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Der Chirale Phasenübergang der QCD

In dieser Arbeit studieren wir verschiedene Aspekte des chiralen Phasenübergangs der Quanten
Chromodynamik (QCD). Dieser ist dadurch geprägt, dass sehr verschiedene Freiheitsgrade auf
unterschiedlichen Energieskalen relevant sind. Wir widmen uns daher der Frage, wie genau die
Hadronen auf niedrigen Energieskalen aus der Dynamik der Quarks und Gluonen bei hohen
Energien hervorgehen. Dazu bedienen wir uns der Funktionalen Renormierungsgruppe, welche
uns erlaubt, diesen dynamischen Übergang in einem vereinheitlichten Rahmen zu beschreiben.
Dadurch sind wir in der Lage, die relevanten Freiheitsgrade zu identifizieren und die zugrunde-
liegenden Mechanismen des Übergangs von Quarks und Gluonen zu Hadronen in der QCD,
einschließlich des Wechselspiels dieser beiden unterschiedlichen Phasen, besser zu verstehen.
Das Verhalten der Vektormesonen, welche in experimentellen Studien des Phasenübergangs
eine herausragende Rolle spielen, lässt sich dadurch aus der QCD ableiten. Basierend auf
diesen Erkenntnissen entwickeln wir ein Niederenergie-Modell zur effektiven Beschreibung des
QCD Phasendiagrams bei endlicher Temperatur und Dichte. Unser Fokus liegt dabei auf der
quantitativen Präzision unserer Resultate im Sinne von kontrollierten Entwicklungsschemen
und dem Effekt von Quark-Meson Streuprozessen auf den chiralen Phasenübergang.

The Chiral Phase Transition of QCD

In this thesis we study various aspects of the chiral phase transition of quantum chromodynamics
(QCD). This transition is characterized by very different degrees of freedom at different energy
scales. We therefore address the question how hadrons on low energy scales emerge from
the underlying quark-gluon dynamics at high energies. To this end, we utilize the functional
renormalization group which allows for the description of this dynamical transition within an
unified framework. With this method at hand, we are able to identify the relevant degrees
of freedom and to deepen our understanding of the underlying mechanisms that drive the
transition from quarks and gluons to hadrons in QCD, including the mutual back reaction of
these distinct phases. As a result, the properties of vector mesons, which play a prominent
role for experimental investigations of the phase transition, can be derived from QCD. These
insight are the foundation for the development of a low-energy model that aims at the effective
description of the QCD phase diagram at finite temperature and density. There, our focus is on
the quantitative precision of our results based on well-controlled expansion schemes and the
effect of quark-meson scattering processes on the chiral phase transition.
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CHAPTER 1

Introduction

1.1. The QCD Phase Diagram

The weak, the electromagnetic and the strong force as well as gravity constitute the fundamental
interactions of nature. The structure of the sub-atomic realm is determined by the former three
forces. Owing to its unprecedented success in the past decades, it is now widely accepted that
the quantum theory of these interactions is given by the standard model of particle physics.

In the 1950s numerous particles – the hadrons – were discovered. Already their large
number suggests that they cannot be fundamental. In the course of this, Gell-Mann and Zweig
proposed that hadrons are bound states of quarks [1–4]. To fully understand the observed
hadron spectrum, a new quantum number associated to the quarks – the color charge – was
necessary. This was rooted in the fact that some baryons (e.g. the ∆++) would otherwise
violate the Pauli principle. In analogy to quantum electrodynamics (QED), the interaction of
quarks, i.e. the strong interaction, is therefore described by an SU(Nc) gauge theory. Nc is
the number of color charges [5–10]. Consistency with the hadron spectrum requires Nc = 3.
This theory of the strong interactions is known as quantum chromodynamics (QCD). The gauge
bosons which mediate these interactions are called gluons. Gauge invariance is a fundamental
principle in nature and applies to all the fundamental interactions. Since the gauge group of
QCD in non-Abelian, the gluons also carry color charge and therefore strongly interact with
themselves. As a consequence, the strong interaction is very short ranged, as opposed to gravity
and electromagnetic interactions1.

The theory of strong interactions, formulated in terms of color charged quarks and gluons,
was not immediately accepted by the physics community. This hesitation is rooted in one of the
most peculiar features of QCD: The absence of color charged objects in nature. Furthermore,
there is no direct experimental evidence for the existence of colored states to date. This feature
of QCD is known as confinement. It states that quarks and gluons are always bound into
color-neutral objects and is a main characteristic of QCD at low energies. Even though the
mechanism of confinement is not fully understood yet, it ultimately arises from the fact that
the energy necessary to separate a pair of quarks rises linearly with the distance. The energy

1The weak interactions are also short-ranged. Owing to the weakness of the interaction, however, its short range
cannot be explained by the non-Abelian nature of the weak force. It is rather due to the large mass of the
corresponding gauge bosons, which is generated by the Higgs-mechanism, that the interaction range is short.



12 1. Introduction

from the separation is at some point large enough for a new quark pair to be created from
the vacuum, which then pairs with the original quarks and thus prevents the isolation of color
charge.

With the discovery of asymptotic freedom by Gross, Wilczek and Politzer in 1973 [11,12],
the other peculiar feature of QCD was revealed: The strong interactions become arbitrarily
weak at arbitrarily small distances. Thus, at high energies quarks and gluons are basically free
particles. This implies that the very nature of the degrees of freedom of QCD must change
drastically with the energy scale. While at low energies confinement prevails and quarks and
gluons only exist as constituents of color-neutral hadrons, they are free, deconfined, particles at
high energies. It is therefore natural to expect that a phase transition from the hadronic to the
quark-gluon regime occurs.

Indeed, convincing evidence has been collected from both experimental and theoretical efforts
that such a confinement-deconfinement phase transition exists in the plane of temperature and
density. At low temperature and density the system is in the hadronic phase. The quark-gluon
plasma (QGP) phase, i.e. the phase populated with individual quarks and gluons, is reached
at sufficiently high temperatures and/or densities. Early evidence for such a transition was
already found in 1965 by Hagedorn [13]. He pointed out that in a purely statistical model
of hadrons, the partition function diverges at a certain temperature. This phenomenon was
interpreted as the break-down of the hadronic description of matter, since hadrons "melt" at
sufficiently large temperatures. Even though there are much more sophisticated descriptions
of QCD in the medium nowadays, the interpretation of these early findings remain true. In
numerical ab-initio simulations of QCD on spacetime-lattices at vanishing density, a steep rise
in the pressure and the energy density at a certain temperature Tc was found [14–16]. Since
both quantities scale with the number of degrees of freedom, this observation signals a phase
transition between two regimes which are characterized by very different degrees of freedom.
From lattice results it is now well-established that the confinement-deconfinement transition is
a crossover with critical temperature Tc≈155 MeV [17–19]. We want to emphasize that in SI
units this temperature is roughly 1.7× 1012 K – about five orders of magnitude hotter than the
core of the sun.

This immense temperature indicates that experimental studies of the QCD phase structure
require tremendous efforts for the creation of such an extreme environment. This is achieved
in ultra-relativistic heavy ion collisions (HIC), i.e. the collision of atomic nuclei in which the
center-of-mass energy is much larger that the rest mass of the nucleon. The first experiments of
this kind were performed in the 1970s at the Bevelac, Lawrence Berkeley National Laboratory.
But it was not until 2005 that large enough energy densities were created to produce a quark
gluon plasma. This was achieved at Brookhaven National Laboratory’s Relativistic Heavy Ion
Collider (RHIC), where HIC research still continues. The other mayor facility that presently
performs these experiments is the Large Hadron Collider (LHC) at CERN.

Observables that are easily accessible in theory are often almost impossible to measure. One
of the greatest challenges, intersecting both theoretical and experimental efforts, is therefore
to identify observables that are sensitive to the different phases of QCD, theoretically well
understood and also accessible in experiments. The main reason for this complication is
that the quark-gluon plasma state produced experimentally has only a very short lifetime in
which it expands and cools rapidly. All informations about the fireball therefore have to be
reconstructed from the final states, i.e. the properties of the detected particles. The fact that
the phase transitions of QCD are not even well defined, at least for a large part of the phase
diagram, additionally complicates these efforts.
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Promising signatures of deconfinement are found in heavy quarkonium suppression [20]
and hadron yields [21]. Heavy quarkonia such as charmonium probe the heavy quark mass
limit of QCD and are therefore sensitive to features of deconfinement [22]. Particle yields
are surprisingly well described by the so-called statistical model, which assumes a thermal
distribution of a non-interacting hadron resonance gas [21]. Most prominently, temperature
and chemical potential of the chemical freeze-out can be extracted from thermal fits of this
simple model to particle yields. At small chemical potential, the freeze-out temperature is a
good measure for the phase transition temperature [23]. Indeed, the transition temperature
extracted from LHC data is in agreement with lattice results at vanishing density [24].

The confining nature of QCD at low energies alone is not sufficient to explain the hadron
spectrum. This is rooted in the observation that e.g. the nucleons have a mass of about 1 GeV
while their constituents, the lightest quarks flavors up and down, get masses of about 2−4 MeV
from the Higgs mechanism. This huge discrepancy cannot be explained by binding energy
alone, since it can only account for a few MeV. Thus, there must be an additional mechanism
for the generation of the nucleon masses, or put differently, the effective mass of the quarks
that are bound into hadrons, known as the constituent quarks. The masses of the current quarks,
i.e. the free quarks in the high-energy regime, are generated by the Higgs mechanism at the
electroweak scale ∼ 246 GeV. As it turns out, the three flavors up, down and strange are much
lighter than the other quark flavors charm, bottom and top2. Thus, in QCD the light quark
sector (u, d, s) is well approximated as massless. In this massless limit, this sector possesses an
additional global flavor symmetry known as chiral symmetry. It states that left- and right-handed
quarks can be rotated independently in flavor-space. The observed hadron spectrum shows
a large mass-splitting between mesons that should be degenerate if chiral symmetry would
hold. A prominent example is the mass splitting of the chiral partners, the ρ-meson and the
a1-meson, where the mass-difference is about 500 MeV. This cannot be explained by the rather
small explicit chiral symmetry breaking due to the finite masses of the light quarks. Hence,
chiral symmetry must be broken in the hadronic regime, while it approximately holds in the
quark-gluon regime in the light quark sector. In fact, chiral symmetry must be spontaneously
broken. According to Goldstones theorem, this gives rise to eight very light pseudoscalar
mesons3. This beautifully explains why there are exactly eight pseudoscalar mesons, the three
pions, the four kaons and the eta meson, which are considerably lighter than the rest of the
hadrons.

Lattice studies found that the chiral transition is also a crossover and the critical temperature
at vanishing density coincides with that of the deconfinement transition within the error
[17, 18, 25–30]. The experimental challenge is to identify signatures of chiral symmetry
restoration in heavy ion collisions. Promising signals are found in the low-mass spectra dilepton
or the transverse momentum spectra of photons [31–33]. The reason is that the precise form
of these spectra is sensitive to in-medium modifications of hadrons, in particular the light
mesons and most prominently the ρ-meson, to which dileptons couple directly. The ρ, in turn,
is likely to show distinct signatures of chiral restoration close to the chiral phase transition,
either through characteristic modifications of its mass [34–36] or more generally of its spectral
function [37,38].

We see that the hadronic regime is characterized by both, confinement and the absence of
chiral symmetry. The quark-gluon plasma, on the other hand, is characterized by deconfined

2We will refer to the six quark flavors as u, d, s, c, b and t for the remainder of this work.
3In the case of spontaneous breaking of approximate symmetries, Goldstone bosons are very light rather than

exactly massless.
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Figure 1.1.: A sketch of the QCD phase diagram [39].

quarks and gluons with approximate chiral symmetry in the light quark sector. The quest
for the QCD phase diagram is therefore to a large extent a quest for the understanding of
confinement and chiral symmetry breaking. In Fig. 1.1 we show a sketch of the phase diagram
in the temperature-density plane. As it was established from lattice simulations, the chiral and
deconfinement transitions are crossovers at small densities and approximately coincide with
each other. During the evolution of the universe from the big bang, the phase boundary was
crossed in this region. Starting from the hot environment created by the big bang, the universe
subsequently cooled down and underwent the transition from the quark-gluon plasma to the
hadronic phase approximately 10−6 seconds after the big bang.

At larger densities, the fluctuations of fermions, i.e. quarks and baryons, are enhanced.
This is rooted in the fact that if one compresses a "gas" of fermions, they effectively become
lighter. In turn, fermionic fluctuations intensify phase transitions and it is a realistic possibility
that at large enough density the crossover transition turn in to a first-order phase transition.
Consequently, there is a distinct point in the phase diagram where the crossover and the first-
order transition meet, the critical endpoint (CEP), and the transition is of second order. Such
a point is characterized by enhanced long-range fluctuations which lead to singularities in
thermodynamic observables. Thus, owing to its nature, the CEP would show distinct signatures
in experiments [40]. However, no conclusive evidence for the existence of such a point has been
found yet. From theoretical considerations we only know that there is no CEP for µB ® πT ,
where µB is the baryon chemical potential4 [27,41–47].

At large densities a variety of different phases have been conjectured [48]. The possibility of
diquark-condensation (in analogy to the formation of cooper pairs in ordinary superconductivity)
can lead to various color-superconducting phases [49–57]. Furthermore, the ground state may
be characterized by spatially modulated condensates, i.e. inhomogeneous phases [58–61]. In
addition, there is the liquid-gas transition of nuclear matter at very small temperatures and
intermediate densities in the hadronic regime. Since the nucleon mass is about 1 GeV, nucleons
can only form at vanishing temperature when the baryon chemical potential is larger than their
mass (minus the binding energy). It is a first-order phase transition of the liquid-gas type at
very small temperatures, that also ends in a second-order critical point [62].

4The density is a monotonously increasing function of the chemical potential. We therefore use both quantities
interchangeably.
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The main challenges for theoretical studies are rooted in the fact that QCD exhibits vastly
different degrees of freedom at different scales and that interactions become very strong at
long distances. The latter is a consequence of asymptotic freedom. Since the coupling shrinks
towards large energy scales, it increases with decreasing energy scale. Thus, perturbation
theory reaches a Landau pole, predicting its own breakdown. For a theoretical description of
QCD in the low-energy regime, and in particular its phase structure, the use of non-perturbative
methods is therefore inevitable.

The only non-perturbative ab-initio method known is lattice gauge theory [63–66], where
spacetime is discretized into a lattice. Numerical simulations on the lattice have reliably
revealed some of the most important features of the non-perturbative regime of QCD, most
notably the order and the transition temperature of the phase transition at vanishing density
already mentioned above. Finite density, however, gives rise to the infamous sign problem: A
real chemical potential leads to a complex spectrum of the Dirac operator and the Monte-Carlo
techniques used in lattice gauge theory become inapplicable, since highly oscillating phases
spoil random sampling methods. Even though much progress has been made in order to
circumvent the sign problem [67,68], there are no reliable results at large densities available to
date. Furthermore, including fermions on the lattice is expensive due to their Grassmann-nature
and discretization errors as well as finite volume effects are unavoidable, although well under
control by now. This is partly due to the use of immense computer power provided by special
purpose super computers such as the QCDOC at the Brookhaven National Laboratory.

Continuum alternatives to lattice methods are functional methods, such as Dyson-Schwinger
equations (DSE) and the functional renormalization group (FRG). These methods translate the
problem of solving the path integral into solving a system of coupled (functional) differential
equations. Both DSE and FRG are exact methods by construction, and in particular non-
perturbative. Solving the full theory, however, implies solving a tower of infinitely many
coupled differential equations. It is therefore inevitable to truncate the full theory. The
inclusion of finite temperature, finite density and chiral fermions, on the other hand, poses no
conceptual problem. In this sense, these methods are complementary to lattice gauge theory.

Throughout this work, we will use the functional renormalization group in order to address
several of the issues discussed above. It describes the renormalization group flow of a given
microscopic theory to the macroscopic regime, where long-wavelength excitations and many-
body effects dominate. The FRG is a well-suited method to tackle QCD at various energy
scales, since it allows for the investigation of physical phenomena involving different degrees
of freedom at different energy scales.

A great challenge in this context is to find a consistent unified description of both, the
quark-gluon sector and the hadronic sector. This is of great importance since the properties of
hadrons ultimately derive from the underlying quark-gluon dynamics of microscopic QCD. Thus,
addressing questions concerning the formation of hadrons in the QCD phase transition, the
signatures of this transition as well as the structure of the phase diagram requires a thorough
understanding of the underlying mechanism of how hadrons emerge from the high-energy QCD
sector. An important cornerstone for FRG studies was the realization that bound states have
to be described as RG-scale dependent fields in order to consistently connect the bound-state
regime with the regime where the constituents are the relevant degrees of freedom [69,70].
This procedure was coined re-bosonization. The application of this idea to QCD requires a good
understanding of the hadronic and the gauge sector of QCD from functional methods, as well
as their mutual feedback.

In this work we will extend these previous works in various directions revolving around the
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chiral phase transition of QCD. Based on the good understanding we now have of the pure
gauge theory in the Landau gauge from functional methods [71] we will extend the idea of
re-bosonization to dynamical two-flavor QCD – which we call dynamical hadronization for
the application to QCD – and focus on chiral symmetry breaking. We use this to compute the
the unquenched ghost, gluon and quark propagators. They play a predominant role in the
description of QCD and its phase transitions. As a result of this description, the hadronic sector
emerges dynamically from the underlying quark-gluon dynamics and all parameters of the
low-energy theory are determined by the RG-flows in the high-energy regime. Furthermore, the
mechanism of how mesons decouple when the system enters the quark-gluon regime becomes
clear. This also allows us to study the consequences of neglecting gluon fluctuations in effective
low-energy descriptions of QCD.

As mentioned above, the ρ meson plays an important role in the experimental exploration
of the QCD phase structure. It is therefore necessary to understand its chiral dynamics. By
extending the dynamical hadronization technique to the case of vector mesons, we can study
the structure of vector mesons, and in particular the ρ, as it emerges from microscopic QCD in
the vacuum and, in addition, analyze the behavior of the corresponding low-energy parameters.

The accuracy of our results relies on the quantitative control we have over the gauge and
matter sector separately, as well as over their mutual back reaction. An accurate description of
the QCD phase diagram requires a detailed understanding of the effects of quark and meson
fluctuations. To this end we study the impact of higher-order quark-meson scattering processes
on the QCD phase diagram in a well-controlled systematic expansion of the effective action.

1.2. Outline of the Thesis

We start with a more detailed discussion of QCD and its phases with particular emphasis on
the chiral symmetry breaking in Chap. 2. After a short recapitulation of the most relevant
quantum field-theoretical aspects of QCD and the implementation of finite temperature and
density in Sects. 2.1 and 2.2, we discuss aspects of chiral symmetry and confinement in more
detail in Sec. 2.3. The mechanism of chiral symmetry breaking from a renormalization group
perspective is explained in Sec. 2.4. There, we point out the relevance of effective four-quark
interactions and the running of the strong coupling for chiral symmetry breaking.

The relevant aspects of the functional renormalization group are discussed in Chap. 3. The
general idea behind the RG is explained in Sec. 3.1. We then derive the flow equation in the
presence of scale dependent fields in Sec. 3.2. The resulting equation is a generalized version
of the original equation derived by Wetterich and will be the basis for the FRG computations in
this thesis. In Sec. 3.3 we explain the optimization criterion that leads to the regularization
scheme we use throughout this work. The fixed background Taylor expansion is put forward
in Sec. 3.4. It is a particular expansion scheme of the effective action in terms of meson
fields that is particularly well-suited for the study of the low-energy sector of QCD in terms of
quark-meson models. To demonstrate this, we show its convergence properties in comparison
to a more conventional expansion scheme and explicitly check the quality of this expansion by
reproducing a highly non-trivial result on the QCD phase diagram from the literature.

Chap. 4 is devoted to chiral symmetry breaking in two-flavor QCD in the vacuum. We
motivate our truncation of the effective action in Sec. 4.1 and discuss our expansion scheme
in this context. We develop the dynamical hadronization technique in Sec. 4.2.1. As already
mentioned above, it is an extension of re-bosonization, specifically tailored for the application
to QCD. The corresponding modified flow equations will be derived there. They are a special
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case of the more general flow equation derived in Sec. 3.2. The gauge sector of QCD is a key
ingredient for dynamical hadronization and we discuss it in detail in Sec. 4.3. We use the ghost
and gluon propagators from Yang-Mills theory as an input and self-consistently include the
full effect of quark fluctuations to this input in order to capture the dynamics of unquenched
QCD. Furthermore, our construction and the involved approximations for the gauge-vertices
are discussed and we present flow equations for the quark-gluon, the ghost-gluon and the
three-gluon vertex, as well as the vacuum polarization of the gluon. The numerical results are
presented in Sec. 4.4. We first specify the initial conditions for the flow equations. Owing to
dynamical hadronization and in particular the occurrence of a "bound state fixed point", the
only parameters we need to fix are the strong coupling and the current quark mass at a large
initial scale in the perturbative quark-gluon regime. Next, we present our solutions of the flow
equations of the gauge couplings. Their RG-flow first follows the perturbative running, until
non-perturbative effects, specifically the formation of the gluon mass gap, lead to different
running of the gauge couplings. The unquenched quark and gluon propagators are also shown
there. The screening effect of dynamical quarks is clearly visible in our findings. We then show
our result for the meson masses and clarify the details of their decoupling at large energy scales.

The framework developed in Chap. 4 is applied to the QCD with vector mesons, in particular
the chiral partners ρ and a1 in Chap. 5. In this chapter we study the vacuum structure of this
mesons in detail, motivated by the discussion above. Our truncation with a detailed discussion
of the (vector-) meson sector is discussed in Sec. 5.1. We extend dynamical hadronization
to the case of vector mesons and discuss the implications in Sec. 5.2. In Sec. 5.3 we then
present the numerical results. We show that the dynamics of the vector mesons is completely
determined by the dynamics of the lighter mesons in the hadronic phase. The scaling of the
ρ mass as it approaches the scale of chiral symmetry breaking is discussed in detail, as well
as our results for the meson masses and their decoupling. Finally, we analyze the validity of
the assumption of local flavor symmetry. In the literature, this has been been used in studies
related to vector mesons within effective field theories.

Chap. 6 intends to bridge the gap between QCD and low-energy effective models. Within the
framework developed in the previous chapters, we can analyze one of the basic assumptions of
effective models for the hadronic sector of QCD: The complete decoupling of gluon fluctuations.
We do this in Sec. 6.1 on the example of the quark-meson model and show that there is an
intermediate range of scales well within the typical range of these effective models, where
the effects of the gauge sector still give quantitatively important contributions. In Sec. 6.2 we
analyze the relevance of dynamical hadronization for low-energy models and find that it can
be neglected.

In Chap. 7 we study the chiral phase diagram of QCD at finite temperature and density in
terms of a quark-meson model. Our focus there is on quantitative precision of our description
of the low-energy sector of QCD. To this end, we investigate the impact of higher order quark-
meson scattering processes on the phase boundary. In Sec. 7.1 we introduce our truncation.
Our expansion of the effective action relies on the findings of Sec. 3.4. This is crucial, since the
"conventional" expansion scheme leads to severe numerical instabilities. Thus, quantitative
precision in terms of a well-controlled expansion of the effective action crucially depends on
an appropriate expansion scheme. We discuss some important details of the RG-flows of the
parameters of our truncation in Sec. 7.2. The numerical results are presented in Sec. 7.3.
After discussing the initial conditions of the flow equations, we show the effect of higher order
meson-meson and quark-meson interactions on the chiral order parameter. These interactions
play a quantitatively important role for the phase diagram, but also become less relevant with
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increasing order in the fields. This implies a rapid convergence of our expansion and allows for
the control of quantitative precision in this part of the hadronic sector of QCD. We then show
the full phase diagram in the temperature-density plane. We compare different definitions
of the crossover. While they show large deviations to one another at small densities, they
move towards a unique result at larger densities. There, we find a first-order transition that
ends in a critical point. We also point out the individual effects effects that different parts
scale-dependent parameters of the truncation have on the phase boundary. Furthermore, we
compute the curvature of the phase boundary at vanishing density for various definitions of
the crossover and critically compare our findings to lattice results. Finally, we demonstrate the
stability of our expansion and extract informations about the field dependence of quark and
meson wave function renormalizations from our findings.

We present the conclusion and an outlook of this thesis in Chap. 8. Technical details can be
found in the Appendix.

The compilation of this thesis is solely to the author. The results and presentations are largely
based on work with my collaborators. Large parts of this thesis are published or available as
preprint. The related works are [72–74]:

• Higher order quark-mesonic scattering processes and the phase structure of QCD
with Jan M. Pawlowski
Physical Review D 90 076002 (2014)

• From Quarks and Gluons to Hadrons: Chiral Symmetry Breaking in Dynamical QCD
with Jens Braun, Leonard Fister and Jan M. Pawlowski
e-print available from arXiv:hep-ph/1412.1045 (2014)

• The Vacuum Structure of Vector Mesons in QCD
e-print available from arXiv:hep-ph/1504.03585 (2015)



CHAPTER 2

The Phase Structure of QCD

In this section we give an overview of QCD and its phase structure. We will focus on the aspects
relevant for this work.

2.1. QCD Basics

Quantum chromodynamics (QCD) is the theory of strong interactions. It describes the inter-
action of quarks q and antiquarks q̄ as a SU(Nc) gauge theory. The quarks are fermions that
transform in the fundamental representation of the gauge group. Their quantum numbers
are given by the color c ∈ {1, . . . , Nc}, which describes their charge under SU(Nc), and the
flavor f ∈ {1, . . . , N f }, which describes the different species u, d, s, c, b, t of quarks. The gauge
particles, the mediators of the interactions, are the gluons Aµ. They are spin-1 particles that
transform in the adjoint representation of the gauge group. Thus, they carry adjoint color
charge a ∈ {1, . . . , N2

c − 1}. The number of colors in QCD is Nc = 3. In contrast to non-Abelian
gauge particles, the gluons carry color charge and are thus self-interacting.

We choose Hermitian SU(Nc) generators ta, i.e. their anticommutator reads [ta, t b] =
i f abc t c , with the structure constants f abc , and their trace is poitive tr ta t b = 1

2δ
ab. The quarks

transform under local SU(Nc) transformations U (x) = eiΘa(x)ta
as

q(x)→U (x)q(x) q̄(x) = q̄(x)U †(x) . (2.1)

In order to ensure gauge symmetry, the partial derivative in the kinetic term of the quarks in
the action has to be replaced by the covariant derivative Dµ,

Dµ = ∂µ − i gs Aa
µ ta . (2.2)

Here, we expanded the gauge field in the basis of the generators, Aµ = Aa
µ ta. gs =

p
4παs is the

strong coupling. The covariant derivative of the quark has to transform under the local trans-
formation in the same way the conventional derivative does under the global transformation,
i.e. Dµq(x)→U (x)Dµq(x). This requires the following transformation of the gluons:

Aµ(x)→ A(Θ)µ ≡U (x)Aµ(x)U †(x)− i
gs

�
∂µU (x)

�U †(x) . (2.3)
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Locally, this transformation can be written as

A(Θ),aµ = Aa
µ +

1
gs
∂µΘ

a + f abcAb
µΘ

c = Aa
µ +

1
gs

DµΘ
a , (2.4)

where Dµ is the covariant derivative in the adjoint representation here.
Since the gluons are physical fields, there needs to be a corresponding kinetic term in the

action. We therefore need a Lorentz-scalar, gauge invariant object that is at most quadratic in
the derivatives. The only C P-invariant object possible is (in Euclidean spacetime)

1
2

tr FµνFµν , (2.5)

with the field strength tensor

Fµν =
i
gs
[Dµ, Dν] = ∂µAν − ∂νAµ − i gs[Aµ, Aν] . (2.6)

Since it is, as the gluons, an element of the Lie algebra, it can be decomposed as Fµν = F a
µν ta,

which yields,

F a
µν = ∂µAa

ν − ∂νAa
µ + gs f abcAb

µAc
ν . (2.7)

A cruicial difference between Abelian and non-Abelian gauge theories is now apparent: the
term quadratic in the gauge fields in (2.7) is a direct consequence of the non-Abelian nature of
the gauge group. As a consequence, the gauge kinetic term (2.5) contains three- and four-gluon
self-interactions already at the classical level. In an Abelian gauge theory, these terms are not
present and the gauge fields are classically non-interacting.

With all the ingredients at hand now, we can write down the classical action of QCD in
Euclidean spacetime1:

SQCD =

∫

x

§
q̄
�
iγµDµ + imq

�
q+

1
4

F a
µνF a

µν

ª
, (2.8)

with the Hermitean gamma matrices obeying {γµ,γν} = 2δµν1. We use the conventions of [75]
throughout this work. For the four-dimensional Euclidean spacetime integration, we use the
abbreviation

∫
x =

∫
d4 x and summation over color and flavor degrees of freedom is implied.

The second term in (2.8) encodes the pure gauge part and the action containing only this part
defines Yang-Mills (YM) theory.

The gauge symmetry implies that different gauge fields are physically equivalent. Since the
the measure of the path integral a priori contains all possible field configurations, this leads
to a redundancy in the description of the quantum theory. The action is unchanged along
the infinite number of directions in the space of field configurations corresponding to gauge
transformations; all fields which are in the same gauge orbit [A(Θ)µ ],

[A(Θ)µ ]≡
§

A(Θ)µ =U (x)
�
Aµ +

i
gs
∂µ
�U †(x)

���U (x) ∈ SU(Nc)
ª

, (2.9)

are physically the same. In order not to suffer from an (infinite) overcounting in the path
integral, we need a measure that picks one representative out of all the gauge equivalent

1We use Euclidean signature throughout this work.
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configurations in the gauge orbit. For non-Abelian gauge theories this is achieved by the
Fadeev-Popov method [76], which imposes a gauge fixing condition

Fa(A(Θ)) = 0 (2.10)

upon the gauge field at each spacetime point. Ideally, the gauge fixing condition is chosen such
that it picks exactly one representative of each gauge orbit, where the space of all representatives
form a submanifold of the manifold which contains all gauge field configurations. This means
that the gauge orbit should intersect each gauge fixing submanifold once. Due to topological
obstructions however, this is at best possible locally. This problem is known as the Gribov
ambiguity [77] and we note that it is linked to the non-Abelian nature of the gauge symmetry.
Let us assume there exists a solution to this problem and thus we have a well-defined gauge-
fixed path integral (see e.g. [78]). For this discussion we restrict ourselves to pure Yang-Mills
theory,

SYM =

∫

x

1
2

tr(FµνFµν), (2.11)

because it is straightforward and without any subtleties to include fermions. Naively one
would simply include an delta-distribution δ

�
Fa(Aα)

�
in the path integral measure to enforce

the gauge fixing condition. But since the determinant transforms non-trivially under gauge
transformations, we need an additional factor to compensate this transformation to keep the
theory gauge invariant. In analogy to the rule for variable transformation in an ordinary
n-dimensional integral, we insert 1 in the path integral in the form

1=

∫
DFa δ(Fa) =

∫
DΘδ�Fa(A(Θ))

�
det

�
δFa(A(Θ))
δΘ

�
, (2.12)

with the Faddeev-Popov determinant det
�
δFa(A(Θ))/δΘ

�
and the gauge transformed gauge field

A(Θ). As long as the gauge fixing conditions is linear inΘ, the functional derivative δFa(A(Θ))/δΘ
is independent of Θ and so is the Faddeev-Popov determinant. In linear covariant gauges,

Fa(A) = ∂µAa
µ(x)−ωa(x) , (2.13)

the Faddeev-Popov operator can be expressed in terms of the covariant derivative in the
fundamental representation by using (2.4),

δFa(A(Θ))
δΘb

=
1
gs
∂µDab

µ . (2.14)

ωa(x) is a Gaussian weight which allows us to reformulate the delta distribution in (2.12) as
an exponential, δ(Fa) = exp

�
−∫x

1
2ξ(∂µAa

µ)
2
�
. ξ is the gauge fixing parameter. It is directly

related to the weight ω and can be chosen to be any finite constant. For instance, Landau
gauge ξ= 0 strictly enforces ∂µAa

µ(x) = 0.
The Faddeev-Popov determinant can also be re-expressed as an exponential. To this end, one

introduces Grassman valued ghost and antighost fields ca and c̄a as auxiliary fields and uses
the familiar representation of the functional determinant to write (in linear covariant gauge)

det
�

1
gs
∂µDab

µ

�
=

∫
DcD c̄ e−

∫
x c̄a ∂µDab

µ cb
. (2.15)
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We absorbed the factor 1/gs in the definition of the ghost fields. Note that the ghosts have to
be Lorentz-scalars even though they are Grassmann valued, implying that they have a wrong
relation between spin and statistics and cannot be physical particles.

The gauge fixing allows us to define QCD as quantum field theory in terms of the generating
functional,

Z[J ,η, η̄,τ, τ̄] =

∫
DADqDq̄DcD c̄ e−S(gf)

QCD+
∫

x (JA+η̄q+q̄η+τ̄c+c̄τ) , (2.16)

where J ,η, η̄,τ, τ̄ are the sources of the corresponding fields. The gauge fixed action of QCD
S(gf)

QCD contains the classical action, the ghost action and the gauge fixing term,

S(gf)
QCD =

∫

x

§
q̄
�
iγµDµ + imq

�
q+

1
4

F a
µνF a

µν + c̄a ∂µDab
µ cb +

1
2ξ
(∂µAa

µ)
2
ª

. (2.17)

We used that gauge transformations also preserve the path integral measure DA= DA(Θ) since
they have Jacobian determinant 1. Hence, the integration DΘ in (2.12) is merely a dummy
integration in linear covariant gauges and can be factored out into an overall normalization of
the path integral.

The manifest gauge symmetry of the action is obviously spoiled by the gauge fixing procedure.
However, the gauge fixed action S(gf)

QCD develops a global fermionic symmetry which, in some
sense, remembers the gauge invariance of the original theory. This symmetry is known as
BRST symmetry [79–81]. Physical observables such as scattering amplitudes have to be gauge
independent in accordance with the gauge symmetry of the original theory. Thus, Green’s
functions, which are manifestly gauge invariant objects and are related to scattering amplitudes,
have to satisfy Slavnov-Taylor identities (STI) in order to guarantee gauge invariance [82,83].
Due to Noether’s theorem, there is a conserved charge QB associated to BRST invariance. The
STI, in turn, are a consequence of this charge conservation. However, conservation of QB strictly
holds only on the perturbative level and it is yet unclear if it is well-defined non-perturbatively.
For instance, the decoupling solution for deep-IR behavior of the ghost and gluon propagators
in Landau gauge Yang-Mills theory breaks BRST symmetry [71].

A far-reaching consequence of the non-Abelian nature of QCD is asymptotic freedom [11,12].
For a SU(Nc) gauge theory with N f quark flavors in the fundamental representation, the
one-loop beta-function of the gauge coupling αs is

k∂kαs =
�
2N f − 11Nc

� α2
s

6π
, (2.18)

with the energy scale k. Thus, for a sufficiently small number of quark flavors N f , the beta
function is negative. For QCD with Nc = 3 and N f = 6 we have k∂kαs = −7α2

s /(2π). With a
reference (or UV-cutoff) scale Λ, the solution to (2.18) is

αs(k) =
αs(Λ)

1+ b0αs(Λ) ln(k/Λ)
, (2.19)

with b0 = −(2N f − 11Nc)/(6π). Hence, the larger the energy scale, the smaller the strong
coupling. In the limit k→∞, the strong coupling vanishes and quarks and gluons become
free particles. This is called asymptotic freedom. Conversely, αs gets amplified at large energies
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Figure 2.1.: Summary of measurments of αs as a function of the energy scale Q compared to results
from 4-loop perturbation theory [84].

and it becomes apparent that at some point perturbation theory breaks down for QCD at small
energy scales. The IR properties of QCD are therefore only accessible with non-perturbative
methods. A comparison of experimental and perturbative results of αs is shown in Fig. 2.1.

Very loosely speaking, one can think of asymptotic freedom as a competition of screening
and antiscreening effects of quark and gluon fluctuations: while quark-antiquark pairs created
from vacuum fluctuations screen the color charge at large distances (in the same way electron-
positron pairs screen the electric charge in QED), gluon fluctuations lead to a net antiscreening,
resulting in an effective amplification of the color charge at large distances.

2.2. Finite Temperature and Density

Here we briefly outline how we describe QCD at finite temperature and density in thermal
equilibrium. To this end, we exploit the close connection between statistical mechanics and
quantum field theory in the imaginary time formalism2. By performing a Wick rotation of the
time coordinate, i.e. going to imaginary time t →−i x0, the signature of spacetime changes
from Minkowski to Euclidean. This way, the Lagrangian density L becomes an energy density.
The generating functional of a bosonic field ϕ becomes:

ZM [J] =

∫
Dϕei

∫
d td3 x

�
LM−J(x)ϕ(x)

�
t→−i x0−−−−→ Z[J] =

∫
Dϕe−

∫
d x0d3 x

�
L−J(x)ϕ(x)

�
,

(2.20)

where the index M denotes Minkowski signature. Now, to establish the connection to statistical
mechanics, we note that the partition function (in the canonical ensemble) is ZC = Tr e−β Ĥ ,

2In the real-time formalism, finite temperature is introduced by imposing the Kubo-Martin-Schwinger condition
on the Minkowski path integral [85].
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with the Hamilton operator Ĥ and β = 1/T . The trace basically states that we take the ther-
modynamical ensemble average. Thus, to define the analogous object in QFT, the generating
functional needs to generate ensemble averages. This amounts to the restriction of the (imagi-
nary) temporal integration to a closed path of extend β and corresponding boundary conditions
for the fields in x0 direction. This yields the partition function of QFT at finite temperature T ,

Z[J] =

∫

ϕ(β ,~x)=ϕ(0,~x)
Dϕe−

∫ β
0 d x0

∫
d3 x
�
L−J(x)φ(x)

�
. (2.21)

This means that in this Euclidean formulation of QFT at finite temperature, spacetime is
compactified on a torus in the imaginary time direction. Note that in the limit T → 0, we
recover the original partition function. The corresponding boundary conditions for bosonic
and fermionic fields ϕ and ψ are

ϕ(x0 + β , ~x) = ϕ(x0, ~x) (2.22)

ψ(x0 + β , ~x) = −ψ(x0, ~x) , (2.23)

i.e. bosons have periodic boundary condition, while fermions are antiperiodic in imaginary
time direction.

As usual, compact directions in position space translate into discrete directions in momentum
space. In this case, we use the Fourier transformation

ϕ(x0, ~x) = T
∑
n∈Z

∫
d3p
(2π)3

ϕ( fn, ~p) ei( fn x0+~p~x) , (2.24)

where fn are the discrete frequencies, called Matsubara modes. They read explicitly for bosonic
and fermionic fields

fn

��
boson ≡ωn = 2nπT (2.25)

fn

��
fermion ≡ νn = (2n+ 1)πT . (2.26)

Thus, at finite temperature the integral of an arbitrary function g in momentum space has to
be replaced by

∫
d4p
(2π)4

g(p0, ~p)
T 6=0−−→ T

∑
n∈Z

∫

~p
g( fn, ~p) , (2.27)

where we abbreviated
∫
~p =

∫ d3p
(2π)3 . This allows us to switch to finite temperature with this

simple replacements.
The inclusion of finite density is now straightforward if we further exploit the close connection

between Euclidean QFT and statistical mechanics. Finite density is included in the grand
canonical ensemble by introducing a chemical potential µ3 together with the conserved particle
number operator N̂ of the corresponding particle, ZGC = Tr e−β(Ĥ−µN̂). Thus, we only have to
add the corresponding term to the action in the QFT.

In the case of QCD, we have a finite quark- (or equivalently baryon-) density. Quark number
conservation is associated to the global U(1) symmetry of the action and the corresponding
conserved charge, i.e. the quark number operator, is

∫
x q̄γ0q. The density is a monotonously

3µ is the Lagrange multiplier associated to the conserved mean particle number at finite density.
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increasing function of the chemical potential. We therefore use the notion of density and
chemical potential interchangeably in this work. The microscopic action of euclidean QCD at
finite temperature and density therefore reads:

SQCD =

∫ β

0

d x0

∫

~x

§
q̄
�
iγµDµ + imq + iγ0µ

�
q+

1
4

F a
µνF a

µν

ª
, (2.28)

with the corresponding boundary conditions (2.22) for the fields. Note that the additional i in
the quark number operator enters through the Wick rotation to Euclidean time.

2.3. QCD Phases

Owing to asymptotic freedom, QCD basically consists of free quarks and gluons at very high
energies. At low energies, however, we observe only color neutral objects, i.e. guarks and
gluons occur exclusively as constituents of color-neutral composite particles. Thus, the very
nature of the QCD vacuum must change drastically in between. It is now widely accepted that
strongly interacting matter exhibits a rich phase structure at finite temperature and density. A
sketch of the QCD phase diagram is shown in Fig. 1.1.

The two most prominent phases are the hadronic phase with confinement and broken chiral
symmetry, and the deconfined quark-gluon plasma (QGP) phase with approximate chiral
symmetry. There is now strong evidence that at small and intermediate densities, these phases
are separated by a crossover transition. At large densities, the phase structure is still under
debate. A popular conjecture is that at large densities and small temperature the transition is
of first order. This implies in particular the existence of a critical endpoint of the first-order
transition, where it turns into a crossover. At even larger densities, a variety of phases have
been conjectured, such as various color superconducting phases or different inhomogeneous
phases.

In the following we will discuss some details of chiral symmetry and confinement, as well as
their connection.

Chiral Symmetry Breaking. At vanishing quark masses mq→0, the so-called chiral limit,
QCD exhibits a global flavor symmetry called chiral symmetry. While this is certainly not
true in nature, it is a very good approximation for the light quark sector. In this case, left-
and right-handed quarks,

qL/R ≡
�

1∓ γ5

2

�
q , (2.29)

only appear strictly separated in the QCD action (2.8). Thus, the theory is symmetric under
independent flavor rotations U(N f )L×U(N f )R of qL and qR. To clarify the structure of this
symmetry, we separate it terms of the vector and axial flavor transformations, U(1)V ×
U(1)A × SU(N f )V × SU(N f )A. The vector transformations see no difference between
left- and right-handed fields. U(1)V symmetry implies baryon number conservation
and SU(N f )V is the isospin symmetry. Isospin is explicitly broken by different quark
masses. U(1)A is broken on the quantum level. This is referred to as axial (or chiral)
anomaly [86–89]. Most prominently, it explains the η−η′ mass splitting: since U(1)A is
explicitly broken in the quantum theory, the SU(3) singlet η′ is not a Goldstone boson,
as opposed to the η which is part of the pseudoscalar octet4. The large η′ mass can

4If U(1)A would not be broken anomalously, chiral symmetry would be U(Nf )A and its spontaneous breaking
would give nine Goldstone bosons for Nf = 3 light quarks up, down and strange.



26 2. The Phase Structure of QCD

qq-excitations of the QCD vacuum

π

ρ ω

φ

(140)

(770) (782)

(1260)

(1020)

(1285)

(400-
1200)

a f

f

f

1 1

1

0

Energy (MeV)

P-S, V-A splitting

in the physical vacuum

(1420)

Figure 2.2: Experimentally observed spectrum of low-mass mesons.

Taking the vacuum matrix element and inserting a complete set of excited states |n⟩ one obtains
the ’energy-weighted sum rule’ [60]

∑

n

2En|⟨n|QA
i |0⟩|2 = −⟨muūu + mdd̄d⟩ = −2m̄⟨q̄q⟩ (2.29)

where m̄ denotes the average of mu and md and ⟨q̄q⟩ ≡ ⟨ūu⟩ = ⟨d̄d⟩. Upon saturating |n⟩ by
single-pion states the Gell-Mann-Oakes-Renner relation (GOR) [58]

m2
πf

2
π = −2m̄⟨q̄q⟩ (2.30)

is obtained. Taking m̄ = 6 MeV yields a value for the quark condensate, ⟨q̄q⟩ = −(240 MeV)3 =
−1.8 fm−3. Focusing on vector mesons a further order parameter can be specified as the differ-
ence between the vector and axialvector current correlators, ⟨jµ

V,k(x)jµ
V,k(0)⟩ − ⟨jµ

A,k(x)jµ
A,k(0)⟩.

It provides a direct link between chiral symmetry breaking and the spectral properties of vector
and axialvector mesons and will be of most relevance in connection with dilepton production in
heavy-ion experiments. Also this order parameter is related to fπ via ’Weinberg sum rules’ as will
be discussed later.

For the medium modification of the quark condensate it will be important to consider matrix
elements of the operator identity (2.28) for a given hadron h. This defines the hadronic sigma
commutator, or ’σ-term’

Σh = ⟨h|[QA
i , [QA

j , HQCD]|h⟩ = ⟨h|ψ̄M◦ψ|h⟩ , (2.31)

and the ratio Σh/m̄ has the physical interpretation of the scalar quark density inside the hadron
h. By using the Feynman-Hellmann Theorem Σh can also be expressed in terms of the hadron
mass as

Σh = mq
∂mh

∂mq
. (2.32)

15

Figure 2.2.: Experimentally observed spectrum of the low-mass mesons. It shows the mass-splitting of
scalar and pseudoscalar (P–S), as well as vector and axialvector (V–A) mesons. This figure
is taken from [93].

be explained by an instanton induced ’t Hooft determinant [90] and is linked (in the
large-Nc limit) to the Witten-Veneziano mechanism [91,92].

The remaining SU(N f )A is the chiral symmetry. While it is approximately conserved5

in the quark-gluon plasma phase, it is spontaneously broken in the hadronic phase at
small temperatures and densities, see Fig. 1.1. The spontaneous breakdown of SU(N f )
provides an elegant explanation of the lightest meson masses in the meson spectrum:
spontaneous breaking of SU(3) yields eight pseudoscalar6 Goldstone bosons according
to Goldstones theorem [94,95]. Since chiral symmetry is not exact, these pseudoscalar
bosons are rather pseudo-Goldstone bosons with a small mass. They can be identified
with the eight lightest particles in the meson spectrum, three pions, four kaons and the
eta meson. This explains why these eight pseudoscalar mesons are considerably lighter
than the rest of the hadron spectrum. This statement is even stronger in the case of
only the lightest two quark flavors, up and down. Spontaneous breaking of SU(2)A gives
rise to three pseudo-Goldstone bosons, the pions, which are by far the lightest hadrons.
Within this work, we will concentrate on this two-flavor case.

In addition to the very light pseudoscalar meson octet, chiral symmetry breaking manifests
itself in the experimentally observed spectrum of the low-mass mesons via the absence of
parity doublets, see Fig. 2.2. If chiral symmetry would hold, we would expect degenerate
hadronic isospin doublets of opposite parity. This is clearly not the case, since there is a
large mass difference between the mesons in each column of Fig. 2.2, that can not be
explained by the small explicit chiral symmetry breaking due to the current quark masses.

Heuristically, on can think of the QCD vacuum at low energies as populated with quark
condensates. In this regime, quarks have a strong attractive interaction. Due to their
small mass, in particular of the up and down mesons, the energy of creating light quark-
antiquark pairs is small. Hence, vacuum fluctuations can create these pairs, which then
condense owing to their strong attraction. In a vacuum with zero total and angular

5up to small masses in the light quark sector owing to the Higgs mechanism.
6The axial vector charge associated to SU(Nf )A changes sign under parity transormations.
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momentum these condensates are given by the chiral condensate

〈q̄q〉= 〈q̄LqR + q̄RqL〉 . (2.30)

Obviously, this is an order parameter for the chiral phase transition, i.e. 〈q̄q〉 6=0 signals
chiral symmetry breaking. In terms of a linear sigma model, the chiral condensate
(2.30) is proportional to the vacuum expectation value (VEV) of the scalar sigma meson,
〈σ〉∝〈q̄q〉.
Spontaneous chiral symmetry breaking generates the hadron masses. Put differently,
it gives rise to the masses of the constituent quarks, i.e. the effective masses of the
valence quarks that are bound into hadrons. In particular for the light quarks (and
correspondingly the hadrons they form, e.g. the nucleons), this generates the largest
fraction of their mass, see Tab. 2.1. We see that the masses generated through the Higgs
mechanism gives only a very small fraction of the total mass of the light quarks in the
hadronic regime.

quark flavor current mass constituent mass
up 2.3 MeV 336 MeV
down 4.8 MeV 340 MeV
strange 95 MeV 486 MeV
charm 1.28 GeV 1.55 GeV
bottom 4.18 GeV 4.73 GeV
top 173.21 GeV 177 GeV

Table 2.1.: Current and constituent quark masses. The current quark masses are taken from [96]. The
exact values of the constituent quark masses are model dependent. We show the values
from [97].

Deconfinement. The absence of colored states in the physical spectrum is certainly one of
the most characteristic phenomena of the low-energy regime of QCD. This phenomenon
is known as confinement. One may define confinement via the statement that asymptotic
particle states are always color singlets. However, no rigorous definition of confinement
exists, as e.g. the previous statement could equally well be explained by color screening
[98]. This is related to the fact that there is still no generally agreed upon explanation
for this phenomenon [99].

In the limit of static quarks, i.e. infinitely heavy quarks, deconfinement manifests itself in
a linear rising potential Vqq̄(r) of static quark and antiquark sources at separation r,

lim
r→∞Vqq̄(r) = σr , (2.31)

with the string tension σ. This implies a constant force between the quark-antiquark
pair and, consequently, an infinite amount of energy to separate them. For finite quark
masses, the energy required to create a quark-antiquark pair from the vacuum is finite.
In this case, at separation r ≈ 2mq/σ ≈ 1 fm the energy is large enough to create such
a pair from the vacuum and the original quark-antiquark pair breaks up into two pairs.
This is known as string breaking.
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Several ideas have emerged that provide promising explanations for different aspects
of confinement; for reviews see e.g. [98–103]. In many of these cases, the idea is
that the QCD functional integral in the static limit is dominated by a special class of
field configurations that causes the expectation value of a large Wilson loop to fall-off
exponentially with the area of the loop,

¬
tr
�
P ei

∮
c d xµAµ

�¶
∼ e−σF(C) , (2.32)

with the area F(C) of the contour C and path ordering denoted byP . For large loops, this
behavior implies a linear static potential. Promising candidates for these configurations
are magnetic monopoles [104,105] and center vortices [106–108].

The infrared-behavior of the gluon and ghost propagators of pure Yang-Mills theory play
a crucial role in the confinement scenarios by Kugo-Ojima [109] and Gribov-Zwanziger
[77,78,110,111]. The former essentially relies on the existence of a global color charge
and the conservation of BRST charge, which are then used to construct the physical
Hilbert space in a similar way as the Gupta-Bleuler formalism for Abelian gauge theories.
The absence of color-charged particles in the physical state space requires that the gluon
propagator is at least finite at vanishing momentum. i.e. develops a mass gap, and the
ghost propagator is enhanced, i.e. it diverges faster than the simple p−2 pole for p→ 0
in Landau gauge.

The confinement scenario by Gribov and Zwanziger relies on the condition that, in
Coulomb gauge, the Fadeev-Popov operator (2.14) has only positive eigenvalues. This
restricts the allowed gauge field configurations to a so-called Gribov-region, whose
boundary, the Gribov-horizon, is characterized by a zero eigenvalue of the Fadeev-Popov
operator. Since the configuration space is very large, it is reasonable to assume that the
bulk of the configurations is located in the vicinity of the boundary. At large distances, the
Coulomb energy of a static quark depends on the inverse of the Fadeev-Popov operator.
Thus, a large density of gauge field configurations close to the Gribov-horizon can lead
to a confining potential. It can even be shown that confinement in Coulomb gauge is a
necessary condition for confinement [112]. This scenario requires the ghost propagator to
be IR enhanced, as in the Kugo-Ojima scenario, and the gluon propagator to vanish at zero
momentum. Note that a vanishing gluon propagator violates the Osterwalder-Schrader
axiom of reflection positivity [113,114] and therefore implies confinement.

A rather intuitive order parameter for the confinement-deconfinement transition is given
by the Polyakov loop [115], which is a temporal Wilson loop with periodic boundary
conditions, i.e. at finite temperature T ,

L(~x) =
1
Nc

trP ei g
∫ β

0 d x0 A0(x) . (2.33)

The trace is in the fundamental representation and β = 1/T . The expectation value of
the Polyakov loop is related to the free energy Fq of a static quark [14],

〈L〉= e−βFq . (2.34)

As discussed above, isolating a single static quark in the confined phase needs an infinite
amount of energy. Thus, Fq is infinite and 〈L〉 = 0. In the deconfined phase, on the other
hand, the free energy of an isolated quark is finite and hence 〈L〉 6= 0.
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There is also a global symmetry associated to the deconfinement transition in the static
limit of QCD, the center symmetry [106]. The Euclidean action of SU(Nc) Yang-Mills theory
at finite temperature is invariant under topological non-trivial gauge transformations
characterized by

U (~x , x0 + β) = znU (~x , x0) , (2.35)

where zn is an element of the center7 ZNc
of the gauge group. The Polyakov loop, albeit

being a gauge invariant object, is not invariant under center transformations; under
(2.35) it transforms as L→ zn L. Thus, if center symmetry holds, 〈L〉 has to vanish and
the system is in the confined phase. Deconfinement is characterized by broken center
symmetry.

Dynamical quarks explicitly break center symmetry. As discussed above, there is also
no area law for the Wilson loop and string breaking prevents the potential Vqq̄(r) from
developing a linear behavior at large r. Thus, much like in the case of the chiral transition,
the deconfinement transition is not a real phase transition, since confinement is only
well-defined in the limit of infinitely heavy quarks.

We see that the most prominent phases of QCD are only well-defined in opposite limits of
the theory: while chiral symmetry holds only in the limit of massless quarks, confinement is
only well-defined for infinitely heavy quarks. Furthermore, at first sight it seems that these
phase transitions are driven by completely different sectors of the theory. Matter fluctuations
essentially trigger chiral symmetry breaking, while gauge dynamics lead to confinement. It
is therefore no surprise that a connection between those very different phases is far from
obvious. Above all, both transitions are crossovers in QCD (at least at small density), so e.g. the
coincidence of both phase boundaries can not be proven, as there is no strict definition of the
transition temperature in the first place. But still, there many reasons to believe that there is
indeed a connection between them, at least for some regions in the phase diagram. Heuristically,
the fact that the strong quark self-interactions that trigger chiral symmetry breaking are also
driven by the gauge sector8 already hints at a deeper connection between chiral symmetry
breaking and confinement.

At small chemical potential lattice simulations show that both phase transitions coincide
within the error [17,18,25–30]. In the large Nc limit, it was demonstrated that the chiral and
deconfinement transition lines split at large chemical potential, resulting in a quarkyonic phase,
characterized by a pressure ∼ Nc [116]9. It is still confined, but the fate of chiral symmetry
is still unclear [48]. A connection between the chiral and deconfinement transition can also
be established via the spectrum of the Dirac operator [117,118]. Furthermore, the results of
functional continuum methods suggest that both transition are closely linked, also at large
densities [44,45,119].

2.4. Mechanism of Chiral Symmetry Breaking

In the previous discussion, we mentioned that chiral symmetry breaking, although seemingly
a phenomenon of the matter sector of QCD, is triggered by the strong gauge coupling. Here

7The center of a group is given by the set of elements that commute with every element of the group. For SU(N)
the center elements are given by zn = exp

�
2πin

N

� ∈ ZN with n ∈ {1, . . . , N − 1}.
8We elaborate on this point in the next section.
9The hadronic phase contains only color-singlets, so the pressure scales as N 0

c . At large temperatures gluons in the
adjoint representation deconfine, resulting in a pressure ∼ N 2

c .
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λi

∂tλi g = 0

g ! 0

g > gcr

T > 0, g = 0

Figure 5: Sketch of a typical β function for the fermionic self-interactions λi: at zero gauge
coupling, g = 0 (upper solid curve), the Gaußian fixed point λi = 0 is IR attractive. For small
g ! 0 (middle/blue solid curve), the fixed-point positions are shifted on the order of g4. For
gauge couplings larger than the critical coupling g > gcr (lower/green solid curve), no fixed points
remain and the self-interactions quickly grow large, signaling χSB. For increasing temperature, the
parabolas become broader and higher, owing to thermal fermion masses; this is indicated by the
dashed/red line.

ing larger than the regulator scale k, these functions approach zero, which reflects the

decoupling of massive modes from the flow.

Within this set of degrees of freedom, a simple picture for the chiral dynamics arises: for

vanishing gauge coupling, the flow is solved by vanishing λi’s, which defines the Gaußian

fixed point. This fixed point is IR attractive, implying that these self-interactions are

RG irrelevant for sufficiently small bare couplings, as they should be. At weak gauge

coupling, the RG flow generates quark self-interactions of order λ ∼ g4, as expected for

a perturbative 1PI scattering amplitude. The back-reaction of these self-interactions on

the total RG flow is negligible at weak coupling. If the gauge coupling in the IR remains

smaller than a critical value g < gcr, the self-interactions remain bounded, approaching

fixed points in the IR. These fixed points can simply be viewed as order-g4 shifted versions

of the Gaußian fixed point, being modified by the gauge dynamics. At these fixed points,

the fermionic subsystem remains in the chirally invariant phase which is indeed realized at

high temperature.

If the gauge coupling increases beyond the critical coupling g > gcr, the above-

mentioned IR fixed points are destabilized and the quark self-interactions become critical.

This can be visualized by the fact that ∂tλi as a function of λi is an everted parabola;

see figure 5; for g = gcr, the parabola is pushed below the λi axis, such that the (shifted)

Gaußian fixed point annihilates with the second zero of the parabola. In this case, the

gauge-fluctuation-induced λ̄’s have become strong enough to contribute as relevant opera-

tors to the RG flow. These couplings now increase rapidly, approaching a divergence at a

finite scale k = kχSB. In fact, this seeming Landau-pole behavior indicates χSB and, more

specifically, the formation of chiral condensates. This is because the λ̄’s are proportional

dimensions which were shown to influence the quantitative results for the present system only on the

percent level, if at all [50].

– 17 –

Figure 2.3.: Flow of the four-quark interaction λ̄ for different values of the strong coupling g (solid lines).
The dashed line shows the effect of finite temperature. This figure is taken from [121].

we want to elaborate on this mechanism of spontaneous chiral symmetry breaking in QCD.
Our reasoning is based on the importance of effective interactions that are generated from
quantum fluctuations in QCD. It was put forward in [69,70,120,121]. Heuristically, the idea is
the following: effective four-quark interactions are generated from quark-gluon fluctuations
and their strength increases with increasing gauge coupling g. At a critical gauge coupling gc ,
the four-quark interaction diverges. This divergence, in turn, signals chiral symmetry breaking
since it is directly related to the development of a nontrivial minimum in the free energy of the
mesons and therefore the formation of a non-vanishing quark condensate (2.30)10.

We elaborate on this argument in the following. As already mentioned, effective four-quark
interactions λk (q̄Tq)2, where T is some tensor, are generated by quark-gluon fluctuations from
first principles, e.g. from 1PI "box" diagrams with two-gluon exchange. The index k represents
the scale dependence of the running coupling λk. The running of the dimensionless coupling
λ̄k = k2λk with the energy scale k is generically given by the following beta function:

β(λ̄k)≡ k∂kλ̄k = 2λ̄k − Aλ̄2
k − Bλ̄k g2

k − C g4
k + (higher orders) , (2.36)

with temperature and density dependent positive coefficients A, B and C . The first term in
(2.36) is just the running of the coupling due to its dimensionality. In general, there is also
an anomalous dimension of the quarks, but it is small in the chirally symmetric regime and
can therefore be neglected for the discussion here. Diagrammatically, (2.36) can be written in
terms of 1PI diagrams as

k∂k = 2 − a − b − c + . . . (2.37)

a, b and c are combinatorical prefactors. The box diagram represents the typical contribution,
there are of course various different channels. Note that if we use the full propagators and
vertices in (2.37), together with appropriate regulator insertions, the diagrams shown above
give the full flow equation in terms of the FRG (up to "cross-ladder" diagrams). A schematic
plot of β(λ̄k) is shown in Fig. 2.3.

10In a bosonized formulation, λk is proportional to the inverse mass parameter of a Ginzburg-Landau effective
potential.
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Since the β(λ̄k) is quadratic in λ̄k it can exhibit at most two fixed points. At vanishing
gauge coupling g = 0, i.e. at asymptotically large energies, there is a Gaussian fixed point
λ̄?1 = 0 and an interacting fixed point λ̄?1 = 2/A, see the black line in Fig. 2.3. Since β ′(λ̄?1)> 0,
the Gaussian fixed point is IR-attractive. The interacting fixed point is UV-attractive, since
β ′(λ̄?2)< 0. Thus, if the system is initially, i.e. at large energy scale Λ, at 0< λ̄Λ < λ̄

?
2, it will be

driven to the Gaussian fixed point, λ̄k remains bounded and chiral symmetry is never broken.
Of course, the physically sensible initial value for λ̄k is λ̄Λ = 0 for Λ→∞. This guarantees
that the four-quark coupling is solely generated by quark-gluon dynamics from first principles.
Thus, for sufficiently small gauge coupling the system is governed by the Gaussian fixed point,
which implies that the quark self-interactions are always RG-irrelevant in this regime, as they
should be.

With increasing gauge coupling, both fixed points move closer together and are both interact-
ing, see the blue line in Fig. 2.3. Still, the running of the four-quark interaction is governed by
the IR-attractive fixed and chiral symmetry remains intact. When the gauge coupling reaches
the critical value gc ≈ π (at zero temperature) [70] at sufficiently low scales, both fixed points
merge. For gk > gc the fixed points vanish and β(λ̄k) is always negative, see the green line in
Fig. 2.3. This implies that the four-quark coupling is driven to criticality and chiral symmetry
will be broken at some small scale k. We see that at large energy scales, where gk < gc, the
running of λk is governed by an IR-attractive fixed point. At smaller energy scales, the strong
coupling eventually exceeds the critical coupling, the system destabilizes and the four quark
coupling diverges. Thus, it is indeed the strong coupling that drives the system towards chiral
symmetry breaking.

At finite temperature, quarks acquire a thermal mass which leads to a quark decoupling at
k < T . As a result, the quark dynamics that drive β(λ̄k) to smaller (and eventually negative)
values are suppressed and more interaction strength is required to achieve criticality. β(λ̄k)
gets broader and is shifted to larger positive values, see the dashed red line in Fig. 2.3. This
implies that temperature increases the critical coupling. Thus, at temperatures above a critical
temperature Tc , the gauge coupling can not become critical and chiral symmetry is preserved.

The requirement gk > gc is not sufficient for a realistic picture of chiral symmetry breaking.
We know that low energy QCD has a smallest energy scale below which all fluctuations die off.
It is given by the mass of the lightest meson in the hadron spectrum, the pion mass Mπ ≈ 138
MeV. This scale is dynamically generated from spontaneous chiral symmetry breaking in the
first place. Thus, the scale where gk exceeds gc must be substantially larger than Mπ, since
otherwise the system would not have enough "time" to generate realistic hadron masses. It is
therefore necessary that gk exceeds the critical coupling sufficiently early in the RG flow and
with enough strength. Put differently, the temperature where gk only just reaches gc at some
scale can at most be interpreted as an upper bound for the critical temperature [121].

Furthermore, we will demonstrate in Chap. 4 that the gauge couplings, after exceeding the
critical coupling at some scale, become subcritical again at lower scales, but chiraly symmetry
is nonetheless broken. This implies that it is the area above the critical line that decides on the
fate of chiral symmetry. We will elaborate on this in Chap. 4.





CHAPTER 3

The Functional Renormalization Group

As we have seen in Sec. 2.1, the strong coupling rapidly grows towards smaller energy scales
and therefore perturbation theory is bound to break down at some point. For a description of
the phase structure of QCD and in particular the hadronic regime, non-perturbative methods
are indispensable. Inherently non-perturbative first-principle methods are lattice gauge theory,
(LGT), Dyson-Schwinger equations (DSE) and the functional renormalization group (FRG). We
use the latter method throughout this work and will discuss the details is the next sections. But
first, we briefly describe the other two methods mentioned here.

In lattice gauge theory [63–66], spacetime is discretized on a finite lattice. The path integral
is then evaluated directly for the remaining finite number of paths using Monte Carlo methods.
To date, LGT gives the most reliable results for many aspects of QCD. It provided e.g. the first
evidence for the deconfinement transition, established the order of the phase transition as well
as its critical temperature at vanishing density and accurately describes the hadron spectrum.
Since it relies on statistical sampling methods, it is only applicable in Euclidean spacetime, i.e.
non-equilibrium processes are not accessible on the lattice. Furthermore, calculations at finite
density are plagued by the infamous sign problem. Lattice calculations are therefore restricted
to very small densities, although ways to circumvent this issue are currently subject to very
active research. Precise informations about continuum physics require very large/fine lattices.
Thus, immense computational effort and power is needed to achieve this. In particular the
inclusion of light fermion fields is numerically expensive.

Dyson-Schwinger equations are, as the FRG, a functional continuum method. They are the
equations of motion for the Green’s functions of the quantum theory. In contrast to LGT, the
inclusion of finite density is possible without any restrictions. The full solution of the theory,
on the other hand, is impossible and truncation schemes have to be devised. DSE have been
used successfully for the description of low-energy QCD, in particular aspects of confinement
and the phase structure [71,101,102,122–125].

Alternative ways to address problems concerning the low-energy sector of QCD are effective
field theories, such as chiral perturbation theory. The general idea is to describe the physics
at a specifically chosen length scale with the appropriate (effective) degrees of freedom at
these scales. For instance, chiral perturbation theory describes interactions in terms of pion
exchange [126].
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3.1. The Idea

The idea of the renormalization group was first introduced by Leo P. Kadanoff in 1966, where
he proposed the “block spin” renormalization group [127] in the context of condensed matter
physics. The idea and utility of the renormalization group can best be illustrated with systems
near a critical point. There, the correlation length ξ is very large and goes to infinity at the
critical point. Thus, near the critical point one has fluctuations on all length scales which lead to
divergences in the perturbative treatment of the problem. The renormalization group strategy
is to divide the full range of fluctuations into subranges of manageable proportions and consider
each subrange in sequence. The underlying physical idea is that the many energy or length
scales are locally coupled such that fluctuations at a certain scale are primarily affected by
fluctuations in the vicinity of this scale. This leads to a cascade effect in the whole system: The
short range fluctuations with high energy influence the fluctuations with a little less energy and
they influence the fluctuations with lesser energy and so forth. This can be used to effectively
reduce the degrees of freedom by successively integrating out fluctuations, starting from small
length scales.

We employ the RG idea due to Kenneth Wilson, which is based on the functional formulation
of QFT. These ideas are reviewed in [128,129]. What we said before can be easily transferred,
at least in principle, to the path integral. We consider the generating functional in Euclidean
space with the fields in momentum space and introduce an UV-cutoff Λ. Starting at Λ with
the action that contains the bare parameters of the theory, we integrate out all fields with
momenta lying in a small momentum shell |p| ∈ [sΛ , Λ] with a scale parameter s < 1. This
integration gives corrections to the original action, which change the original couplings and
effectively introduce new couplings. If we rescale the momenta p′ = p/s and the fields such
that the "new" action gives a propagator of exactly the same form as the initial action, we can
view this transformation as a map from the original set of couplings we started with at Λ to a
new set of couplings at the scale sΛ, which contains modified versions of the original couplings
as well as new couplings. Repeating this procedure successively will in principle generate all
possible interactions of the fields and their derivatives, even higher dimensional interactions
which are not perturbatively renormalizable. Since in general every integration step introduces
new couplings and modifies the old ones, the couplings are now scale dependent. If we take
the scale parameter s to be infinitesimally close to 1, the successive integration of momentum
shells from high to low momenta is a continuous transformation and we can interpret the
corresponding change of the parameters of the theory as a trajectory or flow in the space of
all possible Lagrangians, the theory space. We note that the fact that degrees of freedom are
successively integrated out implies that the renormalization group is not a group, because it
has no inverse. Once we integrated out a momentum shell, the detailed information about
this scale is lost and effectively stored in the new couplings. This procedure can therefore be
thought of as a coarse-graining.

The fact that non-renormalizable couplings will be generated by the flow turns out to be in
no contradiction to what we know from pertubation theory. Non-renormalizable couplings
are irrelevant directions in the flow, which means they die away if we further integrate out
momentum shells. Those couplings that grow during the flow are called relevant and the ones
that neither increase nor decrease are called marginal. They correspond to super-renormalizable
and renormalizable couplings.
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3.2. FRG with Scale Dependent Fields

The functional renormalization group is a practical incarnation of Wilson’s RG idea. It was
introduced in 1992 by Christof Wetterich [130]. The central object is the scale dependent
effective action Γk. k is the RG scale which tells us down to which scale momentum shells
have been integrated out. It can be thought of as an IR-cutoff scale. At large UV-cutoff scales
k = Λ, the scale dependent effective action corresponds to the classical action S, i.e. without
any fluctuations taken into account. The full quantum theory including fluctuations on all
scales is approached at k = 0, where the scale dependent effective action coincides with the
full quantum effective action Γ , to wit

Γk→Λ→ S , Γk→0→ Γ . (3.1)

Thus, by lowering k we resolve the microscopic properties of the system and Γk interpolates
smoothly between the classical and the full quantum theory. Γk is therefore a generalization of
the generating functional of one-particle irreducible (1PI) Green’s functions. The FRG provides
a functional differential equation, the flow equation (or Wetterich equation), that captures
the Wilsonian shell-by-shell integration and describes the RG flow of Γk. It has been applied
successfully to a variety of different problems, ranging from ultracold atoms [131], condensed
matter physics [132] and gauge theories [133–135], to quantum gravity [136–138]. For reviews
related to QCD see [75,133–135,139–143].

In QCD, as in many other theories, vastly different degrees of freedom are relevant at different
energy scales. For a complete description of QCD, both, quark-gluon degrees of freedom need
to be captured at large energy scales and hadrons at low energies. Thus, we need to be able to
account for the dynamical transition between these different degrees of freedom. In this sense,
one can think of the fields as being RG-scale dependent. In particular composite particles such
as the hadrons can be thought of as naturally scale dependent: At large energy scales they are
not present. At smaller energy scales, the strong attractive interaction tends to bind quarks and
finally confines them into hadrons at small k. Guided by this idea, we will generally assume
that all fields are scale dependent1. This was put forward in [69,70,139,144]. We will specify
the scale dependence of the fields in the following chapters when we apply these ideas to QCD.
Here, we will derive the flow equation in the presence of scale dependent fields based on [139].

We work with the generalized quantum field Φ̃a, which contains all bosonic and fermionic
fields of the theory. The bold index includes both discrete (color, flavor etc.) and continuous
(spacetime) indices as well as field-space indices. Summation/integration over repeated indices
is implied. Raising and lowering bold indices is done with the non-trivial metric in field-space,
γab, which takes the Grassman nature of fermion fields into account. It is specified in App. A.
For gauge fixed QCD, we have for instance Φ̃a = (φ̃, q̃, ˜̄q, Ã, c̃, ˜̄c)T , where φ̃ can contain various
meson fields of different spin and q̃ in principle includes quarks and nucleons. In addition, we
also consider the scale dependent field Φ̃k,a[Φ̃] which is a priori an arbitrary functional of the
scale-independent fields.

The starting point is the IR-regulated scale dependent Schwinger functional2:

Wk[J] = log

∫
DΦ̃exp

�−S[Φ̃]−∆Sk[Φ̃k] + JaΦ̃k,a

	
, (3.2)

1This is also useful for the case of scale dependent field reparameterizations.
2The Schwinger functional is the generating functional of connected correlators.



36 3. The Functional Renormalization Group

Rk
1
2
∂t Rk

k2

k2
q2

0

Figure 3.1.: Plot of a typical regulator Rk(q2) and its scale derivative 1
2∂tRk(q2) at a fixed RG scale k. Rk

acts as mass-like IR cutoff as it enters the denominator of the full propagators, see (3.13),
and thus cuts-off fluctuations at q2<k2. The scale derivative ∂tRk ensures the shell-wise
integration of fluctuations and guarantees UV regularity of the flow.

with the sources for the scale dependent fields Ja, e.g. for QCD, Ja = ( jφ ,η, η̄, jA,ηc , η̄c)T . The
cutoff term ∆Sk has been inserted to regularize the IR regime in a mass-like fashion:

∆Sk

�
Φ̃k[Φ̃]

�
=

1
2
Φ̃k,aRba

k Φ̃k,b , . (3.3)

For a single scalar field ϕ in d spacetime dimensions, for instance, this term reads in momentum
space

∆Sk[ϕ] =
1
2

∫
dd p
(2π)d

ϕ(−q)Rk(q)ϕ(q) . (3.4)

The requirement to recover the classical theory at k→∞ and the full quantum theory at k→0,
the regulator Rk has to fulfill the following conditions at fixed momentum q2:

Rk→∞→∞ , Rk→0→ 0 . (3.5)

The regulator suppresses momentum modes q2 ® k2 by adding a mass ∼ k2 in this regime. The
high momentum modes remain unaffected. This is achieved by demanding

Rk(q)
��
q2<k2 ∼ k2 , Rk(q)

��
q2>k2 = 0 . (3.6)

Thus, at scales q2 < k2 the fields acquire masses ∼ k2, which suppresses their fluctuations
and they effectively decouple from the dynamics of the system. By lowering k, we therefore
successively integrate out fluctuations. The regulator therefore implements the coarse-graining
discussed above. Fig. 3.1 shows a typical regulator as a function of the momentum q2 at fixed
scale k.

With such a mass-like regulator in the theory, special attention has to be payed concerning the
symmetries of the theory. In particular condition (3.6) may cause problems in gauge theories,
since such a mass term explicitly breaks gauge invariance. But as we have discussed in Sec. 2.1,
we need to fix the gauge anyway, so the presence of the regulator is just an additional source
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of explicit breaking of gauge invariance. Gauge invariance is then encoded in Slavnov-Taylor
identities and one gets modifications of these identities in the presence of the cutoff [145–147].

To arrive at an RG equation, we need to study how the theory changes under variations of the
cutoff. We could do this directly with the Schwinger functional, but it is much more convenient
to formulate the RG equations in terms of the effective action. To this end, we define the scale
dependent effective action Γk as the modified Legendre transformation of Wk,

Γk[Φk] +∆Rk[Φk] = sup
J

�
JaΦk,a −Wk[J]

�
. (3.7)

The fields without the tilde denote the mean-fields,

Φ= 〈Φ̃〉 . (3.8)

In the following, we will always use the sources J at which (3.7) is at the supremum. Note that
J is a function of k in this case. (3.7) implies:

δ(Γk +∆Rk)
δΦk,a

= γa
bJb . (3.9)

Thus, from

δ(Γk +∆Rk)
δΦk,a

δWk

δJa
= γa

bJbΦ̃k,a (3.10)

one can easily derive

δ2(Γk +∆Rk)
δΦk,dδΦk,a

δ2Wk

δJaδJc
= γd

c . (3.11)

Since the Schwinger functional generates connected correlators, we define the connected
two-point function for the hadronization field:

Gk,ab =
δ2Wk

δJaδJb
= 〈Φ̃k,bΦ̃k,a〉c . (3.12)

Now, we can rewrite (3.11) accordingly and find:

Gk,ab = (Γ
(2)
k + Rk)

−1
ac γ

c
b , (3.13)

where we defined

(Γ (2)k + Rk)
−1
ac =

�
δ2(Γk +∆Rk)
δΦk,aδΦk,c

�−1

. (3.14)

The scale derivative of the Schwinger functional (3.2) yields:

∂tWk[J] = Ja〈∂t Φ̃k,a〉 −
1
2
∂tR

ba
k 〈Φ̃k,aΦ̃k,b〉 − Rba

k 〈Φ̃k,a∂t Φ̃k,b〉

= Ja〈∂t Φ̃k,a〉 −
1
2
∂tR

ba
k Gk,ba −

1
2
∂tR

ba
k Φk,aΦk,b − Rba

k
δ

δJa
〈∂t Φ̃k,b〉

− Rba
k Φk,a〈∂t Φ̃k,a〉 ,

(3.15)
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where we used the definition of the connected two-point function,

Gk,ba = 〈Φ̃k,aΦ̃k,b〉 −Φk,aΦk,b , (3.16)

and the identity

〈Φ̃k,aO 〉=
�
δ

δJa
+Φk,a

�
〈O 〉 . (3.17)

The scale derivative of Γk can be extracted from (3.7):

∂t

��
Φ
Γk +

δΓk
δΦk,a

∂tΦk,a

= ∂t J
aΦk,a + Ja∂tΦk,a − ∂t

��
JWk − ∂t J

aδWk

δJa
− 1

2
∂tR

ba
k Φk,aΦk,b − Rba

k Φk,a∂tΦk,b

= Ja∂tΦk,a − Ja〈∂t Φ̃k,a〉+
1
2
∂tR

ba
k Gk,ba + Rba

k
δ

δJa
〈∂t Φ̃k,b〉 − Rba

k Φk,a∂tΦk,b

+ Rba
k Φk,a〈∂t Φ̃k,a〉 ,

(3.18)

where we used δWk
δJa = Φk,a and replaced ∂t |JWk by (3.15).

Until now, we only used that the fields are scale dependent, but made no assumption about
the actual form of this dependence. Its precise form can be chosen freely and only depends
on the physical situation under consideration. To proceed, we will now make the following
assumption about the scale dependence:

〈∂t Φ̃k,a〉= Ȧa
kFa[Φk] . (3.19)

Ȧk encodes the scale dependence of the field in terms of running couplings and Fa[Φ] is an
arbitrary functional of the scale-dependent mean-fields Φk. Thus, we assume that the flow of
the quantum field Φ̃k is given solely in terms of the mean fields Φk. This seems like a severe
restriction on the scale dependence of the quantum fields. However, we will work exclusively
in terms of the effective action in the following and therefore only consider mean fields in the
first place. This choice implies in particular:

〈∂t Φ̃k,a〉= ∂tΦk,a . (3.20)

With this, and the use of the identity δ
δJa = Gk,ba

δ
δΦk,b

, we finally arrive at the modified Wetterich
equation for the scale dependent effective action,

∂t

��
Φ
Γk =

1
2
∂tR

ba
k Gk,ba + Rba

k Gk,ca
δ∂tΦk,b

δΦk,c
− δΓk
δΦk,a

∂tΦk,a . (3.21)

The first term is the original Wetterich equation for fixed Φk, the second terms takes the field
dependence of the flow of the fields into account and the third term reflects the scale dependence
of the function Ȧk from (3.19). Thus, for ∂tΦk = 0 we recover the original Wetterich equation.
The flow of the effective action is depicted in Fig. 3.2.

Let us give some remarks on the properties of the flow equation:

Truncation. In principle every possible term that respects the symmetries of the theory can
be generated during the RG flow. Thus, in order to describe the full theory, we would
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O2

O3
�k=�

�k=0

Figure 3.4.: The flow equation interpolates between the classical action at the renormal-
isation group scale ⇤ and the full quantum e↵ective action at k = 0. The
flow is a trajectory in the space of all possible theories which are spanned by
orthogonal operators/couplings Oi, and serve as expansion coe�cients, e.g.O1 = �(2)(p = 0). For di↵erent implementations of the regulation procedure
the flow varies at non-vanishing k, but the end-points of the flow are un-
ambiguous. Furthermore, the trajectory depends on the chosen truncation,
as may the quantum e↵ective action. By choosing satisfying truncations the
limit k → 0 must be rendered independent of the truncation.

Figure 3.5.: Graphical representation for the flow equation of a real scalar particle given
in eq. (3.15). The solid line with the shaded circle represents the full non-
perturbative propagator of the scalar field. The crossed circle indicates the
insertion of the scale derivative of the regulator @tRk(p).

explicitly on higher n-point functions up to n + 2, which in turn can be derived from the

Wetterich equation eq. (3.15) by taking functional derivatives with respect to the fields

that are external to the particular n-point process. Note that herein all o↵-shell contri-

butions must be taken into account in the course of the derivation. Only after the last

functional derivative they can be dropped to get the physical contributions. However,

the dependence on higher n-point functions holds at arbitrary order. So accordingly, the

flow equation generates an infinite tower of coupled di↵ertial equations. Thus, for most

practical applications truncations are inevitable, which means that the set of contributing

44

Figure 3.2.: The flow equation (3.21) describes the trajectory of Γk from the classical action at k=Λ
to the full quantum effective action at k=0 in theory space, i.e. the infinite dimensional
space spanned by all possible couplings/operators of a given theory. Truncating Γk amounts
to restricting the flow to a (finite dimensional) subspace of the full theory space. The
trajectory in theory space therefore depends on the truncation scheme. The same holds for
the regularization scheme. Yet, for truncations that capture all the relevant physics of the
system, the k→ 0 limit should be unique. The picture is taken from [148].

have to include every possible operator in the effective action. This would lead to an
infinite tower of coupled functional differential equations, which is certainly impossible
to solve. We therefore need a truncation scheme to reduce the number of equations to
a manageable size, i.e. we need to restrict ourselves to a subspace of the full theory
space. On the other hand, the truncation should describe the theory as good as possible;
all relevant dynamics should be incorporated so that neglected terms have only a small
effect. Thus, truncations have to be devised based on physical insights. Furthermore, by
systematically enlarging a truncation, we can give error estimates and gain insights on
relevant and irrelevant effects in a theory.

There are several approaches to non-perturbative approximations, such as the derivative
expansion, which is an expansions in the number of derivatives, or the vertex expansion,
where one expands Γk in n-point functions Γ (n)k . Which approximation is suited for a
problem depends on the information we want to extract. If we are interested in high
momentum modes for example, the derivative expansion would be a bad choice, as it is
a small momentum expansion by definition.

One-loop structure. The flow equation is basically the trace over the full field dependent
propagator with a regulator insertion. It therefore has a simple graphical representation:

∂tΓk =
1
2

The line with the black dot represents the full propagator and the crossed circle depicts
the regulator insertion ∂tRk. The flow equation is an exact one-loop equation. The price
to pay is that propagators and vertices are always those of the full theory, i.e. the dressed
propagators and vertices. This one-loop structure is a consequence of the IR cutoff term
∆Sk being quadratic in the fields, see (3.3).
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Note however, that the assumption of scale dependent fields essentially implies that
Φk=Φk[Φ], which is in principle an arbitrary non-linear k-dependent map from the fields
Φ to Φk. Thus, the second term in the modified flow equation (3.21), which accounts
for this field dependence, can potentially spoil the one-loop structure of the flow. While
this is not a conceptual problem, it may drastically complicate the quest for quantitative
precision. To avoid this, we need to restrict the scale dependence of the fields such, that
the flow is at most linear in the field itself. This restriction is sufficient since the flow is
diagonal in field space. Thus, the second term in (3.21) is only non-zero if the flow of a
specific field depends on this field itself. If we restrict this dependence to linear order
at most, one can think of the second term in (3.21) as a k-dependent shift of the scale
derivative of the regulator in the firs term of (3.21).

Connection to Wilson’s RG idea. The full propagator is multiplied by the scale derivative
of the regulator ∂tRk, which is peaked about q2=k2, see Fig. 3.1. Furthermore, fluctua-
tions are suppressed for q2®k2 owing to the regulator in (3.12) and the flow is cut-off
for q2¦k2 owing to ∂tRk in (3.21). This implements Wilson’s RG idea of successively
integrating out degrees of freedom: in order to to solve the flow equation, we need
to integrate it from the UV cutoff scale k = Λ down to k = 0 and the regulator and
its scale derivative ensure that only a thin momentum shell is integrated out at every
infinitesimal RG step. Furthermore, no information about the short distance physics is
lost as k is lowered, because the flowing action at high momentum scales already contains
all operators.

Regularity. IR regularity of the flow is guaranteed by construction. In the final flow equation,
this becomes apparent by looking at the full propagator (3.12): Rk enters the denominator
and, owing to its property (3.6), suppresses fluctuations for q2<k2. The scale derivative
∂tRk in (3.21) vanishes for q2¦k2, see Fig. 3.1. Thus, the flow is zero for these momenta
and UV regularity is also guaranteed.

3.3. Regularization Scheme

An integral ingredient of the functional renormalization group is the regulator Rk. In principle,
every regulator that satisfies the conditions (3.5) and (3.5) is sufficient to formally arrive at
the exact flow equation (3.21). If a truncation of the effective action would not be necessary,
the regulator choice would not matter either. However, truncations are impossible to avoid
for almost every physical system. This in general results in unphysical regulator dependencies.
Truncation schemes should therefore be accompanied by criteria for appropriate choices for
regulators, e.g. to minimize the regulator dependence of the results or to improve the con-
vergence of the truncation. Furthermore, the (numerical) stability of the flow equations can
drastically depend on the regulator choice. Thus, regulators can even be used to improve a
truncation and should therefore be regarded as an important part of the truncation scheme.

In [139] general optimization criteria are developed and discussed in great detail and
we refer to this work for further details. We will only outline the "stability criterion" put
forward in [149,150], since we will use the resulting regulators throughout this work. This
constructive criterion is based on maximal stability and quickest convergence of the flow. A
systematic expansion of the truncation involves an expansion in powers of the propagator
Gk(q)=1/

�
Γ
(2)
k (q)+Rk(q)

�
. Hence, minimizing Gk with respect to an appropriate norm relates

to the optimization of both, stability and convergence. Stability of the flow is guaranteed as



3.4 The Fixed Background Taylor Expansion 41

long as the regularized propagator Gk displays a gap,

min
q2≥0

�
Γ
(2)
k (q)

��
φ=φ0

+ Rk(q)
�
= Ck2 > 0 . (3.22)

A natural choice for φ0 is e.g. the expansion point of an expansion in the powers of fields or
the field maximizing an appropriate norm of Gk. Maximizing C is equivalent to minimizing
Gk and hence ensuring fastest convergence of a systematic expansion of the truncation. Thus,
following these arguments, the optimal regulator is defined by the criterion

max
Rk

�
min
q2≥0

G−1
k

��
φ=φ0

�
. (3.23)

A solution to this criterion, which also leads to simple expressions of the flow equations is given
by

R(B/F)k (q) = K(q) rB/F (q
2/k2) , (3.24)

where K(q) reflects the momentum and tensor structure of the kinetic term of the action and
the optimized regulator shape functions for bosons and fermions rB/F are given by

rB(x) =
�

1
x
− 1

�
Θ(1− x)

rF (x) =
�

1p
x
− 1

�
Θ(1− x) ,

(3.25)

with the Heaviside theta function Θ. These are the optimized regulators for a leading order
derivative expansion and we will use them throughout this work. The optimization criterion
given above can be generalized, which allows for the construction of optimized regulators for
higher orders in the derivative expansion [139].

The coefficient K(q) in (3.24) can be obtained from the two-point functions:

K(q) = Γ (2)k (q)− Γ (2)k (0) . (3.26)

With this choice, the inverse propagator is of the form

G−1
k (p) =

�
Γ
(2)
k (q)− Γ (2)k (0)

��
1+ r(q2/k2)

�
+ Γ (2)k (0) . (3.27)

Thus, the regulator only acts on the kinetic part of the propagator and leaves the gap Γ (2)k (0)
unaffected. This ensures a "clean" coarse-graining in momentum space. Furthermore, this
allows us to define RG-invariant scale dependent propagators Gk in the presence of a gap,
which leads to particularly simple flow equations. As a consequence, as we will see explicitly
later, the flow equations will only depend on the anomalous dimensions of the renormalized
fields, but not on their wave function renormalizations themselves.

3.4. The Fixed Background Taylor Expansion

In this section we want to discuss the truncation scheme we primarily employ in this work.
We will always restrict ourselves to small momenta and therefore use a low-order derivative
expansion. To lowest order, this entails that the effective action contains the kinetic terms of the
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fields and the effective potential. This is known as the local potential approximation (LPA) and
is widely used in the literature owing to its simplicity. Yet, a lot of physical information is stored
in the effective potential and therefore the LPA is often sufficient to capture the qualitative
features of a theory. A big part of this work is to study QCD beyond LPA.

For illustration purposes in this section, we will consider the two-flavor quark-meson (QM)
model. It is an effective model that captures the basic chiral dynamics of low-energy QCD
[135, 151]. In the LPA, the QM model for two-flavor QCD at finite temperature and quark
chemical potential is

Γk =

∫ β

0

d x0

∫

~x

¦
i q̄(γµ∂µ + γ0µ)q+

1
2
(∂µφ)

2 + Vk(ρ)− cσ+ h q̄(γ5~τ~π+ iσ)q
©

. (3.28)

As already mentioned, the quarks come in two flavors, q = (u, d)T , the mesons are in the
O(4) representation φ=(σ, ~π)T and ρ=φ2/2. We use Hermitian gamma matrices, so that
{γµ,γν} = 2δµν1 and ~τ are the Pauli matrices . The field-independent Yukawa coupling h
connects the quark and meson sectors. We added the source term cσ to account for finite quark
masses. We will elaborate on this truncation in the next chapter. Here, we use it only to make
our arguments more explicit.

The only running quantity in (3.28) is the effective potential Vk(ρ). It is an arbitrary function
of the O(4)-invariant ρ and therefore contains arbitrary powers of meson-meson interactions.
The flow of Vk is a partial differential equation which reads with the optimized regulator
discussed in Sec. 3.3

∂t Vk(ρ) =
k5

12π2

§
3
Eπ

coth
�

Eπ
2T

�
+

1
Eσ

coth
�

Eσ
2T

�

− 12
Eq

�
tanh

�Eq −µ
2T

�
+ tanh

�Eq +µ

2T

���
,

(3.29)

where the pion-, sigma- and quark-energies are defined as

Eπ =
q

k2 + V ′k(ρ)

Eσ =
q

k2 + V ′k(ρ) + 2ρV ′′k (ρ)

Eq =
q

k2 + V ′k(ρ) + 2hρ .

(3.30)

There are now various possibilities to solve (3.29) related to expansion schemes of the effective
potential Vk. Most expansion schemes in the literature are either based on a discretization
of the effective potential in field-space ("grid method") or a Taylor expansion about the scale
dependent minimum ρ0,k of the effective potential ("comoving expansion"). The latter approach
is very efficient for low-order truncations with many different interaction channels and has
been proven to be very successful e.g. at the description of critical phenomena (see e.g. [152]).
The former gives a very detailed global picture of the effective potential and is therefore well
suited to study first order phase transitions, see e.g. [151].

While the grid method provides the most accurate global information about the exact form
of the effective potential, it is numerically rather involved. Furthermore, going beyond LPA
consistently is quite laborious. Within this work, we will therefore resort to a Taylor expansion
of the effective potential. Most commonly used in the literature is the expansion about the
minimum of the effective potential φ0,k, i.e. the soltution to the quantum equation of motion
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Figure 3.3.: The running of the Taylor coefficients of the effective Potential in the expansion about the
running minimum given in (3.32). The couplings λn,k assume increasingly large numerical
values with increasing n. This potentially leads to instabilities of the flow equations due to
the feedback of λn+1,k to the flow of the mesonic 2n-point function λn,k, see (3.34).

in the presence of the source,

∂

∂ φ

�
Vk(ρ)− cσ

�����
φ0,k

= 0 . (3.31)

The O(4)-invariant Taylor expansion about the running minimum to order N is given by

Vk(ρ) =
N∑

n=1

vn,k

n!
(ρ −ρ0,k)

n . (3.32)

λn,k are the scale dependent expansion coefficients that correspond to the running couplings
for φ2n-interactions. The scale dependence of the expansion point has to be taken into account
on the left hand side of (3.29), to wit

V̇k(ρ) =
N∑

n=1

v̇n,k

n!
(ρ −ρ0,k)

n − ρ̇0,k

N∑
n=2

vn,k

(n− 1)!
(ρ −ρ0,k)

(n−1) , (3.33)

where the dot is a shorthand notation for the RG-time derivative, v̇n,k=∂t vn,k. To clarify the
structure of this expression, we project on the flow of the mesonic 2n-point function via

∂ nV̇k(ρ)
∂ ρn

����
ρ0,k

= v̇n,k − ρ̇0,k vn+1,k . (3.34)

Thus, as a result of the scale dependence of the expansion point, there is always the feedback
from the 2(n+1)-point function vn+1,k to the flow of the 2n-point function vn,k. Even though the
relevance of vn,k for the potential itself decreases with increasing n, their numerical value grows
rapidly, see Fig. 3.3. This behavior potentially destabilizes the flow equations ant therefore the
expansion. Indeed, this expansion shows only very bad convergence properties for QM-like
models3, as is is shown in the left figure of Fig. 3.4.

3We note that the situation is different for O(N)-models, see e.g. [152,153]
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Figure 3.4.: Minimum of the effective potential in the IR, ρ0 ≡ ρ0,k=0 (normalized with the pion decay
constant fπ) as a function of the temperature at µ=0 for various expansion orders of the
effective potential of the quark-meson model in LPA truncation. The left figure shows the
results for the comoving expansion about ρ0,k and the right figure shows the results for
the fixed background expansion about κ=ρ0. The comoving expansion does not converge
for the orders we computed, in particular at small to intermediate temperatures. The
fixed background expansion, on the other hand, shows rapid convergence over the full
temperature range. There, the expansion is already converged for N=4 for all practical
purposes. We tuned the initial conditions for both expansions to the same physical values
at N=7 and used this set of initial conditions for every order.

We see that the expansion (3.32) does is not converge at N =7. On the contrary, within
the orders we considered here, it seems rather unstable for T ®150MeV. We note that this
seems less severe when we tune the initial conditions to the same physical values for every
order of expansion. However, a sensible notion of convergence requires that the same results
are obtained with the same set of initial conditions. Otherwise we start with a different set of
differential equations from the outset. Our claim is that this bad convergence/instability can
be ascribed to the linear feedback from the higher order couplings to the flow of the couplings
(3.34) as discussed above.

Following our discussion above, in order to avoid the potentially dangerous feedback from
higher order couplings in the flow, we need to expand the effective potential about a scale
independent point κ with ∂tκ=0, i.e.

Vk(ρ) =
N∑

n=1

vn,k

n!
(ρ − κ)n . (3.35)

Note that the expansion point still depends on T and µ, κ=κ(T,µ). The minimum φ0,k of Vk
is now obtained from

∂

∂ φ

� N∑
n=1

vn,k

n!
(ρ −κ)n − cσ

������
φ0,k

= 0 . (3.36)

This expansion avoids the problems we faced above and the left hand side of the flow of the
effective potential is now

V̇k(ρ) =
N∑

n=1

v̇n,k

n!
(ρ − κ)n , (3.37)
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and consequently, the flow of the mesonic 2n-point function now reads

∂ nV̇k(ρ)
∂ ρn

����
κ

= v̇n,k . (3.38)

The remaining question concerns the value of κ. Since all physical quantities are defined at the
minimum of the effective potential at k=0, i.e. on the solution of the full quantum equations
on motion, the most natural choice is κ=ρ0, with ρ0 ≡ ρ0,k=0. However, since the effective
potential derives from a Legendre transformation4. As a consequence, Vk becomes convex for
k→0 and in particular developes a completely flat region between the origin and the minimum.
Thus, it may be necessary to shift the expansion point a bit away from the IR minimum, towards
larger field values, in order to avoid problems related to the peculiar global form of the effective
potential at vanishing k. This puts forward:

κ(T,µ) = (1+ ε)ρ0(T,µ) , (3.39)

where ε is a (small) offset parameter. To avoid that the expansion point lies in the flat region
of the effective potential, ε has to be positive. Furthermore, the physical minimum should be
inside the radius of convergence of the expansion rc to ensure that we capture the physics
accurately, thus 0≤ ε≤ rc . In the LPA as in (3.35), there is only a running effective potential
and the radius of convergence is solely determined by the quality of its expansion. Beyond LPA,
however, one introduces further running couplings and as long as they are not expanded in
powers of ρ, the radius of convergence is very limited and thus ε should be very small. The
reason is that ρ-independent quantities are defined at the expansion point and if this point
is too far away from the physical point in the IR, the relevant physics of these quantities may
not be captured accurately. In the following chapters, for instance, we will go beyond LPA
in various directions and should therefore keep this in mind. We postpone a more elaborate
discussion of this important point to Sec. 7.3.4.

In practice, this involves a tuning of the expansion point when tuning the initial conditions of
the system, since this usually affects the position of the minimum. The same is true for different
temperatures and densities. But this is easily possible algorithmically and certainly worth the
effort, given the many advantages this expansion has, as we will discuss in the following.

In the right figure of Fig. 3.4, we show ρ0(T) for various orders of this fixed background
expansion (3.35) for κ=ρ0. We clearly see that the convergence properties are far superior
compared to the comoving expansion. The order parameter is already converged for N=4 over
the full temperature range. Note that different observables may show different convergence
behavior. However, since ρ0 is an order parameter for the chiral phase transition, it is of
particular relevance in the study of the phase diagram. We also note that already aφ4-expansion
is quantitatively precise at small temperatures and densities.

The lack of "linear feedback terms" (3.34) in the fixed background expansion not only
stabilizes the system of equations and improves convergence, but it is also numerically much
less demanding. The absence of these linear feedback terms in the flow equations and the fact
that the physical minimum does not need and additional flow equation, but is rather obtained
directly from the solution of the potential (3.36), simplifies the system of flow equations
substantially, resulting in faster faster numerical computations.

Another advantage of the fixed background expansion is that it captures the global structure
of the effective potential, at least to some extend. This allows us to resolve first-order phase

4In the FRG approach, the Legendre transformation is modified due to the presence of the regulator (3.7). However,
it turns into the original Legendre transformation at k→0.
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Figure 3.5.: Phase diagram of the quark-meson model in the chiral limit from [151]. The blue dots and
red squares show the second and first order transition points we found using the identical
model and initial conditions. We see that the comoving expansion to order N=7 captures
the full phase structure, including the first-order transition and the critical point, down to
very small temperatures and very large densities.

transitions. They are characterized by discontinuities in the order parameter. The comoving
expansion breaks down at first-order phase transition since the discontinuity is reflected in a
divergence of the flow of ρ0,k. Thus, first-order transitions are not accessible with the comoving
expansion. The fixed background expansion is not subject to this restriction since it does not
rely on the flow of the minimum. In terms of the effective potential, a first order transition is
signaled by the development of a second, local minimum. At the point where both minima
are of the same depth, the phase transition occurs and the vacuum state "jumps" from one
minimum to the other. Thus, as long as both minima are within the radius of convergence
of the expansion, this transition can be captured reliably. To demonstrate this, we computed
the phase diagram of the QM model in the chiral limit, i.e. the truncation (3.28) with c=0,
with the same initial parameters as in [151]. The authors of this work used the grid method to
compute the phase diagram. In Fig. 3.5 we show our results with the comoving expansion in
comparison to their grid result.

The fixed background expansion reproduces the full result for the second-order transition,
the critical endpoint and and the first part of the first-order transition to an accuracy of about
1 MeV. If we go further along the first-order line, our result starts to deviate from the result
of [151] and we are not able to resolve the splitting of the phase diagram. In this region, the
distance between the global minimum of the effective potential in the broken phase and the
second minimum that emerges and becomes the global minimum in the symmetric phase is
fairly large and seems to be larger than our radius of convergence. We note, however, that we
expanded the effective potential to order NV = 7 and that higher orders in the expansion may
improve this.

As we have mentioned above, the effective potential becomes convex at k→ 0, and in
particular flat for ρ<ρ0. This implies a non-differentiable point close to the minimum ρ0. It is
certainly impossible to capture this behavior with a simple polynomial expansion such as the
Taylor expansion. However, Vk only becomes convex strictly for k=0 and if there is a gap in
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the theory under consideration, k=0 is physically irrelevant. In QCD, for instance, the smallest
mass scale is given by the pion mass Mπ≈138 MeV. For scales k≈Mπ, the flows of the physical
parameters freeze out. The remaining flow for k<Mπ flattens the potential, but leaves the
physical parameters unchanged. Thus, in order to extract the physical informations from the
potential, we do not need to resolve convexity as long as the theory has a finite gap.

In conclusion, we demonstrated that the fixed background expansion has superior conver-
gence properties for QM models as compared to the comoving expansion. Furthermore, it
allows us to capture the global structure of the effective action with good accuracy without
being numerical extensive. However, for more more complicated structures of the effective
potential, such as multiple well-separated local minima, the grid method still gives the most
reliable results since it truly captures the global structure of the potential without the limitation
of a possibly small radius of convergence. It is possible, however, to extend the fixed background
expansion to more than one expansion point. Given the good accuracy we already achieved
with one expansion point, two expansions points may be sufficient for quantitative precision in
most applications. Nonetheless, the statements we made here are far from general and one
should carefully check their validity for cases that go beyond the one discussed here. We will
present further results concerning the fixed background expansion in a much more refined QM
model in Chap. 7.





CHAPTER 4

Chiral Symmetry Breaking in QCD

For an accurate first-principles description of the dynamics of QCD, a reliable inclusion of
hadronic states is of great importance. This holds in particular for an approach aiming at the
hadron spectrum or the phase structure of QCD at finite density. Here, we develop a theoretical
framework for taking into account the fluctuation dynamics of quarks, gluon and hadrons in
two-flavor QCD at vanishing temperature and density. This approach is based on previous
functional renormalization group studies [154, 155] and a related quantitative study in the
quenched limit [156]. The framework presented here allows to dynamically include hadronic
states as they emerge from the microscopic quark and gluon degrees of freedom.

We use the FRG approach for QCD, for reviews see [75, 133–135, 139–143, 157], and
[71, 101, 102, 122–125] for reviews on related work. In order to describe the transition
from quarks and gluons to hadrons, we extend the dynamical hadronization technique (or
rebosonization), introduced in Refs. [69, 70, 139, 144]. This technique is applied here to
dynamical two-flavor QCD with physical quark masses. We will show how the dominant
hadronic low-energy degrees of freedom and their dynamics emerge from the underlying
quark-gluon dynamics. The hadronization technique, as further developed in the present work,
was also applied in Ref. [156] in a quantitative study of quenched QCD. There, a large number
of interaction channels has been taken into account, aiming at full quantitative precision. We
will exploit the results from [156] as well as results on the scale-dependent glue sector of
Yang-Mills theory from Refs. [71,158,159]. This enables us to concentrate on the RG flows
of the most relevant couplings from a more phenomenological point of view, paying special
attention to unquenching effects.

In summary, the aim of this chapter is threefold: Firstly, we aim at a detailed understanding
of the fluctuation physics in the transition regime between the high energy quark-gluon phase
to the low energy hadronic phase. Secondly, we want to initiate the quest for the minimal set
of composite operators that have to be taken into account for reaching (semi-)quantitative
precision, while keeping the study analytic. This deepens the understanding of the fluctuation
physics by only taking into account the relevant operators. Moreover, it is also of great interest
for low energy effective models. Thirdly, we discuss full unquenching effects in terms of the
matter back-coupling to the glue sector that is important for QCD regimes with dominant quark
fluctuations such as QCD at high densities or many flavors.
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4.1. The Effective Action

Our aim is to describe two-flavor QCD in d = 4 Euclidean dimensions at vanishing temperature
and density in a vertex expansion. The starting point is the microscopic gauge fixed QCD action
(2.17). Thus, we include the quark-gluon, three- and four-gluon vertices as well as the ghost-
gluon vertex and the corresponding momentum-dependent propagators. The corresponding
part of the effective action therefore reads:

Γ
(mQCD)
k =

∫

x

§
iZq,k q̄

�
γµDµ +mq,k

�
q+

1
4

F a
µνF a

µν + c̄a∂µDab
µ cb +

1
2ξ
(∂µAa

µ)
2
ª
+∆Γ (gauge)

k ,

(4.1)

see Sec. 2.1. We included the scale dependent wave function renormalization Zq,k of the quarks
to capture some non-trivial momentum dependence of the quark propagator. The covariant
derivative Dµ and the field strength Fµν are defined in Sec. 2.1. In order to be able to capture
also non-perturbative effects induced by fluctuations, we consider fully momentum dependent
ghost and gluon propagators, as well as different gauge couplings. These contributions are
stored in ∆Γ (gauge)

k . We will explain this in more detail in Sec. 4.3. Here, we only note that due
to the presence of a non-classical gluon propagator, we also have a running gluon wave function
renormalization ZA,k, which has to be included in the definition of the covariant derivative for

the sake if RG-invariance, Dµ=∂µ − iZ1/2
A,k gkAa

µ ta. Then, the field strength tensor is

F ab
µν =

i

Z1/2
A,k gk

[Da
µ , Db

ν ] . (4.2)

For more details on the gauge part of our truncation see Sect. 4.3
If we start at large, perturbatively accessible energy scales, say k = Λ ¦ 5GeV, owing to

asymptotic freedom, the initial action is related to the classical gauge-fixed action of QCD,

ΓΛ = Γ
(mQCD)
Λ , (4.3)

and ∆Γ (gauge)
Λ = 0. Thus, the initial parameters for the flow equations are the value of the

strong coupling αs,Λ and the current quark mass mq,Λ at the initial scale Λ. In a consistent
formulation of QCD based on first principles, these have to be the only input parameters, since
they fix the microscopic theory. Everything else emerges dynamically from there.

As we have already discussed in Sec. 2.4, owing to the increasing strength of the strong
interaction αs,k, effective four-quark interactions are generated by the flow towards lower scales,
see Fig. 2.37. In general, all possible four-quark interactions consistent with the symmetries of
the theory are generated,

Γ
(4q)
k =

∫

x

∑
i

λi,k(q̄Tiq)
2 =

∫

x

∑
i

λi,k q̄ATAB
i qB q̄C T C D

i qD , (4.4)

with the tensors Ti . They can carry color-, flavor- and spinor indices, summarized by A, B, C , D.
The relevant symmetries for the construction of all possible four-quark interactions are the
global flavor symmetries of QCD, gauge symmetry1 and Lorentz invariance. All possible Lorentz
structures of the Ti are found by identifying the basis elements of the Clifford algebra. There are

1Gauge symmetry is always guaranteed for the kind of interactions shown in (4.4).
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16 elements, given by the 5 tensors 1s, γµ, σµν, γµγ5 and γ5. For color and flavor, a complete
set of operators is given by the respective identity elements and the generators, 1c , ta and
1 f , ~τ, with the SU(Nc) generators ta and the Pauli matrices (SU(2) generators) ~τ. Thus, there
is a total of 20 bilinears of the form (q̄Tiq) that can be considered in (4.4) in general.

In addition to the restriction that (4.4) has to respect the symmetries of the system, there is
an additional restriction related to so-called Fierz transformations. A specific quark-antiquark
interaction channel can always be expressed as a linear combination of different interaction
channels with two spinor fields interchanged. This can potentially lead to ambiguities in the
corresponding bosonized models, since different sets of composite states can be related to one
and the same fermionic action (see e.g. [75]). We therefore have to make sure that the set of
tensors Ti is Fierz-closed, i.e. we only include the maximal set of Ti for which the four-quark
interactions are not related by Fierz transformations.

As we have discussed Sec. 2.3, the classical flavor symmetry of two-flavor QCD is given
by U(1)V×U(1)A×SU(N f )V×SU(N f )A. Owing to the axial anomaly, U(1)A is broken on the
quantum level. Here, we assume U(1)A to be "maximally broken", i.e. we restrict the flavor
symmetry to be U(1)V×SU(N f )V×SU(N f )A and in particular ignore the possibility of U(1)A-
restoration at large temperatures. It is now an easy but tedious exercise to show that there are
6 tensors Ti left that yield Fierz-closed four quark interactions (4.4) and respect the symmetries
of QCD, including the flavor symmetry discussed above, see e.g. [75,160–162].

A complete set of four-quark interactions was considered in [156] for the case of quenched
QCD. They found that the scalar-pseudoscalar (S−P) channel is by far the most dominant
channel among all four-quark interaction channels. Thus dynamical chiral symmetry breaking
is almost exclusively driven by this channel and it is therefore sufficient for semi-quantitative
purposes to consider only this channel, to wit

Γ
(4q)
k =

∫

x
λS,k

�−(q̄ T 0q)2 + (q̄γ5 ~Tq)2
�

. (4.5)

~T are the properly normalized SU(N f ) generators, i.e. ~T= ~τ/2 for SU(2), and T0= 1p
2N f
1N f ×N f

.

As further simplification, we assume that λS,k only depends on the RG scale, but not on
momentum, i.e. we have point-like four-quark interactions.

At low energies close to ΛQCD, the attractive interaction between quarks and antiquarks
is strong enough to form mesonic bound states. At this point, a description solely based on
quarks and gluons turns out to be inefficient, because the physical degrees of freedom become
hadrons. Furthermore, the four-quark interactions diverge at the chiral phase transition as
bound state resonances signal the formation of mesons in these quark-antiquark scattering
channels. The (S−P) channel defined in (4.5) is the one where the pions and their chiral
partner, the sigma meson, form. Owing to the bound state resonance, it is in general not
possible to enter the hadronic phase within a purely fermionic formulation. We will therefore
introduce mesonic degrees of freedom by partially bosonizing the four-quark channel (4.5)
via a Hubbard-Stratonivich transformation [163, 164]. It is an exact transformation of the
fermionic path integral in terms of (a priori) auxiliary fields φ which exploits that the path
integral of an action only quadratic in the fields is simply a Gaussian integral,

∫
Dφ e−

∫
x

�
1
2 m2φ2+h q̄(T ·φ)q

�
=

∫
Dφ e−

∫
x

�
1
2(mφ+ h

m q̄Tq)2− h2

2m2 (q̄Tq)2
�

=N e
∫

x
h2

2m2 (q̄Tq)2 ,

(4.6)



52 4. Chiral Symmetry Breaking in QCD

whereN is the Gaussian integral, which is a pure number, and can be absorbed into the overall
normalization of the path integral. Thus, the four-quark interaction can be rewritten in terms
of a mass term of φ and a Yukawa term ∼ h. The remaining path integral is then quadratic in
the quark fields. They can be integrated out, yielding the well-known fermionic determinant.
By looking at the classical equations of motions for the action given by the action in the first
term of (4.6),

φ =
h

m2
q̄Tq , (4.7)

the nature of φ as quark-bilinear becomes apparent and we can therefore interpret φ as the
meson defined by the quantum numbers given by the tensor T in the four-quark channel. In
other words, it is the meson that is responsible for the resonance in the scattering channel.

We apply this now the (S−P) channel (4.5) and furthermore also transform the quark mass
term in (4.1) into the meson sector in the same way. By further integrating out momentum
shells, the initially auxiliary meson fields become dynamical and meson self-interactions are
generated by the flow. To account for this, we introduce a scale dependent effective potential
Vk to the effective action, which contains arbitrary powers of mesonic self-interactions. To
account for higher order quark-meson interactions, we furthermore promote the running
Yukawa coupling hk to be meson field dependent. Partial bosonization then means that we
keep both, the mesonic sector and the four-quark sector in our truncation. This is of crucial
importance, since a naive description of the high-energy sector of QCD is impossible in terms
of mesons, while the hadronic sector is hardly accessible in a purely fermionic language. We
will elaborate on this in the next section. There, we will demonstrate how to consistently
describe the formation of bound states in QCD via dynamical hadronization. This also will
avoid double-/mis-counting problems for formulations in terms of both, quarks and mesons2.

The remaining question concerning the meson sector is the implementation of chiral symmetry,
i.e. the representation of the meson fields and the structure of chiral invariants. In our case, with
maximally broken U(1)A, the non-trivial part of chiral symmetry is given by SU(2)V×SU(2)A
in our case, i.e. quark-bilinears ∼ q̄Tq have to transform in a irreducible representation of this
group. A Clebsch-Gordan decomposition decomposition shows that we need an isospin (i.e.
SU(2)) triplet and a singlet. The triplet then obviously corresponds to the Goldstone bosons of
spontaneously broken SU(2)A, i.e. the pions ~π. The singlet is the scalar sigma meson, σ. Since
SU(2)V×SU(2)A is isomorphic to SO(4), the simplest representation of the meson fields can be
given in terms of the fundamental representation of this group, i.e. the O(4)-vector

φ =

�
~π

σ

�
. (4.8)

The pion transforms, as mentioned above, as an iso-triplet, i.e. in the subgroup O(3)3. Note
that, following these arguments, the chiral phase transition of two-flavor QCD in the chiral
limit lies in the O(4) universality class, as long as U(1)A is maximally broken [165]. A chiral
invariant is then given by

ρ =
1
2
φ2 =

1
2
( ~π2 +σ2) , (4.9)

2A potential double counting problem is apparent here, since the four-quark interaction and the meson sector are
related by a Hubbard-Stratonovich transformation. Thus, by naively maintaining both sectors in the effective
action, one clearly overestimates the effects of bound states at certain scales.

3Note that the isospin group SU(2) is isomorphic to SO(3)
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and the mesonic effective potential and the field-dependent Yukawa coupling have to be
functions of this invariant, Vk=Vk(ρ) and hk=hk(ρ). Thus, we can finally write down the
bosonized sector of the effective action:

Γ
(bos)
k =

∫

x

§
hk(ρ)

�
q̄(iγ5 ~T ~π+ T0σ)q

�
+

1
2

Zφ,k(∂µφ)
2 + Vk(ρ)− cσ

ª
. (4.10)

As for the quarks, we included RG-scale dependent wave function renormalizations Zφ,k for
the mesons. This way, we capture the major part of the momentum dependence of the full
meson propagators, as it was demonstrated in [166]. The source term −cσ is simply the
bosonized version of the current quark mass term mq,Λq̄q and therefore explicitly breaks chiral
symmetry. This results in a finite mass of the pions, i.e. they are pseudo-Goldstone bosons in
this case. Furthermore, the chiral phase transition is a crossover rather than a second-order
phase transition at small densities. The relation between the source c and the current quark
mass mq,Λ is given by

mq,Λ =
hΛ

2v1,Λ
c , (4.11)

with the quadratic part of the effective potential v1,Λ = ∂ρV (ρ0,k).
In summary, the scale dependent effective action we use to describe the chiral phase transition

is given by

Γk = Γ
(mQCD)
k + Γ (4q)

k + Γ (bos)
k , (4.12)

with the microscopic QCD/gauge sector Γ (mQCD)
k given by (4.1), the four-quark interaction

channel Γ (4q)
k from (4.5) and the hadronic part of the action Γ (bos)

k defined in (4.10).
The effective potential contains all relevant physical informations as its minima determine

the vacuum structure of QCD. In particular, a nonzero minimum, which corresponds to a
non-vanishing VEV of the sigma meson, σ0,k, signals chiral symmetry breaking. The minimum
is obtained from the quantum equation of motion in the presence of the source,

∂

∂ φ

�
Vk(ρ)− cσ

�����
φ0,k

= 0 , (4.13)

with the meson VEV φ0,k = (0,σ0,k)T . The quark and meson mass functions (two-point
functions at vanishing momentum) depend on the meson fields in general. The field dependent
quark and meson masses are defined via the curvature terms of the effective action,

m2
q,k =

1
2

h2
k(ρ)ρ ,

m2
π,k = V ′(ρ) ,

m2
σ,k = V ′(ρ) + 2ρV ′′(ρ) .

(4.14)

The physical masses are defined at the minimum of the effective potential, ρ0,k = φ2
0,k/2.

Even though the masses we extract here are the curvature masses, it was shown in [166]
on the example of the pion mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations that include running wave function
renormalizations. Thus, as mentioned above, we capture the major part of the momentum
dependence of the full meson propagators by including Zφ,k and the masses are very close to
the physical masses.
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4.1.1. Expansion Scheme

Here, we will elaborate on the expansion scheme we use for our truncation (4.12). This
concerns in particular the effective potential Vk(ρ) and the Yukawa coupling hk(ρ), which are
both arbitrary O(4)-invariant functions of the meson fields. We employ the fixed background
Taylor expansion discussed in Sec. 3.4, due to its superior convergence properties and numerical
convenience. Here, we have to generalize this expansion to the case of running wave function
renormalizations.

The scalar potential and the Yukawa coupling are expanded about a scale-independent point
κ, ∂tκ= 0. Arbitrary powers of meson self-interactions are included to our truncation via the
expansion

Vk(ρ) =
NV∑

n=1

vn,k

n!
(ρ − κ)n . (4.15)

The minimal expansion order necessary to capture a crossover or second order phase transition
is NV =2. This would correspond to the well-known Mexican hat potential, i.e. a Ginsburg-
Landau type φ4-theory. The potential to capture a first-order transition requires NV ≥3 since a
ρ2 potential can never exhibit more than one local minimum.

Higher order quark-antiquark–multi-meson scattering processes are taken into account by
the analogous O(4)-symmetric expansion for the ρ-dependent Yukawa coupling,

hk(ρ) =
Nh∑

n=0

hn,k

n!
(ρ − κ)n . (4.16)

Nh=0 amounts to the standard running Yukawa coupling which couples an quark-antiquark
pair to a meson. By increasing Nh the interaction between a quark-antiquark pair and (2Nh+1)
mesons can be studied.

By systematically increasing NV and Nh one can study the impact of higher order mesonic
scattering processes e.g. on the chiral phase transition of QCD. We will discuss this in detail
in Chap. 7. Here, we will exploit the findings presented later and fix the expansion orders
to NV =5 and Nh=3. As we will demonstrate there, the expansions are converged for these
values. Thus, quantitative precision is guaranteed for the meson sector, especially at vanishing
temperature and density.

The other running parameters of the truncation are the four-quark interaction λS,k, the gauge
coupling gk and the wave function renormalizations of quarks, gluons, ghosts and mesons,
Zq,k, ZA,k, Zc,k and Zφ,k. The running parameters of the gauge sector, i.e. gk, ZA,k and Zc,k are
independent of the meson fields, since meson and gauge sector do not couple directly to one
another. However, the remaining matter- sector parameters λS,k, Zq,k and Zφ,k are in general
also functions of ρ and should therefore also be expanded in powers of ρ in a consistent
expansion in terms of n-point functions. For the wave function renormalizations, this amounts
to

Zk(ρ) =
NZ∑

n=0

zn,k

n!
(ρ −κ)n . (4.17)

However, we expect a rather mild field dependence of the wave function renormalizations on
the meson fields, leading to

∂ρZk(ρ)≈ 0 . (4.18)
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The quantitative reliability of this hypothesis is tested in Sec. 7.3.4. Equation (4.18) implies,
that locally, i.e. for a given expansion point κ, we can use

Zk = Zk(κ) = z0,k , (4.19)

and we will do so for Zq,k an Zφ,k. Still, for the computation of observables the wave function
renormalizations have to be determined at the physical point ρ0. It is here where the field
dependence of the Zk play a crucial role. Thus, the offset parameter ε in condition (3.39) for
the expansion point κ has to be as close to zero as numerically possible.

With potentially non-classical dispersion relations, i.e. in the presence of running wave
function renormalizations Zk, physical quantities have to be defined with appropriate rescal-
ing with Zk in order to ensure RG-invariance. This simply implements the requirement of
reparametrization invariance of physical quantities under a rescaling of the fields, Φ(x)→αΦ(x).
It is therefore convenient to introduce renormalized fields,

φ̄ = Z1/2
φ,kφ and ρ̄ = Zφ,k ρ , (4.20)

with the locally constant Zφ,k defined in (4.19). With slight abuse of terminology, we will refer
to the non-renormalized fields ρ as the bare fields. For the renormalized effective Potential V̄k
which is defined via

V̄k(ρ̄) = Vk(ρ) , (4.21)

this implies

V̄k(ρ̄) =
NV∑

n=1

v̄n,k

n!
(ρ̄ − κ̄)n , (4.22)

with the renormalized couplings

v̄n,k =
vn,k

Zn
φ,k

. (4.23)

Note that the expansion of the effective potential starts with linear order in the chiral invariant
ρ. A zero-order term would amount to a shift in the global vacuum energy, i.e. a scale- and
field-independent volume-term in the effective action Γk, which can simply be normalized away.

In analogy to (4.20), the renormalized expansion point is defined as

κ̄= Zφ,k κ . (4.24)

This implies that in terms of renormalized fields in the presence of running wave function
renormalizations, the renormalized expansion point κ̄ has the scale dependence induced by
the running of Zφ,k,

∂t κ̄= −ηφ,k κ̄ . (4.25)

Note that the analogous flow equation applies to the renormalized field ρ̄. Here, we used that
the anomalous dimension ηk is defined as

ηk = −
∂t Zk

Zk
. (4.26)
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We discussed in Sec. 3.4 that the advantage of the fixed background expansion is that the
flow of the 2n-point function vn,k has no additional feedback from the 2(n+1)-point function
vn+1,k, see (3.34). Owing to the field-reparametrization invariance of the theory, the flow of
the renormalized 2n-point function v̄n,k still possesses this desirable property. This can most
easily be seen if we look at the flow of (4.22),

∂t V̄ (ρ̄) =
NV∑

n=1

∂t v̄n,k

n!
(ρ̄ − κ̄)n + ∂t (ρ̄ − κ̄)

NV∑
n=1

v̄n,k

(n− 1)!
(ρ̄ − κ̄)n−1

=
NV∑

n=1

�
∂t − nηφ,k

�
v̄n,k

n!
(ρ̄ − κ̄)n ,

(4.27)

where we exploited (4.26). This implies for the flow of the renormalized 2n-point function:

∂ n
ρ̄

˙̄Vk(ρ̄)
��
ρ̄=κ̄ = −nηφ,k v̄n,k + ∂t v̄n,k . (4.28)

Thus, the anomalous dimension induces a new term proportional to v̄n,k to the left hand side of
the flow equation, but a linear feedback term ∼ v̄n+1,k is still absent for the fixed background
expansion. It is important to emphasized that the bare expansion point κ has to be scale
independent here ∂tκ, not the renormalized expansion point κ̄. If we were to fix κ̄, we would
introduce an additional term −ηφ,kκ̄ v̄n+1,k to (4.28), which would obviously spoil the stability
of our expansion according to our discussion in Sec. 3.4.

The choice of the expansion point is unique if we require no linear feedback from higher
order couplings and correct IR physics (up to the small offset parameter ε). Suppose we have
some general renormalized expansion point ξ̄k. The left hand side of the flow of the 2n-point
function is then

∂ n
ρ̄

˙̄Vk(ρ̄)
��
ρ̄=ξ̄k

=
�
∂t − nηφ,k

�
v̄n,k − v̄n+1,k

�
∂t +ηφ,k

�
ξ̄k . (4.29)

Demanding that the v̄n+1,k-term vanishes implies that ∂t ξ̄k = −ηφ,k ξ̄k and therefore ξ̄k = κ̄.
The arguments given above apply just as well to field dependent renormalized Yukawa

coupling h̄k, which is defined as

h̄k(ρ̄) =
hk(ρ)

Zq,kZ1/2
φ,k

=
Nh∑

n=0

h̄n,k

n!
(ρ̄ − κ̄)n . (4.30)

The renormalized expansion coefficients h̄n,k, i.e. the physical quark-antiquark–(2n+1)-meson
couplings, are defined as

h̄n,k =
hn,k

Zq,kZ (2n+1)/2
φ,k

. (4.31)

The physical masses are defined from the renormalized potential and Yukawa coupling at the
physical minimum φ̄0∼φ̄0,k=0, which can directly be obtained from the renormalized analogue
of (4.13),

∂φ̄
�
V̄k(ρ)− c̄σ̄

����
φ̄0,k

= 0 . (4.32)
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with the renormalized symmetry breaking source,

c̄σ̄ = cσ with c̄ =
c

Z1/2
φ,k

. (4.33)

With this, the physical (renormalized) quark and meson masses are

M2
q,k =

mq,k

Zq,k
=

1
2

h̄2
k(ρ̄0,k)ρ̄0,k ,

M2
π,k =

mπ,k

Z1/2
φ,k

= V̄ ′(ρ̄0,k) ,

M2
σ,k =

mσ,k

Z1/2
φ,k

= V̄ ′(ρ̄0,k) + 2ρ̄0,k V̄ ′′(ρ̄0,k) .

(4.34)

Note that in the presence of the explicit symmetry breaking c>0, the first derivative of the
effective potential at the physical point, V̄ ′(ρ̄0,k), i.e. the physical pion mass, is always non-zero.

4.2. Dynamical Hadronization

Quantum fluctuations are included into the truncation (4.12) by means of the functional
renormalization group as discussed in Chap. 3. For QCD related reviews and corresponding
low-energy models, we refer the reader to Refs. [75, 133–135, 139–143, 167]. A consistent
description of the dynamical transition from quark-gluon degrees of freedom to hadronic
degrees of freedom is achieved by the dynamical hadronization technique. Loosely speaking,
it is a way of storing four-quark interaction channels, which are resonant at the chiral phase
transition, in mesonic degrees of freedom and therefore allows for a unified description of the
different degrees of freedom governing the dynamics at different momentum scales. It is based
on the formulation of the FRG with scale dependent fields we discussed in Sec. 3.2.

4.2.1. FRG & Dynamical Hadronization

In the case of QCD, the multi-field is Φ = (A, q, q̄, c, c̄,φ) and we denote the VEV as Φ0,k =
(0, 0, 0, 0, 0,φ0,k). First, let us assume that all fields are k-independent. Then, the flow equation
is given by the first term of (3.21). The regulator in field space is given by

Rk =




RA
k 0 0 0 0 0

0 0 Rq
k 0 0 0

0 −Rq
k 0 0 0 0

0 0 0 0 Rc
k 0

0 0 0 −Rc
k 0 0

0 0 0 0 0 Rφk




. (4.35)

We choose the same regulator of π and σ fields in order to avoid introducing an additional
explicit chiral symmetry breaking by our regularization scheme. With this, the flow equation
decomposes into individual parts of the different fields and reads

∂tΓk[Φ] =
1
2

Tr
�
GAA,k[Φ] · ∂tR

A
k

�− Tr
�
Gcc̄,k[Φ] · ∂tR

c
k

�

− Tr
�
Gqq̄,k[Φ] · ∂tR

q
k

�
+

1
2

Tr
�
Gφφ,k[Φ] · ∂tR

φ

k

�
.

(4.36)
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We have explicitly written down the traces which sum over discrete and continuous indices
of the fields, including momenta and species of fields. The first line on the right hand side
of (4.36) is the flow in the pure glue sector, the second line creates the matter fluctuations.
Diagrammatically, the QCD flow can be written as

4

By inspection of the renormalization group flow of these
couplings, we will show that VMD would lead to an over-
simplification of the dynamics of the system. Nonetheless,
VMD turns out to be a good approximation at low energies,
see Sec IV D.

In the present setup, the masses of the quarks and the
mesons are given by

m2
q,k = h2

s,k�
2
0,k ,

m2
⇡,k = m2

S,k ,

m2
�,k = m2

S,k +�4,k�
2
0,k ,

m2
⇢,k = m2

V,k + g3,k�
2
0,k ,

m2
a1,k = m2

V,k + (g2,k + g3,k)�
2
0,k .

(13)

We see that the ⇡ and the � meson as well as the ⇢ and
a1 meson have degenerate masses in the chirally symmetric
phase which is characterized by �0,k = 0. When chiral sym-
metry is broken, this degeneracy is lifted. The mass-splitting
of the scalar mesons is then determined by the quartic scalar
meson coupling�4,k. The mass-splitting of the vector mesons
is determined by the strength of the interaction g2,k. Note
that, owing to the symmetry breaking source c > 0, we are
not in the chiral limit. Thus, the chiral order parameter �0,k
is always nonzero.

Even though the masses we extract here are the curvature
masses, it was shown in [? ] on the example of the pion
mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations
that include running wave function renormalizations. Thus,
with the truncation we use here, we capture the major part
of the momentum dependence of the full meson propagators
and the masses are very close to the physical masses.

We note that even though the action contains massive
vector bosons, it is not necessary to use the Stueckelberg
formalism to ensure renormalizability [? ]. UV regularity is
always guaranteed for the functional renormalization group,
as long as the scale derivative of the regulator decays fast
enough for momenta much larger than the cutoff scale.

III. FLUCTUATIONS AND THE TRANSITION FROM QUARKS
TO MESONS

In this work we are interested in the dynamical transition
from UV to IR degrees of freedom. To achieve this, we
include quantum fluctuations by means of the functional
renormalization group. For QCD related reviews see [? ?
? ? ? ? ? ? ? ]. Furthermore, in order to consistently
describe the dynamical change of degrees of freedom, we
use dynamical hadronization [? ? ? ? ? ]. This allows
for a unified description of the interplay between different
degrees of freedom at different scales in terms of a single
effective action.

A. Functional renormalization group and dynamical
hadronization in the presence of vector mesons

Here, we follow the discussion given in [? ]. In addition,
since this work constitutes the first FRG study of vector
mesons in QCD, we will discuss the implication for the flow
equations and dynamical hadronization in this case.

The starting point of the functional renormalization group
is the scale-dependent effective action �⇤ at a UV-cutoff scale
⇤. In the case of first-principle QCD, ⇤ is a large, perturba-
tive energy scale and correspondingly �⇤ is the microscopic
QCD action with the strong coupling constant and the cur-
rent quark masses as the only free parameters. Quantum
fluctuations are successively included by integrating out
momentum shells down to the RG-scale k. This yields the
scale-dependent effective action �k, which includes fluctua-
tions from momentum modes with momenta larger than k.
By lowering k we resolve the macroscopic properties of the
system and eventually arrive at the full quantum effective
action � = �k=0. The RG-evolution of the scale-dependent
effective action is given by the Wetterich equation [? ].

As we have discussed above, a formulation of the effective
action in terms of local composite fields is more efficient in
the hadronic phase of QCD. In order to dynamically con-
nect this regime with the ultraviolet regime of QCD, where
quarks and gluons are the dynamical fields, we use dynam-
ical hadronization as it was put forward in [? ]. This im-
plies that the meson fields in (1) are RG-scale dependent.
This yields a modified Wetterich equation, which reads with
� = (A, q, q̄, c, c̄,⇡,�,⇢, a1) in a shorthand notation:

@t�k[�] =
1
2

Tr
hÄ
�
(2)
k [�] + R�k

ä�1 · @tR
�
k

i
� ��k
��i
· @t�i ,

(14)

where � = (⇡,�,⇢, a1) summarizes the meson fields. @t is
the total derivative with respect to the RG-time t = ln(k/⇤)
and the traces sum over discrete and continuous indices of
the fields, including momenta and species of fields. This also
includes the characteristic minus sign and a factor of 2 for
fermions. � (2)k [�] denotes the second functional derivative
of the effective action with respect to all combinations of
the fields. R�k is the regulator function for the field �. It
is diagonal in field space. Note that in order not to break
chiral symmetry explicitly by our regularization scheme, we
introduced the same regulators for the scalar mesons and
the vector mesons respectively. For details we refer to App. A.
The flow equation can be written schematically as

(15)

@t�k =
1
2

� � +
1
2

(4.37)

with the loops corresponding to the gluon, ghost, quark and meson contributions.
Gk[Φ] denote the scale and field-dependent full propagators of the respective fields and are

defined in (3.13). For the quarks, for instance, we have

Gqq̄,k[Φ] =

�
δ2Γk[Φ]

δq(−p)δq̄(p)
+ Rq

k

�−1

. (4.38)

Note that we absorbed the minus sign for fermion fields from the field-space metric γ in (3.13)
into the overall minus for the fermionic contributions to the flow equation (4.36). At k=0 and
the fields set to their vacuum expectation value, Gk=0[Φ0] is the full propagator.

We use the optimized cutoffs discussed Sec. 3.3, which explicitly read for our truncation

RA
k(p

2) = ZA,k p2rB(p
2/k2)Π⊥ ,

Rc
k(p

2) = Zc,k p2rB(p
2/k2) ,

Rq
k(p

2) = Zq,k γµpµrF (p
2/k2) ,

Rφk (p
2) = Zφ,k p2rB(p

2/k2) ,

(4.39)

with the transversal projection operator

Π⊥µν = δµν −
pµpν
p2

. (4.40)

These regulators have the advantage that the loop-momentum integration can be performed
analytically for vanishing external momenta and, consequently, all beta functions can be given
in analytical form.

If we insert the truncation (4.12) and the regulators (4.39) into the flow equation (4.36),
we can extract the set of coupled ordinary differential equations for the running couplings
in the truncation. We will present the results for the flow equations of the matter sector for
scale-independent fields in the following. Modifications of these equations due to dynamical
hadronization will be given in the next section. The flow equations of the gauge couplings will
be discussed in Sec. 4.3. For a general discussion on the derivation of flow equations, we refer
to App. B.

Flow of the Effective Potential. The flow equation of the effective potential including the
symmetry breaking source, Vk(ρ)− cσ, is obtained by evaluating (4.36) for constant
meson fields, φ(x)→ φ and vanishing gluon, quark and ghost fields. In this case, the
effective action reduces to Γk = Ω−1(Vk(ρ)− cσ), where Ω is the space-time volume. The
flow of the effective potential V̄k(ρ̄) = Vk(ρ) is then given by:

∂t

��
ρ
V̄k(ρ̄) = 2k4v(d)

¦�
(N2

f − 1)lB
0 (m̄

2
π,k;ηφ,k) + lB

0 (m̄
2
σ,k;ηφ,k)

�

− 4N f Nc l
F
1 (m̄

2
q,k;ηq,k)

©
,

(4.41)
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where v(d) = (2d+1πd/2Γ (d/2))−1. The scale derivative ∂t

��
ρ

is for fixed renormalized

fields, i.e. ∂t

��
ρ
ρ̄=0. The threshold functions lB

0 and lF
1 are defined in App. C.1 and the

dimensionless renormalized masses are defined in (4.63). The flows of the couplings v̄n,k
in (4.22) can be derived from the above equation via:

∂ n
ρ̄ ∂t |ρ V̄k(ρ̄)

���
ρ̄=κ̄k

= (∂t − nηφ,k) v̄n,k , (4.42)

See the discussion in Sec. 4.1.1 and in particular (4.28). Rescaling the expansion point
and the symmetry breaking source in order to formulate RG invariant flows introduces a
canonical running for these parameters:

∂t κ̄k = −ηφκ̄k ,

∂t c̄ =
1
2
ηφ c̄ .

(4.43)

The renormalized minimum of the effective potential ρ̄0,k = σ̄2
0,k/2, which determines

the pion decay constant at vanishing IR-cutoff, σ̄0,k=0 = fπ, and serves as an order
parameter for the chiral phase transition, is obtained from:

∂ρ̄
�
V̄k(ρ̄)− c̄kσ̄

����
ρ̄0,k

= 0 . (4.44)

All physical observables such as fπ and the masses are defined at vanishing cutoff-scale
k = 0 and at the minimum of the effective potential ρ̄ = ρ̄0,k=0.

Since the the explicit symmetry breaking term −cσ is linear in the field, but the flow
equation contains at least two functional field-derivatives of the effective action, c never
enters the flow equations. It merely tilts the effective potential, resulting in a small
finite minimum in the symmetric phase. Thus, the effect of explicit symmetry breaking is
included after the system of flow equations is solved via (4.44) and can be viewed a a
simple shift of the physical minimum of the theory in the chiral limit.

Flow of the Field Dependent Yukawa Coupling. We define the field-dependent Yukawa
coupling via the relation mq,k(ρ) = σhk(ρ)/2 at vanishing external momentum and
constant meson fields, leading to the following projection:

∂thk(ρ) =−
1
σ

i
4NcN f

lim
p→0

Tr

�
δ2∂tΓk

δq(−p)δq̄(p)

�����
ρ(x)=ρ

. (4.45)

Thus, our projection is based on the quark two-point function. It is directly related to the
more customary projection where an additional derivative with respect to the pion fields
is applied. One finds

− i
σ

Tr
�
∂tΓ

(qq̄)
k

�
= Tr

�
γ5~τ∂ ~π∂tΓ

(qq̄)
k

����
~π=0

. (4.46)

Note that a projection using an additional derivative with respect to the sigma field would
contaminate the flow with additional contributions from the derivative of the Yukawa
coupling.
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The resulting flow is given by:

∂t |ρ̄h̄(ρ̄) =
�
ηq,k +

1
2
ηφ,k

�
h̄k(ρ̄) (4.47)

− v(d)h̄k(ρ̄)
3
�
(N2

f − 1) L(FB)
1,1 (m̄

2
q,k, m̄2

π,k;ηq,k,ηφ,k)

− L(FB)
1,1 (m̄

2
q,k, m̄2

σ,k;ηq,k,ηφ,k)
�

+ 8v(d)h̄k(ρ̄) h̄
′
k(ρ̄) ρ̄

�
h̄k(ρ̄) + 2ρ̄h̄′k(ρ̄)

�
L(FB)

1,1 (m̄
2
q,k, m̄2

σ,k;ηq,k,ηφ,k)

− 2v(d)k2
��

3h̄′k(ρ̄) + 2ρ̄h̄′′k (ρ̄)
�

lB
1 (m̄

2
σ,k;ηφ,k) + 3h̄′k(ρ̄)l

B
1 (m̄

2
π,k;ηφ,k)

�

− 8(3+ ξ)C2(Nc) v(d) g2
q̄Aq,k h̄k(ρ̄)L

(FB)
1,1 (m̄

2
q,k, 0;ηq,k,ηA,k) ,

ξ is the gauge fixing parameter, which we set to zero since we use Landau gauge in this
work. The threshold function L(FB)

1,1 is defined App. C.1. The flows of the renormalized

couplings h̄n,k in (4.30) are:

∂ n
ρ̄ ∂t |ρh̄(ρ̄)

���
ρ̄=κ̄k

= (∂t − nηφ,k) h̄n,k , (4.48)

in analogy to the flow of the expansion parameters of the effective potential (4.42).

Flow of the Four-Quark Interaction. For the flow of the four-quark coupling we choose
the projection in [75]. This yields

∂t λ̄S,k = −g4
q̄Aq,k

�
2N2

c − 3

Nc

�
v(d)L(FB)

1,2 (m̄
2
q,k;ηq,k,ηA,k)

+ h̄k(κ̄)
4
�

2
Nc
+ 1

�
v(d)L(FB)

1,1,1(m̄
2
q,k, m̄2

π,k, m̄2
σ,k;ηq,k,ηφ,k) .

(4.49)

In Eq. (4.49), we anticipate full dynamical hadronization for the four fermi interaction.
This leads to a vanishing four-quark coupling λ̄S,k = 0 on the right-hand side: the self-
coupling diagram proportional to λ̄2

S,k is dropped. Furthermore, we neglect contributions

from higher order quark-meson vertices related to field-derivatives of h̄k(ρ̄), since they
are subleading. The field dependence of this coupling is also ignored, i.e. we evaluate
the flow at the expansion point κ̄.

Quark and Meson Anomalous Dimensions. The anomalous dimensions are related to
the flow of the wave-function renormalizations, η= −∂t Z/Z . The Z ’s encode the non-
trivial momentum dependence of the propagators. Here, as already discussed above, we
approximate the full momentum, scale and field dependence of the anomalous dimensions
by only scale-dependent ones in the leading order expansion in the fields following the
discussion in Sec. 4.1.1:

Zφ,k(p
2,ρ) = Zφ,k(κ) and Zq,k(p

2,ρ) = Zq,k(κ) . (4.50)

For the meson anomalous dimension, we therefore use the following projection:

ηφ,k = −
1

2Zφ,k
lim
p→0

∂ 2

∂ |p|2 Tr

�
δ2∂tΓk

δπi(−p)δπi(p)

�����
ρ=κ

, (4.51)
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where the choice of i = 1, 2, 3 does not matter, owing to the O(3) symmetry of the pions.
This yields

ηφ,k = 8 v(d)k−2κ̄k V̄ ′′k (κ̄k)
2M2,2(m̄

2
π,k, m̄2

σ,k) (4.52)

+ 2Nc N f v(d) h̄k(κ̄k)
2
�
M4(m̄

2
q,k;ηq,k) +

1
2

k−2κ̄kh̄k(κ̄k)
2M2(m̄

2
q,k;ηq,k)

�
.

Note that it is crucial that the functional derivatives in (4.51) are with respect to the pions,
since sigma-derivatives would contaminate the flow with contributions proportional to
higher orders in the derivative expansion, which we do not take into account here.

For the anomalous dimension of quarks, we use the projection

ηq,k = −
1

8N f NcZq,k
lim
p→0

∂ 2

∂ |p|2 Tr

�
γµpµ

δ2∂tΓk
δq(−p)δq̄(p)

�����
ρ=κ

, (4.53)

which yields:

ηq = 2 v(d)C2(Nc)g
2
q̄Aq

�
(3− ξ)M1,2(m̄

2
q,k, 0;ηA,k)

− 3(1− ξ)M̃1,1(m̄
2
q,k, 0;ηq,k,ηA,k)

�

+
1
2

v(d)[
�
h̄k(κ̄k) + 2κ̄kh̄′k(κ̄k)

�2M 1,2(m̄
2
q,k, m̄2

σ,k;ηφ,k)

+ (N2
f − 1)h̄k(κ̄k)

2M1,2(m̄
2
q,k, m̄2

π,k;ηφ,k)
�

.

(4.54)

The corresponding threshold functions can be found in App. C.1.

We have shown in Sec. 3.4 and also show in Sec. 7.3.2 that already a φ4 expansion of the
effective potential, corresponding to NV =2 in (4.22) gives quantitatively precise results for
small temperatures and densities. On the other hand, a leading order expansion of the Yukawa
coupling, i.e. Nh=0, is not sufficient since the expansion is not yet converged, see Sec. 7.3.2.
Here, we choose Nh=3 in (4.30) to ensure that we take the effect of the full field-dependent
Yukawa coupling into account. Note that we have to choose NV ≥ Nh for numerical stability
and therefore choose NV =5.

In the infrared regime of QCD, the dynamical degrees of freedom are hadrons, while quarks
and gluons are confined inside them. This entails that a formulation in terms of local composite
fields with hadronic quantum numbers is more efficient in this regime. Note that these composite
fields are directly related to hadronic observables at their poles.

Let us illustrate this at the relevant example of the scalar-pseudoscalar mesonic multiplet
at a given cutoff scale k. At a fixed large cutoff scale, where the mesonic potential Vk(ρ) is
assumed to be Gaußian, we can resort to the conventional Hubbard-Stratonovich bosonization
as explained in Sec. 4.1: the local part of the scalar–pseudo-scalar channel of the four-quark
interaction with coupling λS,k, see (4.5), can be rewritten as a quark-meson term, see (4.6)
and (4.10), on the equations of motion for φ, that is φEoM. This leads to

λS,k =
h2

k

2v1,k
, φ j,EoM =

hk

v1,k
q̄τ jq , (4.55)

where v1 is the curvature mass of the mesonic field and τ = (γ5 ~T , iT0), j∈{1,2,3,4}. Note
that (4.55) is only valid for Zφ ≡ 0 and a Gaußian potential Vk(ρ) = v1ρ. Moreover, mis-
counting of degrees of freedom may occur from an inconsistent distribution of the original
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Figure 1: Re-generation of four-quark interactions from the
RG-flow.
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Figure 2: sasa

scalar-pseudoscalar mesonic multiplet at a given cuto↵
scale k. At a fixed large cuto↵ scale, where the mesonic
potential Vk(⇢) is assumed to be Gaußian, we can resort
to the conventional Hubbard-Stratonovich bosonisation:
the local part of the scalar–pseudo-scalar channel of the
four-quark interaction with coupling �q,k, see the second
line in (1), can be rewritten as a quark-meson term, see
the third line in (1), on the equations of motion for �,
that is �EoM. This leads to

�q,k =
h2

k

2v1,k
, �j,EoM =

hk

v1,k
q̄⌧ jq , (13)

where v1 is the curvature mass of the mesonic field and
⌧ = (�5

~T , iT 0), j 2 {1, 2, 3, 4}. Note that (13) is only
valid for Z� ⌘ 0 and a Gaußian potential Vk(⇢) = v1⇢.
Moreover, mis-counting of degrees of freedom may occur
from an inconsistent distribution of the original four-fermi
interaction strength to the Yukawa coupling and the four-
fermi coupling. The dynamical hadronisation technique
used in the present work, and explained below, resolves
these potential problems.

One advantage of the bosonised formulation concerns
the direct access to spontaneous chiral symmetry breaking
via the order parameter potential Vk(⇢): spontaneous
symmetry breaking is signaled by v1 = 0 at the symmetry
breaking scale k� which relates to a resonant four-quark
interaction. It also facilitates the access to the symmetry-
broken infrared regime.

Let us now assume that we have performed the above
complete bosonisation at some momentum scale k � k�.
There, the above conditions for the bosonisation in (13)
are valid. Hence, we can remove the four-fermi term com-
pletely in favour of the mesonic Yukawa sector. However,
four-quark interactions are dynamically re-generated from
the RG flow via quark-gluon and quark-meson interac-
tions, see Fig. 1.

Indeed, these dynamically generated contributions dom-
inate due to the increase of the strong coupling ↵s,k for
a large momentum regime, leading to a quasi-fixed point

running of the Yukawa coupling, see Refs. [3, 22, 23] and
also our discussions below. Thus, even though �q,k was
exactly replaced by m�,k and hk at a scale k � k�, there
is still a non-vanishing RG-flow of �q,k at lower scales.
Note, however, that we have explicitly checked that this
is only a minor quantitative e↵ect as long as one considers
low-energy e↵ective models, see App. A.

In summary, it is not possible to capture the full dy-
namics of the system in the quark-gluon phase with the
conventional Hubbard-Stratonovich bosonisation. As a
consequence, within conventional bosonisation, the scale
where composite fields take over the dynamics from fun-
damental quarks and gluons is not an emergent scale
generated by the dynamics of QCD, but is fixed by hand
by the scale where the Hubbard-Stratonovich transforma-
tion is performed.

In the present approach we employ dynamical hadro-
nisation instead of the conventional bosonisation. It is
a formal tool that allows for a unified description of dy-
namically changing degrees of freedom and consequently
is not plagued by the shortcomings of conventional boson-
isation discussed above. It has been introduced in [22]
and was further developed in [7, 23, 24]. The construc-
tion works for general potentials Vk(⇢) (more precisely
general �k[�]), and implements the idea of bosonising
multi-fermion interactions at every scale k rather just at
the initial scale. Consequently, the resulting fields of this
bosonisation procedure, i.e. the mesons, become scale-
dependent and can be viewed as hybrid fields: while they
act as conventional mesons at low energies, they encode
pure quark dynamics at large energy scales.

Here we follow the dynamical hadronisation set-up
put forward in [7] and outline the derivation of the flow
equation in the presence of scale-dependent meson fields.
The starting point is the functional integral represen-
tation of the scale-dependent e↵ective action �k with
scale-dependent meson fields. To this end, we define the

dynamical superfield �̂k = ('̂, �̂k), where the microscopic

fields are combined in '̂ = (Âµ, q̂, ˆ̄q, ĉ, ˆ̄c) and the scale-
dependent meson fields, in our case pions and the sigma

meson, are represented by the O(4) field �̂k = (~̂⇡k, �̂k).
The path integral representation of �k reads

e��k[�k] =

Z
D'̂ exp

n
�S['̂] ��Sk[�̂k] (14)

+
�(�k + �Sk)

��k
(�̂k � �k) + �Sk[�k]

�
,

where we defined the expectation value of the fields �k =
h�̂ki and used

J =
� (�k + �Sk)

��k
and �Sk[�k] =

1

2
�kRk�k . (15)

To arrive at the evolution equation for �k[�k], we take the
scale derivative @t = k d

dk of Eq. (14). The RG evolution
of the scale-dependent composite meson fields is of the

Figure 4.1.: Re-generation of four-quark interactions from the RG-flow.

four-fermi interaction strength to the Yukawa coupling and the four-fermi coupling. The
dynamical hadronization technique used in the present work, and explained below, resolves
these potential problems.

One advantage of the bosonized formulation concerns the direct access to spontaneous chiral
symmetry breaking via the order parameter potential Vk(ρ): spontaneous symmetry breaking
is signaled by v1 = 0 at the symmetry breaking scale kχ , which relates to a resonant four-quark
interaction. It also facilitates the access to the symmetry-broken infrared regime.

Before we discuss dynamical hadronization, we briefly recap the conventional bosonization
procedure. So let us assume that we have performed the above complete bosonization at
some momentum scale k�kχ . There, the above conditions for the bosonization in (4.55) are
valid. Hence, we can remove the four-fermi term completely in favor of the mesonic Yukawa
sector. However, four-quark interactions are dynamically re-generated from the RG flow via
quark-gluon and quark-meson interactions, see Fig. 4.1.

Indeed, these dynamically generated contributions dominate due to the increase of the
strong coupling αs,k for a large momentum regime, leading to a quasi-fixed point running of
the Yukawa coupling, see Refs. [69, 70] and also our discussions below. Thus, even though
λS,k was exactly replaced by mφ,k and hk at a scale k � kχ , there is still a non-vanishing
RG-flow of λS,k at lower scales which was eliminated by the complete bosonization, but cannot
be neglected, especially in the quark-gluon regime at high energies. Note, however, that we
have explicitly checked that this is only a minor quantitative effect as long as one considers
low-energy effective models, i.e. if the scale one performs a full bosonization is close to kχ , see
Sec. 6.2.

In summary, it is not possible to capture the full dynamics of the system in the quark-gluon
phase with the conventional Hubbard-Stratonovich bosonization. As a consequence, within
conventional bosonization, the scale where composite fields take over the dynamics from
fundamental quarks and gluons is not an emergent scale generated by the dynamics of QCD,
but is fixed by hand by the scale where the Hubbard-Stratonovich transformation is performed.

In the present approach we employ dynamical hadronization. It is a formal tool that allows
for a unified description of dynamically changing degrees of freedom and consequently is
not plagued by the shortcomings of conventional bosonization discussed above. It has been
introduced in [69] and was further developed in [70,139,144]. The construction works for
general potentials Vk(ρ) (more precisely general Γk[Φ]), and implements the idea of bosonizing
multi-fermion interactions at every scale k rather than just at the initial scale. Consequently,
the resulting fields of this bosonization procedure, i.e. the mesons, become scale-dependent
and can be viewed as hybrid fields: while they act as conventional mesons at low energies,
they encode pure quark dynamics at large energy scales.

We already derived the flow equation for general scale dependent fields in Sec. 3.2. Dynamical
hadronization is a special case of this more general formulation, where only the meson fields
are k-dependent, while all the other fields are not. Thus, we get a special case of (3.21) with
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Φk = (A, c, c̄, q, q̄,φk). For the flow of the composite meson fields φk, we choose

∂tφk = Ȧkq̄τq+ Ḃkφk . (4.56)

For now, the coefficients Ȧk and Ḃk remain unspecified. Specifying them will fix the hadroniza-
tion procedure as discussed below. Note that the first term in (4.56) reflects the bound state
nature of the mesons.

Thus, while the gluon, ghost and quark contributions to the flow (4.36) remain unchanged,
the mesonic part now reads according to (3.21)

∂t

��
φ
Γk[Φk] =

1
2

Tr
�
Gφφ,k[Φ] ·

�
∂tR

φ

k + 2Rφk Ḃk

��
− Tr

�
δΓk[Φ]
δφi

�
Ȧkq̄τiq+ Ḃkφi

��
. (4.57)

The first term on the right hand side of (4.57) corresponds to the mesonic part of the flow
equation (4.36) with a shift in the scale derivative of the regulator owing to the part of ∂tφk
which is proportional to φk itself. Note that, following our discussion in Sec. 3.2, this term will
not spoil the one-loop structure of the flow equation, since we have chosen ∂tφk such that it is
only linear in φk itself, (4.56). The second term stems from the scale derivative of φk.

The scale derivative of the meson regulator defined in (C.1) can be written as

∂tR
φ

k (p
2) =

�
∂t

��
Z −ηφ,k

�
Rφk (p

2) , (4.58)

with the anomalous dimension of the scale-dependent mesons,

ηφ,k = −
∂t Zφ,k

Zφ,k
, (4.59)

and the RG-time derivative for fixed Zk, ∂t

��
Z . This choice of the regulator functions implies that

the flow equations of RG-invariant quantities only contain the anomalous dimension which
stems from the scale derivative of the regulator whereas the wave function renormalizations
drop out completely. With this, we can rewrite (5.26) into:

∂t

��
φ
Γk[Φk] =

1
2

Tr
�
Gφφ,k[Φ] ·

�
∂t

��
Z − (ηφ,k − 2Ḃk)

�
Rφk
�

− Tr
�
δΓk[Φ]
δφi

�
Ȧkq̄τiq+ Ḃkφi

��
. (4.60)

It is now obvious that the first line of the modified flow equation above gives the original flow
equations without scale-dependent fields, but with a shifted meson anomalous dimension:

ηφ,k→ ηφ,k − 2Ḃk . (4.61)

The coefficient, Ḃk, in (4.56) is at our disposal, and we may use it to improve our truncation.
The second line of (4.60) induces additional contributions in particular to the flows of

the four-quark and the Yukawa couplings, owing to the particular ansatz we made for ∂tφk.
This allows us to specify the hadronization procedure: we choose the coefficient Ȧk such that
the flow of the four-quark interaction λS,k vanishes within our truncation, ∂tλS,k = 0. This
way, all informations about the multi-quark correlations are stored in the flow of the Yukawa
coupling. Thus, hk encodes the multi-quark correlations in the quark-gluon phase and the
meson–constituent-quark correlations in the hadronic phase, including a dynamical transition
between these different regimes.



64 4. Chiral Symmetry Breaking in QCD

4.2.2. Hadronized Flow Equations

Here, we specify the hadronization procedure and give the resulting modified flow equations
of the scale-dependent parameters of the truncation (4.12). These modifications are given by
explicitly evaluating the second line of (4.60). Note that the explicit form of the modified flow
equations depends on the details of our projection procedures, see also App. C.1.

In the following, we rescale all fields with their respective wave-function renormalization,
Φ̄= Z1/2

Φ,k Φ and introduce the RG-invariant parameters v̄n,k as in (4.23), h̄n,k as in (4.31), c̄ as
in (4.33) and

λ̄S,k =
λS,k

Z2
q,k

. (4.62)

Our conventions for the gauge sector imply that the gauge coupling is already RG-invariant,
ḡk = gk, see (4.1). The RG-invariant dimensionless masses are defined accordingly as

m̄q,k = k−1Mq,k =
mq,k

k Zq,k
,

m̄π/σ,k = k−1Mπ/σ,k =
mπ/σ,k

k Z1/2
φ,k

.
(4.63)

Note that we rescale mesonic parameters with the wave-function renormalization Zφ,k of the
scale-dependent mesons φk. The constant source c has a canonical running after rescaling,
given only by the running of Zφ,k. Consequently, we also rescale the hadronization functions:

˙̄Ak = Z1/2
φ,k Z−1

q,k Ȧk , ˙̄Bk = Ḃk . (4.64)

With this, we proceed now to the modified flow equations of these RG-invariant quantities.
For the flow of the four-quark interaction λ̄S,k we find:

∂t

��
φ
λ̄S,k = 2ηq,kλ̄S,k + ∂t λ̄S,k

��
ηφ,k→ηφ,k−2˙̄Bk

+

�
h̄k(ρ̄) + 2ρ̄h̄′k(ρ̄)

4N f Nc − 1

2N f Nc + 1

�
˙̄Ak . (4.65)

Here, ∂t λ̄q,k denotes the flow without dynamical hadronization which is given by (4.49).
As already discussed above, this contribution is subject to a shift in the meson anomalous
dimension, indicated by ηφ,k→ ηφ,k − 2˙̄Bk.

Following the discussion in the previous section, we choose ˙̄Ak such that the flow of λ̄S,k
vanishes. This is achieved by the following choice:

˙̄Ak = −
�

h̄k(ρ̄) + 2ρ̄h̄′k(ρ̄)
4N f Nc − 1

2N f Nc + 1

�−1

∂t λ̄S,k

��
ηφ,k→ηφ,k−2˙̄Bk

. (4.66)

Together with the initial condition λ̄S,Λ = 0, this yields

∂t

��
φ
λ̄S,k = 0. (4.67)

The flow of the Yukawa coupling assumes the following form:

∂t

��
φ

h̄k =
�
ηq,k +

1
2
ηφ,k

�
h̄k + ∂t h̄k

��
ηφ,k→ηφ,k−2˙̄Bk

− �p2 + V̄ ′k(ρ̄)
� ˙̄Ak −

�
h̄k + 2ρ̄h̄′k

� ˙̄Bk ,
(4.68)
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Figure 4.2.: Flow of the (S−P)-channel four-quark interaction from a purely quark-gluonic theory in
comparison to the ratio h2

k/(2mπ,k) from the dynamically hadronized theory. We see that
h2

k/(2mπ,k) mimics λS,k at large scales down to the chiral transition scale kχ , where λS,k
becomes resonant. Thus, owing to dynamical hadronization and in particular (4.68), the
four-quark dynamics are essentially encoded in hk for k¦kχ . For scales smaller than kχ ,
h2

k/(2mπ,k) follows a typical mesonic flow, while λS,k can not access this regime. This Figure
is taken from [156]. Note that the results are obtained with finite pion masses. Thus, the
scale of the minimum of the pion mass does not necessarily coincide with the transition
scale.

where h̄k = h̄k(ρ̄) is implied and ∂t h̄k is given by (4.47). From Eq. (4.66), it is now clear
that the flow of the quark interaction and, therefore, all information about the multi-quark
correlations within our truncation, is incorporated into the flow of the hadronized Yukawa
coupling.

At large energy scales, meson are not present and therefore their interactions are irrelevant.
The mesonic part of the effective action can therefore be thought of as purely Gaußian. Thus, the
Hubbard-Stratonovich relation (4.55) between the four-quark interaction, the Yukawa coupling
and the curvature mass holds with dynamical hadronization over a large range of scales. This
is shown in Fig. 4.2. There, λS,k from a purely quark-gluonic theory, i.e. Γ (qg)

k =Γ (mQCD)
k +Γ (4q)

k ,
is compared to the ratio h2

k/(2mπ,k) from the dynamically hadronized theory (4.12).

It is left to specify the hadronization function ˙̄Bk, which also enters (4.68). It can be used
to improve the current approximation by absorbing a part of the momentum-dependence of
the mesonic wave-function renormalization and the Yukawa coupling. This will be discussed
elsewhere. Here, we use

˙̄Bk ≡ 0 . (4.69)

Let us comment on the precise form of the flow of the hadronization field φk given in (4.56).
Owing to relation (4.55) for the conventional Hubbard-Stratonovich bosonization, the strength
of the four quark interaction can be arbitrarily distributed between the Yukawa coupling hk
and the mass of the pion mπ,k. Thus, if no further conditions on hk and mπ,k are applied, an
unambiguous definition of the meson masses from the quark-gluon dynamics is impossible,
since only the ratio ∼ h2

k/m
2
π,k is fixed from λS,k, which, in turn, derives from quark-gluon



66 4. Chiral Symmetry Breaking in QCD

fluctuations at large energies. Dynamical hadronization is based on the requirement of a
vanishing four-quark interaction at all scales (5.27), ∂tλS,k=0. Without any assumptions on
the flow of φk, the last term of (3.21) gives rise to the condition

δΓk
δφi,k

∂tφi,k =
�
Zφ,kp2φi,k +φi,kV ′k(ρk) +φi,kh′k(ρk)q̄(τ ·φk)q+ hk(ρk)q̄τiq

�
∂tφi,k

!
= Ck(q̄τiq)2 ,

(4.70)

in order to fulfill the hadronization requirement, because otherwise the four quark interaction
(4.5) could not be canceled for every k. Ck is an k-dependent coefficient whose precise form
is irrelevant for the argument. It is now immediately clear that ∂tφk ∝ q̄τiq is the simplest
choice. As we have shown above, this choice leads to (4.68), which implies that all information
about the four-quark interaction is stored in the Yukawa coupling. Thus, our specific choice
for the hadronization procedure provides the additional condition we need to remove the
ambiguity related to the distribution of the strength of the four-quark interaction between
the Yukawa coupling and the meson masses. Furthermore, we will explicitly demonstrate
in Sects. 4.4.4 and 5.3.3 the the running of the meson masses in the quark-gluon regime is
exclusively driven by the meson anomalous dimensions. This implies that the meson masses
can unambiguously be defined from quark-gluon dynamics.

We see that our hadronization procedure enforces a vanishing four-quark interaction. The
effect of four-quark correlations is then stored in the Yukawa coupling, which now serves a
dual purpose: while it captures the current-quark self-interactions in the quark-gluon phase, it
describes the meson–constituent-quark interactions in the hadronic phase. This is exactly what
we need to describe the dynamical transition from quarks and gluons to mesonic degrees of
freedom.

4.3. Gauge Sector

In this section, we discuss the gauge sector of the truncation given in (4.1). Most importantly,
this permits to distinguish the quark-gluon coupling from pure gluodynamics. This directly
signals the transition from the perturbative quark-gluon regime at large momenta, where
all couplings scale canonically, to the hadronic regime where non-perturbative effects are
dominant.

The couplings induced from three-point functions play a dominant role in the description
of interactions. Hence, we solve the flow equations for all three-point functions in QCD, the
quark-gluon, three-gluon and ghost-gluon vertices. In addition, the effects from the four-gluon
vertex are important [71,158,159]. Thus, we employ an ansatz which has proven to be accurate
in previous studies [158,159]. For the computation presented here, we take the gluon and ghost
propagators from pure gauge theory as input [71,159] and augment them by unquenching
effects. In the perturbative domain this procedure is accurate, as the error is order α2

s,k. At
scales below the confinement transition the gluon is gapped and therefore decouples from the
dynamics.

Perturbation theory gives a direct relation between the number of gluon legs m attached to
the vertex Γ (n) and the order in the strong coupling, Γ (n) ∼ (4παs,k)m/2. Nevertheless, the RG
running is different, although purely induced by the external legs attached. Their wave function
renormalizations cancel exactly those from the propagators, see (4.74) below. As a result of
this truncation, the flow equations for the couplings depend on the anomalous dimensions only,
as discussed above and also shown below.
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In this analysis we restrict ourselves to classical tensor structures of the gauge action S[Φ].
Omitting color and Lorentz indices for clarity, we parametrize the quark-gluon, three- and
four-gluon and the ghost-gluon vertices as

Γ
(q̄Aq)
k = Z

1
2

A,kZq,k gq̄Aq,k S(3)q̄Aq ,

Γ
(A3)
k = Z

3
2

A,k gA3,k S(3)A3 ,

Γ
(A4)
k = Z2

A,k g2
A4,k S(4)A4 ,

Γ
(c̄Ac)
k = Z

1
2

A,kZc,k g c̄Ac,k S(3)c̄Ac .

(4.71)

The classical tensor structures S(n)Φ1...Φn
are obtained from (4.1) by

S(n)Φ1...Φn
=

δnΓΛ
δΦ1 . . .δΦn

����
gk=1

. (4.72)

Here, we use as input the gluon/ghost two-point functions Γ (2),YM
A/c,k (p) computed in [159,168],

Γ
(2),YM
A,k (p) = ZYM

A,k (p
2) p2Π⊥ ,

Γ
(2),YM
c,k (p) = ZYM

c,k (p
2) p2 .

(4.73)

In order to make full use of this non-trivial input, we expand the flow equation for the gluon
propagator in QCD about that in Yang-Mills theory as explained below. This way, we obtain
the gluon dressing function of QCD, ZA,k, i.e. including the effects of dynamical quarks, based
on the Yang-Mills dressing function ZYM

A,k . The freedom in defining the cutoff function RA
k, is

used to simplify the analysis. This is done by choosing the same prefactor ZA,k for the gluon
regulator as for the vertex parametrizations in (4.71). Note that the gluon propagator enters in
loop integrals with momenta p2 ® k2. If we estimate the full gluon propagator with the simple
expression (omitting the tensor structure for clarity)

GA,k(p) =
1

ZA,k(p2)p2 + RA
k

≈ 1

ZA,k p2 + RA
k

=
1

ZA,k

1
p2 (1+ rB(p2/k2))

, (4.74)

i.e. we consider the RG-scale and momentum dependent gluon wave function renormaliza-
tion ZA,k(p) to be only scale dependent, the system of flow equations under consideration is
tremendously simplified. The error of such a simple estimate relates to

p3

�
1

ZA,k(p2)p2 + RA
k

− 1

ZA,kp2 + RA
k

�n

= p3+2n

�
ZA,k − ZA,k(p2)�

ZA,k(p2)p2 + RA
k

� �
ZA,kp2 + RA

k

�
�n

, (4.75)

where the factor p3 stems from the momentum integration ∼ dp p3. The expression in (4.75)
occurs with powers n≥ 1 in the difference of the full flow equations and the approximated flows
with (4.74), and is evaluated for momenta p2 ® k2. For small momenta it tends towards zero
while its value for maximal momenta p2 ≈ k2 is proportional to the difference ZA,k − ZA,k(k2).
Consequently, we choose

ZA,k = ZA,k(k
2) . (4.76)
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We have checked that the difference between full flows and approximated flows is less than 5%
for all k.

Within approximations (4.71) and (4.74), the gluon propagator enters flow equations only
via the anomalous dimension ηA,k with

ηA,k = −
∂t ZA,k

ZA,k
. (4.77)

Note that, as a consequence of (4.76), ηA,k has two contributions from the full dressing function
ZA,k(p2),

∂t ZA,k = ∂t ZA,k(p
2)
��
p2=k2 + 2k2 ∂ ZA,k(p2)

∂ p2

����
p2=k2

. (4.78)

The first term stems from the genuine k-dependence of the dressing function, while the second
term results from its momentum dependence. As it is the case for any flow of a coupling in a
gapped theory (away from potential fixed points), the first term of (4.78) vanishes in the limit
k→0,

lim
k→0

∂t ZA,k(p
2)
��
p2=k2 = 0 . (4.79)

The second term of (4.78) carries the information about the momentum dependence of the
dressing function and in particular of the (bare) mass gap mgap at small momenta. The gluon
propagator exhibits a gap at small momentum scales and hence the dressing function of the
full quantum theory, ZA,k=0(p2), is of the form

lim
p2→0

ZA,k=0(p
2)∝

m2
gap

p2
. (4.80)

This implies for the second term in (4.78)

lim
k→0

2k2∂p2 ln
�
ZA,k(p

2)
����

p2=k2
= −2 . (4.81)

Thus, the second term of (4.78), which is a result of our specific definition of the purely RG-scale
dependent gluon wave function renormalization (4.76), is responsible for a non-vanishing
gluon anomalous dimension ηA,k as defined in (4.77) for k→0.

We note that this difference between the pure k-dependence and the momentum dependence
of the gluon dressing function is a highly non-trivial observation, since it implies that RG-scale
dependence alone does not suffice to capture the non-perturbative physics of YM/QCD in the
gauge sector, even on a qualitative level. It is indispensable to resolve the full momentum
dependence of the gluon (and ghost) propagators in order to capture the confining properties
of the theory, because the information about the mass gap is only stored in the momentum
dependence, not in the k dependence. This is in contrast to the chiral properties of the matter
sector of QCD, where approximations based on solely k-dependent parameters capture all the
relevant physics at least qualitatively.

It is crucial that ZA,k does not appear explicitly in the flow equations, and hence flows do
only depend on ηA,k, the vertex couplings g, masses and further couplings. Note that this is
only partially due to the approximation in (4.74). It mainly relates to the parameterization
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(4.71) of the vertices which stores most of the non-trivial information in the associated vertex
couplings

αi =
g2

i

4π
, with i = c̄Ac , A3 , A4 , q̄Aq . (4.82)

This freedom to choose the parametrization of the vertices directly relates to the reparametriza-
tion invariance of the theory and hence to RG invariance. The above discussion in particular
applies to the anomalous dimension itself: first, we note that the glue part ηglue,k of the
anomalous dimension ηA,k only depends on the vertex couplings:

ηglue,k = ηglue,k(αc̄Ac ,αA3 ,αA4) . (4.83)

In the semi-perturbative regime these couplings agree due to the (RG-)modified Slavnov–Taylor
identities [139, 146, 169, 170], which themselves do not restrict the couplings in the non-
perturbative transition regime, see Ref. [156]. In turn, in the non-perturbative regime the
couplings differ already due to their different scalings with the gluonic dressing ZA,k. For small
cutoff scales k→ 0, following our discussion above, this dressing diverges proportional to the
QCD mass gap,

lim
k→0

ZA,k∝ m̄2
gap =

m2
gap

k2
. (4.84)

This is a slight abuse of notation since m̄2
gap in (4.84) is not renormalized as the other dimension-

less mass ratios m̄2. Here it simply relates to the wave-function renormalization ZA,k defined in
(4.76). Hence, it is not RG-invariant and should not be confused with the physical mass gap of
QCD. It is related with the latter upon an appropriate renormalization.

As a consequence, while we expect αc̄Ac ≈ αq̄Aq down to small scales, the purely gluonic
couplings αA3/A4 should be suppressed to compensate the higher powers of diverging ZA,k
present in the vertex dressing in (4.71). This also entails that we may parameterize the right
hand side of (4.84) with powers of 1/αi. For i = c̄Ac, q̄Aq, for example, we expect 1/αi. In
accordance with this observation, we parameterise the difference of the various vertex couplings
in ηglue with the gap parameter m̄gap defined in (4.84) and conclude for the gluon anomalous
dimension of QCD

ηA,k = ηglue,k(αs, m̄gap) +∆ηA,k(αq̄Aq, m̄q) , (4.85)

where αs stands for either αc̄Ac or αA3 . We shall check that our results do not depend on this
choice which justifies the identification of the couplings in (4.85). Note that this does not entail
that the couplings agree but that they differ only in the regime where the glue fluctuations
decouple. Moreover, in the present approximation αA4 is not computed separately but identified
with αA3 . ∆ηA,k is the vacuum polarization of the gluon due to virtual quark-antiquark pairs
created from the vacuum. Thus, ∆ηA,k contains the direct contribution of quark fluctuations to
the gluon dressing. Note that quark fluctuations also enter indirectly, since they influence the
gauge couplings of QCD as well.

We note that a simple reduction of (4.85) is given by

ηA,k = η
YM
A,k +∆ηA,k(αq̄Aq, m̄q) . (4.86)

This amounts to a gluon propagator, where the vacuum polarization is simply added to the
Yang-Mills propagator. This approximation has been used in an earlier work, [140,154,155],
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and subsequently in related Dyson-Schwinger works, see e.g. [45,171–173]. We will refine
this approximation based on the discussion above (in particular (4.85)) and explain the details
in the following.

The quark contribution to the gluon anomalous dimension, ∆ηA,k, is computed from

7

structures of the gauge action S[�]. Omitting colour
and Lorentz-indices for clarity, we parametrise the quark-
gluon, three- and four-gluon and the ghost-gluon vertices
as

�
(q̄Aq)
k = Z

1
2

A,kZq,k gq̄Aq,k S
(3)
q̄Aq ,

�
(AAA)
k = Z

3
2

A,k gAAA,k S
(3)
AAA ,

�
(AAAA)
k = Z2

A,k g2
AAAA,k S

(4)
AAAA ,

�
(c̄Ac)
k = Z

1
2

A,kZc,k gc̄Ac,k S
(3)
c̄Ac ,

(34)

with the tensor structures S
(n)
�1...�n

obtained by taking
derivatives of the classical action S with respect to the
fields entering the vertex before setting the field expec-
tation values to their vacuum expectation value and the
bare coupling to unity.

In this work, we take the two-point functions com-

puted in [28, 29], �
(2),YM
A/c,k (p) for the gluon/ghost, as input,

whose ZYM
A/c,k we define similar to (12). The corresponding

anomalous dimensions are given by

⌘YM
A/c,k = �

@tZ
YM
A/c,k

ZYM
A/c,k

. (35)

In order to make full use of this non-trivial input we
expand the flow equation for the gluon propagator in QCD
about that in Yang-Mills theory. We use the freedom
in defining the cuto↵ function RA

k , see Appendix C, to
simplify the analysis. This is done by choosing the same
prefactor ZA,k for the gluon regulator as for the vertex
parameterisations in (34). Note that the gluon propagator
enters in loop integrals with momenta p2 . k2. If we
estimate the full gluon propagator (13) with the simple
expression

GA,k(p) ⇡ 1

ZA,k p2 + RA
k

=
1

ZA,k

1

p2 (1 + rB(p2/k2))
,

(36)

i.e. the p-dependence of ZA,k(p) is neglected but evaluated
at p = k, the system of flow equations considered is greatly
simplified. The error of such a simple estimate relates to

p3

✓
1

ZA,k(p2)p2 + RA
k

� 1

ZA,kp2 + RA
k

◆n

= p3+2n

 ⇥
ZA,k � ZA,k(p2)

⇤
�
ZA,k(p2)p2 + RA

k

� �
ZA,kp2 + RA

k

�
!n

(37)

The expression in (37) occurs with powers n � 1 in
the di↵erence of full flow equations and the approximated
flows with (36), and is evaluated for momenta p2 . k2.
For small momenta it tends towards zero while its value
for maximal momenta p2 ⇡ k2 is proportional to the

�⌘A,k =
Z�1

A,k

3(N2
c � 1)

 
@2

@p2
⇧?(p)·
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Vacuum polarisation of the gluon

The vacuum polarisation of the gluon has already been calculated in Ref. [89] in a one-loop

RG improved approximation and is given by

�⌘Aq =
Nf�

1 + M̄2
�

4

3

1

4⇡
↵s

�
��1 � 1

1 + e
�2⇡i�+

�
1+M̄2

�
�µ̄

T̄

� 1

1 + e
2⇡i�+

�
1+M̄2

�
+µ̄

T̄

�
�� . (4.33)

The equation we derive here has been studied simultaneously in the same truncation by F.

Rennecke, see [160]. Here we give the full results within our truncation and at finite chemical

potential and temperature and also include wave function renormalisations parallel Z
�
� and

perpendicular Z�
� to the heat bath, renormalising the zero and the vector component of the

momentum.

Figure 4.5: The vacuum polarisation of the gluon through the quark.

We implement the 3d regulator given by Eqn. (4.16). To determine the vacuum polarisa-

tion of the gluon, i.e. �⌘�Aq
, we must project onto the lhs of the flow of �

(2)
AA

@t�
(2)
AA =

⇣
Ż

�
A�

2
n + Ż�

A~p2
⌘
⇧�,3d

µ� �ab +
1

⇠
⇧�,3d

µ� �abp2, (4.34)

where the �n are the bosonic Matsubara frequencies and we want to project onto the trans-

verse component relative to the heat bath (as we are in Landau gauge there is only the

standard transverse part of the propagator but there is a transverse and a longitudinal com-

ponent with respect to the heat bath) and there we want the flow of the wave function

renormalisation proportional to the vector component of the momentum. So we have to per-

form two derivatives with respect to the momentum p at vanishing momentum. Dividing by

the negative of the wave function renormalisation we are left with the desired contribution

to the anomalous dimension, i.e. the vacuum polarisation of the gluon by the quarks. The

rhs is simply given by the same manipulations we have just performed on the lhs and which

we then apply to the diagram given in Fig. 4.5.

So we have to derive the rhs of

�⌘�Aq
= � 1

4(N2
c � 1)

1

Z�
A

(
@2

p

✓
⇧�,3d

µ� �ab
⇥
�2

⇤◆����
p=0

)
. (4.35)

and actually all we have to do is to calculate the quantity in the curly brackets. The trace

!�����
p=0

di↵erence ZA,k � ZA,k(k2). Consequently, we choose

ZA,k = ZA,k(k2) . (38)

We have checked that the di↵erence between full flows
and approximated flows is less than 5%.
Within approximation (36) and (34) the gluon propagator
only enters via the anomalous dimension ⌘A,k with

⌘A,k = �@tZA,k

ZA,k
. (39)

Most importantly, ZA,k does not appears explicitly. This
also applies to the anomalous dimension itself which is
proportional to ↵s as the only parameter. Note that
the couplings ↵s,c̄Ac, ↵s,AAA, ↵s,A4 occur. For now, we
neglect the di↵erence of the di↵erent vertex couplings and
conclude that

⌘A,k =
↵s,k

↵YM
s,k

⌘YM
A,k + �⌘A,k , (40)

where �⌘A,k is the quark contribution to the gluon anoma-
lous dimension. It is defined as

Here, p is the modulus of the external momentum and
⇧? is the transversal projection operator defined in (C2).
Note that the dots represent the full vertices and the lines
the full propagators. The crossed circle represents the
regulator insertion. For Nf = 2 and Nc = 3 we find

�⌘A,k =
1

24⇡2
g2

q̄Aq,k(1 + m̄2
q,k)�4

⇥
⇥
5 � ⌘q,k + 8m̄2

q,k � (1 � ⌘q,k)m̄4
q,k

⇤
.

(41)

Note that the Yang-Mills anomalous dimension also
contains a resummation term and its full dependence
on ↵s is of the type ↵s/(1 + c ↵s). In (40) we have not
considered the change in c ↵s. Also, we have checked that
the results in the matter sector do not change if taking
either ↵s,c̄Ac, ↵s,AAA = ↵s,A4 in (40) in the current work.

The same local approximation can be applied to the
ghost, leading to

⌘c,k =
↵s,k

↵YM
s,k

⌘YM
c,k , (42)

where ↵s,k = ↵s,c̄Ac,k. This modification is used in the
equation for the ghost-gluon vertex.

Finally, this allows us to determine the ghost and gluon

(4.87)

Here, p is the modulus of the external momentum and Π⊥ is the transversal projection operator
defined in (4.40). Note that the dots represent the full vertices and the lines stand for the full
propagators. The crossed circle represents the regulator insertion. For N f = 2 and Nc = 3 we
find

∆ηA,k =
1

24π2
g2

q̄Aq,k(1+ m̄2
q,k)
−4
�
4−ηq,k + 4m̄2

q,k + (ηq,k − 1) m̄4
q,k

�
(4.88)

The derivation of this equation is shown in App. C.2. The approximation (4.87) works well as
long as the quark contribution has only a mild momentum dependence. This is the case due to
the gapping of the quarks via spontaneous chiral symmetry breaking, and has been checked
explicitly. Note that in the perturbative limit, ηq,k, m̄q,k→ 0, (4.88) reduces to the well-known
result of one-loop perturbation theory, ∆ηA,k = g2

q̄Aq,k/(6π
2).

This leaves us with the task of determining ηglue,k(αs, m2
gap) of (4.85), the pure glue contribu-

tion to ηA,k. The loop expression for ηglue only consists of Yang-Mills diagrams. As, according
to our discussion above, it depends solely on the value of the coupling αs, we arrive at

ηglue(αs, m̄QCD
gap ) = η

YM
A (αs, m̄QCD

gap ) , (4.89)

i.e. the pure gauge part of the qluon anomalous dimension of QCD is identical to the gluon
anomalous dimension of pure Yang-Mills theory with the YM couplings replaced by the QCD
couplings. ηYM

A can be determined in Yang-Mills theory or in quenched QCD as a function of αs
and m̄gap.

For using (4.89), of course, a trackable form of ηYM
A as well as m̄QCD

gap is required. To this
end, we first note that αs,k is a multi-valued function in both Yang-Mills theory/quenched QCD
and QCD, see Fig. 4.3. This is obvious, since αs,k is a non-monotonous function of k. The two
branches meet at k = kpeak, the peak of the strong coupling, with

∂tαs,k

��
k=kpeak

= 0 . (4.90)

We have an UV branch η+(αs, m̄gap) for k > kpeak and an IR branch η−(αs, m̄gap) for k < kpeak.
In the left plot in Fig. 4.3 we show ηYM

A as a function of the coupling. Interestingly, η+(αs,k)
is well-described by a quadratic fit in αs up to couplings close to αs,kpeak

. In turn, η−(αs,k) is
well-described as a function of the cutoff scale as indicated by (4.84). In the deep IR, the gluon
dressing function is basically given by the bare gap, ZA,k→0∝ m2

gap/k
2 and hence

lim
k→0

ηA,k = 2 , (4.91)

see also the discussion above and in particular (4.81). This is seen in Fig. 4.3. We also see in
this figure that the whole IR branch η− is almost constant. This implies that the mass gap which
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Figure 4.3.: UV and IR branches of the Yang-Mills contribution to the gluon anomalous dimension as
a function of the strong coupling. The left figure shows ηYM

A,k , defined in (4.77), as well as
ηYM

c,k . η+ is the UV branch and η− the IR branch of ηYM
A,k . The right figure shows the UV and

IR branches ηYM+ and ηYM− of η̃YM
A,k (k), which is defined in (4.95). Note that the different

values of η− and ηYM− at vanishing αs,k are a consequence of the specific definitions ηYM
A,k

and ηYM
A,k (k), see in particular (4.80) and (4.81).

suppresses αs,k develops very quickly around k≈kpeak and is then almost constant for the rest
of the flow for k ® kpeak. Following these arguments, we can derive a simple parametrization
for the IR-branch as a function of the RG-scale,

η−(k) = 2− c−k2 , with c− =
2−ηYM

A (αpeak)

k2
peak

, (4.92)

where the mass gap m̄2
gap relates to ηYM

A (αpeak). Note that the quality of these simple fits entails
that the transition from the semi-perturbative regime to the non-perturbative IR regime happens
very rapidly and asymptotic fits in both areas work very well. In summary we arrive at the final
representation of ηYM

A with

ηYM
A,k = η

+(αs,k)θ (αs,k −αs,peak) +η
−(k)θ (αs,peak −αs,k) . (4.93)

Inserting (4.93) on the right hand side of (4.89) gives us a closed equation for ηA,k in (4.85).
Its integration also provides us with the QCD mass gap.

The same analysis as for ηA can be applied to the ghost anomalous dimension ηc of dynamical
QCD, leading to a similar representation with the only difference that ηc,k=0 = 0. It turns out
that an even simpler global linear fit gives quantitatively reliable results for matter correlations,

ηc,k(αs,k) =
αs,k

α
ηYM

c,k (α) , (4.94)

where αs,k = αc̄Ac,k, see Fig. 4.3. This modification is used in the equation for the ghost-gluon
vertex. Note that this overestimates ghost-gluon correlations in the deep infrared, but there the
glue-sector has decoupled from the matter sector. Hence this is of no relevance for the physics
of chiral symmetry breaking discussed in the present work.

We are now in a position to finally determine the momentum dependent ghost and gluon
propagators at vanishing cutoff scale in dynamical QCD. Again, we could use the α, m̄gap
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representation for extracting the full dressing function ZA,k(p) on the basis of the results. To
that end, the momentum-dependent flows as functions of α, m̄gap are required,

η̃YM
A,k (p) = −

∂t Z
YM
A,k (p)

ZYM
A,k (p)

, ∂t∆Γ
(2)
A,k (p) , (4.95)

where ∆Γ (2)A,k (p) stands for the momentum-dependent flow of the vacuum polarization. The
first term in (4.95) again is well approximated in terms of a low order polynomial in αs. This is
expected because is relates directly to the standard anomalous dimension of the gluon. In the
right plot of Fig. 4.3 it is shown for momentum p = k as a function of αs,k. The definition of
η̃YM

A,k (p) implies that only the first term in (4.78) contributes here. Thus, for vanishing k (4.80)
holds and hence limk→0 η̃

YM
A,k (k) = 0 as observed in the right plot of Fig. 4.3.

An already very good estimate for the dressing function is

ZA,k=0(p)' ZA,k=p(p) = ZA,k=p , (4.96)

as the flow of the propagators decay rapidly for momenta larger than the cutoff scale, p ¦ k.
Moreover, the momentum derivative of the dressing is only large in the UV-IR transition regime.
In Fig. 4.4, the inverse dressing 1/ZA,0(p) and its approximation 1/ZA,p are shown. Clearly,
there are only minor deviations in the UV-IR transition regime. The same argument holds true
to an even better degree for the quark contribution, and we have checked the smoothness of
the flow ∆ΓA,k(p). This leads to a very simple, but quantitative estimate for the full dressing
function with

Zglue
A/c,k=0(p)'

ZYM
A/c,k=0(kα)

ZYM
A/c,kα

Zglue
A/c,k=p , (4.97)

with

Zglue
A/c,k = exp

�
−
∫ p

Λ

dk
k
η

glue
A/c,k

�
, (4.98)

where ZA/c,Λ = 1, and kα = k(αs,k) is the YM-cutoff value that belongs to a given coupling αs.
In summary we conclude that, based on Fig. 4.4, an already quantitative approximation to

the fully unquenched propagator is achieved if putting the ratio in (4.97) to unity. This leads to

ZA/c(p)' exp

�
−
∫ p

Λ

dk
k
ηA/c,k

�
, (4.99)

with ηA/c,k defined in (4.85) and (4.94). In the non-perturbative regime, diagrams involving an
internal gluon are suppressed with the generated gluon mass. Hence, albeit the approximation
by itself may get less quantitative in the infrared, the error propagation in the computation is
small.

In summary this leaves us with relatively simple analytic flow equations for the fully back-
coupled unquenching effects of glue and ghost propagators. A full error analysis of the analytic
approximations here is advisable and should be done in the future, since it is very important
for the reliable application of the present procedure to finite temperature and density.

In the following, we will outline the definition and derivation of the gluonic vertices we use.
First of all, we only take into account the classical tensor structure of the vertices. Moreover,
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Figure 4.4.: Comparison of the momentum dependent gluon dressing function ZA,0(p) and ZA,k=p.

throughout this work, we define the running coupling at vanishing external momentum. To-
gether with our choice for the regulators, this has the advantage that the flow equations are
analytical equations. In particular, loop-momentum integrations can be performed analytically.
This approximation is semi-qunatitative as long as the dressing of the classical tensor struc-
tures do not show a significant momentum dependence, and the other tensor structures are
suppressed.

This approximation is motivated by results on purely gluonic vertices, see Refs. [148,158,
174–180], which show non-trivial momentum-dependencies only in momentum regions where
the gluon sector already starts to decouple from the system. In turn, the tensor structures
and momentum dependences of the quark-gluon vertex are important, see the DSE studies
[181–183] and the fully quantitative FRG study [156] in the quenched limit. To take this
effectively into account, we introduce an infrared-strength function for the strong couplings,
which is discussed below and in App. D.

To extract the flow of the quark-gluon coupling gq̄Aq, we use the following projection proce-
dure,

∂t gq̄Aq =
1

8N f (N2
c − 1)

lim
p→0

Tr

�
γµ ta ∂tΓk

δqδAa
µδq̄

������
Φ=Φ0

, (4.100)

which leads to the equation

∂t gq̄Aq,k =
1
2

�
ηA,k + 2ηq,k

�− v(d) gq̄Aq,k h̄2
k

¦
N (m)

2,1 (m̄
2
q,k, m̄2

σ,k;ηq,k,ηφ,k)

+ (N2
f − 1)N (m)

2,1 (m̄
2
q,k, m̄2

π,k;ηq,k,ηφ,k)
©

+ g3
q̄Aq,k

12v(d)
Nc

N (g)
2,1 (m̄

2
q,k;ηq,k,ηA,k)

+ g2
q̄Aq,k gA3,k 3v(d)NcN (g)

1,2 (m̄
2
q,k;ηq,k,ηA,k) .

(4.101)

The threshold functions appearing on the right-hand side can be found in App. C.1. For the
quark-gluon vertex, no ghost diagrams are present. Furthermore, the mesonic contributions
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dominate in the infrared. These contributions have the same sign as the gluonic ones and
therefore lead to an effective infrared enhancement of the quark-gluon vertex.

The three-gluon vertex gA3,k is defined via

∂t gA3,k =
i

12Nc(N2
c − 1)

lim
p→0

∂ 2

∂ p2
Tr

�
δµνpσ f abc ∂tΓk

δA(p)aµδA(−p)bνδAc
σ(0)

������
Φ=Φ0

. (4.102)

Note that in the limit of vanishing external momentum the flow is independent of the kinematic
configuration in the projection procedure. Thus, we find for the flow equation for Nc=3 and
N f =2:

∂t gA3,k =
3
2
ηA,k gA3,k −

1
6π2

g3
q̄Aq,k

�
1− ηq,k

4

� (1+ 2m̄2
q,k)

(1+ 2m̄2
q,k)

4

+
3

64π2
g3

A3,k (11− 2ηA) +
1

64π2
g3

c̄Ac,k

�
1− ηC ,k

8

�
,

(4.103)

The second term in the first line of (4.103) corresponds to the quark-triangle diagram and the
two terms in the second line are the gluon- and ghost-triangle diagrams, respectively. Note
that the g3

A3,k-term also includes the contribution from the diagram containing the four-gluon
vertex, which we approximate as explained below.

Within our approximation, the ghost-gluon vertex g c̄Ac,k has only canonical running since
the diagrams that contribute to the flow of g c̄Ac,k are proportional to the external momentum.
Thus, at vanishing external momentum they vanish and we are left with:

∂t g c̄Ac,k =
�

1
2
ηA,k +ηC ,k

�
g c̄Ac,k. (4.104)

Lastly, we comment on our approximation for the four-gluon vertex gA4,k. For the sake of
simplicity, we restrict here to a semi-perturbative ansatz for this vertex, which ensures that
gA4,k has the correct perturbative running. To this end, we set

g2
A4,k = g2

A3,k . (4.105)

This approximation is valid for k ¦ 1.5 GeV. For smaller scales, non-perturbative effects
potentially lead to a different running.

As discussed above, in the present study we focus on the RG flows of the most relevant
couplings from a phenomenological point of view. In particular, we concentrate on the effects
of fluctuations on the relevant and marginal parameters of the classical gauge action in (5.3).
Consequently, non-classical interactions which are potentially relevant are not taken into
account here. Furthermore, we only consider vertices at vanishing external momenta, although
momentum dependencies may play an important quantitative role. As an example, this becomes
apparent in the flow of the ghost-gluon vertex (4.104): while the diagrams driving the flow
of g c̄Ac,k vanish within our approximation, they give finite contributions at non-vanishing
momenta. This was studied in more detail in the case of quenched QCD [156]. Indeed, it
turned out that both, momentum dependencies and the inclusion of non-classical vertices,
lead to large quantitative effects. It was shown there that within an extended truncation the
approach put forward in the present work leads to excellent quantitative agreement with lattice
QCD studies.
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Figure 4.5.: Yukawa coupling as a function of the RG scale for various initial scalesΛ and initial conditions
hΛ. Due to the presence of a partial IR-attractive fixed point in the regime of small gauge
coupling, the different trajectories in the UV regime are attracted to a unique solution.

We take the findings in [156] as a guideline for a phenomenological modification of the
gauge couplings. Effectively, this provides additional infrared strength to the gauge couplings
in the non-perturbative regime with k ® 2 GeV. This additional strength is adjusted with the
current quark mass at vanishing momentum. This is reminiscent to similar procedures within
Dyson-Schwinger studies, see e.g. [102,122], the details are given in App. D. Here, we choose
a=0.29 for the IR-strength parameter. This implies that we enhance the strength of the gauge
couplings by about 29% in the non-perturbative regime.

4.4. Numerical Results

4.4.1. Initial Conditions and Fixed Point Behavior

The starting point of the present analysis is the microscopic action of QCD. We therefore initiate
the RG flow at large scales, deep in the perturbative regime. The initial values for the strong
couplings are fixed by the value of αs obtained from 1-loop perturbation theory. Since the
different strong couplings we use here (see Eq. (4.82)) need to be identical in the perturbative
regime, they consequently have the same initial value αs. It is shown in Fig. 4.6 that indeed the
different strong couplings agree to a high degree of accuracy with the 1-loop running of the
strong coupling for scales k > 3GeV. This is a very important benchmark for the consistency
of the approximations we use. Note that the value of αs implicitly determines the absolute
physical scale. Here we choose αs,Λ = 0.163, which relates to Λ ≈ 20GeV. A quantitative
determination requires the determination of the RG-condition in relation to standard ones such
as the MS-scheme as well as the extraction of αs,k=0(p = Λ), using Λ as the renormalization
point. This goes beyond the scope of the present work and we shall restrict ourselves to
observables that are ratios of scales, our absolute scales are determined in terms of Λ = 20 GeV.
The other microscopic parameter of QCD, the current quark mass, is in our case fixed by fixing
the symmetry breaking parameter c. We choose c̄Λ = 3.6GeV3 which yields a infrared pion
mass of Mπ,0 = 137MeV.
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Figure 4.6.: The running of the different strong couplings in comparison to the 1-loop running.

The initial conditions of the mesonic parameters can be chosen arbitrarily. In the regime of
weak gauge coupling, the flows of these couplings are governed by an infrared-attractive fixed
point [70]. This fixed point is exactly the IR-attractive fixed point discussed in Sec. 2.4. Thus,
as long as the initial scale is large enough, we find unique solutions for the meson parameters
at low energies. This is demonstrated for the Yukawa coupling in Fig. 4.5, where we see that,
with initial values that differ by many orders of magnitude, we always get the same solution in
the IR. Loosely speaking, the memory of the initial conditions is lost in the RG flow towards
the IR regime due to the presence to a pseudo fixed-point on intermediate scales. This is given
as long as the initial meson masses are chosen larger than the UV-cutoff scale, Mφ,Λ ¦ Λ. That
way, the mesons do not contribute to the dynamics of the system at high energies. We therefore
choose M2

π,Λ = M2
σ,Λ = 104Λ2, but we confirmed that our results do not depend on this choice

as long as the initial meson masses are larger than the UV-cutoff. Furthermore, to ensure that
our initial conditions correspond to QCD, the ratio h2

S,Λ/(2m2
π,Λ) has to be much smaller than

Λ−2α2
s . It corresponds to the four-quark coupling λS,Λ at the initial scale. A large initial value

of the four-quark coupling would describe a gauged Nambu–Jona-Lasinio model with strong
coupling, rather than QCD.

4.4.2. Gauge Couplings

The results for the different running gauge couplings αq̄Aq, αc̄Ac and αA3 discussed in Sec. 4.3
are shown in Fig. 4.6. While they all agree with each other and follow the perturbative running
at scales k ¦ 3 GeV, non-perturbative effects induce different runnings at lower scales. The
former statement is a highly non-trivial consistency check of the approximation we make here.

The different strength of the gauge couplings in the non-perturbative regime is a direct
consequence of the mass gap that develops in the gluon dressing function ZA,k. Owing to
our construction for the vertices and the gluon propagator, (4.71) and (4.74), all non-trivial
informations about the gauge sector are encoded in the gauge couplings. In particular, they are
dressed with with powers of Z1/2

A,k that correspond the number of external gluon legs attached
to them. Hence, the more external gluonic legs the coupling has, the more its strength is
suppressed by the emerging gluon mass gap. This explains why the three-gluon vertex αA3 is
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Figure 4.7.: Comparison between the quenched and the unquenched running gluon propagators
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where the gluon propagator is a direct sum of Yang-Mills propagator and vacuum polariza-
tion, see Eq. (4.86).

much weaker in the non-perturbative regime than αq̄Aq and αc̄Ac: it is suppressed by Z3/2
A,k , while

the quark-gluon and ghost gluon couplings are only suppressed by Z1/2
A,k . The gluon dressing

function as we defined it here diverges for k→0 and thus, all gauge couplings become zero in
this limit.

Note that the fact that αc̄Ac is weaker than αq̄Aq can be attributed to the neglected momentum
dependencies in this sector. Since all diagrams that drive the flow of the ghost-gluon vertex
are proportional to the external momentum, they vanish for our approximation and αc̄Ac only
runs canonically, see (4.104). If these momentum-dependencies were taken into account,
the ghost-gluon vertex would even be stronger than the quark-gluon vertex, at least in the
quenched case [156].

4.4.3. Unquenched Propagators

Following the discussions above, we are in the position to study the unquenching effects due to
the full back-coupling of the matter dynamics to the glue sector. In an earlier work, [140,155],
ηglue,k = ηYM

A,k was directly identified at the same cutoff scale k, see Eq. (4.86). This means
that the vacuum polarization is simply added to the Yang-Mills propagator without feedback.
We will refer to this as partial unquenching in the following. It is well-adapted for taking into
account even relatively large matter contributions to the gluonic flow qualitatively: the main
effect of the matter back-coupling is the modification of scales, most importantly ΛQCD, which
is already captured well in (one-loop) perturbation theory, if the initial scale is not chosen too
large. This approximation has also been subsequently used in related Dyson-Schwinger works,
see e.g. [45,171–173], extending the analysis also to finite density. Here, we improve these
approximations by taking the back-reaction of matter fluctuations on the pure gauge sector
into account. Furthermore, the gluon vacuum polarization was based on a one-loop improved
approximation in previous FRG studies. Here, we compute the full vacuum polarization
self-consistently.
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In Fig. 4.7 we show the quenched and unquenched gluon propagators. The quenched gluon
propagator (dotted red line), which is a FRG input from [159,168], is compared to the fully
unquenched propagator (solid blue line). We clearly see that the screening effects of dynamical
quarks decrease the strength of the gluon propagator. We also explicitly checked that the
smaller the quark mass, the weaker the gluon propagator. Furthermore, the peak position of
the unquenched propagator is smaller than that of the YM propagator. This indicates a smaller
gluon mass gap in the presence of dynamical quarks. Note that this observation provides
further evidence for a deep connection between confinement and chiral symmetry breaking:
The magnitude of screening of color charge from quark-antiquark pairs is determined by the
quark mass, which is generated by chiral symmetry breaking. This has direct influence to the
gluon mass gap which in turn signals confinement. The strength of chiral symmetry breaking
therefore directly influences the confinement transition. In a preliminary qualitative study, we
have checked that no chiral symmetry breaking, i.e. (almost) massless quarks, implies no gluon
mass gap and therefore no confinement. A thorough analysis of these findings are postponed
to future work.

Fig. 4.7 also shows the partially unquenched propagator (4.86) (thin black line, denoted
by "QCD (reduced)"). The results show considerable deviations from the fully unquenched
computation. Most strikingly, the peak position of the partially unquenched result is almost
identical (if not larger) that that of the YM result. This counterintuitive finding emphasizes the
importance of the back-reaction of matter fluctuations for a physically sensible description of
the gluon propagator. This is seemingly surprising as it is well-tested that partial unquenching
works well even at finite temperature, see e.g. [45, 140, 155, 171–173]. However, we first
notice that the importance of quark fluctuations is decreased at finite temperature due to
the Matsubara gapping of the quarks relative to the gluons. This improves the reliability of
the partial unquenching results at finite temperature. Moreover, in these works the infrared
strength is phenomenologically adjusted with the constituent quark mass in the vacuum. This
effectively accounts for the difference between unquenching and partial unquenching.

On the other hand, this also entails that the full unquenching potentially is relevant in
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situations where the vacuum balance between pure glue fluctuations and quark fluctuations is
changed due to an enhancement of the quark fluctuations. Prominent cases are QCD with a
large number of flavors, and in particular QCD at finite density.

We also compare the quenched and unquenched quark propagators in see Fig. 4.8. We took
the parameters of [156] to compute the quenched case in the present work. As for the gluon
propagator, Fig. 4.7, we see large unquenching effects. The dashed lines show the quenched
results and the solid lines the unquenched. Unquenching results in smaller quark masses
(blue lines) and larger wave function renormalizations Zq,k, and therefore enhanced quark
fluctuations, as expected. Furthermore, we see that the generation of constituent quark masses
takes place at smaller scales in the unquenched case. This can again be traced back to screening
effects: The effects of gauge fluctuations are suppressed in the presence of dynamical quark
which results in weaker gauge couplings. Since the strength of the gauge couplings triggers
chiral symmetry breaking according to our discussion in Sec. 2.4, criticality of the four-quark
interactions is reached later in the flow for weaker gauge couplings. Hence, chiral symmetry
breaking takes place at smaller scales in the presence of dynamical quarks.

4.4.4. Masses and Meson Decoupling

The present approach allows an easy access to the relative importance of quantum fluctuations
of the respective fields: we find that for the renormalized, dimensionless mass being larger
than one,

m̄2
Φ ≥ 1 , (4.106)

all threshold functions that depend on the propagator of the respective field mode are suppressed
with powers of 1/m̄2

Φ. This entails that the dynamics of the system is not sensitive to fluctuations
of this field. In turn, for m̄2

Φ ≤ 1 the field mode is dynamical. Note that, of course, m̄2
Φ = 1 is

not a strict boundary for the relevance of the dynamics.
In Fig. 4.9 we show the physical (remormalized) masses MΦ for the matter fields as defined in

(4.34). In the shaded area the condition (4.106) applies, and the respective matter fields do not
contribute to the dynamics. This already leads to the important observation that the resonant
mesonic fluctuations are only important for the dynamics in a small momentum regime with
momenta p2 ® 800 MeV, see also Fig. 4.10. While the σ- and quark-modes decouple rather
quickly at about 300 - 400 MeV, the ~π as a pseudo-Goldstone mode decouples at its mass scale
of about 140 MeV.

In turn, in the ultraviolet regime, the mesonic modes decouple very rapidly, see Fig. 4.10 for
the size of the effective propagator (C.28) measured in units of the cutoff. They directly measure
the relevance of the fluctuations of the corresponding fields for the flow equations. At about
800 MeV this ratio is already 0.1 and above this scale the mesonic modes are not important,
and QCD quickly is well-described by quark-gluon dynamics without resonant interactions.
This observation is complementary to the fact that the initial condition of the Yukawa coupling
does not play a role for the physics at vanishing coupling, see Fig. 4.5. For all initial cutoff
scales Λ¦ 5 GeV, its initial value is washed out rapidly, leading to a universal infrared regime
with the prediction of h̄ at k = 0.

The overall magnitude of π and σ masses is fixed by spontaneous chiral symmetry breaking.
Since the pions are the (pseudo) Goldstone bosons of two-flavor QCD, chiral symmetry breaking
is characterized by (small) vanishing Mπ,k for k ® kχ , or equivalently by the resonance in the
(S−P)-channel four-quark interaction λS,k. Thus, the small finite pion mass is an immediate
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Figure 4.9.: The renormalized quark, pion and sigma masses as a function of the RG scale. The inset
figure shows the masses for a larger range of scales. The shaded gray area indicates which
fields contribute dynamically: masses within the gray area exceed the cutoff scale and the
corresponding fields are therefore decoupled from the dynamics. On the other hand, fields
with masses within the white area are dynamical.

result of chiral symmetry breaking together with small finite current quark masses. Since the σ
is the chiral partner of the π, their masses can only lose their degeneracy at k≈kχ . Mσ,k is
therefore small at k≈kχ and achieves is finite value from the meson VEV via the splitting-term
2ρ̄0,k V̄ ′′k (ρ̄0,k), see (4.34). Note that this only applies to the (S−P)-channel, as it contains the
Goldstones. For other mesons, the magnitude of the masses is fixed from the running of the
corresponding four-quark interaction. We will come back to this point when we consider vector
mesons in the next chapter.

We add that the Yukawa coupling relates to the ratio between constituent quark mass and
the vacuum expectation value of the field σ̄,

h̄=
Mq

σ̄0
. (4.107)

Note that it cannot be tuned and is a prediction of the theory. On the other hand, in low-energy
model studies, the (renormalized) quantities Mq and σ̄0 corresponding to physical observables
are related to model parameters, and have to be tuned such that Mq and σ̄0 assume their
physical values.

Mesons are not present in the quark-gluon plasma. In a formulation of the dynamics of
QCD on a very wide range of scales in terms of one scale dependent effective action, as in
the present case, however, hadronic parameters are necessarily a part of the action also at
very large scales. As we have demonstrated here, the meson masses are much larger than the
cutoff scale in the quark-gluon regime and therefore they are completely decoupled in this
phase. We want to emphasize that this physically desirable picture is achieved with dynamical
hadronization. The decoupling of the mesons is triggered by a rapid fall-off of the meson wave
function renormalization Zφ,k at the pseudocritical scale. Its running is shown in the left plot of
Fig. 4.11. While Zφ,k stays almost constant in the hadronic regime, it rapidly falls-off at about
400 MeV and drops more than seven orders of magnitude towards the UV. The fastest drop-off
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Figure 4.10.: Dimensionless RG-invariant propagators ("effective propagators") as functions of the RG
scale. They are a measure for the effective strength of the fluctuations of the fields, see
(C.28).

is in the vicinity of the pseudocritical scale kχ ≈ 400 MeV. The reason is that quark fluctuations
decrease the meson wave function renormalization in the quark-gluon regime. Its flow (4.52)
is proportional to the squared Yukawa coupling, ∂t Zφ,k∝−h̄2

k Zφ,k, at scales k ¦ kχ , resulting
in large negative beta functions, see Fig. 4.5. Since the wave function renormalizations are the
coefficients of the kinetic terms in the effective action, their vanishing implies that the mesons
become auxiliary fields and are therefore not part of the physical spectrum at large energy
scales.

This is reflected in the behavior of the bare masses, i.e. the masses without rescaling with
the wave function renormalizations, m2

φ
= Zφ,k M2

φ,k, shown in the right plot of Fig. 4.11. The
bare masses would not decouple in the quark-gluon regime: while they do not differ from
the renormalized masses in the hadronic regime where the wave function renormalizations
are almost constant and of order one, they are constant in the quark-gluon regime. Thus,
at large scales the bare meson masses are always much smaller than the the cutoff scale.
Without the rapid fall-off of the meson wave function renormalizations, the mesons show
no decoupling, resulting in an unphysical high-energy phase. Note that the constant bare
masses imply in particular that the running of the physical masses is exclusively driven by the
anomalous dimensions of the corresponding mesons at large energy scales. This has important
consequences also for low energy models in the local potential approximation, since for scales
larger than about 800MeV, the effect of running wave-function renormalizations can not be
neglected.

Since the wave function renormalizations only enter the set of flow equations through the
corresponding anomalous dimensions, the flow equations for the wave function renormaliza-
tions do not need to be integrated for the solution of the system and all results are independent
of the initial values ZΛ. For illustration purposes, we have chosen the initial conditions such
that ZS/V,0 = 1.

Finally, we discuss further consequences of our findings for low energy effective models. To
that end we note that the gluon modes decouple at momenta below 500−700 MeV. This is seen
from the plot of the gluon dressing functions, Fig. 4.7, as well as that of the gluonic couplings
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Figure 4.11.: The left figure shows the wave-function renormalization of the mesons. The bare masses

of the mesons, mπ/σ,k =
r
Γ
(2)
σ/π
(0) = Z1/2

φ,k m̄π/σ,k, are shown on the right.

in Fig. 4.6. This overlaps with the scale regime where the mesonic degrees of freedom start to
dominate the dynamics.

Consequently, low energy effective models aiming at quantitative precision that do not take
into account any glue fluctuations should be initiated at a UV-scale of about 500 MeV. In this
regime, however, the quark-meson sector of QCD carries already some fluctuation information
in non-trivial mesonic and quark-meson couplings. In other words, the standard initial effective
Lagrangian of these models has to be amended by additional couplings. These couplings,
however, can be computed from QCD flows. We will come back to this discussion in Chap. 6.

It has been shown in [166] that in these low energy effective models thermal fluctuations
affect the physics at surprisingly large scales, for thermodynamical consequences, see Ref. [184].
This is even more so for density fluctuations that lack the exponential suppression present for
thermal fluctuations. Thus, we conclude that the low UV cutoff scale for quantitatively reliable
low energy effective models enforces the computation of temperature- and density-dependent
initial conditions. Indeed the same argument holds true for other external parameters such as
the magnetic field.

4.5. Conclusions

In this chapter, we have set up a non-perturbative FRG approach to QCD, concentrating on the
effects of a full unquenching of the glue sector. We provided a detailed study of the fluctuation
physics in the transition regime from the quark-gluon phase to the hadronic phase. This includes
a discussion of the relative importance of the fluctuations of quark, meson and glue fluctuations.
A detailed discussion is found in the previous section. Here we simply summarize the main
results.

Firstly, we have shown that the full back-coupling of the matter fluctuations in the glue sector
plays a quantitative role in the vacuum. In the present two-flavor case, it accounts for about
10-15% of fluctuation strength in the strongly correlated regime at about 1 GeV. This hints
strongly at the importance of these effects in particular at finite density, where the importance
of quark fluctuations is further increased and the effect is amplified.

Secondly, the still qualitative nature of the present approximation necessitates the adjustment
of the infrared coupling strength, fixed with the constituent quark mass. However, owing to
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the inclusion of dynamical hadronization which re-enforces the four-fermion running, this
phenomenological tuning is much reduced. In future work we plan to utilize the findings of the
quantitative study [156] in quenched QCD for improving our current approximation towards
quantitative precision, while still keeping its relative simplicity.

Finally, we have also discussed how low energy effective models emerge dynamically within
the present set-up due to the decoupling of the glue sector: the present results and their
extensions can be used to systematically improve the reliability of low energy effective models
by simply computing the effective Lagrangian of these models at their physical UV cutoff scale
of about 500 - 700 MeV. Moreover, the temperature- and density-dependence of the model
parameters at this UV scale can be computed within the present set up.

Future work aims at a fully quantitative unquenched study by also utilizing the results
of [156], as well as studying the dynamics at finite temperature and density.





CHAPTER 5

The Vacuum Structure of Vector Mesons

As we already discussed above, a crucial question concerning the QCD phase diagram is how
to detect the formation of the quark-gluon plasma in heavy-ion collisions at ultrarelativistic
energies. Vector mesons play a very important role in this context because they provide promis-
ing evidence for both deconfinement and chiral symmetry restoration. While the suppression
of heavy quarkonium could be a signature of deconfinement [20], in-medium modifications
of light vector mesons may signal chiral symmetry restoration [186]. The latter manifest
themselves in low-mass dilepton data from heavy-ion collisions [31–33]. Dileptons escape the
fireball essentially without interaction and couple directly to light vector mesons such as the ρ.
Thus, dilepton spectra show prominent vector meson peaks which allow for the investigation
of in-medium modifications of these mesons [93], see Fig. 5.1.

A connection between the modifications of vector mesons and chiral symmetry restoration in
a hot and/or dense medium can be established e.g. by considering the scaling of the ρ mass
with temperature [34–36] or the melting of the ρ resonance [37,38]. This connection is based
on the fact that chiral symmetry restoration implies the degeneration of chiral partners such
as ρ and a1. A thorough understanding of the dynamics of these mesons in QCD is therefore
essential for a complete picture of the QCD phase structure.

Here, we present first results on the properties of the chiral partners ρ and a1 as they emerge
from quark-gluon fluctuations at high energies. To this end, we study dynamical QCD as it was
put forward in the previous chapter. This way, the properties of the hadrons are determined by
the underlying dynamics of microscopic QCD and we can conveniently describe the transition
from quarks and gluons to hadrons non-perturbatively without suffering from a fine-tuning of
model parameters.

Again, we concentrate on two-flavor QCD at vanishing temperature and density in Euclidean
spacetime and develop a scale dependent effective action that captures the relevant dynamics
in both, the quark-gluon phase and the hadron phase, on a qualitative level. Furthermore, we
extend the dynamical hadronization technique to include vector mesons. The present analysis
will serve as an starting point for qualitative and quantitative in-medium studies of vector
mesons. It has been demonstrated in [156] for QCD in the quenched limit, that quantitative
precision is indeed feasible with the FRG approach to QCD.

Even though we work in the vacuum, the RG-scale dependence of parameters such as the
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Figure 4.21: (a) shows the invariant mass spectrum in p+p and min. bias Au+Au
collisions. (b) shows the invariant mass spectra of five centrality classes in Au + Au
collisions. The data are shown with statistical (bars) and systematic (shades) errors
separately. The data are compared to the expected sources from the decays of light
hadron calculated with Exodus and correlated charm decays based on Pythia.

is completely broken, e+e− pairs are generated with a single pT distribution
following the measured spectrum of single electrons from semi-leptonic heavy-
flavor decays [16], but a random azimuthal opening angle. This distribution
is much softer, than the Pythia curve, which would leave room to other
contributions such as thermal radiation via qq annihilation.

If the yield in the IMR is dominated by open charm, it is expected to in-
crease proportional to the number of binary collisions. The yield per number
of binary collision Ncoll in the mass range 1.2 < mee < 2.8 GeV/c2 is shown
as function of Npart in Fig. 4.22. The data show no significant centrality de-
pendence and are consistent with the expected yield calculated with Pythia.
But the apparent scaling with the number of binary collisions may be a co-
incidence of two counteracting effects: (i) the suppression of e+e− pairs from
open charm in the IMR due to modifications of charm which increases with
Npart and (ii) an additional contribution due to thermal radiation from qq an-
nihilation which is expected to increase faster than proportional to Npart. As
discussed in Section 1.3.3, such a coincidence may have been observed at the
SPS [74], where a prompt component has been suggested by NA60 [75].

147
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Figure 5.1.: Dilepton spectra as function of the invariant mass from the Phenix experiment. The lower
line shows the result for lead-lead collisions and the upper line shows the result from
gold-gold collisions. The peaks are associated to the decay of the mesons indicated in the
plot. Since a quark-gluon plasma can only be created in the latter case, the modification of
the spectrum at low masses and in particular the ρ-peak in Au–Au collisions as compared to
p–p collisions indicates strong in-medium modifications of the ρ meson. The plot is taken
from [185].

masses reflects their finite temperature behavior. In particular, there is a critical scale kχ which
separates the phases with broken and restored chiral symmetry. This allows us to study the
behavior of hadronic parameters as they approach the scale of chiral symmetry restoration
and clarify how mesons decouple from the physical spectrum at high energies. The scaling
of the low-energy parameters is uniquely fixed from microscopic QCD. The reason is that the
running of the hadronic parameters is governed by an infrared-attractive fixed point as long as
the gauge coupling is small. This guarantees that the memory of the initial conditions of the
RG flows of these parameters, initiated at large, perturbatively accessible energy scales, is lost
and the hadronic phase is uniquely determined within our truncation.

By exploiting this fact, we can analyze the validity of vector meson dominance (VMD) [187].
The idea of VMD is to promote the SU(2)L×SU(2)R flavor symmetry to a gauge symmetry.
This way, ρ and a1 naturally appear as gauge bosons [188]. The main advantage is that VMD
significantly reduces the number of different interactions involving vector mesons. The obvious
conceptual shortcoming is that chiral symmetry is only a global symmetry in QCD. Furthermore,
even though VMD has lead to accurate predictions in some cases at low energies [189], it gives
e.g. the wrong phenomenology of ρ and a1 mesons [190]. We therefore keep chiral symmetry
global and compare our results to the corresponding VMD predictions.

This chapter is organized as follows: We motivate our ansatz for the quantum effective action
used in this work in Sec. 5.1. In Sec. 5.2 we first introduce the FRG and dynamical hadronization
in the presence of vector mesons and continue with a discussion of the implications of π−a1
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mixing within our approach. Our results are presented in Sec. 5.3. After discussing the initial
conditions of the RG flows of our model, we present our results on the meson and quark masses
with particular emphasis on the scaling of the ρ mass towards the chiral symmetry breaking
scale. Then, we show in more detail how the mesons disappear from the physical spectrum at
large scales. Lastly, we discuss the validity of VMD.

5.1. The Effective Action

The scale dependent effective action we use here is based on the one put forward in Sec. 4.1. In
particular the truncation of the gauge sector is the same. In addition, we aim at describing the
vacuum properties of the chiral partner vector mesons ρ and a1 since they play a prominent
role for the phenomenology of chiral symmetry breaking/restoration.

As we already discussed earlier, the tensor structure of the four-quark interaction channels is
directly related to the quantum numbers of the corresponding mesons that are formed in the
respective scattering channel. Therefore, we need to include at least those interaction channels,
that carry the quantum numbers of the mesons we are interested in. In the present case,
these are the Lorentz–scalar-pseudoscalar iso–scalar-vecor and the Lorentz–vector-axialvector
iso–vector-vector channels λS,k and λV,k. On the mesonic side, these channels correspond to the
σ and the π, and the ρ and the a1 respectively. As before, we construct the action such that it
obeys the global flavor symmetry U(1)V×SU(2)V×SU(2)A. Thus we include the (S−P)-channel
four-quark interaction with coupling λS,k as in (4.5)1. The relevant vector channel that respects
these symmetries is the vector-axialvector (V+A)-channel with the coupling λV,k, and in total
we have for the four-quark interaction part of the action

Γ
(4q)
k =

∫

x

�
λS,k

2

�
(q̄q)2 − (q̄γ5~τq)2

�− λV,k

2

�
(q̄γµ~τq)2 + (q̄γµγ5~τq)2

��
. (5.1)

The scalar-pseudoscalar channel is the dominant channel among all possible quark-antiquark
scattering channels in vacuum. This has been explicitly checked by considering a complete
basis of four-quark interactions [156]. This implies in particular, that the pions and the sigma
mesons dominate the dynamics in the hadronic phase. In this work we demonstrate explicitly
on the example of vector mesons, that there is an emergent scale hierarchy where only the
lightest mesons, i.e. pions and sigma, can contribute to the dynamics of the system at low
energies. Thus, the properties of the heavier meson states in Euclidean space are completely
fixed by quark-gluon dynamics at large energies and pion-sigma dynamics at low energy scales.

To properly take into account the dynamics in the hadronic phase, we model this sector
by an effective meson potential which in principle includes arbitrary orders of mesonic self-
interactions. Furthermore, we consider momentum dependent propagators of the quarks and
mesons, based on a small-momentum expansion, by including scale dependent wave function
renormalizations Zk. To account for non-vanishing current quark masses, a source term −cσ
in the meson sector explicitly breaks chiral symmetry. It is directly related to finite current
quark masses. As a consequence, pions are massive rather than Goldstone bosons and the
chiral transition is a crossover.

To connect the the quark sector with the meson sector, we include scalar channel and vector
channel Yukawa couplings hS,k and hV,k. They are related to the four-quark interactions (5.1)

1Note that we use a slightly different notation here. The only difference is a relative factor of two between the
(S−P) channel here and in the previous chapter.
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via a Hubbard-Stratonovich transformation as long as the meson potential is Gaußian. Thus,
hV,k can be obtained from λV,k analogously to hS,k from λS,k, as discussed in the previous
chapter. To wit,

Γ
(Yukawa)
k =

∫

x

�
hS,k [q̄(γ5~τ~π+ iσ)q] + hV,k

�
q̄(γµ~τ ~ρ

µ + γµγ5~τ ~a
µ
1 )q

�	
. (5.2)

In order to consistently account for the dynamical change of degrees of freedom from the
quark-gluon phase to the hadronic phase, we use dynamical hadronization as it was put forward
in in the previous chapter. We will elaborate on this in the next section. As we will demonstrate
there, it is inevitable to use this formulation here, since the the elimination of the π−a1 mixing
results in manifestly scale dependent a1 fields.

In summary, we use the following scale dependent effective action:

Γk =

∫

x

§
Zq,k q̄

�
iγµDµ

�
q+

1
4

F a
µνF a

µν + c̄a∂µDab
µ cb +

1
2ξ
(∂µAa

µ)
2 +∆Lglue

+
λS,k

2

�
(q̄q)2 − (q̄γ5~τq)2

�− λV,k

2

�
(q̄γµ~τq)2 + (q̄γµγ5~τq)2

�

+ hS,k [q̄(γ5~τ~π+ iσ)q] + hV,k

�
q̄(γµ~τ ~ρ

µ + γµγ5~τ ~a
µ
1 )q

�

+
1
2

ZS,k(∂µφ)
2 +

1
8

ZV,k tr
�
∂µVν − ∂νVµ

�2
+ Uk(φ, Vµ)

ª
,

(5.3)

The first line of (5.3) contains the microscopic gauge fixed action of QCD. As mentioned above,
we introduced a running quark wave function renormalization Zq,k to capture some non-trivial
momentum dependence of the quark propagator. ∆Lglue stands for the fluctuation-induced
part of the full momentum dependence of ghost and gluon propagators as well as non-trivial
ghost-gluon, three-gluon and four-gluon vertex corrections. Since the gauge sector here is
identical to the one considered in the previous chapter, we refer to the discussion there, in
particular Sec. 4.3.

The four-quark interaction channels and the corresponding Yukawa interactions are in the
second and third line of (5.3). The Yukawa sector arises from the bosonization of the quark
sector. With dynamical hadronization as explained in the next section, these interactions
will basically carry the quark self-interactions in the quark-gluon regime (see also (C.36) and
(C.38)). For now, we are primarily interested in the qualitative features of the system and
therefore do not take the general field dependence of the Yukawa couplings into account, as in
the previous chapter, i.e. ∂ΦhS/V,k = 0.

The fourth line of (5.3) contains the meson sector of our truncation. φ are the scalar fields
and Vµ are the vector fields. Uk contains the meson interactions and is discussed in the next
section, see in particular (5.20). With the running wave function renormalizations ZS,k and
ZV,k for the scalar and vector mesons respectively, we capture the major part of the momentum
dependence of the full meson propagators [166]. Furthermore, as we explicitly demonstrate
in Sec. 5.3.3 and also have shown for the scalar mesons in Sec. 4.4.4, the wave function
renormalizations play a crucial role for the decoupling of the mesons at high energies. They
are therefore indispensable for the identification of the physical meson masses. In the next
section, we will elaborate on the meson sector of our truncation.

We note that even though the action contains massive vector bosons, it is not necessary to
use the Stueckelberg formalism to ensure renormalizability [191]. UV regularity is always
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guaranteed for the functional renormalization group, as long as the scale derivative of the
regulator decays fast enough for momenta much larger than the cutoff scale.

5.1.1. Meson Sector

Here, we will construct the meson sector of our truncation. Our construction principle is based
on VMD: we first promote the global flavor symmetry SU(2)L × SU(2)R to a gauge symmetry
in a linear sigma model which contains only scalar mesons [188]. The vector mesons then
naturally arise as the corresponding gauge bosons. We then relax the requirement of local
chiral symmetry and include terms that only respect the global symmetry.

Let us start with a linear sigma model invariant under global SU(2)L×SU(2)R with the scalar
mesons φ = ( ~π,σ)T in the fundamental representation of O(4) as before,

LLSM =
1
2
(∂µφ)

2 + V (φ2) . (5.4)

To proceed, we need to find an appropriate representation of O(4). The Lie-algebra of O(4)
is so(4) with dimension 1

2(n− 1)n = 6, i.e. we need 6 antisymmetric (4×4)-matrices. It is
physically sensible to choose the first three of these generators by conventional isospin rotations
in the π-subspace, i.e. a block of SU(2) in the adjoint representation:

(Ti) jk =

�−iεi jk ~0
~0T 0

�
, (5.5)

with the totally antisymmetric Levi-Civita tensor εi jk. The remaining three generators are those
antisymmetric matrices that mix the π−σ components,

(T5
i ) =

�
03×3 −i~ei
i~e T

i 0

�
, (5.6)

with i, j, k ∈ {1,2,3} and ~e T
i = (δ1i ,δ2i ,δ3i). It can be easily verified that they obey the

following commutation relations:

[Ti , T j] = iεi jkTk ,

[T5
i , T5

j ] = iεi jkTk ,

[Ti , T5
j ] = iεi jkT5

k ,

(5.7)

and their traces are given by

tr Ti T j = 2δi j , tr T5
i T5

j = 2δi j , tr Ti T
5
j = 0 . (5.8)

To clarify the physical meaning of ~T and ~T5, we look at

T+i =
1
2

�
Ti + T5

i

�
,

T−i =
1
2

�
Ti − T5

i

�
.

(5.9)

They form two copies of SU(2) representation since they individually obey the well-known
commutation relations,

[T+i , T+j ] = iεi jkT+k , [T−i , T−j ] = iεi jkT−k , [T+i , T−j ] = 0 , (5.10)
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and hence {~T+, ~T−} form a representation of SU(2)L × SU(2)R. The vector and axialvector
currents ~jµ = (q̄γµ~τq) and ~jµ5 = (q̄γµγ5~τq) of (two-flavor) QCD associated to chiral symmetry
are then constructed from ~T++ ~T−= ~T and ~T+− ~T−= ~T5. We conclude that ~T is associated to
~jµ and ~T5 to ~jµ5. We therefore introduce the vector field Vµ in suggestive notation,

Vµ = ~ρ
µ ~T + ~aµ1 ~T

5 . (5.11)

~ρµ and ~aµ1 are identified with the corresponding physical particles since they carry the correct
quantum numbers. From this definition, it is obvious that Vµ is in the adjoint representation of
O(4).

Under these O(4) transformations the scalar field φ transforms as

ϕ→Uϕ , with U = ei ~α~T+i ~β ~T5
. (5.12)

We now promote this to a gauge transformation, i.e. U =U (x) with ~α= ~α(x) and ~β = ~β(x).
For the Lagrangian LLSM (5.4) to be symmetric under this local transformation, we need
to replace the conventional partial derivative ∂µ in the kinetic terms of (5.4) by a covariant
derivative Dµ that transforms as φ,

Dµφ→U (x)Dµφ . (5.13)

The potential term of (5.4) is obviously invariant under U (x), without any modifications. If
we make the canonical Ansatz

Dµ = ∂µ − i gVµ , (5.14)

with the "chiral gauge coupling" g, the condition (5.13) requires the vector field to transform as

Vµ→U (x)VµU †(x) +
i
g
U (x)∂µU †(x) . (5.15)

As for any gauge theory, we can add a field-strength term to the action. The gauge invariant
linear sigma model (gLSM) then reads:

LgLSM =
1
2
(Dµφ)

2 + V (φ2) +
1
8

tr VµνVµν , (5.16)

with the field strength

Vµν =
i
g
[Dµ, Dν] = ∂µVν − ∂νVµ − i g[Vµ, Vν] . (5.17)

Note that since the gauge symmetry is non-Abelian, the field strength term also contains three-
and four–vector-meson self-interactions.

We proceed by decomposing (5.16) to identify the individual contributions. The kinetic term
yields:

1
2
(Dµφ)

2 =
1
2
(∂µφ)

2 − i g∂µφ · Vµφ −
g2

2
(Vµφ) · (Vµφ) , (5.18)

i.e. in addition the the standard kinetic term of the scalar mesons, we get an explicitly
momentum dependent scalar-scalar-vector interaction and a two-scalar–two-vector interaction.
The field strength terms yields

1
8

tr VµνVµν =
1
8

tr
�
∂µVν − ∂νVµ

�2 − i g
2

tr∂µVν [Vµ, Vν]−
g2

8
tr [Vµ, Vν]

2 . (5.19)
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Thus, we get a kinetic term of the vector mesons and three- and four-vector interactions from
the field strength.

We now relax the requirement of local chiral symmetry. To this end, we introduce additional
terms that explicitly break symmetry and assume different scalar-vector and vector-vector
couplings instead of one gauge coupling g. A mass term for the vector mesons, m2

V tr VµVµ/4,
explicitly breaks gauge invariance but is certainly physically very relevant and will therefore
be included. We introduce another marginal term that explicitly breaks gauge symmetry,
g3,kφ

2tr VµVµ/4.

For the final meson part of the scale dependent effective action Γk, we promote all the
couplings to be RG-scale dependent. Furthermore, we introduce running scalar and vector
meson anomalous dimension ZS,k and ZV,k to the respective kinetic terms in order to capture
the major part of the momentum dependence of the full meson propagators as in the previous
chapter. These terms are explicitly shown in (5.3). As usual, the effective action contains all
terms that respect the symmetries of the system. As a first step and for the sake of simplicity, we
restrict ourselves to relevant and marginal operators. This is sufficient to capture the qualitative
features of the system. Hence, we will only keep the vector-vector and scalar-vector meson
interactions introduced above and expand the scalar meson effective potential V (φ2) in (5.16)
only up to order φ4.

In summary, the final meson interactions that are stored in Uk(ϕ, Vµ) in (5.3) are

Uk(φ, Vµ) =
1
2

m2
S,k

�
φ2 −φ2

0

�
+

1
8
νk

�
φ2 −φ2

0

�2 − cσ

− i g1,kVµφ ·∂µφ −
1
2

g2,k

�
Vµφ

�2
+

1
4

g3,kφ
2tr VµVµ

+
1
4

m2
V,ktr VµVµ −

i
2

g4,k tr∂µVν[Vµ, Vν]−
1
4

g5,k tr VµVν[Vµ, Vν] .

(5.20)

Irrelevant operators are potentially non-negligible if one is interested in quantitative precision,
see in particular Chap. 7. We postpone such a study to future work. Note that Uk is not an
effective potential, since it also contains the terms g1,k and g4,k with explicit derivatives of the
meson fields. Note that we did not choose the fixed background expansion here, but resorted
to the comoving expansion about the running minimum of the effective potential φ0,k. We are
using this method since the expansion in terms of n-point functions here is nor as systematic
as the one in the previous case. Our construction principle here is rather phenomenologically
motivated. For a more systematic expansion, one should formulate the meson sector in terms
of a single chiral invariant instead of relying on an invariant construction in terms of fields in
different representation of O(4). This is of course possible without any restrictions, but beyond
the scope of the present study.

With the explicit definitions of the scalar and vector mesons, the scalar-vector interactions in
(5.20) can be rewritten in terms of the physical fields as

−i g1,kVµφ · ∂µφ = g1,k

�
( ~ρµ× ~π) · ∂µ ~π−σ~aµ1 · ∂µ ~π+ ~aµ1 · ~π∂µσ

�
,

− g2,k

2

�
Vµφ

�2
=

g2,k

2

�
( ~ρµ× ~π−σ~aµ1 )2 + (~aµ1 · ~π)2

�
, (5.21)

g3,k

4
φ2tr VµVµ =

g3,k

2

�
~π2 +σ2

� �
( ~ρµ)2 + (~aµ1 )

2
�

,
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and the vector-vector meson interactions in (5.20) as

− i
2

g4,k tr∂µVν[Vµ, Vν] = g4,k

�
∂µ ~ρ

ν ·� ~ρµ× ~ρν + ~aµ1 ×~aν1
�
+ ∂µ~a

ν
1 ·
�
~ρµ×~aν1 − ~aµ1 × ~ρν

��
,

−1
4

g5,k tr VµVν[Vµ, Vν] =
g5,k

4

��
~ρµ× ~ρν + ~aµ1 ×~aν1

�2
+
�
~ρµ×~aν1 − ~aµ1 × ~ρν

�2�
. (5.22)

Following our discussion above and as it is now evident from (5.20), we do not assume VMD
and hence have a priori different scalar-vector and vector vector meson couplings instead of a
unique gauge coupling. The gauge principle would lead to to the following relations between
the different couplings of our truncation:

g2
1,k = g2,k = g2

4,k = g5,k and g3,k = 0. (5.23)

By inspection of the renormalization group flow of these couplings, we will show that VMD
would lead to an oversimplification of the dynamics of the system. Nonetheless, VMD turns out
to be a good approximation at low energies, see Sec 5.3.4.

We emphasize that the advantage of VMD is obvious for effective model studies: VMD
restricts the vector meson interactions to be described by a single coupling. This tremendously
simplifies the necessary fine tuning of model parameters in these approaches. Owing to the
fixed point behavior of the RG-flows with dynamical hadronization, we can easily include many
different interactions in the meson sector. Their physical values are uniquely fixed by the QCD
dynamics and hence, no fine-tuning of parameters, no matter how large the parameter space is,
is required.

In the present setup, the masses of the quarks and the mesons are given by

m2
q,k = h2

s,kσ
2
0,k ,

m2
π,k = m2

S,k ,

m2
σ,k = m2

S,k +λ4,kσ
2
0,k ,

m2
ρ,k = m2

V,k + g3,kσ
2
0,k ,

m2
a1,k = m2

V,k + (g2,k + g3,k)σ
2
0,k .

(5.24)

We see that the π and the σ meson as well as the ρ and a1 meson have degenerate masses
in the chirally symmetric phase which is characterized by σ0,k = 0. When chiral symmetry is
broken, this degeneracy is lifted. The mass-splitting of the scalar mesons is then determined by
the quartic scalar meson coupling λ4,k. The mass-splitting of the vector mesons is determined
by the strength of the interaction g2,k. Note that, owing to the symmetry breaking source c > 0,
we are not in the chiral limit. Thus, the chiral order parameter σ0,k is always nonzero.

Even though the masses we extract here are the curvature masses, it was shown in [166]
on the example of the pion mass in a quark meson model, that the curvature mass of the
mesons is almost identical to the pole mass for truncations that include running wave function
renormalizations. Thus, as mentioned above, we capture the major part of the momentum
dependence of the full meson propagators by including ZS,k and ZV,k and the masses are very
close to the physical masses.

5.2. Fluctuations and the Transition from Quarks to Mesons

We are interested in the dynamical transition from UV to IR degrees of freedom. To achieve
this, we include quantum fluctuations by means of the functional renormalization group.
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Furthermore, in order to consistently describe the dynamical change of degrees of freedom,
we use dynamical hadronization as it was put forward in Sec. 4.2. This allows for a unified
description of the interplay between different degrees of freedom at different scales in terms of
a single effective action.

5.2.1. Dynamical Hadronization for Vector Mesons

Here, we will generalize the dynamical hadronizetion technique to the case of vector mesons.
Again, the starting point is the modified flow equation (3.21) with RG-scale dependent meson
fields. It reads with Φ= (A, q, q̄, c, c̄,π,σ,ρ, a1) in a shorthand notation:

∂t

��
ϕ
Γk[Φ] =

1
2

Tr
h�
Γ
(2)
k [Φ] + RΦk

�−1 · ∂tR
Φ
k

i
− δΓk
δϕi
· ∂tϕi , (5.25)

where ϕ = (π,σ,ρ, a1) summarizes the meson fields. Γ (2)k [Φ] denotes the second functional
derivative of the effective action with respect to all combinations of the fields. RΦk is the regulator
function for the field Φ. It is diagonal in field space. Note that in order not to break chiral
symmetry explicitly by our regularization scheme, we introduced the same regulators for the
scalar mesons and the vector mesons respectively. For details we refer to App. C.3. By inserting
the truncation (5.3) into the flow equation (5.25), one gets a closed set of fully coupled RG-flow
equations for the scale-dependent parameters of the truncation.
δΓk
δϕi
· ∂tϕi stands for the modifications of the flow equation due to dynamical hadronization.

In addition to the scalar mesons π and σ, we also apply dynamical hadronization to the vector
mesons ρ and a1 here. Hence, all mesons fields are scale dependent here. The gauge sector as
well as the quarks are not affected by the hadronization. The scale dependence of the mesons
is given by their flow ∂tϕi , which reads for the individual mesons

∂t ~π= Ȧkq̄γ5~τq ,

∂tσ = Ȧkq̄iq ,

∂t ~ρ
µ = Ḃkq̄γµ~τq ,

∂t ~a
µ
1 = Ḃkq̄γµγ5~τq− Ċk∂µ ~π .

(5.26)

Note that the structure of the mesons as quark-antiquark bilinears becomes apparent in this
formulation. Ȧk and Ḃk are the hadronization functions. Their precise form is determined
by our hadronization procedure. In analogy to the discussion in Sec. 4.2, we fix them such
that the fermionic self-interactions that drive chiral symmetry breaking and reflect the meson
content of our theory are stored in the meson sector at every scale k. Thus, the the four-quark
interactions are completely absorbed into the meson sector, enforcing

∂t

��
ϕ
λS,k = 0 and ∂t

��
ϕ
λV,k = 0 . (5.27)

Note that this formulation eliminates all double- and/or mis-counting problems, which poten-
tially occur in models including both quark and hadron degrees of freedom. (5.27) yields the
following hadronization functions:

Ȧk = −
1

2hS,k
∂tλS,k

Ḃk = −
1

2hV,k
∂tλV,k ,

(5.28)
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where ∂tλS/V,k are the flows with with fixed hadronization fields. These hadronization functions
give rise to modified running couplings of (5.3). In analogy to the previous case, the precise
choice of the scale dependence of the mesons in terms of quark-bilinears (5.26) implies that the
running of the four quark interactions λS/V,k is completely sored in the corresponding Yukawa
couplings hS/V,k. The flow equations are discussed in App. C.3.

In addition to the quark-bilinear term with the quantum numbers of the corresponding meson
in (5.26), the flow of the a1-meson has an additional contribution proportional to ∂µ ~π. This
term arises because the so-called π−a1 mixing leads to an additional scale dependence of the
a1 meson, which has to be taken into account and fixes Ċk. We will elaborate on this point in
the next section.

5.2.2. π−a1 Mixing

Spontaneous chiral symmetry breaking leads to a non-vanishing vacuum expectation value σ0
of the σ meson and the resulting mixing term

Γπa1
= −

∫

x
g1,kσ0 ~a

µ
1 ·∂µ ~π , (5.29)

implies an off-diagonal two-point function Γ (2)k . This is referred to as π−a1 mixing. There
are two ways to cope with this problem. One can either take these additional off-diagonal
contributions into account or one diagonalizes the two-point function in order to eliminate
this mixing by an appropriate field redefinition. We note that the first option may give rise to
problems concerning regularity: since our regulators are diagonal in field space, off-diagonal
two-point function can potentially lead to non-regular expressions. However, this should be
investigated in more detail. Here, we will eliminate this mixing by a redefinition of the a1 field,

~aµ1 −→ ~aµ1 +
g1,kσ

m2
V,k + (g2,k + g3,k)σ2

∂µ ~π . (5.30)

This redefinition of the a1 field renders it explicitly RG-scale dependent, ∂t ~a
µ
1 6= 0. Before we

discuss the implications of this scale dependence, we turn toward the resulting modifications
of the effective action (5.3).

If we plug (5.30) into the truncation (5.3), the part of the action leading to the mixing term
(5.29) is canceled and various new terms appear. Since the replacement (5.30) introduces
terms ∼ ∂µ ~π, the interactions of our original ansatz (5.3) receive modifications with explicit
momentum dependence. Within this work, we define all running coupling at vanishing external
momentum, see App. C.3. Thus, for interactions that are not explicitly momentum dependent in
our original action, these modifications simply drop out of the beta functions. Only the meson
anomalous dimension ZS,k and the scalar-scalar vector interaction g1,k receive non-vanishing
modifications. The new term ∼ (∂µ ~π)2 yields for the pion wave function renormalization

Zπ,k = ZS,k −
g2

1,kσ
2
0,k

m2
a1

. (5.31)

While the wave function renormalizations do not enter RG-invariant beta functions, their
anomalous dimensions ηk = −(∂t Zk)/Zk do. Thus, (5.31) yields a modified pion anomalous
dimension.
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Figure 5.2.: The running of the different strong couplings in comparison to the 1-loop running.

The other relevant modification affects the ρππ vertex, which now reads

Γ (3)ρππ = g1,k

�
1−

g2,kσ
2
0,k

m2
a1,k

�
. (5.32)

Since we define the coupling g1,k via this vertex, this has to be taken into account in the
corresponding beta function, see App. C.3.

The elimination of the π−a1 mixing entails a shift of the a1 field which includes running
couplings. As a consequence, the a1 field becomes RG-scale dependent itself. As we have
discussed in the previous section, we use the dynamical hadronization technique which implies
that all meson fields are scale dependent. The scale dependence of a1 induced by (5.30) is
additional to the one induced by dynamical hadronization. The total scale dependence of a1 is
now given by the RG flow

∂t ~a
µ
1 = Ḃkq̄γµγ5~τq− Ċk∂µ ~π . (5.33)

The first term stems from dynamical hadronization and reflects the quark-bilinear nature of the
a1 meson. The hadronization function Ḃk is given in Eq. (5.28). The second term is a result of
the diagonalization of the meson two-point function and according to (5.30) Ċk is given by

Ċk = ∂t

�
g1,kσ

m2
V + (g2,k + g3,k)σ2

�����
σ=σ0,k

. (5.34)

In summary, chiral symmetry breaking leads to an off-diagonal meson two-point function. Diag-
onalization leads to modifications of the pion anomalous dimension and the ρππ interaction
and introduces an additional scale dependence to the a1 meson.

5.3. Numerical Results

5.3.1. Initial Conditions

We initiate the RG flow of the effective action (5.3) at the initial scale Λ=20 GeV and therefore
deep in the perturbatively accessible quark-gluon regime. Hadronic degrees of freedom will
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Figure 5.3.: The RG-flows of the scalar and vector yukawa couplings h̄S,k, h̄V,k. The thick and thin lines
correspond to different initial values of the couplings at different initial scales.

become relevant at much lower, non-perturbative scales. Owing to the dynamical hadronization
procedure, the RG flows of our model are completely fixed by specifying the free parameters of
the microscopic gauge fixed action of QCD, i.e. the strong coupling and the current quark mass.
Even though we choose a priori different flow equations for the strong couplings αq̄Aq, αA3 , αc̄Ac ,
the gauge principle enforces them to be identical in the perturbative regime. The initial value
of the strong couplings implicitly sets the scale, and we choose αi,Λ=0.163 for i= q̄Aq, A3, c̄Ac,
which corresponds to Λ≈ 20GeV.

Fig. 5.2 shows our result for the gauge couplings. Note that vector mesons lead to additional
contributions to the flow of the quark-gluon vertex αq̄Aq through triangle diagrams with internal
meson lines. But as we will show in the following, the vector mesons are always decoupled
from the flow due to their large mass. Thus, there are no contribution from vector meson
fluctuations. The only difference between the gauge couplings shown in Fig. 4.6 and Fig. 5.2
stems from the fact that in the former case, we used the fixed background expansion about κ̄,
while here we use the comoving expansion about the running minimum φ̄0,k.

As in the previous case, we also added an IR-strength to the gauge couplings in order to
compensate the effects of neglected tensor structures and momentum dependencies. Owing to
the different expansion scheme, we need a little less IR strength as in the previous chapter, to
wit a = 0.17, see App. D.

The current quark mass mUV
q is related to the explicit symmetry breaking parameter c in

(5.20) via

mUV
q =

hS,Λ

m2
S,Λ

c. (5.35)

We choose for the renormalized parameter c̄Λ = 3.9 GeV3, which yields an pion mass in the IR
of Mπ,0 = 137.5 MeV.

We note that the physical parameters are rescaled with appropriate powers on the wave
function renormalizations to ensure RG invariance, see App. C.3 and in particular (C.22). The
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Figure 5.4.: Renormalized masses (5.36) as a function of the RG-scale. Masses in the shaded area are
larger than the cutoff scale and therefore decoupled from the dynamics.

physical (or renormalized) quark and meson masses are defined as

Mq,k =
mq,k

Zq,k
, and Mϕ,k =

mϕ,k

Z1/2
ϕ,k

. (5.36)

With slight abuse of terminology, we refer to mk as bare mass. They are given in (5.24).
As already discussed in the previous chapter, the initial conditions of the mesonic parameters

can be chosen arbitrarily. This is due to the fact that, as long as the initial scale is large enough,
we find unique solutions for the meson parameters at low energies owing to the existence of
the IR-attractive fixed point in the high-energy regime. We only have to make sure that initial
meson masses are chosen larger than the UV-cutoff scale, MS/V,Λ ¦ Λ. Furthermore, to ensure
that our initial conditions correspond to QCD, the ratio h2

S/V,Λ/m
2
π/ρ,Λ has to be much smaller

than Λ−2α2
s .

The independence of the IR-physics on the initial values of the meson sector is demonstrated
in Fig. 5.3 and Fig. 5.9. There, we have chosen initial values at different initial scales (10 and
20 GeV) that differ by many orders of magnitude and one nicely sees that the initially different
trajectories are attracted towards a unique solution in the hadronic regime.

5.3.2. Masses

In Fig. 5.4 we show our results for the quark and meson masses. The left figure shows the
masses over the full range of scales we consider here, while the right figure shows the region
for k < 600MeV. For scales k ¦ 400MeV all mesons are decoupled from the flow. At these
scales the dynamics are driven completely by current quarks and gluons. At about 400MeV,
the degeneracy of the π and σ masses as well as the ρ and a1 masses is lifted due to chiral
symmetry breaking. π, σ and the constituent quarks are the dynamical degrees of freedom in
this region. The vector mesons are always decoupled. Thus, the vacuum structure of the vector
mesons is determined by quark and gluon fluctuations at large scales and the fluctuations of
the lightest mesons, the π and σ, at lower scales.

This is also shown in Fig. 5.5, where the effective propagators also reflect this scale hierarchy.
They are defined in App. C.3 and in particular (C.28) and are a measure for the strength of
the fluctuations of the fields. Vanishing of the effective propagator of a field implies that this
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Figure 5.5.: Effective propagators (C.28) of the matter fields as a function of the RG scale. They are a
measure for the effective strength of the fluctuations of the fields.

field does not contribute to the dynamics of the system. Thus, we see that at large energy
scales the quarks are the only dynamical matter fields. There is only a relatively small window,
100 MeV< k < 500MeV, where the scalar mesons are dynamical and one nicely sees that the
sigma mesons decouples earlier that the lighter pions. Vector meson fluctuations are always
negligible.

Indeed, an explicit calculation of a complete set of four-quark interactions in Euclidean
spacetime shows that the scalar-pseudoscalar channel is the dominant channel [156]. This
implies that the only relevant meson degrees of freedom in vacuum are π and σ. We note that
this picture will change in Minkowski space, since different channels will become relevant as
soon as the momentum is close to the corresponding mass pole.

The behavior of the masses as function of the RG scale k reflects their scaling with temperature
T . In particular, the running of the masses at vanishing temperature is qualitatively very similar
to the temperature dependence at k = 0. As we have discussed above, the behavior of the
vector mesons masses, in particular the ρ mass, in the vicinity of the chiral phase transition is
potentially relevant for the observation of chiral symmetry restoration in experiments. This is
motivated by the strong modifications that the light vector meson peaks receive in the quark-
gluon plasma, see Fig. 5.1. The most prominent conjecture is the Brown-Rho scaling [34],
which states that the ρ mass decreases towards the phase transition in a similar manner as the
σ mass or the pion decay constant fπ.

In Fig. 5.4 we see that the ρ mass is almost constant in the hadronic phase and only grows
slowly close to the pseudocritical scale. If we take a closer look at the Mρ,k, we see that, starting
from k=0, it first decreases slightly with increasing k, before it increases starting from k ¦ Mπ.
This is shown in Fig. 5.6 and we note that Ma1,k shows the same behavior. At scales k ® Mπ the
only dynamical contributions stem from small pion fluctuations, while all other contributions
are completely decoupled. This can be seen in Fig. 5.5. There, we also see that at scales k ¦ Mπ

constituent quark fluctuations play an important role. Since bosonic and fermionic fluctuations
drive the mesonic parameters in opposite directions, the change of the scaling of the ρ mass can
be explained qualitatively by this change of the relative importance of bosonic and fermionic
fluctuation above and below k ≈ Mπ.
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Figure 5.6.: The renormalized mass of the ρ meson, Mρ,k, as a function of the RG-scale. We see that it
first decreases with increasing k, before it starts increasing for k ¦ Mπ.

For the ρ mass, this behavior was also found in [36], where a gauged linear sigma model
was studied at finite temperature. But there the a1 mass first grows and than decreases towards
the chiral transition, i.e. it shows the opposite behavior of our findings, where Ma1,k scales just
as Mρ,k.

In summary, we observe a very weak Brown-Rho behavior at small scales and a more
pronounced anti-Brown-Rho behavior close to the chiral transition. This in line with the in-
medium behavior of the ρ mass observed within effective field theory studies, which reproduce
the data on vector meson spectral functions and dilepton spectra very well [93]. For a sensible
comparison, however, we also need to compute the in-medium modifications of the masses
within our QCD-based approach.

Our predicted masses for the vector mesons show a quite large discrepancy from the observed
masses. We find for the renormalized ρ mass Mρ,0 = 990MeV, which is about 29% larger
than the observed mass of 770MeV [96]. For the a1 mass we find Ma1

= 1077MeV, which
is about 15% smaller than the observed mass of 1260 MeV. The value of the ρ mass is fixed
mainly by the fluctuations in the quark-gluon sector. This can be seen from the definition of the
masses, (5.24), the observation that m̄V,k runs only very little in the hadronic regime and that
ḡ3,k is very small (see Fig. 5.9). Thus, the strength of the four-quark interaction λV,k, which is
determined by the strong coupling, essentially fixes the ρ mass. Furthermore, according to
(5.24), the mass-splitting of ρ and a1 and therefore the mass of a1 is determined by the flow of
the hadronic sector at low energies. We already discussed in Sec. 4.4.4 that the situation is
different for π and σ: the mass of the pion is fixed by its nature as a (pseudo) Goldstone boson
and the strength of explicit symmetry breaking in terms of a finite current quark mass. In any
case, the mass-splitting of chiral partners in the phase with broken chiral symmetry is sensitive
to the quality of our truncation in the hadronic sector. Thus, the small mass of a1 is a signal for
a shortcoming of our truncation there and may be related to momentum dependencies that
were taken into account insufficiently. The large value for the ρ mass can also be attributed
to the insufficient inclusion of momentum dependence, but in the quark-gluon sector and in
particular in the four-fermi interaction λV,k. We evaluate this interaction at vanishing external
momentum, see App. C.3, and it is possible that we underestimate its strength this way. A
larger λV,k leads to smaller vector meson masses. Since the present work is the first study in
this direction, aimed at capturing the qualitative features, we defer a thorough quantitative
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Figure 5.7.: Scalar and vector wave function renormalization as function of the RG scale. We normalized
them to be 1 at the IR scale k=30MeV.

analysis to future work.

5.3.3. Decoupling of the Mesons

As in Sec. 4.4.4, we again demonstrate here that the mesons are completely decoupled in
the quark-gluon phase as a result of the consistent treatment of bound states via dynamical
hadronization. We also see that the decoupling of the mesons is triggered by a rapid fall-off of
the meson wave function renormalizations ZS/V,k at the pseudocritical scale. The mechanism
is the same for scalar and vector mesons. We show the running of ZS,k and ZV,k in Fig. 5.7.
While they stay almost constant in the hadronic regime, they rapidly fall-off at the chiral
transition scale. The scalar meson wave function renormalization ZS,k drops about eight
orders of magnitude and that of the vector mesons, ZV,k, about seven orders of magnitude
towards the UV. The fastest drop-off is in the vicinity of the pseudocritical scale kχ ≈ 400 MeV.
The reason is that quark fluctuations decrease the meson wave function renormalizations in
the quark-gluon regime. Their flows are proportional to the corresponding squared Yukawa
couplings, ∂t ZS/V,k∝−h̄2

S/V,k ZS/V,k, at scales k ¦ kχ , resulting in large negative beta functions,
see Fig. 5.3. Vanishing wave function renormalizations imply that the corresponding particles
become auxiliary fields and are therefore no longer part of the physical spectrum at large energy
scales.

Again, this is reflected in the behavior of the bare masses, m2
ϕ = Zϕ,k M2

ϕ,k, shown in
Fig. 5.8. They are constant in the quark-gluon regime, implying that without the rapid fall-off
of the meson wave function renormalizations, the mesons show no decoupling and hence an
unphysical high-energy phase. The running of the physical masses is therefore exclusively
driven by the anomalous dimensions of the corresponding mesons at large energy scales. This
is crucial for the unambiguous definition of the mesons masses, as discussed in Sec. 4.2.2.
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Figure 5.8.: Bare masses of the mesons, m2
ϕ = Zϕ,k M2

ϕ,k, see (5.24) and (5.36). Note that we normalized
the wave function renormalizations to be 1 in the IR at k=20 MeV here.

5.3.4. Vector Meson Dominance

The principle of vector meson dominance entails that the SU(N f )A× SU(N f )V flavor symmetry
is treated as a gauge symmetry. In this case, the vector and axial-vector mesons appear as
gauge bosons of the scalar and pseudoscalar mesons. This simplifies the effective action in the
hadronic sector, since the gauge principle significantly restricts the number of possible different
interactions and there is only one running coupling for interactions involving vector mesons.
Here, we do not apply VMD. As a consequence, we have a priori different running couplings
g1−5,k, while VMD implies

g1,k = g4,k =
p

g2,k =
p

g5,k and g3,k = 0 . (5.37)

As we have discussed above, the advantage of our approach is that the hadronic parameters are
uniquely determined by the dynamics in the quark-gluon phase, i.e. microscopic QCD. Thus,
even though we have a large parameter space in the meson sector, model parameter tuning is
not necessary. This allows us to study the validity of VMD in an unbiased way by comparing
our results to (5.37). In Fig. 5.9 we show our results for the running of ḡ1−5,k.

Or results show that, while VMD does not hold exactly, it is a good approximation. In
particular the couplings ḡ2,k, ḡ4,k and ḡ5,k are very close together. Only ḡ1,k is considerably
larger than the other couplings. If we define the error one would make by assuming VMD by
the standard deviation of these couplings in the IR, we find it to be about 16% of the mean
average of these couplings. g3,k, which is explicitly forbidden for local chiral symmetry, is well
approximated by VMD. It is very close to g3,k = 0 at the pseudocritical scale and assumes only a
small finite value at lower scales. The flow of g3,k is proportional to the chiral order parameter
σ0,k. Thus, with large positive anomalous dimensions, the renormalized coupling ḡ3,k is driven
to values very close to zero at large energy scales.

The construction of our effective action is based on a small momentum expansion (derivative
expansion) and we define all running coupling at vanishing external momentum, see App. C.3.
The momentum scale of our results is therefore given by k. Thus, our findings in the hadronic
regime correspond to small momentum scales k ≤ 400MeV. A comparison of effective field
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Figure 5.9.: The RG-flow of the vector-vector and vector-scalar meson couplings ḡ1−5,k. The thick and
thin lines correspond to different initial values of the couplings at different initial scales.
Vector meson dominance would imply (5.37).

theory predictions assuming VMD with experimental results for the electromagnetic form
factor of the pion show that they agree within 10-20% accuracy at momentum transfer q2 ®
1GeV2 [189]. Thus, our results for the validity of VMD are in very good agreement with
phenomenological findings.

We note again that the thick and thin lines in Fig. 5.9 correspond to very different initial
conditions for the flow of the couplings. The flows in the hadronic phase as well as the final
value of the couplings in the IR are prediction of our analysis without any model parameter
fixing.

5.4. Conclusions

A thorough understanding of the dynamics of vector mesons in QCD is essential for our
understanding of the phase structure of strongly interacting matter. Since these low-energy
degrees of freedom ultimately derive from microscopic QCD, the dynamical connection between
the high- and low-energy sector of QCD needs to be captured. To this end, we have presented
at functional renormalization group study of vector mesons in QCD. Our focus was on how the
dynamics of the lightest meson chiral partners, π, σ and ρ, a1, emerge from the dynamics of
quarks and gluons. We have developed a scale dependent effective action that captures the
dynamical transition from the quark-gluon regime to the hadronic regime, including vector
mesons, in a qualitative manner. The key ingredient is the dynamical hadronization technique,
which allows for a consistent description of the transition from high-energy to low-energy
degrees of freedom. This entails in particular that the properties of the hadronic regime are
fixed by the quark-gluon fluctuations at high energies. Thus, no fine-tuning of model parameters
is necessary and e.g. the meson masses and the running of the mesonic parameters can be
viewed as predictions from first-principle QCD.

We have demonstrated explicitly that, within this Euclidean formulation, there is an intriguing



5.4 Conclusions 103

scale hierarchy emerging, where the hadronic contributions to the dynamics of the heavier
mesons are determined solely by the fluctuations of π and σ.

The masses of ρ and a1 are almost constant and only slightly grow towards the pseudocritical
scale. Since the behavior of the masses as a function of the RG-scale reflects their finite temper-
ature behavior, this gives a hint for the in-medium scaling of these masses. Our predictions are
in agreement with the findings of phenomenologically motivated effective models.

We have emphasized the important role that the meson wave function renormalizations play
for the decoupling of the meson degrees of freedom at high energies. They fall-off many orders
of magnitude in the vicinity of the pseudocritical scale. This triggers a rapid growth of the
renormalized meson masses and the mesons become auxiliary fields in the quark-gluon phase.

Since the properties of the mesonic parameters in our model are fixed by the QCD flow,
we have been able to make an unbiased analysis of the validity of vector-meson dominance.
Our results show that while VMD does not hold exactly, it is a good approximation within an
accuracy of about 16% at small momentum scales. This is in agreement with phenomenological
findings.

In this study we focused on qualitative features and given the lack of quantitative precision,
in particular for the mass-splitting of the mesons in the chirally broken phase, there is a lot of
room for improvement and refinement. In particular the extension of our truncation in the
hadronic sector and a thorough analysis of momentum dependencies are important next steps.

This work serves as a starting point for the study of the in-medium modifications of the vector
mesons and their spectral functions within functional renormalization group methods for QCD.





CHAPTER 6

From QCD to Low-Energy Effective Models

In this chapter we want to take a closer look on the relation between QCD and low-energy
effective models. It is fair to say that to date no self-consistent study of QCD at finite temperature
and density has been done, even though much progress has been made in this directions with
various methods. Effective models are therefore a valuable tool to gain insights on the physical
effects relevant for the QCD phase diagram. Their construction is based on restricting the
theory to a certain range of scales and only taking into account the relevant degrees of freedom
there. Limitations of these models are thus given by the fact that they are only valid on a
limited range of scales and that potentially relevant dynamical contributions are neglected.
However, we demonstrated in the previous chapters how the low-energy sector of QCD emerges
from fluctuations of the microscopic degrees of freedom. It is then only natural to ask at which
point the hadronic sector can be viewed as self-sufficient, i.e. at which scale all relevant gluon
fluctuations are effectively stored in the hadronic sector.

The framework presented in the previous chapters allows us to gain insight into the range of
validity of quark-meson type models. We used these models to describe the hadronic sector.
In contrast to effective models, however, the dynamics of the low-energy degrees of freedom
were determined by the QCD flow. The general strategy to test the range of applicability of
QM-models here is to determine at which scales the gauge sector can be neglected. This can
either be seen from a complete decoupling of the gauge sector or the possibility to effectively
store some of the effects of gluon fluctuations into the hadronic sector by IR-parameter fine-
tuning. We will investigate the first possibility in the following. For a meaningful analysis of
the second point, we would have to compare physically relevant parameters that are not fixed
by a parameter tuning in the effective model, such as the critical temperature. Since we only
studied dynamical QCD in the vacuum, we postpone this to future work when we extend the
analysis presented in the previous chapters to finite temperature.

6.1. Decoupling of the Gauge Sector

To find the scale where gauge dynamics decouple, we directly look at the different contributions
to the flow of the dynamically hadronized renormalized Yukawa coupling ∂t h̄k(κ̄) given in
(4.47) and (4.68). This is shown in Fig. 6.1. The solid blue line shows the full flow. To obtain
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Figure 6.1.: The full flow of the Yukawa coupling h̄k(κ̄) in comparison to the pure matter and pure
gauge contributions to the flow. In this direct analysis it turns out, that the effect of gauge
fluctuations can only be neglected for scales k ® 120 MeV.

the pure matter contributions to this flow, we ignored all gluon diagrams contributing to (4.47).
Note that this has to be done for the anomalous dimensions as well, since we consider the flow
of the renormalized Yukawa coupling. In practice, this can most easily be achieved by setting
the gauge couplings to zero in the full flow of h̄k. The dotted orange line shows the gauge
contribution to ∂t h̄k(κ̄), which is then given by the difference of the full and the pure matter
flows.

We see that the gauge part is, as expected, quantitatively of major importance over the largest
part of the scales considered here. This is also true for most of the hadronic sector. It is only for
scales k ® 120 MeV, that the gauge part becomes less important than the matter part. Thus, in
order to reproduce the full flow accurately only in terms of matter fluctuations, one has to go
to very low scales, much lower than the pseudocritical scale kχ . At first glance, this disqualifies
QM-type models that neglect gauge fluctuations as reliable description of low-energy QCD,
since according to this analysis, their range of validity is much to low for a description of the
phase structure.

However, a different approach, which is more in the spirit of an embedding of low-energy
models in full QCD, is to study at which initial scale Λ of the effective model, the initial values
provided by full QCD yield the same results in the effective theory as in the full theory. The
idea behind this is that an effective model that is truly embedded in QCD should accurately
reproduce the results of full QCD within its range of validity. In particular, if the effective model
gets its initial values from full QCD at an initial scale within its range of validity, than it should
give the same results for physical observables in the IR as QCD. To this end, we use the results
of our QCD analysis in Chap. 4 for the effective potential V̄k(ρ̄), the Yukawa coupling h̄k(ρ̄) and
the explicit symmetry breaking source c̄ and take them as initial conditions for the QM-model
given by the scale dependent effective action

Γ
(QM)
k =

∫

x

§
iZq,k q̄ (γµ∂µ)q+ hk(ρ) q̄ (τφ)q+

1
2

Zφ,k(∂µφ)
2 + V (ρ)− cσ

ª
. (6.1)

Thus, at the initial scale Λ of this effective model, we identify the model parameters with the
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Figure 6.2.: The ratios (6.3) of physical observables in the IR. They measure the relative error one makes
by neglecting gluon fluctuations in the low-energy sector described solely in terms of an
effective QM-model (6.1) which is initiated at different scales Λ. The initial values are
provided by the the solution of the system including gauge dynamics from Chap. 4.

QCD parameters,

V̄ (QM)
Λ (ρ̄) = V̄ (QCD)

Λ (ρ̄)

h̄(QM)
Λ (ρ̄) = h̄(QCD)

Λ (ρ̄)

c̄(QM)
Λ (ρ̄) = c̄(QCD)

Λ (ρ̄)

(6.2)

and solve the flow equations for (6.1). We then compare the results for the physical IR-
parameters of the model to the QCD results. The results are shown in Fig. 6.2. We compare
the pion decay constant fπ, the quark mass Mq and the meson masses Mσ and Mπ at the IR
scale k=30 MeV for various initial scales Λ, at which we give over the QCD parameters to the
QM model. We show the ratios

∆O =

�����1−
O(QM)

IR

O(QCD)
IR

����� , (6.3)

with O ∈ { fπ, Mq, Mσ, Mπ}. This effectively measures the error we make by neglecting the
gauge part.

We see that at initial scale Λ≈ 600MeV the error is larger than 10% for every observable.
For the quark mass, it is even larger that 80%. The error we make for mesonic observable is
less than 10% for Λ ® 550MeV. Since the quark mass, unlike the mesonic parameters, has
a direct contribution from the gauge sector, it is much more sensitive to gluon fluctuations.
Hence, neglecting these effects has a more severe effect on Mq than on the other observables.
Only for initial scales Λ® 320 MeV is the error in the quark mass less than 10%.

We note that for initial scales Λ® 120 MeV, the scale where gluon contributions to the flow
of the Yukawa coupling can be neglected as discussed above, all errors here are below 0.1%.
Thus, even though the impact of gauge fluctuations seems quantitatively important down to
very low scales, the scale where they can be neglected without introducing a large error in
physical observables is considerably higher.
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Here, we found that the error of neglecting quark fluctuations is less than 10% in all observ-
ables considered here for initial scales Λ® 320 MeV and for only the mesonic observables for
Λ® 550 MeV. The latter is in a realistic range for physically sensible initial scales of QM-models.
For the study of the phase structure, the initial scale should as a minimal requirement exceed
the chiral transition scale Λ> kχ . Furthermore, it should also exceed the scale of the relevant
thermal fluctuations of the system. The range of validity of the particular QM model studied
here is dangerously low nonetheless. However, the typical procedure in low energy models is
to fix the IR-physics by a fine-tuning of the initial parameters. This has the effect that some of
the neglected fluctuations from the gauge sector are effectively taken into account and shifts
the range of applicability of low-energy modes to larger cutoff scales. Our results show that a
thorough analysis of this important issue should be done in the near future. It is important to
quantify the range of validity of effective models in order to corroborate the reliability of such
models.

Note that these findings do not render studies of QM-like models futile, since they certainly
provide valuable informations about the relevant parameters in the hadronic sector of QCD.

6.2. Dynamical Hadronization and Low-Energy Effective Models

In low energy models of QCD, such as (Polyakov-loop enhanced) Nambu–Jona-Lasinio models
or quark-meson models, gluons are considered to be integrated out and one is left with effective
four-quark interactions, either explicitly or in a bosonized formulation. The latter is particularly
convenient as the phase with spontaneous broken chiral symmetry is easily accessible. There, the
formulation of the effective theory is usually based on the conventional Hubbard-Stratonovich
bosonization rather than dynamical hadronization. Following our arguments given in Sect. 4.2.1,
the question arises whether dynamical hadronization leads to quantitative and/or qualitative
corrections in the context of low energy effective model.

Since the matter part of our truncation (5.3) is that of a quark-meson model, we will consider
here the special case of the quark-meson model defined by switching off all gluon contributions
in (5.3), i.e. we again consider the action (6.1). To see the effect of dynamical hadronization,
we look at the ratios of IR observables obtained with and without dynamical hadronization. To
this end, we choose ΛLE = 1 GeV as a typical UV-cutoff scale and use the same set of initial
conditions in both cases. For results see Tab. 6.1.

fπ/ f̃π Mq/M̃q Mπ/M̃π Mσ/M̃σ

0.995 0.997 1.003 0.990

Table 6.1.: Effect of dynamical hadronization on a quark-meson model: The quantities with/without a
tilde are the results obtain from a solution of the flow equations of the quark-meson model
with/without dynamical hadronization techniques.

We see that the effect of dynamical hadronization on physical observables of a low-energy
quark-meson model (without gluons) is negligible, since it only gives corrections of less than
1%. This does not change if we vary the UV-cutoff within the range of typical values for this type
of models, i.e ΛLE ∈ [0.5, 1.5] GeV. Furthermore, it implies in particular that the mis-counting
problem discussed in Sect. 4.2.1 is less severe in low energy models.

This observation can be understood by looking at the flow of the four-quark interaction λS,k,
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see Eq. (4.49). In case of the quark-meson model, only the meson box diagrams∼ h̄4
k contribute

to the flow, see also Fig. 4.1, while the gluon box diagrams are neglected. In the chirally
symmetric regime, the mesons are decoupled and the corresponding contributions to the flow
are therefore suppressed. Furthermore, in the hadronic phase, the quarks acquire a large
constituent mass and, in addition, the pions become light. Therefore, the contribution from
dynamical hadronization to the flow of the Yukawa coupling (4.68),∼ m̄2

π,k∂t λ̄S,k, is suppressed
by these two effects in broken phase. Thus, following our present results, in particular Fig. 4.9,
the only regime where dynamical hadronization can play a role in a low-energy model is in
the vicinity of chiral symmetry breaking scale. However, since this region is small compared to
range of scales considered even in low-energy models, only very small corrections related to
the re-generation of four-quark interactions are accumulated from the RG flow.

Note, however, that we checked this statement only in vacuum and it might not be true in
medium, especially at large chemical potential where quark fluctuations are enhanced. This
can potentially lead to larger, non-negligible corrections from dynamical hadronization. We
also emphasize that we used the same initial conditions for our comparison of the RG flow
of the quark-meson model with and without dynamical hadronization techniques. However,
usually the parameters of low-energy models are fixed in the vacuum, independent of the
model truncation. Once the parameters are fixed, these models are then used to compute, e.g.,
the phase diagram of QCD at finite temperature and chemical potential. In this case, it may still
very well be that the use of dynamical hadronization techniques yield significant corrections.





CHAPTER 7

The QCD Phase Diagram

The understanding of the formation and the properties of hadronic matter requires that of
the phase structure of Quantum Chromodynamics (QCD). For fixed density the QCD vacuum
changes drastically with decreasing temperature from a deconfined quark-gluon plasma phase
with effective chiral symmetry to a hadronic phase with confined quarks and broken chiral
symmetry.

The main challenge for theoretical studies of the QCD phase diagram lies in its non-perturbative
nature, and the – related – dynamical change of relevant degrees of freedom. However, in the
past decade rapid progress has been made in the first principle description of QCD at finite tem-
perature and density, both with continuum methods, see e.g. [45,140,154,155,171,172,184],
and on the lattice, see e.g. [67,192–194]. Within the continuum approach it has been worked-
out in detail how low energy effective models are systematically embedded in first principle
QCD, see [44,73,74,140,155,184,195–197]. In the previous chapters we demonstrated in
detail how the hadronic sector emerges from the underlying quark-gluon dynamics. It is a
particular strength of such an approach that the necessary quantitative control over the matter
and glue sector can be achieved separately, followed by a systematic combination of both
sectors including their mutual back-reaction. We already demonstrated in the previous chapters
that there is an intermediate range of scales, 300MeV ® k ® 800MeV, where fluctuations
from both, the hadronic and the quark-gluon sector have to be taken into account. This puts
an even bigger emphasis on the systematic improvement of the corresponding low energy
effective models of QCD. It not only furthers our understanding of the mechanisms underlying
the physics phenomena responsible for the phase structure of QCD but also is necessary for
quantitatively describing the phase structure within a first principle continuum approach.

For small chemical potential the lightest hadronic states, the pions and the sigma-meson,
drive the chiral dynamics in the vicinity of the phase boundary. We demonstrated this explicitly
in Chap. 5. Thus, in order to achieve quantitative control over the matter sector of QCD,
and in particular the phase stucture, one has to accurately take into account the effects of
mesonic fluctuations. The importance of such a procedure has been already observed in
the context of higher order mesonic self-scatterings. These have been taken into account
within low energy effective models in terms of full mesonic effective potential, for reviews see
e.g. [75,135,142,143]. We have shown in Sec. 3.4 that the fixed background Taylor expansion
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is a well-suited method to study such effects, owing to its superior convergence properties for
QM models. For a fully self-consistent expansion it is important to realize that quark–anti-quark
multi-meson interactions have to be taken into account as well. Indeed, these terms contribute
directly to the computation of the effective potential in the functional renormalization group
approach.

Hence, we systematically also include higher order quark–anti-quark multi-meson interactions
within the quark-meson model, and study their effect on the chiral phase structure of two-
flavor QCD. In the QM model this amounts to a meson-field–dependent Yukawa coupling. The
quantum, thermal, and density fluctuations are then taken into account by means of the FRG.
This also allows us to consider the momentum-dependence of the propagators in terms of
scale-dependent wave function renormalizations. Such effects are particularly relevant in the
presence of massless excitations such as the pions close to a second order phase transition.
The higher quark-meson interactions are included in a – convergent – Taylor expansion in the
order of the mesonic fields. In total this leads to a significant extension of the local potential
approximation of the quark meson model which has been used extensively to study the chiral
phase transition of QCD, see e.g. [135,142,151].

We present results on the chiral phase boundary in the T -µ plane, including the critical
endpoint and the curvature of the phase boundary. We also compare different definitions of the
phase boundary. This is particularly important in the region of the phase diagram where the
system undergoes a crossover transition and the exact location of the phase boundary is not
uniquely defined. We find that the inclusion of the higher order couplings lead to quantitatively
significant changes in the phase structure. An intriguing observation is the rapid convergence
of our results if the orders of meson-meson and quark-meson couplings are increased.

Our present findings are fully in the spirit of the systematic embedding of the low energy
effective models in first principle QCD. They constitute significants steps towards quantitative
precision in terms of convergence of a self-consistent truncation for the matter sector of QCD.

This chapter is organized as follows: In Sec.7.1 we briefly introduce the quark-meson model
in the context of full QCD, including the higher order quark-meson scattering processes in
terms of an effective meson potential, a field-dependent Yukawa coupling and quark and meson
wave function renormalizations. Sec. 7.2 summarizes the renormalization group approach
and provides some details about the resulting flow equations of our model. Our results are
presented in Sec. 7.3, where we demonstrate the convergence of our expansion scheme and
discuss the chiral phase structure at finite temperature and quark chemical potential including
the critical endpoint and the curvature at vanishing chemical potential.

7.1. Quark-Meson Model

In the present work we concentrate on two-flavor QCD by employing a quark-meson model as
a low energy effective model for QCD. We now have a good understanding of how such low-
energy effective models are embedded in first principle QCD within functional methods. The
key concept behind this embedding in full QCD the the consistent treatment of the dynamical
change of the relevant degrees of freedom. Starting from the high temperature/large cut-off
scale quark-gluon phase, the system is dynamically driven towards the low temperature/small
cut-off scale hadronic phase, where chiral symmetry breaking is triggered by the increasing
gauge coupling. This transition from a description in terms of quarks and gluons to a hadronic
description is achieved by dynamical hadronization. Furthermore, while the hadronic degrees
of freedom get dynamical at the hadronization scale Λ≈800 MeV, the contributions from quark



7.1 Quark-Meson Model 113

and gluon degrees of freedom start to become less relevant. This is most simply seen in the
Landau gauge, where the gluon propagator is infrared gapped, the gapping being directly
related to the QCD mass gap, see e.g. [71,124] and also our results in Sec. 4.4.3. Hence, the
gluons can be integrated out first, leading to an effective theory with quarks and hadrons in
a gluonic background potential, such as Polyakov-loop enhanced low-energy models. This
setting entails that first-principle QCD flows can be employed to provide initial parameters and
further glue input, such as background potentials, for model calculations, thereby systematically
removing ambiguities in these approaches. In particular, no double counting of degrees of
freedom is present in quark-meson models in this context, since the initial parameters of the
low-energy theory are fixed by the first-principle QCD flows. This picture has successfully been
applied to first-principle QCD [140,155] as well as to low energy effective models [44,196,197],
where quantitative agreement of QCD thermodynamics with lattice QCD is achieved [184].
However, we emphasize that our results of the precious chapter indicate that gauge fluctuations
are quantitatively relevant down to scales k ≈ 320 MeV, especially for quantities related to the
constituent quarks, as they have direct contributions from gluon fluctuations due to the strong
coupling. One should therefore analyze this in more detail in the future.

Here, our focus is on the chiral dynamics of QCD at energy scales k ≤ 700MeV and we
therefore neglect the gluonic background. In addition, dynamical hadronization is also not
taken into account. We have demonstrated in Sec. 6.2 that the error we make by not using
dynamical hadronization is well below 1%, at least in the vacuum.

7.1.1. Low Energy Effective Action

For an effective description of the low energy matter sector of QCD at not too high densities, a
model based solely on quarks and the lightest meson is a good approximation. The ultraviolet
cut-off scale Λ of such a description, as already mentioned above, relates to the scale where
the pure glue sector of QCD starts to decouple and the fluctuations of the lightest mesons and
constituent quarks dominate the dynamics. Here we consider N f = 2 degenerate quark flavors
with pseudo-scalar pions ~π and the scalar sigma meson as the dominant mesonic degrees
of freedom for not too large chemical potential at Λ ≈ 1 GeV. At this scale the low energy
effective action ΓΛ is approximated by that of the quark-meson model as in Sec. 4.1. Following
the discussion there, the corresponding scale-dependent effective action reads, now at finite
temperature and density (see Sec. 2.2),

Γk =

∫

x

¦
iZq,k(ρ)q̄(γµ∂µ + γ0µ)q+ hk(ρ) q̄(γ5~τ~π+ iσ)q

+
1
2

Zφ,k(ρ)(∂µφ)
2 + Vk(ρ)− cσ

©
,

(7.1)

with the meson fields in the O(4) representation, φ = ( ~π,σ), and

ρ =
1
2
φ2 =

1
2
( ~π2 +σ2) . (7.2)

In (7.1) we used the abbreviation
∫

x =
∫ 1/T

0 d x0

∫
d3 x . The quark fields q are two flavor

Dirac-spinors and µ is the quark chemical potential. For N f = 2 the chiral symmetry SU(N f )L×
SU(N f )R is isomorphic to SO(4), hence the O(4)-symmetry of the scalar effective potential
Vk(ρ). Quarks and mesons are coupled via a meson field-dependent Yukawa coupling hk(ρ).
~τ are the Pauli matrices.
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This model captures spontaneous chiral symmetry breaking SU(N f )L⊗SU(N f )R→ SU(N f )V .
The expectation value of the sigma meson serves as order parameter for the chiral phase
transition and the three pions are Goldstone bosons of the spontaneous breaking of the axial
SU(2)A. In the presence of explicit symmetry breaking, introduced by the linear breaking term
−cσ, the pions are not massless but rather pseudo-Goldstone bosons with finite mass and the
chiral second order transition turns into a crossover.

The inverse quark and meson propagators are dressed with wave function renormalizations
Zq,k(ρ) and Zφ,k(ρ). Note that at finite temperature there are in general two different wave
function renormalizations quarks and mesons, one perpendicular, Z = Z⊥, and one parallel
to the heat bath, Z‖. Here we only compute the perpendicular one and identify Z‖ = Z⊥.
Moreover, we expect a weak dependence of the Z ’s on the meson field ρ and hence we drop all
terms proportional to ∂ρZ(ρ). This approximation is discussed in section 7.2.3. The explicit
breaking of O(4)-symmetry in the meson-sector of our model through the linear term −cσ is
related to a finite current quark mass mc

q via the relation

mc
q =

hΛ
v1,Λ

c , (7.3)

where v1,Λ is the squared meson mass in the UV.

7.1.2. Higher Order Mesonic Scattering

The present approximation includes field-dependent wave function renormalizations Zk(ρ) for
quarks and mesons, a full effective potential Vk(ρ), and a field-dependent Yukawa-coupling
hk(ρ). We implement higher order mesonic scattering processes via a systematic expansion
in n-point functions Γ (n) of the effective action (7.1). This is discussed in detail in Sect. 3.4
and 4.1.1. Here, we just summarize the results there and discuss the implications of finite
temperature and density. The latter implies in particular, that all parameters considered here
are T and µ dependent, in addition to their RG-scale dependence.

We first discuss the wave function renormalizations. The ρ-dependence of the mesonic wave
function renormalization contains momentum-dependent meson self-interactions while that of
the quarks contains momentum-dependent scattering of a quark–anti-quark pair with mesons.
Note that both processes vanish at vanishing momenta. The wave function renormalizations can
be expanded about a temperature and chemical potential dependent expansion point κ(T,µ),
to wit

Zk(ρ) =
NZ∑

n=0

Zn,k

n!
(ρ −κ(T,µ))n . (7.4)

However, we expect a rather mild dependence of the wave function renormalization on the
meson field, leading to

∂ρZk(ρ)≈ 0 . (7.5)

The quantitative reliability of this hypothesis is tested in Sec. 7.3.4, see in particular Fig. 7.11.
Eq. (7.5) implies that locally (about a given expansion point κ) we can use

Zk = Z0,k . (7.6)

Still, for the computation of observables the wave function renormalization has to be determined
at the expectation value ρ0 of the mesonic field which does not necessarily agree with the
expansion point κ. It is here where the field dependence of the Z ’s play a role.
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k(T, µ), to wit

Zk(⇢) =

NZX

n=0

Zn,k

n!
(⇢� k(T, µ))

n
. (4)

However, we expect a rather mild dependence of the wave
function renormalisation on the meson field, leading to

@⇢Zk(⇢) ⇡ 0 . (5)

The quantitative reliability of this hypothesis is tested in
Appendix A, see in particular Fig. 11. Eq. (5) implies
that locally (about a given expansion point k) we can
use

Zk = Z0,k . (6)

Still, for the computation of observables the wave function
renormalisation has to be determined at the expectation
value ⇢0 of the mesonic field which does not necessarily
agree with the expansion point k=0. It is here where the
field dependence of the Z’s play a rôle.

Meson self-interactions are contained in the e↵ective
potential Vk(⇢). As for the wave function renormalisations
we expand the renormalised e↵ective potential in powers
of ⇢ about an expansion point k(T, µ), to wit

Vk(⇢) =

NVX

n=1

�n,k

n!

�
⇢� k

�n
. (7)

In (7) we have dropped all T, µ-dependence for the sake of
brevity. Eq. (7) captures a chiral crossover and a second
order transition for NV � 2. A first order transition
requires at least NV � 3. The e↵ect of higher order
mesonic self-interactions on the matter sector of QCD
can be systematically studied by increasing the order of
the expansion NV .

It is convenient to rewrite the e↵ective action in terms
of the renormalised fields

�̄ = Z
1/2
�,k � , and ⇢̄ = Z�,k ⇢ , (8)

where the wave function renormalisations are locally con-
stant in the present approximation. For the e↵ective
potential V̄ (⇢̄) = V (⇢) this implies

V̄k(⇢̄) =

NVX

n=1

�̄n,k

n!

�
⇢̄� ̄k

�n
. (9)

with

�̄n,k =
�n,k

Zn
�,k

, and ̄k = Z�,k k . (10)

The ⇢̄-derivatives of the e↵ective potential, @n
⇢̄ V̄ , and

that of the e↵ective action allow for a direct physical
interpretation as they are RG-invariant. The linear term
in (1) reads in the new fields

c� = c̄k�̄ , with c̄k =
c

Z
1/2
�,k

. (11)

@t�k =
1

2
�

Figure 1: Diagrammatic representation of the flow equation
for the matter sector of QCD. The dashed line represents the
full meson propagator, the solid line the full quark propagator
and the crossed circle depicts the regulator insertion.

Quark–multi-meson interactions are taken into account
in (1) by the coupling of two quarks and a meson with
a ⇢-dependent Yukawa coupling hk(⇢). Analogous to the
e↵ective potential, we also expand the Yukawa coupling
in a O(4)-symmetric manner in powers of (⇢� k),

hk(⇢) =

NhX

n=0

hn,k

n!

�
⇢� k

�n
. (12)

Nh = 0 amounts to the standard Yukawa interaction
which couples a quark–anti-quark pair and a meson. By
increasing Nh the interaction between a quark–anti-quark
pair and (2Nh + 1) mesons can be taken into account.
The renormalised analogue of (12) reads

h̄k(⇢̄) =
hk(⇢)

Z ,kZ
1/2
�,k

=

NhX

n=0

h̄n,k

n!

�
⇢̄� ̄k

�n
, (13)

with RG-invariant expansion coe�cients

h̄n,k =
hn,k

Z ,kZ
(2n+1)/2
�,k

. (14)

The convergence of these expansions implies that the
higher order couplings get increasingly irrelevant with
increasing order of the meson field, see section IVB. A
more detailed analysis of the present expansion scheme
is deferred to Appendix A. Here we only note that we
choose a scale independent expansion point .

III. FLUCTUATIONS

In the present work we include quantum, thermal and
density fluctuations with the functional renormalisation
group (FRG). In addition to its application to QCD, see
[4, 23–26] and corresponding low enegry e↵ective models
[17–20], the FRG has been used successfully in a variety
of physical problems ranging from ultracold atoms and
condensed matter physics [19, 27–29] to quantum gravity
[30–33]. The idea is to start with the e↵ective action �⇤

given in (1) at the initial scale k = ⇤ and to successively
include quantum fluctuations by integrating out momen-
tum shells down to an infrared-cuto↵ scale k. By lowering
k we resolve the macroscopic properties of the system and
eventually arrive at the full quantum e↵ective action � at

Figure 7.1.: Diagrammatic representation of the flow equation for the matter sector of QCD. The dashed
line represents the full meson propagator, the solid line the full quark propagator and the
crossed circle depicts the regulator insertion.

Meson self-interactions are contained in the renormalized effective potential V̄k(ρ̄). As for
the wave function renormalizations we expand the effective potential in powers of ρ about the
renormalized expansion point κ̄k(T,µ), to wit

V̄k(ρ̄) =
NV∑

n=1

v̄n,k

n!

�
ρ̄ − κ̄�n

. (7.7)

In (7.7) we have dropped all T,µ-dependence for the sake of brevity. Eq. (7.7) captures a chiral
crossover and a second order transition for NV ≥ 2. A first order transition requires at least
NV ≥ 3. The effect of higher order mesonic self-interactions on the matter sector of QCD can
be systematically studied by increasing the order of the expansion NV .

Quark–multi-meson interactions are taken into account in (7.1) by the coupling of two quarks
and a meson with a ρ-dependent Yukawa coupling hk(ρ). Analogous to the effective potential,
we also expand the Yukawa coupling in a O(4)-symmetric manner in powers of (ρ̄ − κ̄),

h̄k(ρ̄) =
Nh∑

n=0

h̄n,k

n!

�
ρ̄ − κ̄�n

. (7.8)

Nh = 0 amounts to the standard Yukawa interaction which couples a quark–anti-quark pair
and a meson. By increasing Nh the interaction between a quark–anti-quark pair and (2Nh + 1)
mesons can be taken into account.

The convergence of these expansions implies that the higher order couplings get increasingly
irrelevant with increasing order of the meson field, see section 7.3.2.

7.2. RG Flows

We include quantum, thermal and density fluctuations with the FRG. The evolution of Γk is
governed by the Wetterich equation [130]. For the quark-meson model it reads,

∂tΓk[φ, q, q̄] =
1
2

Tr
h�
Γ
(2)
k [φ, q, q̄] + Rk

�−1

φφ
∂tR

φ

k

i
− Tr

h�
Γ
(2)
k [φ, q, q̄] + Rk

�−1

qq̄
∂tR

q
k

i
. (7.9)

The traces sum over the corresponding discrete and continuous indices including momenta and
species of fields. Γ (2)k [φ, q, q̄] is the matrix of second functional derivatives of Γk with respect
to the fields. The indices φφ and qq̄ indicate the components in field space. In this notation
the regulator Rk is also a matrix in field space, where Rφk and Rq

k are the entries corresponding
to the meson and quark regulators respectively. The flow equation has a simple diagrammatic
representation, see Fig. 7.1.

The specific regulators used in the present work are three-dimensional optimized regulators
and are specified in (C.55). This is a suitable choice for finite temperature, since Lorentz
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symmetry is broken explicitly anyway in a heat bath. As we have discussed in Sec. 2.2, the
momentum integration in imaginary time direction is replaced by a sum over Matsubara
frequencies. As it turns out, this sum is always finite and thus regularization is not necessary
for the thermal direction.

On the one hand such an approximation to the full QCD-flow is only satisfactory in the low
energy regime of QCD at scales k ® 1 GeV and k should be chosen as small as possible. On
the other hand the initial cut-off scale Λ has to be far bigger than any other physical scale
under investigation, i.e. T , µ and the physical masses. In the present work we shall adopt
Λ = 700 MeV. Note that Λ receives a physical meaning in this context since it is directly related
to the scale where hadrons form.

It is left to project the flow equation (7.9) for the effective action on the scale- and field-
dependent parameters of the effective action defined in (7.1):

7.2.1. Effective Potential

The flow equation of the effective potential Vk(ρ) − cσ is obtained by evaluating (7.9) for
constant meson fields, φ(x)→ φ, and vanishing quark fields. For these field configurations the
effective action reduces to Γk = Vol−1

4

�
V̄k(ρ̄)− c̄kσ̄

�
, see (7.1). Note that the explicit symmetry

breaking term is linear in the meson field, and hence is nothing but a source term. The right
hand side of the flow equation (7.9) only involves second derivatives w.r.t. the fields. Thus, the
explicit symmetry breaking term does not appear on the right hand side of the flow equation,
which only depends on symmetric terms. Moreover the flow equation (7.9) is derived with
cut-off–independent source terms, which implies ∂t c = 0. For the renormalized source, this
leads to

∂t c̄k =
1
2
ηφ,k c̄k , (7.10)

with the (perpendicular) meson anomalous dimension

ηφ,k = −
∂t Zφ,k

Zφ,k
. (7.11)

This has the remarkable consequence, that in terms of fluctuations the theory is effectively
evaluated in the chiral limit. Hence, this also applies to the effective potential Vk. The explicit
O(4) symmetry breaking introduced via the linear term cσ simply entails that the vacuum
expectation value of the fields is shifted relative to that in the chiral limit. In other words, the
physical observables that can be derived from Vk and its derivatives are evaluated away from
the minimum of Vk. Note also in this context that we could choose any k-dependence for c,
only the value at k = 0 is fixed by the physical quark masses. The flow for V̄k(ρ̄) = Vk(ρ) reads

∂t |ρ V̄k(ρ̄) =
k4

4π2

§�
(N2

f − 1) l(B,4)
0 (m̄2

π,k,ηφ,k; T ) + l(B,4)
0 (m̄2

σ,k,ηφ,k; T )
�

− 4NcN f l(F,4)
0 (m̄2

q,k,ηq,k; T,µ)
ª

,
(7.12)

with the (perpendicular) quark anomalous dimension,

ηq,k = −
∂t Zq,k

Zq,k
. (7.13)



7.2 RG Flows 117

Eq. (7.12) is nothing but the flow equation ∂t V (ρ). The threshold functions lB/F,4
0 are defined

in App. C.4, and depend on the field-dependent dimensionless renormalized masses

m̄2
π,k =

∂ρ̄ V̄k

k2

m̄2
σ,k =

∂ρ̄ V̄k + 2ρ∂ 2
ρ̄ V̄k

k2

m̄2
q,k =

2h̄k(ρ̄)2ρ̄
k2

.

(7.14)

The first and second lines in (7.12) are the pion and the sigma meson contributions respectively.
The third line in (7.12) is the quark contribution, where 2NcN f is the number of internal quark
degrees of freedom. The additional factor −2 is generic for fermionic loops.

The flow of the renormalized couplings v̄n is reads,

∂ n
ρ̄ ∂t |ρ V̄k(ρ̄)

���
ρ̄=κ̄k

=
�
∂t − nηφ,k

�
v̄n,k . (7.15)

We have computed the scale derivative at fixed ρ as we want to connect (7.15) to (7.12): the
left hand side of (7.15) is the nth derivative w.r.t. ρ̄ of the flow equation (7.12). The equations
(7.15) with (7.12) provide a tower of coupled differential equations for higher order mesonic
correlators and therefore include meson-meson scattering up to order 2NV into our model.

We close this Section with a discussion of possible order parameters. For a large region of
the phase diagram the chiral transition is a cross-over. This only allows for the definition of
a pseudo-critical temperature which is not unique. All possible definitions of pseudo order
parameters have the property that they provide order parameters in the chiral limit where
the cross-over turns into a second order phase transition. Here we discuss several order
parameters. The variance of the pseudo-critical temperatures provide a measure for the width
of the cross-over.

A simple order parameter of the chiral transition (in the chiral limit) is given by the vacuum
expectation value σ̄0,k at vanishing cut-off. It also determines the pion decay constant, fπ =
σ̄0,k=0. The expectation value σ̄0,k is obtained from

∂ρ̄
�
V̄k(ρ̄)− c̄kσ̄

����
ρ̄=ρ̄0,k

= 0, (7.16)

where ρ̄0,k =
1
2 σ̄

2
0,k is the quadratic order parameter. Physical observables such as the pion

decay constant and the masses are then defined at vanishing cut-off scale k = 0 and ρ̄ = ρ̄0,IR.
The position of the peak of the chiral susceptibility is an alternative definition of the phase

transition temperature. The chiral susceptibility measures the strength of chiral fluctuations.
Hence it is, independent of its use for constructing an order parameter, an interesting observable.
It is defined as the response of the chiral condensate 〈q̄q〉 to variations of the current quark
mass mc

q,

χq̄q =
∂ 〈q̄q〉
∂ m̄c

q
. (7.17)

Within our model the scale dependent chiral condensate is given by [198,199]

〈q̄q〉k = −
1

hΛ

�
v1,Λσ0,k − c

�
. (7.18)
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The current quark mass is given by (7.3). Combining (7.18) and (7.3) yields the following
relation:

∂ σ0,IR

∂ c
= − h2

Λ

v2
1,Λ

χq̄q +
1

v1,Λ
. (7.19)

Note that for (7.18) to hold with high accuracy, we need to require that the expansion point κ
is very close to the physical point ρ0,k. This is indeed the case for our choice of the expansion
point, see (7.36).

We can rewrite (7.19) by virtue of the implicit function theorem since the relation between
σ0,k and c is implicitly given by (7.16). This yields:

∂ σ0,k

∂ c
=
�
V ′k(ρ0,k) + 2ρ0,kV ′′k (ρ0,k)

�−1
=

1

m2
σ,k

. (7.20)

Thus, in practice we can compute the sigma meson mass and readily extract the chiral suscepti-
bility for given initial parameters v1,Λ, hΛ.

7.2.2. Yukawa Coupling

The scalar part of the Yukawa-term has been introduced in (7.1) as a φ-dependent fermionic
mass term with mass h(ρ)σ. This definition also entails that at leading order in ρ the sigma
field has been introduced as a field for the composite operator q̄q. Accordingly we evaluate
the flow of the fermionic two-point function at the minimal fermionic momentum plow and
constant mesonic fields, leading to

∂thk(ρ) =−
1
σ

1
4NcN f

Re

�
i lim

p→plow
Tr

�
δ2∂tΓk

δq(−p)δq̄(p)

�����
ρ(x)=ρ

�
, (7.21)

where the trace in (7.21) sums over all internal indices. Note that (7.21) is well-defined even
in the limit σ→ 0. The diagrammatic representation of this equation is depicted in Fig. 7.2.

In (7.21) we have set the external spatial momenta to zero and the external Matsubara
frequencies to their lowest mode, plow = (πT, ~0 ) for quarks. Implicitly we also use plow = (0, ~0 )
for mesons as we evaluate the Yukawa coupling for constant mesonic fields. For finite quark
chemical potential this procedure yields a manifestly complex valued flow on the right hand side
of (7.21). This simply reflects the dependence of the two-point function on p0 − iµ and hence
the momentum-dependence of the Yukawa coupling h: Evaluated at constant mesonic fields
the Yukawa coupling is a function of ρ, (p0 − iµ)2, ~p2 and µ with real expansion coefficients:
h(p0 − iµ)∗ = h(p0 + iµ). Hence, any projection procedure has to reflect the property that

h(p0 − iµ) + h(−p0 − iµ) ∈R , (7.22)

where we have also used that the Yukawa coupling h is a function of (p0 − iµ)2. Eq. (7.22) has
to hold in any self-consistent approximation scheme. In the present derivative expansion the
Yukawa coupling is evaluated at a fixed frequency. This means that the Yukawa coupling in
the derivative expansion has to be chosen real, h(p0 − iµ) = h(−p0 − iµ). Within the flow this
can be achieved via an appropriate choice of the expansion point. This singles out vanishing
frequency p0 = 0, where (7.22) holds trivially.

More generally one can project the flow of the Yukawa coupling on its real part. The former
projection procedure at vanishing frequency has been used in the literature, for a detailed
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fermionic momentum plow and constant mesonic fields,
leading to

@thk(⇢) = � 1

�

i

4NcNf

⇥ Re

"
lim

p!plow

Tr

✓
�2@t�k

� (�p)� ̄(p)

◆����
⇢(x)=⇢

#
,

(29)

where the trace in (29) sums over all internal indices. Note
that (29) is well-defined even in the limit � ! 0. The
diagrammatic representation of this equation is depicted
in Fig. 2.

In (29) we have set the external spatial momenta to
zero and the external Matsubara frequencies to their low-
est mode, plow = (⇡T,~0 ) for quarks. Implicitly we also

use plow = (0,~0 ) for mesons as we evaluate the Yukawa
coupling for constant mesonic fields. For finite quark
chemical potential this procedure yields a manifestly com-
plex valued flow on the right hand side of (29). This
simply reflects the dependence of the two-point function
on p0 � iµ and hence the momentum-dependence of the
Yukawa coupling h: Evaluated at constant mesonic fields
the Yukawa coupling is a function of ⇢, (p0�iµ)2, ~p2 and µ
with real expansion coe�cients: h(p0 � iµ)⇤ = h(p0 + iµ).
Hence, any projection procedure has to reflect the prop-
erty that

h(p0 � iµ) + h(�p0 � iµ) 2 lR , (30)

where we have also used that the Yukawa coupling h is
a function of (p0 � iµ)2. Eq. (30) has to hold in any
self-consistent approximation scheme. In the present
derivative expansion the Yukawa coupling is evaluated
at a fixed frequency. This means that the Yukawa cou-
pling in the derivative expansion has to be chosen real,
h(p0 � iµ) = h(�p0 � iµ). Within the flow this can be
achieved via an appropriate choice of the expansion point.
This singles out vanishing frequency p0 = 0, where (30)
holds trivially.

More generally one can project the flow of the Yukawa
coupling on its real part. The former projection procedure
at vanishing frequency has been used in the literature, for
a detailed discussion and motivation of this approach see
[2]. However, the latter procedure keeps the Matsubara
mass-gap of the fermions, which also is potentially relevant
for capturing the quantitative physics close to the Fermi
surface of the quarks at higher density. Hence, in the
present work we project on the real part of the flow in
(29) for the computation of the Yukawa coupling. We
have checked numerically that both procedures agree
quantitatively for small chemical potential.

The projection (29) using the fermionic two-point func-
tion is directly related to the more customary projection
where an additional derivative with respect to the pion
fields is applied. One finds

� i

�
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Figure 2: Diagrammatic representation of the flow of the
Yukawa coupling. The grey circles depict the full vertices.

Note that a projection using an additional derivative with
respect to the sigma field would contaminate the flow
with additional contributions from the derivative of the
Yukawa coupling. The same argument applies to the
meson anomalous dimension and is briefly discussed in
Appendix C.

With (29) we find for the flow of the renormalised
Yukawa coupling:
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2
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(31)

The function L
(4)
(1,1) is defined in Appendix B. We note that

the terms proportional to h̄3
k in eq. (31) are the triangle-

diagram contributions to the flow of a field-independent
Yukawa coupling, see e.g. [2]. For the renormalised cou-
plings (14) in (13) we find analogously to (21)

@n
⇢̄ @t|⇢ h̄k(⇢̄)

���
⇢̄=̄k

= (@t � n ⌘�,k)h̄n,k � h̄n+1,k(@t + ⌘�,k)̄k ,

(32)

where @th̄k(⇢̄) is given by eq. (31). Hence the flows of h̄n,k

show the same decoupling properties within the expansion
scheme already discussed below (21).

C. Wave function renormalisations

As discussed at the end of Section II A, at finite tempera-
ture the wave function renormalisations perpendicular and

Figure 7.2.: Diagrammatic representation of the flow of the Yukawa coupling. The grey circles depict
the full vertices.

discussion and motivation of this approach see [154]. However, the latter procedure keeps
the Matsubara mass-gap of the fermions, which also is potentially relevant for capturing the
quantitative physics close to the Fermi surface of the quarks at higher density. Hence, in the
present work we project on the real part of the flow in (7.21) for the computation of the Yukawa
coupling. We have checked numerically that both procedures agree quantitatively for small
chemical potential.

The projection (7.21) using the fermionic two-point function is directly related to the more
customary projection where an additional derivative with respect to the pion fields is applied,
see (4.46).

With (7.21) we find for the flow of the renormalized Yukawa coupling:
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�1

2
ηφ,k +ηq,k

�
h̄k(ρ̄) (7.23)

+ 4v3h̄3
k(ρ̄)

�
L(4)(1,1)

�
m̄2

q,k, m̄2
σ,k,ηq,k,ηφ,k; T,µ

�

−(N2
f − 1) L(4)(1,1)

�
m̄2

q,k, m̄2
π,k,ηq,k,ηφ,k; T,µ

��
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.

The function L(4)(1,1) is defined in App. C.4. We note that the terms proportional to h̄3
k in eq. (7.23)

are the triangle-diagram contributions to the flow of a field-independent Yukawa coupling, see
e.g. [154]. The flow of the renormalized couplings is

∂ n
ρ̄ ∂t |ρ h̄k(ρ̄)

���
ρ̄=κ̄k

= (∂t − nηφ,k)h̄n,k , (7.24)

where ∂t h̄k(ρ̄) is given by eq. (7.23).

7.2.3. Wave Function Renormalizations

As discussed at the end of Section 7.1.1, at finite temperature the wave function renormalizations
perpendicular and parallel to the heat bath differ from each other, Z⊥k 6=Z‖k . For scales above
the chiral symmetry breaking scale, k > kχSB, we have T/k < 1 which implies that thermal

fluctuations are negligible and thus Z⊥k>kχSB
≈ Z‖k>kχSB

. In the infrared we have k�T . In this
regime dimensional reduction occurs and we approach the three-dimensional limit. There
the finite temperature RG flow is only driven by the lowest Matsubara modes. The lowest
Matsubara mode for bosons is zero and therefore Z‖

φ,k�T drops out. For fermions the lowest
Matsubara mode is proportional to T and thus the fermions with dynamically generated mass
effectively decouple from the flow in the infrared. Therefore we choose the approximation
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Figure 3: Diagrammatic representation of the quark anomalous
dimension.

parallel to the heat bath di↵er from each other, Z?
k 6=Z

k
k .

For scales above the chiral symmetry breaking scale,
k > k�SB, we have T/k < 1 which implies that thermal

fluctuations are negligible and thus Z?
k>k�SB

⇡ Z
k
k>k�SB

.

In the infrared we have k⌧T . In this regime dimensional
reduction occurs and we approach the three-dimensional
limit. There the finite temperature RG flow is only driven
by the lowest Matsubara modes. The lowest Matsubara

mode for bosons is zero and therefore Z
k
�,k⌧T drops out.

For fermions the lowest Matsubara mode is proportional
to T and thus the fermions with dynamically generated
mass e↵ectively decouple from the flow in the infrared.

Therefore we choose the approximation Zk = Z?
k = Z

k
k ,

which is approximately valid for large scales and hardly
a↵ects the RG flow in the infrared. Hence it should be
a good approximation for calculating the chiral phase
boundary.

The flow of (6) consistent with the expansion scheme
about ⇢ =  has to involve an evaluation of the two-
point function at the expansion point. As the momentum
dependence is covered in a coarse-grained form via the
k-dependence of the Zk’s, we also use the derivative ex-
pansion about the lowest momentum and frequency and
arrive at
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for the anomalous dimension ⌘ ,k defined in (18). We
note that, analogous to the computation of the Yukawa
coupling, the projection onto external momentum plow

also renders the flow on the right hand side complex
valued. Similarly to the Yukawa coupling, the anomalous
dimension is a function of the complex variable (p0 � iµ),
and projecting onto the real part, see (33), keeps all
properties and symmetries intact. This leads to
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Figure 4: Diagrammatic representation of the meson anoma-
lous dimension.

The function FB(4)
(1,2) is defined in Appendix B. In the case

of one quark flavour and for h̄0
k = 0 this equation agrees

with that found in [39]. The diagrammatic representation
of equation (34) is shown in Fig. 3.

The anomalous dimension of the mesons can be either
extracted by taking derivatives w.r.t. � or ⇡. However,
these two options di↵er despite of O(4) symmetry. This
is discussed in Appendix C, and one sees easily that the
�-derivatives are contaminated by contributions propor-
tional to @⇢@tZ. This is similar to the flow of the Yukawa
coupling in the last Section III B where �-derivatives
would lead to @⇢@th-terms. Indeed we could use this dif-
ference in order to evaluate the validity of the present
approximation as the di↵erence of both definitions is pro-
portional to @⇢@tZ. In summary we conclude that the
anomalous dimension is determined by
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,

(35)

where the choice of i = 1, 2, 3 does not matter since the
pions always have O(3) symmetry in this representation.
This leads to
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(36)

The functions BB(4)
(2,2) and F (4)

(n) are defined in Appendix B.

This equation also agrees with [39] for one quark flavour.
We note that the results shown here are obtained us-
ing the optimised regulator shape functions (B2). The
diagrammatic representation of (36) is shown in Fig. 4.

We want to emphasize again that the wave function
renormalisations are defined as the zeroth order of an
expansion about ̄k. From (34) and (36) it is clear that
we can define the wave function renormalisations at any
expansion point. Defining them at ̄k is the consistent
way to define the renormalized couplings related to the
Yukawa coupling and the e↵ective potential since these
couplings are defined at ̄k as well. For the definition of
the physical parameters, e.g. the masses, however, we
make use of the option to freely choose the expansion

q
q

Figure 7.3.: Diagrammatic representation of the quark anomalous dimension.7
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Figure 3: Diagrammatic representation of the quark anomalous
dimension.

parallel to the heat bath di↵er from each other, Z?
k 6=Z

k
k .

For scales above the chiral symmetry breaking scale,
k > k�SB, we have T/k < 1 which implies that thermal

fluctuations are negligible and thus Z?
k>k�SB

⇡ Z
k
k>k�SB

.

In the infrared we have k⌧T . In this regime dimensional
reduction occurs and we approach the three-dimensional
limit. There the finite temperature RG flow is only driven
by the lowest Matsubara modes. The lowest Matsubara

mode for bosons is zero and therefore Z
k
�,k⌧T drops out.

For fermions the lowest Matsubara mode is proportional
to T and thus the fermions with dynamically generated
mass e↵ectively decouple from the flow in the infrared.

Therefore we choose the approximation Zk = Z?
k = Z

k
k ,

which is approximately valid for large scales and hardly
a↵ects the RG flow in the infrared. Hence it should be
a good approximation for calculating the chiral phase
boundary.

The flow of (6) consistent with the expansion scheme
about ⇢ =  has to involve an evaluation of the two-
point function at the expansion point. As the momentum
dependence is covered in a coarse-grained form via the
k-dependence of the Zk’s, we also use the derivative ex-
pansion about the lowest momentum and frequency and
arrive at
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for the anomalous dimension ⌘ ,k defined in (18). We
note that, analogous to the computation of the Yukawa
coupling, the projection onto external momentum plow

also renders the flow on the right hand side complex
valued. Similarly to the Yukawa coupling, the anomalous
dimension is a function of the complex variable (p0 � iµ),
and projecting onto the real part, see (33), keeps all
properties and symmetries intact. This leads to
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Figure 4: Diagrammatic representation of the meson anoma-
lous dimension.

The function FB(4)
(1,2) is defined in Appendix B. In the case

of one quark flavour and for h̄0
k = 0 this equation agrees

with that found in [39]. The diagrammatic representation
of equation (34) is shown in Fig. 3.

The anomalous dimension of the mesons can be either
extracted by taking derivatives w.r.t. � or ⇡. However,
these two options di↵er despite of O(4) symmetry. This
is discussed in Appendix C, and one sees easily that the
�-derivatives are contaminated by contributions propor-
tional to @⇢@tZ. This is similar to the flow of the Yukawa
coupling in the last Section III B where �-derivatives
would lead to @⇢@th-terms. Indeed we could use this dif-
ference in order to evaluate the validity of the present
approximation as the di↵erence of both definitions is pro-
portional to @⇢@tZ. In summary we conclude that the
anomalous dimension is determined by
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where the choice of i = 1, 2, 3 does not matter since the
pions always have O(3) symmetry in this representation.
This leads to
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The functions BB(4)
(2,2) and F (4)

(n) are defined in Appendix B.

This equation also agrees with [39] for one quark flavour.
We note that the results shown here are obtained us-
ing the optimised regulator shape functions (B2). The
diagrammatic representation of (36) is shown in Fig. 4.

We want to emphasize again that the wave function
renormalisations are defined as the zeroth order of an
expansion about ̄k. From (34) and (36) it is clear that
we can define the wave function renormalisations at any
expansion point. Defining them at ̄k is the consistent
way to define the renormalized couplings related to the
Yukawa coupling and the e↵ective potential since these
couplings are defined at ̄k as well. For the definition of
the physical parameters, e.g. the masses, however, we
make use of the option to freely choose the expansion

Figure 7.4.: Diagrammatic representation of the meson anomalous dimension.

Zk=Z⊥k =Z‖k , which is approximately valid for large scales and hardly affects the RG flow in the
infrared. Hence it should be a good approximation for calculating the chiral phase boundary.

The flow of (7.6) consistent with the expansion scheme about ρ = κ has to involve an
evaluation of the two-point function at the expansion point. As the momentum dependence is
covered in a coarse-grained form via the k-dependence of the Zk ’s, we also use the derivative
expansion about the lowest momentum and frequency and arrive at
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8N f NcZq,k
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�
, (7.25)

for the quark anomalous dimension. We note that, analogous to the computation of the Yukawa
coupling, the projection onto external momentum plow also renders the flow on the right hand
side complex valued. Similarly to the Yukawa coupling, the anomalous dimension is a function
of the complex variable (p0 − iµ), and projecting onto the real part keeps all properties and
symmetries intact. This leads to
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(7.26)

The function FB (4)(1,2) is defined in App. C.4. In the case of one quark flavor and for h̄′k = 0 this
equation agrees with that found in [200]. The diagrammatic representation of equation (7.26)
is shown in Fig. 7.3.

The anomalous dimension of the mesons can be either extracted by taking derivatives w.r.t.
σ or π. Here, a similar argument as for the flow of the Yukawa coupling applies and we choose
the following projection:
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where the choice of i = 1, 2, 3 does not matter since the pions always have O(3) symmetry in
this representation. This leads to
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Figure 7.5.: Temperature dependence of the wave function renormalizations in the IR, normalized to
their values in the UV.

The functionsBB (4)(2,2) and F (4)(n) are defined in App. C.4. This equation also agrees with [200]
for one quark flavor. We note that the results shown here are obtained using the optimized
regulator shape functions (C.56). The diagrammatic representation of (7.28) is shown in
Fig. 7.4.

We want to emphasize again that the wave function renormalizations are defined as the
zeroth order of an expansion about κ̄. From (7.26) and (7.28) it is clear that we can define the
wave function renormalizations at any expansion point. Defining them at κ̄k is the consistent
way to define the renormalized couplings related to the Yukawa coupling and the effective
potential since these couplings are defined at κ̄k as well. For the definition of the physical
parameters, e.g. the masses, however, we make use of the option to freely choose the expansion
point and evaluate the wave function renormalizations at the minimum ρ̄0,k, see Sec.7.3.4.

The wave function renormalizations as a function of temperature are shown in Fig. 7.5.
At about the critical temperature Zq,IR exhibits a peak and Zφ,IR shows a tiny kink. This
kink gets more pronounced and turns into a dip for smaller pion masses and ends up as a
non-analyticity in the chiral limit [199]. An interesting observation is that the meson wave
function renormalization falls below its initial value in the UV for temperatures above 200 MeV.
This feature is independent of the choice of the UV value and shows that mesonic degrees of
freedom become less important for larger temperatures in the crossover region and vanish
in the symmetric phase. The inclusion of a dynamical meson wave function renormalization
therefore leads to a consistent picture of the QCD matter sector in the sense that mesons are
only present in the phase with broken chiral symmetry, while they vanish (or rather turn into
auxiliary fields) in the symmetric phase where quarks and gluons are the relevant degrees of
freedom. Note that this is analogue to our previous discussions in Sects. 4.4.4 and 5.3.3, but at
finite temperature.

7.2.4. Convexity for ρ < ρ0 & Behavior for Large Fields

The flows are initiated at a UV cut-off scale k = Λ. There, the initial effective action ΓΛ resembles
the classical Yukawa theory with a φ4-potential and a constant Yukawa coupling. This entails
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that all flows decay in the limit where ρ/k2→∞, and we conclude

∂t h̄k(ρ̄/k
2→∞) = 0 and ∂t V̄k(ρ̄/k

2→∞) = 0 . (7.29)

Hence, neither the Yukawa coupling nor the effective potential are changed during the flow for
large enough fields.

For the convexity discussion it is sufficient to restrict ourselves to the chiral limit. As already
mentioned before, the explicit symmetry breaking does not influence the dynamics of the
fluctuations which are solely responsible for the convexity properties. It is well-known that the
effective potential Vk=0 is convex by construction. It has been shown that the flow equation
is indeed convexity-restoring in the limit k→ 0 and keeps this property in the local potential
approximation, see [201]. This implies in particular, that the the curvature of the effective
potential vanishes for field values smaller than their vacuum expectation value, ∂ 2

φ
Vk=0(ρ<

ρ0) = 0. For non-vanishing cut-off scale, k > 0, only the combination Vk(ρ) + ρRφk (0) is
convex. This property follows directly from its definition as the Legendre transformation of the
logarithm of the generating functional ln Zk[J], evaluated on constant fields and divided by
the space-time volume, for a detailed discussion see e.g. [139]. This entails in particular

V ′k(ρ) + Rφk (0)≥ 0 , V ′k(ρ) + 2ρV ′′(ρ) + Rφk (0)≥ 0 , (7.30)

for the inverse propagator pion and σ-meson propagator respectively at vanishing momentum.
In the chirally broken phase with ρ < ρ0,k we have

V ′k(ρ < ρ0,k)< 0 and V ′k=0(ρ < ρ0) = 0 , (7.31)

with ρ0 is the vacuum expectation value ρ0,k at vanishing cut-off scale, k = 0. Note that (7.31)
also implies V ′′k=0(ρ < ρ0) = 0. Of course, (7.31) entails that the potential V0 is flat (vanishing
curvature) for fields ρ smaller than the vacuum expectation value. Note that for negative V ′

the inverse pion propagator in (7.30) vanishes for V ′ = Rφk (0), and the flow potentially diverges

for Rφk (0)→ 0. However, this divergence is not reached as the increasing flow increases V ′,
see [201] for a discussion of a scalar theory. In Appendix E this discussion is extended to the
present Yukawa theory.

The relation between the negative curvature V ′ and the convexity-restoration in the flow
also implies that only the mesonic fluctuations drive the flows for ρ < ρ0 and k → 0, and
the two sectors effectively decouple. This facilitates the access to the infrared flow of the
fermion propagator in this region studied in detail in Appendix E, which can indeed be derived
analytically. We arrive in particular at

m̄2
q(ρ ≤ ρ0) =

p
2ρ0 h̄(ρ0, 0)

ρ0

ρ
, (7.32)

see (E.19) in Appendix E. In this appendix a momentum-dependent Yukawa coupling h(ρ, p)
has been introduced. In (E.18) it is evaluated at vanishing momentum, h(ρ, 0). This leads to
the inequality

m̄2
q(ρ)≥ m̄2

q,gap , with m̄2
q,gap =

p
2ρ0 h̄(ρ0, 0) , (7.33)

for k = 0, see (E.20) in Appendix E, where we have also used the fact that for ρ > ρ0 the mass
function grows. As a consequence of (7.33) the fermion propagation is gapped with at least
the constitutent quark mass m̄2

q,gap for all fields. In other words, in the chirally broken phase



7.3 Numerical Results 123

0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

r @GeV2D

VHr
L

PDE
Taylor

0.002 0.003 0.004 0.005 0.006 0.007 0.008
0

2

4

6

8

10

r @GeV2D

hHrL

PDE
Taylor

Figure 7.6.: Effective potential (left) and Yukawa coupling (right) at cut-off scale k=0.1MeV within
the Taylor expansion and the full solution of the coupled partial differential flow equations
for ηq,k,ηφ,k, Vk(ρ) and hk(ρ) at T=10 MeV and µ=0. For the Taylor expansion we used
NV = 7 and Nh = 5. Note that the results include the explicit O(4) symmetry breaking via
−cσ.

no mesonic background can turn the fermionic dispersion into a massless one. Note however,
that ρ < ρ0 is no physical choice in the first place.

We finally remark that the same line of argument can also be applied to full QCD and also
holds there. There however, the fermionic mass tends towards the current quark masses for
large meson fields ρ and the minimum in (7.33) has to be restricted to ρ ® ρ0. In the present
model a linearly rising mass was built-in and strictly speaking one should not evaluate the
model for ρ/Λ2� 1 in the first place. The full discussion of QCD is postponed to future work.

7.3. Numerical Results

7.3.1. Initial Conditions

It is left to specify the initial conditions for the relevant parameters λ1,k,λ2,k, h0,k and ck at the
UV-scale Λ for the system of coupled flow equations presented above. As we have mentioned
in Sec. 7.1, the effective UV-cutoff scale Λ has a direct physical meaning in our setting. It is the
scale where the dominant part of the gluonic degrees of freedom has been integrated out and
hadronic degrees of freedom, especially the light mesons, form. There is a certain freedom in
the choice of this scale as long as it is well above ΛQCD and not too large so that fluctuations in
the gauge sector dominate the dynamics.

As discussed in Section 3.2 we have chosen Λ= 700MeV. The relevant parameters of our
model are fixed such that a specific set of vacuum low-energy observables is reproduced in the
in the IR. These observables are the pion decay constant fπ, the renormalized sigma and pion
masses Mσ, Mπ and the constituent quark mass Mq of the degenerate up and down quarks.
The explicit symmetry breaking is related to the pion decay constant and the pion mass via
c̄k = M2

π fπ and the relations of our parameters to the quark and mesons masses are shown in
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(7.14). At a large scale Λ the model is quasi-classical and hence we choose

V̄Λ(ρ̄) =
λ̄

2
(ρ̄ − ν̄)2

h̄Λ(ρ̄) = h̄= const.
(7.34)

The underlying assumption is that at Λ the dynamics are controlled by the leading order
processes, i.e. the four-meson and the quark-antiquark-meson scattering. The higher order
couplings are generated at lower scales k < Λ. We indeed found that the higher order operators,
i.e. v̄n,k with n ≥ 3 and h̄m,k with m ≥ 1 are generated at k ® 400MeV, which is well below
our choice for the UV-cutoff. Since the higher order operators are not present at our initial
scale, the scale where they are generated is a prediction of our model.

In order to reproduce the vacuum IR-observables listed above we used the following initial
values: λ̄ = 71.6, ν̄ = 0, h̄ = 3.6, c̄Λ = 2.1 · 10−3 GeV3. These initial values result in the
following values for the vacuum IR-observables,

fπ = 93.0MeV

Mπ = 138.7MeV

Mσ = 538.2MeV

Mq = 298.3MeV,

(7.35)

which are in good agreement with their values provided by the Particle Data Group [96]. We
identify theσmeson with the scalar resonance f0(500) here. The initial values of the parameters
for the present computations are chosen such that they reproduce the vacuum physics displayed
in (7.35) for T,µ = 0 and vanishing cut-off for the fully field-dependent effective potential
V̄k(ρ̄) and Yukawa coupling h̄k(ρ̄), including running wave function renormalizations Zφ,k and
Zq,k. With the convergence pattern discussed in the next section it is sufficient to use NV = 7
and Nh = 5 in the expansions (7.7) and (7.8), and fix the initial parameters for these values.

The bare expansion point κ(T,µ) is chosen to be scale-independent. We take it close to the
IR-minimum of the effective potential for every temperature and chemical potential:

κ̄IR(T,µ) = (1+ ε) ρ̄0,IR(T,µ), (7.36)

where ε > 0 gives a small offset that guarantees that κ̄(T,µ) is always slightly larger than
the minimum of the effective potential ρ̄0,k and does not lie in the flat region of the convex
effective potential Vk=0. It can be read-off from Fig. 7.11 that a quantitative agreement of the
physics results is obtained for expansion points in the range

0≤ ε® 1 . (7.37)

This self-consistency check within the present expansion scheme is impressively sustained by the
comparison with the full solution of the system of partial different equations for Vk(ρ), hk(ρ),
ηφ,k(κ̄) and ηq,k(κ̄), see Fig. 7.6. The region where the results from the Taylor expansion and
the full solution of the partial differential equation agree give an estimate for the radius of
convergence of the Taylor expansion. This is in agreement with the study of the robustness of
the expansion in Sec. 7.3.4 and in particular with Fig. 7.11.
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Figure 7.7.: The normalized chiral order parameter as a function of temperature for different orders in
the expansion of the effective potential (left) and the Yukawa coupling (right).

7.3.2. The Impact of Higher Order Mesonic Interactions

The effect of higher order mesonic operators is studied within a Taylor expansion of the effective
potential and the field dependent Yukawa coupling, see section 7.1.2. This is done by comparing
the results of the chiral order parameter for different orders NV and Nh in the expansions (7.7)
and (7.8) of the effective potential and the field dependent Yukawa coupling. In Fig. 7.7 we
show the effect of increasing NV and Nh on the chiral order parameter ρ̄0,IR as function of
temperature for three different chemical potentials.

First of all, we clearly see spontaneous chiral symmetry breaking. Owing to the explicit
symmetry breaking, the chiral condensate is very small, but nonzero at large temperatures.
By lowering the temperature, the fluctuations of the light current quarks drive the system
continuously towards the broken phase. As the value of the chiral condensate increases, the
quarks receive more and more constituent mass while the pions get lighter until quarks and
mesons decouple at low temperatures where the flow stops and the system ends up in the
stable phase with broken chiral symmetry. The quark and meson masses as a function of
temperature at µ = 0 are shown in Fig. 7.8. Note that the decreasing slope of the meson masses
at temperatures T ¦ 250 MeV is a result of thermal fluctuations which become of the order of
the UV-cutoff Λ in this region. This is discussed in detail in [184].

With increasing quark chemical potential, quark fluctuations are enhanced and the crossover
gets steeper while the transition moves towards smaller temperatures as a result of the higher
quark density.

Note that since the transition is a cross-over the actual value of the critical temperature Tc
depends on the the definition of the crossover. In this case it is only sensible to speak about a
transition region. Therefore the full temperature and chemical potential dependence of the
observables used to define the critical temperature plays a more important role than the specific
critical values.

The left panel in Fig. 7.7 shows the chiral order parameter in the IR normalized to the pion
decay constant for different orders NV = 2, 3, 5, 7 of the expansion of the effective potential
for µ= 10MeV, 200MeV, 270MeV and a fixed order Nh = 2 in the expansion of the Yukawa
coupling. Note that we chose Nh such that Nh ≤ NV for numerical stability. While ρ̄0(T)
is hardly affected by different NV in the broken phase at small temperatures, we see a large
difference between the φ4 and the φ14 expansion in the lower region of the crossover transition.
This effect gets more pronounced for larger chemical potentials. There is a very good agreement
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Figure 7.8.: Quark, pion and sigma mass as a function of Temperature for vanishing chemical potential.

between the order parameter for NV = 5 and NV = 7 which implies that the expansion of the
effective potential at order NV = 5 has converged to a precision of the critical temperature below
1 MeV. We explicitly checked that larger orders in the expansion do not spoil this observation.
Note that the convergence pattern of ρ̄0(T ) is qualitatively the same as ρ̄k(0) shown in Fig. 3.4.

The effect of the expansion of the field dependent Yukawa coupling on the chiral condensate
is shown in the right panel of Fig. 7.7. The difference between the usual running Yukawa
coupling Nh = 0 and the expansion of order Nh = 5 is at about 8% which results in a difference
of 8−10 MeV in the critical temperature. The expansion of order Nh = 4 seems to be converged
to a precision of the critical temperature below 1 MeV. We observed that larger chemical
potential slows down the convergence of the Yukawa coupling. This behavior is expected since
a larger chemical potential effectively increases quark fluctuations and thus the systems is more
sensitive to the details of the quark-meson interactions.

We see that the particular meson-meson and quark-meson interactions we have chosen here
have a large quantitative effect on the chiral order parameter. Moreover we nicely see that
these higher order operators a become increasingly irrelevant with increasing order of the
meson fields and that our expansion converges rapidly, especially for not too large chemical
potential. This implies in particular that we have the full effective potential as well as the full
field-dependent Yukawa coupling in this region. To demonstrate this, we solved the coupled
partial differential flow equations of Vk(ρ), hk(ρ), ηφ,k(κ̄k) and ηq,k(κ̄k) and compared the
result to the one obtained with the expansion employed in this work, see Fig. 7.6.

Note that, as expected, the couplings with negative mass dimension run into a Gaussian fixed
point in the IR but certainly play a role at intermediate scales. Furthermore, it is obvious that a
low-order expansion is not sufficient in order to obtain a high degree of quantitative precision.

7.3.3. Phase Diagram

Phase Structure

For the computation of the phase diagram, we expand the effective potential up to order
NV = 7 and the Yukawa coupling up to Nh = 5. According to the previous section, these orders
guarantee that both expansions converged to a precision below 1 MeV, at least in the crossover
region. The resulting phase diagram in the (T,µ)-plane is shown in Fig. 7.9. The crossover
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Figure 7.9.: The phase diagram of the chiral transition including the different definitions of the crossover
transition line we used. We only show the first order transition up to µ = 310MeV since
our expansion is not fully converged for larger µ.

transition temperature is not uniquely defined and therefore depends on the observable used
to define it. Basically any observable that exhibits a non-differentiable behavior at the critical
temperature in the chiral limit, where the transition is of second order, can be used to define
the crossover transition temperature. Here we use the following three definitions:

(i) The inflection point of the chiral order parameter as a function of temperature,

min
T

�
∂ ρ̄0,IR

∂ T

�
. (7.38)

(ii) The minimum of the quartic meson coupling at the physical point,

min
T

¨
∂ 2V̄IR(ρ̄)
∂ ρ̄2

����
ρ̄=ρ̄0,k

«
. (7.39)

(iii) The maximum of the chiral susceptibility (7.17),

max
T

�
χq̄q

	
. (7.40)

The definition (i) is commonly used in RG-studies of the phase diagram, while susceptibilities
as in (iii) are typically used in lattice gauge theory. The exact location and in particular the
curvature of the phase boundary obviously depend on the definition of the crossover. Note,
however, that all the definitions above exactly agree in the chiral limit.

We observe a large difference of about 40 MeV in the critical temperature at small and
intermediate chemical potential between definitions (i) and (iii), while (i) and (ii) give similar
phase boundaries. These differences are related to the fact that we have a very broad crossover
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in this region and the notion of a phase transition line is certainly not well defined there. At
large chemical potential close to the critical point the crossover lines merge and give a uniquely
defined phase boundary. This behavior is expected since the crossover gets steeper towards the
critical point and the first-order transition is uniquely defined. We find the critical endpoint at
(TCEP,µCEP) = (50, 291)MeV. The critical endpoint here is at substantially smaller temperatures
as in mean-field studies, see e.g. [119]. This nicely demonstrates the effect of fluctuations on
the phase boundary. The critical temperatures at vanishing chemical potential for the different
definitions of the crossover transition are show in table 7.1. A further definition of a cross-over

boundary def. Tc [MeV]

(i) 166

(ii) 156

(iii) 196

Table 7.1.: Critical temperatures at vanishing quark chemical potential for the different definitions of
the crossover phase boundary we used in this work (see text).

temperature in the literature is given by the temperature where the value of the normalized
order parameter is half of that at vanishing temperature, ρ0,IR(T,µ)/ρ0,IR(0,0) = 0.5. Here
we only note that the critical temperature at µ=0 is Tc=152 MeV and the transition line is
systematically below the lines shown in Fig. 7.9. This behavior is in contrast to studies of the
quark-meson model in the local potential approximation, where this phase boundary is always
slightly above the boundary defined by (i), see e.g. [196].

The inclusion of running wave function renormalizations decreases the critical temperature.
This is a consequence of a growing quark wave function renormalization in the symmetric
phase close to the phase boundary. As we see from Fig. 7.5 bot, Zφ(T) and Zq(T) grow in
this region. In both cases, this leads to a decrease in the corresponding masses. While lighter
mesons imply stronger symmetry-restoring bosonic fluctuations which lead to an increasing Tc ,
lighter quarks give stronger symmetry-breaking fermionic fluctuations, resulting in a steeper
transition and smaller Tc . Since the quarks are the dominant degrees of freedom above Tc , the
latter effect prevails and Tc decreases when running wave function renormalizations are taken
into account. This is shown in Fig. 7.10.

In turn, the transition temperature is increased if a the running Yukawa coupling is taken into
account. The flow of the Yukawa coupling is always positive and thus, hk decreases towards
the IR. This has the effect that the quarks are heavier at larger temperatures as compared to
the case with constant Yukawa coupling. Consequently, Tc increases due to suppressed quark
fluctuations. This is also shown in figure 7.10. Note that we used the initial conditions specified
in 7.3.1. This ensures that for every truncation used in figure 7.10 we start with the same
effective action at the initial scale Λ. This approach is motivated by the fact that in principle
the initial conditions at Λ are uniquely defined by the solution of full QCD at scales k ≥ Λ.

Curvature

In order to determine the curvature of the chiral phase boundary, we compute Tc(µ)/Tc(0) in
a range 0 ≤ µ/(πTc(0)) ® 0.1 and extract the curvature of the phase boundary at vanishing
chemical potential from these results. At small chemical potential the phase boundary can be
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Figure 7.10.: Comparison of the phase boundary for different truncations of the quark-meson model.
The solid blue line corresponds to the local potential approximation (LPA), i.e. a truncation
with only a running effective potential. For the dashed red curve also a running (field-
independent) Yukawa coupling was taken into account and for the dotted orange curve we
have running quark and meson wave function renormalizations and the effective potential,
but a constant Yukawa coupling. The dot-dashed gray curve shows the full result of our
model. Here, we defined the crossover transition via definition (i), see text.

expanded in powers of µ2 as follows:

Tc(µ)
Tc(0)

= 1− κµ
�

µ

πTc(0)

�2

+O
��

µ

πTc(0)

�4�
. (7.41)

The curvature κµ depends on the number of colors Nc, the number of quark flavors N f and the
current quark mass or the pion mass respectively, see e.g. [154]. But since all those parameters
are fixed in the present work, we do not study the effect of variations of them. For a crossover
transition the curvature depends on the definition of the phase boundary. For our result in
comparison with lattice results and other RG calculations see table 7.2.

We extracted the curvature from a fit of the phase boundary according to (7.41) for µ ∈ [0, 20]
MeV. The errors result from fits with polynomials of the order µ2, µ4, µ6.

Compared to the curvature found in [203], the inclusion of higher order mesonic scattering
processes and dressed quark and meson propagators does not change the curvature much. This
is related to the observation that running wave function renormalizations and the running
Yukawa coupling have opposing effects on the phase boundary, see also Fig. 7.10.

Owing to our findings in the previous section we certainly need to use the same definition of
the phase boundary as in [202] in order to do a sensible comparison with the lattice results.
But since they used the plaquette susceptibility for the definition of the critical temperature, a
direct comparison is difficult since gluonic quantities are not directly accessible in our model.
We therefore displayed the results for the curvature for different boundary definitions. We see
that while the curvatures extracted from the chiral order parameter and the chiral susceptibility
are very similar but much larger than the lattice results, the curvature from the quartic meson
coupling is close the lattice result. We see that these results very much depend on the specific
definition of the crossover temperature, in line with our findings in the previous section.
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Method Boundary def. Mass κµ

Lattice: iµ [202] plaquette susc. am= 0.025 0.500(54)

FRG: LPA [151] minT {ρ′0(T )} chiral limit 1.135

FRG: LPA [203] minT {ρ′0(T )} mπ = 138 MeV 1.375(63)

this work: LPA maxT {χq̄q} mπ = 138 MeV 1.397(1)

this work:
full model
(7.1)

minT {ρ′0(T )}
mπ = 138
MeV

1.397(2)

maxT {χq̄q} 1.418(13)

minT {V̄ ′′(ρ̄0)} 0.794(1)

Table 7.2.: This table shows the curvature of the chiral phase boundary for N f = 2 quark flavors obtained
from various methods. am is the lattice spacing times the degenerate current quark mass.
The last three rows correspond to the different boundary definitions we employed in this
work.

We note that it was observed for QM-model studies that the curvature increases with increas-
ing pion mass [203], which explains the difference between the curvature found in [151] and
in [203], where very similar truncations were used but one in the chiral limit and the other at
realistic pion masses. This is in contrast to the general expectation that the system gets less
sensitive to the chemical potential for larger current quark mass.

7.3.4. Background Dependence

Here we analyze the stability of the fixed background expansion in the present case. As a
byproduct, we can extract informations about the field dependence of the wave function
renormalizations.

Instead of doing an expansion about the scale-dependent minimum of the effective potential
ρ0,k, we expand the non-renormalized theory about a scale-independent field configuration κ.
Technically, the advantage is that there is no unnecessary feedback from the expansion point
into the flow of higher order operators. In an expansion about the minimum of the effective
potential the flow of the minimum feeds back into the flow of every higher order operator, see
the discussion below (7.15). This feedback slows down numerical computations and potentially
leads to numerical instabilities. But even though the minimum certainly is a distinct point in
the effective potential, it is by no means distinct in the flow of the effective potential. The same
holds true for the flow of the effective action in general. In principle it is therefore irrelevant
whether one solves the flow equations with an expansion about ρ̄0,k or any other point in
field space. ρ̄0,k can always be extracted from V̄k(ρ̄) from eq. (7.16) and enters the physical

parameters such as the physical masses, m̄(phys)
k = m̄k(ρ̄0,k).

There are two main restrictions we have for the choice of the expansion point κ. The first and
most important is that κ always has to be larger or equal to ρ0,k for small k. The reason is that
for k→ 0 the effective potential becomes a convex function of ρ which is flat for ρ < ρ0,k=0
and we can not expect to capture the relevant features of the theory with an expansion in a
potentially flat region of the potential, especially since all the physical information is stored
in the effective potential and its derivatives at the minimum. However, we can extract all
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Figure 7.11.: Dependence of the IR-observables on the offset parameter ε. Our results for the observables
are very robust with respect to variations of the expansion point if we take the corrections
(7.43) into account, implying a high degree of convergence of our expansion.

the information we need at much larger scales since the RG-flows of the physical parameters
stop at k ≈ mπ. The remaining flow for k < mπ flattens the potential but leaves the physical
parameters unchanged.

Observables are extracted at the minimum of the potential at ρ̄0,IR(T,µ). The present
approximation has field-independent wave function renormalizations. This introduces an error
which increases with the distance of the expansion point to the minimum. Consequently this
leads to a finite radius of convergence in ρ about the minimum, leave aside general convergence
issues of the present Taylor expansion. Hence the expansion point should not be too far away
from the physically relevant region. This is assured by choosing the expansion point close to
the temperature and chemical potential dependent IR-minimum:

κ̄IR(T,µ) = (1+ ε) ρ̄0,IR(T,µ), (7.42)

where ε is a small offset parameter.
The requirement of small ε is at least reduced qualitatively if we would also take field-

dependent wave function renormalizations into account. In this work we only have considered
wave function renormalization evaluated at the expansion point, see eq. (7.6). Even though
this is consistent with our expansion and the proper way to define RG-invariant couplings
which are also defined at the expansion point, we expect some residual effects of the constant
wave function renormalizations on the physical quantities that are defined at the minimum
of the effective potential. In order to partially compensate for this mismatch, we redefine the
renormalized IR-observables as follows:

f̄ (r)π =
q

Zφ,IR(ρ̄0,IR)/Zφ,IR(κ̄IR) f̄π,

M (r)
φ
=
q

Zφ,IR(κ̄IR)/Zφ,IR(ρ̄0,IR)Mφ ,

M (r)q =
�
Zq,IR(κ̄IR)/Zq,IR(ρ̄0,IR)

�
Mq.

(7.43)

Zφ/q,IR(ρ̄0,IR) corresponds to the wave function renormalizations at the IR minimum of the
effective potential. It is obtained from integrating the anomalous dimensions (7.26) and
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(7.28) at the physical point on the solution of the system at κ̄. This ensures that the physical
quantities are renormalized at the physical point in the IR and furthermore allows us to examine
the robustness of our expansion even though we work with field-independent wave function
renormalizations. For the sensitivity of our results on ε with this correction, see Fig. 7.11.
We see that the present expansion is surprisingly robust, even though we dropped the field-
dependence of the wave function renormalizations. This observation is also reflected in Fig. 7.6.
Furthermore, given the fact that we only made a simple adjustment to the wave function
renormalizations in order to define the physical observables, the robustness of our expansion
already implies only a mild dependence of the wave function renormalizations on the meson
fields. In the expansion (7.4) the zeroth order term certainly depends on the expansion point
but already the first order seems to give only a small correction, otherwise we would see a
much stronger dependence on the expansion point in Fig. 7.11.

7.4. Conclusions

In this Chapter we have investigated the impact of higher order mesonic scattering processes
on the matter sector of two-flavor QCD at finite temperature and quark chemical potential.
Quantum, temperature and density fluctuations have been taken into account within a renor-
malization group analysis of a quark-meson model. In particular, we have introduced for the
first time a meson-field dependent Yukawa coupling. The effect of higher order meson-meson
and quark-meson operators has been systematically studied by expanding both the Yukawa
coupling and the effective potential in orders of the meson fields. These higher order operators
play a quantitatively important role for the chiral phase transition. Furthermore, we observed
that these operators become increasingly irrelevant with increasing order of the meson fields,
see Fig. 7.7. This indicates a rapid convergence of the expansion scheme we used and allows
us to have certain control over the quantitative precision of our results.

We have computed the phase diagram of the chiral transition at finite temperature and
quark chemical potential, see Fig. 7.9. Owing to the explicit O(4)-symmetry breaking which is
directly related to finite current quark masses we see a broad crossover phase transition for
µ < 291 MeV. Crossover temperatures cannot be defined uniquely. In the present work we have
compared standard definitions for the phase boundary and the corresponding temperatures
show the expected large deviations. In particular this implies large differences in both the
critical temperature at vanishing chemical potential and the curvature. In the chiral limit, all
definitions provide the same results.

At large chemical potential close to the critical point the phase boundary is again uniquely
defined since the crossover gets steeper in this region. Even though we employed a local
expansion of the effective potential in this work, our particular expansion scheme allowed
us to resolve some global features of the effective potential. This way we could capture the
first order phase transition for not too small temperatures and we found a critical endpoint at
(TCEP,µCEP) = (50, 291)MeV.

Note, however, that at large chemical potential and small temperatures quark-meson models
in the present approximation are not expected to give an accurate description of the QCD phase
structure since diquark and baryonic fluctuations should play an important role in this region.
Within the present approximation they are only taken into account implicitly, the improvement
of the present work in this direction will be discussed elsewhere.
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Summary, Conclusions & Outlook

We have studied various aspects of the chiral phase transition of QCD within a functional
renormalization group framework. The possibility to interpolate between the microscopic
and the macroscopic regime of the theory in terms of renormalization group flows makes
the FRG a well-suited tool to study the complex phenomena involved in the chiral dynamics
of QCD. It allows us to describe the dynamical transition from the high-energy phase with
quarks and gluons, to the low-energy phase dominated by hadrons. We have argued that the
foundation of such an approach is the good understanding of the hadronic and the gauge sector
separately, as well as their mutual back reaction. The key ingredient to establish the dynamical
connection between these distinct sectors is the dynamical hadronization technique. It is a
practical implementation of the intuitive idea that, since hadrons are bound states of quarks
and gluons which emerge from the underlying dynamics of the latter, they are in fact RG-scale
dependent quantities.

We have extended this technique to the case of fully dynamical two-flavor QCD in Chap. 4.
On the basis of the gluon and ghost propagators of the pure gauge theory, we self-consistently
incorporated the effects of quark fluctuations to the gauge sector and studied in detail how the
hadronic regime emerges during the RG-flow of the system to low energy scales. We computed
the unquenched guark and gluon propagators, which nicely reflect the screening effects of
dynamical quarks. As we have explained in detail in Sec. 2.4, chiral symmetry breaking can
be traced back to the gauge coupling reaching criticality. Owing to the screening due to
quark fluctuations, the growing of the gauge couplings gets damped and consequently, chiral
symmetry breaking occurs at lower energy scales for smaller quark masses and in particular
as compared to quenched QCD. Our result for the unquenched gluon propagator also shows
that the gluon mass gap is decreased with increasing quark fluctuations. We have explicitly
computed the running quark-gluon, three-gluon and ghost-gluon gauge couplings. Furthermore,
we demonstrated that meson fluctuations start to become relevant at momentum scales of about
800MeV. Their properties are uniquely fixed by the undelying quark-gluon dynamics. The
reason is the occurrence of an IR-attractive fixed point in the regime of small gauge coupling,
which erases the memory of the system about the initial meson interactions. Thus, the IR-
parameters of the mesons, such as their masses, come out as predictions of our computation.
We only have to fix microscopic parameters of QCD at large energies, i.e. the strong coupling
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and the current quark mass, in order to fix all other parameters of the theory, in particular
the rather large number of meson parameters in the IR. We have pointed out that the running
wave function renormalizations of the mesons play a crucial role for the fate of the mesons
in our setting. With growing energy scale, they fall-off many orders of magnitude as a result
of dominant quark fluctuations in the transition region. This triggers a rapid growth of the
meson masses at large energy scales which drives their values above the cutoff scale. Thus,
the mesons decouple completely and become mere auxiliary fields in the high-energy regime.
In fact, we have shown that their RG-flow is exclusively driven by the running of the wave
function renormalizations in the quark-gluon regime. This has the consequence that the meson
masses can unambiguously be identified from the flow.

The next important step is generalization of this study to finite temperature and density in
order to explore the phase structure. The results from low-energy model studies of the phase
diagram for the curvature of the phase boundary at vanishing density are much too large as
compared to lattice results. Various studies (also Chap. 7 in the present work) indicate that
this discrepancy is not rooted in the hadronic sector itself, but in the neglected back reaction of
the gauge sector (see e.g. [154] for a first study in this direction). Thus, generalizing our study
in Chap. 4 is certainly worthwhile. We also briefly mentioned the connection between the mass
gap, which signals confinement, and the fluctuations of the quarks. This, in turn, is another
sign for the connection between confinement and chiral symmetry breaking and we can use
the framework presented here to gain further insight into this in the future.

These findings were subsequently used as the basis for an investigation of the vacuum
structure of vector mesons in QCD in Chap. 5. We pointed out that the light vector mesons,
and in particular the ρ meson, play a predominant role in experimental studies aiming at the
exploration of phase structure of QCD. The reason is that experimental data, in particular
dilepton spectra, show significant in-medium modifications of the ρ meson. A thorough
theoretical understanding of the behavior of the rho meson in the vicinity of the chiral phase
transition therefore facilitates the identification of chiral symmetry restoration in heavy ion
collisions. The framework we put forward in the previous chapter is well-suited to gain insights
into the structure of vector mesons, since it uniquely derives from QCD and we do not have
to rely on model parameter fine-tuning. We therefore developed a scale-dependent effective
action to study the properties of the chiral partners ρ and a1. We found that the ρ mass first
slightly decreases with increasing energy scale towards the chiral transition, before it increases,
in particular in the vicinity of the pseudocritical scale. However, the overall scaling of the mass
is well approximated as constant for the bigger part of the hadronic regime. This confirms the
findings in effective model studies. Furthermore, we have shown that there is an intriguing
scale hierarchy in the vacuum: The dynamics of the heavier mesons are completely determined
by the dynamics of the lightest meson, the pions and the rho meson at low energies. ρ and a1
fluctuations are completely decoupled over the full range of scales. Thus, within an Euclidean
formulation in the vacuum, it is sufficient to compute the properties of the lightest mesons. The
properties of all the other mesons can be inferred from pion and sigma dynamics at low energy
scales and quark-gluon dynamics at large energy scales. Since the low-energy parameters are
uniquely fixed from quark-gluon fluctuations, we were able to test the assumption of vector
meson dominance. Our results show that, even though VMD is a rather drastic simplification
of the dynamics of the vector mesons, it can lead to results within about 15% accuracy at low
energies. This is in line with phenomenological findings.

We are currently working on the generalization of this study to finite temperature and density.
This will allow us to study the in-medium modifications of the vector mesons. Furthermore,
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recent developments show that analytic continuation within the FRG, e.g. along the lines
of [204], is feasible and, based on our study presented here, the computation of ρ and a1
spectral functions is within reach. This will then become highly relevant for the interpretation
of experimental results.

Since we have access to both, the quark- gluon and the hadronic regime, we were able
to analyze the back reaction of the gauge sector on the hadronic sector in Chap. 6. This is
particularly relevant for low-energy effective models of QCD, since they neglect fluctuations of
the gauge sector and therefore rely on a rapid decoupling of gluons at low energies. We found
that the effect of gluon fluctuations extends to rather small energy scales in a quark-meson
model, even below the scale of chiral symmetry breaking if one is interested in observables
related to the constituent quarks. It is therefore a delicate issue to completely discard the
effects of gluon fluctuations in QM-like models. Furthermore, we investigated the relevance
of dynamical hadronization for such low-energy models. Our results show that dynamical
hadronization does not need to be taken into account at vanishing temperature and density in
these models, since they only lead to corrections below the 1% level. We have demonstrated
that it is worthwhile gain a better understanding of the region where both, hadron and gluon
fluctuations are quantitatively important and the brief analysis presented here should be
extended in the near future.

We mentioned above that in order to arrive at a complete picture of the QCD phase structure,
it is also important to have a good understanding of the hadron and the guark-gluon sector
separately. We therefore studied the hadronic sector of QCD and in particular the phase diagram,
at finite temperature and density in terms of a quark-meson model in Chap. 7. We would like to
emphasize that the findings of the previous chapter do not render such efforts futile. The purely
hadronic sector is always an integral part of the effective action of QCD and relevant parameters
in this isolated sector will certainly remain relevant in full QCD, including the back reaction of
the gauge sector. We note that we implicitly demonstrated this in Chap. 4, since our truncation
of the effective action in the hadronic sector is based on our findings in Chap. 7. We studied the
effect of higher order quark-meson scattering processes on the phase diagram of QCD. To be
able to do this in a well-controlled way, we had to rely on the fixed background expansion we
discussed in Sec. 3.4. There, we pointed out that owing to the resulting structure of the flow
equations in this expansion, it shows superior convergence properties of QM-type models. With
this, we have shown that higher order quark-meson interactions are quantitatively important
for the chiral phase boundary of QCD and it is therefore necessary to take them into account if
one is interested in quantitative precision. We then computed the QCD phase diagram in the
temperature-density plane. Owing to the wide crossover transition at small and intermediate
quark chemical potential, a unique definition of the critical temperature is impossible and we
explicitly demonstrated that different order parameters lead to rather different positions of the
phase boundary. However, the transition region becomes narrower with increasing chemical
potential and we found a critical endpoint at (TCEP,µCEP) = (50,291)MeV. For chemical
potential larger than µCEP, the transition is of first order. We computed the curvature of the
phase boundary at vanishing density for various definitions of the critical temperature. Even
though the results strongly depends on the specific definition, we see large a rather large
discrepancy with lattice results. However, as our study indicates, this discrepancy can most
likely not be explained by missing relevant hadronic degrees of freedom. Its origin presumably
lies in the neglected back reaction of the gauge sector, as also mentioned above. Furthermore,
we presented a detailed analysis of the effects that the individual parts of our truncation have
on the phase boundary. Quark-meson interactions increase the critical temperature, while the
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effects of running wave function renormalizations decreases it.
Presently, the studies of the QCD phase structure based on low-energy models with the FRG

are lacking one crucial ingredient: diquarks and baryons. They will certainly become relevant
at large densities and it is therefore important to include them in the near future.



Appendix





APPENDIX A

Field Space

Here we fix the conventions concerning the field space indices. Since the field space in general
contains also Grassmann valued fields, multi-field notation requires a non-trivial metric. For
the multi-field Φ= (φ, q, q̄, A, c, c̄)T it reads:

(γab) =




1 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 −1 0




. (A.1)

This is a result of the requirement:

ΦaΦa = Φbγ
abΦa =

∫

Rd

�
φ2 + 2q̄q+ A2 + 2c̄c

�
. (A.2)

The delta-distribution in position space is always implicitly contained in γ. Furthermore,
integration is implied for contractions. Note that this only applies to the field-space components
of the fields. For all other components, the matrix is the identity. This definition entails in
particular that

Φa = γabΦb = (φ, q̄,−q, A, c̄,−c). (A.3)

We use the NW-SE convention, which means that indices are always raised from the left and
lowered from the right,

Φa = γabΦb = Φbγ
ab, Φa = Φ

bγba = γbaΦ
b. (A.4)

This definition implies

γ b
a = γ

bcγac = γ
cbγca = δ

b
a (A.5)

γa
b = γ

acγcb = γ
caγbc = (−1)abδa

b, (A.6)
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where

(−1)ab =

¨
−1 if a and b fermionic

1 else
. (A.7)

Since we always take derivatives from the left, some caution is necessary concerning the order
of the field space element, e.g.

δ

δΦb
JaΦa =

δ

δΦb
ΦaJa =

δ

δΦb
Φaγ

daγcdJc =
δ

δΦb
Φaγ

a
cJc = γb

cJc. (A.8)



APPENDIX B

Diagrammatic Derivation of Flow Equations

Here we want to outline the diagrammatic way to derive flow equations. This is the basis for
algorithms that automatize their derivation. This is usually a three step process. First, one
needs to specify a projection procedure, i.e. a concrete way to extract the scale derivative of a
coupling from the scale derivative of the effective action. This the most crucial step, since it
actually defines the running coupling. How to extract the running coupling from the effective
action is in general not unique. However, even though a simple inspection of the truncation
(i.e. the left hand side of the flow equation) seems to indicate that different projections give
the exact same result, the right hand side of the flow equation often gives different results.
Examples we encounter during this thesis are e.g. the flow of the Yukawa coupling or the meson
anomalous dimension. Thus, a running coupling is not defined by specifying the truncation
alone, it furthermore needs a projection prescription in order to be uniquely defined. Note that
different projection procedures may be related by the symmetries of the system. In this case,
they should give the same answer, of course.

The projection usually involves functional derivatives of the Flow. The second step is to derive
the diagrams that are generated by the functional derivatives that act on the flow equation.
Since the flow itself is one-loop and 1PI by construction, this results in various 1PI one-loop
diagrams. The third step is to derive the Feynman rules of the truncation and evaluate the
diagrams, i.e. perform the traces and eventually the loop-momentum integration.

This strategy is basically the same as in ordinary perturbation theory. The beautiful thing is
that only 1PI one-loop diagrams are involved, so, unlike in perturbation theory, we are always
dealing with trivial topologies of the diagrams. The price to pay is of course that usually all
parameters in the diagrams are RG-scale dependent, so one always has to solve a tower of
coupled differential equations for every scale dependent parameter of the truncation.

In this thesis, we heavily relied on this procedure for the derivation of the flow equations.
Our projections are defined either in the main text or in the following appendices. Step three,
the evaluation of the diagrams, usually involves algebra and there are many computer algebra
systems around to do some of the work. Here, we want to outline the diagrammatics. We
note that there is a package based on the computer algebra software Mathematica for the
derivation of Feynman rules and the diagrams for FRG as well as DSE comutations, called
DoFUN, available online [205].
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To keep the discussion general, we employ the field-space notation used in Sec. 3.2 and
App. A. This allows us to derive a general formula for functional derivatives of any propagator
with respect to arbitrary fields. First, we note that

δ

δx
Gab =

�
δ

δx
Gab

�
+ (−1)ax(−1)bxGab

δ

δx
, (B.1)

because commuting the functional derivative and the propagator always gives a minus if x is
fermionic and the propagator has exactly one fermionic index. We omit the explcit RG-scale
index for the sake of legibility. Second, we know from (3.13)

Gac

�
Γ (2) + R

�cb
= γb

a . (B.2)

These are the ingredients for the following derivation:

δ

δx
γb

c = 0=
�
δ

δx
Gac

��
Γ (2) + R

�cb
+ (−1)ax(−1)cxGacΓ

xcb. (B.3)

Commuting x and c in the vertex cancels (−1)cx. We can further rewrite this as
�
δ

δx
Gac

�
δcd = −(−1)axGacΓ

cxb
�
Γ (2) + R

�−1
bd . (B.4)

If we rewrite the last factor in terms of the propagator, we arrive at our final equation

δ

δx
Gad = −(−1)axGacΓ

cxbGedγ
e
b. (B.5)

We can use this to easily derive closed formulas for arbitrary functional derivatives for any kind
of propagator. Also here, we see that whenever a derivative hits a propagator, we become two
propagator and a three-point function. If it hits a vertex, it simply attaches a new leg to it,
e.g. it turns a three- into a four-point function. Thus, a two-point function, i.e. two functional
derivatives action on the flow equation, we find:

δ2

δyδx
Gab Ṙab =

δ

δy

¦
−(−1)axGacΓ

cxdGebγ
e
d Ṙab

©

= +(−1)ax(−1)ayGafΓ
fygGhcγ

h
gΓ

cxdGebγ
e
d Ṙab

− (−1)ax(−1)ayGacΓ
cyxdGebγ

e
d Ṙab

+ (−1)ax(−1)ay(−1)xy(−1)dy(−1)eyGacΓ
cxdGefγ

e
dΓ

fygGhbγ
h

g Ṙab.

(B.6)

To illustrate this, let us look at the flow of a scalar field φ,

Γ̇k[φ] =
1
2

Tr
�
Gk[φ] Ṙk

�
=

1
2

(B.7)

The first functional derivative yields according to our findings above

δΓ̇k[φ]
δφ

= −1
2

Tr
�
Gk[φ]Γ

(3)
k [φ]Gk[φ] Ṙk

�
= −1

2
, (B.8)
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and the second finally

δ2Γ̇k[φ]
δφ2

= Tr
�
Gk[φ]Γ

(3)
k [φ]Gk[φ]Γ

(3)
k [φ]Gk[φ] Ṙk

�
− 1

2
Tr
�
Gk[φ]Γ

(4)
k [φ]Gk[φ] Ṙk

�

= − 1
2

.

(B.9)

We see that we always get a simple one-loop expression that can easily be evaluated with the
Feynman rules of the corresponding truncation, i.e. the algebraic expressions for the propagators
and vertices. For more species of fields, including fermions, there may be additional minus
signs involved, but the general procedure is always the same. The equations we derived above
in the field-space formalism hold for any kind of field.





APPENDIX C

Flow Equations

In this appendix we give some explicit details about the flow equations.

C.1. QCD Flows

Here, we collect the threshold functions which enter the flow equations in Chap. 4 and en-
code the regulator and momentum dependence of the flows. Note that it is here, where the
substitution ηφ,k→ ηφ,k − 2˙̄Bk has to be made according to (4.61).

Throughout this work, we use 4d regulator functions of the form:

Rφk (p
2) = Zφ,k p2rB(p

2/k2) ,

Rq
k(p

2) = Zq,k γµpµrF (p
2/k2) ,

RA ,µν
k (p2) = ZA,k p2rB(p

2/k2)Π⊥µν(p) ,

(C.1)

with the transverse projector

Π⊥µν(p) = δµν −
pµpν
p2

. (C.2)

Note that in the approximation at hand the ghost regulator does not enter. The optimized
regulator shape functions rB/F (x) are given by [149]:

rB(x) =
�

1
x
− 1

�
Θ(1− x) ,

rF (x) =
�

1p
x
− 1

�
Θ(1− x) .

(C.3)

The threshold functions for the effective potential, the Yukawa coupling and the four-quark
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coupling are:

lB
n (m̄

2
B;ηB) =

2(δn,0 + n)

d

�
1− ηB

d + 2

�
(1+ m̄2

B)
−(n+1) , (C.4)

lF
n (m̄

2
F ;ηF ) =

2(δn,0 + n)

d

�
1− ηF

d + 1

�
(1+ m̄2

F )
−(n+1) ,

L(FB)
1,1 (m̄

2
F , m̄2

B;ηF ,ηB) =
2
d
(1+ m̄2

F )
−1(1+ m̄2

B)
−1

��
1− ηF

d + 1

�
(1+ m̄2

F )
−1

+
�

1− ηB

d + 2

�
(1+ m̄2

B)
−1

�
,

L(FB)
1,2 (m̄

2
F ;ηF ,ηB) =

2
d
(1+ m̄2

F )
−2

�
2
�

1− 2ηB

d + 2

�
−
�

1− ηF

d + 1

�

+ 2(1+ m̄2
F )
−1
�

1− ηF

d + 1

��
,

L(FB)
1,1,1(m̄

2
F , m̄2

B1, m̄2
B2;ηF ,ηB) =

2
d
(1+ m̄2

F )
−2(1+ m̄2

B1)
−1(1+ m̄2

B2)
−1

��
(1+ m̄2

B1)
−1

+ (1+ m̄2
B2)
−1
��

1− ηB

d + 2

�
+
�
2(1+ m̄2

F )
−1 − 1

��
1− ηF

d + 1

��
.

For the anomalous dimensions, we have

M2(m̄
2
F ;ηF ) =

�
1+ m̄2

F

�−4
,

M2,2(m̄
2
B1, m̄2

B2;ηB) = (1+ m̄2
B1)
−2(1+ m̄2

B2)
−2

M1,2(m̄
2
F , m̄2

B;ηF ,ηB) =
�

1− ηB

d + 1

�
(1+ m̄2

F )
−1(1+ m̄2

B)
−2

M4(m̄
2
F ;ηF ) =

�
1+ m̄2

F

�−4
+

1−ηF

d − 2

�
1+ m̄2

F

�−3 −
�

1
4
+

1−ηF

2d − 4

��
1+ m̄2

F

�−2

M̃1,1(m̄
2
F ,ηF ,ηB) =

2
d − 1

�
1+ m̄2

F

�−1
�

1
2

�
2ηF

d
− 1

�
+
�

1− ηB

d + 1

�

+
�

1− 2ηF

d

��
1+ m̄2

F

�−1
�

.

(C.5)

Finally, for the flow of zq̄Aq we use

N (m)
2,1 (m̄

2
F , m̄2

B;ηF ,ηB) =
1
d

�
1− ηF

d + 1

�
(1+ m̄2

B)
−1
¦

2m̄2
F (1+ m̄2

F )
−3 + (1+ m̄2

F )
−2
©

+
1
d

�
1− ηB

d + 2

�
(1+ m̄2

B)
−2
¦

m̄2
F (1+ m̄2

F )
−2 + (1+ m̄2

F )
−1
©

,

N (g)
2,1 (m̄

2
F ;ηF ,ηA) =

1
d

�
1− ηF

d + 1

�
m̄2

F (1+ m̄2
F )
−3 +

1
2d

�
1− ηA

d + 2

�
m̄2

F (1+ m̄2
F )
−2 ,

N (g)
1,2 (m̄

2
F ;ηF ,ηA) =

1
d + 1

�
1− ηF

d + 2

�¦
2m̄2

F (1+ m̄2
F )
−2 − (1+ m̄2

F )
−1
©

+
4

d + 1

�
1− ηA

d + 3

�
(1+ m̄2

F )
−1.

(C.6)
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C.2. Vacuum Polarization of the Gluon

Here, we derive the vacuum polarization of the gluon. Is is the direct contribution from quark
fluctuations to the gluon two-point function. Therefore it is one of the ingredients we need to
compute the unquenched gluon propagator Sec. 4.3

We note that the technical details shown here can be directly applied to the derivation of
any flow equation of explicitly momentum dependent couplings with the optimized cutoff at
vanishing external momentum.

We need to compute the diagram in the following equation:

7

structures of the gauge action S[�]. Omitting colour
and Lorentz-indices for clarity, we parametrise the quark-
gluon, three- and four-gluon and the ghost-gluon vertices
as

�
(q̄Aq)
k = Z

1
2

A,kZq,k gq̄Aq,k S
(3)
q̄Aq ,

�
(AAA)
k = Z

3
2

A,k gAAA,k S
(3)
AAA ,

�
(AAAA)
k = Z2

A,k g2
AAAA,k S

(4)
AAAA ,

�
(c̄Ac)
k = Z

1
2

A,kZc,k gc̄Ac,k S
(3)
c̄Ac ,

(34)

with the tensor structures S
(n)
�1...�n

obtained by taking
derivatives of the classical action S with respect to the
fields entering the vertex before setting the field expec-
tation values to their vacuum expectation value and the
bare coupling to unity.

In this work, we take the two-point functions com-

puted in [28, 29], �
(2),YM
A/c,k (p) for the gluon/ghost, as input,

whose ZYM
A/c,k we define similar to (12). The corresponding

anomalous dimensions are given by

⌘YM
A/c,k = �

@tZ
YM
A/c,k

ZYM
A/c,k

. (35)

In order to make full use of this non-trivial input we
expand the flow equation for the gluon propagator in QCD
about that in Yang-Mills theory. We use the freedom
in defining the cuto↵ function RA

k , see Appendix C, to
simplify the analysis. This is done by choosing the same
prefactor ZA,k for the gluon regulator as for the vertex
parameterisations in (34). Note that the gluon propagator
enters in loop integrals with momenta p2 . k2. If we
estimate the full gluon propagator (13) with the simple
expression

GA,k(p) ⇡ 1

ZA,k p2 + RA
k

=
1

ZA,k

1

p2 (1 + rB(p2/k2))
,

(36)

i.e. the p-dependence of ZA,k(p) is neglected but evaluated
at p = k, the system of flow equations considered is greatly
simplified. The error of such a simple estimate relates to

p3

✓
1

ZA,k(p2)p2 + RA
k

� 1

ZA,kp2 + RA
k

◆n

= p3+2n

 ⇥
ZA,k � ZA,k(p2)

⇤
�
ZA,k(p2)p2 + RA

k

� �
ZA,kp2 + RA

k

�
!n

(37)

The expression in (37) occurs with powers n � 1 in
the di↵erence of full flow equations and the approximated
flows with (36), and is evaluated for momenta p2 . k2.
For small momenta it tends towards zero while its value
for maximal momenta p2 ⇡ k2 is proportional to the

�⌘A,k =
Z�1

A,k

3(N2
c � 1)
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@p2
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Vacuum polarisation of the gluon

The vacuum polarisation of the gluon has already been calculated in Ref. [89] in a one-loop

RG improved approximation and is given by

�⌘Aq =
Nf�

1 + M̄2
�

4

3

1

4⇡
↵s

�
��1 � 1

1 + e
�2⇡i�+

�
1+M̄2

�
�µ̄

T̄

� 1

1 + e
2⇡i�+

�
1+M̄2

�
+µ̄

T̄

�
�� . (4.33)

The equation we derive here has been studied simultaneously in the same truncation by F.

Rennecke, see [160]. Here we give the full results within our truncation and at finite chemical

potential and temperature and also include wave function renormalisations parallel Z
�
� and

perpendicular Z�
� to the heat bath, renormalising the zero and the vector component of the

momentum.

Figure 4.5: The vacuum polarisation of the gluon through the quark.

We implement the 3d regulator given by Eqn. (4.16). To determine the vacuum polarisa-

tion of the gluon, i.e. �⌘�Aq
, we must project onto the lhs of the flow of �

(2)
AA

@t�
(2)
AA =

⇣
Ż

�
A�

2
n + Ż�

A~p2
⌘
⇧�,3d

µ� �ab +
1

⇠
⇧�,3d

µ� �abp2, (4.34)

where the �n are the bosonic Matsubara frequencies and we want to project onto the trans-

verse component relative to the heat bath (as we are in Landau gauge there is only the

standard transverse part of the propagator but there is a transverse and a longitudinal com-

ponent with respect to the heat bath) and there we want the flow of the wave function

renormalisation proportional to the vector component of the momentum. So we have to per-

form two derivatives with respect to the momentum p at vanishing momentum. Dividing by

the negative of the wave function renormalisation we are left with the desired contribution

to the anomalous dimension, i.e. the vacuum polarisation of the gluon by the quarks. The

rhs is simply given by the same manipulations we have just performed on the lhs and which

we then apply to the diagram given in Fig. 4.5.

So we have to derive the rhs of

�⌘�Aq
= � 1

4(N2
c � 1)

1

Z�
A

(
@2

p

✓
⇧�,3d

µ� �ab
⇥
�2

⇤◆����
p=0

)
. (4.35)

and actually all we have to do is to calculate the quantity in the curly brackets. The trace

!�����
p=0

di↵erence ZA,k � ZA,k(k2). Consequently, we choose

ZA,k = ZA,k(k2) . (38)

We have checked that the di↵erence between full flows
and approximated flows is less than 5%.
Within approximation (36) and (34) the gluon propagator
only enters via the anomalous dimension ⌘A,k with

⌘A,k = �@tZA,k

ZA,k
. (39)

Most importantly, ZA,k does not appears explicitly. This
also applies to the anomalous dimension itself which is
proportional to ↵s as the only parameter. Note that
the couplings ↵s,c̄Ac, ↵s,AAA, ↵s,A4 occur. For now, we
neglect the di↵erence of the di↵erent vertex couplings and
conclude that

⌘A,k =
↵s,k

↵YM
s,k

⌘YM
A,k + �⌘A,k , (40)

where �⌘A,k is the quark contribution to the gluon anoma-
lous dimension. It is defined as

Here, p is the modulus of the external momentum and
⇧? is the transversal projection operator defined in (C2).
Note that the dots represent the full vertices and the lines
the full propagators. The crossed circle represents the
regulator insertion. For Nf = 2 and Nc = 3 we find

�⌘A,k =
1

24⇡2
g2

q̄Aq,k(1 + m̄2
q,k)�4

⇥
⇥
5 � ⌘q,k + 8m̄2

q,k � (1 � ⌘q,k)m̄4
q,k

⇤
.

(41)

Note that the Yang-Mills anomalous dimension also
contains a resummation term and its full dependence
on ↵s is of the type ↵s/(1 + c ↵s). In (40) we have not
considered the change in c ↵s. Also, we have checked that
the results in the matter sector do not change if taking
either ↵s,c̄Ac, ↵s,AAA = ↵s,A4 in (40) in the current work.

The same local approximation can be applied to the
ghost, leading to

⌘c,k =
↵s,k

↵YM
s,k

⌘YM
c,k , (42)

where ↵s,k = ↵s,c̄Ac,k. This modification is used in the
equation for the ghost-gluon vertex.

Finally, this allows us to determine the ghost and gluon

(C.7)

Note that the projection procedure also involves that the external momentum is set to zero
after the momentum derivatives. The trace over external indices is implied. We need the quark
propagators, the quark regulator and the quark-gluon vertex, including their tensor structure.
The quark propagator reads with the optimized cutoff (C.1)

Gqq̄,k(p) =
�γµpµ

p
− iMq,k

�
Θ(1− p2)
1+M2

q,k

+
�
γµpµ − iMq,k

� Θ(p2 − 1)
p2 +M2

q,k

1c1 f , (C.8)

where 1c and 1 f are the unit matrices of color and flavor. Note that we write everything in
terms of dimensionless and renormalized quantities. Thus, also the momenta are rescaled with
k, i.e. p = p/k. p is the absolute value, p = |p|=pp2. The quark gluon vertex is

Γ
(q̄Aq)
k,µa = gq̄Aq,kγµ ta1c1 f . (C.9)

Furthermore, let us assume that the the loop momentum q alone goes through the upper part
of the diagram and in particular the regulator. Thus, external plus loop-momentum p+ q pass
though the lower half of the quark loop. First, we compute the trace of the digram, which we
denote by Σ(p), including Π⊥ from the projection

TrΠ⊥(p)Σ(p) = Tr
�
Π⊥µνGqq̄,k(p+ q)Γ (q̄Aq)

k,νa Gqq̄,k(q)Ṙ
A
kGqq̄,k(q)Γ

(q̄Aq)
k,µa

�
(C.10)

=

∫

q
g2

q̄Aq,kN f NcC2(Nc)
�
q−1 −ηq,k(q

−1 − 1)
�
(1+M2

q,k)
−2Θ(1− q2)

× �F(p, q)Θ(1− (p+ q)2) +H(p, q)Θ((p+ q)2 − 1)
�

,

with the functions

F(p, q) =
1

1+M2
q,k

4qp
p2 + q2 + 2pqx

�
(M2

q,k − 1)(3px + 2qx2 + q)− 6Mq,k

Æ
p2 + q2 + 2pqx

�

H(p, q) =
4q

(p+ q)2 +M2
q,k

�
M2

q,k(3px + 2qx2 + q− 6)− 3px − q(2x2 − 1)
�

.

(C.11)

We defined x via pµqµ = pqx , i.e. it is the cosine of the angle between the two 4D-vectors p
and q.
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The next step is to take the momentum derivatives of (C.10). This yields

∂ 2

∂ p2
TrΠ⊥(p)Σ(p) =

∫

q
Q(q)Θ(1− q2) (C.12)

×
�
∂ 2F(p, q)
∂ p2

Θ(1− (p+ q)2)− 2(p+ qx)
∂ F(p, q)
∂ p

δ(1− (p+ q)2)

∂ 2H(p, q)
∂ p2

Θ((p+ q)2 − 1) + 2(p+ qx)
∂ H(p, q)
∂ p

δ(1− (p+ q)2)

�
,

with the abbreviation

Q(q) = g2
q̄Aq,kN f NcC2(Nc)

�
q−1 −ηq,k(q

−1 − 1)
�
(1+M2

q,k)
−2 . (C.13)

We have used ∂xΘ(x) = δ(x) and that the terms proportional to the δ distribution from the
first derivative vanish.

To proceed, we could now either perform the loop momentum integration in (C.12) and
then send the external momentum to zero, or the other way around. The integration at finite p
is cumbersome and we would like to avoid it. But taking the p→ 0 limit before the integration
immediately generates an obvious problem: we would get terms of the form Θ(x)δ(x) in
(C.12), which are nor well defined, since the delta distribution has it support exactly where the
theta function is not defined. To circumvent this problem, we switch to smeared kernels. To
this end, we replace the sharp Theta function by a smeared version Θε which approaches the
sharp function at vanishing ε, limε→0Θε(x) = Θ(x) and define the smeared delta function via
the derivative δε(x) = ∂xΘε(x). It is now crucial that we are allowed to exchange the p→ 0
limit and the ε→ 0 limit if the smeared functions uniformly converge to the sharp limit. Since
a representation fulfilling this criterion can always be chosen, we exchange the limits, send p
to zero and are left with

lim
ε→0

∂ 2

∂ p2
TrΠ⊥(p)Σ(p)

����
p=0
=

∫

q
Q(q) lim

ε→0
Θε(1− q2)

�
∂ 2F(p, q)
∂ p2

����
p=0

(C.14)

− 2qx
∂ F(p, q)
∂ p

����
p=0
δε(1− q2) + 2qx

∂ H(p, q)
∂ p

����
p=0
δε(1− q2)

�
.

Note that the first and the third term in (C.12) are well defined term in the p → 0 limit, in
which the third vanishes, since Θ(x)Θ(1− x) = 0. By looking at (C.14) it seems that we have
not gaied anything. We simply exchanged an ill-defined limit by another ill-defined limit since
the last two terms are still ill-defined, but now in the ε→ 0 limit. However, there is an useful
identity which is very helpful in this case [132]:

lim
ε→0

f
�
x ,Θε(x)

�
δε(x) = Θ(x)

∫ 1

0

du f (0, u) , (C.15)

for any continuous function f . This identity allows us to send ε to zero and we arrive at

∂ 2

∂ p2
TrΠ⊥(p)Σ(p)

����
p=0
=

∫

q
Q(q)

�
∂ 2F(p, q)
∂ p2

����
p=0
Θ(1− q2) (C.16)

− x
�
∂ F(p, 1)
∂ p

)− ∂ H(p, 1)
∂ p

�����
p=0
δ(1− q2)

�
.
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Since structurally all flow equations for parameters with explicit momentum dependence,
such as the wave function renormalization or the three-gluon vertex, are the same, given we
always use the optimized cutoff and the zero external momentum limit, we can use (C.16)
with different functions Q, F and H for all these specific class of parameters.

We can now explicitly evaluate the ingredients in (C.16) and arrive at the final integral

∂ 2

∂ p2
TrΠ⊥(p)Σ(p)

����
p=0
= g2

q̄Aq,kN f NcC2(Nc)(1+M2
q,k)
−2

∫

q

�
q−1 −ηq,k(q

−1 − 1)
�

(C.17)

×
�

4
q

M2
q,k − 1

M2
q,k + 1

(6x4 − 5x2 − 1)Θ(1− q2)

+
2x2

(1+M2
q,k)

2

�
M4

q,k(1+ 2x2)+M2
q,k(10− 4x2)+2x2+1

�
δ(1− q)

�
.

Note that we have changed the variable in the delta distribution, δ(1− q2) = δ(1− q)/2. If
we rewrite the integral measure in terms of 4-dimensional spherical coordinates, keeping in
mind that our integrand depends only on a single angle, it reads for the simplest choice for the
orientation of p

∫

q
f (q, x) =

∫
dq4

(2π)4
f (q, x) =

1
4π3

∫ ∞

0

∫ 1

−1

dq d x q3
p

1− x2 f (q, x) . (C.18)

With this, we find for (C.19)

∂ 2

∂ p2
TrΠ⊥(p)Σ(p)

����
p=0
=

N f NcC2(Nc)

8π2
g2

q̄Aq,k(1+ m̄2
q,k)
−4
�
4−ηq,k + 4m̄2

q,k + (ηq,k − 1) m̄4
q,k

�

(C.19)

Together with the prefactors of the projection specified in (C.7), this completes the derivation
of the vacuum polarization (4.88).

C.3. Vector Meson Flows

Here we provide some details about the RG flow equations of the running couplings of our
truncation (5.3) together with the modifications that result from dynamical hadronization
(5.26). Due to excessive length of the explicit flow equation, we only present their definitions
here. For the derivation of most of the equations we used an extension of DoFun [205] which
utilizes Form [206] and FormLink [207]. This extension was developed and first used by the
authors of [156]. With the truncation (5.3), the Wetterich equation (5.25) and the definitions
given below, the flow equations of the couplings are uniquely specified.

Physical parameters are RG-invariant quantities. To achieve this, all fields are rescaled with
their respective wave function renormalizations, Φ→p

ZΦ,kΦ, and all couplings are rescaled
with appropriate powers of the wave function renormalizations accordingly, see below. This
entails in particular, that the wave function renormalizations enter the flow equations only
through the corresponding anomalous dimensions,

ηk = −
∂t Zk

Zk
. (C.20)
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The physical, i.e. RG-invariant, parameters of the action are defined as

ξ̄k =
ξk�

ZnA
A,kZ

nq

q,kZnc
c,kZ

nφ
φ,kZnV

V,k

�1/2
, (C.21)

where

ξk ∈{gq̄Aq,k, gA3,k, gA4,k, g c̄Ac,k, λS,k, λV,k, hS,k,

hV,k, mS,k, mV,k, νk, ck, g1−5,k} ,
(C.22)

is one of the running couplings of our truncation (5.3). nA, nq, nc , nφ , nV are the numbers of
gluon, quark, ghost, scalar meson and vector meson fields respectively, that are attached to the
coupling ξk. The physical masses are given by (5.36). Note that the definition of the gluonic
vertices (4.71) implies that the gauge couplings are already RG-invariant. Thus, in that case
ḡk = gk and we omit the bars.

We use 4d regulator functions of the form

RA
k(p

2) = ZA,k p2rB(p
2/k2)Π⊥ ,

Rq
k(p

2) = Zq,k γµpµrF (p
2/k2) ,

Rc
k(p

2) = Zc,k p2rB(p
2/k2) ,

Rφk (p
2) = Zφ,k p2rB(p

2/k2) ,

RV
k (p

2) = ZV,k p2rB(p
2/k2)Π⊥ ,

(C.23)

with the transversal projection operator

Π⊥µν = δµν −
pµpν
p2

. (C.24)

For the bosonic and fermionic regulator shape functions rB and rF we use the optimized shape
functions [149]

rB(x) =
�

1
x
− 1

�
Θ(1− x) ,

rF (x) =
�

1p
x
− 1

�
Θ(1− x) .

(C.25)

The flow equations presented in the following are derived using these specific regulators. They
have the advantage, that the loop-momentum integration can be performed analytically and,
consequently, all beta functions can be given in analytical form. Furthermore, we work in
Landau gauge, fix the Euclidean spacetime dimension to d=4 and color and flavor are fixed to
Nc=3 and N f =2.

First, we explain the effective propagators used in Sec. 4.4.4 and 5.3.2 and in particular
Fig. 4.10 and 5.5. The propagators in momentum space are of the form

GB,k(q) =
1

ZB,kq2 (1+ rB(q2/k2)) +m2
B,k

,

GF,k(q) =
1

Z2
F,kq2 (1+ rF (q2/k2))2 +m2

F,k

,
(C.26)
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for bosons and fermions respectively. For the specific choice of regulator shape functions (C.25),
they read

GB,k(q) =
Θ(k2 − q2)

ZB,kk2 +m2
B,k

+
Θ(q2 − k2)

ZB,kq2 +m2
B,k

,

GF,k(q) =
Θ(k2 − q2)

Z2
F,kk2 +m2

F,k

+
Θ(q2 − k2)

Z2
F,kq2 +m2

F,k

.

(C.27)

To be consistent with the low-momentum expansion our construction of the effective action is
based on, we define all running couplings at vanishing external momentum. This entails that
all integrands of the loop-momentum integrations are proportional to Θ(k2 − q2) which stems
from the scale derivative of the regulator ∂tR

Φ
k in the flow equation (5.25). Thus, only the first

term of the propagators in (C.27) contributes in the final flow equations. We therefore define
the effective propagators relevant for the flows of the physical quantities as

ḠΦ,k =
1

1+ (MΦ,k/k)2
. (C.28)

Vanishing ḠΦ,k implies that the field Φ does not contribute to the dynamics of the system.
Note that it is a bounded function, 0 ≤ ḠΦ,k ≤ 1. The larger ḠΦ,k, the more relevant are the
fluctuations of the corresponding field.

We proceed with the definition of the flows of the gauge couplings. The explicit form of the
flow equations is given in [73]. Here, we only present our definitions for completeness. As we
have discussed in Sec. 4.3, we compute all three-point functions of QCD, but restrict them to
have only the classical tensor structure. We therefore define the flow of the quark-gluon vertex
gq̄Aq as

∂t gq̄Aq,k =
1

8N f (N2
c − 1)

lim
p→0

Tr

�
γµ ta δ3∂tΓk

δqδAa
µδq̄

������
Φ=Φ0

, (C.29)

where Φ0=(0,0,0,0,0,0,σ0,k, 0, 0) is the vacuum expectation value of the mean field Φ =
(A, q, q̄, c, c̄,π,σ,ρ, a1). The trace runs over all external indices and includes a loop-momentum
integration. The limit denotes that all external momenta are set to zero. We define the
three-gluon vertex gA3,k via the projection

∂t gA3,k =
i

12Nc(N2
c − 1)

lim
p→0

∂ 2

∂ p2
Tr

�
δµνpσ f abc δ3∂tΓk

δA(p)aµδA(−p)bνδAc
σ(0)

������
Φ=Φ0

. (C.30)

Since as an approximation we evaluate all flow equations at vanishing external momentum,
the ghost-gluon vertex g c̄Ac,k only has canonical running. The diagrams that contribute to the
beta function are proportional to the external momentum and therefore vanish here and we
are left with

∂t g c̄Ac =
1
2

�
ηA,k + 2ηC ,k

�
g c̄Ac . (C.31)

Since we approximate the four-gluon vertex with the three-gluon vertex, see (4.105), we do
not need a separate equation for this coupling.
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Next, we discuss the flow of the four-quark couplings. Here, we consider two channels, the
scalar–pseudoscalar channel with coupling λS,k and the iso-vector–iso-axialvector channel with
coupling λV,k. Some caution is advised when four-fermion interactions are included in the
effective action. A specific quark-antiquark interaction channel can always be expressed as
an linear combination of different interaction channels with two spinor fields interchanged.
This can potentially lead to ambiguities in the corresponding bosonized models since different
sets of composite states can be related to one and the same fermionic action (see e.g. [75]).
This is known as the Fierz ambiguity. While this ambiguity can lead to large uncertainties in
mean-field calculations, appropriate approximations that go beyond mean-field in RG studies
can minimize these uncertainties [162].

Indeed, as explicit calculations considering the RG flows of a Fierz-complete basis of four-
quark interactions have shown [156], the scalar-pseudoscalar (S−P) channel is the dominant
channel in vacuum, while all other channels are strongly suppressed compared to this channel.
Furthermore, the dynamical hadronization of only the (S−P) is sufficient to render all four-quark
interaction channels finite at the chiral phase transition. Thus, the error we make from not
using a Fierz-complete basis is expected to be small. We therefore restrict our model to contain
only two physically relevant channels. In order to study the properties of the corresponding
composite fields, we dynamically hadronize both channels here.

We define the running coupling of the scalar-pseudoscalar channel via the projection

∂tλS,k =
1

8N f Nc(2N f Nc + 1)
lim
p→0

Tr

�
δABδC D

δ4∂tΓk
δqAδq̄BδqCδq̄D

�����
Φ=Φ0

, (C.32)

where A, B, C , D abbreviate the color, flavor and spinor indices of the quarks. For the vector-
axialvector channel we choose

∂tλV,k = −
1
3
∂tλS,k − lim

p→0
Tr

�
PABC D

V
δ4∂tΓk

δqAδq̄BδqCδq̄D

�����
Φ=Φ0

, (C.33)

with the projection operator

PABC D
V =

1
192N f Nc

δABδC Dγ
αAαB
µ γαCαD

µ . (C.34)

Here, αA,B,C ,D is the spinor index of the respective quark field. The Kronecker deltas are summed
over the remaining color and flavor indices.

We note that these projections give the flow equations for scale-independent meson fields,
i.e. without dynamical hadronization. Dynamical hadronization enforces (5.27). Nevertheless,
the flows of the four-quark interactions defined in (C.32) and (C.33) play a major role for the
dynamics of the system and enter the hadronized flow equations in the meson sector via the
hadronization functions (5.28).

We define the scalar Yukawa coupling hS,k via the quark-antiquark two-point function as:

∂thS,k =
−i

4N f Nc σ0
lim
p→0

Tr

�
δAB

δ2∂tΓk
δqAδq̄B

�����
Φ=Φ0

. (C.35)

Taking dynamical hadronization into account, the total flow of the renormalized scalar Yukawa
coupling is

∂t

��
ϕ

h̄S,k = ∂t h̄S,k − k−2M2
π,k

˙̄Ak , (C.36)
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where ˙̄Ak = k2Z1/2
S,k Z−1

q,kȦk and Ȧk is given by (5.28). According to (5.24), the scalar channel
Yukawa coupling defines the quark mass.

We define the vector Yukawa coupling hV,k via the ρqq̄ three-point function as

∂thV,k =
1

16Nc(N2
f − 1)

lim
p→0

Tr

�
γµ~τ

δ3∂tΓk
δ ~ρµδqδq̄

�����
Φ=Φ0

, (C.37)

where contractions over the remaining indices with Kronecker deltas is implied. Splitting the
flow into the contributions with and without dynamical hadronization, we find

∂t

��
ϕ

h̄V,k = ∂t h̄V,k − k−2M2
ρ,k

˙̄Bk , (C.38)

with ˙̄Bk = k2Z1/2
V,k Z−1

q,k Ḃk and Ḃk given by (5.28).
We want to emphasize that the modifications of the Yukawa couplings in (C.36) and (C.36)

proportional to Ȧk and Ḃk are crucial for the dynamical hadronization procedure. They guaran-
tee that the ratio h2

S/V,k/m
2
π/ρ,k replaces the four-quark interactions λS/V,k, which vanish due to

dynamical hadronization, in the quark-gluon phase. This way, the modified Yukawa couplings
capture the relevant quark-gluon dynamics at large energy scales, while they act as the usual
Yukawa couplings in the hadronic regime.

Next, we discuss the mesonic couplings of our truncation. They are not modified by dynamical
hadronization. We define the running of the chiral order parameter σ0,k via the pion two-point
function as

∂tσ0,k = −
�
νkσ0,k +

ck

σ2
0,k

�−1 1

N2
f − 1

lim
p→0

Tr

�
δi j
δ2∂tΓk
δπiδπ j

�����
Φ=Φ0

, (C.39)

with the adjoint flavor indices i, j. The flow of the scalar four-point function νk is defined as
follows:

∂tνk =
1

N4
f − 1

lim
p→0

Tr

�
δi jδkl

δ4∂tΓk
δπiδπ jδπkδπl

�����
Φ=Φ0

, (C.40)

with the adjoint flavor indices i, j, k, l.
The explicit symmetry breaking term c is a source term and therefore drops out of the flow

equation. The RG-invariant coupling c̄k therefore only runs canonically,

∂t c̄k =
1
2
ηS,k c̄k . (C.41)

The meson masses are defined as the momentum independent part of the corresponding
two-point functions. For the scalar mesons, we need the flow of mS,k which is given by

∂t m
2
S,k =

1

N2
f − 1

lim
p→0

Tr

�
δi j
δ2∂tΓk
δπiδπ j

�����
Φ=Φ0

. (C.42)

We cannot define the flow of the vector meson mass parameter mV,k independently of other
couplings, since we have to either project on the ρ or the a1 mass, which gives contributions
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from other couplings in the chirally broken phase according to (5.24). We choose to project on
the ρ mass and find

∂t m
2
V,k =

1

4(N2
f − 1)

lim
p→0

Tr

�
δµνδi j

δ2∂tΓk

δρ
µ
i δρ

µ
j

������
Φ=Φ0

−σ2
0,k∂t g3,k . (C.43)

The flow ∂t g3,k is defined below in (C.45).
For the definition of the three-point function g1,k we choose the ρππ vertex and find:

∂t

��
ϕ

g1,k =
−i

2N f (N2
f − 1)

lim
p→0

∂ 2

∂ p2
Tr

�
pµεi jk

δ3∂tΓk

δρ
µ
i (−p)δπ j(p)δπk(0)

������
Φ=Φ0

+σ2
0,k∂t

�
g1,k g2,k

m2
a1,k

�
− g2,kσ0,k Ċk . (C.44)

As we have discussed in Sec. 5.2.2, the elimination of the π−a1 mixing leads to two types of
modifications of the ρππ vertex. The first stems from the modifications of the action due to the
replacement (5.30) and leads to a modification of this vertex given by (5.32). The first term in
the third line of (C.44) cancels the additional term in the flow to ensure that we compute the
flow of g1,k and not of (5.32). The second modification stems from the scale dependence of a1
that is introduced by (5.30). This leads to the second term in the third line of (C.44) which
follows from (5.26).

We define the couplings g2,k and g3,k via the flow

∂t g2/3,k = lim
p→0

Tr

�
δµνPi jkl

g2/3

δ4∂t Γ̇k

δπiδπ jδρ
µ

kδρ
ν
k

������
Φ=Φ0

, (C.45)

with the projection operator for g2,k

Pi jkl
g2
=

1

4N f (N2
f + 1)

�
1

N2
f − 1

δi jδkl −δikδ jl

�
, (C.46)

and the projection operator for g3,k

Pi jkl
g3
=

1

4(N4
f + 1)

�
1
2
δi jδkl +δikδ jl

�
. (C.47)

The vector meson self-interactions g4,k and g5,k are defined as

∂t g4,k =
−i

6N f (N2
f − 1)

lim
p→0

∂ 2

∂ p2
Tr

 
pαδβγεi jk

δ3∂t Γ̇k

δραi (p)δρ
β
j (−p)δργk(0)

!������
Φ=Φ0

, (C.48)

and

∂t g5,k =
1

24N f (N2
f − 1)

lim
p→0

Tr

 
δαβδγδδi jδkl

δ4∂t Γ̇k

δραi δρ
β
j δρ

γ

kδρ
δ
l

!������
Φ=Φ0

. (C.49)
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Finally, we discuss the wave function renormalizations. As mentioned before, in a RG-invariant
formulation they enter the flow equations only via the corresponding anomalous dimensions
(C.20). The ghost anomalous dimension and the gauge part of the gluon anomalous dimension
are discussed in Sec. 4.3. the quark contribution to the gluon anomalous dimension ∆ηA,k, i.e.
the vacuum polarization, is computed in App. C.2.

The quark anomalous dimension is computed from

ηq,k =
−1

8N f Nc Zq,k
lim
p→0

∂ 2

∂p2
Tr

�
γµpµ

δ2∂t Γ̇k
δq̄(p)δq(−p)

�����
Φ=Φ0

, (C.50)

where contraction of external color, flavor, and spinor indices is understood.
The scalar meson anomalous dimension ηS,k has to be defined via the pion-pion two-point

function. Using the sigma meson two-point function leads to additional contributions to the
flow with couplings that correspond to a higher order derivative expansion. We define the
anomalous dimension for scale-independent fields as

ηS,k

��
φ
=

−1

2(N2
f − 1)ZS,k

lim
p→0

∂ 2

∂p2
Tr

�
δi j

δ2∂t Γ̇k
δπi(p)δπ j(−p)

�����
Φ=Φ0

. (C.51)

It receives modifications from the scale dependence of a1 from the elimination of the π−a1
mixing. The full anomalous dimension then is

ηS,k = ηS,k

��
φ
− ḡ2,kσ̄0,k

˙̄Ck (C.52)

where the second term follows from (5.26). We use the rho meson to define the vector meson
anomalous dimension and find

ηV,k =
−1

6(N2
f − 1)ZV,k

lim
p→0

∂ 2

∂p2
Tr

�
δi jδ

µν δ2∂t Γ̇k

δρ
µ
i (p)δρ

ν
j (−p)

������
Φ=Φ0

. (C.53)

We emphasize that due to chiral symmetry the definition of the mesonic couplings in terms of
n-point functions is not unique. We have explicitly checked that different projection procedures
give the same results as long as they are equivalent by chiral symmetry. However, some caution
is advised since seemingly equivalent definitions may give different results. The reason in those
cases is that that inappropriate projections may contaminate the flows with contributions that
are not part of the truncation. For example, a definition of νk via the sigma meson four-point
function instead of (C.40) gives additional contributions from diagrams that are related to the
flow of the 6-meson interaction. Another example is ηS,k, which is mentioned above (C.51).
To find appropriate projection procedures one therefore has to keep extended truncations, such
as general field-dependent couplings, in mind.

C.4. In-Medium Flows of the Matter Sector

In the flow equations in section Chap. 7 we used threshold functions which contain the mo-
mentum integration, the summation over the Matsubara modes and the regulator dependence
of the propagators of our model.
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We use the following definitions for the meson and quark propagators:

Gφ(m̄
2
φ,k) =

1

zφ,kω2
n/k

2 + x (1+ rB(x)) + m̄2
φ,k

,

Gq(m̄
2
q,k) =

1

z2
q,k(νn + iµ)2/k2 + x (1+ rF (x))

2 + m̄2
q,k

,
(C.54)

where x = ~q 2/k2, ωn = 2πnT is the bosonic Matsubara frequency and νn = 2π
�
n+ 1

2

�
T is

the fermionic Matsubara frequency. zφ,k = Z‖
φ,k/Z

⊥
φ,k and zq,k = Z‖q,k/Z

⊥
q,k give the ratios of

the wave function renormalizations parallel and perpendicular to the heat bath. Within our
approximations this ratio is one, zφ,k = zq,k = 1.

We use the following regulators for mesons and quarks:

Rφk = Zφ,k ~q
2 rB(x),

Rq
k = Zq,k ~γ~q rF (x).

(C.55)

We use optimized regulator shape functions rB/F (x) [149] in this work:

rB(x) =
�

1
x
− 1

�
Θ(1− x),

rF (x) =
�

1p
x
− 1

�
Θ(1− x).

(C.56)

This choice of regulator shape functions allows us to evaluate momentum integrals and Mat-
subara summation analytically.

The functions l(B/F,d)
0 in d space-time dimensions that appear in equations (7.12) and (7.23)

are related to bosonic/fermionic loops and are defined as follows:

l(B,d)
0 (m̄2

φ,k,ηφ,k; T ) =
T
2k

∑
n∈Z

∫
d x x

d−1
2
�
∂t rB(x)−ηφ,krB(x)

�
Gφ(m̄

2
φ,k)

=
2

d − 1
1Ç

zφ,k(1+ m̄2
φ,k)

�
1− ηφ,k

d + 1

��1
2
+ nB(T, m̄2

φ,k)
�

,
(C.57)

and

l(F,d)
0 (m̄2

q,k,ηq,k; T,µ) =
T
k

∑
n∈Z

∫
d x x

d−1
2
�
∂t rF (x)−ηq,krF (x)

�
(1+ rF (x))Gq(m̄

2
q,k)

=
1

d − 1
1Ç

z2
q,k(1+ m̄2

q,k)

�
1− ηq,k

d

�

×
�
1− nF (T,µ, m̄2

q,k)− nF (T,−µ, m̄2
q,k)
�

,

(C.58)

where nB and nF are the Bose- and Fermi distribution respectively:

nB(T, m̄2
φ,k) =

1

exp
�

k
T

Ç
(1+ m̄2

φ,k)/zφ,k

�
− 1

nF (T,µ, m̄2
q,k) =

1

exp
�

k
T

�Ç
(1+ m̄2

q,k)/z
2
q,k −

µ
k

��
+ 1

.
(C.59)
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The threshold functions l(B/F,d)
n which represent loops with (n+1) bosons/fermions are defined

via:

∂

∂m2
l(B/F,d)
n (m2) = −(n+δn0)l

(B/F,d)
n+1 (m2). (C.60)

The threshold functions that appear in (7.23) are related to loops with fermion- as well as
boson-propagators and are defined as

L(d)(1,1)

�
m̄2

q,k, m̄2
φ,k,ηq,k,ηφ,k; T,µ

�
=

T
2k

∑
n∈Z

∫
d x x

d−1
2

��
∂t rB(x)−ηφ,krB(x)

�

× G2
φ(m̄

2
φ,k)Gq(m̄

2
q,k) + 2(1+ rF (x))

× �∂t rF (x)−ηq,krF (x)
�

Gφ(m̄
2
φ,k)G

2
q (m̄

2
q,k)
�
.

(C.61)

By using the optimized regulator shape functions we can perform the integration and summation
analytically and find:

L(d)(1,1)

�
m̄2

q,k, m̄2
φ,k,ηq,k,ηφ,k; T,µ

�
=

2
d − 1

h�
1− ηφ,k

d + 1

�
FB (1,2) +

�
1− ηq,k

d

�
FB (2,1)

i
,

(C.62)

where we defined the function

FB (1,1)

�
m̄2

q,k, m̄2
φ,k; T,µ

�
=

T
k

Re

�∑
n∈Z

Gq(m̄
2
q,k)Gφ(m̄

2
φ,k)

�
(C.63)

= Re





1

2
Ç

1+ m̄2
φ,k

�
nB(T, m̄2

φ,k) +
1
2

�
 1

m̄2
q,k + 1−

�
µ/k− iπT/k−

Ç
1+ m̄2

φ,k

�2

+
1

m̄2
q,k + 1−

�
µ/k− iπT/k+

Ç
1+ m̄2

φ,k

�2




− 1

2
Ç

1+ m̄2
q,k

�
nF (T,µ, m̄2

q,k)−
1
2

�
1

m̄2
φ,k + 1−

�
µ/k− iπT/k−

Ç
1+ m̄2

q,k

�2

− 1

2
Ç

1+ m̄2
q,k

�
nF (T,−µ, m̄2

q,k)−
1
2

�
× 1

m̄2
φ,k + 1−

�
µ/k− iπT/k+

Ç
1+ m̄2

q,k

�2



 .

These mixed diagrams are responsible for the complex valued Yukawa coupling and quark
anomalous dimension, see section 3.2. It is therefore sufficient to consider only the real part of
this contributions in order to render those functions real.

The functions FB (m,n) which represent the Matsubara summation of loops with m fermion
propagators and n boson propagators can be obtained from FB (1,1) by differentiation with
respect to the masses:

∂

∂ m̄2
q,k

FB (m,n) = −mFB (m+1,n)

∂

∂ m̄2
φ,k

FB (m,n) = −nFB (m,n+1).
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The function BB encodes the Matsubara summation of loops with two different meson
propagators are defined as:

BB (1,1)(m̄
2
φ1,k, m̄2

φ2,k; T,µ) =
T
k

∑
n∈Z

Gφ(m̄
2
φ1,k)Gφ(m̄

2
φ2,k)

=
1

(m̄2
φ2,k − m̄2

φ1,k)
Ç

1+ m̄2
φ1,k

�
nB(m̄

2
φ1,k) +

1
2

�

+
1

(m̄2
φ1,k − m̄2

φ2,k)
Ç

1+ m̄2
φ2,k

�
nB(m̄

2
φ2,k) +

1
2

�
,

(C.64)

and

∂

∂ m̄2
φ1,k

BB (m,n) = −mBB (m+1,n)

∂

∂ m̄2
φ2,k

BB (m,n) = −nBB (m,n+1).
(C.65)

The Matsubara summation of loops with several identical fermions is encoded in:

F(1)(m̄2
q,k; T,µ) =

T
k

∑
n∈Z

Gq(m̄
2
q,k)

=
1

2
Ç

1+ m̄2
q,k

�
1− nF (T,µ, m̄2

q,k)− nF (T,−µ, m̄2
q,k)
� (C.66)

and

∂

∂ m̄2
q,k

F(n) = −nF(n+1). (C.67)

Note that this function is implicitly contained in the threshold function l(F,d)
n that appears in

the flow of the effective potential.



APPENDIX D

IR Strength

In our study, we introduced an “infrared-strength" function ςa,b(k) which we define as

ςa,b(k) = 1+ a
(k/b)δ

e(k/b)δ − 1
, (D.1)

with b > 0 and δ > 0. Note that the specific form of ςa,b(k) is irrelevant for our result as long
as it has the properties specified below. It defines a smooth step function centered around b
with interpolates smoothly between

ςa,b(k� b) = 1 and ςa,b(k� b) = 1+ a . (D.2)

Thus, for b = O (1GeV), ςa,b(k) gives an IR-enhancement, while it leaves the perturbative
regime unaffected. We then modify the gauge couplings as

gs,k −→ ςa,b(k) gs,k, (D.3)

where gs,k = gq̄Aq,k , gA3,k , g c̄Ac,k. We choose the same parameters a and b for every gauge
coupling. Accordingly, the flow equations of the gauge couplings then are

∂t gs,k −→ gs,k ∂tςa,b(k) + ςa,b(k)∂t gs,k. (D.4)

We have found that our results do not depend strongly on the precise value of b as long as it is
O (1 GeV). For much smaller values, the modification (D.3) has no effect, since the glue sector
decouples and for much larger values it spoils the perturbative running of the gauge couplings.
To be specific, we choose b=1.3GeV for δ=3 in the following.

The parameter a is adjusted such that we get physical constituent quark masses in the
infrared, Mq,0=300MeV.

Since the results in Ref. [156] demonstrate that the largest source for systematic errors of
our truncation is rooted in the approximations that enter the flows of the gauge couplings, a
procedure as discussed above is well-justified.





APPENDIX E

Implications of Convexity on the Quark Mass

Here we present the detailed discussion of the results outlined in Section 7.2.4. The following is
short of a full proof which is beyond the scope of the present work. Here we are rather interested
in an explanation of the properties of the solution found in the present work. Nonetheless the
present analysis outlines the complete analysis necessary for the full proof.

For finite k there is a region ρ < ρs ≤ ρ0 where all the curvature masses m̄2 in (7.14) are
negative,

− 1<
V ′k(ρ)

k2
< 0 and − 1<

V ′k(ρ) + 2ρV ′′(ρ)
k2

< 0 , (E.1)

for m̄2
k,π and m̄2

k,σ respectively. Note that the pion mass, m̄2
k,π, is already negative for ρ < ρ0.

At the lower bound, m̄2
k,σ/π = −1, the flow exhibits a singularity. However, due to the convexity-

restoring property of the flow arranges this bound is never saturated and convexity is approached
smoothly for k→ 0, see [201]. This formal property has the practical consequence that it i.e.
implies for the flow of m2

k,π derived from (7.12) that

lim
k→0

∂t m̄
2
π,k = lim

k→0
∂t

V ′k(ρ < ρ0)

k2

= − 1
4π2

�
3∂ρm2

π,k l(B,4)
1 (m̄2

π,k) + ∂ρm2
σ,k l(B,4)

1 (m̄2
σ,k)

−4NcN f ∂ρm2
q,k l(F,4)

1 (m̄2
q,k)

�
− 2 m̄2

π,k = 0 . (E.2)

The subscript l1 in the threshold functions indicates the derivative w.r.t. the respective m̄2, see
App. C.4. Here and in the following we omit the dependence on the anomalous dimensions,
the temperature and the chemical potential of the threshold functions for the sake of legibility.
Note that seemingly also limk→0 ∂t m̄

2 < 0 is allowed but then m̄2 eventually becomes positive
which signals the symmetric phase.

First we note that the fermionic contribution in the last line of (E.2) vanishes in the limit k→ 0:
For finite quark mass function, m2

q,k→0 > 0, the threshold function vanishes, l(F,4)
1 ∝ (m2

q)
−3/2,

with cubic powers of k. In turn, for vanishing quark mass function, m2
q,k∝ kγ→ 0 for k→ 0,
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and ∂ρm2
q,k→0 = 0 (no oscillation of m2

q,k→0 with period ρ/kγ), the threshold function stays

finite, l(F,4)
1 (m2

q)< l(F,4)
1 (0) = 1/3. In either case the fermionic contribution vanishes.

Hence, in the limit k → 0 and for ρ < ρ0 the flow of the mesonic effective potential is
dominated by the mesonic fluctuations and reduces to that of an O(4)-model. Self-consistency
of the constraint (E.2), the similar one for m̄2

k,σ, and (E.1) leads to

lim
k→0

1

1+ m̄2
σ/π,k(ρ < ρs)

=
cσ/π(ρ)

k2+α
> 0 , (E.3)

with some constant cσ/π and α > 0, and

∂ρm2
σ/π
(ρ < ρs)∝ k4+α , (E.4)

where we have assumed that the dominant sub-leading terms in m̄2 carry a ρ-dependence. The
threshold function l(B,4)

1 scales with (1+ m̄2)−3/2 and hence we conclude that

α= 2 , (E.5)

in line with the full analytic derivations in [208]. Eq. (E.1) already induces a scaling of
∂ρm2

σ,π(ρ < ρs) with at least k2 in the absence of oscillations in m̄2 with period ρ/k2. The
lack of these oscillations can indeed be proven but the details of this proof are beyond the
scope of the present work 1. The flow contributions in (E.2) have to cancel the order k0

contributions in 2m̄2
π. This requires diverging threshold functions leading to (E.4) which

implies m̄2
σ/π
= −1+ O(k2). In turn this leads to the same constant c in (E.3) for σ and ~π

respectively. Eq. (E.3) reflects the fact that the convexity restoring property of the flow is driven
by the denominators of the threshold functions being close to the singularity.

For the behavior of the fermionic two-point function Γq,k in the broken phase for |φ| ≤ |φ0|,
we resort to a more general argument. Its flow is dominated by the diagrams with mesonic
cutted lines: the lines with regulator insertions are proportional to the mesonic propagators
squared, Gφ,k, and hence diverge for k→ 0. Moreover, the fermionic propagator obeys the
flow equation

∂t Gq,k[Φ](p) = −1
2

Tr

�
Gk ∂tRk Gk

δ2

δΦ2

�
Gq,k[Φ](p)

− �Gq,k ∂tR
q
k Gq,k

�
[Φ](p) , (E.6)

where Φ= (q, q̄,φ), see [139]. For momenta p2� k2, |φ| ≤ |φ0|, and k→ 0 this reduces to

∂t
1

Γ
(2)
q,k [φ](p)

= −1
2

Tr Gφ,k ∂tR
φ

k Gφ,k
δ2

δφ2

1

Γ
(2)
q,k [φ](p)

, (E.7)

where we have set q = q̄ = 0, and Rk(p2� k2)≈ 0. The full fermionic two-point correlation
function in the background of constant mesonic fields φ reads

Γ
(2)
q,k [φ](p) = Zq(ρ, p2)

� 6p+ ih̄(ρ, p2) [σ− iγ5~τ~π]
�

. (E.8)

1Such an oscillation may be generated by an inadequate numerical implementation.
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at vanishing chemical potential, µ= 0. In (E.8) we have dropped the k-subscripts in Z and h̄
for the sake of conciseness. Hence the full propagator in the background of constant mesonic
fields φ is expanded as

1

Γ
(2)
q,k [φ](p)

= A(ρ, p2) 6p+ B(ρ, p2) (σ1l+ iγ5~τ~π) , (E.9)

where the coefficient functions A, B depend on both, Z and h,

A(ρ, p2) =
1

Zq(ρ, p2)
�
p2 + 2h̄(ρ, p2)2ρ

� ,

B(ρ, p2) = A(ρ, p2) h̄(ρ, p2) (E.10)

Finally this leads to the differential equations

∂tA(ρ, p2) = −
�
Nπgπ,k(ρ)∂ρ (E.11a)

+gσ,k(ρ)
�
∂ρ + 2ρ∂ 2

ρ

��
A(ρ, p2) ,

∂t B(ρ, p2) = −
�
Nπgπ,k(ρ)]∂ρ (E.11b)

+gσ,k(ρ)
�
3∂ρ + 2ρ∂ 2

ρ

��
B(ρ, p2) ,

where Nπ is the number of pions, in the present N f = 2 case we have Nπ = 3. The gσ/π,k are

the scalar parts of the operator Gφ,k ∂tR
φ

k Gφ,k projected on the σ-meson and pion respectively.

gσ/π,k(ρ) =
1
2
[Gk ∂tRk Gk]σσ/ππ (ρ)> 0 , (E.12)

For ρ < ρ0 gπ,k diverges in the limit k→ 0, while gσ,k diverges for ρ < ρs,

gπ,k(ρ < ρ0)→∞ , gσ,k(ρ < ρs)→∞ , (E.13)

Moreover, in the respective divergence regimes the gσ/π,k do not depend on the fermionic
propagator in leading order. Hence is an external input for the differential equations (E.11).
It is here where the decoupling of the (leading part of the) flow equation for the effective
potential from the fermionic diagrams comes handy.

For a general class of gφ,k the differential equations for A(ρ, p2), B(ρ, p2) have simple,
attractive fixed point solutions for k→ 0 and ρ < ρ0,

∂ρAk=0(ρ, p2) = 0 , ∂ρBk=0(ρ, p2) = 0 . (E.14)

It is also easily seen that for non-trivial positive boundary conditions the coefficient functions
A, B approach constants given by their values at the minimum φ0 in terms of Zq(φ0, p2) and
h̄(φ0, p2). This entails that

h̄(ρ ≤ ρ0, p2) = h̄(ρ0, p2) (E.15)

and hence

Zq(ρ ≤ ρ0, p2) = Zq(ρ0, p2)
p2 + 2h̄(ρ0, p2)2ρ0

p2 + 2h̄(ρ0, p2)2ρ
. (E.16)
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Note that the prefactor Zq(ρ0, p2), evaluated at p = 0, is nothing but the wave function renor-
malization used in the present work for the deduction of physical quantities. This full solution
entails a mass gap for the quark propagator in the broken phase: for non-vanishing momentum
p 6= 0 the propagator trivially has no pole. For p = 0 the wave function renormalization is
given by

Zq(ρ ≤ ρ0, 0) = Zq(φ0, 0)
ρ0

ρ
. (E.17)

In (E.17) we have used that both, h̄(ρ0, 0)2 > 0 and Zq(ρ ≤ ρ0, 0)> 0, which follows from the
analysis done here. With (E.8) this leads to

Γ
(2)
q,k=0[φ](p = 0) = i Zq(ρ0, 0)h̄(ρ0, 0)ρ0

σ− iγ5~τ~π

ρ
. (E.18)

The norm of (E.18) is the ρ-dependent mass-gap of the propagator and is read-off from (E.18)
as

m̄2
q(ρ ≤ ρ0) =

‖Γ (2)q,k=0[φ](p = 0)‖2
Zq(ρ0, 0)2

=
p

2ρ0h̄(ρ0, 0)
ρ0

ρ
. (E.19)

We conlude that the field-dependent mass gap is minimized on the equations of motion, ρ = ρ0
and

m2
q(ρ ≤ ρ0)≥ m2

q,gap > 0 . (E.20)

Note also that the present scaling analysis is readily extended to finite temperatures and
densities. It also entails that the present Taylor expansion in the mesonic field with fixed
expansion point and at p = 0 is sufficient to extract the physics information. However, it cannot
in general reproduce the asymptotic behavior for k→ 0 and ρ < ρ0 at one of the necessary
condition for the full analysis, p� k, does not hold.

The above arguments can also be applied to the mesonic propagators for k2 � p2 � m2
σ

with the parameterization (at ~π= 0)

Pσ/π(ρ, p2) =
1

Zφ(ρ, p2)
�
p2 +m2

σ/π
(ρ)

� , (E.21)

where m2
σ/π,k(ρ) does not depend on momentum. Following the arguments used for deriving

the flows (E.11) for the coefficient functions of the fermionic propagator we are led to the flow

∂tPσ/π(ρ, p2) = (E.22)

−
�
Nπgπ,k(ρ)∂ρ + gσ,k(ρ)

�
∂ρ + 2ρ∂ 2

ρ

��
Pσ/π(ρ, p2) ,

For ρ < ρs we have m2
σ/π

< 0 (but p2 +m2
σ/π

> 0) and both masses vanish in the limit k→ 0.
We therefore conclude that

m2
σ/π
(ρ < ρ0) = 0 , Zφ(ρ < ρ0, p2) = Zφ(0, p2) . (E.23)

At ρ = ρ0 there is a discontinuity as m2
σ jumps to its physical value.
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