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1. Introduction 

 

A knockout tournament(also called a single elimination tournament or elimination 

tournament) is a system of selecting a single winner. Participants (teams or individuals) play n 

rounds of matches. After each round, the winners move on to the next round, the losers are 

dropped from the tournament, and the number of participants is reduced by half. Only balanced 

knockout tournaments without byes are considered in the paper. The number of participants in 

each round in such a tournament always equals a power of two. Knockout tournaments are 

widespread in sports competitions. They are frequently used as a playoff tournament in a larger 

tournament with several leagues, groups and conferences and/or as a qualifying tournament (Noll 

2003). 

The key feature of knockout tournaments is the importance of the seeding method, or 

simply the seeding. The seeding is a rule that, having information regarding the initial order of 

participants' strengths, determines the tournament bracket. There are several seedings used in 

different tournaments. The most popular seeding (called standard seeding) creates pairs in the 

first round of the strongest participant with the weakest participant, the second strongest 

participant with the second weakest participant, etc. The pairs in subsequent rounds are 

determined in a way that preserves the first two participants from the head-to-head match before 

the final and that delays the confrontations between strong participants until later rounds. Strong 

participants are rewarded for their success through such a seeding. 

This paper is limited to seeding methods with predetermined tournament brackets, i.e., 

without random seeding (e.g., the method proposed in Schwenk (2000)) and without any 

reseeding methods (e.g., the method proposed in Hwang (1982)). This restriction comes from the 

tournament practice. The World Cup, NBA playoffs, NCAA basketball tournament, the NHL's 

Stanley Cup Playoffs and most professional tennis events are examples of tournaments without 

reseeding (Baumann et al 2010). Most professional tennis events are examples of tournaments 

without reseeding. Baumann et al. (2010) noted that reseeding causes teams and spectators to 

have to make last-minute travel plans, which both increases costs and potentially reduces 

demand, and that reseeded tournaments eliminate popular gambling options related to filling out 

full tournament brackets, potentially reducing fan interest in the tournament. 

Seeding aims to ensure high competitive intensity, especially in the latter rounds of a 

tournament (Wright 2014), to provide incentives for the participants to maximize their 

performance both during the tournament and in the time period leading up to the tournament 

(Baumann et. al. 2010) to maximize spectator interest (Dagaev, Suzdaltsev 2015) and to ensure 

fairness (Horen, Riezman 1985). Such requirements create the theoretical problem of designing 

an ideal seeding method. 

Standard seeding has various shortcomings. There is much evidence that, in the NCAA 

men's basketball tournament, weaker participants have a higher probability of winning the 

tournament and a better chances of advancing in some rounds than certain stronger participants 

(see Boulier, Stekler (1999), Baumann et al (2010), Jacobson et al (2011), Khatibi et al (2015)). 

It is an example of a violation of fairness and incentive compatibility. 

Theoretical studies have attempted to find a best seeding and formalize different goals of 

seeding. Many studies contain impossibility results. Horen and Riezman (1985) showed that 

there is no "fair" seeding in the sense that a better participant has a higher probability of winning 

in the case of eight participants and a double monotonic domain. Schwenk (2000) proposed the 
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Delayed Confrontation, Sincerity Rewarded and Favoritism Minimized axioms. This set of 

axioms can be satisfied only within randomized seeding methods. Vu and Shoham (2010) 

investigated several impossibility results. They proved that there is no envy-free seeding under a 

double monotonic domain, there is no order-preserving seeding under a general domain, and 

there is no seeding satisfying the order preservation requirement and the condition for robustness 

against dropout. 

Numerous statistical and simulation studies (Garry, Schutz 1997; Marchand 2002; Annis, 

Wu 2006; Glickman 2008; Scarf, Yusof 2011) did not find clear support for any seeding method 

with a predetermined tournament bracket. Computer science studies (Hazon et al 2008; Vu et. al. 

2009; Vassilevska Williams 2010; Aziz et al 2014) aimed to find seedings with given 

characteristics. Basic problems, e.g., computing the maximum possible winning probability of a 

given player, are NP-hard. 

The economic literature with game-theoretic analysis of knockout tournaments has 

mainly focused on incentives of exerting effort and selection properties. The problem of 

designing an optimal seeding is solved mainly for four-participant tournaments (Rosen 1986; 

Groh et al 2012; Kräkel 2014; Stracke et al 2015). For tournaments with an unrestricted number 

of participants, Ryvkin (2009) showed that it is not possible to manipulate the aggregate effort 

through seeding in the case of weakly heterogeneous participants. 

The aim of this paper is to provide possibility results and give axiomatic justification for 

various seedings methods. The equal gap seeding and increasing competitive intensity seeding 

investigated in the paper were, to the author's best knowledge, never discussed in academic 

literature. Considering different domains and sets of axioms, several axiomatic justifications of 

equal gap seeding are proposed. A discrete optimization approach develops the axiomatic 

approach. It gives additional justification for the equal gap and increasing competitive intensity 

seedings and provides some support to standard seeding. 

This paper is closely related to decision theory literature. Eliaz et al. (2011) axiomatized 

procedures of choosing the two finalists. Bajraj and Ülkü (2015) axiomatized procedures of 

choosing the two finalists and the winner. This paper axiomatizes procedures of choosing the 

winner, the two finalists, the four quarterfinalists, etc. within the specific domain of balanced 

elimination tournaments. 

The structure of the paper is as follows. Section 2 describes seeding methods and 

probability domains. Section 3 presents axiomatics, combinatorial properties and representation 

theorems for the equal gap method. Section 4 presents a discrete optimization approach with 

justifications for the equal gap and the increasing competitive intensity seedings. Section 5 

concludes the paper. Appendix 1 includes all proofs. Appendix 2 contains a table with 

comparisons of the investigated seedings under various domain assumptions. 

 

 

2. Framework 

 

Let � = {1,2, … , 2�} be the set of alternatives (participants) and n be the number of 

rounds in the knockout tournament (later in the text tournament). The indices of the participants 

represent the order of the participants' strengths, where the first participant is the strongest. Let 

�� = {1,2} be a tournament with one round and ��
�,� = {�, �}, � ≠ �;  �, � ∈ � be a 

subtournament with one round of a tournament with n rounds. Each tournament with � ≥ 2 
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rounds consists of two subtournaments. Each subtournament with � ≥ 2rounds also consists of 

two subtournaments. ��
�,� is a subtournament i with k rounds. It is part of a tournament with n 

rounds. For notational convenience, let ��,� = �� and ��
�,� = {�}. Let ��,� be the set of all 

possible subtournaments with k rounds in a tournament with n rounds. Subtournaments ��
�,�, ��

�,� 

are nonoverlapping if there is no participant that plays in both subtournaments. A tournament 

with n rounds is a set �� = ���
���,�, ��

���,��, ��
���,�, ��

���,� ∈ ����,�, where subtournaments 

��
���,�, ��

���,� are nonoverlapping. A subtournament with k rounds is a set 

��,� = ���
���,�, ��

���,��, ��
���,�, ��

���,� ∈ ����,�, where subtournaments ��
���,�, ��

���,� are 

nonoverlapping. 

Tournaments �{1,2}, {3,4}� and �{4,3}, {1,2}� represent the same seeding. In this seeding, 

there are two matches, {1,2}, {3,4}, in the first round. In the second round, the winners of each 

match meet. It is convenient to order subtournaments lexicographically. The subtournament with 

the strongest participant is the first. In each match, the strongest participant is also the first. Let 

��
� be the vector representation of a lexicographically ordered tournament. There are only three 

different two-round tournament seedings, ��
� = (1,2,3,4), ��

� = (1,3,2,4), and ��
� = (1,4,2,3). 

Participant i of subtournament l with k rounds in the vector representation is denoted as ��,�
�,�. 

 

 

2.1 Seedings 

 

The total number of possible seedings in a tournament with n rounds is equal to 

��(�)=
��!

��
���. 

It is a fast-growing function with ��(3)= 315, ��(4)= 638512875, etc. It has the 

recurrence representation 

��(�)= (2� − 1)!!∙NS(n − 1), 

��(�)= �
2� − 1
2��� − 1

�∙(NS(n − 1))�, 

where �!! is a double factorial and �
�
�� is a binomial coefficient. 

Sports competitions and academic literature mainly address standard seeding. As an 

example, several eight-participant seedings are discussed in the literature, but only close seeding 

has a clear generalization. Three new seedings are proposed in this section. 

 

2.1.1 Standard seeding 

Standard seeding is defined recursively. The first rounds of the subtournaments are as 

follows 

��
�,� = {�, 2� − �+ 1}, �= 1, 2������������. 

For any k from 2 to n, we have 

��
�,� = ���

���,�, �
��� �� �� ���

���,� �, �= 1, 2������������. 

Thus, for � = 3, we have 

���������
� = ��{1,8}, {4,5}�, �{2,7}, {3,6}��. 
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Standard seeding (also called seeded tournament, distant seeding (Dagaev, Suzdaltsev 

2015), and balanced seeding (Ryvkin 2011)) is the most popular method. Generally, this method 

creates an advantage for strong participants, but Baumann et al. (2010) found that, in the NCAA 

men's basketball tournament, the 10th and 11th seeds have, on average, more wins and typically 

progress further in the tournament than the 8th and 9th seeds. The NCAA men's basketball 

tournament is a tournament with 16 participants 

���������
� = ���{1,16}, {8,9}�, �{4,13}, {5,12}��, ��{2,15}, {7,10}�, �{3,14}, {6,11}���. 

Participants 8 and 9 have weaker opponents in the first round than participants 10 and 11 

have. In the second round, the situation is reversed. Participants 8 and 9, with high probability, 

play against participant 1, but participants 10 and 11 play against, at the highest, participants 2 

and 3. The advantages in the second round outweigh the disadvantages in the first round of the 

tournament. 

Dagaev and Suzdaltsev (2015) showed that the standard seeding is a unique seeding that 

maximizes spectator interest when spectators care mainly about quality and later-round matches. 

Ryvkin (2011) found that the standard seeding, in conjunction with a uniform distribution of 

participants’ relative abilities, can cancel out the dependence of a participant’s equilibrium effort 

on her rivals’ abilities. 

 

2.1.2 Close seeding 

Close seeding is defined recursively. The first rounds of the subtournaments are as 

follows 

��
�,� = {2�− 1,2�}, �= 1, 2������������, 

For any k from 2 to n, we have 

��
�,� = ������

���,�, ���
���,��, �= 1, 2������������. 

Thus, for � = 3, we have 

������
� = ��{1,2}, {3,4}�, �{5,6}, {7,8}��. 

The vector representation of the close seeding is the following 

������
� = (1,2, … , 2� − 1, 2�). 

This is the most preferable seeding to the weakest participant and a highly undesirable 

seeding for strong participants. Many strong participants are dropped in the first rounds of the 

tournament. This contradicts the main goal of seeding. Despite its simplicity, close seeding is not 

used in real tournaments. 

Dagaev and Suzdaltsev (2015) showed that close seeding is a unique seeding that 

maximizes spectator interest when spectators care mainly about competitive intensity and do not 

prefer later-round matches. 

 

2.1.3 Equal gap seeding 

Equal gap seeding is defined recursively. The first rounds of the subtournaments are as 

follows 

��
�,� = {�, �+ 2���}, �= 1, 2������������. 

For any k from 2 to n, we have 

��
�,� = ���

���,�, �
������
���,� �, �= 1, 2������������. 
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Thus, for � = 3 and � = 4,we have 

���������
� = ��{1,5}, {3,7}�, �{2,6}, {4,8}��; 

���������
� = ���{1,9}, {5,13}�, �{3,11}, {7,15}��, ��{2,10}, {6,14}�, �{4,12}, {8,16}���. 

To the author's best knowledge, equal gap seeding has never been discussed in academic 

literature, and it is only applied for the second life, known as the Process, in two-life croquet 

tournaments in England, New Zealand, Australia and the United States (The Laws of Association 

Croquet, 2000). 

 

2.1.4 Increasing competitive intensity seeding I 

Increasing competitive intensity seeding I is defined recursively with s� = (1,2). For any 

� ≥ 2, we have 

��
� = 1, 

��
� = ��

���+ 2���, �= 2, 2������������, 

��
� = �������

��� + 1, �= 2��� + 1, 2�����������������. 

Thus, for � = 3 and � = 4, we have  

���� �
� = ��{1,8}, {6,7}�, �{2,5}, {3,4}��; 

���� �
� = ���{1,16}, {14,15}�, �{10,13}, {11,12}��, ��{2,9}, {7,8}�, �{3,6}, {4,5}���. 

 

2.1.5 Increasing competitive intensity seeding II 

Increasing competitive intensity seeding II is designed on the basis of increasing 

competitive intensity seeding I. For any � < 3, we have 

s� = (1,2), s� = (1,4,2,3). 

For any � ≥ 3, we have 

��
� = 1, �������

� = 2, �������
� = 2�; 

��
� = ���� �,�

��� + 2��� − 1, �= 2, 2������������, 

��
� = ���� �,������

��� + 1, �= 2��� + 3, 2�����������������. 

Thus, for � = 3 and � = 4, we have  

���� ��
� = ��{1,7}, {5,6}�, �{2,8}, {3,4}��; 

���� ��
� = ���{1,15}, {13,14}�, �{9,12}, {10,11}��, ��{2,16}, {7,8}�, �{3,6}, {4,5}���. 

The increasing competitive intensity seedings I and II favor participant 1. 

 

 

2.2 Probability domains 

 

The order of participants' strengths is known at the beginning of the tournament. Suppose 

that the strengths of participants remain unchanged during the tournament and that a probability 

��� that participant i wins against participant j depends only on the strengths of participants i and 

j. The organizers have some expectations (or assumptions) about ���. Because ��� + ��� =1, we 

need only 2�(2� − 1)/2 probabilities to describe all possible situations. These probabilities are 
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also called the preference scheme (Hwang 1982). A set of all possible values ���, �, �∈ �, �< �, 

generates a probability domain � ⊆ [0,1]�
���(����). Based on such domain, it is possible to 

derive properties of seedings. Properties of seedings help organizers choose the best one. Table 1 

has collected several probability domains from knockout tournament literature. 

Table 1. Probability domains. 

Domain Restrictions Seeding studies Comments 

General 

domain ��  

0 ≤ ��� ≤ 1. Vu, Shoham 2010. Under the general domain 

assumption, a stronger participant 

can lose with a probability strictly 

greater than one half. There is no 

violation of the strength order. A 

stronger participant can win against 

some other participant with a higher 

probability. 

Stochastically 

transitive 

domain ��� 

0.5 ≤ ��� ≤ 1. David 1959; Searls 

1963. 

It satisfies weak stochastic 

transitivity (∀�, �, � ∈ � if ��� ≥ 0.5 

and ��� ≥ 0.5 then ��� ≥ 0.5). 

Doubly 

monotonic 

domain ��� 

0.5 ≤ ��� ≤ 1, 

��′� ≥ ���, �
′ < �, 

���′ ≥ ���, �
′ > �. 

Glenn 1960; Schwenk 

2000; Vu, Shoham 

2010; Dagaev, 

Suzdaltsev 2015. 

It satisfies strong stochastic 

transitivity (∀�, �, � ∈ � if ��� ≥ 0.5, 

and ��� ≥ 0.5 then 

 ��� ≥ ��� ����, ����). 

Linear 

domain �� 

��� = �(�� − ��), 

where �� > �� are 

strengths of 

participants i, j,  

�: (0, ∞ )⟶ [0.5,1]  

is nondecreasing 

concave function. 

This domain was not 

applied for seedings 

studies. 

In Bradley (1976) survey F is a 

distribution function for a symmetric 

distribution. Stern (1992) and Baker, 

McHale (2014) used gamma 

distribution. 

Restricted 

linear domain 

��� 

Linear domain with 

�� = 2� + 1 − �; � is 

strictly increasing 

concave function. 

This domain was not 

applied for seedings 

studies. 

Grifiths (2005) proposed to use  

�(�)= 1 − ��, where 0 < � <
�

�
, or 

�(�)=
�

�
+

�

����
. 

Bradley-

Terry domain 

���  

��� =
��

�����
, 

where �� > �� > 0 are 

strengths of 

participants i, j. 

Bradley, Terry, 1952; 

Hartigan 1968; Prince 

et. al. 2013 

Some generalizations of Bradley-

Terry domain were proposed in 

(Koehler, Ridpath 1982; Rosen 

1986; Hwang et al 1991). 

Equal 
probabilities 
domain ��� 

��� = �, 

0.5 ≤ � ≤ 1. 

- ��� ⊄ ���  and ��� ⊄ ���. 

Deterministic 

domain �� 

��� = 1. Wiorkowski, 1972; 

Vassilevska Williams 

2010; Dagaev, 

Suzdaltsev 2015 

�� ⊂ ���. 
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Having ��
� = ��(��

�� ), ��
� = �����

�� � and � =
�

�����
, one can show that ��� ⊂ ��.� = � 

leads to ��� ⊂ ��. Summarizing Table 1, we obtain 

�� ⊂ ���� ∪ ���∪ ����⊂ �� ⊂ ��� ⊂ ��� ⊂ ��. 

Because ���, � =
�

�����
 are strictly increasing functions, ����⋂ ����⋃ ���� ⋂ ����= ∅. 

The intersection of ��� and ���  is nonempty. It includes ��
�� = ���

�� �, �, � > 0 in the Bradley-

Terry domain and � =
�

�����
, � > 0 in the restricted linear domain. Appendix 2 contains many 

examples of various probability assumptions. 

 

 

3. Axiomatic justification 

 

Participants, organizers and spectators have their own interests. Participants want to play 

as many matches as possible. Organizers want to support spectator interest in all matches. 

Spectators want to see strong participants and matches with high competitive intensity. All of 

them are interested in a fair tournament with a strong winner. These ideas are represented in the 

following set of axioms. 

 

A1.Delayed confrontation. (Schwenk 2000). Two participants rated among the top 2�  shall 

never meet until the number of participants has been reduced to 2�  or fewer. 

 

This axiom represents the main idea of seeding. A strong participant should not be 

dropped at the beginning of the tournament. Spectators want to see strong participants. Strong 

participants should play more games. It supports spectator interest. 

In the case of the deterministic domain, delayed confrontation means that, in any round, 

the strongest half of all participants wins, and in each round, the strongest loser participant is 

weaker than the weakest winner participant. We can define a new order of participants based on 

the number of wins (the number of rounds a participant plays). The more wins, the better a 

participant. A knockout tournament generates a weak order with several indifference sets: 

participants with no wins, with one win and so on. The initial order is linear order. In the case of 

the deterministic domain, we can interpret axiom A1 as the order-preserving property. If 

participant i is strictly better than participant j in terms of initial order, then participant i is at 

least as good as participant j in tournament wins ordering. If Axiom A1 holds in the deterministic 

domain, then it hold in any other domain in which a stronger participant wins against a weaker 

participant with a positive probability, i.e., in any reasonable probability domain. 

There is another equivalent definition of axiom A1. The top 2��� participants of any 

subtournament with � rounds shall be divided equally between two subtournaments of this 

subtournament.  

 

A2 Fairness. A seeding is fair if and only if, for any k, a participant's probability of winning k 

matches is no less than that of any weaker participant. 
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A2' Weak fairness. A seeding is weakly fair if and only if, for any k, a probability of winning k 

matches for any participant from the strongest 2���  participants is no less than that of any 

participant from the set of participants {2��� + 1, … , 2�}. 

 

These axioms represent the same idea as monotonicity (Hwang 1982), fairness (Horen 

and Riezman 1985), sincerity rewarded (Schwenk 2000), envy-freeness, order preservation (Vu, 

Shoham 2011), and fairness (Prince et al. 2013). These axioms are also the incentive 

compatibility property. From this axiom, we conclude that the strongest participant has the 

highest probability of winning, the two strongest participants have the highest probabilities to 

reach the final, etc. These axioms prevent situations in which a participant will be strictly better 

off by losing a game in the qualification tournament and becoming weaker in the initial order. 

These incentives are widely discussed in the literature (Silverman, Schwartz 1973; Taylor, 

Trogdon 2002; Tang et al. 2010; Dagaev, Sonin 2014). 

 

A3 Balance. Two subtournaments of any subtournament with more than one round shall have an 

equal sum of participants' ranks. 

 

The sum of participants' ranks represents the strength (quality) of a subtournament. 

Axiom A3 equates the strengths (qualities) of all rival's subtournaments. Because the sum of all 

participants' ranks in the tournament equals 2���(2� + 1), the sum of participants’ ranks in any 

first round match equals 2� + 1. Except the first round match, this axiom does not create any 

constraints. 

 

A4 Symmetry. A tournament designed for strength-ordered participants is equal to a tournament 

designed for weakness-ordered participants. 

 

Tournaments �{1,2}, {3,4}� and �{1,4}, {2,3}� satisfy symmetry. Having reverse order 

{1,2,3,4} → {4,3,2,1}, we obtain new tournaments �{1,2}, {3,4}�→ �{4,3}, {2,1}�=

�{1,2}, {3,4}� and �{1,4}, {2,3}�→ �{4,1}, {3,2}�= �{1,4}, {2,3}�. All matches are the same. 

Tournament ��{1,8}, {6,7}�, �{2,5}, {3,4}�� violates symmetry. Having reverse order 

{1,2,3,4,5,6,7,8} → {8,7,6,5,4,3,2,1}, we obtain a new tournament 

��{1,8}, {6,7}�, �{2,5}, {3,4}��→ ��{8,1}, {3,2}�, �{7,4}, {6,5}��≠ ��{1,8}, {6,7}�, �{2,5}, {3,4}��. 

Pair {1,8} plays with pair {6,7} in the second round. Pair {1,8} remains unchanged,but pair {6,7} 

became stronger under the new order. 

Axiom A4 is a strength/weakness invariance property. It does not matter whether strength 

or weakness is measured. 

 

 

3.1 Deterministic domain assumption 

 

The following three axioms are designed for the deterministic domain. 

 

A5 Increasing competitive intensity. In each subsequent round, a winner faces a stronger 

participant than in the previous round. 
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This axiom supports spectator interest. It eliminates antagonism between the quality of 

the match (the sum of strengths) and its competitive intensity (the difference of strengths), 

discussed in (Dagaev, Suzdaltsev 2015). From round to round, the strength of rivals becomes 

higher and closer. The quality of the match and intensity of competition increase. 

 

A6 Equal rank sums. For any match in round k, the sum of ranks of rivals is the same. 

 

This axiom tries to equate all matches of one round by their quality. It supports spectator 

interest in all matches. Proposition 1 shows that only standard seeding satisfies this axiom. The 

proof for proposition 1 and subsequent propositions are given in the appendix. 

 

Proposition 1. Under the deterministic domain assumption, the standard seeding is a unique 

seeding that satisfies axiom A6. 

 

A7 Equal rank differences. For any match in round k, the difference in the ranks of rivals is the 

same. 

 

Axiom A7 is a counterpart of axiom A6. This axiom tries to equate all matches of one 

round by competitive intensity. The rank difference varies from round to round. If � ∈ ℕ� is a 

vector of rank differences, then ∀�≠ �, �, �∈ � , �� ≠ ��. 

Under the Bradley-Terry domain assumption, equal rank differences in the first round is a 

necessary condition for fairness (Prince et al. 2013, corollary 4.1). Close seeding and equal gap 

seeding satisfy axiom A7, and these seedings have the same set of rank differences {1,2,4}. 

Propositions 2 and 3 characterize seedings that satisfy axiom A7 and show that equality of rank 

difference sets is a general property.  

 

Proposition 2. If there exists a tournament with a vector of rank differences � ∈ ℕ�, then for 

any permutation �, there exists a tournament with a vector of rank differences �� ∈ ℕ�. 

 

Proposition 3. If axiom A7 holds, then the rank difference in round k is equal to �� = 2�� , 

�� ∈ ℕ�. 

 

Table 2 summarizes seedings properties under the deterministic domain assumption. 

Proposition 4 describe the relations between axioms. 

Table 2. Seedings properties under the deterministic domain assumption 

Seedings A1 A2 A3 A4 A5 A6 A7 

Standard + + + + + + - 

Close - - - + - - + 

Equal gap + + - + + - + 

Increasing competitive 

intensity I 
- - - - + - - 

Increasing competitive 
intensity II 

- - - - + - - 
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Proposition 4. Under the deterministic domain assumption, the following three statements hold 

(i) A1, A2, and A2' are equivalent; 

(ii) A5 and A7 imply A1; 

(iii) A1 implies A5. 

 

Proposition 5 finds ���(�), the number of seedings that satisfies axiom Ai and 

characterizes the asymptotic properties of axioms. 

 

Proposition 5. Under the deterministic domain assumption, the following seven statements hold 

(i)  �� 1(�)= �� 2(�)= ∏ 2���!�
��� ; 

(ii)                          �� 3(�)=
����!

��
�����

; 

(iii)                    �� 4(�)= 2���!�(�), 

where �(�)= 0.5(�(� − 1))� + 1 with �(1)= 1; 

(iv)  �� 5(�)=
(����)!

∏ ���� ����
�����

�� �

; 

(v)                    �� 6(�)= 1; 

(vi)                 �� 7(�)= �!; 

(vii) ����→ �
��� (�)

��(�)
= 0 , �= 1,7����. 

 

For n = 3, we have NA1(3)= NA2(3)= 48, NA3(3)= 3, NA4(3)= 51, NA5(3)=

80, NA6(3)= 1, and NA7(3)= 6. These combinatorial formulas help to analyze random 

seeding. The probability that random seeding satisfies any of axioms A1-A7 converges to zero as 

n goes to infinity. This is an argument against random seeding. 

 

 

3.2 Representation theorems for the equal gap method. 

 

This section includes two representation theorems for the equal gap method under various 

domain assumptions. 

 

Proposition 6. Under the deterministic domain assumption, the equal gap seeding is a unique 

seeding that satisfies one of three sets of axioms: 

(i) A1 and A7; 

(ii) (A2 or A2') and A7; 

(iii) A5 and A7. 

 

From proposition 4, the set of axiomsA5 and A7 is the weakest requirement. All three 

justifications contain axiom A7, but it is not necessary for axiomatic justification under the 

restricted linear domain and for the discrete optimization justification presented in the following 

propositions. Proposition 7 uses a modification of axiom A2' and provides new justification for 

the equal gap method. 
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Proposition 7. Under the restricted linear domain assumption, equal gap seeding is a unique 

seeding for which, for any k, the strongest 2��� participants have equal probability of winning � 

matches. 

 

Corollary. Under the restricted linear domain assumption, equal gap seeding is weakly fair. 

 

Equal gap seeding is not weakly fair under the linear domain assumption. Consider an 

example for � = 2, ���������
� = �{1,3}, {2,4}�. Let �� = 3, �� = 2, �� = 1, �� = −10� and 

�(�)= 1 if � ≥ 10�, otherwise �(�)= 0.5 +
�

�∙���
. � is a concave nondecreasing function. The 

probability that participant 1 wins the tournament is approximately equal to 0.25, and the 

probability that participant 2 wins the tournament is approximately equal to 0.5. This contradicts 

weak fairness. 

 

 

4. Discrete optimization 

 

The main purpose of seeding is to prevent strong participants from being eliminated at 

the beginning of a tournament. Many studies maximize the probability of the event "participant 1 

wins a tournament."It is a narrow approach. Such events as "the strongest2���participants win � 

matches" are also desirable for tournament design. Proposition 8 generalizes the discrete 

optimization approach, forming the general form of the objective function. This objective 

function represents an idea of weak fairness (axiom A2'). The probabilities that the top 2��� 

participants win � − �+ 1 matches should be as high as possible. 

 

Proposition 8. Under the linear domain assumption, equal gap seeding is a unique seeding that 

maximizes 

� ��� ������ 2��� ������������ ��� � − �+ 1 ����ℎ���

�

�� �

��

��
�

���
, 

where �� > 0, �� ≥ 0, �= 2, ������. 

 

The most meaningful corollary of proposition 8 is the case α� = 1, α� = 0, �= 2, n�����. 

Under the linear domain assumption, equal gap seeding is the only seeding that maximizes the 

probability of advancing the strongest half of the participants in each round 

Pr������ 2� ������������ ��� � − � ����ℎ���

���

���

�. 

Equal gap seeding maximizes the probability that the strongest participant wins the tournament, 

the two strongest participants play in the final, the four strongest participants play in the 

quarterfinal, etc.  

Axiom A5 is designed for the deterministic domain. Under other domains, axiom A5 

holds with some probability. Maximizing such probability, it is possible to represent the idea of 

increasing the competitive intensity in various domains. Under the equal probabilities domain 

assumption, Proposition 9 represents optimal seedings. 
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Proposition 9. Under equal probabilities domain assumption the increasing competitive 

intensity seedings I and II maximize probability of increasing competitive intensity (in each 

subsequent round a winner faces with a stronger participant than in previous round) and this 

probability equals to  ��
∗ = ��

�����, where � is a probability of stronger participant winning in 

any match. 

 

The increasing competitive intensity seedings I and II are not unique seedings that 

maximize the probability of increasing competitive intensity under the deterministic domain 

assumption. For example,��{1,8}, {5,6}�, �{2,7}, {3,4}�� also has the highest probability of 

increasing competitive intensity. Under the linear domain assumption, ���� ��
�  is a unique seeding 

that maximizes the probability of increasing competitive intensity in the case of � = 3. The 

general solution of this discrete optimization problem is an issue for future research. 

The discrete optimization problem from Proposition 8 is a counterpart of axiom A2'. The 

problem from Proposition 9 is a counterpart of axiom A5. It is possible to define a similar 

problem for axiom A7. Because weaker participants can win, the rank differences may not be 

equal to a power of two, and such a problem may be quite complicated. Because this problem 

has no rich interpretation, it is not solved. My conjecture is that, under the linear domain 

assumption, the equal gap method maximizes the probability of equal rank differences. 

Appendix 2 compares equal gap seeding, standard seeding, and increasing competitive 

intensity seedings I and II. It illustrates how proposition 8 shows the probability that the 

strongest participant wins the tournament, the two strongest participants play in the final, the 

four strongest participants play in the quarterfinal, etc. Many examples confirm the superiority of 

equal gap seeding under the linear domain assumption. Appendix 2 also provides an example of 

the superiority of the standard seeding under the double monotonic domain assumption. The 

increasing competitive intensity seedings are the best seedings under the linear domain 

assumption, but under the double monotonic domain assumption, there exist better seedings. In 

our comparison, standard seeding is always in the middle. It is a compromise seeding. 

 

 

5. Conclusion 

 

The paper provides nested set and vector representations of tournament brackets. A new 

set of axioms and new methods (equal gap and increasing competitive intensity seedings) are 

designed. The paper provides several justifications of the equal gap method under deterministic, 

restricted linear and linear domain assumptions. It is unique seeding that, under the deterministic 

domain assumption, satisfies the delayed confrontation, fairness, increasing competitive intensity 

and equal rank differences axioms and that, under the linear domain assumption, maximizes the 

probability that the strongest participant is the winner, the strongest two participants are the 

finalists, the strongest four participants are the quarterfinalists, etc. Because of the simplicity and 

several justifications, equal gap seeding is a plausible alternative to standard seeding. 

The increasing competitive intensity seedings I and II maximize the probability of 

increasing competitive intensity. Because these seedings have complicated designs, it is hard to 

implement them in real tournaments. 
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There is a trade-off between the weak fairness and increasing competitive intensity 

criteria. Under the linear domain assumption equal gap seeding is optimal with respect to the 

first criterion. Increasing competitive intensity seedings maximize the second criterion. Under 

the linear domain assumption, the standard seeding is always between these seedings in terms of 

the given criteria, but closer to the maximum than to the minimum. This is a trade-off 

justification of the standard seeding. 

 

 

Appendix 1 

 

Proof of proposition 1. If participant 1 is not paired with participant 2� , then the sum of 

strengths is less than 2� + 1, and a pair, which includes participant 2� , has a sum greater than 

2� + 1. Therefore, ��
�,� = {�, 2� − �+ 1}, �= 1, 2������������, and the strongest 2��� participants 

advance in the first round. For any round k from 2 to n, participant 1 should be paired with 

participant 2�����, and ��
�,� = ���

���,�, �
������� ���

���,� �, �= 1, 2������������.■ 

 

Proof of proposition 2. It is sufficient to prove the existence of a tournament with permuted two 

neighboring elements of a rank differences vector �. Having a tournament � with a vector of 

rank differences �, we will design a tournament �′ with a vector of rank differences �′ where, 

for some �,  0 < �< �,  �′��� = ��, �′� = ����, and �′� = �� for all �≠ �,   �≠ �+ 1. Let 

��(�)∈ ℕ����  be a set of the strongest participants of all subtournaments with k rounds of 

tournament �. If �∈ ����(�), then �∈ ��(�). If �∈ ��(�), then �+ �� ∈ ����(�). All 

subtournaments of tournament � are numbered by the strongest participant of the subtournament; 

thus, we have ��
�,� = {�, �+ ��}, ��

�,� = ���
���,�, �����

���,��. 

Let ∀�:0 < � < �, ∀�∈ ��(�), �′�
�,� = ��

�,�. 

There are 2����� pairs �, � ∈ ��(�) such that � − � = ���� = �′�. Let � = ����(�), 

� = �� + �′��� ∈ ��. For all � ∈ � and for all � ∈ � , we have�, � ∈ ����(�) and � + ��, 

� + �� ∈ ����(�). �′= �� + ���� ∈ ��, �′= �� + ���� ∈ ��. In round j of tournament �, �∈ � 

is paired with �+ ��, which belongs to �′, and �∈ �  is paired with �+ ��, which belongs to �′. 

There are 2��� such pairs. The union of all of these pairs generates set ����(�). In round j of 

tournament �′, participant �∈ � is paired with participant �+ �′�, which belongs to � , and 

�+ �� ∈ �� is paired with � + �′� ∈ �′. Thus, ∀�∈ �⋃ �′, we have ��
�,�

= ���
���,�

, ������
���,�

�, and 

∀�∈ �, we have ��
���,�

= ���
�,�
, ��������

�,�
�. 

Because ����(�)= ����(�′)= �, it is possible to define that, ∀�:�+ 1 < � < �,  

∀�∈ ��(�), ��
�,� = ��′�

���,�, �′�����
���,�� and � = ��′�

���,�, �′�����
���,��. ■ 

 

Proof of proposition 3. Because of proposition 2, it is sufficient to prove that ��is equal to a 

power of two. In the first round, participants {1, … , ��} are paired with participants {�� +

1, … ,2��}. Participants {1, … ,2��} play with each other, participants {2�� + 1,… ,4��} play with 

each other, etc. (if �� ≤ 2���). �� is a divisor of the number of participants. Because the number 

of participants is equal to a power of 2, �� is equal to a power of 2.■ 
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Proof of proposition 4. (i) Suppose that axiom A1 holds; then, in round �, 2��� winner 

participants are stronger than all of the loser participants. All of the loser participants are weaker 

and have zero probability of advancing. Therefore, axioms A2 and A2' hold. 

Suppose that axiom A1 is violated; then, there exists a round �and participants i and j 

such that 2��� ≥ �> �≥ 1and participant i wins more matches than participant j. This violates 

axioms A2 and A2'. 

(ii) Suppose that axioms A5 and A7 hold but that axiom A1 is violated. Because A1 is violated, 

there exists a participant �∈ {1, … , 2���} that wins k-1 matches and loses the round k match. Let 

consider the lowest k for which such a participant exists. Because round k is the first round in 

which axiom A1 is violated, then {1, … , 2�����} is the set of round k participants. In round k, 

participant i plays with participant �< �. Because of axiom A7, the rank difference �− � is 

common for all round k matches. From proposition 3, the rank difference is always equal to a 

power of 2. Because axiom A1 is violated, �− �< 2���. Participants from the set {1, … , 2���} 

play with each other, and participants from the set {2��� + 1,… , 2�����} play with each other. 

Half of the set of the strongest participants {1, … , 2���} are is dropped. Because of axiom A5, in 

all subsequent rounds, participant from the set {1, … , 2���} should play with each other. If this 

holds for all rounds before the final, then in the final, participant 1 play with participant 2��� +

1 from the set of weaker participants. We have reached a contradiction. 

(iii) Suppose that axiom A1 holds; then, in any round, all winner participants are stronger than 

all loser participants. Round r+1 participants are winners of round r, and they play a game in 

round r+1 with each other, whereas in the round r, they play with weaker participants. 

Therefore, axiom A5 holds.■ 

 

Proof of proposition 5. (i) From axiom A1, participants {2��� + 1, … , 2�} should lose in round 

1, participants {2��� + 1,… , 2���} should lose in round 2, etc. Consider the vector 

representation of seeding. Participants in places with even numbers lose in the first round. There 

are 2���! ways to assign participants {2��� + 1,… , 2�}, there are 2���! ways to assign 

participants {2��� + 1,… , 2���}, etc. Therefore, we obtain NA1(n)= ∏ 2���!�
��� . From 

proposition 4(i), we have NA1(n)= NA2(n). 

(ii) Axiom A3 creates a rigid constraint for the first round. There is no constraint for other 

matches. For any tournament with n rounds, there exists a tournament with n+1 rounds that 

satisfies axiom A3; hence, �� 3(�)= ��(� − 1)=
����!

��
�����

. 

(iii) A pair of sets �, � ⊆ � are said to be symmetric if and only if |�|= |�|= 2���, and if 

� ∈ �, then 2� + 1 − � ∈ � . A set � ⊆ � is called a symmetric set if and only if |�|= 2���, 

and if � ∈ �, then 2� + 1 − � ∈ �. Each symmetric subtournament has a symmetric set of 

participants. For each symmetric tournament, either the set of participants of each subtournament 

with n-1 rounds is symmetric or the sets of participants of subtournaments with n-1 rounds are 

symmetric. There are �� 4(� − 1) different symmetric subtournaments with the given 

symmetric set of participants. Therefore, we obtain a recurrence relation 

�� 4(�)=
��������!

(������)!��� �!
��� 4(� − 1)�

�
+

(����)‼

(������)!
��(� − 1), 

where �‼ is a double factorial. Having for odd � that �‼ = (0.5�)!2�.��, we obtain 
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�� �(�)

����!
=

�

�
�
�� �(���)

����!
�
�

+ 1. 

Defining �(�)=
�� �(�)

����!
, we have �(1)= 1 and 

�(�)= 0.5(�(� − 1))� + 1. 

(iv) Consider the vector representation of seeding. Participant 2 should be in position 2��� + 1; 

otherwise, he will play with participant 1 before the final, and participant 1 will play with a 

weaker participant in the subsequent round. There are two subtournaments, (��,… , �����) and 

(�������, … , ���), that should satisfy axiom A5. There are NA5(n − 1) ways to assign a given 

set of participants to each of these subtournaments. We have the recurrence relation 

NA5(n)=
(����)!

�(��� ���)!�
� �NA5(n − 1)�

�
. 

Solving this equation with NA5(1)= 1, we obtain 

NA5(n)=
(����)!

∏ ��������
�����

���

. 

(v) �� 6(�)= 1 follows from proposition 1. 

(vi) From propositions 2 and 3, we haveNA7(n)= n!. 

(vii) lim�→ � �
���(���)

��(���)
� �

���(�)

��(�)
�� = lim�→ � �

��
���� ���

∏ ����������
�����

���

� �
��

�����

∏ ��������
�����

���

�� = 

lim�→ � 2�
���3��

���
∏ �

������

�∙������
�
��

���
��� = lim�→ � 2�

���
3��

���
∏ �1 −

�

�∙������
�
��

=���
��� 0. 

From this, it follows that lim�→ �
���(�)

��(�)
= 0. 

For n ≥ 3, we have NA6(n)< �� 7(n)< �� 1(n)< �� 5(n). 

Thus, lim�→ �
���(�)

��(�)
= lim�→ �

���(�)

��(�)
= lim�→ �

���(�)

��(�)
= lim�→ �

���(�)

��(�)
= 0. 

lim�→ �
���(�)

��(�)
= lim�→ � �

����!

��
���� �

� �
��!

��
�� ��� = lim�→ �

��
�� �

∏ ���

����� ���

= lim�→ �
∏ �����

���

∏ (����� �)����
���

= 0. 

For � ≥ 1, we have �� 4(�)= 2���!�(�)< 2���!�(�), where �(�)= (�(� − 1))�, with 

�(1)= 2; hence, �� 4(�)= 2���!�(�)< 2���!2�
���

. Thus, 

lim�→ �
���(�)

��(�)
≤ lim�→ �

��� �!��
���

��
���

��!
= lim�→ � 0.5

∏ �����

���

∏ (����� �)����
�� �

= 0.■ 

 

Proof of proposition 6. Because of proposition 4, it sufficient to prove part (i). From axiomA7, 

there are equal rank differences. �� ≤ 2���, otherwise it is impossible to find a pair for 

participant 2���. From axiom A1, the rival of participant 1 is weaker than the participant 2���, 

and then �� ≥ 2���. Therefore, we have �� = 2���. 

There are 2���  subtournaments with k rounds (k from 2 to n). Each of them has two 

subtournaments with k-1 rounds. From A1{1, … ,2�����} is the set of winners of these 

subtournaments. We numerate these subtournaments by the best participant from 1 to 2�����. 

From axiom A1, the rival of the subtournament 1 winner is weaker than the participant 2���. 

The difference between the indexes of subtournament 1 and its rival subtournament is not less 

than 2���. This difference is not higher than 2���,otherwise it is impossible to find a pair for the 

subtournament with index 2���. Therefore, for any k from 2 to n, we have�� = 2���  and 

��
�,� = ���

���,�, �
������
���,� �, �= 1, 2������������.■ 
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Proof of proposition 7. Let us prove this proposition by induction. Consider the first round. The 

strongest 2��� participants should win with equal probability. Under the restricted linear domain 

assumption, all matches should have equal rank differences, and the strongest 2��� participants 

should not play each other. Thus, �� = 2��� and ��
�,� = {�, �+ 2���}, �= 1, 2������������. We have 

proved the proposition for � = 1. Suppose it is true for all � from1 to � (1≤ �≤ � − 1). Let us 

prove it for �+ 1. 

The strongest 2��� participants of the tournament are the strongest participants of the 

subtournaments ���
�,�
, .., �

����
�,�

� numbered by the strongest participant.In round �+ 1, there are 

four subtournaments with indexes �, �, �, �, such that � is paired with � (� < �) and � is paired 

with � (� < �). If � − � > � − �, then participant � has a grater probability of winning the next 

match than participant �. The only way to equate the probabilities of winning �+ 1 matches for 

the strongest 2��� participants is to equate the rank differences of subtournaments. Because the 

strongest 2����� participants should have equal probability, then ���� = 2����� and 

��
���,�

= ���
�,�
, �

������� �
�,�

�, �= 1, 2�����������������.■ 

 

Proof of proposition 8. If a seeding violates axiom A1, then the objective function equals 0. 

Optimal seeding satisfies axiom A1. Axiom A1 leads to the following structure of seedings. The 

strongest 2��� participants play with the weakest 2��� participants. In each subsequent round, 

winners of the strongest half of matches play with winners of the weakest half of matches. The 

strength of a match coincides with the strength of the best participant of the match. 

Considering only seedings that satisfy axiom A1, we find the probability that, in round k, 

participants �� = {1,… ,2���} win against participants �� = {2��� + 1,… , 2�����} 

��{��������� �� ����� �} =� �
���

�

����

���
, 

where ��
� ∈ ��and ∀� ≠ �, �� ≠ ��. 

Having ��{��������� �� ����� �}, we rewrite the objective function 

� �Pr������ 2��� ������������ ��� � − �+ 1 ����ℎ���

�

�� �

��

��
�

���
= 

� (��{��������� �� ����� �})∑ ��
�����
���

�

���
=� �� �

���
�

��� �

���
�

∑ ��
�����
�� ��

���
. 

Because ��{��������� �� ����� �} does not depend on ��{��������� �� ����� �′}, 

this problem is separated on n independent problems of maximizing 

��{��������� �� ����� �}. 

The solution of the problem of maximizing ��{��������� �� ����� �} is described by 

the set of pairs �� = ⋃ ��, ��
������

��� , where ��
� ∈ ��and ∀�≠ �, �� ≠ ��. 

Let���  be an optimal solution for the problem of maximizing 

��{��������� �� ����� �}. Assume there exist �, �∈ ��  and �, � ∈ ��  such that �< �< � < � 

and {�, �} ∪ {�, �} ∈ ���. From the linear domain assumption, we have 

������ = �(�� − ��)���� − ���, 

�� > �� > �� > ��. 
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There exists a linear function �� + � such that  

�(�� − ��)= �(�� − ��)+ �, 

���� − ���= �(�� − ��)+ �. 

Because F is an increasing concave function with lim�→ � �(�)≥ 0.5, we have 

�(�� − ��)≤ �(�� − ��)+ �, 

���� − ���≤ ���� − ���+ �. 

Comparing ������ and ������, we have  

�(�� − ��)���� − ���− �(�� − ��)���� − ���≥  

(�(�� − ��)+ �)����� − ���+ ��− (�(�� − ��)+ �)����� − ���+ ��=  

������� − ���� − ���� + �����= ����� − ���(�� − ��)> 0. 

������ > ������contradicts the optimality of ��� . Therefore, for all �, �∈ ��  and �, � ∈ ��  such 

that �< �< � < �, we have {�, �} ∪ {�, �} ∈ ���. 1 is paired with 2��� + 1, 2 is paired with 

2��� + 2, etc. From this, we obtain the equal gap seeding.■ 

 

Proof of proposition 9. Let ��
∗ be the highest possible probability of increasing competitive 

intensity. For � = 2, we have  ��
∗ = �, where � is the probability of the stronger participant 

winning in any match. The optimal tournament is ����
� = �{1,4}, {2,3}�. The results of the match 

{2,3} and the last round match have no impact on the event "increasing competitive intensity." 

Consider � > 2. The tournament that is generated by an optimal seeding consists of two 

subtournaments, which are also optimal in the sense of the probability of increasing competitive 

intensity. The results of the two last-round matches of these subtournaments have an impact on 

the event "increasing competitive intensity." If participant 1 loses in the first of these matches, 

then in the final, his/her rival meets with a weaker rival. If the rival of participant 1 is weaker 

than all possible rivals in the second subtournament, then the result of the second match may not 

be important as in �{1,4}, {2,3}�. In the increasing competitive intensity seedings I and II, all 

participants of subtournament 1 except participant 1 are weaker than any participant from 

subtournament 2 except participant 2�. If the event "increasing competitive intensity" holds for 

the second subtournament, then participant 2� loses in the first match. Therefore, for the 

increasing competitive intensity seedings I and II, the result of the last match of the second 

subtournament is not important, and for � ≥ 2,we obtain the recurrence relation  

 ����
∗ = � ∙( ��

∗)�. 

Solving this equation, we obtain  ��
∗ = ��

����� (which holds for � ≥ 1).■ 
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Appendix 2. Comparison of the equal gap seeding, the standard seeding, and the increasing competitive intensity seeding, n=3. 

Domain Assumption 

Pr({��� 4 ������������ ��� 1 ����ℎ��}
∪ {��� 2 ������������ ��� 2 ����ℎ��}
∪ {��� 1 ����������� ���� 3 ����ℎ��}) 

Pr(���������� ����������� ���������) 

Equal gap 
seeding 

Standard 
seeding 

ICI seeding 
I 

ICI seeding 
II 

Equal gap 
seeding 

Standard 
seeding 

ICI seeding 
I 

ICI seeding 
II 

���  �� = 2� + 1 − � 0.052 0.045 0 0 0.097 0.284 0.411 0.467 

���  �� = (2� + 1 − �)� 0.140 0.104 0 0 0.248 0.524 0.651 0.738 

��� ∩ ��� �� = 2�
�� � 0.335 0.225 0 0 0.502 0.760 0.855 0.912 

��� �(�)=
1

2
+

�

2���
 0.070 0.064 0 0 0.124 0.360 0.524 0.574 

��� �(�)= 1 − 0.25� 0.649 0.408 0 0 0.865 0.968 0.983 0.996 

��� 
�(�) is CDF for standard 

normal distribution 
0.803 0.594 0 0 0.955 0.997 0.999 1 

��� ��� = � �� �� 0 0 �� �� �� �� 

�� 

�� = 5 − �, �= 1,4���� �� =
− 10� − �, �= 5,8����. 
�(�)= 1 if � ≥ 10� 

�(�)= 0.5 +
�

�∙���
 

otherwise 

0.125 0.125 0 0 0.250 0.500 1 1 

��� ��� =
1

2
+
���(9 − �;�)

16
 0.163 0.215 0 0 0.261 0.615 0.711 0.714 

��� 

��� = 1 if 
���(�� �;�)

��
≥

�

��
; 

��� = 0.5 otherwise. 

0.008 0.031 0 0 0.016 0.25 0.25 0.5 

��� 

��� = 1 if 
���(�� �;�)

��
≥

�

�
; 

��� = 0.5 otherwise. 

0.008 0.016 0 0 0.016 0.125 0.25 0.125 
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