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Dissipative Quantensysteme und Flussgleichungen

Die vorliegende Arbeit untersucht dissipative Quantensysteme mithilfe
von Flussgleichungen fiir Hamiltonoperatoren. Ausgangspunkt stellt
das Spin-Boson-Modell mit einer bosonischen Mode dar. Die Flussglei-
chungsresultate fiir die Grundzustandsenergie und fiir die Transformation
der Pauli Spinmatrizen werden dabei mit der numerisch exakten Losung
verglichen. Fiir das Spin-Boson-Modell mit beliebiger Anzahl bosoni-
scher Moden und explizit gebrochener Spiegelsymmetrie werden allge-
meine Flussgleichungen aufgestellt, wobei ein Trunkierungsschema mit /-
abhangiger Normalordnung eingefiithrt wird. Wir beobachten universelles
asymptotisches Verhalten und geben eine Diskussion. Abschliessend wird
ein Brownsches Teilchen in einem periodischen Potential mit gebroch-
ener Spiegelsymmetrie betrachtet, wobei die Methodik der vorherigen Ab-
schnitte verwendet wird. In diesem Zusammenhang werden auch Resul-
tate fiir das Tomonaga-Luttinger-Modell mit Storstelle gegeben.

Dissipative Quantum Systems and Flow Equations

This work investigates dissipative quantum systems by means of Flow
Equations for Hamiltonians. We start with the Spin-Boson Model inclu-
ding one bosonic mode. The Flow Equation results for the ground-state
energy and for the transformation of the Pauli spin matrices are compared
with the numerically exact solution. For the Spin-Boson Model with an
arbitrary number of bosonic modes and explicitly broken reflection sym-
metry, general Flow Equations are set up using a truncation scheme which
involves an /-dependent normal ordering procedure. Furthermore, obser-
vations on universal asymptotic behaviour are discussed. The remaining
chapter investigates quantum Brownian motion in a periodic potential
with broken reflection symmetry - employing the previous procedures. In
this context we also include results for the Tomonaga-Luttinger Model
with impurity.
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1. Introduction

Non-perturbative methods resemble an invaluable tool for the theoretical analysis of
many-body systems and often yield the only reliable results available. Yet their number
is limited, and especially exact methods are generally only applicable to a confined
parameter regime or to specific models. The refermionization technique e.g. only
works at the so-called Toulouse point while Bethe-ansatz techniques are limited to
integrable models.

In 1993 and 1994 a new non-perturbative method was proposed by Wilson and
Glazek and independently by Wegner. Whereas in high energy physics the method is
known as Similarity Transformations, the term Flow Equations has been established
in the solid-state community.

The idea is conceptionally simple: Instead of diagonalizing the Hamiltonian of
the system by a single unitary transformation, one performs a continuous sequence
of infinitesimal unitary transformations and thus induces a flow on the system
parameters. The procedure is not constrained to specific symmetries nor to certain
parameter regimes - but is accessible to any system described by a Hamiltonian.
Thus, the method has been successfully applied to various models of solid-state and
nuclear physics.

Since the method is strikingly simple it allows great freedom in its applications.
Yet one is always in search of a distinguished scheme and in addition, to justify certain
approximations and ansdtze. Approximations become necessary as the Flow Equations
usually create an infinite hierarchy of newly generated interaction terms. One therefore
calls for a suitable and objective truncation scheme.

This work will address these questions when applied to Dissipative Quantum Sys-
tems. For dissipative systems the bath parameters are left invariant during the flow,
which is intuitively apparent since the system should not have any effect on the infinite
bath. Therefore, they serve as an ideal testing ground for the method. Still, they bear
physical relevance and - amongst others - the question of quantum mechanical noise
induced transport is currently debated in the literature. Furthermore, there is some
controversy on the system behaviour when exposed to a sub-Ohmic bath.

One objective of this work is to propose a general truncation scheme, which leads
to Flow Equations that are invariant with respect to the initial Hamiltonian up to
a unitary transformation. Further, emphasis is placed on the aspect of symmetry
breaking in the initial Hamiltonian and during the operator flow. We end up with an
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objective /-dependent truncation scheme which can also be applied to other systems,
such as electron-phonon systems where both system parameters will flow.

This work is organized such that all sections are more or less self-contained. Ref-
erences to previous sections are avoided and no specific knowledge is required for each
section so that one can basically skip to the topic of interest. The price is a sometimes
redundant introduction to the several models.

This work is also hierarchical in the sense that we start with a rudimentary
Hamiltonian and add further contributions as we go along. This is done from two
perspectives, firstly considering a bosonic bath; and secondly considering a fermionic
bath. This work is divided into the following chapters:

The second chapter deals with exactly solvable models: The Independent Boson
Model to justify the expansion of fermionic operators into an infinite series of un-
bounded operators; and the Dissipative Harmonic Oscillator to introduce the general
scheme how to treat dissipative quantum systems within the Flow Equation approach.
We also consider the Tomonaga-Luttinger Model to point out that the specific rep-
resentation of operators becomes crucial in the Flow Equation approach and to lay
ground for later extensions of the model.

The third chapter then deals with the Spin-Boson Model with only one bosonic
mode. Throughout this work we refer to this model as the Rabi Model in order to
avoid confusion with the Spin-Boson Model with an arbitrary number of modes and
arbitrary dispersion, discussed in Chapter 4. Different truncation schemes are tested
and compared with the numerically exact solution that is obtained for the ground-state
energy and for the fixed point operator of the observable flow. In order to compare
the fixed point operator with the Flow Equation result, a unique composition of the
fixed point matrix is presented.

The forth chapter deals with the simplest non-trivial dissipative quantum system,
the Spin-Boson Model. Emphasis is placed on breaking the reflection symmetry and
a general truncation scheme is proposed. Furthermore, we investigate Flow Equations
where all system parameters tend to zero for the fixed point Hamiltonian and display
universal asymptotic behaviour.

The fifth chapter deals with Brownian Motion in a Periodic Potential where the
focus is again on a reflection-breaking periodic potential. The previously developed
procedures prove to be easily applicable to this extended dissipative model. Finally
the Tomonaga-Luttinger Model with impurity is considered.

We close with a Summary and Outlook.

Throughout this work we set i = 1.



2. Exactly Solvable Models

Prior to the application of Flow Equations to exactly solvable models, a brief intro-
duction to the method itself is as follows:

e Consider a family of unitarily equivalent Hamiltonians (Uf(¢) = U 1(¢), £ € R)

H(¢)=U(()HU'(¢)

e Differentiating both sides, the infinitesimal version reads

0H =[n,H] , withn=-U(£)oU"(¢)

e The choice n = [Hy, V] will diagonalize the Hamiltonian H = Hy + V for £ —
oo. By diagonalizing is meant that the trace of the square of the off-diagonal

matrix elements V' is monotonically decreasing for increasing £, i.e. 9p(trV?) <0
[Weg94].

In the following chapters the choice n = [Hy, V| will be called the canonical gener-
ator. But it is by no means the unique nor invariably the best choice. For example,
instead of focusing on the trace of the square of the off-diagonal matrix elements, Weg-
ner introduced a general functional of the Hamiltonian under consideration, that is
subjected to reach its minimum during the flow [Gro01]. For banded matrices, Mielke
proposed that the flow should preserve the structure of the initial Hamiltonian that
demands a generator which also differs from the canonical choice [Mie98]. Another
strategy is to start with the canonical generator and then add further contributions to
the generator with the objective to cancel interaction terms that were created by the
canonical choice [Keh97].

The Flow Equation approach allows great freedom. To obtain a qualitative and
quantitative picture, we consider a real, symmetric 2 X 2 matrix with trace zero. The
matrix is thus characterized by two parameters; the diagonal part dy and the off-
diagonal part ey. Postulating that the Flow Equations shall diagonalize the matrix for
¢ — oo all functions e(¢) with e(0) = e and e(£) — 0 for £ — oo are allowed, all cor-
responding to a different generator n and to a different function d(¢). Nevertheless the
functions d(¢) have the same limiting value d(¢) — d* for £ — oo if no approximation
is made.
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Even though all different Flow Equations are equivalent and will eventually lead
to the same result, matters change as soon as approximations are involved. Then a
systematic decoupling is favorable. This is the second virtue of the canonical choice
n = [Ho, V] apart from diagonalizing the system: States with high energy difference are
decoupled first. More precisely, the scale of energy difference just being decoupled is
given by £='/2.1 The separation of energy scales is a basic feature of the renormalization
group. The Flow Equation approach is therefore likely to describe systems that were
previously only tractable by “conventional” renormalization group techniques based
on functional integrals and effective actions.

We would like to make a second comment which involves the choice of the diagonal
part Hy. Principally, there is no constraint for choosing an appropriate diagonal
Hamiltonian; even though it is often best to choose the “largest” one still diagonalizable
[Ric97]. The only condition is that the spectrum of Hy and H are principally of
the same kind. For example, choosing the kinetic part of the Hamiltonian of the
harmonic oscillator as diagonal Hamiltonian will not lead to the correct spectrum,;
instead considering a harmonic potential as perturbation to the harmonic oscillator
will give the desired solution.

With these preliminary remarks we are now set to apply Flow Equations to exactly
solvable models. We will especially focus on the similarities of the models discussed in
the following chapters. Therefore some of the notations and various points discussed
will become clearer when reading the next chapters.

2.1. Independent Boson Model

The Independent Boson Model is given by the Hamiltonian
H=Hy+V =wbb+eclc+ Acle(b+b') . (2.1)

The b(") resemble bosonic, the ¢{f) fermionic operators. They obey the canonical com-
mutation and anti-commutation relations respectively. The model can account for
some relaxation phenomena and is extensively discussed in the textbook by Mahan
[Mah90].

We set ¢ = M/w. Then the Hamiltonian of Eq. (2.1) is equivalent to
H = wb'b+ 0, \(b+b'), where o, denotes the z-component of the Pauli spin matrices.
We will encounter this latter form of the Hamiltonian in Chapter 3, where we will add
an additional term that will couple the two fermionic states through the tunnel-matrix
A
50’;5.

The model is easily solved by the unitary transformation

U= exp(—cTcg (b—b") (2.2)

!Glazek and Wilson do not focus on the absolute but relative energy difference in their Similarity
Transformations [Gla94]. Mielke showed a certain equivalence of the two schemes [Mie97].



2.1 Independent Boson Model 5

and we obtain the diagonalized Hamiltonian UHU' = wb'b.

But we want to perform this unitary transformation continuously by introduc-
ing a flow parameter ¢ and a family of unitarily equivalent Hamiltonians H(¢) =
U()HUT(f). We also want to look closely at the transformed operator c({) =
U(¢)cUT(¢) and question if an expansion of the operator in a series of unbounded
operators, namely (b — b')", is well-defined. Further, we want to study which effects
a truncation of the series might have on the unitarity of the transformation, i.e. we
want to observe how quantities which are conserved under unitary transformations -
like commutator relations - are changing.

The unitary operators U(¢) shall be defined by the generator  which governs the
differential form of a continuous unitary transformations as follows: 0,H = [n, H|. A
good choice for the generator has proven to be n = [Hy, V], which is likely to eliminate
the interaction in the limit £ — oo. The ¢-dependent unitary operator U(¥) is related
to the generator n through the dlfferentlal equation ;U = nU which can be formally
integrated to yield U(¢) = Lexp fo dl'n(¢")). The operator L denotes the ¢-ordering
operator, defined in the same way as the more familiar time-ordering operator 7T'. In
fact, the differential form of the Flow Equations has got the same structure as the
Heisenberg equation of motion.

For the independent boson model the canonical generator reads n = —wAcic(b—b')
and we readily obtain

[n, H] = —w?Xcle(b+ b)) — 2wA?cle . (2.3)
The following Flow Equations
O = —w?X | O = —2w\? (2.4)

are integrated to yield A(¢) = Mlexp(—w?¢) and €(¥) = ’(\U—Zexp(—Qw?E). Since
[n(£),n(¢")] = 0, the f-ordering operator L becomes trivial and we obtain for the
{-dependent unitary operator

A e o)) (2.5)

U(6) = exp(—c' -

From Eq. (2.5) we can obtain the unique unitary operator for £ — oo which diagonal-

izes H and which was already given in Eq. (2.2).
Given U(¥) one can determine the flow of the operator ¢(¢) directly:

() = V(DU (0) = cexp(D

= cexp(— —( exp(— oY) —=2bT) exp(
( w ) w
()

!
A REy e e

(b—1b") (2.6)

oM (2.7)

Qq

= cexp(—
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where we introduced dA(£) = A(1 — e “*%) and defined normal ordering, denoted by
: ... 1, by writing the creation operator left from the annihilation operator.?

We now apply the continuous transformation to the operator ¢ using the differ-
ential form d,c = [n,¢]. The Flow Equations generate the infinite series c¢(f) =
> o1 (B)(b — bH)™ with Opyns1 = wA(l)yn. Together with the initial condition
Y% =1, 7, = 0 for n > 1, this set of differential equations can be solved to yield
n = %(‘”‘T(E))" The Flow Equation result thus coincides with the non-normal ordered
form of ¢(¢) in Eq. (2.6) if one expands the exponential function into a Taylor-series.

At first sight there is no distinguished expansion of ¢(¢) in bosonic operators since
its generation depends on 7. In order to discuss a different scheme, we now define
c(¢) by a series of normal ordered operators, i.e. c¢(f) =cY _ v (£): (b—bH)":. We
obtain the following Flow Equations

Ont1 = wWA)(Yn = (0 + 2)ms2) (2.9)

where we used the formula (see Appendix A)
(b—0b"): (b—b")" =2 (b— b)) : 4+n((b— b)) : (b—b)"": (2.10)

at T =0, i.e. ((b—b")?) = —1 with (...) denoting the bosonic ground-state expectation
value. Taking the same initial conditions as in the case of the non-normal ordered
expansion, we see that the normal ordered expansion in Eq. (2.8) solves the set of
differential equations (2.9), i.e. 7, = exp(—1(SA(£) /w)?) L (2E)n,

This is a remarkable result. Whereas the non-normal ordered expansion of ¢(¥)
reproduces the perturbative result in the coupling 6\ for each coefficient ~,, the
normal ordered expansion yields coefficients 7,, which contain all powers of .
Especially in view of later approximations, the normal ordered version will then be
more preferable, since it is likely to go beyond a perturbative description.

After having recovered the correct flow of the observable via the Flow Equation
approach, we would like to investigate the “stability” of the infinite expansion of ¢(¥)
in unbounded operators. For this purpose, we consider the Green function G(t) =
—i{Tc(t)c') and the spectral function A(@) = —ImG(Q)/7 with the time ordering
operator 7', the Fourier transform G(@) = [ dte’*G(t) and (...} denoting the ground-
state expectation value with respect to H. With A = A\/w we obtain [Mah90]

G(t) = —iO(t) exp(—A2(1 — e~™%)) | (2.11)
A@) =P P“%a(a —nw) (2.12)

2This definition of normal ordering resembles a special case of the general definition given in Ap-
pendix A and is valid at 7" = 0. But from now on the general definition will be used.
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The spectral function A(@) thus exhibits the polaronic shift €, = —A\?/w for n = 0
and an equidistant satellite structure separated by the oscillator frequency w with
exponentially decreasing weight.

Using Flow Equations, the Green function is best expressed as

G(t) = =i ()(e" =l (£ = co)e M EVe(t = o0)) (2.13)

because then the time evolution of the fermionic and bosonic operator becomes trivial.

In order to recover the exact result, we first use the normal ordered expansion of
c(f). With D(t) = b(t) — b'(t), where the time evolution is given by the Heisenberg
representation with H (¢ = oo) = wb'b, the Green function reads:

G(t) = —z'@(t)e_j‘2 (c(t) Z g :D"(t) : cf Z %(—l)m : D™(0) :) (2.14)
o) Z i: j':( 1) DR(E) = D™(0) ) (2.15)
= —i@(t)e Z g%n On, e et (2.16)

To get from Eq. (2.15) to Eq. (2.16) we used the following formula (Appendix A):

(b= b s (b= B = exp (b — D)) )T e gty ¢ - (217)
with {(b —b")?) = —1 and (: (b — b")" :) = 0 at T = 0. Summing up the series in Eq.
(2.16) indeed yields the exact result given in Eq. (2.11).

In order to show that also the non-normal ordered expansion of ¢(¢) leads to the
correct result, we have to normal order this expansion. For this we need the following
formula (Appendix A):

G-bhr =S = b2k (b — b2 (2.18)

Considering for the moment only the first (N + 1) even powers of (b — b'), we obtain

N ¢ N n 3z i
)\Qn )\Zk Gk )\2 (n—k)
N _ pt\2n — t\2(n—k) .
;m(b ) ;k K2 R : (b—bh) : (2.19)
N =z N—-m 3
)\Qm )\Qk Gk
— - _pf .=
=2 o) . (b— bh)2m ; o (2.20)
m= =0
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where we introduced G = ((b — b7)?) and m = n — k, (...) denoting the canonical
ensemble average over a free bosonic system . The summation of the first (N +1) odd
powers of (b — b') yields

N 2nt1 2 e N )\2m+1 oma N-—m N2k Gk
P — n — phym - . —_— . 2.21
> b = 3 S et SRS
In the limit N — oo we obtain
j\n . S\n
PR (D N (R D L (2.22)
“— nl “— nl

which is an extension of the previous normal ordering of Eq. (2.8) to finite tempera-
tures, since G = —(1 +n), n = (e’ — 1)~! being the Bose factor. This shows that
both expansions of ¢(¢) are equivalent.

To complete the discussion we will now verify that the anti-commutation relation
{c(€),cf(£)} = 1 holds for all £. To show this we will employ the non-normal ordered
expansion. This yields:

{e(0), Z Y (=1)" + (=1)") (b = o)+ (2.23)

nn’

=> Z ) Yan—kYe(b— b1)*" (2.24)

n=0 k=0

In the end of this section we want to briefly address the question how approxima-
tions effect the flow of the operator and if they yield reasonable results. We will first
consider the Flow Equations for the non-normal ordered expansion of ¢(¢). Truncating
the series after the second term yields the following set of differential equations:

@ an
dat dat

This leads us to ¢(£) = ¢(1+ X1 —e “’¢)(b—b')) and thus G(t) = —i(1 + A2e ®). To
discuss this result it is useful to present the spectral function A(@) = §(@)+ 20 (0 —w).

The spectral function does not satisfy the sum rule [ dwA(@®) = 1. This can be un-
derstood by noting that the canonical anti-commutation relations are not satisfied ei-
ther even after having taken the expectation value: ({c(£),c(€)}) = 1—(SA(£)/w)*{(b—
b)2) =1+ (0A(F) /w)?. Neglecting terms which are quadratic in the coupling A yields
the correct perturbative result for \/w < 1.

Now let us check the approximation where we close the series after the second term
by neglecting the normal ordered bosonic bilinear operator. The Flow Equations then
read

=0 , =wAD - (2.25)

v
arl

dn

=wA()y - (2.26)
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Defining ¥ = (70,71)7 we obtain () = exp(—i\(¢)o €)7o with o, denoting the
y-component of the Pauli spin matrices and §, = (1,0)7, which yields c(f) =
c(cos(A(0)l/w) — sin(A(¢)¢/w)(b — b')). This time the anti-commutation relation
{e(0),cf(0)} = cos?(A(¢)L/w) — sin®(A(£)£/w)(b — b1)? holds exactly after projecting
it onto the ground-state. We obtain A(@) = §(@) and the sum rule thus holds.

We conclude that neglecting normal ordered operators yields more consistent
results even though no qualitative improvement with respect to the non-normal
ordered expansion was achieved. For this one has to include more terms.

We close this section with a summary of our results and conclusions. The series
expansion of an operator into bosonic operators yields consistent results. This is
no trivial result since expanding the bounded operator ¢ into unbounded operators
(b — b")™ might lead to inconsistencies. Further it has to be born in mind that the
initial operator of the operator flow is resembled by ¢(¢ = 0) = ¢ ® 1p, with 1p being
the unity operator of the bosonic Hilbert space. One consequence then is that the
trace of the initial operator is unbounded and thus not defined.

As a second result, we want to mention that both expansions, normal ordered and
non-normal ordered, are equivalent if no approximations are involved. Nevertheless
the operator expansion into normal ordered operators seems to be a distinguished
expansion since it resembles a non-perturbative approach including the Debye-Waller
factor and yields consistent results when approximations are involved.
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2.2. Tomonaga-Luttinger Model

An instructive exactly solvable model is given by the Tomonaga-Luttinger (TL) Model.
This model describes the low-energy properties of interacting fermions in one dimen-
sion in the high-density limit. In fact, it is closely related to the n-orbital model in
one dimension on which Wegner introduced the method of Flow Equations [Weg94].

In the following section we will briefly derive the TL model starting from a one-
dimensional interacting electron gas. We then give the solution of the TL model
via Flow Equations including the transformation of the fermionic field, but where we
make explicit use of the bosonization formula [Hal81]. In the last subsection we will
transform the fermionic field based on the usual representation of fermionic ladder op-
erators. The Flow Equations then generated an infinite hierarchy of operators so that
approximations become necessary. The connection to dissipative quantum systems is
established when one adds an impurity to the system and will be discussed in Chapter
5.

2.2.1. The Model

We start with the description of one-dimensional, non-relativistic, interacting spinless
electrons on a ring of length L. The continuum version of the Hamiltonian reads

H = L//2 dapt (z) (—%) P(z)
_L/2L/2 L/2 (221
vy [ [ s ow @ o6 - e
—L)2-LJ2

where the fermionic field ¢(z) obeys periodic boundary condition (—L/2) = 1(L/2)
and canonical anti-commutation relations {¢(z),¢'(2')} = §(z — z'). U(z) resembles
the two-body potential between the fermions. Performing the Fourier transformation
with ¢(z) = L7127, e*¢; and U(z) = L' ), €v, the Hamiltonian is given by
the following representation:

k? 1
_ T Toor
H= Ek 577, CkCh + oL ,;,c, qvqck_qck,+qck,ck , (2.28)

where k,q = 27nn/L, n € Z and cg) creates (annihilates) the plane wave with wavenum-
ber k.

Considering the high-density limit and focusing on the low-energy properties of the
system, the energy dispersion can be linearized around the Fermi points +kp where
kr = £2wN/L, N being the number of electrons. With the Fermi velocity vy = kr/m
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we obtain
1
H=vp Z k|cley + 5T Z vq(z CL_qu)(Z (:L,Hck:) , (2.29)
k q k K

where we neglected terms that only contain the number-of-particle operator N' =
>k ChC-

The system can now be decoupled into left- and right-moving fluctuations if we
assume the interaction to be long-ranged in position space, i.e. v,/vp < 1 for ¢ > ¢,
where g, < kp denotes the interaction cutoff [Tom50]. A less intuitive approach is
to assume a delta-interaction in position space. A renormalization group analysis
then shows that scattering processes from one branch to the other scale to zero, i.e.
are irrelevant [Sol79]. The resulting Tomonaga-Luttinger Model thus resembles the
fixpoint Hamiltonian of one-dimensional interacting electron systems.

A mathematically more rigorous treatment of the model with finite band cutoff is
possible if the two branches of the linear dispersion are extended ranging from oo to
—o0. To assure a well-defined ground-state, the states with negative energy have then
to be filled up with Dirac fermions. The creation and annihilation operators of the
left- and right-moving fluctuations then obey exact bosonic commutation relations.
These operators are defined as follows:

R T R T
b =n, 1/220,?_(1 cw . br=n; I/ZZchrq cr (2.30)
k k
where ¢ > 0 and n, = Lg/(27) € N. We further introduced

>
p= o k20 Ja k<0 (2.31)

The operators dg) create and annihilate the newly introduced Dirac fermions respec-

tively. The commutation relation then reads [}, bfll,T] = 0;#0q,q, With 4,7/ = L, R. In
order to derive the commutation relation from the definition given in Eq. (2.30) one
needs to normal order the fermionic operators with respect to the ground state of the
Fermi-Dirac sea before changing the summation index.

The interaction term of the Hamiltonian given in Eq. (2.29) can now easily be
expressed by the newly introduced bosonic operators. To do so also for the kinetic

term, the Kronig-relation [Kro35] has to be employed:

S (klefer — ST Ikldldy = S a®F bR + 0ET0k) + FNE) + VR, (2.32)

k k q>0

where f(N/E) with NI/E = Y~ cf/RTcﬁ/R denotes a function of the number-of-
particle operator of the left- and right-movers respectively. Again we will neglect
these contributions. For a more detailed overview, see [Sch97] or [Del98].
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We can now express the Hamiltonian completely through bosonic density-
fluctuations:

H=v) q(l bRTbR bE'oE)
0
1 . tot | ot Rt (2:33)
RiL LR |, RYL Lt R
+EZQUQ(bqbq +bqbq +bq bq +bq bq )
q>0

One sees that the kinetic term is renormalized by scattering processes which con-
serve the energy, denoted as gs-process in the g-ology model [Sol79]. These terms
are to be identified with those terms that conserve the number of quasi-particles, as
introduced by Wegner in Ref. [Weg94].> This shows that the Flow Equation approach
is then successful if one chooses the “right” diagonal Hamiltonian corresponding to
the distinguished basis.

2.2.2. Solution via Flow Equation

Since the Hamiltonian in Eq. (2.33) is bilinear in bosonic operators and only two differ-
ent wave numbers ¢ and —g couple, diagonalization is straightforward via Bogoljubov
transformation. But we want to diagonalize the Hamiltonian via Flow Equations. In
order to abbreviate the notation we define b, = bqR and b_, = qu for ¢ > 0. The
¢-dependent Hamiltonian then takes the following form:

H = w,(0)biby + > vg(0)(bgh—q + b b)) = Hy+ V (2.34)
q#0 q#0

The initial conditions are given by w) = wy(¢ = 0) = vplq|(1 + vy/27vr) and v] =
ve(¢ = 0) = |q|vy/4m. The generator of the infinitesimal transformations is canonically
defined as

n=[Ho, Hl == w_g(vg+v_q)(bgb_g — b ;b)) (2.35)

—-q°q
q#0

which is likely to eliminate the interaction term V for ¢ — oo.
The commutator [, H] yields the following contributions:

[0, Hol = =) w_q(wg +w_g)(vg + v_q) (bgb_q + b ;b}) (2.36)
q#0

[, V] =~ Z(wq +w_g)(vg + U—q)2(bqbz + b;bq) (2.37)
q#0

3Wegner included scattering terms to the diagonal Hamiltonian which conserve the number of elec-
trons above and below the Fermi points.
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Since wy (¢ = 0) = w_4(£ = 0), we have w,(¢) = w_4(¢) and v,(£) = v_,4(¥) for all £. This
shows that the Flow Equations preserve the symmetry between left- and right-movers.
The Flow Equations 9,H = [, H] then read

Ouwg = —16wgv; , Oy = —dwiv, . (2.38)

Obviously w? — 4v2 = const and with v4(¢ = c0) = 0 we have @, = w,({ = o0) =
(w2(£) — 4v2(£))"/2. Inserting the initial conditions for £ = 0 this yields the well-known

result @, = vp|g|\/1 + vy/TVF.

In order to investigate the flow of observables we need to know the /-dependence
of 7y = —2w,4v,. Since different wave numbers do not couple we will neglect the g-
dependence of 7, for a moment and define z = wyv, and y = w; 4 4v;. The set of
differential equations for these variables reads:

Opr = —4ay , Oy = —642> (2.39)

From 9}y = —40,y* we obtain the solution y(£) = ys coth(4y.f + C) with coth(C) =
y(£ = 0)/ys and Yoo = y(£ = 00). From the set of Eq. (2.39) one then obtains either
2(0) = Yoo/ (4sinh(4ysl + C)) or z(£) = (£ = 0) sinh(C)/ sinh(4y.f + C) which can
only hold simultaneously if y,, = 4z(¢ = 0)sinh(C). Inserting the initial definitions
one sees that this is indeed the case. We thus obtain

o2 o2
S ¢ ith sinh(C,) = 94 . .
ma(f) = =3 smh(da2 1 0, 0 e o (Ca) 46000 (240)

We will further need the following indefinite integral:

1 (cosh(4w2£+0) )

Ea(t) = /dﬁnq(ﬁ) ~ 16 cosh(4w2l + C,) + (2.41)

We can now determine the explicit /~-dependence of the parameters w, and v, from

Eq. (2.38) if we rewrite the set in the following form: O,w, = 8n,v,, O, = 2nuw,. We
obtain the following solution:

wq(€) = cosh(4E,(£))w, + sinh(4E,(£))2v, (2.42
vg(0) = (cosh(4E (£))2v] + sinh(4E4(£))wg) /2 (2.43)

where we defined E,(¢) = f(f dl'n,(¢'). One can convince oneself that these solutions
indeed yield the correct boundary values for £ — oo.

Since [n(£),n(¢')] = 0 we can also calculate the unitary operator U that
diagonalizes the TL Hamiltonian. Generally it is given by U = U({ = o0)
with U({) = Lexp( foe d¢'n(¢")). The operator L denotes the {-ordering op-
erator, defined in the same way as the more familiar time-ordering operator
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T. We obtain U = exp(3,Ej(bgb—q — b b)) with the familiar relation
tanh(4E}) = —v,/(2mvr + v,), where we defined E; = Ey({ = 00).

To determine the flow of the observables we will use the “bosonic” representation
of the one-dimensional fermionic field operator of the left- and right-movers ¥/ %(x)
which involves the operators of the bosonic density-fluctuation , see e.g. Ref. [Hal81].
It is given by ¢%/B(z) = FL/B(2)e?”"®) where the operator FL/E(z) lowers the
number of left- and r1%ht movers by one respectively and commutes with the bosonic
operators b, i.e. [b)”, FL/B(z)] = 0. The phase field is defined as

L/R Z n—l/Z ¥qe:quac b]:‘quzl:iqw) ’ (244)

q>0

where, for convenience, we omitted the ultraviolet convergence factor, formally neces-
sary in the case of the non-normal ordered representation of 1Z/%(x). This will not
affect the validity of the calculations. Further, we will confine ourselves to the trans-
formation of the field of the right-movers, since the calculations are analogous in the
case of the left-movers.

Let U denote the unitary transformation that diagonalizes the TL Hamiltonian of
Eq. (2.33). Then Uy (z)Ut = FE(z)eV*" @V since U only consists of bosonic opera-
tors and thus commutes with F®(z). Therefore it suffices to consider the Flow Equa-
tions for ¢"(z), i.e. " (x) = [n, ¢™(x)]. During the flow of ¢*(z) = 3 ., ¢F(,¢)
different wave numbers do not couple and we are allowed to limit ourself to the flow of
OB (x,0) = RO of(z) + oL (0)pf (), with oe/B(z) = brgeTi® — b;qeﬂqw. This yields
the following Flow Equations:

Oepg = =204y Oupy = —21497 (2.45)

With the initial conditions p2(£ = 0) = ny '/ and @%(¢ = 0) = 0 this yields the
following solution:

o) = nq_l/2 cosh(2E,(0)) , k(0 = —nq_l/2 sinh(2E,(¢)) (2.46)

In the limit £ — oo we recover the well-known result for the transformed field operator

YF(z) = FR(x) exp (Z(\/c;;_(bqeiq“ — bhe ) — j—%(b_qeiqw — b))
>0 q q
(2.47)

with ¢, = cosh(2E}), s, = sinh(2E;), and s} = (w)/@; — 1)/2, see e.g. Ref.
[Sch97]. The Flow Equations thus yield the same result as applying the Bogoljubov
transformation. Correlation functions in position-time space are now easily calculated.
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2.2.3. Approximations

It is not surprising that the Flow Equation approach could be applied in a rather
straightforward manner since again we took advantage of the bosonization technique.
Now we want to calculate the commutator [n, ¢ (z)] directly, employing the usual
representation % (z) = L71/2Y", e*2cf. With the commutator relation

[bg + b}, ()] = =O(q)ng V? (7" + )y (x) (2.48)
we obtain:
[n, %" (z)] = —Qan 1/2 (b_ge ™" — bf_qeiqw)wR(x) (2.49)
>0
Further we have [n, oL/ Blz) = angbR/ “(z). The Flow Equations thus do not close

but generate an infinite series of operators In the following we only want to consider
the terms linear in the fields ¢./ ®(z). We thus make the following ansatz for the
fermionic field:

)i (x,0) = O+ i85 (x) + oy (O (@) (2.50)

q>0

with the initial conditions g(/ = 0) = 1 and (pL/R(E = 0) = 0. Notice that
[ (x), ¢"/%(x)] = 0.

The Flow Equations depend on the truncation scheme. If one simply cuts the series
after the linear term, the parameter ¢ is left un-renormalized, i.e. ¢ =1 for all £. The
Flow Equations for the parameters of the terms linear in the bosonic operators then
read

Qepy = =200y, Oepy = —2ngpy — 2P0, (2.51)
An analytic solution is now possible: Let @lom(¢) = e~27=5() then @,(¢) =
@hom (¢ )E,(€) with £,(¢) fo dl' (phem(£1)~lig(€'), where we defined @, = (pk, pl)"

and @, = (0, —2n,4 ;2 n,)T and o, denotes the z-component of the Pauli spin matrices.
With the deﬁnlte integral

¢
2/ e’ (El) +2E(¢) _ j:(€:t2Eg(Z) _ezl:QEg(O)) (2.52)
0

this yields the following solution:

= 12 [ cosh(2E)(£)) — cosh(2E)(¢ = 0))
&ll) = —n, " ( sinh(2E(¢)) — sinh(2E3 (¢ = 0)) ) (2.53)

q

In the limit £ — oo we obtain with E) (¢ = 0) = —E; the final result

PR(l=00) =n;2(c, = 1) , @h(t=o00)=—n;"%, . (254)
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Expanding also the fermionic field up to linear bosonic operators, i.e.
PR(x) — FRa)(1 + 30,0079 ng'¢ ¢&(x)), we see that the Flow Equation approach
yields the correct result up to terms which are linear in the bosonic operators, i.e.
Upt(a)Ut — FR(z)(14 X0 71/2(0(1(;5?(3:) — sq0%(x)). This is not a perturbative
result since the “Bogoljubov-coefficients” s, and ¢, are exactly recovered.

We will come back to transformed field operator later. Before we will transform
the fermionic ladder operators of the right-movers cff. The Flow Equations create an
infinite series; we will therefore again truncate the series after the terms which are
linear in the bosonic operators:

i (0) = 9(Oc + Y (eF (O +or (O85) (2.55)

q>0

with the initial conditions g(¢ = 0) = 1 and goqL/ B¢ = 0) = 0 and where we defined

L/R __
¢q,{c = (b:Fqclc:I:q bT clf:z:Fq)'

Neglecting terms which are bilinear in the bosonic operators and in their non-
normal ordered form leads to the same differential equations as for the flow parameters
of the truncated fermionic field operator, given in Eq. (2.50). The solution is thus
again given by g = 1 for all £ and

wf(f =00) = nq_l/Qéq , goqL(E =00) = n_1/2 Sq s (2.56)

where we abbreviated ¢, = ¢, — 1.

So far we do not know what effect the truncation scheme of Eq. (2.55) has got on
physical quantities. For this reason it is useful to calculate the occupation function
in momentum space in this approximation, i.e. n'"' = (FDS|cf (¢ = oco)cf(¢ =
o0)|FDS), where |F'DS) denotes the ground-state of the Fermi-Dirac sea. We obtain
the following result:

nftt — u—EZ%V@wF—@+2a_§:§g§:@@wF—q—@

q>0 q >0 N >0 Mg
+y Zcqekp—q—q—k) (2.57)
q>0 q'>0
+§: @kp—q k+§:q@kF+q—m ,
Q>0 >0

with the step function ©(k) which equals one for £ > 0 and zero otherwise.
Considering k = kr + ¢ with ¢ > 0 only the last term of Eq. (2.57) contributes
to nk . It is now convenient to work with a finite interaction cutoff ¢. = 27n./L and
choose the interaction potential as a step function in momentum space, i.e. s, = s
for ¢ < ¢, and s, = 0 for ¢ > ¢.. With >>°,1/n — Inn, + C for n, — oo,
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where C' = 0.57721... is Euler’s constant we find in the thermodynamic limit L — oo,
N/L = const the following expression:

nle =30 L0(ke +q— k) >~ In(@/a) > (1 - (@/a)*)/2 (259)

¢>0 1

The last limit was taken in the case of weak coupling, i.e 52 < 1. In this perturbative
regime we thus recover the well-known power law behaviour around the Fermi point
kr; and we observe the peculiar situation that the truncation scheme of Eq. (2.55)
yields the eract anomalous dimension o = 2s?, see e.g. Ref. [Sch97].

For wave numbers below the Fermi point, i.e. for £k = krp — ¢ with ¢ > 0, the
calculations are not so plane. But if we simply neglect >_ .. ¢Cqy/(ngng)(©(kr +
q—k)Okr+q —k)+O(kr —q—¢ — k) —O(kr — ¢ — k)O(kr — ¢' — k)) and
> ¢>0(C + 53)/ng, one obtains for the whole regime in the limit of small coupling

il s = 1/2 — sgn(q)/2(1l /ac)* - (2.59)

The pre-factor 1/2 in front of the power-law behaviour is also recovered from simple
perturbation theory [Sch97]. This factor could not be recovered unambiguously from
the calculations of the approximate occupation number of the n-orbital model [Weg94].

Finally we want to check if also dynamic quantities can be recovered from the
truncation scheme of Eq. (2.50). For this we will calculate the approximate Green
function defined as

G (1,t) = (FDS|WR (z = 0, € = 00)eT=yR(x, £ = co)e F=t|FDS) ,  (2.60)

with Hy, = H({ = 0).

In order to evaluate the time dependence of the fermionic field of the right-movers
we have to work with a constant potential in momentum space, i.e. v, = v. This yields
a linear energy dispersion for the fixpoint Hamiltonian, i.e. Hoo = vc) 4 |q|blbg with
the renormalized Fermi velocity or charge velocity v, = vp (1 + v/(7vg))/2. With the
help of the Kronig relation of Eq. (2.32) and again neglecting terms that include the
number-of-particle operator of the left- and right-movers, the time dependence of the
fermionic and bosonic ladder operators in the Heisenberg representation at ¢ = oo are
given by cj(t) = cre *¥<t and b,(t) = byelalvet,

The Green function of Eq. (2.60) can now be expressed as a function of the
conformal variables ¢//F = z 4+ vt and yields

iG(ER €8) =G0 (€R) (2.61)
~ ~2 2
C s ¢R C - R S - L
w (1 =S 5a(q _ o—iac®y)2 9 ,—igt g zq§>
(( DD e DR e R D D I
q>0 q>0 q>0
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with iG°(ER) = (FDS[E (z = 0,6 = 0)eifl=tyR(z,4 = 0)e = FDS) =
LY, e "0 (kp — k).
An important consistency check of the truncation schemes in Egs. (2.50) and

(2.55) is given by the fact that n,>" = fLﬁQ dre~™*iG5" (z,t = 0). But working with
a constant potential in momentum space, i.e. a delta-potential in position space,
yields the well-known ultraviolet divergences. In the following we will therefore

introduce an ultraviolet cutoff and also label it with g..
A physical observable is given by the occupied density of states pg(w) which is

observed in photoemission experiments. Based on the exact Green function G3(z,t)
it is defined as

™

1 .
pr(w) = 7 /dte“"ti(}fz(x =0,1) . (2.62)

Inserting the approximated Green function G5 (z = 0,t) yields with w = v.kp — @

o (@) = 2mc( Z% > 0@ - ug)?

q>0 q
+ Y S S 0@ — g+ ¢) — O@ — 1.9)O(@ — veg) (2.63)
aq>o e
+Z q@ (@& — veq +Z q@ w—ch)
>0 g¢>0

Neglecting the same terms as in the case of the calculation of the occupation
number, i.e. Y7 o CCq/(Ngng)(O(veg — ©)O(veg — @) +O(0 —v.(q+¢')) — O(@ —
:q)O(W—vcq')) and ) . (E2+57)/ny, We obtain in the thermodynamic limit (@) =
O(@)(1 + 258 In(@/(veqe))/(27v.). In the limit of small coupling we thus obtain the
well-known algebraic suppression at the renormalized Fermi energy, again governed by
the eract anomalous dimension o = 2s%:

5 ook — 3) = D) (i) ) (2.64)

2TV, \ Veq,

The ezact spectral function for a step function potential with cutoff g. is only
modified by the factor e*¢/T'(1 + «), with C denoting Euler’s constant and T'(z)
Euler’s Gamma function [Sch97]. Furthermore, we want to note that for the static

correlation function n ! the anomalous dimension is being accounted for by either
left-movers (k > kr) or right-movers (k > kr) whereas both branches contribute to
the anomalous dimension in equal parts in case of the dynamic correlation function

<1
Pr -
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These two examples show that the Flow Equation approach can yield exact, non-
perturbative results even within a rather crude truncation scheme. This observation
can be useful for non-exactly solvable model, e.g. if one adds an impurity H; = M\)f(z =
0)y(z = 0) to the TL Hamiltonian given in Eq. (2.33), see e.g. Ref. [Kan92]. The
transport properties in the latter model are directly related to the transport properties
of a Brownian particle in a tilted cosine potential [Wei99]. We will consider this model
in Chapter 5.
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2.3. Dissipative Harmonic Oscillator

We will now turn to dissipative systems. Since the method we want to use is based on
the Hamiltonian formulation we will adopt the well established standpoint to describe
both, system and bath, as an isolated system. Dissipation enters through the fact that
once energy has been transferred from the system to the infinite bath it will take an
infinite amount of time until it will be transferred back to the system and has thus
dissipated.

Following the seminal work by Caldeira and Leggett [Cal83], we will model the
bath as a set of non-interacting harmonic oscillators with a dense spectrum. We will
also introduce the interaction induced renormalization of the potential so that the
Hamiltonian is bounded from below.

The Dissipative Harmonic Oscillator is thus given by the following Hamiltonian:

H = A—+avq +Z(pa + ma e Q?) +E (2.65)

 maw?

The operators are denoted by a hat which shall be dropped from now on. They obey
the canonical commutation relations which read

[Qap] =1 , [xaapa’] = Z'5&,04’ - (266)

The parameter o can be decomposed as o = Vy/g2 and we identify the frequency of
the harmonic oscillator as wi = 2Vyv/mgZ. The notation has been chosen so that it
can be easily compared with the dissipative system of a particle in a periodic potential
discussed in Chapter 5.

Expressing the partition function of the canonical ensemble Z = (e=##) in terms
of path integrals, the exact solvability of the model enters through the fact that only
Gaussian integrals are involved. For other models, e.g. the Spin-Boson Model, approx-
imations become necessary. The most prominent is given by the Non-Interacting Blip
Approximation (NIBA) which is a perturbative treatment of the tunnel-matrix element
based on the functional integral representation of the model [Leg87]. Nevertheless it
fails in the description of the system dynamics on all time scales.

The exact solution of the model, following the Flow Equation approach, is less
obvious and was first obtained by Kehrein and Mielke [Keh97]. The big advantage
though is that it can be generalized to non-trivial models, like the Spin-Boson Model,
and still keep its validity over all time or energy scales. This is an essential feature of
renormalization schemes. We will therefore recall the solution of Kehrein and Mielke
briefly in this section and also extend the solution to more universal results.
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2.3.1. Analytical Results

In order to solve the Dissipative Harmonic Oscillator via Flow Equations, the generator
n of the infinitesimal unitary transformations is chosen to be

n= z(q Z ngpa + pz ngma + Z na,a’mapa') = 77q + 77p +nB - (267)
a « a,a!

The first two terms follow from the canonical choice n = [Hy, V] with the off-diagonal
part V = —q¢ ), AaZa, but with generalized parameters n¢ and 7%. They will be deter-
mined later. The last term n® is needed to cancel a new interaction term between the
different bath modes which is generated by the Flow Equations. The exact solvability
of the model enters through the fact that this cancellation is exact and that therefore
the Flow Equations close exactly.

The commutator [n, H] yields the following contributions:

Aa
(%, H] = —pZna +anamaw - L()Qq) (2.68)
Ao
(", H] = 20vq Y i Z Znaxa wlza =2 “q) (2.69)
PoPo 2 )\a’
H|=- a0 o, Lalllg! Wor\La! — 2.70
)= =3 +a§;n, = ) (270

The constants of the generator are now chosen in such a way that the Hamiltonian
remains form-invariant during the flow, i. e. that no new interaction terms are gener-
ated. This leads to the following relations:

ndme +nhm =0 (2.71)

Naa!Mat + Nar,aMa = 0 (2.72)

N MW + NataMaWs — (MhAar + Nhida) =0 (2.73)

Egs. (2.72) and (2.73) make sure that the bilinear terms in the bath operators vanish,
i.e. : papo : and : x,xy 1, Where : ... : denotes normal ordering with respect to the

free bath. Normal ordering is necessary in order to deal with well-defined quantities
and by (z2) = (1 + 2n,)/(2maw,) a shift in the energy is induced, n, = (e?*« —1)7!
denoting the Bose factor. The Flow Equations are given by

T=—=0""Y 1l . OE ==Y nada(zl)

Oeda = —nimow? — 0020+ Y Naa e

o

(2.74)

with the renormalized potential o = v +o07')" 2m . Notice that renormalization
of the bath modes w, are already neglected since they vamsh in the thermodynamic
limit.
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Parameterizing the constants as follows

15 = Aaf (Wa, £)/m (2.75)
na = —Aaf(Wa, £)/Ma (2.76)
Moo = =Aadat (f (Wa, £) + f(war, 0))/ (wg — war)/ (marm) (2.77)
and introducing the spectral function
)2
J(w,b) = Za: maf; aa(w —wa) (2.78)

the following coupled integro-differential equations are obtained:

i = o ! / AT (w0, 0w f (w5, ) (2.79)

OF = —% duJ (w0, 0) f (w0, 0)(1 + 2n(w)) (2.80)

BT (w0, £) = 2 (w0, ) f (w, £) — 4%0J(w,£) F(w,0) (2.81)
- 2w,0) [ T 0.0+ 10.0)

Notice that there is no mass renormalization in this approach. The above Flow
Equations are equivalent to the ones obtained by Kehrein and Mielke if one identifies
A2, = 200/m and 4AkyJkm(w,f) = J(w,f)/m, where we added the subscript
K M on their notations [Keh97].

To solve these equations Mielke and Kehrein introduced the function

)\2
= — e 2.82
R(z,¢) }a:ma(z_wa) : (2.82)
for which the following differential equation holds:
/\2
OeR(2z,£) = —200,0 + 2(mz — 200 — R(z2, 1)) E ———— f(Wa, £) (2.83)

— mam(z — wg)

The algebraic equation mz — 209 — R(z,£) = 0 solves the differential equation (2.83)
for any z. With mz* = 209(£ = 00) one imposes the boundary condition R(z*,¢) — 0
for £ — oo which guarantees that system and bath are decoupled for £ — oo. This
yields a self-consistent equation for #(¢ = oo) which can at least formally be solved
by setting £ = 0 and by inserting the initial conditions for the system and coupling
parameters. Generally it reads

1 J(w, O)w

w2 — w?
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where we introduced the /-dependent frequency of the dissipative harmonic oscillator
w?(£) = 200(¢)/m and we = w(f = 00). We want to mention that for this reasoning
Weo has to be finite, i.e. 9(¢ = oo) > 0. Otherwise the two boundary conditions
R(z*,¢ = 00) = 0 and Eq. (2.84) at £ = 0 cannot be satisfied unless v(¢ = 0) = 0.
The latter case describes the system of a dissipative free particle.

To determine correlation functions we have to apply the same sequence of in-
finitesimal transformations to the observables that led to the diagonalization of the
Hamiltonian. Only then the diagonal structure of the Hamiltonian can be used to
yield a simple time evolution of the operators in the Heisenberg representation. For
the flow of the position operator we make the ansatz

g+ XalO)za (2.85)

The initial conditions are given by h(¢ = 0) = 1 and x,(¢ = 0) = 0. During the
flow, the weight of the system operator will be transferred to the bath operators. In
the language of the Flow Equation approach we speak of a dissipative system when
the total weight of the system is being transferred to the bath during the flow, i.e.

h(¢ = 00) = 0.
The Flow Equations for the observable d,q = [, q] close and we obtain:
@hZE)ﬂm=—§:MMVWa@ (2.86)
(0% ¢ (0% ma ’
aéXa = hﬁg + Z No,ao! Xo! (287)

al

)\ A
= B2 [y €) = A sz o 6 )+ S, 0)

The Flow Equations for p(¢) = h(€)p+ Y, Xa({)ps are obtained from the above Flow
Equations by interchanging n2 — —nZ and n2 — —nf. According to Eq. (2.71), n?
and n? only differ by a sign and a constant since there is no mass renormalization.
Thus the Flow Equations of the observables ¢(¢) and p({) are equivalent which means
that Hermite-city is conserved during the flow.

From these Flow Equations we obtain the following sum rule, which expresses the
fact that the commutation relation [g, p] = ¢ holds for all £:

2
X
M+m§}&:1 2.88
~ Mg ( )
To solve the Flow Equations one introduces the functions

Sl(z,E):Z% : SQ(z,zz):Zﬁi_wQ) . (2.89)
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Mielke and Kehrein showed that the following quantity is conserved:

(A(6) = Si(2,4))?
So(z,£) + mz — 209(¢) — R(z, {)

= const. (2.90)

Thus one ends up with

h(¢ = 00)?

mz — 200(¢ = o0)

So(z, £ = 00) + = (mz—200({ =0)— R(z,£=0))"" . (2.91)

omparing the pole structure of both sides of Eq. (2.91) one sees that h(¢ = c0) = 0
for the initial conditions of interest. This shows that indeed all the total weight of the
system is being transferred to the system. The particle has dissipated.

orrelation functions are obtained through the following identity:

K(w, ) = Z %5(@02 —w?) = %ImSg(cu2 — 10, ¢) (2.92)

(67

For example, the spectral function wK (w) = wK(w,¢ = o0) is proportional to the
Fourier transform of {g(¢)q), where (...) denotes the ground-state expectation value
and the time evolution is governed by the full Hamiltonian . Extensions to finite
temperatures are straightforward Keh97 .

hoosing a orentzian spectral function

J()=J( f=0)=2 > (2.9)

K( )=

2.94
( 2(v2+ 2)—2may® — 2(2+ 2))2+4n202 244 2 ( )

2.3.2. niversal Asymptotic ehaviour

It is often useful to explicitly specify the function f( ,#) even though the final result
must be independent of the particular choice. In a slightly different context Kehrein,
Mielke, and eu chose f( ,¢) = —( — (¢)) ( + (¢)) Keh96b. This leads to
J( ,0) exp(—2( — (¢))%¢)for{ oo if one neglects the non-linear term of J( ,¢)
in Eq. (2.81). The spectral function is therefore centered around the renormalized
frequency , defined in Eq. (2.84). At = the spectral function vanishes
algebraically as ¢! 2. The asymptotic spectral function thus depends on the initial
frequency through . We want to label this asymptotic behaviour

A different choice is f( ,¢) = —1 which would have the consequence that the
renormalized potential has to tend to zero so that the system is decoupled for / oo,
i.e. v({ = 00) =0 in order that J( ,¢ = oo) = 0. It therefore belongs to a different
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universality class since Eq. (2.84) does not hold anymore. The Differential Equation

(2.8 ) turns into a icatti-Equation which can be formally integrated. For = 0 this
yields:
v(£=0) .
R( =0,0)=2 0 v(f) , with (2.95)
2 2 (U= 2
0= () 1-= z% , —exp = 42 (4)

That the choice ( ,¢) = —1 really decouples the system from the bath is not clear
from the beginning. One way to convince oneself is to study the asymptotic behaviour
of the Flow Equations (2.79) and (2.81). With regard to the Flow Equations of the

pin- oson Model in hapter 4 we will consider Flow Equations for slightly different
quantities, namely A(¢) = () and ( ,¢) = ( ,¢) ( A). With ( ,¢) = —1 they
read

A=— ( ,0) (2.96)
2 2 1 ( ’f)
(=2 (,0@2= 2 N+aa (L ——=D @)
We now make the ansatz A~ ¢~'Zand (¢) ¢7'?with (f) = ( ,9)
as £  oo. We further parameterize the asymptotic function by one parameter , i.e.
we assume that (/) £) (), where = fand () for 0.
otice that we dropped the index on the functions ( ,£¢), (¢) and ().
The differential equation for is given by
=2 (AQ—L A)+2 A—2A 2 (2.98)
2A ’
where we used the identity
)y °* 1 () ()
;2= 3 _ (2.99)

The differential equation for () is obtained from Eq. (2.97) by setting = 0. This

yields
1

0)= (O)(2A% —4A - X A) . (2.100)

omparing the asymptotic behaviour that follows from the differential equations

of and A with the above ansatz, one obtains self-consistency if (¢) ¢ 2

From Eq. (2.100) it then follows that 2 > —4 +1 2= ( —1) 2. From Eq. (2.98)

it follows that — 2 =2 2+ 2— —2 2 We thus obtain 2 =1 2 4 and
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= (1- 4 4) 2. Discussing the asymptotic behaviour of the flow of the
observable we will see that one has to choose the plus sign. This also agrees with the
numerical results.
With these relations for the constants and , we obtain the following non-local
differential equation for ()= ~!' ():

(Y=—4 ()1-2 O -p Y oy

The above ansatz for the asymptotic behaviour guarantees that the system will be
decoupled from the bath since the support of the spectral function vanishes as ¢! 2

and () -1 =2 for oo. There is thus a fixpoint for all initial
frequencies. They are all mapped onto the free particle plus bath. For 0, Eq.
(2.101) yields () -

We want to investigate the flow of the observable as well. For that we introduce
the spectral function

(,0)=- X (- ). (2.102)

With ( ,¢) = —1 the Flow Equations (2.86) and (2.87) then read

h=— (0 (2.10 )
(,0)=Ah (,0)+2A (,0) % (2.104)
2oy (e (n 0 00

To determine the asymptotic behaviour of ( ,#) we make a similar ansatz as in
the case of the spectral function ( ,#), namely h(¢)  £7' 2~ and (¢) 2
with (£) = ( ,£) asf oo. Further we assume that ( ,¥) @) (),
where = fand () for 0.

The differential equation for is given by

=Ah +A% + h-2A : (2.105)

The differential equation for (/) is obtained from Eq. (2.104) by setting = 0. This
yields

(0) = —Ah —2—A +% A (£)+%£1 ) . (2.106)

omparing the asymptotic behaviour that follows from the differential equations of
and h with the above ansatz, one obtains self-consistency if (¢) ¢~ ! 2. From
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Eq. (2.106) it then follows that ( —2 ) =—- ( — 4)=0for =1. ince
the asymptotic behaviour should be independent of the constant  also for =1 we
generally obtain = 4 and =2 . This is consistent with the differential equation
obtained for  which reduces to the following algebraic equation in the asymptotic
limit: —(1 2+ ) = + 2 —(1 2+ ) -2 with =1 2and 2= 4+4( —-1) 4.
We obtain the following non-local differential equation for ( )= ~' ():
() ()
()=-2 ()(-2 =) t4 () 3
PN
+( —-1) (2.107)

Eq. (2.107) is linear in ( ). We can therefore not determine the constant  from the

asymptotic behaviour. The asymptotic solution of Eq. (2.107) yields ( ) -t
for 0and () 2 - = for 0o. From the relation
2 / 2
2 K( ,0)= (.0 _ ' 20 _ i (2.108)
A LD ()
where the first limit was for / oo and the second limit for either 0 or 0,

one sees that the asymptotic limits have to be interpreted with care. We will therefore
focus on Eq. (2.87) and integrate this equation directly.

sing Eq. (2.87) and for #;, {5 both being in the asymptotic regime, we obtain the
following relation

K( ,6)— K( 0) =2 2-

() ( )2 , (2.109)

with = ¢, =1,2.
The low-frequency behaviour of K( ) is determined by the asymptotic behaviour

of K( ,£). Defining the asymptotic function K ( ,¥) according to the conservation
law of Eq. (2.90) as

_ 2 _ 2
K (,0)= T ( (f(_g) (g);)(_ ( 02,6_))0,0 : (2.110)
we readily identify
K( ,0)=K( ,lo=00)—K( ,t) , as 0 . (2.111)
For 0 and 0, we have K ( ,/) 292 For =2and 0, we have

K(,0 % o
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Figure 2.1.: The pectral Function ( ) calculated via Flow Equations with ( ,£)
—( = (©)) ( + (©) (left hand side) and with ( ,¢) = —1 (right hand

side), takenat £ =10 Zfor ( )=4 2 (24 ?)with = (£=0),
= 0.1 and = 1 (dotted line). The solid line resembles the analytic

solution of Eq. (2.94).

R

Exactly solvable models serve as an excellent check for integration routines, which are

going to be employed in the later chapters. Throughout this work we will use the
- outine  ODE, designed to solve stiff differential equations based on Adams- and
ackwards-Differentiation.
We first want to calculate the spectral function (), defined in Eq. (2.92). iven
the orentzian spectral function as initial coupling function of Eq. (2.9 ), we will cal-

culate () within the Flow Equation approach for two different choices of ( ,¢). To
do so we will employ the conservation law of Eq. (2.90),ie. ( )= ( ,0)+ ( ,9).

This allows us to halt the integration routine after a finite ¢ and thus circumvent ques-
evertheless the final

tions about the asymptotic properties of the numerical routines.
result must be independent of £ . which is indeed the case.
In Figure 2.1 the two different versions of our Flow Equations are compared. The

parameters for the initial coupling ( ) are chosen to be = 0.1 and = 1.0
according to ef. Keh97. The small deviations between the exact solution given in
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Figure 2.2.: The asymptotic functions ( )and ( )atZ =100 for Ohmic coupling

() =2 ( — )with 2 =100and = (¢{ =0) for
different coupling strengths . The solid lines resemble the analytic
solution.

Eq. (2.94) and the solution obtained by Flow Equations are due to the finite cutoff
which had to be introduced in the numerical solution. Our choice = 50 does
not resemble any limit of numerical capacity and can be easily extended.

The composed spectral function () = ( ,4)+ ( ,£) turns out to be
indeed independent of the two choices of ( ,¢). evertheless they are composed
by different functions ( ,¢) and ( ,£). For ( ,¢) = —( — () ( + (¥)
the weight of the intermediate time scale is mostly contained in ( ,£), whereas
for ( ,¢) = —1 the asymptotic function  ( ,¢) determines the long-time behaviour.

After we have shown that the results for () are independent of ( ,#) we want
to investigate the asymptotic properties of the Flow Equations for ( ,¢) = —1. The
differential equations (2.101) and (2.107) can be solved numerically via self-consistent
iteration.  omparing these analytic results with the numerical results obtained
through integrating the Flow Equations serves as a proof that we have found the right
universal asymptotic behaviour.

The asymptotic functions given in the last subsection still depend on the parameter

, which also governs the behaviour of the asymptotic spectral function () for
small  as can be seen from Eq. (2.109). The behaviour of ( ) for small is
known from the analytic solution of the model and corresponds to that of the initial
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Figure 2. .: The asymptotic functions ( ) and () at £ = 100 for ( ) =

2 1= ( — )with =04, =1, 2 =100and = (=
0) for different coupling types . The solid lines resemble the analytic
solution.

spectral function ( ). ince many physical effects, like localization in the pin- oson
Model, only depend on the low-energy modes of the bath, ( ) is often parameterized
by ust three parameters: the bath or coupling type , the coupling strength  and

respectively and the cutoff frequency . One thus often starts with the initial
spectral function ( ) 2 '~ ( ), where () denotes a particular cutoff
function with ( ) 1 for 1.

As could already be seen from the discussion of the asymptotic behaviour of the
Flow Equations, = 1 represents a marginal point. One therefore distinguishes three
characteristic coupling types:

1 : super-Ohmic coupling
=1 : Ohmic coupling
1 : sub-Ohmic coupling

Our numerical results show that the parameter , that appears in the asymptotic
functions has to be chosen according to the parameter , that appears in the initial
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