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Abstract

The resonant-Auger � interatomic Coulombic decay (RA-ICD) cascade was re-

cently proposed as a very e�cient means of controlling the generation site and

energies of slow ICD electrons. The control mechanism was veri�ed in a series

of experiments where both the energy of the photons producing the initial core

excitation, and the neighbouring species were varied. The aim of this thesis is

to provide a detailed theoretical investigation of the RA-ICD cascade in rare-gas

dimers and give a �rst insight into the course of the cascade in aqueous medium.

The potential energy curves (PECs) of ionisation satellites are key ingredients

in the theoretical description of electronic decay cascades. In the �rst chapter,

we conducted a study on the PECs of the ionisation satellites of the ArHe dimer

with a view to modelling such PECs in heavier dimers. Our results show that the

complex valence structure in the rare-gas atom leads to the mixing of di�erent

electronic con�gurations of the dimer, which prevents one from assigning a single

dicationic parent state to some of the ionisation satellites.

In the second part of the thesis, we present and analyse the ICD-electron

and kinetic-energy-release (KER) spectra following di�erent resonant core exci-

tations of Ar in the rare-gas dimers Ar2 and ArKr. We demonstrate that the

manifold of ICD states populated in the resonant Auger process consists of fast-

and slow-decaying ionisation satellites, and that the accurate description of nu-

clear dynamics in the latter ICD states is crucial for obtaining theoretical electron

and KER spectra in good agreement with the experiment. We also show that

by varying the neighbouring atom one can tune the energies of the emitted ICD

electrons and even control the ICD yield.

Finally, as a �rst step towards the investigation of the RA-ICD cascade in

aqueous medium, we present and discuss the X-Ray absorption spectra of micro-

solvated clusters of Na+ and Mg2+ at the metal 1s threshold. In this case it is

important to investigate the nature of the core-excited states prior to studying the

RA-ICD cascade, since in a solution the excited electron is delocalised and may

ionise within the lifetime of the core hole, thus changing the course of the cascade.
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Our �ndings show that for a complete �rst solvation shell, the excited electron

becomes spatially extended towards the water molecules.



Kurzfassung

Ein als resonanter Auger-Interatomarer Coulombzerfall (RA-ICD) bezeichneter

Kaskadenprozess wurde vor kurzem als e�zienter Mechanismus für die Kontrolle

der Ausgangszentren und der Energien von langsamen ICD-Elektronen vorgeschla-

gen. Dieser Kontroll-Mechanismus konnte in einer Reihe von Experimenten veri-

�ziert werden, in denen sowohl die Photonenenergie zur Erzeugung der anfänglichen

Core-Anregung als auch die jeweiligen Nachbar-Atome variiert wurden. In der

vorliegenden Arbeit wird eine detaillierte theoretische Untersuchung der RA-ICD-

Kaskade in Edelgas-Dimeren vorgestellt und ein erster Einblick in den RA-ICD-

Mechanismus im �üssigen Medium gegeben.

Für die theoretische Beschreibung von elektronischen Zerfallskaskaden sind

die Potentialkurven der ionischen Satellitenzustände grundlegend. Am Beispiel

des ArHe-Dimers werden die Potentialkurven der Ionisierungssatelliten berechnet

und analysiert, wobei auch eine Modellierung von Potentialkurven für Dimeren

aus schwereren Atomen diskutiert wird. Wie unsere Ergebnisse zeigen, führt die

komplexe elektronische Struktur im Valenzbereich des Edelgasatoms zu starker

Mischung unterschiedlicher elektronischer Kon�gurationen in den Zuständen des

Dimers, so dass man einige Ionisierungssatelliten nicht einem einzigem dikationis-

chen Ausgangszustand zuordnen kann.

Im zweiten Teil der Arbeit untersuchen wir die ICD-Elektronen- und KER-

Spektren (kinetic-energy release) nach resonanter Core-Anregung von Ar in den

Edelgas-Dimeren Ar2 und ArKr. Wie wir zeigen, besteht die Vielfalt der durch

den resonanten Auger-Prozess populierten ICD-Zustände in schnell oder langsam

zerfallenden Ionisierungssatelliten. Eine genaue Beschreibung der Kerndynamik

dieser ICD-Zustände ist erforderlich, um theoretische Elektronen- und KER-Spektren

in guter Übereinstimmung mit dem Experiment zu generieren. Durch spezi�sche

Wahl des Nachbaratoms lassen sich die Energien der emittierten ICD-Elektronen

gezielt variieren und sogar die ICD-Intensitäten kontrollieren.

Als ein erster Schritt zur Untersuchung von RA-ICD-Kaskaden im �üssigen

Medium werden Röntgenabsorptionsspektren von mikro-solvatiserten Na+- und

iii
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Mg2+-Clustern an der 1s-Schwelle der Metalle untersucht. Hier ist es wichtig, vor

der RA-ICD-Kaskade zunächst die Core-angeregten Zustände selber zu analysieren,

da in Lösung das angeregte Elektron delokalisiert und Ionisierung innerhalb der

Lebenszeit des Core-Loches möglich ist. Dies ändert den Verlauf der RA-ICD-

Kaskade gegenüber dem Fall der Gasphase. Unsere Resultate zeigen, dass bei voll-

ständiger erster Solvatisierungsschale das angeregte Elektronen über die Wasser-

moleküle räumlich ausgedehnt ist.
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Chapter 1

Introduction

Radiation with su�ciently high energy can excite or ionise an electronic system,

such as an atom or a molecule. The excited or ionised system subsequently relaxes

by emitting photons, electrons, or by processes involving nuclear dynamics. The

relaxation pathway depends on many factors, for example, on the nature and

energy of the excited state, on the available �nal states, on symmetry and spin

selection rules, etc. In the case of core-excited or -ionised atoms and molecules,

there are two possible decay channels � non-radiative Auger decay and radiative

decay [1]. In the Auger process, the core hole is �lled by an outer electron and

an electron of high kinetic energy is emitted within femtoseconds. For heavier

elements, emission of an X-Ray photon is the dominant decay channel, while the

light elements usually relax via Auger decay, i.e. by emission of electrons [2].

In the case of the valence-excited or -ionised states of isolated species typically

only the relaxation by emitting a photon is energetically open. Importantly, this

radiative decay takes place usually on the nanosecond timescale [3]. The situa-

tion is, however, very di�erent when the excited or ionised system is embedded

in an environment, where an additional decay channel involving the neighbouring

species from the environment becomes operative. This novel relaxation pathway,

termed interatomic/intermolecular Coulombic decay (ICD) was �rst predicted the-

oretically by Cederbaum and co-workers in 1997 [4]. In this process, the initially

excited or ionised species relaxes by transferring its excess energy to the neighbour,

thus, ionising it.

Since the discovery of ICD, many experimental and theoretical studies have

focused on both the systems in which it can occur and the processes which can

trigger it. Thus, ICD was found to be a very general de-excitation process inherent

in weakly-bound matter, like rare-gas clusters [5, 6], hydrogen-bonded clusters

[4, 7, 8], endohedral fullerenes [9], or even quantum dots [10, 11]. Moreover, it was

found that ICD is a very e�cient process [12, 13] taking place on a femtosecond

1



2 Chapter 1

timescale [14, 15], therefore, outpacing the radiative decay and in some cases even

competing with Auger decay [16, 17]. The generality of ICD is also manifested in

the variety of processes that can initiate it. Thus, it was found that ICD can occur

upon irradiation with photons [6], ion [18, 19] and electron bombardment [20, 21],

or as one of the stages of complex decay cascades, for example, after Auger decay

[22�24].

In addition to its diversity, ICD has attracted attention also with its potential

applications. For example, ICD following photoionisation has already been suc-

cessfully used as a spectroscopic tool to retrieve structural information [25]. This

novel application of ICD relies on competing ICD processes of an inner-valence

ionised species with di�erent neighbours. Fasshauer et al. [25] demonstrated on

the example of large clusters of Ar and Ne that the kinetic-energy distribution

of the emitted slow ICD electrons following inner-valence ionisation of Ne can be

used to identify the structure of the clusters.

Biology is another �eld where ICD can be of great importance. Living cells

and tissues are constituted of a bounty of chemical species, functioning in aqueous

environment and often through interaction with light. Moreover, since most of

these species participate in hydrogen-bonded networks or coordination complexes,

where ICD is abundant [4, 7, 8, 26, 27], they indisputably are the perfect candidates

for undergoing ICD and related processes. For example, it was shown that the

process behind the DNA repair function of the enzyme photolyase is ICD [13].

The authors also discuss that the quantum yield of this process is close to unity,

implying the high e�ciency of ICD in a biological system. Being omnipresent in

hydrogen-bonded species [26], ICD, producing low-energy electrons and radical

cations, naturally contributes also to the radiation-induced damage in biological

matter. Indeed, the low-energy electrons and radical cations are known to be

genotoxic agents e�ectively damaging DNA [28�30]. For this reason, a large part

of the recent scienti�c research on ICD and ICD-like processes has been focused on

their biological impact [7, 8, 13, 26, 31�33]. This interest is driven not only by the

desire to understand the fundamental processes causing DNA damage, but also to

learn how to control these elementary decay mechanisms. An interesting example

along this line is the possibility to switch ICD on and o� by varying the pH of the

medium [34]. Such control schemes o�er a potential use of ICD in radiation-based

cancer therapies as a means of controlled radiation damage and targeted release
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of low-energy electrons and radicals using molecular and nanoparticle targets [29].

It has been demonstrated that radiation damage can be crucial to macro-

molecular crystallography, where X-Rays are employed for structural characteri-

sation of macromolecules [30, 35]. Upon irradiation of protein crystals with X-Ray

photons, the obtained photoelectrons and radicals can initiate chemical reactions

[30, 35]. Usually these reactions cause speci�c damage such as ablation of carboxy-

late groups, cleavage of disul�de bonds and reduction of metal centres. In the case

of enzymes, for example, di�erent oxidation states of the metal centre result in

di�erent coordination of the ion implying that the stereochemistry of the macro-

molecule changes upon radiation [35]. Consequently, studying the response of

loosely bound metal ions to high-energy radiation can elucidate the precise mech-

anisms of radiation damage. The e�ect of ionising radiation on solvated metal

ions has already been reported in the literature [16, 17]. Pokapanich et al. mea-

sured the Auger spectra of aqueous K+ and Ca2+. The authors observe that the

interaction of the metal ions with the surrounding medium leads not only to large

chemical shifts of the peaks in the Auger spectra, but also to the appearance of

additional peaks from the competing core-like ICD process, which will inevitably

generate slow electrons and reactive cations.

In most of the cases discussed above, ICD is initiated by ionising radiation. In

a polyatomic system, such radiation can ionise all atoms with ionisation potentials

below the energy of the impacting photons, implying that one cannot selectively

initiate ICD at a particular location. This poses the intriguing question whether

one can exercise control over the course of ICD, its location and the energies of

the emitted genotoxic radical cations and slow electrons, and thus use ICD as a

source of controlled radiation damage.

A very e�cient means of controlling the ICD process suggested recently by

Gokhberg et al., utilises resonant core excitation to trigger ICD [32]. The so-

called resonant-Auger � ICD (RA-ICD) cascade (see Fig. 1.1) is very attractive

for its site- and energy-selectivity. The site-selectivity of the process is achieved by

adjusting the energy of the initial photon in order to excite speci�c atoms in a large

molecule. This highly energetic core-excited state will then undergo Auger decay,

whereby a valence electron �lls the initial vacancy and another valence electron is

emitted. The latter mechanism is called �spectator� Auger decay and it produces

ionised-excited satellite �nal states [37]. In the alternative, �participator�, process
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Figure 1.1: Schematic representation of the resonant-Auger � ICD decay

cascade: (a) resonant core excitation of Ar, resulting in the population of

Ar(2p−1nl)Ar state. (b) subsequent resonant Auger decay proceeding mostly

according to the spectator model [36] in which the excited electron does not

participate in the decay process. The excited electron can also hop to a higher

virtual orbital (shake-up process). The �nal states are ionised-excited states of

two-hole-one-particle (2h-1p) character: Ar(3p−2n′l′)Ar. (c) The majority of

the �nal states of the resonant Auger process undergo interatomic Coulombic

decay, in which the excited electron de-excites and the excess energy is trans-

ferred to the neighbour, thus ionising it. The �nal states of the ICD process are

two-site dicationic states Ar+(3p−1)Ar+(3p−1). Due to the repulsion between

the charges, the system fragments in a Coulomb explosion.

the initially excited electron participates in the decay, which results in �nal states

with a hole in the inner- or outer-valence shell, the so-called main states [37]. For

the core-excited states considered in this work, the latter process was shown to

be the less e�cient de-excitation pathway [37, 38], therefore, only the spectator

Auger decay will be considered.

The resonant excitation of core electrons is a very sensitive probe of local

electronic properties as evidenced by selective excitation of electrons localised on

identical atoms placed in di�erent chemical environment [39] and also by the X-
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Ray absorption spectra of rare-gas clusters and solids at the Ne and Ar K-edges

[40�42]. Hence, the photon energy deposition and the following ICD step happen

at a speci�ed location. Moreover, since the excitation proceeds resonantly, by

tuning the incident photon energy a core electron can be controllably promoted

to di�erent virtual orbitals. This will result in the population of di�erent satellite

states in the resonant Auger process [38, 43], and their subsequent interatomic

decay will lead to di�erent distributions of ICD electrons.

After its prediction, the RA-ICD cascade has been experimentally observed in

the nitrogen and carbon monoxide dimers following core excitation at the oxygen

and nitrogen K-edges [44], and in Ar-containing rare-gas dimers following excita-

tion from the Ar 2p level [45�47]. The detailed experimental studies of the process

in Ar2, ArKr, ArXe, and ArNe demonstrated the functioning of the control mech-

anism [45�47]. In these experiments the cascade was initiated by resonant photon

excitation of a 2p core electron of Ar to the 4s or the nd (n = 3, 4, 5) virtual

orbital. The resulting ICD-electron spectra indeed show marked dependence on

the parent core excitation. For example, the spectra obtained in Ar2, ArKr, and

ArXe following Ar(2p3/2 → 4s) excitation show a pronounced peak between 0 and

2 eV and a weaker peak between 2.5 and 4 eV, while the spectra obtained following

Ar(2p3/2 → 3d) excitation have a characteristic double-peak structure shifted to

higher energies [47]. The di�erence is due to the larger probability of shake-up pro-

cesses in the resonant Auger decay of the 2p3/2 → 3d excitation of Ar [36, 38, 48]

leading to a noticeable population (up to 60%) of higher lying Ar+(3p−24d, 5d)

satellite states.

The distribution of ICD electron energies can be qualitatively obtained using

a simple model, where one assumes no interaction between atoms in the satellite

states, pure Coulomb repulsion in the �nal states, and instantaneous decay [32].

Therefore, only readily available energies of di�erent states of Ar+ and the ground

state equilibrium distance of the corresponding dimer are necessary for computing

ICD spectra. However, in Ar2 such qualitative approach overestimates the energies

of ICD electrons deriving from the decay of higher-lying satellites [45]. Moreover,

the observed kinetic-energy-release (KER) spectra show a complicated structure

indicative of nuclear dynamics taking place during the decay. Thus, if one wishes to

achieve a more detailed understanding of the resonant-Auger � ICD cascade, both

accurate potential energy curves (PECs) and accounting for the nuclear motion
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are indispensable.

For this reason, one of the major goals of this work is to perform a full quan-

tum dynamical description of the RA-ICD cascade and thus to study what role

the accurate interaction energies in the decaying and �nal states of ICD and the

nuclear dynamics during the decay play in shaping the ICD-electron and KER

spectra. Within this thesis such a study was performed in two rare-gas dimers,

Ar2 and ArKr. For the full quantum mechanical simulation of the dynamics one

needs accurate ab initio potential energy curves and ICD widths as an input.

The methodology used for obtaining the PECs of the investigated systems is out-

lined in Chapter 2. The computation of the decay widths and the theory of wave

packet propagation as applied to the case of the RA-ICD cascade are presented in

Chapter 2. The computational details as well as the results and discussion of the

ICD-electron and KER spectra following the Ar(2p → 3d, 4s) core excitations in

Ar2 and ArKr are given in Chapter 4.

The structure of the ICD-electron and KER spectra depends not only on the

speci�c manifold of decaying states, but also on the nature of the neighbouring

species. Experimental studies of the role of the partner atom in the RA-ICD

cascade con�rm that the partner atom's choice can in�uence the ICD emission

[47] and, moreover, that it can serve as a switch for particular decay channels [45].

In Chapter 4 we also present for the �rst time a detailed theoretical investigation

of the e�ect of a chemically �softer� neighbour on the ICD spectra. To this end, we

compare the theoretical ICD spectra of ArKr and Ar2 produced in the RA-ICD

cascade following the 2p3/2 → 4s, 2p1/2 → 4s and 2p3/2 → 3d core excitations

of Ar. We also compared our theoretical results with the available experimental

data [47, 49] and with the theoretical spectra in Ref. [32] obtained using a simple

model of the cascade.

The sensitivity of the RA-ICD cascade to the energy of the initial photon

as well as to the neighbours surrounding the core-excited species can be used for

structural analysis of large mixed rare-gas clusters. It is known that the core-

excitation energies of rare-gas clusters depend both on the cluster size and on the

location of the atoms in the cluster [41, 42]. Consequently, using a resonant core

excitation, it is possible to selectively trigger ICD at di�erent sites in the clusters

� on the surface, in the bulk or at interfaces. The combination of the site-selective

resonant core excitation and the neighbour-dependent ICD process can �nd an
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application as a very accurate and powerful tool for spectroscopic characterisation

of clusters.

In the theoretical description of the RA-ICD cascade in dimers, we assume that

the resonant Auger process is of local nature, i.e. not in�uenced by the presence of

a neighbour. Indeed, experimental studies on both the X-Ray absorption (XAS)

spectra and on the RA-ICD process in dimers have con�rmed that this assumption

is valid [46, 50]. The situation, however, changes if the core-excited species is

embedded in an environment. The e�ect of the surrounding medium on the core-

excitation spectra and on the course of the subsequent relaxation in noble-gas

clusters has been the subject of several experimental studies [40, 42]. First, it

has been shown that the energies of the resonant core excitations depend on the

positions of the atoms in the cluster (on the surface or in the bulk) and on the

cluster-size, reaching up to ∼1 eV deviation from the atomic values [42]. Second,

it has been observed that the resonant Auger spectra following the decay of higher

core-excited states deviate signi�cantly from the atomic spectra [40]. This is

attributed to the delocalisation of the excited electron which occurs due to the

interaction with the environment and is more probable for higher-excited states

due to the larger spatial extent of the higher virtual orbitals. Thus, instead of the

resonant Auger decay, normal Auger decay occurs.

In a solution, the e�ect of the environment on both the core-excitation spectra

and on the course of the subsequent decay process is expected to be even more

pronounced due to the stronger interactions between the excited species and the

solvent molecules. Thus, analogously to the case of rare-gas clusters and solids,

the resonant Auger decay will compete with the process of delocalisation of the

excited electron. Measurements of the rate of delocalisation in liquid water and ice

at the oxygen K-edge using the method of the core-hole clock, indeed evidence that

the delocalisation is very fast, <500 as [51]. It is thus clear that the course of an

electronic decay cascade initiated by resonant photoabsorption will be determined

by the competition between the processes of delocalisation and autoionisation.

Consequently, prior to studying the decay cascade, one should clarify the problem

of delocalisation and subsequent solvation of the core-excited electron.

In the last part of this thesis we present a �rst attempt to clarify the pres-

ence of the solvent a�ects the properties of core-excited states. To this end, we

computed and analysed the X-Ray absorption spectra of microsolvated clusters
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of Na+ and Mg2+ with di�erent coordination numbers n = 1 − 6 at the metal

K-edge. The choice of two isoelectronic metal ions with di�erent charges aims at

clarifying whether the degree of delocalisation of the excited electron depends on

the charge of the central ion. This idea was motivated by experimental and theo-

retical studies on the Auger spectra of aqueous K+ and Ca2+, which demonstrate

that the chemical shifts in the Auger spectra of the solvated K+ and Ca2+ ions

depend strongly on the charge [17]. The authors explain the observed di�erences

in the chemical shifts with the larger ion-dipole interactions and the in�uence of

the second and higher solvation shells in the case of Ca2+. Our analysis of the

X-Ray absorption spectra of the microsolvated clusters of Na+ and Mg2+ is based

on comparison with the spectra of the bare metal ions. Additionally, in order to

determine the character of the excited states in the solvated systems, we consider

the overlaps of the singly-occupied natural orbitals occupied by the excited elec-

tron in the core-excited states of the clusters with the respective singly-occupied

natural orbitals of the bare ions.

The thesis is organised as follows. In the next chapter, we present an overview

of the computational methods used for the electronic-structure calculations and

for the calculation of decay widths. We also outline brie�y the time-dependent

theory of wave-packet propagation as applied to the case of the RA-ICD cascade.

In Chapter 3, we present and discuss the potential energy curves of the ionisation

satellites of ArHe with a view to modelling such potential energy curves in heavier

noble-gas dimers. Chapter 4 contains our theoretical study on the RA-ICD cascade

in rare-gas dimers. Finally, in Chapter 5, we present and analyse the X-Ray

absorption spectra of microsolvated clusters of Na+ and Mg2+ at the metal 1s

threshold. The conclusions are given separately at the end of each chapter.



Chapter 2

Theory

The quantitative theoretical description of the resonant-Auger � ICD cascade re-

quires the simulation of the kinetic energy distributions of the emitted ICD elec-

trons and ionic fragments. The ICD-electron and kinetic-energy-release (KER)

spectra can be obtained by taking into account the nuclear dynamics during the

ICD step. Since the resonant Auger process is much faster, it is assumed that

very little nuclear dynamics take place and, therefore, the latter are not explic-

itly accounted for in the calculations. In order to compute the ICD-electron and

KER spectra, the potential energy curves (PECs) of the ground state, the initial

and �nal ICD states, as well as the decay widths of all decaying states have to

be available. These data serve as input for the nuclear dynamics calculation. In

the following sections the computational tools necessary for the description of the

decay cascade will be outlined. In Sec. 2.1 an overview of the methods used for

electronic structure calculations will be presented. The ab initio methods used

for the computation of electronic decay widths are discussed in Sec. 2.2. Finally,

Sec. 2.3 outlines the time-dependent theory of wave packet propagation and the

calculation of ICD-electron and KER spectra.

2.1 Ab initio methods for electronic structure cal-

culations: application to the potential energy

curves of ionisation satellites

The theoretical description of electronically excited states can often be intricate,

time-consuming and very involved, due to, e.g. the multicon�gurational character

of the states, the high energy of the states, the size of the systems of interest,

the need to describe short- and long-range interactions, etc. Thus, the proper

9
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description of such states requires the use of correlated methods (often multicon-

�gurational) and speci�cally designed basis sets [52].

In order to discuss the methods suitable for the description of excited states,

it is instructive to discuss the Hartree-Fock (HF) method �rst, as it is the usual

starting point of all correlated methods. Within the HF approximation the N -

electron problem

Ĥ|Ψ0〉 = E0|Ψ0〉 (2.1.1)

splits into one-electron problems

(ĥ+ υHF [φ1, . . . φM ])|φp〉 = εp|φp〉, p = 1, 2, . . .M (2.1.2)

by assuming that each electron experiences an e�ective potential υHF [φ1, . . . φM ]

obtained by averaging over the interactions with the other electrons [53]. Note,

that the potential υHF depends on all spin orbitals {φ1, . . . φM}, which means that

the HF equations have to be solved iteratively. After solving the HF equations (Eq.

(2.1.2)) one obtains a set of HF one-electron energies {εp} and spin orbitals {φp}.
The ground state of the system is then represented by a single Slater determinant

formed from the energetically lowest N spin orbitals

|Φ0〉 = |φ1φ2φ3...φN〉 (2.1.3)

The expectation value of the HF Hamiltonian Ĥ0 with respect to |Φ0〉 gives a sum
of the one-electron energies, εi (also called orbital energies)

E
(0)
0 = 〈Φ0|Ĥ0|Φ0〉 =

N∑
i=1

εi (2.1.4)

However, the ground state HF energy is the expectation value of the Hamilto-

nian Ĥ with respect to the Hartree-Fock ground state |Φ0〉

E0(1) = 〈Φ0|Ĥ|Φ0〉 = E
(0)
0 + E

(1)
0 (2.1.5)

and as such it includes an additional �rst-order term E
(1)
0 . Within a given basis set,

the Hartree-Fock approach provides the best (lowest-energy) Slater determinant.

The method is variational, which guarantees that the energy E0(1) is higher than

the exact energy E0 within the given basis set. The di�erence between these two

energies is termed �electron correlation energy� [53]

Ecorr = E0 − E0(1) (2.1.6)
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Despite being only ∼1% of the total energy E0 [54], the correlation energy is

crucial for the description of chemical phenomena.

Let us take a closer look at the notion of electron correlation. As implied by

Eq. (2.1.6), electron correlation refers to the electron-electron interactions ignored

in the HF method, i.e. it is a measure of the errors inherent in HF or other orbital

models. To account for these e�ects, one has to go beyond the single-determinant

representation of the electronic wave function

|Ψ0〉 =
∑
I

aI |ΦI〉 (2.1.7)

where the sum includes the HF ground state con�guration |Φ0〉, and the remain-

ing con�gurations |ΦI〉 are obtained from |Φ0〉 by replacing one, two, etc. oc-

cupied spin orbitals with virtual spin orbitals. Often electron correlation e�ects

are divided into dynamical and static (or non-dynamical). Dynamical correlation

refers to the correlated motion of electrons induced by their instantaneous repul-

sion. While the antisymmetry inherent in a single Slater determinant already

makes electrons of opposite spins partially correlated, the motion of electrons of

the same spin remains uncorrelated. For this reason, in the HF method the elec-

trons appear to be closer than they actually are. The dynamic electron correlation

can be accounted for by constructing the wave function as a superposition of con-

�gurations (similar to Eq. (2.1.7)) with the HF ground state as the dominant

con�guration [55, 56]. Among the most important quantum-chemical methods

elaborated to account for the dynamical correlation are the con�guration interac-

tion (CI) method, the coupled-cluster (CC) method, Møller-Plesset perturbation

theory (MP), propagator methods (e.g. the algebraic diagrammatic construction

(ADC) method), etc.

There are also many cases when such methods are not useful because the

HF reference con�guration does not provide a qualitatively correct description

of the system. Such correlation e�ects are known as static correlation, or near-

degeneracy e�ect. They are not related to electron motion and the instantaneous

repulsion between electrons, but rather to the strong con�guration interaction be-

tween several con�gurations. As a result, the latter cannot be treated separately

from each other. This e�ect is observed in the molecular dissociation limit, where

the multi-con�guration description of the system arises from the degeneracy of

bonding and antibonding con�gurations [56]. Quantum-chemical methods specif-
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ically designed to account for static correlation are the multi-reference con�gura-

tion interaction (MRCI), the multi-con�gurational self-consistent �eld (MCSCF)

method, the complete active space SCF (CASSCF) method, etc.

A clear distinction between the two types of correlation, dynamical and static,

cannot be drawn except in the limit of complete dissociation, where there is no

Coulomb repulsion between the electrons but only static correlation. At the inter-

mediate distances, however, the two types of correlation are already accounted for

by constructing the wave function as a linear combination of several con�gurations

[55, 56].

The focus of this work are excited states of ionised systems. The proper

description of such states requires the use of methods accounting for electron

correlation. The correlated methods speci�cally designed for the computation

of excited states can be divided into three groups: single-con�guration ab initio

methods, multi-con�guration ab initio methods and methods based on Density

Functional theory (DFT). The �rst group comprises CI, propagator and coupled-

cluster approaches. MRCI, MCSCF, and CASSCF fall into the second group.

The third group includes the time-dependent DFT (TD-DFT) approaches. An

overview of these approaches can be found in Ref. [52].

In the following subsections, two of the methods, namely CI and ADC will be

discussed. The (MR-)CI method is suitable for the treatment of multi-reference

problems, such as the description of ionised-excited states. Besides, it also allows

one to compute hundreds of roots of the electronic Hamiltonian, which is necessary

due to the large number and the high energy of the ionised-excited states of inter-

est. A variant of the ADC(2)-x method for the polarisation propagator, employing

the core-valence separation to the ADC(2) working equations (CVS-ADC(2)-x),

is used to compute energies and properties of core-excited states.

2.1.1 Con�guration interaction (CI)

Con�guration interaction (CI) is a general procedure for �nding approximate solu-

tions to the electronic Schrödinger equation (Eq. (2.1.1)). It consists in expanding

the N -electron wave function |Ψ〉 in a basis set of N -electron states {|ΦI〉}:

|Ψ〉 =

Ndim∑
I

aI |ΦI〉 (2.1.8)
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where Ndim is the dimension of the basis {|ΦI〉}. The coe�cients {aI} are deter-

mined variationally by requiring the expectation value of the Hamiltonian with

respect to |Ψ〉 to have a minimum

Etrial =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(2.1.9)

The condition for a minimum
∂Etrial

∂a
= 0

results in the standard hermitian eigenvalue problem

Hak = Eka
k (2.1.10)

where H is the matrix of elements HIJ = 〈ΦI |Ĥ|ΦJ〉. The lowest-energy solution

corresponds to the ground state, whereas the higher-energy solutions correspond

to the excited states.

If all possible expansion functions {|ΦI〉} are included in the expansion Eq.

(2.1.8), the full CI (FCI) wave function is obtained. The solutions to the ma-

trix eigenvalue problem then correspond to the exact solutions of the Schrödinger

equation within the chosen orbital basis set. Since the FCI expansion grows ap-

proximately as nN for N electrons and n molecular orbitals, in practice, the FCI

method is applicable only to small systems and for relatively small basis sets [57].

A remedy to this problem is to generate approximations by truncating the CI

expansion Eq. (2.1.8). For this purpose, one needs to consider how the expansion

functions {|ΦI〉} are obtained.

Let us assume that a Hartree-Fock calculation for the system has been carried

out and a set of optimised spin orbitals |φp〉, p = 1, 2, ...,M has been obtained. Let

us also assume that the ground state of the system is adequately represented by

the Hartree-Fock wave function |Φ0〉. One can obtain multiple Slater determinants
from the reference con�guration |Φ0〉 by substituting an occupied orbital with the

remainingM−N virtual spin orbitals. These Slater determinants can be classi�ed

as singly, doubly, triply, etc. excited, if they di�er from |Φ0〉 by one, two, three,

etc. spin orbitals. The set of all such determinants can be used as a basis in

which the exact wave function |Ψ〉 can be represented. If one uses all possible

determinants {|ΦI〉}, the representation is exact within the given atomic basis set

|Ψ〉 = a0|Φ0〉+
∑
i,a

aai |Φa
i 〉+

∑
i<j,a<b

aabij |Φab
ij 〉+

∑
i<j<k,
a<b<c

aabcijk |Φabc
ijk〉+ . . . (2.1.11)
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

|Φ0〉 |S〉 |D〉 |T 〉 |Q〉 . . .

〈Φ0| E0 0 〈Φ0|Ĥ|D〉 0 0 . . .

〈S| 〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T 〉 0 . . .

〈D| 〈D|Ĥ|D〉 〈D|Ĥ|T 〉 〈D|Ĥ|Q〉 . . .

〈T | 〈T |Ĥ|T 〉 〈T |Ĥ|Q〉 . . .

〈Q| 〈Q|Ĥ|Q〉 . . .
...

. . .


Figure 2.1: Structure of the full CI matrix. The matrix is hermitian, therefore,

only the upper triangle is shown. The multitudes of singly, doubly, triply, etc.

excited determinants are denoted as |S〉, |D〉, |T 〉, etc.

TheN -electron expansion functions are usually chosen to be either primitive Slater

determinants or con�guration state functions (CSFs). CSFs are linear combina-

tions of Slater determinants which have the same spatial orbital occupations and

are eigenfunctions of the total spin operator Ŝ2, and the spin projection along the

z-axis Ŝz

Ŝ2|k;S,MS〉 = S(S + 1)|k;S,MS〉 (2.1.12)

Ŝz|k;S,MS〉 = MS|k;S,MS〉, MS = −S,−S + 1, . . . , S (2.1.13)

where |k;S,MS〉 is the k-th CSF characterised by the spin quantum number S

and the magnetic spin quantum number MS [53, 57]. Both the determinantal and

the CSF expansions are used in di�erent CI implementations. An overview of the

di�erences between the two formulations can be found in Ref. [57].

Eq. (2.1.11) gives the form of the FCI wave function. Using this expansion one

can construct the FCI matrix of the Hamiltonian (see Fig. 2.1). As can be seen

on Fig. 2.1, there is no coupling between the ground state and the singly excited

states (Brillouin's theorem). Also according to the rules for evaluation of matrix

elements (known as Slater-Condon rules), the elements 〈ΦI |Ĥ|ΦJ〉 vanish if the

two con�gurations |ΦI〉 and |ΦJ〉 di�er by more than two spin orbitals. Therefore,

some of the blocks of the CI matrix are very sparse, and others vanish completely.

Successive truncations of the wave function can be obtained by neglecting all

excitations beyond a given excitation class. If only singly-excited determinants

(or CSFs) are included, the method is termed Con�guration Interaction Singles

(CIS); the inclusion of singles (S) and doubles (D) leads to CISD, etc. Apart
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from neglecting some of the correlation energy, the truncated CI methods are not

size-consistent, i.e. the energy of a molecule dissociated into two or more parts,

treated as one system, does not equal the sum of the energies of the subsystems

computed with the same method [57, 58]. In the case of CISD, various corrections

accounting for this shortcoming were elaborated. Very widely used is the Davidson

correction, which estimates the contribution of the missing quadruple excitations.

It is calculated as

EDC = (1− a2
0)(ECISD − EHF ) (2.1.14)

where a0 is the weight of the HF wave function in the CISD expansion. A com-

prehensive description of the various corrections can be found in Ref. [57]. An

advantage of the truncated CI methods is that the approximate energies, ob-

tained using a truncated CI method, are always higher than the FCI solutions,

and the convergence to the exact values occurs monotonically with increasing wave

function expansion (Ndim)

E
(FCI)
k ≤ E

(Ndim)
k (2.1.15)

E
(Ndim)
k ≤ E

(Ndim+1)
k+1 ≤ E

(Ndim)
k+1 (2.1.16)

where Ndim is the size of the basis set (see Eq. (2.1.8)), and the eigenvalues are or-

dered in increasing energy. These properties of the CI methods are satis�ed at each

molecular conformation, thus they apply not only to the particular conformation,

but also to the behaviour of the entire potential energy surface [57].

In the discussion so far it was assumed that the ground state of the system

is well represented by a single Slater determinant. However, in many cases an

adequate description of the ground state is achieved by taking several determinants

as reference con�gurations. The multi-reference CI (MRCI) does not use a single

Hartree-Fock reference, but a suitably chosen set of con�gurations. They can be

generated either in a preceding MCSCF calculation or simply using Hartree-Fock

Slater determinants. The general form of the multi-reference wave function is

|Ψ〉 =
∑
m

am|Φ(m)〉+
∑
m

∑
i,a

aai |Φ(m)ai 〉+ . . . (2.1.17)

where {|Φ(m)〉, m = 1, . . . , Nref} represent the set of reference functions. The

expansion space is generated from this set by applying the excitation operators to

every single reference con�guration. Similarly to the CI method, the wave function

can be truncated to reduce the sizes of the con�guration spaces. The methods used
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in this work are MRCI-SD and MRCI-SDT with Hartree-Fock Slater determinants

as reference con�gurations.

2.1.2 Algebraic diagrammatic construction (ADC)

An alternative approach to the description of excited states are the Green's func-

tion or propagator methods [59]. Within these methods the energies of the excited

states represent the poles of the Green's function, and the spectral intensities are

obtained from the corresponding residues. There exist perturbation expansions

for the Green's function G in terms of Feynman diagrams. These expansions can

be used for the construction of approximation schemes. One such scheme is the

algebraic diagrammatic construction (ADC) method which will be discussed in

the following.

Consider the electron propagator, also known as one-particle Green's function,

which is a means of calculating the electron ionisation and attachment spectra of

�nite electronic systems [59, 60]. In order to derive its ADC form [61], let us start

with its matrix in the basis of one-particle states |φq〉

Gpq(t, t
′) = −i〈Ψ0|T̂ [cp(t)c

†
q(t
′)]|Ψ0〉 (2.1.18)

Here, |Ψ0〉 is the exact ground state of the considered N -particle system; c†q(t) =

eiĤtc†qe
−iĤt (cq(t) = eiĤtcqe

−iĤt) denote creation (annihilation) operators in the

Heisenberg representation associated with the one-particle states |φq〉; T̂ is a time-

ordering operator. The Fourier transform of the electron propagator can be written

as

Gpq(ω) = 〈Ψ0|cp(ω − Ĥ + EN
0 + iη)−1c†q|Ψ0〉+ 〈Ψ0|c†q(ω + Ĥ − EN

0 − iη)−1cp|Ψ0〉

= G+
pq(ω) +G−pq(ω)

(2.1.19)

Here, iη is an imaginary in�nitesimal ensuring the convergence of the Fourier

transforms between time and energy representations. By inserting the complete

sets of (N ± 1)-particle states on both sides of the two terms in Eq. (2.1.19) one

obtains the spectral representation of the electron propagator

Gpq(ω) =
∑
n

〈Ψ0|cp|ΨN+1
n 〉〈ΨN+1

n |c†q|Ψ0〉
ω − EN+1

n + EN
0 + iη

+
∑
m

〈Ψ0|c†q|ΨN−1
m 〉〈ΨN−1

m |cp|Ψ0〉
ω + EN−1

m − EN
0 − iη

(2.1.20)
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Here, EN±1
n and |ΨN±1

n 〉 denote the energies and the states of the (N ± 1)-particle

systems, EN
0 is the ground-state energy. The electron propagator is a sum of two

contributions G−(ω) and G+(ω) which contain information about the processes

of electron ionisation and electron attachment. The poles of G(ω) give the exact

ionisation energies and electron a�nities

IPn = EN−1
n − EN

0

EAn = EN
0 − EN+1

n

(2.1.21)

The transition amplitudes can be obtained from the residues of G(ω)

xnp = 〈ΨN−1
n |cp|Ψ0〉

ynp = 〈ΨN+1
n |c†p|Ψ0〉

(2.1.22)

There is a well-de�ned perturbation expansion for the electron propagator in

terms of Feynman diagrams [59]. It utilises the partitioning of the Hamiltonian

Ĥ = Ĥ0 + ĤI

Ĥ0 =
∑
p

εpc
†
pcp

ĤI = Ŵ + V̂ =
∑
pq

wpqc
†
pcq +

1

2

∑
pqrs

Vpqrsc
†
pc
†
qcscr

(2.1.23)

into a diagonal one-particle part Ĥ0 and an interaction part ĤI consisting of

the non-diagonal one-particle part Ŵ and the electron-electron interaction V̂ .

Normally, it is assumed that Ĥ0 is the Hartree-Fock Hamiltonian.

In the following, only the (N − 1)-particle part of the electron propagator

G−(ω) will be considered. The treatment of the (N + 1)-particle part G+(ω) is

completely analogous. As discussed earlier, starting from the Fourier transform of

the electron propagator and inserting the complete set of the exact (N−1)-particle

states {|ΨN−1
m 〉}, one obtains the spectral representation (Eq. (2.1.20)), which in

matrix form reads

G−(ω) = X†(ω1−Ω)−1X (2.1.24)

Here, Ω is the diagonal matrix of the exact ionisation potentials, and X is the

matrix of transition amplitudes

Xm,p = x(m)
p (2.1.25)
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The central point of the ADC approximation is the observation that the exact

(N − 1)-particle part G−(ω) can be written as the general non-diagonal algebraic

form

G−(ω) = f †(ω1−M)−1f (2.1.26)

whereM is a hermitian secular matrix. The con�guration space of M is the space

of all (N − 1)-particle con�gurations, which may be classi�ed as 1h, 2h-1p, 3h-2p,

etc. The matrix f is the matrix of modi�ed (e�ective) transition amplitudes fJ,p.

The matrix inversion in Eq. (2.1.26) can be performed after solving the hermitian

eigenvalue problem

MY = YΩ,Y†Y = 1 (2.1.27)

where Y is the eigenvector matrix and Ω is the diagonal matrix of eigenvalues Ωm.

Solving the eigenvalue problem, one can obtain the diagonal form Eq. (2.1.24),

where the matrix of transition amplitudes X is calculated as

X = Y†f (2.1.28)

In order to solve the eigenvalue problem Eq. (2.1.27), �rst one needs to con-

struct the e�ective quantities f and M. In the ADC approximation this is accom-

plished by using their perturbation expansions

M = M(0) + M(1) + M(2) + . . . (2.1.29)

f = f (0) + f (1) + f (2) + . . . (2.1.30)

to generate a perturbation expansion for the one-particle Green's function

G−(ω) = f (0)†(ω1−M(0))−1f (0) (2.1.31)

+ f (0)†(ω1−M(0))−1M(1)(ω1−M(0))−1f (0)

+ f (1)†(ω1−M(0))−1f (0) + f (0)†(ω1−M(0))−1f (1) + . . .

This expansion is then compared with the diagrammatic perturbation series for

G−(ω) through a given order of perturbation theory and the terms in the per-

turbation expansions of f and M are successively determined. Thus, a set of

systematic approximations for G−(ω) referred to as ADC(n) schemes is obtained.

These approximations represent in�nite partial summations for the perturbation

series of G(ω) and are complete through order n. Analogous ADC approxima-

tions have been derived for the polarisation propagator [62] and for the two-particle

propagator [63].
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An alternative pathway to the ADC secular matrix is provided by the inter-

mediate state representations (ISR) [64, 65]. Here the ADC form of the electron

propagator can be rationalised as deriving from a representation in terms of a

basis set of �intermediate states� |Ψ̃N−1
J 〉 [64]

G−pq(ω) = f †q (ω1−M)−1fp (2.1.32)

In this basis set, the secular matrix M and the transition amplitudes are

(M)IJ = −〈Ψ̃N−1
I |Ĥ − EN

0 |Ψ̃N−1
J 〉

fJ,p = 〈Ψ̃N−1
J |cp|Ψ0〉

where M can be viewed as a representation of the �shifted� Hamiltonian Ĥ −
EN

0 . The excitation spectrum is obtained from the solution of the eigenvalue

problem Eq. (2.1.27). In this case, the matrixY denotes the matrix of eigenvectors

and it can be considered as the representation of the exact states in the basis of

intermediate states

YJn = 〈Ψ̃N−1
J |ΨN−1

n 〉 (2.1.33)

From it one can obtain the spectroscopic amplitudes

x(m)
p =

∑
I

Y ∗ImfI,p (2.1.34)

and also the wave functions of the ionised states

|ΨN−1
n 〉 =

∑
YJn|Ψ̃N−1

J 〉 (2.1.35)

The intermediate states |Ψ̃N−1
J 〉 derive from the so-called correlated excited

(CE) states, which are obtained by applying the �physical� excitation operators

(ĈJ) to the exact ground state |Ψ0〉

|Ψ0
J〉 = ĈJ |Ψ0〉 (2.1.36)

In the case of the electron propagator, the manifold of excitation operators com-

prises the �classes� of 1h, 2h-1p, 3h-2p, etc. excitations

{ĈJ} = {ci; c†acicj, i < j; c†ac
†
bcicjck, a < b, i < j < k; . . . } (2.1.37)

Provided that the basis set of one-particle states used in the construction of the

excitation operators ĈJ is complete, the CE states are also complete, however, not
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orthonormal. In order to orthonormalise them, a Gram-Schmidt orthogonalisation

procedure of the successive classes of CE states, (µ+1)h-µp, µ = 1, 2, . . . is applied.

The �rst step of this procedure is orthogonalisation with respect to the already

constructed lower intermediate-state classes, which results in a set of �precursor�

states {|Ψ#
K〉}

|Ψ#
K〉 = |Ψ0

K〉 −
∑
[J ]<µ

〈Ψ̃J |Ψ0
K〉|Ψ̃J〉 (2.1.38)

Here, the subscript K refers to the states of the µ-th excitation class, and [J ]

denotes the class of excitation labelled by J . Note that in the case of the �rst

excitation class, the �precursor� states coincide with the CE states

|Ψ#
i 〉 = ci|Ψ0〉 ≡ |Ψ0

i 〉 (2.1.39)

The second step of the Gram-Schmidt procedure is a symmetric orthonormalisa-

tion of the precursor states within a given excitation class, as a result of which

the intermediate states {|Ψ̃I〉} are obtained

|Ψ̃I〉 =
∑
[J ]=µ

|Ψ#
J 〉(S

−1/2)JI (2.1.40)

Here, S stands for the overlap matrix of the precursor states

(S)IJ = 〈Ψ#
I |Ψ

#
J 〉 (2.1.41)

which in the case of the �rst excitation class has the following form

Sij = 〈Ψ0|c†icj|Ψ0〉 (2.1.42)

An important feature of the Gram-Schmidt orthogonalisation procedure is that it

preserves the properties of the ADC matrix, namely compactness and separability

[65]. The ISR approach to electronic excitation, single and double ionisation is

presented in Refs. [66�68].

Using the intermediate states constructed as explained above, one can recover

the perturbation expansions for M and f by assuming the usual partitioning of

the Hamiltonian Eq. (2.1.23) and by applying Rayleigh-Schrödinger perturbation

theory to the ground state |Ψ0〉 and to the ground-state energy EN
0 . However,

this procedure is quite cumbersome for the ADC schemes beyond second order.

Therefore, so far it has been used only up to second order [64, 66�68].
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The ISR approach overcomes some limitations of the propagator methods.

On the one hand, it contains the physical information on the ionisation and at-

tachment (or excitation) energies and transition moments. On the other hand, it

has the �exibility of a wave function method and allows one to determine various

properties of the �nal states (excited or ionised-excited states), such as transition

dipole moments, for example [66�68]. Let D̂ denote the dipole operator. Then,

the corresponding ionic-state expectation value can be obtained according to

Dm = 〈ΨN−1
m |D̂|ΨN−1

m 〉

= Y †mD̃Y m (2.1.43)

where Y m denotes the m-th ADC eigenvector (m-th column of Y ), and D̃ is the

ISR of the operator D̂,

D̃IJ = 〈Ψ̃N−1
I |D̂|Ψ̃N−1

J 〉 (2.1.44)

In a similar way, transition moments involving two distinct �nal (N − 1)-electron

states,

Dmn = 〈ΨN−1
m |D̂|ΨN−1

n 〉

= Y †mD̃Y n (2.1.45)

can be obtained [67]. A detailed explanation of the derivation of the ISR(2) of

a general one-particle operator describing properties of singly-ionised states is

presented in Ref. [67]. The respective derivation for doubly-ionised states can be

found in Appendix B and Ref. [68].

Another option o�ered by the ADC/ISR method is to augment the ADC

secular matrix by an arbitrary one-particle operator, say Û , and thus treat the

problem of the extended Hamiltonian Ĥ+Û . In this simple way, the ADC method

can be extended to the computation of lifetimes of electronic states using the

complex absorbing potential (CAP) method which will be discussed in the next

section (Sec. 2.2).

Finally, after introducing the concept of intermediate states, the usefulness

of the ADC approach can be outlined. It stems from its properties: compact-

ness and separability (or size-consistency). Compactness means that a consistent

treatment of the primary states through order 2m and 2m+1 only requires one to

take the con�guration classes µ = 1, 2, ...m+ 1 into account [65]. In other words,
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the con�guration space increases by one class with every even order n of pertur-

bation theory. In contrast, a comparable CI expansion comprises the �rst 2m+ 1

excitation classes. The separability of the secular matrix lies in the decoupling of

local (on the separate fragments) and non-local (mixed) excitations. This means

that if one considers local excitations on a separate fragment, the results for the

excitation of interest obtained from the treatment of the fragment alone, and of

the entire system are identical. The same refers to excited-state properties. This

ensures that the ADC approach is size-consistent [65, 69].

The ADC method for the polarisation propagator can be specialised to the

computation of core-excitation spectra by means of an additional core-valence

separation (CVS) approximation [70]. This approximation is based on the obser-

vations that the core holes are strongly localised on the corresponding atomic sites

and that there is a large di�erence in both energy and localisation in space between

core and valence orbitals. As a consequence of the localisation of the core orbitals,

one can treat the spectrum of a speci�c core-level vacancy separately from the

spectra of other core holes [71, 72]. Additionally, due to the di�erences in energy

and localisation between core and valence orbitals, the coupling between valence-

and core-excited states is small. This allows one to separate the valence and core

excitations. Consequently, terms in the Hamiltonian which do not conserve the

hole occupation number can be neglected, e.g. the following two-electron integrals

are set to zero [70]

Vcijk = Vicjk = Vijck = Vijkc = 0

Vcc′c′′j = Vcc′jc′′ = Vcjc′c′′ = Vjcc′c′′ = 0

Vijcc′ = Vcc′ij = 0

Here, the indices i, j, k (c, c′, c′′) denote valence (core) one-electron orbitals. The

indices c, c′ in the last set of two-electron integrals may also refer to core-level

vacancies of the same electronic shell, but located on di�erent atoms (e.g. K-shell

of C-atoms in benzene). As a result of this approximation, the con�guration space

is split into valence excitations, single-core excitations and double-core excitations,

etc. Hence, the con�guration space in the CVS-ADC(2) approximation reduces to

p-h: (j, c)

2p-2h: (i, j, c, k)
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The ADC matrix is constructed in this reduced space, which leads to signi�cant

computational savings.

So far only the strict version of the ADC(2) method, ADC(2)-s, was discussed.

Within the ADC(2)-s scheme for the polarisation propagator, the 2h-2p block of

the ADC matrix is constructed only up to zeroth-order of perturbation theory.

However, in order to provide a better description of double excitations, the 2h-2p

block can be augmented by adding the �rst-order terms [73]. Raising the accuracy

of the double-excitation calculation does not formally change the accuracy of a

single-excitation description, but it provides a better description of excited states

which are characterised by mixing of singly- and doubly-excited con�gurations

[74]. The extended ADC(2) method, ADC(2)-x, has been shown to yield excellent

results for core-excited states [74�76].

The CVS-ADC(2) method neglects the relativistic corrections [70]. Conse-

quently, in order to obtain experimentally comparable excitation energies, one

needs to account for the relativistic shifts, by adding a correction to the energies.

An alternative method for the computation of potential energy curves of Ry-

dberg states is presented in Appendix A [77]. It makes use of the characteristic

properties of these states, namely, that they can be considered as an electron in-

teracting with a positively-charged ion. The wave functions of such states can

be approximated as a product of the wave function of the electron and a state,

representing the ionic �core�. The latter wave function can be constructed from

correlated ionised states, obtained for example in an ADC calculation.

2.2 Ab initio computation of electronic decay

widths

Resonances are metastable states with a �nite lifetime and su�cient energy to

break up into subsystems. These states possess a discrete energy, which in contrast

to the energies of bound states, is a complex quantity [78]

Eres = ER − i
Γ

2
(2.2.1)

The real part of the resonance energy, ER, is called the resonance position. The

imaginary part of Eres, Γ/2 is the decay width associated with the lifetime of the
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resonance by τ = ~/Γ. Most generally, resonances can be classi�ed according to

their origin as shape resonances and Feshbach resonances (also denoted as Fano

resonances) [79, 80]. The former result from the shape of the potential which

leads to the �particle� being temporarily trapped inside a potential well. This

quantum phenomenon is known as tunnelling [81]. The temporary trapping of the

particle inside the potential well can also occur when the energy of the particle

is larger than the height of the potential barrier [82]. Feshbach resonances, on

their turn, are formed whenever a bound state is coupled to one or more continua

of states. The resonance state decays into the continuum of the open channel.

Unlike shape resonances, the decay channels in this case belong to states of the

reference Hamiltonian, which are di�erent from the state supporting the bound

state. The initial ICD states, considered in this work, fall into the group of

Feshbach resonances.

The theoretical description of resonances requires the computation of the res-

onance position ER and the decay width Γ. This is a di�cult task due to the

intrinsic properties of these states. For example, their wave functions are diver-

gent at asymptotic distances [78, 79, 82], i.e. they behave as

φres(r →∞) ∝ ekIr (2.2.2)

Therefore, the states are not square-integrable and cannot be treated using stan-

dard L2-methods in quantum mechanics [79]. Alternative methods designed specif-

ically for resonance states are based on the analytic continuation of the Hamilto-

nian into the complex energy plane. In the complex scaling method [82, 83] this

is carried out by replacing the electron coordinates x by xeiθ. This enables one to

associate the resonance phenomenon with a single square-integrable eigenfunction

of the scaled Hamiltonian, rather than a multitude of continuum eigenstates of

the unscaled Hamiltonian. Upon increasing the angle θ, resonances corresponding

to higher-energy eigenstates of the unscaled Hamiltonian are uncovered and the

associated eigenfunctions are transformed into square-integrable wave functions

[84, 85].

A similar approach, which will be discussed in detail Sec. 2.2.1, is the complex

absorbing potential (CAP) method [86]. It is much easier to use in electronic

resonance problems since it does not rely on the usage of complex coordinates.

A di�erent approach applicable to Feshbach (or Fano) resonances is the Fano-
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Stieltjes method. It does not rely on complex continuation of the Hamiltonian but

is rather based on the observation that the wave functions of this type of resonances

can be presented as a linear combination of a bound part and a continuum part

[87]. This is the main method used in this work for the calculation of ICD widths.

It is presented in Sec. 2.2.2

2.2.1 Complex absorbing potential (CAP) method

The idea underlying the CAP method is to use an absorbing boundary condition in

the exterior region of the molecule. The absorbing condition is a complex potential

added to the molecular Hamiltonian Ĥ, rendering it non-hermitian

Ĥ(η) = Ĥ − iηŴ (2.2.3)

Here, η is a real, positive scalar, controlling the CAP strength, and Ŵ is a lo-

cal, positive, semi-de�nite operator. The CAP �absorbs� the outgoing wave and

thus, makes the resonance wave function square-integrable. For a relatively large

range of CAPs satisfying certain requirements [86], Ĥ(η) de�nes an analytic con-

tinuation of Ĥ in the limit η → 0+ if the basis set is complete. In this case, for

every resonance state there exists an eigenvalue E(η) of Ĥ(η) which satis�es the

condition

lim
η→0+

E(η) = ER − i
Γ

2

The di�erence E(η) − ER is termed expansion error. It originates from the per-

turbation caused by the CAP and is proportional to the CAP strength η [86].

In a �nite basis set, the limit η → 0+ is not meaningful since the truncation

of the basis set causes an additional error, which decreases as η grows. This

error results from the fact that as η decreases, the wave function becomes more

delocalised, and, therefore, the resonance can no longer be represented using an

L2-basis set [86]. Yet the identi�cation of resonances in this case is done by

minimising the total error, which is a sum of the error originating from the �nite

basis set, on the one hand, and that originating from the perturbation caused by

the CAP, on the other hand (as mentioned above, the two errors have opposite

dependence on the CAP strength η). Thus, by increasing η starting from 0,

the eigenvalues of Ĥ(η) move to the lower complex energy plane (see e.g. Refs.

[86, 88]). The resonance states exhibit a stabilisation, i.e. for some state i (1 ≤
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i ≤ N) the eigenvalue Ei(η) accumulates as a function of η in a region of the

complex plane. The optimal point of stabilisation is determined by minimizing

the derivative
∣∣∣η dE(η)

dη

∣∣∣. The optimal CAP strength η̃, determines an approximation

to the resonance energy

Eres ≈ E(η̃) (2.2.4)

ER = Re(E(η̃)) (2.2.5)

Γ = −2 Im(E(η̃)) (2.2.6)

By contrast to resonances, the discretised continuum states (also called pseudo-

continuum states) do not show such a behaviour � their trajectories are structure-

less.

What makes the CAP method so attractive is that it can easily be combined

with practically any electron correlation method. This has already been done for

CI (CAP/CI) [89], ADC (CAP/ADC) [90, 91] and recently also in the framework

of the equation-of-motion CCSD method (EOM-CCSD) [92, 93]. The basic idea

behind the CAP-extended methods is the diagonalisation of the non-hermitian

matrix of the CAP-modi�ed Hamiltonian Ĥ(η) for di�erent values of η. The

usual choice of a way to vary η is a power relation [86, 88]

ηn = δ
σn − 1

σ − 1
(2.2.7)

(δ and σ are parameters), and not a linear one. This is justi�ed by the fact that

the absorption length of the CAP scales roughly as 1/ 4
√
η. Consequently, if η is

varied linearly, many CAP steps are needed until the resonance wave function is

completely absorbed by the CAP [88].

In order to construct the CAP-modi�ed Hamiltonian, the matrix representa-

tion of the CAP operator in the atomic orbital basis set has to be obtained. The

elements of the CAP matrix are calculated according to the scheme presented in

Ref. [88]. Afterwards, the matrix is transformed into the Hartree-Fock molecular

orbital basis. A derivation of CAP matrix elements (or more generally, of a one-

particle operator) in the framework of the ADC/ISR(2) method is presented in

Appendix B.

A major drawback of the CAP method is its signi�cant numerical overhead.

In order to reveal the resonances, large basis sets including di�use functions need

to be used [86, 94]. This results in large complex symmetric matrices, which have
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to be diagonalised repeatedly for di�erent values of the CAP strength η. This was

overcome in the subspace-CAP method [95] in combination with the parallel �lter

diagonalisation algorithm [88, 96]. It was shown that a small number of eigenstates

of the real Hamiltonian is su�cient to expand the resonance wave function. The

states are selected based on two criteria � their energy and the overlap with the

reference state. The part of the CAP-modi�ed Hamiltonian Ĥ(η) corresponding

to the selected basis set is then used to obtain the CAP trajectory. Thus, the most

time-consuming step of the CAP method is restricted to a single diagonalisation

of the full Hamiltonian Ĥ(η) and multiple diagonalisation steps of the reduced

Hamiltonian [95]. Another disadvantage of the CAP method is that the obtained

results are very sensitive to the basis set and the box size chosen for the calculation

[86, 97].

2.2.2 Fano-ADC-Stieltjes method

An alternative ab initio computational technique for decay rates of metastable

electronic states is the Fano-ADC-Stieltjes approach [98]. It was �rst tested on

atomic Auger and Coster-Kronig processes, and then used for the calculation of

ICD and ETMD widths [98]. The Fano-ADC-Stieltjes method is based on the

approach introduced by Fano [87], and later adapted to the case of Auger decay

by Howat et al. [99]. Within this approach the exact wave function of a continuum

state |ΨE〉 in the vicinity of the resonance is expressed as a superposition of one

discrete state and Nc continua, describing the distinct decay channels. At large

internuclear distances, |ΨE〉 coincides with the exact scattering wave function.

The interaction between the discrete and continuous parts determines the shape

of the resonance [99] and is also responsible for the �nite lifetime of this state.

Moreover, due to the interaction with the continuum, the energy of the discrete

state is shifted. An expression for the energy shift and the decay width of the

continuum state in the vicinity of the resonance was derived by Fano [87] and a

summary of the derivation will be given in the following. Let us consider the case

of a single discrete state |Φ〉 and one continuum of states |χε′〉. The part of the

Hamiltonian belonging to these states is

〈Φ|Ĥ|Φ〉 = EΦ (2.2.8a)

〈Φ|Ĥ|χε′〉 = Vε′ (2.2.8b)
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〈χε′ |Ĥ|χε′′〉 = ε′δ(ε′ − ε′′) (2.2.8c)

where EΦ denotes the energy of the �unperturbed� discrete state, Vε′ is the coupling

between the discrete state |Φ〉 and the continuum. Additionally, it is assumed

that the submatrix belonging to the states |χε′〉 has been diagonalised as a �rst

approximation.

The eigenvector corresponding to the part of the Hamiltonian Eq. (2.2.8) has

the form

|ΨE〉 = a(E)|Φ〉+

∫
dε′bε′(E)|χε′〉 (2.2.9)

It represents a continuum state of energy E in the vicinity of the resonance. It is

a solution to the Schrödinger equation

Ĥ|ΨE〉 = E|ΨE〉 (2.2.10)

Finding a solution of the above equation comes down to determining the coef-

�cients a(E) and bε′(E). This is done by inserting the ansatz (2.2.9) into Eq.

(2.2.10) and multiplying successively by 〈Φ| and 〈χε′ |. As a result, the following

system of equations is obtained

EΦa(E) +

∫
dε′V ∗ε′ bε′(E) = EΦa(E) (2.2.11a)

Vε′a(E) + ε′bε′(E) = Ebε′(E) (2.2.11b)

from which the coe�cients a(E) and bε′(E) can be determined (see Ref. [87] for a

detailed derivation of the expressions)

a(E) =
sin Θ

πVE
(2.2.12a)

bε′(E) =
Vε′

πVE

sin Θ

E − ε′
− cos Θδ(E − ε′) (2.2.12b)

where Θ = − arctan( π|VE |2
E−EΦ−∆(E)

) and ∆(E) = P
∫
dε′
|Vε′ |2
E−ε′ represent the phase shift

of the scattered electron and the energy shift of the discrete state, respectively,

resulting from the interaction with the continuum of states. Due to this interaction

the discrete state |Φ〉 becomes a band of actual stationary states represented by a

resonance curve of half-width π|VE|2, i.e. the state |Φ〉 autoionises with the mean

lifetime

τ =
~

2π|VE|2
(2.2.13)



2. Theory 29

and a decay width

Γ =
~
τ

= 2π|VE|2 (2.2.14)

In the above approach, the interaction between the continuum states is not ac-

counted for (see Eq. (2.2.8c)). Besides, the orthogonality of |Φ〉 and |χε′〉 is also
assumed [87]. However, as shown in Ref. [99], the same result for the partial decay

width (2.2.14) can be obtained without these two assumptions.

In the case of ICD, the discrete state is usually coupled to a multitude of

continua (Nc). Each of these continua is de�ned by the quantum numbers of the

�nal dicationic states. Upon the assumption that the latter interact weakly, the

total decay width of the resonance state can be written as [99]

Γ =
Nc∑
β=1

Γβ =
Nc∑
β=1

|〈Φ|Ĥ − E|χβ,εβ〉|2 (2.2.15)

For the calculation of ICD widths, one needs to provide sensible approximations for

the multielectron bound |Φ〉 and continuum |χβ,εβ〉 wave functions. In the Fano-

ADC-Stieltjes method the latter are constructed as an expansion in the basis of

intermediate states generated in an ADC calculation (the ADC method is outlined

in Sec. 2.1). This is accomplished by applying a suitable selection of the states

entering the expansion of |Φ〉 and |χβ,εβ〉. In the case considered in Ref. [98], the

initial ICD state is singly-ionised. It is designed such that it does not include any

component corresponding to the possible �nal states of the decay. This imposes

a restriction on the physical excitation operators used in the construction of the

CE states. The �allowed� operators are those which satisfy the condition

|Ψ0
J〉 =ĈJ |Ψ0〉 (2.2.16)

{ĈJ} ={ci; c†acicj, i < j, E
(N−2)
ij > EΦ;

c†ac
†
bcicjck, i < j < k, a < b,E

(N−3)
ijk > EΦ, E

(N−2)
aijk > EΦ, E

(N−2)
bijk > EΦ, . . . }

An alternative way of constructing the bound part |Φ〉, which is not exactly equiv-
alent to Eq. (2.2.16), is to use a spatial criterion for selecting the con�gurations.

Thus, |Φ〉 will be constructed only out of the con�gurations residing on one of the

subunits, e.g. A (which is initially ionised)

{ĈJ} ={ci; c†acicj, i < j, |φi,j〉 ∈ A; (2.2.17)

c†ac
†
bcicjck, i < j < k, a < b, |φi,j,k〉 ∈ A; . . . }
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This procedure is expected to work very well in case of small overlap between

the orbitals belonging to the di�erent cluster subunits. Under this condition, the

two schemes (2.2.17) and (2.2.16) are expected to give almost identical results.

If the investigated system has inversion symmetry (e.g. homogeneous rare gas

clusters), Eq. (2.2.17) is no longer applicable. Then |Φ〉 can be identi�ed as the

state possessing the largest overlap with the cluster orbital representing the initial

vacancy. Usually the bound states are constructed by performing a Hartree-Fock

calculation and then selecting the physical operators according to one of the two

schemes. Then using the restricted physical space, an ADC(n) calculation is

performed to determine EΦ. The �nal ICD states are constructed from the ADC

2h-1p states

|χβ,εβ〉 ∼ |Ψ2h1p
q 〉 =

∑
i

∑
[J ]=i

Yq,J |Ψ̃J〉 1−
∑
[J ]=i

|Yq,J |2 � 1 (2.2.18)

This is done by performing an additional ADC calculation without any restriction

on the physical operators and subsequently choosing all states |Ψ2h1p
q 〉 in an interval

of energies around EΦ.

After constructing the bound |Φ〉 and the continuum |Ψ2h1p
q 〉 parts of the wave

function, one can compute the couplings

γq = 2π|〈Φ|Ĥ − EΦ|Ψ2h1p
q 〉|2 (2.2.19)

These couplings mimic the actual partial decay rates. The justi�cation for using

these couplings is not straightforward and will be discussed in detail below.

First of all, the true continuum wave functions |χβ,εβ〉 are energy normalised,

unlike the states |Ψ2h1p
q 〉. Besides, they do not vanish outside the interaction region

since they satisfy the scattering boundary conditions (at a large distance from the

interaction region they represent a free particle). However, the coupling between

the bound and the continuum components of the wave function is non-zero only in

the interaction region, which is determined by the bound component |Φ〉. Thus,
the states |Ψ2h1p

q 〉 can be used to approximate the true continuum states in the

interaction region provided they are

(1) renormalised to equal the true continuum wave functions in the interaction

region

(2) interpolated in energy such that E2h1p
q = EΦ
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This can be achieved using the Stieltjes imaging technique [100, 101] which relies

on the fact that the spectral moments of the quantities Γβ obtained using the

pseudospectrum are a good approximation to the true spectral moments. In this

method the conditions (1) and (2) are accounted for, by computing the spectral

moments of the quantities (2.2.15) using the pseudospectrum |Ψ2h1p
q 〉

∑
β

∫
dE Ek|〈Φ|Ĥ − E|χβ,εβ〉|2 ≈

∑
q

(E2h1p
q )k|〈Φ|Ĥ − E|Ψ2h1p

q 〉|2 (2.2.20)

The true decay width can then be recovered by increasing the order k of

the spectral moments until a stationary behaviour of Γ is reached. In order to

obtain a reliable result, a high density of the pseudospectrum around the resonance

energy is required. This is attained by employing large Gaussian basis sets with

distributed Gaussians [98, 102].

The Fano-ADC-Stieltjes approach has already been successfully applied to

the study of interatomic decay processes in ionised and excited clusters (see e.g.

[98, 102�106]). In the current work it is used to calculate the ICD widths of

various ionised-excited states of rare-gas dimers (for the computational details see

Chapter 4).

2.3 Time-dependent theory of wave packet propa-

gation

The ICD-electron and KER spectra measured in the experiment can be theoret-

ically computed from the wave packets of all �nal states |Ψfk(Ee, t)〉 propagated
for a su�ciently long time [107]. The time evolution of these wave packets can be

obtained by solving the time-dependent Schrödinger equation for the total wave

function. To this end, the potential energy curves of all electronic states populated

in the cascade, as well as the lifetimes of the decaying states have to be computed.

In the previous subsections, the methods for the calculation of these quantities

were presented. The current subsection focuses on the time-dependent theory of

wave packet propagation, and more precisely, on its extension to the case of decay

cascades [107�112]. A meticulous description of the theory can be found in Refs.

[113, 114].
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Let us consider a general decay cascade consisting of two stages and initiated

by a resonant excitation. The system is in the initial state |i〉 (see Fig. 2.2). Upon
resonant excitation, the intermediate state |d1〉 is populated. This state decays

to the intermediate states |d2〉, which subsequently decay to the manifold of �nal

states |f〉. The process can therefore be described with the following equation

|i〉+ hν → |d1〉 → |d2〉+ e−1 → |f〉+ e−1 + e−2 (2.3.1)

The decay cascade considered in this work is initiated by a resonant core excitation.

The �rst stage is the resonant Auger process, followed by ICD as the second stage.

The ansatz for the total wave function of the system in the Born-Oppenheimer

approximation reads [113]

|ψ(t)〉 = |Ψi(t)〉|Φi〉+ |Ψd1(t)〉|Φd1〉+
∑
m

∫
dEe1|Ψd2,m(Ee1 , t)〉|Φd2,m , Ee1〉

+
∑
k

∫∫
dEe1 dEe2|Ψm

fk
(Ee1 , Ee2 , t)〉|Φfk , Ee1 , Ee2〉

(2.3.2)

Here, |Φi〉, |Φd1〉, |Φd2,m , Ee1〉, and |Φfk , Ee1 , Ee2〉 denote the electronic wave func-
tions of the electronic states involved in the process. The intermediate and �nal

electronic states are constituted of the ionised system and the emitted electrons

e−1 , and e−1 and e−2 , respectively. Since these states depend on the kinetic ener-

gies of the emitted electrons Ee1 and Ee2 , they can be parameterised with these

energies. The associated wave functions represent an antisymmetrised product

of the electronic states |Φd2,m〉 and |Φfk〉 of the singly- and doubly-ionised sys-

tems, and the continuum free electrons, respectively. Furthermore, as is evident

from Fig. 2.2, the energies of the emitted primary and secondary electrons depend

on the particular decaying state d2,m, populated in the �rst step of the cascade.

Therefore, the �nal state wave functions will also depend on the decaying state

d2,m through the energies of the emitted secondary electrons, Ee2 . In Eq. (2.3.2)

|Ψi(t)〉, |Ψd1(t)〉, |Ψd2,m(Ee1 , t)〉, and |Ψm
fk

(Ee1 , Ee2 , t)〉 denote the nuclear wave

functions, which describe the nuclear dynamics in the initial, decaying (d1 and

d2) and �nal electronic states and are therefore time-dependent. All of the nu-

clear wave functions are also functions of the nuclear coordinates. Additionally,

|Ψd2,m(Ee1 , t)〉 and |Ψm
fk

(Ee1 , Ee2 , t)〉 are parameterised with the energies of the

emitted electrons. This accounts for the fact that depending on the kinetic ener-

gies of the emitted electron, the ionised molecule reaches the respective �nal state
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Figure 2.2: A two-step decay cascade initiated by a resonant excitation. Before

the excitation the system is in the initial state i. Upon excitation the decaying

state d1 is populated. Subsequently the system decays to the intermediate states

d2,m,m = 1, 2, 3 (only three states are considered for simplicity) and emits an

electron e−1 of energy Ee1 , which depends on the partial decay channel. Then,

each of the states d2,m decays to each of the �nal states fk, k = 1, 2 by emitting

an electron e−2 . The energy of the secondary electron, Ee2 , depends both on the

decaying and on the �nal state.

(|d2,m〉 or |fk〉) with a di�erent energy and therefore, di�erent nuclear dynamics

take place.

The total wave function |ψ(t)〉 (Eq. (2.3.2)) obeys the time-dependent Schrödinger
equation with the Hamiltonian

Ĥ(t) = T̂nuc + Ĥel + D̂ · E(t) (2.3.3)

where Ĥel is the electronic Hamiltonian, T̂nuc is the nuclear kinetic energy operator

and D̂ is the dipole operator; the term D̂ ·E(t) describes the interaction with the

electromagnetic �eld E(t) [115].

The RA-ICD cascade considered here is initiated by a broad resonant ex-

citation, which can be assumed to be instantaneous, therefore allowing one to

separate the excitation from the subsequent decay. During the instantaneous ex-

citation process the ground-state wave packet is transferred vertically to the PES

of a speci�c core-excited state. Consequently, only the shape of the initial wave
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packet at time t = 0 is of relevance, while its time evolution is ignored. As a

result, the following set of initial conditions is adopted [109, 115]

|Ψd1(t = 0)〉 = Ŵi→d1|Ψi(t = 0)〉 = Ŵi→d1|ν = 0〉 (2.3.4a)

|Ψd2,m(Ee1 , t = 0)〉 = 0 (2.3.4b)

|Ψm
fk

(Ee1 , Ee2 , t = 0)〉 = 0 (2.3.4c)

and the total Hamiltonian of the system (Eq. (2.3.3)) becomes time-independent

Ĥ = T̂nuc + Ĥel (2.3.5)

The di�erential equations describing the motion of the nuclear wave packets on the

corresponding electronic PECs can be derived from the time-dependent Schrödinger

equation for the total wave function by projecting it onto the bras of the electronic

states. As a result, one obtains the following system of coupled di�erential equa-

tions

i|Ψ̇d1(t)〉 = Ĥd1 |Ψd1(t)〉+
∑
m

∫
dEe1Ŵ

†
d1→d2,m

(Ee1)|Ψd2,m(Ee1 , t)〉 (2.3.6a)

i|Ψ̇d2,m(Ee1 , t)〉 = (Ĥdm + Ee1)|Ψd2,m(Ee1 , t)〉+ Ŵd1→d2,m(Ee1)|Ψd1(t)〉

+
∑
k

∫
dEe2Ŵ

†
d2,m→fk(Ee2)|Ψm

fk
(Ee1 , Ee2 , t)〉 (2.3.6b)

i|Ψ̇m
fk

(Ee1 , Ee2 , t)〉 = (Ĥfk + Ee1 + Ee2)|Ψm
fk

(Ee1 , Ee2 , t)〉

+ Ŵd2,m→fk(Ee2)|Ψd2,m(Ee1 , t)〉 (2.3.6c)

Here, Ŵx→y denote the matrix elements 〈Φx|Ĥel|Φy〉 responsible for the transi-

tions between the electronic states x and y (note that they depend on the kinetic

energies of the emitted electrons, see Ref. [114] for a derivation); Ĥ i/d1/d2,m/fk are

the Hamiltonians for the nuclear motion on the corresponding electronic PECs

and represent a sum of the nuclear kinetic energy operator T̂nuc and the potential

energy operators V̂i/d1/d2,m/fk = 〈Φi/d1/d2,m/fk |Ĥel|Φi/d1/d2,m/fk〉. In the decay cas-

cade under consideration, the initial ICD states, i.e. the states {d2,m} are assumed

to be non-interacting. Therefore, the ICD step can be considered as a separable

multi-channel process [114], and Eqs. (2.3.6b) and (2.3.6c) are solved for each

partial ICD channel, i.e. for each pair of decaying and �nal states (d2,m, fk).

The system (2.3.6) can be further simpli�ed if one takes into account the

time scale of the resonant Auger step following the initial excitation. It is known
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from the literature that the lifetime of core-excited states of di�erent atoms and

molecules is of the order of a few fs [116, 117]. Therefore, the transition between

the intermediate state |d1〉 and the manifold of intermediate states |d2〉 is very fast
so that in most cases, and in those considered in this work, the resonant Auger

decay will be nearly una�ected by the nuclear dynamics on the core-excited PEC

(the PEC of the intermediate state |d1〉). Therefore, the time evolution of |Ψd1〉
can be replaced by the following initial conditions [109, 115]

|Ψd2,m(Ee1 , t = 0)〉 = Ŵd1→d2,m(Ee1)|Ψd1(t = 0)〉

= Ŵd1→d2,m(Ee1)Ŵi→d1|ν = 0〉 (2.3.7a)

|Ψm
fk

(Ee1 , Ee2 , t = 0)〉 = 0 (2.3.7b)

where in Eq. (2.3.7a) the initial condition for |Ψd1〉 (Eq. (2.3.4a)) has been used.

Consequently, the system (2.3.6) reduces to [115, 118]

i| ˙̃Ψd2,m(t)〉 = (Ĥd2,m − i
Γ̂d2,m

2
)|Ψ̃d2,m(t)〉 (2.3.8a)

i| ˙̃Ψm
fk

(Ee2 , t)〉 = (Ĥfk + Ee2)|Ψ̃m
fk

(Ee2 , t)〉+ Ŵd2,m→fk |Ψ̃d2,m(t)〉 (2.3.8b)

where the e�ective Hamilton operators Ĥd2,m = Ĥd2,m−i
Γ̂d2,m

2
have been introduced

allowing one to decouple the equations for the decaying wave packets (Eq. (2.3.8a))

from these of the �nal wave packets (Eq. (2.3.8b)) (for a derivation see Ref. [115]).

Note that the introduction of the initial conditions (Eqs. (2.3.7)) allows one to use

the so-called dressed states [114, 119], in which the energy Ee1 appears as a phase of

the wave packets. The dressed nuclear wave functions are indicated in Eqs. (2.3.8)

as |Ψ̃d2,m(t)〉 and |Ψ̃m
fk

(Ee2 , t)〉. In the current work, the transition operators Ŵi→d1

and Ŵd1→d2,m have been assumed to be the unity operators similarly to previous

nuclear dynamics calculations [111, 113, 115, 118].

The e�ective Hamiltonians in Eqs. (2.3.8a) contain the decay width operators

Γ̂d2,m , which are in general non-local and depend on the energies of the emitted

electrons. However, in cases when the decaying and �nal states are energetically

well separated, the so-called local approximation can be adopted [107, 115, 120�

122]. Within this approximation the decay widths Γ̂d2,m , as well as the partial

decay widths Γ̂d2,m→fk and the transition elements Ŵd2,m→fk , can be considered as

functions of the nuclear coordinates alone, and not of the energy of the emitted

electron Ee2 . Consequently, the relation between the transition elements Ŵd2,m→fk
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and the partial decay widths Γ̂d2,m→fk takes the following form

Γ̂d2,m→fk(R) = 2π|Ŵd2,m→fk(R)|2 (2.3.9)

The local approximation has been used in previous calculations of ICD dynamics,

which shows that the interactions between the decaying and the �nal states can

indeed be neglected [111, 112, 118, 123].

The kinetic energy distributions of the emitted electrons following the decay

in a particular channel can be obtained from the nuclear wave packets on the

corresponding �nal state at large times, at which the decay is essentially complete

[115]

σmfk(Ee2) = lim
t→∞
〈Ψm

fk
(Ee2 , t)|Ψm

fk
(Ee2 , t)〉 (2.3.10)

The ICD electron spectrum of a particular decaying state is then the sum of the

partial intensities σmfk(Ee2) which correspond to all possible decay channels

σm(Ee2) =
∑
k

σmfk(Ee2) (2.3.11)

As a result of energy conservation during the ICD process, the sum of the

kinetic energy of the emitted particles (electrons and ions) is constant [124]

EKER + Ee2 = Em(Re)− Ef (∞) = const (2.3.12)

Therefore, the KER spectra of the nuclei originating from the decay of a particular

state, e.g. dm, can be obtained from the respective ICD-electron spectra as follows

σmKER(EKER) = σmICD(Em(Re)− Ef (∞)− Ee2) (2.3.13)

Here, EKER is the kinetic energy of the nuclei, Em(Re) is the electronic energy of

the decaying state at Re, and Ef (∞) is the asymptotic energy of the �nal states.

Eq. (2.3.13) is known as the mirror image principle [124�126].

The total ICD-electron and KER spectra of a cascade initiated by a particular

core excitation are calculated as weighted sums of the spectra σm(Ee2) belonging

to a particular decaying state d2,m populated in the RA step

σ(Ee2) =
∑
m

wmσ
m(Ee2) (2.3.14)

In the case of the RA-ICD cascade, the respective weights wm can be obtained

from experimental branching rations of the resonant Auger process.
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Ionisation satellites of ArHe

To model the spectra of the ICD electrons and ions emitted in the resonant-

Auger � ICD cascade, one has to compute the nuclear dynamics during the ICD

step. This, in turn, requires the knowledge of the potential energy curves of

the ionisation satellites populated in the resonant Auger step. An accurate ab

initio description of ionisation satellites for heavy dimers such as Ar2 and ArKr is

extremely challenging. First, since these states have comparatively high energies

and often lie in the electronic continuum their determination involves calculating

many excited states (usually >100) and the use of large di�use basis sets. This

results in large Hamiltonian matrices which make the computation extremely time

consuming. Second, once the excited states have been calculated, the construction

of PECs is further complicated by a high density of states at the energies in

question. This can even make the construction of the PEC in the case of higher-

lying satellites outright impossible.

This implies that in some cases one needs an alternative way of constructing

the PECs of such systems, for which one has to understand the bonding in Ar�

RG satellite states. Thus, for diatomic complexes of an alkaline earth metal (M)

and a rare-gas atom (RG) (M�RG) accurate ab initio calculations of the PECs

corresponding to the lowest satellites located on the metal ion have been reported

in the literature [127�129]. The results suggest that a one-electron picture for

the satellites based on the parent dicationic species can qualitatively reproduce

some of the PECs in these systems. The substantial di�erence in the electronic

structure between the satellite states of RG�RG and M�RG demands, however, a

closer look at the former before any development of the model potential methods is

attempted. In the satellite of an alkaline earth metal atom both holes occupy a ns

orbital and are coupled to form a non-degenerate term of 1Σ+ symmetry. In this

case one can straightforwardly construct a model potential in which the Rydberg

electron moves. In the case of satellite states of a rare-gas atom, the holes occupy

37
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a degenerate np shell and are coupled to form 3P , 1D, and 1S multiplets. Starting

from these hole con�gurations one can construct several parent dicationic states

of the diatomic. As a result, in a satellite state there exist two possibilities for the

excited electron. It may either move in the �eld of a single dicationic parent state

or the parent states might become mixed by con�guration interaction resulting in

a more complicated potential.

In order to understand the bonding in Ar�RG satellite states, we carried out

ab initio calculations for the simplest member of the family, ArHe. To simplify

the comparison between the satellite and dicationic PECs, we constructed the

diabatic states from the adiabatic ones obtained in the calculation. We then anal-

ysed the PECs of the lowest members of the Ar+(3p−2ns)He and Ar+(3p−2nd)He

Rydberg series to see the e�ect of con�guration interaction on the parent states

mixing. We further compare the PECs to those of the corresponding parent dica-

tion Ar2+(3p−2)He and discuss the plausibility of using a one-electron model for

such systems.

The chapter is organised as follows. In the next section, we give the details

of the ab initio computational methodology. The results of the calculations are

presented and discussed in Sec. 3.2, while the conclusions follow in Sec. 3.3. The

discussion of the PECs is done in terms of diabatic states unless indicated other-

wise.

3.1 Computational details

The satellite states of ArHe were computed using the MRCI approach (see Sec.

2.1). Speci�cally, the reference space involved �ve one-hole (1h) electron con�gura-

tions that comprised all possible (spin-free) occupations of the 5 �valence� orbitals

of ArHe with 9 electrons; at the dissociation limit these orbitals correlated with

the 1s orbital of He and 3s and 3p orbitals of Ar. The �nal CI expansion was con-

structed by allowing all single, double and triple excitations (MRCI-SDT) out of

the reference con�gurations. In the resulting CI-matrix the maximum number of

holes thus equalled 4 while the maximum number of excited electrons was 3, with

respect to the neutral ground state of ArHe. The resulting 1h, 2h-1p, 3h-2p and

4h-3p CI-space is expected to provide fairly accurate description of the satellite

(2h-1p) states. To �nd all states of interest the 45 lowest roots of the resulting CI
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Table 3.1: Excitation energies (E, eV) of some Ar+(3p−24s)He and

Ar+(3p−23d)He satellites computed using the MRCI-SDT method and their

deviation (∆E = E−E(NIST), eV) from the corresponding atomic values taken

from the NIST database [130]. The mean absolute error (MAE, eV) and the

standard deviation (SD, eV) are given for each set of states.

Ar+(3p−24s)He state Ar+(3p−2[1D]3d)He state
2P 2D 2S 2G 2F 2D 2P 2S

E 17.365 18.698 20.988 19.629 20.775 21.801 22.056 23.212

∆E 0.183 0.255 0.245 0.512 0.514 0.409 0.415 0.388

MAE 0.227 0.448

SD 0.0318 0.0541

matrices in each irreducible representation of the C2v point group were computed.

Besides the satellite states, the PECs of the parent doubly-ionised states are

also considered. These were computed using MRCI-SD (i.e. all single and double

excitations out of the reference) in order to be consistent with the description of

the satellite states. The reference space here involved all possible con�gurations

with two �unpaired� holes in the 3s and 3p orbitals of Ar and 1s of He (overall 10

con�gurations). Because of di�erent spin multiplicity of the dicationic states (two

singlets and one triplet) two sets of the reference space were constructed. In all CI

calculations, for satellites as well as parent dications, the canonical Hartree-Fock

orbitals of the neutral ArHe obtained at a corresponding interatomic distance were

used in the CI expansions. The advantage of the neutral molecular orbitals (MOs)

here has to do with their correct description of degeneracy of the 3p orbitals as

well as facilitating the comparison between di�erent states. The large number of

states to be calculated and the fast growth of the CI matrix with the number of

one-electron basis functions imposes severe restrictions on the size of the atomic

basis sets. For the PECs of the Ar+(3p−24s, 3d)He states the following Gaussian

type orbitals (GTO) basis set was used. The cc-pVTZ basis set [131] augmented

by two s, two p and two d di�use GTOs, and a compact d GTO was used on

Ar [132]. The compact GTO was added to improve the description of Rydberg

electrons in the �eld of the Ar2+ ion. The analogous basis set [133] (without the

compact GTO) was used on He. The molecular orbitals corresponding to the 1s,

2s, and 2p electrons of Ar were frozen in all CI calculations. At the asymptotic
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interatomic distance the excitation energies of the satellite states relative to the

ground state of Ar+He were compared to the corresponding atomic values for Ar

listed in the NIST database [130]. The calculations reproduce the correct order

of the lower excited states. The mean absolute error for the energies of the 4s

(3d) satellites is 227 meV (448 meV), while the standard deviation of the error is

32 meV (54 meV) (see Table 3.1). The same basis set and number of frozen core

orbitals as described above was used in the calculations of the dicationic states.

All CI calculations were performed employing the Unitary Group CI package

based on the Graphical Unitary Group Approach (GUGA) as implemented in the

GAMESS-US suite of programs [134]. The average size of the CI matrix in our

calculations was ∼5·106.

For plotting the PECs of the satellite and dicationic states the plain CI ener-

gies were used. A correction for the size-consistency has not been applied because

it could not be reliably computed for all the states under consideration. However,

for the present results, the error related to the lack of size-consistency for a re-

stricted CI expansion is expected to be small. This follows from the high level of

excitation in the �nal CI matrices (up to triples) and a relatively small number of

correlated electrons (9 for satellites and 8 for dications).

The PECs of the low lying Ar+(3p−24s, 3d)He states were also computed using

the computationally cheaper, though less accurate, MRCI-SD (i.e. all single and

double excitations out of the reference con�gurations) method. The order of the

states for the energy range considered is reproduced correctly at large interatomic

distances. Also the PECs obtained by the MRCI-SD method do not deviate

signi�cantly from the MRCI-SDT PECs at shorter interatomic distances. This

supports the estimation that the error related to the lack of size-consistency is

small. It also indicates that the inclusion of the complete three-hole two-particle

(3h-2p) con�guration space is su�cient to obtain an adequate description of the

bonding in certain ionised-excited states.
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Figure 3.1: PECs of the doubly-

ionised states of ArHe correlat-

ing at large interatomic distances

with (a) Ar2+(3p−2[1S]) dication

and the ground state He atom;

(b) Ar2+(3p−2[1D]) dication and

the ground state He atom; (c)

Ar2+(3p−2[3P ]) dication and the

ground state He atom.

3.2 Results and discussion

3.2.1 Ar2+(3p−2)He parent dicationic states

A picture of a satellite state as a dicationic state perturbed by interaction with

the Rydberg electron o�ers an appealing way of understanding and characterising

its potential energy curve. However, whether this picture remains valid for the

Ar+(3p−2nl)RG satellite states is by no means obvious. Since the holes occupy a

degenerate 3p shell, several dicationic parent states correspond to the satellites in

question. If the con�guration interaction in the satellite state mixes these parent

states, there will be no simple correspondence between the satellite and dicationic

states.

To clarify the above point, the dicationic curves corresponding to the Ar2+He

doubly-ionised states were computed �rst. The three multiplets, 3P , 1D, 1S, of

Ar2+(3p4) cation split into a number of molecular terms in Ar2+He. The cor-

responding PECs are shown in Fig. 3.1 and exhibit markedly di�erent bonding

behaviour. Let us consider �rst the 1Σ+, 1Π, and 1∆ states originating from the

Ar2+(3p−2[1D])He multiplet (Fig. 3.1(b), Table 3.2). The 1Σ+ state is exception-

ally strongly bound (De = 2.4 eV, Re = 1.37Å) and its minimum is shifted to



42 Chapter 3

Table 3.2: The equilibrium distance (Re, Å) and the dissociation energy (De,

meV) of the Ar2+(3p−2)He dicationic states.

3Σ−(3P ) 3Π(3P ) 1Σ+(1D) 1Π(1D) 1∆(1D) 1Σ+(1S)

Re 2.64 1.90 1.37 1.86 2.64 2.33

De 80 503 2400 792 80 595

small interatomic distances. The 1∆ state is only weakly bound (De = 0.08 eV,

Re = 2.64Å), while the bonding in the 1Π state (De = 0.79 eV, Re = 1.86Å) lies

between these two extremes.

This varying bonding strength can be understood from the following consid-

erations. The leading electronic con�guration in the 1Σ+ is of 3p−2
z character and

both holes on Ar are localised along the interatomic axis. Since the He atom lacks

a �lled p-shell and the four remaining 3p electrons of the Ar atom are localised

o� the interatomic axis, their mutual repulsion is minimised. Therefore, the He

atom can approach the ionised core of the neighbour more closely. Analysing this

state we observed that at the equilibrium interatomic distance the 1s orbital of

He mixes strongly with the empty 3pz orbital of Ar. The resulting delocalisation

of charge leads to the signi�cant lowering of the orbital energy, and may explain

the exceptionally strong bonding in this state. Similarly, the leading con�guration

in the 1Π state is of the 3p−1
x,y3p

−1
z character with only one hole localised along the

interatomic axis. The repulsion between a 3pz electron and He results in a PEC

whose interaction energy is three times lower and whose minimum is shifted to

larger distances than in the case of the 1Σ+ state. In the 1∆ case the holes de-

scribed by the 3p−1
x 3p−1

y con�guration are localised o� the interatomic axis leading

to large electron repulsion and, consequently, exceptionally weak binding in this

state.

The PECs corresponding to the 3P and 1S multiplets can be understood

analogously. In particular, the 3Σ− term is seen to be only slightly bound at large

interatomic distances (Fig. 3.1(c)). The depth and the minimum of its PEC are

very similar to those of the 1∆ state (Table 3.2). This is explained by the fact that

the leading electronic con�guration of the state is of 3p−1
x 3p−1

y character with both

holes localised o� the interatomic axis. The PEC corresponding to the 3Π term

has one hole localised on the interatomic axis, the corresponding con�guration is

3p−1
x,y3p

−1
z . Therefore, it is expected to be more bound than the 3Σ− state and
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resemble the 1Π state (see Table 3.2). The 1Σ+ molecular term stemming from

the 1S parent dicationic state di�ers appreciably from the 1Σ+ state of the 1D

multiplet (Fig. 3.1(a)). Although both states are linear combinations of the 3p−2
x ,

3p−2
y and 3p−2

z hole con�gurations, the [1D] 1Σ+ state is characterised by the

leading hole con�guration which is 3p−2
z , whereas for the [1S] 1Σ+ state the three

hole con�gurations contribute equally. Therefore, the [1S] 1Σ+ PEC has a smaller

binding energy and a minimum shifted to a larger interatomic distance.

3.2.2 Ar+(3p−24s)He ionisation satellites

The computed PECs of the Ar+(3p−2[3P, 1D, 1S]4s)He ionisation satellites having

the total spin S = 1/2 are presented in Fig. 3.2. Analysis of the CI vectors of

these satellites shows that these states are obtained by adding a Rydberg electron

to some speci�c dicationic state of ArHe. Since the excited electron occupies an

orbital of s symmetry, the number of such satellites equals the number of the parent

dicationic states, and their molecular symmetry is determined by the symmetry

of the latter states. Consider for example the PEC of the Ar+(3p−2[1D]4s)He 2Σ+

state (see Fig. 3.2(b)). It has De = 2.33 eV and Re = 1.30Å which are close to

the corresponding values of the Ar2+(3p−2[1D])He 1Σ+ dicationic state (see Table

3.2, 3.3). The shift of the satellite PEC minimum to a smaller distance compared

with the doubly-ionised curve has been also observed for Mg+(3s−23pπ)He [129].

It has been ascribed to the e�ect of an additional dispersive attractive interaction

due to the presence of a Rydberg electron in the satellite state.

The interaction of the He atom with the 4s Rydberg electron leads to a number

of di�erences between the satellite and the parent dicationic PECs. First, the

potential well of the satellite is narrower than the well of the dication. Second,

the satellite PEC exhibits a small maximum of 52meV at R = 2.76Å (see inset

of Fig. 3.2(b)), and has a shallow minimum at 4.82Å absent in the dicationic

PEC. Indeed, the natural orbital of the 4s electron (Fig. 3.2(b′)) has considerable

density at distances between 1.0Å and 4.0Å from the Ar atom peaking at 1.7Å.

Thus, at large interatomic distances charge-induced dipole interaction results in

the gentle decrease in the PEC. Approximately at R = 5.5Å the repulsion between

the electrons of He and the Rydberg electron sets in, leading to the appearance of a

shallow minimum and then of a maximum in the PEC. The latter roughly coincides
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Figure 3.2: Comparison of the PECs

of Ar+(3p−24s)He spin doublet ion-

isation satellites with the PECs of

the corresponding dicationic parent

states (broken lines) (see Fig. 3.1).

(a) satellite state correlating with

Ar2+(3p−2[1S]4s) and the ground state

He atom; (b) satellite states corre-

lating with Ar2+(3p−2[1D]4s) and the

ground state He atom; (b′) natu-

ral orbital density of the 4s elec-

tron in the Ar+(3p−2[1D]4s) atomic

state; (c) satellite states correlating

with Ar2+(3p−2[3P ]4s) and the ground

state He atom. The insets show the

parts of satellite PECs exhibiting a

maximum which appears due to the in-

teraction between 4s Rydberg electron

and the He atom.

with the maximum in the density of the 4s orbital. This repulsion continues to

be e�ective down to 1.5Å resulting in the narrower well of the satellite. An

interesting point is that the occurrence of a maximum in the satellite PEC is

not due to an avoided crossing with a higher-lying PEC, but it is the result of

interaction of the 4s electron with the He atom. This explanation has also been

o�ered for a similar structure observed in the case of doubly-excited states of

CaAr [135]. Appearance of maxima in a PEC coinciding with the maxima in the

electron density of a Rydberg electron has also been predicted in neutral Rydberg

molecules such as dimers of the alkali metals. In these systems the PECs of highly-

excited Rydberg states show oscillations mimicking the density variation of the

corresponding Rydberg orbitals (see e.g. Ref. [136]).

The minimum of the dicationic Ar2+(3p−2[1D])He 1Σ+ state lies at the inter-

atomic distance where the density of the 4s electron is small. This explains the

similarity between its PEC and the PEC of the Ar+(3p−2[1D]4s)He 2Σ+ state. As

is evident from Table 3.3 the minima of the other dicationic states of interest lie

in the region where the 4s electron density is considerable. Thus, although the
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Table 3.3: The minima (Re, Å) and the corresponding depths (De, meV) of

the Ar+(3p−24s)He ionisation satellite states. Note the appearance of a double

well structure for the 2Σ+(1D), 2Π(1D) and 2Σ+(1S) states.

2Σ−(3P ) 2Π(3P ) 2Σ+(1D) 2Π(1D) 2∆(1D) 2Σ+(1S)

Re 4.83 4.86 1.30 4.82 1.79 4.77 4.41 2.43 4.76

De 2.3 2.4 2330 2.4 117 2.4 3.2 92 2.56

Figure 3.3: (a) Comparison

of the PECs of 2Σ− sym-

metry of Ar+(3p−2[3P ]4s)He

(red) and Ar+(3p−2[3P ]5s)He

(brown) satellite states with the

PEC of the parent dicationic

Ar2+(3p−2[3P ])He state (see

Fig. 3.1(c)). (b) Natural orbital

density of the Rydberg electron

in the Ar+(3p−2[3P ]4s) (red)

and Ar+(3p−2[3P ]5s) (brown)

states.

satellite PECs bear a broad resemblance to the PECs of the parent dication, their

bonding character is strongly in�uenced by the 4s Rydberg electron. The poten-

tial wells in the satellite PECs are either much shallower than in the dicationic

PECs or are absent altogether. In addition, all satellite curves exhibit a shallow

minimum of about 2meV at 4.4 � 4.9Å, whose appearance was explained above.

Whenever the satellite PEC has the double-well character, the barrier separating

the wells is located between 2.5Å and 3.1Å and has a height between 52meV

and 74meV (see insets to Fig. 3.2). The position of the barrier again broadly

corresponds to the maximum in the density of the 4s electron.

3.2.3 Higher lying Ar+(3p−25s)He and Ar+(3p−23d)He states

If an electron is excited to a higher Rydberg orbital, the electron density spreads

towards larger distances from the Ar atom (see Fig. 3.3(b) for the di�erence be-
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tween the 4s and 5s natural orbital densities). Therefore, the repulsion between

the He atom and the Rydberg electron in the bonding region diminishes and one

can expect a better correspondence between satellite and dicationic PECs in this

region. We were able to identify the 2Σ− Ar+(3p−2[3P ]5s)He state higher in the

spectrum. The PECs of the Ar+(3p−2[3P ]4s)He 2Σ−, Ar+(3p−2[3P ]5s)He 2Σ−,

and Ar2+(3p−2[3P ])He 3Σ− states are plotted in Fig. 3.3(a). The satellite PECs

clearly show the variation in the bonding strength with the state of the Rydberg

electron. The 5s satellite curve has a well at Re = 2.50Å of De = 123meV which

is almost identical to the well in the PEC of the doubly-ionised parent state. One

can also see that the maximum due to the interaction of the Rydberg electron with

the He atom is shifted to larger interatomic distances (4.28Å) re�ecting the larger

size of the 5s orbital (Fig. 3.3(b)). Therefore, the PECs of satellites obtained from

a single parent dication and having the electron on a higher virtual orbital have

indeed similar bonding properties to the PECs of the corresponding dication.

We consider next the spin doublet satellites of Ar+(3p−2[1D]3d)He character.

Fifteen molecular terms can be constructed from the [1D]Σ+, [1D]Π, [1D]∆ states

of Ar2+He by adding to them a 3d Rydberg electron. If several of these terms are of

the same symmetry, they may become mixed by con�guration interaction. In this

case, the corresponding satellite state can no more be viewed as a Rydberg electron

in the �eld of a single parent dication. Alternatively, terms of the same symmetry

may not be coupled by the con�guration interaction. It can also happen that only

a single term can be found for certain molecular symmetries. In such case, the

corresponding satellite state can be uniquely assigned to a parent dicationic state.

For example, there are three terms of 2∆ symmetry which can be constructed

from the [1D]Σ+, [1D]Π, [1D]∆ dicationic Ar2+He states by adding to them a 3dδ,

3dπ, and 3dσ Rydberg electron. Analogously to the case of the Ar+(3p−2[1D]4s)He

satellites considered above one would expect a strongly bound, a moderately

bound, and an unbound (or very weakly bound) PEC corresponding to these

terms. However, it is evident from Fig. 3.4(a) that all three PECs are only weakly

bound and their shapes bear no resemblance to the dicationic PECs. The analy-

sis of the CI wave functions shows that con�guration interaction mixes di�erent

two-hole con�gurations, and, therefore, the Rydberg electron moves in a poten-

tial corresponding to some weighted average of the dicationic states potentials.

On the contrary, the two terms of the 2Σ− symmetry corresponding to the same
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Figure 3.4: Comparison of the

PECs of Ar+(3p−2[1D])3d)He

spin doublet ionisation satellites

with the PECs of the correspond-

ing dicationic parent states (bro-

ken lines) (see Fig. 3.1(b)). (a)

Satellite states of 2∆ symmetry;

(b) Satellite states of 2Γ symme-

try and 2Σ− symmetry.

Ar+(3p−2[1D]3d)He electronic con�guration are not mixed and their curves behave

similarly to the PECs of the parent [1D]Π and [1D]∆ dicationic states (Fig. 3.4

(b)). Interestingly, the presence, or absence of mixing of the two-hole con�gura-

tions in these satellites is manifest already at asymptotic interatomic distances and

persists for all considered distances. There is also a single term of 2Γ symmetry

obtained by adding the 3dδ Rydberg electron to the [1D]∆ dicationic state (Fig.

3.4(b)). Its diabatic PEC as expected closely resembles the PEC of the parent

state.

3.3 Summary and conclusions

In this chapter, the structure of the PECs of the lower-lying ionisation satellites

of ArHe was investigated with a view of modelling similar states in systems where

they cannot be computed by direct application of ab initio methods. In contrast

to previous studies of ionisation satellites in M�RG complexes, the simple model

describing the Rydberg electron moving on top of the dicationic parent can break

down in RG�RG systems.

When several terms of the same molecular symmetry can be formed by adding
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a Rydberg electron to di�erent parent dications, they may mix by con�guration

interaction. This occurs, for example for the Ar+(3p−2[1D]3d)He 2∆ satellites. As

a result, the Rydberg electron moves in a potential represented by some weighted

average of the potentials of the dications, and any resemblance between the satel-

lite and dicationic PECs is destroyed. The presence of strong con�guration mixing

is obvious already at the asymptotic interatomic distances.

The ionisation satellites in which the electron occupies an s-type Rydberg

orbital result in unique molecular terms. This leads to the overall resemblance of

the corresponding satellite and dicationic potential energy curves. However, the

interaction of the Rydberg electron with the He perturber leads to the important

di�erences between these PECs. Thus, the well depth of the most satellite curves

decreases compared with the parent dicationic curves, or in the case of weaker-

bound dications the well might disappear altogether. The satellite curves are

moreover characterised by the appearance of a maximum at interatomic distances

corresponding to the maximum of the electronic density of the Rydberg orbital,

followed by a shallow minimum at larger interatomic separations. Exciting the

Rydberg electron to a higher, more di�use Rydberg orbital was shown to lead to

a considerable improvement in the correspondence of the satellite and dicationic

PECs.

The study of the ionisation satellites of ArHe shows that by considering the

di�erent possible satellites already for the separated atoms, one could predict

for which states an electron on top of a dicationic parent type of model could

be applied. This could provide a limited solution for larger systems where such

high-level ab initio calculations and the subsequent analysis of the states are very

di�cult.
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Resonant-Auger – ICD cascade in rare-gas
dimers

The structure of the ICD-electron and kinetic-energy-release (KER) spectra de-

pends on the speci�c manifold of ionisation satellites, which undergo ICD, and

also on the nature of the neighbouring species. This was con�rmed in a series of

experimental studies in ArNe, Ar2, ArKr, and ArXe [45�47]. In these experiments

the cascade was initiated by resonant photoexcitation of a 2p core electron of Ar

to the 4s or the nd, n = 3, 4, 5, virtual orbital. The resulting ICD-electron spectra

indeed show marked dependence on the parent core excitation. Additionally, it

was demonstrated that the partner atom's choice can in�uence the ICD emission

[47] and that it can even serve as a switch for particular decay channels [45].

In this chapter we investigate the ICD process in Ar2 and ArKr following the

resonant Auger decay of 2p3/2 → 4s, 2p1/2 → 4s, and 2p3/2 → 3d core excitiations

on Ar. The major goals are

• to study what role the accurate interaction energies in the decaying and �nal

states of ICD and the nuclear dynamics during the decay play in shaping

the ICD electron and KER spectra;

• to clarify what e�ect the presence of a chemically �softer� neighbour has on

the ICD spectra.

We assume that the cascade is initiated by a broad resonant excitation so

that the ground-state wave packet is transferred vertically to the PEC of the

speci�c 2p→ nl core-excited state of Ar. The lifetime of these states is ∼6 fs [116]
and, therefore, the resonant Auger decay will be nearly una�ected by the nuclear

dynamics on the core-excited PEC. Due to these assumptions of instantaneous

core excitation and resonant Auger decay, the nuclear dynamics of the whole

cascade is restricted to the dynamics during the ICD process. For the full quantum

49
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mechanical simulation of the dynamics one requires accurate ab initio potential

energy curves and ICD widths as the input.

The chapter is structured as follows. In the next section we provide the details

of the computations of the potential energy curves and the decay widths of both

Ar2 and ArKr, as well as the description of the nuclear dynamics calculations.

In Sec. 4.2 we discuss the properties of the potential energy curves, the nuclear

dynamics during the resonant-Auger � ICD cascade, and the �nal ICD-electron

and KER spectra of Ar2. In Sec. 4.3 we discuss the in�uence of the partner atom

on the PECs and the decay widths, as well as on the computed ICD-electron and

KER spectra. The conclusions are given in Sec. 4.4.

4.1 Computational details

4.1.1 Potential energy curves

The ground-state potential curves of Ar2 and ArKr were obtained using the cou-

pled cluster singles and doubles and perturbative triples method (CCSD(T)) as

implemented in the GAMESS-US package [137, 138]. The basis set used on Ar

in Ar2 was aug-cc-pV6Z [139] and an additional set of di�use basis functions was

added at the midpoint position between the two atoms. In the case of ArKr, the

aug-cc-pV5Z basis set [131, 140] was used on both atoms. The exponents of the

additional di�use functions in both cases were taken to be the most di�use s, p,

d, f and g exponents from the respective basis sets (aug-cc-pV6Z in the case of

Ar2 and aug-cc-pV5Z in the case of ArKr). The minimum and the binding energy

of the computed ground state potential energy curve of Ar2 are Re = 3.80Å and

De = 11.5meV, respectively, which is in good agreement with the experimental

values of 3.76Å and 12.3meV [141]. In the case of ArKr, the computed equilib-

rium distance and binding energy are Re = 3.94Å and De = 13.3meV, respec-

tively, which is also in good agreement with the experimental values of 3.9Å and

16.0meV [142].

The PECs of the ionised-excited states were computed using the con�gura-

tion interaction (CI) method as implemented in the GAMESS-US computational

package [143, 144]. The CI-expansion comprises all single and double excitations

(CISD) from the reference con�gurations. The latter were constructed from all
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possible 1h-con�gurations in which the 8 valence orbitals of Ar2 (converging to

the 3s and 3p atomic orbitals of Ar at asymptotic distances) were occupied with

15 electrons. In the case of ArKr, the reference con�gurations were constructed

from 13 electrons occupying 7 valence orbitals, converging to 3s and 3p of Ar and

4p of Kr (the 4s orbital of Kr was frozen in the calculation). The cc-pVDZ basis

set [131] augmented with two di�use s functions, two di�use d functions and two

compact d functions was used on Ar. The additional di�use and compact basis

functions were generated as an even-tempered sequence (ξ = αβl) from the most

di�use s and d and the most compact d exponents, respectively, with β = 10 and

l = ±1/2 (l = 1/2 in the case of the compact exponents, and −1/2 for the di�use

exponents). The aug-cc-pVTZ basis set [140] was used on Kr.

The PECs of the low-lying members of the Rydberg series (namely, the

Ar+(3p−24s)RG and Ar+(3p−23d)RG states) and of the higher-lying Ar+(3p−2

5s)RG satellites were found among the �rst 100 (Ar2) and 200 (ArKr) roots of

the CI matrix in all irreducible representations of the D2h (Ar2) and C2v (ArKr)

point groups, respectively. However, obtaining the PECs of the Ar+(3p−24d)RG

Rydberg states was beyond our reach. First, this task requires the computation

of a very large number of roots. Second, due to the high density of states at

higher energies the recovery of the corresponding PECs from the data becomes

extremely di�cult. An alternative approach to the straightforward computation

of these states is to model them. We have shown [145] that the PECs of higher

satellites at the interatomic distances where the nuclear dynamics predominantly

takes place can be fairly accurately reproduced by the PECs of the corresponding

parent dicationic states. Therefore, the PECs of the Ar+(3p−24d)RG states were

approximated by averages of the PECs of the parent Ar2+(3p−2)RG states.

The computation of the PECs of the �nal two-site dicationic states, as well as

the one-site states used to approximate the higher-lying ionisation satellites was

carried out using the same implementation of the CISD method and the same basis

set as for the singly-ionised states. The reference space in the case of Ar2 comprises

all possible 2h-con�gurations with 14 electrons occupying the 8 valence orbitals

(the 3s and 3p orbitals of each Ar atom). In the case of ArKr, the 2h-con�gurations

were obtained by distributing 12 electrons on 7 valence orbitals (the 3s and 3p

orbitals of Ar, and 4p of Kr). Two sets of reference spaces were constructed

corresponding to the two possible spin multiplicities (singlet and triplet). At
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asymptotic distances the PECs of the ionisation satellites and two-site dicationic

�nal states were adjusted to the correct asymptotic energies taken from the NIST

database [130]. The NIST energies were averaged over all possible �ne structure

components since the spin-orbit coupling was not accounted for in our calculations.

4.1.2 Decay widths

The ICD widths were computed using the Fano-Stieltjes method, with the bound

and continuum part of the corresponding resonance state constructed using the

extended ADC(2) scheme for the one-particle propagator [98]. For this purpose we

used on each atom an e�ective core potential (ECP) with 4s, 4p, 4d and 1f basis

functions with 8 active valence electrons. The ECP was adjusted in energy to non-

relativistic and scalar relativistic energies [146]. The basis was further augmented

by 8s, 8p, 8d, 5f , and 3g di�use functions on the atomic centres and additional

sets of 3s, 3p, and 4d functions on 5 ghost centres on the interatomic axis. The

di�use functions were speci�cally designed for the computation of Rydberg and

continuum states [147]. The computed decay widths of the ionisation satellites

of Ar2 and ArKr at the equilibrium distances of the two dimers and at the left

turning points of the corresponding PECs are listed in Tables 4.1 and 4.2. The

decay widths of the two Ar+(3p−25s)Kr states could not be obtained within the

present approach. Therefore, in order to compute the ICD-electron and KER

spectra of these states, these widths were approximated by averages of the widths

of the corresponding states of g- and u-symmetry in Ar2 (see Table 4.1).

In contrast to the computation of PECs using the CISD method, in the Fano-

Stieltjes method the higher-lying ionisation satellites are still accessible. The

projection on the bound states subspace simpli�es the ionisation spectrum sig-

ni�cantly, which facilitates the identi�cation of the states in question. For the

lowest Rydberg terms these widths vary between 47 and 1meV corresponding to

the lifetimes between 28 fs and 1.35 ps. For the higher states the widths become

considerably smaller and range between 2.2 and 0.2meV corresponding to the life-

times between 0.6 and 6.6 ps. Therefore, the ICD rate decreases with the increase

of the principal quantum number n of the excited electron, which is expected as

the Rydberg orbitals become more di�use for larger n's, resulting in a smaller

overlap with the dicationic core and smaller ICD rates [4]. The widths also de-
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Table 4.1: Computed ICD widths of the ionisation satellites of Ar2 used to

obtain the ICD spectra. The values are given at the equilibrium interatomic

distance Re and at the left turning point Rt.p. whose position is shown in paren-

theses. The states for which Γ(Rt.p.) is missing are dissociative.

Ar+Ar State Term Symbol Γ(Re),meV Γ(Rt.p.),meV

3p−2 [1S]4s 2S Σ+
g 12.32 �

Σ+
u 12.83 �

[1D]3d 2D Σ+
g 47.27 80.43 (3.39Å)

Σ+
u 37.37 74.66 (3.25Å)

Πg 28.91 39.57 (3.63Å)
Πu 35.20 �
∆g 15.00 19.24 (3.20Å)
∆u 13.88 9.036 (3.09Å)

[1D]3d 2P Σ−g 11.63 �
Σ−u 10.12 �
Πg 24.57 41.85 (3.12Å)
Πu 28.13 �

[1S]3d 2D Σ+
g 1.04 �

Σ+
u 0.97 �

Πg 1.19 14.51 (3.17Å)
Πu 1.79 11.51 (3.23Å)
∆g 4.36 23.60 (3.34Å)
∆u 4.36 14.22 (3.48Å)

[1D]5s 2D Σ+
g 1.04 21.68 (2.85Å)

Σ+
u 0.90 14.49 (2.82Å)

Πg 0.33 5.89 (2.83Å)
Πu 0.31 4.23 (2.92Å)
∆g 0.68 5.49 (2.79Å)
∆u 0.58 4.21 (2.78Å)

[3P ]5s 2P Σ−g 2.24 15.13 (2.91Å)
Σ−u 1.95 11.55 (2.90Å)
Πg 0.76 20.02 (2.93Å)
Πu 0.82 11.94 (2.98Å)

[1D]4d 2P Σ−g 0.83 20.70 (2.75Å)
Σ−u 0.73 13.26 (2.75Å)
Πg 0.59 10.82 (2.77Å)
Πu 0.63 15.83 (2.77Å)

[1D]4d 2D Σ+
g 1.22 14.23 (2.77Å)

Σ+
u 0.85 7.840 (2.77Å)

Πg 0.39 20.47 (2.77Å)
Πu 0.43 20.50 (2.77Å)
∆g 0.72 14.52 (2.77Å)
∆u 0.70 13.54 (2.77Å)

[1D]4d 2F Σ−g 0.37 10.34 (2.75Å)
Σ−u 0.36 11.84 (2.75Å)
Πg 0.31 8.15 (2.77Å)
Πu 0.30 7.76 (2.77Å)
∆g 0.20 13.04 (2.77Å)
∆u 0.22 12.92 (2.77Å)
Φg 0.55 3.93 (2.75Å)
Φu 0.61 3.13 (2.75Å)
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Table 4.2: Computed ICD widths of the ionisation satellites of ArKr used to

obtain the ICD spectra. The values are given at the equilibrium interatomic

distance Re and at the left turning point Rt.p. whose position is shown in paren-

theses. The states for which Γ(Rt.p.) is missing are dissociative.

Ar+Kr state Term symbol Γ(Re), meV Γ(Rt.p.), meV

3p−2[1D]4s 2D Σ+ 10.34 �
Π 9.15 �
∆ 4.91 9.71 (3.51Å)

[3P ]3d 2D Σ+ 5.46 20.34 (3.48Å)
Π 4.33 4.85 (3.88Å)
∆ 2.97 �

[1S]4s 2S Σ+ 14.81 �

[1D]3d 2D Σ+ 44.72 84.97 (3.44Å)
Π 34.95 �
∆ 16.05 21.15 (3.44Å)

[1D]3d 2P Σ− 11.26 �
Π 29.22 33.71 (2.87Å)

[1S]3d 2D Σ+ 0.95 �
Π 1.25 �
∆ 3.06 18.89 (3.38Å)

[3P ]5s 2P Σ− 1.48 12.71 (2.84Å)
Π 0.57 11.28 (3.00Å)

[1D]5s 2D Σ+ 0.62 12.10 (2.90Å)
Π 0.21 4.43 (2.90Å)
∆ 0.44 3.83 (2.84Å)

[1D]4d 2P Σ− 0.67 12.26 (2.89Å)
Π 0.53 6.61 (2.91Å)

[1D]4d 2D Σ+ 0.87 6.63 (2.91Å)
Π 0.36 16.67 (2.91Å)
∆ 0.60 5.28 (2.91Å)

[1D]4d 2F Σ− 0.33 5.88 (2.89Å)
Π 0.23 5.63 (2.91Å)
∆ 0.18 12.67 (2.91Å)
Φ 0.47 2.60 (2.89Å)

pend strongly on the interatomic distance R becoming larger as R decreases. At

large R they behave as 1/R6 and grow even faster about Re due to the e�ect of

orbital overlap [148].

The decay widths were computed only down to 3Å for all ionisation satellites

of interest. For the nuclear dynamics simulations, however, it was necessary to

extrapolate the decay widths to shorter internuclear distances. In the case of the

fast satellites (correlating with the Ar+(3p−23d, 4s) states), the decay width was

set to a constant value below 3 Å. This is justi�ed by the fact that the decay
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is much faster than the nuclear dynamics. It occurs predominantly around the

respective equilibrium distance Re and therefore, the wave packet does not reach

this range of internuclear distances. In the case of the slow satellites (correlating

with the Ar+(3p−25s, 4d) states), the decay width was quadratically extrapolated

in order to account for its enhancement at shorter internuclear distances [148]. In

this case the decay occurs mostly in the vicinity of the left turning points Rt.p. of

the respective PECs, which lie below 3Å for all states of interest (see Tables 4.1

and 4.2). Hence, the value of the decay width below Re is crucial for obtaining

accurate ICD-electron and KER spectra.

Within the present method partial decay widths, needed for the nuclear dy-

namics calculations, cannot be reliably computed. Instead, they were assumed to

be equal and were obtained by dividing the total decay width of the i-th ICD state

by the number of channels, i.e. Γifk(R) = Γi(R)/Nc. In the case of both Ar2 and

ArKr there are 18 decay channels.

4.1.3 Nuclear dynamics calculations

The potential curves and decay widths serve as input for the nuclear dynamics

calculation. The PECs are the R-dependent potential energy operators V̂i/dm/fk ,

whereas the R-dependent decay widths enter both di�erential equations in Eq.

(2.3.8) as the operators Γ̂m(R) and Ŵdm→fk(R). The time-evolution of the nuclear

wave packets (i.e. the system Eq. (2.3.8)) was computed using the Lanczos-Arnoldi

algorithm [149] as implemented in the multi-con�guration time-dependent Hartree

(MCTDH) package [150, 151]. The computations were done for the internuclear

distances between 1.5Å and 11.73Å using fast Fourier transform (FFT) with 1024

points. The nuclear wave packets of the decaying and �nal states were propagated

until the norm of the wave function of the decaying state becomes of the order of

10−8. The propagation times for di�erent decaying states vary between 700 fs and

200 ps in the case of Ar2, and between 500 fs and 150 ps in the case of ArKr.

The ICD-electron spectra were computed from the �nal nuclear wave packets

as explained in Sec. 2.3. The KER spectra were computed using the mirror image

principle Eq. (2.3.13). Note that the asymptotic energy of the �nal two-site dica-

tionic states Ef (∞) is the same for all 18 channel Ar+RG+ belonging to a given

rare gas dimer.
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The total ICD-electron and KER spectra of a cascade initiated by a particular

core excitation were calculated as weighted sums of the spectra belonging to the

ionisation satellites populated in the resonant Auger step. The respective weights

for Ar2 and ArKr were obtained from the known branching ratios of this process in

isolated Ar [38]. This assumption is con�rmed by the experimental results for Ar2

reported in Ref. [46], which show that even in the argon dimer the resonant Auger

decay is mostly of local nature. Finally, the total ICD-electron and KER spectra

were convolved with Gaussians of FWHM 1.24 eV and 0.64 eV, respectively, to

account for the experimental resolution [46, 47].

4.2 ICD following resonant core excitation of Ar

in Ar2

4.2.1 Potential energy curves of Ar2

In the following the properties of the PECs of all states of Ar2 relevant for the

nuclear dynamics, namely the ground state of the neutral dimer Ar2, the ionisation

satellites Ar+(3p−2 nl)Ar populated after the resonant Auger decay, and the �nal

dicationic states of the ICD process Ar+(3p−1)Ar+(3p−1), will be discussed. The

PECs of interest are presented in Fig. 4.1.

The ground-state PEC of Ar2 (see Fig. 4.1(a)) is characterised by a shallow

minimum of De = 11.5meV located at Re = 3.8Å. This potential supports seven

vibrational levels. It is assumed that the argon dimer is in its lowest vibrational

state which corresponds to the experimental conditions. Therefore, the initial

wave packet is taken to be the respective nodeless eigenfunction of the nuclear

Hamiltonian and has an approximately Gaussian shape.

The initial ICD states of interest are ionisation satellites populated in the RA

step. Due to a large number of such states (see Table 4.3), it is computationally

very demanding to take them all into account in calculating the ICD spectra.

Therefore, we restrict the initial ICD states to include only the spin doublet satel-

lites originating from the states populated by more than 3 % in the RA decay

of isolated Ar (see Table 4.1). These states form more than 60 % of all states

populated in the RA decay of the 2p3/2 → 3d core excitation that can further
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Table 4.3: Ionisation satellites of Ar atom populated in the resonant Auger

decay following the 2p3/2 → 4s, 2p1/2 → 4s and 2p3/2 → 3d core excitations

[38]. Only the states which are allowed to undergo ICD in Ar2 and ArKr are

presented. A horizontal line separates the two additional ICD-active states in

ArKr. The excitation energies are taken from the NIST database [130].

Intensity, %

Ionisation satellite of Ar Excitation energy, eV 2p−13/24s 2p−11/24s 2p−13/23d

3p−2 [1D]4s 2D 34.20 25 28 2

[3P ]3d 2D 34.46 21 16 -

[1S]4s 2S 36.50 10 9 -

[1D]3d 2D 37.15 - 5.62 12

[1D]3d 2P 37.40 - 3.38 13

[1S]3d 2D 38.04 - 2 7

[3P ]5s 2, 4P 38.33 (4P ), 38.49 (2P ) 5 5 -

[3P ]4d 4D 38.55 - -
7

[1D]3d 2S 38.58 - -

[3P ]4d 4P, 2, 4F 38.90 (4P ), 38.96 (2F ), 38.78 (4F ) - - 8

[1D]5s 2D 40.04 5 5 3

[1D]4d 2P, 2D, 2F 40.49 (2P ), 40.53 (2D), 40.58 (2F ) - -
27

[3P ]5d 4D, 4F 40.56 (4D), 40.67 (4F ) - -

[3P ]5d 2P, 2D 41.17 (2P ), 41.12 (2D) - -
7

[1D]4d 2S 41.21 - -

[1D]5d 2G, 2D, 2F 42.32 (2P ), 42.37 (2D), 42.40 (2F ) - - 4

[1S]5s 2S 42.42 1 - -

[1S]4d 2D 42.97 - - 5

[1S]5d 2D 44.78 - - 1

decay via ICD. This proportion rises to about 75 % for the 2p3/2,1/2 → 4s core

excitations (see Table 4.3). As Figs. 4.4 and 4.5 show, this selection is su�cient

for accurately reproducing the experimental spectra. The PECs of these states

are shown in Fig. 4.1.

One can better understand the structure of the ICD-electron and KER spectra

if the interatomic decay of the low- and high-lying Rydberg states populated in the

RA step is considered separately. The former comprise the satellites correlating

with the Ar+(3p−2[1S]4s 2S)Ar, Ar+(3p−2[1D]3d 2D)Ar, Ar+(3p−2[1D]3d 2P )Ar,

and Ar+(3p−2[1S] 3d 2D)Ar states at asymptotic distances. Their PECs pos-

sess shallow minima located between 3.37 and 4.90Å with interaction energies

ranging between 36 and 129meV. At the equilibrium distance, the ICD lifetimes
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Figure 4.1: Potential energy curves of Ar2; (lower panel) the ground-state PEC

and ground-state wave packet density of Ar2; (upper panel) the black curves

represent the �nal repulsive two-site dicationic states Ar+(3p−1)Ar+(3p−1); the

red and pink curves represent the lowest fast-decaying ionisation satellites, the

blue and violet curves represent the higher slow-decaying satellites (see Table

4.1 for the corresponding decay widths). The ICD-active states which were not

included in the dynamics calculation, but are populated after the resonant Auger

decay are shown in grey.

of these states range between 28 and 130 fs being an order of magnitude smaller

than the characteristic vibrational periods (0.6 ÷ 1.3 ps). Therefore, these in-

termediate states are expected to decay fast with little dynamics taking place

during the decay. The PECs of the higher Rydberg states correlating with the

Ar+(3p−2[3P ]5s 2P )Ar, Ar+(3p−2[1D]5s 2D)Ar, Ar+(3p−2[1D]4d, 2P , 2D, 2F )Ar
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satellites at asymptotic distances have somewhat di�erent binding properties com-

pared to the lower Rydberg states. These PECs are generally characterised with

a deeper potential well, with binding energies between 250meV and 340meV, and

minima shifted to shorter internuclear distances (3.08 � 3.24Å). This can be ex-

plained by smaller repulsion between the excited electron occupying a di�use high

Rydberg orbital and the neutral Ar neighbour [145]. As a result, these states have

smaller characteristic vibrational periods (180 � 250 fs). These, in turn, are by an

order of magnitude shorter than the relevant ICD lifetimes at Re. Therefore, the

decay of these states is expected to be substantially in�uenced by the vibrational

motion of the nuclei. The decay takes place mostly at shorter internuclear dis-

tances, where the respective width is an order of magnitude larger compared to

its value at Re (see Table 4.1).

The �nal ICD states are presented in the upper panel of Fig. 4.1 (black curves).

There are 12 two-site �nal dicationic states of the Ar+(3p−1)Ar+(3p−1) with sym-

metries 1Σ+
g (2), 3Σ+

u (2), 1Σ−u ,
3Σ−g ,

1Πg, 3Πg, 1Πu, 3Πu, 1∆g, 3∆u, resulting in 18

decay channels in total. Their PECs are all repulsive in the range of internu-

clear distances relevant for the decay, and behave as R−1 at large distances due

to the dominant Coulomb repulsion between the two positively charged ions Ar+.

Therefore, ICD will be followed by a fast dissociation of the dimer.

4.2.2 Nuclear dynamics during the ICD step

In order to obtain a clearer picture of the role nuclear dynamics play during the

�nal ICD step, we will consider the fast- and slow-decaying ionisation satellites

separately. In Sec. 4.2.1 two groups of states, namely the low and high Rydberg

states, have already been de�ned. The low Rydberg states Ar+(3p−23d)Ar and

Ar+(3p−24s)Ar, fall into the group of the fast-decaying states, while the higher

Rydberg states, Ar+(3p−24d)Ar and Ar+(3p−25s)Ar, are the slow-decaying states.

The ICD-electron and KER spectra are profoundly di�erent for these two groups.

This di�erence can be demonstrated by examining the ICD-electron spectra of two

speci�c satellites.
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Figure 4.2: Resonant-Auger � ICD cascade of the 2p3/2 → 3d excitation

proceeding with a fast ICD step through the Ar+(3p−2[1D]3d 2D 2Σ+
g )Ar

satellite. (a) Ground-state PEC and the corresponding ground-state nu-

clear wave packet density. (c) A resonant core excitation of the initial wave

packet to the Ar(2p3/2 → 3d)Ar state and subsequent instantaneous reso-

nant Auger decay. (b) ICD of the Ar+(3p−2[1D]3d 2D 2Σ+
g )Ar satellite; the

Ar+(3p−1)Ar+(3p−1) 1∆g �nal state is populated. (d) ICD-electron spectrum

of the Ar+(3p−2[1D]3d 2D 2Σ+
g )Ar state.

RA-ICD cascade via a fast-decaying state

First, consider the decay cascade proceeding via the Ar+(3p−2[1D]3d 2D 2Σ+
g )Ar

ionisation satellite which is shown in Fig. 4.2. The PEC of this state is bound by

70meV at 3.57Å and supports 25 vibrational levels. At the equilibrium distance,

the characteristic vibrational period is about 600 fs, which is an order of magnitude

larger than the ICD lifetime of 28 fs. Therefore, the decay outpaces the vibrational

motion and, thus, ICD occurs essentially at the internuclear separation at which
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the state was initially populated, i.e. at the equilibrium distance of the ground

state. As one can see from the time evolution of the nuclear wave packet, presented

in Fig. 4.2(b), its initial shape is not distorted by the vibrational motion, and the

position of its maximum is also unaltered during the decay. The electron spectrum

of this satellite is depicted in Fig. 4.2(d). It has a nearly Gaussian shape with a

maximum at the electronic energy of 1.86 eV. It corresponds to the di�erence

between the energy of the decaying state and that of the �nal electronic state at

the equilibrium distance.

RA-ICD cascade via a slow-decaying state

Let us focus next on the cascade proceeding via the Ar+(3p−2[1D]5s 2D 2Σ+
g )Ar

satellite shown in Fig. 4.3. The PEC of this state possesses a deeper minimum of

307meV located at 3.15Å. It supports 39 vibrational levels and the characteristic

time of vibrational motion was estimated to be about 200 fs. At Re the ICD

lifetime is 1270 fs, i.e. an order of magnitude larger than the vibrational period.

As a result, after the state is populated, the wave packet at �rst becomes broader

and shifts towards shorter internuclear distances. At later times the wave packet

acquires a characteristic multinodal structure with a dominant maximum located

close to the left turning point (see Fig. 4.3(b)). Since the decay rate increases fast

with the decreasing interatomic distance, ICD occurs mostly in the vicinity of the

left turning point of the PEC, where the corresponding rate is approximately 20

times larger than at Re. The resulting electron spectrum is shown in Fig. 4.3(d).

The e�ect of nuclear dynamics on the spectrum is clearly visible in the dominant

peak at 3.44 eV which corresponds to ICD taking place when the two argon atoms

are approximately 2.9Å apart, i.e. at the left turning point. The shoulder at

4.5 eV is a vestige of the decay which happened in the vicinity of Re. Similar

evolution of the vibrational wave packet during ICD was experimentally observed

and con�rmed numerically for the slow-decaying satellite states of the He dimer

[152, 153].

The states converging to Ar+(3p−2[1S]3d 2D)Ar are an exceptional case which

does not �t in the picture presented above. Their ICD lifetimes are rather long

(300 � 1400 fs) and thus comparable to the characteristic time of vibrational motion

(500 � 1400 fs). However, since the minima of the corresponding PECs lie close to

Re, the e�ect of nuclear dynamics on the ICD spectra is rather small.
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Figure 4.3: Resonant-Auger � ICD cascade of the 2p3/2 → 3d excitation

proceeding with a slow ICD step through the Ar+(3p−2[1D]5s 2D 2Σ+
g )Ar

satellite. (a) Ground-state PEC and the corresponding ground-state nu-

clear wave packet density (c) A resonant core excitation of the initial wave

packet to the Ar(2p3/2 → 3d)Ar state and subsequent instantaneous reso-

nant Auger decay. (b) ICD of the Ar+(3p−2[1D]5s 2D 2Σ+
g )Ar satellite; the

Ar+(3p−1)Ar+(3p−1) 1∆g �nal state is populated. (d) ICD-electron spectrum

of the Ar+(3p−2[1D]5s 2D 2Σ+
g )Ar state.

4.2.3 ICD-electron and KER spectra

In this section we present and discuss the total ICD-electron and KER spectra of

Ar dimer produced following the decay of the 2p3/2 → 4s, 2p1/2 → 4s, and 2p3/2 →
3d parent core excitations of Ar. The resulting spectra are shown in Figs. 4.4, 4.5.

It can be seen from Fig. 4.4 that the electron spectra for all three parent excitations

possess a double peak structure. The peak at lower energies (0 - 3 eV) originates

mainly from the ICD of the four lowest ionisation satellites: Ar+(3p−2[1S]4s 2S)Ar,
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Figure 4.4: ICD-electron spectra obtained in the RA-ICD cascade following

the Ar (2p3/2 → 4s)Ar (lowermost panel), Ar(2p1/2 → 4s)Ar (middle panel),

and Ar(2p3/2 → 3d)Ar (uppermost panel) core excitation. The dark red curves

in all panels represent the total ICD spectra corresponding to the particular

core excitation. Experimental data is available for the Ar(2p3/2 → 4s)Ar and

Ar(2p3/2 → 3d)Ar excitation (orange curves) [47]. The experimental spectra

were scaled so that the intensities of the lower-energy peaks coincide. The

electron spectra resulting from the decay of the individual satellites contributing

to the total spectrum of each core excitation are also presented (the color scheme

follows that of the PECs in Fig. 4.1).

Ar+(3p−2[1D]3d 2P, 2D)Ar, and Ar+(3p−2[1S]3d 2D)Ar, populated in the strict

spectator Auger transition. The second peak is located at energies between 3

and 6 eV. It is predominantly due to the ICD of the higher Rydberg states:

Ar+(3p−2[3P ]5s 2P )Ar, Ar+(3p−2[1D]5s 2D)Ar, Ar+(3p−2[1D]4d 2P , 2D, 2F )Ar,

which are populated in a shake-up process during the resonant Auger step [38].

The relative intensities of the peaks re�ect, therefore, the relative probability of

shake-up processes in the RA decay of a particular parent state.

If one considers only the populations of the satellites decaying by ICD, the
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Figure 4.5: KER spectra obtained in the RA-ICD cascade following the

Ar(2p3/2 → 4s)Ar (lowermost panel), Ar(2p1/2 → 4s)Ar (middle panel), and

Ar(2p3/2 → 3d)Ar (uppermost panel) core excitation. The spectra were ob-

tained using the mirror image principle (see Eq. (2.3.13)). The dark red

curves in all panels represent the KER spectra corresponding to the particu-

lar core excitation. The orange lines are the experimental KER spectra for the

Ar(2p3/2 → 4s)Ar and Ar(2p3/2 → 3d)Ar core excitation [46, 49]. The exper-

imental spectra were scaled so that the intensities of the lower-energy peaks

coincide. The KER spectra of the satellites contributing to the total spectrum

of each core excitation are also presented (the color scheme follows that of the

PECs in Fig. 4.1)

ratios of the strict spectator to shake-up probabilities for the 2p3/2 → 4s, 2p1/2 →
4s, and 2p3/2 → 3d parent states are approximately 2:1, 3:1, 1:1. This is clearly

re�ected in the resulting ICD-electron spectra. The low-energy peak dominates

the high energy one for the 2p3/2 → 4s and 2p1/2 → 4s parent states and is more

pronounced in the former case. Unlike these spectra, the two peaks in the electron

spectrum of the 2p3/2 → 3d core excitation have almost equal intensities, a result

of a very large shake-up probability for this state [36, 48].
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The KER spectrum carries information about the internuclear distances at

which ICD takes place and is, therefore, sensitive to the ratio of the electronic de-

cay lifetime to the vibrational period. The Ar2 spectra corresponding to the parent

states in question are shown in Fig. 4.5. They possess a double-peak structure as

the respective ICD-electron spectra, although for a di�erent physical reason. In

the electron spectra this structure re�ects the di�erences in the populations and

excitation energies of the satellite states following the resonant Auger decay, while

in the KER spectra it is a sign that the ICD of di�erent satellite states proceeds

with notably di�erent rates. In our previous analysis we showed that lower Ryd-

berg states decay fast with interatomic distances being close to Re. This results in

the peak located at energies between 2.5 and 4.5 eV. The longer ICD lifetimes of

the higher Rydberg states lead to the decay close to the left turning point of the

corresponding PECs, i.e. at shorter interatomic distances, resulting in the peak

between 4.5 and 6 eV.

Comparison of the computed ICD-electron and KER spectra with

experimental results

The computed ICD-electron and KER spectra of the 2p3/2 → 4s and 2p3/2 → 3d

parent states are in good agreement with the experimental results [46, 47, 49] as is

evident from Figs. 4.4 and 4.5. Both electron and KER experimental spectra show

the double-peak structure discussed above. There are, however, certain discrep-

ancies in the positions of the computed and measured peaks. In particular, in the

computed ICD-electron spectrum corresponding to the Ar(2p3/2 → 3d)Ar parent

core excited state the two peaks are shifted by 85meV and 315meV, respectively,

to higher energies relative to the experimental spectrum. A shift of ∼180meV
to higher energies is clearly visible for the two peaks in the ICD-electron spec-

trum corresponding to the Ar(2p3/2 → 4s)Ar parent excitation. Comparing the

experimental and theoretical KER spectra, one sees that the theoretical spectrum

is shifted to smaller energies of the emitted ionic fragments. In the case of the

Ar(2p3/2 → 3d)Ar excitation, the shifts of the low and high Rydberg peaks are

170meV and 320meV, while for the Ar(2p3/2 → 4s)Ar excitation the respective

shifts are 240meV and 480meV.

As one can see, from the total ICD-electron spectra corresponding to all con-

sidered core-excited states (see Fig. 4.4) the peaks corresponding to the lower-
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energy satellites are shifted less than the peaks corresponding to the higher-energy

ones. This is indicative of the di�erent sources of error in the computation of the

decay of the respective satellites. The KER spectra (see Fig. 4.5) show a similar

behaviour. However, due to energy conservation (see Eq. (2.3.13)) the shifts of

the peaks have signs opposite to the shifts in the electron spectra.

Sources of error in the computed ICD-electron and KER spectra

In the following, we will discuss the sources of error in the computed ICD-electron

and KER spectra of Ar2 considering the fast- and the slow-decaying states sepa-

rately.

For the fast-decaying satellites the resulting peaks in the ICD-electron spec-

trum are sensitive to

• the quality of the ground-state vibrational wave packet,

• the relative populations of the satellite states in the RA decay,

• the energy di�erence between the decaying and �nal states close to the equi-

librium distance Re.

It is clear from Fig. 4.2 (see also Ref. [123]) that an error in the initial wave packet

immediately translates into an error in the spectral peak. As we mentioned earlier,

our ground state PEC compared to a benchmark computation has a minimum

shifted by 0.04Å towards larger interatomic distances and also underestimates the

binding by 0.8meV. The combined e�ect would be to shift the maximum of the

respective wave packet to larger interatomic distances shifting the electron peaks to

larger energies by a few tens of meV compared to the benchmark wave packet. The

e�ect of the relative populations is relevant in the case of the Ar(2p3/2 → 3d)Ar

parent excitation. The low-energy peak is composed of two peaks of nearly equal

intensity arising due to ICD of the Ar+(3p−2[1D]3d 2P, 2D)Ar states (see Fig. 4.4).

One can see that by changing the relative intensity of these constituent peaks one

would shift the combined peak by at most 200meV. However, as discussed at the

end of Sec. 4.1.3, the atomic intensities we used in this work were experimentally

shown to be accurate in the dimer. The errors in the energies of the decaying

and the �nal states around Re are less than 100meV. A comparable value will be

an upper boundary on their energy di�erence. One can see that the di�erence

between the corresponding peaks in the theoretical and experimental spectra in
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Fig. 4.4 is a few tens of meV agreeing well with the estimates made above.

The position of the low-energy peak in the KER spectrum originating from

the lower Rydberg states depends on

• the quality of the ground-state vibrational wave packet,

• the accuracy of the PECs of the �nal states around Re.

In the previous paragraph we concluded that both errors will be below a hundred

meV. The total observed shift is 170meV which again agrees with our estimate

(see Fig. 4.5).

Figure 4.6: Partial ICD-electron spectra following the decay of the

Ar+(3p−2[1D]3d 2D 2Σ+
g ) (left) and +(3p−2[1D]5s 2D 2Σ+

g ) (right) state to the

Ar+(3p−1)Ar+(3p−1) 1∆g �nal state. The original ICD-electron spectrum (in

black) is compared to the ICD-electron spectra obtained by scaling the decay

width with a constant factor k.

The analysis of the computational errors in the case of the slow-decaying

satellites is much more complicated than in the case of the fast-decaying ones.

The accuracy in the positions of the corresponding peaks in both ICD-electron

and KER spectra is primarily determined by

• the accuracy of the positions of the left turning points on the PECs in

question,

• the respective ICD rates.

In Fig. 4.3 we show the electron spectrum corresponding to a slow decay from a

single satellite state. It has a pronounced maximum at low energies corresponding

to the decay around the left turning point and another maximum at higher energies

due to the decay around the ground state equilibrium distance. Since the ab initio

calculation of decay widths, especially for interatomic processes is di�cult, one
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Figure 4.7: ICD-electron spectrum following the resonant Auger decay of the

Ar(2p3/2 → 3d) core excitation in Ar2. The dark red line represents the theo-

retical spectrum (see text for details). The total spectrum was convolved with

a Gaussian of FWHM 1.24 eV to account for the experimental resolution. The

experimental ICD-electron spectrum [47] is given in orange.

cannot expect the computed widths to be highly accurate (see Refs. [106, 118,

154]). As shown in Fig. 4.6, a larger ICD rate leads to the reduction in the

e�ect of nuclear dynamics, enhancing the spectrum in the higher-energy region.

On the contrary, smaller ICD rate accentuates the e�ect of nuclear dynamics,

enhancing the spectrum in the lower-energy part of the peak [154]. These errors

may, therefore, produce a shift in the positions of the slow satellite peaks in the

total electron and KER spectra, but they will have almost no e�ect on the intensity

and the position of the peaks in the case of the fast satellites (see Fig. 4.6). We also

introduce an error in the turning point positions by modelling the higher satellite

PECs with the PECs of the respective dicationic states. Although due to the

di�use nature of the Rydberg electron there is a good correspondence between the

two types of PECs, the residual screening of the dicationic core by the Rydberg

electron leads to di�erences in the slope of the repulsive part of the potentials

[145].

Finally, the e�ect of omitting some ICD states from the calculations will be

brie�y discussed (see Fig. 4.1 for the satellites in question, their PECs are shown

in grey). The largest deviation from the experiment is observed for the ICD

spectra of the 2p3/2 → 3d parent state where the neglected satellites carry up to

30% of the intensity. Therefore, in order to estimate the latter e�ect, the ICD-

electron spectrum following the decay of the Ar(2p3/2 → 3d) core excitation in
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Table 4.4: Ionisation satellites of Ar2 used in constructing the ICD-electron

spectrum originating from the Ar(2p3/2 → 3d)Ar core excitation. The estimated

energies of the ICD electron Ee and the respective intensities taken from Ref.

[38] are also given.

Ar+Ar state Ee, eV Intensity

3p−2 [1D]3d 2D 1.734 12

[1D]3d 2P 1.992 13

[1S]3d 2D 2.627 7

[3P ]4d 4D 1.636 1.08

[1D]3d 2S 3.170 5.92

[3P ]4d 4P, 2,4F 1.960 8

[1D]5s 2D 3.266 3

[1D]4d 2P, 2D, 2F ; [3P ]5d 4D, 4F 3.606 27

[3P ]5d 2D, 2P ; [1D]4d 2S 4.221 7

[1D]5d 2G, 2D, 2F 5.358 4

[1S]4d 2D 5.927 5

[1S]5d 2D 7.737 1

Ar2 has been simulated in a simple way including all possible states populated in

the resonant Auger step. For this purpose, only knowledge of the decay widths

at the equilibrium distance, and the PECs of the decaying and �nal states was

used. In the case of the omitted satellites, neither their PECs, nor the respec-

tive decay widths were available. As a result, the PECs were approximated by

averages of the PECs of the parent dicationic states. Subsequently, the states

were divided into fast- and slow-decaying based on the consideration that the ICD

rate decreases with the increase of the principal quantum number n of the excited

electron (see Sec. 4.1.2). Thus, all Ar+(3p−23d, 4s)Ar ionisation satellites fell into

the group of the fast-decaying states, whereas the Ar+(3p−24d, 5s, 5d)Ar states

were assumed to be slow-decaying. The total ICD-spectrum shown in Fig. 4.7

was obtained by evaluating the energies of the emitted ICD electrons as di�er-

ences between the energies of the decaying and the �nal states as follows. For

the fast-decaying states this di�erence was estimated at the equilibrium distance

Re, whereas for the slow-decaying states it was taken as the di�erence at the left

turning points Rt.p. of the respective PECs. The satellites used to obtain the

spectrum comprise all ICD-active states populated after the resonant Auger de-
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cay of the Ar(2p3/2 → 3d) core excitation. These states as well as the respective

estimated ICD-electron energies are given in Table 4.4. In comparison with the

spectrum shown in Fig. 4.4, the one in Fig. 4.7 has a triple-peak structure. It

can be better understood if the omitted satellites are divided according to their

energy. As can be seen from Fig. 4.1 these states form three groups lying in the

energy ranges 38 ÷ 39 eV, 40 ÷ 42 eV and above 42 eV, respectively. The states

in the �rst group, namely, Ar(3p−2[3P ]4d 4D)Ar and Ar(3p−2[3P ]4d 4P, 2,4F )Ar

contribute to the lowest-energy peak in the ICD-electron spectrum. The decay of

the states in the second group, Ar(3p−2[1D]3d 2S)Ar, Ar(3p−2[3P ]5d 2D, 2P )Ar,

and Ar(3p−2[1D]4d 2S)Ar, enhances the second peak in the spectrum. The high-

est Rydberg states, namely, Ar(3p−2[1D]5d 2G, 2D, 2F )Ar, Ar(3p−2[1S]4d 2D)Ar

and Ar(3p−2[1S]5d 2D)Ar would decay emitting electrons of energies above 5 eV,

which would account for the di�erence between the theoretical and experimen-

tal spectra in this region. All of the above mentioned states, except for the

Ar(3p−2[1D]3d 2S)Ar satellite, are slow-decaying and would contribute to the high-

energy peak in the KER spectrum.

4.3 ICD following resonant core excitation of Ar

in ArKr: the role of the partner atom

To understand how the energy distributions of the emitted particles in the ICD

process depend on the nature of the neighbouring atom, the atomic properties

of Kr compared to Ar will be considered �rst. Krypton is a �softer� atom (see

e.g. Ref. [155] for a de�nition of �soft� and �hard� atoms). As such, it has larger

atomic and van der Waals radii (1.89Å compared to 1.79Å for Ar [156]), larger

polarisability (17.07 a.u. compared to 11.22 a.u. for Ar [157]) and lower ionisation

potential (14.00 eV compared to 15.76 eV for Ar [130]), the latter two quantities

being inversely proportional [158].

4.3.1 Potential energy curves

Let us now consider how the PECs of the states of interest are in�uenced by the

presence of a �softer� neighbour. The positions of the peaks in the ICD-electron

and KER spectra are determined by
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Figure 4.8: Potential energy curves of ArKr; (lower panel) the ground-

state PEC and ground-state wave packet density of ArKr; (upper panel)

the black curves represent the �nal repulsive two-site dicationic states

Ar+(3p−1)Kr+(4p−1); the red and pink curves represent the lowest fast-decaying

ionisation satellites, the blue and violet curves represent the higher slow-decaying

satellites (see Table 4.2 for the corresponding decay widths). The ICD-active

states which were not included in the dynamics calculation, but are populated

after the resonant Auger decay are shown in grey.

• the ground-state equilibrium distance Re,

• the positions of the left turning points of the decaying states PECs,

• the ratios between the characteristic vibrational periods and the ICD life-

times of the decaying states,

• the shape of the �nal states PECs. [159]
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As a result of the higher polarisability and larger van der Waals radius of Kr, the

ground state PEC of ArKr (Fig. 4.8, lower panel) is deeper, De = 13.3meV, and

its minimum is shifted to larger interatomic distances (Re = 3.94Å) compared to

the ground state PEC of Ar2 (Re = 3.80Å).

The PECs of the initial ICD states are presented in the upper panel of Fig.

4.8. Due to the lower ionisation potential of Kr, two more ionisation satellites in

ArKr become available for ICD compared to Ar2, namely, Ar+(3p−2[1D]4s 2D)Kr

and Ar+(3p−2[3P ]3d 2D)Kr. Thus, the initial ICD states form three groups ly-

ing in the energy ranges 34 to 35 eV, 36 to 39 eV, and above 39 eV. The ionisation

satellites belonging to a given group are expected to decay by emitting electrons of

similar energies and, hence, contribute to the same peak in the total ICD-electron

spectrum. Therefore, in the ICD-electron spectrum of ArKr one would expect

three peaks, in contrast to the double-peak structure observed in the spectrum

of Ar2. The PECs of the low-lying ionisation satellites (Ar+(3p−2[1D]4s 2D)Kr,

Ar+(3p−2[3P ]3d 2D)Kr, Ar+(3p−2[1S]4s 2S)Kr, Ar+(3p−2[1D]3d 2D)Kr, Ar +(3p−2

[1D]3d 2P )Kr, Ar+(3p−2[1S] 3d 2D)Kr) are shallow, with minima located between

3.32 and 5.09Å and depths in the range between 31 and 217meV. Their charac-

teristic vibrational periods vary between 290 fs and 2.20 ps. The PECs of the re-

maining high-lying ICD states have di�erent binding properties. They are deeper,

with binding energies between 265 and 334meV, and their minima are located

at shorter internuclear distances 3.20 to 3.34Å. Their characteristic vibrational

periods are between 280 and 290 fs, and generally tend to be shorter than those

of the low-lying states. Due to the similar binding properties of the PECs of

ArKr and Ar2, the vibrational periods in ArKr do not signi�cantly di�er from the

corresponding vibrational periods in Ar2.

There are 12 two-site dicationic �nal states of the kind Ar+(3p−1)Kr+(4p−1)

(Fig. 4.8, upper panel). Their PECs are repulsive, behaving as R−1 at large

interatomic distances. Compared to the corresponding PECs of Ar2, the �nal

states of ArKr are more repulsive at shorter internuclear distances due to the

larger van der Waals radius of Kr. However, the di�erence is negligible and does

not a�ect the positions of the peaks in the spectra.
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4.3.2 Decay widths

Let us now focus on the decay widths of the ionisation satellites included in the

nuclear dynamics calculation (see Table 4.2). The di�erences between the decay

widths of the states converging to the same ionisation satellites of Ar in ArKr

and Ar2 are of the order of 10%, which is within the error of the computational

approach. Therefore, replacing Ar with Kr does not qualitatively change the

ICD widths. We can conclude from this and from the above discussion of the

vibrational periods that the division into fast- and slow-decaying states made in

the case of Ar2 remains valid also in the case of ArKr. The lowest-lying satellites

correlating with Ar+(3p−23d, 4s)Kr (except for the Ar+(3p−2[1S]3d 2D)Kr state)

are fast-decaying. Their decay lifetimes range between 29 and 443 fs, and are by an

order of magnitude shorter than the typical vibrational periods (290 fs to 2.20 ps).

Consequently, the decay of these states takes place around Re. The higher-lying

ionised-excited states converging to Ar+(3p−2 5s, 4d)Kr fall into the group of the

slow-decaying states. Their ICD lifetimes at Re range between 2.30 and 5.60 ps,

and are by an order of magnitude longer than the typical vibrational periods (280

to 290 fs). Thus, the decay of these states is substantially a�ected by nuclear

dynamics and predominantly happens close to the left turning points Rt.p. of the

corresponding PECs (see Table 4.2 for their positions). A detailed description of

the decay as well as the spectra of these two groups of states can be found in Ref.

[159].

4.3.3 ICD-electron and KER spectra

Comparison of the ICD-electron spectra of Ar2 and ArKr originating

from the Ar(2p3/2 → 4s) core excitation

In order to illustrate the in�uence of the chemically �softer� neighbour on the ICD-

electron spectrum, we compare the electron spectra of Ar2 and ArKr, originating

from the same core excitation, Ar(2p3/2 → 4s) (see Fig. 4.9). The resonant Auger

decay of this state proceeds predominantly according to the strict spectator model,

leading to the population of the fast-decaying Ar+(3p−24s) and Ar+(3p−23d) lowest

satellites with 89% probability [38]. The remaining 11% of the populated states

are the slow-decaying shake-up satellites Ar+(3p−25s) (see Table I in Ref. [38]).
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Figure 4.9: Comparison between the ICD-electron spectra following the reso-

nant Auger decay of the Ar(2p3/2 → 4s) core excitation in Ar2 and ArKr. (a)

Total electron spectrum of Ar2 evaluated as a sum of the Ar+(3p−2[1S]4s 2S),

Ar+(3p−2[3P ]5s 2P ), and Ar+(3p−2[1D]5s 2D) �nal resonant Auger states. (b)

The portion of the electron spectrum of ArKr (blue curve) originating from the

decay of the same Ar+∗ satellites as in (a). (c) The total ICD-electron spec-

trum of ArKr including all ICD-available states. All spectra shown in the �gure

are convolved with a Gaussian of FWHM 1.24 eV to account for the experimen-

tal resolution. The colour scheme for the electron spectra originating from the

di�erent classes of satellites follows that of Fig. 4.8.

We assume that the states populated in the dimer are the same as in the atom

and their branching ratios are preserved as well (see Refs. [46, 159]).

Let us �rst compare the ICD-electron spectrum of Ar2 which derives from the

decay of the Ar+(3p−2[1S]4s 2S)Ar, Ar+(3p−2[3P ]5s 2P )Ar, and Ar+(3p−2[1D]5s
2D)Ar satellites with the portion of the ICD-electron spectrum of ArKr corre-

sponding to the decay of the same Ar+∗ states (see Figs. 4.9(a) and (b)). The Ar2
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spectrum possesses two peaks: one between 0.0 and 2.0 eV, attributed to the de-

cay of the Ar+(3p−2[1S]4s 2S)Ar state, and a second peak between 2.5 and 5.0 eV,

originating from the decay of the shake-up Ar+(3p−25s)Ar states. The correspond-

ing part of the ArKr spectrum (see Fig. 4.9(b)) possesses the same double-peak

structure. However, due to the lower ionisation potential of Kr compared to Ar,

the energies of the �nal two-site dicationic states Ar+(3p−1)Kr+(4p−1) decrease

by the di�erence between the two ionisation potentials, i.e. by 1.76 eV. Therefore,

the respective part of the electron spectrum of ArKr is shifted to larger electron

kinetic energies by approximately the same amount (see Fig. 4.9(a) and (b)). As

we have discussed above, replacing Ar with Kr in the dimer causes small changes

in the PECs and ICD widths of the states relevant for the peaks in question. These

changes have in turn a minor e�ect on the structure of the corresponding portion

of the ArKr spectrum, which can be seen by comparing the latter (Fig. 4.9(b))

with the Ar2 spectrum (Fig. 4.9(a)).

Now let us consider the complete electron spectrum of ArKr (Fig. 4.9(c)).

Due to the lower energies of the �nal two-site dicationic states, two more reso-

nant Auger �nal states become ICD-active in ArKr: Ar+(3p−2[1D]4s 2D)Kr and

Ar+(3p−2[3P ]3d 2D)Kr. These two states are fast-decaying states (see Table 4.2).

Consequently, their decay occurs mostly at the equilibrium interatomic distance,

producing a third peak at energies between 0.0 and 2.0 eV (see Fig. 4.9(c)). Its

intensity is approximately four times higher than that of the second peak, due to

the high Auger branching ratios of these two satellites. As a result, the percentage

of the �nal resonant Auger states undergoing ICD which is unusually low in Ar2

(21%) grows to 67% in the case of ArKr for the 2p3/2 → 4s parent core excitation.

The total e�ciency of the RA-ICD cascade thus increases by more than three

times upon replacing of Ar with Kr as a neighbour.

Theoretical ICD-electron spectra of ArKr

The ICD-electron spectra corresponding to the other two parent core excitations

considered in this work, namely Ar(2p1/2 → 4s) and Ar(2p3/2 → 3d), are pre-

sented in Fig. 4.10. All three computed spectra possess three peaks originating

from the decay of the three energetically separated groups of satellite states (Fig.

4.8). The lowest-energy peak (0.0 to 2.0 eV) originates from the decay of the

Ar+(3p−2[1D]4s 2D)Kr and Ar+(3p−2[3P ]3d 2D)Kr states, which are not available
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Figure 4.10: ICD-electron spectra obtained in the RA-ICD cascade follow-

ing Ar(2p3/2 → 4s)Kr (lower panel), Ar(2p1/2 → 4s)Kr (middle panel), and

Ar(2p3/2 → 3d)Kr (upper panel) core excitations. The dark blue curves in

all panels represent the total ICD spectra corresponding to the particular core

excitation. Experimental data is available for the Ar(2p3/2 → 4s)Kr and

Ar(2p3/2 → 3d)Kr excitation (orange curves) [47]. The experimental spectra

were scaled such that the intensities of the most intense peaks coincide. The

electron spectra resulting from the decay of the individual satellites contribut-

ing to the total spectrum of each core excitation are also presented (the color

scheme follows that of the PECs in Fig. 4.8).

for ICD in Ar2 due to the higher ionisation potential of Ar. This peak has a high

relative intensity in the spectra corresponding to the Ar(2p3/2,1/2 → 4s) parent

core excitations, due to the high probability of populating these satellites in the

RA decay (46% in the case of the 2p3/2 → 4s excitation and 44% in the case of

the 2p1/2 → 4s excitation). In the spectrum corresponding to the 2p3/2 → 3d core

excitation this peak is weak, since the population of the respective satellite states

is only about 2%. The second peak in all three spectra is located between 2.0 and

4.5 eV. It is produced by ICD of the satellite states in the energy range 36.5 to

39.0 eV (see Fig. 4.8). The third peak is located at energies above 4.5 eV. It is at-
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tributed to the ICD of the higher Rydberg states of energies above 39.5 eV (see Fig.

4.8). Its high intensity in the spectrum originating from the Ar(2p3/2 → 3d) parent

core excitation is a result of strong shake-up processes in the resonant Auger step.

The two peaks at higher energy are virtually identical with the respective Ar2

electron spectra since they originate from ICD of the states correlating with the

same Ar satellites in both dimers (see Fig. 4.8, states of energies above 36.0 eV).

The peaks in the spectra of ArKr are shifted to higher energies by approximately

1.76 eV relative to the spectra of Ar2 due to the lower ionisation potential of Kr.

The availability of additional ICD-active states in ArKr increases the ICD yield

by approximately a factor of 3 in the case of the 2p3/2,1/2 → 4s parent states,

whereas the yield in the case of the 2p3/2 → 3d core-excited state remains almost

unaltered.

Theoretical KER spectra of ArKr

The computed KER spectra of the three core-excited states are presented in Fig.

4.11. The KER spectra of ArKr are rather similar to those of Ar2 (see Fig. 5 in Ref.

[159]). The two peaks manifest that the decay occurs at two di�erent internuclear

separations: the ground state equilibrium distanceRe = 3.94Å and the left turning

points of the considered PECs (located between 2.84 and 3.00Å for the satellites

of interest). Thus, all fast-decaying states contribute to the peak at lower energies

(2.5 to 4.2 eV), whereas the high-energy peak (4.2 to 6.0 eV) is produced by the

slow-decaying states. The corresponding low-energy peaks in the KER spectra of

ArKr are shifted to lower kinetic energies by about 200meV compared to their

positions in the Ar2 spectra. This is due to the larger ground state equilibrium

distance of ArKr. The higher peaks in the KER spectra of ArKr are also shifted

to lower kinetic energies compared to Ar2 because the left turning points of the

respective PECs are located at larger internuclear distances in the case of ArKr.

Comparison of the theoretical ICD-electron and KER spectra of ArKr

with experimental results

The available experimental ICD-electron and KER spectra [47, 49] are shown in

Figs. 4.10 and 4.11 as thick orange lines. As one can see from the �gures, there is

a very good correspondence between the computed and the experimental spectra.
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Figure 4.11: KER spectra obtained in the RA-ICD cascade following

Ar(2p3/2 → 4s)Kr (lower panel), Ar(2p1/2 → 4s)Kr (middle panel), and

Ar(2p3/2 → 3d)Kr (upper panel) core excitations. The spectra are obtained

using the mirror image principle. The dark blue curves in all panels represent

the KER spectra corresponding to the particular core excitation. The orange

lines are the available experimental KER spectra for the Ar(2p3/2 → 4s)Kr and

Ar(2p3/2 → 3d)Kr core excitation [47, 49]. The experimental spectra were scaled

such that the intensities of the lower-energy peaks coincide. The KER spectra

of the satellites contributing to the total spectrum of each core excitation are

also presented (the color scheme follows that of the PECs in Fig. 4.8).

The calculations reproduce the number of peaks and their relative intensities.

The discrepancies concern mainly the positions of the peaks, being larger for the

higher-energy peaks which originate from the slow-decaying states. The deviations

of the computed ICD-electron and KER spectra from the experimental ones are

between 60 and 280meV, and between 70 and 370meV, respectively. The errors

are comparable with those in the case of Ar2 and have opposite signs in the ICD-

electron and KER spectra due to energy conservation used in the mirror image

principle (see Figs. 4.10 and 4.11). The sources of the discrepancies between the

theoretical and the experimental spectra are the accuracy of the potential curves
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(i.e. the values of the equilibrium distance, left turning points, as well as the

characteristic vibrational periods) and the decay widths. They are discussed in

detail in Ref. [159] for Ar2, but remain valid also in the case of ArKr.

An additional source of error for this system is the neglect of relativistic

e�ects. The spin-orbit coupling in the �nal ICD states leads to the splitting of the

Kr+(4p−1 2P ) multiplet into the Kr+(4p−1 2P3/2) and Kr+(4p−1 2P1/2) terms which

di�er by 0.67 eV at asymptotic distances. Moreover, it has been shown [160] that

the relativistically corrected ICD rates may di�er from the non-relativistic ones.

Including the relativistic corrections might shift the position of the theoretical

peak by up to a few hundred meV.

Finally, we would like to discuss brie�y the e�ect of omitting some ICD states

from the calculations (see Fig. 4.8 for the satellites in question, their PECs are

shown in grey). The largest deviation from the experiment should be observed

for the ICD spectra of the 2p3/2 → 3d parent state where the neglected satellites

carry up to 30% of the intensity. The decay of the states below 40 eV would

produce electrons with energies between 2.7 and 4.0 eV. The decay of the states

in the energy range between 40 and 42 eV is expected to produce electrons of

energies between 5.0 and 6.3 eV and thus, enhance the high-energy peak. The

highest Rydberg states would decay emitting electrons of energies above 6.5 eV,

which would account for the di�erence between the theoretical and experimental

spectra in this region. All of the above mentioned states are slow-decaying and

would contribute to the high-energy peak in the KER spectrum.

We would also like to mention that the electronic spectra corresponding to the

2p1/2 → 4s and 2p3/2 → 3d parent core excitations in ArKr have been previously

estimated [32] using a simple model. In this model the PECs of the most popu-

lated ICD states were approximated as horizontal lines positioned at the correct

asymptotic energies. The �nal states were represented by repulsive R−1 curves.

The electron spectra were obtained assuming vertical ICD transitions taking place

at the equilibrium distance of the ground state Re. In this simple model, the low-

energy peak originating from the decay of the fast states is accurately described.

However, the high-energy peak produced from the decay of the slow ICD states is

shifted by about 1 eV to higher kinetic energies. This is due to the fact that the

decay of these states is accompanied by nuclear dynamics and it actually occurs

in the vicinity of the left turning points of the corresponding PECs. The nuclear
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motion during the decay also in�uences the form of the peak. It is now skewed

to the large kinetic energies compared to the Gaussian-like peak resulting from

the simple model used in Ref. [32]. In addition, due to the assumption that ICD

is very fast, according to this model the KER spectrum would consist of a sin-

gle peak. However, as both the present calculations and the experimental results

show, the KER spectrum actually consists of two peaks indicating that the fast

and slow decay occur at di�erent internuclear separations.

4.4 Summary and conclusions

This chapter presents the results of ab initio computations of ICD-electron and

KER spectra produced in the resonant-Auger � ICD cascades following 2p3/2 → 4s,

2p1/2 → 4s, and 2p3/2 → 3d core excitiations of Ar in Ar2 and ArKr. We computed

the potential energy curves of the ionisation satellites of Ar2 populated in the

resonant Auger steps, the repulsive two-site dicationic �nal states, as well as the

ICD rates. These quantities were used to simulate quantum mechanically the

nuclear dynamics during the decay and to derive the ICD spectra.

The computation of the decay rates revealed that the ionisation satellites

corresponding to the lowest terms of the respective Rydberg series in both Ar2

and ArKr have lifetimes considerably shorter than the characteristic vibrational

periods of the satellites PECs. In contrast, the lifetimes of the higher Rydberg

states are longer than the vibrational periods. Therefore, ICD of the former states

is una�ected by nuclear dynamics; it proceeds around the respective equilibrium

interatomic distance Re and the resulting peaks in the spectra retain the shape of

the initial vibrational wave packet. However, the dynamics play an important role

in the decay of the higher satellites. Due to the larger ICD lifetimes, the decay

takes place mostly at interatomic distances close to the left turning points of the

corresponding PECs. This shifts the positions of the peaks in the ICD-electron

spectra by about 1 eV to smaller energies than would be the case had the decay

happened at Re. The corresponding peaks in the KER spectra are shifted by

about 1 eV towards higher energies due to energy conservation. The shapes of

the resulting peaks strongly deviate from the shape of the initial vibrational wave

packet.

The total ICD spectra of Ar2 and ArKr exhibit a double-peak and a triple-
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peak structure, respectively, due to the population of higher Rydberg terms in the

shake-up process during the resonant Auger step. The computed spectra deriving

from the Ar(2p3/2 → 4s) and Ar(2p3/2 → 3d) excitations agree well with the

available experimental results. The di�erences in the positions of the calculated

and experimentally observed peaks are about a few hundred meV.

The accuracy in the position of the peak originating from the decay of the

lower Rydberg states depends on

• the quality of the ground-state vibrational wave packet,

• relative populations of the satellite states in the RA decay,

• the energy di�erence between the decaying and �nal states close to the equi-

librium distance Re.

We estimated that the deviation of the theoretical peak from the experimental one

due to these factors should amount to 100 � 200 meV. The accuracy in the position

of the peak produced in the decay of the higher Rydberg satellites is in�uenced

primarily by

• the accuracy of the positions of the left turning points on the PECs in

question,

• the quality of the respective ICD rates.

The left turning points of the majority of states were obtained from model poten-

tials. Moreover, due to the complexity of the task, it is di�cult to achieve high

accuracy in the computation of ab initio interatomic decay widths. Therefore, it is

di�cult to come up with an error estimate for the case of the higher-lying Rydberg

satellites. However, the reasonably small deviation of a few hundred meV from

the measured peak shows that our computations were accurate enough.

The total KER spectra of both Ar2 and ArKr exhibit a double-peak structure.

In this case the presence of two peaks indicates that there are two types of decaying

states, which decay at two di�erent internuclear separations � the ground-state

equilibrium distance Re and the left turning points of the corresponding PECs.

The electron and KER spectra were shown to be the mirror image of each other.

Therefore, the shifts of the theoretical peaks compared to the experimental ones

are of the same order as those in the ICD-electron spectrum, but have the opposite

sign.

Substituting the neighbouring rare-gas atom with a chemically �softer� one has
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several consequences. Due to the larger van der Waals radius of Kr, the ground

state equilibrium distance Re increases and the positions of the left turning points

Rt.p. in the PECs of the decaying states shift to larger internuclear separations.

The decay of the fast and slow ICD states happens mostly at Re and Rt.p., re-

spectively. Replacing Ar with Kr does not lead to a signi�cant change in either

the characteristic vibrational periods of nuclear motion or the ICD lifetimes of the

satellite states. Therefore, the same division into fast- and slow-decaying states

as in the case of Ar2 remains valid in ArKr. The larger van der Waals radius of

Kr also results in more repulsive character of the �nal Ar+(3p−1)Kr+(4p−1) states

at shorter internuclear distances. Moreover, reducing the ionisation potential of

the neighbour by replacing Ar with Kr lowers the energies of the �nal states by

approximately 1.76 eV.

We have seen that the ionisation potential of the neighbour has the most

pronounced e�ect on the ICD-electron and KER spectra. On one hand, lowering

the �nal states energies leads to an increase in the energies of the emitted electrons.

Comparing the ICD-electron spectra of ArKr and Ar2, one notices that the peaks

originating from the decay of the satellites correlating with the same ionised-

excited states of Ar are shifted to higher energies in the case of ArKr. The shift

corresponds to the di�erence between the ionisation potentials of Ar and Kr,

namely, 1.76 eV. On the other hand, additional �nal resonant Auger states may

become ICD-active. In the present example these are Ar+(3p−2[1D]4s 2D)Kr and

Ar+(3p−2[3P ]3d 2D)Kr. The fast decay of these states produces electrons of kinetic

energies between 0 and 2 eV. The increase in the number of available ICD states

leads to an overall rise in the ICD yield. The increase is insigni�cant in the case

of the 2p3/2 → 3d core excitation due to the low probability of populating these

states (only 2%). However, in the case of the 2p3/2,1/2 → 4s core excitations the

e�ciency increases more than three times compared to Ar2.

In the case of the KER spectra, the e�ect of the neighbour is not as pro-

nounced. Substituting the Ar atom with a softer one has two consequences. First,

due to the larger Re and Rt.p. of ArKr compared to Ar2, the KER spectra of ArKr

are shifted to lower kinetic energies. Second, the relative intensity of the lower-

energy peak compared to the high-energy one is much larger than in the spectra

of Ar2. This is attributed to the decay of the additional ICD states, which in the

case of the 2p1/2,3/2 → 4s core excitations form up to 70% of the available ICD
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states.

The study of the impact of nuclear dynamics on ICD following resonant Auger

gives insight into the mechanism of controlling the energies of the emitted electrons

suggested in Ref. [32]. Understanding the origin of the peaks in the spectra and

how they are in�uenced by the presence of di�erent neighbours, can be used to

predict the spectra of similar weakly-bound diatomic systems (consisting of identi-

cal or di�erent atoms) without explicitly calculating the nuclear dynamics during

the decay. This allows for simulation of the spectra in a simple way where only

knowledge of the decay rates at the ground state equilibrium distance, and the

PECs of the decaying and �nal states is required. This may also be of importance

in larger clusters, since for such systems it becomes computationally impossible

to calculate the electron and KER spectra using nuclear dynamics. The ICD-

electron spectra are also very sensitive to the nature of the species being ionised

in the ICD step. Therefore, we think that this property of the RA-ICD cascade

can make it a spectroscopic tool which can be used alongside such well estab-

lished methods as resonant Auger and near edge X-Ray absorption �ne structure

(NEXAFS) spectroscopies.
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Chapter 5

X-Ray absorption spectra of microsolvated
metal cations

In Chapter 4 we studied the RA-ICD cascade in rare-gas dimers. It was assumed

that both the resonant core excitation and the subsequent resonant Auger process

in dimers proceed analogously to the case of atoms due to the weak interaction

between the atoms in the dimer. Recent studies on soft X-Ray absorption (XAS)

spectra in ArNe and Ar2 in the near L-edge region of Ar atom [50] demonstrate

that the chemical shifts in the XAS spectra are less than 100meV in both investi-

gated systems, which evidences the weak in�uence of a single neighbouring atom.

Moreover, the experimental results reported in Ref. [46], con�rm that the resonant

Auger process in dimers is mostly of local nature.

This approximation is less justi�ed if one considers resonant core excitation

and subsequent Auger decay in larger rare-gas clusters and in solids. The XAS

spectra of Ar and Ne clusters [41, 42] and Ar solids [40] at the Ne 1s and Ar 2p

thresholds as well as the Auger spectra of Ar solids were studied previously. It

was found, that for each atomic transition, the XAS spectra of the large clusters

exhibit two peaks � from atoms on the surface and in the bulk of the cluster

[40�42]. Moreover, the chemical shifts of the peaks in the XAS spectra depend

on the size of the clusters and can reach ∼1 eV in the case of large clusters and

solids [40]. The Auger spectra of Ar solids show that in the case of higher-excited

states, the excited electron delocalises over the cluster before the resonant Auger

decay takes place, i.e. faster than 6 fs, which is the lifetime of the Ar 2p hole

[116]. Thus, the delocalisation of the excited electron outpaces the resonant Auger

decay and normal Auger takes place instead [40]. Consequently, the environment

in�uences not only the energies of the core-excited states, but also the course of

the subsequent de-excitation processes.

85
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The e�ect of the surrounding becomes even more pronounced in solutions,

where the interactions between the initially excited species and the surrounding

medium are stronger. For example, studies of the Auger electron spectra of sol-

vated ions demonstrate that the chemical shifts in this case are much larger, of

the order of several tens of eV, and that they also depend on the charge of the

central ion [16, 17]. Moreover, additional features appear in the spectra, due to

the possibility of delocalisation of the �nal Auger states [16, 17]. Their positions

and intensities, as well as the lifetime of the electronic decay process also show a

marked dependence on the ionic charge [17].

In this chapter, our intention is to study the X-Ray absorption spectra of

metal ions in microsolvated clusters. Understanding whether in a solution, the

delocalisation of the core-excited electron is faster than the resonant Auger decay,

and whether the competition between the two processes depends on the charge of

the metal ion, is an important �rst step to determining the course of the decay

cascade. To this end, we computed and analysed the X-Ray absorption (XAS)

spectra of microsolvated clusters of the isoelectronic Na+ and Mg2+ ions with co-

ordination numbers m = 1− 6. In order to better understand the character of the

core-excited states and to quantify the degree of delocalisation of the excited elec-

tron, we also computed and analysed the singly-occupied natural orbitals (SONO)

occupied by the excited electron in the core-excited states of interest.

The chapter will be organised as follows. In the next section, we present

the computational details of the geometry optimisation of Na+ and Mg2+ water

clusters with coordination numbers from 1 to 6, as well as the computations of

the respective XAS spectra. In Sec. 5.2 we present and discuss our results. A

summary of our �ndings and our conclusions are given in Sec. 5.3.

5.1 Computational details

5.1.1 Geometry optimisation

The symmetry point groups of the ground-state structures of the microsolvated

clusters of Na+ and Mg2+ were taken from Refs. [161, 162]. In order to obtain

the structural parameters, we performed geometry optimisation of the clusters

at the DFT level of theory, using the B3LYP functional [163�165] and the 6-
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Table 5.1: M-O distances (Å) for the B3LYP/6-311++G(3df,3pd) optimised

microsolvated clusters of Na+ and Mg2+.

Mq+(H2O)m

m = 1 2 3 4 5 6

Na+ 2.212 2.241 2.273 2.308 2.294/2.417/2.420 2.425

Mg2+ 1.914 1.936 1.964 2.000 2.041/2.093/2.032 2.100

311++G(3df,3pd) basis set [166]. The calculations were carried out with the

Gaussian 09 package [167]. The optimised structures of Mq+(H2O)m for coordina-

tion numbers m = 1− 6 are presented in Fig. 5.1. The symmetries of the equilib-

rium structures of the metal-water complexes of Na+ and Mg2+ with m = 1 − 4

are identical. The 5- and 6-coordinated clusters of both ions have di�erent sym-

metries (see Fig. 5.1). In the case of Na+, the 5- and 6-coordinated clusters belong

to the C2 and D3 point groups, respectively. The corresponding Mg2+ structures

belong to the C2v and Th points groups. The 6-coordinated structures used in

this work are considered to represent the �rst solvation shell of both Na+ and

Mg2+. It is known from the literature [168] that Na+ has between 4 and 8 wa-

ter molecules in its �rst coordination shell, whereas the coordination numbers of

Mg2+ were found to be between 6 and 8. The M-O bond lengths of the optimised

microsolvated clusters of the two metal ions are presented in Table 5.1. The com-

puted M-O distances for the 6-coordinated clusters are in very good agreement

with the experimental distances reported in Ref. [168], which range between 2.40

and 2.50 Å in the case of Na+ and between 2.00 and 2.12 Å in the case of Mg2+.

The optimised ground-state geometries were used as input for the calculation of

the X-Ray absorption spectra (see Sec. 5.1.2).

5.1.2 Core-excitation spectra

Under the assumption of an instantaneous core excitation, during which no signi�-

cant nuclear dynamics take place, we performed all computations using the ground-

state equilibrium structures as input. The X-Ray absorption spectra as well as the

excited-state properties were calculated using the CVS-ADC(2)-x method (see Sec.

2.1) as implemented in the Q-Chem package [169�172]. The 6-311++G(3df,3pd)

basis set (excluding the f functions) was used on all atoms [166]. The CVS-
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ADC(2)-x excitation energies were computed using the cartesian 6D/10F version

of the respective basis sets. The symmetry of some of the microsolvated clusters

had to be reduced to one of the Abelian subgroups. In the case of the Mq+(H2O)3,4

structures, the C2 point group was used. In the case of the Mq+(H2O)6 structures,

the calculations were performed in the Ci (Na+) and C2v (Mg2+) point groups,

respectively. The computed XAS spectra of the microsolvated Na+ and Mg2+ ions

for di�erent coordination numbers (m = 1− 6) are shown in Fig. 5.1.

In order to account for the lifetime broadening of the core-excited states, we

used the Auger decay widths of Na+ and Mg2+ calculated using the Fano-Stieltjes-

ADC method (see Chapter 2) [27, 173]. The basis set used on both ions was the

uncontracted cc-pCV5Z basis set [174]. The calculated decay widths are 303meV

in the case of Na+ and 344meV in the case of Mg2+ [27, 173]. Finally, we convolved

each computed transition with a Lorentzian pro�le of FWHM 303meV (Na+) and

344meV (Mg2+), respectively (see Fig. 5.1).

5.2 Results and discussion

In this section we present the X-Ray absorption spectra of microsolvated clusters

of Na+ and Mg2+ with coordination numbers m = 1−6 close to the metal K-edge,

and discuss the lowest bright states in the spectra correlating with the 1s → 3p

and 1s → 4p core excitations in the bare ions. The core-excited states will be

characterised by means of their energy, oscillator strength, singly-occupied natural

orbitals (SONO) occupied by the excited electron and the projections of the latter

on the basis of SONOs of the respective bare ion. Throughout the chapter, we

are interested only in the singly-occupied natural orbitals occupied by the excited

electron and will refer to them simply as SONO.

Let us denote the SONO of the i-th core-excited state of a given microsolvated

cluster as |Ψi〉 and that of the 1s → nl state of the bare ion as |χnl〉. We then

de�ne a projection operator P̂ on the basis of SONOs of the bare ion as

P̂ =
∑
nl

|χnl〉〈χnl| (5.2.1)

In order to �nd the contribution of core-excited states of the bare ion to the

i-th core-excited state of a given cluster, we project the SONO |Ψi〉 onto the
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Table 5.2: Excitation energies (eV) and oscillator strengths of the 1s → 3p

core excitations in the bare ions (m = 0) and in the metal-water clusters of

Na+ and Mg2+ with coordination number m = 1− 6. The overlap between the

SONO of each core-excited state of the cluster and the SONO corresponding to

the 1s→ 3p excitation of the bare ion, |ai, 31|2, is also given.

Na+ Mg2+

m State ωex fosc |ai, 31|2 State ωex fosc |ai, 31|2

0 1076.18 0.0088 1.00 1310.70 0.0129 1.00

1 1 1B1 1075.23 0.0079 0.98 1 1B1 1308.94 0.0117 0.97

1 1B2 1075.41 0.0078 0.96 1 1B2 1309.25 0.0116 0.94

2 1A1 1076.36 0.0045 0.66 2 1A1 1311.49 0.0070 0.53

2
1 1E

1074.60 0.0069
0.94 1 1E

1307.78 0.0107
0.92

1074.60 0.0069 1307.80 0.0107

1 1B2 1076.15 0.0018 0.42 1 1B2 1312.05 0.0032 0.29

3 1 1A2 1074.07 0.0061 0.91 1 1A2 1306.98 0.0099 0.88

1 1E
1075.03 0.0025

0.53 1 1E
1309.45 0.0056

0.48
1075.03 0.0025 1309.45 0.0056

4
1 1E

1074.21 0.0024
0.52 1 1E

1308.33 0.0057
0.50

1074.21 0.0023 1308.35 0.0057

1 1B 1074.27 0.0020 0.47 1 1B 1308.45 0.0054 0.48

5 1 1B 1074.34 0.0025 0.53 2 1A1 1307.95 0.0053 0.47

2 1B 1074.52 0.0022 0.49 1 1B2 1308.76 0.0031 0.30

2 1A 1074.63 0.0011 0.28 1 1B1 1308.81 0.0024 0.23

6 1 1Au 1074.19 0.0027 0.57

1 1Tu

1308.37 0.0016

0.17
1 1Eu

1074.56 0.0008
0.23

1308.37 0.0016

1074.56 0.0008 1308.37 0.0016

orthonormal basis of SONOs of the bare ion {|χnl〉}

P̂ |Ψi〉 =
∑
nl

ai, nl|χnl〉 (5.2.2)

where ai, nl denote the overlaps of the SONO of the i-th core-excited state of the

microsolvated cluster, and the SONO of the 1s→ nl state of the bare ion. Then,

we de�ne the projection Pi as a sum of the squared overlaps between the SONOs

of the i-th core-excited state of the cluster, and the SONOs of the 1s→ nl states
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of the bare ion

Pi = 〈Ψi|P̂ |Ψi〉 =
∑
nl

|ai, nl|2 (5.2.3)

In Figs. 5.5 and 5.6, we present both the individual contributions |ai, nl|2 and the

projection Pi.

5.2.1 Bare ions (Mq+)

In order to understand the spectra of the microsolvated clusters, �rst the XAS

spectra of the bare ions have to be discussed.

The XAS spectra of the bare ions are presented in the lowest panels of Fig. 5.1.

The only dipole allowed transitions from the K shell in both Na+ and Mg2+ are

the 1s → np transitions, where m is the principal quantum number. Due to

the spherical symmetry of the ions, each of these states is triply degenerate. The

intensity of the peaks in the series is expected to decrease with increasing principal

quantum number [175]. The �rst bright state in the XAS spectra of both Na+ and

Mg2+ is the 1s→ 3p core excitation. The second peak in the XAS spectra, shown

in the insets of Fig. 5.1, corresponds to the 1s → 4p transition. Its intensity is

approximately 4 times lower than that of the 1s → 3p excitation. The oscillator

strength of the 1s → 3p transition in Na+ is lower compared to Mg2+ (see Table

5.2).

The optically forbidden core-excited states are also shown in Fig. 5.1 as points

of zero intensity. The �rst such state in both ions is the lowest excitation 1s→ 3s.

As can be seen from Fig. 5.1, it acquires small intensity for some of the clusters,

due to mixing with optically allowed 1s→ np states. The higher-lying forbidden

1s → 4s and 1s → 3d states also lie in the energy range between the �rst two

bright states.

To better understand the e�ect of the solvent on the electron density distri-

bution in the core-excited states of the metal-water clusters, in Fig. 5.2 we also

present the radial density distributions of the excited electron in the bare ions.

As can be seen, as a result of the larger charge of Mg2+ its orbitals are more

compact and consequently, a larger part of the electron density is located within

a sphere with radius equal to the metal-oxygen distance, RM−O (see Table 5.1 and

Ref. [168] for the metal-oxygen distances in question). A substantial di�erence
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Figure 5.1: X-Ray absorption spectra of Na+ (left, lowermost panel) and

Mg2+ (right, lowermost panel), and their microsolvated clusters with coordina-

tion numbers m = 1− 6. The 1s→ 4p core excitation in the bare ions is shown

in the insets of the lowermost panels. The optimised ground-state structures

are also presented. The theoretical spectra were convolved with Lorentzians of

FWHM 303meV (Na+) and 344meV (Mg2+), respectively, in order to account

for the line broadening due to the Auger decay.
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Figure 5.2: Radial density distributions of the SONOs occupied by the excited

electron corresponding to the 1s → 3s, 1s → 3p, 1s → 3d, 1s → 4p, 1s → 5p

core excitations in the bare Na+ (lower panel) and Mg2+ (upper panel) ions.

The grey areas represent the range of metal-water distances reported in Ref.

[168].

between Na+ and Mg2+ is observed for the electron density distributions of the

3p and 3d orbitals within the sphere. In the case of the 3p orbital, the electron

density located within the sphere is 76% for Na+, in contrast to Mg2+, where it

is 91%. The 3d orbital of Na+ is even more spatially extended with only 48% of

the electron density within the sphere, in contrast to Mg2+, where most of the

electron density, 84%, is still within the sphere.

5.2.2 Mq+(H2O) clusters

We begin the discussion of the core-excited spectra of microsolvated clusters with

the singly-coordinated complexes of Na+ and Mg2+. Their XAS spectra are shown

in Fig. 5.1. As one can see, the spectra exhibit a lower-lying peak of large in-

tensity at 1075.33 eV (Na+) and 1309.09 eV (Mg2+), a second less intense peak

at 1076.36 eV (Na+) and 1311.49 eV (Mg2+), respectively, followed by a series of

higher-lying peaks, separated from the �rst two. The �rst two peaks can be un-

ambiguously attributed to the 1s→ 3p core-excited state, while the higher-energy

peaks originate from the 1s→ 4p excitation. Let us now discuss the properties of
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Figure 5.3: SONOs occupied by the excited electron corresponding to the

1s → 3p core-excited states in Mg2+(H2O) (C2v symmetry). The orbitals are

arranged in increasing energy of the core-excited state (from left to right). They

show 50% of the electron density. The respective SONOs of Na+(H2O) are

identical with those of Mg2+(H2O) and therefore, not shown.

these states.

1s→ 3p core excitation

The ground-state equilibrium geometries of the singly-coordinated metal-water

clusters belong to the C2v symmetry. In this symmetry the degeneracy of the

1s → 3p core-excited state is completely lifted. The energies of the �rst two

states (1 1B1 and 1 1B2) are lower compared to the energy of the excitation in the

respective bare ion, whereas the third state (2 1A1) has higher energy compared to

the bare ion. The shifts of the 1 1B1 and 1 1B2 states are 0.95 and 0.77 eV in Na+,

and 1.76 and 1.45 eV in Mg2+. The 2 1A1 state is shifted to the blue by 0.18 eV

in Na+ and 0.79 eV in Mg2+ (Table 5.2). Note that the oscillator strengths of the

1 1B1 and 1 1B2 states are very close to the ones in the bare ions, whereas the

oscillator strength of the 2 1A1 state decreases by about 50% on adding a water

molecule.

The energy splitting of the 1s → 3p multiplet and the observed intensities

of the three states can be understood by analysing the SONOs occupied by the

excited electron and their overlaps with the SONOs of the bare ions. The SONOs

of the 1 1B1 and 1 1B2 states (see Fig. 5.3) correspond to the case when the excited

electron occupies a 3p orbital of the metal ion, which is perpendicular to the M-O

bond. Thus, the repulsion between the excited electron and the O-atom is minimal

and the electron density distribution closely resembles that of the 1s → 3p state

of the bare ion. This is supported by the fact that the overlap of the SONO

corresponding to this state with the SONO of the ionic 1s → 3p state is close to
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1.0 (see Figs. 5.5 and 5.6). As discussed in the previous paragraph, the energies

of these states are lower compared to the 1s→ 3p state in the bare ions. Due to

the orientation of the p orbital which the excited electron occupies, the charge of

the metal ion is unscreened. Therefore, the water molecule feels a positive charge,

larger than +1 in the case of Na+ and +2 in the case of Mg2+, which leads to

additional stabilisation of the core-excited state relative to the ground state, and

consequently to the red shift of the respective excitation energy.

The 2 1A1 state corresponds to the case when the excited electron occupies

a 3p orbital of the metal ion oriented towards the O-atom (see Fig. 5.3). Due

to the repulsion between the excited electron and the lone pairs of the O-atom,

on the one hand, and the shielding of the ionic charge, on the other, the state is

destabilised and its energy increases compared to the bare ion. The perturbation

introduced by the water molecule leads to a di�erent distribution of the excited

electron density from that in the bare ion. The resulting density distribution can

no longer be adequately described by the 3p orbital, but rather by a combination

of SONOs of di�erent states of the bare ion. This is shown in Figs. 5.5 and 5.6,

where one can see that the overlap between the SONO corresponding to the 2 1A1

state in the cluster and the SONO of the 1s → 3p state of the bare ion is lower

than 1.0, and there is a non-negligible overlap with the SONO of the 1s → 3d

state. Since the 1s → 3d transition is dipole forbidden, the oscillator strength of

the 2 1A1 state decreases. It is ∼2.0 smaller than that of the 1s→ 3p state of the

bare ion. Note that the 2 1A1 core-excited state has 66% 1s→ 3p character in the

case of Na+, and 53% in the case of Mg2+. This suggests that the more compact

3p orbital of Mg2+ is more perturbed than the corresponding more di�use orbital

in Na+ (see Fig. 5.2).

1s→ 4p core excitation

Let us now consider how the 1s → 4p excitation is in�uenced by the presence of

a single water molecule. The energies and oscillator strengths of the core-excited

states in question are given in Table 5.3. Similarly to the 1s→ 3p excitation, the

degeneracy present in the bare ions is lifted and instead of a single peak, several

closely lying peaks are observed in the XAS spectra (see Fig. 5.1). However, unlike

the 1s→ 3p excitation, the 1s→ 4p state splits into 4 states � 3 1B1, 3 1B2, 6 1A1

and 4 1B1. In the case of Na+ these states lie in the range 1079 � 1081 eV, in the
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Figure 5.4: SONOs occupied by the excited electron corresponding to the

1s → 4p core-excited states in Na+(H2O) (left) and Mg2+(H2O) (right) (C2v

symmetry) (see Table 5.3 for the energies of the states). The natural orbitals

show 50% of the electron density.
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Table 5.3: Excitation energies (eV) and oscillator strengths of the 1s→ 4p core

excitation in the singly-coordinated clusters of Na+ and Mg2+. The overlap

between the SONO of each core-excited state of the cluster and the SONO

corresponding to the 1s→ 4p excitation of the bare ion, |ai, 41|2, is also given.

Na+ Mg2+

State ωex fosc |ai, 41|2 ωex fosc |ai, 41|2

3 1B1 1079.73 0.0020 0.76 1317.51 0.0014 0.57

3 1B2 1079.97 0.0025 0.94 1318.28 0.0033 0.97

6 1A1 1080.39 0.0020 0.58 1318.98 0.0045 0.54

4 1B1 1080.75 0.0003 0.15 1319.08 0.0031 0.39

case of Mg2+ they lie between 1317 and 1320 eV. All of the 1s → 4p states are

shifted to lower excitation energies compared to the bare ions. The shifts amount

to 0.83 � 1.85 eV for Na+ and to 2.39 � 3.96 eV for Mg2+.

The SONOs representing the density distribution of the excited electron in

the states deriving from the 1s→ 4p excited state of the bare ion are presented in

Fig. 5.4. In analogy with the 1 1B2 state, the 3 1B2 state is characterised with the

excited electron occupying a p orbital of the metal ion, which is perpendicular to

the M-O axis. Thus, the repulsion between the excited electron and the O-atom

is minimal. The SONO of the 3 1B2 state in both systems shows that the electron

density is very little a�ected by the presence of the water molecule. This correlates

with the fact that the overlap of the SONO with the 1s → 4p states in the bare

ion is close to 1.0 (see Table 5.3). The 6 1A1 state is characterised by the excited

electron occupying the metal 4p orbital oriented towards the O-atom. Due to the

repulsion between the excited electron and the lone pairs of O, the electron density

is distorted and, therefore, the overlap with the 1s→ 4p states of the bare ion is

smaller.

The density distribution of the excited electron in the 3 1B2 and 6 1A1 states

can be rationalised considering the electrostatic interaction between the excited

electron and the ligand. In the case of the state of B1 symmetry, however, these

considerations alone cannot be used to explain the splitting of the state into two

states � a lower-lying 3 1B1 and a higher-lying 4 1B1 state. The splitting is a result

of hybridisation of the p orbital of the metal ion with the 2b1 virtual orbital of

the water molecule (Fig. 5.4). The sum of the oscillator strengths of the 3 1B1
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and 4 1B1 states is close to the oscillator strength of each of the 3 1B2 and 6 1A1

states. Moreover, the sum of their overlaps with the SONO of the 1s → 4p state

of the bare ion is close to 1.0 (see Table 5.3 and Figs. 5.5 and 5.6). The electron

density distribution of the excited electron in the 3 1B1 and 4 1B1 states in Na+ and

Mg2+ is di�erent due to the more di�use character of the 4p orbital of Na+ (see

Fig. 5.2). This results in di�erent degree of hybridisation, which is manifested in

the di�erent ratios between the oscillator strengths of 3 1B1 and 4 1B1 states and

between their overlaps with the SONO of the 1s → 4p ionic state. These ratios

imply that the hybridisation is more pronounced in the case of Mg2+.

The addition of a single water molecule has a profoundly di�erent e�ect on

the 1s→ 3p and 1s→ 4p states of the ion. The splitting of the 1s→ 3p multiplet,

and the energies and intensities of the resulting states can be rationalised on a

purely electrostatic level by considering the ion-dipole interactions between the

excited metal ion and the ligands. On the contrary, the splitting of the 1s → 4p

multiplet cannot be explained solely within the framework of ligand-�eld theory.

In the singly-coordinated clusters, this multiplet forms a series of states, in which

the metal p-orbital hybridises with virtual orbitals of water. Moreover, the energy

of these state decreases compared to the 1s→ 4p core excitation in the bare ion.

5.2.3 Mq+(H2O)2 clusters

In this section we will discuss the XAS spectra of the doubly-coordinated metal-

water clusters, shown in Fig. 5.1.

1s→ 3p core excitation

The equilibrium ground-state geometries of the doubly-coordinated metal-water

clusters have D2d symmetry (see Fig. 5.1). In this symmetry, the 1s → 3p

core-excited state splits into doubly-degenerate lower-lying states (1 1E) and a

higher-lying state (1 1B2) (Table 5.2). In the case of Na+, both the 1 1E and the

1 1B2 states have lower excitation energies than the ion � the shifts are 1.58 eV

and 0.04 eV. In Mg2+, the 1 1E states are shifted by 2.92 eV to smaller energies

compared to the ion, whereas the excitation energy of the higher-lying 1 1B2 state

is 1.35 eV larger compared to the ion. The oscillator strengths of the 1 1E state in

both Na+ and Mg2+ are more than 3 times higher than those of the 1 1B2 state.
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Figure 5.5: Projections of the SONOs corresponding to the core-excited states

of the Na+(H2O)m clusters withm = 1−6 on the basis of SONOs corresponding

to the 1s → 3s, 1s → 3p, 1s → 3d, 1s → 4p and 1s → 5p states in Na+. The

color scheme follows that of Fig. 5.2.



5. X-Ray absorption spectra of microsolvated metal cations 99

Figure 5.6: Projections of the SONOs corresponding to the core-excited states

of the Mg2+(H2O)m clusters withm = 1−6 on the basis of SONOs corresponding

to the 1s → 3s, 1s → 3p, 1s → 3d, 1s → 4p and 1s → 5p states in Mg2+. The

color scheme follows that of Fig. 5.2.
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Figure 5.7: SONOs occupied by the excited electron corresponding to the

1s → 3p core excitation in Mg2+(H2O)2 (D2d symmetry). The orbitals are

arranged in increasing energy of the core-excited state (from left to right). They

show 50% of the electron density. The respective SONOs of Na+(H2O)2 are

identical with those of Mg2+(H2O)2 and therefore, not shown.

The energy shifts of the 1 1E states are about two times higher than the energy

shifts of the 1 1B1 and 1 1B2 states of the singly-coordinated clusters (see Sec.

5.2.2). This suggests that these energy shifts can be considered as resulting from

a pure electrostatic interaction between the unscreened metal ion and the water

molecules.

In analogy with the singly-coordinated metal-water clusters, the 1 1E states

correspond to the case when the excited electron occupies a p orbital of the metal

ion perpendicular to the O-M-O axis. It can be seen from the SONOs depicted

in Fig. 5.7 that the electron density distribution is not perturbed by the presence

of the water molecules. This is also con�rmed by the values of the overlaps of

these states with the 1s→ 3p state in the bare ion, which are close to 1.0 for both

Na+ and Mg2+ (see Figs. 5.5 and 5.6). The state is stabilised by the additional

attractive interaction between the metal ion and the water molecule. Due to the

orientation of the metal 3p orbital, the water molecules feel an �e�ective� ionic

charge larger than +1 in the case of Na+, and +2 in the case of Mg2+.

In the 1 1B2 state, the excited electron occupies a 3p orbital of the metal ion,

which is oriented towards the water molecules. As a result, the excited electron

is wedged up between the two water molecules and experiences strong repulsion,

which can be seen from the electron density distribution in Fig. 5.7. Due to

the repulsion, the density distribution of the excited electron in the 1 1B2 state

cannot be adequately described only by the SONO of the ionic 1s → 3p state.

Consequently, the overlap of the SONO of the 1 1B2 with the SONO of the 1s→ 3p

state in the bare ion decreases to 0.42 in the case of Na+, and only 0.29 in the

case of Mg2+. It should be noted that the 1 1B2 state acquires a non-negligible
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1s→ 4p character. This indicates that as a consequence of the repulsion from the

two water molecules, the excited electron density becomes spatially extended. The

reduced 1s → 3p character of the 1 1B2 state and the admixture of the 1s → 4p

state leads to a substantial reduction in the intensity (see Fig. 5.1). Similarly to

the 2 1A1 state in the singly-coordinated clusters, the e�ect is more pronounced in

Mg2+ due to its more compact 3p orbital.

The 1 1B2 state in the doubly-coordinated clusters can serve as an example of

the spatial extension of the excited electron, which results from strong repulsion

when the p orbital of the metal ion points towards the two water molecules. A

similar excited state appears in the 5- and 6-coordinated clusters.

1s→ 4p core excitation

In the doubly-coordinated metal-water clusters the 1s → 4p multiplet splits into

a series of states as in the singly-coordinated clusters, and the energy of these

states decreases further. In the case of Na+, there are 5 states in the energy range

1078.15 � 1078.99 eV, with 40% to 50% 1s→ 4p character. These states also have

a substantial 1s → 3d contribution, between 30% and 40% (see Fig. 5.5). In the

case of Mg2+, the 1s→ 4p excitation splits into 6 states lying between 1314.90 and

1317.38 eV. The �rst two states have more than 60% 1s→ 4p character, whereas

the 1s → 4p contribution decreases to between 20% and 30% for the remaining

states. The splitting of the 1s → 4p multiplet into a series of states is a result

of the hybridisation of the p orbital of the metal ions with virtual orbitals of the

ligands. However, this also makes the identi�cation and further analysis of the

states very di�cult. Already in the doubly-coordinated clusters it becomes clear

that these states cannot be considered as being pure 1s→ 4p excitations (see Figs.

5.5 and 5.6). Therefore, we will not discuss the 1s → 4p core excitation in detail

for the larger clusters.

5.2.4 Mq+(H2O)3−5 clusters

In this section, we will focus on the microsolvated clusters with coordination num-

bers m = 3, 4, 5. The optimised equilibrium structures of the three clusters and

the respective XAS spectra are presented in Fig. 5.1.
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Figure 5.8: SONOs occupied by the excited electron corresponding to the

1s → 3p core excitation in Mg2+(H2O)3 (D3 symmetry). The orbitals are

arranged in increasing energy of the core-excited state (from left to right). They

show 50% of the electron density. The respective SONOs of Na+(H2O)3 are

identical with those of Mg2+(H2O)3 and therefore, not shown.

Mq+(H2O)3

The equilibrium geometries of the triply-coordinated clusters belong to the D3

symmetry point group. Since the M-O bonds lie in a plane, one can expect that

there will be a lower-lying excited state, corresponding to the case when the excited

electron occupies a p orbital of the metal ion, perpendicular to the plane, and

that this state will have the highest oscillator strength. As can be seen from

Figs. 5.1 and 5.8, indeed, this is the case of the lowest excited state, 1 1A2. It

is the �rst bright state in the XAS spectra, located at 1074.07 eV in Na+, and

1306.89 eV in Mg2+. In both cases, it is red shifted compared to the 1s → 3p

excitation of the bare ion, and also compared to the lowest excited states of the

doubly-coordinated clusters. This stabilisation is again the result of the attractive

ion-dipole interaction between the unscreened charge of the metal ion and the

three water molecules. The excited electron density is negligibly distorted and

consequently, the overlap of this state with the 1s → 3p state of the bare ion is

almost 1.0 (see Figs. 5.5 and 5.6).

The higher-lying states, 1 1E, are doubly-degenerate and correspond to the

case when the excited electron occupies a p orbital in the plane of the M-O bonds.

They are located at 1075.03 eV in Na+ and 1309.45 eV in Mg2+, and in both

cases are red shifted compared to the bare ion. On the one hand, the states are

destabilised by the repulsion between the excited electron and the water molecules,

which is con�rmed by the electron density distribution (Fig. 5.8) and by their

overlap with the 1s→ 3p state of the bare ion (∼50% Figs. 5.5 and 5.6). On the
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Figure 5.9: SONOs occupied by the excited electron corresponding to the

1s → 3p core excitation in Mg2+(H2O)4 (C2 symmetry). The two SONOs

corresponding to the doubly-degenerate 1 1E states are identical, therefore, only

one of them is shown. The orbitals are arranged in increasing energy of the

core-excited state (from left to right). They show 50% of the electron density.

The respective SONOs of Na+(H2O)4 are identical with those of Mg2+(H2O)4

and therefore, not shown.

other hand, due to the stabilising ion-dipole interaction, the energy of these states

is lower than the 2 1A1 and 1 1B2 states in the singly- and doubly-coordinated

clusters, respectively.

Mq+(H2O)4

The equilibrium structures of the 4-coordinated metal-water clusters belong to the

S4 point group. The geometry of these clusters already implies that the excited

electron is strongly repelled by the ligands in all three possible orientations of

the p orbital of the metal ion. Therefore, the energy splitting between the �rst

three bright states (1 1E and 1 1B) is very small and they form a single peak at

1074.23 eV and 1308.37 eV in the XAS spectra of Na+ and Mg2+, respectively (see

Fig. 5.1 and Table 5.2). Due to the repulsion between the excited electron and

the water molecules, the electron density is distorted compared to the regular 3p

shape in the bare ions (see Fig. 5.9) and the three states have only ∼50% 1s→ 3p

character (see Figs. 5.5 and 5.6). Moreover, there are large contributions from the

1s → 4p and 1s → 3d states of the bare ion, which determine the low oscillator

strength of the 1 1E and 1 1B states.
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Figure 5.10: SONOs occupied by the excited electron corresponding to the

1s → 3p core excitation in Na+(H2O)5 (C2 symmetry). The orbitals are ar-

ranged in increasing energy of the core-excited state (from left to right). They

show 50% of the electron density.

Mq+(H2O)5

The 5-coordinated metal-water clusters of Na+ and Mg2+ will be discussed sepa-

rately because they have di�erent equilibrium geometries which result in di�erent

XAS spectra.

The equilibrium structure of the 5-coordinated Na+ cluster has C2 symmetry

and represents a square pyramid. The 4 water molecules in the base of the pyramid

form a hydrogen-bonded network [161]. Each of them simultaneously participates

in two hydrogen bonds � with O as a donor and with one of the H-atoms as an

acceptor. Therefore, it is expected that the excited electron occupying the p orbital

of the metal ion on the C2 axis will be strongly repelled by the water molecules.

The corresponding 2 1A state has the highest energy, the lowest oscillator strength

and the smallest overlap with the 1s→ 3p state of the bare ion (∼0.3) (see Table
5.2 and Fig. 5.5). The two lower-lying states, 1 1B and 2 1B, represent the case,

when the excited electron occupies a p orbital perpendicular to the C2 axis. They

have approximately 50% 1s→ 3p character (see Fig. 5.5).

The equilibrium structure of the 5-coordinated Mg2+ cluster has C2v symme-

try. The water molecules o� the C2 axis do not form hydrogen bonds as in the

case of Na+ and two of them form an almost straight angle (see Fig. 5.1).

The excited state, corresponding to the case when the p orbital of the metal

ion is oriented towards these two molecules (Fig. 5.11), 1 1B1, is highest in energy.

Analogously to the 1 1B1 state in the doubly-coordinated clusters, it has the lowest

oscillator strength of the �rst three bright states and only 23% 1s→ 3p character
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Figure 5.11: SONOs occupied by the excited electron corresponding to the

1s → 3p core excitation in Mg2+(H2O)5 (C2v symmetry). The orbitals are

arranged in increasing energy of the core-excited state (from left to right). They

show 50% of the electron density.

(see Table 5.2 and Fig. 5.6). The two lower-lying states, 2 1A1 and 1 1B2, have

higher oscillator strengths and a higher contribution of the 1s → 3p state of the

bare ion (50% and 30%, respectively). Due to the energy splitting of ∼0.8 eV
between the 2 1A1 and 1 1B2 states, two peaks are observed in the XAS spectrum

(see Fig. 5.1).

5.2.5 Mq+(H2O)6 clusters

The XAS spectra of the 6-coordinated clusters of Na+ and Mg2+ are presented

in the uppermost panel of Fig. 5.1. The two clusters will be discussed separately

because of their di�erent equilibrium geometries, which result in di�erent XAS

spectra.

Na+(H2O)6

The �rst peak in the XAS spectrum of Na+(H2O)6 lying between 1073.50 and

1075.20 eV is comprised of the lower-lying 1 1A2 state and a doubly-degenerate

higher-lying state (1 1E) separated by 0.37 eV (see Table 5.2 and Fig. 5.1). The

oscillator strength of the 1 1A2 is approximately 3 times lower than that of the 1s→
3p excitation in the bare ion. This state corresponds to the case when the excited

electron occupies a p orbital of Na+ on the C3 axis (Fig. 5.12). Consequently,

the excited electron experiences weak repulsion from the water ligands and the

electron density distribution retains the 3p orbital shape. This also correlates

with the large overlap of the SONO of the 1 1A2 state with the 1s → 3p state of

the bare ion, 0.57.
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Figure 5.12: SONOs occupied by the excited electron corresponding to the

1s → 3p core excitation in Na+(H2O)6 (D3 symmetry). The orbitals are ar-

ranged in increasing energy of the core-excited state (from left to right). They

show 50% of the electron density.

The doubly-degenerate 1 1E states have only ∼10% of the intensity of the

bare ion. They correspond to the case when the excited electron occupies the

p orbitals, which are perpendicular to the C3 axis of the cluster. Due to the

much stronger repulsion from the water molecules, the electron density is highly

distorted and spatially extended. Consequently, the states have only about 20%

1s→ 3p character and more than 50% 1s→ 4p character (see Figs. 5.12 and 5.5).

In the XAS spectrum shown in Fig. 5.1, there are two higher-lying peaks

between 1075.50 and 1077.00 eV with intensities comparable to the �rst peak.

They originate from states, which have 10 � 20% contribution from the 1s → 3p

state of the bare ion and also from the higher dipole allowed core excitations.

Thus, in the fully coordinated Na+, the distinction between the 1s → 3p and

the higher-lying 1s → np core excitations is not straightforward. The states

become much closer in energy compared to the bare ion, and as a result, they

start interacting. Moreover, due to the delocalised nature of these states, one can

discuss their properties after fully taking into account the solvent and the presence

of counterions.

Mg2+(H2O)6

The equilibrium structure of the fully coordinated Mg2+ belongs to the Th sym-

metry. In this symmetry, the p orbitals of the metal ion are degenerate.

The �rst four peaks in the XAS spectrum (Fig. 5.1), located between 1308.00

and 1313.50 eV, have less than 70% contribution from states of the bare ion and

less than 20% contribution from the 1s→ 3p state (see Fig. 5.6). In this case, the

higher 1s→ 4p and 1s→ 5p excitations become lower in energy and start mixing
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Figure 5.13: SONOs occupied by the excited electron corresponding to the

�rst three bright states in the XAS spectrum of Mg2+(H2O)6 (Th symmetry) at

energies 1308.37 eV, 1310.55 eV and 1311.67 eV (see Fig. 5.1). The orbitals are

arranged in increasing energy of the core-excited state (from left to right). They

show 50% of the electron density.

with the 1s→ 3p state. Consequently, all of these excited states lose their atomic

character and can no longer be considered as pure 1s → 3p, 1s → 4p or 1s → 5p

states.

The SONOs of the states forming the �rst three peaks in the spectrum (lying

between 1308.00 and 1312.50 eV), i.e. the 1 1Tu, 2 1Tu and 3 1Tu states, are shown

in Fig. 5.13. The electron density distribution in the 1 1Tu state resembles that of

the 1 1B2 state of the doubly-coordinated cluster (Fig. 5.7). Since the p orbital of

the metal ion occupied by the excited electron points towards the water molecules,

the excited electron is strongly repelled. Therefore, its natural orbital is distorted

and becomes spatially extended, which can be seen from the non-negligible con-

tributions from higher-lying 1s→ np states to the SONO of this state (Fig. 5.6).

In the 2 1Tu and 3 1Tu states, the p orbital of the metal ion hybridises with virtual

orbitals of the surrounding water molecules as in the 3 1B1 and 4 1B1 states of the

singly-coordinated cluster (see Fig. 5.4). As a result, the total projection of the

SONO of these two states on SONOs of the bare ion is <50%.

Similarly to the fully coordinated Na+ clusters, the higher 1s→ np excitations

become lower in energy and mix with the 1s → 3p state. Moreover, the total

projections of the SONOs occupied by the excited electron on the basis of ionic

states are small, which is a result of the spatial extension of the electron density, on

the one hand, and the hybridisation with virtual orbitals of the water molecules,

on the other. Consequently, in the 6-coordinated ion, it is no longer possible to
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Figure 5.14: Dependence on the coordination number of the relative transition

dipole moment of the �rst three bright states in the XAS spectra of Na+ (circles)

and Mg2+ (squares). The relative transition dipole moment was obtained as the

ratio between the square of the average transition dipole moment, D̄2, of the �rst

three bright states correlating with the 1s → 3p ionic state and the transition

dipole moment of the 1s → 3p core excitation in the bare ion, D0. As can

be seen, the probability of excitation decreases monotonously in both Na+ and

Mg2+.

distinguish between the di�erent 1s→ np excitations.

5.3 Summary and conclusions

In this chapter, we presented and analysed the theoretical X-Ray absorption spec-

tra of microsolvated clusters of the isoelectronic Na+ and Mg2+ at the metal 1s

threshold, in order to investigate the degree of delocalisation of the excited elec-

tron and how the former depends on the charge of the metal ion. In particular,

we focused on the �rst bright states in the spectra deriving from the 1s→ 3p and

1s→ 4p core excitations in the bare ion.

In the Na+ and Mg2+ clusters with coordination numbers m = 1− 3, the �rst

three bright states in the XAS spectra can unambiguously be identi�ed as deriving

from the 1s→ 3pmultiplet of the ion. The energy, intensity and 1s→ 3p character

of these states strongly depend on the orientation of the 3p orbital of the metal ion.

If the excited electron occupies a 3p orbital which is perpendicular to the plane of

the M-O bonds, the state retains its 1s→ 3p character and it is stabilised by the
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attraction between the unscreened metal charge and the water molecule(s). This

state has the lowest energy and the highest oscillator strength in the multiplet.

However, if the 3p orbital occupied by the excited electron is oriented towards

one or more water molecules, the state loses its 1s→ 3p atomic character and its

SONO contains contributions from SONOs of higher-excited states of the bare ion

and also shows that the p orbital of the metal ion hybridises with virtual orbitals

of the water molecules. The state is destabilised due to the repulsion from the

water molecules. The attractive ion-dipole interaction decreases due to screening

of the ionic charge.

In the 4- and 5-coordinated clusters, which have a pyramidal arrangement of

the solvent molecules, in all three orientations of the metal p orbital the excited

electron is surrounded by water molecules. For this reason, all three states cor-

relating with the 1s → 3p excitation are close in energy and they form a single

peak in the XAS spectrum. Due to the repulsion, the three states have no longer

purely 1s → 3p atomic character but rather become a mixture of di�erent states

of the bare ion.

In the 6-coordinated clusters, the �rst three bright states carry only 20% of

the intensity of the 1s → 3p state of the bare ion. In this case, the higher-lying

1s → np states become lower in energy, which results in mixing of the 1s → np

excitations. Consequently, one can no longer distinguish between the di�erent

1s→ np states.

The e�ect of the charge of the metal ion comes forward in the bare ions. First

of all, due to the smaller ionic radius of Mg2+ compared to Na+ [176], the M-O

distance in the �rst solvation shell is smaller in the case of Mg2+. Moreover, the

SONO occupied by the excited electron in the 1s → 3p state is more compact in

the case of Mg2+, compared to Na+. This implies that the repulsion between the

excited electron and the O lone pairs is larger in Mg2+, and for the small clusters

(m = 1 − 3), the core-excitations of Mg2+ are more strongly perturbed by the

presence of the ligands. However, in the larger clusters, we could not distinguish

the e�ect of the ionic charge neither on the XAS spectra nor on the delocalisation

phenomenon.

In conclusion, we observe that both the electrostatic �eld created by the lig-

ands, and the hybridisation of the p orbital of the metal ion with virtual orbitals

of the water molecules result in spatially more extended distribution of the excited
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electron in the cluster compared to the bare ion. Based on this observation alone,

one cannot draw a conclusion whether the delocalisation and subsequent solvation

of the excited electron occur within the lifetime of the core hole. However, one

can expect that the resonant Auger process will proceed di�erently in the solvated

ion due to the di�erence between the core-excited states of the solvated and the

bare ions.

An additional interesting question is whether in a larger cluster the electron

distribution will become even more spatially extended. In order to clarify this,

additional computations including a second and higher solvation shells as well as

counterions are needed.
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Appendix A

Rydberg states of cations

A.1 General formalism

A Rydberg state of an atom or a molecule is an excited state, in which the mean

distance of the excited electron from the positively charged ionic core is so large

that the structure of the ionic core can be neglected and the electron can be

considered as moving in a potential created by a point charge. Therefore, the

motion of the electron is the same as it would be in a hydrogen atom (as implied

by Eq. (A.1.1)). [177] The energy of the Rydberg state, Ene
m , is equal to

Ene
m = IPm −

R

(n− δ)2
(A.1.1)

Here, IPm is the ionization potential towards which the Rydberg series converges

as n goes to in�nity; R is the Rydberg constant (R = 13.61 eV); δ is called the

quantum defect [178], which is de�ned as the deviation of the core charge from an

impenetrable point charge (a detailed explanation of the dependence of δ on the

type of Rydberg orbital for both atoms and molecules is given in Ref. [178]). The

Rydberg series as de�ned in Eq. (A.1.1) is valid for su�ciently high excitations

(with a large value of the principal quantum number n).

Due to the spatially extended nature of Rydberg orbitals compared to valence

orbitals, the theoretical description of Rydberg states requires basis sets including

di�use functions (such basis sets provide a correct description only of the lowest

members of a Rydberg series) or speci�cally designed basis sets (such as those of

the Kaufmann-Baumeister-Jungen-type [147]). Consequently, if one is interested

in higher-lying Rydberg states, one needs to use large augmented basis sets, on

the one hand, and compute multiple roots of the electronic Hamiltonian, on the

other hand. In addition to the need of using iterative diagonalisation techniques

for huge matrices (e.g. in the case of ArHe dimer, the size of the CISD(T) matrix

is ∼5·106 for a basis set containing 100 basis functions [179]), the convergence

113
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to the desired roots of the electronic Hamiltonian is also problematic. And yet

if the diagonalisation step is feasible, the high density of states in the energy

range of interest can turn out to be a stumbling block in the identi�cation of

the desired Rydberg states. Therefore, within the standard quantum-chemical

methods, the computation of high-lying Rydberg states even in small systems,

such as diatomics, becomes a very di�cult task. This calls for the development of

alternative methods, speci�cally designed for this purpose.

In the following we present a method, which utilises the above mentioned

properties of the Rydberg states to construct an approximate wave function de-

scribing the Rydberg satellites of cations [77]. The wave function of a Rydberg

satellite, e.g. |ΨN−1
em 〉, is written as an anti-symmetrised product of two wave func-

tions describing the ionic fragment (dication in this case) |ΨN−2
m 〉 and the excited

electron |φe〉 represented by the creation operator c†e

|ΨN−1
em 〉 = c†e|ΨN−2

m 〉 (A.1.2)

Each of the two wave functions |φe〉 and |ΨN−2
m 〉 can be constructed as a normalised

linear combination of properly chosen states. The wave function of the Rydberg

electron is represented as a linear combination of virtual Hartree-Fock orbitals of

the N -particle system

|φe〉 =
∑
a

fa|φa〉 (A.1.3)

where the coe�cients fa (strictly speaking, they should be denoted as fea) in the

linear expansion are variational parameters. Similarly, the wave function of the

dicationic core is represented as a linear combination of dicationic states generated,

for example, using the ADC method

|ΨN−2
m 〉 =

∑
I

amI |Ψ̃N−2
I 〉 (A.1.4)

where {|Ψ̃N−2
I 〉} are a set of ADC states corresponding to the particular dicationic

con�guration, and amI are variational parameters, determining the weight of a

particular ADC state |Ψ̃N−2
I 〉 in |ΨN−2

m 〉. The two wave functions corresponding

to the molecular ion |ΨN−2
m 〉 and the excited electron |φe〉 are constrained to be

orthogonal

ce|ΨN−2
m 〉 = 0 (A.1.5)

Using the trial wave function Eq. (A.1.2) and the corresponding expansions

Eqs. (A.1.3) and (A.1.4), the expectation value of the Hamiltonian with respect
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to the trial function |ΨN−1
em 〉 can be constructed. The usual partitioning of the

Hamiltonian into a one-electron Ĥ0 + Ŵ and a two-electron V̂ part is used

Ĥ = Ĥ0 + Ŵ + V̂ (A.1.6)

=
∑
p

εpc
†
pcp +

∑
pq

wpqc
†
pcq +

1

2

∑
pqrs

Vpqrsc
†
pc
†
qcscr (A.1.7)

where εp denote the Hartree-Fock one-electron energies, Vpqrs denote the two-

electron integrals in the basis of Hartree-Fock orbitals. The quantities wpq, consti-

tuting the non-diagonal one-electron part, are expressed in terms of two-electron

integrals

wpq = −
∑
r

Vpr[qr]nr

where nr is the occupation number of the r-th orbital. Using the above notations,

the matrix elements of the one-electron part Ĥ0 + Ŵ with respect to the Hartree-

Fock one-particle states can be re-written as

hpq = εpδpq −
∑
r

Vpr[qr]nr (A.1.8)

The wave function Eq. (A.1.2) in a second-quantised form reads

|ΨN−1
em 〉 = c†e|ΨN−2

m 〉 = c†e
∑
I

amI |Ψ̃N−2
I 〉 (A.1.9)

For further use let us evaluate the commutator of ce and the Hamiltonian Ĥ

[ce, Ĥ] =
∑
p

heqcq +
1

2

∑
qrs

Veq[rs]c
†
qcscr (A.1.10)

Finally, using the form of the wave function (A.1.9), the expectation value of the

Hamiltonian can be written as

E[ΨN−1
em ] = 〈ΨN−1

em |Ĥ|ΨN−1
em 〉

= 〈ΨN−2
m |ceĤc†e|ΨN−2

m 〉
(A.1.11)

Using the commutation relation Eq. (A.1.10) in Eq. (A.1.11), one obtains the

following expression

E[ΨN−1
em ] = 〈ΨN−2

m |Ĥ|ΨN−2
m 〉+

∑
j

heq〈ΨN−2
m |cqc†e|ΨN−2

m 〉

+1
2

∑
qrs

Veq[rs]〈ΨN−2
m |c†qcscrc†e|ΨN−2

m 〉
(A.1.12)
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Using the anticommutation relations for the creation and annihilation operators,

the expansion (A.1.3) and the orthogonality condition Eq. (A.1.5), one arrives at

the expression

E[ΨN−1
em ] = 〈ΨN−2

m |Ĥ|ΨN−2
m 〉+ hee +

∑
qs

Veq[es]〈ΨN−2
m |c†qcs|ΨN−2

m 〉 (A.1.13)

which can be considered as a sum of the energy of the dicationic core, the energy

of the excited electron and the energy of their interaction. The next step is to

minimise the energy of the Rydberg state Eq. (A.1.13) by varying the expansion

coe�cients {amI} and {fa} simultaneously until self-consistency is reached. For

this purpose, a Lagrangian is constructed employing the conditions of normalisa-

tion of |φe〉 and |ΨN−2
m 〉

L = 〈ΨN−1
me |Ĥ|ΨN−1

me 〉+ λ(1− 〈φe|φe〉) + µ(1− 〈ΨN−2
m |ΨN−2

m 〉) (A.1.14)

The Lagrangian is minimised with respect to the two sets of coe�cients

∂L
∂f

= 0 (A.1.15)

∂L
∂a

= 0 (A.1.16)

resulting in the following sets of equations

∑
b

fb

(
hab +

∑
pq

Vap[bq]〈ΨN−2
m |c†pcq|ΨN−2

m 〉+ δab〈ΨN−2
m |Ĥ|ΨN−2

m 〉

)
− λ

∑
b

fbδab = 0 (A.1.17)

∑
J

amJ

(
heeδIJ +

∑
pq

Vep[eq]〈Ψ̃N−2
I |c†pcq|Ψ̃N−2

J 〉+ 〈Ψ̃N−2
I |Ĥ|Ψ̃N−2

J 〉

)
− µ

∑
J

amJδIJ = 0 (A.1.18)

which are interdependent and therefore, have to be solved iteratively. The proce-

dure is similar to the SCF procedure. It requires an initial guess of the expansion

coe�cients. The selection of these coe�cients is based on knowledge about the

character of the Rydberg state. The optimal expansion coe�cients are determined

by solving Eqs. (A.1.17) and (A.1.18) iteratively. The physical picture behind Eqs.

(A.1.17) and (A.1.18) is that the electron polarises the dicationic core. As a result
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of this interaction, con�guration mixing can be observed in the dication. This

means that the latter is no longer represented by a single con�guration, but is

rather a mixture of several dicationic con�gurations. The new cationic state then

acts as a modi�ed potential for the Rydberg electron which is accounted for by

Eq. (A.1.17). The strength of the con�guration mixing is sensitive to the nature

of the excited electron [179].

The iterative procedure requires a reformulation of Eqs. (A.1.17) and (A.1.18)

in terms of quantities, which can be obtained from a preceding ADC calculation.

Let us consider the quantities∑
pq

Vap[bq]〈Ψ̃N−2
I |c†pcq|Ψ̃N−2

J 〉 (A.1.19)

They can be regarded as a representation of the one-particle operator

V̂ ab =
∑
pq

Vap[bq]c
†
pcq (A.1.20)

in the basis of ADC states. These matrix elements can easily be obtained within

the ADC/ISR approach by considering

V̂ ab =
∑
pq

V ab
pq c
†
pcq

as a one-particle operator with matrix elements (V ab)pq = Vap[bq] in the basis of one-

particle HF states. Inspecting the remaining terms in Eqs. (A.1.17) and (A.1.18),

one notices that the elements 〈Ψ̃N−2
I |Ĥ|Ψ̃N−2

J 〉 are merely the ADC matrix ele-

ments (H)IJ , and 〈ΨN−2
m |Ĥ|ΨN−2

m 〉 can easily be obtained from them.

Using the notations introduced in the previous paragraph, one can re-write

Eq. (A.1.17) as

∑
b

[
hab +

∑
IJ

a∗mIamJ

(
〈Ψ̃N−2

I |V̂ ab|Ψ̃N−2
J 〉+ δab〈Ψ̃N−2

I |Ĥ|Ψ̃N−2
J 〉

)
− λδab

]
fb = 0

(A.1.21)

or in matrix form

(h + Ṽm + Em1− λ1)f = 0 (A.1.22)

The matrix elements of h can be evaluated according to Eq. (A.1.8). This is

the representation of the one-electron part of the Hamiltonian in the set of virtual

Hartree-Fock orbitals chosen for the expansion of the wave function of the Rydberg
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electron. The matrix element (Ṽm)ab is obtained as the expectation value of the

operator V̂ ab with respect to the wave function of the dicationic core

(Ṽm)ab = 〈ΨN−2
m |V̂ ab|ΨN−2

m 〉 (A.1.23)

as explained above. The third term in Eq. (A.1.22), Em, is the expectation value

of the Hamiltonian with respect to the wave function of the dicationic core

Em = a†mHam = 〈ΨN−2
m |Ĥ|ΨN−2

m 〉

The second set of equations (A.1.18) for the coe�cients {amJ} can be refor-

mulated as follows:∑
J

amJ

(
heeδIJ +

∑
ab

f ∗afb
∑
pq

Vap[bq]〈Ψ̃N−2
I |c†pcq|Ψ̃N−2

J 〉

+〈Ψ̃N−2
I |Ĥ|Ψ̃N−2

J 〉
)
− µ

∑
J

amJδIJ = 0

(A.1.24)

or in matrix form

(H + Ṽe + hee1− µ1)a = 0 (A.1.25)

Here Ṽe is a matrix, whose elements are obtained from the matrix representation

of V̂ ee in the basis of dicationic ADC states

(Ṽe)IJ = 〈Ψ̃N−2
I |V̂ ee|Ψ̃N−2

J 〉 (A.1.26)

The operator V̂ ee, on its turn, is obtained from the operator V̂ ab as follows

V̂ ee =
∑
ab

f ∗afbV̂
ab

The quantity hee in Eq. (A.1.25) is the expectation value of the one-electron part

of the Hamiltonian with respect to the wave function of the Rydberg electron

hee = 〈φe|ĥ|φe〉

It is the energy of the Rydberg electron.

Note: An important note should be made on the di�erence between the ma-

trices Ṽm and Ṽe. Both of them are obtained from the quantities in Eq. (A.1.19).

In the �rst case, the size of the matrix Ṽm is equal to the number of one-particle

states, constituting the vector |φe〉. Each element of Ṽm represents the expecta-

tion value of the operator V̂ ab with respect to |ΨN−2
m 〉 (see Eq. (A.1.23)). In the
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second case, the size of the matrix is equal to the number of ADC states used in

the expansion of |ΨN−2
m 〉. The matrix is the representation of the operator V̂ ee in

the basis of ADC states {|Ψ̃N−2
I 〉} used in the expansion of |ΨN−2

m 〉.

Finally, Eqs. (A.1.22) and (A.1.25) are solved iteratively in order to determine

the two sets of coe�cients {fa} and {amJ} which minimise the energy functional

(A.1.11). The energy of the Rydberg state of interest is then obtained from Eq.

(A.1.11) using the optimal expansion coe�cients.

A.2 Spin-adapted con�gurations

In order to construct spin-adapted linear con�gurations for the wave function

of the Rydberg state |ΨN−1
em 〉, it is useful to adopt the spin-adapted dicationic

con�gurations in the current ADC(2) implementation [68]. The explicit formulas

for these functions can be found in Ref. [180]. The dicationic ADC states |Ψ̃N−2
I 〉

can be of spin S = 0 (singlet) or S = 1 (triplet), resulting in a total wave function

of the Rydberg state of doublet (D) or quartet (Q) multiplicity (see Table A.1).

Table A.1: Possible multiplicities of the wave function of the Rydberg state.

S (|Ψ̃N−2
I 〉) S(|ΨN−1

em 〉)
0 1

2
(D)

1 1
2
(D), 3

2
(Q)

The con�guration space of the ADC/ISR(2) scheme comprises all possible 2h

and 3h-1p con�gurations. Thus, formulas for the spin-adapted linear con�gura-

tions for the Rydberg state distinguish the cases of 2h and 3h-1p states. In the

following, the Greek letters σ, ρ, . . . denote the magnetic spin quantum number,

particularly, α(β) refer to ms = 1
2
(−1

2
). For notational brevity, a bar over an

orbital index is used to distinguish spin β from spin α.

1. 2h dicationic con�gurations |iσ jρ〉

The resulting Rydberg states have a 2h-1p con�guration |eκ, iσ jρ〉. Here,

one can distinguish two cases � when the 2h con�guration consists of di�erent

or identical spatial orbitals.

a) i < j
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If the two holes are on di�erent spatial Hartree-Fock orbitals, the re-

sulting Rydberg state can be either a doublet or a quartet. There are

eight possible spin con�gurations, out of which one can construct two

doublet and one quartet spin eigenfunctions. The resulting linear com-

binations are presented in Table A.2 according to their magnetic spin

quantum number.

Table A.2: Spin-adapted linear combinations for doublet (D) and quartet (Q)

spin-con�guration, originating from a 2h dicationic state. Only the con�gura-

tions with magnetic spin quantum numberMS = 1/2 are shown. The remaining

spin functions can be obtained simply by exchanging the α and β spins.

i = j i 6= j

D D Q

|e, īi〉
1√
2
(|e, īj〉 − |e, ij̄〉)

1√
3
(|e, īj〉+ |e, ij̄〉+ |ē, īj̄〉)

1√
6
(|e, īj〉+ |e, ij̄〉 − 2|ē, īj̄〉)

Using the notations in Ref. [180], one can re-write the spin eigenfunc-

tions as follows (only those with MS = 1
2
are presented for simplicity)

|D(1)
eij 〉 = |e〉|Sij〉 (A.2.1)

|D(2)
eij 〉 =

1√
3

(|e〉|Tij〉 −
√

2|ē〉|̄ij̄〉) (A.2.2)

|Qeij〉 =
1√
3

(
√

2|e〉|Tij〉+ |ē〉|̄ij̄〉) (A.2.3)

b) i = j

If the two holes are on the same spatial Hartree-Fock orbital, the only

possible value of the spin of the resulting Rydberg state is the doublet

(see Table A.2). Using the notations in Ref. [180], the doublet spin

eigenfunction can be re-written as follows

|Deii〉 = |e〉|Sii〉 (A.2.4)

2. 3h-1p dicationic con�gurations |aγ iδ jσ kρ〉

The resulting Rydberg states are of 3h-2p character |eκ, aγ iδ jσ kρ〉. The

spin-orbital indices of a 3h-1p con�guration satisfy the condition given in

Appendix B.2. Therefore, for the respective spatial orbital indices there are

three possibilities: i < j < k, i < j = k, and i = j < k.
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a) i < j < k

Out of all possible con�gurations of the kind |eκ, aγ iδ jσ kρ〉 one can
construct �ve doublet (S = 1/2), four quartet (S = 3/2) and one

sextet (S = 5/2) spin eigenfunctions. The sextet function is not con-

sidered since the multiplicity of the Rydberg states can be only doublet

or quartet (see Table A.1). The remaining doublet and quartet spin

eigenfunctions are presented in Table A.3.

Table A.3: The four quartet and �ve doublet spin-adapted linear combinations

originating from a 3h-1p dicationic state. Only the con�gurations with magnetic

spin quantum numbers MS = 1/2 and MS = 3/2 are presented. The remaining

spin functions can be obtained simply by exchanging the α and β spins.

S Norm |ē, ā̄ij̄k̄〉 |ē, aij̄k̄〉 |ē, āijk̄〉 |ē, aīj̄k〉 |e, āij̄k̄〉 |e, ā̄ijk̄〉 |e, ā̄ij̄k〉 |e, aij̄k〉 |e, aijk̄〉 |e, āijk〉

3/2 1√
6

1 0 0 −1 1 1 0 −1 0 −1

3/2 1√
6

0 1 −1 0 1 −1 0 1 0 −1

3/2 1
2
√
3

1 −1 −1 1 0 0 2 0 −2 0

3/2 1
2
√
15

3 3 3 3 −2 −2 −2 −2 −2 −2

1/2 1
2 0 0 0 0 0 1 −1 1 −1 0

1/2 1
2
√
3

2 −2 0 0 0 −1 −1 1 1 0

1/2 1√
6

1 1 −1 −1 −1 0 0 0 0 1

1/2 1
2
√
3

0 0 2 −2 0 −1 1 1 −1 0

1/2 1
2
√
3

0 0 0 0 2 −1 −1 −1 −1 2

Using the notations in Ref. [180], the spin eigenfunctions from Table

A.3 can be re-written as

|Q(1)
eaijk〉 =

1√
6

(
|ē〉|ā̄ij̄k̄〉 − |ē〉|āij̄k〉 −

√
2|e〉|I−3,aijk〉 −

√
2|e〉|I−2,aijk〉

)
(A.2.5)

|Q(2)
eaijk〉 =

1√
6

(
|ē〉|aij̄k̄〉 − |ē〉|āijk̄〉 −

√
2|e〉|I−3,aijk〉+

√
2|e〉|I−2,aijk〉

)
(A.2.6)

|Q(3)
eaijk〉 =

1

2
√

3

(
|ē〉|ā̄ij̄k̄〉 − |ē〉|aij̄k̄〉 − |ē〉|āijk̄〉+ |ē〉|āij̄k〉

− 2
√

2|e〉|I−1,aijk〉
)

(A.2.7)

|Q(4)
eaijk〉 =

1

2
√

15

(
3|ē〉|ā̄ij̄k̄〉+ 3|ē〉|aij̄k̄〉+ 3|ē〉|āijk̄〉+ 3|ē〉|āij̄k〉

− 2
√

2|e〉|T (1)
aijk〉 − 2

√
2|e〉|T (2)

aijk〉 − 2
√

2|e〉|T (3)
aijk〉

)
(A.2.8)
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|D(1)
eaijk〉 =

1√
2

(
|e〉|T (2)

aijk〉 − |e〉|T
(1)
aijk〉

)
(A.2.9)

|D(2)
eaijk〉 =

1√
6

(√
2|ē〉|ā̄ij̄k̄〉 −

√
2|ē〉|aij̄k̄〉+ |e〉|I−1,aijk〉+ |e〉|I−2,aijk〉

)
(A.2.10)

|D(3)
eaijk〉 =

1√
6

(
|ē〉|ā̄ij̄k̄〉+ |ē〉|aij̄k̄〉 − |ē〉|āijk̄〉 − |ē〉|āij̄k〉

+
√

2|e〉|I−3,aijk〉
)

(A.2.11)

|D(4)
eaijk〉 =

1√
6

(√
2|ē〉|āijk̄〉 −

√
2|ē〉|āij̄k〉 − |e〉|I−1,aijk〉+ |e〉|I−2,aijk〉

)
(A.2.12)

|D(5)
eaijk〉 =

1√
6

(
2|e〉|T (3)

aijk〉 − |e〉|T
(1)
aijk〉 − |e〉|T

(2)
aijk〉

)
(A.2.13)

b) i < j = k

Out of all possible con�gurations of the kind |eκ, aγ iδ jσ jρ〉 one can
construct two doublet (S = 1/2) and one quartet (S = 3/2) spin eigen-

functions. They are presented in Table A.4.

Table A.4: The quartet and the two doublet spin-adapted linear combinations

originating from a 3h-1p dicationic state with magnetic spin quantum number

MS = 1/2. The remaining spin functions can be obtained simply by exchanging

the α and β spins.

S Norm |ē, āijj̄〉 |e, ā̄ijj̄〉 |e, aijj̄〉
3/2 1√

3
1 1 1

1/2 1√
2

0 1 −1

1/2 1√
6

2 −1 −1

Using the notations in Ref. [180], one can re-write the spin eigenfunc-

tions as

|Qeaijj〉 =
1√
3

(
|ē〉|āijj̄〉+

√
2|e〉|Saijj〉

)
(A.2.14)

|D(1)
eaijj〉 = |e〉|Taijj〉 (A.2.15)

|D(2)
eaijj〉 =

1√
3

(√
2|ē〉|āijj̄〉 − |e〉|Saijj〉

)
(A.2.16)

c) i = j < k

Out of all possible con�gurations of the kind |eκ, aγ iδ iσ jρ〉 one can
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Table A.5: The quartet and the two doublet spin-adapted linear combinations

originating from a 3h-1p dicationic state with magnetic spin quantum number

MS = 1/2. The remaining spin functions can be obtained simply by exchanging

the α and β spins.

S Norm |ē, āiij̄〉 |e, ā̄iij̄〉 |e, āiij〉
3/2 1√

3
1 1 1

1/2 1√
2

0 1 −1

1/2 1√
6

2 −1 −1

construct two doublet (S = 1/2) and one quartet (S = 3/2) spin eigen-

functions. They are presented in Table A.5.

Using the notations in Ref. [180], one can re-write the spin eigenfunc-

tions as

|Qeaiij〉 =
1√
3

(
|ē〉|āiij̄〉+

√
2|e〉|Saiij〉

)
(A.2.17)

|D(1)
eaiij〉 = |e〉|Taiij〉 (A.2.18)

|D(2)
eaiij〉 =

1√
3

(√
2|ē〉|āiij̄〉 − |e〉|Saiij〉

)
(A.2.19)

d) A special case has to be considered in a future implementation of the

spin-free equations. If a virtual orbital in the expansion of the wave

function of the Rydberg electron coincides with the particle orbital in

the 3h-1p con�guration, the con�guration will vanish if the two parti-

cles have the same spin. This is also accounted for in the constraint

for orthogonality of the wave functions of the dicationic core and the

Rydberg electron Eq. (A.1.5). One can again consider three cases:

i. i < j < k, con�guration |a, aijk〉. In this case, the possible spin

eigenfunctions are a quartet and two doublets. They are listed in

Table A.6, where only the con�gurations for magnetic spin number

MS = 1/2 are presented.

|Qaaijk〉 =
1√
3

(
|a〉|āij̄k̄〉+ |a〉|ā̄ij̄k〉+ |a〉|ā̄ijk̄〉

)
(A.2.20)

|D(1)
aaijk〉 =

1√
2

(
|a〉|ā̄ij̄k〉 − |a〉|ā̄ijk̄〉

)
(A.2.21)

|D(2)
aaijk〉 =

1√
6

(
2|a〉|āij̄k̄〉 − |a〉|ā̄ij̄k〉 − |a〉|ā̄ijk̄〉

)
(A.2.22)
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Table A.6: The quartet and the two doublet spin-adapted linear combinations

originating from a |a, aijk〉 con�guration with magnetic spin quantum number

MS = 1/2.

S Norm |a, āij̄k̄〉 |a, ā̄ijk̄〉 |a, ā̄ij̄k〉
3/2 1√

3
1 1 1

1/2 1√
2

0 1 −1

1/2 1√
6

2 −1 −1

ii. i < j = k (or i = j < k), con�guration |a, aijj〉 (|a, aiij〉). The

only possibility in this case is a doublet spin eigenfunction

|Daaijj〉 = |a〉|ā̄ijj̄〉

|Daaiij〉 = |a〉|ā̄iij̄〉
(A.2.23)

where |Daaijj〉 (|Daaiij〉) corresponds to magnetic spin quantum

number MS = 1/2.
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ADC(2)/ISR method for properties of
dicationic states

B.1 Derivation of the ISR(2) equations

In the following the derivation of the second-order representation of a general

one-particle operator in terms of (N − 2)-electron intermediate states is brie�y

sketched. The structure of the ISR matrix of the one-particle operator is shown

in Fig. B.1.

The ISR expansions are based on the perturbation theoretical (PT) expansion

of the N -electron ground state, and therefore it is helpful to recall the latter. In

intermediate normalisation, the N -electron ground state can be expanded through

second order according to

|Ψ′0〉 = |Φ0〉+ |Ψ(1)
0 〉+ |Ψ(2)

0 〉+O(3) (B.1.1)

The �rst-order term,

|Ψ(1)
0 〉 =

1

4

∑
abkl

wabklc
†
ac
†
bckcl|Φ0〉 (B.1.2)

D̃11(0− 2) D̃12(0− 1)

h.c. D̃22(0)

Figure B.1: Block structure of the second-order ISR/ADC(2) matrix D̃ for

a single-particle operator D̂. The numbers in brackets represent the orders of

perturbation theory in the respective perturbation theoretical expansions.
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simply re�ects the admixture of double excitations. The second-order term is

already rather involved, comprising contributions associated with single, double,

triple, and quadruple excitations

|Ψ(2)
0 〉 = |Ψ(2)

ph 〉+ |Ψ(2)
2p−2h〉+ |Ψ(2)

3p−3h〉+ |Ψ(2)
4p−4h〉 (B.1.3)

Fortunately, in the derivation of the ISR(2) expressions only the second-order

term associated with the p-h excitations will come into play. To proceed to the

normalised N -electron ground state, |Ψ0〉 = N0|Ψ′0〉, the normalisation constant,

N0 = 〈Ψ′0|Ψ′0〉−
1
2 , needs to be expanded through second order

N0 = 1− 1

8

∑
abkl

|wabkl|2 +O(3) (B.1.4)

As a result, the second-order expansion of the normalised ground state is given by

|Ψ0(2)〉 = (1 +X
(2)
0 )|Φ0〉+ |Ψ(1)

0 〉+ |Ψ(2)〉 (B.1.5)

where

X
(2)
0 = −1

8

∑
abkl

|wabkl|2 (B.1.6)

As already mentioned, only the p-h contribution to the second-order wave function,

|Ψ(2)
ph 〉 =

∑
ak

X
(2)
ak c

†
ack|Φ0〉. (B.1.7)

is needed in the ISR(2) derivation. Here, X(2)
ak denote the second-order expansion

coe�cients of the p-h admixtures to the ground state,

X
(2)
ak = 〈Φ0|c†kca|Ψ

(2)
0 〉 (B.1.8)

Note that the X(2)
ak coe�cients through second order can be identi�ed with the p-h

components of the one-particle density matrix,

ρak = 〈Ψ0|c†kca|Ψ0〉 = X
(2)
ak +O(3) (B.1.9)

The intermediate 2h-states, forming the lowest excitation class, are simply ob-

tained by symmetrical orthonormalisation of the precursor states, |Ψ#
kl〉 = ckcl|Ψ0〉,

|Ψ̃ij〉 =
∑
kl

(S−
1
2 )kl,ijckcl|Ψ0〉 (B.1.10)

where

Sij,kl = 〈Ψ0|c†jc
†
ickcl|Ψ0〉 (B.1.11)
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is the overlap matrix of the precursor states. The low-order perturbation expansion

of S is of the simple form

S = 1 + S(2) +O(3) (B.1.12)

lacking a �rst-order contribution. More speci�cally, the expansion through second

order can be written as

Sij,kl = δikδjl(1 + 2X
(2)
0 ) + 〈Ψ(1)

0 |c
†
jc
†
ickcl|Ψ

(1)
0 〉+O(3) (B.1.13)

which shows that there are two distinct second-order contributions associated

with the normalisation of the ground state and the �rst-order double-excitation

admixtures.

Now the PT expansion through second order for the property matrix elements

in the 2h diagonal block can be formulated,

D̃ij,i′j′ = 〈Ψ̃ij|D̂|Ψ̃i′j′〉 =
∑
kl,k′l′

(S−
1
2 )ij,kl〈Ψ0|c†l c

†
kD̂ck′cl′|Ψ0〉(S−

1
2 )k′l′,i′j′ (B.1.14)

In zeroth order, the intermediate 2h-states are simply given by the CI con�gura-

tions, |Φij〉 = cicj|Φ0〉, and the zeroth-order ISR matrix elements can be evaluated

according to

D̃
(0)
ij,i′j′ = 〈Φij|D̂|Φi′j′〉 (B.1.15)

As is easily established, the �rst-order contributions vanish. In second order, the

ISR matrix elements consist of three distinct terms,

D̃
(2)
ij,i′j′ =

∑
kl

(S−
1
2 )

(2)
ij,kl〈Φkl|D̂|Φi′j′〉+

∑
k′l′

〈Φij|D̂|Φk′l′〉(S−
1
2 )

(2)
k′l′,i′j′

+ 〈Φij|D̂ci′cj′ |Ψ(2)
ph 〉+ h.c.

+ 〈Ψ(1)
0 |c

†
jc
†
iD̂ci′cj′|Ψ

(1)
0 〉 (B.1.16)

associated with the orthonormalisation (�rst line on the right-hand side), the p-h

admixtures in the ground state (second line), and the (�rst-order) 2p-2h admix-

tures in the ground state (third line), respectively. The evaluation of the �rst two

contributions is rather straightforward, using here Eqs. (B.1.13, B.1.7, B.1.9). The

evaluation of the term in the third line of Eq. (B.1.16) is more demanding. Here

it is advisable to make use of the commutator relations[
c†jc
†
i , D̂

]
=
∑
p

dpic
†
pc
†
j −

∑
p

dpjc
†
pc
†
i .
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[
D̂, ci′cj′

]
=
∑
q

di′qcj′cq −
∑
q

dj′qci′cq (B.1.17)

and move the D̂ operator either to the left or to the right-hand side of the c

operators. To maintain an explicitly hermitian form, this reformulation can be

arranged according to

〈Ψ(1)
0 |c

†
jc
†
iD̂ci′cj′ |Ψ

(1)
0 〉 = 1

2
〈Ψ(1)

0 |D̂c
†
jc
†
ici′cj′ |Ψ

(1)
0 〉+ h.c.

+ 1
2
〈Ψ(1)

0 |[c
†
jc
†
i , D̂]ci′cj′ |Ψ(1)

0 〉+ h.c. (B.1.18)

Note that the h.c. contributions arise from moving D̂ to the right-hand side. In-

serting the explicit commutator expressions according to Eqs. (B.1.17) yields

〈Ψ(1)
0 |c

†
jc
†
iD̂ci′cj′|Ψ

(1)
0 〉 =− 1

2

∑
r

dri〈Ψ(1)
0 |c

†
jc
†
rci′cj′ |Ψ

(1)
0 〉

− 1
2

∑
r

drj〈Ψ(1)
0 |c†rc

†
ici′cj′|Ψ

(1)
0 〉+ h.c. (B.1.19)

+ 1
2
〈Ψ(1)

0 |D̂c
†
jc
†
ici′cj′|Ψ

(1)
0 〉+ h.c.

The terms in the �rst line on the right-hand side can be seen to cancel the

corresponding contributions arising from the �rst line on the right-hand side of

Eq. (B.1.16). To evaluate the matrix elements in the second line of Eq. (B.1.19),

one may move the creation operators to the left side of the operator product,

c†jc
†
ici′cj′ = δii′δjj′ − δii′cj′c†j + δij′ci′c

†
j + δji′cj′c

†
i − δjj′ci′c

†
i + ci′cj′c

†
jc
†
i (B.1.20)

The emerging terms can now be applied separately to the �rst-order double-

excitation admixtures (B.1.2) in the N -electron ground state, yielding expressions

of the type

cj′c
†
j|Ψ

(1)
0 〉 =

∑
a<b,k 6=j,j′

wabkjc
†
ac
†
bckcj′|Φ0〉 (B.1.21)

that is, again sums over double excitations. Thus, the matrix elements 〈Ψ(1)
0 |D̂c

†
jc
†
i

ci′cj′|Ψ(1)
0 〉 can be evaluated as matrix elements of a one-particle operator taken

with respect to doubly-excited HF con�gurations. This gives rise to the 15 distinct

contributions (B.2.9 � B.2.23).

The ISR matrix elements of the 2h/3h-1p coupling block are needed through

�rst order. The zeroth-order contributions

D̃
(0)
ij,a′i′j′k′ = 〈Φij|D̂|Φa′i′j′k′〉 (B.1.22)
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can readily be evaluated. The �rst-order expressions are simply given by

D̃
(1)
ij,a′i′j′k′ = 〈Ψ(1)

0 |c
†
jc
†
iD̂|Φa′i′j′k′〉 (B.1.23)

since there is no contribution associated with |Ψ̃(1)
ij 〉 = cicj|Ψ(1)

0 〉. Finally, the

3h-1p diagonal block is needed only in zeroth order

D̃aijk,a′i′j′k′ = 〈Φaijk|D̂|Φa′i′j′k′〉 (B.1.24)

The explicit expressions are listed in B.2.

B.2 Dicationic ISR(2) expressions for one-particle

operators

In the following the (N − 2)-electron ISR of a general one-particle operator is

given explicitly through second-order of perturbation theory (ISR(2)). The matrix

elements

D̃IJ = 〈Ψ̃N−2
I |D̂|Ψ̃N−2

J 〉, I, J ∈ {2h, 3h-1p} (B.2.1)

need to be expanded through 2nd, 1st, and zeroth order (in the residual electron

repulsion), depending on the respective matrix sub-blocks; the con�guration space

at the ISR(2) level is spanned by the 2h-con�gurations, I ≡ ij, i < j, and 3h-1p

con�gurations, I ≡ (aijk, i < j < k. (As usual, a, b, c, . . . and i, j, k, . . . denote

unoccupied (virtual) and occupied spin-orbitals, respectively, referring to the N -

electron ground state.) A general one-particle operator can be written in the

form

D̂ =
∑

dpqc
†
pcq (B.2.2)

where dpq = 〈p|d̂|q〉 denote one-particle integrals of the respective operator.

For brevity we will use the notation

wabkl =
Vab[kl]

εa + εb − εk − εl
(B.2.3)

where Vpq[rs] = Vpqrs − Vpqsr denote anti-symmetrised Coulomb integrals, and εp

are HF orbital energies. The N -electron ground-state expectation value,

D0 = 〈Ψ0|D̂|Ψ0〉 (B.2.4)
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enters the following expressions in its 2nd-order PT expansion,

D0(2) = D
(0)
0 +D

(2)
0 (B.2.5)

where the zeroth-order term is obtained according to

D
(0)
0 = 〈Φ0|D̂|Φ0〉 =

∑
dkk (B.2.6)

Note that the �rst-order contribution vanishes, D(1)
0 = 0. Finally, ρ(2)

ak denote the

second-order contributions to the one-particle density matrix elements,

ρak = 〈Ψ0|c†kca|Ψ0〉 (B.2.7)

2h diagonal block:

Here the expansions extend through 2nd order; the �rst-order contributions vanish.

D̃ij,i′j′ = δii′δjj′D0(2)− δii′dj′j − δjj′di′i + δij′di′j + δji′dj′i(
−δii′

∑
a

ρ
(2)
aj dj′a − δjj′

∑
a

ρ
(2)
ai di′a + δij′

∑
a

ρ
(2)
aj di′a + δji′

∑
a

ρ
(2)
ai dj′a

)

+ h.c.+
15∑
µ=1

D
(2,µ)
ij,i′j′ (B.2.8)

where

D
(2,1)
ij,i′j′ = −δii′ 1

2

∑
a,b,a′,k

w∗a′bkj′wabkjda′a + h.c. (B.2.9)

D
(2,2)
ij,i′j′ = δii′

1
4

∑
a,b,k,k′

w∗abkk′wabkjdj′k′ + h.c. (B.2.10)

D
(2,3)
ij,i′j′ = δii′

1
4

∑
a,b,k,k′

w∗abk′j′wabkjdkk′ + h.c. (B.2.11)

D
(2,4)
ij,i′j′ = −δjj′ 1

2

∑
a,b,a′,k

w∗a′bki′wabkida′a + h.c. (B.2.12)

D
(2,5)
ij,i′j′ = δjj′

1
4

∑
a,b,k,k′

w∗abkk′wabkidi′k′ + h.c. (B.2.13)

D
(2,6)
ij,i′j′ = δjj′

1
4

∑
a,b,k,k′

w∗abk′i′wabkidkk′ + h.c. (B.2.14)

D
(2,7)
ij,i′j′ = δij′

1
2

∑
a,b,a′,k

w∗a′bki′wabkjda′a + h.c. (B.2.15)

D
(2,8)
ij,i′j′ = −δij′ 1

4

∑
a,b,k,k′

w∗abkk′wabkjdi′k′ + h.c. (B.2.16)
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D
(2,9)
ij,i′j′ = −δij′ 1

4

∑
a,b,k,k′

w∗abk′i′wabkjdkk′ + h.c. (B.2.17)

D
(2,10)
ij,i′j′ = δji′

1
2

∑
a,b,a′,k

w∗a′bkj′wabkida′a + h.c. (B.2.18)

D
(2,11)
ij,i′j′ = −δji′ 1

4

∑
a,b,k,k′

w∗abkk′wabkidj′k′ + h.c. (B.2.19)

D
(2,12)
ij,i′j′ = −δji′ 1

4

∑
a,b,k,k′

w∗abk′j′wabkidkk′ + h.c. (B.2.20)

D
(2,13)
ij,i′j′ =

∑
a,b,a′

w∗a′bi′j′wabijda′a (B.2.21)

D
(2,14)
ij,i′j′ = −1

4

∑
a,b,k

w∗abi′kwabijdj′k + h.c. (B.2.22)

D
(2,15)
ij,i′j′ = −1

4

∑
a,b,k

w∗abkj′wabijdi′k + h.c. (B.2.23)

The 2nd-order expansion of the ground-state expectation value of the property

operator, D0(2), can be obtained using the property option of an ADC code for the

one-particle Green's function (1p-GF), either at the ADC(2) or ADC(3) level [67].

Moreover, the 1p-GF ADC approach can be used to compute the one-particle

density matrix elements, ρak, resorting either to the so-called Dyson expansion

method (DEM) or the Σ(4+) method [67].

2h/3h-1p coupling block:

The expansions extend through 1st order.

D̃ij,a′i′j′k′ = δii′δjj′dk′a′ + δij′δjk′di′a′ − δii′δjk′dj′a′ (B.2.24)

−δii′δjj′
∑
b,k

w∗a′bk′kdbk (B.2.25)

−δij′δjk′
∑
b,k

w∗a′bi′kdbk (B.2.26)

+δii′δjk′
∑
b,k

w∗a′bj′kdbk (B.2.27)

−δii′
∑
b

w∗a′bj′k′dbj (B.2.28)

+δji′
∑
b

w∗a′bj′k′dbi (B.2.29)

−δik′
∑
b

w∗a′bi′j′dbj (B.2.30)



132 Appendix B

+δjk′
∑
b

w∗a′bi′j′dbi (B.2.31)

+δij′
∑
b

w∗a′bi′k′dbj (B.2.32)

−δjj′
∑
b

w∗a′bi′k′dbi (B.2.33)

3h-1p diagonal block:

Only zeroth-order terms are needed in the 3h-1p diagonal block, that is,

D̃aijk,a′i′j′k′ = 〈Φaijk|D̂|Φa′i′j′k′〉 (B.2.34)

which yields

D̃aijk,a′i′j′k′ = δaa′δii′δjj′δkk′D0(0) + δii′δjj′δkk′daa′

+δaa′δii′(−δjj′dk′k + δjk′dj′k − δkk′dj′j + δkj′dk′j)

+δaa′δkk′(δij′di′j − δjj′di′i + δji′dj′i)

−δaa′δij′δjk′di′k − δaa′δji′δkj′dk′i (B.2.35)
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