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SUMMARY

Lung cancer is the leading cause of cancer-related deaths worldwide with 50,000 new cases
per year in Germany and 220,000 in the USA. Non-small cell lung cancer (NSCLC) is the most
prevalent variant, with the majority of cases classifying as the adenocarcinoma subtype.
Advances in molecular diagnostics have revealed driving mutations in some tyrosine kinase
receptors (TKRs), such as the EGF receptor (EGFR). Other TKRs like the IGF-I receptor
(IGF-1R) have been implied in NSCLC carcinogenesis. Consequently, treatment strategies
have evolved to include inhibitors against these TRKs (tyrosine kinase inhibitors, TKils), but
only with temporal benefit for the patient. Evidence pointing towards an important role of
IGF-1 signaling in the evasion of inhibition of EGFR lead to double inhibition of EGFR and
IGF-1R being tested in the clinics. Phase | and Il trials were promising, but a phase Il study
failed to demonstrate benefit for the primary end point of progression-free survival after 12

weeks.

My project used a systems biology approach to investigate the role of the dynamic crosstalk
between the signaling from EGFR and IGF-1R on NSCLC cells to better define the effects of
pathway interaction and find causes for the failure of clinical combination treatment. To
generate meaningful quantitative data for the phenotypical modeling of cell behavior, |
established partly novel evaluation algorithms for 2D migration (in cooperation with the
group of Dr. F. Matthaus) and 3D invasion (in cooperation with the group of Dr. D. Drasdo).
In cooperation with the group of Prof. T. Hofer | could successfully establish a first unified
ODE model of EGFR and IGF-1R signaling in NSCLC cells from quantitative time resolved
pathway activation data. Even though microarray analysis of EGF stimulated NSCLC cells
revealed upregulation of migration associated genes, phenotypical assays showed that
NSCLC cell migration was dependent on a more complex signaling environment than double
stimulation with EGF and IGF-1. On the other hand, | was able to show rescue of the NSCLC
migratory behavior by IGF-1 stimulation after EGFR inhibition in a full medium setting,

further corroborating the important role of the interaction between these two growth
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factors for the early spread of NSCLC. The migration data | generated is currently used in the

development of an agent-based model of NSCLC migration by the group of Dr. F. Matthaus.

The data presented here and the associated computational evaluation algorithms and
models will serve as the basis for the integrated multiscale modeling of the complex
conditions governing NSCLC migration and the relevant cell signaling. Thus my work
constitutes an important contribution towards understanding the intricate signaling
responsible for the early spread of NSCLC and resistance against inhibition of particular

TRKs.



ZUSAMMENFASSUNG

Lungenkrebs ist verantwortlich fir die meisten krebsbedingten Todesfélle weltweit, mit
50.000 neuen Fallen pro Jahr in Deutschland und 220.000 in den USA. Das nicht-kleinzellige
Lungenkarzinom (non-small cell lung cancer, NSCLC) ist die am weitesten verbreitete
Variante, wobei die Mehrzahl aller Falle als Adenokarzinom klassifiziert wird. Fortschritte in
molekularer Diagnostik fUhrten zur Entdeckung von Driving-Mutationen in Rezeptor-
Tyrosinkinasen (RTKs) wie dem EGF Rezeptor (EGFR) wahrend andere RTKs wie der /GF-1
Rezeptor (IGF-1R) mit der NSCLC Karzinogenese in Verbindung gebracht wurden. Folglich
entwickelten sich Behandlungsstrategien, die Inhibitoren gegen diese RTKs (Tyrosinkinase
Inhibitoren, TKIls) beinhalten, aber nur vorribergehende Verbesserungen fur Patienten
bewirken. Aufgrund von Untersuchungen deren Ergebnisse auf eine prominente Rolle des
IGF-1 Signalweges beim Umgehen der EGFR Inhibierung hinweisen, wurden
Doppelinhibierungen von EGFR und IGF-1R in klinischen Studien getestet. Die Phase I- und
[I- Studien lieferten erfolgsversprechende Ergebnisse, aber eine Phase Ill-Studie konnte
keine Verbesserung fur progressionsfreies Uberleben nach 12 Wochen als primarem

Endpunkt erreichen.

In meinem Projekt verfolgte ich einen system-biologischen Ansatz, um die Rolle der
dynamischen Netzwerke zwischen den EGFR und IGF-1R Signalwegen im NSCLC zu
untersuchen. Ziel war es, die Effekte diese Interaktionen besser zu verstehen, um Grinde fur
den Misserfolg der Kombinationsbehandlung in der Klinik zu finden. Um brauchbare
quantitative Daten fUr die Modellierung von phanotypischem Zellverhalten zu gewinnen,
etablierte ich zum Teil neue Evaluierungsalgorithmen fir 2D-Migration (in Zusammenarbeit
mit der Gruppe von Dr. F. Matthaus) und 3D-Invasion (in Kooperation mit der Gruppe von
Dr. D. Drasdo). Aus quantitativen, zeitaufgeldsten Proteinaktivierungsdaten konnte ich in
Zusammenarbeit mit der Gruppe von Prof. T. Hofer ein erstes ODE-Modell etablieren, dass
die Signaltransduktion Uber EGFR und IGF-1R gemeinsam beschreibt. Obwohl Microarray-

Analysen von NSCLC Zellen ergaben, dass migrationsassoziierte Gene nach EGF Stimulation
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induziert wurden, zeigten phanotypische Versuche dass die NSCLC Zellmigration von
komplexeren Signalvorgangen als der einfachen Stimulation mit EGF und/oder IGF-1
abhangt. Andererseits konnte ich zeigen, dass Stimulation mit IGF-1 die Reduktion der
Migration von NSCLC Zellen nach EGFR Inhibierung teilweise aufheben kann, wenn den
Zellen Vollmedium zur Verfigung steht. Dies unterstreicht die wichtige Rolle, die die
Interaktion zwischen diesen beiden Wachstumsfaktoren in Bezug auf Streuung von NSCLC
Zellen spielt. Die Migrationsdaten, die ich hier erhob, werden zurzeit in der Gruppe von
Dr. F. Matth&us bei der Entwicklung eines agenten-basierten Modells der NSCLC Migration

verwendet.

Die  hier  prasentierten Daten und die assoziierten = computergestitzten
Evaluationsalgorithmen und Modelle werden als Grundlage fir integrierte
Multiskalenmodelle fir die komplexen Zusammenhdnge der NSCLC Migration und der
relevante Signaltransduktion dienen. Somit stellt meine Arbeit einen wichtigen Beitrag zum
Verstandnis der vielschichtigen Signalweiterleitungsvorgange dar, die fir das frihe Streuen

und die Resistenz gegen die Inhibierung einzelner RTKs verantwortlich sind.
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1 Introduction

1.1 Lung cancer

1.1.1  Clinical relevance, epidemiology, and etiology of lung cancer
Lung cancer is one of the most important cancer types worldwide, with about 50,000 new
cases per year in Germany and 220,000 in the USA. It is the second most common entity
with regard to new cases in both men and women, after prostate cancer in men and breast
cancer in women, respectively.® It is the leading cause of cancer-related deaths, accounting
for up to 25% of all cancer-associated deaths in the industrialized nations. The highest
incidence rates are found in Europe, North-America, and East-Asia, especially China.” The
main reason for the development of lung cancer, especially in the industrialized nations, is
smoking, with an estimated 85% of affected males and 47% of affected females being
smokers or former smokers. Further risk factors, aside from the tobacco-associated

carcinogens, are various substances like asbestos, arsenic, and cadmium.?

Lung cancer is subdivided in several subclasses. Classification historically differentiates
between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC
encompassing various subgroups, based on histological diagnosis. NSCLC is the most
prevalent form with about 85% of all lung cancers (Figure 1 A, B). Five-year survival rates

vary between 61% in early tumor stages, and only 1% in Stage 1V, with the mean survival

[1



INTRODUCTION

rate being as low as 15%. This low number can be explained by the fact that 65% of patients
present with locally advanced or metastatic disease,* due to very little symptoms in the first
phases of cancer development. Additionally, NSCLCs metastasize early and aggressively,
which results in over 75% of tumors being inoperable at the moment of first diagnosis. The
biggest subgroup under NSCLC are adenocarcinoma (ADC), that make up the majority of
cases with about 60%, followed by squamous cell carcinoma (SCC) and then large cell lung

carcinoma (LCC) and other forms like adeno-squamous and sarcomatoid carcinomas.

(Figure1C)
Small Cell Lung Non-Small Cell Lung
Carcinoma (SCLC) Carcinoma (NSCLC)
Adenocarcinoma Squamous Cell Large Cell Lung
Other fi
(ADC) Carcinoma (SCC) Carcinoma (LCC) ertorms

mADC

m SCC
Lcc
Other

mNSCLC
SCLC

Figure 1: Histological classification of lung cancer. (A) Overview over the histological subtypes in lung
cancer. (B) Distribution of SLC and NSCLC. (C) Distribution of NSCLC subtypes. Percentages were taken
from Lortet et al.®

According to the current WHO-classification, ADCs are divided in the histological growth
patterns acinary, papillary, bronchiovascular, and solid. More than 80% of all ADCs grow in a
mix form of different growth patterns and are therefore placed in the group of mixed ADC.
This is problematic with regard to prognostic stratification, as recent studies strongly imply
that the tumor architecture can predict biological behavior and is correlated with specific
molecular alterations.® In the last decade, advances in molecular diagnostics have made it
possible to enhance traditional histological evaluation by identifying driving mutations in
cancer (Figure 2). Especially for ADCs, mutations in V-Ki-Ras2 Kirsten rat sarcoma viral

oncogene homologue (K-Ras), epithelial growth factor receptor (EGFR), v-Raf murine sarcoma

|2
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viral oncogene homologue B1 (B-Raf), and anaplastic lymphoma kinase (ALK) are the most

common therapeutically relevant alterations.”

While some mutations can serve as markers, others represent druggable targets for therapy.
In the latter group, tyrosine kinase receptors (TKRs) like the EGFR have been identified as
especially promising, due to their central role in interpreting environmental signals and their

exposed location on the cell surface.

m KRAS mutated
m EGFR mutated
W BRAF mutated
m ALK rearranged

m Unknown

Figure 2: Distribution of common oncogenic driver mutations in resected stage II-IV pulmonary
adenocarcinomas (n=150). KRAS: V-Ki-Ras2 Kirsten rat sarcoma viral oncogene homologue;
EGFR: epidermal growth factor receptor; BRAF: v-Raf murine sarcoma viral oncogene homologue
Ba1; ALK: anaplastic lymphoma kinase. Modified after Warth et al.®

1.1.2 Treatment options
Treatment options for lung cancer have evolved with the advent of molecular profiling and
the discovery of druggable driving mutations. In some cases, progression-free survival could
be as much as doubled. Nevertheless, long term survival shows no big improvement, with
the 5-year survival rates having risen, from 12% in 1977 to 18% in 2009 (compared to e.g.
prostate cancer with an increase from 68% in 1977 to 100% in 2009). Generally two options
arise, depending on the progression of the disease: if the tumor is deemed inoperable at first
diagnosis, only palliative therapy remains. If an operation is still possible, it is usually
supplemented by adjuvant radio- and/or chemotherapy for tumor stages Il and up. Platinum
compounds like cisplatin and pemetrexed are the clinical standard for both the palliative
treatment and the supplement therapy after resection.* The precise classification of the

tumor remains increasingly relevant, as the specific administration of chemotherapeutics
E
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(e.g. permetrexed for ADC) is linked to the histological type. This stratification has led to
minor increases in median survival from 8 to 12 months and longer in clinical studies (e.g.
shown by Sandler et al.?). Still, to date, traditional chemotherapy approaches, even with
third generation drugs such as paclitaxel, leave much to be desired concerning overall

survival (OS) and progression free survival (PFS).

Discovery of driving mutations in TKRs has fostered hope for new treatment options that
can on the one hand circumvent the adverse side effects of platin-based chemotherapy, but
more importantly offer new and improved approaches to handle inoperable cases.
Consequently, treatment strategies have evolved to include inhibitors against these TKRs
(tyrosine kinase inhibitors, TKls), which in some cases lead to stark increases in OS from few
months under conventional chemotherapy to over two years under TKI treatment, for

patient groups which carry the relevant mutations (see Figure 3).°

1.0 — Erlotinib (n=86)
—— Chemotherapy (n=87)

a5 HR 037 (95% Cl 0-25-0-54); log-rank p<0-0001
2
T 06
3
3]
o
w»n 04
a

0-2 H

0 T T T T T T T T T T 1

I
0 3 6 9 12 15 18 21 24 27 30 33 36

. Time (months)
Number at risk

Erlotinib 86 63 54 32 21 17 9 7 4 2 2 0 0
Chemotherapy 87 49 20 8 5 4 3 1 0 0 0 0 0

Figure 3: Kaplan-Meier curves of PFS for standard chemotherapy and Erlotinib treatment according to
radiographic evidence. From the European EURTAC patient cohort, modified after Rosell et al.®

Nevertheless, virtually all patients suffer from relapse after 3 years or less, which leads to the
still very low 5-year survival rate. A number of mechanisms have been proposed to explain
this, the most prominent being the acquisition of secondary mutations that confer
resistance on the receptor level (e.g. the T79goM mutation in the EGFR™), but also
phenotypic transformation like epithelial mesenchymal transition (EMT) or transformation to
SCLC™ and others. Interestingly, recent evidence indicates that in addition to direct
molecular alterations, tumors can evade inhibition of single signaling pathways by exploiting

the intrinsic redundancy of growth factor signaling.™
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1.2 Cell signaling

Cells constantly sense and interpret their environment through growth factors binding to
receptors on the cell surface. After ligand binding, receptors get modified (e.g.
phosphorylated) and enable adaptor proteins to bind the activated receptor and
subsequently facilitate the transduction of the signal through cascades of intracellular
signaling molecules into the cell. Ultimately, the signaling cascades trigger specific cell

reactions, which are often connected to, or the result of changes in gene expression.

Indeed, dysregulation of cell signaling lies at the core of most cancers. Arguing from the
expanded hallmarks of cancer introduced by Weinberg and Hanahan (Figure 4)," the major
characteristics of the cancer cells themselves as well as the effects on their
microenvironment are either caused by, or result in changes in cell signaling. For example,
sustained proliferation can be achieved by constitutively activated growth factor receptors
like EGFR and evasion of growth suppressors can be a result of mutations that de-sensitize
the relevant signal transduction proteins for negative feedback regulation. Likewise,
changes in the tumor microenvironment can lead to altered signaling by modulating the
incoming signals (e.g. increased cytokine concentrations during tumor-promoting
inflammation). Thus, cell signaling presents an important target with regard to cancer

therapeutics.

EGFR Cyclin-dependent
inhibitors kinase inhibitors

n . Sustaining Evading —
Aerobic glycolysis proliferative growth Immune activating
inhibitors signaling SUppressors anti-CTLA4 mAb

Proapoptotic Resi“l‘ling E“I?‘b“t'_‘g' Telomerase
w . cel replicative )
BH3 mimetics death sty Inhibitors
Genome Tumor
instability & pramohn_g
mitation inflammation
PARP Inducing Activating Selectiva anti-
inhibitors angiogenesis invasion & inflammatory drugs
metastasis

i iy

Inhibitors of Inhibitors of
VEGF signaling HGF/c-Met

Figure 4: Therapeutic targeting of the “Hallmarks of Cancer” from Weinberg and Hanahan, 2011. Drugs
listed are examples of therapeutic intervention strategies that target cell signaling. Modified after Weinberg
and Hanahan™.
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Tyrosine kinase receptors

TKRs are one of the main groups of cytokine receptors bound to the cell surface. They
typically consist of a single hydrophobic membrane-spanning o-helix connecting an
extracellular with a cytosolic domain. TKRs bind soluble or membrane bound peptide
hormones like the epithelial growth factor (EGF), Insulin-like growth factors (IGFs), or the
platelet derived growth factor (PDGF), which facilitate their tyrosine-specific phosphorylation
activity. In most cases, TKR molecules dimerize upon ligand binding and each monomer
phosphorylates defined tyrosine residues on the cytosolic domains of its heterologous
receptor partner (Figure 5). This leads to conformation changes which, depending on the
specific receptor, facilitate the binding of ATP or protein substrates. In a second step,
additional amino-acid residues in the cytosolic domain are phosphorylated and can
subsequently act as binding sites for proteins that are responsible for the further signal
transduction. After ligand binding, many TKRs are internalized and either recycled to the cell

surface after deactivation, or directly degraded in lysosomes or proteasomes.™

Intracellular signal transduction

In order to affect the cellular phenotype, the signal received by the receptor at the cell
surface has to be transduced into the cell interior, resulting e.g. in changes of protein
activation, and all the way to the nucleus to impact gene expression. TKRs usually relay their
activation via adaptor molecules, which then in turn bind and activate other molecules that
harbor enzymatic activities. The main classes of these adaptors are proteins that incorporate
either the SRC homology 2 (SH2) or the phosphotyrosine binding (PTB) domains. These
domains bind to distinct amino-acid sequences that include phosphotyrosine residues.
Subsequently, further domains of the adaptors are utilized by signal-transduction molecules
and thus initiate signaling cascades that ultimately end in changes of gene expression. Two
of the most important downstream signaling pathways are those which transmit the

activation along the Ras/MAPK/ERK cascade and the PI3K/AKT axis (Figure 5).
The Ras/MAPK/ERK signaling pathway

After the respective TRK has bound its ligand and is activated, the first adaptor protein binds
and recruits further factors like GRB2, followed by the son of sevenless (SOS) homolog
protein and others that ultimately result in the loading of the membrane-bound Ras protein
with GTP (Figure 5).* GTP-bound Ras then in turn activates Raf by recruiting it to the
membrane.”® Ras and Raf represent a multi-gene families: there are three Ras members (K-

Ras, N-Ras and H-Ras)® and three Raf members (B-Raf, RAF-1/c-Raf and A-Raf)*®. After
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activation, Raf is responsible for serine/threonine (S/T) phosphorylation of mitogen-activated
protein kinase kinase-1 (MEK1).**® MEK1 phosphorylates extracellular-signal regulated
kinases (ERK) 1 and 2 at specific threonine (T) and tyrosine (Y) residues.” Activated ERK1 and
ERK2 act as S/T kinases and further activate a variety of substrates by phosphorylation.** ™
ERK1/2 has many downstream targets and can regulate its own activation by acting on
upstream substrates in feedback loops.*® Consequently, ERK 1/2 is part of many signaling
pathways and can cross-activate others. For example, ERK activated pgoRskz1 can activate

the cAMP response element binding protein (CREB) transcription factor.”

To date, the number of identified ERK1/2 targets lies in the hundreds. Through these,
ERKz1/2 is involved in processes like cell cycle progression®* and extracellular matrix (ECM)
density™. With regard to migration, especially expression of slug protein, has been shown by
Chen et al.** to be requlated by ERK1/2 in breast cancer. Additionally, ERK1/2 is involved in
cell migration by directly activating calpains and the focal adhesion kinase (FAK), among

others.*
The PI3K/AKT/mTOR signaling pathway

The phosphatidylinositol 3 kinase (PI3K) pathway is also a central node in the cellular
signaling network (Figure 5). Upon activation by phosphorylated TKRs, the p110 subunit of
PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to generate the active
second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3), which recruits AKT to the
plasma membrane, resulting in its phosphorylation and thus its activation. AKT itself is a S/T
kinase that can translocate to the nucleus®®” and regulate a very broad spectrum of
downstream targets,*®** thus having an impact on many cellular processes. As such, AKT
effects on proliferation and cell cycle progression have been shown to be conveyed by
regulation of p53 (via murine double minute 2 (MDM2)) or NFkB (via inhibitor kappa B protein
kinase (Ik-K)).>* This promotes the transcription of genes involved in anti-apoptotic and
proliferative responses such as X-linked inhibitor of apoptosis protein (XIAP), the apoptosis
regulating protein BCL-2, survivin and others.>* Additionally, cell cycle progression and
survival is directly affected by phosphorylation of GSK3,3* leading to reduced degradation of
cyclin D1 and the down regulation of the apoptotic effector caspase 9. AKT has also recently

been shown to be implicated in the regulation of EMT and cell migration.*
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Figure 5: Overview of the EGF and IGF-1 pathways and the downstream effectors relevant in this study.
Both IGF-1 and EGF lead to dimerization of their receptors upon binding. The phosphorylation signal is
transduced from both receptors along both the ATK and the ERK pathway.
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This is achieved through mechanisms like cytoskeletal remodeling (e.g. via Girdin®**) and
matrix metalloproteases (MMP) production (as shown for fibrosarcoma by Kim et al.*). The
best described target of AKT is the mechanistic target of rapamycin (mTOR) complex with
mTORCz1-Raptor and mTORC2-Rictor. mTORCz1 is responsible for the activation of
transcription factors (like TIF-1A3, CREB¥ and E2F*®), leading to the expression of genes
connected to survival and cell growth, whereas mTORC2 seems to build a positive feedback
loop by activating AKT through phosphorylation (Figure 5). Another imnportant node in the
pathway is the phosphatase and tensin (PTEN) analog protein that acts as an endogenous

pathway repressor by de-phosphorylating PIP3 to PIP2.*°

Considering the multitude of biological processes that are controlled by both pathways,
their central role in carcinogenesis upon deregulation becomes apparent, and indeed,
aberrant activation of AKT andfor ERK has been shown to be central in lung cancer and

affected by treatment. 3>4°

The epithelial growth factor receptor in lung cancer

Structure and signaling

The EGFR, also known as ErbBi/HER-1, is a member of the EGFR family, which also
comprises ErbB2/Neu/HER-2, ErbB3/HER-3 and ErbB4/HER-4, all exhibiting the typical TRK
structure.** EGFR is activated by EGF, transforming growth factor alpha (TGF-a), and a
number of additional possible ligands like amphiregulin (AREG) and heparin-binding EGF (HB-
EGF). After ligand binding and dimerization (Figure 5), the major first adaptor proteins for
EGFR are from the SH2 family such as GRB2, SHC and PLCy*, while further downstream
signaling is mediated through STAT5 or the Ras/Raf/MAPK and PI3K/AKT pathways (as
illustrated in 1.2.2). Through these, EGFR signaling has been shown to be involved in cell

proliferation and survival as well as migration.*
Relevance in lung cancer

EGFR has been shown to be heavily involved in many human cancer entities, with expression
levels strongly affecting the clinical outcome of cancer patients,**** but in lung cancer, EGFR
mutations are more relevant than overexpression.”*> As discussed in 1.1.1, driver mutations
in two thirds of all NSCLCs can be identified by molecular diagnostics. Among these, EGFR-
mutations are seen in roughly one third of cases (which translates to 25% of all NSCLCs),
with only K-Ras mutations occurring at similar levels.”** NSCLCs that are responsive to

specific EGFR inhibition by TKIs are usually associated with EGFR mutations (with some
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exhibiting increased EGFR copy number)*®, The EGFR mutations that are most relevant for
clinical application are short in-frame deletions of the conserved LRE (Leucine-Arginine-
Glutamic acid) motif in exon 19 and point mutations resulting in the substitution of L858 in
exon 21 (Figure 6). To date, more than 20 different exon 19 deletions have been identified in
lung adenocarcinomas. Cheng et al. and Chung et al. showed that among patients with exon
19 deletions, those with non-LRE deletions had a lower response to EGFR-specific TKls
compared with those harboring LRE deletions.**° However, OS was not significantly
different among mutation position groups. Both these mutations (the LRE deletions and the
L858 substitutions) are gain-of-function mutations, together accounting for over 85% of all
EGFR mutations in NSCLC (Figure 6).>* They occur more frequently in females, Asians, and in
non-smokers>*>* and, intriguingly, seem to be rather specific for NSCLC, occurring only at a
very low frequency in other tumors such as head and neck, ovarian, pancreatic, and
colorectal cancers.* Interestingly, the mutations occur in the ATP binding cleft of EGFR,
which is where first-generation EGFR TKIs bind, imparting sensitivity to those drugs.*>>>
Other less commonly detected sensitizing EGFR mutations include the G719A/C/S and
S720F mutations in exon 18, the L861Q/R mutations in exon 21, and the V765A, T783A, and

$7681 mutations in exon 20. 45495557

Resistant | Sensitive

(688)
G7195 (c.2155G>A)
G719C (c.2155G>T) -
18| G719A (c.2156G>C) o
S720F (c.2159C>T)

(728)

(729) Exon 19 deletion 45%
19

(761) D761Y (c.2281G=T) 1%

D770 _N771 (insNPG)
D770_N771 (insSVQ) 3%
(762)] D770_N771 (insG)

V765A (c.2294T>C)
20 | T783A (c.2347A>G)
S768I (c.2303G>T)

(823)| T790M (c.2369C>T)
V769L (c.2305G>T) 1%
N771T (c.2312A>C)

LB58R (c.2573T>G)

7p11.2

1%

(LA TC T W T L1

(824) 41%

21
L861Q (c.2582T>A)

75| L86TR (c:2582T>C)

Figure 6: Frequency of mutations in exons 18—21 of the EGFR gene and the association with responsiveness
to EGFR TKls. The diagram depicts the locations and frequencies of EGFR gene mutations detected in
NSCLC patients. The most common EGFR mutations are exon 19 deletions and exon 21 point mutations at
codon 858, which together account for approximately 80o—90% of cases. Modified after Roengvoraphoj.**
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Therapeutic approaches

These data led to the development of small molecules EGFR inhibitors, such as Erlotinib®®
and Gefitinib**°. Both compounds have been used in the clinic to some success. However,
only stabilizing effects of up to 12 months could be achieved. Although the overall response
to EGFR TKis is high for patients with EGFR mutations, almost all patients subsequently

develop acquired resistance to Gefitinib and Erlotinib within 10-16 months.®

This acquired resistance is conferred in part by additional point mutations in the EGFR at
position 790 within the kinase domain, the most prominent one being T790M.*®* The
T790M mutation weakens the interaction of the inhibitor with the kinase and is analogous to
other drug-resistance conferring mutations found in BCR-Abl, PDGFR, and c-Kit, suggesting

a general reliance on similar cellular survival or proliferation pathways.

Due to the sobering performance of first generation EGFR inhibitors in the clinic,
considerable effort has been put in the development of alternative approaches, resulting in
second-generation EGFR inhibitors. Some of the more effective approaches combine
irreversible inhibition of several ErbB family members with compounds like HKI 272, HKI 357
and Afatinib (BIBW299g2). Afatinib was shown to effectively overcome Erlotinib resistance in
vivo and in xenograft models*® and was subsequently used successfully in clinical trials®.
These inhibitors act by covalently binding of cysteine residues, which also confers the ability

to overcome the resistance mutations.

The insulin-like growth factor-1 receptor in lung cancer

Structure and signaling

The insulin-like growth factor-1 receptor (IGF-1R) is a TRK that shares high homology with the
insulin receptor (IR), especially in the cytoplasmic kinase domain. Its structure deviates from
the conventional TRK blueprint, as it is a heterotetrameric protein with two extracellular a-

856 ts main

subunits and two transmembrane B-subunits containing the kinase domains.
ligands are IGF-1 and IGF-2% with their bioavailability being prominently requlated by IGF
binding proteins (IGFBP1-6)%. After ligand binding and reciprocal phosphorylation of the B-
subunits, adaptor proteins such as SH2 domain- containing (Shc) protein and the
PTB-containing insulin receptor substrates (IRSi—4) are recruited to the phosphorylation

sites.*® Downstream signaling is then mediated along overlapping pathways with a

number of other TRKs: the Ras/Raf/MAPK, PI3K/AKT, and JAK2/STAT3 axis (Figure 5).

Relevance in lung cancer
11
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IGF-1R has been reported to be relevant for tumor growth® and the IGF-1 system has been
shown to be frequently expressed in lung cancer and many different malignant®7’° and
premalignant tissues,’”* as well as NSCLC cell lines.”” Furthermore, high circulatory IGF-1
levels have been linked to incidence and severity in lung cancer.”?> Consequently, the
development of TKIs targeting IGF-1R via small molecular inhibitors like OSl-9o6 and
Picropodophyllin (PPP) as well as neutralizing antibodies like Cixutumumab and
Figitumumab has been in the focus of many scientific efforts. Preclinical data of
combination approaches of chemotherapy and Figitumumab,’* as well as the respective

phase | and phase Il trials>7®

were very promising. Unfortunately and somewhat
unexpectedly, a phase lll trial investigating the combination of Figitumumab with Erlotinib

resulted in termination due to worse overall survival in the group receiving Figitumumab.”

To date, we do not have comprehensive data on resistance mechanisms like IGF-1R
mutations that might cause the adverse effect seen in the Phase IIl trials.”® However, the
combination of promising in vitro results with sobering clinical data hints at causes that

could lie in the interconnected signaling environment of the in vivo situation.

Interactions between EGFR and IGF-1R signaling

It has been hypothesized that tumors evade inhibition of single signaling pathways by
exploiting the intrinsic redundancy of growth factor signaling. This redundancy presents
itself in the form of a tightly interwoven network, where inputs from different receptors are
integrated on the same downstream nodes. Not only are most signaling pathways highly
connected, the general shape of the topology of the signalosome can be described as a bow-
tie structure, with many different inputs being interpreted by a low number of central signal
transduction molecules. This then again leads to a highly diverse output of cell reactions on

many different levels (e.g., transcriptional, phenotypical) (Figure 7, discussed in 7).
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Consequently, EGFR and IGF-1R share downstream signaling along the JAK-STAT,
PI3K/AKT, and Raf/MAPK/ERK pathways. In addition to the shared pathways,
heterodimerization events between the two receptors have been shown in different tumor
cell types, which may further hamper the establishment of highly specific therapeutic
options for individual receptors.’® Furthermore, in head and neck squamous carcinoma
(HNSCQ), activation of IGF-1R can overcome EGFR inhibition.®* In hepatocellular carcinoma
(HCQ) it has been shown that simultaneous inhibition of IGF-1R and EGFR resulted in
synergistic antineoplastic effects in hepatoma cell lines.®® Upregulation of IGF-1R
signalling has also recently been implicated in the development of resistance of breast
cancer to therapy approaches such as radiotherapy, hormonal therapy and human epidermal

88 |n breast cancer cell lines, the IGF-1R has also

growth factor receptor 2 (HER2) targeting.
been shown to interact with and activate the HER2 receptor in cells resistant to anti-HER2
therapy (with Trastuzumab). This interaction could be disturbed by Lapatinib (a dual
EGFR/HER2 TKI) as well as IGF-1R antibodies.®” Similar findings have been made in NSCLC,
where upregulation of IGF-IR signaling has previously been described to mediate acquired
resistance to first-generation EGFR TKIs®*® as well as to the irreversible EGFR inhibitors
PF299804 and WZ4002.%° The data from these in vitro studies, together with data from in
vivo studies,® successfully showed that simultaneous inhibition of EGFR and IGF-1R

presents a promising combinatorial approach that could be of therapeutic relevance for a

subset of NSCLC patients.

On the basis of these promising preclinical results, clinical studies with combinatorial
inhibition were commissioned. However, these endeavors have unanimously failed.
Ramallingam et al. tested Erlotinib and the IGF-1R inhibitor R1507 in patients with only one
prior treatment regimen, but the combinatorial treatment failed to show any benefit.>* As
mentioned in 1.2.4, a trial investigating the effect of Figitumumab in combination with
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Erlotinib as second line treatment was terminated in 2010 due to failing to reach the desired
endpoint. Furthermore, a randomized phase Il study of Erlotinib alone or in combination
with the IGF-IR/insulin receptor TKI OSI-go6, in patients with advanced EGFR-mutant
NSCLC was terminated early after an interim analysis in March 2013, showing that there

would be no benefit to the combination.?*

The reasons why these studies failed might lie in the complexity of the TRK signaling
network in general and especially in the context of cancer. With direct alterations of the
involved molecules, changes in their expression and abundance, as well as evasion of
inhibition by rerouting the signal along alternative pathways, tumors have many molecular
mechanisms to become resistant to treatment. In addition, not only do the linear activations
of signal transducers and their interplay factor into the decision-making processes and
cellular behavior, but also the dynamics of these activations may play an important role in
coding the signal. As such, even promising results in preclinical studies might lead to failures
in later stages of development, until we are able to define the signaling networks involved

on a more comprehensive scale in both space and time.

Consequently, | aim to investigate the activation and interactions of IGF-1R and EGFR
signaling, concentrating on the dynamic behavior of the pathway players. Special emphasis
is put on effect of aberrant signaling of IGF-1R and EGFR on the tumor cell dissemination, as
the early spread is one of most important problems in lung cancer. To be able to
comprehensively deal with the large amount of spatio-temporal data necessary to decipher

cellular signaling in a reasonable resolution, | employ a systems biology approach.

1.3 Systems biology

Systems biology aims to describe highly complex biological systems with mathematical
concepts and computational models. This system-level approach to biology has roots in
classical physiology as far back as Weiner in 1948 and Bertalanffy in 1968.9%%* Molecular
biology began to apply these ideas and approaches with the mapping of the first reqgulatory
circuits like the feedback inhibition of amino-acid biosynthetic pathways in 19579% and the
definition of the lac operon and the elucidation of its regulation.” With the advent of the "-
omics” age in biological research, the scale of systems-centered investigations became
much larger. For example, in 2004, Westerhoff and Palsson argued that systems biology of
that time was synonymous with genomics.® As other -omics and high throughput
technologies caught up, the central challenge in systems biology moved towards integrating
the different levels of cellular signaling from genomic changes to gene expression, protein
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activation and metabolics. These efforts resulted in the generation of comprehensive
network maps. Although these static “road maps” are important, to really understand the
biology behind them, we need to know the “traffic patterns” in which these pathways are
activated.®® Thus, the current focus in the field is the investigation of the connectivity,

crosstalk and dynamics of these networks. It has become apparent that temporal

100,101 104-106

dynamics, spatial distribution,***** and cell-to-cell variability are key systems

properties that lead to context-specific cellular responses.

Cancer research is a prime candidate for the successful application of systems biology. It
provides many examples of entities that, after first being thought of as dependent on a
single aberration, display strong robustness against targeted treatment (thus representing
complex systems to investigate). In contrast, there are only very few tumor entities whose
pathology relies on a single molecular defect that can be efficiently managed by single agent
treatments, e.g. a subset of chronic myeloid leukemia cases that respond to the TKI

Imatinib.*””

In order to answer biological questions, two distinct branches of computational systems
biology have proven useful: (1) A top down approach, using data mining in large
experimental datasets, to study emerging properties of the system, which would be missed
using the traditional reductionist approaches. (2) A bottom up approach using simulation-
based analysis of computational models of smaller scale systems. These models enable
efficient generation and first testing of hypotheses, saving time and resources in elaborate in

vitro and in vivo studies.**®*°°

Generation of ODE models

Key in the generation of useful mathematical models is choosing the right modeling
approach for the observed level of complexity. If quantitative data is available and the
system in focus is a relatively limited part of a signaling network, more detailed modeling of
the chemical reactions involved becomes feasible. One of the established approaches to this
more detailed modeling is the description of chemical reaction networks through ordinary
differential equations (ODEs). Hereby, the rates of the reaction (i.e. association, dissociation,
production and degradation of the individual molecular species) are represented through

111

mass action kinetics™® or the Michaelis-Menten approximations.”™ One big advantage of
ODE models is the integration of quantitative and time-resolved data, thus allowing for
interpretation and analysis of complex dynamic behavior on a molecular level. This can lead

to nonintuitive insights into the observed biological systems, as for example shown by
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Swameye et al. for the JAK-STAT pathway. They found that successive nucleocytoplasmic
cycles, rather than unidirectional information flow from the cell surface to the nucleus

followed by degradation of STATSs, determines the systems activation state.™*

The generation of a useful ODE pathway model is most successfully achieved by iterative
processes between experimental data generation and computational model creation (as
shown in Figure 8). After establishing the model topology (e.g. from literature and
repositories like the KEGG database for pathway diagrams *3) and supplying the parameters

of the system by estimation or experimental data, the resulting model can either:

(1) fail to completely describe the experimental data. It can be rejected and different
hypotheses must be developed and integrated into the ODE model. The new model is
then again fitted. This process is iterated until one or more “candidate models” are
identified, that can reproduce the data. If more than one model is determined, these

114

can be ranked using model selection strategies™ while experimental design strategies

can help to generate additional data to increase differentiation between models.*

(2) completely explain the initial set of experimental data. This model can then be
validated by experimentally testing model predictions. When enough confidence in the
model is gained for it being indeed a sufficiently correct mathematical representation of

the biological system, its behavior can be further investigated.*®

Iterative cycles
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Figure 8: Workflow to establish an ODE model in iterative cycles between experimental validation and
model refinement. Modified after Bachmann et al.*”’
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2 Objectives

The evasion of TRK inhibition via rerouting of pro-tumorigenic signals along parallel
signaling pathways is one of the central mechanisms in therapy resistance in NSCLC. While
initially promising, clinical studies investigating combinatorial inhibition approaches
targeting EGFR and IGF-1R ultimately failed to show benefit in patients, indicating the need

for a better understanding of the molecular mechanisms and dynamics of these interactions.

The aim of my project is to investigate the role of the dynamic crosstalk between the
signaling of EGFR and IGF-1R in NSCLC cells to better define the effects of pathway
interaction. A special focus is put on the interaction and crosstalk of downstream signaling
from both receptors and the effects on growth and migration of NSCLC cells to engage the

problem of early spread. To this end, the following goals were pursued:

1. Establishing novel evaluation methods for quantitative time resolved 2D and 3D
migration/invasion assays, followed by proof of principle investigations.

2. Generation of quantitative time resolved data of EGF/IGF-1 pathway activation in
NSCLC cells for the generation of an ODE pathway model.

3. Application of the newly established phenotypical evaluation methods on the effects of
EGF/IGF-1 stimulation and inhibition on NSCLC cells.

4. Definition of downstream pathway effectors that might facilitate the observed

phenotypical effects on NSCLC cells.



3 Materials & Methods

3.1 Materials

3.1.12 Celllines

The cell lines used have been obtained from the American Type Culture Collection

(ATCCQ)/LGC Standards (Wesel).

Table 2: NSCLC cell lines

Trait H838 H1975 Calu-1
classification NSCLC (ADC) NSCLC (ADC) NSCLC (SCLC)
gender male male male

smoking status N/A smoker N/A

age [years] 59 27 47

cultivation medium DMEM DMEM MEM + NEAS
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3.1.2 Media and additives for cell culture

Table 2: Cell culture media and additives

Substance

Company

DMEM

Geneticin (G418)
L-Glutamine

MEM

OptiMEM
Penicillin/Streptomycin

Puromycin

Lonza, Walkersville, MD, USA

Gibco, Life Technologies, Darmstadt, Germany
Gibco, Life Technologies

PAA Laboratories, Colbe, Germany

Gibco, Life Technologies

PAA Laboratories

Sigma, Hamburg, Germany

3.1.3 Consumables, solutions and reagents

Table 3: Consumables, solutions and reagents

Substance

Company

Absolute gPCR SYBR Green
ROX Mix

Acutase

Bradford Reagent
BSA

Cell culture plates
Imaging plates

Cell lysis buffer (10x)

dNTP Mix
Earl's Salt solution (EBBS)

EZ-RUN-Pre stained Rec

Thermo Scientific, Offenbach, Germany

Sigma, Hamburg

Sigma,Munich, Germany

Sigma, Hamburg

TPP, Trasadingen, Switzerland
Zell-kontakt, Norten-Hardenberg, Germany

Cell Signaling, New England Biolabs, Frankfurt/Main,

Germany
Thermo Scientific
Sigma, Hamburg

Thermo Scientific
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Prot ladder, BP 3603-500

FUGENE HD Transfection Promega, Madison, USA

Reagent

IBIDI inserts IBIDI, Martinsried, Germany

Methocel Sigma, Hamburg

Nitrocellulose membranes Whatman, Dassel, Germany

NucBlue Live ReadyProbes Life Technologies, Darmstadt, Germany
Oligofectamine Reagent Invitrogen, Life Technologies, Darmstadt, Germany
Protease-Inhibitor-Mix Serva Electrophoresis, Heidelberg, Germany
PureCol bovine collagen | AdvancedBioMatrix, Carlsbad, CA, USA

RevertAid™ H Minus M- | Thermo Scientific
MuLV

Trypsin PAA Laboratories

3.1.4 Oligonucleotides
Oligonucelotides (siRNAs)

Scrambled siRNA was obtained from Eurofins MWG (Ebersberg, Germany)

Table 4: Oligonucleotides for RNA interference

SiRNA Company

FIR Stealth RNAI, HSS 146065, Invitrogen, Life Technologies

scrambled UGGUUUACAUGUCGACUAA-ATAT (-)

Oligonucleotides (primers)

Primers for qRT-PCR were obtained from ThermoFisher Scientific with the following

sequences:

20



Table 5: qRT-PCR primers

MATERIAL & METHODS

Primer | Forward Reverse

AREG 5-CGGTGGTGCTGTCGCTCTTG-3 5-GAGTAGGTGTCATTGAGGTCC-3'
B2M 5-CACGTCATCCAGCAGAGAAT-3 5-TGCTGCTTACATGTCTCGAT-3
CCL2 5-CTTAGCTTCCAGAGACGGTGAC-3' 5-CTTTTAGACTCTGAATAGGC-3
CTGF |5-CCAAGGACCAAACCGTGG-3’ 5-CTGCAGGAGGCGTTGTCAT-3’
IL8 5-GCTCTCTTGGCAGCCTTCCTG-3’ 5-GTTCTTTAGCACTCCTTGGC-3'

3.1.5 Antibodies

Primary antibodies, and dilutions used for Western immunoblotting:

Table 6: Primary antibodies for Western immunoblotting

Antibody Species Dilution Company

anti-Actin Mouse 1:10,000 MP Biomedicals, Santa Ana, CA, USA
anti-AKT Rabbit 1:500 Cell Signaling, New England Biolabs
anti-pAKT Rabbit 1:500 Cell Signaling, New England Biolabs
anti-EGFR Rabbit 1:500 Cell Signaling, New England Biolabs
anti-pEGFR Rabbit 1:500 Cell Signaling, New England Biolabs
Tyr 1066

anti-ERK Rabbit 1:500 Cell Signaling, New England Biolabs
anti-pERK Rabbit 1:500 Cell Signaling, New England Biolabs
anti-IGF-1R Rabbit 1:200 Santa Cruz, Heidelberg, Germany
anti-pIGF-1R Rabbit 1:200 Santa Cruz

Tyr1165/1166

anti-Pufé0 (FIR) | Goat 1:500 Abcam, Cambridge, UK
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Secondary antibodies and dilutions used for Western immunoblotting:

Table 7: Secondary antibodies for Western immunoblotting

Antibody Species Dilution Company
IRDye 680LT anti-mouselgG Donkey 1:20000 LiCor Bioscience
IRDye 800CW anti-goat IgG Donkey 1:10000 LiCor Bioscience
IRDye 800CW anti-rabbit 19G Donkey 1:10000 LiCor Bioscience
Antibodies for FACS analysis:
Table 8: Antibodies for FACS analysis
Antibody Species Company
Anti-IGF-1R - PE mouse Antibodies-online,com
Anti-EGFR - FITC rat Abcam, Cambridge, UK
3.1.6 Tyrosine kinase inhibitors
Table 9: Tyrosine kinase inhibitors
Substance Specificity Company
Picropodophyllin IGF-1R Merck Millipore, Darmstadt, Germany
CAS-879127-07-8 EGFR Merck Millipore, Darmstadt, Germany
Erlotinib EGFR Cayman Chemical, Ann Arbor, Mi, USA
Afatinib EGFR LC Laboratories, Woburn, MA, USA
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3.1.7 Buffers and solutions

Buffers and solutions were prepared with deionized water.
Buffers used for Tris/Glycin-SDS-PAGE

Laemmli-buffer (3x): o ml

20% SDS
B-Mercaptoethanol
95.5% Glycerine

1M Tris-HCl (pH 7.6)
H2o0

+Bromophenol blue

Borate buffer

Borate acid 450nM
EDTA 20nM
adjust to pH 8.8 with NaOH

TBS (10x)

Tris-HCl (pH 7.6) 200 mM
NaCl 1.5 M
TBST

10x TBS 10% (v/v)
Tween-20 0.1% (v/v)

Gel electrophoresis buffer

SDS 0.01% [w/V]
Glycine 190 mM
Tris-HCI 25 mM

MATERIAL & METHODS
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Nicoletti-Buffer for FACS analysis

Propidiumiodide 50 mg/ml (0.05%)

Sodiumcitrate 0.1% (w/v)

Triton X-100 0.1% (v/v)

Collagen solution

Collagen | 900 pl
H20 360 pl
EBBS 140 pl
NaOH (2 M) ~15 pl, until the color changes to red/pink

3.1.8 SDS/PAGE Gels
Composition of separation and collection gel for SDS/PAGE gel electrophoresis for

preparation of 10 ml, respectively are given in the table below.

Table 10: Composition of collection and separation gels for SDS/PAGE

substance 8% 10% 12% collection gel
separation gel separation gel separation gel

Acrylamide 8% [v/v] 10% [v/v] 12% [v/v] 5% [v/v]

Tris-HCl, pH 6.8 0.5 mM

Tris-HCl, pH 8.8 375 MM 375 MM 375 MM

10% (w/v) SDS 0.1% [w/V] 0.1% [w/Vv] 0.1% [w/V] 0.1% [w/V]

10% APS 0.1% [v/V] 0.1% [v/v] 0.1% [w/Vv] 0.1% [w/V]

TEMED 0.04% [v/V] 0.05% [v/Vv] 0.06% [w/Vv] 0.1% [w/v]

deion. Aqua ad 10 ml ad 10 ml ad 1o ml ad 10 ml
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Chemicals
In general, chemicals were used in p.A. quality and purchased from the following companies

except where otherwise specified.

Sigma Aldrich Chemikalien GmbH (Deisenhofen, Germany)
Carl Roth GmbH u. Co. KG (Karlsruhe, Germany)

Biomol GmbH (Hamburg, Germany)

Invitrogen GmbH (Karlsruhe, Germany)

Merck KGaA u. Co. KG (Darmstadt, Germany)

Roche Boehringer GmbH (Mannheim, Germany)

GE-Healthcare Medical Systems, GmbH u. Co. KG (Munich, Germany)

Kits
Microarray: GeneChip Human Gene 2.0 ST Array (Affymetrix, Santa Clara, CA; USA)
NucleoSpin RNA Il kit (Macherey-Nagel, Diren, Germany)
ELISA kits (R&D Systems, Minneapolis, MN, USA):
0 EGF (DEGoo)
0 IGF-1(DG1o0)
CellTox™ Green cytotoxicity assay (Promega)

CellTiter-Blue” cell viability assay (Promega)



3.2 Equipment

Table 11: Equipment

MATERIAL & METHODS

equipment

name

company

Agarosegel
electrophoresis

systems

PAA-Agarosegel
electrophoresis

systems

Cell counting

chamber
Cell culture hood

Centrifuges

CO, incubator

Live cell imaging

unit

CCD camera

Microscope

FACS

Fume hood

Gel casting

chamber

Neubauer counting

chamber
BioWizard Silverline

Mikro 200R
Centrifuge 5415R
Megafuge 16R

Hera Cell 150

INCOmed

Olympus IX81

photomicroscope

Hamamatsu
ORCA-R2

Axiovert 25

FACS-Calibur flow

cytometer

Secuflow

Keutz Reiskirchen, Germany

Biozym, Oldendorf, Germany

Brand, Frankfurt am Main, Germany

Kojair Tech QY, Vilppula, Finnland

Hettich, Tuttlingen, Germany
Eppendorf, Hamburg, Germany
Thermo Scientific, St. Leon Rot,

Germany

Thermo Scientific, St. Leon Rot,
Germany

Memmert, Schwabach, Germany

Olympus, Hamburg, Germany

Hamamatsu Photonics Deutschland

GmbH, Hersching, Germany
Zeiss, Oberkochen, Germany

Becton-Dickinson, Heidelberg, Germany

Waldner, Wangen, Germany

BioRad, Munich, Germany
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Microfuge

Microplatereader

Microwave
Orbital shaker

PCR

Photometer

pH-Meter

Power supply

gRT-PCR

Thermocycler
Rolling shaker

Running chamber

Spectrometer

Thermoblock

Transfer chamber

Western blot

imaging system

Micro 200
FLUOstar Omega

MultiSkan Ascent

Biometra WT17
DNA Engine PTC 200

Multi Cycler PTC

pH 210

Microprocessor
EV 231

StepOnePlus

CAT RM5

Mini PROTEAN Tetra
Cell

NanoDrop® ND-1000

Thermomixer compact

Mini PROTEAN Tetra
Mini Trans Blot
Module

Odysee Sa Infrared

Imaging System

HettichZentrifugen, Tuttlingen, Germany
BMG Labtech, Ortenberg, Germany

Thermo Scientific, St. Leon Rot,

Germany

Panasonic, Hamburg, Germany
Biometra, Gottingen, Germany
BioRad, Munich, Germany
Biozym, Oldendorf, Germany
Eppendorf, Hamburg

Hanna Instruments (Kehl am Rhein)

Consort, Turnhout, Belgium

Applied Biosystems, Darmstadt,

Germany
NeolLab, Heidelberg, Germany

BioRad, Munich, Germany

Thermo Scientific, St. Leon Rot,

Germany

Eppendorf, Hamburg, Germany

BioRad, Munich, Germany

LI-COR Bioscience, Bad Homburg,

Germany
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3.3 Software

FIJI (ImageJ vi.46j), (http://fiji.sc/Fiji)

Photoshop CSs, (Adobe Systems GmbH, Munich, Germany)

Image Studio v3.1.4 (LiCor Biosciences,Bad Homburg, Germany)

StepOne software v2.3 life technologies (Applied Biosystems, Darmstadt, Germany)

SAS JMP7 Genomics, version 4 (SAS Institute, Cary, NC, USA)

3.4 Methods

3.4.1

3.4.2

3-4:3

Cultivation of cells

Adherent growing cells were cultivated on 15 cm dishes in a humid atmosphere containing
5% CO, at a temperature of 37°C. H838 and Higysg cells were cultivated with DMEM,
supplemented with 10% fetal calf serum (FCS) and 1% penicillin/streptomycin. Calu-1 cells
were cultivated in MEM medium, supplemented with 10% FCS and 1%

penicillin/streptomycin as well as 1% NEAS and 1% sodium pyruvate.

Starvation for growth factor treatment

In order to decrease background activation of pathways by FCS, cells were starved in
propagation medium without FCS, but supplemented with 1% of BSA. To this end, the
propagation medium was aspirated and the cells were washed at least twice with PBS.

Subsequently, starvation medium was added and the cells were starved overnight.

Cryo conservation

Cells from a sub-confluent 10 cm plate were trypsinated, centrifuged at 1,000 rpm for 5 min
at 4°C and resuspended in 1 ml medium containing 10% DMSO. The cells were carefully
cooled down over night at -20 °C and finally frozen at -80°C for 24 h and stored in the
gaseous phase of nitrogen for long-time storage. Cells were thawed in a water bath at 37°C,
resuspended in 10 ml of corresponding medium and centrifuged at 1000 rpm for 5 min at RT
to eliminate the DMSO. Cells were again resuspended in 8 ml of corresponding medium und
transferred to a 10 cm plate. Twenty-four hours after thawing the medium was exchanged

again.
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Cell line characterization

For the molecular characterization of the different cell lines, H838 and Hig75 cells of a
confluent 120 cm dish each were trypsinated and pelleted by centrifuging at 1,000 rpm. The
cells were characterized for a panel of mutations and differentiation markers, which are
frequently found in human NSCLC. These analyses were performed in the Molecular

Diagnostics Facility of the iPH.

ALK translocation, overexpression of c-MET, and EGFR were tested using FISH analysis.
Sequencing was employed to check for mutations in EGFR (exons 18, 19, 20, 21), K-Ras
(exons 2 and 3), B-Raf (exon 15) PIK3CA (exons 1, 5, 7, 9, 20), and PTEN (exons 1-g). The
degree of dedifferentiation was assessed with immunohistological staining against

cytokeratins (CK) 5/6, CK7, transcription intermediary factor 1-alpha (TIF) and p63.

Seeding cells
Cells were trypsinated, centrifuged at 1000 rpm for 5 min at RT, and resuspended in the
corresponding media. The cells were counted using a Neubauer chamber and seeded with

different cell numbers per dish/well for each experiment:

Table 12: Seeding concentrations for different experiment and cell culture dishes

Assay

Cell line

Protein Transfection RNA 12-well for  24-well IBIDI 96 well

Kinetics 10 cm dish extraction ELISA migration cell viability

10cm dish 6-well assays assay and cell
death

assays

H838

H1975

Calu-1

1x10° 5x 10° 20,000 / side 5,000
1x10° 1.5x10° 5x 10° 20,000 / side 5,000

8.5x 10° 20,000/ side 5,000

3.4.6

FACS

Cells of 10 cm dishes at ~70% confluence were detached using Accutase according to the
manufacturer’s protocol and further processed for FACS staining in the Cytometry Facility
of the iPH. Staining was performed against IGF-1R with an anti-IGF-1R antibody labeled with
phycoerythrine (PE) and against EGFR with an anti-EGFR antibody labeled with FITC (see

Table 8). For both stains, 10 pl of the undiluted antibody were added to 1 x 10° cells in 100 pl.
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3-4.9

3.4.10

MATERIAL & METHODS

Furthermore, cell cycle distribution was assessed by DAPI staining. Multiparametric analysis
was performed on a Galaxy Pro Flow Cytometer (PARTEC, Minster, Germany) by
stimulating the fluorochromes DAPI with a mercury 100 W vapour lamp, FITC with a 488 nm
air-cooled argon laser and measuring the fluorescence intensities at 530/30 nm, and PE at
570/20 nm. EGF-FITC and IGF-PE were measured in the logarithmic mode, DAPI stained
DNA was measured in linear mode **. For each measurement, 5,000 to 10,000 cells were
analyzed. Calculation of the cut off (negative vs. positive cells) was performed with the
Flowmax program (PARTEC, Minster, Germany) and results from isotype controls for FITC
and PE multiparametric acquisition and analyses. Cell cycle analysis and DNA-index were

calculated using the MultiCycle AV program (Phoenix flow systems, San Diego, CA 92121).

Ligand secretion

H838 and Hig7s cells were seeded in 12-well plates in triplicates as detailed in 3.4.5 and
allowed to attach overnight. After starvation (see 3.4.2), the cells were supplied with fresh
DMEM medium without FCS and incubated for up to 24 h. Supernatant was collected after

0, 6,12, and 24 h and the concentrations of EGF and IGF-1 were assessed using ELISA.

Ligand depletion

H838 and Higys cells were seeded in 12-well plates in triplicates as detailed in 3.4.5 and
allowed to attach overnight. After starving overnight in DMEM without FCS, media
containing 500 pg/ml EGF or 5 ng/ml IGF-1, respectively, were added with 1 ml/well. At o, 30,
60, 90, 120, 180, and 240 min after stimulation, cells were placed on ice and medium was
taken off and frozen at -20°C. An aliquot of stimulation medium was frozen as a control. For
cytokine analysis, the supernatants were thawed and the ligand concentration was

measured via ELISA.

ELISA

ELISA assays for IGF-1 and EGF were performed according to the manufacturer’s protocol.

Transfection of siRNAs

As detailed in 3.4.5., twenty-four hours after seeding, siRNA-transfections were performed
using Oligofectamine according to the manufacturer’s instructions. siRNAs were used at a
final concentration of 5o nM. After letting the cells attach overnight, they were washed with
2 ml OptiMEM and then supplied with 4.8 ml OptiMEM. For each siRNA condition, a solution
of 1,080 pl OptiMEM with 12 pl of the respective siRNA (solution A), and, separately, go pl

OptiMEM with 18 pl Oligofectamin (solution B), were mixed. After incubating for 8 min at

|30



3.4.11

MATERIAL & METHODS

RT, solution A and solution B were mixed and again incubated for a further 20 min at RT.
Subsequently, the transfection mix was dripped onto the cells. Untreated control cells were
supplemented with just 6 ml OptiMEM. To ensure thorough distribution, dishes were
carefully mixed in circular motions. After further incubation for 4 h in the incubator, 6 ml of
the normal propagation medium was added to the cells. Medium was changed again on the

next day.

Growth factor stimulation for protein extraction

H838 and H1g75 cells were seeded in 20 cm dishes as described in 3.4.5. After cultivation for
three days, cells were washed three times and starved overnight. The following day, cells
were stimulated with different concentrations of IGF-1 and/or EGF diluted in starvation

medium.

Dose-response tests and time-resolved kinetics using different cytokine concentrations and
time points are detailed in the table below. At the respective time points, cells were lysed as

described in 3.4.13.

Table 13: Concentrations and time points for dose-response and time course kinetics experiments

Concentrations [ng/ml] Time points [min]
Dose-response 0,1, 2,5, 10, 50 10
Kinetics 50 0, 5, 10, 15, 20, 30, 60, 120, 240, 320

3.4.12

3.4.13

Receptor inhibition for phenotypical assays

For the measurement of lateral migration, cells were seeded in 24 well plates with IBIDI
inserts or g6 well plates with full medium as described in 3.4.5. After letting the cells attach
overnight, medium was renewed and supplemented with the relevant inhibitor

concentrations.

Isolation of protein lysates

Cells were washed twice with ice-cold PBS and harvested in cell-lysis buffer supplemented
with a protease inhibitor cocktail. Cell lysates were collected in reaction tubes, immediately
frozen in liquid nitrogen and stored at -20°C until further preparation. For isolation of total
proteins lysates, tubes were centrifuged for 10 min at 4°C with 10,000 rpm. The

supernatants were transferred into new tubes and the pellets were discarded.
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3.4.14 Determination of total protein concentration

3.4.15

Total protein concentration was determined using the Bradford assay. To this end, 1.25 pl
lysate was mixed with 625 pl Bradford reagent in a cuvette. Optical density was measured at
595 nm using a photometer. In parallel, a standard curve using defined concentration (0.2,
0.4, 0.6, 0.8, and 1 pg/ml) of BSA was measured for calibration. Total protein concentrations

of the lysates were calculated with respect to the standard curve.

SDS-PAGE and immunoblotting

Equivalent aliquots of whole protein lysates (50 pg) were adjusted with PBS and 3xLaemmi
buffer to a final volume of 30 pl to be separated by SDS/PAGE gel electrophoresis. For this
study, 8%, 10%, and 12% separation gels were prepared as described in Table 10, using a gel
casting chamber from BioRad. After denaturation of proteins at 95°C for 5 min, samples and
protein-size marker were loaded onto the gels and separated with a voltage of 70 V for 15
min followed by 1.5 h to 2 h of 120 V in running buffer (see 3.1.7). Separated proteins were
transferred to nitrocellulose membranes using Mini PROTEAN blot modules from BioRad

with ice-cold borate buffer (see 3.1.7) at a voltage of 100 V for go min.

After blocking of unspecific bindings with blocking solution containing 5% skim milk in TBST
for 1 h at RT, membranes were incubated with primary antibodies (Table 6) diluted in
blocking solution overnight at 4°C. Membranes were washed three times with TBST for 10
min and incubated with the respective secondary antibodies coupled with a fluorochrome
(Table 7) diluted in blocking solution for 1h at RT. Membranes were again washed three
times with TBST for 10 min. All incubations were performed in plastic trays on an orbital
shaker or in 5o ml Falcon tubes on a roll shaker. After the final washing step, detection was
performed using an Odysee Sa Imaging System. The molecular weight of the proteins was
determined using the protein marker and equal loading of protein samples was confirmed
via B-actin detection. Quantification of the detected bands was performed using the Odysee

Image Studio software.
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Randomizing samples to minimize blotting effects

Figure 9 shows the randomization approach employed for the semi-quantitative Western
immunoblot analysis of proteins. In order to allow comparability between different
treatments, samples were distributed so that all treatments from one time point were
measured on one gel. Additionally, to avoid position effects, samples were randomized
according to Schilling et al. (Figure g A).™” Western immunoblot bands were quantified using
the Odysee SA system. In order to increase the data space and thus the confidence in the
estimated mean, additional data points were estimated by linear interpolation between two
measured values (Figure g B). The estimated mean was computed by minimizing the

equation given in Figure g9 B.
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Figure g9: Randomization of Western immunoblot data, estimation of mean signal intensity and
augmentation of trajectories via linear interpolation between measured time points. A. Example of
randomization layout. Top: Western blots with linear loading of samples. Middle: distribution of time points
for the randomization. Three time points from each treatment, marked in red, are combined on one gel.
Bottom: Western blots with randomized layout. B. Top: example of augmented trajectories from quantified
Western immunoblot data. Filled circles represent measured data points, empty circles are results of linear
interpolation between two real data points. The mean is depicted by the black line. The grey band around
the mean denotes the standard error of the mean estimation. Bottom: Equation to estimate mean signal
intensity with measured data point S, estimated mean y and scaling factor s over all time points i, gels j, and
experimental conditions k. This equation is minimized to estimate the mean.
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3.4.16 ODE pathway model generation

For mathematical modeling the Data2Dynamics-Software was used.™® The ODE system
underlying the model was generated with mass-action kinetics. To generate model
simulations, the ODE system was solved by a parallelized implementation of the CVODES
algorithm.™ The model parameters were estimated by maximum likelihood estimation
applying the MATLAB Isgnonlin algorithm. The parameter name prefix “init” indicates the
initial value of a dynamic variable. In order to evaluate the identifiability of the model
parameters and to assess confidence intervals, the profile likelihood was calculated.*’
Computational modeling was perfomed by Dr. C. Maus in the group of Prof. T. Hofer

(Bioquant, Heidelberg).

3.4.17 Growth factor stimulation for RNA extraction

3.4.18

H1g75 cells were seeded in 6 well dishes as described in 3.4.5. After cultivation for 3 days,
cells were washed 3 times and starved overnight. The following day, cells were stimulated
with 5o ng/ml of IGF-1 or EGF diluted in starvation medium. Samples were harvested at o,

0.5,1, 2, 4, 6, 8,12, 24, and 48 h. Subsequently RNA was extracted as described in 3.4.18.

Total RNA isolation, c¢cDNA synthesis, and semi-quantitative real-time
polymerase chain reaction (QRT-PCR)

Total cellular RNA was isolated with the NucleoSpin RNA Il kit according to the
manufacturers' instructions. RNA concentrations were determined by measuring the
absorbance (230 — 400 nm) using @ NanoDrop® ND-1000 spectrometer. The purity of the
RNA was determined through the quotient Abs. 260 nm/Abs. 280 nm. RNA with a

quotient = 1.8 was used for further analysis.

For semi-quantitative real-time PCR analysis, 1 g total RNA was reversely transcribed.
cDNA was amplified using 0.8 mM dNTPs and 200 ng/ul Poly-dT primers on a Multi Cycler
PTC with the following cycling program:

cDNAsynthesis

temperature [°C] time
70 5 min
95 5 min
42 60 min
70 10 min
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RevertAidTM H minusM MuLV(2 U/ul) was added after the second step (25°C, 5 min).

gRT-PCR reactions were performed on the StepOnePlus thermocycler. To this end, samples
were analyzed in triplicates using cDNAs corresponding to 2.5 ng of RNA, 1 uM of

corresponding primers, 50% [v/v] Absolute qPCR SYBR Green ROX Mix and following cycling

program:
gRT-PCR
temperature [°C] time
50 2 min
95 15 min
95 15s }
40X
60 1 min

The SYBR Green fluorescence signal is directly proportional to the amount of synthesized
cDNA. To control for unspecific primer binding and primer dimers, a melting curve analysis

was performed after amplification, using the following program:

Melting curve

temperature [°C] time
95 15s
60 30s
95-60°C -0,5°C/5 s
95 15s

First, cDNA dilution series (12:12.5, 1:25, 1:50, 1:100, 1:200 und 1:400) of all primer pairs were
used to generate standard curves. These were then used to generate relative gene
expression numbers, from the Ct-values of the investigated samples. The relative gene
expression was then normalized to the relative expression of the housekeeping gene beta-2

microglobulin (B2M).
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3.4.19 Microarray analysis with the GeneChip Human Gene 2.0 ST Array

Total RNA was extracted as detailed in 3.4.18 for each time point in triplicates. Microarray
analysis was performed using Affimetrix GeneChip Human Gene 2.0 ST Arrays in
collaboration with the Group of Prof. N. Gretz at the Center for Medical Research in
Mannheim (ZMF Mannheim). To this end, all triplicates were used for the o h, 24 h, and 48 h
time points, whereas only one of the triplicates was used for the other time points. Quality
assessment was performed with the Agilent Bioanalyzer. After amplification and reverese
transcription, labelling with biotin and fragmentation of the resultant cDNA, hybridization
(i.e. the loading of the array with the labeled cDNA fragments) was performed for 16 h at
45 °C. Due to the number of samples, three separate arrays had to be used and the samples
were distributed in three hybridization batches as shown in Table 14. Subsequently, washing
and staining was performed using an Affymetrix Fluidics Station 450 and the microarray was
scanned using an Affymetrix GeneArray Scanner 3,000.

Table 14: Distribution of microarray samples over three hybridization batches. A, B and C stand for the

respective hybridization batch. For o h and both 24 h and 48 h, triplicates were measured. For all other time
points, single samples were used.

Control IGF-1 EGF

Replicas A B C| A B C| A B C
Time [h]

0 1 1 1

0.5 2 2 3

1 2 2| 3

2 2 2 3

4 2 2| 3

6 2 2 3

8 2| 3

12 2 2 3

18 2 3

24 2 2 2 2 2 3 3

48 2 2 2 3 3] 3 3

Data preprocessing and Gene Ontology (GO) annotation was then performed by the group of
Dr. F. Matthaus (IWR Heidelberg). For data preprocessing, the SCAN method was used as

| 121

described by Piccolo et al.”" in order to control for probe composition (e.g. GC content) and
batch effects. The big advantage of SCAN lies in the independence from external reference
samples. Comparative Principal Component Analysis (PCA) of SCAN to other methods by
Marco Albrecht revealed than preprocessing with SCAN lead to a useful temporal resolution

of the time course data (Figure 10).
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Figure 10: PCA of the datasets from EGF (green) and IGF-1 (blue) as well as the unstimulated control (red)
after SCAN preprocessing. Time points in frames denote outliers. Image kindly provided by Dr. F. Matthéaus.

The PCA also revealed that at o h and 24 h, one of each of the triplicates was determined to
be an outlier and was eliminated from the analysis. Also, the data points for 2 h, 12 h, and 24
h were determined to be outliers and eliminated as well. In order to deal with the low
replication and temporal dynamics of the dataset, a new method was developed for GO
annotation and analysis of differential expression. Hereby, scores for the dynamic
expression, peak expression, integral under the curve and relevance (as determined from

numbers of publications) are weighted and combined into a consensus score.

Multiplex analysis of cell death and cell viability

In order to determine cell viability and cell death, the CellTox™ Glow cytotoxicity assay was
multiplexed with the CellTiter-Blue ° cell viability assay. To this end, cells were seeded in g6
well plates (see Table 12) and cytotoxicity as well as cell viability were determined at
indicated time points. First, CellTox™ Glow solution was prepared according to the
manufacturers' instructions and used in a 1:5 dilution in each well. After incubation for 15
min, the amount of dead cells was quantified in the FLUOSTAR Omega microplate reader
using the filter combination excitation: 485 nm [/ emission: 520 nm. Subsequently, CellTiter-
Blue ° solution was prepared according to the manufacturers' protocol and employed in a 1:5
dilution in the wells of the same plate. After incubation for 1 h, metabolic activity was
measured in the FLUOSTAR Omega microplate reader using the filter combination
excitation: 540 nm / emission: 620 nm. For absolute quantification, a standard curve was
prepared on a g6-well plate with cell numbers ranging from 1,000 to 10,000 cells in five

technical replicates.
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In contrast to the procedure with the test plates, the standard plate was first tested for
viability and subsequently for cell death: After letting the cells attach over night, they were
first treated with Cell Titer Blue to measure cell viability as described above. Thereafter, the
cells were lysed with the lysis buffer supplied in the CellTox™ Green kit and then treated as
described above to measure total cell number. Cell numbers and amount of dead cells were

subsequently calculated with respect to the standard curve.

2D Migration assay with IBIDI inserts

For 2D migration assays, cells were seeded in IBIDI inserts in a 24-well plate (with
concentrations of 2 x 10* cells in each chamber of the insert, see 3.4.5) and left to attach
overnight in the incubator. The inserts were carefully peeled off, resulting in a gap of 500 um
between the populations. The wells were then washed once with PBS to clear away
detached cells, and subsequently filled with 5oo ul of the respective treatment medium. For
growth factor stimulation experiments, medium was carefully aspirated from the inserts and
replaced with starvation medium in the inserts after washing twice with starvation medium
for overnight starvation before continuing as described above. Cell nuclei were stained with

NucBlue Live ReadyProbes by adding one drop / 500 pl medium.

3D Spheroid migration/invasion assay
Spheroids were generated with 5oo cells per spheroid using a hanging drop approach as

follows:

monotypic spheroids
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Figure 11: Generation of spheroids with the hanging drop method. 20 pl drops of cell suspension were
pipetted on the lid of a cell culture dish. The lid was inverted and cells aggregate in the tip of the hanging
drop. Over 48 h the cells increase cohesion and form compact spheroids. These spheroids were then
embedded in a matrix and monitored over up to 72 h.

Cells were first trypsinized, counted and then centrifuged and resuspended in propagation
medium with 20% of a 12 mg/ml solution of methocel in basal medium to the desired
concentration. Unless otherwise specified, this was 2500 cells/ml, resulting in 5oo cells per
drop of 20 pl of this cell suspension. Drops were pipetted on the lid of a 150 cm?2-culture dish,
which was subsequently carefully inverted back onto the dish. In this approach, all

suspended cells in the resulting hanging drop contribute to the formation of a single
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spheroid as illustrated in Figure 11. To prevent excessive evaporation, the dish bottom was
filled with 15 ml of PBS. After 48 h, the spheroids were harvested by carefully washing them
off the culture dish lids and collecting them in a 5 ml Eppendorf tube. After letting the
spheroids sediment for 10 min and taking off the supernatant, spheroids were embedded in
400 pl of a 1:1 mix of 2 mg/ml collagen | solution and methocel-solution. To this end, 24-well
imaging plates were pre-coated with 200 pl of collagen I/methocel solution that were then
allowed to polymerize for 30 min. The sedimented spheroids were taken up in collagen
I/methocel solution to a final concentration of 30 spheroids per 200 pl and then distributed
into the wells with 200 pl per well. After polymerization in the incubator for 30 min, the
embedded spheroids were supplied with 5oo pl of full propagation medium containing the

relevant stimulation agents.

Manvual evaluation of 3D spheroid migration/invasion

For manual evaluation of 3D spheroid migration/invasion, bright field images were acquired
on an IX81 motorized inverted microscope and a Hamamatsu ORCA-R2 camera with the
Olympus excellence RT software. Further image processing and evaluation was carried out
using FUI. The size of the spheroid body was assessed by measuring the projection area.
Sprouting activity was assessed by counting the sprouts and summing up their measured

length.

3.4.24 Live cell imaging data acquisition for migration and invasion analyses

Live cell imaging was conducted using an Olympus CellAR Live Cell Imaging System with an
IX81 motorized inverted microscope and a Hamamatsu ORCA-R2 camera, fitted with a
climate chamber. Images were acquired using the Olympus excellence RT software. Further

image processing was carried out using FlJI and computational approaches detailed below.
2D migration analysis

For the analysis of 2D migration assays, images were acquired over a period of up to 72 h
using the excellence RT software, with 4x magnification in both phase contrast and at 460
nm channels in intervals of go min between pictures. Each gap was covered by a vertical line
of 5 pictures with an overlap of ~20%. Image stacks were stitched using the “stitch grid of
images” plugin in FlJI, with automated computation of image overlap (Figure 12A). The
stitched image stacks were then further analyzed together with the group of Dr. F. Matthaus
(IWR Heidelberg).
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Here, the time-lapse videos were analyzed by particle image velocimetry (PIV)*™* using a
Matlab implementation (MatPIV).” The method is based on defining a window in one
image and computing its correlation with pixel-wise shifted windows of the subsequent
frame. The windows in this analysis had a size of 64 x 64 pixels, with an image resolution of
3.2 um?® per pixel. Consecutive windows were overlapping each other by 50%, yielding
velocity vectors at intervals of 32 pixels (Figure 12 B). For every pair of images, a velocity
field consisting of speeds (|v|), x-components (direction perpendicular to the gap), and y-
components (parallel to the gap) were obtained. Speed dynamics were computed by
averaging the speeds of every frame. The resulting vector fields can be summed up over the
y-axis and plotted over time as seen in (Figure 12 C on the left), to visualize the migration
dynamics over time. To estimate the relative contribution of directed motion to the overall
motility we computed the ratio between the magnitude of the x-component with respect to
the sum of both components: |vx|/(Jvx|+|vy|). To generate the cell density data, images were
first segmented using a wavelet-based method for detecting Hoechst-labeled cell nuclei.***
From this we obtained the positions of each cell for each video frame. To calculate the cell
density, space was then divided into 5o rectangular boxes. From the amount of cells in each
box, normed local cell densities were computed. These cell densities were plotted over time
in a similar way, visualizing the gap closure (Figure 12 C on the right). For all migration
analyses we used only frames taken during the first 30 h, during which significant speed

dynamics were observed.
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Figure 12: Overview over the particle image velocimetry (PIV) technique. A. Stitched images from IBIDI 2D
migration assays. Left: phase contrast, Right: HOECHST staining of nuclei. B. Schematics of PIV. Top:
Distribution of rectangular regions of interest and cross correlation between two time points. Bottom:
HOECHST staining of two consecutive time points and the resulting velocity vector field after cross
correlation (pictures kindly provided by Dr. F. Matthaus. C. Left: speed distribution from HOECHST staining.
Intensities were summed up over the y-axis of the images and plotted over time. Red color denotes
movement to the right, blue color to the left. Color intensity stands for movement speed. Right: density
distribution from HOECHST staining. Intensities were summed up over the y-axis of the images and plotted

over time.
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3D migration/invasion analyses

For 3D migration/invasion assay analysis, phase contrast images were acquired over up to
72 h using the excellence RT software, with go min between pictures in 4x magnification.

Images were analyzed together with the Group of Dr. D. Drasdo (INRIA, Paris).

For quantification of the spheroid invasion pattern the projection area, the area of the
sprouts, the radius of gyration, the number of detached cells, and the space-filling fraction,
i.e., the fraction of space occupied by cells, were considered. To be able to quantify and
compare the brightfield images, the spheroid was segmented using a threshold, combining
local grey level intensity and gradient information. In a pre-processing step, non-uniform

125

illumination was corrected by using an iterative polynomial interpolation method.

Figure 13 shows the result of this immage processing algorithm, with spheroid segmentation
(B) and density measurement (C) as well as the available measures. The area of the spheroid
is the projection area given by the number of all pixels occupied by the cell body multiplied
with the area of one pixel. The sprout area provides a measure for the spread of tumor cells
from a sphere. Sprouting is described by a circle representing the radius of the spheroid

body and sprout-associated pixel numbers, which do not belong to the spheroid body.

Spheroid bulk
without detached Sprouts
cells

Detached
cells

Spheroid

Brightfield B. segmentation

W, Measures used to evaluate cell
invasion:

Total area of the spheroid
* Main spheroid
+ Area of sprouts
« Number of detached cells
(o) + Estimated radius: Ry,e,=/Area/n
T + Cell density distribution
\_ * Radius of gyration )

_ircular grid

Figure 13: Results of novel image processing algorithm for spheroid assays. (A) Brightfield image of collagen
embedded spheroids with sprouts and detached cells. Red circle defines the spheroid “body”, while the
green contour denotes the sprouts and detached cells. (B) Example for data segmentation of all pixels
covered by cell material, the spheroid bulk, tumor cell sprouts, and detached cells. (C) Left: Circular grid
originating from the spheroid center of mass . Right: Cell density plot over each grid circle
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The radius of gyration is defined by Ry,, = \/%Zi(ri — R_,,)? and represents an additional

measure for the tumor cell spread. Here R, = %Zirl- defines the position of the spheroid
mass center of all occupied pixels, with N the total number of documented pixels. If all pixels

occupied by cell bodies fit into a circle, the radius of that circle is R;peq = A/ = \/Zngr.

In contrast, if the cell population forms fingers or if cells detach from the cell mass

\/A_/n < \/Zngr is true. The space-filling fraction represents the proportion of space filled
with cells. Inside a circle completely filled with cell material, this value is 1. Outside the circle
the value decreases with increasing distance of cell material from the center of the circle.
The area of the sprouts measure the extent of protrusions taking into account only cells
connected to the main tumor cell mass. These are taken into account by the number of
detached cells. The radius of gyration can be defined by all cells emerging from one spheroid

with and without detached cells.

Statistical analysis and software

Data are presented as mean of at least three independent experiments including standard
deviation (SD), except otherwise specified. P-values (significance level: < 0.01) were
determined by the student’s t-test. Statistical analyses were performed using IBM SSPS (V)

Statistics and SAS version 9.2.
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4 Results

4.1 Molecular characterization of model cell lines

Two independent adenocarcinoma cell lines (H838, H1975) were used in this study to analyze
the effects of IGF-1/EGF signaling on pathway activation and cell phenotypes. Because the
genetic background of these lines must have significant impact on the biological outcome
and data interpretation, in a first step a molecular characterization for both model systems
was performed using molecular diagnostics in the Institute for Pathology (Table 15).
Fluorescence-in situ hybridization (FISH) analysis for amplification of ¢-MET and EGFR as
well as for ALK translocation was negative in both cell lines. Sequencing for common
aberrations in K-Ras, B-Raf, PIK3CA, and PTEN yielded negative results as well. Sequencing
for EGFR mutations revealed the activating L858R and the T79oM mutation, which confers
resistance to Erlotinib in H1g75, whereas H838 possesses non-mutated wild type receptor.
Additionally, differentiation markers such as cytokeratins (CKs5/6, CK7), transcription
intermediary factor 1-a (TIF) and p63 were investigated: H838 showed CK7 positivity with
CKs/6, TIF and p63 being negative, which represents a poorly differentiated phenotype,
whereas Hig75 showed a well differentiated phenotype with CK7 and TIF positivity and

CKs/6 and p63 negativity.

| 44



RESULTS

Table 15: Results of cell line characterization for H838 and H1g75 cell lines

Technique Gene of interest Frequency (%) *® H1975
FISH c-MET 22 neg. neg.
EGFR 22 neg. neg.
ALK 2-5 neg. neg.
translocation
Sequencing EGFR ex18,19,20,21 15 neg. T790M, L858R
KRAS ex2,3 30 neg. neg.
BRAF ex15 1-3 neg. neg.
PIK3CA ex1,5,7,9,20 1-3 neg. neg.
PTEN ex1-9 4-8 neg. neg.
Differentiation poor well

CK5/6°,CK7*, TIF, p63° CKS/6°,CK7°,TIF*, p63

§ Exons: exons with clinically relevant alterations
S Frequency: occurance of respective alteration in patients in percent
CK: cytokeratin, TIF: Transcription intermediary factor 1-alpha

To be able to investigate the effects of EGF and IGF-1 signaling in both cell lines used, the
respective receptors need to be present on the cell surface. FACS analysis was employed to
check for both EGFR and IGF-1R surface expression on both cell lines as shown in Table 16.
IGF1-R positivity could be verified on the surface of 80.97% of H1975 cells and on 97.48%of
H838 cells. EGFR surface expression was measured on 34.62% of H1975 and 15.42% of H838
cells, respectively. Combined positivity for both receptors was shown for 34% of H1ig75 and

15.34% of H838 cells.

Table 16: FACS analysis of IGF-1R and EGFR surface expression in H838 and H1g975 cell lines

+ IGFR + EGFR +IGFR / + EGFR
H1975 80.97 34.62 34.00
H838 97.48 15.42 15.34
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4.2 Ligand secretion by NSCLC cells and cytokine uptake

To ensure that IGF-1 and EGF are taken up by the cells used, depletion experiments were
performed using ELISA assays. Additionally, to exclude the possibility of signaling pathway
activation through secretion and autocrine stimulation of IGF-1 and EGF, we investigated if

H838 or H1g75 produce EGF or IGF-1.

EGF depletion IGF-1 depletion

AU
AU

1.0

Lh—l———'—\.—. 0o L - - - s

&0 20 g
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Figure 14: Uptake of EGF and IGF-1 by H838 and H1g75 cells. (B) Uptake of EGF (left) and IGF-1 (right) in
both H838 (orange) and Hig75 (red) over 240 min. EGF was supplied with 500 pg/ml, IGF-1 with 5 ng/ml.
Supernatant was collected after 5, 15, 30, 60, 120, 180 and 240 min and the residual amounts of growth
factor were measured via ELISA. AU: arbitrary units.

Figure 14 shows that both cell lines depleted IGF-1 and EGF over a timeframe of 4 h with the
strongest effects (at least 50% reduction) within the first 5 to 15 min. H838 cells showed
complete depletion of both factors in the first 10 min. H1g75 cells showed a similar dynamic
for IGF-1, but a less pronounced depletion for EGF, where total depletion was achieved
around 180 min. Additionally, neither H838 nor Higys cells secrete any EGF or IGF-1 in
measurable amounts over 24 h (data not shown). Thus, any stimulation with exogenous EGF

and/or IGF-1 will not be distorted by secretion of the cells themselves.

Generation of an IGF-1/EGF-induced pathway model in

NSCLC cells

In order to build a computational model to investigate the effects of EGF and IGF-1
stimulation on NSCLC cells, protein activation of key players in the pathway was assessed.
This protein activation represents the most direct readout to link stimulation input with
cellular responses. Randomized Western immunoblotting was used as a well-established
and defined method to generate semi-quantitative time course data with high

reproducibility.
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Data acquisition

Specific antibodies (see Table 6) recognizing key nodes in the IGF-1R and EGFR pathways
were tested by Western immunoblotting using total protein extracts from H838 cells. As
shown in Figure 15, IGF-1R, EGFR, ERK, and AKT could be detected. Antibody specificity was
tested by siRNA-mediated knockdown of total receptors, which reduced the signal for both
IGF1-R and EGFR. After treatment with EGF or IGF, phosphorylation of EGFR or IGF-1R was
detected, respectively. Equally, phosphorylation of the downstream effectors ERK1/2, AKT

was observed.
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Figure 15: Western immunoblot analysis of key pathway components for IGF-1R and EGFR. Shown are
bands for the total receptors, two phosphorylation sites for each receptor as well as total and
phosphorylated forms of downstream effectors ERK1/2 and AKT. Antibody specificity for the total receptors
was shown by siRNA knockdown of the receptors. Inducibility of the pathway is illustrated by an increase in
phosphorylated receptors and downstream effectors after administration of EGF or IGF, 50 ng/ml each.

Protein activation kinetics for H838 cells

The ODE modeling approach used here is especially suvited to simulate the important
dynamic behavior of cell signaling. In order to generate a dataset as the foundation for such
an ODE model, kinetics of H838 cells after stimulation with IGF-1, EGF, or both were
generated. To this end, H838 cells were stimulated with 50 ng/ml of IGF-1, 50 ng/ml EGF or
50 ng/ml of both IGF-1 and EGF. Cells were harvested at o, 5, 10, 20, 30, 60, 120, and 240 min
after stimulation, lysed and analyzed with semi quantitative Western immunoblotting.

Figure 16 shows the augmented trajectories of the quantified protein kinetics.
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The unstimulated control cells showed no phosphorylation in the observed pathway
components. In contrast, stimulation with EGF, IGF and both growth factors showed distinct

effects, with EGF stimulation resulting in in the following:

e No crossactivation of IGF-1R.
e EGFR reacted to EGF stimulation with rapid but transient induction of EGFR

phosphorylation, with the peak activation being reached at 120 min.

Total EGFR levels decreased after EGF administration, with a steep drop in the first 10

min and a sustained reduction over the observed treatment.

Phosphorylation levels of ERK displayed a steep increase after EGF stimulation, with a
peak activation after 10 min and a reduction in levels to about the starting amounts

over the 240 min timeframe, closely resembling the EGFR activation dynamic.

AKT phosphorylation responded quickly to EGF treatment with a similar dynamic as
ERK activation after EGF treatment: a steep increase and a maximum at 10 min

followed by a reduction to the starting amounts.
IGF-1 stimulation resulted in an equally clear, but partly different activation behavior:

e No cross-activation with EGFR

e Rapid phosphorylation IGF-1R after 5 min with sustained activation over the observed
timeframe of 240 min.

e In contrast to EGF treatment, AKT phosphorylation showed a slower increase, with a
comparatively lower maximum at 30 min and a sustained activation over the 240 min.

e Treatment with IGF-1 elicited only a moderate response in ERK phosphorylation.

Double stimulation with IGF-1 and EGF yielded the following results:

The IGF-1R phosphorylation dynamic was similar to treatment with IGF-1 alone.

e EGFR phosphorylation was reduced compared to EGF alone.

e Total EGFR levels behaved like with EGF treatment

e An additive response in pAKT, with a steep increase and a maximum at 10 min that
was higher than after treatment with EGF alone and a sustained activation similar to
the IGF-1 treatment.

e Phosphorylation levels of ERK showed no difference from the dynamic displayed after

treatment with only EGF



RESULTS

Thus distinct differences in pathway activation between EGF and IGF-1 treatment could be
observed, with the EGF signal being transduced over both ERK and AKT, whereas the IGF-1
signal elicited only a low response in ERK and a strong one in AKT. Curiously, double
stimulation reduced the activation of EGFR, although no receptor cross activation was
detected. Crosstalk between the pathways could be detected in AKT phosphorylation,
where double stimulation resulted in an additive response. ERK showed no reduced
phosphorylation in the double stimulation compared to EGF alone, even though EGFR
activation was reduced in the double stimulation. This also implies an additive effect with

the low activation of ERK via IGF-1R.
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Figure 16: Protein kinetics of key pathway components in H838 cells after stimulation with 50 ng/ml EGF, 50
ng/ml IGF-1 and double stimulation with 50 ng/ml of both factors as well as the untreated control,
monitored over 180 min. Filled circles represent quantifications of Western immunoblotting signals; empty
circles are results of linear interpolation between two real data points. Results of three independent
biological experiments are displayed. The mean is depicted by the black line. The grey band around the
mean denotes the standard error of the mean estimation.
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4.3.3 First ODE model for IGF-1/EGF-induced signaling in H838 cells
Model topology and ODEs

Based on the H838 pathway activation dataset, a first model was constructed by Dr. C. Maus
from the Group of Prof. T. Hofer using ODEs. The topology is shown in Figure 17. Boxes
represent the observed protein species, arrows represent the reactions. In total the model

comprises 12 protein species (proteins and protein conditions) and 17 reactions.

Figure 17: Model topology for the first
pathway model constructed from
H838 pathway activation data. Boxes
represent observed protein species.
Arrows represent reactions.
Generated with CellDesigner.

For the generation of the pathway model the following requirements were considered:

e The receptors can be phosphorylated with a baseline speed. Adding the ligand
increases this speed.

e The phosphorylated receptors are internalized and recycled to the cell surface.

e The phosphorylated receptors effect the phosphorylation of AKT and ERK. pAKT and
pERK both are dephosphorylated at a constant rate.

e In order to explain the steep drop of total EGFR in the early time points before
phosphorylation of the receptor, EGFR can be degraded directly after ligand binding,
but before phosphorylation.

e The internalized EGFR can be degraded as well, to explain the sustained reduction over
the observed 240 min.

e The activated IGF-1R can inhibit the phosphorylation of EGFR in order to model the

reduced activation of EGFR under double stimulation.
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The underlying ODEs are summarized in Figure 18, together with initial concentration

parameters that were established by solving the respective ODE systems in order to start

the unstimulated system from a steady state.

d[IGFR]/dt —vy — v + vy v =
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d[pEGFR]/dt tog + vy — vg U5

d[EGFRi]/dt +vg — vi9 — V11 v6 =

d[AKT]/dt —vy12 — vz + U4 —

d[pAKT]/dt +vi2 + vz — vig

d[ERK]/dt —v15 — V16 + V17 vg =

d[pERK]/dt +v1s + vig — v17 vy =

v =

v =

vy =

vi3 =

v1g =

v =

v =

V17 =

Transformation of initial concentration parameters to achieve
steady-state of unstimulated system:
init_plGFR - kendo_IGFR

k_phos_1GFR _basal
init_plGFR - k_endo 1GFR

init 1GFR »

init IGFRi  —

init_ EGFR

init_pEGFR

kodeg EGFRi - k_endo EGFR
ksyn EGFR

mitEGFRi - ——
m ! kden EGFRI

init AKT T s . o
kodeg EGFRI- k_phos AKT_E - ksyn EGFR + k_phos AK'T_

init_pERK - k_deg EGF

init ERK -

[IGFR] - k_phos IGFR_basal

[IGF] - [IGFR] - k_phos_ IGFR

k_endo_IGFR - [pIGFR]

[IGFRi| - krec IGFR

ksyn.EGFR

[EGFR] - k_phos . EGFR _basal

[EGF] - [EGFR] - k_phos_ EGFR
[pIGFR] + 1

[EGF] - [EGFR]  k_deg EGFR

k_endo_EGFR - [pEGFR]

[EGFRI] - krec_. EGFR

[EGFRI] - k_deg EGFRi

[AKT] - k_phos_ AKT_E - [pEGFR]

[AKT] - k_phos_ AKT I [pIGFR]

k_dephos_ AKT - [pAKT]

[ERK] - k_phos_ERK_E - [pEGFR]

[ERK - k_phos_ERK_I - [pIGFR]

k_dephos ERK - [pERK]

init_pART - k_deg EGFRI - kodephos AKT - k_endo EGFR
(GFR - ksyn EGFR + init_pIGFR - k_deg EGFRi - kendo EGFR - k_phos AKT_I
- kodephos ERK - k_endo EGFR

kodeg EGFRI- k_phos ERK_E - ksyn EGFR = k_phos ERK_E - korec EGFR - ksyn EGFR + int_plGFR - k.deg EGFRI - keendo EGFR - k_phos ERK_1

Figure 18: ODEs underlying the first pathway model from H838 data. Left: va to va7 describe the reactions
in the model with the relevant concentrations and reaction constants. Bottom: initial concentrations of
total and phosphorylated receptors and total AKT and ERK, computed by solving the ODEs at time point
zero. ODEs were defined by Dr. Carsten Maus (Prof. Thomas Hofer, Bioquant).
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Model calibration and parameter identifiability

After establishing the model structure and generating the ODEs describing the reactions,
the model was calibrated and model fits assessed. Figure 19A shows the calibration fits for
all relevant observables (pAKT, pERK, pEGFR, pIGF-1R and total EGFR) in all four biological
conditions. Total IGF-1R levels did not react to any of the treatments, and are therefore not
shown. Agreement between the data points (dots) and the model fits (lines) was very good
for pAKT in the unstimulated control, the EGF, and the double stimulation treatment. For
the IGF-1 treatment, the values and model fit diverged after 60 min with the last two time
points outside the confidence interval. For pERK, the situation was similar, with EGF and
double stimulation showing good fits to the data points. The fit for IGF treatment in
principle showed the same dynamic as the data with slight misalignment at 15 min. For
PEGFR, all four biological conditions were described by the model. The fits for pIGFR also
captured the dynamics of the control, EGF, and double stimulation. The IGF-1 stimulation
dynamic is also described quite well, if overestimating the maximal activation (the fit
overlaps the one for the double stimulation). Lastly, the fits for the total EGFR kinetics

accurately described the depletion of EGFR under EGF and double stimulation.

Table 17: Nomenclature of relevant model parameters. Parameters for scaling factors and standard
deviation estimation are omitted for clarity.

Parameter name Description
init_pAKT initial amount of phosphorylated AKT as defined in Figure 18
init_pERK initial amount of phosphorylated ERK as defined in Figure 18
init_plGFR initial amount of phosphorylated IGF-1R as defined in Figure 18
init_ EGFR initial amount of phosphorylated EGFR as defined in Figure 18
k_deg_EGFR reaction constant of the degradation of EGF bound EGFR before
phosphorylation
k_deg_EGFRi reaction constant of the degradation of internalized EGFR
k_dephos_AKT reaction constant of the dephosphorylation of activated AKT
k_dephos_ERK reaction constant of the dephosphorylation of activated ERK
k_endo_EGFR reaction constant of the internalization of EGFR
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k_endo_IGFR
k_phos_AKT_E
k_phos_AKT_|
k_phos_EGFR
k_phos_EGFR_basal
k_phos_ERK_E
k_phos_ERK_|I
k_phos_IGFR
k_phos_IGFR_basal
k_rec_EGFR
k_rec_IGFR

k_syn_EGFR

reaction constant of the internalization of IGF-1R

reaction constant of the phosphorylation of AKT via the activated EGFR
reaction constant of the phosphorylation of AKT via the activated IGF-1R
reaction constant of the ligand induced phosphorylation of EGFR
reaction constant of the basal phosphorylation of EGFR

reaction constant of the phosphorylation of ERK via the activated EGFR
reaction constant of the phosphorylation of ERK via the activated IGF-1R
reaction constant of the ligand induced phosphorylation of IGF-1R
reaction constant of the basal phosphorylation of IGF-1R

reaction constant of the recycling of internalized EGFR to the cell surface
reaction constant of the recycling of internalized IGF-1R to the cell surface

reaction constant of the synthesis of EGFR

The profile-likelihood analysis shown in Figure 19B revealed good identifiability of most

parameters, with nine parameters being structurally non-identifiable: The phosphorylation

and dephosphorylation constants for both ERK and AKT (k_dephos_AKT, k_dephos_ERK.

k_phos_AKT_E, k_phos_AKT_I,k_phos_ERK_E, k_phos_ERK_I) as well as the constant for

the phosphorylation of the IGF-1R (k_phos_IGFR), the constant for internalization of IGF-1R

(k_endo_IGFR), and the constants for recycling of both receptors to the plasma membrane

(k_rec_EGFR and k_rec_IGFR).
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Figure 19: Calibration and parameter profile likelihoods for the first EGFR/IGF-1R pathway model in H838
cells. (A). Calibration fits for the important activated nodes in the pathway: pIGFR, pEGFR and total EGFR,
as well as pAKT and pERK. Measured data points are represented by dots, lines denote the model fits with
confidence bands. (B) Parameter profile likelihood plots. Shown are the profile-likelihood estimation (PLE)
plots for all biological parameters. PLEs for scaling factors and standard deviations are fully identifiable and
omitted for clarity. Red line denotes 95% confidence interval. Blue line denotes the minimal log likelihood.
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Dose response of H838 cells and refining the pathway model

In order to increase parameter identifiability of the ODE pathway model, dose response data
of H838 cells at 20 min after stimulation with o, 0.1, 2.5, 5, 10, 50 ng/ml of IGF-1, EGF, and
double stimulation of both factors was generated. Figure 20A shows the resultant dose-

response curves of phosphorylated IGF-1R, EGFR ERK, and AKT.
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Figure 20: Dose-response protein kinetics of key pathway components in H838 cells. Cells were stimulated
with o, 0.1, 2.5, 5, 10, 50 ng/ml of IGF-1 (blue), EGF (green), and double stimulatiom of both factors (violet).
Shown are the resultant curves of phosphorylated EGFR, IGF-1R, ERK and AKT after quantification. (B)
Parameter profile likelihood plots before (upper row) and after (lower row) incorporation of dose-response
data. Shown are the PLE plots for those biological parameters with improved identifiability. Red line
denotes 95% confidence interval. Blue line denotes the minimal log likelihood.

EGFR and IGF-1R showed dose dependency for their ligands up to 50 ng/ml and no influence
of the opposite ligand. Double stimulation increased phosphorylation compared to single
treatment for both receptors at 10 ng/ml and for IGF-1R at 5o ng/ml, whereas EGFR
phosphorylation decreased at that point. ERK phosphorylation after EGF stimulation
showed a moderate increase in strength depending with rising concentration. IGF

stimulation resulted in a generally lower but more differentiated dose response, with a
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strong increase in signal until 5 ng/ml, saturating after 10 ng/ml at about half the intensity of
treatment with 5o ng/ml of EGF. Double stimulation showed an increase over EGF
stimulation at concentrations up to 10 ng/ml. 5o ng/ml of both factors decrease the
phosphorylation compared to EGF treatment. Activation of AKT resulted in a strong
increase in both single treatments until 10 ng/ml where the response saturated, with IGF
starting a lower but reaching comparable phosphorylation levels with 5o ng/ml. Double

treatment did not increase the phosphorylation of AKT compared to EGF stimulation.

Incorporating these data into the model calibration significantly improwved identifiability for
k_dephos_AKT, k_dephos_ERK. k_phos_AKT_E, k_phos_AKT_l,k_phos_ERK_E,
k_phos_ERK_I and k_phos_IGFR (Figure 7B). Only k_endo_IGFR as well as k_rec_EGFR and

k_rec_IGFR remain unidentifiable.

Utilization of the IGF-1/EGF pathway model on H1g75 cells

After generating a first ODE pathway model derived from H838 data, we took steps to adapt
this model to data from the Higys cell line. To this end, cells were stimulated with 5o ng/ml
of IGF-1, 5o ng/ml EGF or 50 ng/ml of both IGF-1 and EGF, analogous to the dataset from
H838. Cells were also harvested at identical time points (4.3.2). Generally, the data was
noisier than the results derived from H838 cells. Especially large variances were observed in
the pAKT signals upon cytokine stimulation. Nonetheless, there was an IGF-1R activation
after IGF-1 and double stimulation which progressed more transient than in H838, with a
steep increase and a peak at 10 min. Only a low EGFR activation was detectable for all
biological conditions, which was probably due to the L858R activation mutation in exon 21.
Nevertheless, a clear downstream activation of ERK after EGF administration was apparent.
This pERK signal increased sharply until it reached a maximum at 10 min and then decreased
until baseline activation was reached between 120 and 240 min. Effects on AKT
phosphorylation were only detected in double stimulations, where an increase until 20 min
results in sustained activation over the observed timeframe. Effects in the other biological

conditions could be masked by the high variance in the data.

Dose response of H1g75 cells

Analogous to HB838 cells, the dose response was quantitatively defined for model
integration. Therefore, H1g75 cells were harvested at 10 min after stimulation with o, 0.1,
2.5, 5, 10, and 5o ng/ml of IGF-1, EGF, and double stimulation of both factors identical
concentrations. Figure 21 shows the resultant dose-response curves of phosphorylated IGF-

1R, EGFR ERK and AKT after quantification. Phosphorylation of EGFR was unresponsive to
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all three treatments, probably due to the activating L858 mutation. In contrast, IGF-1R
phosphorylation showed clear dose dependency with a steep increase in activation at 10
ng/ml and a slight reduction again at 5o ng/ml. EGF treatment showed no effect and,
consequently, double stimulation with 5o ng/ml of both IGF-1 and EGF resulted in the same
activation as IGF-1 treatment alone. Surprisingly, although no change in EGFR
phosphorylation was detectable, downstream activation of both ERK and AKT after EGF
stimulation showed clear dose effects. ERK phosphorylation increased steeply until 10 ng/ml
of EGF and then saturated. AKT phosphorylation after EGF stimulation also increased until
10 ng/ml, followed by a less pronounced increase with 5o ng/ml. Stimulation with IGF-1
generally resulted in lower responses, with ERK phosphorylation saturating already at 0.1
ng/ml whereas AKT phosphorylation saturated at 10 ng/ml. Double stimulation with EGF
and IGF-1 revealed a phospho-ERK response on the same level as EGF treatment alone,
while phospho-AKT levels showed an increase over EGF stimulation at concentrations up to

10 ng/ml, where the curve saturated.
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Figure 21: Protein kinetics of key pathway components in H1ig75 cells. Activation was measured over 180
min after stimulation with 50 ng/ml EGF, 50 ng/ml IGF-1, and double stimulation with 50 ng/ml of both
factors as well as the untreated control. Filled circles represent quantifications of actual Western blot bands,
empty circles are results of linear interpolation between two real data points. Shown are the results of 6
independent experiments. The mean is depicted by the black line. The grey band around the mean denotes
the standard error of the mean estimation.
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Figure 22: Dose-response protein kinetics of key pathway components in H1g75. Cells were
stimulated with o, 0.1, 2.5, 5, 10, 50 ng/ml of IGF-1 (blue), EGF (green), and double stimulation with
both factors (violet). Shown are the resultant curves of phosphorylated EGFR, IGF-1R, ERK and AKT

Adaptation of the ODE pathway model to the Hig75 data and model
confirmation

As a first step towards adapting the H838 pathway model to the H1g75 cell line, it was fitted
to the IGF-1R activation data of both datasets. The IGF1-R portion of the pathway could be
explained with the same model for both pathways. To increase the quality of model fits, an
inhibitory loop from activated IGF-1R for the phosphorylation of IGF-1R was introduced as
shown in Figure 24 A/B as an abstract representation of autoinhibitory mechanisms. This
resulted in better model fits for both the H838 and the Higy5 data (Figure 24). PLE analysis
of the model fitted with the H838 kinetics, H838 dose-response, and IGFR-1 dynamic data
from Haig7s cells yielded improved identifiabilty, with the constant for internalization of IGF-
1R (k_endo_IGFR) becoming identifiable as evidenced by Figure 24C. Thus, only the
constants for recycling of both receptors to the cell surface (k_rec_IGFR and k_rec_EGFR)

remained unidentifiable.

Additionally, to be able to explain both datasets at once, the assumption that H838 cells
contain 17 times more total IGF-1R than H1g7s, has to be taken by the model. Validation by
semi quantitative Western immunoblotting comparing the total amounts of IGF-1R between

the two cell lines revealed that H838 cells express 21-times as much IGF-1R than Hig7g
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(Figure 23). As this result presents satisfactory agreement between the model assumption

and experimental validation, we gained first evidence for the accuracy of the combined

model so far.
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Figure 23: Western immunoblot validation of
model assumption for total IGF-1R amounts.
Left: image of total cell lysates of H838 and
Hi1g75 in technical triplicates, probed with
antibodies against total IGF-1R. Right: fold
change quantification of the Western
immunoblot data.
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Figure 24: Adaptation of the IGF-1R pathway model. (A) Top: existing pathway model. Bottom: Model fits
for IGFR activation for H838 and H1g975 data. (B). Top: new model topology with added auto-inhibitory loop
from the phosphorylated IGF-1R. Bottom: new model for IGFR activation fits for H838 and H1g75 data. (C)
Parameter profile likelihood plots for the updated model. Shown are the PLE plots for all biological
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parameters. PLEs for scaling factors and standard deviations are fully identifiable and omitted for clarity.
Red line denotes 95% confidence interval. Blue line denotes the minimal log likelihood.

Quantitative measurement of 2D lateral migration and 3D

invasion of NSCLC cells

Pathway models can lead to important insights into the dynamic behavior of therapeutically
relevant targets. Due to the complexity of cell signaling though, often what presented itself
as a promising effect on the pathway level fails to affect the cells in their functional behavior.
One of the overarching goals of the LungSys initiative is the establishment of multiscale
models to connect pathway activation dynamics and gene expression changes in response
to growth factor stimulation with cellular functions like proliferation and migration. With a
first usable pathway model in place, | established functional assays to generate phenotypical

data to connect the model with meaningful biology.

Establishing a 2D lateral migration assay and proof of principle

In order to generate reproducible quantitative and time resolved migration data, a 2D-
migration assay using IBIDI inserts was established. Together with the group of
Dr. F. Matth&aus, we developed a novel semi-automated evaluation algorithm that yields a
variety of parameters from life-cell imaging data, which actively migrate in defined cell-free

areas. These parameters include:

e Density distribution of cells measured from nuclear staining
e Dynamic Migration speeds of the whole population
e Directionality of migration: perpendicular to the gap vs parallel to the gap, wich can be

correlated to directional vs random movement

As proof of principle for this approach, the knockdown of FBP interacting repressor (FIR), a
transcriptional repressor that has been implied in NSCLC migration, was tested. For this,
Calu-1 NSCLC cells were selected, since these cells do not respond with reduced
proliferation upon FIR silencing. An exemplary picture for the efficient reduction of
migration upon knockdown of FIR in Calu-1 cells is shown in Figure 25. Cells (control,
nonsense siRNA, and FIR-specific siRNA) were seeded in IBIDI inserts and subsequently
monitored using live cell imaging after removing the insert. Figure 25 shows exemplary
phase contrast and HOECHT staining images at the start of live cell imaging and after 30 h.

This single time point analysis yielded a first observation: the untransfected control as well
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as the cells transfected with nonsense siRNA close the gap, whereas the cells treated with

FIR siRNA failed to do so.

Quantitative analysis over the complete image stacks (20 sequential images) captured the
dynamic properties of this migration phenotype as shown in Figure 26. Plotting the cell
density over space and time revealed that control cells closed the gap after approximately
15 h (Figure 26A). In contrast, cells with reduced FIR levels exhibited severely reduced
migration, and had not yet closed the gap after 30 h. Effects on cell viability remained not

significant (data not shown).

Kymographs of cell velocities demonstrated that control cells (i.e. untreated and nonsense
siRNA-transfected cells) showed strong directional migration into the gap area (Figure 26B)
with highest speeds at the front and a strong activation for about 20 h. In cells with FIR
inhibition, speed was significantly reduced overall. After 20 h no perpendicular migration
was detectable. Speed dynamics of cells showed initial acceleration and subsequent
deceleration of migration in the control conditions (Figure 26C). In contrast, FIR silencing
significantly reduced the speeds and shortened the acceleration phase. Also the onset of gap
closure was significantly delayed (controls: 15-27 h; FIR inhibition: 38-65 h). Averaging over
space and time shows an overall reduction of speeds to about 50% after FIR inhibition.
Figure 26E illustrates that the observed reduction in speeds also included a reduction of the
relative velocity component perpendicular to the gap compared to movement in parallel to
the gap. This indicates that treatment affects the coordinated migration towards the gap in

particular.

In summary, in this proof of principle, the quantitative PIV approach illustrates that FIR

drives coordinated and directional movement of cell groups in all phases of 2D migration.
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Figure 25: Lateral migration of Calu-1cells after FIR siRNA knockdown and in control cells. Shown are phase
contrast and HOECHST staining images for the untransfected control, the nonsense siRNA control, and the
gene-specific knockdown with 20 nM and 40 nM of FIR siRNA at o h (left) and after 30 h (right). The white
contour denotes the edges of the cell populations.
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Figure 26: Quantitative analysis of directional NSCLC motion after FIR silencing using PIV. Migration of
Calu-1 cells transfected with nonsense siRNA, 20 nM, and 40 nM of FIR siRNA as well as untransfected
control cells were analyzed using time-lapse microscopy for 30 h (1 picture/9o min) and HOECHST staining.
(A) Cell density kymographs obtained from image segmentation. Color indicates cell density (red: high,
blue: low, white: cell-free areas). While the gap closes after about 15 h in untreated cells, FIR strongly
reduces migration and impairs gap closure. (B) Cell velocity kymographs. Color indicates speed (red: right,
blue: left, with more intensive colors indicating larger displacements) (C) Velocity field obtained by PIV at
early time of gap closure (exemplarily frame 5 is shown). Arrows indicate collective displacement of cell

| 66



4.4.2

RESULTS

clusters. Color denotes absolute displacements (red: right, blue: left, with more intensive colors indicating
larger displacements) in x-direction (perpendicular to the gap). (D) Speed dynamics as a function of time
(absolute velocities are averaged over the entire frame) show initial acceleration, then deceleration. The
maximum and overall speed is reduced by FIR. (E) Relative velocity components horizontal and
perpendicular to the gap. FIR affects in particular directedness of motion into the gap.

Establishing a 3D spheroid invasion/migration model and proof of principle

In vivo, tumor cells are subjected to conditions that are much more complex than 2D
migration assays can provide in vitro, especially with regard to extracellular matrix
components. To supplement the results of 2D migration assays with a more sophisticated
cell-culture model that more closely resembles the in vivo situation, 3D cell-culture models
have been developed. Here, a 3D spheroid model of NSCLC cell invasion capable of
providing data for multiscale modeling was established. To this end | used the hanging-drop
approach and an analysis tool, which was developed with the group of Dr. D. Drasdo. This
software allows the quantitative description of the following parameters from brightfield

projection image stacks recorded via live cell imaging:

e Total area occupied by cells

e Area of sprouts, which stands for the area occupied by cells that moved out of the
central spheroid body

e Number of detached cells, which describes the number of cells that have moved so far
out of the spheroid that they have lost connection to the bulk of cells

e Radius of gyration, which measures the distance that all cells (detached or not) moved

from the spheroid bulk

As proof of principle for this spheroid generation and evaluation using the newly developed

analysis algorithms, the FIR knockdown model was applied.

After successful establishment of Calu-1 spheroids that keep coherency with cells of all
conditions (untreated, nonsense siRNA, and FIR-specific siRNA), spheroids with a size of 500
cells/spheroid were transferred in a collagen | matrix (Figure 27). The lower row in Figure 14
shows the last frame of each condition after 72h of life-cell imaging, illustrating that
knockdown of FIR has an impact on cell invasion in this specific collagen matrix. However, as
in the 2D IBIDI migration system, endpoint analysis lacked the temporal resolution to

investigate the dynamics of the invasion/migration phenotype.
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Figure 27: Bright field images of Calu-1 spheroids after FIR siRNA-mediated knockdown in 4x magnification.
Spheroids were generated for 48 h using the hanging-drop method. Upper row: spheroids imaged directly
after transfer into collagen | matrix. Lower row: Same spheroids after 72 h of live-cell imaging. Scale bar
represents 100 pm.

Thus, we employed the novel semi-automated analysis tool to evaluate the growth pattern
of at least 5 spheroids for each condition over 72 h, with Figure 28 summarizing the results.
Figure 28 A shows representative output images from the software analysis after
invasion/migration for 36 h after collagen embedding. The red circles define the central
spheroid bodies, the green outline the invading cells in both sprouts as well as detached
cells. Total Area Figure 28 B, area of sprouts Figure 28 C and radius of gyration, which
indicates the maximum distance cells move away from the center of mass Figure 28 E, show
a clear significant and dose dependent reduction under FIR knockdown compared to the
control conditions. Total area (i.e. the area covered by cells of both the spheroid body and
the sprouting cells) showed strong increases in both control conditions from 20 h until 72 h,
with final areas of 6.5 um? and 2.5 um?2 for NTC and KO respectively. Knockdown of FIR
reduced this dose dependently to below 2 um? for 20 nM of siRNA and below 1 um?2 for 4o
nM of siRNA. The area of sprouts (i.e. the area covered by cells outside of the main spheroid
body, but still attached to it) showed the same behavior with the controls growing to 4 pm?2
and 3 pm? for NTC and KO respectively, and the knockdowns reducing the growth and
ending at 1 pm? and o.5 pm? for 20 nM and 40 nM of siRNA respectively. The radius of
gyration (i.e. the farthest distance that cells migrated out of the spheroid, detached or not)
also shows a similar behavior. NTC and KO show the largest radius with 425 pm and 400 pm
respectively. FIR knockdown reduced this to 250 um and 200 pum, for 20 nM and 40 nM. The
dynamics of all three parameters indicates that FIR may support migration and invasion of
NSCLC cells in collagen | matrices. Interestingly, all three of the parameters show an

exponential increase in the controls until about 5o h, where the curves seem to switch to a
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more linear growth. This shows the value of continuous analysis of 3D invasion dynamics, as
this effect would be lost with traditional snapshot evaluation. The number of detached cells
Figure 28 D, although less clearly significant, is also reduced from ca. 70 cells/spheroid in the
controls to 50 and 20 under FIR knockdown with 20 nM and 40 nM respectively. This
reduction indicates that FIR may support separation and detachment of NSCLC cells from

the primary tumor mass.
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Figure 28: Analysis of time-resolved growth pattern of NSCLC spheroids (500 cells/spheroid) with and
without FIR silencing. At least 5 live cell imaging stacks from 72 h were analyzed. KO: untransfected control;
NTC: non-target control, nonsense siRNA; 20 nM/40 nM: cells treated with 20 nM or 40 nM of FIR siRNA. (A)
Representative pictures of spheroid growth 36 h after transfer in a collagen I/methocel matrix in 4x
magnification. Red circle defines the spheroid “body”, while the green contour denotes the sprouts and
detached cells. (B) Total pixel area occupied by cell mass. (C) Area of sprouts (cells moving out of the
spheroid body). (D) Number of detached cells. (E) The radius of gyration, which represents a correlate for

tumor cell spread. Scale bar represents 100 pm.

In summary, the novel evaluation algorithm is able to define even small differences in the
process of tumor cell invasion, tumor cell separation, and spheroid growth in a quantitative

and time-resolved manner.

Effects of IGF-1 and EGF stimulation on NSCLC cell proliferation and migration

As introduced in the beginning of chapter 4.4, one of the central tasks in the project was
linking pathway data to biological function in multi scale models. In order to connect the
observed pathway activation effects of stimulation with IGF-1, EGF and both factors with
functional responses in H838 and Higys cells, the impact of these treatments on
proliferation and migration was investigated in both cell lines. Proliferation of H838 and
H1975 cells and migration of Hig75 cell was assessed using the CellTiter-Blue Assay after

stimulation with 5o ng/ml of EGF (green) and IGF-1 (blue) in single treatment and double
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stimulation (violet), at 24 h, 48 h, and 72 h after stimulation. In Figure 29 A/B the resulting

proliferation curves are shown.
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Supplying the cells with FCS resulted in strong proliferation in both cell lines, proving that
the cells were still susceptible to growth stimuli after starvation. Surprisingly, none of the
treatments resulted in a significant increase of proliferation in both H838 and Hig75 cells.
Investigation of 2D migration in H1975 yielded similar results: cells showed strong migration
under FCS, whereas neither EGF nor IGF-1 or double treatment showed an increase over the
reduced migration in the control with starvation medium (Figure 29 C). H838 cells lost all
migratory capacity under starvation conditions and were thus not further considered for

migration experiments.

Investigation of 3D migration/invasion behavior in Hig75 spheroids further confirmed the
effects seen in proliferation and 2D migration assays. Manual evaluation of sprouting length
revealed that stimulation with 50 ng/ml IGF, 50 ng/ml EGF, and double stimulation did not
influence sprouting behavior compared to the unstimulated control. Interestingly, in the 3D

setting, supplying the cells with FCS lead to a marked reduction of sprouting (Figure 30).
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H838 cells did not form coherent spheroids, and as such were not considered for 3D

migration/invasion.
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Figure 30: 3D spheroid invasion assay of Higys cells after stimulation with 1GF-1, EGF and double
stimulation. Spheroids were treated with 50 ng/ml of IGF-1 (blue), 50 ng/ml of EGF (green) and double
stimulation (violet). @ (grey): Starvation control with medium without FCS, FCS (black) cells supplied with
full medium. Initial spheroids were generated with 2000 cells/drop. (A) Exemplary brightfield images of a
single spheroid for each condition at the start of imaging (o h) and after 24 h in 4x magnification. (B) Results
of manual evaluation of sprouting (sum of sprouts). Given is the mean of at least 10 spheroids per condition.

In summary, none of the diverse functional test performed resulted in detectable functional
effects on cell behavior, despite the clear effects of IGF-1 and EGF stimulation observed on

the pathway activation level.

Functional effects of inhibition of IGF-1R and EGFR

Since growth factor stimulation after starvation did not yield any biological effects, it stands
to reason that the signaling along the EGFR and IGF-1R pathways is part of a more complex
signaling network in these NSCLC cell lines. As such, the cells are missing input signals,
which are essential for the proper induction of an IGF-1/EGF-mediated response. This lead to
the working hypothesis, that perturbation of the EGFR or IGF-1R axes might be better suited
to explain the biological impact of these pathways with regard to proliferation and

migration. Accordingly, selective small inhibitory molecules (TKls, Table 18) were used to
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eliminate the specific signaling pathways under full medium conditions for further analysis

of proliferation and migration.

Table 18: Overview over the TKIs used in functional assays.

Substance Specificity Mode of action
Picropodophyllin IGF-1R Blocking of IGF-1R autophosphorylation
CAS-879127-07-8 EGFR (WT, L858R) ATP  competitive inhibition of EGFR

phosphorylation

Erlotinib EGFR (WT, L858R) Reversible blocking of ATP binding
Afatinib EGFR (WT, L858R, Irreversible blocking of ATP binding
T790M) [ HER2)

Wide ranges of concentrations were used to investigate dose response to the TKls and find
useful inhibitor concentrations (e.g. concentrations that show functional effects without
killing the cells outright). All inhibitors lead to a reduction of activation of the ERK and AKT

downstream pathway components (data not shown).
Proliferation

In H838 cells, this inhibitor treatment resulted in clear dose-dependent effects on both
proliferation (measured through viability) and cell death (measured through the amount of
free DNA). Figure 31 shows the resultant cell numbers after 24 h, 48 h, and 72h after
inhibition with Picropodophyllin (PPP) and CAS-879127-07-8.

e Inhibition of IGF-1R with 10 uM of PPP resulted in the complete death of all cells. Lower
doses from 1 uM to 1 nM showed reduced proliferation after 48 h while not affecting
cell death.

e Inhibition of EGFR with the three TKls showed similar effects. CAS-879127-07-8
completely killed the cells in doses upwards of 100 nM accompanied by reduced
proliferation. Doses of 10 nM and 1 nM diminished the proliferation dose dependently,
with no significant effects on cell death. In contrast, H838 cells showed less sensitivity
to Afatinib and Erlotinib. Treatment with 10 pM of Afatinib led to a complete inhibition
of proliferation with only minor increases in cell death over the control. Lower

concentrations (1 pM and 100 nM) slightly reduced proliferation with no effect on cell
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death. Increasing the concentration to 50 pM and above killed the cells after 24 h (data

not shown).
Proliferation Cell Death
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Figure 31: Biological effects of IGF1-R and EGFR inhibition on H838 cell death and proliferation. Cell death
and proliferation were measured sequentially in the same wells. (A) Left: Dose-dependent effects of IGF-1R
inhibitor Picropodophyllin on proliferation. Right: Dose-dependent effects of IGF-1R inhibitor
Picropodophyllin on cell death. (B) Left: Dose-dependent effects of EGFR inhibitor CAS 879127-07-8 on
proliferation. Right: Dose-dependent effects of EGFR inhibitors CAS 879127-07-8 on cell death.

In H1g75 cells, the inhibition of both receptors with the same inhibitors yielded comparable
results. Although, compared to the results in H838, Hig75 cells showed a more even
distribution in reduction of cell proliferation and increased cell death with the concentrations
used. Figure 31 shows the resultant cell numbers after 24, 48, and 72 h after inhibition with

Picropodophyllin (PPP) and CAS-879127-07-8.

e Concerning IGF-1R inhibition, the treatment with 10 uM of PPP resulted in the complete
killing of cells after 24 h. Lower concentrations showed a reduced proliferation after
24 h. The distribution and dose effects of the different concentrations became apparent
after 48 h, where the curves for 1 pM, 1200 nM, 10 nM and 1nM fan out. A similar

behavior can be seen in the cell death analysis, although the separation of the curves is
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less pronounced, with 1 pM revealing a higher number of dead cells after 48 h and thus
separating from the cluster of lower concentrations that still show a small increase over
the control (Figure 32A).

e Inhibition of EGFR through CAS-879127-07-8 shows a comparable effect. Treatment
with 120 uM resulted in declining cell numbers until 72 h. Correspondingly, the number of
apoptotic cells increased. Lower doses again led to a differentiated response in
proliferation, with 1 uM leading to slightly decreased cell numbers, 100 nM to a more or
less stable amount of cells and 10 nM as well as 1 nM to a slightly proliferative
phenotype that keeps up with the FCS control at 24 h. After 48 h the reduced
proliferation compared to FCS becomes apparent. For the cell death numbers, the
doses lower than 10 pM cluster together and only show increased cell death after 48 h
and 72 h. Hig75 cells showed reduced sensitivity to Afatinib and Erlotinib compared to
H838 (data not shown).
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Figure 32: Proliferation and cell death of H1975 cells after inhibition of IGF-1R and EGFR. Cell death and
proliferation were measured sequentially in the same wells. (A) Left: Dose dependency of IGF-1R inhibition
with Picropodophyllin on proliferation. Right: Dose dependency of IGF-1R inhibition with IGF-1R inhibitor
Picropodophyllin on cell death. (B) Left: Dose dependency of EGFR inhibition with CAS 879127-07-8 on
proliferation. Right: Dose dependency of EGFR inhibition with CAS 879127-07-8 on cell death.
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Migration

After having shown the dose-dependent effect of IGF-1R and EGFR inhibition in both H838
and Hag7s cells, | continued to investigate the effects of the receptor inhibition with PPP and
CAS-879127-07-8 on 2D migration in H1g7s cells as shown in Figure 33. Inhibition of both
receptors results in reduced migration compared to the FCS control. In order to exclude
effects of the TKis on cell viability, inhibitor concentrations that do not kill the cells were
chosen as determined from Figure 32. Reduction of migration was less pronounced with
PPP, than with CAS-879127-07-8. While 1 uM of PPP reduced both maximum speed and
duration of migration, treatment with 2100 nM moderately decreased the maximum speed,
but significantly affected the duration the cells migrated. In contrast, treatment with 10 nM
of PPP decreased the max speed more noticeably but did not reduce the duration of

migration compared to the FCS control.
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45 . LI . —a—1 M
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——1uM
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' 1R inhibition with different doses

0 of PPP. (B) EGFR inhibition with
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Still, with all three concentrations, the cells showed a comparable migration dynamic as the
FCS control. Inhibition of EGFR with CAS-879127-07-8 on the other hand completely
abolished migration with a concentration of 1 pM and severely reduced it with 100 nM.
Conversely, treatment with 10 nM showed only a very small reduction of max speed,
whereas treatment of 1 nM yielded no effect on max speed and migration duration. Similar

effects have been observed with Erlotinib and Afatinib, where doses that do not kill the cells
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outright (10 pM and 20 puM for Erlotinib, 1 uM and 10puM for Afatinib) show strong reductions

in migration as well (data not shown).

Thus, inhibition of IGF-1R and EGFR both affect migration of H1975 NSCLC cells, however,

IGF-1R and EGFR signaling seem to affect cell migration differently.

Rescue of the phenotype after inhibition of IGF-1R and EGFR

Having shown that IGF-1R and EGFR inhibition in a full medium context affected both

proliferation and migration of NSCLC cells, | further investigated the possibility of rescuing

this phenotype by stimulating cells under EGFR inhibition with IGF-1 and vice versa.
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Figure 34: Biological effects on H838 and H1975 cell death and proliferation after TKI-mediated inhibition of
EGFR with CAS 879127-07-8 (solid lines) and simultaneous stimulation with IGF-1 (dashed lines). Cell death
and proliferation were measured sequentially in the same wells. (A) Results from H838 cells. Top: Rescue
effects on cell death. Bottom: Rescue effects on proliferation. (B) Results from H1g75 cells. Top: Rescue

effects on cell death. Bottom: Rescue effects on proliferation.
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Figure 34 exemplarily shows the effects of EGFR inhibition with CAS-879127-07-8 and
simultaneous stimulation with 5o ng/ml of IGF-1. As illustrated, stimulating with 5o ng/ml of
IGF-1 did not show any rescue of the phenotype, neither with concentrations of the TKI
sufficient to abolish proliferation (50 nM of inhibitor in H838, 100 nM of inhibitor in H1g75),
nor with lower concentrations. In both cases, the curves run completely congruent.
Comparable results have been generated for Erlotinib and Afatinib, as well as for IGF-1R
inhibition with PPP and simultaneous stimulation with EGF (data not shown). Thus, these
data indicate that IGF or EGF cannot compensate the effects induced by the loss of the other

pathway with regard to proliferation in the analyzed cell systems.

Since trying to rescue the phenotype after receptor inhibition with stimulation of the other
pathway yielded no effect on proliferation of H838 or Hig75 cells, | investigated their impact

on 2D migration.

Figure 35 shows the resulting speed curves after live-cell imaging and evaluation with PIV.
IGF-1R inhibition with 100 nM PPP reduced migration speeds and inhibiting the EGFR with
50 nM of CAS-879127-07-8 led to the expected drastic reduction in migration, confirming
previous results (Figure 33). Simultaneous treatment with 5o ng/ml of EGF and 100 nM PPP
did not rescue the TKI-induced phenotype, but led to a further reduction in speeds (Figure 35
A). Importantly, supplying simultaneous stimulation with 5o ng/ml of IGF-1, together with 5o
nM of CAS-879127-07-8 did show a marked increase in migration speed in a 10 hour

timeframe from 5 h to 15 h (Figure 35 B). Migration increased to a maximum of

Figure 35: Rescue effects on Hig75 2D
migration after receptor inhibition and
stimulation of the opposite pathway.
Cells were staimed with HOECHST and
monitored over 45 h with live cell
imaging. Images were taken every go
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approximately 10% rescue from roughly 60% to 70% of the speed reached in the untreated

control. This finding could be replicated in a second independent experiment.

The functional investigation of the rescue effect of IGF-1 and EGF after EGFR and IGF-1R
inhibition respectively, yielded no impact on proliferation of H838 and Hg175 cells. While
EGF also has no effect on the migration of Higys cells treated with IGF-1R inhibitor,
stimulation with IGF-1 can reduce the effects of EGFR inhibition. Thus a connection of IGF-1

and EGFR signaling could be shown on a functional level.

Effects of IGF-1 and EGF on the transcription level

The results from IGF-1 and EGF-induced IGF-1R and EGFR pathway activation on protein
level led to a first usable pathway model, and the functional data from receptor inhibition
and rescue experiments indicate that both EGF and IGF-1 can have an influence on
proliferation and migration in the analyzed NSCLC cell lines. In order to link pathway
activation and phenotype to the transcription of relevant genes, | also investigated the
effects of EGF and IGF-1 stimulation on transcript level of IGF-1R and EGFR target genes in
Hig75 cells. To this end, Affimetrix GeneChip Human Gene 2.0 ST Arrays were hybridized
with mRNA from time courses of Hig75 cells treated with 5o ng/ml of EGF or 5o ng/ml of
IGF-1, as well as unstimulated controls. The resulting expression profiles were pre-processed
and GO annotation as well as analysis of differential expression was performed, resulting in
ranked lists of significantly regulated genes for each stimulation condition compared to the
unstimulated control. Table 19 shows the resulting top 20 ranked genes after EGF

stimulation

Table 19: The 20 highest-ranked genes from microarray analysis of H1975 cells after EGF stimulation

Gene symbol | Full name GO annotation Function in the cell

CTGF

EGR1

PTGS2

connectve tissue growth  cell-matrix adhesion, FGF receptor fibronectin binding/integrin
factor signaling pathway, cell migration, lung binding/IGFR binding/heparin

development binding/

Early growth response INF-a signaling pathway, IL-1-mediated transcription factor binding/
protein 1 signaling pathway, positive regulation of histone acetyltransferase binding

cell death

Prostaglan-din-endo- positive regulation of cell migration, peroxidase activity, lipid binding,
peroxide synthase 2 negative regulation of cell proliferation, oxidoreductase activity/

VEGF production, FGF production
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GLIPR1

JUN

FOS

CYR61

AREG

CLDN1

DUSPa

F3

IL8

CEACAM6

TMPRSS11E

EGR2

CD2y4

Glioma pathogenesis-

related protein 1

JUN

FBJ Murine
Osteosarcoma Viral

Oncogene Homolog

Cysteine-rich angiogenic

inducer 61

Amphiregulin

Claudin-1

Dual specificity protein

phosphatase 1

coagulation factor Il

Interleukin-8

Carcinoembryonic
antigen-related cell

adhesion molecule 6

transmembrane

protease, serine 11E

Early growth response 2

Programmed death-

ligand 1 (PD-L1)

cellular lipid metabolic process, small

molecule metabolic process

TGF beta receptor signaling pathway,
SMAD protein import into nucleus,

negative regulation of cell proliferation

toll-like receptor signaling pathway, DNA
methylation, stress-activated MAPK

cascade, SMAD protein signal transduction

cell proliferation, ECM organization, cell
migration, regulation of ERK1 and ERK2

cascade, cell adhesion, cell-cell adhesion

EGFR signaling pathway, cell-cell signaling,

cell proliferation, DNA replication

cell adhesion, cell-cell junction

organization

inactivation of MAPK activity, regulation of

apoptotic process /

PDGF receptor signaling pathway, cell

migration, positive chemotaxis

cell-cycle arrest, cell proliferation, cell
adhesion, response to FGF stimulus,
positive chemotaxis, response to IL-1,

response to TNF

signal transduction, cell-cell signaling,

biological_process

proteolysis

protein sumoylation, response to insulin
stimulus, negative regulation of apoptotic

process, cellular response to cAMP

immune response, T cell costimulation,

positive regulation of IL-10 secretion

RESULTS

NA

transcription coactivator
activity/Rho GTPase activator
/CRE binding/ R-SMAD binding

transcription factor binding,

sequence-specific DNA binding

integrin binding, IGFR binding,
heparin binding, ECM binding

cytokine activity, growth factor

activity

structural molecule activity

MAP kinase tyrosine/ serine/

threonine phosphatase activity

protease binding, phospholipid
binding

IL8 receptor binding, chemokine

activity, cytokine activity

protein

binding/molecular_function
serine-type peptidase activity/
hydrolase activity

ubiquitin protein ligase binding,

HMG box domain binding

protein binding
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SERPINE1 SERPINE1 TGF beta-receptor signaling pathway, cell protease binding, serine-type
migration, regulation of IL-8 production, endopeptidase inhibitor activity,
negative regulation of cell adhesion, peptidase inhibitor activity

regulation of cell proliferation, ECM

organization

Endothelin1 cell growth, cell migration, MAP kinase cytokine activity, hormone
activity, JUN kinase activity, response to activity
TNF
minichromosome mitotic cell cycle, DNA replication DNA replication origin binding,
maintenance deficient 2 histone binding, helicase activity
Heparin-binding EGF- EGFR signaling pathway, FGF receptor EGFR binding, heparin binding
like growth factor signaling pathway, cell growth, cell

migration, wound healing, spreading of
epidermal cells, protein kinase B signaling

cascade

In order to validate the datasets, the expression of a number of genes from these lists was
re-evaluated using real-time PCR. Figure 36 shows examples for EGF regulated genes (CTGF,
ranked on 1; AREG, ranked on 10; IL8, ranked on 16), whose dynamic differential expression
from the array was reproduced with real-time PCR. Particularly, the dynamics for AREG and
IL8 after EGF stimulation could be very well reproduced, with spikes in the first 2 h and
subsequently converging signals in the EGF and the control. On the other hand, while the
microarray expression of CTGF showed a narrow peak at 2 h, sinking back to base levels at 4
h, the qRT-PCR validation showed a sustained activation from o.5 until 8 h before dropping
back to starting levels and below the control. While the microarray dataset for EGF
stimulation could be well reproduced and validated with qRT-PCR, this could not be
achieved for the IGF-1 dataset. In light of this, together with the initial finding of the PCA
analysis by the group of Dr. F. Matthdus which showed an unexpected shift in the complete

time course, the IGF-1 microarray dataset was not considered in further analysis.
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Figure 36: Validation of microarray results from EGF stimulated H1975 cells with qRT-PCR. Left: Result
figures from the microarray evaluation after preprocessing, GO annotation and differential expression
analysis for treatment with 50 ng/ml of EGF (red) and unstimulated control (blue). Samples were measured
in triplicates for o h, 24 h, and 48 h, and single samples for all other time points. Right: Results of qRT-PCR
validation for treatment with 50 ng/ml EGF (green) and untreated control (&, grey), samples were measured
in triplicates for all time points.
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In summary, the presented data further corroborate the importance of the interaction of EGF and
IGF-1 signaling in NSCLC cells. While Western immunoblot and microarray analysis showed
activation of signaling pathways after EGF and IGF-1 stimulation, functional assays showed that
proliferation and migration in the NSCLC cell lines investigated depend on a more complex signaling

network. Interestingly, IGF-1 was able to rescue migration after EGFR inhibition in such a setting.



5 Discussion

The aim of this project was to address two central problems with regards to NSCLC: the
evasion of inhibition after IGR-1R and/or EGFR perturbation and the impact of these
signaling pathways on the early spread of NSCLC cells. To this end, a systems biology
approach was implemented, with the generation of an ODE pathway model from dynamic
signaling-pathway activation data with a high temporal resolution. Furthermore, the
development and application of partly novel, semi-automated evaluation algorithms for
migration and invasion assays was pursued in order to generate quantitative data in high
spatial-temporal resolutions that are suitable for the implementation in multi-scale models.
Linking these different molecular and cellular scales is of central importance, since it has
been shown that the pathway dynamic is crucial for the specific cellular response in the

126-128

context of complex interconnected signaling networks
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5.1 Quantitative analysis of NSCLC cell migration

The presented lateral migration approach using IBIDI inserts and PIV evaluation in a semi-
automated fashion enables medium-throughput analysis of dynamic collective migration
behavior. Traditionally, migration has been evaluated by measuring the areas covered by
cells and closing of a gap at distinct times (e.g. 24, 48 and 72 h) after scratching a confluent
monolayer of cells with a pipette tip (the so-called scratch-assay).*” In contrast to these
scratches, IBIDI inserts produce gaps of a defined 5oo um width with high reproducibility,
which is advantageous for quantitative modeling. Furthermore, for automated live cell
imaging approaches, using a 24-well plate with one IBIDI chamber in each well increases the
number of testable samples compared to manual scratching, which is only feasible inup to a
plate size of 12-well plates due to handling issues. While manual imaging has advantages
with regard to low technical prerequisites and sample quantity, it is severely limited with
regards to temporal resolution and measurable parameters: few time points can be feasibly
imaged and only a snapshot evaluation of area coverage can be performed. Therefore,

information on dynamic changes in speed and cell morphology cannot be monitored.

With the application of the PIV algorithm presented here, which was developed in
cooperation with the Matthdus lab, the following important parameters for lateral migration
can be obtained: cell density, migration speeds, and directionality of migration (i.e.
perpendicular vs. parallel to the gap, which can be correlated to directional vs. random
movement) as well as, due to the high temporal resolution, acceleration and deceleration
dynamics. The importance of this approach is supported by the work of others illustrating
that PIV approaches can be utilized on migration questions. Petitjean et al. investigated the
differences in migratory behavior between two kidney-cell models using a similar scratch
migration approach, showing that MDCK cells migrate with higher velocity than NRK cells.”°

Czirok et al. examined collective cell streams in confluent keratinocyte cell layers, showing

the relevance of calcium-dependent cell-adhesion for the phenotype of those streams. **

As proof of principle, the effect of FIR-knockdown in NSCLC cells was shown to decrease cell
motility. In particular, due to the distinct spatial information gathered through the PIV
algorithm, directed movement into the gap could be differentiated from “random”
movement perpendicular to the gap. Thus, not only the decrease in motility, but the specific

reduction in directional migration could be demonstrated after silencing of FIR.

More importantly, the relevance of the continuous observation with low time intervals (i.e.

90 min or less between single frames) becomes apparent, as the moderate but statistically
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significant rescue effect of IGF-1 after specific silencing of EGFR in NSCLC cells was
detectable only between 5 and 15 hours of the time course, which would have been lost
using traditional evaluation approaches (Figure 35). The continuous observation also enables
a better correlation of migratory phenotypes with molecular events in the cell, like pathway
activation for short-term responses and gene expression analysis for longer-term effectors.
Another advantage of the technique presented here is it's general applicability for image
stacks recorded with any live-cell imaging setup. While the ability to image nuclear stains
(e.g. using HOECHST dye) is generally of advantage and necessary for the analysis of cell
density distributions, PIV-based speed analysis also works on bright field images, further

reducing technical hurdles.

Finally, the quantitative nature and high spatio-temporal resolution make these datasets
ideal for modeling purposes. Indeed, modeling of 2D migration has been an active field in

132

recent years.”* Models that concentrate on single events in the motility cycle have been
built, for example describing the generation of protrusions on the leading edge of cells.® In
contrast, individual based models (IBM, also called agent-based models, ABM) and continuum
models consider migration on a holistic scale. IBMs can either be lattice based, meaning cell
positions are restricted to discrete points on a lattice®* or off-lattice where cells can occupy
any position in a continuous space.” Due to the continuity of space, off-lattice models can
describe the mechanical interaction of the cells more realistically and capture cell-cell
interactions more accurately.” Where IBMs model low numbers of cells with parameters
describing single cells, continuum models employ a top-down approach. As such, they
describe larger cell populations with the dynamics of local parameter means. The model|,
which is currently developed by the Matthaus group (building on previous work from

Middleton et al.®®), connects both approaches and aims to extrapolate individual cell

properties from the collective migration datasets.

In conclusion, combining the PIV-based evaluation algorithm with the experimental 24-well
IBIDI insert approach represents a quantitative, fast, and reliable method to generate
migration data with a sufficient spatio-temporal resolution to enable sophisticated modeling

that is achievable using standard live-cell imaging setups.
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5.2 Quantitative 3D analysis of NSCLC cell invasion

Traditional 2D monolayer cell culture has served well as the basis for data generation in
biological science and continues to do so as also evident in the work presented here.
However, the plastic and glass surfaces commonly used in cell culture cannot resemble the
cellular environment in organisms and even with coated cell dishes, tissue-specific
architecture, mechanical, and biochemical cues as well as 3D cell-cell communications are

lost under these simplified conditions.

Experiments in living animals or ex vivo whole organ technologies are usually employed to
correct for these limitations. However, the heterogeneity and low transparency of animal
experiments and organotypic approaches is challenging with regard to imaging and data
collection. Additionally, the time requirements and experimental costs increase
exponentially when working with these more sophisticated approaches, and the difference

between the fundamental human and the animal setting remains a central problem.”’

Thus, in vitro 3D cell-culture models can fulfill an important function, bridging the gap
between culture dish and living organism. A multitude of 3D cell-culture techniques have
been established during the last decades, Spheroid Characteristics
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Among these, 3D spheroids hold a special \’f»;&& )
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immunotherapy.
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Central to the success of the spheroid system in tumor biology are the histomorphological,
functional, and environmental properties, which closely resemble the in vivo situation in

141

non-vascular tumors.* For example, the distribution of important nutrients like glucose and
oxygen decreases along a gradient towards the center of the spheroid. Likewise, metabolic
products like lactate and metabolic waste increase along the same axis. Factors like extra-
cellular matrix (ECM) and basal membrane production and its dissemination also show a
realistic spatial distribution. This results in a spread of living, quiescent, and dead cells that
mirrors the actual structure in solid tumor nodules. The second important advantage of this
model system compared to other 3D approaches is the relative ease of handling and high
reproducibility. In addition, the biological relevance of the spheroid system as a bridging
system between 2D cell-culture and in vivo models was proven by a number of studies, as

142

reviewed by Breslin et al.

In the work presented here, spheroids from H1g75 and Calu-1 NSCLC cells were successfully

142

established using the hanging drop approach.™ A sprouting assay after embedding
spheroids in a collagen-I gel was employed to measure growth of the cell mass and invasion
of both cells attached to and cells disassociating from the central mass. Analogous to the 2D
migration approach, traditional evaluation of spheroid sprouting and growth involves time
intensive manual analysis of relatively small numbers of time points. With the emerging use
of spheroids in high throughput drug screening, image analysis tools have been developed
that enable the automated evaluation of spheroids.*>*** However, since size increase of the
central spheroid is the relevant parameter of these screenings, analysis usually does not
include sprouting efficiency or detachment of cells. The novel evaluation algorithm Ti-
Quant-BF-2D allows the analysis of all these parameters on live-cell imaging data with a
high temporal resolution (9o min or less).The list of parameters, which are thus evaluable, is

the following: total spheroid area, area of the main spheroid, area of sprouts, number of

detached cells, estimated radius, radius of gyration, and cell density distribution.

Other groups have also put efforts into developing evaluation methods for spheroid-
invasion assays. For example, Evensen et al. presented another approach to quantify
spheroid invasion suitable for standardized drug-screening settings.** However, this assay
relies on staining of the cell nuclei for automated evaluation, whereas the novel algorithm
presented here works well with bright field images. This has several advantages with regard

146

to toxicity™ and acquisition time. Also, by detecting the nuclei of invading cells, one runs
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the risk of severely underestimating the invasion distance and behavior, since the cells
frequently show elongated phenotypes (see Figure 27). The evaluation presented here takes
this into account as represented by the radius of gyration parameter. However, one
advantage of previous algorithms is the ability to analyze single spheroids without the
influence of other nearby spheroids in the same gel.**> While this influence can be mitigated
by choosing isolated spheroids in the gel, paracrine effects cannot be completely excluded in
the approach presented here. Ultimately, the experimental approach and evaluation
algorithm presented here provide a very useful tool for systems-biology research-endeavors,
and can improve on other approaches for commercial high-throughput screening-

applications.™

FIR knockdown in Calu-1 cells again served as proof of principle, analogous to the 2D
migration analysis. Here, the results of 2D migration could be confirmed in the 3D setting:
knockdown of FIR resulted in reduced sprouting and radius of gyration (which stands for the
maximum distance of cells migrating), but also reduced total area. Moreover, the number of

detached cells was decreased.

Manual evaluation of H1g75 spheroids subjected to IGF-1 and/or EGF stimulation did not
show any significant effect on overall spheroid growth and sprouting. Applying the novel
algorithm to the evaluation of Hig7s spheroids after IGF-1 and EGF treatment might
uncover effects of EGF and IGF-1 treatment that were not visible using traditional evaluation

methods.

Several mathematical models were proposed that link the growth kinetics on the multi-
cellular level (radius/volume in time) to cellular mechanisms (cell growth, contact inhibition,

nutrient limitation, etc.), either as continuum models for component densities evolving over

)147,148

time and space (using PDEs or agent based models (ABMs) that model cells and their

behavior (growth, division, movement, death) individually.**® Models based on quantitative

bright field imaging approaches like the one presented here have been published by

150

Frieboes et al.”® in a Non-Hodgkin lymphoma setting and Macklin et al. to predict ductal

151,152

carcinoma growth in individual patients and in breast cancer . Similar approaches for
NSCLC will help to elucidate cellular mechanisms for the early spread and dissemination of

cancer cells.
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5.3 Effects of IGF-1 and EGF stimulation on NSCLC cells

5.3.1 Pathway activation and ODE model
To build a first ODE model for the EGFR and IGF-1R signaling pathways, comprehensive
time course data of the activation kinetics of both receptors and the key downstream
proteins ERK and AKT were generated for H838 NSCLC cells. In a second step, the same
dataset was generated for H1g75 cells and first measures were taken to adapt the model to
be able to explain the pathway activation behavior in both cell lines. In order to ensure the
validity of the stimulation setup, depletion and secretion of both factors in both cell lines
was investigated, with both cell lines showing no secretion over 24 hours and quick

depletion of both EGF and IGF-1.
IGF-1 and EGF pathway activation in H838
A. EGFR stimulation

Firstly, no receptor cross-activation with the opposite cytokine respectively was detected.
EGFR activation/phosphorylation could be detected under EGF stimulation with a strong
and rapid activation and transient kinetics. Very similar activation kinetics have been shown
in HeLa cells after EGF administration.’. Interestingly, after double stimulation with EGF
and IGF-1, EGFR activation is reduced while the general transient activation kinetic is
preserved. This negative regulation between IGF and EGF signalling has so far not been
observed in any published study. Reasons for this down regulation of maximal signal
intensity could be direct interactions between the activated receptor (as implemented in the
ODE model through a single inhibitory reaction of phosphorylated IGF-1R towards EGFR),
but also indirect mechanisms such as competition for high-energy donor-molecules.
Furthermore, phosphatase activity has been reported to be important for the rapid negative
feedback regulation of signaling pathways.™* As such, even though both receptors show
equally rapid phosphorylation kinetics with strong activation in the first 5 to 10 minutes,

activation of phosphatases by IGF-1R might explain the reduced EGFR activation.

Equally intriguing is the fact that depletion of the receptor starts directly after stimulation
and shows the same dynamic in the double-stimulation condition as with stimulation with
EGF alone (even though EGFR activation is significantly higher with EGF alone). Thus the
receptor depletion seems to be at least partially independent from the observed receptor
phosphorylation/activation. Technical explanations for this could lie in the choice of

antibodies, as the anti-phospho EGFR antibody used in this study detects the specific
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phosphorylation site at Tyr1068. As there are over fifty other activating phoshpo-sites at the
EGFR,™ it is possible that phosphorylation on other sites might be even earlier events, thus
leading to a “masked” activation of the EGFR that already leads to degradation after
internalization. For example, Jiang et al. reported that next to Tyr1068, Tyr1086 was
responsible for Grb2 dependent and clathrin-mediated internalization of activated EGFR in

® and Tanos et al. showed the involvement of

the first minutes after EGF stimulation™
Tyri173 in Abl regulated EGFR internalization.™ A systematic analysis of phospho-site-

specific EGFR internalization efficiency has not been performed yet.

On the other hand, clathrin-mediated endocytosis of ligand-bound receptors is a very fast
process with a rate constant K of up to 0.6 min-1.5® Thus the noticeable drop in total EGFR
amounts might be explained by biology, with the subsequent plateau being explained by the
upregulation of rapid recycling after 20 minutes resulting in a new steady state. In the
model, the assumed K. is decidedly lower with 0.01 min-1.This discrepancy to the literature
data can be attributed to the simplifications in the model. For example, the model only
considers internalization of activated receptors. The actual endocytosis rates and dynamic
behavior of EGFR after stimulation and ligand binding is under investigation by cooperation
partners in the LungSysll consortium in the Single-Molecule Spectroscopy Research Group
of Prof. Dr. D. Herten (Cellnetworks Cluster and Inst. for Physical Chemistry, Heidelberg
University) using single-molecule imaging-techniques. Incorporating this information into

the model will contribute to the elucidation of this interesting behavior.
B. IGF-1R stimulation

Activation/phosphorylation dynamics of IGF-1R after IGF-1 stimulation were comparable to
the EGFR activation in terms of speed of response, with maximal activation levels being
reached at 10 minutes. Whereas EGFR activation was transient, IGF-1R phosphorylation
displayed a sustained activation on the maximal level until 2 hours before slowly declining.
Guakova et al. showed a similarly sustained IGF-1R activation in breast cancer cells,™®
whereas Hallak et al. demonstrated a more transient activation in rat hepatocytes™®. In
contrast to the reducing effect of double stimulation on EGFR activation, both the dynamic
as well as total strength of response of IGF-1R phosphorylation stayed the same in the
double stimulation compared to treatment with IGF-1 alone. Equally, in contrast to EGFR

internalization after EGF administration, total IGF-1R levels also stayed constant over the

observed time.

C. Downstream effectors
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Downstream of the receptors, ERK and AKT activation behaved different with regard to
stimulation with EGF, IGF-1, or both cytokines. For the treatment with single growth factors,
the dynamics of phosphorylated AKT followed those of the activated receptors, albeit with a
somewhat reduced strength of response and a delay of 5 to 10 minutes. As such, AKT
activation after EGF stimulation shows a more transient progression with the maximum

%) ‘whereas the activation

after ~agminutes (similar to results published in pancreatic cancer
after IGF-1 stimulation shows a more sustained phenotype with the maximum being reached
at 30 minutes. This sustained activation has been shown in NSCLC*** and other cell systems

such as skeletal muscle,*®® HEK2g3 and neuroblastoma.*®

Double stimulation shows an additive effect on AKT compared to the single treatments,
with a higher maximum activation being reached after 15 minutes and a more sustained
dynamic compared to EGF stimulation. Neither complete addition of the signals nor any
synergistic effects could be detected, as the signal of the double stimulation does not equal
the sum of both single stimulations at the maximum signal intensity at 15 minutes. At later
time points (e.g. at 60 minutes and later) this is achieved and the signal strength in the
double stimulation does equal the sum of both single stimulations. A first explanation for
this follows from the receptor activation dynamics: the down regulation of EGFR activation
in the double stimulation compared to EGF alone would explain the reduced signal.
Alternatively, a saturation of available AKT molecules could limit the signal. Both
hypotheses can be tested with the ODE model. Here, the first hypothesis was supported by
the model, whereas pAKT levels were far from being saturated. This model prediction would
be experimentally testable by applying semi-quantitative mass-spectrometry to investigate

the ratio of AKT to pAKT during the time course as described by Hahn et al.*

Concerning ERK activation, the situation is less complex. While the phosphorylation of ERK
follows the EGFR activation after EGF stimulation closely, IGF-1 stimulation results in a
similar but decidedly weaker activation. Olsen et al. showed very similar ERK activation after
EGF stimulation in HeLa cells,”* whereas Girnita et al. reported a similar transient activation

%6 Double stimulation shows no change compared

after IGF-1 stimulation in melanoma cells.
to EGF stimulation alone, thus either the ERK activation was already saturated and surplus
EGFR activation in the single treatment had no effect, or the low ERK activation after IGF-1
stimulation is able to compensate for the reduced EGFR signaling. Again, after taking the
model parameters into account, saturation of ERK activation can be disregarded in favor of

the compensation via IGF-1R activation.
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Summing up, in H838 cells, EGF stimulation activated both AKT and ERK with a similar
dynamic of the receptor activation. IGF-1 signaling is transmitted more prominently via AKT,
with only low ERK activation. Double stimulation shows some additive effects on AKT
signalingand to a lesser extent on ERK signaling. Concerning the direct crosstalk between
the receptors, only an inhibitory effect of activated IGF-1R on EGFR activation could be

detected beyond the activation of the same downstream receptors.
Model generation

The EGFR pathway is one of the best studied growth-factor pathways. Modeling it has been
called a paradigm for systems biology.*” Accordingly, a number of EGF pathway models
have been published over the years, with some taking into account the activation
dynamics™®® and crosstalk between EGFR and other TRKs like IGF-1R.**® However, the
approach reported here has major advantages over others. For one, most models were

either based on standard cell-culture cell-lines like HelLa,**®

which is probably not
informative for NSCLC cell lines, or do not incorporate measured pathway activation data at
all. These aspects might be the reason for differences in the assumptions and predictions
between these published models and the one presented here. For example, Bianconi et al.
argued from clinical data and histological investigation, and incorporated a pathway scheme
from literature.*®® While the reported transient dynamic behavior of ERK activation resulting
from the model simulations fits with the experimental observations made in the present
study in both cell lines, Bianconi et al. reported that in their simulations both EGFR and IGF-

1R dynamics induced the same ERK activation whereas in the study presented here, EGFR

leads to a significantly increased ERK activation compared to IGF-1R.

Thus, to generate meaningful and applicable models for a given cell type and disease, a data
driven approach to ODE models as used in the present study seems warranted, if not

downright necessary.

The minimal model approach that was employed here follows the general principle of the
Akaike information criterion (AIC), which is used to describe the quality of a model. In short,
the principle stands for the fact that the more exact a given model represents the data and
the fewer parameters are needed, the better the model quality. High numbers of parameters
incur the risk of overfitting and unidentifiability if too many model components are not

supported by measured data.
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Additionally, publications like the ones from Csete et al. showed that a complex system

170

could still give rise to simple behavior as a characteristic of robust systems.””® Thus, when
focusing on the behavior of central pathway nodes, most of the complexity of the upstream
signaling pathways can be ignored. This is supported when comparing the ERK data from
my study to previously published results from Bianconi et al. that used a more complex

pathway model,  as our (simple) model yields a comparable dynamic behavior.
EGF and IGF-1 dose effect in H838 and model refinement

Dose-response experiments confirmed some but not all of the findings from the kinetics.
Generally, dose-dependent activation of both receptors and downstream effectors ERK and
AKT could be shown with some differences to the kinetic dataset. These inconsistencies can
be explained by the lower number of replicates and the measurements at single time points,
as small shifts in the dynamic behavior especially impact factors with steep initial activation
like the ones investigated here. Nevertheless, by incorporating these dose response data for
IGF-1, EGF, and double stimulation into the model, the identifiability was significantly

increased for the phosphorylation and dephosphorylartion parameters for AKT and ERK.
EGF and IGF-1 pathway activation in H1975

The pathway activation dataset for Hig75 was generated in the same manner as the H838
dataset. Nevertheless, the data is considerably noisier and displays higher variations in the
replicates. One possible explanation for these effects might be the activating mutations in
the EGFR of H1g7s cells. Hereby, the activating mutation raises the background activation,

especially of the downstream effectors, and thus increases the noise in the measurements.

|93



DISCUSSION

Important differences between the H838 and the H1975 in the dataset are:

The constitutively active EGFR receptor partly leads to insensitivity against EGF

stimulation in the pEGFR measurements.

171

IGF-1R is strongly activated (as also shown by Peled et al.””*) and this activation shows a
transient behavior with a narrow peak shape comparable to findings by Hallak et al.
generated in rat hepatocytes.” In the double stimulation condition, the mean
phosphorylation peaks higher than with IGF-1 alone, but the high variation renders this

insecure.

The downstream effects do not completely mirror the receptor activation. For one, ERK
phosphorylation reacts to EGF stimulation even though no change in EGFR Tyr1068
phospho site could be detected. In contrast, IGF-1 treatment results in only a very low

activation of ERK, even though the receptor showed a clear activation.

For AKT, only the double stimulation resulted in measurable phosphorylation, with the

maximum being reached at 15 minutes followed by a sustained response, similar to the

I 162

findings of Ma et al.”** and Bijur et al.** for IGF-1 stimulation.

Interestingly, the dose-response experiments in H1g75 showed a better accordance to the

kinetics dataset than was the case for H838:

EGFR activation showed the same insensitivity for a wide range of concentrations.

IGF-1R activation showed saturation of signal at 10 ng/ml, with no difference between

stimulation with just IGF-1 and the double treatment.

ERK phosphorylation showed a similar behavior as with the time courses, saturating at

10 ng/ml of EGF and double stimulation.

AKT phosphorylation showed dependency on IGF and EGF stimulation, with additive

effects in the double stimulation.
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DISCUSSION

Integration of H1975 data in ODE model

The noisiness of the data made the incorporation into the ODE model difficult. As a first
step, the IGF-1R activation could be integrated into the model so that both the activation
dynamics for H838 and H1975 cells can be sufficiently explained by the same model. Hereby,
parameter fitting lead to the assumption that H838 cells harbor highly increased amounts,
i.e. 17 times more IGF-1R than H1g75. Experimental validation showed that H838 contain 21
times more IGF-1R than Hig7s5. In a comparative analysis of different NSLCLC cell lines by

172

Gong et al.,, Hig75 cells equally showed low IGF-1R protein levels”*. This excellent
agreement between model assumption and experimental validation indicates that the
simple ODE model in it's current state is already able to explain centrall pathway processes.
Fitting both datasets also lead to a further refinement of the model by adding an
autoinhibitory loop to the IGF-1R signaling module, thereby further increasing model fits for
the IGF-1R activation dynamics for both cell lines. Biologically this autoinhibitory loop could

be interpreted as the effect of up reqgulated IGF binding proteins (IGFBPs)” or an increased

activity of phosphatases abolishing IGF-1R phosphorylation.*’*

Biological effects after stimulation

In both viability and migration assays, IGF-1 and EGF single stimulation as well as double
stimulation did not show significant effects. Whereas H838 cells lost all migratory capacity
under starvation, Hig75 cells still showed migration capability, albeit with a highly reduced

strength, making them a good model to analyse IGF-1R- and EGFR-induced NSCLC mobility.

The lack of obvious effects of both the single treatments as well as the double stimulation
points to the involvement of more co-factors necessary for the induction of complete
migratory phenotype: the FCS supplied in full propagation medium contains a wide array of
growth factors and low-molecular substances, which may play a part in the complex

signaling network that governs migration™’>.
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5.4 Effects of IGF-1R and EGFR inhibition on NSCLC cells

From the lack of phenotypes after stimulation with IGF and/or EGF, the conclusion arises
that the cells might need to be primed for migration by a combination of growth factors,
which is then taken advantage of by increased EGF and/or IGF-1 signaling. In order to
investigate this hypothesis, the functional effects of EGFR and IGF-1R inhibition on NSCLC
cells under full propagation medium with FCS were studied. Inhibition of signaling through
small molecule TKis is inherently less specific than stimulation with specific ligands, due to
possible off-target effects.”® To control for these effects, three different EGFR inhibitors
were used: Erlotinib, Afatinib and CAS-879127-07-8. While both Erlotinib andCAS-879127-
07-8 inhibit the EGFR by reversibly binding to the ATP site of the EGFR kinase domain,”’
Afatinib inhibition functions by irreversibly binding to the ATP site via sulfate bridges.*® In
the experimental setup used in this study, all three inhibitors effectively impair cell
proliferation, increase apoptosis and reduce 2D migration of both H838 and Higys,

illustrating that EGFR signaling is a relevant regulator of these processes.

First corresponding results for IGF-1R inhibition have been obtained through the use of PPP.
PPP inhibits IGF-1R autophosphorylation through an ATP independent mechanism.*® It has
been shown to be effective and selective for IGF-R inhibition in several in vitro and in vivo

model systems™® and is currently tested in lung cancer patients in trial NCTo1561456 .
Comparison of H838 and H19y75 proliferation after TRK inhibition

Interestingly, H1975 cells show a more differentiated response to the different doses of all
used inhibitors in the proliferation assays. Whereas H838 showed a distinct threshold
behavior, where the response increased drastically between two of the tested
concentrations (e.g. hardly any impact on proliferation for 1 uM of Afatinib and complete
abolishment of proliferation at 10 uM), H1975 showed a gradual increase of the dose
response for all tested inhibitors. For the EGFR inhibition, this might be explained by the
increased affinity of EGFR to ATP in H1g75 cells due to the T79oM mutation, which could
reduce the sensitivity for all inhibitory treatments. However, as the response to IGF-1R
inhibition shows the same effect, it stands to reason that the makeup of the downstream
signaling network is responsible for this more differentiated response. Indeed, quantitative
mass-spectrometry analysis revealed, that H838 cells harbor about 220 nM of AKT and g50
nM of ERK (ERKz/2 combined), whereas Hig75cells harbor about 120 nM of AKT and 890 nM

of ERK, respectively (private correspondence with Prof. U. Klingmuller). Thus different
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stoichiometry of cellular downstream effectors might explain the observed differences

between the inhibitors in the cell systems used.
Rescue of migration after EGFR inhibition

In order to further support the hypothesis of EGF and IGF-1 pathway interconnection, the
rescue of the observed phenotypes after inhibition of EGFR and IGF-1R by stimulation with
the opposite growth factor was investigated. Neither of the experiments resulted in a
measurable rescue effect on proliferation and apoptosis for H838 nor Hig7s cells.
Interestingly, for 2D migration, stimulation with IGF-1 after EGFR inhibition with 5o nM CAS-
879127-07-8 resulted in a significant and temporally limited, but nevertheless reproducible

increase in migration compared to the EGFR inhibition alone.

Similar findings have been published for HGF, which rescued EGFR inhibition in colorectal
cancer”® and NSCLC™® as well as for EGF, HGF, and FGF in a multi-kinase inhibitor setting in
pediatric low grade astrocytoma and ependymoma*®*, indicating that the rescue of specific
pathway inhibition by parallel acting cytokines is a general mechanism in cancer cells. As
also demonstrated in these and other studies, the rescue effect shown here is only partial,
which is in accordance with findings from Jameson et al.* This makes sense in the context of
the complex signaling system, as also implied in the results of EGF and IGF stimulation
presented here: The ultimate phenotype depends on the interplay of more than two growth
factors. The increase in AKT activation under double stimulation shown here for Hig7sg
indicates that the partial rescue via IGF-1 stimulation might be facilitated by AKT in this

experimental setting.

5.5 Transcriptional effects of IGF-1 and EGF stimulation

Having shown connections between both EGF and IGF-1 signaling pathways on protein-
activation level as well as for 2D migration, first steps were taken to connect those two levels
of cellular response via expression of target genes. To this end, expression analysis of H1g75
cells after IGF-1 and EGF stimulation was performed. Using novel approaches developed by
cooperation partners in the LungSysll consortium (M. Albrecht from the group of
Dr. F. Matthaus), GO annotation was performed and gene responses were ranked according
to expression change over the total time course. Using gRT-PCR investigations, genes with
GO terms connected to migration and invasion were chosen to validate the microarray
results. EGF responding genes such as CTGF, AREG, and IL8 could be validated at the

transcript level.
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GO terms for CTGF indicate a connection to migration and cell matrix adhesion.
Interestingly, CTGF overexpression has been found to suppress AKT activation after IGF-1
stimulation, and ERK activation after EGF stimulation.*®> As the EGFR is constitutively active
in H1975 cells, this mechanism might be in part responsible for the low activation of AKT in
these cells. Also, together with the activation seen after EGF stimulation, this points to
CTGF facilitating the transient shape of ERK activation. AREG on the other hand yielded GO
terms connected to DNA replication and cell proliferation. Nevertheless, in ovarian cancer,
AREG has been shown to induce cell invasion.”® Additionally, it has been linked to IGF-1
signaling in NSCLC,® thus presenting a promising target for therapy.’®> Finally, IL8 GO
annotation points toward roles in proliferation but also cell adhesion and chemotaxis.
Accordingly, in NSCLC, IL8 has been shown to stimulate proliferation,”® whereas invasion

enhancing effects could be shown in breast cancer cells.*

In contrast, genes that were identified as responding to IGF-1 stimulation on the microarray
dataset could not be validated. Reasons for this could lie in the general quality of the IGF
response. PCA analysis of the preprocessed datasets revealed that the trajectory of the IGF-
1 stimulation transcriptome data resembles that of the EGF stimulation, but with a parallel

shift already after o.5h.

5.6 Implications for early spread and TKI resistance in NSCLC

Early and frequent metastasis is one of the reasons for the high mortality among lung cancer
patients, as introduced in 1.1.1.Therefore, controlling the early spread and invasion of lung
cancer cells promises to increase patient survival. Accordingly, migration and invasion have
been important output parameters for in vitro experiments regarding cancer and NSCLC

188290 The results presented here further underpin the importance of EGFR and IGF1-

therapy.
R signaling in NSCLC, by showing both reduction of proliferation and, more importantly,
migration after inhibition of both IGF-1R and EGFR. Additionally, the microarray analysis of

especially EGF stimulated H1g75 substantiates the impact of EGF on NSCLC cell migration.

The second important contributor to the low 5-year survival of NSCLC is the emergence of
acquired resistances to TKI treatment generally limiting therapy.” The most common
mechanisms here are secondary mutations. For instance, up to 60% of patients with TKI
resistant EGFR-mutant NSCLC harbor the T79oM mutation in the threonine gatekeeper
residue in addition to the activating L858R mutations or exon 19 deletions.®>®*** As
introduced in 1.2.3, a second generation of EGFR inhibitors have been developed that

48192 byt also showed
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only modest effects in clinical studies with patients that had developed resistance against
Erlotinib or Gefitinib.*#**%* One reason for this, as hypothesized by Cortot et al., could be the
relatively low achievable drug concentration in patients vs the in vitro studies.*® This is
corroborated by further in vitro studies that showed emergence of T79oM mutant cells
under treatment with similarly low concentration of Afatinib.*95*%® Accordingly, Cortot at al.
identified combinatorial treatment strategies of efficient T79oM inhibition together with

IGF-1R inhibition that prevented the emergence of drug resistant clones in vitro.*°

The results of the study presented here also support an impact of IGF-1R signaling on the
resistance of NSCLC cells against EGFR inhibition. Firstly, IGF-1R and EGFR activation was
transmitted along the same downstream effectors ERK and AKT, albeit with different
activation dynamics. Secondly, while no effect on proliferation could be shown here, IGF-1

signaling could rescue the reduction of migration after EGFR inhibition.

Concerning the molecular mechanisms, an additional factor worth considering in the
contributions of the IGF signaling system to acquired resistance of NSCLC is the role of IGF-
binding proteins (IGFBPs), that control IGF-1R signaling through the binding of ligands. For
example, |IGFBP-3 secretion was reduced and lead to increased activity of the
IGF1R/PI3K/AKT pathways in NSCLC lines with acquired resistance to Gefitinib or Erlotinib®
as well as cisplatin resistant cells'”. These studies have been conducted in cells, which were
not checked for EGFR status. It will be interesting to investigate the available NGS
sequences of see if the rescue effect observed in this study in the T79oM mutated H1g75 cell

line is at least in part induced by similar down regulation of IGFBPs.
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5.7 Outlook

In summary, in the work presented here, | could show that, while EGFR and IGF-1R signaling
are important for NSCLC migration in both cells with the wild type and the mutated EGFR,
they are contributors in a more complex growth-factor signaling-network. It will be of
importance to further investigate the dynamic interactions between large subsets of this
network to engage kinase switching and other forms of acquired resistance and elucidate
possible points of intervention for novel therapies. The novel phenotypical evaluation
algorithms delivered useful quantitative data for modeling approaches, and the resulting
data were used as a basis for agent-based modeling of NSCLC migration. In the framework
of the LungSys consortium, the data and models generated in this work will be used as the
basis for integrated multiscale modeling of the complex conditions governing NSCLC
migration and the relevant cell signaling. Going forward, the ODE model generated here will
need to be expanded and the phenotypical data will need to be integrated in order to
generate biologically useful testable hypotheses. Thus, important insight will be gained into
the dynamic signaling interplay and resulting therapeutic options for NSCLC, the deadliest

cancer to date.
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