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Abstract - In the context of this thesis the electron mass has been determined in atomic
mass units with a relative uncertainty of 2.8 ·10−11, which represents a 13-fold improvement
of the 2010 CODATA value. The underlying measurement principle combines a high-
precision measurement of the Larmor-to-cyclotron frequency ratio on a single hydrogenlike
carbon ion 12C5+ with a very accurate g-factor calculation. Furthermore, this thesis con-
tains the first isotope shift measurement of bound-electron g-factors of highly charged ions.
Here, the g-factors of the valence electrons of the lithiumlike calcium isotopes 40Ca17+ and
48Ca17+ have been measured with relative uncertainties of a few 10−10, constituting a so-far
unrivaled level of precision for lithiumlike ions. These calcium isotopes provide a unique
system across the entire nuclear chart to test the pure relativistic nuclear recoil effect.
The corresponding and successfully tested theoretical prediction is based on bound-state
quantum electrodynamics but goes beyond the standard formalism, the so-called Furry
picture, where the nucleus is considered as a classical source of the Coulomb field. The three
Larmor-to-cyclotron frequency ratios of 12C5+, 40Ca17+ and 48Ca17+ have been determined
in sequence in a non-destructive manner on single trapped ions stored in a triple Penning
trap setup. The cyclotron frequency is measured by a dedicated phase-sensitive detection
technique while simultaneously probing the Larmor frequency. The spin-state of the bound
valence electron is determined by the continuous Stern-Gerlach effect. In the very last part
of this thesis, a new design of a highly compensated cylindrical Penning trap has been
developed, which will be used in next generation’s high-precision Penning trap experiments.

Zusammenfassung - Im Rahmen dieser Doktorarbeit wurde die Elektronenmasse in
atomaren Masseneinheiten mit einer relativen Unsicherheit von 2.8 · 10−11 bestimmt.
Dieser Wert ist 13 mal genauer als der Wert der CODATA 2010. Im zugrundeliegenden
Messprinzip wird eine sehr präzise Bestimmung des Frequenzverhältnisses der Larmor- und
Zyklotronfrequenz eines einzelnen wasserstoffähnlichen Kohlenstoffions 12C5+ mit einer sehr
genauen Rechnung des zugehörigen g-Faktors kombiniert. Des Weiteren beinhaltet diese
Arbeit die erstmalige Messung einer Isotopieverschiebung in g-Faktoren hoch geladener
Ionen. Hierbei wurden die g-Faktoren der lithiumähnlichen Kalziumisotope 40Ca17+ und
48Ca17+ mit relativen Genauigkeiten von wenigen 10−10 gemessen. Dieses Präzisionsniveau
wurde bei lithiumähnlichen Ionen zum ersten Mal erreicht. Unter Berücksichtigung der
gesamten Nuklidkarte bieten diese Kalziumisotope ein einmaliges System, um den rein
relativistischen Kernrückstoßeffekt zu untersuchen. Die hierbei erfolgreich getestete the-
oretische Vorhersage basiert auf der Quantenelektrodynamik gebundener Zustände, die
über den üblichen Formalismus, den sogenannten Furry-Ansatz, in dem der Atomkern als
klassische Quelle eines Coulomb-Feldes genähert wird, hinausgeht. Die drei Larmor- zur
Zyklotronfrequenz Verhältnisse von 12C5+, 40Ca17+ und 48Ca17+ wurden nacheinander auf
zerstörungsfreie Weise an einzelnen gespeicherten Ionen in einem dreifachen Penningfal-
lensystem gemessen. Die Zyklotronfrequenz wurde hierbei jeweils mit einer geeigneten
phasenempfindlichen Messmethode bestimmt, während gleichzeitig die Larmorfrequenz
abgetastet wurde. Der Spinzustand des gebundenen Valenzelektrons wurde mit Hilfe des
kontinuierlichen Stern-Gerlach Effekts festgestellt. Im letzten Teil dieser Arbeit wurde ein
neues Design einer hochgradig kompensierten zylindrischen Penning-Falle entwickelt, die
in zukünftigen Penning-Fallen Experimenten verwendet werden soll.
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CHAPTER 1
Introduction

1.1 Quantum Electrodynamics and the Standard Model of Particle Physics
Today, the most fundamental models to describe the physical structure and dynamics
of nature are based on quantum field theories. The collection of three quantum field
theories: (1) quantum electrodynamics (QED), describing the electromagnetic interaction,
(2) quantum flavordynamics (QFD), describing the weak interaction and (3) quantum
chromodynamics (QCD), describing the strong interaction, are called the Standard Model
(SM) of particle physics. The elementary assumption of local gauge invariance of these
quantum field theories stimulated the development of the so-called Higgs mechanism in
the 1960s, which explains the generation of all particle masses via spontaneous symmetry
breaking [1, 2, 3]. This additional cornerstone of the SM has been verified recently in 2012
by the discovery of the predicted Higgs boson [4].
Aside from the tremendous predictive capabilities of the SM, which are partly highlighted in
chapter 2, there are several limitations of this model to describe all fundamental processes
in nature, e.g.: (1) So far it has not been possible to add gravity to the SM by the
formulation of a proper quantum field theory. (2) Several observations of dark matter [5]
and dark energy [6] cannot be explained within the SM. (3) The existence of neutrino
masses, indicated by the experimentally observed neutrino oscillations [7, 8], are not yet
included in the SM. (4) A seemingly unnatural fine-tuning of the bare mass of the Higgs
boson and its radiative corrections is required to model the large difference between the
fundamental couplings, e.g. the weak force and gravity, which is called the hierarchy
problem [9]. (5) Moreover, many physicists consider it to be inelegant, that the SM relies
on 19 input parameters1, which up to now cannot be predicted.
The incompleteness of the SM requires further experiments, which on the one hand look
for new physics at so far unreached energy scales, e.g. via the large-scale LHC experiments
[10, 11], but on the other hand also probe the SM at the lower energy scale under various

1 The 19 input parameters of the SM include the particle masses for the electron, muon, tau and the six
quarks, the three CKM mixing angles, the CKM cp-violating phase, the gauge coupling constants of the
electric, the weak and the strong force, the QCD vacuum angle, the Higgs vacuum expectation value
and the Higgs mass.

1



2 1 Introduction

conditions to highest precision. In this thesis I focus on the mother of all quantum
field theories, quantum electrodynamics (QED), which has been formulated by Richard
Feynman, Julian Schwinger, Sin-Itiro Tomonaga and colleagues in the 1940s [12]. Here, the
interaction between electrically charged particles is realized via photon exchange. Right
from beginning the central driving force in the development of QED has been the predicted
and measured electron g-factor, which will be introduced in detail in chapter 2. In this
thesis the work on high-precision measurements of bound-electron g-factors is continued,
which nowadays probes QED in the strongest electric fields on the highest level of precision
and moreover provides a unique access to high-precision measurements of fundamental
constants, e.g. the electron mass.

1.2 Content and Structure of the Thesis
When I arrived in Mainz in autumn 2011, I came upon an experimental apparatus for the
measurement of bound-electron g-factors of highly charged ions, which was in an excellent
shape, thanks to the great work of my preceding Ph.D colleagues: Birgit Schabinger,
Sven Sturm and Anke Wagner (nowadays: Anke Kracke). In the beginning of 2011 Sven
Sturm had performed the most stringent test of bound-state quantum electrodynamics, by
measuring the g-factor of hydrogenlike 28Si13+[13]. In 2011/2012 Anke Kracke continued
the work by measuring the g-factor of lithiumlike 28Si11+and thus performing the most
stringent test of relativistic many-electron calculations in a magnetic field [14].
This thesis proceeds the experimental agenda of bound-electron g-factor measurements
with highly charged ions. It covers three individual physical tasks:

• The electron’s atomic mass has been determined with so far unrivaled precision. The
relative uncertainty of 𝛿𝑚𝑒/𝑚𝑒 = 2.8 · 10−11 surpasses the current literature value by
a factor of 13.

• The first measurement of the isotope shift in atomic g-factors has been performed
with highly charged ions, by measuring the bound-electron g-factor difference of
lithiumlike 40Ca17+ and 48Ca17+. The corresponding calculations require bound-state
QED theory beyond the external field approximation of the nucleus, providing a
unique access to QED beyond the well-established Furry picture.

• Furthermore, a completely revised Penning trap design has been calculated. The
layout comprises seven cylindrical electrodes, which provide an extremely harmonic
trapping potential. The seven-electrode Penning trap represents a central building
block of an experimental upgrade, planned in the near future, which will enable a
high-precision measurement of the atomic mass of the proton.

Due to the variety of these topics, the thesis is structured as follows: In chapter 2 I will
briefly introduce the theoretical framework of the bound-electron g-factors and summarize
the status of these perturbative calculations. Moreover, the general measurement principle
of the bound-electron g-factors will be explained. In the last two sections of chapter 2 the
measurements of the electron mass and the isotope shift will be motivated. In chapter 3 the
state-of-the-art trapping concept and all relevant high-precision frequency measurement
techniques will be discussed in detail. In chapter 4 the experimental setup will be introduced.
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Here, a special focus is set on the exisiting stabilization systems and beyond that on
calculations of future radial compensation coils. In the following preparatory measurement
procedures will be outlined. Furthermore, the automated measurement process will be
explained step-by-step. The last section of chapter 4 contains a comprehensive line-shape
study of the essential resonance for the g-factor determination, the so-called 𝛤 -resonance.
In the following two chapters the two major measurement results will be presented, firstly
the determination of the electron mass, see chapter 5, and secondly the isotope shift
measurement in the bound-electron g-factors of two lithiumlike calcium ions, 40Ca17+and
48Ca17+, see chapter 6. In the last chapter 7 I will present a new Penning trap design
based on seven cylindrical electrodes. This Penning trap design will be used in the near
future in a new generation of high-precision ion trap experiments, which will be briefly
summarized in the last section of chapter 7.





CHAPTER 2
The g-Factor - Exploring Atomic Structure and Fundamental Constants

Slightly more than 100 years ago Ernest Rutherford in 1911 and Niels Bohr in 1913 made
the first fundamental steps to explain the atomic structure of nature [15, 16]. Since then,
enormous efforts have been undertaken, such that the SM nowadays is able to predict
properties of elementary particles up to the thirteens digit1 [17, 18, 19]. In the following
chapter I will illuminate the present understanding of the fundamental electromagnetic
dynamics in atomic structure. The main focus will be set on the present workhorse of
the underlying theory, the so-called bound-state quantum electrodynamics (BS-QED): the
bound-electron g-factor.
In section 2.1 the g-factor will be introduced and defined, followed by a summary of the
most stringent test of QED in weak fields in section 2.2, the g-factor calculations and
measurements of the free electron. In section 2.3 investigations of the bound-electron
g-factor are motivated. Here, I will also report on the enormous progress of the theoretical
calculations of the bound-electron g-factors and briefly summarize its various physical
contributions. In section 2.4 the fundamental measurement principle of the bound-electron
g-factor is introduced and an overview on the last measurements is given in section 2.5.
The last two sections cover the specific theoretical backgrounds of the two physical topics
of the present thesis: (1) The electron mass (section 2.6) and (2) the g-factor isotope shift
in the lithiumlike calcium ions 40Ca17+ and 48Ca17+ (section 2.7).

2.1 The g-Factor
In 1922, Otto Stern and Walther Gerlach performed their famous Stern-Gerlach experiment
by sending a beam of silver atoms through an inhomogeneous magnetic field, observing a
discrete splitting of the beam into two beams [20]. Not until 1925 Samuel A. Goudsmit
and George E. Uhlenbeck interpreted the phenomena in the nowadays well-established
model, proposing an intrinsic quantized property of the electron, the so-called spin 𝑠⃗, which
generates an intrinsic magnetic moment 𝜇⃗𝑠 [21]. In an external magnetic field 𝐵⃗ = 𝐵 · 𝑒⃗𝑧

2

the electron-spin has two discrete quantum states with the eigenvalues 𝑠𝑧 = 𝑚𝑠~ = ±1
2~,

1 Relative uncertainties of the g-factor of the free electron: (𝛿𝑔/𝑔)theo = 0.8 · 10−12 and (𝛿𝑔/𝑔)exp =
0.3 · 10−12, see also section 2.2.

2 In the following a homogeneous magnetic field will always point in z-direction.
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where ~ = ℎ/(2𝜋) is the reduced Planck constant. The proportionality constant between
the intrinsic magnetic moment and the spin in terms of the Bohr magneton 𝜇B is the
g-factor:

𝜇⃗𝑠 = −𝑔𝜇B
𝑠⃗

~
, (2.1)

where 𝜇B ≡ |𝑒|~
2𝑚𝑒

, 𝑒 is the elementary electric charge and 𝑚𝑒 the mass of the electron. The
g-factor thus defines the strength of the interaction between the magnetic field and the
spin of the electron, where the magnetic potential is given by 𝑈magn = −𝜇⃗ · 𝐵⃗. Assuming
the spin as a classical angular momentum (𝑠⃗ = 𝑟⃗ × 𝑝) and a classical magnetic moment
(𝜇⃗ = 𝐼 · 𝐴 · 𝑛⃗𝐴) the g-factor would have a value of 𝑔 = 1. Already in 1922 Alfred Landé
proposed a phenomenological electron g-factor of 𝑔 = 2 (also called Landé g-factor) to
interpret the observed anomalous Zeeman effect, not yet knowing about the electron spin
[22]. In 1928 finally Paul Dirac formulated his famous equation, combining quantum
mechanics with special relativity. This theory unification entailed the electron as a spin-1/2
particle. As a direct consequence, the electron g-factor was 𝑔 = 2. Almost 20 years later,
in 1947, small deviations from Dirac’s theory have been observed in different experiments:
(1) in the energy levels of the hydrogen atom, nowadays called Lamb shift [23], and (2)
in the electron g-factor [24, 25, 26, 27]. Still in the same year Julian Schwinger managed
to explain the deviation in the g-factor by considering the virtual coupling of the fields,
more precisely the emission and subsequent absorbtion of photons. In that context, he
performed first-order perturbation calculations within the especially developed framework
of quantum electrodynamics (QED) [28]: 𝑔 = 2

(︀
1 + 𝛼

2𝜋

)︀
, where 𝛼 ≡ 1

4𝜋𝜀0
𝑒2

~𝑐 ≈ 1/137 is the
fine structure constant, which defines the coupling strength of QED. Furthermore, 𝜀0 is
the electric constant (vacuum permittivity) and 𝑐 is the speed of light in vacuum. This
successful model flags the dawn of quantum electrodynamics, the mother of all quantum
field theories.

2.2 The g-Factor of the Free Electron
Since 1947 the electron g-factor is the key quantity for the most stringent test of QED
and in that way of the SM. At present the anomalous magnetic momentum of the electron
(g-factor anomaly): 𝑎𝑒 ≡ (𝑔 − 2)/2 is calculated in a series expansion in terms of (𝛼/𝜋) up
to the fifth order:

𝑎𝑒 = 𝐶2(𝛼/𝜋) + 𝐶4(𝛼/𝜋)2 + 𝐶6(𝛼/𝜋)3 + 𝐶8(𝛼/𝜋)4 + 𝐶10(𝛼/𝜋)5 + ... . (2.2)

The Schwinger correction (vertex correction), which is a first-order correction (𝐶2 = 1/2),
is represented in fig. 2.1(a) as a one-loop Feynman diagram. The coefficients 𝐶4 and 𝐶6
have been also calculated analytically, whereas 𝐶8 (891 Feynman diagrams) and 𝐶10 (12672
Feynman diagrams) have been numerically evaluated [17]. At the level of 𝐶10(𝛼/𝜋)5 =
6.2·10−13 also contributions from hadronic vacuum-polarizations, 𝑎hadronic = 1.68(2)·10−12,
become relevant. The most recent determination of the free electron g-factor has been
performed in 2008 in the group of Gerald Gabrielse by David Hanneke [18]. Measuring
directly the magnetic momentum anomaly of a single electron in a Penning trap, they
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(a) (b)
Figure 2.1: Feynman diagrams of the first-order QED corrections (one-loop corrections) of
the free electron g-factor. The electron is symbolized as a straight line, the photons as curved
lines and the magnetic field as a triangle. Like in all the following Feynman diagrams, the
time arrow points to the right. In (a) the Schwinger term (self-energy) is shown. In (b) the
vacuum-polarization term is illustrated.

determined the g-factor with a relative precision of 2.8 · 10−13. In combination with the
predicted series expansion in eq. (2.2) the fine structure constant 𝛼−1 = 137.035 999 173 (35)
has been derived with a relative uncertainty of 2.5 · 10−10.
A competing alternative approach for the determination of the fine structure constant is
given by the combination of the Rydberg constant 𝑅∞, the ratio of the Planck constant
over the mass of a rubidium atom 𝑀Rb and the mass ratio 𝑀Rb/𝑚𝑒:

𝛼2
recoil = 2𝑅∞ℎ

𝑐𝑚𝑒
= 2𝑅∞

𝑐

𝑀Rb
𝑚𝑒

ℎ

𝑀Rb
. (2.3)

At the moment the dominant uncertainty is caused by the determination of the ratio
ℎ/𝑀Rb, which has been quantified in the group of Francois Biraben in 2011 [19]. Here,
the recoil velocity of a single rubidium atom 𝑣recoil = ~𝑘

𝑀Rb
is measured, when it absorbs a

photon of momentum ~𝑘. This approach determines the fine structure constant 𝛼−1
recoil =

137.035 999 037 (91) with a relative uncertainty of 6.6 · 10−10. The comparison of this value
with the one obtained independently from the g-factor of the free electron represents the
most stringent test of QED.

2.3 The g-Factor of the Bound Electron
In contrast to the g-factor of the free electron, where the electron is exposed to only
small electromagnetic trapping fields, at our experiment we are interested to test QED
under extreme conditions, by measuring g-factors in presence of strong electric fields. The
strongest electric field which are accessible on the laboratory scale is the binding field of a
heavy, highly charged nucleus1. In fig. 2.2 the relativistic prediction of the mean electric

1 Even stronger fields can be reached by muonic ions or even more exotic atomic systems. However, the
measurement time is strongly limited by their short lifetimes.
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Figure 2.2: Illustration of the mean electric field in highly charged ions as a function of the
nuclear charge 𝑍. The red-hatched area marks the field strength we have experimental access
to. The lower gray-hatched illustrates the electric field-strength accessible by the brightest laser
sources and the upper gray-hatched area designates the Schwinger limit (for a homogeneous
electric field), where the vacuum gets unstable. The black (blue) line represents the mean
electric field strength, which acts on a single 1𝑠1/2 (2𝑠1/2) - electron.

fields of 1𝑠1/2 and 2𝑠1/2 electrons are plotted versus the nuclear charge1. Already in the
low Z region (𝑍 & 8) the bound-electron perceives a larger electric field strength than by
the brightest laser sources, which reach intensities of about 2 · 1022 W/cm2 [30]. The field
strengths in heavy hydrogenlike ions approach the Schwinger limit, where the vacuum gets
unstable, since the external electric field accelerates apart the virtual electron-positron
pairs. In a homogeneous electric field spontaneous electron-positron pair creation has been
predicted for: 𝐸𝑆 = 𝑚2

𝑒𝑐3

𝑒~ = 1.3 · 1016 V/cm [31, 32, 33]. At the surface (𝑟surf =
√︀

5/3𝑟rms)
of a uranium nucleus (𝑍 = 92) the electric field is 𝐸(𝑟surf = 7.6 fm) = 2.3 · 1019 V/cm [34].

1 Here, the relativistic expectation value of 1/𝑟2 has been used from [29]. For nuclear charges larger than
30, such a relativistic calculation is essential, e.g. for uranium (𝑍 = 92) the mean electric field derived
by the non-relativistic Schrödinger equation is a factor of 2.8 smaller than the relativistic calculation.
The mean electric field of a 1𝑠1/2 electron is:

𝐸mean(1𝑠1/2) = 𝑍𝑒

4𝜋𝜀0

⟨︀
1/𝑟2⟩︀ = 𝑍𝑒

4𝜋𝜀0

2(𝑍𝛼)2(𝑚𝑒𝑐/~)2(2
√︀

1 − (𝑍𝛼)2 + 1)√︀
1 − (𝑍𝛼)2(3 − 4(𝑍𝛼)2)

. (2.4)



2.3 The g-Factor of the Bound Electron 9

Perturbative BS-QED - Series Expansions in (𝛼/𝜋), (𝑍𝛼) and (1/𝑍)
The fundamental approach of QED calculations in atomic systems, referred to as bound-
state quantum electrodynamics (BS-QED), has been developed in the 1950s. Treating
e.g. a hydrogenlike ion which contains a nucleus and an electron as a complete two-body
problem, at least two QED series-expansions have to be considered:

• Firstly, the radiative corrections, regarding the interaction between the electron and
the external magnetic field, require a series-expansion in orders of (𝛼/𝜋), similar to
the expansion for the free electron, see eq. (2.2).

• Secondly, radiative corrections also occur in the interaction between the electron
and the nucleus, which require an additional expansion in orders of (𝑍𝛼). Studying
heavy highly charged ions, the convergence of this series-expansion deteriorates. For
example for hydrogenlike helium (𝑍 = 2) the series-expansion converges quickly in
powers of (2 · 𝛼) ≈ 0.01, whereas for hydrogenlike lead (𝑍 = 82) the series-expansion
converges much slower in powers of (82 · 𝛼) ≈ 0.60.

• Beyond that, in many-electron systems the interactions between the bound-electrons
require a third series-expansion in orders of (1/𝑍), where the nth order corresponds
to Feynman diagrams with 𝑛 photons, which are exchanged between the bound-
electrons1.

To circumvent a series-expansion in (𝑍𝛼), which is especially problematic for heavy highly
charged nuclei, already in 1951 Wendell H. Furry reduced the two-body problem, where
the electron (one body) interacts with the nucleus (other body), to an effective one-body
problem of the electron, treating the nucleus classically as an time-independent static
external potential 𝑉 (𝑟⃗) [35], e.g. as a Coulomb potential: 𝑉nucl(𝑟) = (𝑍𝑒)/(4𝜋𝜀0𝑟). He
added this potential to the Dirac equation of the single electron wave function 𝜓(𝑟⃗,𝑡):(︁

𝑖 ~ 𝜕𝑡 + 𝑖 ~ 𝑐 𝛼⃗ · ∇⃗ − 𝛽 𝑚 𝑐2 − 𝑒 𝑉nucl(𝑟⃗)
)︁
𝜓(𝑟⃗,𝑡) = 0, (2.5)

where 𝛽 ≡
(︂
𝐼2 0
0 −𝐼2

)︂
, 𝐼2 ≡

(︂
1 0
0 1

)︂
, 𝛼⃗ ≡

(︂
0 𝜎1,2,3

𝜎1,2,3 0

)︂
and 𝜎1,2,3 are the Pauli

matrices. As a consequence of this approach, also referred to as the Furry picture, the
interaction with the nuclear potential is already included in the propagator of the electron.
In Feynman diagrams this approach is symbolized by a double line for the electron propa-
gator. Limitations of this picture, which e.g. presumes an infinitely heavy nucleus, will be
discussed in section 2.3.3.
In this thesis, we will focus on bound-electron g-factors in two different electron-configurations:

1 The following explanation roughly outlines the 1/𝑍 parameter of the perturbative expansion of the
interelectronic interaction: In general, the parameter of the perturbative expansion is given by the
matrix-element of the perturbation operator over the typical energy difference. The matrix-element of
the Coulomb repulsion scales with 𝛼/ < 𝑟12 > , where < 𝑟12 > (distance between two electrons) scales
inversely with (𝛼𝑍)−1. The energy difference typically scales with (𝛼𝑍)2.
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(1) in the already mentioned hydrogenlike configuration and (2) in the lithiumlike configu-
ration, which has two core electrons on the 1s-level and one valence electron on the 2s-level.
Various physical effects contribute to the g-factors of the respective valence electron:

𝑔(H-like) = 𝑔H-like
Dirac +𝛥𝑔H-like

QED +𝛥𝑔H-like
nucl , (2.6)

𝑔(Li-like) = 𝑔Li-like
Dirac +𝛥𝑔Li-like

QED +𝛥𝑔Li-like
nucl +𝛥𝑔int +𝛥𝑔sQED, (2.7)

where 𝑔H-like, Li-like
Dirac is the Dirac value for the particular valence electron, 𝛥𝑔H-like, Li-like

QED are
the corresponding radiative corrections of the valence electron and 𝛥𝑔H-like, Li-like

nucl contain
nuclear corrections. In lithiumlike systems the interactions between the three electrons are
included in the interelectronic interaction corrections 𝛥𝑔int and the corresponding radiative
corrections, the so-called screened QED corrections, 𝛥𝑔sQED. In fig. 2.3 the relative g-factor
contributions for (a) hydrogenlike ions and (b) lithiumlike ions are listed in dependence on
low and medium atomic numbers Z, which are accessible at our experimental apparatus. In
the following these corrections are briefly introduced and the present status of the BS-QED
calculations is summarized.

2.3.1 𝑔Dirac - Dirac Values of the Bound-Electron g-Factor
As seen in fig. 2.3(a), for atomic numbers larger than eight the dominant contribution of the
bound-electron g-factor in a hydrogenlike ion is a relativistic correction. This contribution
has been calculated already in 1928 by Gregory Breit [38]. Focusing on the zeroth-order
approximation of BS-QED for a hydrogenlike ion, by solving its Dirac equation (eq. (2.5))
in the presence of a magnetic field, he derived the following analytical expression:

𝑔H-like
Dirac = 2 +𝛥H-like

Breit = 2
3

[︁
1 + 2

√︀
1 − (𝑍𝛼)2

]︁
= 2 − 2

3(𝑍𝛼)2 − 1
6(𝑍𝛼)4 + ... . (2.8)

A detailed derivation of this expression from the Dirac equation by means of the minimal
coupling is given for example in chapter four of the textbook ”Fundamental Physics in
Particle Traps” [39]. Due to the leading-order scaling of (𝑍𝛼)2 the Breit correction reduces
the g-factor of hydrogenlike helium (𝑍 = 2) by only 71 ppm (parts per million) and by
13% for hydrogenlike lead (𝑍 = 82).
In lithiumlike systems this effect amounts to:

𝑔Li-like
Dirac = 2+𝛥Li-like

Breit = 2
3

[︂
1 +

√︁
2 + 2

√︀
1 − (𝑍𝛼)2

]︂
= 2− 1

6(𝑍𝛼)2 − 5
96(𝑍𝛼)4 + ... , (2.9)

see also fig. 2.3(b).

2.3.2 𝛥𝑔QED - Radiative Corrections
The recapitulation of the radiative corrections in hydrogenlike systems, which occur in the
dynamics between the bound electron and the external magnetic field, is structured in
terms of their (𝛼/𝜋) series-expansion. In lithiumlike systems very similar contributions
occur in the zeroth order in (1/𝑍), where photon exchange between the electrons does not
occur.
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Figure 2.3: Relative contributions to the bound-electron g-factor (a) for hydrogenlike ions
[36] and (b) for lithiumlike ions [37]: Relativistic Breit correction (red), 1-loop QED without
vacuum-polarization (bright green), 1-loop QED only vacuum-polarization (violet), 2-loop
QED up to the fourth order in (𝑍𝛼) (blue), 2-loop QED not yet calculated (magenta), nuclear
recoil (orange), nuclear size (black), interelectronic interaction (green) and screened QED
(turquoises). Only ions with an even atomic number are plotted, since we focus on spinless
nuclei.
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One-loop BS-QED Corrections of the Order (𝛼/𝜋)1

In fig. 2.4 all six Feynman diagrams of the first-order in (𝛼/𝜋) are presented for hydrogenlike
systems. In 1997 the three self-energy diagrams (a-c) have been solved for the first time
within the Furry picture in all orders in (𝑍𝛼) [40]. In 2004 these calculations have been
improved and extended also to lithiumlike systems in all orders of (𝑍𝛼) [41]. Besides
self-energy corrections, also the vacuum-polarization corrections have been evaluated [42],
which are at least four orders of magnitudes smaller in the nowadays accessible low and
medium Z region.

Two-loop BS-QED Corrections of the Order (𝛼/𝜋)2

Already the two-loop BS-QED corrections contain 50 Feynman diagrams, see fig. 2.5. At
present solutions for these second and higher-order corrections in (𝛼/𝜋) are not available in
all orders in (𝑍𝛼). Expanding the two-loop corrections in orders of (𝑍𝛼), contributions of
the order (𝛼/𝜋)2(𝑍𝛼)4 have been derived in 2005 for all 𝑛𝑠 states (hydrogenlike, lithiumlike,
sodiumlike ...) [43]. Nowadays uncalculated terms of (𝑍𝛼)5 or higher-order in the two-
loop QED expansion dominate the theoretical uncertainty of bound-electron g-factors in
hydrogenlike systems.

2.3.3 𝛥𝑔nucl - Nuclear Corrections
Until now, the nucleus has been treated as a point charge, fixed in space, which is added as
an external Coulomb potential to the Dirac equation, see eq. (2.5). The following nuclear
properties require corrections of the bound-electron g-factor .

(a) (b) (c)

(d) (e) (f)
Figure 2.4: One-loop BS-QED radiative corrections for hydrogenlike ions. (a-c) represent the
self-energy diagrams; (d-f) the vacuum-polarization diagrams, which contain the electric-loops
in (d) and (e) and the magnetic-loop in (f). The double line symbolizes the electron propagator,
calculated in the Furry picture.
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Figure 2.5: Two-loop BS-QED corrections for hydrogenlike ions. [T. Beier, [34]]

Nuclear Magnetic Moment
A nuclear magnetic moment leads to an additional splitting of the bound-electron energy
levels. This so-called hyperfine structure also modifies the bound-electron g-factor [34].
Since the nuclear magnetic moment is caused by the spins of the constituents of the
nucleons, i.e. the spins of the quarks and gluons, which combine to complicated structures
via complex interactions, it cannot be rigorously calculated, but has to be measured.
Furthermore it is not sufficient to describe the nuclear magnetic moment by a point-like
dipole, but by a smeared-out nuclear magnetization, referred to as the Bohr-Weisskopf
effect [44]. Avoiding these contributions, in this thesis we focus solely on spinless nuclei
with even number of protons and neutrons.

𝛥𝑔ns - Nuclear Size and 𝛥𝑔nd - Nuclear Deformation
The size of the nucleus is considered by modifications of the nuclear potential in the
Dirac equation, see eq. (2.5). The modeled nuclear potential in principal relies on the
root-mean-square charge radius, 𝑟rms

nucl =
√
< 𝑟2 >, which has to be measured in experiments.

In 2002 the corresponding relativistic g-factor correction has been derived analytically for
𝑛𝑠 and 𝑛𝑝1/2 electron states, which reside in our experimentally accessible nuclear charge
range (𝑍 = 1 − 20), [45]. In the non-relativistic limit this g-factor contribution scales
with 𝛥𝑔ns = 8

3𝑛3 (𝑍𝛼)4𝑚2
𝑒 < 𝑟2 > . Due to the 𝑍4-scaling the knowledge of the nuclear

charge distribution sets the limit of g-factor calculations for heavy highly charged ions.
The determination of 𝑟rms

nucl via the measurement of a bound-electron g-factor has been
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demonstrated by the measurement of the g-factor of hydrogenlike silicon [46].
In a recent study [47] the leading relativistic nuclear quadrupole and hexadecapole de-
formation corrections have been derived analytically. For heavy highly charged ions, e.g
hydrogenlike uranium, the relative nuclear deformation contribution to the g-factor is
about 10−6. In the low and medium Z systems, studied in this thesis, the nuclear shape
correction is not relevant at the current level of precision (𝛥𝑔nd(12C) = −7.9(5.3) · 10−16

and 𝛥𝑔nd(28Si) = −2.85(52) · 10−13).

𝛥𝑔rec - Nuclear Mass / Recoil
So far the nucleus has been treated as a static point-charge (or charge distribution), fixed
in space. This time-independent approximation, which would be exact for infinitely heavy
ions, enabled the tremendous simplification of BS-QED, by reducing the two-body problem
to an effective one-body problem for the bound electron. The motion of the nucleus itself
(recoil motion) due to the finite nuclear mass requires BS-QED calculations beyond the
Furry picture. In 2001 this effect has been calculated as a correction of the bound-electron
g-factor to first-order in 𝑚𝑒/𝑀 and to all orders in 𝑍𝛼 [48]. To zeroth order in (1/𝑍),
this formula describes also the recoil correction for electrons in 𝑛𝑠 states. In the lowest
relativistic order the nuclear recoil correction scales as follows: 𝛥𝑔rec = − 𝑚𝑒

𝑚𝑖𝑜𝑛

(𝛼𝑍)2

𝑛2 . This
thesis includes a dedicated measurement of the recoil contribution by measuring the g-factor
difference of 40Ca17+ and 48Ca17+, see section 2.7 and chapter 6 for more details.

𝛥𝑔np - Nuclear Polarization
Intrinsic nuclear dynamics enable virtual electromagnetic excitations, by the exchange of
two photons between the nucleus and the bound electron. This so-called nuclear polarization
correction is evaluated in a (1/𝑍) series expansion. The lowest-order Feynman diagram
is shown in fig. 2.6(a). Similar to the nuclear size corrections, the nuclear polarization
correction is limited to the phenomenological description of the nucleon-nucleon interaction
and in that way can set an ultimate accuracy limit of QED tests in heavy highly charged
ions. The effect has been calculated for the bound-electron g-factor in 2002 [49] and has
been improved in a recent paper [50], evaluating the zeroth and first-orders in (1/𝑍) in
heavy highly charged ions, e.g. 𝛥𝑔np(208Pb81+) = −1.977 · 10−7. As the nuclear shape
corrections, for the ions, studied in this thesis, the nuclear polarization correction is not
relevant at the current level of precision.

2.3.4 Many-Electron Corrections
Focusing on the g-factor of a 2s electron in a lithiumlike electron configuration, which has
got two core electrons (1s) and one valence electron (2s), one has to consider the interactions
between these electrons. We distinguish between two different g-factor contributions.

𝛥𝑔int - Interelectronic Interaction Corrections for Lithiumlike Ions
The interelectronic interaction contribution contains all Feynman diagrams with photon
exchanges between the electrons, like for example diagrams (b-d) in fig. 2.6, excluding
diagrams with additional self-energy or vacuum-polarization loops. In an unusual way this
correction requires also the analysis of the negative-energy Dirac states, which contribute to
the interelectronic interaction correction of the g-factor with the same order of magnitude



2.4 Measurement Principle of the Bound-Electron g-Factor 15

(a) (b) (c)

(d) (e) (f)
Figure 2.6: BS-QED diagrams of some particular physical effects: (a) Nuclear polarization
(The nucleus is presented as a double dashed line.), (b) Interelectronic interaction (one photon
exchange with one core electron), (c) Interelectronic interaction (two photon exchange with one
core electron), (d) Interelectronic interaction (one photon exchanges with two core-electrons),
(e) Screened QED (self-energy), (f) Screened QED (vacuum-polarization). These diagrams just
highlight one diagram of the particular physical effect and not the complete set of diagrams of
the corresponding order.

as the positive-energy states. In 2002 the one-photon exchange diagrams (first-order in
1/𝑍) have been evaluated to all orders in (𝑍𝛼) within a rigorous QED approach [51]. A
recent paper from 2014 presents an extension of these rigorous QED calculations to the
two-photon exchange diagrams (second order in 1/𝑍) [52]. At present the interelectronic
interaction contribution to the bound-electron g-factor dominates the theoretical uncertainty
of lithiumlike g-factors in the low- and medium-Z region (𝑍 < 30).

𝛥𝑔sQED - Screened QED Corrections for Lithiumlike Ions
The screened QED corrections include all Feynman diagrams with photon exchanges
between the electrons, which contain additionally self-energy or vacuum-polarization loops.
As an illustration, diagrams (e) and (f) in fig. 2.6 show some leading-order screened QED
corrections. Since the convergence of the screened QED contributions differs for various
atomic numbers, at present three different approaches are used: (1) For lower Z the
convergence in a rigorous QED approach becomes worse, so that perturbation theory only
in leading-order in (𝑍𝛼) is applied. (2) In the medium-Z region an effective screening
potential is introduced in the QED calculations to all orders in (𝑍𝛼). (3) For heavy highly
charged ions a rigorous QED approach is used [52].

2.4 Measurement Principle of the Bound-Electron g-Factor
In a homogeneous magnetic field 𝐵⃗ = 𝐵𝑒𝑧 the Zeeman effect describes the shift of the
bound-electron energy levels in dependence on the specific total angular momentum 𝐽 and
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the corresponding projection 𝑚𝐽 parallel to the magnetic field:

𝛥𝐸Z(𝐽,𝑚𝐽 ,𝐵) = 𝑔𝐽 𝑚𝐽 𝜇𝐵 𝐵. (2.10)

In this context the 𝑛𝑠 states energetically split into two states, the spin-up | ↑> and
spin-down | ↓> states. The corresponding energy difference, the so-called Zeeman (level)
splitting, amounts to:

𝛥𝐸Z.-Splitting = 𝛥𝐸Z(| ↑>) −𝛥𝐸Z(| ↓>) = ℎ
𝑔

4𝜋
𝑒

𝑚𝑒
𝐵 = ℎ · 𝜈𝐿, (2.11)

where 𝜈𝐿 is the Larmor frequency, also called the spin precession frequency. For the
determination of the magnetic field, the cyclotron frequency 𝜈𝑐 of the ion is measured:

𝑣𝑐 = 1
2𝜋

𝑞𝑖𝑜𝑛

𝑚𝑖𝑜𝑛
𝐵. (2.12)

The combination of eq. (2.11) and eq. (2.12) provides an experimental access to the
bound-electron g-factor :

𝑔 = 2 𝑚𝑒

𝑚𝑖𝑜𝑛

𝑞𝑖𝑜𝑛

𝑒

𝑣𝐿

𝑣𝑐
= 2 𝑚𝑒

𝑚𝑖𝑜𝑛

𝑞𝑖𝑜𝑛

𝑒
𝛤, (2.13)

which depends on the electron / ion mass-ratio, electron mass over ion mass, the charge ra-
tio, which is a simple ratio of integers, and the Larmor- to cyclotron frequency ratio 𝛤 ≡ 𝜈𝐿

𝜈𝑐
.

Higher-Order Zeeman Shifts
Multiple interactions between the bound electron and the external magnetic field, as for ex-
ample illustrated in fig. 2.7, lead to higher-order Zeeman shifts, which are non-linear in the

(a) (b)
Figure 2.7: Leading-order diagrams of the 2nd and 3rd order Zeeman shifts.

magnetic field. Studying this effect, the Zeeman shift can be evaluated in a series-expansion:

𝛥𝐸(𝐽,𝑚𝐽 ,𝐵) = 𝛥𝐸(1)(𝐽,𝑚𝐽 ,𝐵) +𝛥𝐸(2)(𝐽,𝑚𝐽 ,𝐵) +𝛥𝐸(3)(𝐽,𝑚𝐽 ,𝐵) + ... (2.14)

where: 𝛥𝐸(𝑖)(𝐽,𝑚𝐽 ,𝐵) = 𝑔
(𝑖)
𝐽 ·𝑚𝐽 ·(𝜇𝐵𝐵)𝑖/(𝑚𝑒𝑐

2)𝑖−1 and 𝑖 ∈ N, see also fig. 2.8. In the case
of 𝐽 = 1/2, the first-order coefficient 𝑔(1)

𝐽 is related to the theoretically predicted bound-
electron g-factor described above: 𝑔 = 𝑔

(1)
1/2. The higher-order shifts can be calculated,

see [53]. Considering the symmetry relation: 𝑔(2)
𝐽 · (𝑚𝐽) = 𝑔

(2)
𝐽 · (−𝑚𝐽), the quadratic
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energy 1st order
Zeeman shift

+ 2nd order
Zeeman shift

+ 3rd order
Zeeman shift

2s1/2, J=1/2

1s1/2, J=1/2

ms=+1/2

ms=-1/2

ms=+1/2

ms=-1/2

Figure 2.8: Level scheme of the higher-order Zeeman shifts for the 1𝑠1/2 and 2𝑠1/2 states. In
the case of 12C5+ and 40Ca17+ the 2nd order Zeeman effect shifts all the Zeeman sublevels in
equal measure up, so that the Zeeman splitting is not influenced and the 3rd order Zeeman effect
slightly diminishes the Zeeman splitting. The way of representing the shifts is exaggerated.

correction does not alternate the Zeeman splitting for 𝐽 = 1/2 levels, so that for example
hydrogenlike and lithiumlike ions are not effected. Nevertheless the third order Zeeman

Table 2.1: 2nd and 3rd Zeeman shifts for hydrogenlike carbon 12C5+ and lithiumlike calcium
40Ca17+ in a magnetic field of 3.76 T [54].

ion
⃒⃒
𝛥𝐸(2)/𝛥𝐸(1)⃒⃒ ⃒⃒

𝛥𝐸(3)/𝛥𝐸(1)⃒⃒
12C5+ 2.2 · 10−7 2.6 · 10−16

40Ca17+ 3.2 · 10−7 3.8 · 10−16

shift, where 𝑔(3)
𝐽 · (𝑚𝐽) = −𝑔(3)

𝐽 · (−𝑚𝐽), is the leading-order correction of the Zeeman
splitting in hydrogenlike and lithiumlike ions. For 40Ca17+ and 12C5+ these higher-order
Zeeman splittings are much smaller than the relative experimental uncertainty of a few
1 · 10−11, see table 2.1.

2.5 Status of the Bound-Electron g-Factor Measurements
In parallel to the great improvements of the theoretical predictions of the bound-electron
g-factor in the last 15 years, a tremendous progress has been made on the experimental
determination of the bound-electron g-factor. One major breakthrough has been achieved
in 2000, when, in the group of Günter Werth, Nikolaus Hermanspahn, Harmut Häffner
and colleagues managed to trap a single hydrogenlike carbon ion in a Penning trap setup
and measured the g-factor with the newly developed double-trap technique (𝛿𝑔/𝑔)exp =
2.5 · 10−9 [55]. The theoretical uncertainty of that time was of the same order of magnitude
(𝛿𝑔/𝑔)theo = 3.5 · 10−9 1. In 2003 José Verdú and colleagues, also from the group of
Günter Werth, published the g-factor of hydrogenlike oxygen (𝛿𝑔/𝑔)exp = 2.3 · 10−9

[56]. The corresponding theoretical prediction at that time had a relative uncertainty of
(𝛿𝑔/𝑔)theo = 3.0 · 10−10. Seven years later Sven Sturm and colleagues had developed a

1 In this paragraph I quote the theoretical g-factors, which have been published together with the
measurements at that time. Most calculations improved in the last years.
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number of experimental improvements, e.g. an improved trap design, a significantly enlarged
spatial separation of the two Penning traps, to improve the magnetic homogeneity [57],
completely newly developed cryogenic detection systems to reduce the ion’s temperatures,
feedback techniques, pressure and room temperature stabilizations and beside that a new
phase-sensitive detection technique, PnA [58], which will be also explained in this thesis in
section 3.4.2. In 2011 Sven Sturm and colleagues published the g-factor of hydrogenlike
silicon,28Si13+((𝛿𝑔/𝑔)exp = 5.0 · 10−10 and (𝛿𝑔/𝑔)theo = 8.5 · 10−10), which at present
represents the most stringent test of BS-QED [46]. All QED contributions have been
tested with a relative uncertainty of 8 · 10−7; without the (𝑍𝛼)0 contributions, the relative
uncertainty is still 3 · 10−4. Two years later Anke Kracke and colleagues measured the
g-factor of lithiumlike silicon, 28Si11+((𝛿𝑔/𝑔)exp = 1.1 · 10−9 and (𝛿𝑔/𝑔)theo = 2.5 · 10−8),
which represents the most stringent test of many-electron BS-QED calculations [59]. To
date, all the calculated bound-electron g-factors have been in good agreement with the
correponding measurements.

Next Steps - Bound-Electron g-Factor Measurements Presented in this Thesis
In this thesis I will present an improved g-factor value of hydrogenlike carbon. From the
result a new value for the electron’s atomic mass has been derived, which reduces the
uncertainty of the current literature value of the atomic mass of the electron 𝑚𝑒 by a factor
of 13. Furthermore, I will present high-precision g-factor measurements of the lithiumlike
calcium isotopes 40Ca17+ and 48Ca17+. Their g-factor difference represents a unique test
of BS-QED beyond the Furry picture.
In the last two sections of this chapter I will highlight firstly the status of electron
mass measurements (section 2.6) and secondly the status of isotope shift measurements
(section 2.7).

2.6 The Electron and its Atomic Mass
In 1897 Joseph J. Thomson and colleagues discovered the electron as a unique particle in
cathode ray experiments [60]. In his Nobel lecture in 1906 he denominated the electron
mass with a relative precision of the order of 6% (”... the mass of the corpuscle is only
about 1/1700 of that of the hydrogen atom.”) [61]. Nowadays, the electron is regarded
as a massive, electrically charged, point-like, elementary spin-1/2 particle. A possible
substructure would be smaller than 2 · 10−20 m [62]. The Kobayashi–Maskawa phase in the
quark sector of the SM can induce an electric dipole moment (EDM) of 𝑑𝑒 < 1 · 10−38 𝑒 · cm
via higher-order quark loops [63]. Larger electron EDMs are predicted in several SM
extensions. At the moment, the upper limitations of the sought-after electron EDM
amounts to 8.7 · 10−29 𝑒 · cm at a 90% confidence level [64]. As the lightest electrically
charged lepton of the SM, the electron is a stable particle. This outstanding property
assigns the electron a prominent role in nature. Its intrinsic characteristics, especially
its mass, which is one of the 19 fundamental input parameters of the SM, profoundly
determines the atomic structure of our universe.
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2.6.1 Benefits of an Improved Electron Mass
Theses days at least two fields of high-precision physics benefit from an improved electron
mass:

• The determination of the fine structure constant:
Introduced already in section 2.2, the most stringent test of QED, which is based on
the theoretical prediction and the measurement of the anomalous magnetic moment
of the free electron, requires an experimentally determined value for the fine structure
constant 𝛼. At present, the most precise value relies on four fundamental constants,
see eq. (2.3): (1) the Rydberg constant (𝛿𝑅∞/𝑅∞ = 5.0 ·10−12) [65], (2) the rubidium
mass (𝛿𝑀Rb/𝑀Rb = 1.2 · 10−10) [66], (3) the ratio Planck constant over rubidium
mass (𝛿(ℎ/𝑀Rb)/(ℎ/𝑀Rb) = 1.2 · 10−9) [19] and (4) last but not least the mass of
the electron.
Further progress on this impressive QED test is motivated in particular by the
2.5−3.6𝜎 discrepancy between the theoretically predicted and the measured anomalous
magnetic moment of the muon 𝛿𝑎𝜇/𝑎𝜇(exp) = 5.4 · 10−7 [67, 68]. Since the radiative
loop contributions from hypothetical heavier new particles with masses 𝑚new phys
scale with 𝑚2

(𝜇,𝑒)/𝑚
2
new phys, the muon has a 40000 times enhanced sensitivity to ”new

physics” compared to the about 200 times lighter electron. A confirmation of such
a discrepancy also in the anomalous magnetic moment of the free electron requires
amongst others a value of the fine structure constant with a relative uncertainty of
about 4 · 10−11. With the new value of the electron mass, reported in this thesis, we
approach such requests.

• Tests of QED in strong electric fields:
Mentioned in section 2.5, nowadays the most stringent tests of BS-QED are based
on high-precision measurements of the bound-electron g-factor of hydrogenlike ions.
Here, the measurement principle strongly depends on the electron mass, see eq. (2.13).
Already the uncertainty of the g-factor of hydrogenlike silicon in 2011 has been
dominated by the uncertainty of the electron mass [46]. For further planned bound-
electron g-factor measurements an improved electron mass is of great importance.

2.6.2 Electron Mass Measurements in History
Some remarkable achievements in trapping physics of charged particles have been associated
with measurements of the electron mass. In this section I will summarize the tremendous
experimental progress, which improved the relative uncertainty of the electron mass by
more than three orders of magnitudes in the last 40 years, see also fig. 2.9. I will start with
the first direct determination of the electron mass in a Penning trap 37 years ago. In such a
direct approach, which is the most common measurement principle in high-precision mass
spectrometry of charged particles (elementary particles, ions, molecules), the cyclotron
frequency ratio of the particle of interest, in this case of the electron 𝜈e

𝑐 = 1
2𝜋

𝑒
𝑚𝑒
𝐵, and a

reference particle 𝜈ref
𝑐 = 1

2𝜋
𝑞ref
𝑚ref

𝐵 is measured in a homogeneous magnetic field:

𝑚𝑒 = 𝑒

𝑞ref

𝜈ref
𝑐

𝜈e
𝑐

𝑚ref, (2.15)
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Figure 2.9: A historical overview of the relative uncertainties of the electron mass measure-
ments in the last four decades. Blue markers: Direct measurements of the cyclotron frequency
ratio 𝜈ref

𝑐 /𝜈e
𝑐 [69, 70, 71, 72, 73]. Red markers: Indirect measurements of the Larmor-to-

cyclotron frequency ratio 𝜈𝐿/𝜈
ion
𝑐 [55, 56, 74, 75, 76, 77]. Black markers: Literature values by

the CODATA [65, 78, 79, 80, 81, 82].

where 𝑒 and 𝑞ref are the charge states of the electron and of the reference particle, respectively,
and 𝑚ref is the mass of the reference particle, which must have a smaller relative uncertainty
than the electron mass. For the electron mass this direct approach has been applied for
the first time by G. Gärtner and E. Klempt in 1978 [69]. They loaded alternately clouds of
a few thousand protons and a few thousand electrons into a Penning trap and measured in
a destructive manner the particle loss by resonant cyclotron excitations. In the following
17 years this direct measurement principle has been improved, reducing the size of the
particle clouds and optimizing the frequency detection techniques. In this context four
papers have to be mentioned: (1) In 1980 G. Gräff, H. Kalinowsky and J. Traut [70]
introduced a time-of-flight (ToF) technique to measure the electron-proton mass ratio. (2)
In 1981 R. S. Van Dyck Jr. and P.B. Schwinberg used for the first time non-destructive
radio frequency (rf) resonance techniques, [71]. They alternately confined clouds of about
10 electrons and 40 ions in the same magnetic field of a Penning trap and detected the
induced image charges of the excited clouds. (3) In the following years R. S. Van Dyck Jr.
and colleagues improved their experimental setup [72]. (4) In 1995 D.L. Farnham, R.S.
Van Dyck Jr. and P.B. Schwinberg published their last direct measurement of the electron
mass, by measuring the cyclotron frequencies of a single carbon nucleus (12C6+) and a
small electron cloud (5-13 electrons) via non-destructive rf-resonance detection techniques
[73]. Their measurement principle has been limited by the large relativistic shift of the
electron and the corresponding large uncertainty of the electron cyclotron frequency due



2.6 The Electron and its Atomic Mass 21

to the smallness of the electron mass.
In parallel to this direct approach, D.J. Wineland, J.J. Bollinger and W.M. Itano developed
an alternative approach for precision mass spectrometry in Penning traps already in 1982
[74]. They measured on the one hand the cyclotron frequency of a small cloud of lithium-like
9Be+ ions, using a laser-beam fluorescence technique, and on the other hand a hyperfine
transition of these ions via an rf-optical double-resonance technique. For the determination
of the electron mass they had to rely on theoretical predictions for the bound-electron
g-factor.
Before I will come to the state-of-the-art measurement principle for the electron mass,
which has been developed within the group of Günter Werth, I want to mention two further,
more exotic measurements of the electron mass: (1) In the context of a CPT test, the
masses of protons and antiprotons have been measured by Gerald Gabrielse and colleagues
in 1990 [75]. They alternatively trapped small clouds of protons and antiprotons in a
cylindrical Penning trap. Here, they measured also the mass ratios antiproton-to-electron
and proton-to-electron, determining in that way also a value of the electron mass. (2) In
2011 Masaki Hori and colleagues performed two-photon laser spectroscopy of antiprotonic
helium, a bound-state including a helium nucleus, an antiproton and an electron. Relying
on matter-antimatter symmetry, 𝑚𝑝 = 𝑚p, they derived a value for the electron mass [76].

2.6.3 State-of-the-art Measurement Principle of the Electron Mass
In the beginning of this millennium, Günter Werth, Heinz-Jürgen Kluge and Wolfgang
Quint presented an improved and advanced variant of the indirect approach to circumvent
the determination of the cyclotron frequency of the free electron and the corresponding
large relativistic shifts. Instead of measuring the cyclotron frequency of the free electron 𝜈𝑒

𝑐 ,
the electron was bound to a light nucleus and the ratio between the Larmor frequency of
the bound electron and the cyclotron frequency of the hydrogenlike ion has been measured,
exactly like for the determination of the bound-electron g-factor, see section 2.4. Relying
on calculations for the bound-electron g-factor, eq. (2.13) can be resolved to the electron
mass:

𝑚𝑒 = 𝑔𝑡ℎ𝑒𝑜

2
𝑒

𝑞𝑖𝑜𝑛

𝑣𝑐

𝑣𝐿
𝑚𝑖𝑜𝑛 = 𝑔𝑡ℎ𝑒𝑜

2
𝑒

𝑞𝑖𝑜𝑛

𝑚𝑖𝑜𝑛

𝛤
. (2.16)

Due to the (𝑍𝛼)5 scaling of the higher-order two-loop QED corrections, which dominate
the uncertainty of bound-electron g-factor calculations for hydrogenlike ions, see fig. 2.3,
it is favorable to use light nuclei. For the first time this measurement principle has been
used by Hartmut Häffner and colleagues in 2001, in the group of Günter Werth. Here,
they determined the Larmor-to-cyclotron frequency ratio of hydrogenlike carbon [83]. Two
years later José Verdú and colleagues measured also the Larmor-to-cyclotron frequency
ratio of hydrogenlike oxygen [56]. Both measurements have already been mentioned in the
context of historical bound-electron g-factor measurements in section 2.5.
In this thesis the measurement on hydrogenlike carbon is repeated with a significantly
improved experimental setup, which enables a 25-fold improvement in comparison to the
former measurement on hydrogenlike carbon.
We have also chosen hydrogenlike carbon, since the atomic mass of carbon 12𝐶 defines
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the atomic mass unit and thus has no uncertainty. In table 2.2 the binding energies of
carbon 12C are listed. Since for the first ionization energy no uncertainty is listed in [84]

Table 2.2: Binding energies of atomic carbon, 12C from the NIST Atomic Spectra Database[89]

ionization state binding energy (eV)
I [84] 11.260 30
II [85] 24.384 5 (9)
III [86] 47.887 78 (12)
IV [87] 64.493 58 (19)
V [88] 392.090 49 (3)

and a further calculated value in [90] deviates by 0.7 meV, we assume a conservatively
estimated error of 1 meV for the first ionization state. With a total binding energy of
𝐸bind = 540.116 6 (14) eV and the conversion factor of 1 u = 931.494061(21) · 106 eV/𝑐2 [65]
the mass of 12C5+ is calculated:

𝑚(12C5+) = 12 u − 5 ·𝑚𝑒 + 𝐸bind

= 11.997 257 680 291 7 (18) u (0.15 ppt). (2.17)

2.6.4 State-of-the-art Calculations of the Bound-Electron g-Factor of Hydrogenlike Carbon
In the framework of bound-state QED the g-factor of 12C5+ has been calculated with
a relative uncertainty of 1.2 · 10−11 : 𝑔 = 2.001 041 590 176 (24) [77]. Beyond that,
the theoretical uncertainty has been even further reduced by a factor of 5 by estimating
the dominant unknown term - the leading higher-order contribution in two-loop QED
calculations: 𝑔ho

2𝐿(𝑍) ≈ (𝛼/𝜋)2(𝑍𝛼)5 𝑏50 - from the discrepancy between the experimentally
and determined g-factor of hydrogenlike silicon, 28Si13+, see table 2.3 and supplement
of [77]. The final state-of-the-art value for the theoretically predicted bound-electron
g-factor value is [77]:

𝑔theo(12C5+) = 2.001 041 590 179 8 (47) (2.4 ppt). (2.18)



2.7 Testing BS-QED Beyond the Furry Picture 23

Table 2.3: Theoretical contributions to the bound-electron g-factor of hydrogenlike carbon
12C5+. Abbreviations: ”h.o.:” higher-order, ”SE:” self-energy contribution, ”SE-FS:” mixed
self-energy and nuclear finite size contribution, ”VP-EL:” electric-loop vacuum-polarization
contribution, ”VP-ML: ” magnetic-loop vacuum-polarization contribution, ”rad-rec:” leading
term of the mixed radiative-recoil contribution [77]

theoretical contributions 12C5+

Dirac 1.998 721 345 391 (1)
finite nuclear size 0.000 000 000 407
one-loop QED (𝑍𝛼)0 0.002 322 819 466 (1)

(𝑍𝛼)2 0.000 000 742 160
(𝑍𝛼)4 0.000 000 093 422
h.o. SE 0.000 000 008 283 (4)
h.o. SE-FS -0.000 000 000 002 (2)
h.o. VP-EL 0.000 000 000 556
h.o. VP-ML 0.000 000 000 038

≤ two-loop QED (𝑍/𝛼)0 -0.000 003 515 108
(𝑍/𝛼)2 -0.000 000 001 123
(𝑍/𝛼)4 0.000 000 000 060
h.o. -0.000 000 000 003 (3)

nuclear recoil 𝑚𝑒/𝑀 0.000 000 087 725
rad-rec -0.000 000 000 068
h.o. -0.000 000 000 028

nuclear polarization 0.000 000 000 000
nuclear deformation 0.000 000 000 000
total theory 2.001 041 590 176 (6)

2.7 Testing BS-QED Beyond the Furry Picture
As already specified in the context with bound-electron g-factors, see section 2.3.3, high-
precision measurements within the atomic level scheme are sensitive to various nuclear
properties, such as the nuclear mass, the nuclear charge distribution, the nuclear spin,
the nuclear magnetization distribution and nuclear level schemes. Here, measurements on
different isotopes are of particular interest, since the differences of these measurements,
the so-called isotope shifts (IS), are exclusively caused by the nuclear differences.

2.7.1 Isotope Shift Measurements
High-precision measurements of isotope shifts represent one of the vital investigations in
atomic physics [91]. In this context many atomic transitions have been studied with various
techniques, e.g. X-ray measurements also in muonic atoms, elastic electron scattering
experiments, laser and X-ray spectroscopy and dielectronic recombination measurements.
Isotope shifts arise mainly from the combined effects of (1) the finite nuclear mass and (2)
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the volume of the nuclear charge distribution1. The recoil shift which is also called mass
shift (MS) usually dominates the isotope shifts in light atoms and has a large relativistic
nuclear recoil contributions in heavy highly charged ions. The nuclear size shift which is
also called volume or field shift (FS) is caused by the spatial overlap of the nuclear charge
distribution and the electronic wave functions. The FS scales as 𝑍5 or even 𝑍6 and thus
dominates the isotope shifts in heavy atoms.
A successful test of the relativistic mass shift has been performed by Rosario Soria Orts
and colleagues in 2006 [92]. They measured the isotope shift of the magnetic-dipole (M1)
transitions of boron- and berilliumlike argon ions at the Heidelberg electron beam ion trap
with relative uncertainties of 4.9% and 8.3%.
To my knowledge, the first measurement of an isotope effect in bound-electron g-factors has
been performed by W. M. Hughes and H. G. Robinson in 1969 [93]. They measured the
bound-electron g-factor ratio (not the difference) of hydrogen (H) and deuterium (D), using
optical pumping of rubidium and a spin-exchange detection of H and D atomic Zeeman
resonances.

2.7.2 The Isotope Shift of the Bound-Electron g -Factors of Two Different Lithiumlike Calcium
Isotopes, 40Ca17+ and 48Ca17+

In the second part of my thesis, I will focus on the bound-electron g-factor difference of the
lithiumlike isotopes 40Ca17+ and 48Ca17+. In the case of 40Ca and 48Ca the nuclear charge
radii are surprisingly similar: 𝑟nucl(40Ca) = 3.4776(19) fm and 𝑟nucl(48Ca) = 3.4771(20) fm
[94], so that the nuclear size contribution basically cancels in the g-factor difference. To
99.96% the g-factor difference is dominated by the recoil contribution.

2.7.3 Theoretical Calculations of the Isotope Shift 𝛥𝑔 = 𝑔(40Ca17+) − 𝑔(48Ca17+)
For 𝑛𝑠 states the recoil contribution is of pure relativistic origin. The corresponding full
relativistic theory can be formulated only in the framework of QED. As already stated
in section 2.3.3, the recoil correction is the only contribution, which requires BS-QED
calculations beyond the external field approximation, the so-called Furry picture. In a

Table 2.4: Theoretical contributions of the bound-electron g-factor difference of the lithiumlike
calcium isotopes 40Ca17+ and 48Ca17+ [95].

effects contributions to 𝛥𝑔/10−9

nuclear recoil: one-electron non-QED ∼ 𝑚𝑒/𝑚nucl 12.246
nuclear recoil: one-electron non-QED ∼ (𝑚𝑒/𝑚nucl)2 -0.006
nuclear recoil: one-electron QED ∼ 𝑚𝑒/𝑚nucl 0.123
nuclear recoil: one-electron QED ∼ 𝛼(𝑚𝑒/𝑚nucl) -0.009 (1)
nuclear recoil: interelectronic-interaction -2.051 (25)
finite nuclear size 0.004 (10)
total theory [𝛥𝑔 = 𝑔(40Ca17+) − 𝑔(48Ca17+)] 10.305 (27)

recent paper the recoil contribution has been evaluated to all orders in (𝑍𝛼) for the 2s state

1 In principle, also nuclear polarizations contribute to isotope shifts. However, at the present level of
precision this contribution can be neglected.
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of the calcium isotopes [95]. The corresponding radiative, second-order in (𝑚𝑒/𝑚ion) and
interelectronic interaction (first and higher-orders) recoil corrections have been calculated
[96, 97, 98, 99, 100]. The theoretical uncertainty of the recoil contributions is dominated by
the uncalculated higher-order relativistic and QED corrections. In table 2.4 the different
theoretical contributions to the g-factor difference of 40Ca17+ and 48Ca17+ are listed.
Since we measured the absolute g-factor values of 40Ca17+ and 48Ca17+, I also list the
corresponding state-of-the-art g-factor contributions in table 2.5. Although most recent

Table 2.5: Theoretical contributions to the bound-electron g-factors of the lithiumlike calcium
isotopes: 40Ca17+ and 48Ca17+ [52] and [95].

theoretical contributions 40Ca17+ 48Ca17+

Dirac value (point nucleus) 1.996 426 010 90
one-loop QED 0.002 325 555 (5)
two-loop QED -0.000 003 520 (2)
interlectronic interaction 0.000 454 290 (9)
screened QED -0.000 000 370 (7)
finite nuclear size 0.000 000 014 41 (2) 0.000 000 014 41 (2)
nuclear recoil 0.000 000 061 85 (15) 0.000 000 051 54 (12)
total theory 1.999 202 042 (13) 1.999 202 032 (13)

progress has been made on the interelectronic interaction contributions, by the rigorous
QED evaluation of the second-order contributions (two-photon exchange diagrams) [52],
the interelectronic interaction contribution still dominates the theoretical uncertainty.

2.7.4 The Atomic Masses of 40Ca17+ and 48Ca17+

The experimental determination of the isotope difference between the bound-electron g-
factors of 40Ca17+ and 48Ca17+ requires (1) two high-precision frequency ratio measurements
of 𝛤 (40Ca17+) and 𝛤 (48Ca17+), see eq. (2.13), which will be presented in chapter 6. (2)
Above that, high-precision values of the 40Ca17+ and 48Ca17+ masses are essential, see also
eq. (2.13), which will be summarized in the following.

The mass of 48Ca17+

In a recent measurement campaign the atomic mass of 48Ca has been directly determined
with the Penning trap mass spectrometer SHIPTRAP [101], measuring the cyclotron
frequency ratio of singly charged 48Ca+ ions and C+

4 carbon clusters as a reference [95]:

𝑅 = 𝜈𝑐(48Ca+)
𝜈𝑐(C+

4 )
= 𝑚(C+

4 )
𝑚(48Ca+)

= 1.000 990 101 75 (39) (0.39 ppb). (2.19)

Both cyclotron frequencies are determined as the sum of the two trap radial-motion fre-
quencies, see eq. (3.12). For this purpose small clouds (≤5 ions) of 48Ca+ and C+

4 are
alternately produced with a laser-ablation ion source [102]. They are separately transferred
into a preparation Penning trap for cooling and centering via mass-selective buffer-gas
cooling [103]. Afterwards, the particular cyclotron frequency is measured in the so-called
measurement Penning trap, using the novel Phase-Imaging Ion-Cyclotron Resonance tech-
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nique (PI-ICR) [104, 105].
The mass of a C+

4 cluster is calculated, considering the dissociation energy 𝐸diss =
18.0(1.7) eV [106], the ionization energy 𝐸ion = 11.0(7) eV [107] and the missing elec-
tron: 𝑚(C+

4 ) = 4 · 12 u − 1 ·𝑚𝑒 −𝛥𝑚(𝐸diss) +𝛥𝑚(𝐸ion) = 47.999 451 412 6 (20) u. The
mass differences between all three possible cluster structures – linear, rhombus and triangu-
lar pyramidal – are already covered by the uncertainties of the dissociation and ionization
energies. For the determination of the mass of lithiumlike calcium 48Ca17+ we have to
correct the mass of singly charged calcium: 𝑚(48Ca1+) = 𝑅/𝑚(C+

4 ) by the 16 missing
electron masses and the corresponding binding energies: 𝛥𝑚(𝐸bind) = 7.2438(43) · 10−6 u
[89]1. Here, the relative isotope dependence of the binding energy is smaller than 3 · 10−12
2. Finally we extract the mass of 48Ca17+ [95]:

𝑚(48Ca17+) = 𝑚(48Ca1+)−16·𝑚𝑒+𝛥𝑚(𝐸bind) = 47.943 204 044 (19)u (0.4ppb). (2.20)

The mass of 40Ca17+

The masses of 40Ca17+ and 40Ca19+ have been measured directly by Szilard Nagy and
colleagues in 2006 at the SMILETRAP Penning trap mass spectrometer [109], using a
time-of-flight technique and H+

2 ions as a reference. The atomic mass of 40Ca which has
been published in the atomic mass evaluation (AME) 2012 [110] is based on these two
measurements, corrected by the masses of the missing electrons and their binding energy.
Here, calculated binding energies from [111] have been used: 6732.139 eV for the lithiumlike
ion and 13017.129 eV for the hydrogenlike ion. Calculating backwards from the AME 2012
value, 𝑚(40Ca) = 39.962 590 864 (22) u, we determine the mass of a lithiumlike 40Ca ion:

𝑚(40Ca17+) = 39.953 272 233 (22) u (0.6 ppb). (2.21)

This value slightly deviates from the value published in [109], since the mass of hydrogen
changed by 1.6 · 10−9 u, comparing AME 2003 and AME 2012.

1 Binding energies from NIST table [89]: 𝐸bind = 18804(4) − 11756.4449(80) = 6747.5(4.0) eV and
1 u = 931 494 061 (21) eV/c2.

2 In general the binding energies of different isotopes varies due to their different masses (mass shift)
and their different charge distributions (field shift). For calcium the field shift dominates, which scales
with 𝑍5 to 𝑍6 [91]. Since the binding energy of a 1s electron in uranium differs by 200 eV between a
hypothetical point-charge distribution and the measured charge distribution [108], the field shift for 1s
electrons in calcium isotopes should be smaller than 𝛥𝑚/𝑚 = 200 eV/925 · 205/40 GeV = 2.6 · 10−12.
For 2s electrons this effect is even smaller.



CHAPTER 3
Penning Trap Physics

Our high-precision measurements of the Larmor-to-cyclotron frequency ratios 𝛤 require
single trapped, cooled ions in close-to-ideal vacuum. State-of-the-art trapping and high-
precision measurement techniques with stable ions will be introduced in this chapter.
These techniques allow us to work with the same single ion for the complete measurement
period. In the beginning, section 3.1, fundamental concepts of Penning trap physics,
e.g. the dynamics in an ideal (3.1.1), but also in a real Penning trap with intrinsic trap
imperfections will be outlined (3.1.2). In section 3.2, I will summarize a non-destructive
detection method for the determination of the eigenfrequencies at low temperature by
measuring the induced image currents on the trap electrode surfaces. Aside from the
determination of the eigenfrequencies, this technique enables at the same time a very
efficient way of cooling the ion. General possibilities to modify the eigenmotions of the
confined ion by for example excitation or mode-coupling will be explained in section 3.3. In
section 3.4, further concepts of eigenfrequency measurement, e.g. phase-sensitive techniques,
will be introduced. So far, aiming for the cyclotron frequency of the ion, in the last part of
this chapter, section 3.5, the determination of the Larmor frequency will be discussed.

3.1 Trapping Charged Particles
Already 23 years before Maxwell formulated the classical field theory of electromagnetism
Samuel Earnshaw proved in 1842 that there is no single electrostatic or magnetostatic
field configuration that can maintain a charged particle in a stable stationary equilibrium
(Earnshaw’s Theorem) [112].
At present, mostly two different concepts are applied for the trapping of electrically charged
particles in small volumes, a few cubic centimeters or smaller1: (1) In 1953 Wolfgang Paul
and Helmut Steinwedel developed the concept of trapping charged particles in the center of
an oscillating quadrupole electric potential, which nowadays is called the Classical Paul Trap
[113]. Already in 1954 the first Paul trap has been realized [114]. (2) In 1959 Hans Georg
Dehmelt used for the first time a superposition of an electrostatic and a magnetostatic

1 For completion, we also mention the trapping of electrically charged particles in storage rings, which
require usually circumferences of at least a few meters up to 27 km.

27
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field to confine electrons for several seconds [115]. He named this trapping apparatus after
Frans Michel Penning who had proposed the fundamental concept already in 1936, when
he constructed a vacuum gauge [116]. In 1949 for the first time John Robinson Pierce
proposed such a field configuration for the trapping of charged particles [117]. In the field
of high-precision physics with charged particles Penning traps have two major advantages
towards Paul traps: At first, since the field configuration is static no micromotion occurs
which would evoke a heating of the particle. The second advantage is given by the stability
of the homogeneous magnetostatic field generated by a superconductive magnet, which
enables high-precision measurements of the trapped ion’s cyclotron frequency.

3.1.1 The Ideal Penning Trap
An ideal Penning trap is a superposition of two static fields (1) a homogeneous magnetic
field for radial confinement and (2) an electric quadrupole potential for axial confinement
of electrically charged particles1. To generate an electrostatic quadrupole potential, at
least three hyperbolic electrodes are required. The central electrode, the so-called ring
electrode, is negatively charged and the two endcap electrodes are equally positively biased,
see fig. 3.1. An ideal quadrupole potential would require hyperbolically shaped electrodes

upper endcap

ring

lower endcap

Figure 3.1: Cross section of an ideal Penning trap. An electrostatic quadrupole potential is
generated by three hyperbolically shaped electrodes: the ring electrode (central electrode) and
two endcap electrodes (upper and lower electrode) with 𝑟0 =

√
2𝑧0. This setup is placed in a

homogeneous magnetic field 𝐵. Removing the magnetostatic field and replacing the electrostatic
field by an oscillating electric field, such an electrode configuration would represent a classical
Paul trap.

1 In a Penning trap, different numbers and even different species of charged particles can be confined at
the same time. In this thesis, we focus on single trapped ions.
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with infinite size. The homogeneous magnetic field, pointing in axial direction,

𝐵⃗ = 𝐵0 · 𝑒𝑧 (3.1)

confines the electrically charged particle in the radial x / y plane on a circular orbit. In
cylindrical coordinates the electric quadrupole potential has the following form:

𝛷(𝑧,𝜌) = |𝑈𝑟|𝐶2
2𝑑2

𝑐ℎ𝑎𝑟

(︂
𝑧2 − 𝜌2

2

)︂
, (3.2)

where 𝜌 ≡
√︀
𝑥2 + 𝑦2. 𝑈𝑟 is the negative electric voltage applied to the ring electrode and

𝑑𝑐ℎ𝑎𝑟 ≡
√︀

1/2(𝑧2
0 + 𝑟2

0/2) is a characteristic trap length, such that 𝐶2 is a dimensionless
constant. In the case of a hyperbolic Penning trap with 𝑟0 =

√
2𝑧0, 𝐶2 equals −0.5, see

also 3.18.

The Confined Motion
In the following section, the classical, non-relativistic motion in an ideal Penning trap is
formulated for a single ion with mass 𝑚ion and electric charge 𝑞ion. Relativistic corrections
will be applied in section 3.3.2.
In the axial direction, which in this thesis will always match with the z-axis, the ion is
exposed to an attractive harmonic electrostatic potential. The corresponding equation of
motion

𝑚ion𝑧 = −𝑞ion𝑈𝑟𝐶2
𝑑2

𝑐ℎ𝑎𝑟

𝑧 (3.3)

describes a one dimensional harmonic oscillation with eigenfrequency1

𝜔𝑧 =
√︃
𝑞ion𝑈𝑟𝐶2
𝑚ion𝑑2

𝑐ℎ𝑎𝑟

, (3.4)

the so-called axial frequency. The total axial energy amounts to

𝐸𝑧 = 1
2𝑚ion𝜔

2
𝑧𝑧

2
0 , (3.5)

where 𝑧0 is the maximal axial amplitude. In the radial directions, the ion senses both, a
confining magnetic force and a deconfining electric force:

𝑚ion

(︂
𝑥̈
𝑦

)︂
= 𝑞ion𝐵0

(︂
0 1

−1 0

)︂(︂
𝑥̇
𝑦̇

)︂
+ 𝑞ion𝑈𝑟𝐶2

2𝑑2
𝑐ℎ𝑎𝑟

(︂
𝑥
𝑦

)︂
. (3.6)

These radial equations of motion can be diagonalized, see for example [118, Appendix
A], so that the radial movement consists of a superposition of two circular harmonic

1 Frequencies are quoted sometimes as ordinary frequencies 𝜈 or angular frequencies 𝜔 = 2𝜋𝜈.
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eigenmotions: (1) the modified cyclotron motion with the modified cyclotron frequency 𝜔+
and the modified cyclotron radius 𝑟+ and (2) the magnetron motion with the magnetron
frequency 𝜔− and the magnetron radius 𝑟−:(︂

𝑥
𝑦

)︂
= 𝑟+

(︂
cos(𝜔+𝑡+ 𝜑+)
sin(𝜔+𝑡+ 𝜑+)

)︂
+ 𝑟−

(︂
cos(𝜔−𝑡+ 𝜑−)
sin(𝜔−𝑡+ 𝜑−)

)︂
, (3.7)

where 𝜔± can be expressed in terms of the axial frequency and the free cyclotron frequency1

𝜔𝑐 = 𝑞ion/𝑚ion𝐵 :

𝜔± = 1
2

[︁
𝜔𝑐 ±

√︀
𝜔2

𝑐 − 2𝜔2
𝑧

]︁
. (3.8)

The term beneath the square root sets a stability criterion for Penning traps:

𝜔𝑐 >
√

2𝜔𝑧 or 𝐵2
0 > 2𝑚ion 𝑈𝑟 𝐶2

𝑞ion 𝑑2
𝑐ℎ𝑎𝑟

. (3.9)

In fig. 3.2 the ion’s orbit in a Penning trap and its splitting into three independent

Figure 3.2: Section of an ion’s trajectory in a Penning trap. The ion motion can be split into
three eigenmotions: (1) the axial motion (green, 𝑧0, 𝜔𝑧), (2) the fast modified cyclotron motion
(red, 𝑟+, 𝜔+) and (3) the slow magnetron motion (blue, 𝑟−, 𝜔−). For a distinct illustration
of the confined motion, the following artificial parameters have been chosen: 𝜈𝑧 = 3 Hz,
𝜈𝑐 = 40 Hz, 𝑧0 = 1 · 10−6 m, 𝑟+ = 5 · 10−6 m and 𝑟− = 1 · 10−4 m.

eigenmotions is illustrated.

1 In the following, the cyclotron frequency, 𝜔𝑐, is called the free cyclotron frequency in contrast to the
modified cyclotron frequency 𝜔+. This terminology is widely used in the Penning trap community.
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Considering ordinary field parameters of a few Volt at the ring electrode (𝑈𝑟 ≈ −7 V), zero
Volt at the endcap electrodes and a magnetic field of a few Tesla (𝐵 ≈ 3.7 T) the following
eigenfrequency relations hold for particles with 𝑞/𝑚 between ≈ 0.5 e/u for highly charged
ions and also ≈ 1 e/u for protons:

𝜔+ ≫ 𝜔𝑧 ≫ 𝜔−. (3.10)

Under these conditions, the magnetron frequency depends approximately linearly on the
electric voltage of the ring electrode, 𝜈− ∝ 𝑈𝑟, and the modified cyclotron frequency
depends approximately linearly on the magnetic field strength, 𝜈+ ∝ 𝐵.
In an ideal Penning trap the three eigenfrequencies are correlated as follows:

𝜔2
𝑧 = 2𝜔+𝜔−. (3.11)

Finally, we are interested in the determination of the free cyclotron frequency of the ion.
In an ideal Penning trap the free cyclotron frequency can be derived from the two radial
eigenfrequencies:

𝜔𝑐 = 𝜔+ + 𝜔−. (3.12)

Not requiring a time consuming measurement of the axial frequency, this relation is widely
used in on-line mass measurement experiments.
The kinetic energies of the two radial motions are, see again [118, Appendix A]:

𝐸+ = 1
2𝑚ion𝜔+(𝜔+ − 𝜔−)𝑟2

+ ≈ 1
2𝑚ion𝜔

2
+𝑟

2
+, (3.13)

𝐸− = 1
2𝑚ion𝜔−(𝜔− − 𝜔+)𝑟2

− ≈ −1
4𝑚ion𝜔

2
𝑧𝑟

2
−. (3.14)

The magnetron motion is metastable, since its energy is almost purely potential and
decreases with increasing magnetron radius. In that way, the magnetron entropy increases
with decreasing energy giving rise to a negative magnetron temperature, see also sec-
tion 3.3.2.
In a quantum mechanical description, the three harmonic eigenmotions can also be treated
as three independent quantized oscillations. The quantized energy eigenvalues have the
following form [119]:

𝐸𝑧 =
(︂
𝑛𝑧 + 1

2

)︂
~𝜔𝑧, (3.15)

𝐸+ =
(︂
𝑛+ + 1

2

)︂
~𝜔+, (3.16)

𝐸− = −
(︂
𝑛− + 1

2

)︂
~𝜔−, (3.17)

where 𝑛𝑧, 𝑛+, 𝑛− ∈ N0 are the quantum numbers. Our typical ion energies will be discussed
in section 3.3.2. The arising large quantum numbers (> 100000), listed in table 3.5, will
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illustrate the classical regime of the ion’s motion.

3.1.2 Penning Trap Imperfections
In a real Penning trap the field configurations will always deviate from the desired ideal
field configurations for a number of reasons:

• Electric field imperfections: (1) Generally, it is not possible to design an ideal
quadrupole potential with a finite number of electrodes or electrodes of finite size.
(2) The dimensions of the electrodes deviate from the ideal design due to machining
imperfections during the assembling (in our case: ≈ 10 µm). (3) In the present
trap design the electrodes are misplaced and misaligned in particular by the cooling
process from room temperature to cryogenic temperatures (𝑇 = 4.2 K), due to the
different thermal shrinking of the electrodes and the spacers between the electrodes
(in our case: ≈ 20 µm). (4) Furthermore, the applied voltages deviate and fluctuate
from the ideal static specification (voltage fluctuations: 𝛿𝑈/𝑈 < 6 · 10−8 in eight
minutes). (5) In addition, the potential on the electrode surfaces varies due to patch
potentials, which occur when the surface material is not uniform or there are islands
of impurities, e.g. islands of insulating layers, on the electrode surfaces. These
insulating islands can be caused by frozen rest gas, which can trap unwanted ion
species during the ion creation process, see section 4.3.1.

• Magnetic field imperfections: The magnetic field is generated typically by a
superconducting magnet, which consists of a large solenoidal coil and a couple of
smaller shimming coils. They have machining or charging imperfections and are able
to cancel only some higher-order magnetic field components but not all. Besides,
the materials of the trap and the surrounding always have some residual magnetic
susceptibility, which influences the magnetic field. Their susceptibility fluctuates due
to pressure and temperature fluctuations, see section 4.2.2.

• Imperfections of the combination of the electric and magnetic field: Fur-
thermore, the symmetry axis of the electrostatic potential and the direction of the
magnetic field can be misaligned, which disturbs the relation for the free cyclotron
frequency in eq. (3.11).

All these imperfections have an impact on the motion of the ion. In the following three
subsections I will discuss the first-order eigenfrequency shifts due to cylindrically symmetric
imperfections of the electric field and the magnetic field.

Electric Field Imperfections
Even though in a real trap cylinder symmetry is broken, for example by vertically split
electrodes, which are necessary for the radial excitation and frequency detection, see
section 3.3.2, the dominant electrostatic imperfections are still cylindrically symmetric.
Therefore, the electric potential along the z-axis can be decomposed in even powers of 𝑧 to
study its dominant deviations:

𝑉 (𝑧) = 1
2𝑈𝑟

∞∑︁
𝑖=0,2,4,...

𝐶𝑖
𝑧𝑖

𝑑𝑖
𝑐ℎ𝑎𝑟

. (3.18)
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In this decomposition the coefficients 𝐶𝑖’s are dimensionless parameters, set by the trap
design and the applied voltages. Since in high-precision Penning traps all three eigenmotions
are cooled, see section 3.3.2, the motional amplitudes are primarily small. In that way,
the dominant correction of the electric potential is given by the lower-order imperfections,
essentially 𝐶4, which shifts the frequencies in the following way [13]:⎛⎝ 𝛿𝜈+/𝜈+

𝛿𝜈𝑧/𝜈𝑧

𝛿𝜈−/𝜈−

⎞⎠ = 6𝐶4
𝑞ion𝑈𝑟𝐶2

2

⎛⎝ 1
4(𝜈𝑧/𝜈+)4 −1

2(𝜈𝑧/𝜈+)2 −(𝜈𝑧/𝜈+)2

−1
2(𝜈𝑧/𝜈+)2 1

4 1
−(𝜈𝑧/𝜈+)2 1 1

⎞⎠·

⎛⎝ 𝐸+
𝐸𝑧

𝐸−

⎞⎠ . (3.19)

In [120] universal formulas for the first-order frequency shifts in all even orders of 𝐶𝑖 have
been derived:

𝛿𝜈𝑧

𝜈𝑧
= (2𝑛)!

22𝑛𝑑2𝑛−2
𝐶2𝑛

𝐶2

𝑛−1∑︁
𝑘=1

𝑘∑︁
𝑝=0

(−1)𝑘(𝑛− 𝑘)𝑟2𝑝
+ 𝑟

2(𝑘−𝑝)
− 𝑧2(𝑛−𝑘−1)

[(𝑛− 𝑘)!𝑝!(𝑘 − 𝑝)!]2 , (3.20)

𝛿𝜈±
𝜈±

= ±𝜔∓
𝜔+ − 𝜔−

(2𝑛)!
22𝑛−1𝑑2𝑛−2

𝐶2𝑛

𝐶2

𝑛∑︁
𝑘=1

𝑘−1∑︁
𝑝=0

(−1)𝑘(𝑝+ 1)𝑟2𝑝
± 𝑟

2(𝑘−1−𝑝)
∓ 𝑧2(𝑛−𝑘)

[(𝑛− 𝑘)!(𝑘 − 𝑝− 1)!(𝑝+ 1)]2 . (3.21)

In contrast to the eigenfrequencies of an ideal Penning trap, all these frequency corrections
depend on the energies/amplitudes of the eigenmotions. Elaborated trap designs, see
section 3.1.3 and especially chapter 7, and, in addition, very small amplitudes minimize
these shifts.

Magnetic Field Imperfections
With the same assumptions made for the electric field imperfections, the dominant frequency
shifts, which arise from magnetic field imperfections, are generated by the lower-order
terms of the magnetic field. With an axial series-expansion of the magnetic field:

𝐵(𝑧) =
∞∑︁

𝑖=0,1,2,..

𝐵𝑖𝑧
𝑖 (3.22)

the symmetric leading-order correction is:⎛⎝ 𝛿𝜈+/𝜈+
𝛿𝜈𝑧/𝜈𝑧

𝛿𝜈−/𝜈−

⎞⎠ = 𝐵2
𝐵0𝑚ion(2𝜋𝜈𝑧)2

⎛⎝ −(𝜈𝑧/𝜈+)2 1 2
1 0 −1
2 −1 −2

⎞⎠ ·

⎛⎝ 𝐸+
𝐸𝑧

𝐸−

⎞⎠ . (3.23)

A linear gradient of the magnetic field 𝐵1 shifts the center of the ion motion in axial
direction due to the force acting on the magnetic moment generated by the radial motions.
In that way, 𝐵1 shifts the free cyclotron frequency. Analytical expressions of eigenfrequency
shifts due to higher-order magnetic field imperfections can also be found in [120]. Again,
all these frequency shifts depend on the energy of the ion.
For the detection of the electron spin-state and the measurement of the ion’s energies, we
take even advantage of magnetic eigenfrequency shifts, by introducing a particular large
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magnetic field imperfection 𝐵2, also stated as a magnetic bottle, into our Penning trap
setup. More details will be given in section 3.5.

Field Tilts and Ellipticity - The Invariance Theorem
The determination of the free cyclotron frequency via eq. (3.12): 𝜔*

𝑐 = 𝜔+ + 𝜔− only holds
for ideal Penning traps. Especially, this equation depends on tilts between the magnetic
and electric field, since it determines only the axial component of the magnetic field, but
not the total magnetic field. In 1982 Lowell S. Brown and Gerald Gabrielse derived an
equation, the so-called invariance theorem, which cancels such trap imperfections [121]:

𝜔𝑐 =
√︁
𝜔2

+ + 𝜔2
𝑧 + 𝜔2

−. (3.24)

More precisely, eigenfrequency shifts due to a misalignment between the electric and
magnetic field and moreover radial ellipticity of the ion trajectory are annulled. In this
thesis, the invariance theorem will be used persistently to calculate the free cyclotron
frequency of the ion.
Consequently, the difference between these two equations, eq. (3.12) and eq. (3.24), is
sensitive to the angle of the tilt 𝜃 (∘) and the corresponding eccentricity of the ellipsoidal
ion motion 𝜀:

𝜔*
𝑐 − 𝜔𝑐 = 𝜔−

(︂
9
4

(︁
𝜃
𝜋

180∘

)︁2
− 1

2𝜀
2
)︂
. (3.25)

In table 3.1 our measured tilts are listed for the various ions, assuming vanishing ellipticities
𝜀 = 0. In general, these tilts are smaller than 0.2∘, which confirms a proper alignment of
our experimental setup.

Table 3.1: Measured tilts of our two measurement traps, assuming a vanishing ellipticity.
Between the various measurement campaigns, the experimental setup has been replaced and
relocated from the superconducting solenoidal magnet several times.

ion PT-𝜃 (∘) AT-𝜃 (∘)
12C5+ (see table 3.3) 0.18(2) 0.42(21)
40Ca17+ 0.11(3) −
48Ca17+ 0.09(3) −

3.1.3 A Real Penning Trap - Our Trap Design
Instead of using a hyperbolic electrode geometry, as introduced for the ideal Penning
trap geometry in the previous section 3.1.1, we use cylindrically shaped electrodes for
essentially three reasons: (1) Cylindrical objects can be produced with much higher precision
than hyperbolic objects1. (2) Ion transport along the axial symmetry axis of the trap is
significantly easier. (3) The required microwave excitation for the electron spin-drive, see
section 3.5, can be coupled from the top of the trap via a microwave horn.

1 The present electrodes have a machining precision of ±10 µm, nowadays ±5 µm are possible.
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Aiming for a higher harmonicity of the electric potential, our Penning trap is segmented
into five cylindrical electrodes, instead of only three: (1) A ring electrode, which fixes the
axial frequency by the setting of the ring voltage 𝑈𝑟; (2) two correction electrodes (one
complete and one vertically split electrode, see fig. 3.3(a)) (𝑈cor), which can be used to
shape the electric potential, see below, and (3) two grounded endcap electrodes.
In the present trap design, the radius 𝑟 and the ring voltage 𝑈𝑟 have been adjusted in
combination with the eigenfrequency detection techniques, especially the axial resonator,
see section 3.2.2. The distances between the electrodes 𝑑𝑑 = 140 µm have been kept as
small as possible. Finally, in case of a Penning trap with five cylindrical electrodes, the
following five parameters can be adjusted, to optimize the harmonicity of the electric
potential:

• the length of the ring electrode 𝑙𝑟,
• the lengths of the correction electrodes 𝑙𝑐 and
• the voltages applied to the correction electrodes 𝑈cor.

Requiring a symmetric potential in axial direction, the correction electrodes must have the
same lengths 𝑙𝑐 and the same voltages: 𝑈cor ≡ 𝑈uc = 𝑈lc. In the Penning trap community
the correction voltage is usually expressed by the tuning ratio: 𝑇𝑅 ≡ 𝑈cor/𝑈𝑟. The three
dimensions: 𝑙𝑟, 𝑙𝑐 and TR could be chosen in a way that the three leading-order terms of
the anharmonic contributions of the electric potential: 𝐶4, 𝐶6 and 𝐶8, see eq. (3.18), vanish.
Nevertheless, due to practical reasons, these parameters are optimized in the following
way:

• Only the first two leading-order terms of the anharmonic contributions of the electric
potential are canceled: 𝐶4 = 𝐶6 = 0 [122]. Such a trap design is called compensated.

• In addition, 𝐶2 and in that way also the axial frequency, see eq. (3.4), should not
depend on the applied correction voltage 𝑈cor. This so-called orthogonality criterion
is essential for an easier handling of the electric potential during the on-line trap
optimization, see section 4.3.2. Expressing 𝐶2 in terms of the tuning ratio:

𝐶2 = 𝐸2 + 𝑇𝑅 ·𝐷2 (3.26)

orthogonality is equivalent to the demand of 𝐷2 = 0.

For our present trap design, we define the characteristic trap length parameter, introduced
in eq. (3.4), as: 𝑑char ≡

√︀
1/2(𝑧2

0 + 𝑟2/2), where 𝑧0 ≡ 𝑙𝑟/2 + 𝑑𝑑+ 𝑙𝑐 + 𝑑𝑑. In fig. 3.3(a) our
trap design is presented together with the geometrical dimensions in table 3.3(b).
In table 3.2 the leading-order coefficients of the theoretically predicted electric potential are
summarized. A detailed explanation of these calculations will be given in the last chapter
of this thesis, chapter 7, where also a further improved trap design will be represented.
Due to a flaw during the optimization process of the present trap design, our trap is not
completely compensated. For this reason, the tuning ratio in table 3.2 is always chosen in
a way, that 𝐶4 = 0 , whereas 𝐶6 ̸= 0.
In section 3.5 the request of two spatially separated Penning traps in our experimental
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Ulc ~ -7V
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(a)

electrode dim. (mm)
𝑟 3.5
𝑙𝑟 0.92
𝑙𝑐 2.85
𝑙𝑒 6.8
𝑑𝑑 0.14

char. trap parameter: (mm)
𝑑𝑐ℎ𝑎𝑟 3.083

(b)
Figure 3.3: The present Penning trap design. (a) Cross section of our Penning trap. The
five electrodes are represented in gold and the isolation spacers in gray. The lower correction
electrode is vertically split into two parts. (b) List of the electrode dimensions.

Table 3.2: Dimensionless, leading-order coefficients of the theoretically predicted electric
potential of our present trap design.

coefficient of the electric potential value
𝐶2 −0.5503765
𝐷2 6.8 · 10−4

𝐶4 0
𝐷4 −0.62
𝐶6 −0.012
𝐷6 0.50

setup is motivated by different magnetic field configurations and different axial resonators.
In table 3.3 the eigenfrequencies of a single 12C5+ ion in these two Penning traps (the
so-called precision trap (PT) and the analysis trap (AT)) are summarized.

Table 3.3: Field dimensions and eigenfrequencies for a 12C5+ ion in the precision trap and
the analysis trap.

precision trap (PT) analysis trap (AT)
magnetic field (𝐵0) 3.764 T 3.708 T
ring voltage (𝑈𝑟) −7.634 V −3.0135 V
tuning ratio (𝑇𝑅) 0.87996 a

𝜈+ 24 081 134 Hz 23 730 015 Hz
𝜈𝑧 670 964 Hz 412 320 Hz
𝜈− 9347.2 Hz 3582.6 Hz

a Asymmetric voltage has been used to shift the ion in axial direction: 𝑈uc = −2.37253 V and 𝑈lc =
−2.47253 V, see section 4.1.5.
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3.2 Induced Image Charge Detection
In the previous section (3.1) the two static fields of a Penning trap have been introduced
and their impact on the motion of a trapped ion has been studied. In the following section I
discuss at first the influence of the ion on the trap electrodes, which induces image charges
on their surfaces fulfilling Maxwell’s equations. Subsequently, the induced image currents
of the moving ion are quantified (3.2.1), which can be translated into a measurable voltage
by a large resistance generated by a resonator (3.2.2). Finally, the dynamics between
the resonator and the ion enables an elegant detection technique for the axial frequency
(3.2.3). In the last subsection we discuss the impact of the induced image charges on the
eigenfrequencies of the ion (3.2.4).

3.2.1 The Induced Image Currents
The Shockley–Ramo theorem from 1939 [123] quantifies the instantaneous electric current
𝑖𝑖𝑛𝑑 induced by a moving ion with charge 𝑞ion and velocity 𝑣⃗ion in the vicinity of an electrode,
see fig. 3.4(a):

𝑖ind = 𝑞ion𝑣⃗ion𝐸⃗𝑤(𝑟⃗ion(𝑡)). (3.27)

The so-called weighting field 𝐸⃗𝑤(𝑟⃗ion(𝑡)) ≡ 𝐸⃗(𝑟⃗ion(𝑡))/𝑈el is the electric field of the electrode
at the position of the ion 𝐸⃗(𝑟⃗ion(𝑡)) divided by the potential of the electrode 𝑈el, assuming
that the ion is absent and all other neighbouring electrodes are grounded.
In the following, I focus on the axial ion motion in a Penning trap, which induces image
currents for example on the upper correction electrode, see fig. 3.4(b). The electric potential
of that electrode can be approximated linearly in the range of the axial motion (indicated
in red), similar to the electric potential of a plate capacitor. That way, the ion senses
permanently the constant weighting field of the upper correction electrode. In the Penning
trap community the inverse of this weighting field is also referred to as the effective electrode

ion

electrode

A

(a) (b)
Figure 3.4: Illustration of the induced image charges by a moving electrically charged particle.
(a) A moving ion with charge 𝑞ion and velocity 𝑣⃗ion induces an image current 𝑖ind on an electrode
with voltage 𝑈𝑒𝑙. (b) Linear approximation (shown in red) of the electric potential generated
by the upper correction electrode of a cylindrical Penning trap, which provides a constant
weighting field in the range of the axial ion motion. For details see text.
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distance, 𝐷:

𝐷 ≡ 1
𝐸𝑤

|𝑧=0,𝑟=0 = 𝑈el/
𝜕𝑈el
𝜕𝑧

|𝑧=0,𝑟=0. (3.28)

Finally the induced current in eq. (3.27) can be calculated as follows:

𝑖ind(𝑡) = 𝑞ion
𝐷
𝑧̇(𝑡) → 𝑖rms

ind = 𝑞ion
𝐷
𝑧rms𝜔𝑧 = 𝑞ion

𝐷

𝑧0√
2
𝜔𝑧. (3.29)

In our trap, we use one of the correction electrodes to detect the axial signal. It has
an effective electrode distance of 𝐷 = 7.38 mm. Considering a hydrogenlike carbon ion
12C5+ at an axial frequency of 𝜈𝑧 = 670 kHz and an axial amplitude of 𝑧rms = 12 µm, see
table 3.5, the induced current is in the order of: 𝑖rms

ind ≈ 5 fA.
Applying Ohm’s law 𝑈 = 𝑅 · 𝐼 this tiny current can be transferred into a measurable
voltage 𝑢ind. The required large resistance 𝑅 will be generated by a tuned tank circuit
parallel to the trap, which is in resonance with the axial frequency.
In principle, the same detection principle can be used for the radial eigenfrequencies, using
a split cylindrical electrode, which generates a radial weighting field.

3.2.2 The Axial-Resonator - a Parallel Tank-Circuit
Since the axial motion of the trapped ion induces an alternating current which is transferred
into a measurable alternating voltage by a parallel tank circuit, we focus on the impedance,
𝑍, rather than exclusively on the ohmic resistance, to describe the phase differences between
currents and voltages as an angle difference in the complex coordinate system. Consequently
Ohm’s law has the following structure:

𝑢(𝑡) = 𝑍 · 𝑖(𝑡). (3.30)

The heart of the detection system consists of a resonator connected with the complete
upper correction electrode. In the representation of a lumped circuit the trap electrodes

V

detected
voltage signal

Figure 3.5: Lumped circuit of the axial detection system, including two parallel capacities
𝐶trap and 𝐶reso, an inductance 𝐿 and an ohmic resistance 𝑅𝑝.

constitute a capacitance 𝐶trap and the resonator is described as a parallel tank circuit with
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capacitance 𝐶reso, inductance 𝐿 and ohmic resistance 𝑅𝑝, see fig. 3.5. The total capacitance
𝐶 is generated from the adjacent electrodes in the trap, the surrounding of the resonator
(resonator box) and the intrinsic coil capacitance. The inductance originates primarily
from a coil with solenoidal geometry [13]. The finite ohmic resistance 𝑅𝑝 is caused by the
skin effect, the proximity effect, ohmic losses in the conducting environment and dielectric
losses in the isolating environment, which are summarized in [124].
The total impedance of the detection system without any trapped ion has the following
form:

𝑍−1
𝐿𝐶 = 𝑍−1

𝐿 + 𝑍−1
𝐶 +𝑅−1

𝑝 (3.31)

= 1
𝑖𝜔𝐿

+ 𝑖𝜔𝐶 + 1
𝑅𝑝

(3.32)

= 1
𝑅𝑝

[︂
1 + 𝑖𝑄

(︂
𝜔

𝜔𝑟𝑒𝑠
− 𝜔𝑟𝑒𝑠

𝜔

)︂]︂
. (3.33)

𝑄 denotes the quality factor, also called Q-value: 𝑄 ≡ 𝜈𝑟𝑒𝑠/𝛥𝜈, where 𝛥𝜈 is the full width
at half maximum (FWHM) of the frequency spectrum of the thermal noise of the resonator.
More precisely, 𝛥𝜈 is the FWHM of the real part of the impedance: Re(𝑍𝐿𝐶(𝜔))1. At the
resonance frequency 𝜔res = 1√

𝐿𝐶
the resistance is maximal and the reactance, the imaginary

part of the impedance, vanishes:

𝑍𝐿𝐶(𝜔 = 𝜔𝑟𝑒𝑠) = 𝑅𝑝 = 𝑄

𝜔𝑟𝑒𝑠𝐶
= 𝑄𝜔𝑟𝑒𝑠𝐿. (3.34)

To optimize the signal strength, Re(𝑍𝐿𝐶(𝜔)) can be maximized by adjusting the trap
potential in a way that the axial frequency of the ion corresponds to the resonance fre-
quency of the resonator. Furthermore the resonator itself should have a high Q-value,
low capacitance and a large inductance to generate a large 𝑅𝑝. In an ideal parallel tank
circuit 𝑅𝑝 would be infinitely large. The characteristics of the present axial resonators are

Table 3.4: Characteristics of the axial resonators of the precision trap (measured with 12C5+)
and the analysis trap (measured with 48Ca17+). The values of the inductances have been
derived from the thesis of Sven Sturm [13].

precision trap (PT) analysis trap (AT)
resonance frequency, 𝜈res 670890(4) Hz 411832 kHz
Q-value 670(20) 3280
inductance, 𝐿 1.5 mH 5.36 mH
parallel resistance, 𝑅𝑝 4.24 MΩ 45.5 MΩ

summarized in table 3.4. Further information can be found in the thesis of Sven Sturm
[13].

1 In dB units the FWHM of a power ratio corresponds to the 10 · log10(0.5) ≈ −3dB-width.
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The Thermal Noise Spectrum of a Resonator
In this section, the line-shape model for the noise spectrum of the detection system is
discussed without ions in the trap.
The only measurable electronic signal of a conductor which always occurs regardless of
the applied voltage is the thermal noise, also called the Johnson Noise or Johnson-Nyquist
Noise. It has been observed for the first time by John Bertrand Johnson in 1926 [125] and
has been modeled by Harry Nyquist in 1928 when he formulated the fluctuation-dissipation
theorem [126]. For any electronic conductor it is characterized by the rms voltage 𝑢𝑛 at a
frequency bandwidth 𝛥𝜈:

𝑢𝑛 =
√︀

4𝑘𝐵𝑇𝑅𝑒(𝑍)𝛥𝜈. (3.35)

Remarkably, it only depends on the ohmic resistance 𝑅𝑒(𝑍) and the temperature 𝑇 of
the conduction electrons. Without any applied feedback or significant noise source these
electrons are in thermal equilibrium with the lattice of the conductor and thus also with
the ambient temperature. Except for the resistance, the thermal noise is independent of
any other property of the conductor or its geometry.
Combining eq. (3.35) and eq. (3.31), the rms voltage spectrum of our detection system has
the following form, after the application of a fast Fourier transformation (FFT):

𝑢res
𝑛 (𝜔) =

⎯⎸⎸⎷ 4𝑘𝐵𝑇𝛥𝜈𝑅𝑝

1 +𝑄2
(︁

𝜔res
𝜔 − 𝜔

𝜔res

)︁2 , (3.36)

where 𝛥𝜈 corresponds to the frequency resolution of the FFT.

Signal Amplification
The resonator signals of the experimental setup are amplified in two stages, before the
signal is Fourier analyzed, for the first time already at the cryogenic level, but also once
more at room temperature.
In addition to the thermal noise of the resonator, we consider three more effects for the
final detected line-shape: (1) The amplifier adds an additional thermal noise term 𝑢ampl

𝑛 ,
which in first-order is frequency independent. (2) Moreover, the transfer function of the
detection system has a slight frequency dependence with slope 𝜅det and (3) furthermore
the complete signal itself is amplified by a factor 𝐴. Thus the finally detected rms-voltage
has the following form:

𝑢final
n (𝜔|𝐴,𝑢ampl

𝑛 ,𝜅det,𝑇,𝛥𝜈,𝑄,𝜔res,𝑅𝑝)

= 𝐴 · (1 + 𝜅det(𝜔 − 𝜔res)) ·
√︁

(𝑢res
𝑛 (𝜔|𝑇,𝛥𝜈,𝑄,𝜔res,𝑅𝑝))2 + (𝑢ampl

𝑛 )2 (Vrms)

= 10 log10

[︁ ̃︀𝐴 · Re(𝑍(𝜔|𝑄,𝜔res,𝑅𝑝)/𝑅𝑝) + (̃︀𝑢ampl
𝑛 )2

]︁
+ ̃︀𝜅det · (𝜔 − 𝜔res) (dBVrms).

(3.37)
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In the second line some parameters are redefined and formulated in decibel scaling1:̃︀𝐴 ≡ 𝐴24𝑘𝐵𝑇𝛿𝜈𝑅𝑝, ̃︀𝑢ampl
𝑛 ≡ 𝐴𝑢ampl

𝑛 and ̃︀𝜅det ≡ 20 · 𝜅det/ log(10). The parameters 𝑄, 𝜔res,̃︀𝑢ampl
𝑛 and ̃︀𝜅det are extracted from the recorded frequency spectra of the resonator by a

fitting routine and fixed for the complete data analysis, see section 4.3.2. Some of these fit
values, e.g. 𝑄 and 𝜔𝑟𝑒𝑠 have been already presented in table 3.4.

3.2.3 Interaction Between the Trapped Ion and the Resonator
In this section, the interaction of a single trapped ion and the resonator is studied.
The tiny electric potential on the detection electrode, which is created by the induced
image charges and the large resistance of the resonator, generates an additional force acting
on the ion. Assuming the same linear approximation of the electric field as in eq. (3.28),
the additional force acting on the ion has the following form:

𝐹𝑧 = −𝑞ion𝐸𝑧

3.28⏞ ⏟ 
≈ −𝑞ind

𝐷
𝑢ind

3.30⏞ ⏟ = −𝑞ind
𝐷

𝑍𝐿𝐶𝑖ind

3.29⏞ ⏟ 
≈ −

𝑞2
ind
𝐷2 𝑍𝐿𝐶⏟  ⏞  

≡2𝛾𝑚𝑖𝑜𝑛

𝑧̇. (3.38)

The differential equation of the harmonic axial movement (3.3) is extended to an equation
of motion of a damped harmonic oscillator:

0 = 𝑧 + 2𝛾𝑧̇ + 𝜔2
𝑧𝑧, (3.39)

whose damped solution can be described by:

𝑧(𝑡) = 𝑧0𝑒
−𝜆𝑡, where: 𝜆 = 𝛾 − 𝑖

√︀
𝜔2

𝑧 − 𝛾2. (3.40)

In contrast to a common damped oscillator the damping constant 𝛾, depending on the
impedance of the resonator, is not a real but a complex constant leading to an additional
shift of the eigenfrequency of the ion:

𝜔*
𝑧 = Im(𝜆) ≈ 𝜔𝑧 − Im(𝛾). (3.41)

In fig. 3.6 the relative shift of the axial frequency of a 12C5+ ion in the precision trap is
presented. It is called image current shift [13].
The real part of 𝜆1,2 which is in very good approximation Re(𝜆1,2) ≈ Re(𝛾) damps the
axial motion of the ion. Its amplitude exponentially decreases ∝ exp(−Re(𝛾)𝑡) with the
so-called cooling time constant2:

𝜏(𝜔𝑧) ≡ 1
2Re(𝛾) = 𝑚ion𝐷

2

𝑞2
ionRe(𝑍𝐿𝐶(𝜔*

𝑧)) . (3.42)

1 For an amplitude ratio: 1 dBVrms = 20 log10(1 Vrms).
2 The cooling time constant 𝜏 is defined in a way that the axial energy (∝ 𝑧2

0) has a damping of ∝ exp −𝑡/𝜏 .
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Figure 3.6: Relative deviation of the axial frequency due to the image current shift (12C5+ in
precision trap). In black: complete shift; in red: only the squared correction Im(𝑖𝛾2) is plotted
which can be neglected with respect to the correction Im(𝛾).

We define ̃︀𝜏 ≡ 𝜏(𝜔*
𝑧 = 𝜔res = 𝜔𝑧). Considering a single 12C5+ ion, which is in resonance with

the axial tank circuit, its axial cooling time constant in the precision trap is ̃︀𝜏 = 331(15) ms
and in the analysis trap ̃︀𝜏 = 37(5) ms. In this way, the axial mode of the trapped ion
thermalizes within a few seconds with the conductor electrons of the resonator, which are
again in thermal equilibrium with the lattice of the resonator material. The resonator
itself is thermalized with the neighbouring thermal bath of liquid helium. The boiling
temperature of liquid helium at normal pressure is 4.2 K. When the axial motion is in
thermal equilibrium with the resonator, the axial energy is Boltzmann distributed at the
temperature 𝑇𝑧 = 𝑇Resonator:

𝜌(𝐸𝑧) = 1
𝑘𝐵𝑇𝑧

𝑒
− 𝐸𝑧

𝑘𝐵𝑇𝑧 . (3.43)

The averaged axial energy is:

< 𝐸𝑧 >= 𝑘𝐵𝑇𝑧. (3.44)

This so-called resistive cooling method has been first applied by David J. Wineland and
Hans G. Dehmelt [127].
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The equation of motion 3.39 can also be expressed in terms of the induced current:

𝑢ind = 𝑚ion𝐷
2

𝑞2
ion⏟  ⏞  

def= 𝐿ion

𝜕𝑡𝑖ind + 𝑚ion𝜔
2
𝑧𝐷

2

𝑞2
ion⏟  ⏞  

def= 𝐶−1
ion

ˆ
𝑖ind𝑑𝑡 (3.45)

= 𝐿ion𝜕𝑡𝑖ind + 𝐶ion

ˆ
𝑖ind𝑑𝑡. (3.46)

The first term can be associated with the voltage of an inductance and the second term
with the voltage of a capacitance. In this way, the axial dynamics of the ion in presence of
the resonator can be understood as a serial tank circuit with the impedance:

𝑍ion = 𝑖𝜔𝐿ion + 1
𝑖𝜔𝐶ion

(3.47)

= 𝑖𝜔𝑅𝑝̃︀𝜏 (︂1 − 𝜔2
𝑧

𝜔2

)︂
(3.48)

and the resonance frequency: 𝜔𝑧 = 1√
𝐿ion𝐶ion

.

Ion interacting 
with image charges

Detection system: 
Trap + Resonator + Surroundings

V

A

Figure 3.7: Lumped circuit of the detection system including the interaction with the ion. A
serial tank circuit represents the interaction between the ion and the induced image charges. A
parallel tank circuit describes the detection system including the resonator, resonator box and
the detection electrode.

To study the thermal noise spectrum of the thermalised ion and the complete detection
system, illustrated in fig. 3.7, the complete impedance is calculated by combining equation
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3.34 and 3.47:

𝑍tot = 1
1

𝑍𝐿𝐶
+ 1

𝑍ion

(3.49)

=

⎡⎣ 1
𝑅𝑝

(︂
1 + 𝑖𝑄

(︂
𝜔

𝜔res
− 𝜔res

𝜔

)︂)︂
+ 1
𝑖𝜔𝑅𝑝̃︀𝜏 (︁1 − 𝜔2

𝑧
𝜔2

)︁
⎤⎦−1

(3.50)

= 𝑅𝑝
𝜔res𝜔(𝜔2 − 𝜔2

𝑧)
𝜔res𝜔(𝜔2 − 𝜔2

𝑧) + 𝑖𝑄(𝜔2 + 𝜔2
res)(𝜔2 − 𝜔2

𝑧) − 𝑖𝜔res𝜔2/̃︀𝜏 (3.51)

For the thermal noise spectrum only the real part of the impedance is required:

Re(𝑍tot) = 𝑅𝑝

(︀
𝜔res𝜔(𝜔2 − 𝜔2

𝑧)
)︀2

(𝜔res𝜔(𝜔2 − 𝜔2
𝑧))2 + (𝑄(𝜔2 + 𝜔2

res)(𝜔2 − 𝜔2
𝑧) − 𝜔res𝜔2/̃︀𝜏)2 . (3.52)

The final line-shape is derived by inserting the real part of the impedance (3.52) into (3.35)
to derive 𝑢dip

𝑛 , the Johnson noise including thermalized ion signal. At last, the final noise
spectrum is derived by replacing 𝑢res

𝑛 with 𝑢dip
𝑛 in eq. (3.37):

𝑢dip
n (𝜔,|𝜔𝑧, ̃︀𝐴,̃︀𝜏 ,𝑄,𝜔res,̃︀𝑢ampl

𝑛 ,̃︀𝜅det)

= 10 log10

[︁ ̃︀𝐴 · Re(𝑍tot(𝜔|𝜔𝑧,̃︀𝜏 ,𝑄,𝜔𝑟𝑒𝑠,𝑅𝑝)/𝑅𝑝) + (̃︀𝑢ampl
𝑛 )2

]︁
(3.53)

+ ̃︀𝜅det · (𝜔 − 𝜔res) (dBVrms).

In fig. 3.14(b) the spectrum of a thermalized 12C5+ ion is shown. At the axial frequency of
the ion (𝜔 = 𝜔𝑧) the induced current signal shortens the Johnson noise of the resonator
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Figure 3.8: Fourier transform of the axial resonator of the precision trap. (a) Thermal noise
spectrum of the PT resonator (black) and line-shape fit (red, see eq. (3.37)). (b) Dip signal of
a the thermalized 12C5+ ion (black) and the line-shape fit (red, see eq. (3.53)) in the PT.
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(𝑅𝑒(𝑍tot) = 0). We call it a dip signal.
The axial frequency 𝜔𝑧 is finally measured by fitting 𝜔𝑧, ̃︀𝐴, and ̃︀𝜏 to the noise spectrum of
a thermalized dip signal, using eq. (3.53) as the line-shape model. Before the resonator
parameters 𝑄, 𝜔𝑟𝑒𝑠, ̃︀𝑢ampl

𝑛 , and ̃︀𝜅det have been fixed, by fitting the resonator line-shape in
eq. (3.37) to the detected noise spectrum of the resonator without any ion. It is remarkable,
that the axial frequency, derived by the axial dip fit, is not shifted by the image current
effect, introduced in eq. (3.41).
The −3 dB width of the dip 𝛥𝜈𝑧 is correlated with the cooling time constant of the ion 𝜏
and the number of ions, 𝑁1, in the trap [128]:

𝛥𝜈𝑧 = 𝑁

2𝜋
1
𝜏
. (3.54)

The uncertainty of the measured axial frequency due to the fitted resonator parameters
will be discussed in section 4.3.2.

3.2.4 The Image Charge Shift
At the end of this section, I focus on the additional electric field, generated by the induced
image charges on the inner electrode surfaces. Due to the intrinsic axial symmetry, only
the two radial motions are modified by its back action on the trapped ion. Already in 1989
this effect, the so-called image charge shift, has been experimentally determined by Robert
S. Van Dyck Jr. and colleagues. In a compensated hyperbolic Penning trap, they measured
the number dependency (1-1000 ions) of the radial eigenfrequency shifts of various ions
with a relative uncertainty of 17% [129]. Assuming the electrode surfaces as an infinite
cylinder Harmut Häffner calculated this effect in the course of his thesis [128]:

𝛿𝜈± ≈ ∓ 𝑚ion𝜔𝑐

4𝜋𝜀0𝑟3𝐵2
0
, (3.55)

where 𝑟 is the trap radius and 𝐵0 is the homogeneous magnetic field. Applying the
invariance theorem 3.24, also the measured free cyclotron frequency is shifted.
In 2013 Martin Kretzschmar and Sven Sturm evaluated the image charge shift for a single
hydrogenlike ion in our present Penning trap [130]:

𝛿𝜈𝑐

𝜈𝑐
= 1.92 𝑚ion

8𝜋𝜀0𝑟3𝐵2
0
. (3.56)

Here, they considered also the horizontal and vertical slits between the electrodes. The
corresponding relative uncertainty has been estimated conservatively to 5%, dominated by
the uncertainty of the radial offset of the ion position with respect to the trap center due
to patch potentials on the electrode surfaces.
It should be noted, that the image charge shift dominates our present systematic shifts and
uncertainties which even increases linearly with the ion mass. Fortunately, the shift scales
also with the inverse cubic trap radius, providing in the near future a possible significant

1 Only thermalized ions of equal species contribute to the dip signal.
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reduction of this effect by using a larger trap, see chapter 7.

3.3 Excitations and Couplings of the Eigenmotions
Several eigenfrequency detection techniques and cooling methods require extrinsically
applied oscillating electric fields which modify the state of the ion’s eigenmotions. In
this section fundamental properties of the dipole, quadrupole and LC excitations1 are
introduced.

3.3.1 The Dipole Excitation
A dipole excitation in axial direction acts with the following force on the ion motion:

𝐹dipol = 𝑞ion

⎛⎝ 0
0
1

⎞⎠𝐴dipol sin(𝜔rf𝑡+ 𝜙0), (3.57)

where 𝐴dipol is the amplitude and 𝜔rf is the frequency of the excitation. During the
excitation time (the excitation pulse length) this term has to be added as an additional
force on the right side of the equation of motion, see eq. (3.3), which describes the axially
propagating ion in a Penning trap. Radial dipole excitations either resonantly at 𝜔rf = 𝜔+
or 𝜔rf = 𝜔− have the same characteristics on the respective eigenmotions as in the axial
case.
To perform dipole excitations, additional alternating electric voltages have to be applied
on the trap electrodes. For an axial dipole excitation one of the correction or endcap
electrodes can be used; for a radial dipole excitation a vertically split electrode has to be
chosen.
In fig. 3.9 the axial motion is plotted during a resonant (𝜔rf = 𝜔𝑧) axial dipole excitation.
Depending on the phase relation between the phase of the excited eigenmotion at the
starting point of the excitation 𝜙(𝑡0) and the starting phase of the excitation 𝜙rf(𝑡0) the
amplitude immediately increases, if the following phase-relation holds for the excitation
and the particle motion: 𝑑𝜙 = 𝜙(𝑡0) − 𝜙rf(𝑡0) = −90∘. Otherwise the motional amplitude
firstly linearly decreases, which is called transient oscillation, and finally increases in
phase with the excitation. A dipole excitation thus can be used to excite the motion and
simultaneously to imprint a well-defined phase. During the complete dipole excitation, the
phase space of the motion is kept constant. Such a phase space conservation is illustrated
in fig. 3.10. Here, the spatial 𝑟+-distributions in the radial x / y plane are indicated as
dark gray clouds, before and after the radial dipole excitation pulse at 𝜔rf = 𝜔+.

3.3.2 The Quadrupole Excitation
A quadrupole excitation in the x- and z-direction has the following structure:

𝐹quad = 𝑞ion

⎛⎝ 𝑧
0
𝑥

⎞⎠𝐴quad sin(𝜔rf𝑡+ 𝜙0). (3.58)

1 In this context excitation can mean both, real excitation but also deexciation/cooling of an eigenmotion.



3.3 Excitations and Couplings of the Eigenmotions 47

t
1t

0

ϕi o n (t 1
) 

 = ϕi o n (t 1
) 

 = ϕe x c (t 1
) 

ϕi o n (t 0
) = 180°

ϕ i o n

z

t i m e

 d ϕ = ϕi o n − ϕe x c  = −90°
 d ϕ = ϕi o n − ϕe x c  = +90°

ϕi o n (t 0
) = 0°

Figure 3.9: Illustration of the axial motion as a function of time, during a resonant axial
dipole excitation. In black, the axial eigenmotion and the excitation are initially in phase. In
red, they are initially 180∘ phase shifted. After a short transient oscillation, the axial amplitude
linearly increases. In the end of the excitation pulse, the axial phase of the ion always agrees
with the phase of the dipole excitation, whereas the amplitudes slightly differ.

Such a field configuration in the z / x plane can be generated via a split endcap or
correction electrode. At our experiment, we use one half of the vertically split lower
correction electrode, see fig. 3.3(a), which features also small dipole components in the
radial and axial directions. These components have been numerically evaluated based on a
finite element calculation, using COMSOL [132]:

𝐹quad. real ≈ 𝑞ion

⎛⎝ 64.7 + 38410.1 m−1 · 𝑧
0

75.7 + 38410.1 m−1 · 𝑥

⎞⎠𝐴quad sin(𝜔′𝑡+ 𝜙0). (3.59)

In the following, the coupling of the axial and the modified cyclotron motion by a quadrupole
excitation is studied in two scenarios: (1) a quadrupole excitation at the upper sideband
frequency 𝜔rf = 𝜔+ + 𝜔𝑧 and (2) a quadrupole excitation at the lower sideband frequency
𝜔rf = 𝜔+ − 𝜔𝑧.

The Upper Sideband (𝜔rf = 𝜔+ + 𝜔𝑧) - A Phase Transfer
A quadrupole excitation in x / z directions at the upper sideband 𝜔rf = 𝜔+ + 𝜔𝑧 couples
the axial and modified cyclotron motions in the following way: (1) After certain transient
oscillations, the amplitudes of both modes increase exponentially. The energy increase
can be easily understood on the quantum level. In fig. 3.11(a) the competing processes:
the heating process (photon absorption) and the cooling process (stimulated emission) are
illustrated. At the upper sideband (𝜔+ + 𝜔𝑧) the heating process dominates the overall
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Figure 3.10: Illustration of the spatial 𝑟+-distributions in the radial x/y plane before and
after the radial dipole excitation at 𝜔rf = 𝜔+. Since the spread of the thermal 𝑟+-distributions
which are represented as dark gray clouds, stays constant, the phase space in the radial plane
is conserved during the excitation pulse. In general, the phase-jitter 𝛿𝜙therm decreases with an
increasing excitation radius 𝑟exc

+ or a smaller (cooler) radial starting distribution [131].

dynamics, which can be directly derived from the creation and annihilation operators
of the quantum harmonic oscillator1. (2) Depending on the initial amplitude relation,
the motional phase of one mode can be transferred into the other mode, e.g. in the
case of 𝑟init

+ > 𝑧init√︀𝜈𝑧/𝜈+, the initial modified cyclotron phase is transferred into the
axial phase. The combination of both properties - mode amplification and simultaneous
phase transfer - triggered the development of a phase-sensitive detection technique of the
modified cyclotron frequency at very low energies. This technique, the so-called PnA
method, has been developed by Sven Sturm in 2011 [58] and will be introduced and
studied in section 3.4.2. Detailed information on the underlying differential equations and
corresponding solutions are also given in [58].

The Lower Sideband (𝜔rf = 𝜔+ − 𝜔𝑧)
The coupling of the lower modified cyclotron sideband (𝜔+ − 𝜔𝑧) and in analogy also the
coupling of the the upper magnetron sideband (𝜔− +𝜔𝑧) provide three essential applications:
(1) cooling of the two radial modes, (2) measurements of both radial eigenfrequencies
and (3) measurement of the axial temperature. In the following all three applications are
explained.

1 Creation operator: 𝑎�
𝑛 |𝑛⟩ =

√
𝑛 + 1 |𝑛 + 1⟩ and annihilation operator: 𝑎𝑛 |𝑛⟩ =

√
𝑛 |𝑛 − 1⟩ .
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Figure 3.11: Sideband coupling of the modified cyclotron and axial mode. Transition rates
in the quantum level scheme are shown in (a) for the upper sideband ( 𝜔rf = 𝜔+ + 𝜔𝑧) and
in (b) for the lower sideband ( 𝜔rf = 𝜔+ − 𝜔𝑧). In (a) the heating rate dominates. In (b) the
cooling and heating rate converge to equal quantum numbers.

Sideband Cooling
For the cooling of the axial mode, the resistive cooling method has been introduced already
in section 3.2.3. In principle, also the modified cyclotron mode can be cooled in this way,
by using a properly tuned radial resonator. However, resistive cooling cannot be applied
to the magnetron mode, since it is metastable. Reduction of the ion’s magnetron energy
would result in an increase of the magnetron radius until the ion would be lost by hitting
the surface of the ring electrode.
In [119] and [133] the quadrupole coupling of one of the radial and the axial motion, e.g. at
the sum frequency (𝜔𝑧 + 𝜔−), a radio frequency (rf), is described in detail. We apply this
so-called rf-sideband cooling technique also for the modified cyclotron mode, as our low Q
cyclotron resonator, see section 4.1.5, has a very large cooling time constant of several 100
seconds 𝜏cycl = 415(100) s.
In the quantum mechanical picture which is illustrated in fig. 3.11(b) the generated rf-
photon at the frequency (𝜈+ − 𝜈𝑧) interacts with the trapped ion in two different ways:
(1) It is absorbed by decreasing the axial quantum number by 1 and at the same time
increasing the mod. cyclotron quantum number by 1. (2) The photon causes a spontaneous
emission by increasing the axial quantum number by 1 and at the same time decreasing
the mod. cyclotron quantum number by 1. The two competing rates tend to a convergence
of the two quantum numbers: ⟨𝑛+⟩ = ⟨𝑛𝑧⟩ . For the respective equilibrium energies the
following relation holds:

⟨𝐸+⟩ = ℎ𝜈+

(︂
⟨𝑛+⟩ + 1

2

)︂
= ℎ𝜈+

(︂
⟨𝑛𝑧⟩ + 1

2

)︂
= 𝜈+
𝜈𝑧
ℎ𝜈𝑧

(︂
⟨𝑛𝑧⟩ + 1

2

)︂
= 𝜈+
𝜈𝑧

⟨𝐸𝑧⟩ . (3.60)

During the complete sideband coupling process the axial mode is kept in thermal equilibrium
with the axial resonator via resistive cooling. Only in that way, motional energy of the ion
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can be dissipated and also the modified cyclotron mode becomes thermally (Boltzmann)
distributed. The temporal dynamics between the rf-sideband coupling and the axial
resistive cooling process has been studied in the thesis of José Verdú [118]. The final
temperature relation between the two modes is:

𝑇+ = 𝜈+
𝜈𝑧
𝑇𝑧. (3.61)

A similar relation also holds for the magnetron cooling at the upper sideband (𝜔𝑧 + 𝜔−):

⟨𝐸−⟩ = 𝑘𝐵𝑇− = 𝜈−
𝜈𝑧

⟨𝐸𝑧⟩ = 𝜈−
𝜈𝑧
𝑘𝐵𝑇𝑧. (3.62)

Measurement of the Radial Eigenfrequencies
In case both modes, the axial and the modified cyclotron mode, are cold1, continuous
rf-sideband coupling can be used to determine the radial eigenfrequencies by the axial
resonator. Considering a resonant coupling at 𝜈rf = 𝜈+ − 𝜈𝑧, the system can be regarded
in a semiclassical approach as a two-level system2 interacting with a radiation field, the
quadrupole excitation. During the rf-sideband coupling, the energy of both modes is
permanently transferred between the two levels and oscillates with the Rabi frequency 𝛺0,
which depends on the excitation amplitude. Similar to the ac Stark splitting in quantum
optics, the initial axial state becomes a superposition of two dressed states due to the
modulation of the axial amplitude [134]3:

𝑧(𝑡) = 𝑧0 sin (𝜔𝑧𝑡+ 𝜙𝑧) sin
(︂

2𝜋𝛺0
2 𝑡+ 𝜙𝛺0

)︂
(3.63)

= 1
2

[︂
cos
(︂(︂

𝜔𝑧 − 2𝜋𝛺0
2

)︂
𝑡+ (𝜙𝑧 − 𝜙𝛺0)

)︂
− cos

(︂(︂
𝜔𝑧 + 2𝜋𝛺0

2

)︂
𝑡+ (𝜙𝑧 + 𝜙𝛺0)

)︂]︂
,

where 𝜙𝑧 and 𝜙𝛺0 are some initial phases. In that way, the axial noise dip at 𝜈𝑧, splits
into two dips, with the frequencies: 𝜈l(eft) = 𝜈𝑧 − 𝛺0/2 and 𝜈r(ight) = 𝜈𝑧 + 𝛺0/2. Such a
double-dip spectrum is shown in fig. 3.12. Considering a small detuning 𝛿 in the rf-sideband
coupling frequency: 𝜈rf = 𝜈+ − 𝜈𝑧 + 𝛿 the Rabi frequency is modified 𝛺′ =

√︀
𝛺2

0 + 𝛿2 and
the two dressed states are not any longer symmetric with respect to the original state, but
also shifted: 𝜈l = 𝜈𝑧 − 𝛿/2 −𝛺0/2 and 𝜈r = 𝜈𝑧 − 𝛿/2 +𝛺0/2. This effect is often denoted
as avoided crossing. Measuring in a double-dip spectrum 𝜈𝑙, 𝜈𝑟 at a coupling frequency
𝜈rf = 𝜈+ − 𝜈𝑧 + 𝛿 and measuring before or afterwards the axial frequency 𝜈𝑧, the modified
cyclotron frequency can be determined:

𝜈+ = 𝜈rf − 𝜈𝑧 + 𝜈𝑙 + 𝜈𝑟. (3.64)

1 A mode is denoted as cold, when it has been thermalized by the axial resonator.
2 One level: Motional energy is maximal in the axial mode, minimal in the modified cyclotron mode.

Other level: Motional energy is minimal in the axial mode, maximal in the modified cyclotron mode.
3 𝑧(𝑡) is modulated with the frequency 𝛺0/2, since the energy, 𝐸𝑧 ∝ 𝑧(𝑡)2, oscillates with 𝛺0.
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Figure 3.12: Illustration of the continuous sideband coupling at 𝜈rf = 𝜈+ − 𝜈𝑧, when both
modes are cool. In black, the normal axial dip signal is plotted, which splits into two dips
seperated by the Rabi frequency 𝛺. From the red double-dip spectrum, 𝜈𝑙 and 𝜈𝑟 are measured.
In combination with the axial and the coupling frequency, the modified cyclotron frequency
can be determined, see text.

It is remarkable, that this relation does not depend on the small detuning 𝛿. In a similar
way, also the magnetron frequency can be measured by an axial double-dip spectrum,
coupling the axial and magnetron mode at the upper sideband 𝜈rf = 𝜈− + 𝜈𝑧 :

𝜈− = 𝜈rf + 𝜈𝑧 − 𝜈𝑙 − 𝜈𝑟. (3.65)

Temperatures of the Eigenmodes and Special Relativity
Regarding a thermalized ion, where all three eigenmodes have been cooled by the axial
resonator, the relation between the averaged energies and the corresponding temperatures
have been given in eq. (3.44) , eq. (3.61) and eq. (3.62). Relying on eq. (3.5), the square root
of the averaged squared maximal axial amplitude is: < 𝑧 >≡

√︀
< 𝑧2

0 > =
√︁

𝑘𝐵𝑇𝑧2
𝑚𝜔2

𝑧
. The

corresponding averaged radii are given by < 𝑟+ >=
√︁

𝜈𝑧
𝜈+

< 𝑧 > and < 𝑟− >=
√︁

2𝜈−
𝜈𝑧

< 𝑧 >

=
√︁

𝜈𝑧
𝜈+

< 𝑧 > . For a single 12C5+ ion in the precision trap the temperatures, averaged
energies, averaged amplitude/radii and averaged quantum numbers are summarized in
table 3.5. The related measurement method will be explained in section 4.3.2. The con-
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Table 3.5: Temperatures, averaged energies, averaged amplitude/radii and averaged principle
numbers for 12C5+ of all three eigenmodes for a single 12C5+ ion, thermalized by the axial
resonator in the PT.

axial mod. cycl. magnetron
temperature (K) 5.44(22) 195(8) -0.076(4)
amplitude (µm) 21(1) 3.4(1) 3.4(1)

energy (meV) 0.47(2) 16.8(7) -0.0065(3)
quantum number 170800 170800 170800

verged averaged quantum number of about 170800 justifies a classical treatment of the
ion motion. For an axial frequency of 671 kHz the ground-state of the axial motion would
require a temperature of 𝑇𝑧 = 16 µK.

In consideration of the typical energy range, we briefly estimate the impact of the rela-
tivistic mass increase. Eigenfrequency shifts due to special relativity have been studied for
example in [135] and [119]. Here, we are not interested in the respective relativistic shifts
of eigenfrequencies, but in the correction of the free cyclotron frequency:

𝛿𝜈𝑐

𝜈𝑐
= −𝛿𝑚ion

𝑚ion
= − 𝑣2

2𝑐2 ≈ −(𝜔+𝑟+)2

2𝑐2 = − 𝐸+
𝑚ion𝑐2 . (3.66)

The velocity of the ion can be approximated to the velocity of the modified cyclotron
motion, since for example for a cold 12C5+ ion:

𝑣+ = 520 m/s ≫ 𝑣𝑚𝑎𝑥
𝑧 = 87 m/s ≫ 𝑣− = 0.20 m/s. (3.67)

Although these velocities are quite slow and for a cold 12C5+ ion also the shift is small
(𝛿𝜈𝑐/𝜈𝑐 = 1.5 · 10−12), relativistic corrections will be significant in measurement processes,
working with an excited ion, see section 5.1.

3.3.3 LC-Excitation - Electronic Feedback
In addition to the dipole and quadrupole excitation, we use a third excitation type to
manipulate the energy of the ion by electronically modifying the temperature and the
position of the axial resonator. In the course of the development of the axial ultra-low noise
amplifiers, which had a diminutive back-action on the trapped ion, Sven Sturm introduced
an active electronic feedback technique at our experimental setup [13]. As depicted in
fig. 3.13, active electronic feedback is generated in three steps: (1) In the beginning, the
thermal noise of the resonator is amplified in the same way as for the signal detection. (2)
In the room temperature region the phases are shifted and the amplitudes are attenuated.
(3) Finally, the modified signal is capacitively fed back to the resonator.
In fig. 3.14(a) the dependency of the resonators position and its quality factor is demon-
strated for different phase shifts at a fixed attenuation.
In the following three different feedback types are discussed enabling different applications:

• At a phase shift of 180∘, also stated as negative feedback, the thermal noise level of
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A

phase 
shifterattenuator

Figure 3.13: Lumped circuit of the feedback loop. For details see text.

the resonator and thus the quality factor decreases, enabling in the AT a 10-fold
reduction of the effective temperature of the axial resonator, see thesis of Sven Sturm
[13]. The lower temperature limit is given by the electronic noise of the amplifier. In
that way, axial ion temperatures in the Kelvin or sub-Kelvin regime are accessible.

• The previous effect can also be reversed, by applying so-called positive feedback at
a 0∘ phase shift. Here, the quality factor of the resonator increases, resulting in a
stronger coupling of the trapped ion. The enhanced width of the dip-signal enables a
faster detection process of the axial frequency. In fig. 3.14(b) the axial AT resonator
is shown at different positive and negative feedback strengths.

• At a phase shift of ±90∘ the quality factor stays constant and the AT resonator can
be shifted up to a few line-widths, see fig. 3.14(c). This effect can be understood
as a modification of the effective parallel capacitance of the resonator. That way,
the cooling time constant of the trapped ion, which is initially in resonance with
the resonator, can be significantly enhanced. In the case of a single 12C5+ ion, the
cooling time can immediately be extended by a factor of 15, from ≈ 0.1 s to ≈ 1.5 s,
see fig. 3.14(d) without adjustments on the trapping potential.
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Figure 3.14: Characteristics of the electronic feedback (FB) in the AT (𝜈res = 411840). (a)
Feedback at different phases and a fixed attenuation. (b) Positive and negative feedback for
different attenuations. (c) Illustration of the resonator shift at ±90∘ feedback for different
attenuations. (d) Cooling time constant of a single 12C5+ ion in the AT as a function of the
axial frequency with respect to the resonator frequency. Applying 90∘ feedback, the cooling
time constant can be extended without changing the electric trapping potential. For details
see text.
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3.4 Various Non-Thermalized Eigenfrequency Detection Methods
Up to now, I introduced the dip and the double-dip detection methods, for the determination
of the three eigenfrequencies in a Penning trap. These techniques are operated in thermal
equilibrium with the axial resonator. Negelecting cooling techniques of the modified
cyclotron mode which further reduce the modified cyclotron temperature either by using
a cyclotron resonator or laser cooling, the double-dip technique features the smallest
energy dependent systematic shifts of all known detection methods in a Penning trap.
Nevertheless, a large disadvantage is given by the inevitable time consuming measurement
process. Here, one has to average over the Johnson noise of the resonator, which has the
following unfavorable scaling with the measurement time 𝑡𝑚 : 𝛿𝑢𝑛/𝑢𝑛 ∝ 1/

√
𝑡𝑚. We set

the measurement time of the axial dip of a single 12C5+ ion to 3 min to clearly resolve the
dip signal. In several situations, faster measurement techniques are preferred, which will
be introduced in this section.

3.4.1 Axial Peak Detection
The most straightforward way to detect the axial frequency in an alternative approach to
the dip measurement is the frequency detection of the peak signal of the axially excited
ion, as represented in fig. 3.15 by the black line. The appropriate measurement sequence
is the following: (1) The cold ion is axially excited by a short (≈ 10 ms) dipole pulse at
𝜈rf ≈ 𝜈𝑧. (2) Directly thereafter the signal is read out and the axial frequency is extracted
from the maximum of the Fourier spectrum. For the detection of a large peak signal, the
readout signal length should not be longer than a few cooling time constants; in the PT
we usually choose readout times of typically 0.5 to 1 s.
Aiming for a better frequency resolution than by just choosing the frequency-bin with the
maximal signal, we use advanced FFT analysis techniques, e.g. zero-padding [136].

Zero-Padding
For a better understanding of zero padding, I will introduce some essential technical details
of the frequency analysis. Before we perform the Fourier transformation, we down-mix
the axial signal from the several 100 kHz range into the low frequency (audio) range of 0
to 28 kHz. Subsequently the signal is sampled with a sample-rate of 𝜈𝑠 = 1/𝛥𝑡 = 64 kHz
(total bandwidth), so that we receive a discrete time representation. Then, we apply a fast
Fourier transformation (FFT), which is a widely used, very efficient numerical method to
calculate a discrete Fourier transform (DFT). The frequency bin-width 𝛥𝜈bin of the DFT
is the inverse of the total sample time, which in general agrees with the signal length 𝑇𝑠.
This binned frequency resolution of 𝛥𝜈bin can be improved by the so-called zero padding,
where a series of zeros is added to the raw signal already in the time domain. By doing so,
the total sample time is increased and in that way the frequency bin-width is reduced. In
a hand-waving explanation, zero padding can be understood as an advanced interpolation
process. Increasing the number of zeros, the Fourier spectrum converges to a sinc-function,
the Fourier transform of a rectangular-function, see also fig. 3.15. In particular, this
technique improves the frequency resolution in comparison to 𝛥𝜈bin, if the frequency-bins
in the vicinity of the frequency-bin with maximal signal also contain signal information.
This effect is often called frequency bleeding.
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Figure 3.15: Peak signal of a single 48Ca17+ ion in the AT without (black line) and with
zero-padding (other lines). The arrows in the inset indicate the respective maximum, and in
that way the determined frequency.

However, due to the fast thermalization of the ion, the precision of such a peak de-
tection has strong limitations. Furthermore, absolute frequency measurements by peak
detection are highly unfavourable due to the large energy dependent shifts.

Signal-to-Noise Ratio of a Dip and a Peak Signal
For a quantitative characterization of the quality of a detection system the signal-to-noise
ratio (SNR) is widely used. Depending on the choice of the detection method (dip or peak),
the optimization of the SNR places different conditions on the axial detection system.

• In case of an axial dip measurement, the detected signal is given in a quiet curious
way by the Johnson noise of the resonator, see eq. (3.35). The appropriate noise level,
which limits the depth of the dip, is dominated by the voltage noise of the amplifier,
𝑢ampl

𝑛 . Considering an ion tuned to the resonator, 𝜈𝑧 = 𝜈res, the corresponding SNR:

SNRdip ≈
√︀

4𝑘𝐵𝑇𝑅𝑝

𝑢ampl
𝑛

(3.68)

can be enhanced in three independent ways: (1) The quality factor, which is pro-
portional to the parallel resistance, could be maximized. (2) The voltage noise of
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the amplifier, could be minimized, which has been done by the amplifier design of
Sven Sturm: 𝑢ampl

𝑛 = 400 pV/
√

Hz [13]. (3) In principal the temperature could be
increased, which, however, is not favourable, since it would cause larger systematic
shifts of the eigenfrequencies.

• In case of an axial peak measurement, the SNR is defined as the voltage drop
generated by the induced image charges (by the ion) over the thermal noise of the
resonator:

SNRpeak ≈ 𝑢𝑖𝑜𝑛

𝑢𝑛
=
𝑞ion𝜔𝑧

√︀
𝑅𝑝𝑡𝑠𝑖𝑔

𝐷
√

4𝑘𝐵𝑇
𝑧rms, (3.69)

where 𝑡𝑠𝑖𝑔 is the signal readout time of about 1 s, see above. Here, I neglect the small
voltage noise and current noise contributions of the amplifier, see [13]. Moreover, I
still assume an ion in resonance with the resonator 𝜈𝑧 = 𝜈res, so that a purely ohmic
resistance occurs (Re(𝑍) = 𝑅𝑝). The SNRpeak can be optimized essentially in two
ways: (1) The temperature could be decreased. (2) The axial amplitude 𝑧rms could
be increased, which at some excitation level is limited by the energy dependent shifts,
e.g caused by trapping imperfections. It is remarkable, that an increase of parallel
resistance (∝ 𝑄-value) would not help, since the cooling time constant, which limited
the signal readout time, is inversely proportional to the parallel resistance.

3.4.2 Phase-Sensitive Detection Methods
The readout of the axial peak signal does not only provide access to the axial frequency by
determining the peak-position in the Fourier spectrum, which has been explained above.
Moreover, the complex Fourier spectrum provides also access to the instantaneous phase
of the ion, which enables phase-sensitive measurements of the axial frequency. Here, the
fundamental measurement principle is the following: From the detection of two subsequent
axial phases, 𝜙(𝑡1) and 𝜙(𝑡2), and from the precise knowledge on the elapsed time between
these two measurements, also called the phase evolution time 𝑇evol ≡ 𝑡2 − 𝑡1, the axial
frequency can be derived:

𝜈𝑧 = 𝜙(𝑡2) − 𝜙(𝑡1)
360∘𝑇evol

. (3.70)

Such a phase-sensitive measurement has two major advantages in comparison to the dip
measurements:

1. The relative uncertainty of the frequency features an optimal inverse scaling with
the measurement time 𝑇evol:

𝛿𝜈

𝜈
= 𝛿𝜙

360∘ 𝜈 𝑇evol
. (3.71)

Here, 𝛿𝜙 =
√︀

(𝛿𝜙(𝑡1))2 + (𝛿𝜙(𝑡2))2 is the phase uncertainty, often also called phase
jitter.

2. In general, we derive the phase from the FFT-bin with the largest amplitude, so that
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we do not require a line-shape model for some fitting routine, as it is the case for a
dip spectrum. In this way, model dependent systematic shifts and uncertainties are
avoided.

In the following two different phase-sensitive detection techniques are introduced.

Phase-Sensitive Detection of Axial Frequency Fluctuations
Temporal axial frequency fluctuations or small 𝜈𝑧-shifts can be determined by a subsequent
repetition of the following measurement process, which is also illustrated in fig. 3.16: (1)
In the beginning, the phase of the axial ion motion is set by a short dipole excitation,
which at the same time also excites the axial motion. The so-called imprinted phase is
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Figure 3.16: Axial phase detection scheme. During the axial dipole excitation pulse of
10 ms the axial amplitude linearly increases and the phase is imprinted. Immediately after
the excitation the amplitude decreases exponentially caused by the thermalization with the
axial resonator. After a phase evolution time of 1 s the signal is read out and the axial phase is
extracted from the complex Fourier transformation. The indicated amplitudes and cooling
time constant correspond to a 40Ca17+ ion in the AT.

mainly given by the pulse length and the starting phase of the dipole excitation, see fig. 3.9
Aside from an intrinsic thermal phase jitter, which will be discussed in section 4.5.1, such
a phase imprint is a highly reproducible process. (2) The axial phase freely evolves with
the present axial frequency for a fixed time 𝑇evol. (3) Finally, the peak signal is read out
and the phase is extracted from the complex Fourier spectrum.
Subsequent repetitions of exactly the same measurement process enable the determination
of frequency differences:

𝛥𝜈 = 𝛥𝜙

360∘ 𝑇evol
. (3.72)
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In contrast to eq. (3.70), here, we do not measure the phase difference of the starting and
the end phase, since we can set the starting phase, but we do not know its value. Instead,
we consider the phase difference 𝛥𝜙 of two subsequent measurement cycles.
A small frequency uncertainty requires a long phase evolution time, which in this case is
limited in two different ways: (1) A proper phase detection requires a large SNR, which
decreases with time due to the permanent resistive cooling. However, the cooling time
constant can be enhanced by adjusting the ions on the wings of the thermal resonator
spectrum and not on the resonator centre, see also fig. 3.14. (2) Unfortunately the complex
Fourier spectrum does not deliver the absolute phase of the ion: 𝜙abs = 𝜔𝑧𝑇evol(180∘/𝜋),
but the phase modulo 360∘ 1:

𝜙meas = 𝜙abs − 𝑛 · 360∘, (3.73)

where 𝑛 ∈ N is the phase evolution number. To prevent phase ambiguities, great care has to
be taken, that at long and fixed phase evolution times, the phase fluctuations in subsequent
measurement cycles are smaller than ±180∘ or, in other words, that the fluctuations of the
phase evolution number are well below one.

Phase-Sensitive Detection of the Modified Cyclotron Frequency
Using the invariance theorem, see eq. (3.24), the three eigenfrequencies contribute with
different relevances to the uncertainty of the free cyclotron frequency. Based on their
different sizes, for 12C5+ see table 3.3, the contribution of the modified cyclotron frequency
uncertainty is 𝜈+/𝜈𝑧 ≈ 36 times larger than the contribution of the axial frequency
uncertainty and even 𝜈+/𝜈− ≈ 2576 times larger than the contribution of the magnetron
frequency uncertainty. For this reason the modified cyclotron frequency has to be measured
with the highest precision. For a fast detection of the modified cyclotron frequency at low
energies, a dedicated phase-sensitive technique, the PnA (Pulse and Amplify) method, is
used [58].
In the following, I introduce the central building block of this method, the five-step
PnA-cycle, which is illustrated in fig. 3.17.

1. First PnA pulse: Starting with a thermalized ion, the phase of the modified
cyclotron motion is set by a short (10 ms) radial dipole excitation at the expected
modified cyclotron frequency, 𝜈rf ≈ 𝜈+, so that in each PnA-cycle the ion has the
same imprinted modified cyclotron phase. An illustration of the phase space dynamics
during the first PnA pulse has been shown in fig. 3.10.

2. Phase evolution time: In the following, the modified cyclotron mode is completely
decoupled from any detection system. The phase of this mode freely evolves for a
phase evolution time 𝑇evol of typically 5 s at a motional radius of 𝑟evol

+ ≈ 13 µm or
larger.

3. Second PnA pulse: Subsequently, a quadrupole pulse at the expected upper side-
band, 𝜈rf = 𝜈+ +𝜈𝑧, parametrically excites the axial and the modified cyclotron mode

1 In this thesis, phases will always be denoted in degree and not in radian.
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Figure 3.17: Schematic of the phase-sensitive detection technique PnA (Pulse and Amplify)
[58]. The five-step PnA-cycle is illustrated by the progressions of the axial amplitude (black
line) and the modified cyclotron radius (green line) [131]. For details see text.

for about 10 ms. If at the beginning of the second PnA pulse 𝑟evol
+ > 𝑧

√︀
𝜈𝑧/𝜈+, the

phase information of the modified cyclotron mode is transferred into the phase of the
axial mode during the pulse. Simultaneously both amplitudes increase exponentially.
Detailed information, e.g. the differential equations and the corresponding solutions,
are given in [58]. The phase space dynamics of the second PnA pulse is illustrated in
fig. 3.18.

4. Signal readout: Right after the second pulse, the excited ion is detected as an axial
peak signal above the thermal noise spectrum of the axial resonator. The readout
time is typically 512 ms, which corresponds roughly to two times the axial cooling
time constant of a 12C5+ ion. From the complex amplitudes of the Fourier transform,
we determine the axial phase of the ion, which contains the modified cyclotron phase
information.

5. Cooling: Finally, both radial modes are thermalized via rf-sideband couplings to
the axial resonator. For the modified cyclotron mode, 𝜈rf = 𝜈+ − 𝜈𝑧, the coupling
time is of the order of 10 s and for the magnetron mode, 𝜈rf = 𝜈− + 𝜈𝑧, the coupling
time is about 2 s.

As previously explained, a phase-sensitive frequency determination requires at least two
phase measurements at two different point of times. Here, the starting phase is measured
with very short evolution times of 𝑇 start

evol = 10 ms. At these short time scales, magnetic field
fluctuations, which dominate the phase jitter on long time scales, are negligible with respect
to the intrinsic sources of phase jitter: the thermal and the readout jitter, which will be
introduced and analyzed in section 4.5.1. We repeat these 10 ms-PnA-cycles six times,
to reduce the statistical uncertainty of the starting phase. As the frequency uncertainty
scales inversely with the measurement time 𝑇 *

evol = 𝑇 final
evol − 𝑇 start

evol , the phase evolution time
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Detection Limit at tDL

Figure 3.18: Radial phase space dynamics of the second PnA pulse. The small cloud at a
radius 𝑟evol

+ indicates the phase space distribution after the phase evolution. During the second
PnA pulse at 𝜈rf = 𝜈+ + 𝜈𝑧, the modified cyclotron radius and the axial amplitude increase
exponentially and the phase-spread scales with 𝑟+, so that no additional phase jitter arises.
If 𝑟evol

+ > 𝑧
√︀
𝜈𝑧/𝜈+, the phase information of the modified cyclotron mode is transferred into

the axial mode. The inset illustrates the exponential increase of the modified cyclotron radius
during the second PnA pulse. For more details, see text.

𝑇 final
evol of the second phase measurement should be as long as possible.

Since phases can only be determined modulo a factor of 360∘, an appropriate phase
unwrapping is required to determine the absolute phase: 𝜙abs = 𝑛 · 360∘ + 𝜙meas, where 𝑛
is an integer. With the knowledge of 𝜈+ from a previous double-dip measurement and the
starting phase from the 10 ms-PnA cycles, the phase evolution number, 𝑛, can be predicted
for longer phase evolution times:

𝑛(𝑇 *
evol) =

[︁
𝜙10 ms + 360∘ · 𝜈DD

+ · (𝑇 *
evol − 10 ms)

]︁
/360∘. (3.74)

For a proper phase unwrapping the predicted uncertainty of the phase evolution number
should be well below 1, see fig. 3.19. In this plot the gray band illustrates the extrapolated
phase evolution number uncertainty in dependence of the phase evolution time, given by
six 10 ms-PnA-cycles and the frequency uncertainty from a previous 3 min double-dip
measurement. This estimated phase uncertainty is subsequently reduced by PnA cycles
with phase evolution times of 1 s (cyan), 2 s (red) and 5 s (green). For example at a phase
evolution time of 5 s the uncertainty 𝛿𝑛 based on the uncertainties of 𝜈DD

+ and 𝜙10 ms
(gray band) is roughly halved by the 2 s PnA measurement (red band). The maximal
phase evolution time and thus the frequency uncertainty are limited by magnetic field
fluctuations, which cause a significant probability for phase unwrapping errors (3·𝛿𝜙 > 180∘)
at phase evolution times larger than 8 s. In fig. 3.19 magnetic field fluctuations have been
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Figure 3.19: The principle of phase unwrapping. The colored error-bands illustrate the
uncertainty of the phase evolution number 𝛿𝑛 as a function of the phase evolution time.
The gray band is determined by the phase uncertainty of the six 10 ms-PnA-cycles and the
frequency uncertainty from a previous 3 min double-dip measurement. This extrapolated 𝛿𝑛 is
subsequently reduced by PnA phase measurements with phase evolution times of 1 s (cyan), 2
s (red) and 5 s (green). For further details see text.

also considered, resulting in a slight non-linear increase of the phase evolution number
uncertainty.Such fluctuations will be separately analyzed in section 4.5.1.
In comparison to the double-dip measurement of 𝜈+, which requires a long averaging time
of about 3min and reaches a relative Allan deviation of 𝛿𝜈+/𝜈+ = 2 ·10−9, the PnA method
requires only a measurement time of 5-10 s1 to reach an exceptionally small relative Allan
deviation of 𝛿𝜈+/𝜈+ ≈ 5 · 10−10, see also figure 4.19.
In contrast to the double-dip technique no line-shape model is required. In comparison
to other phase-sensitive methods (PnP) [133], the phase evolution proceeds at notably
small kinetic energies, leading to significantly smaller systematic shifts [13]. Moreover,
considering PnA, systematic shifts linearly depend on the modified cyclotron temperature,
which can be decreased by improved cooling techniques for the modified cyclotron mode,
e.g. by using a high-Q cyclotron resonator. However, this improvement cannot be used in
case of PnP.

1 Here, I neglect the complete preparation time, which comprises the time of the double-dip measurement,
the six 10 ms-PnA cycles, the phase unwrapping PnA-cycles (1 s and 2 s) and especially the cooling
time of the modes between these cycles.
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3.5 Larmor Frequency Determination
In the last section of this introductory chapter on the essential theoretical and methodical
knowledge in Penning trap physics, I will introduce a technique to determine the Larmor
frequency. Since at the accessible measurement time scale of 5 to 10 s, the relative magnetic
field fluctuations are in the order 5·10−10, see section 4.5.1, and the relative resonance-width
of a coherent spin-flip excitation of about 1 · 10−12 is much smaller1, only an incoherent
Rabi-like spin-flip excitation at the sought-after Larmor frequency is possible. For that
reason, we measure the spin-flip probability by probing the Larmor transition at different
Larmor frequencies 𝜈MW and each time simultaneously determining the magnetic field by
measuring the modified cyclotron frequency via PnA. To determine the success of such a
spin-flip drive the spin state of the bound electron has to be detected before and afterwards.

3.5.1 The Continuous Stern-Gerlach Effect
Hans Dehmelt developed a technique which he called the continuous Stern-Gerlach effect
to determine the spin state of a single free or bound electron [137]. In a Penning trap, in
our case the analysis trap (AT), see also section 4.1.5, he introduced a strong magnetic
inhomogeneity, a so-called magnetic bottle, which generates an additional magnetic potential
in axial direction:

𝑈𝑚𝑎𝑔 = −𝜇𝑧𝐵𝑧 ≈ −𝜇𝑧(𝐵0 +𝐵2𝑧
2), (3.75)

where 𝜇𝑧 = −𝑔𝜇𝐵𝑠𝑧/~ and 𝑠𝑧 = ±0.5~. Here, we only focus on a the dominating leading-
order inhomogeneity 𝐵2, which results in a harmonic potential. The resulting axial force:

𝐹𝑧,𝐵2 = 2𝜇𝑧𝐵2𝑧 = ±𝑔𝜇𝐵𝐵2𝑧 (3.76)

depends on the magnetic moment of the electron and thus on its spin state. This harmonic
magnetic force sums up with the harmonic electronic trapping force. In this way, the axial
frequency slightly depends on the spin state of the bound electron:

𝜔𝑧 =
√︂
𝑤2

𝑧,0 ± 𝑔𝜇𝐵𝐵2
𝑚ion

≈ 𝜔𝑧,0 ± 𝑔𝜇𝐵𝐵2
2𝑚ion𝜔𝑧,0

. (3.77)

At an axial frequency of 412 kHz and a magnetic bottle of 𝐵2 = 10.5 (4) · 103 T/m2 the
spin state dependence is of the order of 𝛥𝜈𝑧 = ±1 Hz; for more precise numbers see also
table 3.6.
For the determination of our magnetic bottle 𝐵2 in the analysis trap, I measured the
magnetic field strength at different axial ion positions, see fig. 3.20. Here, a specific burst
technique has been applied for the determination of the modified cyclotron frequency in
such a large magnetic inhomogeneity. This method has been explained in detail in the

1 For a coherent spin-flip drive at 𝜈𝐿 ≈ 105 GHz and a Rabi frequency of 0.1 Hz the relative width of the
Rabi resonance is: (0.1 Hz/105 GHz) ≈ 1 · 10−12, see also section 4.5.
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Table 3.6: Axial frequency jumps in the AT caused by spin-flips, in dependence of the ion
species.

ion 𝛥𝜈sf
𝑧 [mHz]

12C5+ 580(20)
40Ca17+ 170(10)
48Ca17+ 140(10)

thesis of Anke Kracke [14]. The four asymmetric voltage configurations for the chosen ion
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Figure 3.20: Magnetic bottle in the AT to determine the spin state, measured with a single
40Ca17+ ion. Parabola functions have been fitted to extract the size of the magnetic bottle.
For details see text.

positions have been calculated numerically, based on COMSOL simulations. So far, it is not
completely understood, why the size of the magnetic bottle slightly depends on the kind of
voltage configuration, either applying the asymmetric voltage to the endcap electrodes:
𝐵endcap

2 = 10164 (70) T/m2 or at the correction electrodes: 𝐵corr
2 = 11051(70) T/m2. In the

following, we use the averaged value of 𝐵2 = 10.5 (4) ·103 T/m2, whose uncertainty includes
both measured values. Furthermore it is remarkable, that the center of the magnetic bottle
is shifted by roughly 100 µm, which is most probably caused by patch potentials on the
electrode surfaces.
To determine the spin state, we use two different axial frequency detection techniques, due
to the different spin-flip sizes, which inversely scale with the ion mass, see eq. (3.77) and
table 3.6:

• For the single 12C5+ ion the spin-flip is large (𝛥𝜈𝑧 = 580(20) mHz), see fig. 3.21, and
we determine the axial frequency by measuring the axial peak frequency with zero
padding, see section 3.4.1. This technique is very robust and fast.
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Figure 3.21: Spin-flip detection of a single 12C5+ ion in the analysis trap. We derive the axial
frequency as an average value of four subsequent axial peak measurements. This technique has
been introduced in section 3.4.1. Between these blocks of four measurements, at the positions
of the gray doted vertical lines, we try to induce spin-flips by a resonant MW-excitation at
maximal power. Such a spin-flip drive lasts for 30 s. For a single 12C5+ ion the axial frequency
jump is about 580(20) mHz and can be clearly resolved.

• Due to the heaviness of 40Ca17+ and especially 48Ca17+ the axial frequency jumps are
particular small, 140 (10) mHz for a 48Ca17+ ion. Here, we detect the axial frequency
jump by measuring subsequently axial phases. This technique has been introduced
in section 3.4.2.

3.5.2 Systematic Shifts of the Larmor Frequency
Similar to the frequency shifts of the three eigenmotions, also the Larmor frequency has to
be corrected for magnetic inhomogeneities and special realtivity.

Magnetic Imperfections
It is remarkable, that the relative Larmor frequency shift caused by the relevant leading-
order magnetic imperfection 𝐵2 is calculated in the same way as for the modified cyclotron
frequency, compare with eq. (3.23):

𝛿𝜈𝐿/𝜈𝐿 = 𝐵2
𝐵0𝑚ion𝜔2

𝑧

(︀
−(𝜔𝑧/𝜔+)2𝐸+ + 𝐸𝑧 − 2𝐸−

)︀
. (3.78)
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Special Relativity
The effect of special relativity is slightly more complicated than for the free cyclotron
frequency, see section 3.3.2, which is completely described in the reference frame of the
laboratory. The spin dynamics and thus the formula for the Larmor frequency, see eq. (2.11),
is valid in the reference frame of the ion, so that the magnetic field in this reference frame
has to be considered. The general formula for a boosted magnetic field is:

𝐵⃗′ = 𝛾

(︃
𝐵⃗ − 𝑣⃗ × 𝐸⃗

𝑐2

)︃
− (𝛾 − 1)𝐵⃗𝑣⃗

𝑣⃗2 𝑣⃗. (3.79)

The last term can be neglected since the largest velocity, the velocity of the modified
cyclotron motion 𝑣+, see eq. (3.67), is orthogonal to the magnetic field. The second term,
which describes a motional magnetic field, is generated mainly by the modified cyclotron
velocity and the electric field in radial direction. At the present level of precision it can
be neglected, since for example for a single 12C5+ ion at a temperature of 𝑇+ ≈ 3000 K1

the radial electric field is 2.7 V/m 2 and thus such a magnetic field shift is of the order
of: (𝐵motional −𝐵0)/𝐵0 = 7 · 10−14 T. In this approximation, the Larmor frequency in the
reference frame of the ion is given by: 𝜔′

𝐿 = 𝛾𝜔𝐿. Finally, the spin dynamics has to be
transformed into the reference frame of the lab to compare with the cyclotron frequency.
It is a double Lorentz boost (rotation of electron spin and rotation of the ion), also called
Thomas Precession, which can be written as, see also [13]:

𝜔𝐿 = 𝜔′
𝐿/𝛾 + (1 − 𝛾)𝜔𝑐 ≈ 𝜔0

𝐿 − 𝛽2/2𝜔𝑐 = 𝜔0
𝐿 − 𝛿𝜈𝑐 → 𝛿𝜈𝐿

𝜈𝐿
= 𝛿𝜈𝑐

𝜈𝑐

𝜈𝑐

𝜈𝐿
(3.80)

This shift is a factor 𝜈𝐿
𝜈𝑐

≈ 4200 smaller than the relativistic shift of the free cyclotron
frequency. In that way the complete relativistic shift does not cancel in the measured
frequency ratio 𝛤.

1 𝑇+ ≈ 3000 K corresponds to a typical modified cyclotron radius of 𝑟+ = 14 µm during the PnA phase
evolution time.

2 Calculated by a COMSOL simulation.



CHAPTER 4
Towards the Measurement of the Larmor-to-cyclotron Frequency Ratio

After introducing in the previous chapter 3 the underlying principles of non-destructive
high-precision Penning trap measurements with single, highly charged particles, in the
present chapter I will focus on our specific experimental setup and the technical information,
which are essential for the understanding of the complete high-precision measurement
process on the Larmor-to-cyclotron frequency ratio. In section 4.1 I will start with an
overview on the experimental setup, where I will briefly summarize the various hardware
components. In the subsequent section 4.2 the currently applied stabilization systems will
be studied. Here, a special focus is set on superconducting self-shielding coils which reduce
the impact of external magnetic field fluctuations. This concept will be extended from a
one dimensional compensation of magnetic field fluctuations to a compensation in all three
spatial dimensions. Dedicated numerical calculations on transversal self-shielding coils will
be presented. In the following section 4.3 all preparatory procedures and measurements
are discussed, e.g. the creation process of a single highly charged ion, the optimization
of the electrostatic trapping fields, the measurement of the ion temperature and finally
the determination of the axial resonator parameters, which are required for the line-shape
model of the axial dip signal. Afterwards, in section 4.4, the automated measurement
process for the determination of the 𝛤 -resonance is explained step-by-step. In the last part
of this chapter, section 4.5, I will discuss the line-shape model of the 𝛤 -resonance. Here, a
special focus is set on the various phase jitters of the PnA measurement process.

4.1 Experimental Setup
Almost all components of the current experimental setup which are directly related to
the Larmor-to-cyclotron frequency ratio measurement have been designed and assembled
by the previous PhD students Birgit Schabinger [138], Sven Sturm [13] and Anke Kracke
[14]. Since then, only minor changes have been taken, e.g. a simplification of the technical
realization of the PnA method and the implementation of an axial compensation coil by
Anke Kracke, see below. However, for a profound understanding of the electron mass
determination and the g-factor measurements of the two different calcium isotopes, I will
briefly summarize all the relevant experimental features. Here, I start with the outer
components and step-by-step approach the heart of the experiment, the triple Penning
trap tower.

67



68 4 Towards the Measurement of the Larmor-to-cyclotron Frequency Ratio

Cryogenic 
electronics

Trap chamber

Magnet

Liquid helium

Hat Electronic 
boxes

Cryostat:
liquid nitrogen

reservoir

Temperature stabilisation box

20 K shield

Nitrogen shield

Precision
trap (PT)

Analysis 
trap (AT)

Transport
electrodes

Creation 
trap (CT) EBIS

Microwave
window

Trap
chamber

Reflector

Target
Acceleration
 electrode

FEP

Pinch-off tube 1 cm

UMF

Axial
compensation

coil

1 m

Helium filling / 
recovery pipe

Figure 4.1: Illustration of the experimental setup (modified from [14]). On the left side the
superconducting magnet by Oxford Instruments is sketched in gray, including the experimental
setup. On the right side, the hermetically sealed, cryogenic trap chamber is shown, which
contains the complete trap tower, including the precision trap (PT), the analysis trap (AT)
and the creation trap (CT). For details see text.

4.1.1 The Magnet and the Cooling Reservoirs
Some of the larger constituents of the experimental setup, e.g. the magnet, the cooling
reservoirs, the microwave waveguides as well as many parts of the experimental stages
have been adopted from a collaboration between the former Experimental Particle and
Astroparticle Physics (ETAP) group of Günter Werth and the atomic physics division
of GSI (Wolfgang Quint, H.-Jürgen Kluge), which performed bound-electron g-factor
experiments in the turn of the millennium, see e.g. the doctoral thesis’ of Stefan K.-H.
Stahl [124], Nikolaus H. Hermanspahn [139], Hartmut Häffner [128] and José Verdú [118].
The homogeneous magnetic trapping field is generated by a superconducting NMR magnet
from Oxford Instruments, which has a design field strength of 6 T. The magnet has
been ordered and charged by Wolfgang Quint and coworkers in 1995. Since then the
superconducting currents deliver a field of nominally 3.76 T in the lower part of its vertical
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warm bore of the magnet 1, 2 (bore diameter: 126 mm).
In addition to the superconducting magnet, we also cool the experimental apparatus itself
to cryogenic temperatures for a number of reasons:

• In section 4.4 it will be explained, that the high-precision measurement of the Larmor-
to-cyclotron frequency ratio requires a trapping time of at least a few weeks. Only
the freeze-out of the residual gas at temperatures of a few Kelvin (cryo-pumping of
the vacuum) enables to reach eXtremely High Vacuum (XHV) < 10−12 mbar. Due to
negligible charge-exchange rates with restgas atoms we obtain long storage times of
single highly charged ions.

• Furthermore, we cool the ion for essentially two reasons:
– To reduce the energy dependent systematic frequency shifts and uncertainties,

e.g. the dominant frequency shifts due to imperfections of the electric and
magnetic fields, see section 3.1.2, or the relativistic corrections, see section 3.3.2,
we need to work at small amplitudes.

– Using phase-sensitive eigenfrequency detection methods, e.g. the PnA method,
a cooled thermal amplitude distribution in the beginning of the measurement
decreases the phase jitter during the phase imprint, see also fig. 3.10. This tem-
perature dependent phase jitter will be explained and analyzed in section 4.5.1.

To cool the ion in our experimental apparatus, we exclusively use the resistive cooling
technique, introduced in section 3.2.3. Here, the axial motion of the ion thermalizes
with the axial resonator, which itself has to be cooled by a thermal bath. In our case,
the bath is given by the liquid helium reservoir of the experimental apparatus, see
below.

The cooling system of the apparatus includes an outer liquid nitrogen reservoir and an
inner reservoir of liquid helium at normal pressure with boil-off temperatures of 77 K for
nitrogen and 4.2 K for helium. To reduce the thermal radiation and thus the evaporation
rate of the helium, a 20 K-shield is set in a 10−7 mbar vacuum between these reservoirs,
see fig. 4.1. This shield is only fixed to the filling / recovery pipe of the helium reservoir of
the apparatus.

4.1.2 Electronic Components
The complete experimental setup, including the helium reservoir of the apparatus, is placed
within the bore of the magnet. Only the so-called hat flange of the setup, see fig. 4.2, is
mounted on top of the nitrogen cryostat, which itself sits above the magnet, see fig. 4.1.
The only stiff connection between the hanging apparatus and the hat flange is given by

1 Replacing the experimental apparatus from the magnet, the inner bore of the solenoid is filled with air
and in that way it is warm. The cooling of our cryogenic experimental apparatus which is placed within
the bore requires additional liquid nitrogen and helium reservoirs.

2 The magnetic field distribution has been measured with a NMR-probe along the symmetry axis (z-axis)
of the magnet, see e.g. [14]. The homogeneous field region is generated in the lower part of the vertical
bore on an axial section of about 15 cm.
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Figure 4.2: Photos of the experimental setup. On the left side the apparatus is shown, which
is placed in the bore of the magnet. On the right side, a picture of the wired triple Penning
trap tower is shown. In the lower part of the right photo the target, the acceleration electrode
and the FEP are missing, compare with fig. 4.1 and fig. 4.8.

the steel pipe for the helium filling and recovery. The hat flange itself contains six smaller
lateral flanges with the following attached electronic boxes:

• The amplifier box: The built-on BS1-12, developed by Stefan Stahl [124], delivers
the voltage for all cryogenic amplifiers, the control voltages for the miniature-EBIS,
CT and electric switches. With the so-called cryo-switch, implemented by Sven Sturm
[13], the dipole and quadrupole excitation lines can be actively grounded close to the
trap chamber in the cryogenic part, which has been essential for the axial frequency
stability in the analysis trap. Furthermore, all the three signal lines: the axial signals
of the PT and the AT and the cyclotron signal of the PT pass the amplifier box.
Here, both axial signal lines are down-converted from 671 kHz in the PT and 412 kHz
in the AT to ”audio” frequencies 0 to 28 kHz. An Agilent 33250A function generator1

is used as a local oscillator. In the room temperature lab region all signal lines are
amplified once more before the Fourier analysis and the recording is performed by

1 Since 2014, electronic instruments by Agilent Technologies spun-off into Keysight Technologies.
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the SR1 Audio Analyzer (Stanford Research Systems).
• The excitation box: All three excitation lines pass the feedthroughs of the excita-

tion box:
– The axial dipole excitation line, see also section 3.3.1, is connected to the lower

endcap in the PT and the upper endcap in the AT. In the PT, this excitation is
only used during the cleaning process, see section 4.3.1. In the AT, the dipole
excitation has been used for the axial peak detection of the 12C5+ ion. The
corresponding excitation signal is also generated by an Agilent 33250A function
generator.

– The quadrupole excitation line, see also section 3.3.2, is connected to one half of
the split correction electrodes in both traps. The excitation signal is generated
by the two channel function / arbitrary waveform generator Agilent 33522A.
The PnA cycle, see section 3.4.2, is programmed as a simultaneously started
superposition of two arbitrary waveforms: Channel one only performs the first
PnA pulse. The pulse sequence of channel two includes at first a waiting time
for the first PnA pulse and the phase evolution time and subsequently the
programmed second PnA pulse. Both channels are combined by a power splitter
/ combiner of Mini-Circuits, ZSC-2-2+.

– The LC excitation line is capacitively connected to both axial resonators, see
fig. 3.13 and section 3.3.3. Since the required feedback amplitudes differ in the
two measurement traps we use two separate function generators, both Agilent
33250A, with different attenuators. The axial signal, which has been amplified at
room temperature, is mixed by the respective phase shifted signal via frequency
mixers ZP-3 (0.15−400MHz) by Mini-Circuits1. Before it passes the feedthrough
of the excitation box, the signal is high-pass filtered at a cutoff frequency of
300 kHz (RC-filter).

For galvanic isolation all excitation lines contain rf-transformers by Mini-Circuits
(FTB-1-6*) in the proper frequency range. Furthermore, for the excitation and signal
lines, we use persistently coaxial cables with an impedance of 50Ω. In addition, the
excitation box also contains the voltage supply line of a heating resistance, which is
used to discharge the superconducting axial compensation coil by a local heating of
the coil wire over the critical temperature, see also section 4.2.1.

• The DC box: On top of this box the high-precision voltage source UM1-14 by Stahl
Electronics is placed. It provides all trapping and transport voltages from 0 up to
−14 V. This power supply has been explained in various previous thesis’, see e.g.
[138] or [13]. In the relevant measurement time span of about eight minutes2 the

1 The used frequency mixers are double-balanced passive diode mixers, also denoted as ring modulators.
2 The exact measurement process will be explained in section 4.4. In the PT, the axial frequency is

determined from two dip measurements with averaging times of 200 s. In between these measurements
PnA cycles are performed for about 300 s. The standard deviation of the axial frequency differences is
𝜎(𝜈𝐼

𝑧 − 𝜈𝐼𝐼
𝑧 ) = 29 mHz.
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axial frequency fluctuates by 21 mHz at an absolute frequency of 𝜈𝑧 = 671 kHz, which
corresponds to relative voltage fluctuations of the ring electrode of 𝛿𝑈𝑟/𝑈𝑟 = 6 · 10−8.
In addition to the UM1-14, also the so-called HVM box is connected to the DC box,
which provides voltages between −100 V and 0 V for the three electrodes of the
creation trap, see section 4.3.1. All lines, which enter the trap chamber, have been
low-pass filtered via RC-filters in the cryogenic electronics section.

• The HV box: The high voltage box has been designed by Joseba A. Otamendi [140,
141]. It provides voltages for the miniature electron beam ion source (mEBIS), which
will be introduced in section 4.3.1. Electron energies of several keV can be reached.
The built-in power supply provides a maximum voltage of 8 kV. Nevertheless, mainly
due to the compactness of that box and the accompanying restricted isolation, so far,
creeping currents and flash-overs limit the maximum voltage to roughly 5 kV.

• The remaining two boxes: the pressure box and the temperature box are
only relevant for the diagnostics, when the apparatus is cooled down from room
temperature to cryogenic temperature. Such cooling procedures happened only a few
times during the last 3.5 years. One flange contains the pressure sensor, a compact full
range gauge by Pfeiffer Vacuum, to observe the bore vacuum of about 1 · 10−7 mbar
and the other flange provides access to various standard temperature sensors.

4.1.3 The Microwave System
The Larmor frequency of the valence electron in a hydrogenlike but also lithiumlike ion is in
the millimeter wave range, e.g. about 105 GHz for a 12C5+ ion at 𝐵0 = 3.76 T. The probed
microwave excitation is produced by a MW synthesizer, MG3692B by Anritsu, which
generates microwaves up to max. 20 GHz. To reach 105 GHz, we multiply the frequency by
a factor of six to 75 − 110 GHz using the S10 MS millimeter wave source module by OML.
Subsequently, the microwaves are guided by W-band waveguides into the trap chamber.
On that way, two different vacuum barriers are crossed by horn-horn transitions. The
vacuum barrier on top of the hat flange consists of a Teflon window and the other barrier
in the center of the Untere Montage Flansch (UMF) is made up of quartz glass. A detailed
description and testing of the waveguide system and the occurring loss of power is given in
the diploma thesis of Manfred Tönges, see [142].

4.1.4 The Timing System
For the generation and measurement of frequencies a stable and precise timing is absolutely
essential. For this reason, all function generators, the microwave synthesizer, and the
Fourier analyzer are locked to a rubidium atomic clock. More precisely, we use a rubidium
frequency standard, model FS725 by Stanford Research Systems, which provides a 1 pps
(one pulse per second) signal and a 10 MHz output with a relative frequency stability
of 2 · 10−11 on a time scale of 10 s. The 10 MHz output signal is distributed via a dual
distribution amplifier, model FS735 by Stanford Research Systems.
For the phase-sensitive measurements, e.g. the PnA method, also the timing between
the excitation pulses and for example the signal readout is essential. We program such
kind of trigger sequences by the pulse-delay generator, model 555, by Berkeley Nucleonics
Corporation (BNC), which provides four different trigger channels: (A) for the quadrupole
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excitation, (B) for the dipole excitation and the microwave synthesizer, (C) the axial local
oscillator and both feedback oscillators to set the proper feedback phase relation, and (D)
the Fourier analyzer, SR1.

4.1.5 The Triple Penning Trap Tower
The requirements of a strongly inhomogeneous magnetic field for the spin-state detection
on the one hand, see section 3.5, and an as perfect as possible field homogeneity for the
precise eigenfrequency measurements and Larmor frequency scans on the other hand are
conflicting. To fulfill these requests, at the end of the nineties, in the group of Günter
Werth, Nikolaus H. Hermanspahn and colleagues [139], developed the so-called double
Penning trap technique, which spatially separates the measurement processes into two
Penning traps. For the first time, this measurement concept has been applied by Hartmut
Häffner [128] in 2000.
In our present Penning trap setup, both measurement traps are separated by five cylindrical
transport electrodes, with a distance of 41 mm between the trap centers, see figure 4.1.
In the so-called analysis trap (AT) a ferromagnetic ring electrode with a saturation flux
density of 𝐵s = 0.645 T (nickel) induces a magnetic bottle of 𝐵2 = 10.5 (4) · 103 T/m2

for the spin state detection, as mentioned in section 3.5. The precision trap (PT) has a
homogeneous magnetic field for the measurement of the eigenfrequencies and the probing
of the Larmor precession frequency. The dominant magnetic field imperfections in the PT
are caused by the residual magnetic bottle of the AT: 𝐵PT

1 = −13.41(23) · 10−3 T/m [13]
and 𝐵PT

2 = 1.01(0.20) T/m2, see also section 5.3.
Within the trap chamber, the cryo-pumped vacuum pressure is better than 10−17 mbar,
which we estimate by the trapping time of the ions, see also [139]. Such a pressure
corresponds to less than 20 gas atoms in the trap volume. The complete trap tower is
enclosed in a cold-welded cryogenic chamber, made from oxygen-free high conductivity
(OFHC) copper. An indium-sealed flange, the so-called Untere Montage Flansch (UMF),
contains all voltage, signal and excitation lines and a quartz glass window, which enables
the coupling of the microwaves for the probing of the Larmor precession frequency.
A miniature electron beam ion source and trap (mEBIS/T) is used for the ion production.
It contains a third 3-electrode Penning trap, the so-called creation trap (CT), which will
be explained in section 4.3.1.
All the electrodes have been manufactured by the workshop of the University of Mainz
with a precision of ±10µm. . They are made out of OFHC copper, having susceptibilities of
only 𝜒 = −6.4 · 10−6. Reducing the creation of patch potentials by oxidation, the electrode
surfaces are protected by a few µm gold layer on top of a few µm silver layer, which
prevents the diffusion of the gold atoms. The thickness of both layers amounts to 15 µm.
These electrodes are spatially separated and isolated by sapphire rings. Sapphire (Al2O3)
is a good thermal conductor especially at low temperatures, has a tiny susceptibility of
𝜒 = −2.1 · 10−7 and good ac-properties, e.g. a tiny loss tangent (tan 𝛿 < 1 · 10−4 for
> 1 MHz). Macor rings are only used for the high-voltage electrodes.
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4.2 Environmental Influences and Stabilization Systems
High-precision measurements in Penning traps highly rely on the temporal stability of
the applied electric and magnetic fields. The impact of various external disturbances is
analyzed and as the need arises has to be stabilized. In the past years, several efforts
have been made to minimize these environmental influences at our experimental apparatus.
Essentially, in the course of the thesis of Anke Kracke [14] two significant reductions of
environmental fluctuations have been achieved:

• The dominant fluctuations of the electrostatic trapping field have been caused by
the fluctuations of the ambient temperature due to the temperature dependence of
the ultra-stable voltage source, UM1-14. These fluctuations have been reduced by
an active temperature stabilization of the affected experimental surrounding. The
constructed isolation box is denoted in fig. 4.1. Within the box an active temperature
stabilization of less than 10 mK has been reached for time spans of up to one day,
enabling for example in the PT temperature generated fluctuations of the axial
frequency, which are smaller than 6 mHz, at a total axial frequency of about 687 kHz
[14].

• Working at cryogenic temperatures, an elegant way to reduce the impact of homo-
geneous external magnetic field fluctuations is the concept of a superconducting
self-shielding compensation coil, see [143]. During the thesis of Anke Kracke, such
a solenoidal coil has been designed and implemented directly in the vicinity of the
trap chamber, see fig. 4.1. It compensates locally at the trapping center of the PT
external homogeneous magnetic field fluctuations, which point in axial direction. In
the following, I will introduce the underlying concept and summarize its present
performance, which for the first time has been tested during a measurement of the
Larmor-to-cyclotron frequency ratio. Finally, I will extend this idea to compensate
also transversal magnetic field fluctuations.

4.2.1 Superconducting Compensation Coils
In 1988 Gerald Gabrielse and Joseph Tan developed the concept of a passive compensation
of homogeneous magnetic field fluctuations by using a closed superconducting solenoidal
coil [143, 144]. Their idea is based on the fact, that in a superconducting loop external
magnetic field fluctuations induce electric currents in a way, that the magnetic flux through
the loop 𝛷 ≡

´
𝐴 𝐵⃗𝑑𝐴⃗ is constant1. At first, we consider an uncharged solenoidal closed

superconducting coil with 𝛷(𝑡0) = 0. Thereupon, a homogeneous disturbance of the external
magnetic field 𝐵ext occurs parallel to the solenoidal axis. Due to flux conservation:

𝛷(𝑡1) =
ˆ

𝐴
(𝐵ext +𝐵ind) 𝑑𝐴 = 𝐴 ·𝐵ext +𝐴 · ⟨𝐵ind⟩ = 𝛷(𝑡0) = 0

→ 𝐵ext = − ⟨𝐵ind⟩ , (4.1)

1 In case of any superconducting loop, magnetic flux conservation can be easily derived from Maxwell’s
equation: ∇⃗ · 𝐸⃗ = − 𝜕𝐵⃗

𝜕𝑡
(Faraday’s law). Using Stokes’ theorem:

¸
𝜕𝐴

𝐸⃗𝑑𝑠⃗ =
´

𝐴
∇⃗ · 𝐸⃗𝑑𝐴⃗ = −

´
𝐴

𝜕𝐵⃗
𝜕𝑡

𝑑𝐴⃗ =
− 𝜕

𝜕𝑡
𝛷. If the wire is closed and superconductive:

¸
𝜕𝐴

𝐸⃗𝑑𝑠⃗ = 0 and in that way: 𝜕
𝜕𝑡

𝛷 = 0.
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where ⟨𝐵ind⟩ is the averaged induced magnetic field, generated by the coil. Due to linear
dependences between the locally induced magnetic field, the induced current and the
mean induced magnetic field: 𝐵int(𝑧) ∝ 𝐼ind ∝ ⟨𝐵int⟩ , we introduce a position-dependent
proportional factor 𝑏(𝑧)1:

𝐵ind(𝑧) = 𝑏(𝑧) · ⟨𝐵ind⟩ = −𝑏(𝑧) ·𝐵ext. (4.2)

To quantify the local compensation, we define the shielding factor:

𝜂(𝑧) ≡ homogeneous outer disturbance
disturbance within the solenoid at z = 𝐵ext

𝐵ext +𝐵ind(𝑧) = 1
1 − 𝑏(𝑧) . (4.3)

In the case of perfect shielding at a position z: 𝜂(𝑧) → ∞. Considering the spatial limitations
of our experimental setup, Anke Kracke designed a solenoidal self-shielding coil, where
𝑏(𝑧PT-center) = 𝐵ind(𝑧PT-center)/ ⟨𝐵ind⟩ approaches one at the trapping center of the PT.

Compensation in Axial Direction
The calculation and the design of the axial superconducting compensation coil is described
in [14]. Placing this coil directly around the trap chamber and fixing it to the UMF, also
magnetic field fluctuations caused by the movement of the apparatus with respect to the
magnet (by thermal expansions or vibrations) are at least partially compensated. Special
design adjustments had to be made due to the relatively short distance between the center
of the PT and the UMF which spatially limits the coil in the upper direction.
By applying artificial external magnetic field fluctuations and simultaneously measuring
the resulting modified cyclotron frequency variations of a single 12C5+ ion in the PT
with firstly a superconducting and secondly a quenched compensation coil, a shielding
factor of 19 has been measured, see also [14]. This axial compensation coil has been
mounted after the g-factor measurement of lithiumlike silicon had been finished, so that
its performance during a g-factor measurement has been tested for the first time at the
Larmor-to-cyclotron frequency measurement of the 12C5+ ion for the determination of
the electron mass. Considering PnA phase evolution times of 10 s and a total PnA cycle
time of about 30 s relative magnetic field fluctuations of 𝛿𝐵/𝐵 = 1.2 · 10−9 have been
measured without the compensation coil. After the assembly magnetic field fluctuations
decreased to 𝛿𝐵/𝐵 = 6 · 10−10, see fig. 4.19(b). After the completion of the electron mass
determination, the apparatus has been warmed up mainly to tune the cyclotron resonator.
Here, the compensation coil has been better aligned, so that the magnetic field stability for
the 48Ca17+ ion: 𝛿𝐵/𝐵 = 3.5 · 10−10, see fig. 4.19(d), has been further improved. These
magnetic field fluctuations will be also analyzed in detail in section 4.5.1. Here, a random
walk model of these fluctuations improves by a factor of two by comparing the 12C5+ and
the 48Ca17+ measurements. However, so far a discrepancy has been observed between
the artificially generated, macroscopic magnetic field fluctuations, which yield a shielding
factor of 19, and the microscopic fluctuations on short time spans (10 s) with a shielding

1 Here, we are only interested in the magnetic field distribution along the axial / 𝑧-direction, where 𝑥 = 0
and 𝑦 = 0.
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factor of only 5. A possible explanation will be given in the next section by a combination
of an intrinsic tilt of the axial compensation coil and vibrations.

Compensation in Transversal Directions
The following considerations triggered the development of transversal compensation coils.
As a starting point, I assume an initially perfectly aligned solenoidal axial compensation
coil, see fig. 4.3 (left side) in a perfectly homogeneous magnetic field, 𝐵0. In the following
the superconducting coil is tilted by an angle 𝜃 with respect to the magnetic field. As
a consequence, the coil compensates the reduced magnetic field along the coil axis1:
𝐵ind = −𝐵ext = 𝐵0(1 − cos(𝜃)). The absolute magnetic field is increased, since next to the
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Figure 4.3: Compensation of magnetic field fluctuations by a tilted axial, solenoidal coil. For
details see text.

constant magnetic field along the coil axis, an additional 𝐵𝑥′ = −𝐵0 sin(𝜃) component of
the outer magnetic field occurs, which increases the total magnetic field:

|𝐵tot| = 𝐵0
√︀

sin(𝜃)2 + 1 ≈ 𝐵0(1 + 𝜃2/2). (4.4)

For small angles the relative deviation of the magnetic field is about 𝛿𝐵0/𝐵0 ≈ 𝜃2/2.
To explain the currently measured magnetic field fluctuations of 𝛿𝐵/𝐵 = 4 · 10−10 via
fluctuations of the tilt of the experimental setup placed in the magnet bore, would require
angle fluctuations of 𝛿𝜃 = 0.0016∘. Assuming that the complete apparatus with a length
of about 1.4 m vibrates as a rigid body, such tilts correspond to radial vibrations of the
bottom of the experiment of: 42 µm, which are not realistic, see [14]. However, in case of
small initial (static) tilts 𝜃0, e.g. given by an imperfect alignment of the magnetic field
itself or the alignment of the apparatus with respect to the magnetic field, much smaller
fluctuating tilts 𝛿𝜃 would be required: 𝛿𝐵0/𝐵0 = (𝜃0 + 𝛿𝜃)2/2 ≈ 𝜃0𝛿𝜃+ const. For example,

1 Here, I assume perfect shielding: 𝑏 = 1 ↔ 𝐵ind = −𝐵ext.
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at the measured static tilts of 𝜃0 = 0.1 − 0.2∘, see table 3.1, the present magnetic field
fluctuations could be explained by oscillation amplitudes of the bottom of the apparatus of
only 160 − 320 nm. Vibrations of the complete setup might cause these fluctuating tilts.
To reduce this effect, in the course of this thesis I worked on the concept of transversal
compensation coils.

Design of Transversal Compensation Coils
Complete compensation in transversal direction, requires at least two independent self-
shielding coils, which we would place directly around the axial compensation coil, pointing
in x- and y-direction. The severe spatial constraints exclude the usage of the relatively
simple solenoidal geometries1. Several elaborated geometries have been numerically cal-
culated in Matlab. Here, I dynamically2 subdivided the windings (𝑛 segments) as well
as the closed area (𝑘 segments), which is required for the numerical flux integration, in
tiny segments. The magnetic field at a position 𝑟⃗ is calculated as a field superposition by
applying to all 𝑛 wire segments separately the Biot-Savart law. For the following reason
the calculation of the magnetic flux the consideration of the wire thickness is of great
importance. Focussing on a densely wound coil the magnetic flux in the close vicinity of
the wires is rather homogeneous. However, considering a losely wound coil with rather
large distances between the wires, the wire thickness has a large impact on the magnetic
flux, since e.g. for an infinitely small wire the flux (𝛷 ∝ ln(𝑟)) would diverge.
The flux concentrator design of the transversal compensation coil, shown in fig. 4.4, con-
siders the following three criteria: (1) The magnetic field strength is concentrated at the
center of the PT, in the upper part of the trap chamber. (2) The integration area of the
flux is enlarged. (3) The flux itself is reduced. The layout consists of two winding layers
on both sides of the trap chamber fixed on a cylinder with an outer radius of 44.4 mm.
Each layer contains 30 windings, which are densely wound. The lengths of the straight
sections are 25 mm for the small windings and 90 mm for the large windings; the innermost
bending radius is 7 mm. The superconducting NbTi wire should have a total radius of
275 µm including a wire isolation with a thickness of 25 µm.

1 Spatial Constraints: At our experimental apparatus, spatial constraints in radial directions are given
by the trap chamber, the solenoidal self-shielding coil and the 20 K shield, see fig. 4.1. In numbers:
The innermost spatial limitation is given by the trap chamber with an outer radius of 35 mm At the
moment, the trap chamber is directly surrounded by the solenoidal self-shielding coil, fixed on an
OFHC-copper cylinder with an inner radius of 37.25 mm. The cylinder itself (1 mm) and the winding
including insulation (1 mm), enable a mounting cylinder for the inner transversal self-shielding coil
with an inner radius of 39.4 mm. The outer limitation is set by the 20 K shielding with an inner radius
of 48 mm. Replacing the 20 K shield by at least 15 layers of superinsulation foil, see proton g-factor
experiment [145], the absolute outer limit would be given by the nitrogen shield at a radius of 57 mm.
In the current setup of the trap tower, the center of the PT is close to the UMF, so that there is a strict
limitation in axial direction, e.g. 27.4 mm for the inner transversal self-shielding coil to the top. Also a
lower axial limit of about 10 cm is set by the spatially limited homogeneity of the magnetic field.

2 Here, dynamical subdivision means: (1) The size of the winding segments scale with the bending; e.g.
straight wire sections do not need to be subdivided. (2) The size of the area segments scale with the
change of the magnetic field strength; e.g. the segmentation of the area close to the windings are very
dense.
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9 
cm

Figure 4.4: Design of an inner transversal self-shielding coil in x-direction. The layout consists
of two stacked winding layers of different sizes on both sides of the cylindrical trap chamber.
For details see text.

Table 4.1: Robustness analysis of the numerical solution of the inner transversal compensation
coil, which is illustrated in fig. 4.4.

parameter set value studied tolerances 𝜂 range
coil meshing 3.5 mm ±1.5 mm 11.4 − 12.7
meshing parametera 0.02 ±0.01 12.1 − 12.3
distance: PTcentre-UMF 26.8 mm ±0.8 mm 10.9 − 13.6
number of big windings 30 ±1 11.3 − 12.4
number of small windings 30 ±1 11.6 − 12.3
straight length of big windings 90 mm ±3 mm 11.0 − 13.5
straight length of small windings 25 mm ±3 mm 11.9 − 12.2
wire radius without isolation 250 µm ±10 µm 11.2 − 13.3
isolation thickness 25 µm ±5 µm 11.7 − 12.7
inner bending 6 mm ±1 mm 11.4 − 12.8
radius of the staging cylinder 40.4 mm ±0.4, (37.25) mm 13.4 − 11.1, (52.3)

a Some specific parameter, which characterizes the meshing size of the integration area.

The calculated shielding factor of 12.1(7) could be dramatically increased by lowering the
center of the PT with respect to the UMF, see fig. 4.5. The corresponding outer compen-
sation coil for compensation in y-direction, has a shielding factor of 6.5(7). The specified
uncertainty considers the estimated numerical uncertainty, which has been analyzed by
varying the segment size of the split windings and the meshing of the integration area. A
detailed study of the robustness of this numerical calculation is given in table 4.1.
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Figure 4.5: Calculated shielding factor of the transversal compensation coil in x-direction as
a function of the z-position (𝑥 = 𝑦 = 0 m). The corresponding design is shown in fig. 4.4. In
red the z-position of the windings are indicated. At 𝑧 = 0 m (dotted line) the center of the PT
is located. A larger distance between the UMF and the PT center would significantly increase
the shielding factor.

For future major upgrades, where the PT is shifted for a few centimeters with respect to the
UMF, transverse shielding factors of about 1000 seem to be feasible also with mono-layer
geometries, see fig. 4.6.

Coupling of the Compensation Coils
So far, the compensation coils have been optimized separately. In combination, their
mutual interactions have to be considered. The determination of the combined shielding
factor requires the knowledge of the total integrated areas 𝐴𝑖, the self-inductances 𝐿𝑖𝑖,
the mutual-inductances 𝐿𝑖𝑗 and the factors: 𝑔𝑖 = 𝐵𝑖(PTcentre)/𝐼𝑖. Here, 𝐵𝑖(PTcentre) is the
generated magnetic field at the PT-centre when a current 𝐼𝑖 is applied. Assigning 𝑖 = 1 to
the inner transversal coil, 𝑖 = 2 to the outer transversal coil and 𝑖 = 3 to the axial coil, the
combined shielding factor in x-direction is:

𝜂−1 =1 − 𝑔𝑇𝐿−1𝐴 (4.5)

=1 −

⎛⎝ −1.0 · 10−3

−1.6 · 10−8

0

⎞⎠𝑇 ⎛⎝ −1.2 · 10−3 −7.4 · 10−9 4.0 · 10−4

−7.4 · 10−9 −1.3 · 10−3 3.7 · 10−4

4.0 · 10−4 −3.7 · 10−4 5.1 · 10−3

⎞⎠⎛⎝ 1.1
1.3
1.4

⎞⎠
=1/12.1,
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Figure 4.6: Transversal compensation coil with a mono-layer of windings (a). Dimensions:
radius of the cylinder: 49 mm; wire radius without isolation: 125 µm, thickness of the wire-
isolation: 25 µm, bending radius of the inner most winding: 6 mm, total number of windings:
172 (in one-layer and per side: 86 windings). (b) In the coil center shielding factors larger than
1000 are feasible.

which does not significantly deviate from the former result. Moreover, the couplings with
the various shimming coils of the OXFORD magnet have to be considered. Due to the
missing knowledge on their positions and inductances, the assembling of the transverse
compensation coils has been postponed.

4.2.2 Pressure Study of the Four Cooling Reservoirs
Pressure fluctuations of the boil-off gas in the four liquid gas reservoirs, see section 4.1.1
and fig. 4.1, arise due to a number of reasons: (1) outer room temperature and pressure
fluctuations, (2) pressure fluctuations in the helium exhaust line and (3) fluctuations
generated during the evaporation process (bubbles). These fluctuations cause an alteration
of the boiling temperature and in that way a change of the susceptibilities of the surrounding
materials, which finally generate magnetic field fluctuations. Moreover, local pressure
fluctuations e.g. in the helium reservoir of the apparatus lead to temperature fluctuations
of the evaporated gas, which thereupon generate a fluctuating thermal expansion of the
helium recovery pipe. Since the complete apparatus is only fixed by this recovery pipe, the
apparatus and especially the nickel ring electrode of the AT move within the bore of the
magnet, so that magnetic field fluctuations arise in the Penning traps.
To study the impact of pressure fluctuations artificial pressure variations of up to 20 mbar
have been generated by the absolute pressure controller 640A of MKS Instruments. In
parallel, the variation of the modified cyclotron frequency has been observed by subsequent
double-dip measurements. Data of the nitrogen reservoir of the magnet are plotted in
fig. 4.7. The results of all four liquid gas reservoirs are listed in table 4.2. Here, an explicit
pressure dependence has been only detected for the nitrogen reservoir of the magnet.
Subsequently the unstabilized pressure variations have been studied for several hours by the
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Figure 4.7: Study of the magnetic field fluctuations in dependence of the pressure in the
nitrogen reservoir of the magnet (NMag). The stabilized pressure has been increased in three
steps, indicated in black. The pressure offset 𝑝off

NMag corresponds to the average air pressure in
the lab. Simultaneous to the pressure measurements, the modified cyclotron frequency has
been detected in the PT via subsequent double-dip measurements, indicated in red.

Table 4.2: Analysis of the pressure fluctuations in all four liquid gas reservoirs. Axial
compensation coil is present.

reservoirs 𝜈+ pressure dependence (Hz/bar)
nitrogen magnet (NMag) 118(21)
helium magnet (HeMag) 0(3)
nitrogen apparatus (NApp) 12(18)
helium apparatus (HeApp) 15(17)

pressure transducer, type 220D (MKS Instruments). For both magnet reservoirs pressure
fluctuations of 6 µbar have been observed on a time span of 10 s. If we assume a linear
extrapolation to small scale pressure fluctuations, the relative magnetic field fluctuations
will be smaller than 1 · 10−10. Consequently, in presence of the solenoidal compensation
coil, the observed magnetic field fluctuations are not limited by the unstabilized pressure
fluctuations, so that in presence of the axial compensation coil no pressure stabilization is
needed at the current level of precision.
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4.3 Preparatory Steps and Measurements
4.3.1 Creation of a Single Highly Charged Ion
As mentioned in section 4.1.5, the studied highly charged ions have to be created within the
closed trap chamber by a miniature electron beam ion source (mEBIS). Here, electrons are
emitted from a single field emission point made out of tungsten. The FEP fires by applying
a voltage difference of at least 700 V between the FEP and the acceleration electrode, see
fig. 4.8. Setting the reflector electrode to a voltage at least as low as the voltage of the
FEP, the emitted electrons start oscillating along the magnetic field lines between the FEP
and the reflector forming an oscillating electron beam. Increasing the beam current up to
a few 100 nA the beam broadens due to Coulomb repulsion and finally impinges on the
target. Different atomic and molecular species are desorbed from the target surface. Some
of them diffuse into the electron beam and get ionized. These low charged ions are confined
in the creation trap (CT), a simple cylindrical Penning trap, comprising three electrodes,
a ring and two endcap electrodes. Further electron-impact ionization produces ions in

old voltage setting

no electron beam

new voltage setting

UEBIS

Reflector

Upper CT 
endcap

CT ring

Lower CT 
endcap

Target

Acceleration
electrode

FEP

Figure 4.8: Illustration of the miniature electron beam ion source (mEBIS). On the right
side, the voltage configurations during the ion production are sketched. The common voltage
configuration is shown in black. The modified voltage configuration for the creation of trapped
calcium ions with the additionally positively charged endcap electrodes of the CT is indicated in
red. The electron beam current is steered by the applied voltage on the acceleration electrode.

higher charge states, in particular lots of carbon, oxygen and silicon ions. The maximal
accessible charge states are limited by the voltage difference between the FEP and the
ring electrode of the CT. The latter voltage is typically of the order of 𝑈CT

𝑟 ≈ −100 V.
Technical details and the characterization of the mEBIT as well as an extensive description
of the corresponding HV box are given in the theses of Joseba A. Otamendi [140, 141] and
Birgit Schabinger [138].
The voltage configurations during the creation process slightly differ with respect to the
desired ion species:

• Creation of a single 12C5+ ion: The chosen energy of the electron beam of 1 keV is
well above the ionization threshold of hydrogen-like carbon, 𝐸ion = 392 eV, see also
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table 2.2. Optimizing the ionization cross section, the energy of the electron beam
should be a factor 2.5 higher than the desired ionization energy, see [146]. The charge
breeding time is in the order of 10 s. In the subsequent analysis of the produced ion
cloud usually a few 12C5+ ions, 2-5 ions, have been detected.

• Creation of lithiumlike calcium ions, 40Ca17+ and 48Ca17+: At an ionization energy
of 1.1 keV, I used an electron beam energy of about 4 keV. With the common voltage
configuration, see fig. 4.8 (black line), it has not been possible to desorb calcium
atoms from the target, although we increased the charge-breading time to several
minutes. In the end, a modification of the voltage setting of the two endcap electrodes
of the CT, applying +85 V instead of 0 V, enabled the production of calcium ions.
The CT ring electrode remained at −100 V. Two possible reasons might explain this
essential adjustment:

– After some charge breeding time, the CT is completely filled with ions, so that
the CT overflows and several ions are accelerated towards the target. Here, we
consider for example a lithiumlike silicon ion which is for some reason produced
in great quantities. If such an ion hits the target, the momentum transfer will
be a factor 110 larger than the momentum transfer of an electron from the
electron beam. This might increase the calcium desorbtion rate.

– The effective deeper trapping voltage of the CT enables the generation of larger
clouds, which might be essential for the charge-breeding of the heavy calcium
ions.

The typical charge breeding time has been one minute. In most of these creation
cycles no calcium ions have been detected in the subsequent analysis of the ion cloud.
However, in a few cycles up to two lithiumlike calcium ions have been detected.

After the charge breeding process in the CT, the cloud of ions is transported into the PT
for the separation of the desired single ion.

Composition of the Target Surface
The natural abundance of 40Ca amounts to 97% and of 48Ca to only 0.19%. To increase
the production rate of 48Ca ions, the built-in target contains an enriched calcium iso-
tope mix. The target surface has been produced by the target laboratory of the GSI
Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt. In a sputtering process
various calcium isotopes have been accumulated on an ultra-pure graphite disk. The exact
isotope composition is listed in table 4.3. Great care has to be taken during the installation
of the target to protect the target from oxidation processes, see also [138]. As the target
disk should mainly consists of carbon (graphite) and calcium atoms, it is remarkable (and
until now not completely understood), that we detect a large abundance of silicon ions in
the produced ion clouds.

Cleaning Methods - Preparation of a Single Ion
Essentially three different techniques have been applied to clean the trap from the unwanted
ion species and at the same time to separate the desired single ion:



84 4 Towards the Measurement of the Larmor-to-cyclotron Frequency Ratio

Table 4.3: Calcium isotope abundance on the built-in target.

isotope enriched target natural abundance
40Ca 78.774% 96.941%
42Ca 3.015% 0.647%
43Ca 0.615% 0.135%
44Ca 9.549% 2.086%
46Ca 0.021% 0.004%
48Ca 8.023% 0.187%

• 𝐵2-Cleaning: The most efficient way to clean the setup from unwanted ion species
is the highly selective 𝐵2-cleaning technique, which includes the following five steps,
developed by Sven Sturm: (1) Via a short radial dipole excitation at the expected
modified cyclotron frequency we excite the modified cyclotron motion of the ions in
the PT. More precisely, we apply a single frequency sweep with a frequency span
of a few 100 Hz and a sweep time of 1 s. During this process, the axial mode of the
wanted ion is resistively cooled to a few Kelvin by the tuned axial resonator. (2)
Subsequently, we transport the modified ion cloud into the AT. (3) Lowering the
electric trapping potential below the thermal axial energy, the unwanted ion species
are evaporated, while the wanted ion species remain confined, due to the force acting
on their large magnetic moments: 𝜇cycl

𝑧 = 0.5𝑞𝑟2
+𝜔+, which is caused by the large

magnetic bottle 𝐵 = 𝐵2𝑧
2. In order to keep the wanted ion species in the trap, the

corresponding axial magnetic energy 𝐸cycl
𝑧 = 𝜇cycl

𝑧 𝐵2𝑧
2 must be larger than the axial

thermal energy 𝐸𝑧 = 𝑘𝐵𝑇𝑧. (4) The remaining ions are transported back from the
AT into the PT, where (5) their modified cyclotron mode is sideband cooled.

• Axial Sweeps and Swifts: In addition to the 𝐵2-cleaning technique, we also
perform selective axial dipole excitations and subsequent evaporations of the unwanted
ions. This cleaning process can be explained in four steps: (1) The ion cloud is placed
in the PT. (2) For an efficient resistive cooling during the cleaning process, the axial
frequency of the wanted ion species is tuned to the resonance frequency of the axial
resonator by adjusting the trapping voltage. (3) Ions with a different charge to mass
ratio are axially excited by dipole frequency sweeps above and below the frequency
of the axial PT resonator. The lower limit of the lower frequency span is set by the
magnetron frequency (≈ 10 kHz) and the upper limit of the upper frequency span is
set by two times the axial frequency (≈ 1.3 MHz). Also the frequency range around
the axial resonator of the AT (≈ 412 kHz) is excluded from the sweep, to protect
the detection system in the AT. (4) Immediately after these sweeps the trapping
potential is lowered for a few seconds to evaporate the excited unwanted ion species.
Instead of using several sweeps, also a broad band axial excitation can be programmed
as a stored waveform inverse fourier transform (SWIFT), again be limited by the
magnetron frequency, the double axial frequency and the frequency ranges of axial
resonators of the AT and PT [13].
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• Detection on the Cyclotron Resonator: After an excitation of the modified
cyclotron motion, multiple ions of the desired ion species can be detected as peak
signals on the low-Q cyclotron resonator in the PT. Having slightly different motional
energies, these ions can be distinguished by their slightly different modified cyclotron
frequencies appearing as distinguishable peak signals. Such multiple ions can be
selectively removed by a cautious lowering of the trapping potential until a single peak
signal / ion remains. The characteristics of the cyclotron resonator are summarized
in table 4.4.
In case of thermalized ions, a further indication of multiple ions of the same species
is given by the width of the axial dip signal, as explained in section 3.2.3.

Table 4.4: Characteristics of the PT cyclotron resonator during the electron mass measure-
ment.

cyclotron resonator value
parameters:
Q 120(10)
𝜏(𝜈+) 415(100) s
𝜈res 24455(15) kHz
𝜈+ 24081134 Hz

4.3.2 Preparation of the Precision Trap
After the creation of a single trapped ion, both measurement traps have to be adjusted
before the automated measurement of the 𝛤 -resonance is started. In the following, these
preparatory measurements are introduced.

Tuning Ratio Optimization
Deviations from the ideal electric quadrupole potential, see eq. (3.19) and eq. (3.20), lead
to energy dependent eigenfrequency shifts [119, 120]. As explained in section 3.1.3, in
the optimal design of a five-electrode configuration with grounded endcaps, the Penning
trap is orthogonal, so that the axial frequency, which is proportional to

√
𝐶2, does not

depend on the tuning ratio (TR), TR ≡ 𝑈cor/𝑈r. Moreover, the electric potential is doubly
compensated: 𝐶4 = 𝐶6 = 0. Due to small imperfections of our trap design, only 𝐶4 can be
completely nulled, while a tiny 𝐶6 remains. During each ion creation process, the patch
potentials on the electrode surfaces in the PT are slightly modified, demanding a tuning
ratio optimization right before the automated measurement process starts.
For this purpose, axial frequency shifts, generated by magnetron burst excitations, are
studied for different tuning ratios and as a function of the applied burst amplitude, see
fig. 4.9. For all three studied ions (12C5+, 40Ca17+ and 48Ca17+) a two-parameter fit has
been used, which describes the axial frequency shifts in dependence of the magnetron burst
amplitude:

d𝜈𝑧 ≈ −3
2

1
𝑑2

char

𝐶4
𝐶2
𝜈𝑧 · 𝜅2 · 𝑈2

exc + 2.8125 1
𝑑4

char

𝐶6
𝐶2
𝜈𝑧 · 𝜅4 · 𝑈4

exc

= P1 · 𝑈2
exc + P2 · 𝑈4

exc. (4.6)
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Figure 4.9: Tuning ratio optimization in the PT via magnetron burst excitations. Axial
frequency differences between the excited (𝜈hot

𝑧 ) and the thermalized (𝜈cold
𝑧 ) magnetron modes

of a single 12C5+ ion are plotted as a function of the magnetron burst amplitude 𝑈exc (∝ 𝑟−)
for six different TR’s. The excitation pulse length has been fixed to 10 ms.

Here, only the leading-order 𝐶4 and 𝐶6 terms are considered. The magnetron radius
is proportional to the magnetron burst amplitude: 𝜌− ≡ 𝜅 · 𝑈exc. In figure 4.10(a) the
determined fitting parameter P1 is plotted as a function of the TR. As 𝐶4 linearly depends
on the TR: 𝐶4 = 𝐸4 + TR ·𝐷4, we extract the optimal TR at P1 = 𝐶4 = 0 from a linear
fit of P1(TR), shown as a red curve: TRopt = TR(P1=0) = 0.8799693(51)1.
To determine the magnetron radius as a function of the burst amplitude, we rely on the
calculated value of 𝐷calc

4 = −0.616, the measured 𝐶2 = −0.5504, see eq. (3.4), and the
slope of the linear fit in fig. 4.9(a), 𝑚P1 = −307(10) Hz Vpp−2. During the determination
of the electron mass the proportionality constant 𝜅 has finally been given by:

𝜅 =

√︃
−2 𝑚P1 · 𝐶2 · d2

char
3𝜈𝑧𝐷4

= 5.1(1) · 10−5 m/Vpp. (4.7)

At the maximal applied voltage of 7 Vpp, see fig. 4.9, we thus reach magnetron radii of
360(10) µm.

1 This optimized tuning ratio and all numbers in this section have been determined with a single trapped
12C5+ ion during the preparation of the electron mass measurement. The corresponding numbers for
the two calcium measurements will be discussed at the end of the section.
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Figure 4.10: Fit parameters of the tuning ratio optimization in the PT measured with a
single 12C5+ ion. Fitting curves of the form d𝜈𝑧 = P1 · 𝑈2

exc + P2 · 𝑈4
exc have been applied to

the measured data shown in fig. 4.9. (a) P1 (∝ 𝐶4) is plotted as a function of the TR. The
optimized TR is derived by the linear interpolation (red line), where P1 = 0. (b) Here, P2
(∝ 𝐶6) is plotted as a function of the TR. A profound model of the P2(TR) distribution could
not be derived due to the limited statistics.

In the following, I study the limitations of the fitting model, introduced in eq. (4.6), and
three further models, which consider higher-order terms in eq. (3.20):

1. d𝜈𝑧 = P1 · 𝜌2
− + P2 · 𝜌4

− (used for trap optimization, see eq. (4.6)),
2. d𝜈𝑧 = P1 · 𝜌2

− + P2 · 𝜌4
− + P3 · 𝜌6

−,

3. d𝜈𝑧 = ((0.1578 · 𝐶4 + 7.251 · 10−6 · 𝐶6)/0.5504 · 𝜌2
− − 0.03112 · 𝐶6/0.5504 · 𝜌4

−) · 𝜈𝑧,

4. d𝜈𝑧 = ((0.1578 ·𝐶4 + 7.251 · 10−6 ·𝐶6 + 1.99 · 10−10 ·𝐶8)/0.5504 · 𝜌2
− − (0.03112 ·𝐶6 +

2.670 · 10−6 · 𝐶8)/0.5504 · 𝜌4
−) · 𝜈𝑧.

At first, the axial frequency shifts are calculated analytically1 for different tuning ratios
and different magnetron radii analog to the measured data shown in fig. 4.9. These
calculated curves are fitted by using the four different models at different ranges of the
magnetron radius. From these fits the optimal (𝐶4 = 0) tuning ratios (TRfit) are derived.
In case of the first two fit functions, we approximate P1 ∝ 𝐶4. The optimal tuning of the
calculated data amounts to TRcalc = 0.86691372. In fig. 4.11 the tuning ratio deviations
𝛥TR = TRfit − TRcalc are illustrated for the four fitting routines as a function of the
largest magnetron radius used during the fitting. Considering only axial frequency shifts at
small magnetron excitations (𝜌− < 150 µm), the approximation 𝑃1 ∝ 𝐶4 leads to a large

1 The axial frequency shifts are calculated via eq. (3.20). The required higher-order electric field coefficients
are calculated analytically, see eq. (7.10). For the axial and the modified cyclotron mode the thermalized
amplitude / radius are considered.

2 It is remarkable, that the absolute value of the analytically calculated TRcalc = 0.8669137 significantly
deviates from the experimentally optimized TRmeas = 0.8799693(51).
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Figure 4.11: Analysis of different models used for the fitting of the data, presented in fig. 4.9.
Here, the axial frequency shifts have been calculated analytically for different tuning ratios and
different magnetron radii. These calculated curves have been fitted by four different models
(green, blue, red and black). From these fits the optimal tuning ratio has been derived TRfit
for different ranges of the magnetron radii. The optimal tuning of the calculated data amounts
to TRcalc = 0.8669137. For further details see text.

deviation of the determined TR of 𝛥TR = 3 · 10−5, which in the future can be reduced
by including also the 𝐶6 · 𝜌2

− dependence into the fit model , see red and black markers.
Including also magnetron excitations larger than 300 µm into the fits, also higher-order
terms of the electric potential, e.g. 𝐶8, have to be considered in the fitting routine, see
black markers.
For this reason, I add a systematic uncertainty of 1 · 10−5 to the optimized TR, which
has been used during the electron mass measurement. During the complete electron mass
measurement period of 3.5 months the optimal TR has only marginally shifted, so that in
this case we assume a conservative estimation for the relative uncertainty of the optimal
TR of 2 · 10−5.
The uncertainty of 𝐶4 can be estimated:

𝛿𝐶4 =
⃒⃒⃒
𝐷calc

4

⃒⃒⃒
· TR · 2 · 10−5 = 1.1 · 10−5. (4.8)
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An estimation of 𝐶6 is possible by the fitted P2 value, see figure 4.10(b) and the calculated
value of 𝐷4 :

𝐶6 = P2 · 𝐶4 · 𝑑4
char

2.8125 · 𝜈𝑧 · 𝜅4 = −0.016(1). (4.9)

It roughly agrees with the predicted value 𝐶calc
6 = −0.012.

In table 4.5 the optimized TR of all the three studied ions are listed. It is remarkable,
Table 4.5: Optimized tuning ratios of all three ions.

ion TR
12C5+ 0.879969(11)
40Ca17+ 0.879843(57)
48Ca17+ 0.87680(6)

that the TR of 48Ca17+ significantly deviates (0.33%) from the TR’s of 12C5+ and 40Ca17+,
which requires large modifications of the patch potentials on the electrode surfaces. As a
cross check, I list the used ring voltages and the corresponding magnetron frequencies in
table 4.6. With the relation: 𝜈− ∝ 𝑈𝑟, the magnetron frequency of 40Ca17+ can be predicted

Table 4.6: Ring voltages and measured magnetron frequencies of all the three studied ions.

ion 𝑈𝑟 (V) 𝜈− (Hz)
12C5+ −7.634 9347.0(2)
40Ca17+ −7.4728 9137.5(2)
48Ca17+ −8.97854 10967.6(1)

with almost the same deviation via the ring voltage and the magnetron frequency of
12C5+(𝛥𝜈− = 11 Hz), as predicting 48Ca17+ from the parameters of 40Ca17+(𝛥𝜈− = 11 Hz).
Here, no significant deviation of the 48Ca17+ parameters is observed.

Systematic Uncertainty of the Axial Dip Signal
During the complete measurement period the frequency spectrum of the axial PT resonator
has been recorded several times, see e.g. fig. 3.14. Fitting the resonator line-shape model,
introduced in eq. (3.53), to these data, the resonator parameters 𝜈res, 𝑄, ̃︀𝑢ampl

𝑛 and ̃︀𝜅det
have been extracted, see table 4.7.
A clear decrease of the quality factor with time has been observed already in the past.

Table 4.7: Fitted axial resonator parameters in the PT for all the three studied ions.

ion 𝜈𝑟𝑒𝑠 (Hz) 𝑄 ̃︀𝑢ampl
𝑛 (Vrms) ̃︀𝜅det (dbVrms/Hz)

12C5+ 670890(8) 670(40) 1.2(2) 2.5(8.0) · 10−5
40Ca17+ 670145(30)a 531(15) 0.95(20) 3.1(10.0) · 10−5
48Ca17+ 670180(8) 503(10) 0.95(20) 1.8(10.0) · 10−5

a The uncertainty of the resonator frequency, measured with 40Ca17+, is exceptionally large, since a drift
of the resonator frequency has been observed.
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In the previous theses the following Q values have been listed for the axial resonator:
1200 [138] and 950 [13, 14]. These reductions of the quality factor might be explained
by accidental overvoltages which damaged the gate of the primary transistor of the axial
cryogenic amplifier during the ion creation process, when high voltage is applied to the
mEBIS. Furthermore, also the resonance frequency decreased over time.
The dependence of the measured axial frequency on the four resonator parameters has

Table 4.8: Upper table: Axial frequency dependence of the fitted axial resonator parameters
in the PT. Lower table: Absolute axial frequency uncertainties caused by the uncertainties of
the resonator parameters.

ion 𝑑(𝜈𝑧)
𝑑(𝜈𝑟𝑒𝑠)

𝑑(𝜈𝑧)
𝑑(𝑄) (Hz) 𝑑(𝜈𝑧)

𝑑(̃︀𝑢ampl
𝑛 )

(Hz/Vrms) 𝑑(𝜈𝑧)
𝑑(̃︀𝜅det) (Hz2/dBVrms)

12C5+ −1.8(5) · 10−4 1.9(8) · 10−5 −1.5(4) · 10−2 −1.0(1.0)
40Ca17+ −2.70(8) · 10−4 8.2(2) · 10−5 −1.6(3) · 10−2 −1.2(3)
48Ca17+ −2.26(8) · 10−4 7.1(2) · 10−5 −2.5(4) · 10−2 −2.2(3)

ion 𝛿𝜈𝑧|𝜈𝑟𝑒𝑠 (mHz) 𝛿𝜈𝑧|𝑄 (mHz) 𝛿𝜈𝑧|̃︀𝑢ampl
𝑛

(mHz) 𝛿𝜈𝑧|̃︀𝜅det (mHz)
12C5+ 1.5(4) 0.8(3) 3.0(8) 0.1(1)
40Ca17+ 8.1(3) 1.2(1) 3.2(6) 0.1(1)
48Ca17+ 1.8(1) 0.7(1) 5.0(8) 0.2(1)

been analyzed for each resonator parameter separately. Here, some axial dip spectra have
been fitted by the line-shape model, introduced in eq. (3.53), using slightly different values
of the studied resonator parameter and keeping the other three resonator parameters fixed
at the determined values, listed in table 4.7. The extracted linear dependences of the
axial frequency with respect to the altered resonator parameters are specified in table 4.8.
From this table and the uncertainties of the resonator parameters, listed in table 4.7,
the systematic uncertainty of the line-shape model of the dip signal is calculated. These
absolute uncertainties are listed in table 4.9 together with the dip widths of the three ions.
The tabulated line widths of the calcium ions, which scale with 𝑞2

ion/𝑚ion, are consistent
Table 4.9: Systematic uncertainty of the axial dip fit caused by the uncertainty of the
resonator parameters. In addition, the axial dip width and the corresponding line-splitting
(=dip-width/𝛿𝜈sys

𝑧 ) are listed for all three studied ions.

ion 𝛿𝜈sys
𝑧 (mHz) dip-width (Hz) line-splitting

12C5+ 4.5 0.48(2) 107
40Ca17+ 12 1.23(1) 103
48Ca17+ 8 1.03(1) 129

with each other. The slight deviation of the calcium line widths, which are predicted
from the line width of the 12C5+ ion (1.6 Hz for 40Ca17+ and 1.3 Hz for 48Ca17+), can be
explained by the decrease of the quality factor.

Axial Temperature and Calibration of the First PnA Pulse
Thanks to the ergodic theorem, which states, that the energy distribution of a single
particle, averaged over long time spans, agrees with the thermal energy distribution of an
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ensemble of ions, we can measure the axial temperature of a single trapped ion.
The corresponding measurement cycle, which has also been explained in [13, 14], includes
five steps: (1) In the PT the axial and the modified cyclotron mode are sideband coupled for
several seconds, so that both, the modified cyclotron mode and the axial mode, thermalize
with the axial resonator. (2) The ion is transported adiabatically1 from the PT into the AT.
(3) Here, the axial frequency is measured by a dip. (4) The ion is adiabatically transported
back into the PT.
Repeating this cycle several 100 times, each measured axial frequency in the AT is slightly
shifted due to different modified cyclotron energies and the corresponding 𝐵2 shift of the
axial frequency:

𝛥𝜈𝐴𝑇
𝑧 = 𝐵𝐴𝑇

2
𝐵𝐴𝑇

0

𝐸+
(2𝜋)2𝑚ion𝜈𝐴𝑇

𝑧

. (4.10)

Due to the sideband coupling in the PT the modified cyclotron energy is Boltzmann
distributed in analogy to eq. (3.43): 𝜌(𝐸+) = 1

𝑘𝐵𝑇+
𝑒

− 𝐸+
𝑘𝐵𝑇+ , so that the axial frequency

shift 𝛥𝜈𝐴𝑇
𝑧 = 𝜈𝐴𝑇

𝑧 − 𝜈𝐴𝑇 𝑜𝑓𝑓
𝑧 is also Boltzmann distributed:

𝜌(𝛥𝜈𝐴𝑇
𝑧 ) = 𝜌(𝐸+) 𝑑𝐸+

𝑑(𝛥𝜈𝑧) = 𝜃(𝜈𝐴𝑇
𝑧 − 𝜈𝐴𝑇 𝑜𝑓𝑓

𝑧 ) · K1 · 𝑒−K1·(𝜈𝐴𝑇
𝑧 −𝜈𝐴𝑇 𝑜𝑓𝑓

𝑧 ), (4.11)

where K1 ≡ (2𝜋)2𝐵𝐴𝑇
0 𝑚ion𝜈𝐴𝑇 𝑜𝑓𝑓

𝑧

𝐵𝐴𝑇
2 𝑘𝐵𝑇+

and 𝜃(𝜈𝐴𝑇
𝑧 − 𝜈𝐴𝑇 𝑜𝑓𝑓

𝑧 ) is a Heavyside function. The param-
eters K1 and 𝜈𝐴𝑇 𝑜𝑓𝑓

𝑧 are extracted via a maximum likeliood fit, see fig. 4.12. The final
determined axial temperature of 𝑇𝑧 = 5.5(3) K corresponds with the expectation of 4 − 5 K.
In a very similar way, the first PnA pulse can be calibrated for small excitation amplitudes.
Here, only the first pulse of the PnA cycle is performed in the PT. Subsequently the axial
frequency shift is measured in the AT. As explained in section 5.1, usually 𝛤 -resonances at
different modified cyclotron energies are measured to cancel the frequency shifts due to the
relativistic mass increase.

4.3.3 Preparation of the Analysis Trap
Tuning Ratio Optimization
In the AT the axial frequency shifts caused by a magnetron burst excitation would be
generated by the dominant electric field imperfection (𝐶4), but also by the dominant
magnetic field imperfection (𝐵2), which is a factor 𝐵AT

2 /𝐵PT
2 ≈ 10400 larger than in the

PT. Nevertheless, axial frequency shifts due to an axial energy increase are only caused
by the dominant electric field imperfections, compare eq. (3.19) and eq. (3.23). For this
reason, we optimize the tuning ratio in the AT by minimizing the axial frequency shifts,
when we dispose the ion at different axial temperatures. Here, we heat the axial resonator
by applying white noise via the LC excitation line.

1 An adiabatic transport can be assumed, since the measured temperature does not change when the ion
is transported back and forth for several times, before the axial frequency shifts are measured in the AT.
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Figure 4.12: Boltzmann distribution of the axial frequency shifts in the AT generated by
the large magnetic bottle and the thermal energy distribution of the modified cyclotron mode
of a single 12C5+ ion. To guide the eye, randomly histogrammed data are indicated by the
black markers. The temperature is derived from a maximum likelihood fit, shown in red. The
gray shaded area covers all possible ML fits within the 1𝜎 uncertainty of K1 and thus 𝑇𝑧. The
distribution contains 675 measurement cycles, where no feedback has been applied.

The Magnetic Bottle and Larmor Resonances in the AT
During the complete automated measurement of the frequency ratio 𝛤 we induce the
spin-flips in the AT at a fixed MW frequency and maximal MW power. Before we start the
measurement, we need to measure the magnetic field in the AT to calculate the Larmor
frequency. Besides the axial frequency, which we can easily measure as a dip signal, and
the magnetron frequency, measured by a double-dip, in the AT, it is not possible to
measure the modified cyclotron frequency by a double-dip, due to the large frequency
shifts, generated by the magnetic bottle. Here, we scan the modified cyclotron frequency
by applying modified cyclotron bursts at different 𝜈+ and measuring the size of the axial
frequency shifts. A detailed analysis of this measurement method is given in the thesis of
Anke Kracke [14]. The measured magnetic bottle has been shown in fig. 3.20.
In fig. 4.13 the Larmor frequency spectrum in the AT is shown at different ion positions
and temperatures:

• The gray curve: A symmetric trapping voltage is applied, so that the axial ion
position is shifted 75µm from the center of the magnetic bottle. The ion is in thermal
equilibrium with the axial resonator at 𝑇𝑧 ≈ 4.5 K.

• The blue curve: The same symmetric trapping voltage is applied. Additionally,
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negative feedback cools the axial motion to 𝑇𝑧 ≈ 2.3 K. Also the magnetron motion is
further cooled by an axial sideband coupling during the Larmor frequency irradiation.

• The red curve: The ion is moved into the center of the magnetic bottle by applying
asymmetric trapping voltages. The negative feedback is applied in the same way as
for the blue curve.
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Figure 4.13: Spin-flip rate in the AT for different ion positions and temperatures. The x-axis
of the gray and blue curve is given by the lower x-axis and the red curve corresponds to the
upper x-axis. For further details see text.

All three Larmor frequency spectra can be interpreted by frequency modulations of the
Larmor frequency, which are explained in the following. Instead of a constant magnetic
field, the ion senses an oscillating magnetic field due to its movement in the magnetic bottle.
Exclusively focusing on the axial motion of the ion and neglecting the radial motions, the
magnetic field oscillates with the axial frequency:

𝐵(𝑡) = 𝐵0 +𝐵2𝑧
2 = 𝐵0 +𝐵2(𝑧0 + 𝛿𝑧(𝑡))2

= 𝐵0 +𝐵2𝑧
2
0 + 2𝐵2𝑧0𝛿𝑧(𝑡) +𝐵2𝛿𝑧(𝑡)2, (4.12)

where 𝑧0 is a fixed shift between the center of the magnetic bottle and the center of the
axial motion and 𝛿𝑧(𝑡) = 𝑧′

0 sin
(︀
𝜔𝑧𝑡+ 𝜙0

𝑧

)︀
is the axial motion of the ion. In that way, the

Larmor frequency is not constant, but frequency modulated, which under certain conditions
(non-vanishing modulation index) provides a sideband structure. The relation between the
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signal strength of the carrier and the sidebands is characterized by the modulation index:

𝜂 ≡ frequency deviation
modulation frequency = 𝛥𝜈𝐿

𝜈𝑧

= 2𝐵2𝛿𝑧𝑧0 +𝐵2𝛿𝑧
2

𝐵0

𝜈𝐿

𝜈𝑧
≈ 2𝐵2𝛿𝑧𝑧0

𝐵0

𝜈𝐿

𝜈𝑧
. (4.13)

For example, the relation between the signal strength of the carrier 𝑢carrier and the first
sideband 𝑢1stBand is given by 𝑢carrier/𝑢1stBand = 𝐽(0,𝜂)/𝐽(1,𝜂), where 𝐽(0,𝜂) is the Bessel
function of first kind and zeroth order.
In case of the blue curve in fig. 4.13, the 12C5+ ion has been shifted by 𝑧0 ≈ 75 µm,
the averaged axial amplitude in presence of negative feedback is about 𝛿𝑧 ≈ 14 µm, and
𝐵2 ≈ 10500 T/m2, 𝐵0 ≈ 3.709 T, 𝜈𝐿 ≈ 103.86 GHz and 𝜈𝑧 ≈ 412 kHz. Here, we derive a
modulation index of about 𝜂 ≈ 1.5. The listed amplitude relations between the carrier,
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Figure 4.14: Amplitude relations between the carrier and the first sidebands as a function of
the modulation index. The vertical blue (gray) line indicates the modulation index of the blue
(gray) Larmor frequency spectra in fig. 4.13.

the first and second sideband at 𝜂 = 1.5, see the blue vertical curve in fig. 4.14, roughly
agree with the observed amplitude relation in fig. 4.13, where the carrier and both first
sidebands have the same size and the second sidebands are smaller.
In case of the red curve, the modulation index is close to zero, since 𝑧0 ≈ 0 µm and only
the carrier exists. The asymmetric line-shape is given by the Boltzmann distribution of
the axial energy.
Also the flat gray curve in fig. 4.13 might be explained firstly by the increased modulation
index of the axial motion but also the magnetron motion, where the sideband structure
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cannot be resolved.
In that way, the spin-flip rate in the AT can be maximized by adjusting the axial position
of the ion in the center of the magnetic bottle. This is a significant improvement compared
to the very low spin-flip rate in the AT during the measurement of the bound-electron
g-factor measurement on lithiumlike silicon, see the thesis of Anke Kracke [14]. Here, the
spin-flip rate in the AT has been only 1%, which significantly elongated the automated
measurement period and moreover reduced the statistical uncertainty.

4.4 The Measurement Process
The complete measurement process of the 𝛤 -resonance is automated. All electronic com-
ponents of the experiment are remotely controlled via GPIB, RS232, USB or Ethernet
connections. The steering of the measurement process and the data acquisition is pro-
grammed in LabVIEW, a visual programming language from National Instruments. In the
following, the operations during one measurement cycle are listed:

1. The measurement cycle is started in the AT to determine the spin state of the bound
electron:

a) In the beginning the proper high-precision voltages are applied to the ring and
correction electrodes of the AT, so that the ion oscillates in the center of the
magnetic bottle. In this way, the modulation index is reduced and the spin-flip
probability maximized, see section 4.3.3. All other electrodes are grounded.

b) For several seconds the magnetron mode is cooled via axial sideband coupling.
At the same time negative feedback is applied.

c) Since the axial frequency jump generated by the spin-flip of the bound electron
scales inversely with the ion mass, 𝛥𝜈sf

𝑧 = 580 mHz for 12C5+, 𝛥𝜈sf
𝑧 = 170 mHz

for 40Ca17+, 𝛥𝜈sf
𝑧 = 140 mHz for 48Ca17+, see table 3.6, different frequency

measurement techniques are used for an efficient spin-state resolution:
i. 12C5+ measurement: It is sufficient to use the axial peak detection including

zero-padding, which is explained in section 3.4.1. Reducing the statistical
error, this method is repeated six times and the average value of the axial
frequency is derived (40 s).

ii. 40Ca17+ and 48Ca17+ measurements: For a proper resolution of axial fre-
quency jumps below 200 mHz, a phase-sensitive detection method has been
applied, which is explained in section 3.4.2.
A. After the arrival of the ion in the AT, the voltages are chosen in a

way that the ion is placed about 500 Hz above the resonator frequency
to increase the cooling time constant. Initially, the axial frequency
is determined by measuring the frequency spectrum of the dispersive
dip. Afterwards, the trapping voltage is adjusted, so that the axial
frequency is always the same in each measurement cycle. In that way,
we persistently use the same FFT-bin, for the readout of the axial phase.
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B. The measurement time of the axial phase is chosen in a way, that a spin-
flip would induce an axial phase shift of about 60∘. E.g. for 48Ca17+ the
measurement time is 𝛥𝜙/(360∘𝛥𝜈sf

𝑧 ) = 1/(6 · 0.14 Hz) = 1.2 s. Working
with signal readout times of 512 mHz, the phase evolution time is
about 0.95 s. For a further increase of the cooling time constant, during
the phase evolution time the axial resonator is shifted several 100 Hz
applying 90∘ feedback. This measurement cycle is repeated four times.
Finally, the four measured phases are unwrapped and averaged.

d) Subsequently, for 30s we try to induce electron spin-flips by injecting microwaves
with maximal accessible power at the expected Larmor frequency. During this
time negative feedback is applied. In this way, the modulation index is reduced
and the spin-flip probability maximized.

e) Afterwards, the axial frequency is detected, as explained in item 1c. In case the
axial frequency has shifted more than ±𝛥𝜈sf

𝑧 /2, we detect an axial frequency
jump, which is caused by a spin-flip, arising from the continuous Stern-Gerlach
effect. From the algebraic sign of the jump, we determine the spin state and
continue the measurement cycle with the transport into the PT, see item 2. In
case we do not observe an axial frequency jump, we repeat the MW irradiation
in item 1d and the axial frequency in item 1c until a spin-flip is observed.

2. Knowing the spin state of the bound electron, the ion is adiabatically transported
from the AT to the PT.

3. Measurement of one frequency ratio 𝛤 * in the PT:
a) In the beginning, the proper high-precision voltage is applied to the ring and

correction electrodes of the PT. All other electrodes are grounded. Then, both
radial modes are cooled via axial sideband coupling, each for several seconds.

b) At first, we determine the modified cyclotron frequency from a double-dip signal
𝜈DD

+ , see section 3.3.2. Here, we average over 25 successively recorded Fourier
spectra, each derived from an 8 s readout signal, so that the total measurement
time is 200 s.

c) Subsequently the axial frequency 𝜈𝐼
𝑧 is measured via a dip-signal, see section 3.2.3.

Again, we use a total averaging time of 25 · 8 s = 200 s.
d) Then the PnA cycle, described in section 3.4.2 is realized 10 times with the

following phase evolution times: 6 × 10 ms, 1 s, 2 s, 2 × 5 s.
i. Measurement of the starting phase: The 10 ms measurements determine the

starting phase. They can be repeated to reduce the statistical uncertainty,
since magnetic field fluctuations can be neglected at these time scales.

ii. Phase unwrapping: The double-dip measurement, as well as the 1 s and 2 s
PnA cycles are essential for a proper phase unwrapping.

iii. Measurement of the present magnetic field: The first 5 s measurement
determines the current modified cyclotron frequency and thus the magnetic
field.
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Figure 4.15: Flow chart of the measurement cycle [131]. For details see text.

iv. Probing the Larmor frequency and simultaneously measuring the magnetic
field: From the first 5 s PnA measurement the scanning frequency 𝜈MW
of the microwave field is derived, which is injected during the second 5 s
PnA measurement. Since the probing of the Zeeman transition at 𝜈MW and
the measurement of the modified cyclotron frequency, 𝜈PnA

+ , happen at the
same time during the last PnA cycle, magnetic field fluctuations cancel to
a large extent in the obtained ratio of the frequencies1.

e) To consider changes of the trapping voltage during the PnA cycles a further

1 Sometimes also phase evolution times of 10 s have been applied during the last PnA cycle.
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dip-signal 𝜈𝐼𝐼
𝑧 is measured for an interpolation of the axial frequency, 𝜈𝑧 =

(𝜈𝐼
𝑧 + 𝜈𝐼𝐼

𝑧 )/2. From 𝜈PnA
+ , 𝜈𝑧 and 𝜈− from previous measurements1 we calculate

the free cyclotron frequency: 𝜈𝑐 =
√︁
𝜈2

PnA,+ + 𝜈2
𝑧 + 𝜈2

−. In combination with the
probed Larmor frequency 𝜈MW we determine a frequency ratio: 𝛤 * = 𝜈MW/𝜈𝑐.

4. Finally, the ion is transported back to the AT and the spin state is determined in the
same way as in the beginning of the cycle, see item 1. At each measurement cycle we
determine one frequency ratio 𝛤 * and the corresponding binary information, whether
the attempt to flip the spin in the PT was successful or not.

During the electron mass measurement the whole measurement cycle, which is also illus-
trated in fig. 4.15, took typically 25 min.
This measurement sequence is repeated several 100 times for one to two weeks. During that
time, we enter the lab only for the filling of the liquid gas reservoirs. Due to temperature
drifts, which occur during and after the filling, measurement cycles which have been
performed after the filling for about 4 hours are removed from the final data analysis (data
cuts).
In the final analysis the spin-flip probability is analyzed as a function of the measured fre-
quency ratios 𝛤 *, see fig. 4.20. Here, the modified cyclotron energy of the single 12C5+ ion
amounts to 𝐸+ = 0.26(2) eV (𝑟evol

+ = 13.4(6) µm) during the PnA phase evolution time
of 𝑇evol = 10 s. The line-shape of this so-called 𝛤 -resonance is discussed below. Since
the phase jitter of the modified cyclotron mode represents the main contribution to this
line-shape, we discuss it separately in the following section.

1 The contribution of 𝜈− to 𝜈𝑐 is very small and only an occasional measurement is required.
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Figure 4.16: A 𝛤 -resonance represents the spin-flip rate in the PT in dependence of the
measured frequency ratio 𝛤 *. Here, the frequency ratios of 12C5+ are scaled by a constant:
𝛤off = 4376.210497791. To guide the eyes, randomly histogrammed data are indicated by the
black markers. The final 𝛤 value is extracted from the maximum-likelihood (ML) fit-routine
shown in red line. The corresponding line-shape model is discussed in section 4.5. The dark
gray area covers all possible ML line-shapes within the 1𝜎 uncertainty of the final 𝛤 value.
The bright gray area illustrates the binomial uncertainty of the histogrammed data based on
the spin-flip probability of the ML-fit. The resonance includes 53 measurement cycles, which
feature a spin-flip in the PT, and 544 measurement cycles featuring no spin-flip in the PT
(adopted from [77]).

4.5 Line-Shape Model of the 𝛤 -Resonance
The line-shape model of the 𝛤 -resonance requires a detailed understanding of the composi-
tion of the modified cyclotron phase jitter, which emerges during the PnA measurement. As
a phase jitter we define the standard deviation of subsequently measured phase differences
divided by the square root of two: 𝛿𝜙 = std(diff(𝜙))/

√
2, which is often also termed as

Allan deviation.

4.5.1 Sources of the Modified Cyclotron Phase Jitter
The PnA measurement of 𝜈+ is limited by the jitter of the detected modified cyclotron
phase, see eq. (3.71). For further improvements of the 𝜈+ determination, it is of great
importance to study the sources of this jitter. For a profound explanation of the presently
observed phase jitter we consider essentially three different sources: (1) an intrinsic thermal
jitter, (2) an intrinsic technical phase detection uncertainty and (3) a magnetic field jitter.
In the following these three different types of phase jitter are studied separately.
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The Intrinsic Thermal Phase Jitter
The intrinsic thermal phase jitter of the first PnA pulse - a radial dipole excitation of the
modified cyclotron motion - has been briefly mentioned in fig. 3.10. In that scheme the
initial thermal energy distribution of the modified cyclotron mode is indicated by the gray
cloud at time 𝑡0. The measured phase jitter depends on this Boltzmann distribution in two
different ways:

• In principle, the radial spread of the ion generates a phase jitter right after the
first PnA pulse is applied, which is denoted as 𝛿𝜙therm in fig. 3.10. In table 4.11
(5th column) this jitter has been calculated for different modified cyclotron energies,
assuming an initial temperature of about 𝑇+ = 130 K. In principle, the jitter could
be reduced by a better, improved cooling of the initial ion motion, e.g. by using a
cyclotron resonator, or by an increase of the excitation strength of the first PnA
pulse. The latter way, however, is not favorable, since higher modified cyclotron
energies during the phase evolution time lead to larger systematic shifts with larger
systematic uncertainties.

• Furthermore, the thermal distribution of the modified cyclotron radius leads to
different modified cyclotron energies during the phase evolution time. Therefore
different energy dependent phase shifts occur, e.g. due to 𝐶4, 𝐶6, 𝐵2 and special
relativity. This effect increases linearly with the evolution time. At very small phase
evolution times, e.g.: 10 ms, even for the highest excitation energies these shifts are
negligible with respect to the other sources of phase jitter. For a phase evolution
time of 5 s these phase jitters are summarized in table 4.10. They are calculated for
a single 12C5+ ion at the largest applied modified cyclotron radius of 𝑟+ = 90(4) µm
and a conservative estimation of the axial temperature 𝑇𝑧 = 5 K during the sideband
cooling. In comparison to the absolute value of the measured phase jitter of at least
10∘, see table 4.11 (7th column), these jitters can be completely neglected.

Table 4.10: Thermal phase jitter of the modified cyclotron mode of a single 12C5+ ion after
5s phase evolution time and at a radius of 𝑟+ = 90(4)µm, caused by the leading-order magnetic
and electric inhomogeneity and special relativity.

effect 𝛿𝜙(∘)a

𝐵2 2.3(1)
spec. relat. 2.3(1)
residual 𝐶4 0.02(2)

𝐶6 0.04(1)

a Throughout this thesis phase jitters are presented as the standard deviation of the phase differences of
subsequent PnA cycles divided by the square root of two.

A third source of thermal phase jitter could arise from the second PnA pulse. Nevertheless,
since 𝑟evol

+ > 𝑧
√︀
𝜈𝑧/𝜈+ = 3.3 µm during the phase evolution time, no significant phase jitter

is mixed-in by the parametric second PnA pulse, see fig. 3.18.
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The Technical Phase Detection Uncertainty
The technical readout phase jitter arises during the readout process of the axial peak
signal. Since it is completely independent of the motion of the ion, we studied this effect
by inducing an artificial peak signal a few kHz next to the axial resonator of the PT
(≈ 630 kHz) via the quadrupole excitation. The peak signal has been generated by an
exponentially decreasing sine signal, simulating a thermalizing excited ion. The readout
signal has the usual length of 512 ms. Similar to the cooling time constant of a single
12C5+ ion, the exponential modulation had a decay constant of 260ms. The phase detection
uncertainty scales with the signal-to-noise ratio of the peak signal, see fig. 4.17. The white
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Figure 4.17: Measurement of the intrinsic technical phase detection uncertainty by an
artificially generated, exponentially decreasing sine signal (𝜏 = 260 ms ≈ 0.5 · signal length) for
different signal-to-noise (SNR) ratios. The numerically predicted detection uncertainty (red
line) is in reasonable agreement with the data. This prediction relies on the distribution of
the noise amplitudes, see gray cycle in the left inset, which is also in good agreement with the
expectation, see right inset [131].

noise of both the real and imaginary part of the fast Fourier spectrum leads to a probability
density of the noise amplitude of a single FFT-bin shown in the right inset in fig. 4.17. The
subsequent numerical prediction of the phase detection uncertainty (red line in fig. 4.17) is
in reasonable agreement with the data (black markers).
An unfavorable axial peak position with respect to the FFT-binning, the so-called frequency
bleeding, might reduce the apparent SNR. In case that the peak-signal bleeds likewise into
two FFT-bins the SNR is reduced by maximally 3 dB. The phase detection uncertainty can
be diminished by a larger SNR, which in the future might be achieved by a resonator with a
higher quality factor or by a larger excitation during the second PnA pulse. The excitation
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strength is limited by higher-order electric field imperfections [120] in combination with
the initial thermal distribution of the amplitudes, which shift the axial frequency out of
the readout bin.

Predicting the Phase Jitter of the Measured 10 𝑚𝑠 PnA Cycles
The combination of the thermal and the readout phase jitter has been studied in PnA cycles
with short phase evolution times of 10 ms. In fig. 4.18(a) and (c) the Gaussian distributed
phase differences of subsequent PnA measurements are histogrammed for different modified
cyclotron radii during the phase evolution time of 𝑟evol

+ = 30(2) µm and 𝑟evol
+ = 90(4) µm.

In table 4.11 the measured phase jitters (6th column) are listed for different modified
cyclotron radii (1st column, determined by the first PnA pulse) of 12C5+ and 48Ca17+ ions
and the measured averaged SNR (2nd column, determined by the second PnA pulse).
The readout jitter, also stated as phase detection uncertainty (3rd column), is calculated

Table 4.11: Analysis of the 10ms phase jitter for a single 12C5+ and 48Ca17+ ion. Comparison
between the modeled phase jitter (the squared sum of the thermal jitter and the phase detection
uncertainty) and the measured phase jitter in dependence on the radius and the measured
SNR [131].

𝑟evol
+ ( µm) avg-SNR readout thermal modeled measured

(dB) jitter (∘) jitter (∘) jitter (∘) jitter (∘)

12C5+

13(1) 13.4(1) 13.8(1.7) 9.0(3) 16.5(1.5) 23.3(5)
30(2) 13.0(2) 14.6(1.8) 3.9(2) 15.1(1.7) 15.8(5)
36(2) 15.3(2) 10.3(1.3) 3.4(2) 10.9(1.2) 14.2(1.0)
54(3) 11.0(2) 18.2(2.2) 2.2(2) 18.3(2.2) 16.6(1.1)
90(4) 15.8(3) 12.4(1.5) 1.3(1) 12.4(1.5) 11.8(1.1)

48Ca17+

8(1) 17.7(2) 8.0(1.0) 9.5(9.9) 12.4(7.6) 15.8(7)
14(1) 17.5(2) 8.4(1.0) 5.6(2.5) 10.1(1.6) 11.4(9)
76(6) 18.1(3) 7.8(1.0) 1.0(1) 7.8(1.0) 7.0(4)
109(8) 17.4(2) 8.9(1.1) 0.7(1) 8.9(1.1) 10.3(7)
162(12) 15.2(4) 11.9(1.5) 0.5(1) 11.9(1.4) 34.5(3.8)

by determining the SNR of each measurements cycle separately using the fit-function in
fig. 4.17. Afterwards the readout jitter is averaged. The final modeled phase jitter (5th

column), which is the squared sum of the calculated readout jitter (3rd column) and the
calculated thermal jitter (4th column), is in reasonable agreement with the data. Significant
deviations only occur at very small and very high energies. At very high energies this
discrepancy might be explained by trap imperfections, which generate axial frequency
shifts in a way, that the maximal peak signal jitters between different FFT-bins. In this
case, the phase readout of a single fixed FFT-bin is not appropriate any longer.

The Magnetic Field Related Phase Jitter
During the phase evolution time an additional phase jitter is generated by the magnetic
field fluctuations. The time dependent behavior of these fluctuations can be modeled by a
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Figure 4.18: Histogrammed phase differences of subsequent PnA cycles (𝛿𝜙 = diff(𝜙𝑧)/
√

2)
at small modified cyclotron energies (𝑟evol

+ = 30(2) µm) of a single 12C5+ ion with phase
evolution times of 𝑇evol = 10 ms (a) and 𝑇evol = 5 s (b). In (c) and (d) similar distributions are
shown measured at a larger modified cyclotron radius of 𝑟evol

+ = 90(4) µm. All distributions
have a Gaussiana line-shape (red line) [131].

a The Shapiro-Wilk test has been applied, which is a parametric hypothesis test [147]. The considered
null hypothesis is, that the studied data set is Gaussian distributed with unspecified mean and variance.
The calculated p-value describes the probability of observing the given result by chance, given that the
null hypothesis is true. In fig. 4.18(a) the p-values is 8.6 % and in (b) only 6.3%. In that way, the null
hypothesis is not rejected at a significance level of 5%.
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random walk of the magnetic field, the corresponding standard deviation is given by:

𝛿𝐵 ∝ 𝛿𝜈+ ∝
√︀
𝑇cycle, (4.14)

where 𝑇cycle ≡ 𝑇evol +𝑇cooling is the time period of a complete PnA cycle, mainly composed
of the phase evolution time of 𝑇evol = 10 ms to 5 s and the cooling time 𝑇cooling of all
eigenmotions. During the measurement of the electron mass the cooling time has been 25 s
and for the g-factor measurement on the calcium ions it has been 29 s. In combination
with the model of the 10 ms phase jitter (readout jitter + thermal jitter), the total phase
jitter has the following form:

𝛿𝜙tot
+ = std(diff(𝜙meas

+ ))/
√

2

=
√︁

2(𝛿𝜙10ms
+ )2 + (𝐴

√︀
𝑇cycle · 360∘ · 𝑇evol)2/

√
2. (4.15)

In fig. 4.19 the phase jitter of the modified cyclotron mode of 12C5+ (a) and 48Ca17+ (c)
is plotted versus the phase evolution time of the PnA method. From these data the
random walk constant 𝐴 is extracted. The corresponding fit-functions are shown in red.
For 48Ca17+ (𝐴40Ca17+ = 0.00149(2) s−1.5) this constant is a factor of two smaller than for
12C5+ (𝐴12C5+ = 0.00339(7) s−1.5), which might be explained by the better aligned axial
compensation coil, as already mentioned in section 4.2.1. The right graphs of fig. 4.19
illustrate the corresponding relative magnetic field jitter 𝛿𝐵/𝐵 = 𝛿𝜙tot

+ /𝜈+/360∘/𝑇evol.
The optimal phase evolution time for a minimal frequency jitter is 8.3 s for 12C5+ and 10 s
for 48Ca17+.

4.5.2 The Combined Line-Shape Model
The fundamental mechanism for a spin-flip transition is described by a Rabi oscillation of
a quantized two level system (spin-up and spin-down state). The transition frequency, the
Rabi frequency 𝛺, scales linearly with the drive amplitude. For a close-to-resonant drive of
the Larmor frequency, 𝜔𝐿0 , with the frequency 𝜔MW = 𝜔𝐿0 +𝛥, where 𝛥 is an offset, the
Rabi frequency is modified 𝛺′ ≡

√
𝛺2 +𝛥2 and the probability for a spin-flip is given by:

𝑝↑(𝑡) = 𝛺2

𝛺′2 sin2
(︂
𝛺′𝑡

2

)︂
. (4.16)

Some conditions of our experiment, e.g. the existing magnetic field fluctuations, prohibit
coherent Rabi oscillations of the electron spin on the time-scale of a cyclotron frequency
measurement. As a starting point for the construction of a line-shape model of the Larmor
resonance we thus use the time averaged value of the squared sine term:

𝑝sf = 1
2

𝛺2

𝛺2 +𝛥2 . (4.17)

The spin-flip probability 𝑝sf has a symmetric line-shape and saturates at a value of 0.5 for
large Rabi frequencies. However, in the following we will exclusively focus on line-shapes
well below saturation.
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Figure 4.19: Study of the magnetic field jitter. PnA measurement of the magnetic field jitter
in the PT with 12C5+ at 𝑟+ = 30(2) µm (a,b) and 48Ca17+ at 𝑟+ = 14(1) µm (c,d). The plots
(a) and (c) present the phase jitter versus the phase evolution time and the plots (b) and (d)
the corresponding relative jitter of the modified cyclotron frequency. The fit-functions (red
lines) rely on a random walk model of the magnetic field. For further details see text and [131].

To take care of magnetic field drifts and fluctuations, we probe the spin-flip transition at
the fixed frequency 𝜔MW and simultaneously measure the modified cyclotron frequency,
𝜔PnA

+ , which requires a line-shape model in dependence on the measured frequency ratios,
𝛤 * = 𝜔MW/𝜔𝑐 :

𝑝sf(𝛤 *) = 1
2

𝛺2

𝛺2 + 𝜔2
𝑐0(𝛤0 + 𝛿𝛤0 − 𝛤 *)2 , (4.18)

where 𝛤0 = 𝜔𝐿0
𝜔𝑐0

is the final value of interest and 𝛿𝛤0 are systematic shifts. For clarity
reasons we ignore any systematic shifts for a moment. They will be summarized in table 5.2
for the measurement of the single 12C5+ ion and in table 6.1 for the calcium ions. Here,
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we focus exclusively on four independent frequency jitters, which modify the shape of the
𝛤 -resonance:

• The continuous thermalization of the axial mode during the 5 s measurement process
affects the cyclotron and the Larmor frequency mainly caused by the leading-order
inhomogeneity of the magnetic field, 𝐵2. Since the measured modified cyclotron
frequency is an average over the phase evolution time, only the Larmor frequency
jitter alters the shape of the resonance, which causes the dominant asymmetric
contribution of the line-shape (𝐸𝑧-𝐵2 asymmetry), see also the thesis of Verdú [118]:

𝑝sf(𝛤 *) = 1
2

ˆ ∞

0

𝛺2

𝛺2 + 𝜔2
𝑐0

(︀
𝛤0 + 𝛼B2 · (𝐸𝑧 − 𝐸̄𝑧) − 𝛤 *

)︀2
1

𝑘𝐵𝑇𝑧
𝑒

− 𝐸𝑧
𝑘𝐵𝑇𝑧 d𝐸𝑧, (4.19)

where 𝛼B2 ≡ 𝐵2 · (𝐵0 ·𝜔2
𝑧 ·𝑚ion)−1 · (𝜔𝐿0/𝜔𝑐0). Due to the same, but averaged effect in

the modified cyclotron frequency, which is considered by the averaged term −𝛼B2 · 𝐸̄,
the difference between the maximum and the mean value of the line-shape is small.
For an axial temperature of 𝑇𝑧 = 3.6 K and a spin-flip probability of about 30% the
relative effect is:

𝛤mean − 𝛤max
𝛤max

≈ 3 · 10−13. (4.20)

• Since the modified cyclotron frequency has Gaussian distributed thermal and readout
jitters of 𝛿(𝜙10ms) ≈ 14(1)∘ (for 12C5+), see fig. 4.18(a) and the 5th column of
table 4.11, also the measured 𝛤 * has the same relative jitter contribution, which has
to be considered in the line-shape model by a Gaussian convolution.

• A further jitter of the measured 𝛤 * values is caused by the random walk of the
magnetic field during the measurement, see figure 4.19(b). In case of a 12C5+ ion
and phase evolution time of 5 s, we have: 𝛿𝜙rw

+ = 𝐴 · 360∘ ·
√

5 s · 5 s/
√

2 = 10(1)∘,
where: 𝐴 = 0.00339(7) s−1.5. In a good approximation this jitter can be convoluted
in the same way as the thermal and readout jitters. In total the Gaussian phase
jitters cause a relative uncertainty of the modified cyclotron frequency:

𝛿𝜈+/𝜈+ =
√︀

7/6(𝛿𝜙10𝑚𝑠)2 + (𝛿𝜙rw)2

360∘ · 𝜈+ · 𝑇evol
≈ 4(1) · 10−10. (4.21)

The factor 7/6 originate from the six averaged 10 ms PnA cycle and the final 5 s PnA
cycle.

• Another jitter of the measured free cyclotron frequency is caused by the measurement
of the axial frequency. The fluctuations of the two axial dip measurements (before
and after the PnA cycles) amounts to 30 mHz. With an uncertainty of 𝛿𝜈𝑧 = 15 mHz
for the interpolated axial frequency, the final relative jitter of the free cyclotron
frequency is: 1.7 · 10−11, which can be neglected in the line-shape model of the
𝛤 -resonance.
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Figure 4.20: Analysis of the line-shape model of the 𝛤 -resonance: In green: The pure,
averaged Rabi resonance is shown with a Rabi frequency of 𝛺 = 30 Hz (see equation (4.16)).
In blue: An additional 𝐸𝑧-𝐵2 asymmetry with 𝑇𝑧 = 3.6 K (see equation (4.19)) is added. In
black: The complete line-shape model is shown, also including the Gaussian phase jitter of
4 · 10−10. In red: A Gaussian distribution is fitted to the complete line-shape model [131].

In figure 4.20 the different contributions of the line-shape model are presented: (1) The
pure averaged Rabi resonance with a Rabi frequency of 𝛺 = 30 Hz is plotted (green line,
eq. (4.16)). (2) An 𝐸𝑧-𝐵2 asymmetry with 𝑇𝑧 = 3.6 K is added (blue line, eq. (4.19)). (3)
The complete line-shape model is shown, also including the convoluted Gaussian phase
jitter of 𝛿𝛤 */𝛤 = 4 · 10−10 (black line).
Finally the complete line-shape model of the 𝛤 -resonance is compared with a Gaussian
distribution (red line). The deviation between the centroid of the line-shape model and the
mean value of the Gaussian fit is only 1 · 10−13. For that reason the Gaussian line-shape
approximation is justified, as long as the maximal spin-flip probability is well below the
saturation value of 50%. The characteristic model parameters, the maximal spin-flip
probability of ≈ 27% and the full width at half maximum (FWHM) of ≈ 1.3 · 10−9 are
in good agreement with the measured 𝛤 -resonances, which have maximal spin-flip rates
of 25-45% and FWHM’s of 0.7-1.35 · 10−9. The rather smaller resonance widths of the
measured data might be explained by a partial cancellation of the magnetic field jitter in
the measured frequency ratio 𝛤 *.
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Finally the Gaussian line-shape,

G(𝛤 *; sf0,𝛤res,𝜎𝛤 ) ≡ sf0
2𝜋𝜎2

𝛤

𝑒
− (𝛤 *−𝛤res)2

2𝜎2
𝛤 , (4.22)

is applied as a maximum-likelihood fit to the data, see [13]:

log [L(sf0,𝛤res,𝜎𝛤 )] =
𝑁Sf∑︁
𝑖=1

log(G(𝛤 *,Sf(𝑖); sf0,𝛤res,𝜎𝛤 ))+

𝑁NonSf∑︁
𝑗=1

log(1 − G(𝛤 *,NonSf(𝑗); sf0,𝛤res,𝜎𝛤 )), (4.23)

extracting the desired mean value 𝛤res, the maximal spin-slip rate (sf0) and the width
of the resonance (𝜎𝛤 ). A typical 𝛤 -resonance has been shown in fig. 4.20. Here, the red
line represents the maximum-likelihood fit, the dark gray area is the error band of the
mean value, the black markers illustrate binned data and the bright gray area the binomial
prediction band of the binned data with the probability given by the maximum-likelihood
fit.



CHAPTER 5
Determination of the Atomic Mass of the Electron

In the present chapter, I will present the measurement results of the atomic electron mass,
which have been published in [77]. An extensive paper focusing in detail on the line-shape
model of the 𝛤 -resonance, see section 4.5, as well as on all the reviewed systematic shifts
has been recently accepted [131]. In the beginning of this chapter, in section 5.1, I will
introduce the data sets considered in the final analysis, which include measurement runs of
three independently produced, single 12C5+ ions measured at different modified cyclotron
energies. In the end of section 5.1, I will specify the extrapolated statistical 𝛤 value at
zero modified cyclotron energy, featuring a relative precision of 2.3 · 10−11. In the following
section, section 5.2, I will summarize the various systematic shifts and the corresponding
uncertainties. Finally, in section 5.4, I will combine our measured frequency ratio with the
predicted g-factor and the ion mass of 12C5+ to quantify the atomic mass of the electron
with a relative uncertainty of 2.8 · 10−11.

5.1 Statistical 𝛤 -Value
Regarding the high-precision measurement of the 𝛤 -ratio of 12C5+, the data acquisition
has been accomplished within 4.5 months, starting in the end of November 2012. At that
time various 𝛤 -resonances have been measured at different modified cyclotron energies
during the PnA phase evolutions, see for example fig. 4.20 and fig. 5.1. To minimize the
probability of the very unlikely scenario, that we have worked not only with one single
trapped 12C5+ ion, but in presence of other unwanted trapped ions, we removed the studied
12C5+ ion two times on purpose during the data acquisition and subsequently prepared
further single trapped 12C5+ ions. A list of all selected measurement runs is given in
table 5.1. It only contains data sets with at least 30 detected spin-flips in the PT. In total,
3096 measurement cycles / 𝛤 * measurements are considered in the final analysis. With an
averaged measurement cycle time of half an hour and four hours per day, which have to be
cut out due to the filling of the cryogenic reservoirs, the pure measurement time amounts
to 11 weeks.
To map out relativistic frequency shifts, see section 3.5.2, 𝛤 -resonances have been recorded
at different modified cyclotron energies. In fig. 5.2 the fitted central values of all 𝛤 -
resonances are plotted as a function of the excitation strength of the first PnA pulse, which
is proportional to the energy of the modified cyclotron mode during the phase evolution

109
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Figure 5.1: 𝛤 -resonance measured with a single 12C5+ ion at a modified cyclotron energy
of 𝐸+ = 4.2(5) eV (𝑟evol

+ = 54(3) µm) during the PnA phase evolution time of 𝑇evol = 5 s.
The resonance includes 43 measurement cycles which feature a spin-flip in the PT and 236
measurement cycles featuring no spin-flip in the PT. For the description of the denoted error
bands, see fig. 4.20 [131].

Table 5.1: List of all measurement runs used for the electron mass determination. Only
measurement runs with more than 30 induced spin-flips in the PT are considered. In the
first column the name of the 12C5+ ion (I, II or III) is denoted. The second column contains
the amplitude of the first PnA pulse, which is proportional to the modified cyclotron energy.
Mapping out relativistic frequency shifts by a linear extrapolation to zero modified cyclotron
energy, see fig. 5.2, most data has been recorded at low modified cyclotron energies.

ion 𝑈exc (Vpp) # sf-cycles # all cycles
III 0.075 245 1763

II, III 0.17 66 724
I 0.2 33 128

III 0.3 43 279
III 0.5 35 202

time. The observed linear energy dependence is mainly given by the relativistic shift of the
modified cyclotron frequency:

(𝛿𝛤/𝛤 )relat ≈ 𝛿𝜈𝑐/𝜈𝑐 ≈ 𝛿𝜈+/𝜈+ ≈ 𝐸+/(𝑚ion𝑐
2) ≈ 8.9 · 10−11 eV−1 · 𝐸+. (5.1)
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Minor contributions to the slope of the linear extrapolation in fig. 5.2 are caused by
trap imperfections: (1) A tiny contribution is given by the leading-order electric field
imperfection, the uncertainty of 𝐶4: 𝛿𝐶4 ≈ 1.1 · 10−5, see eq. (4.8) and eq. (3.19):
(𝛿𝛤/𝛤 )𝐶4 ≈ 6𝐶4𝜈

4
𝑧/(𝑞ion𝑈𝑟𝐶

2
24𝜈4

+)𝐸+ ≈ 8.9 · 10−13 eV−1 · 𝐸+, which is about two orders
of magnitude smaller than the relativistic shift. (2) The contribution of the leading-
order magnetic field imperfections (𝐵2) basically cancels, see eq. (3.23). A residual effect:
(𝛿𝛤/𝛤 )𝐵2 ≈ 6.5 · 10−14 eV−1 · 𝐸+ is more than three orders of magnitude smaller than the
relativistic shift.
The linearly extrapolated 𝛤 value at zero modified cyclotron energy is1, 2:
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Figure 5.2: Central values from the Gaussian maximum-likelihood fits of the 𝛤 -resonances
at different 𝐸+. Only data sets with at least 30 detected spin-flips in the PT are included. The
linear dependence is mainly given by the relativistic mass increase, see section 3.5.2. The linear
extrapolation to zero modified cyclotron energy is shown in red. The resonance with the smallest
modified cyclotron energy has the largest data set and thus the smallest statistical uncertainty.
In that way, we reduce the impact of the extrapolation. With 𝛤off = 4376.210 497 791 we apply
the same scaling constant as in fig. 4.20b [131].

b Scaling factor of the x-axis: 𝑟+ ≈
√︁

2𝑚 𝛿𝛤
𝛤

𝑐2/𝜔2
+𝑈exc = 1.7889 · 10−4 m/Vpp · 𝑈exc, see eq. (5.1) and

eq. (5.22).
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𝛤stat = 4376.210 502 112(102). (5.2)

So far, no systematic corrections have been applied.

Alternative Evaluation of the 𝛤 -Resonances
Instead of the elaborated maximum-likelihood analysis, which is described in section 4.5.2
and is used throughout this thesis, here I study an alternative data analysis to extract the
central value of the 𝛤 -resonances. This simplified approach is only based on average values
and standard deviations, which do no require any elaborated fitting routine.
As illustrated in fig. 4.18(b), the magnetic field fluctuations determined by subsequent PnA-
cycles are normal distributed. Since the probed Larmor frequency 𝜈MW is determined from
the first 5 s PnA-cycle and from the theoretically predicted g-factor value3, all measured 𝛤 *

are Gaussian distributed, with the probability density 𝜌*
all(𝜇*

all,𝜎
*
all). Under these conditions,

we can also assume, that the measured 𝛤 -ratios, where spin-flips are induced, are Gaussian
distributed, 𝜌*

sf(𝜇*
sf,𝜎

*
sf). The desired probability density of all spin-flip-𝛤 ’s, 𝜌sf(𝜇sf,𝜎sf), is

also Gaussian distributed due to the magnetic field fluctuations during the phase evolution
time of 5 s. Furthermore, the probability density of all measured spin-flip-𝛤 ’s, 𝜌*

sf, can be
written as the product of 𝜌*

all and 𝜌sf, see also fig. 5.3:

𝜌*
sf = 1

𝜎*
sf

√
2𝜋
𝑒

− 1
2

(︂
𝛤 *

sf−𝜇*
sf

𝜎*
sf

)︂2

!= const · 𝜌*
all · 𝜌sf. (5.3)

The corresponding average value and standard deviation can be formulated as follows:

𝜎*
sf = 𝜎*

all𝜎sf√︀
(𝜎*

all)2 + (𝜎sf)2
and (5.4)

𝜇*
sf =𝜇sf(𝜎*

all)2 + 𝜇*
all(𝜎sf)2

(𝜎*
all)2 + (𝜎sf)2 . (5.5)

1 Only in the classical picture the motional energy can vanish. In the quantum picture the ground state
would have an energy of 49 neV which can be safely neglected in the extrapolation, see fig. 5.2.

2 The data analysis has been performed independently by Sven Sturm and me. The determined 𝛤 values:
𝛤 𝐼

stat = 4376.210 502 088(102) from fig. 5.2 and 𝛤 𝐼𝐼
stat = 4376.210 502 136(102) from Sven Sturm slightly

differ due to (1) different quality cuts, mainly applied after the filling of the cooling reservoirs, and
(2) slightly different axial resonator parameters, which are relevant for the determination of the axial
frequency. Here and in [77, 131] the average value of these two independent data evaluations is used.

3 Here, we neglect all measurement runs, where an uniformly distributed jitter is artificially added to the
probed Larmor frequency.
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Figure 5.3: Illustration of an alternative evaluation of the 𝛤 -resonances. The Gaussian
distribution of all measured 𝛤 * is indicated in black. The measured 𝛤 * distribution, where the
electron spin has flipped in the PT, is shown in red. The desired distribution of the spin-flip-𝛤 ’s
is shown in blue. The bias of the mean value of all measured 𝛤 * : 𝜇*

all, which has been chosen
with some previous knowledge, is eliminated by the described unfolding procedure. For details
see text.

From these equations we can finally calculate the average value and standard deviation of
the desired spin-flip 𝛤 -resonance:

𝜎sf = 𝜎*
all𝜎

*
sf√︀

(𝜎*
all)2 − (𝜎*

sf)2
and (5.6)

𝜇sf =𝜇*
sf((𝜎sf)2 + (𝜎*

all)2) − 𝜇*
all(𝜎sf)2

(𝜎*
all)2 . (5.7)

The average values 𝜇sf = 𝛤mean and the corresponding uncertainties of all resonances are
plotted in fig. 5.4.
It is remarkable, that the uncertainty of the extrapolated value at zero modified cyclotron
energy 𝛿𝛤/𝛤 = 2.0 · 10−11 is of the same order of magnitude as the uncertainty via the
elaborated maximum-likelihood analysis 𝛿𝛤/𝛤 = 2.3 · 10−11, compare with fig. 5.2. The
discrepancy between the results of both analysis techniques is only 0.03 𝜎, which confirms
the measured 𝛤 value presented in eq. (5.2).
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Figure 5.4: 𝛤 -resonances of 12C5+ evaluated only by average values and standard deviations
as a function of the modified cyclotron energy. For details see text. (𝛤off = 4376.210 497 791)

5.2 Systematic Shifts and Uncertainties
The basics of most systematic corrections have been introduced in chapter 3 and chapter 4.
In this section I will quantify the specific corrections, which occur during the electron mass
measurement. A special focus is set on a systematic correction caused by the residual
dipole contribution of the second PnA pulse. All listed corrections are ordered by the size
of their uncertainties, starting with the dominant one.

The Image Charge Shift
By far the largest systematic shift of 𝛤 is given by the image charge shift, which has been
introduced in section 3.2.4. In case of a single 12C5+ ion it amounts to:(︂

𝛤stat − 𝛤final
𝛤stat

)︂
image charge

= 2.824(141) · 10−10. (5.8)

This effect also dominates the systematic uncertainty budget.

The Line-Shape Model of the Axial Dip Signal
With a conservative estimation of the total error for the dip-signal line-shape model of
4.5 mHz, see table 4.9 in section 4.3.2, the relative uncertainty of the cyclotron frequency
and thus the 𝛤 ratio is:(︂

𝛿𝛤

𝛤

)︂
𝜈𝑧,sys

= 𝛿𝜈𝑐

𝜈𝑐
= 𝜈𝑧 𝛿𝜈𝑧,sys

𝜈2
𝑐

= 5.2 · 10−12. (5.9)
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Measurements of the Magnetron Frequency
During the 4.5 months of data taking the magnetron frequency has been measured via the
double-dip method only three times. The largest measured shift of 𝛥𝜈− = 0.2 Hz, see also
table 4.6, corresponds to the following uncertainty of 𝛤 :(︂

𝛿𝛤

𝛤

)︂
𝛿𝜈−

= 3.22 · 10−12. (5.10)

The Dipole Contribution of the Second PnA Pulse
The detection of the modified cyclotron frequency has been already discussed at length
in section 3.4.2. The uncertainties caused by magnetic field fluctuations and the other
modified cyclotron phase jitters broaden the 𝛤 -resonances and in that way are included in
the uncertainty of 𝛤stat, see eq. (5.2). Here, a more subtle effect is studied, which arises
during the second PnA pulse.
The quadrupole excitation line, which is connected to one half of the split correction elec-
trode, features small dipole components in radial and axial directions, see also section 3.3.2.
These components have been numerically calculated based on a finite element simulation
using COMSOL [132]:

𝐹quad. real = 𝑞ion

⎛⎝ 64.7 + 38410.1 m−1 · 𝑧
0

75.7 + 38410.1 m−1 · 𝑥

⎞⎠𝐴quad sin(𝜔′𝑡+ 𝜙0). (5.11)

During the second PnA pulse the resonant quadrupole excitation at the sideband frequency
𝜈2nd pulse ≈ 𝜈+ + 𝜈𝑧 competes with an off-resonant dipole excitation at 𝜈+. As a result,
the read-out phase has a systematic shift depending on the phase relation between the
modified cyclotron phase of the ion and the starting phase of the second PnA pulse. In the
worst-case scenario of an in-phase excitation, starting amplitudes of 𝑧 = 𝑟+ = 15 µm and
a final axial amplitude of 𝑧 = 100 µm, the numerically calculated shift of the modified
cyclotron frequency is smaller than 0.05 mHz at a 10 ms pulse length and a phase evolution
time of 5 s. The corresponding relative shift of the frequency ratio is smaller than(︂

𝛿𝛤

𝛤

)︂
dipole contr. 2nd PnA pulse

< 3 · 10−12. (5.12)

So far, a significant measurement of this effect has not been possible, see fig. 5.5(a). Here,
subsequent PnA-cycles have been performed with a single 48Ca17+ ion and the following
configurations: The first PnA pulse is set to 0.025 Vpp @ 10 ms, 𝑇evol = 1 ms and the
second PnA pulse to 4.5 Vpp @ 35 ms. For more than six hours these PnA-cycles have been
performed at seven different starting phases of the first PnA pulse. To increase the dipole
contribution of the second PnA pulse the axial frequency of the ion has been tuned on a
local maximum of the sinc-like frequency spectrum of the second PnA pulse. More precisely,
the axial frequency is a multiple of the inverse pulse length plus one half of the inverse
pulse length, here: 𝜈𝑧/𝜏2nd pulse = 670328.6 Hz/(0.035 s) = 23461.5. The plotted data has
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Figure 5.5: Study of the dipole phase contributions generated by the second PnA pulse. In
(a) the normal (𝜈+) PnA method is analyzed. Here the difference between the measured phase
and the starting phase of the first PnA pulse is plotted as a function of the starting phase. No
significant systematic phase shift is detected. In (b) the same measurement is repeated for a
PnA method, which detects the magnetron frequency. Here a maximal systematic phase shift
of 𝜙0 = 8.7(9)∘ is detected, although the dipole contribution of the second PnA pulse has been
minimized by an active dipole compensation pulse. For details see text.

been fitted by the following line-shape: 𝛥𝜙 = 𝜙off + 𝜙0 sin(𝜋/180∘(𝜙start − 𝜙off
start)). In the

end, a non-significant maximal systematic phase shift of 𝜙0 = 0.3(3)∘ has been determined.
In fig. 5.5(b) similar PnA measurements have been performed detecting the magnetron
phase instead of the modified cyclotron phase. Since in this case the axial frequency is
much closer to the frequency of the second excitation pulse (𝜈2nd pulse ≈ 𝜈𝑧 − 𝜈−) than the
modified cyclotron frequency to the frequency of the second excitation pulse in the normal
(𝜈+) PnA method (𝜈2nd pulse ≈ 𝜈+ − 𝜈𝑧), the analyzed dipole contribution is significantly
enhanced. Although we minimized this dipole contribution by a simultaneous active
compensation via the amplitude- and phase-tuned dipole excitation line, the systematic
phase shift is clearly visible in fig. 5.5(b). It causes a maximal systematic phase shift of
𝜙0 = 8.7(9)∘ 4.
To eliminate such a systematic dipole phase shift, a random starting-phase is implemented
for the first PnA pulse, which causes an enhanced jitter of the measured phase, but no

4 Detailed information concerning the PnA measurement of the magnetron frequency: A single 16O8+ ion
is used with an axial frequency of 631539Hz and a magnetron frequency of 6896.6Hz. The first PnA pulse
is applied via an Agilent 33250A function generator at 𝜈− (0.008 Vpp @ 18 ms). The phase evolution
time amounts to 𝑇evol = 100 ms. The second PnA pulse at 𝜈2nd pulse ≈ 𝜈𝑧 − 𝜈− (0.111 Vpp @ 7 ms) is
generated by one of the channels of the two-channel frequency generator Agilent 33522A. The other
channel is connected to the dipole excitation line. During the second PnA pulse the undesired axial
phase imprint is minimized by an active compensation. Here, the same frequency (𝜈𝑧 − 𝜈−) is applied
simultaneously to the dipole excitation line at a proper amplitude and phase-shift. Nevertheless, a
residual axial phase imprint is clearly visible in fig. 5.5(b), which causes a maximal systematic phase
shift of 𝜙0 = 8.7(9)∘.
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systematic phase shift. In future experimental setups this effect could be diminished by
reducing the dipole contributions of the quadrupole excitation, e.g. applying the quadrupole
excitation to more than just one split electrode.

The Drift of the Axial Frequency
Since the axial frequency is measured before and after the simultaneous PnA measurement
of the modified cyclotron frequency and the probing of the Larmor frequency, see fig. 4.15,
the frequency drift between these two measurements has to be considered. The mean value
of the frequency differences of the two dip measurements is |d𝜈𝑧| < 2.5 mHz. Considering
that only the last of the ten subsequent PnA-cycles determines the measured frequency
ratio 𝛤 *, the second axial dip measurement is temporally closer to the relevant PnA-cycle,
so that due to the axial drift we assume a relative uncertainty of 𝛤 of ≪ 1.2 · 10−12.

The Image Current Shift of the Cyclotron Resonator
In contrast to the image current shift of the axial resonator which is already incorporated
by the line-shape model of the axial-dip, the image current shift of the modified cyclotron
resonator has to be considered and corrected for. In analogy to the axial image current
shift, introduced in eq. (3.41), the modified cyclotron image current shift can be calculated
as follows:

𝛥𝜔+
𝜔+

≈ − Im(𝛾)
𝜔+

= −𝑞ionIm(𝑍LC(𝜔+))
2𝑚ion𝐷2

rad
. (5.13)

Based on the measured resonator parameters specified in table 4.4, fig. 5.6 illustrates the
image current shift as a function of the modified cyclotron frequency. With the varactor
diode the modified cyclotron resonator has been tuned off-resonantly. The corresponding
systematic shift of 𝛤 is:(︂

𝛤stat − 𝛤final
𝛤stat

)︂
image current

= 2.20(55) · 10−12. (5.14)

Electric Field Imperfections
Considering the uncertainty of the dominant electric field imperfection 𝐶4: 𝛿𝐶4 = 1.1 ·10−5,
see eq. (4.8), the eigenfrequency shifts described by the 𝐶4-matrix, see eq. (3.19), cause a
relative uncertainty of the free cyclotron frequency and thus also of the frequency ratio:(︂

𝛿𝛤

𝛤

)︂
𝛿𝐶4

= 5.0 · 10−13. (5.15)

Furthermore, assuming a conservative 𝐶6 uncertainty of 100%, where 𝐶6 = −0.016 , see
eq. (4.9), the corresponding relative uncertainty of 𝛤 is:(︂

𝛿𝛤

𝛤

)︂
𝛿𝐶6

= 5.9 · 10−14, (5.16)

which is calculated by the formulas given in [120].
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Figure 5.6: Image current shift of the 12C5+ ion caused by the cyclotron resonator. The
resonator parameters are listed in table 4.4.

Line-Shape Model of the 𝛤 -Resonance
The asymmetric line-shape contribution of the 𝛤 -resonance, see eq. (4.19), which is caused
by the Boltzmann distributed axial energy and the 𝐵2 shift of the eigenfrequencies, generates
a discrepancy between the mean and the maximum of the line-shape, which amounts to(︂

𝛿𝛤

𝛤

)︂
asym

= 3 · 10−13, (5.17)

see also eq. (4.20). Furthermore, the deviation between the centroid of the 𝛤 -resonance
and the central value of the applied Gaussian maximum-likelihood fit is:(︂

𝛿𝛤

𝛤

)︂
fit

= 1 · 10−13, (5.18)

see section 4.5.2.

Magnetic Field Imperfections
The large magnetic bottle in the AT generates a residual magnetic inhomogeneity in the PT,
see section 4.1.5. The linear gradient of the magnetic field, 𝐵1 = −13.41(23) ·10−3 T/m [13],
shifts the center of the ion motion in axial direction due to the force acting on the magnetic
moment generated by the cyclotron motion. At the maximally applied modified cyclotron
radius of 𝑟+ = 90 µm the center of the motion shifts 𝛥𝑧 = −21 nm, causing the same
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relative shifts of the free cyclotron frequency and the Larmor frequency of −7.4 · 10−11,
which completely cancel in the frequency ratio 𝛤.
The residual second-order magnetic field inhomogeneity in the PT, 𝐵2 = 1.01(0.20) T/m2,
evokes energy dependent shifts of both the eigenfrequencies and the Larmor frequency, see
eq. (3.23) and eq. (3.78). Since the Larmor frequency and the modified cyclotron frequency
shift by the same amount, the magnetic shift cancels to a large extent in the frequency
ratio 𝛤 :(︂

𝛤stat − 𝛤final
𝛤stat

)︂
magn. imperfections

= −1.36(26) · 10−12. (5.19)

The error is dominated by the uncertainty of the measured 𝐵2.

Residual Special Relativity
The relativistic increase of the ion mass accounts for a relative shift of the cyclotron
frequency:

𝛥𝜈𝑐

𝜈𝑐
= 1
𝛾

− 1, (5.20)

where 𝛾 ≡ (1 − 𝑣2/𝑐2)−1/2 is the relativistic Lorentz factor and 𝑣 is the velocity of the ion.
After the extrapolation to zero modified cyclotron energy, the velocity of the ion is mainly
given by the axial mode, 𝑣𝑧 = 87(2) m/s at an axial temperature 𝑇𝑧 = 5.44(22) K, resulting
in a residual relativistic shift of 𝛤 :(︂

𝛤stat − 𝛤final
𝛤stat

)︂
relativistic

= 4.20(17) · 10−14. (5.21)

A further relativistic shift of the Larmor frequency is generated by the additional motional
magnetic field: 𝛥𝐵 = 𝛾/𝑐2 (𝑣⃗ × 𝐸⃗). Even for the 𝛤 -resonance with the largest modified
cyclotron energy (𝑟+ = 90 µm) and the corresponding radial electric field 𝐸𝑟 = 19 V/m the
relative magnetic field shift is only: 𝛥𝐵/𝐵 = 8 · 10−13.

All considered relative systematic shifts and corresponding uncertainties are summarized
in table 5.2, sorted by the size of their respective relative uncertainties.
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Table 5.2: Summary of the relative systematic shifts and uncertainties of 𝛤 ordered by the
size of the relative uncertainties.

effect rel. shift / 10−12 rel. uncertainty / 10−12

image charge shift -282.4 14.1
line-shape model of the dip 0 5.2

magnetron frequency 0 3.2
dipole contribution of 2nd PnA pulse 0 < 3

drift of the axial frequency 0 ≪ 1.2
motional magnetic field 0 ≪ 0.8

image current shift -2.20 0.55
electric field imperfections (𝐶4) 0 0.50
asymmetry of the 𝛤 -resonance 0 0.3

magnetic field imperfections (𝐵2) 1.36 0.27
fitting the 𝛤 -resonance by a Gaussian 0 0.1

electric field imperfections (𝐶6) 0 0.059
residual special relativity -0.042 0.002

total relative shift -283.3 15.4

5.3 Consistency Checks
At different energies of the modified cyclotron mode, which are proportional to the
squared motional radius and thus to the squared amplitude of the first PnA excitation
pulse (𝑈exc), all three eigenfrequencies shift mainly due to the relativistic mass increase
and the magnetic inhomogeneity in the PT. From the combination of the following four
measured eigenfrequency shifts the magnetic inhomogeneity𝐵2 can be calculated in different,
independent ways, providing consistency checks of the energy dependent systematic shifts:

1. The slope 𝑚 𝛿𝛤
𝛤

= 4.07(35) · 10−9 Vpp−2 of the different 𝛤 -resonances with respect to
the different modified cyclotron energies, see fig. 5.2, is mainly given by the relativistic
shift:

𝑚 𝛿𝛤
𝛤

· 𝑈2
exc ≈ 𝛿𝜈+

𝜈+
≈ 𝐸+
𝑚𝑐2 . (5.22)

2. The differences of the modified cyclotron frequencies, determined in each measurement
cycle, firstly by the double-dip method and secondly by the PnA method, are shown
in fig. 5.7(a) with respect to the different modified cyclotron energies. Here and in the
following plots, these energies are represented by the proportional squared excitation
amplitude 𝑈2

exc of the first PnA pulse. These two different measurement techniques
are in remarkable agreement at zero modified cyclotron energy: < 𝜈PnA

+ − 𝜈DD
+ >

/𝜈+ = 7(10) · 10−11 5. The slope 𝑚𝜈PnA
+ −𝜈DD

+
= −0.201(10) Hz Vpp−2 is given by the

5 The specified uncertainty includes the uncertainty of the dip line-shape model. The difference without
this uncertainty amounts to: < 𝜈PnA

+ − 𝜈DD
+ > /𝜈+ = 7(4) · 10−11.
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Figure 5.7: Consistency checks. Illustrations of various eigenfrequency shifts as a function of
the squared amplitude of the first PnA pulse, which is proportional to the modified cyclotron
energy. Detailed descriptions are given in the text.

relativistic- and the 𝐵2-shift:

𝑚𝜈PnA
+ −𝜈DD

+
· 𝑈2

exc ≈ −𝐸+ · 𝜈+
𝑚 · 𝑐2 − 𝐵2 · 𝐸+

𝐵0 ·𝑚 · (2𝜋)2 · 𝜈+
. (5.23)

The same frequency shift has been measured in subsequent PnA-cycles at randomly
chosen modified cyclotron energies (𝑈exc = 0.14, 0.2, 0.3 Vpp). In fig. 5.7(b) the
phase differences are plotted against the energy differences. The linear fit has the
following slope: 𝑚𝜈+by PnA = −0.213(13) Hz · Vpp−2.

3. Also the axial frequency shift, caused by the different modified cyclotron energies and
the axial 𝐵2-shift has been detected, see fig. 5.7(c). The slope 𝑚𝜈𝑧 = 3.863(84) Hz ·
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Vpp−2 depends quasi exclusively on the 𝐵2-shift at different cyclotron energies:

𝑚𝜈𝑧 · 𝑈2
exc ≈ 𝐵2 · 𝐸+

𝐵0 ·𝑚 · (2𝜋)2 · 𝜈𝑧
. (5.24)

4. The axial frequency shift in the AT with the slope 𝑚AT
𝜈𝑧

= 50.9(1.1) · 103 Hz · Vpp−2,
see fig. 5.7(d), depends on the magnetic bottle in the AT:

𝑚𝜈AT
𝑧

· 𝑈2
exc ≈ 𝐵AT

2 · 𝐸+

𝐵AT
0 ·𝑚 · (2𝜋)2 · 𝜈AT

𝑧

. (5.25)

In table 5.3 the different values for the 𝐵2 in the PT are summarized. They all agree
within their error bars and thus do not give any hint at further unknown energy-dependent
shifts, validating the model of systematics discussed above.

Table 5.3: Consistency checks. Four independent measurement approaches have been applied
to determine 𝐵2 in the PT.

combination combination of equations 𝐵2 (T/m2)
𝑚 𝛿𝛤

𝛤
↔ 𝑚𝜈PnA

+ −𝜈DD
+

(5.22) and (5.23) 1.01(20)
𝑚 𝛿𝛤

𝛤
↔ 𝑚𝜈+by PnA (5.22) and (5.23) 1.12(22)

𝑚 𝛿𝛤
𝛤

↔ 𝑚𝜈𝑧 (5.22) and (5.24) 1.053(93)
𝑚𝜈PnA

+ −𝜈DD
+

↔ 𝑚𝜈AT
𝑧

(5.23) and (5.25) 1.40(50)

5.4 Final Results
The statistical value specified in eq. (5.2) has to be corrected by the systematic shift listed
in table 5.2 to derive the final 𝛤 value:

𝛤final = 𝛤stat +𝛥𝛤sys

= 4376.210 502 112(102) − 1.240(69) · 10−6

= 4376.210 500 872(102)(69) (28 ppt). (5.26)

In combination with the predicted g-factor, see eq. (2.18), and the calculated ion mass of
12C5+, see eq. (2.17), we determine the following value of the atomic mass of the electron
using eq. (2.16)6:

𝑚𝑒 = 0.000 548 579 909 069 4 (128)(86)(13) u (28 ppt). (5.27)

The numbers in the brackets represent (1) the statistical and (2) systematic uncertainty of
the determination of the 𝛤 -ratio as well as (3) the uncertainty of the theoretical g-factor,
which also includes the uncertainty of the ion mass.
With a relative uncertainty of 𝛿𝑚𝑒/𝑚𝑒 = 2.8 · 10−11 the atomic mass of the electron has

6 The value differs slightly (0.15𝜎) from the value in [77] due to a sign error in the image current shift.
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been determined with so far unrivaled precision. In fig. 5.8 the previous electron mass
measurements and the corresponding averaged literature values published by the CODATA
group are presented and normalized to our measured value. The current averaged CODATA
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Figure 5.8: Atomic electron mass values measured in the last twenty years and normalized
to our value. The error bars of our value are covered by the red marker. For details see text.

2010 value [65] relies on three different measurement approaches: (1) two bound-electron
g-factor measurements from the group of Günter Werth performed by Hartmut Häffner
[128] and José Verdú [118], (2) a direct measurement by D.L. Farnham and colleagues [73]
and (3) an indirect spectroscopic measurement on antiprotonic helium by Masaki Hori and
colleagues [76]. All these measurements have been introduced in section 2.6.2. In particular,
the phase-sensitive measurement technique, PnA [58], enabled a 19-fold improvement with
respect to our previous most precise value of the electron’s mass [148]. Moreover, our
value surpasses the relative uncertainty of the CODATA 2010 value by a factor of 13 and
deviates 1.8𝜎 from it. However, probably two additional small systematic corrections have
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to be applied to the Larmor-to-cyclotron frequency ratio for 16O7+ [118]7. Considering
these effects, our value deviates only 1.1 𝜎 from the averaged value of the older electron
mass measurements.

In combination with the atomic mass of the proton 𝑚𝑝 = 1.007 276 466 812(90) u
[65], the value of the proton-to-electron mass ratio has been improved by a factor of four:

𝑚𝑝/𝑚𝑒 = 1836.152 673 77(17) (89 ppt). (5.28)

This mass ratio is an essential input parameter in atomic physics. Due to our new electron
mass value, at present this ratio is limited by the uncertainty of the proton mass of
𝛿𝑚𝑝/𝑚𝑝 = 8.9 · 10−11.

With the older electron mass values from D.L. Farnham [73] and M. Hori [76], which
have not been determined by the bound-electron g-factor, an averaged electron mass of
𝑚𝑒 = 0.000 548 579 909 69(64) u (1.2 ppb) can be derived. In combination with the ion
mass 𝑚(12C5+), see eq. (2.17), and our final 𝛤 -ratio, see eq. (5.26), we can also derive the
bound-electron g-factor of hydrogenlike carbon, by using eq. (2.13):

𝑔meas(12C5+) = 2.001 041 592 44 (232)(5)(3) (1.2 ppb). (5.29)

The numbers in the brackets represent the uncertainties caused by (1) the uncertainty of
the electron mass (99.97% of the total uncertainty), (2) the statistical uncertainty of the
measured 𝛤 -ratio (2.0% of the total uncertainty) and (3) the systematic uncertainty of the
measured 𝛤 -ratio (1.4% of the total uncertainty). The uncertainty of the ion mass only
amounts to 0.013% of the total uncertainty. This measured g-factor deviates only 0.9 𝜎
from the predicted one, see eq. (2.18).

In the future two experimental improvements could even further reduce the uncertainty of
the atomic electron mass:

• The dominant systematic uncertainty, given by the image charge effect, could be
decreased by increasing the trap size, due to its inverse scaling with the cubic trap
radius (∝ 1/𝑟3). At the same time the impact of patch potentials on the electrode
surfaces would reduce which decreases the uncertainty of the radial shift of the ion

7 More specifically, the image charge shift has not been considered in that measurement and an energy
dependent 𝐵2-shift of the 𝛤 resonance has been mistakenly applied. The image charge effect of a
single 16O7+ ion located in a cylindrical trap with a radius of 𝑟 = 3.5 mm increases the frequency
ratio of about 𝛤 = 4164 by 0.37 ppb. In combination with the presumably mistakenly subtracted
energy dependent 𝐵2-shift of −1.9 ppb denoted as ”Extrapolation 𝑇𝑧/𝐿𝑀𝑊 in table 5.2 [118, p. 121],
the corresponding electron mass should be 1.5 ppb smaller than considered in the CODATA 2010
evaluation. Since the measurement has been performed more than a decade ago, the verification of
these additional shifts is not absolutely clear. Due to that reason we would propose to shift that
electron mass value by −0.75 ppb and extend the uncertainty from 0.77 ppb of the measurement to
0.86 ppb (=

√︁
𝜎2

stat + 𝜎2
sys + (𝜎new/

√
12)2 =

√︁
0.722 + 0.172 + (1.5/

√
12)2 ppb).
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motional center.
• At the moment the statistical uncertainty of the measured 𝛤 ratio is dominated

by magnetic field fluctuations. Most likely, this effect could be reduced by the
implementation of radial compensation coils, see section 4.2.1. In the presumable case
that the magnetic field fluctuations are generated by vibrations of the foundation,
also a damped platform for the experimental setup might reduce these fluctuations.
However, this modification would require a laborious and risky movement of the
complete magnet.





CHAPTER 6
Probing the Isotope Shift: 𝛥𝑔 = 𝑔(40Ca17+) − 𝑔(48Ca17+)

In the present chapter, I will report on the first isotope shift measurement of bound
electron g-factors of highly charged ions. Despite a 20% mass difference between the two
calcium isotopes 40Ca and 48Ca, they have an almost identical nuclear charge radius thus
providing a unique system across the entire nuclear chart to test the pure relativistic
nuclear recoil effect by measuring the g-factor difference 𝛥𝑔 = 𝑔(40Ca17+) − 𝑔(48Ca17+).
The corresponding theoretical prediction requires bound-state quantum electrodynamics
beyond the Furry picture, which has been introduced in section 2.3 and in section 2.7.3.
In the beginning of this chapter, in section 6.1, a special focus will be set on the challenging
spin state detection of the calcium ions, due to the heaviness of these isotopes. In
section 6.2 and section 6.3 the measured 𝛤 values and the systematic shifts are briefly
discussed. In section 6.5, the final results of the 𝛤 measurements on the calcium isotopes
40Ca17+ and 48Ca17+ are presented, which moreover represent the to date most precise
g-factor measurements on lithiumlike ions.
The 𝛤 measurements on 40Ca17+ and 48Ca17+, the mass measurement of 48Ca as well
as the corresponding theoretical calculation of the isotope shift have been submitted for
publication [95].

6.1 Spin-Flip Detection with Calcium Isotopes - The Cycle-Weight
In the magnetic bottle of the AT the axial frequency jump caused by an induced spin-flip
scales with the inverse of the ion’s mass, see eq. (3.77). In contrast to the previous
measurements, where the axial frequency shifts have been 𝛥𝜈sf

𝑧 = ±586 mHz for 12C5+ and
𝛥𝜈sf

𝑧 = ±240 mHz for 28Si13+ [13] and 28Si11+ [14], it is a particular challenge to resolve
the spin-states for the calcium isotopes, where 𝛥𝜈sf

𝑧 = ±170 mHz for 40Ca17+ and only
𝛥𝜈sf

𝑧 = ±140 mHz for 48Ca17+.
Applying a coherent detection technique, introduced in section 3.4.2, we measure phase
differences of the axial motion to detect the spin state of the single calcium ion. At a
phase evolution time of 1 s and a readout time of 552 ms the generated axial frequency shift
corresponds to an axial phase shift of 𝛥𝜙sf

𝑧 = 360∘ · 𝑇tot · 𝛥𝜈sf
𝑧 = ±78∘ for 40Ca17+ and

𝛥𝜙𝑧 = ±65∘ for 48Ca17+. In the final measurement cycle, presented in fig. 4.15, we
determine the axial frequency differences in the AT by averaging over four successive axial
phase measurements. Between these measurement sequences we try to induce spin-flips for
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30 s at maximum MW-power and at a fixed MW-frequency.
In fig. 6.1(b) 1790 subsequently measured axial frequency differences are histogrammed.
Here, a single 48Ca17+ ion is studied in the AT. The plotted probability density 𝜌AT is
modeled by a superposition of three Gaussian distributions:

𝜌AT(𝛥𝜈𝑧) = Gno sf(𝛥𝜈𝑧|1 −𝐴,0,𝜎𝛥𝜈𝑧 )
+ Gsf up(𝛥𝜈𝑧|𝐴/2,+𝛥𝜈sf

𝑧 ,𝜎𝛥𝜈𝑧 ) + Gsf down(𝛥𝜈𝑧|𝐴/2,−𝛥𝜈sf
𝑧 ,𝜎𝛥𝜈𝑧 ), (6.1)

where Gno sf is the Gaussian distribution of the axial frequency differences without any
spin-flips, featuring an amplitude (1 −𝐴), a mean value of zero and a standard deviation
𝜎𝛥𝜈𝑧 . Gsf up and Gsf down denote the Gaussian distributions, where a spin-flip up (mean
value: +𝛥𝜈sf

𝑧 ) or spin-flip down (mean value: −𝛥𝜈sf
𝑧 ) occur. From a maximum-likelihood

(ML) fit, we obtain the following three parameters, see fig. 6.1(b): (1) the spin-flip rate:
26.5%, (2) the frequency jitter: 𝜎𝛥𝜈𝑧 = 25mHz 1 and (3) the axial frequency jump generated
by a spin-flip: 𝛥𝜈sf

𝑧 = ±140 mHz. One way to decrease the probability of wrong spin
state detection is given by the introduction of simple quality cuts, e.g. by ignoring all
measurement cycles, where 60 mHz < |𝛥𝜈𝑧| < 95 mHz. To circumvent the emerging loss of
statistics, we introduce the following AT-weight 𝑤AT for each measured axial frequency
difference, in a way that 𝑤AT = 0, if the ion is in spin down, 𝑤AT = 1, if the ion is in
spin-up and 𝑤AT = 0.5, if the spin state is not known. More precisely, the AT-weight is
defined as:

𝑤AT(𝛥𝜈𝑧) ≡

⎧⎨⎩
G(𝛥𝜈𝑧 |𝐴,𝛥𝜈sf

𝑧 ,𝜎𝛥𝜈𝑧 )
2·𝜌AT(𝛥𝜈𝑧) + 0.5 if: 𝛥𝜈𝑧 > spin-flip cut,

−G(𝛥𝜈𝑧 |𝐴,−𝛥𝜈sf
𝑧 ,𝜎𝛥𝜈𝑧 )

2·𝜌AT(𝛥𝜈𝑧) + 0.5 if: 𝛥𝜈𝑧 < spin-flip cut,
(6.2)

where the spin-flip cut is 70 mHz for 48Ca17+, see fig. 6.2.
In a usual measurement cycle we try to induce a spin-flip at least three times in the AT and
then proceed with the measurement process, until the cut-criterion |𝛥𝜈𝑧| > spin-flip cut
is fulfilled for the first time. For the first and the last frequency jump, which fulfills this
cut-criterion, the AT-weight is calculated. The spin-flip probability in the PT (𝑤PT) is
calculated from the two AT-weights (1) before entering the PT (𝑤before

AT ) and (2) directly
after leaving the PT (𝑤after

AT ):

𝑤PT = 𝑤before
AT · (1 − 𝑤after

AT ) + 𝑤after
AT · (1 − 𝑤before

AT ). (6.3)

1 It is remarkable, that the measured axial frequency of 48Ca17+ (𝜎𝛥𝜈𝑧 = 25 mHz), see fig. 6.1(b), can be
predicted by the measured axial frequency of 12C5+ (𝜎𝛥𝜈𝑧 = 73 mHz), see fig. 6.1(a), only considering
the fluctuations of the high-precision voltage source (UM1-14) of 6 ·10−8 and fluctuations of the modified
cyclotron energy. In detail, the axial frequency fluctuations caused by voltage fluctuations amount
to 412 kHz/2 · 6 · 10−8 ≈ 13 mHz. Moreover, axial frequency fluctuations are generated by modified
cyclotron energy fluctuations via 𝐵2-coupling, see eq. (3.23). These fluctuations scale with 𝑞ion/𝑚2

ion. In
combination, 𝜎𝛥𝜈𝑧 (48Ca17+) = 24 mHz is predicted from the measured 𝜎𝛥𝜈𝑧 (12C5+) = 73 mHz, which
is in very good agreement with the measured value.
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(b)
Figure 6.1: Probability densities of subsequently measured axial frequency differences (𝛥𝜈𝑧 ≡
diff(𝜈𝑧)) in the AT for a single 12C5+ ion in (a) and 48Ca17+ in (b). Between these axial
frequency measurements 30 s spin-flip drives are applied. The probability densities consist
of a superposition of three Gaussian distributions, where (1) no spin-flip (red curve), (2) a
spin-flip up (green curve) and (3) a spin-flip down (blue curve) is induced. In (a) the axial
frequency differences of a single 12C5+ ion have been measured by a simple axial peak signal
plus zero padding, see section 3.4.1. In total the studied data set contains 4682 spin-flip
drives. The spin-flip rate amounts to 14.1% and an induced spin-flip generates an axial
frequency jump of ±586 mHz. With an axial frequency jitter of 𝜎𝛥𝜈𝑧 = 73 mHz, in 99.995%
(𝛥𝜈sf

𝑧 /2 = 4.0 · 𝜎𝛥𝜈𝑧 ) of the measurement cycles the spin-flip is correctly detected. In (b) the
axial frequency differences of a single 48Ca17+ ion have been measured, using a phase-sensitive
detection method, described in section 3.4.2. The data set contains 1790 spin-flip drives. The
spin-flip rate amounts to 26.5%. An induced spin-flip generates an axial frequency jump of
±140 mHz. With an axial frequency jitter of 𝜎𝛥𝜈𝑧

= 25 mHz, in 99.5% (𝛥𝜈sf
𝑧 /2 = 2.8 · 𝜎𝛥𝜈𝑧

)
of the measurement cycles the spin-flip is correctly detected. All the denoted parameters are
specified via the maximum-likelihood fits, see the red, green and blue curves. The black data is
just plotted for visualization. The shown binomial error bars are determined from the number
of measurement cycles per histogram-bin and the probability density at the bin center given
by the ML fits.
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Here, 𝑤PT = 1 corresponds to a spin-flip in the PT, 𝑤PT = 0 corresponds to no spin-flip
in the PT and 𝑤PT = 0.5 corresponds to no spin-flip information in the PT. Finally, the
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Figure 6.2: Look-up table of the AT-weight. Here, the AT-weight (curved black line) is
plotted as a function of the measured axial frequency difference. The red lines denote the
axial frequency jump in case of a spin-flip at ±𝛥𝜈sf

𝑧 . The blue lines symbolize the spin-flip cut
criteria at ±𝛥𝜈sf

𝑧 /2. The bright gray shaded area illustrates the 1𝜎𝛥𝜈𝑧
-interval and the dark

gray shaded area the 3𝜎𝛥𝜈𝑧
-interval.

Gaussian line-shape of the 𝛤 -resonance, see eq. (4.22), gets modified by adding a fourth
fit-parameter (off𝛤 ), which describes the wrong spin-flip detection rate in the PT:

Gmod
PT (𝛤 *|sf0,𝛤res,𝜎𝛤 ,off𝛤 ) ≡ off𝛤 + sf0

2𝜋𝜎2
𝛤

𝑒
− (𝛤 *−𝛤res)2

2𝜎2
𝛤 . (6.4)

The PT-weight finally has to be included in the maximum likelihood function, compare
with eq. (4.23):

L(sf0,𝛤res,𝜎𝛤 ,off𝛤 ) =
𝑁∏︁

𝑖=1
𝑤 PT(𝑖) · Gmod

PT (𝛤 *(𝑖)|sf0,𝛤res,𝜎𝛤 ,off𝛤 )

+ (1 − 𝑤 PT(𝑖)) · (1 − Gmod
PT (𝛤 *(𝑖)|sf0,𝛤res,𝜎𝛤 ,off𝛤 )), (6.5)

where 𝑁 is the number of measurement cycles. A more rigorous explanation for this
weighted maximum likelihood function will be given in the doctoral thesis of Kurt Franke.
In comparison to the common cut analysis, we improve the relative uncertainty of the
final 𝛤res by 20 ppt by using the weighting method, where all measurement cycles are



6.2 Statistical 𝛤 -Values 131

considered1.

6.2 Statistical 𝛤 -Values
After several weeks of learning how to produce ionized calcium ions in the mEBIT, see
section 4.3.1 for details, we managed to reliably produce single lithiumlike calcium ions
(40Ca17+) within two days. The final data acquisition of 40Ca17+ has been performed
within two months starting in the beginning of March 2014. Here, three 𝛤 -resonances have
been measured at three different modified cyclotron energies, see fig. 6.3(a).
Directly after the removal of 40Ca17+ we managed to prepare a single 48Ca17+ ion within a
week. The data taking has only lasted 1.5 months starting in the beginning of June 2014.
Five 𝛤 -resonances have been recorded at three different modified cyclotron energies, see
fig. 6.3(b).
During the 48Ca17+ measurements at large modified cyclotron energies (𝑈exc ≥ 2 Vpp)
accidentally a wrong tuning ratio has been applied: 𝛥𝑇𝑅 = 𝑇𝑅wrong − 𝑇𝑅opt = −1 · 10−4.
In the extrapolation of the fitted 𝛤mean values to zero modified cyclotron energies, see
fig. 6.3(b), a conservative estimation for higher-order electric field anharmonicities has
already been included.
After the linear extrapolation to zero modified cyclotron energies, we determine the following
statistical 𝛤 values:

𝛤stat(40Ca17+) = 4282.429 539 43 (21) (49 ppt) and (6.6)
𝛤stat(48Ca17+) = 5138.837 961 92 (30) (58 ppt). (6.7)

1 All measurement cycles are considered, except for the measurement cycles during and after the filling of
the liquid gas reservoirs, see also section 5.1.
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Figure 6.3: Illustration of all measured calcium 𝛤 values as a function of the cyclotron
energies. In (a) the three fitted central values of the 40Ca17+ 𝛤 -resonances are shown with
a normalization factor of 𝛤 40Ca17+

off = 4282.429 538 772. The linear fit (red line) has an
offset value of 1.54(49) · 10−10 and a slope of 𝑚 𝛿𝛤

𝛤
= 5.67(49) · 10−9 Vpp−2. In (b) the five

fitted central values of the 48Ca17+ 𝛤 -resonances are shown with a normalization factor of
𝛤

48Ca17+

off = 5138.837 973 696. The linear fit (red line) has an offset value of −2.29(58) · 10−9

and a slope of 𝑚 𝛿𝛤
𝛤

= 2.70(14) · 10−10 Vpp−2.
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6.3 Systematic Shifts and Uncertainties
Systematic shifts and the corresponding uncertainties of the absolute g-factors of 40Ca17+ and
48Ca17+ are calculated in a very similar to the systematic shifts of 12C5+ introduced in
section 5.2.
One major difference is given in the image current shift caused by the interaction between
the ion and the cyclotron resonator. For the detection of multiple ions, see section 4.3.1, and
in particular for a potential further cooling of the modified cyclotron mode, we tuned the
cyclotron resonator by adjusting its parallel capacitance, before we started the measurement
campaign on 40Ca17+. Adjusting the varactor diode in a way that the cyclotron resonator
is in resonance with the modified cyclotron mode of the 40Ca17+ ion, we achieved cooling
time constants of about 10 s, measured by the time-resolved decrease of the cyclotron peak
signal. However, we detected cyclotron temperatures of several hundred Kelvin instead of
the expected liquid helium temperature of 4.2 K. This unfavorable high temperature might
be explained by an oscillation of the cyclotron detection system, which is indicated by the
raised 𝑄 value from a few 100 up to several 1000 by changing the applied voltage of the
varactor diode. A further reason for this high temperature might be given by some broad
band noise coupled from other electronic devices, e.g. from the lab computers. During the
measurement process the resonator frequency of the detuned cyclotron resonator has been
𝜈res = 24 376(10) kHz, which is relatively close to the modified cyclotron frequency of the
ion: 𝜈+(40Ca17+) = 24 586 288 Hz.
Considering the resonator characteristics given in table 4.4, the image current shift amounts
to 1 − 𝛤final/𝛤stat = −1.1(12) · 10−11 with a particularly conservative estimation of the
uncertainty, since the resonator frequency and the modified cyclotron frequency are so
close and small deviations of the resonator parameters do not linearly scale with the image
current shift, see e.g. fig. 5.6.
During the subsequent 48Ca17+ measurements we used the same configuration of the
cyclotron resonator. Since the modified cyclotron frequency of 𝜈+ = 20 485 535 Hz is far-off
the cyclotron resonator, the image current shift is significantly smaller: 1 − 𝛤final/𝛤stat =
6(10) · 10−13.
In table 6.1 all systematic shifts and uncertainties are summarized. Considering these

Table 6.1: Systematic shifts and uncertainties of the measured 𝛤 ’s of 40Ca17+ and 48Ca17+.

effect 40Ca17+ (ppt) 48Ca17+ (ppt)
image charge shift −941(47) −1130(57)
image current shift 11(12) −0.6(10)
magnetic field imperfections 0.46(31) 0.45(37)
line-shape model of the dip-signal 0(14) 0(12)
electric field imperfections 0.00(39) 0.00(51)
𝜈− measurement 0.0(30) 0.0(26)
drift of axial potential 0.0(12) 0.0(12)
residual relativistic shift −0.010(1) −0.010(1)
line-shape model 𝛤 resonance 0.0(6) 0.0(6)
total systematic shift −930(51) −1129(58)
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shifts we obtain the following final 𝛤 values:

𝛤final(40Ca17+) = 4282.429 535 45(21)(22) (70 ppt), (6.8)
𝛤final(48Ca17+) = 5138.837 956 12(30)(30) (81 ppt), (6.9)

where the statistical and systematic uncertainties of the frequency ratios are listed sepa-
rately.
In the g-factor difference some systematic shifts, in particular the dominant image charge
shift, will cancel, see section 6.5.

6.4 Consistency Checks
Similar to the consistency checks which we performed with the single 12C5+ ion, see
section 5.3, I also studied the energy dependence of (1) the measured 𝛤 ratios, see fig. 6.3
(a) and (b), (2) the modified cyclotron frequency difference between the double-dip and
PnA detection technique, see fig. 6.4(a) and (b), as well as (3) the axial frequency shift in
the AT, see fig. 6.4(c) and (d) for 40Ca17+ and 48Ca17+. Combining these three different
energy dependencies, we can extract 𝐵2 in the PT in two independent ways, see table 5.3.

Table 6.2: Consistency checks. Two independent measurement approaches have been applied
to determine 𝐵2 in the PT using 40Ca17+ and 48Ca17+. In the fourth column the corresponding
values measured with a single 12C5+ ion are listed, see also table 5.3.

combination combination 𝐵2 (T/m2)
of equations 40Ca17+ 48Ca17+ 12C5+

𝑚 𝛿𝛤
𝛤

↔ 𝑚𝜈PnA
+ −𝜈DD

+
(5.22) and (5.23) 1.05(20) 0.75(24) 1.01(20)

𝑚𝜈PnA
+ −𝜈DD

+
↔ 𝑚𝜈AT

𝑧
(5.23) and (5.25) 1.14(23) 1.10(15) 1.40(50)

Here, it is remarkable, that I increased the maximal applied modified cyclotron radius step-
by-step for the three Larmor-to-cyclotron frequency ratio measurements to study possible
systematic shifts which might arise at large modified cyclotron radii: (1) 𝑟max

+ = 90 µm
(𝐸+ = 90 eV) for the 12C5+ ion, see fig. 5.2, (2) 𝑟max

+ = 110 µm (𝐸+ = 65 eV ) for 40Ca17+,
see fig. 6.3(a) and (3) even 𝑟max

+ = 160 µm (𝐸+ = 112 eV) for 48Ca17+, see fig. 6.3(b).
Fortunately the determined 𝐵2 values listed in table 6.2 agree with each other which once
more confirm our model of systematic shifts.
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Figure 6.4: Consistency checks of the 40Ca17+ and 48Ca17+ measurements. Illustrations of
various eigenfrequency shifts as a function of the excited squared modified cyclotron radius
after the first PnA pulse. In (a) and (b) the energy dependence of < 𝜈𝑃 𝑛𝐴

+ − 𝜈𝐷𝐷
+ > is

shown for 40Ca17+ in (a) and 48Ca17+ in (b). See fig. 5.7(a) for the corresponding data
measured with 12C5+. In (c) and (d) the energy dependence of the axial frequency in the AT
is plotted for 40Ca17+ in (a) and 48Ca17+ in (b). See fig. 5.7(d) for the corresponding data
measured with 12C5+. The fitted slopes amount to 𝑚𝜈PnA

+ −𝜈DD
+

= −0.287(13) Hz Vpp−2 in
(a), 𝑚𝜈PnA

+ −𝜈DD
+

= −0.01152(8) Hz Vpp−2 in (b), 𝑚AT
𝜈𝑧

= 82.2(78) · 103 Hz Vpp−2 in (c) and
𝑚AT

𝜈𝑧
= 3.26(12) · 103 Hz Vpp−2 in (d).
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6.5 Final Results
6.5.1 The Absolute g-Factors - Testing Many-Electron QED Calculations
Combining the measured 𝛤 values, see eq. (6.8) and eq. (6.9), with the ion masses, see
eq. (2.21) and eq. (2.20), we determine the presently most precise g-factor values of
lithiumlike ions, using eq. (2.13):

𝑔(40Ca17+)meas = 1.999 202 040 55(10)(12)(110) (0.56 ppb) and (6.10)
𝑔(48Ca17+)meas = 1.999 202 028 85(12)(13)(80) (0.41 ppb). (6.11)

Here, the statistical and systematic uncertainties of the 𝛤 ratios as well as the ion mass
uncertainties are presented separately. Both g-factors are most notably limited by the
uncertainty of the ion mass. Nevertheless, they are about a factor two more precise than
the previously measured g-factor of lithiumlike silicon ((𝛿𝑔/𝑔)28Si11+ = 1.1 ppb), which
has been limited by the statistical uncertainty of the measured 𝛤 ratio [59]. In case
of lithiumlike silicon, the modified cyclotron frequency has been measured by using the
double-dip technique instead of using PnA.
The comparisons of the theoretically calculated g-factor values, see table 2.5:

𝑔(40Ca17+)theo = 1.999 202 042(13) (65 ppb) and (6.12)
𝑔(48Ca17+)theo = 1.999 202 032(13) (65 ppb) (6.13)

with the measured ones provide a stringent test of many-electron QED calculations in a
magnetic field.

6.5.2 The g -Factor Difference 𝛥𝑔 = 𝑔(40Ca17+) − 𝑔(48Ca17+) - Testing BS-QED beyond the
Furry Picture

The g-factor difference finally yields the sought-after isotope difference

𝛥𝑔meas = 𝑔meas(40Ca17+) − 𝑔meas(48Ca17+) = 11.70(16)(3)(138) · 10−9 (12%), (6.14)

where the statistical and systematic uncertainties of the frequency ratios and the ion mass
uncertainty are listed separately. Since the dominant systematic shifts, the image charge
shifts, see table 6.1, completely1 cancel in the g-factor difference, the denoted systematic
uncertainty of the frequency ratios is smaller than the quadratically summed systematic
uncertainties given in eq. (6.10) and eq. (6.11). The comparison of the measured value of
the g-factor difference with the extremely precise theoretical prediction, see table 2.4:

𝛥𝑔theo = 10.305(27) · 10−9 (0.26%) (6.15)

allows for the first time to address and stringently test the relativistic dynamic interaction
of the electron spin with the motile nucleus. The 1.0𝜎 agreement with the calculated value
decisively confirms the validity of QED beyond the Furry picture even in the presence

1 Here, I assume that both ions are placed at the same position in the PT.
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of strong fields and reinforces the understanding of the interaction between the bound
electrons and the nucleus. The understanding of these contributions provides the opportu-
nity to extract fundamental constants, namely the fine structure constant 𝛼, and nuclear
properties via g-factor measurements in heavy atomic systems [149].

At last, I want to discuss briefly the influence of the neutron number on the root-mean-
square nuclear charge radii of the two doubly magic nuclei of 40Ca and 48Ca. Even though
the eight additional neutrons of 48Ca form an additional closed 1𝑓7/2 nuclear shell, both
isotopes have a remarkably similar nuclear charge radius: 𝑟nucl(40Ca) = 3.4776 (19) fm,
𝑟nucl(48Ca) = 3.4771 (20) fm and 𝛥𝑟 = 𝑟nucl(40Ca) − 𝑟nucl(48Ca) = 0.0005 (9) fm [94], see
also section 2.7.2, which is still an open question in nuclear physics. In that way, the finite
nuclear size contribution almost cancels in the isotope shift. For this reason, the nuclear
recoil shift dominates the g-factor difference to 99.96%. However, relying on the measured
g-factor difference and on the calculations of the recoil contribution, we determine the
difference of the nuclear charge radii: 𝛥𝑟 = 𝑟nucl(40Ca) − 𝑟nucl(48Ca) = 0.17 (17) fm, which
is in reasonable agreement with the literature value1 [150].

1 In leading-order the finite nuclear size effect scales as 𝛥𝑔 = 8
3𝑛3 (𝑍𝛼)4𝑟2

nucl · 6.699 · 1024 m−2 [45], where
in our case 𝑛 = 2 (lithiumlike) and 𝑍 = 20.





CHAPTER 7
Outlook - A New Generation of High-Precision Penning Trap

Besides the determination of the electron mass and the g-factor difference of lithiumlike
calcium isotopes, which have been presented in this thesis, further exciting bound-electron
g-factor measurements have been performed in the medium-𝑍 range in the previous years,
e.g. the measurements of hydogenlike and lithiumlike silicon, see [46, 59]. Tests of QED
in even stronger electric fields require heavier and higher-charged ions which are not
producible at our miniature EBIS, which reaches so-far a maximally applied electron beam
energy of 5.5 keV1. At the moment, two additional g-factor experiments are set up within
the HITRAP initiative: (1) ARTEMIS [151, 152], located at HITRAP, a capturing and
cooling facility for highly charged ions located at the GSI-accelerator complex, and (2)
ALPHATRAP, located at the large Heidelberg-EBIS at MPIK. These experiments will be
briefly summarized further below. The present g-factor experiment located in Mainz will
be specialized for lighter ions, e.g. in the near future high-precision mass measurements
are planned for the masses of the fundamental building blocks of atomic structure, the
proton and later the neutron.
In the beginning of this last chapter, in section 7.1, I will focus on a new Penning trap
design, which essentially will be used at two experiments: (1) our upgraded experimental
setup and (2) in a scaled version at ALPHATRAP. In the final section, in section 7.2, I
will give a brief outlook on future g-factor experiments on highly charged ions as well as
on the physical agenda of our rebuilt experimental setup.

7.1 Design of a New Seven-Electrode Cylindrical Penning Trap
Aiming for relative precisions of a few 10−12 or even better, two major limitations illustrate
the urgent need of a revised Penning trap design:

• First of all, the dominant systematic uncertainty, the image charge shift, can be
efficiently reduced by increasing the trap radius. This effect scales with the inverse

1 The production of hydrogenlike calcium requires electron beam energies in excess of 𝐸ion = 5.128 keV.
During our last creation attempts several flash-arcs limited the maximal applied high-voltage. Most of
the time they occurred in the high-voltage box connected to the hat flange, see section 4.1.2. Moreover,
the FEP has been destroyed once during a creation cycle and had to be replaced in a time-consuming
repairing.
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cubic trap radius, see eq. (3.55):

𝛥𝜔+ ∝ 1
𝑟3 . (7.1)

Furthermore, an increase of the trap radius also reduces the impact of possible patch
potentials on the electrode surfaces, which again decreases potential radial shifts of
the ion’s center position. In that way, the relative size of the uncertainty of the image
charge shift is diminished as well, which at present is conservatively estimated to 5%
of the complete shift, see section 3.2.4.

• In addition, we aim for a higher harmonicity of the electric trapping potential by
a further subdivision of the electrodes in axial direction, using seven cylindrical
electrodes instead of five. Such a finer segmentation and the accompanying better
compensation of higher electric field components enable larger excitations of the ion’s
motion, for example at the second PnA pulse. During the subsequent signal detection
the increased signal-to-noise ratio reduces the technical jitter of the readout phase,
see section 4.5.1.
Due to a flaw in the primary calculations of the currently implemented trap, see
section 4.3.2, even a compensated five-electrode trap design would improve the
harmonicity of our setup.

7.1.1 Analytical Calculations of a New Trap Design
Since there is no analytical solution for the electric potential of a cylindrical Penning trap
with broken rotational symmetry, the recent calculations have been split into two parts. In
the first part, the potential of the cylindrical trap (excluding the vertical slits) is calculated
analytically. In the subsequent second part the analytical solution is additionally studied
numerically including the vertical slits, which break rotational symmetry. In the following
section, these analytical calculations are summarized.

The analytical formulas to calculate the trapping potential of stacked cylindrical elec-
trodes have been described in several papers, see e.g. [122]. Small horizontal slits separate
these electrodes in axial direction, so that a linear interpolation of the potential between
the electrodes is appropriate. Here, I use the calculus based on [153, 154] and [145], which
I implemented in Matlab. More specifically, the following boundary value problem had to
be solved, see also fig. 7.6:

All electrodes have a cylindrical shape with the same inner radius 𝑟0. They
are stacked on top of each other with tiny distances 𝑑𝑑 in between them.
These distances are much smaller than the axial lengths of the electrodes. Due
to rotational symmetry the problem can be solved in two dimensions using
cylindrical coordinates (𝑟,𝑧). The electric potential on adjacent cylindrical
electrodes beyond the upper and lower endcap electrodes of the Penning trap,
which have the same radius 𝑟0 and basically infinite length, is zero.

The electrostatic potential 𝛷(𝑟,𝑧) of the empty Penning trap has to fulfill the Laplace
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Figure 7.1: Schematic of the new seven-electrode trap with nomenclature. On the right side
the potential distribution along the electrode surfaces is shown. Here, the electrode distances 𝑑𝑑
are depicted in an exaggerated way, to illustrate the linear interpolation between the electrode
surfaces. It should be noted, that the point of coordinates is placed on the bottom of the trap,
so that all 𝑧𝑖 are positive numbers.

equation 𝛥𝛷(𝑟,𝑧) = ∇2𝛷(𝑟,𝑧) = 0. In cylindrical coordinates with rotational symmetry
around the z-axis the Laplace equation has the following structure:

△𝛷(𝑟,𝑧) = 𝜕2𝛷(𝑟,𝑧)
𝜕𝑟2 + 1

𝑟

𝜕𝛷(𝑟,𝑧)
𝜕𝑟

+ 𝜕2𝛷(𝑟,𝑧)
𝜕𝑧2 = 0. (7.2)

Assuming a product structure of the potential, its solution can be formulated as follows:

𝛷(𝑟,𝑧) = 𝑅(𝑟) · 𝑍(𝑧). (7.3)

We can separate the partial differential equation into two ordinary differential equations:

𝜕2𝑍(𝑧)
𝜕𝑧2 + 𝑘2𝑍(𝑧) = 0 and (7.4)

𝜕2𝑅(𝑟)
𝜕𝑟2 + 1

𝑟

𝜕𝑅(𝑟)
𝜕𝑟

− 𝑘2𝑅(𝑟) = 0, (7.5)
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where 𝑘 is a separation constant. Equation 7.4 describes an ordinary harmonic oscillator
with the elementary solution: 𝑍(𝑧) = 𝐵(𝑘) · sin(𝑘𝑧). Equation 7.5 is a modified Bessel’s
equation of zeroth order and can be solved by using the Bessel function of the first kind
and zeroth order: 𝑅(𝑟) = 𝐶(𝑘) · 𝐼0(𝑘𝑟). The general solution of the potential is given by:

𝛷(𝑟,𝑧) =
ˆ +∞

−∞
𝐸(𝑘)𝐼0(𝑘𝑟) sin(𝑘𝑧) 𝑑𝑘, (7.6)

where 𝐸(𝑘) ≡ 𝐵(𝑘) · 𝐶(𝑘). The integral can be written as a sum if the potential vanishes
at both ends of the trap [153]:

𝛷(𝑟,𝑧) =
+∞∑︁

𝑛=−∞
𝐸(𝑘𝑛)𝐼0(𝑘𝑛𝑟) sin(𝑘𝑛𝑧)

=
+∞∑︁
𝑛=1

[𝐸(𝑘𝑛) − 𝐸(𝑘−𝑛)]𝐼0(𝑘𝑛𝑟) sin(𝑘𝑛𝑧)

≡
+∞∑︁
𝑛=1

𝐴(𝑘𝑛)𝐼0(𝑘𝑛𝑟) sin(𝑘𝑛𝑧), (7.7)

where 𝑘𝑛 ≡ 𝑛𝜋
2𝐿 and 2𝐿 is the complete length of the trap. With the following orthogonality

criterion 1
2𝐿

´ 𝐿
−𝐿 sin(𝑘𝑛𝑧) sin(𝑘𝑚𝑧)𝑑𝑧 = 𝛿𝑚𝑛, we obtain:

𝐴𝑛 ≡ 𝐴(𝑘𝑛) = 1
𝐿𝐼0(𝑘𝑛𝑟)

ˆ 𝐿

−𝐿
sin(𝑘𝑛𝑧)𝛷(𝑟,𝑧)𝑑𝑧. (7.8)

The radial dependences of 𝛷(𝑟,𝑧) and 𝐼0(𝑘𝑛𝑟) cancel each other so that the 𝐴𝑛 coefficients
do not feature any radial dependence. The applied voltages at the electrode surfaces
(𝑟 = 𝑟0) provide Dirichlet boundary conditions to calculate the 𝐴𝑛 via 7.8. For a trap with
seven cylindrical electrodes we get:

𝐴𝑛 = 1
𝐿𝐼0(𝑘𝑛𝑟0)

[︂(︂
𝑈1 cos(𝑘𝑛𝑧1) − 𝑈7 cos(𝑘𝑛𝑧14)

𝑘𝑛

)︂]︂
[︂

+
7∑︁

𝑗=2

𝑈𝑗 − 𝑈𝑗−1
𝑘2

𝑛𝑑𝑑
(sin(𝑘𝑛𝑧2𝑗−1) − sin(𝑘𝑛𝑧2𝑗−2))

]︂
,

(7.9)

where 𝑑𝑑 is the distance between the electrodes. For the definitions of the electrode voltages
𝑈𝑖 and the positions in axial direction 𝑧𝑖 see fig. 7.1. Inserting eq. (7.9) into eq. (7.7)
the potential of the trap can be calculated analytically, which even holds for potentials
asymmetrically applied with respect to the 𝑧 = 0 plane. The expansion coefficients of the
electric potential along the z-axis (see 3.18) can be calculated analytically:

𝐶𝑗 = 2(𝑑char)𝑗

𝑈𝑟𝐿𝑗!

∞∑︁
𝑛=1

𝑘𝑗
𝑛𝐴𝑛

𝐼0(𝑘𝑛𝑟0) sin(𝜋/2(𝑛+ 𝑗)). (7.10)
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Here, I define the characteristic trap parameter as 𝑑char ≡
√︁

1
2(𝑍2

0 + 𝑟2

2 ) and 𝑍0 ≡ 𝑙𝑟
2 +

𝑑𝑑+ 𝑙𝑐1 + 𝑑𝑑+ 𝑙𝑐2 + 𝑑𝑑.

Simplified Formulas Considering an Axially Symmetric Potential
In the special case of an axially symmetric potential with grounded endcaps, which has
been the scenario during the optimization process, the following simplification can be made:

𝛷(𝑟,𝑧) =
+∞∑︁
𝑛=1

n odd

̃︀𝐴(𝑘𝑛)𝐼0(𝑘𝑛𝑟) cos(𝑘𝑛𝑧), (7.11)

where

̃︀𝐴(𝑘𝑛) = 2
𝐿𝐼0(𝑘𝑛𝑟0)

7∑︁
𝑖=5

𝑈𝑖 − 𝑈𝑖−1
𝑘2

𝑛𝑑𝑑
(cos(𝑘𝑛(𝑧2𝑖−1 − 𝐿)) − cos(𝑘𝑛(𝑧2𝑖−2 − 𝐿))) (7.12)

and even terms in 𝑛 cancel. The expansion coefficients of the potential are given by:

̃︁𝐶𝑗 = 2(𝑑char)𝑗(−1)𝑗/2

𝑈𝑟𝑗!

∞∑︁
𝑛=1

n odd

𝑘𝑗
𝑛
̃︀𝐴(𝑘𝑛). (7.13)

Optimization Process
Some of the trap parameters 𝑟0, 𝑑𝑑 and 𝑈𝑟 have been fixed in advance considering the
following aspects:

• 𝑑𝑑: The distances between the electrodes 𝑑𝑑 are limited on the one hand by the
undesired trap capacitances, which enlarge the capacitances of the detection systems /
resonators by decreasing the electrode distances. Aiming for large parallel resistances
𝑅𝑝 = 𝑄

√︀
𝐿/𝐶, see eq. (3.34), the capacitances should be as small as possible. On

the other hand undefined electric field imperfections increasing with the size of these
slits should be minimized. As a trade-off, we adopt the electrode distances of the
present design: 𝑑𝑑 = 140 µm.

• 𝑟0 : The trap radius is increased from 𝑟0 = 3.5 mm (existing setup) to 𝑟0 = 5 mm for
the rebuilt setup, consequently reducing the image charge shift by a factor of ≈ 3.
Working with very heavy, highly charged ions at ALPHATRAP the trap radius will
be even larger, 𝑟0 = 9 mm, reducing the image current shift by a factor of 17. In
that way, the relative image charge shift of the free cyclotron frequency of 208Pb81+

will be 2.9 · 10−10, which is of the same size as for 12C5+ in the present setup, see
eq. (5.8).

• 𝑈𝑟 : Working in the axial frequency range of several 100 kHz, see eq. (3.4), and using
the ultra-stable voltage supply, UM1-14, with a voltage range between 0 and −14 V,
the ring voltage (for the proton) is fixed to 𝑈𝑟 = −7 V during the trap optimization.
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In a cylindrical seven-electrode trap, five parameters: 𝑙𝑟, 𝑙𝑐1, 𝑙𝑐2, 𝑈𝑐1 and 𝑈𝑐2 can be
optimized to reach a highly compensated trap. In a naive approach one might require
triple compensation and orthogonality for each correction electrode, see eq. (3.18) and
section 3.1.3: 𝐶4 = 𝐶6 = 𝐶8 = 𝐷21 = 𝐷22 = 0, where:

𝐶2 = 𝐷21
𝑈𝑐1
𝑈𝑟

+𝐷22
𝑈𝑐2
𝑈𝑟

+ 𝐸2. (7.14)

However, since double orthogonality 𝐷21 = 𝐷22 = 0 cannot be fulfilled, we require a slightly
weaker orthogonality criterion, stated as combined orthogonality:

𝐷comb
2 ≡ 𝐷21

𝑈𝑐1
𝑈𝑟

+𝐷22
𝑈𝑐2
𝑈𝑟

= 0. (7.15)

Our finally selected five optimization conditions are:

𝐶4 = 𝐶6 = 𝐶8 = 𝐶10 = 𝐷comb
2 = 0. (7.16)

The trap design is numerically optimized by minimizing simultaneously |𝐶4|, |𝐶6|, |𝐶8|,
|𝐶10|, and 𝐷comb

2 , using the Matlab routine fminsearch.m [155], which finds the local
minimum of 𝜂 ≡ 𝐶2

4 +𝐶2
6 +𝐶2

8 +𝑤1 ·𝐶2
10 +𝑤2 · (𝐷comb

2 )2. Here, I introduced some weighting
coefficient 𝑤1 ≈ 1 · 10−4 ≪ 1 and 𝑤2 ≈ 1 · 10−5 ≪ 1 to boost the significance of the leading-
order electric field coefficients during the optimization process. These weighting coefficients
have been varied during the optimization. The minimization has been performed in two
different ways, using the Nelder-Mead simplex algorithm [156] as well as the Levenberg-
Marquardt algorithm (with lsqnonlin.m). The five parameters, 𝑙0𝑟 , 𝑙0𝑐1, 𝑙0𝑐2, 𝑈0

𝑐1 and 𝑈0
𝑐2,

which set the initial conditions of the minimization, have been scanned over broad ranges
to obtain the global minimum. During the scans the smallest applied step sizes for the
variation of the initial conditions amount to 5 µm for the three spatial parameters and
0.05 mV for both correction voltages.
Focusing on the optimal choice of electrode voltages, it is remarkable, that at the final
chosen trap geometry minimal 𝐶6, 𝐶8 and 𝐶10 have similar 𝑈𝑐1 to 𝑈𝑐2 dependences, see the
valleys in the 𝑈𝑐1-𝑈𝑐2-maps shown in fig. 7.2(b), (c) and (d). These maps also illustrate,
that 𝐶4 can be mainly modified by 𝑈𝑐1, whereas 𝐶6 and the other higher terms can be
mainly modified by 𝑈𝑐2.
The cut criterion for the potential expansion in 𝑘𝑛 = 𝑛𝜋

2𝐿 has been generously set to
𝑛 = 40000. Setting this upper cut criterion to values larger than 40000 no significant
deviations of the calculated trapping potential have been observed during the optimization
process.

7.1.2 Final Parameters of the Proton Trap
The optimized parameters are summarized in table 7.1. In the final analytical calculation
of the trapping potential, the residual leading-order coefficients of the electric potential
amount to: 𝐶2 = −0.594787, 𝐶4 = 8·10−10, 𝐶6 = −8·10−11, 𝐶8 = 4·10−9, 𝐶10 = −4·10−10,
and 𝐷comb

2 = −2 · 10−7.
With these optimized trap parameters and a ring voltage of 𝑈𝑟 = −12.5 V, we obtain
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Figure 7.2: 𝐶4-, 𝐶6-, 𝐶8- and 𝐶10-maps, which illustrate the size of the higher-order electric
field coefficients as a function of the correction voltages 𝑈𝑐1 to 𝑈𝑐2, considering the optimized
trap configuration presented in table 7.1.

the following axial frequencies: 𝜈𝑧(proton) = 834.67 kHz, 𝜈𝑧(12C6+) = 590.20 kHz and
𝜈𝑧(28Si13+) = 568.73 kHz.
For the implementation of two cyclotron resonators and the quadrupole excitation, see
section 7.1.5, the ring and both inner correction electrodes are vertically split into two
equal halves. To study the impact of these additional vertical slits (𝑑𝑑 = 140 µm) on the
harmonicity of the electric potential, elaborate three dimensional numerical finite-element
calculations have been performed using Comsol. Comparing numerical simulations with
and without these vertical slits, no significant deviations in the trapping potential have
been observed.

7.1.3 Performance of the New Trap - Study of the Axial Frequency Shifts
The improvement of the electric trapping potential compared to the old trap design can be
illustrated by the axial frequency shifts as a function of the excited axial amplitude 𝑧0,
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Table 7.1: Fixed and optimized parameters of the proton trap. The characteristic trap
parameter amounts to: 𝑑char ≡

√︁
1
2 (𝑍2

0 + 𝑟2

2 ) = 5.1071 mm, where 𝑍0 ≡ 𝑙𝑟

2 + 𝑑𝑑+ 𝑙𝑐1 + 𝑑𝑑+
𝑙𝑐2 + 𝑑𝑑.

trap parameters values at 4 K
radius (𝑟) 5 mm

fixed voltage of ring (𝑈𝑟) −7 V
electrode distances (𝑑𝑑) 0.14 mm
length of ring (𝑙𝑟) 1.0472 mm
length of corr. el. I (𝑙𝑐1) 1.9995 mm

optimized length of corr. el. II (𝑙𝑐2) 3.3548 mm
voltage of corr. el. I (𝑈𝑐1) −6.744 96 V
voltage of corr. el. II (𝑈𝑐2) −5.708 86 V

see fig. 7.3. Here, the axial frequency shifts of a proton at a ring voltage of 𝑈𝑟 = −7 V
(→ 𝜈𝑧(proton) = 625kHz) are calculated considering the potential coefficients 𝐶4, 𝐶6,...,𝐶50

and using eq. (3.20) from [120] (𝑑𝜈tot
𝑧 =

⃒⃒⃒∑︀50
𝑖=4,6,... 𝑑𝜈𝑧(𝐶𝑖)

⃒⃒⃒
). Four different traps are studied:

(1) The present five-electrode trap with a trap radius of 𝑟0 = 3.5mm is indicated in turquoise,
see fig. 7.3. (2) Since there has been a flaw in the trap calculation, also the optimized
five-electrode trap with 𝐶4 = 𝐶6 = 𝐷2 = 0 and 𝑟0 = 3.5 mm is shown in green. (3) As the
new trap exhibits a trap radius of 𝑟0 = 5 mm, the corresponding optimized five-electrode
trap is shown in red. (4) Finally, the new optimized seven-electrode trap with 𝑟0 = 5 mm is
illustrated in blue. The black dashed area denotes the axial shifts of the new trap in case of
deviations of the electrode lengths and the inner radii of 𝛿𝑙 = ±15 µm and 𝛿𝑟0 = ±15 µm.
Here, both correction voltages have been optimized/adjusted like in a real trap. Adjusting
the two correction voltages it is possible to cancel 𝐶4 as well as 𝐶6, even e.g. 𝛿𝑙 ̸= 0.
Compared to the present trap, the axial frequency shifts will be significantly reduced by at
least four orders of magnitude, allowing much larger signal-to-noise ratios for the readout
of e.g. the axial phase.
In fig. 7.4 the improvement of the signal-to noise ratio of the axial peak signal is illustrated
for a single proton trapped in our present experimental setup (in turquoise) and in the
future experimental setup as a function of the excited axial amplitude and the axial
frequency shifts. In this calculation, also the improved axial detection system is considered:
The present axial resonator exhibits a parallel resistance of 𝑅𝑝 = 6.8 MΩ and an effective
electrode distance of 𝐷 = 7.38mm. The future axial resonator will have a parallel resistance
of at least 𝑅𝑝 = 50 MΩ and an electrode distance of 𝐷 = 9.1 mm. Such a toroidal resonator
is presently assembled and tested within our group. So far, axial resonators at the g-
factor experiment of the proton (𝜈res ≈ 700 kHz) have demonstrated parallel resistances of
𝑅𝑝 = 130 MΩ (𝑄 = 12500), see [157, 158].
Proton SNR’s far in excess of 20 dB seem to be feasible at absolutely negligible axial
frequency shifts generated by electric field imperfections.



7.1 Design of a New Seven-Electrode Cylindrical Penning Trap 147

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 01 0 - 6
1 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4

1 0 - 6
1 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4

 

 
ab

so
lut

e a
xia

l fr
eq

ue
nc

y s
hif

t (H
z) 

du
e t

o e
lec

tric
 file

d i
mp

erf
ec

tio
ns

 

z 0  ( m m )

 p r e s e n t  5  e l e c t r o d e  t r a p  ( r 0 = 3 . 5 m m )
 o p t i m i z e d  5  e l e c t r o d e  t r a p  ( r 0 = 3 . 5 m m )
 o p t i m i z e d  5  e l e c t r o d e  t r a p  ( r 0 = 5 m m )
 n e w  t r a p  ( r 0 = 5 m m )
 t o l e r a n c e s

Figure 7.3: Study of the axial frequency shifts of a proton caused by electric field imperfections
as a function of the excited axial amplitude (𝑈𝑟 = −7 V → 𝜈𝑧(proton) = 625 kHz). Four
different scenarios are studied: (1) the present five-electrode trap with 𝑟0 = 3.5 mm (turquoise);
(2) a compensated (𝐶4 = 𝐶6 = 0) five-electrode trap with 𝑟0 = 3.5 mm (green); (3) a
compensated five-electrode trap with 𝑟0 = 5 mm (red) and (4) the new optimized seven-
electrode trap with 𝑟0 = 5 mm (blue). The black shaded area denotes the axial shifts of the
new trap in case of deviations in the electrode lengths and the inner trap radius of 𝛿𝑙 = ±15 µm
and 𝛿𝑟0 = ±15 µm. For further details, see text.

7.1.4 Handling the Combined Orthogonality
For a comfortable handling of the trap a certain level of orthogonality is of great importance.
In this section, the on-line optimization of the trapping potential is studied with respect
to the weaker combined orthogonality. Due to the large single 𝐷2’s: 𝐷21 = −0.798 and
𝐷22 = 0.943, see eq. (7.14), 𝐶2 and thus the axial frequency strongly depend on the chosen
tuning ratios of the correction electrodes 𝑇𝑅1 ≡ 𝑈𝑐1/𝑈𝑟 and 𝑇𝑅2 ≡ 𝑈𝑐2/𝑈𝑟. However,
the optimized combined 𝐷comb

2 = −1.9 · 10−7, see eq. (7.15), enables a seven orders of
magnitude smaller dependence of the axial frequency by changing both tuning ratios by
the same relative size, see table 7.2. It is remarkable, that the axial frequency depends
even more strongly on the change of the correction electrode voltages, see line two and
three in table 7.2, than on the modification of the ring voltage (line four). In that way, it
is difficult to handle 𝑈𝑐,1 and 𝑈𝑐,2 separately.
In table 7.3, I study three different trap configurations: (1) the optimized trap; (2) a
trap, where the electrode lengths deviate up to 15 µm, and (3) a trap, where the electrode
lengths, as well as the trap radius and the electrode distances deviate up to 15 µm. The
second column specifies the size of the corresponding 𝐷comb

2 . In the third column the axial
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Figure 7.4: Comparison between the signal-to-noise ratio (SNR) of the axial peak signal for
the present (turquoise) and future (blue) experimental setup as a function of the excited axial
amplitude, also including the axial frequency shifts caused by electric field imperfections. For
details see text.

frequency shift of a thermalized proton (𝑧0 = 55 µm 𝑟+ = 𝑟− = 6.8 µm) is given in case
of a 10% modification of 𝐷comb

2 by changing 𝑈𝑐1 and 𝑈𝑐2 by 10%. For comparison in the
fourth column the axial shifts are listed, when 𝐷comb

2 is not modified.
In the following, I assume an imperfect seven-electrode trap with 𝛿𝑙 = ±15 µm, 𝛿𝑑𝑑 =
±15 µm and 𝛿𝑟0 = ±15 µm, which corresponds to the third scenario presented in table 7.3
(third line), to study the on-line optimization of the trapping potential, performed in
two steps. I start this optimization with the predicted values given in table 7.1. In the
following I cancel 𝐶4 by a modification of 𝐷comb

2 , which generates an axial frequency shift
of only 26 Hz, see second line in table 7.4. Afterwards, I cancel 𝐶4 and 𝐶6 by a stepwise
adjustments of 𝑇𝑅1 and 𝑇𝑅2, which generate acceptable axial frequency shifts of 54 Hz at
most. In that way, the handling of the trap voltages during the on-line adjustment of the
trap harmonicity seems to be manageable.

7.1.5 Final Design of the Seven-Electrode Proton Trap
The assembling and commissioning of the new experimental setup will be part of the
doctoral thesis of Jiamin Hou. In the following section I will present the final design of the
seven-electrode proton trap, which is presented in fig. 7.6.
At the moment, the electrodes are being manufactured by the precision mechanics workshop
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Table 7.2: Study of the combined orthogonality. In four scenarios we study the sensitivity of
the axial frequency of the proton (𝑈𝑟 = −7V) as a function of voltage changes at the correction
electrodes and the ring electrode. In the second column the corresponding axial frequency
shifts for a proton are listed, 𝜈𝑧(proton) = 625 kHz. Here, I assume a thermalized proton with
𝑧0 = 55 µm, 𝑟+ = 𝑟− = 6.8 µm.

modification of TR’s |𝛥𝜈𝑧(proton)| (Hz)
1% in 𝑇𝑅1 and 𝑇𝑅2 0.7
(= 1% in 𝐷comb

2 )
1% only in 𝑇𝑅1 4027
1% only in 𝑇𝑅2 4052
1% only in 𝑈𝑟 3114

Table 7.3: Study of axial frequency shifts caused by 10% modifications of 𝐷comb
2 and different

trap imperfections. In the first line modifications in the optimized trap are calculated. In the
the second line (imperfect trap I) only the lengths of the electrodes deviate: 𝛿𝑙 = +15 µm,
𝛿𝑟0 = 0 µm, 𝛿𝑑𝑑 = 0 µm. In the third line (imperfect trap II) also the trap radius and the
electrode distances deviate: 𝛿𝑙 = +15 µm, 𝛿𝑟0 = −15 µm, 𝛿𝑑𝑑 = 15 µm. In the third column
the ion is thermalized: 𝑧0 = 55 µm 𝑟+ = 𝑟− = 6.8 µm. In the fourth column the excited proton
has the following amplitude and radii: 𝑧0 = 1 mm, 𝑟+ = 𝑟− = 6.8 µm.

trap 𝐷comb
2 𝜈𝑧 shift (Hz) by 10% 𝜈𝑧 shifts (Hz)

configurations change of 𝐷comb
2 at 𝑧0 = 1 mm

optimized trap −1.9 · 10−7 7 −0.004
imperfect trap I 0.013 693 0.031
imperfect trap II 0.031 1648a 0.089

a In case of an additional offset potential of +100 mV applied to one of the correction electrodes I of
imperfect trap II a 10% change of all four correction voltages would cause a 2 kHz shift in the axial
frequency.

of the faculty of physics in Mainz, see fig. 7.5. The cylindrical electrodes are made of
OFHC copper and have been produced on a lathe with accuracies of the inner diameters
and axial lengths below 10 µm. The reached parallelism of the upper and lower sides of the
electrodes is also well below 10 µm. To optimize the equality of the inner diameter of both
correction electrodes and the ring electrode and furthermore to optimize the alignment
of their inner surfaces, the electrodes are at first separately produced with smaller inner
diameters. Afterwards they are stacked on top of each other with proper brass rings in
between and finally the inner surface of the complete electrode stack is machined to the
final inner diameter.
Cooling the trap setup from room temperature ≈ 293 K to 4.2 K, the copper electrodes
have a shrinking coefficient of 𝜂Cu = 1.00324 [159], so that the production lengths of the
electrodes amount to: 𝑙𝑟 = 1.021 µm, 𝑙c1 = 1.976 µm and 𝑙c2 = 3.336 µm2. Unfortunately

2 Here, also the 15 µm gold/silver layers have been considered.
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Table 7.4: Study of the on-line optimization of the trapping potential of an imperfect trap.
Starting (first line) with the predicted voltages given in table 7.1, then canceling 𝐶4 by scaling
of 𝐷comb

2 (second line) and finally canceling 𝐶4 and 𝐶6 by tiny modifications of 𝑇𝑅1 and 𝑇𝑅2,
the on-line operation of the trap seems to be manageable due to the relatively small axial
frequency shifts listed in the fourth column. For further details see text.

𝑈𝑐1 (V) 𝑈𝑐2 (V) 𝜈𝑧 (Hz) 𝛥𝜈𝑧

start with optimized voltages −6.7450 −5.7089 621592 0
minimize 𝐶4 by scaling 𝐷comb

2 −6.7266 −5.6933 621618 26
minimize 𝐶4 and 𝐶6 by 𝑇𝑅1 and 𝑇𝑅2 −6.7437 −5.6897 621662 54

Figure 7.5: Photo of the new trap electrodes. From left to right: outer endcap, inner
endcap one, inner endcap two, correction electrode two, correction electrode one, ring electrode,
correction electrode one, correction electrode two, inner endcap two, inner endcap one, outer
endcap. As a reference a one euro cent coin is placed below the ring electrode. All electrodes will
be coated by a ≈ 3 µm silver layer and on top a ≈ 12 µm pure gold layera. The inner correction
electrodes as well as the ring electrode will be split in an electrical discharge machining (EDM).
Each endcap electrode has been subdivided into three parts (outer endcap, inner endcap one,
inner endcap two) to enable a reliable transport of the trapped ions. For further details, see
text.

a At the moment, the layer thicknesses are not completely settled. The thickness of the silver layer will be
0 − 4 µm and the thickness of the gold layer will be 11 − 15 µm so that the absolut thickness amounts to
15 µm.

the shrinking coefficient of the insulator rings between the electrodes, made of sapphire
or quartz glass (𝜂quartz ≈ 𝜂sapphire = 1.0008045) [159], is smaller than the shrinking
coefficient of copper. When fixing the electrodes from outside by the insulator rings, like
in the present Penning trap design, see fig. 3.3(a), adjacent electrodes could get radially
misaligned during the cooling process. Using insulator rings with an inner diameter of
17 µm such misalignment would amount up to 20 µm. To circumvent this undesired effect,
a sophisticated stacking design has been developed, where the ring and both correction
electrodes embrace T-shaped quartz glass rings, see fig. 7.6. Consequently, during the
cooling process the copper electrodes shrink on these quartz glass rings and in that way
automatically align. Due to the more complex ring geometry, quartz glass has been chosen
for the three central insulator rings instead of sapphire, which is more difficult to machine.
Moreover, trap capacitances are reduced by using quartz glass (𝜀𝑟 ≈ 3.75 at 25∘ and
103 − 109 Hz) instead of sapphire (𝜀𝑟 = 9.3...11.5 at 25∘ and 103 − 109 Hz). These quartz
glass rings have been produced with tolerances < 5µm by Aachener Quarz-Glas Technologie
Heinrich in Aachen, Germany, and the sapphire rings (also the three pads and the rod, see
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Figure 7.6: Cross section of the final design of the seven-electrode proton trap. Illustration
of the sapphire and quartz glass rings fixing the electrodes. For details see text.

below) also with tolerances < 5 µm by the Saphirwerk AG in Brügg, Switzerland. For the
cyclotron resonators, see also below, as well as for the quadrupole excitation, the ring and
the inner correction electrodes are vertically split. The electrode splitting into two parts
will be realized in a spark eroding process, also stated as electrical discharge machining
(EDM). Such as for the existing traps, see section 4.1.5, the copper electrodes will be finally
coated by a 1 µm silver layer and on top a 14 µm pure gold layer, deposited in galvanic
processes. For the fixing of the split electrodes on one side three tiny sapphire pads will
be placed within the vertical slits and on the other side one single rod will align all three
electrodes, see also fig. 7.6. Preventing the split electrodes to fall apart additional copper
rings (shown in red) fix these electrodes by two ceramic screws for each split electrode.
For an unperturbed electric field configuration the electrodes are designed in a way that
from the inside of the trap only the gold plated electrode surfaces can be seen. A staged
design of the neighboring electrode surfaces ensures that this requirement also holds for
the slits between the electrodes, see again fig. 7.6. Furthermore, the electrode distances
amount to 140 µm only for the inner part of the trap; in the outer part of the trap the
electrode distances are significantly enlarged to decrease the trap capacitances.

Further Technical Characteristics of the Trap
The axial effective electrode distances 𝐷 are given in table 7.5.

The Cyclotron Resonator of the Proton
Two tuned cyclotron resonators are required for the cooling of the modified cyclotron
motions of the proton as well as of the reference particle 12C6+. Placing these resonators
outside of the trap chamber, the undesired inductance of the wire (≈ 10 cm) would
significantly contribute to the total inductance. Therefore, these resonators will be placed
in cylindrical OFHC copper boxes into the trap chamber next to the trap tower. One
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Table 7.5: Effective electrode distances 𝐷 of the new trap in axial direction for different
electrode combinations.

electrodes 𝐷 (mm)
correction I and II 9.1
correction I 20.4
correction II 16.3
correction II and endcap 12.3

resonator box is spatially limited to a height of 9 cm and a diameter of < 20 mm.
The cyclotron resonator of the proton requires a resonance frequency of 𝜈res = 57.380 kHz
(𝑈𝑟 = −12.5 V) and a quality factor of at least a few 1000 to reach cooling times constants
in the order of several seconds. Assuming a trap capacitance of 12 pF and a resonator
capacitance of 3 pF, an inductance of 𝐿 = 1/(𝐶tot𝜔

2
res) ≈ 0.52 µH is required.

Using an ultra-pure alu-wire (99.999% purity) with a wire diameter of 1mm and a measured
residual resistive ratio (RRR) of about 1245(140), a helical resonator (19 windings, inner
winding diameter: 9.6 mm and distance of adjacent windings: 1 mm) has been built, which
features a resonator capacitance of 3.03 pF, an inductance of 0.63 µH, free quality factors
of 2300 at 4.5 K and 340 at room temperatures. Further studies of different wire materials
and annealing processes are prepared.

7.2 Outlook
In this final section I will highlight the next generation of bound electron g-factor ex-
periments currently being set up at GSI and MPIK as well as the upgrade plans of the
experimental setup presented in this thesis.

7.2.1 Bound-Electron g-Factor Measurements at Heavy Highly Charged Ions
High-precision tests of quantum electrodynamics in the strongest accessible electric fields
are performed on atomic energy transitions of heavy highly charged ions. Due to the (𝑍𝛼)𝑛

scaling of the radiative QED corrections even the Schwinger Limit can be approached at
very large 𝑍, see fig. 2.2, e.g. causing large vacuum polarization contributions.
Especially for heavy highly charged ions two different measurement approaches exist for
the determination of the studied Zeeman transitions:

• On the one hand the continuous Stern-Gerlach effect can be applied, see section 3.5,
which requires an additional Penning trap with a large magnetic bottle. Considering
heavy ions, it is a enormous challenge to resolve the axial frequency shifts generated by
the induced spin-flips, due to their inverse scaling with the ion’s mass and their linear
scaling with the g-factor. Regarding boronlike lead (𝑍 = 82, 𝑔(208Pb77+) ≈ 0.60) the
axial frequency shift in our present analysis trap (𝐵2 ≈ 10.5 ·103 T/m2, 𝜈𝑧 = 412kHz)
would amount to 𝛥𝜈𝑧 ≈ 10 mHz. As discussed in section 6.1, already the resolution of
the spin-flips of lithiumlike calcium 48Ca17+ (𝛥𝜈𝑧 ≈ 140 mHz) has been a challenge.

• On the other hand the energies of the ground-state hyperfine splitting (HFS) in
hydrogenlike and lithiumlike ions scale with the third power in the nuclear charge.
Consequently these transitions shift into the laser-accessible region for 𝑍 > 60,
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enabling laser-microwave double-resonance spectroscopy, e.g. described in [151].
Here, probing of the Zeeman transition in the microwave range is combined with a
simultaneous optical detection of the spin-state by laser spectroscopy of the fine or
hyperfine structure. During such a measurement the ion is placed in a single Penning
trap. No additional Penning trap including a large magnetic bottle is needed.

Due to the large ionization energies of heavy, highly charged ions an external ion production
and subsequent injection into the experimental setup is required. For this purpose two
prominent facilities are used: (1) HITRAP [160] located at the GSI Helmholtzzentrum
für Schwerionenforschung GmbH in Darmstadt. Here, highly charged ions will be loaded
from the experimental storage ring (ESR) (initial energy ≈ 400 MeV/u) into the HITRAP
facility for deceleration and cooling (final energy ≈ 0.3 meV). (2) The other facility, the
Heidelberg EBIT [161] is located at the Max-Planck-Institut für Kernphysik (MPIK) in
Heidelberg. It is one of the three high-energy electron beam ion traps (EBIT), which are
presently in operation worldwide. So-far, hydrogenlike barium (𝑍 = 56) has been observed
in the Heidelberg EBIT. Heavier systems requiring higher electron beam energies are in
preparation.
These days the following two different experiments are built to measure bound-electron
g-factors of heavy highly charged ions.

ARTEMIS
ARTEMIS (AsymmetRic Trap for the measurement of Electron Magnetic moments in IonS)
is currently setup in the group of Wolfgang Quint at the HITRAP facility [151, 152]. In its
first configuration it is based on laser-microwave double-resonance spectroscopy [151, 152].
In general, tests of BS-QED are planned. Beyond that, nuclear magnetic moments will
be determined in absence of diamagnetic shielding. Combinations of measured 𝑔𝐹 -factors
allow the simultaneous determination of electronic g-factors (𝑔𝐽) and nuclear g-factors (𝑔𝐼)
from one experiment. One of the first measurement campaigns will focus on boronlike
argon 40Ar13+, where also higher-order contributions of the Zeeman effect can be measured
for the first time in highly charged ions [53].

ALPHATRAP
ALPHATRAP will be a successor experiment of the experiment presented in this thesis,
specialized in bound-electron g-factors of highly charged ions in the lead region. At the
moment this experiment is developed and assembled in the group of Sven Sturm at MPIK.
The detection of the Larmor frequency is based on the continuous Stern-Gerlach effect. The
trap radius of the precision trap (𝑟 = 9 mm) is a factor of ≈ 2.6 larger than in the existing
setup. In that way, the present dominant systematic uncertainty, the image charge shift,
is reduced by a factor of 2.63 ≈ 17. Ions up to hydrogenlike lead (𝐸ion = 99.5 keV) will
be injected from the Heidelberg EBIT. Various bound-electron g-factor measurements are
planned on heavy highly charged ions without nuclear spins. Based on the idea of Vladimir
M. Shabaev and colleagues, nuclear size contributions which limit the BS-QED in very
strong fields will be significantly reduced by measuring e.g. the g-factors of hydrogenlike
and lithiumlike ions of the same isotope [51]. Moreover, measuring the g-factor difference
of a boronlike and a hydrogenlike ion of the same isotope in the lead region (𝑍 = 82)
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will provide an alternative excess to the fine structure constant 𝛼 [149]. Since the nuclear
contributions cancel to a large extent, the g-factor contribution with the largest contribution
to 𝛼 is the Breit term, a relativistic non-QED term.

7.2.2 High-Precision Measurement of the Atomic Proton Mass
In the near future the present bound-electron experiment will be rebuilt for a direct high-
precision measurement of the atomic proton mass, as already mentioned in section 7.1. Here,
the cyclotron frequency-ratio of the proton and a carbon nucleus 12C6+ will be measured
with the relative precision of about 1 · 10−11. The underlying measurement principle has
been developed by Sven Sturm. In order to cancel the impact of residual magnetic field
fluctuations, which represents the dominant limitation of the present measurements, the
cyclotron frequencies of the carbon ion and the proton will be alternately compared to a
highly charged reference ion with a phase-sensitive measurement technique in a four-trap
setup. The rebuilt setup is illustrated in fig. 7.7. A two-step measurement procedure

Reference Trap Measurement Trap
Storage Trap

One
Storage Trap

Two

Creation
Trap

UMF

y

z

x

Figure 7.7: Illustration of the new Penning trap tower consisting of four Penning traps: (1) A
measurement trap, based on the trap design introduced in this chapter, with an inner diameter
of 10 mm. (2) A reference trap, which is the precision trap (PT) of our present setup. (3-4)
Storage traps I and II. For further details see text.

will be performed, in which the proton and carbon ion are alternatively loaded into the
measurement trap (MT). In the first step we measure simultaneously the modified cyclotron
phase of a single proton placed in the MT against the modified cyclotron phase of a single
highly charged ion, e.g. silicon, placed in the reference trap (RT). During that measurement
the carbon ion is stored in the storage trap one (ST I). In the second step the proton is
transported into storage trap two (ST II) while the carbon ion is transported into the
measurement trap. Subsequently, the cyclotron phase of the carbon ion is simultaneously
measured against the cyclotron phase of the silicon ion in the reference trap. By comparing
these two cyclotron phase differences magnetic field fluctuations cancel to a large extent.
To minimize systematic magnetic field shifts, the proton and the carbon ion are placed
at the same position in the measurement trap, by applying exactly the same trapping
voltages in both measurement steps. In that way, each ion requires its own axial resonator,
which have to be exactly tuned with respect to the other axial resonator. Furthermore,
two high-Q cyclotron resonators will be mounted, allowing an efficient way of cooling the
modified cyclotron modes to liquid-helium temperatures.
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A subsequent measurement campaign will focus on a high-precision value of the atomic
mass of deuterium. In combination with a high-precision measurement of its binding
energy, which is currently prepared at the Institute Laue-Langevin (ILL) in Grenoble, and
the new value of the atomic mass of the proton, the atomic mass of the neutron could be
significantly improved.

With these very exciting perspectives I conclude my thesis.
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