post-translational modification [97].
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Whole genome and exome sequencing indeed allows for a complete view of
copy number alterations, insertions and deletions. But these genomic changes
are still implied to affect the proteome as well and indicate rather a potential
than functional state of a cell or tissue [98, 99]. To be sure about the effects
of a genetic transcriptomic alteration they need to be validated eventually on
the proteomic level. Alternatively, biomarker discovery can be performed using
proteomic techniques in the first place.





3

Liquid Chromatography Coupled to
Mass Spectrometry – A Tool For

Biomarker Discovery

The development of soft ionization techniques like matrix-assisted laser
desorption/ionization (MALDI) and electrospray ionization (ESI) for biomo-
lecules in the late 1980s, was the starting point for applying the technique

of mass spectrometry (MS) to peptide and protein studies [100]. Since then, MS

coupled to sample separation by liquid chromatography (LC) has developed to
being the de-facto standard methodology for analyzing the proteome in general
and cancer associated, proteomic changes in particular [100–103]. LC-MS is an
especially suitable tool for biomarker discovery and is frequently used for this
purpose in the field of proteomics.

3.1 LC-MS Workflow
Despite numerous technological variations of instruments and different vendor
specific flavors of implementation, the general workflow, that is used in a typical
LC-MS setup, remains the same and is descried in this chapter into more detail.

3.1.1 Sample preparation

In bottom-up or shotgun proteomics, proteins are first digested (usually enzy-
matically with trypsin) into peptides, which are then processed (see Figure 3.2).
Information obtained from peptides need to be mapped back to the correspond-
ing proteins in a second bioinformatics-based step.

15
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Figure 3.1: Functional principle of mass spectrometry. The functional
principle of mass spectrometry is the separation of ions according to their molecular
weight. All molecules to be analyzed must therefore be ionized first. Ion generation is
performed by an ion source (see 3.1.3). After ionization, ions are separated according
to their mass, more specifically, according to their mass-to-charge ratio (molecules
may carry multiple charges) (see 3.1.4). Data acquisition is performed by the ion
detector, which translates detected ions into two dimensional data points (arbitrary
intensity value & mass-to-charge ratio). Adapted from [104].

(a) A(n intact) protein and cleavage
enzymes.

(b) Peptides after digest by cleavage
enzymes such as trypsin or caspase.

Figure 3.2: Tryptic digest of proteins. Proteins are composed of amino acids
that chain together. Upon a tryptic digest, they are cleaved into separate peptide
sequences (shorter amino acid chains) at specific cleavage sites. Amino acids are in
green, blue and cyan, enzymes that cleave the protein in red (e.g. trypsin).

This is in contrast to top-down proteomics, where intact proteins are pro-
cessed. Complete proteins often display a similar mass-to-charge ratio and are
more difficult to handle than smaller peptides. Peptides, on the other hand, are
more soluble, have similar physico-chemical properties, and can be more easily
sequenced, which is why mainly the bottom-up approach is used in today’s
LC-MS workflows.
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3.1.2 Chromatographic separation

Since even a relatively simple proteome (e.g. the one of E.coli) is still far
too complex to be processed directly by MS, sample complexity is reduced by
chromatographic separation prior to mass spectrometric analysis. Chromato-
graphic separation is performed by ultra-high performance liquid chromatog-
raphy (UHPLC) systems, which may be coupled directly (online) to the mass
spectrometer or may operate as a separate unit of action (offline coupling) [105].
Whether the UHPLC system is coupled online or offline is specified by the ion-
ization technique applied (see 3.1.3). In an online setup, the sample is directly
and continuously introduced into the mass spectrometer and the ion source.
An offline setup contains an intermediate sample fractionation step, where the
sample is separated into different fractions and subsequently introduced into
the ion source. LC uses a chromatographic column to separate peptides, based
on one or more chemical or physical properties. In a state-of-the-art UHPLC

system, a so-called reverse phase column is used to separate the peptide mix
[106]: The column contains stationary, hydrophobic elements, which retard the
migrating peptides differentially according to their hydrophobicity [107–110].

Before the application of LC, the identification of proteins from complex
biological matrixes has been performed using two-dimensional gel electrophore-
sis (2D-GE) [111, 112]. 2D-GE separates proteins by both their isoelectric
point (pI) and molecular weight. In this “divide-and-conquer” strategy, pro-
teins are resolved into discrete spots that can then be selectively excised and
analyzed [98, 112]. Today, the separation capacities of gels are sometimes still
utilized as an extension to an LC-MS system. For example, sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which separates proteins
according to their electrophoretic mobility, can be used in combination with
LC as an additional separation step [113]. In this scenario, a biological sample
is first separated using SDS-PAGE; the resulting bands are then processed sep-
arately on the LC-MS workflow. A workflow, that consists of a separation by
gel followed by a chromatographic separation followed by mass spectrometry
is often abbreviated using SDS-PAGE followed by in-gel digestion followed by
LC (GeLC)-MS [107–110].
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Figure 3.3: Functional principle of liquid chromatography coupled to
mass spectrometry. Chromatographic separation is introduced as an additional
sample separation step in order to reduce sample complexity. Peptides are separated
based on one or more chemical or physical properties, such as hydrophobicity, polarity,
affinity to other molecules, or size of the sample peptides. In case of an UHPLC
system, peptides are separated according to their hydrophobicity (indicated by
different colors). Adapted from [104].

3.1.3 Ionization

To date, there are two techniques available for soft ionization of biomolecules
that are used in state-of-the-art LC-MS systems: electrospray ionization and
matrix-assisted laser desorption/ionization.

3.1.3.1 Electrospray ionization

The sample is dissolved in an organic, aqueous solvent containing formic acid
and is guided through a thin capillary. When applying a high voltage to this
capillary, the eluting sample solvent forms an aerosol of charged droplets when
exiting the capillary (the Taylor Cone) [114, 115]. The aerosol is sprayed into a
vacuum chamber, where the liquid vaporizes, causing the droplets that contain
the sample molecules to become smaller and smaller. Due to the Rayleigh
Limit, at some point, the droplets “explode” into smaller ones [116, 117]. This
process continues until the molecules themselves carry all the charge that was
introduced before without any surrounding solvent (see Figure 3.4a). In the
course of the ionization process, ions with multiple charge states are generated
[118–120]. ESI sources require a constant sample flow, which is why they are
coupled to the mass spectrometer online (see 3.1.2).1

1Summarized history of ESI: • 1882: Rayleigh calculates the maximum theoretical charge
one liquid droplet could carry, the so-called Rayleigh Limit [114] • 1914-1964: Zeleny, Wilson
and Taylor publish work on the electrospray Taylor Cone. [121–124] • 1968: First use of ESI
as an ion source in a mass spectrometer [125] • 2002: John B. Fenn is awarded the Nobel
Prize for chemistry for his work on ESI-mass spectrometers [119].
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3.1.3.2 Matrix-assisted laser desorption/ionization

The sample is prepared by mixing it with an excess of matrix molecules. The
resulting sample-matrix mixture is spotted on metal plates (depending on the
instrument, 2,400 or more spots per plate can be applied routinely). After
spotting, the buffer evaporates and the matrix molecules crystallize, forming a
grid in which the sample molecules are embedded. The matrix molecules have
a relatively low molecular weight and provide a strong optical absorption in
either the ultraviolet (UV) or infrared (IR) range. These properties cause them
to absorb optical energy when being shelled with a laser. Matrix molecules get
ionized and burst out of the matrix-grid, together with co-crystallized sample
molecules (see Figure 3.4b) [126]. The nature of charge propagation from matrix
to sample molecules is still a matter of debate [127–131]. Ions resulting from
MALDI are predominantly singly charged, which simplifies later data processing
(see 3.5). MALDI ion sources are coupled offline to a mass spectrometer, since a
sample-spotting step is needed between LC and MS. Furthermore, the matrix is
in a solid state and the laser does not fire in a constant but rather in a pulsed
mode.2

3.1.4 Ion sorting

The mass analyzer is the component of the mass spectrometer, which “sorts”
the ions according to their mass-to-charge ratio (m/z). This sorting is necessary,
since the ion-detector (see 3.1.5) cannot provide any information on the mass of
the impacting ion. Its output is an arbitrary intensity value directly correlating
with the abundance of the detected ion(s). Therefore, it is necessary to introduce
only ions with the same m/z at a defined point into the ion-detector.

A mass analyzer’s performance is typically measured using the following
five different metrics:

2Summarized history of MALDI: • 1985-1987: Michael Karas and colleagues coin the
term “MALDI” for matrix assisted soft ionization [132, 133] • 1988: Breakthrough of
matrix assisted ionization due to the combination of a liquid matrix, a suitable laser wave
length and a thin metal plate [134] • 1988-1990: Major advances of laser technology and
optimization of wave lengths finally establish MALDI as an ion source of choice when
applying mass spectrometric analysis of biomolecules [135–137]. • 2002: Tanaka is awarded
the Nobel Prize for chemistry for this work, together with John B. Fenn, the pioneer of ESI.
• Two things noteworthy: (1) The initial publication of idea and concept was not even five
years apart from usage as an expedient for analysis of large biomolecules. (2) The principle
of ionization and how exactly the three components analyte, matrix and metal plate are
interacting, is still not clarified and still matter of debate.
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(a) Electrospray ionization. Two main
physical-chemical mechanisms enable the
ionization: (i) The Taylor Cone, which is
formed at the exit of a capillary when the
sample buffer exits and a high voltage is
applied to the capillary. (ii) The Rayleigh
Limit, which causes the charge to be propa-
gated from buffer to sample molecules in a
soft manner (soft ionization).

(b) Matrix-assisted laser desorption/
ionization. MALDI uses a “helper matrix”
to charge sample molecules softly: Matrix
molecules take up optical energy when laser
shelling is applied and get charged. Charge
is propagated to sample molecules, which
are embedded into a grid of crystallized ma-
trix molecules, when high energy causes the
matrix to break apart.

Figure 3.4: LC-MS ion sources. Reprinted with permission from [138].

Mass range: the minimal and maximal mass-to-charge ratios that can be
measured.

Mass accuracy: the difference between actual m/z and measured m/z, typi-
cally expressed in parts per million (ppm).

Resolving power: the ability to separate peaks clearly from each other.

Transmission: the ratio between the number of ions reaching the detector
and the number of ions entering the analyzer.

Scan speed: the time required to complete one m/z analysis.

Common to all mass analyzers is the use of electric and/-or magnetic fields to
control ions in space and time. Mass analyzers can be grouped into discrete
groups using different properties, such as continuous versus pulsed or ion beam
versus ion trapping [105]. These characteristics may limit combinations of mass
analyzers with ion sources.
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Time-of-flight
Time-of-flight

(reflecton) Quadrupole
Quadrupole

ion trap
Principle of
separation

Velocity
(flight time)

Velocity
(flight time)

m/z (trajectory
stability)

m/z (resonance
frequency)

Mass limit 1,000,000Th 10,000Th 4,000Th 6,000Th
Accuracy 200 ppm 10 ppm 100 ppm 100 ppm
Resolution 5,000 20,000 2,000 4,000
Ion sampling Pulsed Pulsed Continuous Pulsed

Table 3.1: Different types of mass analyzers used in mass spectrometry
and some of their properties. Adapted from [105].

Hybrid instruments, that combine different mass analyzers in one instrument
for better performance or advanced acquisition modes grow in popularity. The
triple quadrupole (QQQ) ion trap-MS, for example, combines three quadruple
analyzers, whereof the third can be switched into an ion trap, enabling
data-independent acquisition (DIA) methods and new targeted quantification
approaches (see 3.3).

Today’s most prominent mass analyzers can be categorized into tree different
types:

3.1.4.1 Time-of-flight

Assuming an equal mass and acceleration energy, all ions need the same time
to fly through a defined field-free distance in space. The time an ion needs
to travel is directly proportional to its mass-to-charge ratio. Heavier ions will
travel more slowly than light ions and will take more time to complete the full
distance. An equal acceleration energy and a defined start point for all ions
are crucial requirements. More advanced instruments use an extended flight
tube, which reflects ions at the end of the tube using a so-called reflectron. The
reflectron compensates for variations in starting points and acceleration energy
[139–142] (see Figure 3.5).
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(a) Time-of-flight (TOF) mass ana-
lyzer.

(b) Time-of-flight-time-of-flight
(TOF-TOF) mass analyzer.

Figure 3.5: Illustration of a TOF mass analyzer on the example of
MALDI-TOF. Sample- and matrix molecules are spotted together on a steel
plate, which is shelled by a pulsed laser. Ionized molecules traveling through a
flight tube are reflected by a reflector/reflectron and hit the ion detector. In case of
TOF-TOF, the flight tube is separated into two parts, divided by a collision cell for
MS2 analysis. Adapted from [103].

3.1.4.2 Quadrupole

A quadrupole consists of four cylindrical rods. The two opposing rods build
pairing electrodes, which create an electric field through which ions travel. The
field changes its potential frequently, causing ions to oscillate between the rods.
For ions traveling on stable trajectories, kinetic energy is converted into electric
potential and vice versa in line with changing potentials. When changing field
frequency and/or applied voltages, only ions with a certain mass-to-charge
ratio are able to maintain stable trajectories, whereas all other ions will be
deflected from their course to the ion detector. [143–145].

3.1.4.3 Ion traps

3.1.4.3.1 Linear ion trap (2D ion trap) A linear ion trap (LIT) works
in principle like a quadrupole. The main difference, nevertheless, is that ions
are reflected at both ends of the rods by electric stopping potentials applied to
end electrodes forcing the ions to travel forwards and backwards between these
electrodes. Historically, LITs were developed later than Paul traps (see next
paragraph) and possess some advantages, such as larger ion trapping capacity
and higher trapping efficiency [144, 145].
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3.1.4.3.2 Paul ion trap (3D ion trap) The Paul ion trap was the first
mass analyzer that utilized the principle of quadrupole electrodes which establish
electric fields for ion control. The working principle is similar to the quadrupole
analyzer described above, with the main difference that the quadrupolar rods
are bent to form circular electrodes. On top and bottom, additional cap-formed
rods are placed in order to force electrons on 3D trajectories between the
electric fields. The electric potentials of the electrodes can be adjusted to
selectively expel ions with certain m/z values. This is in contrast to a LIT and
a quadrupole, where the principle works the other way around, i.e, adjusted
electric potentials are used to force ions on unstable trajectories between the
rods, thereby filtering ions of a specific m/z [144, 146, 147].

3.1.4.3.3 Orbitrap An orbitrap mass analyzer is built from a total of
three electrodes. The first one is spindle-shaped, surrounded by the other two
electrodes, which together have the shape of a barrel, separated in the middle.
Direct current (DC) voltages are applied forcing ions on trajectories around
the spindle, oscillating back and forth the spindle axis. The ions’ m/z values
can be deducted from oscillation frequencies using Fourier transformation (FT)
[148–150].

3.1.5 Ion detection

As briefly mentioned before, an ion-detector produces an analog, electrical
signal directly correlating to the abundance of the detected ions (see 3.1.4). The
signal is more or less continuous, depending on the scan speed of the detector.
An analog-to-digital converter (ADC) is needed to convert the analog signal
into a digital data stream, which in turn can be processed computationally.
This is achieved by binning of the constant, analogous data stream. Every bin
(usually in the range of nanoseconds) is converted into one digital data point
[151–154].
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3.2 Tandem Mass Spectrometry
Mass spectra as described before do not contain sufficient data to unambiguously
identify the analyzed ions/peptides. Although the amino acid composition of
a given peptide can be determined by certain high-resolution/highly accurate
mass spectrometric methodologies (e.g., Fourier transformation-ion cyclotron
resonance-MS [148, 155, 156]), it is impossible to determine the sequence order
of the amino acids. Tandem mass spectrometry (MS/MS or MS2) can be used to
solve this problem. As the name suggests, tandem MS describes the application
of multiple MS analyses separated either in time or space [143, 157, 158]. The
latter involves two or more distinct mass analyzer and detectors that are
coupled to each other. In contrast, tandem-in-time describes multiple MS

analyses performed after each other in the same instrument. In the case of
tandem-in-time and for certain instruments, an unlimited number of subsequent
MS analyses can be performed (MSn). Today, most proteomic workflows apply
MS2, since such spectra are sufficient for the identification of peptides. The
advantage of multiple-, subsequent MS analyses can be compared to LC and
MS: One or more preceding MS analyses can be utilized as another separation
or selection step before a final MS scan is performed to identify ions of interest.

In the case of MS2, the first MS analysis records a spectrum that contains all
detected ions. The subsequent MS2 analysis is performed for a selected species
of ions (parent ion or precursor ion) to elucidate the species’ identity, i.e., the
corresponding peptide amino acid sequence. To record an MS2 spectrum, a
precursor ion is dissociated into smaller fragments by collision with inert gas
molecules such as nitrogen or argon (collision-induced dissociation (CID)). MS2

ion fragments are subsequently analyzed in the same way as the parent ions
in MS1 mode. As a result, peptides/peaks in an MS1 spectrum obtain a MS2

spectrum, which can be used to determine the peptide’s specific amino acid
sequence. For this purpose several algorithms have been implemented, such
as Sequest [102], Mascot [159], X!Tandem [160], Paragon [161] or Andromeda
[162, 163].
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Figure 3.6: Tandem mass spectrometry. In tandem mass spectrometry (MS2),
ions with the mass-to-charge ratio of interest (parent or precursor ion) are selectively
reacted to generate a mass spectrum of product ions.

Not every peak in a MS1 spectrum is suited for subsequent MS2 analysis.
Typically, the sample amount (MALDI) or time (ESI) are limiting factors for
MS2 analyses, which is why only a subset of MS1 species are selected for MS2.
Precursor selection is typically performed using either a strongest first or weakest
first strategy: MS1 peaks are ordered by their intensity value and one after
another is selected for MS2, starting with first element in the list or the last
one, respectively. Nevertheless, advanced software tools and improvements in
instruments’ cycling time allow today for workflows omitting precursor selection
(i.e., MS2 analyses are performed on all ions). This approach is termed all-ion
fragmentation (AIF) [164] and, since there is no precursor selection involved, it
is counted among the DIA methods (see 3.3). The selection of a precursor ion
for fragmentation and the subsequent MS analysis of the product ions is termed
product ion scan [165]. The inverted scan mode is termed precursor ion scan,
and describes the selection of product ions for the identification of precursor
ions. In contrast to product ion scans, which find application in proteomics,
this scan mode is only available in tandem-in-space instruments.

Another MS2 scan mode that is becoming increasingly popular is termed
selected reaction monitoring (SRM). SRM is a DIA method and describes a
“scan” mode, which selects for certain pairs of precursor and product ions
(so-called transitions). SRM finds application in the field of targeted proteomics
and is realized in a QQQ instrument, where the first quadrupole selects for
a certain precursor, the second one acts as a collision cell for fragmentation,
and the third one selects for certain product ions. A scanning is not involved
[165]. This setup provides outstanding sensitivity and allows for quantitative
measurements.
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3.3 Data-Independent and Targeted MS Tech-
niques

The previously described MS2 workflow is termed data-dependent acquisition
(DDA), since MS2 spectra are acquired based on previously generated (MS1)
data (see 3.2). Today’s proteomic workflows mainly use a DDA approach,
which faces some main issues rendering protein identification and quantification
irreproducible: (i) under sampling [112, 166], (ii) stochastic precursor selection
that is biased toward high-abundant peptides [164, 167, 168] and, for tandem-
in-time, (iii) too long cycle times of the instruments [112, 164, 168].

DIA strategies try to overcome these limitations and can be divided into two
main categories: (i) In a hypothesis-driven, targeted approach, the instrument
is configured to fragment certain precursor ions independent of a prior MS1 scan.
(ii) Alternatively, generally all ions undergo fragmentation in parallel regardless
of their intensities or any other characteristics. This results in a complete,
unbiased data record with highly improved reproducibility and quantification
capabilities [168, 169].

Precursor selection as applied in DDA approaches works by filtering all MS1

ions by the precursor ion’s m/z. Only ions matching the pre-defined m/z are
selected for MS2 analysis. In practice, this filtering utilizes certain m/z ranges,
which are narrow enough to selectively filter for the desired precursor ion. In a
DIA approach, these m/z ranges are broadened to cover a few or several dalton.
The filtering is repeated using different m/z ranges until a “complete” m/z

range (usually in the range of 400 – 1,200) is covered (PAcIFIC [170, 171] and
SWATH-MS [172]). MSE [173] and AIF [164] use a wide band pass filtering.
Since wider m/z windows make subsequent peptide identification challenging or
even impossible for modified forms of a peptide, these m/z windows can be first
separated into smaller m/z windows, which are then multiplexed, analyzed, and
demultiplexed. “Sub-windows” are chosen randomly from a set of 100 possible
non-overlapping windows that cover the “complete” m/z range [169].
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3.3.1 Selected reaction monitoring

As briefly outlined before, one targeted DIA-MS technique is SRM [174, 175].
SRM is realized using QQQ instruments running with a specific configuration:
The first and third quadrupole is configured to filter for a certain m/z, while
the second quadrupole serves as a CID chamber. This way, the instrument is
set up to detect only certain precursor-product ion combinations (transitions).
It is a highly selective, hypothesis driven approach, but it provides excellent
sensitivity since no scanning is involved. Furthermore, since all transitions
are detected, the problem of undersampling is avoided and peptides can be
quantified label-free by counting the number of occurring transitions (see also
4.2). For a relative quantification, the usage of stable isotope labeled (see
also 4.1) internal standards [176] is often performed. SRM represents the most
accurate and sensitive quantification method that is available today in the field
of proteomics.

3.4 The Nature of LC-MS Data
Depending on the scan speed of the ion detector and the sampling frequency of
the ADC, the amount of raw data that is produced by a standard MS analysis
can be enormous. High-level software for the analysis of LC-MS data expects
the data to be in the form of three-dimensional data points: (i) signal intensity,
(ii) mass-to-charge ratio (m/z) and (iii) retention time. A considerable amount
of preprocessing of the raw data is required in order to obtain this layout. As
outlined before, the signal of the ion detector has only one dimension, namely
the ion intensity (see 3.1.5). To obtain the corresponding mass(-to-charge
ratio), information from the mass analyzer needs to be incorporated (see 3.1.4).
The retention time is originated from the chromatographic separation by the
LC and must not be confused with the just mentioned time-wise differences in
signal detection.

To summarize:

1. Data obtained by the mass spectrometer:

(a) Signal intensity: Directly originated from the ion-detector.
(b) Mass-to-charge ratio (m/z): Computed by data both from the ion

detector and the mass analyzer.

2. Data obtained by LC is the retention time, i.e., the time point of detection
of an intensity-m/z pair or the elution time of an analyte molecule.
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(a) ESI spectrum of cytochrome c.
Multiple peaks are observed due to the dif-
ferent charge states.

(b) MALDI spectrum of cytochrome
c. Only a single peak is observed for the
analyte because ionization by MALDI gen-
erally produces singly charged ions.

Figure 3.7: A comparison of the mass spectra for cytochrome c generated
using ESI and MALDI. Note the different m/z ranges in the spectra. Multiple
charged ions (ESI) result in smaller m/z values compared to single charged ions
(MALDI). Reprinted with permission from [143].

These three parameters join to a so-called peak. Displaying the intensity of a
collection of peaks as a function of their m/z ratio results in the typical mass
spectrum (see Figure 3.7).

3.5 Low-level Data Processing
Several pre-processing steps are performed to make the data manageable for
high-level analysis software. These steps aim at a first “simplification” of the
data by (i) extracting meaningful information (peak extraction), (ii) removing
systematic noise and background (baseline subtraction) and by (iii) normalizing
identified peaks to a monoisotopic and “mass-only” representation. The order
of execution of the different processing steps may vary and, depending on the
system that is used, additional steps might be required.
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3.5.1 Baseline subtraction

Recorded raw spectra do not only contain the desired true signal resulting from
the analyte ions but also a relatively constant baseline signal and a certain
amount of noise. Noise in MS spectra can derive from sample preparation, the
LC or some components of the mass spectrometer [177] (see Figure 3.7b). To
separate true signals from noise and background, both basic and sophisticated
filters are applied to the raw signal, for example, the Top-hat filter, Savitzky-
Golay filter, or simple moving average (SMA) filters [178].

3.5.2 Peak extraction

Peak extraction (also referred to as peak finding, peak detection or peak picking)
is the process during which the signals are separated from background and noise.
Therefore, this processing step is strongly connected to baseline subtraction and
noise filtering. Furthermore, peak extraction includes a certain level of data
reduction, since only strong peak signatures are extracted from the raw signal
(see Figure 3.7b). The extracted peaks assumed to represent the analyte ions
of interest, which are, in the field of bottom-up proteomics, peptides resulting
from a proteolytic digest of proteins [179–183].

3.5.3 Charge deconvolution

Spectra obtained by ESI-based MS often contain ions carrying multiple (different)
charges (see 3.1.3 and Figure 3.7a). In general, the number of charges on a
molecule ionized by electrospray depends both on its molecular weight [184, 185]
and on the number of potential charge sites available [186]. Initially, when
inspecting spectra, a peak’s charge state is unknown and therefore also the
mass of the corresponding molecule. Nevertheless, both can be obtained using
computer-assisted charge deconvolution. Provided with key parameters, such as
expected range of charge numbers and resolving power of the instrument, both
the charge of an ion and therefore also its molecular weight can be calculated
[185, 187–191].
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3.5.4 Deisotoping

When inspecting naturally occurring molecules (such as tryptic peptides) on
an atomic level, the presence of carbon isotopes and isotopes of other atoms
will be observed. Approximately 1% of the naturally occurring carbon is found
with an additional neutron (totaling seven instead of six) [182]. Since a typical
peptide’s mass is mostly made up of carbon, spectra derived from carbon
isotopes are observed frequently. Although isotopes are chemically identical,
the heavier isotope sister ion peaks exhibit greater apparent m/z than the
predominant monoisotopic peak. Identifying these different isotope peaks and
correcting their m/z ratio to a monoisotopic m/z ratio is called deisotoping or
peak centroiding.

As described above for the two processing steps baseline subtraction and
peak extraction, deisotoping and charge deconvolution are interconnected and
algorithms performing multiple of these steps at once have been developed
[189, 191, 192].
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Peptide and Protein Quantification
from LC-MS Data

For the identification of novel, vascular accessible biomarkers, quantitative
comparisons between different biological states, such as healthy versus
diseased, are a crucial requirement, since biomarkers suited as therapeutic

targets need to be upregulated compared to the healthy state (see 2). A
qualitative analysis of the proteome is therefore not sufficient but different
proteomic states need to be compared quantitatively.

Even though an ion detector generates a signal within a certain dynamic
range for which the intensity is directly proportional to the ion abundance [193]
(see 3.1.5), MS is not inherently quantitative:

• Peak intensities deriving from different ions/peptides do not correlate
to absolute ion/peptide abundance, since peptides exhibit a wide range
of physiochemical properties such as size, charge, and hydrophobicity,
leading to differences in the resulting signal intensity.

• Ion suppression effects frequently occur in complex peptide mixtures with
a large dynamic range of ion abundance and hinder reproducibility of
signal intensities leading to a underestimation of the respective protein
abundance.

• As already outlined in 3.2, not all ions recorded in MS1 can subsequently
be passed on to identification by MS2 and precursors are rather selected
stochastically.

Nevertheless, a relative comparison is possible in principle, which is why MS is
called a semi-quantitative technique. For biomarker characterization, usually
absolute amounts are not needed and relative changes (e.g. compared to a
healthy control) are sufficient.

31
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In order to obtain quantitative data from LC-MS measurements, in principle,
two approaches differing in many aspects, such as required workload, costs and
limitation in sample number, are available. The first one makes use of artificial
labels or tags, which are introduced into the samples at different points in the
sample preparation workflow (label-based quantification), the other one does
not require any modifications to the samples themselves but operates solely on
the acquired LC-MS data (label-free quantification).

In general, it can be said that a label-based quantification requires additional
processing during sample preparation, whereas label-free quantification takes
an increased effort in bioinformatics.

4.1 Label-based Peptide Quantification
The idea behind label-based quantification is the introduction of artificial labels
or tags into proteins and peptides during sample preparation. If appropriate
labels are used, these molecular modifications (introduced into each sample)
differ in their molecular weight but not in their physicochemical properties.
The retention time of differentially labeled peptides therefore remains unaf-
fected, while differences in their molecular weight are detectable by the mass
spectrometer.

After successful label incorporation, samples are pooled and further pro-
cessed together (multiplexing). Differentially regulated peptides will co-elute
and will be recorded by the mass spectrometer at the same time. The resulting
spectra contain signal intensities of all differently labeled peptides, which can be
directly compared so that a relative quantification of the differentially labeled
peptides can be performed.

Early introduction of the labels during the sample preparation process is
essential to minimize possible sources of inter sample variation.

A significant number of different labels and labeling techniques have been
introduced in the recent years and some of them have been extended over time
to more advanced versions. Today, the incorporation of multiple labels gives
the possibility to compare up to six [201], eight [202], and even twelve [203]
different states in a single run. Labeling methods can be categorized using
different characteristics:

• The way in which labels are introduced into peptides, which can happen
(i) metabolically, (ii) chemically or (iii) enzymatically.
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Figure 4.1: Fraction of quantified proteins in a sample. Due to mainly
technical limitations, both caused by the LC-MS analysis itself (see main text)
and by quantification methods, the number of proteins that can be quantified per
single LC-MS analysis is limited and represents only a small fraction of the total
proteome [194, 195]. Even though it has been shown that a nearly complete coverage
of the proteome is possible for rather simple organisms, the required workload is
tremendous and stands in no relation to the benefit [196–198]. For more complex
proteomes, the rate of identified proteins usually lies below 10%. The number of
proteins that are not only identified but also quantified is usually significantly smaller
[112]. State-of-the-art LC-MS systems are capable of identifying and quantifying
up to 10,000 proteins from a given proteome [199, 200]. Note that the number
of proteins present in the proteome of an organism usually exceeds the number
of genes by far, due to intermediate processes such as post-transcriptional- and
post-translational modifications, which influence parameters such as RNA-stability
or protein degradation (see 2). Adapted from [112].
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• At what stage of MS data acquisition the label is recognized, which can
be either (i) in the MS1 or (ii) in the MS2 (isobaric labeling) spectrum.

The most prominent types of labels used today are stable isotopes (e.g., 12C
vs. 13C, 14N vs. 15N, 16O vs. 18O), which are ideal labels, since they do not
alter the physiochemical behavior of modified peptides and produce a distinct
mass shift in the MS1 spectrum. Below, some of the most often used labeling
techniques are described in detail.

4.1.1 Metabolic labeling

Metabolic labeling was first introduced for total labeling of bacteria using
a 15N-enriched cell culture medium [204]. Today, the most widely applied
form of metabolic labeling is the stable isotope labeling by amino acids in cell
culture (SILAC) described by Ong et al. in 2002 [205]. Cell cultures are grown
in media containing either a light- or a heavy version of an amino acid, which is
metabolically incorporated by the cells into all proteins. In principle, different
isotopes can be used for the SILAC approach. Ong and his colleagues used
deuterium as a label, while today’s most commonly used implementations of
the SILAC approach use 13C and/-or 15N isotopes for labeling. Usually, labeling
is performed on the two amino acids arginine and lysine.

The metabolic incorporation of stable isotopes is not limited to single cells
but was extended to bacteria [206], simple multicellular organisms [207] and
even complex organisms like rodents [208]. Nevertheless, its main disadvantage,
the limitation to organisms that can be fed exclusively by a stable isotope diet,
remains. Therefore, this technology is not directly applicable to the analysis of
human material like tissues or body fluids and the respective clinical applications
[209]. Nevertheless, new SILAC-based approaches have been published recently,
trying to extend its application also to human tissue, using either isotopically
labeled standard peptides or a labeled (cell culture) peptide mixture that
is used as a reference peptidome (super-SILAC) [210, 211]. Even though the
super-SILAC and SILAC standards mix approaches provide some opportunities
especially in terms of large-scale quantification of cellular and tissues samples,
the main drawback remains, which is the need for a reference peptide-mix that
does contain a labeled reference for (ideally) all proteolytic (human) peptides
[212].
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Just as with any other stable isotope labeling (SIL) method, the number of
different samples that can be combined and quantified using SILAC is limited
by the availability of differently labeled amino acids. In practice, usually
not more than three samples are quantified. Higher sample numbers have
been successfully quantified using deuterium as an additional label, however it
has been shown that peptides labeled using deuterium can have significantly
different retention times compared to their unlabeled counterparts (deuterium
isotope effect [213]). Recently, the metabolic conversion of isotopically labeled
peptides and the resulting addition of labels to unexpected amino acids have
been reported [214].

The big advantage of SILAC is its high reproducibility due to the earliest
possible time point of label introduction, which is during cell growth and
division [215].

4.1.2 Enzymatic labeling

Enzymatic labeling utilizes the heavy isotope of oxygen 18O, which is incorpo-
rated into peptides during tryptic digestion [216–219]. It replaces the normal,
light variance 16O at the C-terminus of peptides.

The major advantage of 18O labeling is that the method is not limited
to a specific subpopulation of peptides, which is the case for other labeling
strategies (e.g., peptides containing a specific amino acid or post-translational
modification) [220]. Furthermore, since peptides are enzymatically labeled,
artifacts (i.e., side reactions) common to chemical labeling can be avoided [212].
Compared to SILAC, enzymatic labeling is not limited to cell culture but can
be applied to principally any sample.

A disadvantage is the incorporation of labels, which is (i) commonly in-
complete and (ii) happens at different incorporation rates depending on the
peptide [212, 220–222].
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4.1.3 Chemical labeling

Chemical labeling was introduced in the same year as metabolic labeling and
represents another approach to use stable isotopes for label-based quantifica-
tion [223]. In contrast to the metabolic incorporation of isotopes, labels are
chemically introduced into peptides. The first application, termed isotope-
coded affinity tags (ICATs), was published by Gygi et al. in 1999 [223]. ICAT

introduces isotopic labels by derivatization of cysteine residues with a reagent
containing either eight or zero deuterium atoms [112, 223]. Labeling is limited
to cysteine, which is why the quantification using ICAT becomes problematic
for proteins with no/only a few cysteine residues.

Other chemical labeling approaches are isotope-coded protein labels (ICPLs)
[224], isobaric tags for relative and absolute quantitation (iTRAQ) [225], and
tandem mass tags (TMTs) [201].

4.1.4 Isobaric labeling

iTRAQ and TMTs are chemical labeling strategies but can be further described
as isobaric labeling techniques. In contrast to the isotope labeling strategies
described before, isobarically labeled peptides are indistinguishable in MS1

spectra and only become visible after fractionation in recorded MS2 spectra.
Up to ten different special ion fragments become visible, which can be used for
quantification [202]. One big advantage of isobaric labels is the fact that labeled
peptides are indistinguishable in MS1 and sample complexity is not influenced.
In contrast, isotopic labels described above increase sample complexity with
every label that is incorporated.

4.2 Label-free Peptide Quantification
Label-based quantification is always associated with overhead in terms of
additional sample preparation and costs. Furthermore, most labeling techniques
are subject to limitations such as a limited number of samples that can be
quantified, increased sample complexity due to introduced labels, and limited
dynamic range.
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(a) Area under the curve quantifica-
tion. All peaks that belong to the same
peptide are grouped together to a feature
(feature extraction). Peptide abundance
equals the “peak volume”, which is the area
under a feature’s intensity curve.

(b) Quantification by spectral count-
ing. The underlying assumption here is that
the number of MS2 scans that one peptide
triggers directly correlates to its abundance.

Figure 4.2: Two label-free quantification strategies. Area under the curve/
intensity-based quantification and quantification by spectral counting. LC-MS peaks
in blue, a feature in red.

To overcome these limitations, efforts have been made to perform peptide
and protein quantification without utilizing additional labels and calculating
ratios solely on MS1 or MS2 data. In this case sample multiplexing is not
required and each sample is processed separately. Thereby, sample complexity
is not altered and an unlimited number of samples can be compared.

4.2.1 Comparing ion intensities

As described before (see 3.1.3, 3.1.4 and 4), peptide ion intensities directly
correlate to their abundance and therefore may be compared against each other
quantitatively. Additionally, it is also possible to infer protein abundance from
peptide abundances. Protein abundance is linearly correlated to the area under
the curve (AUC) of peptide intensities with r2 = 0.9978, in a range of 10 fmol
to 1,000 fmol [226, 227]. Based on these findings, the comparison of peptide
intensities was the first successfully applied strategy for label-free quantification
[226, 228].

The steps required for label-free protein quantification based on the com-
parison of ion intensities are described into more detail below.
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4.2.1.1 Feature extraction

To perform peptide ion intensity comparisons, the extraction of the respective
intensity values from the MS1 data is required. This data extraction step is
a direct consequence of limitations deriving from the separation capacities of
today’s LC systems. Considering a perfect world scenario for chromatographic
separation, every peptide would elute from the chromatographic column at one
discrete time point. This in return would lead to perfectly sharp peaks reaching
the mass spectrometer. Furthermore, each detected peak would represent
exactly one single peptide.

However, in reality, the elution of most peptides is a continuous process,
resulting in a continuous signal over a period of time. Since these signals/peaks
all represent the same peptide, grouping these peaks and merging them into
one item, which is called a feature, has to be performed [229]. All peaks making
up a feature are called member peaks. Identifying member peaks and merging
them into a single feature is called feature extraction. In literature, a different
terminology may be used to describe a feature (e.g. 2D peak, 3D peak,
extracted ion chromatogram (XIC), or form) and 2D/3D peak detection or form
detection to describe the process of feature extraction [230, 231].

A feature shares all the properties of the contained peaks and can therefore
be represented as a peak. In terms of object-oriented programming, feature
inherits from peak. Merging many peaks into one peak (feature) requires certain
data reduction strategies, since collections of m/z values, signal intensities, and
retention times must be transformed into a single item.

In terms of mathematical analysis, the transformation of many peak inten-
sities into one feature intensity can be performed by integrating the spectrum
of all member peaks (AUC, as described in 3.4). This strategy is the typical
approach to obtain total peptide intensity. The transformation of the remaining
two peak properties, i.e., m/z values and retention times, is less crucial, since
only the feature intensity is later used to perform the quantification. Neverthe-
less, these properties will be of importance in the later alignment process (see
4.2.1.2). For both the m/z values and the retention times, typically an average
such as mean or median is calculated in order to obtain the corresponding
feature property. Alternatively, data reduction can be performed by simply
taking over the properties of the member peak that has the highest intensity
(the so called master-peak).



4. Peptide and Protein Quantification from LC-MS Data 39

(a) Peaks representing one eluting
peptide.

(b) Feature representing one eluting
peptide.

Figure 4.3: Feature extraction. During the process of feature extraction, all
peaks representing the same eluting peptide are identified and merged into a feature.
A feature is a view to the data in which each data point represents exactly one
distinct peptide.

Importantly, the data processing of raw data deriving from a different LC-MS

setup often requires distinct algorithms, since the patterns that need to be
detected strongly depend on the instruments used. For example, the average
feature length (retention time of last member peak minus retention time of first
member peak) depends on the chromatographic capabilities of the LC system
used and may vary significantly between different instruments. The same holds
true for variations in m/z values, which depend on the mass accuracy of the
mass spectrometer.

In summary, feature extraction is a process of data transformation. LC-MS

data points are the input data while the output are features reflecting the
biological context and each feature represents exactly one (tryptic) peptide.

4.2.1.2 Feature alignment

Following the identification of distinct peptides (i.e., feature extraction), a
process that is performed for each sample independently, the resulting peptides
need to be aligned across all samples to be compared. In other words: For
peptide ps1 from sample s1, its counterpart ps2 in sample s2 needs to be
identified to be able to calculate an intensity ratio between the intensity of ps1

and ps2.
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This step is connected to the chromatographic separation and the repro-
ducibility of this process. The perfect world scenario outlined previously
assumes a discrete elution of each peptide at a constant time point. Therefore,
peptides could be matched just by identifying pairs of equivalent retention time
and m/z values.

However, in reality, elution times of peptides are subject to more or less
pronounced retention time shifts. The comparison of these retention time
shifts and the identification of peptide pairs across samples is the task of the
feature alignment (also termed retention time alignment, chromatographic
alignment, peak matching or feature matching). From a technical point of
view, this alignment can be seen as a normalization in the time dimension.
That is why feature alignment is also called retention time normalization
or dynamic time warping. Consequently, dynamic programming (DP)-based
algorithms originating from the field of speech recognition (e.g., dynamic time
warping (DTW)) are often applied [232].

Even though an alignment is a retention time normalization, one-dimensional
alignment strategies (i.e., considering only the parameter retention time during
the alignment process) can only be applied to low-resolution data with minimal
data complexity. For this reason, all available feature properties (i.e., retention
time, m/z ratio and, if available, feature/peptide identifications) are usually
incorporated to find feature pairs across samples. These properties can be
expected to be most similar for true peptide pairs.

Importantly, intensity values should not be considered, since they are the
measure for peptide abundance and are expected to be significantly different in
the case of differentially regulated proteins. Nevertheless, some algorithms also
use intensity values to estimate the similarity between features; the reasoning
is that most protein abundances can be expected to be not regulated and
therefore their intensities should be similar.

Identifying feature pairs (alignments, see Table 4.1) can be achieved by
searching a predefined search space. For example, possible matches (mappings,
see Table 4.1) could be identified by selecting all features from samples s1 and
s2 in a retention time range of three minutes and an m/z range of 0.05Da. All
these features present possible matches, and true pairings have to be identified.
Algorithms used to identify true pairings face three main problems:
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Shift problem: Since the retention time might be shifted, the use of a prede-
fined retention time range to search for possible matches is an a priori
source of error. An iterative approach, where the alignment is repeated
(usually three times are sufficient) iteratively, using corrected retention
times obtained by the prior run, can be a solution.

Transitive connections: A feature in sample s1 likely has multiple possible
matches in s2; however, these matched features in s2 will not necessarily
match back to the same feature in s1 but might as well match to multiple
other features in s1. This is problem known from graph theory, where
graphs can have multiple edges (multi graph) or only single edges (simple
graph). The conversion of a multi graph into a simple graph reflects,
therefore, the same problem. It is usually solved by weighting the edges
and keeping only the strongest ones (see Figure 4.5).

When performing feature alignments, dismissing edges affects not only
directly connected notes/features but has a transitive effect on other
edges at the same time; removing one edge can change the weight of other
edges at the same time. This problem can be solved by DP.

Feature-alignment ratio: Considering a perfect alignment, the ratio of the
total number of features in both input samples and the number of total
alignments in the resulting aligned sample (Rfa = countf

counta
) would be 2

(given that orphan alignments are not dismissed), since every feature in s1
matches exactly 0 or 1 feature in s2 and these matches are bidirectional
(see Table 4.1). As the generation of a perfect alignment can often only
be achieved by DP and is therefore very costly in terms of computational
performance, heuristics can be used to avoid a complete DP approach.
This in turn can result in features that are part in more than one alignment
(Rfa < 2), especially when performing multiple alignments (see 4.2.1.2.1).
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Peak One LC-MS data point with the main properties m/z,
intensity and retention time/fraction number.

Feature A collection of peaks representing the same peptide in
one sample.

Alignment (context dependent)
A pair of features representing the same peptide in two
different samples.
The process of aligning two (normal) samples.
A sample that results from aligning two (normal) sam-
ples.

Mapping A pair of features representing a possible alignment.
Sub alignment An alignment that is the input for another alignment

process.
Superalignment (context dependent)

An alignment process aligning two alignments.
An alignment process aligning one sample and one al-
ignment.
A sample resulting from a superalignment process.

Orphan alignment An alignment built from a feature to which no possible
match in the other sample could be identified (see 4).

Complete alignment An alignment that is built from one forward- (m1) and
one backward mapping (m2), if both mappings contain
the same pairing of features. A bidirectional matching
of two features fs1 and fs2.

Table 4.1: Alignment terminology.

Figure 4.4: Retention time nor-
malization. In a perfect world sce-
nario for chromatographic separation,
every peptide elutes from the chromato-
graphic column at one discrete time
point and this time point is constant
across different runs of separation (il-
lustrated in red). In the real world,
chromatographic separation is subject
to run-to-run variations resulting in rel-
ative retention time shifts (illustrated
in blue). Retention time normalization
aims at the transformation of the blue
function into the red function; more
precisely, to establish a normalization
function that maps values from the blue
function to values in the red function.
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(a) Distinct alignment
options. Since all possi-
ble matchings are distinct,
building an alignment is ob-
vious (A=B, C=D).

(b) Multiple but still dis-
tinct alignment options.
Building an alignment is
not as obvious as in (a),
still all peaks may be as-
signed distinctly to one al-
ignment if edge weighting is
introduced. A simple ap-
proach would be to assign
a stronger weight to bidirec-
tional edges. In this case,
A=B is the strongest edge,
therefore A=D and B=C
are dismissed. This subse-
quently leads to a distinct
edge between C and D.

(c) Ambiguous align-
ment options. Again,
edges are weighted since
multiple options exist. If
starting with peak A, first
the alignment A=B is built,
invalidating edges between
B and C as well as edges
between A and D. There-
fore, C and D are left with
no alignment (incomplete
alignment). Considering
these consequences, first
B=C is built, invalidating
the edge between A and
B and resulting in another
alignment A=D (complete
alignment).

Figure 4.5: Transitive alignment connections and their effects on each
other represented as graphs. Nodes A, B, C and D represent peaks or features.
Blue nodes derive from sample s1, green nodes from sample s2. Possible alignment
options are represented by edges between notes.
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4.2.1.2.1 Multiple Alignment The described alignment process can be
applied for aligning two samples against each other but is not suited for an
alignment of more than two samples. This restriction appears natural, since
an alignment is constructed in order to calculate an intensity ratio from two
peptides (rp = Ips1

Ips2
). Nevertheless, it is often desirable to perform a multiple

alignment; e.g., to compare more than two states against each other or to
calculate statistics for which higher sample numbers are required. Strategies
for a multiple alignment often work with so called super- or master-alignments/
samples. These terms describe an “alignment of an alignment”. More precisely,
a sample that results from the following workflow:

1. Creating an alignment a1 from the two samples s1 and s2
2. Creating an alignment a2 from the two samples s3 and s4
3. Creating an alignment a3 from

(a) the sample s5 and the aligned sample a1 or
(b) from the two aligned samples a1 and a2.

In this work, the terminology described in Table 4.1 is used. Different strategies
to perform a multiple alignment exist; most of them make use of sub- and
superalignments.

Linear alignment is an alignment strategy that creates a superalignment
by first creating an initial (reference) alignment of two samples. This
alignment is then aligned to the next sample, creating a new reference
alignment, which is subsequently aligned to the next sample, and so forth.
A linear process creates one superalignment by subsequently merging all
samples. The quality of the final superalignment strongly depends on
the alignment sequence. It is favorable to select an order that considers
sample similarities, thereby aligning samples with a high similarity to
each other first (see 12.3.6 and Figure 4.6a).

Hierarchical alignment is an alignment strategy somewhat similar to the
linear alignment strategy. Subalignments are used to merge all samples
subsequently into one superalignment. In contrast to the linear alignment,
hierarchical alignment strategies do not make use of reference samples.
First, subalignments are built from all samples. Then, these subalignments
are aligned against each other until only one final superalignment is left
(see Figure 4.6b).
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(a) Linear multiple al-
ignment. This alignment
strategy uses always one
sample as a reference. All
samples are subsequently
aligned to this reference.

(b) Hierarchical multi-
ple alignment. In this
alignment approach, sam-
ples are aligned in a hi-
erarchical, tree-based man-
ner. Most similar samples
are aligned to supersamples,
which in turn are aligned
against each other.

(c) Iterative multiple al-
ignment. This alignment
strategy does not utilize
super- and subsamples. All
features from all samples to
be aligned are processed at
once.

Figure 4.6: Strategies for an alignment of multiple samples. Circles repre-
sent (normal) samples; squares represent supersamples.

Iterative alignment is an alignment strategy without subalignments. At
first, an initial alignment containing only a subset of all features that
need to be aligned is built. Iteratively, this alignment is extended by
incorporating additional features until all features are merged in the
initial alignment (see Figure 4.6c).

Complete pair wise alignment describes a strategy in which first all pair
wise alignments are built from the collection of input samples. This
results in nn−1

2 subalignments, which are subsequently merged together
into one final superalignment/supersample. Merging is then performed
by one of the strategies described above, omitting duplicate alignments.

4.2.1.2.2 Feature alignment based on peptide identifications In prin-
ciple, ion intensity-based protein quantification approaches can omit a feature
alignment step. The finding of feature pairs for the comparison of intensities
is trivial if both samples contain peptide identification information. By this
approach, Bondarenko et al. quantified proteins in their first data set on
label-free quantification in 2002 [226]. However, such a quantification strategy
is limited to proteins identified in both samples with approximately the same
number of peptides.
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The advantage of using a feature alignment strategy consist in the fact that
peptide identification information is required only for one of the two features
and proteins can be quantified even if identification information is present in
only one sample.

4.2.2 Counting MS2 spectra

A label-free quantification approach introduced in 2004 assumes a direct cor-
relation between triggered MS2 events and peptide abundances [167]. Even
though no direct link between the two parameters was presented, Liu could
show label-free protein quantification based on the counting of MS2 spectra. The
spectral counting (SC) or spectral sampling approach quickly gained popularity
due to its minimal computational requirements compared to the AUC approach
(see 4.2.1). Since the quantification is solely based on MS2 data, extensive
feature extraction (see 4.2.1.1) and feature alignment (see 4.2.1.2) steps can be
omitted.

Translating MS2 scan events to protein abundances can be based on different
strategies:

Sequence coverage: How much of a protein’s sequence is covered by MS2

scans.

Peptide count: How many peptides per protein have been identified.

Spectral count: How many MS2 scans per protein have been triggered in
total. The SC approach suffers from the main drawback that redundant
identifications cannot be omitted. Blacklisting already identified precursor
ions for repeated MS2 analysis is a commonly used approach to save MS2

resources. When identification counts are used for quantification, this
dynamic exclusion of precursor ions cannot be applied, which amplifies
the problems of DDA described before (see 3.2 and 4).

4.2.3 Assessment of MS1 and MS2 based quantification

Both MS1- and MS2-based approaches have their advantages and disadvantages,
which will be discussed in this section.

• Advantages of MS1-based protein quantification approaches:
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– In contrast to MS2, peptide identification and quantification are two
independently performed steps. Therefore, annotation propagation
(see 12.5) as well as advanced data acquisition strategies are possible
(see 13.5). For example, MS1 quantification allows inverting the se-
quence of protein identification and quantification. An “anonymous”
quantification, i.e., quantification without peptide assignment, can
be performed at first. Subsequently, the exclusive identification of
regulated features is conducted. Thereby, a significant amount of
time is saved, as MS2 analyses are only performed on a small subset
of the data.

– The commonly employed dynamic exclusion of ions already selected
for fragmentation is impossible if MS2 scans are used for the quantifi-
cation of proteins. Without dynamic exclusion, a strong bias toward
the quantification of highly abundant proteins has been observed.
MS1-based setups require only a single identification for each peptide
to be quantified. Therefore, the application of exclusion lists does not
influence the quantification results but allows for the identification
(and quantification) of peptides with lower abundances.

– The quantification of lower abundant proteins is more accurate in
an MS1 setup; proteins can be accurately quantified with as little as
two peptides [212, 233]. In order to achieve the same accuracy in
an MS2-based approach, more peptides are required [212, 233]. Old
et al. have shown that the detection of a threefold change in protein
abundance requires at least four MS2 spectra [233]. However, this
number increases exponentially for smaller changes (approximately
15 spectra for twofold change in protein abundance). At the same
time, saturation effects are observed at higher spectral counts and
saturation levels are different for each protein [233].

– The quantification of a “black-and-white” situation (i.e., expressing
a ratio for proteins that are only present in one sample) is difficult
to implement in a MS2-based approach and therefore usually not
performed in praxis (see also 17.4).

• Advantages of MS2-based protein quantification approaches:

– Quantification via MS2 data is computationally much simpler com-
pared to MS1-based strategies, since feature extraction (see 4.2.1.1)
and feature alignment (see 4.2.1.2),two non-trivial data processing
steps, are not required.
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4.3 Assessment of Label-based and Label-free
Quantification

Both label-based and label-free quantification approaches have their advantages
and disadvantages, which will be discussed in this section. Note that some of
the mentioned points are specific to shotgun proteomics.

• Advantages of label-free quantification approaches:

– No elaborate sample preparation.

– No costly isotopes.

– Unlimited number of samples to be compared.

– Not limited to a specific sample type (e.g., SILAC, see 4.1.1).

– Since samples are not multiplexed, the inherent dynamic range of the
mass spectrometer is not influenced in a label-free setup. A decreased
dynamic range is particularly problematic for the identification of
peptide ions by MS2, where only a limited number of peptide signals
can be subject to CID fragmentation. The selection of precursor
ions is biased toward high-intensity peptide signals and leads to a
prominent CID undersampling of low-abundance peptides [233].

– The quantification of a “black-and-white” situation (i.e., expressing
a ratio for proteins that are only present in one sample) is difficult
to implement in a label-free approach and therefore usually not
performed in praxis (see also 17.4).

• Advantages of label-based quantification approaches:

– Typically, samples are multiplexed and processed at once when using
labels for quantification. This excludes all sources of quantification
error introduced during both sample preparation (post combining
the sample) and mass spectrometric procedures. Unlike in a label-
free approach, systematic and non-systematic variations are thereby
eliminated.

– Label-based quantification approaches can be analyzed relatively
easy by commercial software tools available for virtually any type of
mass spectrometer.
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4.4 Protein Quantification
In a shotgun proteomics approach (see 3.1.1), proteins are digested into peptides
prior to LC-MS analysis. Therefore, quantification strategies described before
yield peptide abundances instead of protein abundances. As described in 3.2,
MS2 spectra are used to assign peptide identification information to ion masses
obtained by MS1 acquisition. During this identification process, not only an
amino acid sequence is matched to each fragmented ion, but also the protein
of origin can be assigned. Nevertheless, a peptide sequence can sometimes
be assigned to more than one protein, i.e., the peptide is not proteotypic (so-
called degenerated or shared peptides). This problem is called protein inference
[234–238] and three distinct approaches have been developed to solve it [231]:

1. Matching shared peptides to all possible proteins and quantifying all of
these proteins.

2. Matching shared peptides to one or more protein(s), based on heuristic
calculations (e.g., Occam’s razor- or anti-Occam’s razor principle).

3. Dismissing all shared peptides and performing the quantification on
proteotypic peptides only.

Irrespectively of the applied approach, the protein abundance is calculated
based on the sum of (all) peptide abundances that have been assigned to the
protein (protein abundance calculation based on only a subset of peptides is
possible as well, e.g., based on the top three abundant peptides). Calculating
protein abundances indirectly through peptide abundances is common to all
bottom-up proteomics quantification strategies.
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Genetic Algorithms as a Tool for
Parameter Optimization

The term “genetic algorithm (GA)” originates from the field of artifi-
cial intelligence and bioinformatics. It describes heuristic methods used
to identify solutions to mathematical optimization problems [239–241].

While these solutions can be difficult to calculate, an exact result is often not
required. If an approximation to the exact solution is sufficient, GAs are well
suited, especially considering their reasonable use of resources in terms of time
and computing effort.

Requirements for an application of GAs are:

1. Optimization problem, to which a “non-exact” solution is sufficient.

2. All possible solutions can be expressed as a function translating a solution
into a numerical value, which can be compared to other values/solutions.

The concept of GAs is based on the idea to create two or more initial solutions to
a problem and let them “evolve” in order to generate solutions that approximate
the optimum. GAs are intended to mimic the natural process of evolution,
natural selection and “survival of the fittest”.

Parallelization plays an important role, since solutions can be calculated in
parallel. As Moore’s Law comes closer to losing its validity in the world of chip
manufacturing, an increase in computing power can only be achieved by the
use of more cores instead of faster ones [242].

51
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ma(x) = 1
n

n∑
i=1

xi

Where:

ma(x) the moving average of a (time) series of data points,
n the number of data points from which the average (mean) is calcu-

lated.

Equation 5.1: The SMA filter. The simple moving average filter can be used,
for example, to separate noise from signal, like it is needed during the process of peak
finding. The input function is transformed into an averaged output function. By
averaging n data points, small variance (noise) is eliminated, only significant changes
remain (signal).

Individual One possible solution to a problem.
Gene One atomic characteristic of an individual’s ability to solve a

problem.
Genome The set of genes that together characterize an individual’s ability

to solve a problem.
Population A collection of individuals.
Breeder A “population-growing-function” that takes two individuals as

parameter. The result of this function is one new individual.
A breeder mimics the biological process of Meiosis. To build a
genome, a breeder uses two genetic operators, which are crossover
mutator and point mutator.

Crossover mutator Mimics the biological process of chromosomal crossover: It takes
one part of the first input genome and combines it with another
part of the other input genome. Its frequency of action is usually
1.

Point mutator Mimics the biological process of mutation: It randomly replaces
one or more genes of one genome by any other gene. Its frequency
of occurrence is variable, depending on the degree of random-
ness that should be involved in the whole optimization process.
A starting point for a reasonable mutation rate is the natural
mutation rate of eukaryotes and bacteria (app. 0.003).

Table 5.1: Genetic algorithms terminology.
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Algorithms applied in low-level MS data processing (see 3.5), feature ex-
traction (see 4.2.1.1), or feature alignment (see 4.2.1.2) often require a set of
parameters. The SMA filter, illustrated in Equation 5.1, is a basic instance of
such an algorithm. In this example, n is an algorithm parameter that needs
to be defined. It is usually chosen empirically and strongly depends on the
data. Importantly, it has a significant influence on the performance of the filter.
In the case of baseline smoothing/subtraction and peak extraction (see 3.5.1),
choosing a too small value for n results in false positive peaks, whereas a too
large value results in false negative peaks.

In computer science, this type of parameters is often referred to as magic
numbers, as they are empirically evaluated and a proper justification is usually
missing. If a training set exists or if false positives/false negatives can be
identified otherwise, the determination of these magic numbers is a tailor-made
task for GAs. Numerous possible solutions can be calculated independent of
each other using different parameters. Furthermore, solutions can be ordered
according to their fitness by expressing the number of false positives/false
negatives as a numerical value. The general structure of a GA is shown in
Listing 5.1 and is further described in the following.

1. An initial set of possible solutions to a problem is created. Each solution
is called individual and is characterized by a set of genes (termed genome).
Each gene represents an atomic contribution to the solution (genome/
individual) (see Table 5.1). Using the example of the SMA filter, only one
parameter needs to be optimized (i.e., n). Therefore, every solution is
represented by an individual, characterized by a genome that consists of
exactly one gene. The gene is an integer value representing the number
of data points from which the average should be calculated. Only this
single gene defines the individual’s capability to solve the problem.

With respect to the example of the SMA filter, an initial set of solutions
can be created randomly (e.g., create an initial population of individuals
carrying genes that have been impressed with a random value for n.) or
by choosing genes (values for n) empirically.

2. Subsequently, the population of individuals is enlarged. This is done
by a “population-growing-function” termed breeder. A breeder is a core
element of a GA and utilizes typically two operators (crossover mutator
and point mutator, see Table 5.1) to generate new individuals from the
existing population of individuals.
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3. After new individuals have been generated, their fitness (e.g., the ability
to solve the problem) is evaluated.

4. Finally, the “fittest” individuals within the population are chosen to breed
offspring.

5. These steps are repeated until a stop condition is met, which can be for
example a maximum population size, a maximum number of generations
or a minimum fitness to reach.

A breeder operates typically on the basis of the crossover mutator and the
point mutator. These mutators alter a genome at a specified frequency and
principle of action. The point mutator mimics randomly occurring mutations
that affect only one gene at a time. A point mutator introduces randomness,
which is required to generate new solutions. Its frequency of action must not
be chosen too large. Its frequency is typically based on the natural mutation
rate (app. 0.003) or a little higher (up to 0.1).

The crossover mutator mimics the biological process of chromosomal
crossover: It takes one part of the first input genome and combines it with a
part of the other input genome.

A crossover typically takes place for each individual that is created, therefore
its frequency of action is mostly 1. The crossover mutator is a key element
to “inherit” “fit” properties and combine them to build new, potentially even
fitter genomes in a random manner.
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createInitialPopulation ()

while population .size () <= maxPopulationSize
population . addAll ( breedIndividuals ())

solveProblem ( population . getFittest ())

function breedIndividuals ()
begin

Genome g1 = getFittest (). getGenome ()
Genome g2 = getSecondFittest (). getGenome ()
Genome g3 = MutatorCrossover . crossover (g1 ,g2)
g3 = MutatorPoint . mutate (g3)
return newIndividual (g3)

end

Listing 5.1: Pseudo code of a genetic algorithm. The population of individuals
is grown until a defined maximum population size is reached (other stop criteria are
possible, see main text). breedIndividuals() is a function to grow the population.
It uses the first two individuals of the population in terms of fitness to generate
one new individual. The new individual’s genome is a combination of the two input
genomes. It is, furthermore, randomly mutated with a defined frequency (not shown,
see main text).





6

Aim of This Work

Mass spectrometry is a highly sensitive technique for the identification of
peptides and proteins, but it is not inherently quantitative. To extract
quantitative information from mass spectrometric data, additional

sample preparation steps and/or software solutions are required. While several
approaches are publicly available to perform protein quantification, almost
all of them lack two important properties required for routine applications:
user friendliness and flexibility. Furthermore, only very preliminary software
solutions are available for the quantification of proteins using data obtained by
LC-MALDI-MS. Today, LC-MALDI-MS is the work horse in several laboratories
and has numerous advantages over LC-ESI-MS such as the decoupling of LC,
MS1, and MS2.

The aim of this work was to

• extract quantitative data from LC-MALDI-MS data,

• utilize LC-MALDI-MS specific properties, and

• develop advanced data acquisition methodologies.

Furthermore, this work focused on the development of a software that overcomes
the mentioned usability problems and which provides a graphical user interface
allowing for easy and intuitive usage by non-experts. While the focus was
clearly on the processing of LC-MALDI-MS data, the software should ideally be
flexible enough to be extendable for the processing of LC-ESI-MS data.
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Material and Methods
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Sample Preparation for LC-MS

Methods and protocols described in this chapter have been established and
performed in close collaboration with Wiebke Nadler.

7.1 E.coli Cell Lysate
10ml 2xYT medium (MP Biomedicals molecular biology certified bacterial
growth medium) were inoculated with a single colony of E.coli TG1 (electro-
poration-competent cells; K-12). Bacteria were grown in suspension culture
at 37℃ overnight with continuous shaking. 500ml 2xYT medium were in-
oculated in a ratio of 1:100 from the preculture and incubated at 37℃ with
continuous shaking for 15 h. Bacteria were pelleted by centrifugation (4,000 x
g, 4℃, 15min) and the pellet was washed twice with phosphate buffered saline.
Bacteria where resuspended in 10ml cracking buffer (10mM Trizma® HCL
(Sigma T1503), 5mM EDTA (Sigma 03609), 1x cOmplete protease inhibitor
cocktail (Roche Applied Sciences, pH 7.5) per gram wet weight. Lysates where
sonified on ice at 35% intensity for 2.5min with 1 sec pulses using a Branson
sonifier W250D and subsequently cleared by centrifugation (10,000 x g, 4℃,
30min). Protein lysates where stored at −20℃ for further experiments.

10.6µg universal proteomics dynamic range standard (UPS2) was dissolved in
70.7µl cracking buffer for a final protein concentration of 0.15µg/µl. Different
amounts of dissolved UPS2 were spiked into 50µg E.coli lysate according to
Table 7.1.

A five-fold excess of ice-cold acetone was added to 100µl protein lysate.
Samples were left at −20℃ for at least 12 h. The precipitated proteins were
centrifuged (20,000 x g, 4℃, 30min) and the supernatant was discarded. The
proteins were washed with 100 – 200µl of 80% ice-cold acetone, centrifuged
(20,000 x g, 4℃, 5min) and dried in a SpeedVac.

To estimate protein content, a bicinchoninic acid assay (BCA) was performed
using Pierce™ BCA Protein Assay Kit (Thermo) according to the manufacturer’s
instructions.
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Sample Ratio Spike-in
volume [µl]

Spike-in
amount [µg]

E.coli lysate
amount [µg]

A 0% 0 0 50
B 0.0625% 1 0.15 50
C 25.0% 4 0.6 50
D 100.0% 16 2.4 50

Table 7.1: Spike-in scheme for GeLC-MS. Human proteins have been spiked
into E.coli cell lysate at four different concentrations, namely 16µl UPS, 4µl UPS,
1µl UPS, and 0µl UPS as a negative control (Sample A – D).

Per vial, 1ml of a 2mM Tris carboxyethyl phosphine hydrochloride (BioVi-
sion) solution in trypsin digestion buffer (TDB) was added and samples were in-
cubated at 37℃ for 30min at 1,200 rpm. Tris(2-carboxyethyl)phosphine (TCEP)
solution was removed and samples were alkylated with 1ml of 20mM iodoac-
etamide (Sigma, freshly prepared) in TDB for 30min at room temperature in
the dark. The iodoacetamide solution was removed and gel slices were washed
once with 1ml water. 1ml TDB was added and gel slices were incubated for
10min for complete removal of the alkylating reagent.

The TDB buffer was removed and gel pieces were dehydrated in 80% ace-
tonitrile. The dehydration solution was removed and residual solvent was
evaporated in a SpeedVac. Gel slices were resuspended with trypsin stock solu-
tion (20 ng/µl in TDB, Promega) until fully drenched and left for 15 minutes
at room temperature. The gel slices were covered with 400µl TDB and samples
were incubated for 12 h at 37℃ under agitation.

Desalting was performed with a 96 well Protein/Peptide Desalting Lab-in-a-
Plate Flow-Thru Plates (Glygen, FNSC18, Media bed volume 40µl) according
to manufacturer’s instructions and dried in a SpeedVac.

7.2 Preparation for GeLC-MS
For each sample up to 50µg of protein in the respective buffer were diluted with
water to 80% of the final sample loading volume. Sodium dodecyl sulfate (SDS)
buffer was freshly prepared by adding mercaptoethanol in the ratio 1:100 to
a buffer stock solution containing 208µM tris (pH 6.8), 33% glycine, 5%
SDS and 0.06% bromophenol blue. The SDS reducing buffer was added and
samples were incubated for 10min at 70℃ before loading on a 4 – 12% bis-tris
gel (15mm, 2-well) on a NuPage system. Separation was conducted using
3-(N-morpholino)propansulfonic acid (MOPS) buffer at 190V constant for 1 h.
The SDS-gel was stained with Simply Blue Safe Stain (Invitrogen) according to
manufacturer’s instructions.
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Fraction Number of gel slice
1 1, 2, 3, 25, 26
2 4, 5, 6, 27, 28
3 7, 8, 9, 29, 30
4 10, 11, 12, 31, 32
5 13, 14, 15, 33, 34
6 16, 17, 18, 35, 36
7 19, 20, 21, 37, 38
8 22, 23, 24, 39, 40

Table 7.2: Fractionation scheme for gel slices. In order to compensate for
different protein amounts in “early” and “late” slices, three “early” slices have been
combiend with two “late” slices always.

Lanes were excised from the stained gel with a BioStep Lane Picker (48 bands
1.5mm x 5mm) or a similar tool build in-house and pooled into fractions starting
from the bromophenol blue front (48 slices, pooled according to Table 7.2).
The gel slices were destained in Eppendorf tubes for at least 2 h with 50% v/v
MeOH in TDB (50mM Tris-HCL, pH 8.0, 1mM CaCl2) with overhead tumbling
(Cole-Parmer Tube Rotator). Subsequently, gel slices were washed with TDB

(50mM Tris-HCL, 8.0 pH, 1mM CaCl2, BioVision).

Samples were sonicated in a water bath and the supernatant solution was
transferred into a fresh LoBind Eppendorf tube. The remaining gel slices were
overlaid with 800µl extraction solution (50% acetonitrile, 0.1% trifluoroacetic
acid (TFA)). After 10 minutes of incubation at room temperature under
agitation, samples were sonified for 5min and the supernatant solution was
combined with the aquaeous peptide solution in the LoBind Eppendorf tube.
The solvent was evaporated under vacuum and the resulting pellet was stored
at −20℃.
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Liquid Chromatography and Mass
Spectrometry

Samples have been analyzed using liquid chromatography coupled to mass
spectrometry. Liquid chromatography was performed using two nanoAC-
QUITY UPLC ® systems, subsequent mass spectrometric data acquisition

was done using an AB SCIEX TOF/TOF™ 5800 system and an AB SCIEX
QTRAP® 6500 system, respectively. The respective instrument configuration
is described in this chapter.

8.1 Liquid Chromatography for MALDI-MS
Samples have been dissolved in 10.3µl sample dissolving buffer (5% acetonitrile
(ACN), 0.1% TFA) and subsequently vortexed and sonicated for 10min. Injection
volume was 7.3µl.

Liquid chromatography was performed using a nanoACQUITY UPLC ®

BEH130 C18 Column (1.7µm, 75µm x 250mm) installed on a nanoACQUITY
UPLC ® system. The UHPLC system was operated using MassLynx version 4.1
SCN779 (Waters).

Buffer A was 0.1%(v/v) TFA water (UPLC grade), buffer B 0.1%(v/v) TFA

in ACN (UPLC grade). The column was equilibrated with 5% buffer B, followed
by a trapping time of 40min. Peptides were separated subsequently using a
110min gradient with a constant flow rate of 350 nl/min (see Figure 8.1).

8.1.1 Preparation of matrix

Alpha-cyano-4-hydroxycinnamic acid (CHCA) (ProteoChem) was dissolved in
80%(v/v) ACN, 0.1%(v/v) TFA (ProteoChem) in water (UPLC grade) for a
final concentration of 3mg/ml. Peptides listed in Table 8.1 have been spiked
into the matrix using a syrine-pump coupled to a SunChrom spotting robot
that was used for spotting of fractions.
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Time
[min]

Buffer
A [%]

Buffer
B [%]

0.00 95.0 5.0
0.33 89.0 11.0
1.00 89.0 11.0
3.66 86.0 14.0
67.66 70.0 30.0
81.00 60.0 40.0
90.00 15.0 85.0
95.00 15.0 85.0
97.00 95.0 5.0

Figure 8.1: Gradient configuration LC-MALDI-MS. Total gradient length
was 120min. Percentage of buffer B was increased stepwise from 5% to 85% after
95min.

Peptide sequence
Molecular weight

[g/mol]
TVFDEAIR 951.0688
TGVFDEAIRTVGF 1,411.7221
CLEHMYHDLGLVRDF 1,846.8732
EEQPSTPAPKVEQQEEILC 2,155.0231

Table 8.1: Internal standard peptides spiked into each fraction of MALDI
samples during spotting. Internal standard peptides that are spiked into each
fraction of MALDI samples are used both for the automatic m/z calibration and a
fraction-wise intensity normalization.

Time
[min]

Buffer
A [%]

Buffer
B [%]

0.00 97.0 3.0
1.00 96.0 4.0

110.00 70.0 30.0
111.00 15.0 85.0
114.00 15.0 85.0
115.00 97.0 3.0
119.00 97.0 3.0

Figure 8.2: Gradient configuration LC-ESI-MS. Total gradient length was
121min. Percentage of buffer B was increased stepwise from 3% to 85% after 114min.
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8.1.2 Sample fractionation

CHCA MALDI matrix was prepared in 80% ACN and 0.1% TFA. The matrix was
mixed with four internal standard peptides (see Table 8.1) and spotted following
mixing with the sample on a stainless steel MALDI target plate using a spotting
robot (Sunchrom micro fraction collector/MALDI spotter with SunCollect
software version 1.7.26). The spotting program started the fractionation
progress 10 minutes after injection at a matrix flow rate of 2µl/min. The time
for collecting a single fraction was 8 seconds for 600 fractions and 4 seconds for
1,200 fractions, respectively. After 80 minutes, the spotting was stopped.

8.2 Liquid Chromatography for ESI-MS
Samples have been dissolved in 14µl ESI buffer (3% ACN, 0.1% formic acid (FA),
0.01% TFA) and subsequently vortexed and sonicated for 10min. Injection was
done using full loop injection with an overfill factor of 1.2. Liquid chromatogra-
phy was performed using an ACQUITY UPLC ® M-Class CSH™ C18 Column
(1.7µl, 300µm x 150mm) installed on a nanoACQUITY UPLC ® system. The
UHPLC system was operated using Analyst version 1.6.1 (AB SCIEX). Buffer
A was 0.1%(v/v) FA and 0.01%(v/v) TFA in water, buffer B was 0.1%(v/v)
FA and 0.01%(v/v) TFA in ACN. The used gradient had a runtime of 121min
at a constant flow rate of 6µl/min (see Figure 8.2).

8.3 Mass spectrometry

For mass spectrometric data acquisition an AB SCIEX TOF/TOF™ 5800
system and an AB SCIEX QTRAP® 6500 system have been used.

8.3.1 AB SCIEX TOF/TOF™ 5800

The AB SCIEX TOF/TOF™ 5800 system is shipped with a Microsoft® XP
computer which runs the Series Explorer™ software (version 4.1.0.12, AB
SCIEX) for data acquisition as well as an Oracle database (version 4.0.5) for
raw data storage. Sample plate alignment, deflector offset (y2, x2) and laser
intensity were manually optimized for every MS1 run or at least once per day.
Deflectors, timed ion selection and laser intensity were manually adjusted for
every MS2 run. Series Explorer™ has been configured to use the following
settings to perform MS1 and MS2 spectra acquisition.
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8.3.1.1 MS1 spectra acquisition

MS1 spectra acquisition was configured as follows:

8.3.1.1.1 Instrument MS1 spectra were acquired at “Operating Mode”
“MS Reflector Positive”. CID Control was set to “CID off” and “Acquisition
Control” was set to “automatic”. “Mass Range” was set to 750Da to 4,000Da
at a “Focus Mass” of 2,000Da. “MALDI Matrix” was set to “alpha-cyano-4-
hydroxycinnamic acid”.

8.3.1.1.2 Spectrum “Acquisition Mode” was set to “Accumulate every
n-shot sub-sepectrum that passes acceptance” with 250 shots per sub-spectrum,
resulting in 2,000 total shots per spectrum. “Acceptance Criteria” was set to
“accept every sub-spectrum”. “Discard Shots” and “Single Shot Protection”
were disabled.

8.3.1.1.3 Automatic Control “Sample Stage Mode” was set to “Contin-
uous stage motion”, “Search Pattern Parameters” was set to “Random” and
“Uniform”. “Stage Velocity” was set to 1,000µm/sec, “Laser Intensity Mode”
to “Fixed Laser Intensity”.

8.3.1.1.4 Digitizer “Bin Size” was set to 0.5 ns, “Vertical Scale” to 0.5V
full scale and “Vertical Offset” to −0.5 % full scale. “Input Bandwidth” was
set to 1,000Mhz. “Laser Pulse Rate” was set to 400Hz.

8.3.1.2 MS1 spectra processing

MS1 spectra processing was configured as follows:

8.3.1.2.1 Raw Spectrum Filtering/Peak Detection “Raw Spectrum
Filtering” was disabled, spectrum smoothening was enabled, using a “FFT”
filter with “Poisson Denoise”. For peak detection, “Min SN” was set to 5,
“Local Noise Window Width” to 250m/z and “Min Peak Width at Full Width
Half Max” was set to 1 bins. “Flag Monoisotopic Peaks” was enabled, as well
as “Cluster Area SN Optimization” (“SN Threshold” 20). For monoisotopic
peak detection, “Generic Formula” was set to “C6H5NO”, with H as adduct.

8.3.1.2.2 Calibration Instrument calibration was performed using a cal-
ibration standard kit (Proteochem) including an additional peptide (see Ta-
ble 8.2) spotted manually on calibration spots on the plates.
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Name Peptide sequence
Molecular weight

[g/mol]
Gonadoliberin PEHWSYGLRPG 1,182.581
Angiotensin I DRVYIHPFHL 1,296.685
Neurotensin (-H2O) PELYENKPRRPYIL 1,690.928
ACTH (18-39) RPVKVYPNGAEDESAEAFPLEF 2,465.199

Table 8.2: Peptides used for calibrating MALDI plates before each run.
Four different peptides have been spotted manually on calibration spots on MALDI
plates. Before each MS1 run, the instrument was calibrated using these spots/
peptides.

In Series Explorer™, as “Calibration Type”, “Internal” was selected. Pa-
rameters for “Peak Matching” where “Min” 10 S/N, “Mass Tolerance” ±0.3mz,
“Min Peaks to Match” 1 and “Max Outlier Error” 10 ppm. Use Monoisotopic
Peaks Only was enabled. Weight Fit was set to Equal, Reference Masses
where configured using internal standard peak masses (see Table 8.1). +1 was
assumed for ion charge.

8.3.1.3 MS2 spectra acquisition

MS2 spectra acquisition was configured as follows:

8.3.1.3.1 Instrument MS2 spectra were acquired at “Operating Mode”
“MS-MS 1KV Positive”. “CID ON” was selected for “CID Control”, “Acquisition
Control” was set to “Automatic”. “Precursor Mass” was set to 2,465.199Da,
“Precursor Mass Window” to relative 200 resolution full width at half maximum
(FWHM). “Metastable Suppressor ON” was enabled. “MALDI Matrix” was set
to “alpha-cyano-4-hydroxycinnamic acid”.

8.3.1.3.2 Spectrum “Acquisition Mode” was set to “Accumulate every
n-shot sub-spectrum that passes acceptance” with 250 shots per sub-spectrum.
The acceptance of 12 sub-spectra that pass acceptance was set as a stop
condition resulting in “Total Shots/Spectrum” of 3,000. As an alternating stop
condition, “After final spectrum reaches desired quality” was set to “high”.
“Acceptance Criteria” was set to “accept every sub-spectrum”. “Discard Shots”
and “Single Shot Protection” were disabled.
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8.3.1.3.3 Automatic Control “Sample Stage Mode” was set to “Conti-
nous stage motion”, “Search Pattern Parameters” was set to “Random” and
“Uniform”. “Stage Velocity” was set to 1,200µm/sec, “Laser Intensity Mode”
to “Fixed Laser Intensity”.

8.3.1.3.4 Digitizer “Bin Size” was set to 1 ns, “Vertical Scale” to 0.5V
full scale and “Vertical Offset” to 0.1 % full scale. “Input Bandwidth” was set
to 200Mhz. “Laser Pulse Rate” was set to 1,000Hz.

8.3.1.4 MS2 spectra processing

MS2 spectra processing was configured as follows:

8.3.1.4.1 Raw Spectrum Filtering/Peak Detection “Subtract Base-
line” was disabled, spectrum smoothening was enabled and configured to
perform a “Savitzky-Golay” filtering with “Points-Across Peak” at 5 and a
“Polynomial Order” of 4. For peak detection, “Min SN” was set to 15, “Local
Nose Window Width” to 250 and “Min Peak Width at Full Width Half Max”
was set to 1.5 bins. “Flag Monoisotopic Peaks” was enabled as well as “Cluster
Area SN Optimization” (SN Threshold 15). For monoisotopic peak detection,
“Generic Formula” was set to “C6H5NO”, with H as adduct.

8.3.1.4.2 Calibration “Calibration Type” was “Default”.

8.3.1.5 MS2 spectra interpretation

“Job-wide Precursor Selection/Methods” was configured as follows:

8.3.1.5.1 Monoisotopic precursor selection for MS2 “Minimum SN
filter” was set to 50, “Minimum Mass” to 750Da, “Minimum Retention Time”
to 0min. “Maximum Mass” was set to 4,000Da, “Maximum Retention Time” to
99,999min. “Adduct Exclusion List” contained two entries, (i) 21.982Da and (ii)
37.956Da. “Adduct Tolerance” was set to ±0.03m/z and “Exclude precursors”
was set to within 200 resolution. “Minimum Chromatogram Peak Width” was
set to 1 fraction(s) and “Fraction-to-Fraction Precursor Mass Tolerance” to
200 ppm.
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8.3.1.5.2 Precursor Final Selection Criteria “MS/MS Acquisition Or-
der/Fraction” was set to “Weakest Precursor First”, “First Precursor to Skip/
Fraction” to 0, “Max Precursors/Fraction” to 35 and “Max Precursors/LC-Run”
to 40,000.

8.3.2 AB SCIEX QTRAP® 6500

The AB SCIEX QTRAP® 6500 system is shipped with a Microsoft® 7 com-
puter which runs the Analyst software (version 1.6.1 AB SCIEX) for both
controlling the nanoACQUITY UPLC ® and the AB SCIEX QTRAP® 6500.
MS data acquisition was performed using enhanced MS (EMS) at a scan rate
of 10,000Da/s and a positive polarity. Scan time was 120.008min with 3,081
cycles (2.3371 seconds per cycle). Subsequent enhanced resolution (ER) scans
were performed at a scan rate of 50Da/s and a positive polarity. Selection of
MS2 was performed according to the following DIA criteria: Top three most
intense precursors where selected when exceeding an intensity of 10,000 within a
mass range of 450m/z – 2,000m/z and a charge state of two, three or unknown.
Precursors where fragmented with rolling collision energy. After 15 occurrences
target ions where excluded for 15 seconds within a mass tolerance of 250mDa.
Isotopes where excluded within a 4Da window. Subsequently, charge state
and/or isotope pattern were confirmed by enhanced product ion (EPI) scans
at a scan rate of 10,000Da/s and a positive polarity. Dynamic background
substraction was applied.
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Preprocessing of Data

The current version of MSQBAT does not support LC-MS low-level data
processing such as peak finding, peak deconvolution and peptide identifi-
cation from MS2 data. Therefore, these tasks have been performed by the

third-party software DataExplorer, ProteinPilot™ and DeconTools respectively.
An in-detail description of the application of third-party software is presented
in this chapter.

9.1 LC-MALDI-MS

9.1.1 MS1 data

Raw data was exported to t2d-files using the respective context menu in
the Series Explorer™ software. t2d-files where subsequently loaded into the
DataExplorer software, which was used to export peaks into tab-delimited
text-files (table headers were Centroid Mass, Height and S/N Ratio for m/z,
intensity and signal-to-noise ratio (S/N) values, respectively).

9.1.2 MS2 data

Peptide identification was performed by the ProteinPilot™ software (version
4.5.1656, AB SCIEX, Paragon™ algorithm, version 4.5.0.0.1654). Raw data was
directly imported from the database via ProteinPilot™’s “Add TOF/TOF data..”
option and searched against a database containing the E.coli proteome as well as
UPS2 proteins (database downloaded on August 1, 2013 from UniProt). Further
ProteinPilot™ configuration is listed in Table 9.1. Peptide identifications were
exported from ProteinPilot™ to PeptideSummary.txt files, which were further
processed by PepSir (version 1.6.1, see 11); entries with a sequence confidence
below 95% have been dismissed.
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9.2 LC-ESI-MS
raw-files, as well as available MaxQuant [196] result files were downloaded from
ProteomeXchange [243]. Data was acquired by a QExactive™ system (Thermo
Fisher) and originally analyzed with MaxQuant.

9.2.1 MS1 data

raw-files where processed using DeconTools (version 1.0.5280) configured with
the provided default parameter file. The generated output were isos.csv files,
containing a monoisotopic peak list (table headers were monoisotopic_mw,
abundance and signal_noise, for m/z, intensity and S/N values, respectively),
separated by commas.

9.2.2 MS2 data

Peptide identification was extracted from the modificationSpecificPep-
tides.txt file available from the ProteomeXchange website. This file provides
the necessary information for feature annotation, which is a peptide sequence
string, a monoisotopic mass and a MS2 scan number representing the reten-
tion time. Nevertheless, the file summarizes peptide identification from all
samples/raw-files in a non-redundant fashion which complicates subsequent
processing with MSQBAT (see section 17.3).

In order to exclude non-proteotypic peptides, extracted peptide sequences
have been further processed by PepSir (see 11, no filtering applied).

9.3 GeLC-MALDI-MS

9.3.1 MS1 data

Data preprocessing was identical as described in 9.1.1.

9.3.2 MS2 data

Data preprocessing was identical as described in 9.1.2.
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MALDI/ESI Parameter name Parameter value
MALDI Sample Type Identification
MALDI Cys Alkylation Iodoacetamide
MALDI Digestion Trypsin
MALDI Instrument 5800
MALDI ID Focus Biological modifications

Amino acid substitutions
MALDI Search Effort Thorough ID
MALDI Species None
ESI Sample Type Identification
ESI Cys Alkylation Iodoacetamide
ESI Digestion Trypsin
ESI Instrument 6500 QTRAP ESI
ESI Special Factors Gel-based ID
ESI ID Focus Biological modifications

Amino acid substitutions
ESI Search Effort Thorough ID
ESI Species None

Table 9.1: ProteinPilot™ settings. Listed are ProteinPilot™ search settings
used for analysis by LC-MALDI-MS (top) and by LC-ESI-MS (bottom).

9.4 GeLC-ESI-MS

9.4.1 MS1 data

wiff-files where converted to mzML using MSConvert available from the Prote-
oWizard 3.0.7036 package. mzML files where further processed using DeconTools
(version 1.0.5280) configured with the provided default parameter file. The
generated output were isos.csv files, containing a monoisotopic peak list
(table headers were monoisotopic_mw, abundance and signal_noise, for m/z,
intensity and S/N values, respectively), separated by commas.
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9.4.2 MS2 data

Peptide identification was performed by the ProteinPilot™ software (version
4.5.1656, AB SCIEX, Paragon™ algorithm, version 4.5.0.0.1654). wiff-files
where loaded and searched against a database containing the E.coli proteome as
well as UPS2 proteins (database downloaded on August 1, 2013 from UniProt).
Further ProteinPilot™ configuration are listed in Table 9.1. Peptide identifica-
tions where exported from ProteinPilot™ to PeptideSummary.txt files, which
were further processed by PepSir (see 11); entries with a sequence confidence
below 95% have been dismissed.
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Software Development

All algorithms as well as the application software MSQBAT are written
in Java 1.6. The Eclipse integrated development environment (IDE)
(versions Helios, Indigo, Juno, and Kepler) was used for software

development. MSQBAT is a rich client application build upon the Eclipse rich
client platform (RCP). RCP is a highly modular, service oriented plug-in system
build upon the open service gateway initiative (OSGi) framework [244, 245].
The RCP framework is used as a basis for various software applications (open-
source and commercial projects). Among these programs are news reader, file
browser and the NASA JPL Maestro Space Mission Control software. Just
as OSGi and RCP, MSQBAT is a highly modular application and all main
components are implemented as OSGi plug-ins. All OSGi plug-ins which are
independent of RCP further support the incorporation as simple Java libraries
into other software and are therefore independent from MSQBAT, RCP or any
graphical user interface (GUI). Other use cases and application environments
are therefore possible, such as their integration in command-line interface (CLI)-
or Spring-based applications [246]. Today MSQBAT is composed of 41 core
modules and 130 different helper modules (deriving from the Eclipse framework
and other third-party libraries). Most of the libraries are build using Apache
Maven (version 2.2.1), which is configured to create jar files that can be used
either as simple Java libraries or OSGi plug-ins. Today Apache Maven still
lacks proper support for building RCP components. This is why MSQBAT
plug-ins that require the RCP environment are build using Eclipse’s export
wizard (which internally uses Apache Ant). These RCP plug-ins are the GUI

as well as few helper components. git (version 1.9.1) is used as source code
management (SCM) system; branching and versioning mainly follows the git
flow model.
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Figure 10.1: Overview of MSQBAT’s software architecture. MSQBAT pro-
vides a modular and extensible software architecture. It consists of several plug-ins
(illustrated in orange), such as the implemented algorithms for peptide and protein
quantification (e.g. feature extraction, -alignment, etc.) as well as different com-
ponents of the GUI (e.g. different views and perspectives). These plug-ins hock
into the main MSQBAT component which is implemented as a RCP/OSGi plug-in
(illustrated in blue). RCP is an extension to OSGi, which is a service-oriented plug-in
framework. OSGi is pure Java and can be therefore executed on any system that
has a JVM installed. JVMs are available for virtually any operating system and CPU
architecture (illustrated in grey). Adapted from [247].
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PepSir

The identification of proteins in bottom-up proteomics experiments resem-
bles a riddle comprised of a mixture of several thousand jigsaw puzzles
each with a variable number of pieces [248]. Unfortunately, some of

these pieces match several puzzles, thereby complicating their assembly. In
bottom-up proteomics experiments, these pieces are termed degenerated pepti-
des (see 4.4). By contrast, pieces matching only a single jigsaw puzzle (and
therefore only a single protein sequence) are termed proteotypic peptides [249].
In quantitative proteomics experiments, proteotypic peptides carry the required
quantification information, while degenerate peptides can water the quantifica-
tion down. Therefore, the identification and utilization of proteotypic peptides
is fundamental in bottom-up proteomics [250].

Importantly, there is no definitive proteotypic peptide. Whether a peptide
is proteotypic or not depends on the context, i.e., on the sample composition.
Figure 11.1 illustrates the correlation between the fraction of proteotypic pepti-
des for each human protein represented in the manually annotated and reviewed
Swiss-Prot database (one part of the protein knowledge base UniProtKB [251])
and the composition of the sample background. While virtually all tryptic
peptides (no missed cleavage, mass range from 750 to 3,000Da, repeatedly
occurring peptides filtered) derived from the 20,012 human proteins listed in
the Swiss-Prot database are proteotypic in an E.coli background, the fraction of
degenerated peptides increases for an H.sapiens and an H.sapiens/M.musculus
mixed background to approximately 5% and 37%, respectively. Although only
5% of the peptides are degenerated with respect to an H.sapiens background,
more than one third of the proteins contain at least one degenerated peptide.
In the mixed human/mouse background, the percentage of proteins yielding
degenerated peptides upon tryptic digestion is bigger than 80%. Considering all
545,388 proteins contained in the Swiss-Prot database, only half of the tryptic
peptides derived from the 20,012 human proteins are “truly” proteotypic and
more than 10% of all human proteins do not contain any proteotypic peptide.
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In quantitative proteomic experiments, the occurrence of these degenerated
peptides has to be taken into account. The selection of proteotypic peptides
with regard to the sample background is essential for protein quantification
and has to be performed carefully. Namely, proteomic experiments utilizing
samples with mixed species background (e.g., deriving from xenograft mouse
models) require a diligent evaluation of peptides employed for quantification
(see Figure 11.1).

PepSir is a software tool for the identification of proteotypic peptides
with respect to a user-defined background. PepSir is an easy-to-use Java -
based software with graphical user interface and drag&drop capabilities (see
Screenshot 11.1). The software requires solely two input files:

• A protein sequence database in the FASTA format, downloaded from
UniProt representing the sample origin

• A list containing peptide sequences

All peptides contained in the sequence list are searched against the protein
sequence database supplied. PepSir considers a peptide to be proteotypic if
its sequence matches a single identifier. In order to cope with the existence
of redundant database entries (such as protein isoforms, erroneous sequence
entries, or multiple entries due to the presence of more than one species), PepSir
allows the definition of this identifier. The software provides the user with four
options: (i) accession number, (ii) protein name, (iii) gene name, and, (iv) a
combination of protein/gene name. When searching non-redundant databases,
the use of any of the four options results in the same list of proteotypic peptides.
Because the same search against a redundant database would result in the
identification of peptides wrongly assigned to be degenerated, a careful selection
of the applied identifier is crucial. The option “combination of protein/gene
name” might be helpful for the analysis of redundant databases, since peptides
annotated to proteins with the same protein name and/or the same gene
name are considered proteotypic. When performing searches with multi-species
databases, PepSir allows the user to decide if species-specificity is required for
proteotypic peptides.
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Beside the removal of degenerated peptides, PepSir comprises the option
to ignore and/or remove peptides with low confidence scores for additional
data filtering. By indicating the location of the confidence information and the
respective thresholds in the preferences menu, the software directly applies the
additional filtering criteria. The resulting PepSir -output file is an extended
version of the input file and includes information whether the peptide is proteo-
typic in the context of the utilized database/identifier as well as information
on the database entries containing the peptide sequence.

Alternatively, PepSir allows the generation of an output file, which is
curated and filtered but structurally identical to the input file. Therefore, the
file modified by PepSir can directly replace the original input file in any type
of downstream data analysis.

PepSir can be executed on any standard PC or MAC with installed Java
Runtime Environment without any particular hardware requirements. The
processing of a file containing 10,000 peptide sequences takes 11 s, 97 s, and 177 s
for a database containing 4,000, 20,000, and 37,000 protein entries, respectively.
On multi-core systems, several input files can be processed in parallel. The
software can easily be customized to the user’s requirement. It allows the use of
any type of sequence database in the FASTA format, including, e.g., modified
and/or merged databases (as illustrated in Figure 11.1 with a combination of
the two reference proteome sets for H.sapiens and M.musculus downloaded
from the UniProt webpage). While the minimum input file consists of a simple
list of peptide sequences, reports generated, e.g., by ProteinPilot™ [161] or
Mascot [159] can be processed without further modification.

Proteomic data acquisition is often performed over an extended period of
time. Since databases are usually updated several times per year, identification
results might be partially outdated when the final analysis is performed. The
assembly of protein identification data obtained from searches with different
database versions can, in principle, result in inconsistent mapping of peptides
to proteins. Heterogeneous annotations of peptides to proteins do not only
influence protein identification and sequence coverage but might also result in
distorted protein quantification. Similarly, the analysis of proteomic results
derived from different labs can be hampered by the fact that not the same
database was applied during the identification process.
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PepSir allows for a simple, fast, and convenient updating of search results to
the newest version of an input database. The software enables the automated
take over of the most recent identifiers. The composition of this identifier can
easily be adapted by the user to match the specific needs. Any combination
of the primary accession number of the UniProtKB entry, protein name, gene
name, and species separated by any string can be adopted as a new protein
identifier.

In summary, PepSir allows to identify proteotypic peptides within user-
defined backgrounds requiring only two input files: a list of identified peptides
and a database in the FASTA format. Furthermore, the software allows filtering
data and can be utilized to standardize datasets derived in different labs and/or
with different database versions.
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Screenshot 11.1: Main window and preferences window of PepSir. PepSir’s
GUI allows loading input files via drag&drop into the main window. In the preferences
section, database(s) can be defined. Furthermore, the content of the output file can
be configured according to the required protein identifier, the filtering of peptides
identified with low sequence confidence and the structural format of the input/output
file.
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(a) Exemplary percentage of proteotypic peptides for each of the 20,012 human
proteins as a function of the context, i.e., the background database. Median and
interquartile range are indicated.

Parameter Database E.coli H.sap. M.musc. H.sap. &
M.musc.

total DB

Size of database
(# of proteins)

4,431 20,012 16,669 36,681 545,388

Peptides Proteotypic 469,890 448,894 305,422 297,243 243,378
Degenerated 650 21,646 165,118 173,297 227,162

Proteins

Only
proteotypic
peptides

19,405 12,764 4,875 3,741 2,319

At least one
degenerated
peptide

607 7,248 15,137 16,271 17,693

Only
degenerated
peptides

1 142 614 750 2,088

(b) Listing of the database sizes, the number of proteotypic/degenerated pepti-
des and the number of proteins identified either only with proteotypic peptides,
with at least one degenerated peptide or only with degenerated peptides. A
mixed species background, which is often encountered in biological research, necessitates
a careful evaluation of the identified peptides with regard to their matching to multiple
proteins.

Figure 11.1: Context dependency of the term proteotypic. All 20,012 re-
viewed proteins contained in the reference proteome set of H.sapiens from UniProtKB/
Swiss-Prot were digested in silico with trypsin (no missed cleavage, mass range from
750Da to 3,000Da resulting in 470,540 peptides. Subsequently, these peptides were
loaded into PepSir and searched against the five different reference proteome sets
E.coli, H.sapiens, M.musculus, H.sapiens & M.musculus, and the total Swiss-Prot
database.
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Before After ∆ ∆ [%]
10,335 7,397 2,938 28.4
9,146 6,771 2,375 26.0
7,646 5,441 2,205 28.8
6,713 4,855 1,858 27.7

10,789 7,931 2,858 26.5
8,992 6,748 2,244 25.0

10,763 7,934 2,829 26.3
6,397 4,476 1,921 30.0
9,034 6,311 2,723 30.1
9,972 7,454 2,518 25.3
5,344 3,466 1,878 35.1
3,947 2,614 1,333 33.8
average 2,307 28.6

(a) Peptides removed by the 95% con-
fidence filter.

Before After ∆ ∆ [%]
7,397 6,307 1,090 14.7
6,771 5,772 999 14.8
5,441 4,633 808 14.9
4,855 4,086 769 15.8
7,931 6,651 1,280 16.1
6,748 5,688 1,060 15.7
7,934 6,767 1,167 14.7
4,476 3,680 796 17.8
6,311 4,992 1,319 20.9
7,454 5,861 1,593 21.4
3,466 2,639 827 23.9
2,614 1,845 769 29.4
average 1,040 18.3

(b) Removal of degenerated peptides.

Before After ∆ ∆ [%]
10,335 6,307 4,028 39.0
9,146 5,772 3,374 36.9
7,646 4,633 3,013 39.4
6,713 4,086 2,627 39.1

10,789 6,651 4,138 38.4
8,992 5,688 3,304 36.7

10,763 6,767 3,996 37.1
6,397 3,680 2,717 42.5
9,034 4,992 4,042 44.7
9,972 5,861 4,111 41.2
5,344 2,639 2,705 50.6
3,947 1,845 2,102 53.3
average 3,346 41.6

(c) Difference in peptide numbers between input and following double filtering
(>95% confidence and proteotypic).

Table 11.1: Peptide numbers before and after filtering by PepSir. Illus-
trated are peptide numbers before and after filtering peptide identifications. The
data shown are exemplary extracts of a larger data set. Healthy NOD scid gamma
mice have been perfused with different biotinylation reagents. Biotinylated proteins
were captured, reduced, alkylated, delipidated, tryptically digested, and subsequently
analyzed by LC-MALDI-MS.
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Cornerstones of Label-free Peptide
and Protein Quantification

For the reasons described before (see 6), algorithms required for a label-free
peptide and protein quantification have been implemented from scratch
focusing on the utilization of MALDI-specific properties. These algorithms

build the basis for a label-free quantification and are described in detail in this
chapter.

12.1 Feature Annotation with Peptide Identi-
fication Information

As described before (see chapter 9), MS1 and MS2 data are processed in different
workflows. Peak lists, which build the initial input for MSQBAT and its
algorithms, are extracted by Series Explorer™ and DataExplorer from MS1 raw
data. MS2 spectra are processed by ProteinPilot™ that performs the peptide/
protein identification.

Alternatively, peak lists as well as peptide information can be loaded using
a generic table format, which needs to contain only elementary information
such as m/z or molecular weight, intensity or peptide sequence.
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N Unused Total %Cov %Cov (50) %Cov (95) Accessions Names Used Annotation Contrib Conf
Sequence Modifications Cleavages dMass Prec MW Prec m/z Theor MW Theor m/z Theor z Sc
Spectrum Specific Time PrecursorSignal PrecursorElution

1 109.47 109.47 80.4700 76.6099 75.1100 sp| P69908 | DCEA_ECOLI Glutamate decarboxylase alpha
OS= Escherichia coli ( strain K12) GN=gadA PE =1 SV =1 1.2518 94.3700 LLTDFR 0.0197

763.4426 764.4499 763.4228 764.4301 1 9 1. UPS2_2 %_4 .12.487.18 0 38.4 478048.7 38.4
p sp| P69908 | DCEA_ECOLI Glutamate decarboxylase alpha OS= Escherichia coli ( strain K12) GN

=gadA PE =1 SV =1
2 103.63 103.63 89.5500 80.3099 77.9100 P02768ups | ALBU_HUMAN_UPS Serum albumin ( Chain

26 -609) - Homo sapiens ( Human ) 2 99.0000 AAFTECCQAADK Carbamidomethyl (C)@6; No
Carbamidomethyl (C)@7 -0.0020 1313.5356 1314.543 1313.5379 1314.5452 1 15 1. UPS2_2 %_4
.12.241.7 1 22 1700.663 22 p P02768ups | ALBU_HUMAN_UPS Serum albumin ( Chain 26 -609) -
Homo sapiens ( Human )

2 103.63 103.63 89.5500 80.3099 77.9100 P02768ups | ALBU_HUMAN_UPS Serum albumin ( Chain
26 -609) - Homo sapiens ( Human ) 2 99.0000 ADDKETCFAEEGK Carbamidomethyl (C)@7 missed K-
E@4 -0.0050 1498.6196 1499.627 1498.6246 1499.6318 1 20 1. UPS2_2 %_4 .12.235.5 1 21.6
6861.537 21.6 p P02768ups | ALBU_HUMAN_UPS Serum albumin ( Chain 26 -609) - Homo sapiens (
Human )

[...]

Listing 12.1: Example of a PeptideSummary.txt file. PeptideSummary.txt is
a simple tab-delimted text file. It provides information on the amino acid sequence,
m/z value, retention time and others. It is exported from ProteinPilot™ and used to
extend MS1-based peak information with MS2-based peptide information.

12.1.1 Importing annotation information from Protein-
Pilot™

From ProteinPilot™, tab-delimited text files can be exported that contain
precursor m/z values, fraction and the corresponding peptide identification such
as the peptide name and sequence. The peptide identification files are read
by the annotation library and are used to annotate peaks or features obtained
by an MS1 run. At this point, the annotation library is used to combine MS1

and MS2 data into one data set. An exemplary content of a tab-delimited
protein identification file exported from ProteinPilot™ is shown in Listing 12.1.
During the reading of the peptide identification files, peptide identifications
can be filtered using different criteria such as sequence confidence or mass
difference between calculated m/z and detected m/z to process only high quality
identification information. High confidence annotations according to these
criteria are subsequently assigned to peaks deriving from the previously loaded
MS1 data. The peak most closely maching the annotation with respect to m/z

and retention time is selected and annotated.
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12.1.1.1 Details of implementation

The annotation algorithm including all Java types is provided in the form of
three OSGi plugins, which can easily be integrated both into simple command-
line-only applications and into more complex, GUI enabled RCP applications.
The first plug-in contains all types that represent the application program-
ming interface (API) of the annotation library. The second plug-in provides
all types that implement annotation related input/output (I/O) functionality
required for reading annotation information from tab-delimited text files pro-
duced by an export from ProteinPilot™. The third plug-in contains all other
types that implement the annotation API and provide the concrete annotation
functionality.

12.2 Feature Boxing as a Novel Feature Ex-
traction Algorithm

MSQBAT provides a feature extraction algorithm developed from scratch in
order to take full advantage of MALDI in general and of the nanoACQUITY
UPLC ® coupled to the AB SCIEX TOF/TOF™ 5800 system in particular.

The algorithm was named feature boxing, because figuratively speaking,
it works by “boxing” all peaks corresponding to the same peptide (member
peaks, see 4.2.1.1). The resulting boxes represent identified features and are
therefore termed feature boxes. In principle, the algorithm can be divided into
two components:

Box initiator represents a strategy that initiates feature boxing by grouping
member peaks and building preliminary features.

Box tightener represents a strategy that “tightens” existing feature boxes.
More precisely, a box tightener evaluates if the properties of existing
features can be improved by splitting boxes into smaller ones. Importantly,
tighteners cannot be used to “enlarge” an existing box. It is therefore
crucial for the box initiator to choose the initial feature boxes large
enough.
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In order to take full advantage of MALDI, a box initiator MALDI boxes has
been implemented that makes use of the MALDI specific ionization pattern.
MALDI boxes assumes that peak masses can only occur within a specific mass
range since their charge state is predominantly 1. Assuming a detectable mass
range of 499.75Da to 4,500.7495Da and a mass interval of 1.0005Da, all possible
feature boxes are represented by a sequence of masses (see Equation 12.1) Each
mass represents the “center” of the box and each box has a range of ±0.50025Da.

After the initial feature selection, preliminary features are further refined
using several box tightener:

Mass tightener introduces a maximum, inter-feature mass variance (see Fig-
ure 12.1a). This tightener iterates over a feature’s member peaks and
calculates the m/z difference between the current peak and the next peak.
If this m/z difference is larger than a defined threshold (configurable, 50
ppm is used per default) the feature is split at this position. All peaks
of a certain feature inspected before the splitting position stay in the
current feature, while all others will are moved to a new feature.

Gaps tightener introduces a maximum number of “missing” fractions within
a feature (see Figure 12.1b). When iterating over member peaks, the
difference in the fraction number of the current peak and the next peak
must not be above this defined limit. Assuming an eluting peptide gener-
ating a continuous signal over the complete time of detection, features
can be tightened based on signal gaps. A feature is split if a gap of at
least x fractions occurs. The maximum gap length can be defined both
as an absolute number and as a dynamic value, depending on a feature’s
length.

Annotation tightener ensures that a feature is only annotated with one
peptide identification (see Figure 12.1c). As peaks are annotated (see
12.1) before the extraction of features, features can in principle contain
more than one annotated peak. Such features do not represent one
distinct peptide and are therefore split. Thereby, two or more features are
created and each feature contains only one distinct peptide identification.
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{a, a+ i, . . . , s− i, s}

Where:

a is the lower bound of the sequence,
s is the upper bound of the sequence,
i is the interval of the sequence.

Equation 12.1: “MALDI boxes.” Assuming a charge state of 1 and the generic
formula (C6H5NO)n for the atomar composition of a peptide, a peptide-ion’s frac-
tional mass is approx. 0.5 per 1,000Da. Valid peptide-mass windows can therefore
be calculated by the formula depicted above, using an interval of 1Da. Lower bound
and upper bound are more or less arbitary but usually in the range of 500Da –
5,000Da.

It has to be mentioned, that the order of application of tighteners might have
an impact on the final result even in the case that all tighteners operate at
unchanged settings. The m/z -tightener for example operates solely on the m/z

-dimension. All peaks that stay in the defined m/z range are valid member
peaks regardless of their retention time. The same is true for the tightening by
fraction gaps. This algorithm operates solely with the retention time dimension.
Only the results of the annotation tightener are independent of the order of
execution. However, this algorithm can only be applied to annotated features
which represent rarely more than 10% of all features.

The selected member peaks are finally assembled into a feature. Its intensity
is the sum of all member peak intensities (see Equation 12.2). All other
properties such as m/z or retention time are propagated from the master peak.

12.2.1 Details of implementation

Feature tightening is implemented following the Strategy or Expert pattern
[252]. It is possible to register an unlimited number of feature tighteners to
the feature extractor instance that will perform a feature tightening using the
output from the previous tightener as an input to the next one, as described in
the Pipes and Filters design pattern [252].
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(a) Feature tightening by mass delta.
If a feature contains a mass shift bigger than
any given threshold the feature is split.

(b) Feature tightening by fraction
gaps. If a feature contains “gaps”, which
is one or more fraction without a peak, the
feature is split.

(c) Feature tightening by annotations.
If a feature contains two or more peaks that
contain different annotations, the feature is
split so that all resulting features contain at
most one unique annotation.

(d) Result of feature extraction. Com-
bination of three feature tightening strate-
gies result in the final features/feature
boxes.

Figure 12.1: Feature extraction and feature tightening. Feature tightening
(see main text) is performed using three independent strategies which refine features
according to different criteria such as m/z (a), retention time (b), and annotations
(c).
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If =
N∑

n=0
mpn

Where:

If is a feature’s intensity,
mp is a feature’s member peak.

Equation 12.2: Feature intensity. A feature’s intensity equals the sum of all
member peak’s intensity values.

Importantly, a feature may contain in principle as many different annotations
as it contains peaks, as the annotation process is performed prior to feature
extraction (see 12.1). To avoid these problems, the annotation process is either
performed after feature extraction or an annotation-based feature tightening is
applied.

12.3 Affinity-Driven Feature Alignment
Besides feature extraction (see 4.2.1.1 and 12.2), feature alignment (see 4.2.1.2)
is the second main component of MSQBAT and of this work. Details of the
implemented alignment algorithm are described below.

12.3.1 Mapping

As most feature alignment strategies, and as already described in 4.2.1.2, feature
alignment is initiated by building all possible alignments for a certain peak (see
Table 4.1) in a defined range of m/z and retention time. Both the described
process and possible alignment matches identified during the process are called
mapping. A mapping represents an unidirectional relationship between a single
feature from sample s1 and 0 to n features from sample s2 (see Figure 12.2a).

A feature to which matches are searched is called mapping key, a feature
that was found to be a possible match to a mapping key is called mapping
value. When aligning s1 against s2, a mapping from s1 to s2 is called forward
mapping, a mapping from s2 to s1 reverse mapping.
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public interface Mapping <K, V, A extends MappingKey <?
extends K>, B extends MappingValue <? extends V>> {

void addValue (B value);

A getKey ();

List <B> getValues ();

void setValues (List <? extends B> values );

}

Listing 12.2: The Mapping interface. A mapping represents an unidirectional
relationship between a single feature from sample s1 and 0 to n features from sample
s2.

To ensure that every feature from both s1 and s2 is contained in at least
one mapping (identify orphan alignments (see Table 4.1)), the mapping process
is typically performed twice. A forward mapping, i.e., a mapping from s1 to
s2, where all features from s1 are mapping keys and all features from s2 are
possible mapping values is performed at first. Then a reverse mapping, i.e., a
mapping from s2 to s1, is performed where mapping keys and mapping values
are inverted.

The result of this two-step mapping process (forward- and backward-map-
ping) is a collection of mappings that represent possible alignments. The
number of mappings always equals the size (e.g., the number of peaks) of s1
plus the size of s2.

12.3.2 Alignment path as a retention time normaliza-
tion function

To correct for retention time shifts, a so-called alignment path is build. An
alignment path represents a function to recalculate retention times according
to the local retention time shifts present between two samples. Therefore,
an alignment path maps retention times from sample s1 to retention times
in sample s2 and vice versa. Applying this alignment path to all retention
times in s1 or s2 results in retention time normalization and allows to compare
retention times of two samples.
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(a) Mapping. A mapping represents an
unidirectional relationship between a feature
from s1 (left) and multiple features from
s2 (right). A forward mapping reflects all
possible alignments for a feature from s1, a
reverse mapping all possible alignments for
a feature from s2.

(b) Alignment. An alignment represents a
bidirectional relationship between a feature
from s1 (left) and a feature from s2 (right).

Figure 12.2: Mapping and alignment. All alignments are build from mappings
by selecting from all possible matches the most fitting one.

In order to directly calculate retention time shifts and to avoid a computa-
tionally expensive iterative approach (see 4.2.1.2), only unambiguous mappings
are selected from the initial two step mapping process performed beforehand.
An unambiguous mapping contains exactly one mapping value and has therefore
a high probability of representing a correct pairing. Based on these unambigu-
ous mappings, a retention time shift can be calculated with high accuracy for
every retention time value.

Building the alignment path purely based on annotated features is an
alternative approach not implemented so far. While this approach offers a high
accuracy (finding matching feature pairs is trivial if annotations are present in
both samples), it is limited by the requirement for annotations to be present in
both samples.

12.3.2.1 Alignment path polishing

After building an initial set of high-confidence mappings, a certain degree of
post-processing of the resulting raw path is required.
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12.3.2.1.1 Interpolation of missing values A raw path usually does not
contain mapping information for each discrete retention time value (fraction
index) and therefore needs to be complemented. For every fraction index in
sample s1 an according index in sample s2 has to be present and vice versa.
In order to complement a path, a linear interpolation approach [253], which is
used most prominently in the fields of computer graphics and image processing
[254–258], is applied. Briefly, missing values between two successive retention
time pairs are calculated assuming a linear connection between the two pairs.

As described in 4.2.1.2 and Figure 4.4, plotting retention times of two
perfectly aligned samples results in a line crossing the origin and holding a
slope of 1. Therefore, only an interpolation describing a line equation with a
slope of approximately 1 is valid. If an interpolation between two retention time
pairs results in a slope differing from 1 more than ±20%, this interpolation is
considered to be invalid. As a result, the second retention time pair is removed
from the alignment path and the interpolation process is restarted.

Importantly, the path completion/interpolation process must not start at
the beginning of the path (i.e., with the retention time pair having the lowest
index), since (especially at the beginning and at the end of an alignment)
retention time shifts might significantly differ from those in between. Based
on own experiences, the path between two retention time pairs in the central
part of the LC gradient is mostly constant and expressing a line equation with
a slope of approximately 1. Therefore, the interpolation process is started at
a randomly chosen retention time pair in the central part of the path (e.g., a
retention time pair having index values between 30 – 70% of the highest index
value).

12.3.2.1.2 Path smoothening After a complete path has been built, a
smoothening step is applied to correct for path entries considered to be outliers.
Therefore, path smoothening is an outlier-removal step, invalidating path entries
that express a line equation to their neighbors having a slope that differs by
±20% from a of slope of 1.

Importantly, these outliers are present in the raw path and are therefore
not affected by the interpolation criteria described above, which enforce an
underlying smooth linear equation having a slope of approximately 1.
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public interface Alignment <A, B> extends Pair <A, B> {

@Override
public A getFirst ();

Mapping getMapping ();

@Override
public B getSecond ();

AlignmentType getType ();

}

Listing 12.3: The Alignment interface. An alignment represents an bidirectional
relationship between two peaks/features that represent the same peptide in two
aligned samples. Since its bidirectional character, the Alignment interface extends
Pair.

Even when building an alignment path from annotated features only, outliers,
which do not properly fit in the linear equation model describing a perfect
alignment, may be introduced. This is due to a misconception that is the basis
for virtually all alignment algorithms. The theory would predict that peptides
will always elute from an UHPLC column in the same order. However, only if
this theory is assumed to be correct, retention times can be mapped using a
linear model.

Mitra et al. [259] showed that this assumption can be violated and that a
linear order of peptide elution times cannot be always taken as granted. Data
points not fitting the linear elution model are therefore rather the rule than
the exception, necessitating outlier removal.

Gaps in the alignment path introduced by outlier removal are subsequently
filled by the interpolation strategy descried above.

12.3.3 Building alignments

Following the identification of all possible alignments (mappings, see Table 4.1
and 12.3.1) the transformation of mappings into alignments is performed.
An alignment is a pair of features which represent the same peptide in two
different samples (see Table 4.1). Both features share a bidirectional, undirected
relationship. On the contrary, a mapping is a unidirectional relationship between
1 feature and 0 to n features from another sample.
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AS = (|f1m/z − f2m/z| ∗ 1000) + (|f1fracnr − f2fracnr| ∗ 2)

Where:

AS the alignment score,
f1 first feature,
f2 second feature.

Equation 12.3: Alignment score. The Alignment score represents a numerical
value to express an alignment’s quality. It is expressed as a positive value. In case
of a perfect match, the alignment score is 0. The lower the score, the more likely
the alignment is correct. The affinity score is the product of the differences of two
features in m/z and fraction number/retention time.

As described in 4.2.1.2, the transformation from mapping to alignment can
be compared with a transformation of a multigraph into a simple graph. During
the construction of alignments, the correct mapping of feature 1 from s1 to
feature x to s2 has to be identified in order to form a proper alignment.

12.3.3.1 Ranking mapping values

In analogy to the weighting edges in a multigraph, a “mapping value weighting”
is introduced in order to choose the right/best mapping value. More precisely,
for each mapping value an affinity score is calculated that expresses a mapping
value’s “affinity” to its mapping key as a numerical value. The affinity score
is the product of the differences of two features in m/z and fraction number
(retention time) (see Equation 12.3). Fraction numbers are corrected for
retention time shifts before calculating the affinity score. For this the previously
calculated alignment path (see 12.3.2) is used. The alignment algorithm can
optionally be configured to take available annotations into account. If this
option is chosen, the score is calculated as shown in Equation 12.3, but peptide
sequence, sequence modifications, and missed cleavages are evaluated as well.
If one of these annotation properties does not match, an annotation penalty is
added to the previously calculated score (1,000 per default).

The mapping value with the lowest affinity score is selected to build the
alignment in combination with the mapping key.
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sgn(x)


+1 if x > 0

0 if x = 0
−1 if x < 0

Equation 12.4: The signum function. In mathematics, the signum function is a
function that extracts the sign of a real number. In computer science, it is often used
to numerically compare objects. An object is “less” than another one, if the signum
function returns less than 0, “more” than another object, if the signum function
returns more than 0, and equal, if the signum function returns 0.

12.3.3.1.1 Details of implementation When sorting elements in a list,
the ordering can be calculated using the signum function (see Equation 12.4).
All elements in the list are compared to each other, where the result of this
comparison is either −1, 0 or +1. If the result equals −1, the left hand element
is “smaller” than the right hand element and should therefore have a lower
position index in the list than the right hand element. Vice versa in the case of
+1. If the result equals 0, no resorting of these two elements is needed.

An abstract signum function is defined by the java.util.Comparator inter-
face (see Listing 12.4). Providing an implementation of java.util.Comparator
and a list of matching types, the static method java.util.Collections.sort-
(List l, Comparator c) can be used to sort the elements in a given list
ascending.

Finding the right mapping value makes use of this function. Mapped
values are stored in a list. Upon alignment building, this list is sorted using
an implementation of java.util.Comparator that compares affinity scores.
Since an optimal affinity score is 0 and the ordering is ascending, the mapping
value with the lowest affinity score will be at list position 0 after sorting.

12.3.3.2 Alignment types

Different types of alignments can result from the alignment building process.
Usually one mapping is transformed into one alignment and different alignment
types may result depending on how many mapping values were found for a
mapping key.
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public interface Comparator <T> {

int compare (T o1 , T o2);
}

Listing 12.4: The Comparator interface. The Comparator make types logically
comparable. Its compare(T o1, T o2) function takes two objects of type T as
parameters. The result is an integer. If the result is 0, the two objects are equal. If
the result is less than 0, the first object is less than the second one. If the result
is greater than 0, the first object is greater than the second one. The Comparator
represents the Sign function and can be used to implement any comparing strategy.
When sorting lists (e.g. by using java.util.Collections.sort()), comparison of
elements is delegated to a Comparator.

Single alignments: A single alignment is constructed from a mapping with
has one mapping value only. This means that only a single matching
feature could be found in the mapping process in the m/z and retention
time range defined.

Orphan alignments: An orphan alignment results from a mapping that
contains no mapping values, i.e., no matching feature could be found in
the mapping process in the m/z and retention time range defined. An
orphan alignment is the result of a presents-vs-absence/“black-and-white”
situation as described in 4.4.

Complete alignments: In contrast to the other alignment types a complete
alignment results from two mappings. If two mappings exist for which
the following holds true:
m1k = m2v1 and m2k = m1v1

where

• m1 is the first mapping;
• m2 is the second mapping;
• k is a mapping key;
• v1 is a mapping value at list position 0 after ranking mapping values

(see 12.3.3.1);

then a complete alignment is built from these two mappings.
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12.3.3.3 Dummy seeding

Relative protein quantification relies on the existence of at least two features/
peptides in order to calculate a ratio of abundances. That is why no ratio
can be calculated for feature f1 without matching feature f2. Since such a
presents-vs-absence situation can principally indicate a strong “regulation”, the
calculation of a specific ratio is difficult.

In order to be able to calculate protein abundance ratios for a “black-and-
white” situation, so called (mapping) dummies are “seeded” into the sample. A
dummy is a proxy to a missing feature and acts as a placeholder if no matching
feature could be found. During the process of dummy seeding, all orphan
alignments are “filled up” with a mapping dummy to ensure the calculation of
intensity ratios for all alignments, including orphan alignments.

As described in 3.5.2 and 3.5.1, MS data contains noise or background signal.
Dummy seeding allows the quantification against the background intensity
and replaces non-existent values by background intensity values. Thereby, all
feature intensities have a positive value and the calculation of a ratio for each
alignment is possible.

12.3.4 Cleaning alignments

The building of alignments is purely based on the ranking of mapping values.
Once values have been ranked, the best fitting value will is taken to build
the final alignment. The ranking is mapping-local, which is why transitive
effects are not considered (see 4.2.1.2). The approach taken in MSQBAT has
one major advantage compared to a complete solution, which can be obtained
e.g. by a dynamic programming approach – it is extremely performant. In
principle, the ranking can take place in all mappings concurrently, which makes
this approach highly susceptible for parallelization. Building thousands of
alignments is therefore only a matter of milliseconds.

Nevertheless, this strategy is heavily simplified and is therefore associated
with one major drawback: transitive alignment connections (see 4.2.1.2) are
not resolved. As a consequence, features are frequently member in more than
one alignment. This is why the post-processing of alignments before their use
for protein quantification is inevitable.
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Therefore, after alignments have been build from mappings, each alignment
is checked for peaks that are member in multiple alignments. These peaks and
all corresponding alignments are collected. Since a peak must only be member
in a single alignment, all but one alignment sharing the respective peak are
removed from the final alignment list. All possible alignments are compared
against each other in terms of alignment quality and only the highest ranking
alignment is kept.

Importantly, by removing alignments, peaks can principally get “lost”. If
one peak is member in multiple alignments and another peak is only member
of one of these alignments, the second peak is lost if the respective alignment
is removed. While the first peak is not present in multiple alignments anymore,
the second peak is removed from the alignment list and will be therefore not
be considered in a subsequent quantification.

12.3.4.1 Details of implementation

To find the best alignment, alignments are ranked according to their quality in
a similar way the mapping ranking is performed (see 12.3.3.1). Comparator-
Alignment (see 12.5) ranks alignments according to their type (see 12.3.3.2).
If the type is the same, comparison is delegated to comparison by affinity score
(see 12.3). Complete alignments are of highest quality, followed by orphan
alignments and single alignments.

Using ComparatorAlignment, a list of alignments can be sorted according
to alignment quality. Post sorting, only the alignment at list index 0 is kept,
all other alignments are dismissed.
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public class ComparatorAlignment implements Comparator <
AlignmentPeak > {

public static int delegateToAffi (final AlignmentPeak
o1 , final AlignmentPeak o2) {

final double affiScore1 = o1. getAffinityScore ();
final double affiScore2 = o2. getAffinityScore ();
final int compAffi = Double . compare (affiScore1 ,

affiScore2 );
return compAffi ;

}

@Override
public int compare (final AlignmentPeak o1 , final

AlignmentPeak o2) {
if (o1. getType (). equals (o2. getType ())) {

return delegateToAffi (o1 , o2);
}
if (o1. getType (). isComplete ()) {

return -1;
}
if (o2. getType (). isComplete ()) {

return 1;
}
if (o1. getType (). isOrphan ()) {

return -1;
}
if (o2. getType (). isOrphan ()) {

return 1;
}
if (o1. getType (). isSingle ()) {

return -1;
}
if (o2. getType (). isSingle ()) {

return 1;
}
if (o1. getType (). equals ( AlignmentType . INVALID )) {

return -1;
}
if (o2. getType (). equals ( AlignmentType . INVALID )) {

return 1;
}
throw new RuntimeException ("Could not compare " +

UtilString . NEW_LINE_STRING + o1
+ UtilString . NEW_LINE_STRING + o2);

}
}

Listing 12.5: The ComparatorAlignment class. Similar to evaluating alignment
affinity by the alignment score, ComparatorAlignment is used to compare multiple
alignments. Alignment quality is evaluated by alignment type, or, if alignment type
is the same, by alignment score.
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12.3.5 Multiple alignment

The alignment library contains all required functionality to perform superal-
ignment-based multiple alignments such as linear alignment (see Figure 4.6a)
or hierarchical alignment (see Figure 4.6b) as described in 4.2.1.2.1. While
hierarchical alignments require manual selection of samples to be combined into
supersamples, linear alignments can be performed automated. As described
in 4.2.1.2.1, a linear alignment is achieved by subsequently aligning all input
samples to a selected reference sample. The overall alignment quality depends
strongly both on the alignment order and on the sample similarity. To obtain
an optimal alignment order for multiple input samples, a sample similarity
score for each sample to be aligned is calculated (see 12.3.6). To improve the
overall performance of the process, only a fraction of the total data of each
sample is used to perform these alignments. Strategies for the selection of these
data parts, which have still to be representative for the original sample, have
to be carefully evaluated. To estimate sample similarity for cross alignment,
dismissing low intensity features from the original sample has been identified as
a valuable strategy. In order to preserve data for the whole retention time range,
a defined percentage of peaks per fraction is kept. Importantly, annotated
features are never dismissed. From the resulting matrix of similarity scores (r2)
an alignment order is derived and samples with a high similarity are aligned
first.

12.3.5.1 Details of implementation

In order to provide highly flexible and integrated support for superalignments,
AlignmentFeature extends Feature. Thereby, an aligned feature can be used
in all classes and methods which work with the Feature type. The alignment
algorithm for example expects two collections of features (sample1 and sample2)
as input. Since AlignmentFeauture extends Feature, it is possible to provide
collections of features as well as collections of alignments (see Figure 12.3).
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public interface Feature extends ComposableElement <Peak >,
Peak , Iterable <Peak > {

@Override
Feature clone ();

int getIndexCenter ();

int getIndexFirst ();

int getIndexLast ();
}

Listing 12.6: The Feature interface. Feature inherits from ComposableElement,
since it represents a composition of several peaks (member peaks). It furthermore
inherits from Peak, since it shares all properties of a peak. The only extension to
Peak are three different “retention times”. center index equals the fraction index of
the master peak (see main text). First- and last index equal the lowest- and the
highest fraction index of all member peaks, respectively.

public interface AlignmentPeak extends AlignmentSame <Peak
>, Peak {

void addDummy ();

@Override
public Peak getElement ();

MappingContext getContext ();

@Override
MappingPeak getMapping ();

}

Listing 12.7: The AlignmentPeak interface. Just like Feature, AlignmentPeak
inherits from Peak, since it shares all properties of a peak. AlignmentPeak extends
Peak by providing a method for dummy seeding (see main text). It provides further
methods to obtain a peak-representation (may return this) that can be used for
caching a peak instance and simple getters for the context of the mapping and the
mapping itself.
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public interface AlignmentFeature extends AlignmentPeak ,
Feature {

@Override
public Feature getElement ();

@Override
public Feature getFirst ();

@Override
public Feature getSecond ();

}

Listing 12.8: The AlignmentFeature interface. AlignmentFeature represents
an alignment of features. Consistently, it inherits both from Alignment/Alignment-
Peak and Feature. AlignmentFeature does not provide any new methods but only
overrides supertype methods to return the correct type (Feature instead of Peak).

Figure 12.3: Type hierarchy of
six main types. Since Feature
extends Peak, all methods that re-
quire parameter(s) of type Peak can
be provided also with objects of type
Feature. Since AlignmentFeature ex-
tends Feature, all methods that require
parameter(s) of type Feature or Peak
can be provided also with objects of type
AlignmentFeature. This way function-
ality to build superalignment-based mul-
tiple alignments is provided without the
need for special types or methods. In-
stead the polymorphism provision in ob-
ject-oriented programming enables it a
priori.



12. Cornerstones of Label-free Peptide and Protein Quantification 109

12.3.6 Sample similarity and alignment quality

As described briefly in 12.3.5, the alignment order plays an important role for the
quality of the final superalignment when performing a linear multiple alignment.
Alignment quality refers to the number of correct alignments versus the number
of false alignments (true positive (TP) alignments versus false positive (FP)
alignments), whereas sample similarity indicates the reproducibility of the
LC-MS system during data acquisition of the respective samples.

While a mostly linear shift in retention time can easily be compensated by
the retention time shift correction described in 12.3.2, variances in m/z accuracy
can significantly decrease alignment quality.

In general, high sample similarity directly translates into good alignment
quality, since samples with small shifts in retention time and m/z are more
likely to result in correct alignments than samples with larger shifts. A linear
multiple alignment should therefore be initiated with the most similar sample
pair and integrating samples with lower similarity at the end (see 12.3.5). To
allow for the ranking of samples with respect to their similarity, the sample
similarity needs to be expressed in a numerical and comparable manner. This
numerical value can subsequently used to determine an optimal alignment
order.

Within MSQBAT, sample similarity is expressed by the coefficient of deter-
mination (r2). r2 is calculated using a common least squares regression model
that is used for a linear approximation of retention times to an optimal align-
ment path (see Figure 4.4 and 12.3.2). As for establishment of the alignment
path (see 12.3.2), only retention time pairs from unambiguous mappings are
used as input values for the model. A perfect similarity gives an r2 of 1; the
higher the r2 is, the more similar two samples are.

The assessment of the alignment quality is relatively easy performed if both
samples contain annotations. For this purpose, all alignments containing two
annotated features are checked with respect to matches in peptide sequence,
cleavage sites, and modifications. If all three parameters match, the alignment
is marked as correct; if not, it is identified as a false alignment. The number of
correct alignments minus the number of false alignments allows to establish a
good numerical representation of alignment quality.
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rpep = Ifl

Ifr

Where:

rpep is the intensity ratio for a peptide,
Ifl is the intensity of alignment’s left feature,
Ifr is the intensity of alignment’s right feature.

Equation 12.5: Peptide ratio. A peptide ratio is calculated by dividing an
alignment’s left feature intensity by its right feature intensity.

However, this approach is only practicable if both aligned samples contain
annotated features. Additionally, no qualitative assessment of alignments is
possible with samples containing only non-overlapping annotated features.
However, sample similarity can always be assessed and allows for a good
estimation of alignment quality since similar samples are likely to exhibit a
high alignment quality (see above).

12.4 Peptide and Protein Quantification
The input data for the quantification algorithm implemented within MSQBAT
are aligned samples (i.e., a collection of alignments (see 12.3.3)). A peptide
ratio is calculated from each annotated alignment by dividing the intensity of
the alignment’s first feature by the intensity of the alignment’s second feature
(see Equation 12.5 and Figure 12.4). To calculate a quantification ratio for a
protein, all peptides belonging to the same protein are collected. Subsequently,
the summed intensities of all left features from all alignments are divided by the
sum of the intensities of all right features from all alignments (see Equation 12.6
and Figure 12.4).

To calculate a peptide ratio and assign it to a certain protein, all alignments
are considered that contain at least one annotation. As described before (see
4.2.1.2, 12.3 and 12.5), if only one feature of an alignment is annotated, this
annotation is considered to be valid for the other feature as well.

If both features contain annotation information, but these annotations do
not match, the regarding alignment is incorrect and therefore not considered
for quantification.
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Rprot =
∑N

n=0 Ifln∑N
n=0 Ifrn

Where:

Rprot is the intensity ratio for a protein,
Ifl is the intensity of alignment’s left feature,
Ifr is the intensity of alignment’s right feature.

Equation 12.6: Protein ratio. A protein ratio is calculated by dividing the sum
of all left peptides/alignments intensity by the sum of all right peptides/alignments
intensity.

Figure 12.4: Peptide- and protein
ratios. Graphical illustration of the
ratio calculation for peptides and prote-
ins. As each alignment represents one
peptide, a peptide ratio is calculated
by dividing an alignments left feature
intensity by its right feature intensity.
A protein intensity is the sum of all
regarding peptide intensities. Consis-
tently, a protein ratio is calculated by
dividing the sum of all left feature in-
tensities by the sum of all right feature
intensities.
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12.5 Annotation Propagation

Annotation propagation might be the biggest advantage of MS1 -based quan-
tification strategies. Within an alignment of two features, the identification
information attached to one of these features can be propagated to the aligned
feature without annotation information. This implies that upon quantification
the annotation of the first feature is also valid for the second feature in the
alignment. Furthermore, if several samples are aligned to each other, a peptide
identification information present as an annotation of one of the aligned features
is also valid for all other features of this alignment.

MSQBAT provides the possibility to explicitly propagate annotations, al-
lowing for the propagation of annotations within an alignment of two or more
samples. Thereby, peptide identifications can be transferred from one or more
samples to one or more other samples.

Additionally, annotation propagation can be utilized in more advanced
alignment scenarios. If the total number of annotations is unbalanced between
samples, it might be desirable to transfer annotations between these samples via
annotation propagation prior to final alignment and quantification. Parameters
for the alignment performed for annotation propagation must be chosen very
tight, since false positive alignments would lead to false annotations, which in
turn would negatively affect subsequent alignment and quantification. Choosing
very tight alignment parameters minimizes false positive alignments at the cost
of increased false negative alignments. Unlike false positive alignments, false
negative alignments do neither affect subsequent alignment nor quantification.
The only drawback of an increase in false negative alignments is the reduced
possibility for (correct) annotation propagation.
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12.6 Sample Groups
In a LC-MS workflow, every run generates one sample that is a coherent entity
technically independent from other samples. In a GeLC-MS workflow, an ad-
ditional layer of complexity is introduced. Samples are initially separated by
SDS-PAGE and the gel is subsequently cut into multiple gel slices (see 3.1.2).
Each of these slices is separately digested and processed by LC-MS. Since
each slice represents only a subset of the initial, biological sample, each LC-MS

sample in return is biologically meaningless without the context of the corre-
sponding other samples. In contrast to LC-MS samples, GeLC-MS samples share
an additional additive relationship to each other. This relationship needs to be
considered while processing the respective data.

MSQBAT introduces sample groups in order to account for this relationship.
Different samples may be grouped together in order to reflect an additive
relationship between samples. Sample groups can be processed just like “normal”
samples and be ungrouped at any time.

Importantly, sample groups are quantifiable. The quantification algorithm
accounts for the additive nature of sample groups. Thereby, the quantification
of GeLC-MS data is enabled in a very intuitive way.
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Additional Quantification Components

Besides the described cornerstones of label-free peptide and protein quan-
tification, this work includes some additional components that are not
essential to a label-free quantification but help to improve it significantly.

Together with the cornerstones of label-free quantification, these components
define MSQBAT’s range of features and are described in detail in this chapter.

13.1 Local Intensity Normalization via Spiked-
in Internal Standard Peptides

The offline coupling of LC and MS in a typical LC-MALDI-MS setup enables the
spike-in of internal standard peptides into each of the sample fractions. Beside
the application of these spike-in peptides for real-time m/z calibration of each
MS spectrum, they can be used for fraction-wise (local) intensity normalization
[230]. Local intensity normalization is beneficial since LC-MS data is subject to
diverse local and systematic variations. Local variations can result for example
from ion-suppression effects (peak intensity is lowered or peaks are missing),
detector saturation effects or intensity values approaching background levels
[229]. In order to perform fraction wise, local intensity normalization, an
algorithm was implemented performing the following steps for all fractions of a
sample.

13.1.1 Defining standard peptides

Depending on the standard peptides used, corresponding m/z values are loaded
(e.g. from a xml- or plain text file). For each m/z value, an intensity value
needs to be provided. Intensities can be freely chosen, as they only function as
a reference value for the subsequent normalization process. Listing 13.1 shows
a configuration file that was created to use the four standard peptides specified
in Table 8.1.

115
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM

"http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>Standard peptides used for fraction-wise intensity

normalization</comment>
<entry key="intst-0-height">10000</entry>
<entry key="intst-0-mass">1411.7220</entry>
<entry key="intst-1-mass">1846.8730</entry>
<entry key="intst-1-height">2500</entry>
<entry key="intst-2-height">500</entry>
<entry key="intst-2-mass">2155.0230</entry>
<entry key="intst-3-height">8000</entry>
<entry key="intst-3-mass">950.4950</entry>
</properties>

Listing 13.1: Example file for internal standard definition. Shown is a
configuration that uses three standard peptides. 1 to n standard peptides may be
defined. A standard peak is defined by a m/z value that is defined by the calculated
mass of the used standard peptide and a user-chosen intensity value.

13.1.2 Identifying standard peptides

In each sample fraction peaks representing the predefined standard peptides
have to be identified. For each m/z value of the standard peptides, an m/z

-filter is applied to all peaks selecting for those peaks matching the user-defined
range of tolerance. With regard to the standard settigns of MSQBAT, this
tolerance was set to ±0.25Da of the in silico determined peptide m/z value.
Intensity values for identified standard peptide peaks are overridden by the
corresponding user-defined intensity values.

For the remaining part of this chapter, the term standard will be used to
describe a peak representing an internal standard peptide, whereas peak will
be used to describe all other peaks representing all other signals in a spectrum.

13.1.3 Finding a normalization factor

The specific way how the normalization factor is calculated depends on the
number of standards identified before:

No standards: if no standard could be identified no normalization is per-
formed. This could be the case if no standards could be extracted due to
ion-suppression effects (see 3.5.2).
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Figure 13.1: Fraction wise intensity normalization. During the spotting
process, in each fraction a set of standard peptides is spiked-in. All peak intensities
in this fraction are normalized to the standard intensities in this fraction. Standard
intensities are set to a user-defined value. Blue: fraction peaks, red: fraction standards.
nf = a

b = y
x , where nf is normalization factor, a is standard’s set intensity, b is

standard’s measured intensity, x is peak’s measured intensity, y peak’s normalized
intensity.

One standard: in the special case that only one standard could be found in a
fraction, the normalization factor is the same for all peaks in this fraction.
The normalization factor nf is calculated as the ratio between a and b
(nf = a

b
), where a is the standard’s user-defined intensity, and b is the

standard’s measured intensity.

Two and more standards: if more than one standard could be found, a and
b are calculated for each m/z value separately using a theoretical standard.
The m/z value of this theoretical standard corresponds to the m/z value
of the peak whose intensity has to be normalized. In order to obtain
the respective intensity values, the distance between the intensity of the
adjacent standard with a smaller m/z value compared to the peak and
the intensity of the adjacent standard with a higher m/z value compared
to the peak is calculated. If the m/z values of all standards are smaller or
larger than the peak’s m/z value, the one standard strategy is applied,
using the standard with the most similar m/z value.
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public interface NormalizationStrategy {

public static enum TYPE {
INTENSITY, INTENSITY_TO_NOISE

}

TYPE getType();

Sample normalize(Sample sample);

void setType(TYPE type);
}

Listing 13.2: The NormalizationStrategy interface. Shown is the interface
needed to be implemented by any normalization strategy. It provides the main
method normalize(Sample sample) as well as getter and setter for the type of
normalization (intensity- or singal-to-noise can be used for a normalization).

13.1.4 Applying the normalization factor

The normalization itself is the last step to complete the fraction-wise inten-
sity normalization. The normalization consists of a recalculation of all peak’s
intensity values using the respective normalization factor. Therefore, all frac-
tions can be normalized by multiplying all peak intensities with the calculated
normalization factor (see 13.1.3).

13.1.5 Details of implementation

The normalization algorithm including all Java types is provided in the form of
two OSGi plugins, which can be easily integrated both into simple command-
line-only applications and into more complex, GUI enabled RCP applications.
The first plug-in contains all types that represent the API of the normalization
library. The second plug-in provides all classes that implement the normalization
API and provide the concrete normalization functionality. Main types are
the NormalizationStrategy interface (Listing 13.2) and the Normalization-
StrategyOnStandards interface (Listing 13.3). Intensity values or S/N values
may be used for normalization. Handling fractions in which no standards could
be found is delegated to the interface NoStandardsFoundStrategy, which
itself implements NormalizationStrategyOnStandards. Thereby, different
strategies can be implemented to handle fractions without standards.
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public interface NormalizationStrategyOnStandards extends
NormalizationStrategy {

NoStandardsFoundStrategy getNoStandardsFoundStrategy();

List<Standard> getStandards();

Fraction normalize(Fraction fraction);

List<Fraction> normalize(List<? extends Fraction>
fractions);

void setStandards(List<? extends Standard> standards);
}

Listing 13.3: The NormalizationStrategyOnStandards interface. The defini-
tion of NormalizationStrategy is very generic and applies both for local- as well
as global normalization strategies. NormalizationStrategyOnStandards extends
NormalizationStrategy by characteristics that are specific to a local-, fraction-
wise normalization, i.e., getters and setters for standard definitions and a reference
to a NoStandardsFoundStrategy, to which normalization is delegated in case no
standards could be identified.

13.2 Global Intensity Normalization
In a label-free quantification approach samples are not multiplexed but pro-
cessed separately. This has some major advantages as described in 4.3 but on
the other hand has one disadvantage as well. The data is subject to global,
inter-sample variations that affect all three dimensions of a peak; (i) m/z, (ii)
retention time and (iii) signal intensity.

Variations in m/z are corrected by calibrating the instrument to internal
standard peptides as described briefly in 13.1.

Correcting for retention time shifts is the topic of feature alignment as
described in 4.2.1.2 and 12.3.

To correct for these variations in terms of signal intensity, sample intensities
are normalized globally to a fixed value. In order to do so, as a first step, a nor-
malization factor is calculated (see Equation 13.2). Applying the normalization
is simply done by multiplying every peak’s intensity with this normalization
factor.
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Is =
N∑

n=0
Ipn

Where:

Is is sample intensity,
Ipn is peak intensity.

Equation 13.1: Sample intensity. Sample intensity is the sum of all peaks/
features in this sample.

nf = Is

Ifixed

Where:

nf is the normalization factor,
Is is the actual sample intensity,
Ifixed is a fixed, arbitrary intensity value (normalization intensity).

Equation 13.2: The normalization factor. In a very simple case of global
normalization, the normalization factor is a factor describing the difference between
actual sample intensity and desired sample intensity. Applying this factor to all
peaks/features in the sample will result in a total sample intensity of Ifixed.

When quantifying a collection of samples against each other, it is reasonable
to normalize all samples against the same normalization intensity. This way
their intensity values become comparable. When omitting this normalization
step, quantification can be expected to be shifted; more precisely, calculated
ratios are biased in one direction or the other and the average of all ratios is
different from 1.
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Ig =
N∑

n=0
Isn

Where:

Ig is the actual sample group intensity,
Is is the actual sample intensity.

Equation 13.3: Sample group intensity. Intensity value of a sample group is
simply the sum of all sample intensities in this group.

nf = Ig

Ifixed

Where:

nf is the normalization factor,
Ifixed is a fixed, arbitrary intensity value (normalization intensity).

Equation 13.4: Normalization factor for sample groups. Calculation of a
normalization factor for a sample group is not different from the calculation of a
normalization factor of a “normal” sample, since this factor as well can be applied
directly to all peaks/features in a sample group (i.g., all peaks/features from all
samples in this group).

13.2.1 Normalizing sample groups

If multiple samples do no represent independent units of data but rather sub-
units of a larger entity, as it is the case for GeLC-MS data, it is not desirable to
normalize all samples independently from each other but to perform a group-
wise normalization instead (see 3.1.2 and 12.6). In this case, the normalization
factor is not calculated using Is (see Equation 13.2) but rather using the sample
group’s intensity (see Equation 13.3).
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13.3 Dynamic Complexity Reduction
Sample complexity plays an important role in (label-free) protein quantification.
It has a direct influence on both the computational requirements as well as
the time that is needed to perform a quantification. More important, it can
also affect quantification accuracy since with higher sample complexity also
the chance for false positive alignments increases. It is therefore reasonable to
reduce sample size and complexity as far as possible without altering a sample’s
special characteristics.

MSQBAT is able to reduce a samples complexity without losing its charac-
teristics that are crucial for a quantification. MSQBAT can be configured to
dismiss low intensity features or features that span only over a small number
of fractions. Requirement for this is the existence of annotations. Annotations
are used to define a threshold below which features might dismissed without
negative effects on quantification. More precisely, thresholds on feature intensity
and -length are decreased iteratively as far as no feature annotations are lost.
This way MS2 data can be used to separate true signal from noise in MS1 data.

13.4 GA-based Alignment
Affinity-driven feature alignment (see 12.3) is characterized mainly by two
parameters: (i) an initial search space defined by a retention time range and
a m/z range (see 12.3.1) and (ii) a maximum difference between actual and
corrected retention time of an alignment (deviation from corrected retention
time, see 12.3.2) Since these parameters can only be evaluated empirically they
are a classical example for magic numbers. As described before (see 5), in
such a case optimal values can be evaluated using optimization heuristics, for
example by GAs. A requirement for the application of GAs is the possibility
to evaluate the quality of a solution numerically. If an alignment was build
from two samples that both contain annotated features, the quality of this
alignment can be easily defined by the number of correct alignments in terms of
matching annotations (see 12.3.6). It is therefore possible to optimize alignment
parameters mentioned before by a GA.

The default build of MSQBAT contains a plug-in which can be used to
automatically find optimal alignment parameters by a GA. The plug-in uses
the GeneticAlgorithms library to provide general GA functionality.

http://sourceforge.net/projects/geal/
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13.5 Advanced Data Aquisition
The offline coupling of LC and MS within LC-MALDI-MS based workflows offer
unique unique possibility for advanced data acquisition strategies not possible
with a typical ESI workflow. MSQBAT provides two basic tools that enables
the user to take advantage of thereof.

13.5.1 Exclusion list generator

Avoiding repeated peptide identifications can be reasonable for different reasons
when processing multiple samples deriving from the same starting material or
from a similar cohort. First, in a typical LC-MALDI-MS workflow, the acquisition
time required for MS2 data acquisition is the limiting factor. Second, sample
material is restricted, which is why the number of MS2 scans per sample fraction
is limited too.

Since MS2 peptide identifications can be propagated from one sample to
another (see 12.5), acquisition time and sample material can be saved by
excluding peptides identified in a previously analyzed sample from MS2 analysis
of samples that are subsequently analyzed.

The AB SCIEX TOF/TOF™ 5800 can be configured to exclude certain
precursor masses when selecting parent ions for MS2 analysis. For this purpose,
a tab-delimited list of precursor masses and retention times can be imported to
Series Explorer™. MSQBAT can generate these lists from any sample. For this,
the m/z and retention time from every annotated feature in a sample is copied
to the exclusion list. The retention time is calculated from a fraction-wise
system (i.e., a system with binned fractions) to seconds if necessary (in this
case, requesting a conversion factor from the user (e.g. one fraction equals four
or eight seconds)).

An exclusion list in combination with annotation propagation can be useful
to increase the number of identified peptides for a cohort of samples. Instead
of repeated identification of high abundant proteins, MS2 capacities are used
to identify lower abundant-less intense peptides-ions. Instead of identifying
high abundant proteins over and over again, MS2 capacities are used instead to
identify also lower abundant-less intense peptides-ions.
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13.5.2 Inclusion list generator

Beside the above described exclusion lists, the AB SCIEX TOF/TOF™ 5800
system supports inclusion lists for MS2 data acquisition. In this case, only
precursor ions are selected for MS2 analysis matching masses and retention
times provided in the inclusion list.

As described before, in a LC-MALDI-MS workflow MS1 and MS2 data acqui-
sition are independent from each other and samples are not lost during the
analysis. Sample material is consumed but sample spots usually provide enough
material to reanalize. After an initial quantification, it is therefore possible to
explicitly search for additional peptides from certain proteins of interest in a
second MS2 run.

MSQBAT generates inclusion lists for such proteins by performing the
following steps: (i) the software retrieves a protein’s amino acid sequence from
a FASTA database. (ii) this sequence is digested in silico to obtain all putative
tryptic peptides. (iii) peptide masses are subsequently written to the inclusion
list. (iv) The corresponding retention times are either defined to cover the full
range of the chromatographic separation or are predicted using tools such as
SSRCalc [260] or others [261–265].

Inclusion lists can help to improve protein quantification with regard to
both significance and accuracy.

The combination of annotation propagation and inclusion-/exclusion lists
allows for a targeted data acquisition using MALDI-MS. This characteristic is
unique to MALDI-MS and not applicable in an ESI-MS workflow.
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Bridging Worlds

Besides the quantification of LC-/GeLC-/MALDI-MS data, MSQBAT has
also been successfully used to quantify data deriving from ESI-MS, which
is one of the features that are unique to MSQBAT.

To allow the software to analyze ESI-derived data, the two main differences
that distinguish ESI-MS data from MALDI-MS data had to be compensated
for. Firstly, MALDI-MS retention times are expressed as integer values, since
samples are fractionated after LC into discrete spots on a MALDI target plate
(see 3.1.2). By contrast, ESI retention times are represented by floating point
values, accounting for the continuous nature of ESI retention times. Secondly,
MALDI results mainly in single-charged peptide ions, whereas ESI produces
predominantly doubly- and triply-charged peptide ions (see 3.1.3).

Different charge states can easily be compensated for by respective software
such as DeconTools [266]. DeconTools produces output files containing peak
lists similar to the ones exported from DataExplorer.

When processing MALDI-MS data, in principle both monoisotopic molecular
weight as well as m/z can be used as a qualifier describing a peak’s mass. For
ESI-MS, only the monoisotopic molecular weight can be used, since ions may
carry multiple charges. Importantly, this difference has to be taken into account
when matching annotation information from MS2 data (see 12.1).

In principle, two different approaches can be considered for the adaptation
of ESI-MS retention time values. Continuous retention time values can be binned
to fit existing algorithms that expect integer retention time values as in the
case of MALDI-MS data. The respective bin size can be chosen arbitrarily; an
ESI-like, effectively continuous retention time distribution can be achieved by
choosing small bin sizes.

Alternatively, spectra numbers, which indicate the spectrum where a peak
was detected in, can be used for the adaptation of the retention time. Impor-
tantly, MS1 and MS2 spectra are numbered consecutively, complicating retention
time qualification by a spectrum number in mainly two ways:

125



126 III. Results

1. When mapping MS2 retention times to MS1 retention times during the
process of feature annotation (see 12.1), a calculated precursor ion must
be matched to a measured precursor ion. Thereby, the experimentally
measured precursor’s spectrum number is smaller than the calculated
precursor ion’s spectrum number. Importantly, the difference between
MS2- and MS1-scan number is not necessarily equal to 1.

2. Feature alignment operates on MS1 data and expects retention times/
fraction numbers to be consecutive. As described before, ESI derived MS1

data does not match this requirement, since spectra numbers are not
consecutive when processing MS1 data only.

MSQBAT is able to adapt to these ESI-MS specific characteristics.

1. MSQBAT’s annotation algorithm matches calculated- and measured pre-
cursors by similarity in terms of m/z and retention time/fraction number,
since a direct mapping is often not realizable. The search space used for
mapping can be configured very precisely; it is possible to define a search
space that includes only a range of preceding values in terms of retention
time. When processing ESI-MS data and utilizing spectra numbers as a
retention time qualifier, the search space can be configured accordingly.

2. MSQBAT provides the possibility to “normalize” non-consecutive re-
tention time values and convert them into a consecutive layout. After
applying this fraction normalization to ESI-MS data, the data can subse-
quently be processed and aligned just like MALDI-MS data.



15

MSQBAT

As outlined before, the described algorithms for label-free protein quan-
tification (i.e., (i) fraction-wise intensity normalization, (ii) feature
extraction, (iii) feature alignment, and (iv) protein quantification)

have been implemented as independent libraries usable in any Java application.
Since usability of bioinformatic algorithms and software plays an essential

role with regard to their daily application (see 6), the quantification libraries
as well as the additionally developed libraries have been incorporated into one
software package called MSQBAT. MSQBAT not only provides the essential
functionality needed to perform a label-free peptide and protein quantification
experiment, but also is equipped with all the “helper” functionality required to
provide a convenient and easy usage.

MSQBAT’s main features, which go beyond the basic requirements of protein
quantification, are described in more detail in this chapter.

15.1 Data Reading
MSQBAT supports different files types from which data can be read:

• A tab-delimited plain text format to read peak lists.

• A tab-delimited plain text format to read peptide identifications.

• The mzml format [267] to read peak lists.

• The own qbt format, which is used for high performance data reading
and writing as well as export, for example, to Microsoft® Excel.

15.1.1 Details of implementation

Data reading and writing is handled by a separate RCP plug-in, which itself
delegates data processing to registered converters. In doing so, the implemen-
tation of additional converters supporting further file types can be achieved
easily. Per default, converters for the above mentioned file types are already
installed.
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Following the visitor pattern [252], the I/O plug-in hands over an input
stream to each of the registered converters. If one converter fails to read the
file (indicated by throwing a FileTypeException or FileFormatException),
the stream reader position is reset and the file stream is handed over to the
next converter. If the last converter also throws an exception while trying to
read the file, a final IOException is thrown by the I/O plug-in, indicating that
no converter has been registered that is able to read the specified file.

15.2 Data Visualization
RCP supports so-called perspectives and views. Multiple views can be grouped
into one perspective. Perspectives are usually context-dependent unions of views.
MSQBAT provides two perspectives; first the “Quantification” perspective,
which provides several views enabling the user to perform a quantification as
well as to visualize the results. Furthermore, the “Details” perspective has been
implemented. This perspective can be used to further inspect samples, e.g., to
visualize extracted features and their corresponding member peaks.

15.2.1 Views

MSQBAT provides in total eight different views, which are per default grouped
into two different perspectives.

15.2.1.1 “Sample List” view

The “Samples List” view is a simple list displaying all currently loaded samples.
It provides a right-click context menu containing all the commands available.
These commands (e.g., feature extraction, normalization or alignment) can be
applied to one or more samples. Furthermore, the “Sample List” view provides
drag&drop functionality to load samples by dragging folders or files into the
“Samples List” view (see Screenshot 15.1).
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Screenshot 15.1: The “Sample
List” view. The “Sample List” view
provides drag&drop functionality for
easy sample loading. Loaded samples
are listed. A right-click-context-menu
provides easy access to sample process-
ing commands such as feature extrac-
tion, alignment or quantification.

15.2.1.2 “Sample Details” view

The “Sample Details” view displays key properties of the currently selected
sample(s), for example total number of peaks, features, proteins, and peptides.
Additionally, it displays a total sample intensity, a signal-to-noise ratio of
selected samples, and information whether a normalization has been performed
or not (see Screenshot 15.2).

Screenshot 15.2: The “Sample Details” view. The “Sample Details” view
displays information on key properties of the selected sample(s) such as number of
peaks, features, annotated proteins, and peptides.
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Screenshot 15.3: The “Quant Table” view. The “Quant Table” view is a
tabular representation of a quantification result. It displays, for example, information
on protein identifier, intensity values, quantification ratio, and p-value. Furthermore,
the median ratio of all selected entries is displayed in the lower left corner. This can
help to get a first impression of quantification trends. Full-text search and table
sorting (by clicking on column headers) is supported.

15.2.1.3 “Quant Table” view

The “Quant Table” view displays a tabular representation of the quantification
results. Columns are protein identifier of sample A and sample B, calculated ra-
tio, number of peptides per protein, a p-value, and several additional properties
(see Screenshot 15.3).

15.2.1.4 “Quant Plot” view

The “Quant Plot” view is a graphical representation of a quantification experi-
ment. It is a scatter plot and each dot represents one quantified protein. On
the x-axis, the calculated ratio is plotted (log-scale), whereas on the y-axis, the
-log10 of the calculated p-value is displayed (see Screenshot 15.4). This type of
graph is commonly referred to as volcano plot.
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Screenshot 15.4: The “Quant Plot” view. The “Quant Plot” view is a graphical
representation of a quantification result. Every dot represents one quantified protein.
Ratios are plotted on the x-axis, −log10 of the calculated p-values on the y-axis
(volcano plot). Dots are color-coded: red (regulation smaller −2 fold or larger 2 fold
and regulation significance smaller than 0.01), blue (regulation between −2 fold and
2 fold and regulation significance smaller than 0.01), and green (anything else).
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15.2.1.5 “Alignment Path” view

The “Alignment path” view is a graphical representation of an alignment. It
is a scatter plot and each dot represents one alignment. On the x-axis, the
fraction index of the alignment’s first feature is plotted, whereas on the y-axis,
the fraction index of the alignment’s second feature is displayed. Additionally,
the plot contains all retention time pairs of the calculated alignment path (see
Screenshot 15.5).

15.2.1.6 “2D Peptide Map” view

The “2D Peptide Map” view is a graphical representation of a sample and
its peaks and/or features. It is a scatter plot and each dot represents one
peak or feature. Peaks and features are plotted using different colors, so that
all features and all contained peaks can be displayed at the same time. On
the x-axis of the plot, a peak’s or feature’s retention time is shown; on the
y-axis, its m/z value is displayed (see Screenshot 15.6). Like any other plot in
MSQBAT, the “2D Peptide Map” is zoomable and scrollable. In addition, the
“2D Peptide Map” is coupled to the “Peak Table” view and the “2D Intensities
Map” view. Therefore, zooming or scrolling is reflected in the other two views
as well (e.g., only peaks that are displayed in the “2D Peptide Map” are visible
in the two other views).

15.2.1.7 “2D Intensities Map” view

The “2D Intensities Map” view is a graphical representation of a sample and its
peak and/or feature intensities. It is a scatter plot and each dot represents one
peak or feature. Peaks and features are plotted using different colors; therefore,
all features and all contained peaks can be displayed at the same time. On the
x-axis of the plot, a peak’s or feature’s retention time is plotted; on the y-axis,
its intensity value is displayed.

15.2.1.8 “Peak Table” view

The “Peak Table” view is a tabular representation of a sample and its peaks or
features. Columns provide various information about a peak’s/feature’s prop-
erties, such as retention time, m/z, and intensity values, as well as annotation
information if available.
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Screenshot 15.5: The “Alignment Path” view. The “Alignment Path” view
is a graphical representation of an alignment. Sample A’s fraction indices are plotted
on the x-axis, sample B’s fraction indices on the y-axis. Each blue dot represents an
alignment. Red squares indicate the alignment path.
The lower two screenshots show a zoom-in of the graph on top. These two screen-
shots nicely illustrate LC-MS reproducibility, which usually varies most at the very
beginning of sample separation by LC.
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Screenshot 15.6: The “2D Peptide Map” view. The 2D Peptide Map view is a
graphical representation of a sample’s peaks and features. Fraction indices are plotted
on the x-axis, m/z values on the y-axis. Blue dots indicate peaks; red dots show
features. The map is zoomable and scrollable by mouse; the lower two screenshots
show a zoom-in of the graph on top at different zoom scales. They illustrate eluting
peptide patterns and the union of different peaks into single features.
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Screenshot 15.7: The “Quantification” perspective. The “Quantification”
perspective groups different views together. Per default, the “Sample List” view,
the “Sample Details” view, the “Quant Plot” view, the “Quant Table” view and the
“Alignment Path” view are shown in this perspective.

15.2.2 Perspectives

MSQBAT provides currently two different perspectives, which group the eight
views according to their primary usage.

15.2.2.1 “Quantification” perspective

Per default, the “Quantification” perspective groups together the “Sample List”
view, the “Sample Details” view, the “Quant Plot” view, and the Quant Table
view (see Screenshot 15.7).

15.2.2.2 “Details” perspective

Per default, the “Details” perspective groups together the “Sample List” view,
the “Sample Details” view, the “2D Peptide Map” view, the “2D Intensities
Map” view and the “Peak Table” view (see Screenshot 15.8).



136 III. Results

Screenshot 15.8: The “Details” perspective. The “Details” perspective ar-
ranges different views together. Per default, the “Sample List” view, the “Sample
Details” view, the “2D Peptide Map” view, the “2D Intensities Map” view, the “Peak
Table” view and a data-filtering view are shown in this perspective.

15.3 Details of Implementation
Code was submitted during the development of MSQBAT to the following
independent but topic-related libraries:

• Kerner Utilities
• Kerner Utilities - I/O
• Kerner Utilities - Collections
• Kerner Utilities - RCP
• JRanges

• JTables
• JFASTA
• JMGF
• BioUtils - Proteomics
• GeneticAlgorithms

Direct dependencies, to which no code was contributed during the develop-
ment of MSQBAT, are the following:

• Apache Commons Math™
• Apache Commons Lang™
• XStream

• jmzML [268]
• JFreeChart

http://sourceforge.net/projects/kerner-utils/
http://sourceforge.net/projects/kerner-utils-io/
http://sourceforge.net/projects/kerner-utils-co/
http://sourceforge.net/projects/kerner-utils-rcp/
http://sourceforge.net/projects/jranges/
http://sourceforge.net/projects/jtables/
http://sourceforge.net/projects/jfasta/
http://sourceforge.net/projects/jmgf/
http://sourceforge.net/projects/bioutils-proteo/
http://sourceforge.net/projects/geal/
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-lang/
http://xstream.codehaus.org/
https://code.google.com/p/jmzml/
http://www.jfree.org/jfreechart/
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Software Validation by Spike-in
Experiments

Quantification capabilities of MSQBAT have been validated for different
instrumental setups using different spike-in experiments as well as one
publicly available LC-ESI-MS data set [1, 269]. The specific spike-in set

up is common to all validation experiments and consists of an E.coli background
proteome in which human proteins have been spiked at different concentrations.

Four scenarios have been tested:

1. Quantification of LC-MALDI-MS data,

2. Quantification of GeLC-MALDI-MS data,

3. Quantification of GeLC-ESI-MS data,

4. Quantification of LC-ESI-MS data.

The results of each of the four test scenarios will be described in detail in this
chapter.

16.1 Label-free Quantification of LC-MALDI-
MS Data

To validate quantification capabilities for data resulting from a LC-MALDI-MS

workflow, UPS2 has been spiked into an E.coli background proteome at different
concentrations, resulting in six different samples (see 7).

At least four technical replicates of each sample where analyzed.

1. 2% UPS
2. 1% UPS
3. 0.5% UPS

4. 0.25% UPS
5. 0.125% UPS
6. 0% UPS.
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(a) Expected regulations between
UPS2% and all other samples. Illus-
trated are the expected regulations result-
ing from a quantification of UPS2% against
all other samples. Human proteins (sample
proteins) should show regulations of 2, 4, 8,
and 16 fold (left to right). The quantifica-
tion against the negative control (2vs0_s)
is expected to show some regulation that is
clearly distinct from the “real” comparisons.
A certain degree of variance of the measured
regulations with respect to the expected reg-
ulation can be expected and is illustrated
by the ranges. The variance should increase
as protein concentrations decrease due to in-
terpolation of missing values (“background”
intensities; see 12.3.3.3 and 17.4).
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(b) Experimentally determined regu-
lations between UPS2% and all other
samples. Every dot represents one quan-
tified protein. The different comparisons
are shown on the x-axis. Spike-in proteins
(H.sapiens/sample) and background prote-
ins (E.coli) are displayed separately. In-
dicated in red are median regulations and
interquartile ranges. As expected, the E.coli
protein regulations cluster around 20(1) for
every comparison representing no regulation.
Human spike-in proteins show median regu-
lations closely matching the expected ratios
(see (a)).

Figure 16.1: Quantification results of LC-MALDI-MS data. Human prote-
ins (UPS2) have been spiked into an E.coli background proteome at six different
concentrations (2%, 1%, 0.5%, 0.25%, 0.125%, and 0%). The sample with the highest
concentration of human proteins (named UPS2%) has been compared against all
other samples. Illustrated are the expected regulations (a) and the experimentally
determined regulations (b).
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To cover different regulations and dynamic ranges (i.e., different ratios
between the spiked proteins), sample UPS2% has been compared against all
other samples, resulting in five different comparisons:

1. UPS2% vs. UPS1%
2. UPS2% vs. UPS0.5%
3. UPS2% vs. UPS0.25%
4. UPS2% vs. UPS0.125%
5. UPS2% vs. UPS0%.

The following steps have been performed for all comparisons:

1. Loading of MS1 data from peak files by dragging the experiment folder
into MSQBAT (see 15.1).

2. Normalization to internal standards (see 13.1).

3. Annotation of MS2 data (i.e. peptide and protein identifications; see
12.1).

4. Extraction of features (see 12.2).

5. Complexity reduction (see 13.3).

6. Global intensity normalization (see 13.2).

7. Cross alignment of technical replicates and subsequent annotation propa-
gation between replicates (see 12.5).

8. GEAL alignment (see 13.4) of at least four technical replicates into one
supersample representing the specific spike-in experiment (see above).

9. GEAL alignment of supersamples for subsequent quantification, resulting
in five alignments of different spike-in samples (see above).

10. Quantification (see 12.4).

All these steps are available in MSQBAT as a one-click command from a sample’s
context menu. For the configuration of the different algorithms, parameters
listed in Table 16.5 have been used. A comparison between the expected
results and experimentally determined results are displayed in Figure 16.1a
and Figure 16.1b, respectively. Expected ratios as well as measured ratios are
furthermore displayed in Table 16.1.



140 III. Results

16.2 Label-free Quantification of GeLC-MS
Data

The quantification of GeLC-MS data is a non-trivial extension to the processing
of LC-MS data described in 16.1.

In order to validate quantification capabilities for GeLC-MS, UPS2 has been
spiked into an E.coli background proteome at different concentrations, resulting
in four different samples (see 7).

1. Sample D (16µg UPS2)
2. Sample C (4µg UPS2)
3. Sample B (1µg UPS2)
4. Sample A (0µg UPS2)

Samples were separated on a SDS-PAGE gel, and in total eight separate bands
were cut out and tryptically digested in gel. The results were 4 × 8 distinct
samples, which were subsequently analyzed using an GeLC-MALDI-MS and
GeLC-ESI-MS workflow.

To cover different regulations and dynamic ranges (i.e., different ratios
between the spiked proteins), sample D has been compared against all other
samples, resulting in three different comparisons:

1. D vs. C
2. D vs. B
3. D vs. A

The expected regulations for these quantifications are illustrated in Figure 16.2a.

16.2.1 Label-free quantification of GeLC-MALDI-MS
data

To test MSQBAT’s quantification capacities for data deriving from a GeLC-
MALDI-MS workflow, the following steps have been performed for all compar-
isons:

1. Loading of MS1 data from peak files by dragging the experiment folder
into MSQBAT (see 15.1).

2. Normalization to internal standards (see 13.1).
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(ii) GeLC-ESI-MS.

(b) Comparison of protein abundances between
sample D versus all other samples. Every dot rep-
resents one quantified protein. The x-axis displays the
different comparisons. Spike-in proteins (human/sample)
and background proteins (E.coli) are displayed separately.
Indicated in red are median regulation and interquartile
range. E.coli regulations cluster around 20(1) for every
comparison, which represents no regulation. Human spike-
in proteins show regulations depending on the experiment
of 4 and 8 (from left to right), which is in agreement with
the expected ratios (see left).

Figure 16.2: Quantification results of GeLC-MS data. Human proteins
(UPS2) have been spiked into an E.coli background proteome at four different
concentrations (16µg, 4µg, 1µg, 0µg). The sample with the highest concentration
of human proteins (named sample D) has been compared against all other samples.
Illustrated are the expected regulations (a) and the experimentally determined
regulations (b).
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3. Annotation from MS2 data (i.e., peptide and protein identifications; see
12.1).

4. Extraction of features (see 12.2).

5. Complexity reduction (see 13.3).

6. Grouping of (sub-)samples (see 12.6).

7. Global intensity normalization of sample groups (see 13.2).

8. Ungroup samples.

9. GEAL alignment (see 13.4) of samples for subsequent quantification,
resulting in three alignments of different spike-in samples (see above).

10. Grouping of samples.

11. Quantification (see 12.4).

All these steps are available in MSQBAT as a one-click command from a sample’s
context menu. For the configuration of the different algorithms, parameters
listed in Table 16.6 have been used. A comparison between the expected
results and experimentally determined results are displayed in Figure 16.2a
and Figure 16.2i, respectively. Expected ratios as well as measured ratios are
furthermore displayed in Table 16.2.

16.2.2 Label-free quantification of GeLC-ESI-MS data

To test MSQBAT’s quantification capacities for data deriving from a GeLC-ESI-
MS workflow, the following steps have been performed for all comparisons:

1. Loading of MS1 data from isos.csv files by dragging them into MSQBAT
(see 15.1).

2. Normalization of fraction indices (see 14).

3. Annotation from MS2 data (i.e., peptide and protein identifications; see
12.1).

4. Extraction of features (see 12.2).

5. Grouping samples (12.6).

6. Global intensity normalization of sample groups (13.2).
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7. Ungrouping of samples.

8. GEAL alignment (13.4) of samples for subsequent quantification, resulting
in three alignments of different spike-in samples (see above).

9. Grouping of samples.

10. Quantification (12.4).

All these steps are available in MSQBAT as a one-click command from a sample’s
context menu and were configured using the parameters listed in Table 16.7.
Results of these quantifications are illustrated in Figure 16.2ii.

16.3 Label-free Quantification of LC-ESI-MS
Data

To validate quantification capabilities for data resulting from a state-of-the-
art, high resolution LC-ESI-MS workflow, a publicly available quantification
benchmark dataset was downloaded and processed [1, 269]. Human proteins
(universal proteomics standard (UPS1) and UPS2) have been spiked into an
E.coli background proteome at fixed (UPS1) and dynamic (UPS2) concentrations.
Comparing protein abundances between these two samples results in a total of
six differently regulated groups of human proteins.

In total, eight raw-files have been downloaded [269]: two different samples
(UPS1 and UPS2) with four technical replicates each.

Monoisotopic peak lists have been extracted using DeconTools (see 9.2.1).
Peptide identification information was extracted from the modificationSpeci-
ficPeptides.txt file (available from the ProteomeXchange website (see 9.2.2)).
Importantly, this file does not contain the full set of peptide identifications but
only a non-redundant subset. Parameter optimization using GEAL was there-
fore not available for this dataset. The original quantification results obtained
by MaxQuant were taken from the proteinGroups.txt file (also available from
the ProteomeXchange website) and are compared to the quantification results
obtained by MSQBAT (see Figure 16.3).

The following steps have been performed for all comparisons:

1. Loading ofMS1 data from peak files by dragging the raw files into MSQBAT
(see 15.1).
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Figure 16.3: Measured regulations between UPS2 and UPS1. Every dot
represents one quantified protein. In total, three different data sets are shown:
expected quantification results (E.coli_E and UPS1_E – UPS6_E), experimentally
determined ratios by MSQBAT (E.coli_B and UPS1_B – UPS6_B), and experi-
mentally determined ratios by MaxQuant (E.coli_M and UPS1_M – UPS6_M).
The x-axis displays the different comparisons, the y-axis the calculated and expected
ratios (log10). Background- (E.coli) and sample proteins (H.sapiens) are displayed
separately (E.coli and UPS1 – UPS6). Expected regulations are indicated (E.coli_E:
1, UPS1_E: 10, UPS2_E: 1, UPS3_E: 0.1, UPS4_E: 0.01, UPS5_E: 0.001 and
UPS6_E: 0.0001). Since regulations seem to be systematically underestimated, an
additional line is displayed on the y-axis, representing the expected regulation shifted
by −50%. Regulations are expected to show some variance that increases with
decreasing protein abundances (indicated by increasing ranges). Determined ratios
by MSQBAT and MaxQuant for the different sample protein groups are color-coded,
using the same color respectively. For the last two sample protein groups, the same
color-code is used, since they do not separate clearly from each other and do not
match the expected ratios.
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2. Annotation from MS2 data (see 12.1).

3. Normalization of retention times/fraction numbers (see 14).

4. Filtering by m/z (600 – 4,500) and fraction number (2,000 – 11,000).

5. Extraction of features (see 12.2).

6. Global normalization (see 13.2).

7. Cross alignment of the respective sample replicates (see 12.5). Sample
pairs that showed the best alignment (evaluated by r2 and visually by
inspecting the resulting quant-plot (see 15.2.1.4)) were selected to build a
representative superalignment for the biological sample (UPS1 and UPS2).
For both samples, superalignments were built using fixed parameters from
two replicates each.

8. GEAL alignment (see 13.4) of supersamples representing the two biological
samples (UPS1 and UPS2).

9. Quantification (see 12.4) of the final alignment.

All these steps are available in MSQBAT as a one-click command from a
sample’s context menu and were configured using the parameters listed in Ta-
ble 16.8. Expected results and experimentally determined results are displayed
in Figure 16.3. Table 16.4 shows some numerical metrics for the experimentally
determined results by MSQBAT. Since experimentally obtained regulations
seem to be systematically sifted, two lines on the y-axis indicate the expected
ratio as well as the expected ratio considering a shift of −50%.
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E.coli 2% vs. 1% 0.00 −0.14 0.32 −0.32 0.03 561
E.coli 2% vs. 0.5% 0.00 −0.26 0.36 −0.43 −0.06 528
E.coli 2% vs. 0.25% 0.00 −0.07 0.25 −0.22 0.05 511
E.coli 2% vs. 0.125% 0.00 −0.02 0.49 −0.29 0.27 504
E.coli 2% vs. 0% 0.00 −0.08 0.24 −0.22 0.05 546

H.sapiens 2% vs. 1% 1.00 0.94 0.32 0.79 1.09 16
H.sapiens 2% vs. 0.5% 2.00 1.89 0.36 1.68 2.14 16
H.sapiens 2% vs. 0.25% 3.00 3.02 0.69 2.43 3.36 16
H.sapiens 2% vs. 0.125% 4.00 3.90 1.07 2.73 4.57 14
H.sapiens 2% vs. 0% �4.00 5.28 2.08 2.85 6.07 16

Table 16.1: Expected and experimentally determined median regulations
of background- and sample proteins for LC-MALDI-MS. Five different com-
parisons are shown, always including UPS 2% (comparisons to 1%, 0.5%, 0.25%,
0.125%, and 0%). Depicted are expected regulation (log2), actual regulation (log2),
standard deviation, and interquartile range.
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E.coli D vs. C 0.00 −0.19 0.59 −0.47 0.18 1316
E.coli D vs. B 0.00 −0.11 0.91 −0.55 0.50 1342
E.coli D vs. A 0.00 −0.33 0.64 −0.63 0.05 1422

H.sapiens D vs. C 2.00 2.10 0.68 1.63 2.97 13
H.sapiens D vs. B 4.00 3.45 0.73 3.16 4.20 13
H.sapiens D vs. A �4.00 4.87 2.13 4.07 7.68 12

Table 16.2: Expected and experimentally determined median regulations
of background- and sample proteins for GeLC-MALDI-MS. A total of three
different comparisons are shown, always including sample D (comparisons to sample
C, B and A). Depicted are expected regulation (log2), actual regulation (log2),
standard deviation and interquartile range.
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E.coli D vs. C 0.00 0.17 1.29 −0.49 0.72 429
E.coli D vs. B 0.00 0.04 1.85 −0.81 0.78 443
E.coli D vs. A 0.00 −0.14 1.70 −0.95 0.61 442

H.sapiens D vs. C 2.00 1.89 1.48 0.09 2.94 6
H.sapiens D vs. B 4.00 3.84 1.63 2.87 5.16 6
H.sapiens D vs. A �4.00 5.73 4.77 4.42 14.80 7

Table 16.3: Expected and actual median regulation of background- and
sample proteins for GeLC-ESI-MS. Shown are three comparisons, sample D
against all other concentrations (sample C, sample B, and sample A). Depicted are
expected regulation (log2), actual median regulation (log2), standard deviation and
interquartile range.
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E.coli UPS2 vs. UPS1 100 1.065 1,387 0.93 1.21 1,250
UPS1 UPS2 vs. UPS1 10 5 · 101 48 · 10−2 45 · 10−1 55 · 101 6
UPS2 UPS2 vs. UPS1 1 43 · 10−2 12 · 10−2 32 · 10−2 55 · 10−2 7
UPS3 UPS2 vs. UPS1 10−1 57 · 10−3 8 · 10−2 4 · 10−2 14 · 10−2 6
UPS4 UPS2 vs. UPS1 10−2 44 · 10−4 1 · 10−2 2 · 10−3 1 · 10−2 4
UPS5 UPS2 vs. UPS1 10−3 4 · 10−2 35 · 10−2 1 · 10−2 71 · 10−2 5
UPS6 UPS2 vs. UPS1 10−4 27 · 10−3 8 · 10−2 5 · 10−7 13 · 10−2 6

Table 16.4: Expected and experimentally determined median regulation
of background and sample proteins for LC-ESI-MS. Seven comparisons be-
tween UPS2 and UPS1 are shown (E.coli proteins and H.sapiens proteins at six
different concentrations). Depicted are expected regulation, experimentally deter-
mined regulation, standard deviation, and interquartile range.
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Processing Step Parameter Value
Normalization on internal standards Mass delta (+/-) 25
Normalization on internal standards Mass delta is ppm true
Annotation Fraction delta (-) 1
Annotation Fraction delta (+) 1
Annotation Mass delta (+/-) 25
Annotation Mass delta is ppm true
Annotation Minimum sequence confidence 95%
Annotation Maximum mass shift 0.3Da
Feature extraction Fraction gaps tightener (+) 1
Feature extraction Mass delta tightener 50
Feature extraction Mass delta tightener is ppm true
Feature extraction Use annotations tightener true
Complexity reduction Minimum percentage peptide identifi-

cations to keep
95%

Complexity reduction S/N low 0
Complexity reduction S/N high 200
Complexity reduction S/N interval 10
Complexity reduction Feature length low 0
Complexity reduction Feature length high 4
Complexity reduction Feature length interval 1
Global intensity normalization Reference intensity 250mio
Alignment for annotation propagation Fraction shift 10
Alignment for annotation propagation Mass shift 5
Alignment for annotation propagation Mass shift is ppm true
Alignment for annotation propagation Maximum path diff 2
Alignment for annotation propagation Use annotations to find best alignment true
GEAL alignment Number of iterations 400
GEAL alignment Number of peaks to use 10
GEAL alignment Fraction delta low 5
GEAL alignment Fraction delta high 100
GEAL alignment Fraction delta interval 5
GEAL alignment Mass delta low 5
GEAL alignment Mass delta high 50
GEAL alignment Mass delta interval 5
GEAL alignment Path low 2
GEAL alignment Path low 50
GEAL alignment Path low 1
Quantification Minimum peptide number 3

Table 16.5: LC-MALDI-MS: Parameters used for quantification.
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Processing Step Parameter Value
Normalization on internal standards Mass delta (+/-) 25
Normalization on internal standards Mass delta is ppm true
Annotation Fraction delta (-) 1
Annotation Fraction delta (+) 1
Annotation Mass delta (+/-) 25
Annotation Mass delta is ppm true
Annotation Minimum sequence confidence 95%
Annotation Maximum mass shift 0.3Da
Feature extraction Fraction gaps tightener (+) 1
Feature extraction Mass delta tightener 50
Feature extraction Mass delta tightener is ppm true
Feature extraction Use annotations tightener true
Complexity reduction Minimum percentage peptide identifi-

cations to keep
95%

Complexity reduction S/N low 0
Complexity reduction S/N high 200
Complexity reduction S/N interval 10
Complexity reduction Feature length low 0
Complexity reduction Feature length high 4
Complexity reduction Feature length interval 1
Global intensity normalization Reference intensity 3,000mio
GEAL alignment Number of iterations 400
GEAL alignment Number of peaks to use 10
GEAL alignment Fraction delta low 5
GEAL alignment Fraction delta high 100
GEAL alignment Fraction delta interval 5
GEAL alignment Mass delta low 5
GEAL alignment Mass delta high 50
GEAL alignment Mass delta interval 5
GEAL alignment Path low 2
GEAL alignment Path low 50
GEAL alignment Path low 1
Quantification Minimum peptide number 3

Table 16.6: GeLC-MALDI-MS: Parameters used for quantification.
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Processing Step Parameter Value
I/O generic Column identifier m/z monoisotopic_mw
I/O generic Column identifier intensity abundance
I/O generic Column identifier S/N signal_noise
I/O generic Column delimiter “Comma”
Annotation Fraction delta (-) 100
Annotation Fraction delta (+) 100
Annotation m/z delta (+/-) 800
Annotation m/z delta is ppm true
Annotation Scale time values to fit fractions true
Annotation Reader to use “ProteinPilot”
Annotation filter Max mass delta [Da] 1,000
Annotation filter Min sequence confidence 95
Annotation ProteinPilot Column identifier m/z “Theor MW”
Annotation ProteinPilot Column identifier sequence “Sequence”
Annotation ProteinPilot Column identifier protein ID “Accessions”
Annotation ProteinPilot Fraction index “Use time directly”
Feature extraction Use fraction gaps tightener true
Feature extraction Gap size [fractions] (+) 7
Feature extraction Use m/z tightener true
Feature extraction Mass shift for m/z tightening (abs) 800
Feature extraction Use ppm mass shift for m/z tightening true
Feature extraction Use annotations tightener true
Global intensity normalization Reference intensity 160,000
Alignment Max fraction delta during mapping (+/-) 40
Alignment Max m/z delta during mapping (+/-) 800
Alignment Max m/z delta during mapping is ppm true
Alignment Orphanize alignments with path diff greater

than (+/-)
40

Alignment Also use annotations to find best alignment true
GEAL alignment Number of iterations 400
GEAL alignment Number of peaks to use 10
GEAL alignment Fraction delta low 10
GEAL alignment Fraction delta high 100
GEAL alignment Fraction delta interval 10
GEAL alignment Mass delta low 400
GEAL alignment Mass delta high 1,200
GEAL alignment Mass delta interval 50
GEAL alignment Path low 10
GEAL alignment Path high 80
GEAL alignment Path step 2
Quantification Min number peptides 3

Table 16.7: GeLC-ESI-MS: Parameters used for quantification.
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Processing Step Parameter Value
I/O generic Column identifier m/z monoisotopic_mw
I/O generic Column identifier intensity abundance
I/O generic Column identifier S/N signal_noise
I/O generic Column delimiter “Comma”
Annotation Fraction delta (-) 100
Annotation Fraction delta (+) 1
Annotation Mass delta (+/-) 25
Annotation Mass delta is ppm true
Annotation Reader to use “Generic”
Annotation Minimum sequence confidence 95%
Annotation Maximum mass shift 1,000Da
Annotation Generic Column identifier m/z Mass
Annotation Generic Column identifier fraction MS/MS Scan Number
Annotation Generic Column identifier sequence Sequence
Annotation Generic Column identifier protein ID Proteins
Feature extraction Fraction gaps tightener (+) 50
Feature extraction Mass delta tightener 50
Feature extraction Mass delta tightener is ppm true
Feature extraction Use annotations tightener true
Global intensity normalization Reference intensity 16,000,000mio
Alignment Fraction shift 1,000
Alignment Mass shift 30
Alignment Mass shift is ppm true
Alignment Maximum path diff 30
Alignment Use annotations to find best

alignment
true

GEAL alignment Number of iterations 200
GEAL alignment Number of peaks to use 10
GEAL alignment Fraction delta low 200
GEAL alignment Fraction delta high 4,000
GEAL alignment Fraction delta interval 100
GEAL alignment Mass delta low 10
GEAL alignment Mass delta high 100
GEAL alignment Mass delta interval 10
GEAL alignment Path low 10
GEAL alignment Path high 100
GEAL alignment Path interval 5
Quantification Minimum peptide number 3

Table 16.8: LC-ESI-MS: Parameters used for quantification.
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Conclusions

The aim of this work was the development and application of a software
tool for label-free quantification of LC-MALDI-MS data. Currently, no
software solution exists that is able to perform a quantitative analysis of

LC-MALDI-MS data acquired by state-of-the-art LC-MALDI-MS systems. For this
purpose, a software suite should be built that provides this functionality and
presents it to non-expert users in an intuitive and user-friendly fashion. Ideally,
the software should be flexible enough to be extendable for the processing of
GeLC-MALDI-MS- and LC-/GeLC-ESI-MS data.

MSQBAT was built with the intention to satisfy all these requirements.
MSQBAT is a platform-independent software package enabling the user to per-
form large-scale label-free protein quantification using both LC-/GeLC-MALDI-
MS and LC-/GeLC-ESI-MS data. The software was written from scratch to
guarantee the desired flexibility and user-friendliness. It implements all al-
gorithms required for a relative, label-free peptide and protein quantification
based on ion intensities, namely (i) feature extraction, (ii) feature annotation,
(iii) feature alignment, and (iv) peptide/protein quantification. Furthermore,
MSQBAT contains additional libraries for (i) local and (ii) global intensity
normalization, (iii) dynamic and automatic sample complexity reduction, (iv)
automatic parameter optimization by genetic algorithms, and (v) a tool set for
advanced data acquisition.

To validate MSQBAT’s quantification capabilities, several spike-in experi-
ments have been performed. Furthermore, publicly available benchmark data
was used for the processing and quantification of LC-ESI-MS data.
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17.1 MSQBAT Allows for the Accurate, Label-
free Quantification of LC-MALDI-MS
Data

To validate MSQBAT’s quantification capacities of LC-MALDI-MS data, a spike-
in test was set up. Human proteins (UPS2) were spiked into an E.coli back-
ground proteome at six different concentrations, namely 2%, 1%, 0.5%, 0.25%,
0.125%, and 0%. The resulting samples were subsequently analyzed using a
nanoACQUITY UPLC ® LC system and an AB SCIEX TOF/TOF™ 5800 MS

system.
At least four technical replicates have been aligned into one supersample,

representing the corresponding UPS concentration:

1. 2% UPS
2. 1% UPS
3. 0.5% UPS
4. 0.25% UPS
5. 0.125% UPS
6. 0% UPS

To cover different regulations and dynamic ranges (i.e., different ratios between
the spiked proteins), sample UPS2% was compared against all other samples,
resulting in a total of five comparisons:

1. UPS 2% vs. UPS 1%
2. UPS 2% vs. UPS 0.5%
3. UPS 2% vs. UPS 0.25%
4. UPS 2% vs. UPS 0.125%
5. UPS 2% vs. UPS 0%

The experimentally determined protein quantifications closely matched the
expected regulations. Background proteins (E.coli) did not show any regulation
and therefore clustered around a regulation of 0 (log2), while the spiked human
proteins showed the expected regulations.

The variance of the measured regulations is very small. Quantified back-
ground proteins constantly show very small variance (standard deviation be-
tween 0.24 and 0.49), which enables the clear separation from background
protein regulations down to ratios as low as four fold. A separation of regulated
human proteins from background E.coli proteins is also observable for two fold
regulations; however, this separation is not as clear as the one for higher ratios.
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Importantly, in terms of biomarker discovery, the identification of lower fold
changes (i.e., <10-fold) is only of limited benefit, since therapeutically usable
biomarkers usually express strong regulations of tenfold and more (see 2). Very
small variances, which allow for a clear separation of regulated proteins in the
range of two- to tenfold, are therefore not necessarily needed.

Nevertheless, the identification of lower fold changes with high accuracy
can be achieved even with higher variances, if statistical significance is taken
into account. MSQBAT calculates for each regulation simple statistics to be
able to estimate a regulation’s significance. Calculated p-values are not shown
in Figure 16.1b, but help to distinguish between significant regulations and
noise even for very low regulations.

In summary, it can be concluded that the implemented algorithms allow for
a highly accurate LC-MALDI-MS protein quantification with low variances of
the calculated ratios. Increased variances of calculated protein ratios can only
be found for regulations >16-fold for low abundant proteins (see also 17.4).
However, in contrast to the variance, the median protein regulation remains
highly accurate.

17.2 MSQBAT Allows for the Accurate, Label-
free Quantification of GeLC-MALDI-MS
and GeLC-ESI-MS Data

The ability to quantify GeLC-MS-data was an important requirement and exten-
sion to MSQBAT’s quantification capabilities. To validate GeLC-MS quantifica-
tion capabilities, a spike-in test very similar to the one discussed in 17.1 was set
up. Human proteins (UPS2) were spiked into an E.coli background proteome
at four different concentrations, namely 16µg, 4µg, 1µg, and 0µg. Samples
were separated on a SDS-PAGE gel and eight separate bands were cut out and
tryptically digested in-gel. The result were 4× 8 distinct samples, which were
subsequently analyzed using a nanoACQUITY UPLC ® LC system and both
an AB SCIEX TOF/TOF™ 5800 MS system and an AB SCIEX QTRAP® 6500
MS system.

1. D (16µg UPS2)
2. C (4µg UPS2)
3. B (1µg UPS2)
4. A (0µg UPS2)
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To cover different regulations and dynamic ranges (i.e., different ratios between
the spiked proteins), sample D was compared against all other samples, resulting
in three comparisons:

1. D vs. C
2. D vs. B
3. D vs. A

The experimentally determined protein quantification closely matched the
expected regulations for both the MALDI-based approach and the ESI-based
workflow. Background proteins (E.coli) did not show any regulation and
therefore clustered around a regulation of 0 (log2), while the spiked human
proteins showed the expected regulations.

The variances of the quantification results were higher compared to data
obtained in the LC-MALDI-MS workflow discussed above. The increased variance
of experimentally determined regulations has mainly two reasons: First, in the
GeLC-MS-based approach, sample complexity is significantly increased due to
the additional separation step. In this case, each sample (A, B, C, D) consists
of eight separate subsamples, which had to be merged computationally. More
importantly, samples are not covered by technical replicates as it is the case for
the LC-MALDI-MS workflow discussed in 17.1. The different comparisons have
been performed with one sample per spike-in group only. Technical replicates
increase quantification accuracy, since the final ratio is an average of multiple
(replicate-) regulations.

Importantly, in contrast to the spike-in setup used for the evaluation of
LC-MALDI-MS protein quantification performance, variance of calculated ratios
does not increase when quantifying higher ratios. This is because in the GeLC-
MALDI-MS setup, higher total protein amounts have been used and therefore a
quantification “into background signal” is not given (see also 17.4). An increased
variance of calculated ratios is also observable for the data obtained by GeLC-
ESI-MS compared to GeLC-MALDI-MS. The main reason for this difference is
the number of identified and quantified proteins [270]. In the GeLC-MALDI-
MS workflow, approximately three times more E.coli proteins and more than
two times more H.sapiens proteins could be identified (see Table 16.2 and
Table 16.3).

In summary, it can be concluded that the implemented quantification
algorithms allow for a highly accurate quantification of GeLC-MS data with
acceptable variances both for data deriving from a MALDI-based- as well as
data deriving from an ESI-based workflow. The variances of the quantification
results could be improved by the application of technical replicates.
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17.3 MSQBAT Allows for the Accurate, Label-
free Quantification of LC-ESI-MS Data

The quantification of LC-ESI-MS data was not initially planned when MSQBAT
was implemented. Nevertheless, a maximum of flexibility of the algorithms with
regard to input data has been an important requirement; i.e., an adaptation
to ESI data should be relatively easy later on. During the final stage of the
software development, its flexibility has been successfully tested with LC-ESI-MS

data. LC-ESI-MS is the most prominent flavor of LC-MS today and respective
data is available online via the ProteomeXChange repository [243]. To evaluate
MSQBAT’s capabilities for the quantification of this data type, raw data files
(.raw files, i.e., the generic data format from Thermo Fisher) containing all
MS1 and MS2 information were downloaded [269]. As MSQBAT is not capable
of performing a peptide identification by MS2, the respective data generated by
MaxQuant was used. The file modificationSpecificPeptides.txt, which is
available on ProteomeXChange as well, was used to extract respective peptide
identification information.

Importantly, this file does not contain redundant peptide identification
information but only the “best” identifications (chosen from all runs). These
non-redundant peptide identifications are sufficient for protein quantification.
Nevertheless, a GA-based alignment is not feasible if samples do not share
common peptide identifications. Therefore, the respective alignment parameters
had to be chosen manually resulting in a non-optimal alignment and hence a
non-optimal quantification result.

The experimentally determined quantification results have been compared
to the expected ratios, as well as to the results obtained by Cox and colleagues
in the original paper [1]. Compared to the expected ratios, experimentally
determined quantification results by MSQBAT systematically underestimate
the real ratios by approximately 50%. Interestingly, ratios calculated by
MaxQuant show this shift as well. MSQBAT and MaxQuant both show this
shift for the calculated ratios of human proteins. In contrast, quantified E.coli
proteins do not show this shift, but the calculated ratio by both MSQBAT and
MaxQuant is close to 1 (1.07 and 1.03). Since only the spike-in proteins show
a systematic shift, whereas quantified E.coli proteins show expected ratios, it
can be hypothesized that the samples reflect a real difference in theoretical
ratio and actual ratio (e.g., caused by discrepancies in sample preparation).
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Comparing experimentally determined protein ratios by MSQBAT to the
ratios determined by MaxQuant, quantified E.coli proteins as well as the first
four differentially regulated human protein groups (expected regulations of 100

to 10−2) show a high conformity with each other. Groups five and six (expected
regulations of 10−2 and 10−3) could not be accurately quantified and show a
large variance for quantifications calculated by both MSQBAT and MaxQuant.
By tendency, MaxQuant is able to state protein regulations for these two groups
with lower variance.

Calculated ratios by MSQBAT and MaxQuant show a variance that is low
for the first three differentially regulated protein groups and higher for protein
group four. Since the variance of ratios increases when quantifying proteins
in group four, and is large for groups five and six, it can be assumed that
human proteins in group five and six could be identified only at the detection
limit of the instrument. As discussed briefly before and in detail in 17.4,
a quantification of proteins at abundances near background signal leads to
decreased quantification accuracy and increased variance of calculated ratios.

In summary, it can be concluded that the implemented algorithms are not
only applicable for GeLC-/LC-MS data but are suitable for protein quantification
of LC-ESI-MS data as well. Experimentally determined ratios closely match
those obtained by MaxQuant, a widely used software for protein quantification
exclusively for LC-ESI-MS data. Importantly, alignment parameters, which
are a crucial component of the quantification process, could not be optimized
using the implemented GA-based optimization routines; therefore, an improved
quantification can be expected if redundant peptide identification information
for each run is available.
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17.4 MSQBAT Allows for the Quantification
of a “Black-and-White” Situation

As already briefly mentioned in 4, 4.3, and 4.2.3, the availability of exactly
two protein/peptide abundances/intensities is, in principle, a prerequisite for
the calculation of protein abundances for quantification. This requirement
limits protein quantification to both samples containing the protein of interest.
A “black-and-white” situation, which is given if a protein is present in one
sample only, and which represents a very strong “regulation”, cannot be covered.
Therefore, it has always been a challenge to cover also such protein regulations.
For label-based approaches, the accounting for presence-absence situations is
very difficult and, therefore, usually not performed in praxis [1]. The same
holds true for MS2-based quantifications, as spectra numbers are compared.
This approach faces the same problems as a label-based quantification. “Zero
spectra” and “zero label” really mean zero. By contrast, a missing value in
an MS1-based label-free approach can relatively easily be interpolated by a
“zero-value”, which is a value representing a background signal.

However, interpolating missing values comes at a price. While proteins
present only in one out of two samples to be compared can be “quantified”,
this “quantification” is not fully accurate and cannot be compared to a readout
of an actual ratio. Nevertheless, especially in biomarker discovery, a general
ratio trend is more important than an accurately calculated ratio, since very
strong regulations representing protein abundances at or close to the detection
limit of an instrument occur frequently. MSQBAT implements the approach of
interpolating missing values by background intensity values.

Figure 16.1b clearly shows the effects of the introduction of artificial back-
ground values: Sample proteins (H.sapiens) show an increasing variance when
quantifying larger dynamic ranges. The first two comparisons, namely UPS2%
vs. UPS1% and UPS2% vs. UPS0.5%, show a very small variance (standard
deviation between 0.32 and 0.36), highly similar to the variance of quantified
background proteins. As the protein amounts in the second sample (UPS0.25%
and UPS0.125%) decrease, the observed variances continuously increase. A
“black-and-white” comparison (UPS2% vs. UPS0%) finally results in a very
large variance compared to the other quantifications.
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The calculation of background intensity presents a rough estimation of
the actual protein regulation ratio, which is why interpolated values may
vary significantly. The lower the number of identified peptides (i.e., the more
“background peptides” have to be considered), the higher the observed variance
in calculated ratios. These findings are illustrated by increasing interquartile
ranges (see Figure 16.1b).

In summary, it can be concluded that MSQBAT is capable to detect “black-
and-white” situations in terms of protein abundances. Protein ratios resulting
from such quantifications only indicate a strong ratio trend instead of an
accurately calculated ratio. The respective algorithms have been implemented
in such a way that these ratios generally underestimate the real situation. This
is in contrast to existing solutions, which tend to overestimate such ratios [1].
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Applications of MSQBAT

In the last two years, preliminary versions of the MSQBAT software have
been successfully applied in a number of studies with very diverse biological
and/or chemical issues.

18.1 Novel Biotinylation Reagents
MSQBAT has been used to evaluate the performance both of different com-
mercially available biotinylation reagents and of two novel in-house developed
biotinylation reagents [271].

The biotinylation approach is used for the selective enrichment of vascular
accessible proteins such as cell surface proteins and extracellular matrix proteins
[272]. The general mode of action of these reagents is the modification of primary
amino groups of proteins with membrane-impermeable, water-soluble chemical
derivatives of biotin [273–275]. After cell lysis, the sample is enriched by
purifying biotinylated proteins on streptavidin-coated resin [276, 277]. Several
biotinylation reagents are commercially available, such as Sulfo-NHS-LC-Biotin
and NHS-PEG12-Biotin. These reagents show different characteristics in terms
of membrane-impermeability and enrichment of cell surface- and extracellular
matrix proteins.

The biotinylation performance was evaluated by in vivo biotinylation of mice
using the two commercially available reagents Sulfo-NHS-LC-Biotin and NHS-
PEG12-Biotin, and two novel in-house synthesized biotinylation reagents. The
enriched proteome fraction from kidney tissue was analyzed by LC-MALDI-MS

and quantified using MSQBAT. The resulting protein quantification data confirm
the increased selectivity of the novel biotinylation reagents for cell-membrane
proteins compared to the two commercially available reagents Sulfo-NHS-LC-
Biotin and NHS-PEG12-Biotin.
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18.2 Vascular Accessible Markers in Kidney
Cancer

MSQBAT has been used to identify vascular accessible biomarkers for clear
cell (cc) renal cell carcinoma (RCC), and resulting lung metastases [278].

Seven different patient-derived xenograft mouse models have been devel-
oped and used for the generation of primary tumors and lung metastases.
Commercially available primary renal cell lines have been used as healthy
controls. To enrich for cell surface proteins, the aforementioned in vivo bi-
otinylation approach (see 18.1) was applied. Proteomic analysis was performed
by LC-MALDI-MS. The chromatographic separation of tryptic peptides was
performed using a nanoACQUITY UPLC ® system. Subsequent mass spectro-
metric analysis was performed using an AB SCIEX TOF/TOF™ 5800 system
and quantification of the acquired LC-MS data was achieved by MSQBAT.

As xenograft mouse models have been used, human as well as murine pro-
teins have been identified in the LC-MS analysis. An experimental setup with
xenograft models additionally complicates the protein inference problem de-
scribed in 11. To allow for the distinction between human and murine proteins,
identified peptides have been processed by PepSir (see 11) prior to quantification
by MSQBAT. PepSir was configured to check proteotypicity in a two-species
(H.sapiens & M.musculus) context. Only peptides proteotypic in this context
have been used for the subsequent quantification by MSQBAT. Hierarchical
cluster analysis was performed based on the determined intensity values of
identified and quantified proteins. The data clustered in three main groups,
clearly separating proteins regulated in healthy controls, metastases, and pri-
mary tumor. Furthermore, MSQBAT could be used to identify several putative
markers, which subsequently have been validated by immunofluorescence and
real-time (RT)-quantitative polymerase chain reaction (qPCR).
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18.3 PDAC Subtypes
MSQBAT has been used to characterize pancreatic ductal adenocarcinoma
(PDAC) subtypes on the proteomic level and to identify subtype specific markers
as well as novel pan PDAC markers [279]. In 2011, Collisson et al. identified three
different PDAC subtypes on the genomic level, which show different responses
to therapy [280]. Twelve PDAC-derived primary patient-matched cell lines
grown under serum-free conditions as well as two control cell lines have been
analyzed using a GeLC-MALDI-MS approach. Proteins separated by SDS-PAGE

have been divided into twelve subsamples (i.e., gel slices). The separation
of resulting tryptic peptides was performed using a nanoACQUITY UPLC ®

system; the mass spectrometric analysis of each LC-fraction was conducted
using an AB SCIEX TOF/TOF™ 5800 system. This setup led to a total of
168 samples to be processed. Due to the extensive volume of this study, MS

data have been acquired over more than 18 months. Principally, such an
extended time period complicates label-free protein quantification and puts
any quantification software on the test. The resulting data confirmed the
three subtypes characterized by Collisson et al. on the proteomic level. In
addition, subtype-specific biomarker candidates could be identified. MSQBAT
identified several regulated and highly specific biomarker candidates, whereof
the most promising ones have been selected for validation by multiple reaction
monitoring (MRM) (see Figure 18.1). The MRM measurements indicate a strong
correspondence to ratios calculated by MSQBAT and confirm MSQBAT’s protein
quantification accuracy even for highly complex proteomes, which have been
processed and analyzed over several months and in subsections of more than
160 samples.
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Figure 18.1: Comparison of protein quantifications determined by
MSQBAT and by MRM. Displayed are MSQBAT and MRM quantification results
for six different subtype-specific markers. Different samples (cell lines) are plotted
on the x-axis. Red, green, and blue indicate the three different subtypes. Light
colors represent MRM measurements; dark colors MSQBAT protein quantification
results. Fold changes are plotted on the y-axis (linear scale). Fold changes have been
normalized to the average of all measured regulations. Printed with permission from
[279].
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Closing Remarks and Outlook

MSQBAT was developed to extract quantitative information from LC-
/GeLC-MALDI-MS data. The software package has been validated by
using a range of different spike-in experiments and was successfully

applied in “real-world” applications and biomarker discovery. Protein regula-
tions of identified biomarkers experimentally determined using MSQBAT, were
confirmed by MRM, qPCR, and immunofluorescence experiments. Furthermore,
MSQBAT was tested for the handling of GeLC- and LC-ESI-MS data, acknowl-
edging MSQBAT’s high flexibility and uniqueness in terms of applicability in
different proteomic workflows.

MSQBAT was programmed from scratch, implementing all basic algorithms
necessary to perform ion intensity-based label-free peptide and protein quan-
tification. Additionally, the software package comprises a number of extensions
to this basic protein quantification such as an exclusion- and inclusion list
generator, dynamic and automatic sample complexity reduction as well as an
automatic parameter configuration based on genetic algorithms.

While MSQBAT has primary been developed for the quantification of
LC-MALDI-MS data, the software offers the potential for further extensions,
especially in the direction of (LC-)ESI data processing. Processing of data from
various LC-MS workflows is possible with the current version of the software.
However, these workflows can only be implemented with additional knowledge
of the underlying data, and the preconfigured default values only apply for
an LC-MALDI-MS setup. The implementation of configurations (i.e., sets of
specific parameters) for other setups available to users by applying a simple
drop-down selection is a desirable extension for the near future. Along this
line, the extension to the automatic parameter-finding algorithm with genetic
algorithms is a promising future project. Currently, its application is limited
to the alignment of samples. Nevertheless, automatic parameter finding could
as well be utilized in the context of feature extraction. The feature extraction
algorithm requires parameters defining the expected mass-accuracy as well as
the feature gap size characterizing separation capacities of the LC system used.
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To obtain a software package “fit for all purposes”, the implementation
of label-based quantification approaches could be considered, even though
their popularity is dwindling. MSQBAT provides an extensive framework for
computational proteomics, from which large parts have been translocated
to the independent library BioUtils - Proteomics. This library provides all
functionalities required for the implementation of label-based quantification
approaches. This is why the realization of such a feature would be comparably
easy and would be achievable in little time.

Low-level data processing, namely peak finding and background subtraction,
deisotoping and charge deconvolution, is another candidate for a “fit for all
purposes” software package. The current version of MSQBAT does not support
low-level data processing and this initial data processing step needs to be
performed by third-party software such as DataExplorer or DeconTools.

Statistical evaluation of experimentally determined protein regulations
and other steps typically following protein quantification have so far been
implemented only partly. Per default, MSQBAT calculates p-values for each
regulated protein. Outlier removal, p-value correction, and calculation of a
false discovery rate (FDR) are typical examples for procedures following protein
quantification and have not been implemented so far.

MSQBAT was programmed in a highly modular manner, providing extensive
possibility for modification/extension, and the implementation of the above-
mentioned features is therefore not particularly difficult. The modular design of
MSQBAT provides enough encapsulation of the different functionalities involved
in a complete label-free quantification workflow, so that the development of a
novel plug-in does not require knowledge of the whole system.

MSQBAT not only provides great potential for extending the software
and/or the implemented quantification algorithms. It is conceivable to use
MSQBAT for studies related to technical aspects of LC-MS data acquisition
and the used instruments. MSQBAT was used to process highly diverse LC-MS

data obtained from a MALDI TOF-TOF-, QTRAP-, and an LTQ Orbitrap MS

instrument. These instruments show significant differences in resolution, which
results, for example, in highly differing numbers of detected peaks. Interestingly,
applying the developed feature extraction algorithm to samples containing peak
data from these MS instruments resulted in similar feature counts (LC-MALDI-
MS: peaks: 520,255, features: 166,571; LC-ESI-MS: peaks: 2,687,146, features:
219,304). While the number of peaks is more than five times higher in the latter
instrument setup, the detected number of features is just 1.3 times increased.

http://sourceforge.net/projects/bioutils-proteo/
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Based on these preliminary data, it could be hypothesized that in terms
of protein quantification, (very) high resolution instruments are beneficial not
primary because of higher feature counts but because of higher peak counts
representing the same feature. As a result, the feature AUC is much better
covered, which subsequently leads to a more accurate peptide and protein
quantification. The current build of MSQBAT already provides excellent
possibility to inspect LC-MS data visually. Characterizing LC-MS data in more
detail can certainly be a topic of further, more technical studies.

MSQBAT, PepSir, and other software developed in the context of
this work, as well as the respective source code, are freely available at
http://proteomicstools.org.

http://proteomicstools.org
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