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Zusammenfassung 
 
Trotz jahrzehntelanger Forschung sind die genauen Mechanismen der Entwicklung und Homöostase 

der Epidermis noch immer unklar. Die Proliferation der Epidermis wird kontrovers diskutiert und 

Erkenntnisse wurden größtenteils in Mausstudien gewonnen. Es ist jedoch bekannt, dass sich 

Maushaut und humane Haut bezüglich Anatomie und vermutlich auch Proliferation stark 

unterscheiden. Um diese Frage zu untersuchen, wurden die Mitosen in einem humanen 

Fibroblasten-generierte Matrix-basierten Langzeithautmodell (fdmSE) systematisch erfasst. Die 

Keratinozyten in dem Hautäquivalent teilen sich auf 4 unterschiedliche Arten: horizontal, 

perpendikulär oder schräg zur Basalmembran (BM) oder suprabasal. Der größte Anteil wird von den 

horizontalen Teilungen gestellt (< 80 %). Die zweithäufigste Teilungsart ist die schräge Teilung (< 50 

%). Perpendikuläre Mitosen waren in geringer Menge ausschließlich an intermediären Zeitpunkten 

vorhanden und gänzlich abwesend an frühen und späten Zeitpunkten. Es scheint daher, als seien alle 

Teilungswinkel in humaner interfollikulärer Epidermis (IFE) vorhanden. Interessanterweise wurde 

auch ein substanzieller Anteil suprabasaler Mitosen gezählt. Diese Teilung war bisher der 

Embryogenese, Wundheilung und erkrankter Epidermis vorbehalten. Wir konnten suprabasale 

Mitosen in normaler Haut in situ bestätigen, was darauf hinweist, dass sie tatsächlich ein Teil der 

epidermalen Homöostase sind. Expression von Keratin 10 zeigte, dass sich diese Zellen in einem 

frühen Stadium der Differenzierung befanden und gelegentlich noch in Kontakt mit der BM standen. 

Ein weiteres Ziel dieser Arbeit war die Untersuchung asymmetrischer Teilung in der IFE. Um die 

Balance zwischen Selbsterneuerung und Differenzierung aufrechtzuerhalten, müssen Vorläuferzellen 

sich asymmetrisch teilen. Unterschiedliche Nachkommen können auf zweierlei Arten generiert 

werden: durch perpendikuläre Orientierung wodurch eine Tochterzelle entfernt von der 

Stammzellniche platziert wird, oder durch ungleiche Verteilung determinierender Faktoren auf die 

Tochterzellen. Einige Faktoren sind bekannt, die für die orientierte Mitose verantwortlich sind, 

darunter der PAR-Komplex, und die Adapterproteine NuMA, Inscuteable und LGN. Hier konnten wir 

diese Faktoren jedoch mit den verfügbaren Antikörpern nicht nachweisen. Stattdessen haben wir 

den Notch-Inhibitor Numb als potenziellen Asymmetriemarker in Keratinozyten identifiziert. Numb 

wurde während einiger Mitosen in 2D Kultur asymmetrisch verteilt. Um seine Funktion zu 

untersuchen, haben wir einen stabilen CRISPR/Cas9 Knockdown etabliert. Bemerkenswerterweise 

hatte die Abwesenheit von Numb keine Auswirkung auf die kurzzeitige Proliferation (14 Tage).  Dies 

weist darauf hin, dass  Numb keine Rolle in der Mitose per se spielt. Ob es stattdessen eine Rolle in 

der Regulation des Zellschicksales während der epidermalen Regeneration spielt, bleibt eine offene 

Frage für zukünftige Studien. 
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Summary 
 
Despite decades of research, the exact regulation of epidermal development and homeostasis 

remains elusive. Proliferation in the epidermis is controversially discussed and knowledge is mostly 

derived from studies of mouse skin. However, it is well established that mouse and human skin differ 

regarding anatomy and likely also proliferative regulation. To address this question, mitoses were 

systematically assessed in a long-term human fibroblast-derived matrix-based skin equivalent 

(fdmSE). Keratinocytes in our fdmSE divided in 4 different ways: horizontal, oblique, or perpendicular 

to the basement membrane (BM) or suprabasally. The largest proportion of divisions occurred in 

horizontal orientation (< 80 %) at all time points. The second most common division type was oblique 

division (< 50 %). Perpendicular divisions were found at a low frequency (< 20 %) at intermediate 

time points only. They were absent at early and late time points. Thus, it appears that in the human 

interfollicular epidermis (IFE) all types of divisions are active. Importantly, we also observed 

suprabasal mitoses present at all analysed time points in the SE. Suprabasal division in epidermis has 

so far been restricted to embryogenesis, wound healing and diseased skin.  We could confirm that it 

is also part of the normal human epidermis in situ thus suggesting that this spatial mitotic 

organisation is part of tissue homeostasis in human epidermis. These cells are in an early stage of 

differentiation as suggested by their expression of keratin 10 with a connection to the BM still 

detectable in some cases. 

Furthermore, we aimed at investigating asymmetric cell division in the IFE. To maintain the delicate 

interplay between self-renewal and differentiation, progenitor cells have to divide asymmetrically. 

Differential daughter cell fate can be established in two ways: oriented division which displaces one 

daughter cell from the stem cell niche, or asymmetric distribution of cell fate determinants to the 

daughter cells. Several components of oriented division have been proposed in invertebrate and 

vertebrate systems including the PAR-complex, or the adaptor proteins NuMA, Inscuteable and LGN. 

However, antibodies available for those proteins did not allow detecting these markers here. Instead, 

we identified the Notch inhibitor Numb as a possible marker for asymmetric keratinocyte division. 

Numb was segregated asymmetrically during some divisions of the human keratinocytes in 2D 

cultures. To determine its function, we established a protocol to stably knock down Numb in the 

human keratinocytes using CRISPR/Cas9. Notably, Numb deletion did not affect proliferation in short 

term culture (14 days), suggesting that it is not essential for mitosis per se. Instead, Numb may be 

important for the regulation of cell fate in epidermal regeneration, a question that needs to be 

addressed in future studies.  
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Abbreviations 
 
°C Degree Celsius  IFE Interfollicular epidermis 

µg Microgram  IGF Insulin-like growth factor 

µL Microlitre  KH Human keratinocyte 

µm Micrometre 
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Nuclear protein associated with 
proliferation 

AB Antibody  L Liter 
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Ascorbic acid phosphate 
 

LRC Label-retaining cell 

bFGF Basic fibroblast growth factor 
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related protein 6 
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BSA Bovine serum albumin  min Minute(s) 

cDNA  Complementary DNA  mL Millilitre 
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CO2 Carbon dioxide  mRNA  Messenger RNA 
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d Day(s)  NaN3 Sodium azide 

D10  DMEM with 10% FCS  nm Nanometre 

DAPI 4′,6-Diamidino-2-phenylindol  NuMA Nuclear mitotic apparatus protein 

DMEM 
Dulbecco`s modified Eagle 
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DNA Deoxyribonucleic acid  PAGE Polyacrylamide gelelectrophoresis 

dNTP  
Deoxyribonucleotide 
triphosphates 

 
ParD6α Partitioning defective 6 homolog alpha 

ECM  Extracellular matrix  PBS- Phosphate buffered saline 

EDTA Ethylenediaminetetraacetic acid 
 

PBS+  
Phosphate buffered saline containing 
Magnesiumchloride and 
Calciumchloride 

EGF Epidermal growth factor  PCR Polymerase Chain Reaction 

et al. et alii/aliae, and others  Pen/Strep Penicillin / Streptomycin 

EtOH Ethanol  PFA Paraformaldehyde 

FA Formaldehyde  pH pondus hydrogenii 

FCS Fetal calf serum  RNA  Ribonucleic acid 

fdm Fibroblast-derived matrix  rpm  Rounds per minute 

Fig Figure  RT Room temperature 

g Gram(s)  SC Stem cell 

GAPDH  
Glyceraldehyde-3-phosphate-
dehydrogenase 

 
SDS Sodium dodecyl sulfate 

h Hour(s)  SE skin equivalent 

H&E Hematoxylin & Eosin  TEMED N, N, N´, N´-Tetramethyldiamin 

HaCaT  
Human adult Calcium 
Temperature 

 
TGF-β Transforming growth factor β 

HCl Hydrochloric acid  TPX2 Targeting protein for Xklp2 

HRP  Horseradish peroxidase  V Volt 

IdU 5-Iodo-2′-deoxyuridine  WM Wholemount 

IF Immunofluorescence    

 



  
  



Introduction   1 
 

1. Introduction 
 

1.1 The human skin 

The human skin, despite being only up to a few millimetres thick, is the largest organ of the body. It 

provides effective protection against parasites, UV irradiation, dehydration, and mechanical and 

environmental stress. The skin regulates body temperature and provides tactile sense via nerve cells 

and receptors. The complex structure of human skin can be divided into three layers: First, the 

outermost epidermis. It is tightly connected to the second layer, the matrix-rich dermis. The third 

layer is the underlying subcutis which mainly consists of fat and is in contact with muscles and 

tendons (Kanitakis, 2002). Several appendages such as hair follicles, sweat and sebaceous glands and 

nails complete the skin (McGrath et al., 2004; Urmacher, 1990). The stretches between hair follicles 

are referred to as interfollicular epidermis (IFE). 

 

 

Figure 1.1 Structure of the human skin. (A) The subcutaneous layer, the dermis and the epidermis together 
make up the human skin. Appendages, including sebaceous glands, sweat glands and hair follicles complete the 
tissue. (B) The outermost layer, the epidermis, is a tightly regulated stratified epithelium consisting of several 
layers. Adapted from Kern et al., 2011 

 

1.1.1 The dermis 

The dermis is predominantly made up by fibroblasts. They secrete extracellular matrix (ECM) 

components that form the dense connective tissue of the dermis. Collagen fibres render the skin 

tear-resistant, whereas elastic fibres provide the elasticity that makes the skin return to its original 

state after deformation (McGrath et al., 2004). These fibres are surrounded by mucopolysaccharides 

and proteoglycans, gel-like and interfibril substances, the ground substance that help in retaining 

water and serve as stem cell niche and provide cell-matrix contact (Wilkes et al., 1973). 
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In addition to the spindle-shaped fibroblasts, cell types of the immune system can be found in the 

dermis, including mast cells, macrophages and dendritic cells (Salmon et al., 1994). The upper part of 

the dermis is rich in nerve endings and blood vessels. The indentations of the dermal papillae with 

the epidermal rete ridges increase the contact surface of dermis and epidermis and thereby provide 

improved adhesion and stability (Kanitakis, 2002). Appendages of the skin such as hair follicles and 

sweat and sebaceous glands are embedded in the dermis. The dense basement membrane, 

consisting of lamins, proteoglycans and collagens, serves as a separation and connection between 

dermis and epidermis (Kalluri, 2003; McMillan et al., 2003).  

 

1.1.2 The epidermis 

The multilayered, stratified epidermis forms the outermost body surface. It consists mainly of 

keratinocytes that follow a tightly regulated differentiation program, but also contains melanocytes, 

Langerhans cells and Merkel cells (Urmacher, 1990).  

 

Figure 1.2 Layers of the epidermis. The epidermis consists of four distinct layers of morphologically distinct 
keratinocytes. Adapted from Löffler et al., 2007 

 

Four morphologically distinct cell layers form the epidermis (Green, 1977; Urmacher, 1990). The 

columnar basal cells of the stratum basale are tightly attached to the underlying basement 

membrane by adhesion molecules, the hemidesmosomes. This cell layer harbours the stem cell (SC) 

compartment of the IFE (Cotsarelis et al., 1989; Lavker and Sun, 1983). Above the basal cell layer, 

several layers of smaller, spinous cells follow. In this stratum spinosum, cells start to differentiate and 

express markers of differentiation such as keratin 1 and 10 (Fuchs, 1993; Watt and Green, 1982). 

Migrating further toward the outer cell layers, the keratinocytes flatten. Cells of the stratum 

granulosum contain basophilic keratohyalin granules. The nucleus begins to disintegrate and 
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cytoplasmic organelles are lost. The cells of the outermost stratum corneum form a dense, 

hydrophobic layer at the inner side of the cell membrane, known as the cornified envelope. Finally, 

horn squames are shed. Roughly every 4 weeks, the entire epidermis is renewed in this way 

(McGrath et al., 2004; Urmacher, 1990). The homeostasis of human skin is maintained by a complex 

interplay of differentiation and proliferation, with the epidermal stem cells playing the central role. 

 

1.1.3 Stem cell hypotheses 

Recent research has identified several distinct stem cell compartments within the epidermis: the hair 

follicle bulge, the sebaceous gland and the IFE.  

 

Figure 1.3 Stem cell niches of the skin. Several distinct stem cell niches have been identified in murine and 
human epidermis. In the murine hair follicle (A), stem cell niches include the bulge region and the isthmus. In 
the human IFE (B), two distinct stem cell populations have been proposed: one α6 integrin

high
 and CD71

low
-

expressing population and one MCSP
+
/ β1 integrin

high
 population. Graphic taken from Boehnke et al., 2007. 

 

1.1.3.1 Murine epidermal stem cells 

Most of our current knowledge on epidermal stem cells is derived from murine skin. Since mice are 

covered by a dense fur, the hair follicle (HF) stem cell niches provide the “lion’s share” of the 

epidermal stem cells. Three different CD34+ SC populations were characterised in the hair bulge 

region, expressing different levels of α6-integrin (α6) and Lgr5 (Barker and Clevers, 2010; Blanpain et 

al., 2004). Further HF stem cell niches include an actively cycling Lgr6+ population above the bulge 

region and a CD34−/MTS24+/K14+/Sca1—expressing population at the isthmus below the sebaceous 
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gland (SG) (Woo and Oro, 2011). The sebaceous gland harbours its own SC population expressing 

CD34−/K14+/BLIMP1+. Finally, a quiescent SC population characterised by CD34−/α6high/Sca1low/Lrig1+ 

expression was identified between the upper isthmus and the infundibulum (Jensen et al., 2009). 

Although several studies suggest the presence of a distinct SC population of the murine IFE, it could 

not be clearly identified so far (Ito et al., 2005; Levy et al., 2005). 

 

1.1.3.2 Human epidermal stem cells 

Notably, much of this knowledge about murine stem cells seems not to be transferable to the human 

epidermis. Much less is known about human skin, which consists mainly of large stretches of 

interfollicular epidermis and only sparse hair follicles. Therefore, the IFE must play a more significant 

role in providing a stem cell niche than in mouse skin. Regarding markers of the mouse hair follicle 

stem cell populations, most of them cannot be applied to human HFs. For instance, CD34+ cells are 

restricted to the hematopoietic lineage in humans (Ohyama, 2005) and Keratin 15 which could be 

used to isolate murine HF stem cells from the bulge (Morris et al., 2004) is not specific for human 

bulge SCs (Ohyama, 2007). It is known that HF stem cells contribute to wound healing and can even 

take over homeostasis of the IFE in situations of need (Ito et al., 2005; Levy et al., 2007; Tumbar et 

al., 2004). The mouse HF cycle takes about 4 weeks, whereas a human HF can have a cycle time of up 

to 8 years. It is therefore likely that the HF stem cells are of lesser significance in humans than in 

mouse, due to the sparse distribution and because of longer cycling times. Two distinct and 

competing stem cell populations of the human IFE have been proposed in the literature: one α6 

integrinhigh and CD71low-expressing population at the base of the rete ridges (Webb et al., 2004) and 

one population characterised by expression of β1 integrinhigh, melanoma chondroitin sulfate 

proteoglycan+ and the epidermal growth factor receptor (EGFR) antagonist Lrig1+ at the tip of the 

rete ridges where the dermis is closest to the skin surface (Ghazizadeh and Taichman, 2005; Jensen 

et al., 2009; Jones and Watt, 1993; Legg et al., 2003). However, our own observations (Muffler et al., 

2008) rather suggest a distribution of slow-cycling cells throughout the basal cell layer as was also 

found in labelling studies by Ghazizadeh and colleagues (Ghazizadeh and Taichman, 2005). 

 

1.1.3.3 Stem cell hypotheses 

Maintenance of the epidermis relies on the proliferation of IFE stem cells to balance the constant 

turnover of differentiated keratinocytes. Several competing theories about stem cell hierarchy in the 

interfollicular epidermis are being discussed in the literature. 

The earliest proposed model involves the arrangement of keratinocytes in columnar stacks called 

epidermal proliferative units (EPU), with a central stem cell surrounded by 10 – 11 basal cells (Potten, 

1974, 1981; Potten and Morris, 1988). In this model, clone sizes are of roughly the same size and 
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clone numbers are largely invariable during homeostasis. About 10 % of basal cells have stem cell 

character and give rise to transit amplifying (TA) cells that account for about 60 % of basal cells. In 

this hierarchical model,  TA cells undergo several generations of proliferation before they leave the 

basal cell layer and migrate upwards while following their terminal differentiation program 

(Barrandon and Green, 1987; Jones and Watt, 1993). 

Recently, a competing model has emerged. In 2007, Clayton and colleagues showed that epidermal 

clone sizes in mouse tail epidermis increase over time, contradicting the classical stem / transit 

amplifying cell model involving EPUs. Instead, they proposed a stochastic model where all basal cells 

possess progenitor character and fate decisions occur stochastically. This population asymmetry, in 

contrast to the previously discussed invariant asymmetry, leads to a hallmark scaling behaviour of 

the clone size and distribution. In contrast to the hierarchical EPU model, where clone size and 

number remains stable over time, clones in the stochastic model become less in number and vary in 

size. This population asymmetry leads to a characteristic scaling behaviour of the clone size 

distribution (depicted schematically in figure 1.4).  

 

 

Figure 1.4 Hierarchical vs. stochastic stem cell model. The classical SC model consisting of stem and transit 
amplifying cells (left panel) would lead to an invariant asymmetry with similar and invariant clone sizes. In 
contrast, a progenitor population with stochastic fate leads to population asymmetry involving different sized 
clones over time (right panel). Picture taken from Hsu et al., 2014. 

 

Admittedly, a very slowly cycling population of quiescent stem cells would be undetectable in the 

applied labelling approach (Clayton et al., 2007). This model was recently confirmed by further 

lineage tracing experiments in mouse IFE in combination with mathematical modelling (Blanpain and 

Simons, 2013; Lapouge et al., 2011; Mascré et al., 2012). Here, a quiescent stem cell population with 

only 4 – 6 divisions per year was proposed. Progenitor cells follow a pattern of balanced stochastic 

fate, where one in five divisions leads to progenitor cell loss. It was shown before, that stem or 

progenitor cell populations might be heterogeneous, with cells reversibly assuming different states 
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of competence (Graf and Stadtfeld, 2008). These fate transitions are unfortunately hard to discern in 

lineage tracing approaches. It is therefore difficult to conclude which cells are true quiescent stem 

cells or whether such a population does even exist in the interfollicular epidermis (Blanpain and 

Simons, 2013).  

An overview over the currently discussed hypotheses on stem cell hierarchy in the epidermis is 

shown in Figure 1.5. 

 

 

Figure 1.5 Stem cell hypotheses. In addition to the classical model involving a quiescent stem cell and a transit 
amplifying population (a), recent modelling approaches suggest the existence of committed progenitors with 
stochastic fate giving rise directly to differentiated cells (b). Further models combine these two theories and 
include both a quiescent and a committed progenitor population (c) and may or may not include a TA 
population (d). Image taken from: De Rosa and De Luca, 2012 

 

To determine which of the competing theories holds true, Li and colleagues undertook a long term 

mathematical simulation of the three hypotheses: (1) the classical SC / TA model following an 

invariant asymmetry, (2) the population asymmetry model of Clayton and colleagues with a 

committed progenitor population and (3) the extended population asymmetry model of Mascré and 

colleagues including a quiescent stem cell population (Li et al., 2013). Applying the same parameters 

for all three models and modelling the scenarios for a time course of 3 years, they found that the 

classical model relying on stem and transit amplifying cells with restricted proliferative potential 

would lead to depletion of stem cells and exhaustion of the epidermis within the 3 years. The second 

model according to Clayton and colleagues (Clayton et al., 2007) did not involve a quiescent stem cell 

population and also suggested depletion of proliferating cells over time. Instead, the mathematical 

model favoured the third hypothesis, a quiescent stem cell population and a committed progenitor 
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population following a stochastic fate and leading to the hallmark scaling behaviour observed by 

Mascré and colleagues (Mascré et al., 2012).  This model also explains ageing phenomenons like 

decline of healing capacity, since a slow decrease in SC numbers was observed. The existence of a 

quiescent stem cell population would also be a reasonable explanation for the accumulation of 

mutations that can finally lead to malignancies, since stem cells are not as readily eliminated as other 

cells that acquire mutations. Notably, in all the studies mentioned, mitosis does, as a rule, only occur 

in the basal cell layer. Presumably, keratinocytes lose their proliferative potential as soon as the 

leave the basal cell layer. Exceptions are early embryonic development and wounding situations 

where suprabasal mitoses have been observed (Smart, 1970a; Stojadinovic et al., 2005). As a 

shortcoming, the modelling approach by Li and colleagues assumes that all basal cell divisions occur 

asymmetrically, meaning perpendicular to the basement membrane, in the first scenario and in 

horizontal orientation in the other two, which extremely simplifies the situation. We know from 

several studies that mitosis in the epidermis can occur in different orientations (Lechler and Fuchs, 

2005; Poulson and Lechler, 2010; Smart, 1970a). So, while this model appears to be the most 

accurate and advanced to date, it does still not entirely resemble human interfollicular epidermal 

homeostasis. 

Again, these studies have been performed in mice and therefore, as mentioned above, have to be 

carefully considered regarding their applicability to the human skin. Since lineage tracing in vital 

human skin is impossible, epidermal stem cell research is in need for good in vitro model systems 

that mimic human epidermis as closely as possible.  

 

1.2  Symmetric versus asymmetric stem cell division 

Stem cells have to fulfil the complex balancing act of self-renewal and differentiation. To do so, they 

have to be able to divide asymmetrically.  

 

1.2.1 Mechanisms of asymmetry in the human epidermis 

Several models of asymmetric stem cell division have been proposed in the literature.  

Asymmetry can arise through extrinsic cues when basal cells divide in an apical direction, with the 

mitotic spindle oriented perpendicularly to the basement membrane and the plane of division 

parallel to the basement membrane. The resulting basal daughter cell remains in contact with the 

basement membrane and the stem cell niche, and retains stem cell properties. The apical daughter 

cell, on the other hand, loses contact with the niche and instead receives signals from overlying 

differentiated keratinocytes. This daughter cell is likely to terminally differentiate. In this scenario, 

extrinsic factors (emanating from the niche or differentiated cells) and cell-cell and cell-niche 

contacts determine the fate of the stem cell progeny. High β1 integrin levels are one proposed 
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characteristic of epidermal stem cells (Jensen et al., 1999; Jones and Watt, 1993; Jones et al., 1995). 

The anchorage of basal cells to the basement membrane seems to be important to retain their 

undifferentiated state. It is known that integrin signalling suppresses differentiation of keratinocytes 

(Watt, 2002; Watt et al., 1993), and knockout of β1 integrin in basal cells leads to reduced epidermal 

growth due to impaired keratinocyte differentiation (Brakebusch et al., 2000). These studies show 

the influence of integrin binding for cell fate. Division with the mitotic spindle perpendicular to the 

basement membrane was observed in oesophageal epithelium and developing mouse epidermis as 

well as in mouse back skin but not in adult mouse tail epidermis (Clayton et al., 2007; Koster and 

Roop, 2005; Lechler and Fuchs, 2005; Seery and Watt, 2000). Controversely, older studies as well as 

observations in mouse tail skin report parallel mitosis as the main division direction, resulting in two 

basal daughter cells (Clayton et al., 2007; Smart, 1970a). Still, this kind of division can lead to 

asymmetry and differential daughter cell fate by asymmetric distribution of factors inside the mother 

cell. Even though both daughter cells stay in contact with the niche at first, a determining factor will 

be passed on unequally to the daughter cells and influence their behaviour. While the factors leading 

to a perpendicular spindle orientation in epidermal keratinocytes are relatively well characterised 

(Bowman et al., 2006; Du and Macara, 2004; Merdes et al., 2000), intrinsic cues regulating parallel 

division remain elusive.  

 

 

 

Figure 1.6 Model of asymmetric stem cell division. Asymmetry in the mother cell can arise by (b) 
perpendicular orientation of the mitotic spindle, thereby creating on basal and one suprabasal daughter cell or 
by (c) a gradient of proteins within a cell which divides in parallel to the basement membrane. Adapted from 
Blanpain and Fuchs, 2009 
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1.2.2 Markers of asymmetry 

A number of proteins that could play a role in asymmetric division of stem cells have been proposed.  

For division vertical to the basement membrane, the cell has to establish cortical polarity and tightly 

regulate spindle orientation (Lechler and Fuchs, 2005; Poulson and Lechler, 2010; Williams et al., 

2011). In mammalian epidermis, an assembly of conserved cortical spindle pole proteins is involved 

in spindle orientation, including Par6, mammalian Inscuteable (mInsc), Leu-Gly-Asn–enriched protein 

(LGN), nuclear mitotic apparatus protein (NuMA), Gαi and dynein / dynactin (Du and Macara, 2004; 

Merdes et al., 2000; Zigman et al., 2005). All of these seem to be essential for correct spindle 

assembly as was shown in knockout studies (Bowman et al., 2006; Kraut et al., 1996; Schober et al., 

1999; Siller et al., 2006; Williams et al., 2011).  

A schematic overview of the apical polarity complex is shown in Figure 1.7. 

 

 

Figure 1.7 Proteins of the polarity complex. A delicate interplay and competition between several proteins 
provides apical polarity to cells and is essential for correct spindle assembly in perpendicular mitosis. From 
Mapelli and Gonzalez, 2012 

 

The initial assumption was that these components are all part of one complex. However, recent 

evidence shows that the assembly of the spindle pole is more complex and involves competitive 

interactions of mInsc and NuMA with LGN (Culurgioni et al., 2011; Zhu et al., 2011). The exact 

mechanisms and all of the factors involved in regulating spindle orientation are not entirely clear yet. 

Some of these factors will be introduced and discussed more extensively below. 
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1.3  Organotypic culture of human keratinocytes 

In our laboratory, a scaffold-based model system to cultivate organotypic skin co-cultures has been 

established and used for years (Boehnke et al., 2007; Muffler et al., 2008; Stark et al., 2004). 

Originally based on collagen hydrogels as dermal equivalent (DE) (Stark et al., 1999), the stability and 

long-term support of an epidermis was greatly improved by the use of scaffolds. Fibroblasts were 

cultivated in a fibrin gel on top of a defined, fibrous scaffold based on esterified hyaluronic acid 

(Boehnke et al., 2007; Muffler et al., 2008; Stark et al., 2004). Recently, this model was further 

developed into a long term organotypic co-culture system comprising a fibroblast-derived matrix 

dermal equivalent (fdmDE) without scaffold, co-cultured with normal human skin keratinocytes 

providing a three-dimensional in vitro skin model. The model was thoroughly tested for 

reproducibility under different culture conditions and using a variety of epidermal cells from 

different donors (Berning et al., 2015). These advanced culture conditions permitted us to cultivate 

the fibroblasts of the DE without a scaffold. The advantage of a scaffold free model for the present 

study is the translucent and permeable DE. It allows staining and confocal imaging of the entire SE 

without peeling off the epidermis as is commonly done for wholemount staining of epidermis. 

Thereby, the tissue architecture is maintained and cells can be imaged in their 3D context without 

damaging the tissue.  

 

 

Figure 1.8 Fibroblast-derived matrix-based skin equivalent (fdmSE). The keratinocytes are seeded onto a 
fibroblast-derived dermal equivalent and cultivated at the air-liquid interface for periods of up to six months. 

 

In these 3D models, keratinocytes differentiate and form a stratified interfollicular epidermis 

including a microenvironment and a niche for stem cells (Muffler et al., 2008). The stem cells of the 

epidermis were previously identified by long-term labelling. These label-chase experiments made use 
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of the fact that stem cells are slow-cycling and thus retain a label (for example, a base analogue like 

IdU) for up to several weeks, while proliferating cells lose the label quickly. Label-retaining cells (LRC) 

could be identified in the scaffold SE model, confirming the presence of progenitor or stem cell-like 

cells in our 3D in vitro long-term organotypic culture models (Muffler et al., 2008).  

 

1.4  Project outline and objectives 

Despite the fact that the epidermis is a well accessible organ, very little is known about the stem cell 

hierarchy and its regulation in human interfollicular epidermis. Markers known to date largely refer 

to the murine hair follicle and cannot be directly transferred to the human IFE. Existing stem cell 

hypotheses are based on the assumption that stem or progenitor cells of the human IFE must be able 

to divide asymmetrically, either in response to extrinsic cues or regulated intrinsically. However, 

several important questions remain elusive:  

 

 Which mechanism of asymmetry occurs at what stage – embryogenesis versus tissue 

homeostasis?  

 Which cells in the human IFE are able to proliferate – only basal cells or also suprabasal cells?  

 Which are the decisive factors?  

 

Thus, the aim of this thesis was to determine the mechanism of asymmetric cell division in the 

human epidermis.  

First, we wanted to know what types of mitoses are present in human IFE. Second, in a quantitative 

approach, the proportion of the different types of mitoses was assessed over a time span starting 

with early, hyperproliferative time points up to late, homeostatic time points our fdmSE model 

system. To this end, mitotic events were counted in histological sections and in wholemount samples 

of the SE over a time course of up to 5 months. 

In addition, we wanted to discover potential markers of asymmetric cell division. Several markers 

discussed in the literature were investigated with immunofluorescent staining both in keratinocyte 

monocultures as well as in the organotypic co-cultures. Promising candidates were further 

functionally studied in knock-out experiments employing the novel CRISPR/Cas9 technology. In this 

way, the importance of potential markers regarding cell fate in epidermal homeostasis should be 

elucidated. 
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2. Materials and Methods 
 
 

2.1 Materials 

 

2.1.1 Cell lines and skin samples 

2.1.1.1 Normal human keratinocytes (KH) and dermal fibroblasts 

Primary keratinocytes and primary fibroblasts were routinely isolated in our laboratory from explant 

cultures of human skin. In this thesis, keratinocytes from three different donors and fibroblasts from 

one donor were used. The internal name of the keratinocytes and fibroblasts is the date of isolation 

(Table 2.1). The skin samples were kindly provided by Dr. Doebler (ATOS Klinik, Heidelberg) and the 

women's Hospital in Tübingen with the consent of the Ethics Commitee. 

Table 2.1 Normal human keratinocytes (KH) and fibroblasts from primary human explants.  

Internal name Age Gender Area 

Fib1 04.04.07 23 years female n/s 

KH1 04.04.07 23 years female n/s 

KH17.04.07 43 years female breast 

KH19.04.12 49 years female breast 

 

2.1.1.2 HEK293 cells 

The human embryonic kidney 293 cell line which was used as control cell line for most antibody 

stainings in this thesis was kindly provided by Dr. S. Diederichs, Department of RNA Biology and 

Cancer, DKFZ Heidelberg. 

 

2.1.1.3 A431 cells 

The human epithelial carcinoma cell line A431 was kindly provided by Prof. Herrmann, Functional 

Architecture of the cell, DKFZ Heidelberg. 

 

2.1.1.4 Human induced pluripotent stem cells (hiPS) 

Human induced pluripotent stem cells were produced and kindly provided by Prof. Utikal, Dermato-

oncological co-operation DKFZ and University Mannheim. 

 

2.1.1.5 Schneider 2 cells 

The embryonic Drosophila Schneider 2 (S2) cells were obtained from Dr. Weyd, Dep. of Tumour 

Immunology, DKFZ Heidelberg. 
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2.1.1.6 Human skin samples 

Skin sampling was conducted according to the Declaration of Helsinki Principles. Skin samples were 

obtained from surgical excisions that were not required for histological diagnostics and kindly 

provided by Prof. Utikal, University Clinic Mannheim. The patients signed the informed consent in the 

respective Departments of Dermatology. These were approved by the Institutional Commission of 

Ethics of the University of Heidelberg (103/2001).  

Table 2.2 Human skin samples. Skin samples of healthy skin areas were obtained from donors in the University 
clinic Mannheim. 

Age Gender Area 

76 years male leg 

64 years female chin 

49 years female breast 

46 years female back 

26 years male axilla 
 

 

2.1.2 Cell culture supplements and media 

Table 2.3 Cell culture supplements and media  

Article  Supplier  

Adenine  Sigma Aldrich, Steinheim, Germany  

Ascorbic acid stock: 50 mg / mL  
fdmSE medium: 50 μg / mL  

Sigma-Aldrich, Taufkirchen, Germany  

Choleratoxin Sigma Aldrich, Steinheim, Germany  

DermaLife LifeLine, CA, USA 

DMEM (Dulbecco´s Modified Eagle´s Medium)  Cambrex (Lonza), Verviers, Belgium  

EDTA (Ethylenediaminetetraactetate)  
(0.05% (w/v)) in PBS+ 1 μL / mL phenolred  

Serva Electrophoresis GmbH, 
Heidelberg, Germany  

EGF (Epidermal growth factor) 1 ng/ml, Sero-med, Wien, Austria  

F12 Cambrex (Lonza), Verviers, Belgium  

FCS (Fetal calf serum)  Invitrogen Gibco, Darmstadt, Germany  

FGF (Fibroblast growth factor) Invitrogen Gibco, Darmstadt, Germany  

Glycerol  Carl Roth, Karlsruhe, Germany  

Hydrocortisone Sigma Aldrich, Steinheim, Germany  

Penicillin / Streptomycin (10U/ml; 10μg/ml)  Biochrom, Berlin, Germany  

Penicillin / Streptomycin / Amphotericin Cambrex (Lonza), Verviers, Belgium  

rhInsulin Sigma Aldrich, Steinheim, Germany  

TGF-β1 human recombinant  
10 μg / mL dissolved in 4 mM HCl with 1 mg / mL BSA, SE 
medium: 5 ng / ml  

R&D Systems, Minneapolis, USA, 240-
B/CF  

Thrombin S lyophilized 10 I.E. / mL in PBS + CaCl2 (5,88 mg 
/ mL)  

Baxter, Unterschleißheim, Germany  

Trypsin 0.1 % in PBS / 1 μL / mL Phenolred  
Roche Biochemica, Mannheim, 
Germany  
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Table 2.4 Cell culture media 

Article  Ingredients  

D10  DMEM + 10 % FCS + 1 % Penicillin (10 U / mL) / Streptavidin (10 μg / mL)  

FADcomplete 

1:1 DMEM / F12, 5 % FCS, 1 % Pen / Strep,  
5 mg / L Insulin, 10-10 M Choleratoxin, 1 μg / L rhEGF, 24μg / L Adenin, 0.4 μg / mL 
Hydrocortison  
 

fdmMedium 
1:1 DMEM / F12, 10 % FCS, 1 % Pen / Strep / Amph., 200 µg / mL Asc. Acid, 1 µg / 
mL TGFβ, 2.5 ng / mL EGF, 5 ng / mL  FGF, 5 µg / mL rhInsulin 

Freezing 
Medium  

DMEM containing 20 % FCS and 10 % (v/v) Glycerol  

rFAD 
1:1 DMEM / F12, 10 % FCS, 1 % Pen / Strep, 200 µg / mL Asc. Acid, 0.4 µg / mL 
Hydrocort., 10-10 M Choleratoxin 

Trypsin / EDTA  0.05 %Trypsin / 0.025 % (w/v) EDTA in PBS with Phenolred  

 

 

2.1.3 Antibodies and kits 

Table 2.5 Primary antibodies 

Epitope Species Dilution Supplier / Order no. 

Acetylated Tubulin mouse 1:200 
Sigma T6793 
 

GAPDH mouse 1:50,000 (WB) Millipore MAB374 

H3S10ph rabbit monoclonal 1:200 Epitomics 1173-1 

H3S10ph mouse monoclonal 1:5000 
Millipore 05-806 
 

Inscuteable goat  1:400 Santa Cruz SC243091 

Integrin α6 rat 1:500 Progen 10709 

Integrin α6 mouse monoclonal 1:20 Millipore CBL458 

K19 mouse monoclonal 1:20 Progen  11417 

Keratin 10 mouse monoclonal 1:10 Progen 11414 

Ki67 mouse monoclonal 1:20 Dako M724029-2 

Ki67 rabbit 1:400 Abcam 15580 

LRP6Sp1490 rabbit 1:250 

C. Niehrs, DKFZ Heidelberg LRP6total rabbit 1:250 

LRP6Tp1479 rabbit 1:250 

Ninein rabbit 1:250 O. Gruss, ZMBH Heidelberg 

Notch1 rabbit 1:100 Abcam 27526  

NuMA rabbit 1:1000 
Novus Biologicals NB 500-174 
 

Numb mouse 1:400 (IF), 1:15,000 (WB) S. Pece, Milano, Italy 

ParD6A goat 1:500 Santa Cruz 14401 

TPX2 rabbit 1:10,000 O. Gruss, ZMBH Heidelberg 
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Table 2.6 Secondary antibodies 

Host species Reactive species Conjugation Dilution Supplier / Order no. 

donkey rabbit DyLight488 1:500 Invitrogen A21206 

donkey goat DyLight488 1:800 Dianova 705-486-147 

goat rabbit Cy3 1:500 Jackson 111-165-003 

goat mouse Alexa488 1:500 Invitrogen A11029 

goat mouse Cy3 1:500 Jackson 115-165-068 

goat rat Alexa488 1:500 Jackson 112-545-003 

goat guinea pig DyLight488 1:500 Dianova 106165003 

horse mouse HRP 1:20,000 Cell Signalling 7076S 

 
 

Table 2.7 Ready-to-use kits 

Kit Supplier  

BCA Assay Thermo Scientific, Schwerte, Germany 

Hematoxylin & Eosin (H&E) staining kit  Morphisto, Frankfurt, Deutschland  

Mycoplasma Detection Kit  Sigma-Aldrich, Taufkirchen, Germany  

QIAshredder Qiagen, Hilden, Germany 

RNase-free DNase Set Qiagen, Hilden, Germany 

RNeasy Mini kit Qiagen, Hilden, Germany 

Thermo Scientific RevertAid H Minus Strand cDNA 
synthesis kit 

Fermentas, St.Leon-Rot, Germany 

 
 
2.1.4 Technical equipment 

Table 2.8 Technical equipment 

Name Supplier  

CASY® cell counter with TTC analysis system Schärfe System, Reutlingen, Germany  

Cell culture incubator HeraCell 240 and 240i ThermoScientific, Schwerte, Germany 

Cell Freezing machine Kryo 10 Series III Planer, Sunbry-on-thames, UK 

Centrifuge 5417 R (for Eppendorf tubes)  Eppendorf, Wesseling-Berzdorf, Germany  

Centrifuge Heraeus Laborfuge 400  Thermo Scientific, Fermont, USA  

Cryo boxes  Nunc, Wiesbaden, Germany  

Cryostat CM3050S Cryotome  Leica, Wetzlar, Germany  

Digital Timer, Neolab 2-2002 neoLab, Heidelberg, Germany 

Dispensette  Brand, Wertheim, Germany 

ELISA Reader Multiskan FC Thermo Scientific, Schwerte, Germany 

Forceps Dumont Dumont, Montignez, Switzerland 

Gammacell 1000 (137Cs) 
Atomic Energy of Canada Limited, Ontario, 
Canada 

Gasprofi 1 micro WLD-Tec neoLab, Heidelberg, Germany 

Lab pipettes, Gilson Pipetman, 10-1000 µL Gilson, Mannheim, Germany 

Laboratory Scale Delta Range PC440 Mettler-Toledo, Gießen, Germany 

LightCycler® 480 II  Roche, Mannheim, Germany 

Liquid nitrogen  KGW Isotherm, Karlsruhe, Germany 

Micro scales Sartorius, Göttingen, Germany 



16   Materials and Methods  
 

Name Supplier  

Microcentrifuge II, GMC-060 Daihan Labtech, Corea 

Microscope AX-70 (fluorescence) 
F-View II CCD-camera 

Olympus, Hamburg, Germany  

Microscope BX-51 (Histology) 
Color-View I camera 

Olympus, Hamburg, Germany 

Microscope confocal Leica TCS SP5 II Leica Wetzlar, Germany 

Microscope IX-70 (cell culture)  
AxioCam ERc 5s 

Olympus, Hamburg, Germany 

Minifuge RF Heraeus Intruments, Osterode, Germany 

NanoDrop 1000 Thermo Scientific, Dreieich, Germany 

Nitrogen tank CHRONOS Messer, Griesheim, Germany 

PCR machine DNA Engine Dyad Peltier Thermal 
Cycler 

BioRad, Munich, Germany 

pH Meter ph522 WTW, Weinheim, Germany 

Pipetboy acu IBS Integra Biosciences, Zizers, Switzerland 

Pipetboy Comfort IBS Integra Biosciences, Zizers, Switzerland 

Pipettes mLine Biohit, Göttingen, Germany 

Serological pipettes Stripette, 10-50mL Corning, Amsterdam, Netherlands 

Shaker KS250 basic IKA Labortechnik, Staufen, Germany 

Sliding microtome Leica SM2010 R Leica Biosystems, Nussloch, Germany 

Sterile tissue culture hood, HeraSafe HS18 Heraeus Instruments, Hanau, Germany 

Thermomixer 5436 Eppendorf, Hamburg, Germany 

Tissue-Tek TEC Tissue Embedding Console Sakura Finetek, Zoeterwoude, Netherlands 

Tissue-Tek VIP 5 Jr. Vacuum Infiltration Processor Sakura Finetek, Zoeterwoude, Netherlands 

Vacuboy and VACUSAFE system Integra Biosciences, Fernwald, Germany 

Vortexer REAX 200 Heidolph Instruments, Schwabach, Germany 

Water bath Köttermann, Hänigsen, Germany 

 
 
2.1.5 Consumables, buffers, chemicals, solutions and enzymes 

Table 2.9 Enzymes 

Enzyme Supplier 

DNA Polymerase I Invitrogen, Karlsruhe, Germany 

DNase Roche Applied Sciences, Mannheim, Germany 

Hot Start Taq Polymerase, Fermentas St.Leon-Rot, Germany 

Reverse transcriptase Quiagen, Hilden, Germany 

RNase Roche Applied Sciences, Mannheim, Germany 
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Table 2.10 Consumables 

Article Supplier 

12-well deep-well ThinCert-plates  
(fdmSE) 

Greiner Bio-One,Frickenhausen, Germany 

12-well ThinCert 0.4 µm, translucent Greiner Bio-One,Frickenhausen, Germany 

6-well Falcon inserts 0.4 µm, translucent, 
High pore density 

BD Biosciences, Heidelberg, Germany 

Cell culture dishes and plates, various sizes BD Biosciences, Heidelberg, Germany  

Cell culture tubes CELLSTAR 15 mL - 50 mL Greiner Bio-One, Frickenhausen, Germany 

Cell Strainer 40 and 70 µm BD Bioscience, Heidelberg, Germany 

Cover glasses, various sizes Menzel, Braunschweig, Germany 

Cryo tube TM Vials  Nunc, Wiesbaden, Germany  

Cryomold, various sizes Sakura Tissue-Tek, Zoertewonde, Netherlands 

Filter tips, Tip-One, various volumina Starlab, Hamburg, Germany 

Filter tips, various volumina Nerbe-Plus, Winsen/Luhe, Germany 

Immersion Oil Immersol 518N  Zeiss, Jena, Germany 

Liquid Blocker Pen Daido, Sangyo, Tokyo, Japan 

Microscope slides (Histobond®)  Marienfeld, Lauda-Königshofen, Germany  

Microscope slides (uncoated)  Langenbrinck, Teningen, Germany  

Object glasses  (76 x 26 mm) Menzel, Braunschweig, Germany 

Paraffin Vogel, Gießen, Germany 

Parafilm M Bemis Plastic Packaging, Neenah, USA 

PCR tube, 0.5 mL Eppendorf, Hamburg, Germany 

Pipette tips, various sizes Starlab, Hamburg, Germany 

quadriPERM dishes Greiner Bio-One, Frickenhausen, Germany 

Safe-Lock tubes, 1.5 mL Eppendorf, Hamburg, Germany  

Superfrost Plus slides Menzel, Braunschweig, Germany 

Syringe Luer Lock tip (5, 10, 30, 50 mL) Terumo, Leuven, Belgium 

 

Table 2.91 Buffers 

Buffer Ingredients 

Blocking buffer PBS-, 5 % goat serum, 5 % BSA, 5 % donkey serum 

Blocking milk 5 % skim milk in PBS-T 

FACS buffer PBS+, 2 % FCS 

PBS-T PBS-, 1 % Tween-20 

RIPA lysis buffer 
10 mM Tris-HCl, pH 8.0, 150 mM sodium chloride, 1.0 % Igepal CA-630 (NP-40), 0.5 
% sodium deoxycholate, 0.1 % SDS, Aprotinin (2 µg / mL), Leupeptin (10 µg /mL), 
Pepstatin A (1 µg / mL), PMSF (1 mM), Na-Orthovanadate (1 mM) 

SDS-PAGE 
Running buffer 

1 x Tris-Glycine, 10 % SDS in H2O 

Separating gel 
buffer 

1.5 M Tris, 14 mM SDS ad 1 L H2O 

Stacking gel 
buffer 

0.5 M Tris, 14 mM SDS ad 1 L H2O 

Tris-Glycine 
(10x) 

330 mM Tris, 1.9 M Glycin ad 0.5 L H2O 

WB transfer 
buffer 

1x Tris-Glycine, 20 % MeOH in H2O 

 



18   Materials and Methods  
 

Table 2.102 Software 

Software Company 

Adobe CS5  Adobe Systems Incorporated  

AxioVision Version 40V 4.8  Carl Zeiss Micro Imaging, Göttingen, Deutschland  

Cell^D, Cell^F  Olympus, Hamburg, Deutschland  

FIJI  Wayne Rasband, National Institute of Health, USA  

GraphPad Prism V 4.0 Statcon, Witzenhausen, Germany 

GraphPad Prism Version 4.0  Statcon, Witzenhausen, Deutschland  

ImageJ Version 1.4  Wayne Rasband, National Institute of Health, USA  

Microsoft Excel 2010  Microsoft Corp., USA  

Microsoft Power Point 2010  Microsoft Corp., USA  

 
 

Table 2.13 Solutions and chemicals 

Solutions and Chemicals Supplier 

2-Propanol Sigma Aldrich, Steinheim, Germany 

Acetone Sigma Aldrich, Steinheim, Germany 

Aquaguard-1 and -2 PromoCell, Heidelberg, Germany 

BSA (Bovine serum albumin) Sigma Aldrich, Steinheim, Germany 

CASY® clean Innovatis AG, Reutlingen, Germany 

CASY® ton Innovatis AG, Reutlingen, Germany 

Dako Fluorescent Mounting Medium DAKO, Glostrup, Denmark 

DAPI Sigma Aldrich, Steinheim, Germany 

dNTPs Fermentas, St. Leon-Rot, Germany 

ECL WB detection reagent Amersham GE, Freiburg, Germany 

Ethanol, absolute Sigma Aldrich, Steinheim, Germany 

Ethanol, denaturated Berkel AHK Alkoholhandel, Berlin, Germany 

Eukitt® O.Kindler, FREIBURG, Germany 

Formaldehyde solution wt. 37 % Sigma Aldrich, Steinheim, Germany 

Full range Rainbow™ marker Sigma Aldrich, Steinheim, Germany 

Glycerol Carl Roth, Karlsruhe, Germany 

Hematoxylin/Eosin (H/E)  Carl Roth, Karlsruhe, Germany  

Isoosmolar buffer  Eppendorf, Hamburg, Germany 

Methanol Sigma Aldrich, Steinheim, Germany 

Normal goat serum Dianova, Hamburg, Germany 

Nuclease free water Qiagen, Hilden Germany 

PBS (Phosphate Buffered Saline)  Serva Electrophoresis, Heidelberg, Germany  

PBS+ (PBS with MgCl2, CaCl2)  Serva Electrophoresis, Heidelberg, Germany  

Polybrene Santa Cruz, Heidelberg, Germany 

Polyethylenimine Polysciences, Eppelheim, Germany 

Ponceau S Sigma-Aldrich, Taufkirchen, Germany  

Sodium butyrate Sigma Aldrich, Steinheim, Germany 

ß-mercaptoethanol Sigma Aldrich, Steinheim, Germany 

SYBR®Green  Invitrogen, Karlsruhe, Germany  

Triton®X-100 Sigma Aldrich, Steinheim, Germany 
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2.2 Cell culture methods 

 
2.2.1 Maintenance and passaging of fibroblasts 

Fibroblasts were routinely cultivated in D10 medium and maintained in a cell culture incubator 

providing 5 % CO2, 5 % O2 and a humidity of 93 % at 37°C. Fresh medium was supplied every 2-3 days. 

The cells were split every 10 days and 1.25 x 106 cells were passaged to a fresh 15 cm dish. First, the 

cells were briefly rinsed in 0.05 % EDTA, followed by 2-5 minutes of incubation in 0.1 % Trypsin at 

37°C. Cells were resuspended with a pipette and the Trypsin was inactivated in FCS-containing 

medium of at least equal volume as the Trypsin / EDTA solution. Cells were counted with the CASY® 

Cell Counter and Analyser System Model TCC (Schärfe Systems) according to the manufacturer’s 

instructions. This counting technique is based on resistance measurement of particles. 

All cells were routinely tested for Mycoplasma contamination using the Mycoplasma detection kit.  

 
2.2.2 Freezing and thawing of cells 

To freeze cells for long term storage in liquid nitrogen, the cells were trypsinised and counted and 

the desired cell number was centrifuged for 5 minutes at 1000 rpm. The cell pellet was taken up in 

freezing medium (DMEM containing 20 % FCS and 20 % Glycerol). 2 x 106 cells were aliquoted into 

cryotubes in 1 mL of freezing medium. To allow the glycerol to diffuse into the cells and dehydrate 

them, the aliquots were left at RT for 30 min. The pellets were then frozen by gradually lowering the 

temperature to -196° C in a freezing machine and stored in liquid nitrogen. 

Frozen cells were thawed as quickly as possible by transferring them from liquid nitrogen directly 

into a 37° C water bath. The cell pellet was resuspended gently and seeded into a cell culture dish. 

 
2.2.3 Cell pellets for DNA and protein isolation 

Cell pellets for DNA or protein isolation were obtained by growing cells in a 10 cm culture dish and, 

after washing with ice cold PBS, carefully scraping off the cells with a cell scraper. The cells were 

collected in 1 mL PBS in a 1.5 mL vial. To remove the PBS, the cells were centrifuged for 5 minutes at 

2000 rpm at 4° C. The PBS supernatant was aspirated and the pellet was either processed 

immediately or snap frozen in liquid nitrogen and stored at -80° C. 

 
2.2.4 Generation of fibroblast-derived matrix-based skin equivalents (fdmSE) 

To study the mitotic behaviour of epidermal keratinocytes under in vivo-like conditions, organotypic 

co-cultures mimicking human epidermis and dermis were cultivated. Derived from a scaffold-based 

culture model published in 2007 by our lab (Boehnke et al., 2007), we have recently developed a 

scaffold-free culture system (Berning et al., 2015). Here, the keratinocytes are seeded onto a cell-

derived matrix dermal equivalent. 
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12-well cell culture plates (665110, Greiner Bio-One ThinCert-Plate) were equipped with cell culture 

inserts (665640, Greiner Bio-One, ThinCerts, 12 well, 0.4μm, translucent). In the time course of 1 

week, three layers of fibroblasts were seeded in each filter insert. Per well and seeding time point, 

0.5 x 106 fibroblasts were seeded in 0.5 mL medium containing serum and growth factors (see fdm 

Medium). After the last seed, the cell-derived matrix was allowed to build up over a pre-cultivation 

period of 4 weeks with medium changes every 2-3 days.  

To create a skin equivalent, keratinocytes were thawed from the liquid nitrogen storage and 

cultivated in DermaLife medium for 5-7 days. Prior to trypsinising the cells in 0.4 % Trypsin / EDTA for 

2-3 minutes, the cells were briefly washed in EDTA to remove Calcium. Single cells were counted in 

the Casy cell counter. Per well, 2.5 x 105 keratinocytes were seeded onto the fdmDE in fdmMedium. 

The fdmSE were cultivated submerged for 1-2 days and then lifted to the air-liquid interface. Medium 

was changed 3 times per week. 

 

 

2.3 Processing of tissue  

 
2.3.1 Harvest and processing of cells and fdmSE 

The fdmSE were harvested for either histological preparation, for cryosectioning with subsequent 

immunofluorescence or for wholemount (WM) immunofluorescence. 

 
2.3.2 Histological processing 

Structural properties of tissues can be visualised  by Hematoxilin / Eosin staining. Hematoxilin 

attaches to negatively charged phosphate groups of the DNA and thereby stains the cell nuclei blue. 

Eosin, on the other hand, stains the acidophilic and basic structures red, mainly cytoplasmic proteins 

and matrix structures.  

The tissue was fixed in 3.8 % Formaldehyde for at least 24 hours before embedding in paraffin and 

cutting. The paraffin sections were freed from paraffin with Xylol for 8 minutes. The sections then 

underwent an alcohol series of decreasing concentration (96 %, 80 %, 70 %, 60 %, 4 min. each) 

before incubating for 2 min in ddH2O. The staining was done in a two-step process. First, the sections 

were incubated in the Hematoxilin solution for 6 min and washed for 8 min under running tap water, 

followed by 6 min of staining in a 1 % Eosin solution and washing for 6 min. Finally, the sections were 

dehydrated by an increasing alcohol series (1 min 80 %, 2 x 2 min 96 % Ethanol), 2 min in Isopropanol 

and 2 x 5 min in Xylol and embedded with Eukitt®.  
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2.3.3 Cryosections 

To prepare fdmSE sections for immunofluorescent staining, the SE was embedded in Tissue Tek and 

frozen in the gas phase of liquid nitrogen. The frozen pieces were stored at -80° C until sectioning at 

the cryotome. Sectioned SE were either frozen at -20° C until further use or processed directly by 

fixing in 2 % Formaldehyde for 10 minutes, followed by permeabilisation in 0.2 % Triton-X 100 for 5 

minutes. The slides were washed in PBS three times and stained with fluorescent antibodies. 

 
2.3.4 Wholemount harvest and fixation 

To stain the entire fdmSE without disrupting the tissue, the SE was taken as a whole and fixed in 

freshly prepared 2 % Formaldehyde for 1-2 hours, depending on the thickness of the epithelium. The 

wholemount was then stored in PBS with 0.05 % NaN3 at 4° C or processed immediately. Prior to 

staining, the sample was permeabilised in 0.2 % Triton-X and washed three times in PBS. 

 
2.3.5 Cells on objective slides 

In order to stain keratinocytes cultivated in 2D monoculture, 1 x 105 cells were seeded per objective 

slide in a quadriperm dish and cultivated until the desired cell density was reached. The slides were 

then fixed in 2 % Formaldehyde for 10 minutes and either stored in PBS with 0.05 % NaN3 at 4° C or 

immediately permeabilised in 0.2 % Triton-X and stained. 

 
2.3.6 Cells on cytospins 

For small amounts of cells, cytospins were prepared. A cell number up to 10,000 cells per cytospin 

was taken up in 100 µL of medium and pipetted into the cytospin funnel. The samples were 

centrifuged at 1,200 rpm for 5 minutes to press the cells through the funnel and onto the slide. The 

cells were then processed like cells grown on slides. 

 
 

2.4 Staining methods 

 
2.4.1 Indirect immunofluorescence (IF) 

2.4.1.1 Immunofluorescence of cells and cryosections on objective slides 

The permeabilised and washed slides were left to air dry before encircling the area to be stained with 

a pap pen. When the pap circle was completely dry, the cells were briefly rehydrated in PBS and then 

blocked in 5 % donkey serum / 5 % goat serum / 5 % BSA in PBS+ for 30 minutes. The primary 

antibody was diluted in the blocking agent and incubated for 30 minutes at 37° C followed by either 1 

h at RT or 4° C ON. The cells were washed 3 x in PBS- before incubating with the secondary antibody 

and DAPI diluted in blocking agent. The secondary AB incubation was also done for 30 minutes at 37° 
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C followed by 1 h at RT. After washing 3x in PBS- and once in VE water to remove excess salt, the 

slides were mounted in Dako mounting medium and stored at 4° C in the dark until imaging. 

 

2.4.1.2 Immunofluorescence of wholemounts 

The fdmSE was cut into quarters and blocked in 5 % donkey serum / 5 % goat serum / 5 % BSA in 

PBS+ for 1 h. Primary antibody incubation was done in the blocking agent for 30 minutes at 37° C and 

subsequently at RT with shaking ON. The next day, the sample was washed 3 x in PBS- for 30 

minutes. The secondary antibodies and DAPI were diluted in the blocking agent and centrifuged for 

10 minutes at full speed to reduce background staining. Secondary antibodies were incubated at 37° 

C for 30 min and 2 h at RT. After thorough washing for at least 2 h with several buffer changes, the 

sample was embedded in Dako mounting medium and stored at 4° C in the dark until imaging. For 

microscopy, the confocal Leica TCS SP5 II was used. Samples were analysed at 40x magnification. 

Images of 1024 x 1024 pixel with a pixel size of 0.4 µm were acquired. z-stacks were imaged at 

intervals of 0.7 µm.  

 
 

2.5 Molecular biology techniques 

 
2.5.1 RNA isolation (Qiagen Qiashredder + RNeasy Mini Kit + RNase-free DNase 

Set) 

RNA extraction was done using the RNeasy Mini Kit and the RNase-free DNase Set according to the 

manufacturer’s instructions. Eluted RNA was stored at -80°C. 

 
2.5.2 cDNA synthesis (Thermo Scientific RevertAid H Minus First Strand cDNA 

Synthesis Kit) 

RNA was transcribed into cDNA with the Thermo Scientific RevertAid cDNA synthesis kit according to 

the manufacturer’s instructions. The concentration of the eluted cDNA was measured at a 

NanoDrop. cDNA was stored at -20°C or for longer storage times at -80°C. 

 
2.5.3 Polymerase chain reaction (PCR) 

DNA was amplified using specific primers for the gene region of interest. The Master mix was 

prepared as indicated for one reaction in  

 

 

Table 2.11.     
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Table 2.11 PCR Master mix for one reaction. Volumes have to be adjusted for the amount of reactions. 

Reagent Volume [µL] 

10 x Buffer 2.5 

Primer fwd 10 µM 1 

Primer rev. 10 µM 1 

cDNA (50 ng / µL) 4 

ddH2O 14.25 

10 mM dNTPs 0.5 

Hot Start Taq (5 U/ µL) 0.25 

MgCl2(25 mM) 1.5 

Total 25 
 

 

The PCR cycles are listed below. For amplification of Numb and Numblike, a program of 45 cycles was 

chosen, for amplification of GAPDH, 23 cycles were sufficient. 

 

Table 2.12 PCR cycle for amplification of Numb, Numblike and GAPDH 

Step Temp. [°C] Time 

1 95 2 min 

2 94 30 sec 

3 60 30 sec 

4 72 30 sec 

5 72 10 min 

 
 

Table 2.13 Primer pairs for GAPDH, Numb and Numblike amplification. Specific complimentary (forward) and 
antisense (reverse) primer pairs were designed to bind to the cDNA of the gene of interest. GAPDH was used as 
a housekeeping gene. 

Gene Primer 

GAPDH forward GAG AAG GCT GGG GCT CAT TT 

GAPDH reverse CAG TGG GGA CAC GGA AGG 

Numb forward TGGCTGTCAAGGACACAGG 

Numb reverse TGGTCCGACTAGCATCAAAA 

Numblike forward CAGTTCATCTTTTGCCAGTGC 

Numblike TCACCCCAGGCAGAAGTC 

 
 
 

2.6 CRISPR/Cas9 knock down 
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CRISPR (clustered regularly interspaced short palindromic repeats) are DNA loci found in some 

bacteria and used there as anti-virus defence (Bhaya et al., 2011; Terns and Terns, 2011; Wiedenheft 

et al., 2012). The bacteria can incorporate short viral DNA repeats and use them as an acquired 

immune protection. The short repeats, expressed as crRNA and tracrRNA (CRISPR RNA and trans-

activating crRNA), bind complementary intruding DNA and the co-expressed Cas9 endonuclease cuts 

the DNA. Recently, this system has been adapted for gene editing purposes (reviewed in Mali et al., 

2013). The gene of interest is targeted by a gRNA (guideRNA) which mimics and combines the hairpin 

structure of the crRNA and tracrRNA. Additional binding specificity is provided by the protospacer 

adjacent motif (PAM), a three nucleotide NGG sequence. The Cas9 nuclease cleaves dsDNA, 

introducing doublestrand breaks (DSB). DSBs are repaired by non-homologous end joining (NHEJ) 

which leads to insertions or deletions and thereby disruption of the gene locus. 

 

  

Figure 2.1 CRISPR/Cas9 knock out working principle. To knock out a specific gene, a complementary guide 
RNA is cloned into a plasmid carrying the Cas9 endonuclease and a selection marker like GFP. After entering 
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the cell, the guide RNA will bind to the complementary gene sequence and recruit the endonuclease which 
cleaves the target gene, thereby inducing a double strand break (A). The subsequent frame shift will prevent 
transcription of a functional protein (B). Upper graphic taken from Jinek et al., 2013. 

 
In collaboration with Ashish Goyal from the division of RNA Biology and Cancer (DKFZ Heidelberg), 

five different guide RNAs (No. 1, 2, 3, 4 and 8) were designed and cloned into plasmids carrying the 

Cas9 sequence and a GFP reporter gene. The guide sequences were complimentary to the first exon, 

shortly after the start codon, and present in all four Numb isoforms found in skin (excluding isoforms 

5 and 6 which have only been identified in placenta) but not the Numblike homologue. The knock out 

should therefore target all Numb isoforms that could be expressed in skin. 

 
2.6.1 CRISPR guide design 

The CRISPR/Cas9 plasmids were produced by Ashish Goyal (DKFZ). In brief, the appropriate guide 

RNA (gRNA) sequences were designed using the software designed by Hsu and colleagues (Hsu et al., 

2013), found at http://crispr.mit.edu/. The specific algorithm used by the program is described in the 

publication. The user enters a 23 – 1000 bp sequence of the target DNA. The program will find all 

Cas9 target sites within that sequence and display a ranking of the sites according to specificity and 

off-target sites. We aimed at different sequences covering the start of the transcript of all Numb 

variants and chose those sequences excluding off-targets with the highest likelihood. Five guide RNA 

sequences were chosen out of the list and will in the following be labelled #1, #2, #3, #4 and #8.  

Table 2.14 CRISPR guide RNA sequences. Five different guide RNAs were designed complimentary to the Numb 
gene sequence and with minimal off-target binding. 

CRISPR gRNA name gRNA sequence Spacer sequence 

#1 GATGAAGAAGGCGTTCGCACCGG GATGAAGAAGGCGTTCGCAC 

#2 CTGCCACTGATGTGGACGACTGG CTGCCACTGATGTGGACGAC 

#3 TGATGTGGACGACTGGCCTCTGG TGATGTGGACGACTGGCCTC 

#4 AGGCCAGTCGTCCACATCAGTGG AGGCCAGTCGTCCACATCAG 

#8 CACCGGAAAATGTAGCTTCCCGG CACCGGAAAATGTAGCTTCC 
 

These sequences were cloned into the pSpCas9(BB)-2A-GFP (PX458) plasmid, additionally encoding 

the Cas9 sequence as well as a GFP protein as transfection marker. pSpCas9(BB)-2A-GFP (PX458) was 

a gift from Feng Zhang (Addgene plasmid # 48138) (Ran et al., 2013). 

https://dkfzowa0.dkfz-heidelberg.de/owa/redir.aspx?C=wTmVeAT_-UqsfF7zBVp5jbQaHJeIWNJIerRhsmLBmx-QIEUMifdWFZwGx1PcrUqmzmO4dSvo1OY.&URL=http%3a%2f%2fcrispr.mit.edu%2f
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2.2 CRISPR guideRNA design. The gRNA sequences were designed with the software at http://crispr.mit.edu/. 
Out of the output list, five sequences with the least off-target binding were chosen. 

 

Functionality of the plasmids was checked in HEK293 cultures. A T7 endonuclease test proved 

efficient gene cleavage. In brief, during the T7 test, the gene region around the DSB is PCR-amplified. 

The PCR products are heat denatured and reannealed to create heteroduplexes. These are 

recognised and cut by the T7 endonuclease. As a read out, the fragments are separated on a gel. The 

highest band indicates the wildtype gene region while two smaller double bands are the cleaved 

fragments and thereby show effective gene cleavage by Cas9. 

https://dkfzowa0.dkfz-heidelberg.de/owa/redir.aspx?C=wTmVeAT_-UqsfF7zBVp5jbQaHJeIWNJIerRhsmLBmx-QIEUMifdWFZwGx1PcrUqmzmO4dSvo1OY.&URL=http%3a%2f%2fcrispr.mit.edu%2f
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2.6.2 Transfection of keratinocytes with electroporation 

For transfection of the keratinocytes, the Invitrogen NEON™ electroporation system was used. 

Freshly thawed keratinocytes were cultivated in DermaLife for 5 days up to a confluency of 70 – 80 

%. The cells were trypsinised, counted and taken up in transfection buffer or DermaLife without 

supplements. Plasmid DNA in an end concentration of 5 or 10 µg / mL was added and 2.5 x 105 cells 

were taken up in 100 µL with the NEON™ transfection pipet and the appropriate transfection tip. 

After pulsing the cells, they were either incubated on ice for 10 minutes or directly transferred into 

collagen-coated 6-well plates containing pre-warmed DermaLife. All conditions tested are listed in   



28   Materials and Methods  
 

Table 2.15. 
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Table 2.15 Electroporation conditions tested for transfection of KH with the Invitrogen NEON™ kit. Outcome 
was measured according to two parameters: attachment of the cells after transfection and transfection 
efficiency as observed by GFP signal. – indicates no attachment or no GFP signal; +, ++, +++ indicate ranking of 
outcome from + indicating sufficient to +++ very good. 

Resusp. 
medium 

Cell no. DNA [µg] Voltage [V] Pulse width [ms] Pulse no. Cell attachment Efficiency 

Buffer R  
(Neon Kit) 

1 x 10
6
 5 1400 20 2 - - 

5.6  x 10
5
 5 1400 20 2 - - 

2 x 2.5 x 
10

5
 

5 1200 20 2 +++ - 

5 1200 30 2 ++ - 

10 1200 20 2 ++ + 

10 1200 30 2 + ++ 

5 1300 20 2 +++ ++ 

5 1300 30 2 + - 

10 1300 20 2 +++ ++ 

10 1300 30 2 +++ ++ 

5 1400 20 2 +++ ++ 

5 1400 30 2 - - 

10 1400 20 2 + + 

10 1400 20 2 + - 

Isoosm. 
buffer 

2 x 2.5 x 
10

5
 

10 800 30 2 ++ + 

10 800 40 1 + + 

10 900 20 3 + + 

10 1000 20 3 + + 

10 1000 30 2 + + 

10 1100 30 2 + - 

10 1100 40 1 + + 

10 1200 20 3 + + 

10 1200 30 2 + + 

10 1200 40 1 - - 

10 1200 30 2 +++ +++ 

10 1300 30 2 +++ +++ 

Isoosm. 
Buff., 10 
min. on 
ice 

2 x 2.5 x 
10

5
 

10 1300 20 3 - - 

10 1300 30 2 - - 

DermaLife 
w/o 
suppl., 
each  10 
min. on 
ice / no ice 

2 x 2.5 x 
10

5
 

10 500 20 3 +++ - 

10 500 30 2 +++ - 

10 500 40 1 +++ - 

10 650 20 3 +++ - 

10 650 30 2 +++ - 

10 650 40 1 +++ - 

10 800 20 3 +++ - 

10 800 40 1 +++ - 

10 1000 20 3 +++ - 

10 1000 30 2 ++ ++ 

10 1000 40 1 +++ ++ 

10 1100 30 2 +++ ++ 

10 1100 40 1 +++ +++ 

10 1200 30 2 + ++ 

10 1200 40 1 ++ ++ 

10 1300 20 3 ++ + 

10 1300 30 2 + - 

10 1300 40 1 + + 
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2.7 Fluorescence-activated cell sorting (FACS)  

To sort GFP-positive transfected cells in a fluorescence-activated cell sorter (FACS), the cells were 

trypsinised and counted as described above. Approximately 2 x 106 cells per 1 mL were taken up in 

FACS buffer (PBS+ with 5 % FCS) with 1 µL 7AAD or FxCycle for live staining of the cells. Cells were 

sorted at the DKFZ core facility and collected in 5 mL Falcon tubes containing medium. The collected 

cells were processed immediately after sorting. 

 
 

2.8 Western Blot 

 
2.8.1 Protein extraction 

Cell pellets were thawed on ice and resuspended in 35 – 75 µL freshly prepared RIPA buffer 

containing protease inhibitors. The suspension was incubated on ice for 30 minutes with occasional 

flipping of the tube. The cell debris was pelleted by 30 minutes of centrifugation at 14,000 rpm at 4° 

C. The supernatant was transferred into a fresh tube and the pellet discarded. The total protein 

concentration was determined by a BCA assay with a BSA standard curve. In brief, 25 µL of 1:10 

dilutions of the samples were incubated with 200 µL of a 50:1 mixture of the BCA reagents for 30 

minutes at 37° C. The colorimetric change was read out by a 96-well plate reader at 562 nm.  

 
2.8.2 SDS-Polyacrylamide gel electrophoresis 

The proteins of the cell lysates were separated according to their size on a 10 % SDS gel. First, the 

proteins were denatured by boiling at 95° C with 5x Lämmli buffer containing β-mercaptoethanol 

which breaks the disulfide bonds. The SDS in the running buffer provides the denatured proteins with 

a negative charge in proportion to their molecular weight. The proteins therefore travel through the 

gel toward the cathode if a current of approximately 100 V is applied. For molecular weight 

reference, the Rainbow molecular weight marker was used. 

 
2.8.3 Protein transfer and detection 

The proteins were transferred to a nitrocellulose membrane with the wet blot method using the 

BioRad apparatus. The gel was placed onto the membrane between Whatman paper and sponges in 

a blotting cassette. The proteins were blotted onto the membrane for 2.5 h at a current of 48 V. To 

check for successful protein transfer, the membrane was bathed briefly in Ponceau dye and rinsed in 

water to visualise total protein bands.  

After blocking unspecific binding sites in 5 % skim milk for 1.5 h, the membrane was washed briefly in 

TBS-T buffer and incubated ON at 4° C with the appropriate antibodies diluted in TBS-T on a rolling 

shaker. The next day, the membrane was washed 2 x in TBS-T and once in blocking buffer before 



Materials and Methods   31 
 

incubating for 1 h at RT with the HRP-coupled secondary antibody diluted in blocking milk. After 

three more wash steps, the membrane was incubated for 1 min with the ECL solution containing the 

substrate for the HRP. The luminometric reaction was detected on an X-ray film in the dark.  
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3. Results 
 

3.1 Four different types of mitoses were found in human skin equivalents 

To assess in which way the keratinocytes in the fdmSE divide, H & E stained tissue sections were 

examined. So far, it is described that only basal keratinocytes in adult epidermis possess proliferative 

potential. Only during embryogenesis and wound healing are suprabasal cells able to divide (Lechler 

and Fuchs, 2005; Smart, 1970a; Stojadinovic et al., 2005). The mitotic orientation found in 

homeostatic skin differs according to the tissue. In mouse back skin, it was found that most cells 

divide perpendicular to the basement membrane (BM) (Lechler and Fuchs, 2005) whereas in mouse 

tail skin the predominant proportion of divisions occurred in horizontal direction (Clayton et al., 

2007).  

Unexpectedly, we identified four different types of mitosis. (1) Division in parallel to the BM with 

both daughter cells remaining in contact with the BM, classically referred to in the literature as 

“symmetric division”. (2) Division perpendicular to the BM, which places one of the daughter cells in 

the suprabasal layer. (3) Division at an oblique angle between 0 and 90° degrees to the BM. (4) 

Suprabasal division where neither the mother cell nor a daughter cell stayed in contact with the BM 

(figure 3.1).  

 

Figure 3.1 Four different types of mitosis were found in the human skin equivalent. In H & E stained sections 
of the fdmSE, keratinocytes divided in four ways: horizontal to the basement membrane, perpendicular to the 
basement membrane, at oblique angles or suprabasally. 

To find out which types of mitosis play a role during expansion and homeostasis of the epidermis in 

skin equivalents, I quantitatively assessed the mitotic events in the fdmSE at time points ranging 

from 4 days to 5 months. 

First, mitoses were counted in H & E stained sections of the fdmSE (figure 3.2). The processing and 

imaging is quick and reproducible. On the other hand, the cutting plane may distort the appearance 

of the division angle or location. Nevertheless, since these cutting artefacts probably only account for 

a small proportion of the counted events, the analysis of mitoses found in histological sections is 

nevertheless a reliable first assessment of the mitotic behaviour of keratinocytes in the fdmSE. 
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Figure 3.2 Types of mitoses found in histological sections of the fdmSE. In H & E stained histological sections 
of the skin equivalents, 349 mitotic events were counted over a time span of 5 months (A). About 50 % of 
mitoses occurred in horizontal orientation (B), 20 – 30 % at oblique angle (C), up to 10 % at perpendicular angle 
(D) and between 10 and 20 % of cells divided suprabasally (E). 
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Of 349 counted mitotic events in the fdmSE (figure 3.2 A), horizontal divisions made up the largest 

proportion at all time points with mostly about 50 % (figure 3.2 B). At one week, only 25 % of cells 

divided horizontally, which was also the time point with most suprabasal mitoses with almost 40 % 

(figure 3.2 E). The highest proportion of horizontal divisions occurred at late time points with almost 

70 % at week 11 and about 75 % at 5 months. The second most frequent division type was oblique 

division with a proportion of 20 – 40 % (figure 3.2 C). This distribution was relatively stable over the 

entire observed time period of 4 days to 5 months of culture with the exception of a drop to 10 % at 

week 11 and an increase at weeks 9 and 14 weeks. These time points seemed to be in reciprocal 

correlation with the horizontal divisions, which increased at week 11 and dropped at week 9 and 14. 

Perpendicular divisions occurred at low frequencies of about 10 % and were entirely absent at week 

6 and 14 and 5 months as well as 4 days (figure 3.2 D). We found a substantial amount of suprabasal 

mitotic events, accounting for 10 – 20 % at most time points (figure 3.2 E). Suprabasal division 

peaked at two weeks and remained stable except at the very late time points, where no suprabasal 

division was seen.  

 

In addition to the histological sections, mitotic events were counted in wholemounts of the fdmSE, 

meaning the entire tissue piece was fixed and stained. Processing and imaging is more laborious than 

the H & E stained sections. However, the information obtained from the wholemounts is more 

reliable since we can image larger tissue areas and reconstruct the 3D morphology of the tissue. 

FdmSE wholemounts (WM) were fixed and stained for the spindle-associated protein TPX2 and 

Integrin α6, a hemidesmosomal component connecting basal keratinocytes to the basement 

membrane (BM). Integrins can be used to reliably identify the basal pole of basal keratinocytes 

connected to the BM which is important in this case to determine angle and location of the mitotic 

events. The stained tissue specimens could be imaged with a confocal microscope without disrupting 

or cutting the tissue, thereby maintaining the 3D structure. Following the confocal z-stack, images 

were processed in order to reconstruct the 3D tissue organisation (example shown in Figure 3.3). 
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Figure 3.3 3D Reconstruction of whole fdmSE. Whole fdmSE specimen were fixed, stained for Integrin α6 and 
the spindle-associated protein TPX2 and imaged as z-stacks by a confocal microscope. The staining of the 
basement membrane appears uneven in the single z-layers due to the naturally uneven basal cell layer. In cross 
section of the 3D reconstruction, the exact location of mitotic cells and the position of the mitotic spindle 
relative to the basement membrane was demonstrated.  

 

The uneven staining of Integrin α6 in any one z-layer is a result of the naturally uneven BM. In the 3D 

reconstruction, however, the entire BM is visible and the exact location and angle of the mitotic 

events can be determined. Over 600 mitotic events were counted over a culture time from 1 to 10 

weeks (figure 3.4 A). The data of three independent experiments for each time point were analysed 

to ensure reproducibility and reveal the relevance of each division type for each time point (figure 

3.4). 
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Figure 3.4 Types of mitoses found in wholemounts of the fdmSE. In several independent experiments, over 
600 mitotic events were counted in wholemount stainings of the fdmSE over a time span of one to ten weeks 
(A). Horizontal mitoses accounted for the largest proportion with 40 to 80 % (B). Oblique (C) and suprabasal (E) 
division each occurred at 10 – 20 % and remained relatively stable over the examined time span. Perpendicular 
mitosis peaked at 6 weeks with almost 20 % but was rare or absent at the remaining time points (D). Error bars: 
Standard error of the mean (SEM).  
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The most prominent division type found here was division horizontal to the BM (figure 3.4 B). 

Between 40 and 80 % of all divisions occurred horizontally. This distribution was increasing over the 

entire investigated time span, starting with about 55 % in week 1 and going up to 80 % in week 10, 

with a drop to 40 % in week 6. Oblique (figure 3.4 C) and suprabasal (figure 3.4 E) divisions were 

found at similar frequencies of 10 to 20 % at all time points. Reports in the literature concerning 

division angle are controversial and seem to depend on the investigated tissue and body region. 

Horizontal division angles were only reported in early mouse embryos (Williams et al., 2011), but not 

in adult mouse back skin, where about 85 % of homeostatic divisions occur perpendicular to the 

basement membrane. The proportion of perpendicular divisions found in the human skin equivalent 

was rather low (0 – 20 %, figure 3.4 D), as was also reported for adult mouse tail epidermis (Clayton 

et al., 2007). In our study, the number of perpendicular mitoses peaked at week 6 with almost 20 %. 

In comparison, at the 6 week time point in the H & E stained sections (figure 3.2 D), no perpendicular 

divisions were detected at all. In the present study, most of the cells divided in horizontal direction, a 

feature described for developing mouse skin but described to be absent in homeostatic mouse back 

skin (Lechler and Fuchs, 2005). In addition, a substantial proportion of suprabasal mitoses were 

found frequently and at all time points (figure 3.4 E), a phenomenon only ascribed to early 

embryonic stages of skin development and wound or disease situations (Lechler and Fuchs, 2005; 

Smart, 1970a; Stojadinovic et al., 2005).  

 

 

3.2 Human keratinocytes frequently divided suprabasally in the fdmSE 

and in human skin 

Since the restriction of mitotic activity to basal epidermal cells is an acknowledged paradigm in the 

literature, we were intrigued by the repeated occurrence of suprabasally dividing cells in the fdmSE. 

The fact that they were not only found during the early hyperplastic stages of the fdmSE but were 

also frequently observed at later time points suggests that suprabasal mitosis might in fact be 

involved in tissue homeostasis. 

Two possible mechanisms could be responsible for these suprabasal mitoses: First, cells detach from 

the BM during division due to spatial restrictions in the basal cell layer and the daughter cells reinsert 

into the basal layer after division, as was observed in the branching ureteric bud epithelium (Packard 

et al., 2013). Second, they may be genuine suprabasal, early differentiating cells. To further 

investigate this question, keratinocytes in sections of the fdmSE at different time points were stained 

with a mitotic marker. Since mitotic spindles are frequently destroyed during sectioning, fixing and 

staining and are hard to discern in the sections, a anti-Phosphohistone antibody was used to label 

mitotic cells. Phosphorylation of Histone H3 at Serine 11 (H3S10ph) by Aurora kinase B and 
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subsequent chromosome condensation is a prerequisite for the mitotic onset (Gurley et al., 1973; 

Hendzel et al., 1997; Paulson and Taylor, 1982). The detection of H3S10ph is, therefore, an 

established mitotic marker. Cells with phosphorylated H3 were found in cryosections of fdmSE at low 

frequencies but at all investigated time points (Figure 3.5). Interestingly, the suprabasal cells showing 

H3S10ph signal were mostly also Keratin 10 (K10) positive, indicating that they already entered the 

differentiation program. 

 

 

Figure 3.5 Suprabasal mitoses in cryosections of the skin equivalent. In cryosections of the fdmSE, mitotic cells 
were stained with anti-Phosphohistone (H3S10ph) antibody. Co-staining with Keratin10 (K10) reveals the 
differentiation state of the suprabasal cells. Mitoses in suprabasal layers were found frequently and even at 
later time points (42 days). 

 

During the first 3 weeks, the epidermis of the fdmSE is hyperproliferative due to the seeding of single 

keratinocytes which recapitulates a wound situation. As mentioned before, during wound healing, 

when the epidermis needs to expand quickly, suprabasal mitosis is frequently observed (Stojadinovic 

et al., 2005) as is the case in tumourigenic, dysplastic epidermis (Blanton et al., 1992; Meuten, 2008). 

It would therefore not be surprising to find suprabasal mitoses restricted to early time points of the 

fdmSE. Notably, suprabasal mitoses did not seem to be a special feature of the wound-like situation 

that we observe in early fdmSE. On the contrary, suprabasal mitotic activity was also observed in 

unwounded donor skin. In skin samples of three different donors, suprabasal mitotic cells were 

found with differing frequencies and apparently independent of the donor age (Figure 3.7 ). 

Wholemounts were freshly prepared from donor skin for 3D reconstruction. 
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Figure 3.6 Suprabasal mitosis in skin wholemounts. In 3D reconstructions of human skin wholemounts, 
suprabasal mitotic cells were identified with anti-H3S10ph (red). The BM is identified by Integrin α6 (green). 
Suprabasally dividing cells were identified frequently in skin of two different donors (white arrows show two 
examples). A: donor age 76 years, B: donor age 39 years. 

 

Here, instead of K10 as a differentiation marker, Integrin α6 was co-stained with H3S10ph to identify 

the BM in the z-stack. The 3D reconstruction of the z-stack images revealed that indeed suprabasal 

mitosis occurs at low but detectable frequencies in healthy skin of two different donors of different 

age. 
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Figure 3.7 Suprabasal mitosis in healthy skin. In cryosections of healthy human skin of three different donors 
of different age, suprabasal mitotic cells could be identified by staining for H3S10ph (green). Co-staining with 
Keratin 10 (red) showed that these cells are mostly Keratin-positive, early differentiating cells. 

 

Also in human skin, these suprabasal cells were positive for both the mitotic marker H3S10ph as well 

as for K10.  

 

Suprabasal mitotic cells appeared to be in an early state of differentiation as indicated by K10 

expression. It would be of interest to know whether they might still be in contact with the basement 

membrane. FdmSE sections were stained with Laminin 5, a component of the BM and Keratin 19, 

which was proposed as a stem cell marker for epidermal keratinocytes (Michel et al., 1996). Rare 

events of suprabasal keratinocytes that maintained a connection to the basement membrane were 

identified (Figure 3.8). 
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Figure 3.8 Keratin 19 in human skin equivalents. 13 days old fdmSE were stained for Keratin 19 and Laminin 5, 
a BM component. In rare cases, a cytoplasmic connection of suprabasal cells to the basement membrane was 
observed in the fdmSE. Images kindly provided by Dr. Hans-Jürgen Stark. 

 
Keratin 19 has long been discussed as a potential skin stem cell marker (Michel et al., 1996). 

However, definite proof of a stem cell character of K19 expressing cells is still missing. Here we see 

that in rare cases, suprabasal keratinocytes retain K19 and a cytoplasmic connection with the BM. 

The rare occurrence of this phenomenon might indicate a previously unknown transitory state of 

keratinocytes between a basal, proliferative and a suprabasal, post-mitotic character. 

 

Taken together, we found that the occurrence of mitotic types in the human fdmSE was more diverse 

than previously assumed. In addition to the classical symmetric division in parallel to the BM and a 

large proportion of mitoses at oblique angles, we frequently find perpendicular basal divisions as well 

as suprabasal cell division of early differentiating keratinocytes. The suprabasal, early differentiating 

mitotic cells are not an artefact of our fdmSE model but recapitulate normal human skin 

homeostasis. 

 

3.3 Potential markers of asymmetric cell division 

In addition to assessing the types of mitoses occurring in human skin, this project aimed at better 

understanding the factors influencing cell fate in the human epidermis. Previous research in different 

model organisms revealed that a complex interplay of intra- and extracellular molecules of the PAR 

complex, including PAR3/PAR6/aPKC, LGN, NuMA and Inscuteable, is necessary for proper spindle 

alignment (reviewed for example in Knoblich, 2008; Panousopoulou and Green, 2014; Williams and 

Fuchs, 2013). Genetic studies in mice identified the key players NuMA and LGN involved in orienting 

the mitotic spindle in epidermal keratinocytes and thereby maintaining the balance between self-

renewal and differentiation (Poulson and Lechler, 2010). However, as mentioned before, mouse and 

human skin differ in many respects and therefore caution is needed when trying to transfer these 
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markers identified in mouse to the human context. In addition, factors involved in asymmetric cell 

fate known to date are mostly extracellular molecules emanating from the niche. These molecules 

predominantly accumulate at the apical cell cortex and act as facilitators for apical-basal spindle 

orientation. This subsequently leads to division perpendicular to the basement membrane. On the 

other hand, factors that play a role in asymmetric division in parallel to the basement are largely 

elusive. So far, cell intrinsic cues leading to differential cell fate of the two daughter cells of parallel 

asymmetric division are lacking.  

Some of the factors identified or suggested so far will be introduced in the following chapters and 

were investigated here regarding their occurrence in the human skin equivalent. In all cases, the 

markers were stained with specific antibodies in at least three independent experiments. To 

investigate the occurrence of the marker in question in undifferentiated and early differentiating 

keratinocytes, 2D keratinocytes cultures maintained in DermaLife medium were used. This serum-

free, low-Calcium medium is routinely used to expand keratinocytes without inducing differentiation. 

These cultures are more likely to expand asymmetrically than cultures maintained in FADcomplete, a 

calcium-rich medium which promotes keratinocyte differentiation. In addition, sections of fdmSE of 

week on to three were stained, assuming that at these stages asymmetric division would be most 

prominent. 

 
3.3.1 LRP6 (low density lipoprotein receptor-related protein 6) 

There are some clues about cell extrinsic factors emanating from the ECM and surrounding cells that 

could influence division direction. For example, in mouse embryonic stem cells it could be shown that 

a localized Wnt3a signal presented to only one side of the cell orients cell division accordingly (Habib 

et al., 2013). The phosphorylated Wnt receptor LRP6 was distributed unequally to the daughter cells. 

LRP6 is essential in transmitting Wnt signalling to the cell interior. It could be shown that LRP6 

phosphorylation peaks at G2/M and plays a major role in cell cycle progression and proliferation 

(Davidson et al., 2009). LRP6 and Frizzled receptor are also required for kinetochore attachment to 

the mitotic spindle via GSK3, β‐catenin, Axin2 (Huang et al., 2007; Kikuchi et al., 2010; Niehrs and 

Acebron, 2012) and other Wnt pathway components are involved in providing microtubule stability 

and chromosome segregation (Fodde et al., 2001; Hadjihannas et al., 2006). Still, a direct regulatory 

role of Wnt could not be demonstrated so far.  

To determine the specific location of LRP6 in keratinocytes and to investigate whether asymmetric 

LRP6 distribution plays a role in KH division, 2D cultures and sections of the fdmSE were stained with 

LRP6 antibodies. The antibodies were specific for either the total fraction of LRP6 or for LRP6 

phosphorylated at either Serine 1490 (LRP6Sp1490) or at Threonine 1479 (LRP6Tp1479) (Davidson et 

al., 2005). Priming phosphorylation of LRP6 at S1490 followed by the activating phosphorylation at 

T1479 is required for signalling and therefore indicative of active Wnt pathway. 
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Figure 3.9 LRP6 in KH and fdmSE. The total fraction of LRP6 (A), LRP6 phosphorylated at Serine 1490 
(LRP6Sp1490) (B) and at Threonine 1479 (LRP6Tp1479) (C) was co-stained with acetylated Tubulin (acet. Tub.) 
or the proliferation marker Ki67. HeLa 2D cultures were used as positive control. In the 2D cultures, the 
different LRP forms were detected at the mitotic spindles and in the cytoplasm (A2, B2, C2). In cryosections of 
the fdmSE, LRP6 was found in the nuclei of single cells in the basal cell layer (A3, B3, C3).  
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Signal for the total fraction of LRP6 was detected diffusely in and around some cell nuclei in both 

dividing and non-dividing HeLa cells and keratinocyte 2D cultures (figure 3.9 A1 and 2). In 

keratinocytes, LRP6 seemed to accumulate at the mitotic spindle whereas in HeLa this was only the 

case in some divisions. In the sections of fdmSE of weeks 1 to 3 (C3), LRP6total was found diffusely 

distributed in some cell nuclei as well as in the intercellular space of the stratum corneum.  

As for the phosphorylated receptor molecules, both phosphorylation sites were detected in HeLa and 

KH 2D cultures (B1 and 2, C1 and 2). These were distributed around the nuclei and co-localised at the 

mitotic spindles. Similarly, both antibodies stained positive at early time points of the fdmSE sections 

(B3 and C3). The phosphorylated LRP6 was confined to single cells in the basal cell layer, possibly 

indicative of G2 / early M phase of these cells. However, asymmetric distribution of LRP6 total or of 

the phosphorylated molecule was not observed. In plantar mouse skin, Wnt/β-catenin signalling is 

required for stem cell self-renewal (Lim et al., 2013). In other tissues, localised Wnt signalling on one 

side of the cell was demonstrated and presenting Wnt3a to only one side of the cell was followed by 

asymmetric LRP6 partitioning to the cell surface (Habib et al., 2013). However, a localised Wnt signal 

in epidermis was not observed so far and could also not be observed in this study. Thus, our data 

suggest that Wnt signalling through LRP6 may not play a role in asymmetric cell fate of human 

epidermal keratinocytes. 

 

3.3.2 ParD6 (par-6 family cell polarity regulator) 

As a member of the cortical polarity complex (PAR), Par6 (or ParD6a) confers polarity to cells (Mapelli 

and Gonzalez, 2012).  

It was shown that the polarity complex containing Par6 / Par3 / PKCzeta or Par6 / Par3 / atypical 

protein kinase C (aPKC), respectively, plays a role in epithelial cell polarity (Jan and Jan, 2001; 

Kemphues, 2000; Liu et al., 2004; Ohno, 2001). In Drosophila sensory organ precursors, asymmetric 

cell fate depends on apical localisation of the PAR complex including Par6. As one of the major 

components, this complex contains Par6 and thus this protein might be a suitable indicator of basal 

cell polarity and asymmetry in dividing keratinocyte stem cells.  
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Figure 3.10 Par6 in KH and fdmSE. ParD6a (or Par6), a member of the polarity complex, was stained in KH (B) 
and fdmSE cryosections of up to three weeks culture age. HeLa cells were used as positive control. The 2D KH 
and HeLa cultures were co-stained with acetylated Tubulin (acet. Tub., green) or Integrin α6 (green). Weak and 
diffuse Par6 signal was detected in HeLa (A) and KH (B) but no Par6 was detected in fdmSE sections (C). 

 

In HeLa and keratinocyte 2D cultures, a weak and diffuse signal of Par6 was detected in the 

cytoplasm (Figure 3.10 A and B). In fdmSE sections, Par6 could not be detected (Figure 3.10 C). 

According to The Human Protein Atlas (http://www.proteinatlas.org/ENSG00000102981-

PARD6A/tissue/skin), expression of Par6 in skin is medium to high. Unfortunately, this could not be 

confirmed with our study. In epidermis, Par6 was found basally, but also at cell junctions in the 

granular layer where it plays a role in barrier formation (Helfrich et al., 2006). It seems that the Par 

proteins have several overlapping but also independent functions in skin and take part in different 

complex cellular processes (Thiery and Huang, 2005; Wang et al., 2013b). Par6 is required to 

maintain apicobasal cell polarity in the developing Xenopus epidermis (Wang et al., 2013b). However, 

a clear indication of Par6 as an asymmetry marker or regulator in human keratinocyte division was 

not apparent. We therefore decided to not further investigate Par6 in human epidermis. 

 
 
3.3.3 NuMA (Nuclear mitotic apparatus protein 1) and Inscuteable 

As another member of the spindle orientation regulatory complex, NuMA is crucial for proper spindle 

alignment (Bowman et al., 2006; Du et al., 2001; Izumi et al., 2006; Siller et al., 2006; Srinivasan et al., 

2003). During mitosis in the Drosophila neuroblast, LGN recruits NuMA to the cell cortex (Du and 

Macara, 2004). The adaptor protein Inscuteable (Insc) recruits NuMA / LGN / Gαi to the apical cell 

cortex (Mapelli and Gonzalez, 2012). NuMA and Insc bind to LGN exclusively and competitively 
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(Culurgioni et al., 2011; Zhu et al., 2011). In mouse skin, NuMA co-localised both with mammalian 

Inscuteable (mInsc) (Poulson and Lechler, 2010) as well as with LGN (Williams et al., 2011) during 

asymmetrical (perpendicular) basal cell division. Short-term overexpression of mInsc in mouse 

epidermis caused misalignment of mitotic spindles, an effect that was reversed during long-term 

overexpression of Insc. This shows that a delicate interplay between NuMA and Insc during mitosis is 

necessary for proper spindle orientation and asymmetric distribution of one or both proteins may be 

indicative of differential cell fate of the daughter cells.   

 

 

Figure 3.11 NuMA in KH and fdmSE. The Nuclear mitotic apparatus protein 1 (NuMA, red) was detected in 
nuclei and at mitotic spindles in HeLa (A) and KH (B). Cryosections of the fdmSE of time points up to three 
weeks were co-stained with Integrin α6 (C). NuMA was expressed strongly in interphase nuclei of all cultures 
and co-localised to the mitotic spindle in HeLa (A) and KH (B). 

 

In the 2D cultures of HeLa and keratinocytes, a strong NuMA-signal was detected in almost all nuclei 

(Figure 3.11 A and B). During telophase, NuMA was shown to localise to the nucleus where it remains 

until the next mitotic cycle (Merdes and Cleveland, 1998). We found that in both HeLa cells and 

keratinocytes, NuMA was localised at mitotic spindles and in the cytoplasm around the DNA of both 

daughter cells during anaphase. During telophase and throughout interphase, NuMA resided in the 

nucleus. Neither in HeLa nor in keratinocyte cultures did we observe asymmetric NuMA localisation 

at only one spindle pole or in only one emerging daughter cell. In the fdmSE, NuMA was difficult to 

detect but could be discerned in most of the nuclei of all cell layers (Figure 3.11 C). Apical or 

otherwise asymmetric localisation of NuMA was not found in the sections of fdmSE up to week 3 of 

culture. 
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For stainings of Inscuteable, Drosophila Schneider (S2) cells were used as controls, since Inscuteable 

is an established marker of asymmetry in the Drosophila neuroblast (Kraut et al., 1996; Schober et 

al., 1999). Human homologues of Inscuteable (mammalian Inscuteable, mInsc) were discovered 

recently (Izaki et al., 2006) and asymmetric polarisation of mInsc at the apical spindle pole seems to 

play a role in embryonic distal lung epithelium (El-Hashash and Warburton, 2011). Thus, we wanted 

to determine whether Insc is asymmetrically distributed in human epidermal keratinocytes and has 

an influence on cell fate. 

 

 

Figure 3.12 Inscuteable in KH and fdmSE. The NuMA-competitor Inscuteable (Insc., green) was stained in KH 
(B) and, as positive control, in Drosophila Schneider cells (S2, A). In addition, cryosections of the fdmSE were 
stained for Inscuteable. In S2 cells, the protein was detected in the cytoplasm of most cells (A), while in KH, 
expression was weaker and not detectable in all cells (B). In the fdmSE sections of 8, 15 and 22 days, no 
Inscuteable could be detected (C). 

 

While the anti-Inscuteable antibody was raised against the human homologue, according to the data 

sheet it should also detect Insc of other species. Indeed, Inscuteable was found abundantly in the 

cytoplasm of S2 cells (Figure 3.12 A). In a previous study, mInsc was exogenously overexpressed in 

mouse where it co-localised with the Par complex at mitotic spindle poles (Lechler and Fuchs, 2005) 

but expression of endogenous Insc protein in human skin has not been confirmed before. Here, we 

find that in keratinocytes the signal was weaker than in the S2 cells and was more pronounced in 

larger cells (Figure 3.12 B). Although Inscuteable co-localisation with the Par complex at mitotic 

spindle poles is reported for all investigated tissues, it could not be observed here. In cryosections of 

fdmSE, no specific Inscuteable signal above background level was detectable at all.  
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Even though in mouse back skin NuMA and Inscuteable were found at the apical spindle cortex in 

perpendicular divisions (Lechler and Fuchs, 2005), a similar pattern could not be discerned here. This 

might be due to the fact that in the cryosections mitotic events can rarely be observed. In addition, 

mInsc was exogenously overexpressed by Lechler and Fuchs to study its function while the 

endogenous expression and function in epidermis remains unclear. Thus, it presently remains open 

whether the level of mInsc is too low to be detected or whether mInsc is not endogenously 

expressed in our human skin equivalent. 

 

3.3.4 Ninein 

Ninein and the Ninein-like protein (Nlp) are centrosomal proteins involved in microtubule 

organisation in interphase cells (Casenghi et al., 2005). Ninein accumulates at the appendages of the 

mother centriole and at the slow-growing microtubule minus ends which anchor the microtubule to 

the centrosome (Mogensen et al., 2000). This mother centriole serves as a template for the 

replication of the daughter centriole during mitosis and also nucleates the primary cilium. 

Inheritance of the mother centriole was proposed to be characteristic for the retainment of stem cell 

character in the daughter cell (Pelletier and Yamashita, 2012; Wang et al., 2009; Yamashita et al., 

2007). The presence of Ninein during early mitosis might therefore be indicative of asymmetric cell 

fate of the two daughter cells. 

 

 

Figure 3.13  Ninein in KH and fdmSE. The centriolar protein Ninein (red) was co-stained with the spindle 
protein acetylated Tubulin (green) in KH and HeLa control cultures and with Integrin α6 in tissue sections of 
fdmSE. Centrioles could be detected in HeLa (A), KH (B) and fdmSE sections of week one to three (C).  
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The anti-Ninein antibody detected centrioles both in HeLa and in keratinocyte 2D cultures (Figure 

3.13 A and B). However, in dividing cells, we always found two or no centrioles and no asymmetric 

signal of Ninein in only one daughter cell. During mitosis, it was shown that Ninein declines from the 

centrosome and reappears at the end of mitosis (Chen et al., 2003). This observation correlates to 

our findings (see anaphase HeLa cell in figure 3.13 A and telophase keratinocyte in figure 3.13 B). In 

the cryosections of fdmSE up to week 3, the centriole location in basal cells did not appear to follow 

a specific pattern (Figure 3.13 C). In some cases, the mother centriole was located at the basal side of 

basal keratinocytes. However, more detailed analysis and co-staining with differentiation markers or 

label-retention markers would be required to draw conclusions about Ninein as a cell fate 

determinant in human keratinocytes.  

 

3.3.5 Numb 

The evolutionary conserved cell fate determinant Numb is a known inhibitor of the Notch1 pathway. 

Notch1 functions as a key driver of epidermal differentiation (Blanpain et al., 2006; Moriyama et al., 

2008; Rangarajan et al., 2001; Watt et al., 2008). Numb influences cell fate by downregulating 

Notch1 through polarized receptor-mediated endocytosis and degradation of the Notch1 

intracellular domain (NICD) (McGill and McGlade, 2003).  

Numb plays a decisive role during mouse cortical neurogenesis where it is asymmetrically distributed 

(Zhong et al., 1996), and during division of the sensory organ precursor cell in Drosophila (Rhyu et al., 

1994). An involvement in epidermal fate decisions has been proposed (Blanpain and Fuchs, 2009), 

however, a second study did not find a clear correlation between asymmetric Numb distribution and 

fate outcome in developing epidermis (Williams et al., 2011). Still, given the importance of Notch1 at 

the proliferation-to-differentiation switch in epidermal homeostasis and the major influence of 

Numb on Notch1 regulation, it is likely that Numb is involved in epidermal fate decisions.  

 

In vertebrates, two Numb homologues are described: Numb and Numblike (Nbl). Both are highly 

conserved homologues of the Drosophila Numb protein. In mouse, they play redundant but critical 

roles in cortical development and the maintenance of neural progenitor cells (Petersen et al., 2002). 

However, the expression of Numb and Numblike differs. While Numb is a known asymmetry marker 

in neuronal development, asymmetric distribution of Numblike has not been observed so far (Zhong 

et al., 1997). Information about Numb and Numblike expression in skin is sparse. Numb was shown 

to be expressed in Melanocytes (Fukunaga-Kalabis et al., 2015) and mouse keratinocytes (Williams et 

al., 2011), but information about Numblike expression in human keratinocytes is lacking. Expression 

of both homologues in normal human epidermal keratinocytes was validated by PCR with primers 

designed specifically for Numb and its homologue Numblike. RNA was extracted from cell pellets and 
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transcribed into cDNA. For comparison of the expression level, HEK293 cells were used and brain and 

placenta lysates functioned as positive controls.  

 

 

Figure 3.14 Expression of Numb and Numblike in human keratinocytes. Numb and its homologue Numblike 
were both expressed in normal human keratinocytes (KH). All samples were tested in duplicate. For 
comparison, HEK 293 cells were tested. Positive ctrls: Placenta (Plac.) and brain lysates.  

 

Both homologues were expressed in HEK293, keratinocytes, placenta and brain lysates (Figure 3.14) 

in similar amounts. Still, this gene expression on mRNA level does not necessarily resemble the 

amount of protein transcribed and active in the tissue. 

Six mammalian isoforms of Numb have been described so far, all produced from the same transcript 

by alternative splicing (Dho et al., 1999; Karaczyn et al., 2010; Verdi et al., 1996, 1999). The antibody 

used for Numb detection in this work is a courtesy of Salvatore Pece, Milan, Italy, and was produced 

against amino acids 537-551, a sequence common to all Numb isoforms but not the Numblike 

homologue (Colaluca et al., 2008). The antibody used in all subsequent stainings should therefore 

exclusively recognise Numb but not Numblike. 

 

First, we assessed Numb distribution in 2D cultures of keratinocytes in DermaLife, the generally used 

keratinocyte medium. As control cells, we used HeLa and A431, a human epithelial carcinoma cell 

line. As further control to assess Numb in undifferentiated cells, we stained hiPSCs (human induced 

pluripotent stem cells, kindly provided by J. Utikal, DKFZ Heidelberg). As a comparison to 

undifferentiated keratinocytes maintained in DermaLife, we also looked at keratinocytes grown for 

several days in FADcomplete medium. In contrast to the low-Calcium (0.15 mM), serum-free 

DermaLife, FADcomplete contains 1.05 mM Calcium and 10 % serum and allows for keratinocyte 

differentiation. Thus, we can observe and compare keratinocyte cultures in different states of 

differentiation. 
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Figure 3.15 Numb in 2D cultures of keratinocytes, hiPSC, HeLa and A431. The cell fate determinant Numb was 
stained in KH either grown in DermaLife (DL) (D) to maintain an undifferentiated state or in FADcomplete to 
induce differentiation (E). As positive controls, HeLa (A), the human epithelial carcinoma cell line A431 (B) and 
undifferentiated human induced pluripotent stem cells (hiPSC) (C) were used. In the keratinocyte cultures, 30 
dividing cells each were counted and examined regarding Numb distribution to the daughter cells (F). A larger 
proportion of KH in DL divided up Numb unequally to daughter cells than keratinocytes grown in FADcomplete 
(83 % versus 37 %). 

 

Numb expression was detected in all samples. The protein was found in a characteristic dotted 

pattern throughout the cytoplasm which coincides with the staining pattern described for different 

tissues (Clayton et al., 2007; Schmit et al., 2012; Williams et al., 2011). Both keratinocyte cultures 
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expressed high levels of Numb protein (figure 3.16 D and E). Keratinocytes retained in an 

undifferentiated state in DermaLife medium frequently showed asymmetric distribution of Numb to 

daughter cells in mitosis (figure 3.16 D). In the reprogrammed hiPSC, Numb was expressed only in 

few cells (Figure 3.15 C). The protein was repeatedly found asymmetrically distributed to the 

daughter cells, where it accumulated around the nuclei of one of the nascent daughter cells. In HeLa 

and A431 cultures on the other hand, asymmetric Numb distribution was not observed. In HeLa cells, 

the protein seemed to be less abundant in some cells and highly abundant in others (figure 3.16 A). 

In A431 which was chosen as an additional epithelial control cell line, the protein was found rather at 

the cell borders instead of throughout the cytoplasm.  

It seems that Numb shows two different patterns: either distributed throughout the cytoplasm and 

around the nucleus during mitosis as seen in HeLa, KH and hiPSC (figure 3.16 A, C, D, E); and at the 

cell membrane as seen strongly in A431 (figure 3.16 B) and less pronounced in HeLa and KH in 

DermaLife medium (figure 3.16 B and D).  

Interestingly, only the undifferentiated cultures, i. e. keratinocytes grown in DermaLife medium and 

hiPSC, showed asymmetric distribution of Numb during mitosis (Figure 3.15 C and D). While Numb 

was abundantly present in the differentiated KH cultures grown in the high Calcium FAD medium 

(Figure 3.15 E), asymmetric Numb distribution to the daughter cells was much less frequent. In 

randomly counted mitotic events in both keratinocyte growth conditions, the ratio of asymmetric 

versus symmetric Numb distribution was determined. In the DermaLife cultures, the ratio of 

asymmetric to symmetric Numb distribution was 83 to 17 %, but only 37 to 63 % in the FAD cultures 

(Figure 3.15 E). This might hint toward a Calcium-dependent expression of Numb. 

 

Next, we assessed Numb distribution in sections of the fdmSE, starting with early time points of 1 up 

to 10 weeks after keratinocyte seeding.  
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Figure 3.16 Numb and Integrin α6 in cryosections of the fdmSE. Sections of the fdmSE of culture age from 7 
days to 70 days were stained with anti-Numb (green) and anti-Integrin α6 (red). Both proteins are mainly 
localised around the basal cell rim at the basement membrane in a similar pattern. Numb was also found at the 
cell membranes of suprabasal cells. The protein distribution was comparable at all time points. 

 

Both Integrin α6 and Numb showed a distinctive and specific accumulation around the basal cell rim 

of basal cells, sometimes engulfing the cells and reaching up into the first suprabasal layer. However, 

while Integrin α6 was rather evenly distributed throughout the sections of all time points, Numb was 

detected more strongly in some regions than in others. Overall, the expression of Numb was 
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comparable at all time points spanning week one to ten. Furthermore, it seemed as if two distinct 

Numb locations exist in the skin equivalent: one in the basal cell layer, most prominently around the 

basal cell rim; and another one in the upper granular layers around the cell membrane. Both signals 

seem to be specific and coincide with the cellular staining patterns observed in the 2D cultures of 

keratinocytes in DermaLife and A431 (figure 3.16 B and D). 

In our laboratory, we repeatedly observed that proliferating epidermal cells are found in clusters 

instead of individual cells interspersed throughout the culture, a finding also reported by another 

study (Ghazizadeh and Taichman, 2005). To find out if the clustered occurrence of Numb in the basal 

cell layer coincides with proliferation, we co-stained Numb with the proliferation marker Ki67 in 

fdmSE sections. 

 

 

Figure 3.17 Numb and Ki67 in cryosections of the fdmSE. In cryosections of the skin equivalent, Ki67 (red) was 
frequently found in basal cells. The frequency of proliferating cells decreased with culture age, while Numb 
(green) was found at comparable levels at all time points. The protein was expressed at the basal rim of basal 
cells and at the cell membrane of suprabasal cells. 
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As expected, overall proliferation as seen by Ki67 staining decreased with culture age (Figure 3.17). 

While many cells of the basal layer and the first suprabasal layer were Ki67-positive in the first week, 

only few positive cells were found at late time points. Numb, again, was found irregularly 

accumulating in some regions. Intriguingly, Numb expression in the basal layer was the strongest at 

intermediate time points (week 3 to 9) and less pronounced at very early and late culture time points 

(weeks 1 – 2 and 8 – 10). A correlation of Numb expression and proliferation did not become 

apparent. Like in the sections co-stained with Integrin α6 (Figure 3.16), we again find Numb in two 

different epidermal compartments: in the basal cell layer and at the cell membranes of granular and 

cornified cells.  

In order to validate Numb expression in human skin, we prepared sections of healthy skin samples 

from donors of different sex and ages. 
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Figure 3.18 Numb and Integrin α6 in cryosections of healthy skin. In sections prepared from the skin of three 
different donors, Numb (green) was identified in a similar pattern as in the fdmSE. Independent of the donor 
age (indicated in the upper left corner of each panel), Numb was found irregularly spread throughout the basal 
sides of basal cells and in the suprabasal layers. 

 

Indeed, the pattern of Numb signal in the skin samples was comparable to the one found in the 

fdmSE. Numb was found on the basal side of basal cells and distributed unevenly throughout the 

skin. Some regions seemed to contain more Numb than others, however, a correlation with either 

rete ridges or appendages was not found. The hemidesmosomal component Integrin α6, on the 

other hand, was regularly distributed along the basement membrane. 
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Since Numb, besides its many other functions, is a known Notch inhibitor and Notch plays a well-

defined role in the keratinocyte switch to differentiation (Rangarajan et al., 2001), we were 

interested in the occurrence of Notch in the skin equivalents and its possible relationship to Numb. 

However, antibody detection of Notch1 in the fdmSE was challenging. 

 

 

Figure 3.19 Notch1 in cryosections of the fdmSE. Immunofluorescence of Notch1 (green) in cryosections of the 
fdmSE did not show conclusive and specific signal. 

 

Even with different anti-Notch1 antibodies, different fixation and staining protocols and in different 

experiments and at various time points, Notch1 staining was weak and not reproducible. Since the 

results of the stainings were inconclusive and inconsistent between experiments, we did not follow 

up on Notch1 expression in the fdmSE.  

 

3.3.5.1 Knock down of Numb in human keratinocytes 

The specific effect of a protein on a cellular process like differentiation can best be examined by 

eliminating the protein. The novel CRISPR/Cas9 method makes use of a simple and direct principle to 

cut the gene of interest and thereby disrupt protein transcription. The method is described in detail 

in the Materials and Methods section (Figure 2.1 and figure 2.2). 

In collaboration with the Department of RNA Biology and Cancer, DKFZ, we designed five different 

guide RNAs. These are in the following labelled as #1, #2, #3, #4, #8. The guideRNA sequences were 

cloned into a plasmid containing the Cas9 sequence as well as a GFP reporter protein sequence. 

To assess the functionality of each of the guides, HEK293 cells were transfected and harvested after 

72 hours. A T7 test of the cell lysates proved the efficacy of the guides (Figure 3.20). In this test, the 

region around the cut site of the target gene is PCR-amplified and heteroduplexes are created which 

are recognised and cleaved by the T7 enzyme. The resulting cleavage products can be separated on 

an agarose gel. Cleavage products shorter than the amplified gene region indicate successful 

cleavage of the target gene by Cas9. 
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Figure 3.20 HEK293 cells transfected with CRISPR/Cas9 plasmids show Numb cleavage on DNA level. A T7 test 
in transfected HEK293 cells provides the proof-of-principle for the designed guide plasmids. The upper band at 
around 400 bp indicates the uncleaved PCR product. The double band at around 200 bp indicates cleavage of 
the PCR product by the T7 endonuclease and therefore proves successful gene cleavage by Cas9. All guide 
plasmids induced gene cleavage in HEK293 cells. PX458: CRISPR/Cas9 plasmid. Experiment performed in 
collaboration with A. Goyal (DKFZ). 

 

We found that all designed CRISPR guide RNAs induced gene disruption in HEK293 cells and 

concluded that all of the guides could be used in keratinocyte knock out experiments. 

The bands at 400 bp indicate the full length PCR-amplified Numb fragment (Figure 3.20). The two 

double bands at about 200 bp are the cleaved fragments indicating successful gene cleavage. Due to 

the fact that the gRNA sequences span different gene regions and induce DSB at different sites, the 

PCR fragment is cleaved at different sites for each of the guides. This results in cleavage products of 

different sizes. 

An electroporation transfection protocol was established for normal human keratinocytes to 

introduce the CRISPR/Cas9 plasmids to the cells. The original Invitrogen NEON™ protocol (Kim et al., 

2008) was optimised regarding pulse times and voltage (detailed description in Materials and 

Methods). The cells are subjected to a short electric pulse which will temporarily break down the 

plasma membrane and make it permeable to the plasmid DNA. The cells were then seeded in 6-well 

plates and left to express the DNA for 48 hours before sorting them in a fluorescent activated cell 

sorter (FACS). The transfection is transient, meaning the plasmid is not stably integrated. Therefore, 

the GFP-expression is also transient and only detectable for a few days. However, the gene 

disruption and subsequent protein knock out caused by the Cas9 endonuclease is passed on to the 

cell progeny. 
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Figure 3.21 Transfected cells and FACS readout. Keratinocytes were transfected with CRISPR/Cas9 plasmid and 
cultivated for two days in DermaLife medium. Control cells were either left untreated (upper left), transfected 
without DNA (upper right) or transfected with mock plasmid (not shown). Cells successfully transfected with 
CRISPR/Cas9 plasmid were positive for the reporter GFP. In a fluorescent activated cell sorter (FACS), the GFP-
positive cells were collected for further analysis. 
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In five independent experiments, the transfection efficiency was between 12 and 25 %. Transfected 

cells looked healthy, morphology and proliferation was comparable to the untreated control cells.  

 

The FACS settings were adjusted to collect all GFP-positive cells, including dim cells. The GFP-negative 

fraction was collected as a control population.  

Since successful transfection as indicated by GFP expression does not necessarily lead to protein 

knock down, the presence of Numb protein has to be checked before continuing with functional 

follow-up experiments. One way to check for proteins in single cells is cytospins. Stainings of 

cytospins of the transfected cells confirmed protein knock down in the GFP-positive fraction in all five 

experiments. Figure 3.22 shows representative cytospins of two independent experiments.  

 

 

Figure 3.22 Validation of Numb knock down in KH by CRISPR/Cas9. Transfected keratinocytes collected by 
FACS in two independent experiments were immediately spun onto glass slides in a cytospin and stained 
immunofluorescently. The collected GFP-negative population was positive for Numb. In GFP-positive 
keratinocytes, Numb was not detected. 

 

In the GFP-negative fraction, Numb was abundantly detected with antibodies. In the GFP-positive 

fraction, on the other hand, Numb staining, if present, was only very dim, indicating an efficient 

knock down.  
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In addition, protein analysis was performed by Western Blot (Figure 3.23). We found that in five 

independent experiments, using different guide plasmids or even a combination of two plasmids, the 

presence of Numb was significantly reduced in the transfected and FAC-sorted GFP-positive cells. 

 

 

Figure 3.23 Knock down of Numb in human keratinocytes. Western blots of cell lysates of the FACS collected 
keratinocytes revealed efficient protein knock down in five independent experiments and using different 
guides. All four Numb isoforms present in human keratinocytes were knocked down by CRISPR/Cas9. 
Untransfected KH were used as controls. Incubating the cells on ice for ten minutes after the electroporation 
(Exp. 4) did not seem to improve knock down efficiency.  

 

A reduction of protein was detected in all of the experiments to a varying degree. In experiment 1, 

the knock down seemed most efficient with guide #8, whereas the other guide sequences did not 

result in significant protein reduction. In experiment 2, a combination of guide #1 and 3 was used 

and caused significant reduction in expressed Numb. Guide #3 alone caused a complete elimination 

of Numb in experiment 3. In experiment 4, guide #1 was used and the cells were either incubated 10 

minutes on ice after the pulse or directly suspended in medium, as in the other experiments. The ice 

treatment did not seem to affect the knock down efficiency. In both cases, the protein is diminished; 

however, also the GAPDH expression is slightly weaker in the treated cells compared to the KH 

control. In experiment 5, guide #8 caused efficient knock down of Numb. 

As demonstrated in figure 3.23, faint bands of Numb protein were detected in the GFP-positive 

fraction. This could have several reasons:  First, the cells might have taken up the plasmid and 

expressed the GFP reporter but not the Cas9 endonuclease and therefore no protein knock out 

occurred in these cells. Second, the endonuclease might be expressed but gene cleavage at both 

alleles was not 100 % efficient in all cells. Even though biallelic targeting was reported to be high with 

CRISPR/Cas9 (Jao et al., 2013; Wang et al., 2013a; Yasue et al., 2014), both of these latter scenarios 

are likely to affect a certain percentage of cells. 

In theory, the CRISPR knock down should lead to a gene frame shift that will be passed on to the 

daughter cells and therefore cause permanent protein deletion. Due to the low transfection 

efficiency, the collected number of cells was a limiting factor for direct follow up experiments. 

Therefore, cells were seeded in 96-well plates and cultivated for two weeks after sorting.  
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First, we stained for Numb to determine if the knock down was stable after two weeks and several 

rounds of division (figure 3.24 A). In addition, we assessed the proliferation capacity of transfected 

and sorted GFP-positive cells in a crystal violet cell viability assay. The cell numbers of transfected 

and untreated control cells were compared after two weeks (figure 3.24 B). 

 

 

Figure 3.24 Transfected keratinocytes showed stable Numb knock down. The cells transfected with 
CRISPR/Cas9 plasmid DNA were sorted and GFP-positive and GFP-negative cells were collected, reseeded and 
cultivated for two weeks. Numb can only be detected immunofluorescently in the GFP-negative cells but not 
the knock out cells (A). Proliferation, measured in a crystal violet assay, did not differ markedly between 
transfected and untreated cells (B). 

 

The cells of two independent transfection experiments were reseeded after FACS and analysed with 

crystal violet and anti-Numb staining after two weeks. There was no significant difference in the 

proliferation capacity of either GFP-positive or GFP-negative KH compared to the untreated control 

(figure 3.24 A). Both populations attached well and proliferated. Numb was detected in the 

cytoplasm of almost all cells in the GFP-negative population but not in the GFP-positive sorted cells 

(figure 3.24 B). GFP was weakly distributed throughout the cytoplasm of the GFP-positive sorted 

fraction. Since the plasmid DNA is not stably integrated into the genome, GFP is not continuously 

transcribed and will be diluted with each cell division.  
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Taken together, we identified Numb as a novel marker for asymmetric cell division in normal human 

keratinocytes. The protein is asymmetrically distributed in the majority of cell divisions in cells of 

undifferentiated character in a 2D context. The observed pattern of Numb distribution in the skin 

equivalent matched that of normal healthy human skin. Furthermore, we established a protocol to 

knock down Numb in human keratinocytes using the novel CRISPR/Cas9 technology. We could 

demonstrate that Numb knock down is not abrogating proliferation and thus is not essential for 

general mitosis. 
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4. Discussion 
 
Despite decades of skin research, surprisingly little is known about the exact mechanisms governing 

the delicate interplay of epidermal stem cell maintenance and differentiation and subsequently the 

factors regulating homeostasis. This is on the one hand due to the striking discrepancies between 

human skin and the skin of the mouse which is commonly used as a model organism. Furthermore, 

even in mouse interfollicular epidermis (IFE) the true stem cell population remains elusive, despite 

significant efforts to identify reliable markers. This lack of knowledge combined combined led to the 

development of a variety of differing and competing theories regarding stem cell hierarchy and, on 

the single cell level, to discordance about potential stem cell populations and their character. The 

aim of this thesis was therefore to use an advanced human skin equivalent to shed light on the 

mitotic behaviour of the human keratinocytes maintaining the skin, starting at early, 

hyperproliferative stages up to late, homeostatic time points. In addition, the question of factors 

involved in asymmetric cell fate was tackled. The insights gained from our fdmSE were verified by 

using skin samples from healthy donors to demonstrate the relevance of the 3D human culture 

model used. 

 

4.1 The fdmSE as a model to study human epidermis 

The organotypic co-culture system used in this study was recently developed in our laboratory 

(Berning et al., 2015). In contrast to the previously published skin equivalent (Stark et al., 2004), the 

new version of the model does not use a scaffold or fibrin gel. Instead, normal human fibroblasts 

derived from healthy donors are pre-cultivated on a filter in a special medium to promote the 

secretion of factors needed to build the extracellular matrix (ECM) of the dermis. In the course of 

four weeks, a fibroblast-derived dermal equivalent (fdmDE) forms which mimics human dermis and 

supports a stratified epidermis for six months in a stable and highly reproducible way.  

One important advantage for this study is the absence of a scaffold in the fdmSE. The ECM itself is 

translucent and permeable and thereby allows for microscopic analysis from below without 

disrupting the tissue. The resulting wholemount images acquired with confocal microscopy reveal 

the native state of the cells in their 3D context. 

However, staining of the tissue in toto requires long-term antibody diffusion through the matrix-rich 

DE and the cell-rich epidermis, thus increasing the probability for high background staining. 
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4.2 Four types of mitosis maintain normal human epidermis 

In the present study, the types of mitoses occurring in the skin equivalent were systematically 

assessed and counted over culture time points spanning the early, hyperproliferative stages of 

epidermal development up to late, homeostatic culture conditions, allowing for a long-term 

regenerating epidermis. A similar study in the mouse ear was described in the landmark publication 

by Smart (Smart, 1970a). Here, “mitotic figures” were counted in mouse from embryonic state to 

postnatal day 32. The author found that during embryogenesis, in the single cell layer 75 – 85 % of 

mitoses occurred in parallel to the basement membrane. After the onset of stratification, the spindle 

orientation shifted to a perpendicular direction in 75 – 85 % of divisions and suprabasal mitoses were 

observed frequently. However, from the three-layered stadium up to day 32 which terminated the 

study, suprabasal mitotic events became less frequent and spindle orientation returned to parallel 

orientation again. In a different study, Smart found that in oesophageal epithelium, suprabasal 

mitosis occurred for longer times during development and in higher numbers, but here, too, 

suprabasal division ceased altogether after stratification (Smart, 1970b). The lower incidence of 

suprabasal division in the mouse ear might be explained by the extremely thin epidermis of the ear 

with only few suprabasal layers. Thus, suprabasal mitosis is only reported for a short time window 

during development and supposedly accounts for the increased need of cell progeny during periods 

of rapid tissue expansion but is not believed to take part in tissue homeostasis (Smart, 1970a, 

1970b).  

Newer studies argue controversially about the predominant type of division in the epidermis. Lechler 

and Fuchs found that, in accordance with the Smart study of 1970, most divisions in the single cell 

layer stadium of embryonic skin occurred horizontally and shifted to a perpendicular orientation 

during stratification (Lechler and Fuchs, 2005). However, diverging from Smart, they report a 

persistence of perpendicular divisions throughout adulthood, even with a prevalence of 85 %. The 

difference between the two studies is the site of skin used. While Smart investigated ear skin, Lechler 

and Fuchs studied mouse back skin. Since the epidermis of the two sites already differs in their 

organisation it is not surprising to also see differences in the mitotic regulation. While that study was 

performed in mouse back skin, interestingly, studies in mouse tail skin showed the opposite. Here, 

only 3 % of divisions took place in perpendicular orientation (Clayton et al., 2007).  

In our model, we found that most divisions occur in horizontal orientation at all time points (figure 2 

and 4), as was reported for mouse ear, oesophagus and tail skin (Clayton et al., 2007; Smart, 1970a, 

1970b). Perpendicular mitosis occurred at low frequencies of up to 20 % at week 6 in the 3D 

wholemount analysis but was absent entirely at early and late time points. Diverging from the 

published findings, we frequently found suprabasal mitotic events. Thus, the prevalence of the 

different mitotic types may be different depending on the species and tissue site. 
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4.3 Suprabasal mitosis as a part of epidermal homeostasis 

Independent of the body site, all studies agreed that suprabasal divisions are restricted to embryonic 

development and wound situations (Stojadinovic et al., 2005). 

The work presented here challenges the established paradigm that suprabasal cells in healthy adult 

epidermis are mitotically inactive. We find suprabasal mitotic events not only during the early stages 

of the skin equivalents but they are present throughout all time points. During the first 3 – 4 weeks 

of co-culture, the epidermis of the SE exhibits a wound-like character. This hyperproliferative state 

can be compared to the rapid expansion during embryogenesis. It is therefore not surprising that we 

find suprabasal mitosis during these time points. However, in contrast to the findings in mouse skin, 

suprabasal division persists throughout all culture time points (figures 3.2 E and figure 3.4 E). More 

importantly, we find suprabasal proliferation in native human skin (figure 3.6).  

A first characterisation of these suprabasal mitotic cells revealed that they were in an early stage of 

differentiation as indicated by Keratin 10 expression. Keratin 10 is a marker characterising the switch 

from undifferentiated basal to differentiated suprabasal localisation. It is commonly assumed that 

keratinocytes need a connection to the basement membrane and basal signals to undergo mitosis. 

So the question was whether the suprabasal mitotic events observed here remain in contact with the 

BM or whether they are completely detached from the BM. Indeed, we occasionally find Keratin 19 

positive cells with supposed stem cell character in the suprabasal layer that retain a cytoplasmic 

connection to the basement membrane (figure 3.8). Similarly, Keratin 10-positive intrusions can be 

detected frequently in the human epidermis (see figure 3.7). A connection like this could ensure 

signalling from the basal compartment to suprabasally located cells.  

Furthermore, other studies suggest that there might in fact exist an intermediate state of 

keratinocyte differentiation. In mouse embryos and hair follicles it was shown that a Keratin 16 

expressing population of keratinocytes displayed properties both of mitotic, undifferentiated as well 

as terminally differentiating cells (Bernot et al., 2002). Similarly, K16 was found expressed in 

keratinocytes of palmoplantar skin where these cells also showed intermediate properties (Swensson 

et al., 1998). Cells in the basal cell layer are smaller and more flexible, properties that go hand in 

hand with frequently dividing cells. Suprabasal cells, on the other hand, become larger and more 

rigid which makes them less prone to divide. The authors of both studies suggest that this 

intermediate state, marked by Keratin 16 expression, might be an adaptation  to body regions of 

great physical stress (like the palms) or other situations that require a higher flexibility of the tissue 

to respond to a demand in cellular expansion (e g embryogenesis or wound healing). However, in the 

present study we find suprabasal mitoses in different donor skin samples of healthy, adult donors 

and of different body sites. These findings might be a hint that an intermediate state of early 

differentiation, with keratinocytes still being proliferatively active, could in fact be part of normal 
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epidermal homeostasis. We cannot exclude that these suprabasally dividing cells are still connected 

to the BM and reinsert into the basal cell layer after division, although this seems unlikely since the 

cells have already entered the differentiation program as indicated by K10 expression. However, at 

this point it cannot be excluded either, that also “true” suprabasal cells can still divide. Further 

characterisation of these cells is needed to draw conclusions about their exact role during 

homeostasis of the skin.  

 

4.4 Asymmetry markers in the epidermis 

Many factors are discussed in the context of asymmetric cell division. For invertebrates like 

Drosophila and Caenorhabditis elegans, the players involved in orienting the mitotic spindle are 

relatively well defined (Gönczy, 2008; Jan and Jan, 2001; Rose and Gönczy, 2014). These include 

factors such as Par3 (Baz in Drosophila), Par6 and aPKC, as well as the spindle orientation complex 

consisting of Gαi, LGN/AGS-3 (Pins) and NuMA (Mud) and the adaptor protein Inscuteable which 

have also been identified in some vertebrate systems (Du et al., 2001; Vorhagen and Niessen, 2014; 

Zigman et al., 2005). However, the mechanisms at work in mammalian asymmetric cell division seem 

to be different, and may even be tissue-specific. For example, the key player LGN is apically located 

and promotes perpendicular divisions in the mouse embryonic epidermis and mouse embryonic lung 

bud (El-Hashash et al., 2011; Lechler and Fuchs, 2005; Williams et al., 2011) while in the neocortex 

LGN is excluded from the apical complex and together with NuMA promotes lateral mitosis (Konno et 

al., 2008; Peyre et al., 2011; Shitamukai et al., 2011). Inscuteable, which is well described for its role 

in asymmetric cell division in the Drosophila neuroblast (Kraut et al., 1996; Schober et al., 1999), was 

so far not observed endogenously in vertebrate epidermis. Nevertheless, overexpression studies with 

tagged Inscuteable suggest that it does have a role in epidermal cell division (Poulson and Lechler, 

2010). Taken together, it seems that the mechanisms of asymmetric cell division in vertebrates may 

be more complex than in invertebrates and are only in part identified to date.  

Furthermore, it is important to differentiate between oriented and asymmetric division. In stratified 

epithelia the term “asymmetric” cell division is commonly used to describe divisions with spindle 

orientation perpendicular to the basement membrane. However, accurately, this would simply be an 

oriented division. For a division to be “asymmetric”, cellular factors have to be asymmetrically 

distributed to the daughter cells. This could happen in either orientation of division.  

Asymmetric cell fate of perpendicularly dividing daughter cells is probably influenced by the different 

locations of the daughter cells, placing one suprabasally while the other one remains in contact with 

the BM (Seery and Watt, 2000), or could simply be a consequence of division mechanics themselves. 

Different pulling forces create bigger suprabasal daughter cells. As mentioned before, postmitotic, 

differentiating cells in the epidermis are bigger (Rowden, 1975). As shown by Lechler and Fuchs, a 
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subunit of the motor protein complex dynactin (p150glued) co-localises apically with NuMA in 

perpendicular divisions (Lechler and Fuchs, 2005). Possibly, these different pulling mechanisms at the 

spindle poles lead to off-centred positioning of the mitotic spindle, resulting in bigger apical daughter 

cells which are prone to differentiate. However, whether any of the reported factors of 

perpendicular division actually cause asymmetry or just localise asymmetrically as a consequence of 

other effectors, remains unanswered.  

Regarding upstream regulators of the factors orienting the mitotic spindle, not much is known to 

date. In p63-null embryos, the epidermis does not stratify and perpendicular division did not occur 

(Lechler and Fuchs, 2005). P63 has a known regulatory function in the keratinocyte commitment 

switch to stratification (Koster et al., 2004). During development, it induces stratification while in 

adult epidermis p63 is required for maintenance of proliferative potential of basal cells. Even though, 

a direct link between any of the apical polarity factors and p63 is lacking. In the same study, Lechler 

and Fuchs demonstrated an influence of β1-integrin or α-catenin knockout on LGN/mInsc crescent 

which is essential for proper spindle orientation in perpendicular mitosis (Lechler and Fuchs, 2005). 

But again, the molecular mechanism of this connection is still elusive. 

Therefore, to truly talk about asymmetric cell division in the epidermis, factors need to be identified 

that are asymmetrically distributed to the daughter cells. 

 

4.5 Numb as a marker of asymmetric keratinocyte division 

From a number of proposed factors that may be involved in asymmetric division, only Numb could be 

identified as a marker being asymmetrically distributed during mitosis of keratinocytes. In several 

independent experiments, an uneven distribution of Numb protein to daughter cells was observed in 

some divisions, notably more so in cultures maintained without Calcium. Keratinocytes are 

commonly cultivated in a low-Calcium, serum-free medium to suppress differentiation of the cells. In 

contrast, if keratinocytes are cultivated on feeder in high-Calcium medium, supplemented with 10 % 

serum, the cells start to differentiate within a few days. Interestingly, Numb is more strongly 

expressed under these high Calcium conditions (figure 3.15). Furthermore, a distinct Numb signal 

was found in the suprabasal layers of the fdmSE. In the skin equivalents, two different Numb 

localisations were detected: at the basal cortex of basal cells and at the cell membrane of suprabasal 

cells. Since mitosis is a rare event and only takes a few hours, the detection of mitotic events in 

sections is difficult. Unfortunately, despite extensive efforts, a reliable and reproducible staining of 

Numb in the fdmSE wholemounts could not be established. We therefore have no proof of 

asymmetric Numb segregation in a 3D context. Nevertheless, since Numb is an established 

asymmetry marker in several invertebrate and mammalian systems (Kechad et al., 2012; Shen et al., 
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2002; Verdi et al., 1996) and expression of Numb was confirmed in our SE as well as in human skin, 

the likelihood of Numb being important also for human keratinocytes is incontestable. 

 

4.5.1 Numb regulates cell fate in different species 

Numb’s function as a cell fate regulator in Drosophila has been well described. In the fly, asymmetric 

partitioning of Numb during mitosis infers asymmetric cell fate to the daughter cells, probably 

through its inhibition of the Notch intracellular domain (NICD) (Couturier et al., 2013; Uemura et al., 

1989). Even though the exact mechanism of Numb-Notch interaction is to date unknown, studies 

found that Numb plays a role in endocytosis as shown by its interaction with several endocytic 

proteins and by its localisation to endocytic organelles (Santolini et al., 2000). The widespread 

expression of Numb suggests that it plays a general role in endocytosis that may or may not be linked 

to its role as a cell fate determinant.   

In mouse neurogenesis of the cortex, Numb was found as a membrane-associated protein 

segregating asymmetrically to the apical daughter cell which remains a progenitor cell (Zhong et al., 

2000). The importance of Numb for cortical development was further demonstrated by several 

knockout studies (Li et al., 2003; Shen et al., 2002; Zhong et al., 2000; Zilian et al., 2001). In mouse 

epidermis, on the other hand, Numb was identified but dismissed as a cell fate determinant since 

asymmetric Numb distribution could not be correlated with LGN localisation in perpendicular division 

(Williams et al., 2011). Still, overexpressing Numb in embryonic mouse epidermis led to a slight 

decrease in epidermal thickness which might reflect its role as Notch inhibitor (Williams et al., 2011).  

Numb functions as an inhibitor of Notch which in turn plays a key role in the commitment switch of 

keratinocytes from basal, proliferative to suprabasal, differentiating cells (Rangarajan et al., 2001). 

Notch expression increases as cells migrate upwards from the basal cell layer and drives 

differentiation and stratification (Rangarajan et al., 2001). Numb antagonizes Notch function in one 

of two ways: 1) by ubiquitination of the membrane-bound Notch1 receptor (McGill and McGlade, 

2003); and 2) by binding the Notch intracellular domain (NICD) and α-adaptin, a clathrin vesicle 

adaptor, and thereby facilitating NICD endocytosis (Berdnik et al., 2002). Thus, in its function as a 

Notch inhibitor, Numb can be either membrane-associated or cytoplasmic, which correlates with our 

findings in the immunofluorescent stainings (figures 3.17 and 3.18). However, we cannot exclude 

that Numb plays additional roles in the keratinocytes that are unrelated to Notch signalling. 

 

4.5.2 Stable CRISPR/Cas9 knock down of Numb in human keratinocytes 

To investigate the role of Numb in human keratinocytes, we established a protocol to stably knock 

down Numb by using the CRISPR/Cas9 method.  
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CRISPR is a relatively new gene editing method that was developed in 2012 (Cong et al., 2013; Hsu et 

al., 2013; Ran et al., 2013). Adapted from a well-described bacterial innate immune system, 

CRISPR/Cas9 offers the possibility to edit the genomes of cells or whole organisms in an easy, highly 

efficient and economic way (Ran et al., 2013). In contrast to other RNA-based systems like RNA 

interference (RNAi), CRISPR can cause not only knock down but complete knock out of a gene of 

interest. Compared to ZNF nucleases and TALENs, two other DNA-based editing tools (Christian et al., 

2010; Miller et al., 2007; Wood et al., 2011), CRISPR/Cas9 plasmids are substantially easier to 

generate, as it only requires the creation of a pair of oligos encoding the 20 nt guide sequence. 

Five different guideRNA sequences were designed that were all complementary to sequences lying 

within the first exon of the gene. Since all known isoforms include the first exon, the CRISPR guides 

should target all of them, if present in the keratinocytes. 

In our Western Blot analysis we found two bands at 70 kD and 65 kD (figure 3.25). These account for 

isoforms 1 and 3 (70 kD) and 2 and 4 (65 kD). Isoforms 5 and 6 would run at 55 kD but could not be 

detected here and therefore may not be expressed in human keratinocytes. These two isoforms 

were so far identified in amniotic fluid cells, glioblastoma and metastatic tumour cells (Karaczyn et 

al., 2010).  

After sorting and collecting the CRISPR-transfected keratinocytes, we saw a significant reduction of 

Numb on protein level in the GFP-positive transfected cells compared to GFP-negative and 

untransfected control cells (see Cytospins in figure 3.24 and Western Blot in figure 3.25). After two 

weeks, we still did not detect Numb protein in the GFP-positive fraction (figure 3.26), whereas GFP-

negative sorted control cells continued to stain positive for Numb.  

Within the two weeks after sorting and reseeding of the transfected cells, no effect on proliferation 

became apparent in the GFP-positive Numb-negative cells. In two independent experiments, the cells 

attached well and proliferated comparable to the control. Thus, a direct effect of Numb deletion on 

proliferation of the keratinocytes can largely be ruled out. A recent publication defined a role for 

Numb in symmetric mitosis (Schmit et al., 2012). In human melanoma cells, deletion of Numb caused 

mitotic arrest in G2 / M phase due to a destabilisation of the Plk1 kinase which is required for proper 

spindle alignment. A role for Numb in symmetric cell division would be one explanation for the high 

Numb abundance in differentiated keratinocytes. In our Numb knock down study, we did not see an 

immediate effect on proliferation. However, we cannot rule out that other factors take over Numb 

functions and thereby rescue the knock down effect in human keratinocytes. 

 

4.5.3 Numb and Numblike 

Numb has a homologue called Numblike. Both are homologues of the Drosophila NUMB gene and 

highly conserved in several species, among them human, mouse, rat and zebrafish (see the NCBI 
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gene data base, gene IDs 8650 and 9253). In mouse, the sequence homology at the N-terminus which 

contains the active phosphotyrosine binding domain (PTB) is 76 % while homology of the C-terminus 

of both protein sequences is only about 46.7 % (Zhong et al., 1997). Numblike is only found in the 

cytoplasm and is not distributed asymmetrically during mitosis in Drosophila neural precursors 

(Zhong et al., 1997). While the different localisation as well as differential expression of Numb and 

Numblike during mouse cortical neurogenesis suggests distinct roles of the two proteins, there is also 

evidence for redundant functions of Numb and Numblike (Petersen et al., 2002). For example, both 

Numb and Numblike can bind the Notch intracellular domain (NICD) (Zhong et al., 1997) and 

inactivate Notch signalling. Conversely, high levels of Notch lead to a decrease in Numb and 

Numblike protein in cultured cells and chick neural tubes, probably through PEST-domain mediated 

proteasomal degradation (Chapman et al., 2006). While the exact mechanisms regulating the 

relationship of Numb, Numblike and Notch remain to be discovered, the emerging picture reveals a 

complex and reciprocal interplay of the three proteins. But even though Numblike seems to be 

involved in similar molecular pathways as Numb, it is unlikely that it would be able to substitute fully 

in case of Numb loss as demonstrated by lethality of homozygous loss-of-function of Numb in mice 

(Shen et al., 2002). Therefore, we can conclude that our CRISPR/Cas9 knock down of Numb might in 

part but not fully be rescued by endogenous Numblike. Since the NICD has a high turnover rate of 

only about 180 minutes (Fryer et al., 2004), an effect of Numb deletion would be effective within a 

short time after gene disruption. As we can only exclude an immediate effect on proliferation at this 

point, further studies are needed to determine the effect of Numb knock down on Notch signalling 

and subsequent consequences for the differentiation of the keratinocytes. 

 

4.5.4 Upstream regulation of Numb 

Not much is known about the upstream regulation of Numb. Interestingly, it was recently shown that 

Numb is a target of the atypical Protein Kinase C (aPKC) which is a component of the previously 

discussed polarity complex. Phosphorylation of Numb apparently influences aPKC localisation to the 

basolateral cell membrane and thereby causes asymmetric distribution of aPKC to daughter cells 

(Smith et al., 2007). In our staining approach we find Numb at the basolateral side of basal cells but 

also at the basal cell membrane (figures 3.17 and 3.18). Even though we did not find the polarity 

complex members Par6, NuMA or Inscuteable here, we did not yet stain for aPKC and can therefore 

not rule out its influence on Numb in epidermal keratinocytes. 

In a recent study, Numb was proposed as a mediator between the Wnt and the Notch pathway 

(Fukunaga-Kalabis et al., 2015). In human neural crest stem cell (NCSC)-like cells, a UV-induced 

Wnt7a signal produced by keratinocytes triggered the maturation of NCSC-like cells into 

melanocytes. This signalling cascade involved the upregulation of Numb and thereby downregulation 



72   Discussion  
 

of Notch in NCSC-like cells. Upregulation of Numb was due to a post-transcriptional stabilisation of 

the protein, but a direct connection between Numb and any upstream regulator was not 

demonstrated. Furthermore, the Wnt7a signal produced by the keratinocytes in the study of 

Fukunaga et al. was not so far recapitulated by studies in our laboratory. We can therefore not make 

any statement at this point about the influence of Wnt signalling on Numb protein expression in the 

human keratinocytes. 

 

4.5.5 The role of Numb in keratinocyte differentiation 

The accumulation of Numb at the basal membrane of basal keratinocytes would explain its 

asymmetric segregation to apical and basal daughter cells in perpendicular division and thereby 

inhibition of Notch signalling by Numb only in the basal daughter cells. Suprabasal daughter cells 

would inherit less Numb and therefore be subjected to increased Notch signalling which induces 

keratinocyte differentiation. Migrating upwards, cells express more Notch which in turn inhibits 

Numb and Numblike (Chapman et al., 2006; Rangarajan et al., 2001). However, Numb’s function as 

an endocytic protein might be independent from the Notch pathway and explain the high Numb 

prevalence at the cell membranes of suprabasal cells in the skin equivalent. Still, the most prominent 

division type in our skin equivalent was the horizontal division in parallel to the basement 

membrane. As described above, Numb was not evenly distributed throughout the basal cell layer. 

Protein expression was more pronounced in some regions of the epidermis than others. Thus, Numb 

could still be asymmetrically segregated to cells dividing in parallel to the basement membrane. The 

resulting reduced Notch inhibition and induced differentiation in one of the daughter cells might be a 

trigger for this cell to detach from the basement membrane and migrate upwards. However, this 

hypothesis has still to be proven in our skin equivalent. 

 

4.6 Conclusion 

In this study we could for the first time identify suprabasal mitosis as a part of normal human 

epidermal homeostasis. So far, suprabasal cells were assumed to be mitotically inactive with the 

exception of embryogenesis and wound healing or certain disease phenotypes. Here, we show that 

suprabasal mitotic events occur at a constant rate at all stages of our culture system (figures 3.2 and 

3.4) as well as in healthy skin (figure 3.6). These suprabasally dividing cells have entered the 

differentiation program, as indicated by Keratin 10 expression, but are still proliferative and might 

therefore be indicative of an intermediate state of keratinocyte development. 

Furthermore, by quantifying the occurrence of mitotic types in the epidermis of our in vitro skin 

model mimicking human epidermis, our finding – that 4 types of mitosis are present with most cells 

dividing in parallel to the BM – is a valuable addition to the presently controversial findings in mouse 
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skin. The prevalent division type in mouse epidermis seems to depend on the tissue site (mostly 

perpendicular in back skin versus mostly horizontal in tail skin). Since the mouse is covered by a fur 

and has a hair follicle-dense skin, the hair follicle stem cells play a more important role in maintaining 

epidermal regeneration than in humans. It could be that the mouse interfollicular epidermis (IFE), at 

least in fur-dense regions, is maintained mostly by HF stem cells. The density of hair follicles might be 

one factor influencing the division regulation in the IFE. This argument is supported by the 

correlation of hairless tail skin to the hairless human skin equivalent regarding the prominence of 

horizontal divisions. Furthermore, a distinct stem cell population of the mouse IFE has not been 

clearly identified as of yet. Most studies in mouse refer to HF stem cells, while in our study, the IFE 

was investigated. In addition, the mouse IFE is much thinner than that of humans (Boury-Jamot et al., 

2006; Han et al., 2012) which will probably also influence how homeostasis is maintained. Therefore, 

our study is an addition to the existing knowledge about IFE tissue homeostasis but cannot be 

directly compared to findings in mouse epidermis. 

 

The asymmetry markers described in the literature as regulating mouse epidermal cell division are 

mostly markers of oriented but not necessarily asymmetric division. In this study, we investigated 

some of the discussed proteins, namely LRP6, Par6, NuMA, Inscuteable and Ninein, but were not able 

to recapitulate the literature findings in our skin equivalent with the tools used here. Perpendicularly 

oriented division which would rely on the polarity proteins was not found at high rates and in fact 

was not found at all at some time points. From the data described here, we would like to propose 

that these markers might not play the same role in human epidermis as they do in mouse skin. 

Rather, we propose that the predominant type of asymmetric division that balances self-renewal and 

differentiation in the human epidermis relies on asymmetric segregation of markers in horizontal 

division. As one possible marker, we identified Numb. Interestingly, knock down of Numb did not 

abrogate mitosis in short-term cultures. However, it has to remain open whether stem cell division is 

impaired by Numb deletion. Thus, further studies need to determine whether Numb plays a specific 

role in asymmetric division and investigate the mechanism how Numb is involved in this regulation. 
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