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How should tort law deal with agents that employ novel and imperfectly

understood technologies that later turn out to involve harm? There is no

agreement among different legal systems whether strict liability or negli-

gence rules should govern these so-called ’development risks’. The law-and-

economics literature, however, has predominantly favored strict liability. The

present paper shows that the choice depends on the characterization of how

society learns about technology risks. When experiential public data is an

irreducible input into learning, theory justifies the use of specific negligence

rules in order to govern development risks. We reconcile the existence of

the negligence doctrine for development risks with the theoretical literature

using a simple two-period unilateral care model. There, an optimally de-

signed negligence rule can provide a better balancing of benefits, harm to

third parties, costs of care effort, and the value of information from learning

than strict liability. If feasible, the optimal negligence rule partitions the

population of potential users into two groups. Only the high benefit group

engages in the risky activity, subject to due care levels designed to deter the

low benefit group.
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1 Introduction

The tension between the social gains from novel technologies and their potential risks

is particularly palpable in the context of how tort law should deal with the fact that

for such novel technologies, accident probabilities can, by definition, not be based on

experiential data. Instead, the assessment of the risks emanating from their use can

only rely on estimates derived from premarket testing and from reasoning by similarity.

As a result, both product liability and environmental liability in the United States1 and

the European Union2 raise questions about the extent to which an efficient system of

torts should hold agents liable for employing novel technologies that later turn out to

have harmed third parties.

Our paper shows that the choice between strict liability and negligence depends on the

characterization of how society learns about technology risks. When experiential public

data is an irreducible input into learning, theory justifies the use of specific negligence

rules in order to govern development risks. We reconcile the existence of the negligence

doctrine for development risks with the theoretical literature using a simple two-period

unilateral care model. There, an optimally designed negligence rule can provide a better

balancing of benefits, harm to third parties, costs of care effort, and the value of infor-

mation from learning than strict liability. This balancing involves incentives for users

to employ the technology who would refrain from adopting the technology under strict

liability, leading to more public information about the technology’s risks.

There is a small, but distinguished literature in law and economics that examines the

efficiency of different liability regimes when information about the riskiness of an activ-

ity is incomplete. Shavell (1992) examines a setting in which a potential injurer does

not know whether a certain activity is risky or not, but can acquire this information at

a fixed cost, for example through additional laboratory tests. In such a setting, strict

liability provides optimal incentives for both information acquisition and care, and so

do a ‘complete’ negligence rule3 and an ‘optimal knowledge’ negligence rule4, but not

alternative negligence rules of care levels that are optimal given the injurer’s actual level

of knowledge or given the true state of the world. In a similar vein, Kaplow and Shavell

(1992) examine the acquisition of legal advice by agents imperfectly informed about the

legal implication of a certain course of action that has not been embarked on yet. They

1See the Restatement (Third) of Torts: Product Liability (1998) and CERCLA (1980)
2See, in particular, the Development Risk Clause (the “DRC”) provided in Articles 7 (e) and 15(b) of

the Directive 85/374/EEC and Art. 8.4(b) of the Environmental Liability Directive 2004/35/EC, but

also member state legislation such as the Environmental Liability Law in Germany which enshrines

strict liability for development risks in Par. 1 UmwHG, Par. 89 WHG and USchadG (Schieber 1999;

Teschabai-Oglu 2012).
3Under this rule, there is an optimal care level that is contingent on whether information acquisition

was socially optimal or not. If the injurer operates below either the optimal care level or the optimal

knowledge level, he is liable.
4Here, the negligence standard is based on the care level that is optimal under optimally acquired

information
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find that when legal advice helps the agent to learn the specific harm that its actions will

impose on a victim, then strict liability provides optimal incentives for care and infor-

mation acquisition, while a negligence rule will lead to excessive information acquisition.

Ben Shahar (1998) examines producer liability for novel products and studies to what

extent experiential data should be part of determining ex post whether a state-of-the-art

product design was negligent when such data was not available to the manufacturer ex

ante. Here, uncertainty regarding the risk properties of the novel technology can either

be resolved through additional tests prior to marketing or managed through safety mea-

sures before or after marketing. The paper by Ben Shahar (1998) adds nuance to the

negligence regimes studied by Shavell (1992) and Kaplow and Shavell (1992): It demon-

strates that both hindsight- and state-of-the -art negligence rules induce either too much

or too little care effort relative to the social optimum.5 Finally, in a less technical mode,

Dana (2010) develops a model of sequential research decisions to study the impact of lia-

bility rules on precaution by manufacturers of products that contain potentially harmful

nanotechnology.6

The aim of the present paper is to further our understanding of the regulation of

novel technologies through liability rules by extending the range of information environ-

ments used to study the question. The environment common in the existing literature

is one in which the risk characteristics of the novel technology are learned through

non-experiential private information acquisition. Here, ‘non-experiential’ refers to the

common assumption that it is possible to eradicate any remaining uncertainties about

the safety implications of the novel technology in the real world without ever experi-

encing its performance in a market setting. Instead, any relevant uncertainty can be

resolved through additional laboratory tests before any harm has materialized (Shavell

1992, Ben Shahar 1998). ‘Private’ refers to the assumption that new information about

the risk characteristics comes exclusively to the attention of the potential injurer. Ex-

perimentation with the novel technology generates no informational externalities.

Our paper, by contrast, presents an information environment in which the risk char-

acteristics of the novel technology are learned through experiential public data. By

experiential, we mean that in practice, even with considerable premarket testing, much

of the information about novel technologies’ risk characteristics still has to be acquired

at the postmarket stage.7 For many novel technologies, carrying out the potentially

5There is one exception to this summary statement: Negligence rules based on the state of the art

provide the correct incentives for investments in safety devices prior to marketing.
6There is also an economics literature that considers the insurability of such risks when potential

injurers are imperfectly informed, starting with Skogh (1998) and moving into issues of information

acquisition and adverse selection in insurance (Crocker and Doherty 2000; Bajtelsmit and Thistle

2009).
7For example, in the pharmaceutical context, one study claims that more than half of drugs approved

for release by the FDA are later shown to have serious adverse effects not detected during the three

phases of pre-marketing clinical studies (Moore et al. 1998). As a result, there is considerable research

effort on post-marketing surveillance of newly released drugs, with the results that a considerable

number of products are subsequently withdrawn (Fontanarosa et al. 2004).
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harmful activity in a market setting is an irreducible part of their exhaustive risk assess-

ment. In contrast to laboratory tests, postmarket experiences with novel technologies

typically generate public information: The presence or absence of harm is not private

information for the manufacturer. It is observed by victims, third parties, interested

scientists, and regulators. These informational externalities give rise to social returns to

learning about the risk characteristics of the technology, impacting on the role of liability

regimes in such settings: Different liability regimes will lead to differences in whether,

and if yes by how many, the technology is used. This, in turn, leads to differences in the

volume of experiential data that becomes available for future decisions on liability and

care. Liability and learning are therefore linked, which matters for assessing the welfare

impacts of different liability rules that determine not only the benefits, damages, and

care costs associated with a novel technology, but also the value to society of learning

more about the technology’s risk characteristics in a market setting. This information

value is at the heart of an economic argument for a possible role for a well-designed

negligence rule that does better than strict liability in allocating the dynamic benefits

and costs of novel technologies between society at large, users, and potential victims.

The main message of this paper obviously also relates to a recent literature on tort

law and innovation. For example, Endres and Bertram (2006) and Endres and Friehe

(2011) examine the impact of liability regimes for environmental damages on the rate

and direction of technological change chosen by regulated firms regarding a care costs

reducing technology, mainly finding strict liability to provide optimal incentives. Par-

chomovsky and Stein (2008) highlight the disincentive on innovation of the role of custom

in determining negligence in court.

Furthermore, our findings are related to those of Schwartzstein and Shleifer (2013),

who find a welfare-enhancing role for traditional regulation as an information device

to complement tort litigation. Like in our setting, welfare is increased by encouraging

socially desirable economic activity compared to strict liability. In contrast, this not

achieved by a negligence rule alone, but through a combination of negligence and ex-

ante regulation. Their assumption that firms can not appropriate full social returns

is similar to the presence of information externalities in our paper, but they differ i)

in their second fundamental assumption that courts (and regulators) make errors and

ii) in regulators receiving an ex-ante signal regarding the safety of firm which is not

experience-based.

To demonstrate that the consideration of an information environment focusing on ex-

periential aspects is consequential, we develop a simple two-period model of unilateral

care in which a population of possible users has heterogeneous private benefits. The

social planner is charged with choosing, for each of the two periods, a liability regime

for users of a novel technology that has undergone premarket testing, but still involves

potential risks for third parties. All parties are risk-neutral. It is well known that in pe-

riod 2, the absence of any further learning possibility makes the social planner optimally
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choose strict liability (Shavell 1980).8 The core results of the paper concern the question

of which regime the social planner optimally chooses for period 1. Relevant considera-

tions for period 1 are expected benefits, expected harm, and care costs associated with

the novel technology being used at a certain volume, but also the possibility of gener-

ating public data through experience on the market. All agents share a common belief

about whether the technology is risky or not; with probability p there is a risk, with

probability 1− p there is no risk. In case there is a risk, harm depends on care x chosen

by the user, giving rise to an expected harm function h(x) with the usual properties. The

prior belief p about the riskiness of the technology in period 1 is an estimate based on

laboratory pre-market tests or reasoning by similarity. We assume additional lab-based

test will not provide a better estimate (or are too costly). This captures the important

feature of emerging technologies that for users and regulators, their risks characteristics

are uncertain. For simplicity we assume that uncertainty about the risk is completely

resolved9 if enough users employ the novel technology in period 1 and thus the volume

of users is greater than a threshold parameter vinfo.
10

In this setting, we first derive the pattern of socially optimal use of the new technology

in period 1 to provide an understanding of what outcome a liability regime should

ideally generate. We find that independent from parameter choices, optimal use in

period 1 always implies a volume sufficiently large for resolving information if only the

stakes involved are large enough. By ”stakes” we mean maximum benefits of using the

technology and potential harm done in case there is a risk: Model parameters can be

changed such that maximum benefits and total accident costs are increased by the same

factor (”the scale”) but all other characteristics remain unchanged.

8Strict liability would also be the regime a social planner would commit to in period 1 if there was no

option for review.
9This assumption is obviously unrealistic, but our results are not affected if we assume partial revelation

of uncertainty in line with the refinement described in Shavell (1992).
10Two examples can be used to provide a concrete illustration of the setting. One example is an

agricultural context in which each farmer owns a unit tract of land with specific soil characteristics

that is planted in a single crop variety. The novel technology consists of genetic modification of

germplasm such that the farmer can choose to plant genetically modified organisms (GMOs) as

crops. The potential harm associated with planting GMOs as a crop is that genetic material can be

dispersed to an adjacent non-GMO farm, where a gene flow event could occur (Bouchie 2002). If such

a gene flow occurs, a farmer that does not use GM crops can no longer sell his crop as GMO-free and

suffers a price penalty (Bullock and Desquilbet 2002). Effective prevention of dispersion can only

be carried out by GMO farmers through the construction of natural barriers or buffer zones around

their crop. These efforts constitute the care level in this model. All agents know the damages, but

the assessment of the potential of a gene flow event in the field is only based on experiments under

controlled conditions and therefore fraught with uncertainty (Faure and Wibisana 2010). Another

example is the use of nanotechnology in personal care products. For different applications, this

technology offers different benefits. The possible harm associated with nanotechnology are adverse

health effects of these ultrasmall particles passing through protective barriers in the human body

(Dowling et al. 2004). Producers can influence, at a cost, the characteristics of the nanoparticles and

thus decrease harm. As in the case of pharmaceuticals, however, existing studies under controlled

conditions provide limited information on the toxicology of absorbed nanoparticles (Dana 2010).
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We then compare strict liability and negligence in their ability to implement socially

optimal behavior. We find that for settings in which some users should engage in the

technology for static reasons alone, strict liability should implement the uncertainty

resolving solution for large stakes. Contrary, if the technology should not be used at all

under static conditions, a negligence rule is optimal for implementing the uncertainty

resolving solution for large stakes. In order to ensure negligence to indeed be welfare-

enhancing, the regulator has to deviate from the first-best due care level in order to

control activity levels. Therefore, negligence can not implement the first-best solution,

but is in this case still superior to strict liability under which the value of information

would be foregone. The second-best care level may be higher or lower than the first-best,

but will eventually, as stakes get bigger, be more stringent than the first-best.

In the next section, we define the model characteristics. We then derive the social

planner’s optimal behavior in the two-period setting in section 3 if care and activity

levels are under his immediate control. Section 4 analyzes the conditions under which

the choice of a strict liability and of a negligence rule maximize social welfare provide

the better approximation to the social planner optimum when agents determine care

and activity levels. Section 5 concludes.

2 The Model

We consider a social planner (SP) who is concerned with liability regulation of a novel

technology for two consecutive periods, period 1 and period 2. The unilateral care

setting involves a population of potential injurers that are heterogeneous with respect

to the benefits of employing the technology. Every agent can decide in each period

whether to make use of the novel technology or not. The continuum of agents can be

ordered according to their private benefit (possibly negative) from switching to the new

technology. We identify potential users with their position in the continuum [0,∞). This

results in an aggregate marginal benefits curve b(u) = B − u, where B is the private

benefit of the initial agent and u is the marginal user of the new technology. The SP

knows the marginal benefit curve, but does not know the private benefits of single users.

All agents are risk-neutral subjective expected utility maximizers.

At the beginning of period 1, it is not known with certainty whether the novel tech-

nology poses harm to third parties or not. However, all agents share a common belief

regarding the likelihood that the novel technology is risky: With probability p there is

a risk, with probability 1 − p there is no risk. In case there is a risk, expected harm

done to third parties depends on a user’s care level. The expected harm function h(x)

associated with care level x is the same for all users and known to all agents. We employ

the usual assumptions h′(x) < 0 and h′′(x) > 0. Uncertainty about the riskiness of the

technology is resolved for period 2, if enough users employ the technology in period 1

and thus, a sufficient amount of experiential information is available. The activity of all

users combined amounts to the volume v of all users: v =
∫
a(u)du. If this aggregate ex-
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periential information exceeds a threshold vinfo, information about the risk is revealed.

Like the probability of risk p, the information threshold vinfo is known to all agents.

The SP can choose between strict liability and negligence in each period. If he opts

for negligence, he sets due care not only dependent on the state of information, but also

taking into consideration effects on the volume of users, hence on information generation.

In short the givens of our model are:

1. The marginal private benefits curve b(u) = B − u

2. The care-harm relationship h(x) in case there is a risk

3. The ex-ante belief p that the novel technology involves a risk

4. The minimum volume of users vinfo needed in period 1 in order to resolve uncer-

tainty about the risk

All givens are known to all agents including the SP. The SP can choose between strict

liability and a negligence rule. In the latter case he is not confined to use the statically

optimal care level as due care but can freely choose which due care level to set.

We employ the following assumptions in order to exclude the trivial cases of nobody

or always somebody using the technology in the social optimum, irrespective of the state

of information:

Assumption 1. If it is known that the technology is riskless, some users want to engage

in the technology

B > 0

Assumption 2. If it is known that the technology is risky, nobody should engage in the

activity from a social point of view:

B − xS1 − h(xS1 ) ≤ 0

3 The Social Optimum

The socially optimal management of the novel technology in period 1 involves balancing

benefits, expected harm, care costs, but also the value of information. We first solve

the static problem in period 2 without possibility of experiential learning and then turn

towards the dynamic problem. Optimal behavior obviously depends on the state of

information. We will indicate variables refering to situations under uncertainty with p,

proven riskiness with 1 and proven risklessness with 0.

3.1 The Static Benchmark

Optimal static care depends on the state of information. There are three different states

of information: Uncertainty, certainty of riskiness and certainty of risklessness. Optimal
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care is identical for all potential users of the technology, since they do not differ with

respect to care costs, the harm function or access to information. In case of prevailing

uncertainty, total expected accident costs per user are

x+ p · h(x).

The socially optimal xSp which minimizes these costs fulfills

1 + p · h′(x) = 0.

If uncertainty is resolved and the technology turns out to be riskless, xS0 = 0 is obviously

optimal. If it turns out to be risky the optimal care level xS1 fulfills

1 + h′(x) = 0.

It clearly holds that

xS0 < xSp < xS1 .

The socially optimal static activity level of a potential user depends on the state of

information as well as on his private benefits b(u). Socially optimal activity levels are

derived given optimal care level for each state of information and each user. Under

uncertainty a user with private benefit b(u) should engage in the activity if

b(u)− xSp − p · h(xSp ) = B − u− xSp − p · h(xSp ) ≥ 0.

Therefore, the activity level of a specific user u should be

aSp (u) =

{
1 if u ≤ B − xSp − p · h(xSp )

0 if u > B − xSp − p · h(xSp )

Due to assumption 1, the optimal activity level is zero for all potential users in case of

revealed riskiness:

aS1 (u) = 0.

In case of revealed risklessness users should engage if they have a positve private benefit

from using the technology, since precaution is not needed in known absence of risk.

aS0 (u) =

{
1 if u ≤ B
0 if u > B

The optimal volume of users is derived by aggregating all users who would optimally

use the novel technology. Since all potential users are ordered with respect to their

private benefits, the optimal volume coincides with the last user who should use the

technology. In case of resolved uncertainty, this means: The optimal volume of users

from a static point of view is

vS0 = 0,
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if the technology turned out to be risky (assumption 1) and

vS0 = B

if the technology turned out to be riskless (assumption 2). Under uncertainty the optimal

volume depends on whether marginal social benefits B−xSp −p ·h(xSp ) of the initial user

are positive or not. If they are, nobody should use the technology and the optimal volume

is zero. If they are not, the first B − xSp − p · h(xSp ) users should use the technology:

vSp =

{
B − xSp − p · h(xSp ) if B − xSp − p · h(xSp ) ≥ 0

0 if B − xSp − p · h(xSp ) < 0.

We introduce the notation bSI = B − xSp − p · h(xSp ) for the initial user’s statically social

benefits, rewriting vSp = max[0, bSI ].

Since period 2 is the last period, learning in period 2 is not consequential. Therefore,

the socially optimal outcome in period 2 is solely determined by static outcomes:

Proposition 1. Socially optimal behavior in period 2 is characterized by optimal static

behavior.

1. Optimal care is the same for all potential users. Optimal care under proven risk-

iness is higher than optimal care under uncertainty which in turn is higher than

optimal care under proven risklessness: xS0 < xSp < xS1 .

2. There is a private benefit threshold which divides potential users into two brackets.

For the bracket with the higher private benefits activity is is optimal, for the lower

value bracket no activity is optimal. The higher benefit bracket is empty in case of

proven riskiness and under uncertainty if bSI ≤ 0.

3. The volume of users entirely consists of the high-benefit bracket: It is vS1 = 0

under proven riskiness, vS0 = B under proven risklessness and vSp = max[0, bSI ]

under uncertainty.

The division into a high-benefit bracket and low-benefit bracket where the former consists

of users and the latter of non-users of the technology persists for both the dynamical

social optimum and all behavior under actual regulation: For the SP it is never optimal

let a user with lower private benefits use the technology instead of one with higher

private benefits but otherwise identical characteristics. Since a regulator does only know

the distribution of private benefits, any liability rule applies to all potential users in the

same way. Therefore, a user with higher private benefits will always have an incentive

to use the technology if a user with lower private benefits has. Hence, the volume of

users is sufficient information for knowing which users engage in the activity and which

do not.
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3.2 Dynamic Social Optimum

The only reason to deviate from statically optimal behavior is the value of information.

Since the choice of care does not influence information, dynamically optimal care levels

equal statically optimal care levels. Regarding aggregate activity, we will see that there

are only two different potential volumes of users which may be optimal: The statically

optimal volume vSp and the minimum volume required to reveal information vinfo. In

order to decide which volume is consistent with socially optimal dynamic behavior in

period 1, we first have to attach a value to the information potentially obtained and then

have to calculate the costs in terms of static inefficiency to be incurred for obtaining the

value of information.

3.2.1 The Value of Information

The value of information of knowing p’s true value is the difference in welfare between

socially optimal behavior under uncertainty and (probability-weighted) welfare under

socially optimal behavior after uncertainty is resolved. Welfare under proven riskiness is

zero, since optimal volume is zero. Under proven risklessness optimal volume is B and

social marginal benefits are B−u, therefore welfare is 1
2B

2 in the social optimum. In the

social optimum under uncertainty, the volume of users is max[0, bSI ] and social marginal

benefits are bSI − u, welfare being max[0, 1
2b
S
I ]2.Therefore, the value of information is

VOI = (1− p) · 1

2
B2 + p · 0−max[0,

1

2
bSI ]2 =

{
(1− p)1

2B
2 if bSI < 0

(1− p)1
2B

2 − 1
2(bSI )2 if bSI ≥ 0

In case the novel technology turns out to be riskless, not only does the technology become

more valuable to a user of the technology, it also increases the number of users for whom

the technology yields positive returns at all from a social point of view. Users of the

technology produce valuable information not only for themselves but also for potential

users whose private benefits are smaller and who are thus not using the technology under

uncertainty.

3.2.2 The Costs of Obtaining Information

Obtaining information about the risk may require a volume of users beyond the statically

optimal one. By definition this involves a deviation from statically optimal behavior.

The static inefficiency incurred are the costs of obtaining information. This inefficiency

of deviating to a certain volume vdev is the difference in welfare between the static

optimum vSp and vdev. Welfare in the static optimum is

max[0,
1

2
bSI ]2,

welfare from a given volume vdev is

−1

2
v2
dev + vdev · bSI .
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Costs of deviating to vdev are therefore11

C∆V (vdev) = max[0,
1

2
bSI ]2 − (−1

2
v2
dev + vdev · bSI ).

This is increasing in vdev. It follows that there can only be vSp or vinfo dynamically

optimal.

The costs of obtaining information are the costs of the smallest deviation that leads to

resolving uncertainty, which is deviating to vinfo. But if the statically optimal volume

is already large enough to reveal information, vSp ≥ vinfo, there is no trade-off between

statically optimal volume in period 1 and availability of information in period 2. Hence,

there is no deviation from the statically optimal volume necessary and costs are defined

as zero if this is the case.

C∆V (vinfo) =

{
0 if vSp ≥ vinfo
max[0, 1

2b
S
I ]2 + 1

2v
2
info − vinfo · bSI if vSp < vinfo

3.2.3 Dynamically Optimal Volume

The condition for the information revealing volume of users vinfo in period 1 being

superior to the statically optimal solution vSp is

VOI ≥ C∆V (vinfo).

We summerize dynamically optimal behavior:

Proposition 2.

1. If VOI ≥ C∆V (vinfo), information acquisition is optimal. The dynamically optimal

care level equals the statically optimal care level xSp and the optimal volume is vinfo,

being made up of all users u ≥ B − vinfo.

2. If VOI < C∆V (vinfo), information acquisition is not optimal. Both dynamically

optimal care level and volume equal the statically optimal care level xSp and volume

is vSp , the latter being made up of all users u ≥ B − vSp .

It is not difficult to construct both cases in which information information revelation is

optimal and in which it is not, e.g. by varying vinfo, p or coming up with accordingly

tailored care-damage relationships h(x). It does not seem possible to provide simple

conditions for deciding which volume is optimal. Instead we want to introduce a feature

of our model which will prove to dominate other characteristics, given any fixed choice

of other parameters: the stakes of our problem. By ”stakes” we mean the magnitude of

both benefits and costs entailed by the novel technology: the maximum private benefit

B and the determinants of the total accident costs x and h(x).

11We index costs from a volume different from the statically optimal one with ∆V .
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3.3 Optimality of Information Acquisition for High Stakes

We change stakes by introducing an additional parameter into the model: the scale.

The aim is to leave the information structure, represented by p and vinfo, unchanged, as

well as the principle functional relationship between care and harm while increasing the

maximum private benefit and total accident costs by the same factor. For that reason we

introduce benefit and cost parameters depending on the scale σ: Bσ := σ·B and hσ(x) :=

σ · h(xσ ). Doing so means scaling up benefits and the care-harm relationship in both

directions by σ, therefore leaving the proportions of private benefits, care expenditures

and harm unchanged for every state of information.12 Indeed, using hσ, we obtain the

total accident costs under uncertainty

x+ p · hσ(x) = x+ p · σ · h(
x

σ
).

Minimization yields

xSp (σ) = σ · xSp
and

hσ(xSp (σ)) = σ · h(xSp ).

As we can see, scaling up the care-harm relationship leads to total accident costs of a

factor σ larger than before. The same holds of course true under resolved uncertainty.

Why is the scale important? It turns out that the value of information, the value of

knowing the exact p, crucially depends on the scale: In case the novel technology turns

out to be riskless, not only does the technology become more valuable to a user of the

technology, it also increases the number of users for whom the technology yields positive

returns at all from a social point of view. Users of the technology produce valuable

information not only for themselves but also for potential users whose private benefits

are smaller and who should thus not be using the technology under uncertainty. Since

both of these effects get larger by increasing the scale, the value of information raises

quadratically with the scale:

Lemma 1. The value of information is homogeneous of degree 2 in the scale:

VOI(σ) = σ2 ·VOI(σ = 1) = σ2 ·VOI

Information itself and the process of information acquiring remains unchanged, whereas

the impact and thus the value of information changes in two ways, giving rise to the

above result.

In order to learn the effects on optimal behavior, we have to analyze how increasing

the scale impacts on the cost side of obtaining information. The cost side deals with

12We index the changed givens in our model with σ, whereas we write variables derived within the model

as functions of σ. In both cases σ = 1 amounts to the same as with the original parameter choice

without scale and we therefore identify the two. We always think of the original givens as a fixed

baseline, refering to the maximum private benefits B and the care-harm relationship h(x) although

givens to which the scale is applied technically are just new givens.
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static losses, therefore we first have to look at statically optimal behavior under changing

scale. This behavior is defined by

vSp (σ) = max[0, bSI (σ)] = max[0, Bσ − xSp (σ)− p · hσ(xSp (σ))] = σ ·max[0, bSI ]

This means that socially optimal volume increases with the scale, if it had been positive

in the first place and remains zero under changing scale if it had been zero anyways.

Given vSp (σ) < vinfo, the costs of obtaining information then are

C∆V (σ, vinfo) =

{
1
2v

2
info − vinfo · σ · bSI if vSp = 0

1
2(σ · bSI − vinfo)2 if vSp > 0

Since statically optimal volume increases with scale if it had been positive in the first

place, obtaining information will eventually become costless as stakes increase and there-

fore of course optimal in that case. Conversely, if statically optimal volume is zero, costs

of obtaining information rise linearly with the scale. This is due to the fact that the

social costs of a single user rise, but the volume of users necessary to reveal information

does not change. Since the value of information rises quadratically in this case, obtaining

information will be optimal as well, if only the stakes are large enough.

Proposition 3. Given any information structure p and vinfo, care-harm relationship

h(x), and maximum private benefits B, obtaining information is optimal if and only

if the scale is large enough: There exists a scale σ̂, such that obtaining information is

optimal if σ ≥ σ̂ and not obtaining information is optimal if σ < σ̂.

Remark. If the statically optimal volume is zero this effect is driven by dynamic con-

siderations, if it is positive it is driven by static considerations: If the statically optimal

volume of users vSp is zero, the dynamically optimal volume in case of obtaining infor-

mation being optimal is vinfo, if it is positive the dynamically optimal volume in case of

obtaining information being optimal is σ · vSp .

4 Optimal Regulation

We saw that the value of information can be large enough to impact on socially optimal

behavior. We now turn toward optimal regulation. We briefly analyze optimal regulation

in period 2 and investigate period 1 afterwards.

4.1 Second Period

Since the second is also the last period, there can not be any information effect, inde-

pendent from whether uncertainty is resolved due to period 1 or not. Due to standard

arguments strict liability leads to both optimal care and activity levels. A standard

negligence rule leads to optimal care but excessive activity. A negligence rule employing

a different due care level may or may not lead to suboptimal activity and hence volume

of users, but it leads to suboptimal care for sure.

13



Proposition 4. The optimal regulation in period 2 is strict liability, leading to optimal

behavior described in proposition 1. Given the optimal volume is positive, any negligence

rule is inferior to strict liabilty.

4.2 First Period

Optimal regulation in period 1 is not that clear-cut. We first analyze behavior and total

welfare under strict liability. Afterwards we will analyze optimal negligence rules, the

behavior and welfare levels they induce, using strict liability as a baseline.

4.2.1 Strict Liability

From standard arguments we know that strict liability leads to the implementation of

statically optimal behavior by all users. Therefore, it always implements socially optimal

care levels.

If the statically optimal volume of users already suffices to obtain information, vSp ≥
vinfo, strict liability implements statically optimal behavior and leads to resolved uncer-

tainty. In this case it implements socially optimal behavior and is therefore first-best.

If vSp < vinfo, the statically optimal volume is below the uncertainty resolving threshold

and behavior under strict liability is still statically optimal but fails to resolve uncer-

tainty. If this is first-best or not depends on whether resolving uncertainty is socially

optimal or not: In case

VOI < C∆V ,

resolving information is too costly in terms of static welfare losses. Optimal behavior is

then again characterized by static optimality and therefore strict liability still implemts

the first-best solution. Contrary, if

VOI ≥ C∆V ,

social optimality requires uncertainty to be resolved but strict liability fails to do so.

From a dynamic point of view, this means strict liability presents the wrong incentives

for all users vSp < u ≤ vinfo. Social optimality would demand them to use the technology

in order to resolve uncertainty. Their incentives under strict liability do not reflect the

social gains from resolving uncertainty but only the static expected harm which exceeds

their private benefits. Does strict liability’s failure to implement the first-best solution

in this case leave room for negligence to enhance welfare?

4.2.2 Negligence Rules

Standard negligence rules automatically make use of the statically optimal level of care

as due care standard. If a regulator chooses to employ a negligence rule in our setting,

he does so because he wants to generate a volume of users large enough for resolving

uncertainty about the technology’s risk characteristic. Therefore, a negligence rule would

optimally implement the smallest uncertainty resolving level vinfo. Since the volume
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implemented under a standard negligence rule may either be higher or lower than vinfo,

the regulator might want to increase or lower the care standard in order to influence

the volume of users. Doing so comes with a care efficiency loss. As the regulator does

not know single agents’ private benefits, he has to employ a homogeneous care standard.

Therefore, the care inefficiency to be incurred is also homogeneous among users and a

marginal change in the volume of users entails a change in care inefficiency for all users.

The dynamically optimal care standard results from minimizing the sum of care and

volume inefficiency.

Which is the due care level ximp a regulator has to set, if he wants to implement some

predefined volume of users vimp? Since users will exercise due care in order to escape

liability13, users will only face the costs of taking due care. The user with the lowest

private benefits b(u) to use the technology will therefore be the one with

b(u) = B − u = ximp

Therefore, the due care level to set for inducing a volume of vimp is

ximp = B − vimp

The care inefficiency per user14 entailed from changing from xSp to ximp is

c∆x = [ximp + p · h(ximp)]− [xSp + p · h(xSp )] = [ximp − xSp ]− p · [h(xSp )− h(ximp)]

= [B − xSp − vimp]− p · [h(xSp )− h(B − vimp)]

Care inefficiency per user is the difference in total accident costs between the actual due

care level ximp and the statically optimal level xSp . Plugging in the actual care level in

terms of volume of users aimed at and rearranging leads to the result. Costs from the

care inefficiency are obtained by multiplying costs per user with the actual volume of

users:

C∆x = vimp · c∆x = vimp · [B − xSp − vimp]− p · [h(xSp )− h(B − vimp)]

Combined with the costs of volume excessive of the statically optimal volume, we obtain

the total costs of implementing a certain volume under a negligence rule:

CT (vimp) = C∆v(vimp) + C∆x(vimp)

=

{
1
2v

2
imp − vimp · bSI + vimp · [[B − xSp − vimp]− p · [h(xSp )− h(B − vimp)]] if bSI ≤ 0

1
2(bSI − vimp)2 + vimp · [[B − xSp − vimp]− p · [h(xSp )− h(B − vimp)]] if bSI > 0

13This is only true as long as minimal total accident costs are not lower than the due care level demanded

to escape liability. But this only means that it is not possible to implement a smaller volume than

the statically optimal one vSp , which is of course never desirable anyways. For that reason we ignore

this possibility.
14We index costs from a care level different from the statically optimal one with ∆x, using lower case c

for costs per user and upper case C for absolute costs.
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The implementation of a negligence rule always aims at information revelation. An

optimal negligence rule therefore has to reveal information while minimizing the toal

costs of doing so.

We know that strict liability is first best if either the statically optimal volume of

users already suffices to obtain information (vSp ≥ vinfo) or if it is not desirable to

resolve uncertainty due to too high costs in terms of static inefficiency (VOI < C∆V ).

In those cases, any negligence rule must necesserily do worse than strict liability. Any

negligence rule is statically suboptimal with respect to the optimal volume, to the care

level or both.15

Contrary, if

VOI ≥ C∆V ,

social optimality requires uncertainty to be resolved, but strict liability fails to do so.

Therefore, any negligence rule which implements a volume of users vimp of at least vinfo
and fulfills the condition

VOI > CT (vimp)

is superior to strict liability. Examples can be obtained by considering the special case

of vinfo = B − xSp . Beyond single examples, the question arises due to negligence’s

feature of increasing the volume of users: Does the result of social optimality of informa-

tion revelation under increasing stakes translate to a negligence rule being the optimal

regulation for large stakes?

4.3 Optimality of Information Acquisition for High Stakes

For all settings in which the statically optimal volume of users is strictly positive the

answer is cleary no. We have

vSp (σ) = σ ·max[0, bSI ],

therefore the statically optimal volume will under increasing scale eventually cross the

threshold of users required for resolving information. We have already seen that strict

liability is first-best in those cases and that any negligence rule necesserily inferior to it.

For settings in which the statically optimal volume is zero, things are clearly different.

Irrespective of the scale, the statically optimal volume remains zero and the only possi-

bility to induce potential users to engage in the technology in sufficiently large numbers

for resolving uncertainty is to employ a negligence rule. Recall from lemma 1 that the

value of information is homogeneous of degree 2 in the scale:

VOI(σ) = σ2 ·VOI

15Negligence is not necesserily strictly worse in this case: If a volume of zero users is socially optimal,

any negligence which yields this outcome is as good as strict liability. However, these negligence rules

would need to set an exremely high due care level and it would be nothing gained to switch to one

of these negligence rules.
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For evaluating the cost side, we first have to calculate the volume minimizing total static

costs. Despite facing a trade-off between costs in terms of volume and in terms of care,

it turns out that the former dominates the latter:

Lemma 2. If the statically optimal volume is zero, total implementation costs are mono-

tonically increasing in the implemented volume. This holds for any given scale:

C ′
T (σ, vimp) ≥ 0

The cost-minimizing negligence rule guaranteeing information revelation is therefore

xinfo = B − vinfo, implementing the minimum volume necessary to resolve uncertainty.

This holds for any given scale.

For any given scale the total static costs of resolving uncertainty are therefore given by:

CT (σ, vinfo) = C∆v(σ, vinfo) + C∆x(σ, vinfo)

While the impact of information and hence its value increases with respect to the every

single user and the number of users with increasing scale, the costs of acquiring infor-

mation only change for single users, but the number of users required remains fixed. In

this sense gains from information revelation grow faster than the costs of implementing

a sufficiently large volume by means of an optimal negligence rule. This intuition proves

true for all information structures and care-harm relationships, ensuring superiority of

negligence in a broad class of settings:

Proposition 5. Let the statically optimal volume of users be zero. For all information

structures p and vinfo and care-harm relationships h(x), there exists a scale σ̄ such that

1. strict liability is opimal if σ < σ̄

2. negligence is opimal if σ > σ̄.

Remark. Negligence proofs to be superior to strict liability if statically optimal volume

is zero and the stakes involved large enough. However, since the implemented volume and

the due care level demanded are directly linked, negligence can not implement16 the first-

best solution. Although an optimal negligence rule provides the right incentives in terms

of activity for all users it does so by deviating from the first-best care level. The second-

best care level might be either too low or too high, depending on whether xinfo is higher

or lower as first-best care xSp . Since this occors for large stakes and the statically optimal

care level xSp (σ) increases linearly with stakes, the care level implementing uncertainty

resolving behavior xinfo is smaller than the statically optimal care level xSp in most cases

(i.e. for all σ ≥ xinfo

xSp
), and the dynamically optimal due care level therefore stricter than

the statically optimal one from a standard negligence rule.

16Except for the special case that vinfo = vSp .
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Independent from the question of which regulation is optimal, we have seen that under

increasing scale the optimal regulation always ensures information acquesition:

Proposition 6. Given optimal regulation, information is always obtained for any given

information structure p and vinfo, care-harm relationship h(x), and maximum private

benefits B, if only the scale is large enough.

Remark. If the statically optimal volume is positive, strict liability is the optimal regu-

lation for large enough scales. This is due to the fact that in this case social optimality

of information acquisition is driven by static considerations. Contarary, if the statically

optimal volume is zero, social optimality of information acquisition for large enough

scales is driven by dynamic considerations, hence implemented by an optimal negligence

rule.

5 Conclusions

How should tort law deal with agents that employ novel technologies that later turn

out to involve environmental harm? Different legal systems come to different, but of-

ten controversial answers. This is despite the economic literature consistently favoring

strict liability, based on comparisons of the efficiency of different environmental liability

regimes. The starting point of this paper was that a possible objection to this literature

is it derives its conclusions in a peculiar information environment: Risk characteristics

are learned by acquiring non-experiential private revelation. We believe that a more

realistic information environment is one in which additional information about a tech-

nology’s risk characteristics in the field is a result of learning from experiential public

data. In such a setting, the liability regime and learning are tightly linked. We find that

in a two-period unilateral care model, the superiority of strict liability for environmen-

tal harm is no longer guaranteed. Instead, an optimally designed negligence rule can

provide a better balancing of benefits, environmental harm, care effort, and learning.

This effect is guranteed if the novel technology would not be used at all under purely

static considerations and the stakes involved, potential benefits and total accident costs,

are very large. This gives rise to our main message: When in-situ experience with a

technology is an irreducible part of risk assessment, then the economics of torts provide

an argument for an important role of negligence rules.

The analysis presented in this paper offers a variety of avenues for further work and

generalization. One area of further work concerns the optimal balance between laboraty-

based tests and in-situ experience. This optimal balance, and the ability of different

liability regimes to implement it, is alluded to in Dana (2010), but technically hinges on

assumptions about the data-generating processes in these two domains. A second area

of further research is a departure from a two-period setting to a setting in which post-

market monitoring is a continuous process, giving rise to a stopping rule that triggers

the introduction of strict liability. This includes a consideration of the dynamics of
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information diffusion among different agents in the population, for which our assumption

of public observability was an obvious modelling shortcut.

Appendix

Proof of Lemma 1. We have

bSI (σ) = Bσ − xSp (σ)− hσ(xSp (σ)) = σ ·B − σ · xSp − σ · h(xSp ) = σ · bSI

and

VOI(σ) =

{
(1− p) 1

2B(σ)2 if bSI (σ) < 0

(1− p) 1
2B(σ)2 − 1

2 (bSI (σ))2 if bSI (σ) ≥ 0

Since bSI (σ) = σ · bSI , a change in the scale does not alter the case distinction. Therefore, we only

have to show that each case itself is homogeneous of degree 2 in the scale. This directly follows

from Bσ = σ ·B, bSI (σ)) = σ · bSI and the fact that p is not affacted by the scale.

Proof of Proposition 3. First, suppose statically optimal volume vSp is positive. If vSp (σ) = σ ·
vSp ≥ vinfo, costs of obtaining information are zero. If vSp (σ) = σ · vSp = σbSI < vinfo, costs are
1
2 (σ · bSI − vinfo)2. Hence, costs are weakly decreasing in the scale. Additionally, costs converge

to 1
2vinfo if the scale goes to zero. The value of information is homgeneous of degree 2 in the

scale. Hence it is strictly increasing in the scale and converging to zero if the scale goes to zero.

Both costs and value of information are continuous in the scale. Therefore we have exactly one

scale ˆscale s.t. costs and value of information equal. For any smaller scale costs outweigh the

value of information and for any larger scale vice versa.

Now suppose statically optimal volume vSp is zero. Costs are now 1
2v

2
info − vinfo · σ · bSI with

bSI ≤ 0. The only difference to the first case is that costs are now increasing in the scale. Since

they do so linearly, the value of information equals costs for some scale σ̂. Again, this is the scale

we were looking for.

Proof of Lemma 2. We have

CT (vimp) =
1

2
v2
imp − vimp · bSI + vimp · [B − xSp − vimp]− p · [h(xSp )− h(B − vimp)]

Therefore

C ′
T (vimp) = [vimp − bSI ] + [[B − xSp − vimp]− p · [h(xSp )− h(B − vimp)]] + vimp · [−1− p · h′(B − vimp)]

= −bSI + [[B − xSp − vimp]− p · [h(xSp )− h(B − vimp)]]− vimp · p · h′(B − vimp)]

The first term is non-negative since bSI ≤ 0, the second by definition (since xSp minimizes total

accident costs), and the third since h′(·) < 0.

Proof of Proposition 5.

CT (vinfo, σ) = C∆v(vinfo, σ) + C∆x(vinfo, σ) = σ2 · C∆v(
vinfo
σ

, 1) + σ2 · C∆x(
vinfo
σ

, 1)

= σ2 · CT (
vinfo
σ

, 1)
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Comparing the value of information VOI(σ) and total implementation costs CT (vinfo, σ) un-

der increasing scale, the σ2 cancels out. We have then to compare some positive VOI with

CT (
vinfo

σ , 1). For σ → ∞ we have
vinfo

σ since vinfo is fixed. The costs of obtaining information

are continuous in the first argument and clearly approach zero if
vinfo

σ → 0.
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