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Abstract

The aim of this work was to improve the understanding of the OH-radical initi-
ated oxidation of aromatic hydrocarbons (benzene, toluene, p-xylene (BTX) and 1,3,5-
trimethylbenzene (TMB)). These mechanisms are considered a major uncertainty in state-
of-the-art photochemical models as they are used to predict photooxidant formation from
urban air. Differential Optical Absorption Spectroscopy (DOAS) was employed in a sys-
tematic outdoor smog-chamber study at the European Photo Reactor (EUPHORE) lo-
cated at the CEAM-Institute, Valencia/Spain. The available DOAS system was improved
for this purpose. The yields of ring-retaining products (phenol from benzene, phenol-type
and aldehyde-type compounds from p-xylene and TMB) and glyoxal (from BTX) were in-
vestigated. The phenol yield (ΦPHEN =53%) was found more than two times higher than
presently available literature values. Further, the bicycloalkyl-radical pathway was identi-
fied as a major pathway from BTX. It was demonstrated that the results of this study are
representative for the atmosphere. Deviations from the the degradation pathways of BTX
and TMB were further observed under conditions of high NOx (e.g. several ppm). The
results of this work indicate that the representations of aromatics in photochemical models
need to be updated. The results indicate that the contribution of aromatic hydrocarbons
to the formation of photooxidants (i.e. ozone) is underestimated today.

Zusammenfassung

Das Ziel dieser Arbeit war es das Verständnis der OH-Radikal initiierten Oxidation aro-
matischer Kohlenwasserstoffe (Benzol, Toluol, p-Xylol (BTX) and 1,3,5-Trimethylbenzol
(TMB)) zu verbessern. Diese Mechanismen gelten als Hauptunsicherheitsfaktoren in
Chemie-Modellen zur Erfassung der Photooxidantienbildung aus Stadtluft. Differen-
tielle Optische Absorptions Spektroskopie (DOAS) wurde in einer systematischen Smog-
Kammer Studie am Europäischen Photoreaktor (EUPHORE), CEAM-Institute, Valen-
cia/Spanien angewandt. Das vorhandene DOAS-System wurde hierzu weiterentwickelt.
Die Verzweigungsverhältnisse (Yields) der ringerhaltenden Produkte (Phenol von Benzol,
Phenole und Aldehyde von p-Xylol und TMB) sowie Glyoxal (von BTX) wurden bes-
timmt. Der Phenol-Yield aus Benzol (ΦPHEN =53%) wurde zu mehr als dem doppelten
des Literaturwertes bestimmt. Weiterhin wurde der Ringspaltungsmechanismus über das
Bicycloalkyl-Radikal als einer der Hauptwege in der Oxidation von BTX identifiziert. Es
wurde gezeigt, daß die Ergebnisse dieser Arbeit repräsentativ sind für die Atmosphäre.
Abweichungen von den atmosphärisch relevanten Reaktionswegen von BTX und TMB
wurden in Anwesenheit von hohen NOx-Konzentrationen (einige ppm) beobachtet. Die
Resultate dieser Arbeit werden von heute verwendeten Aromat-Mechanismen in Chemie
Modellen nur unzureichend beschrieben. Die Ergebnisse zeigen, daß der Beitrag von Aro-
maten zur Bildung von Photooxidantien (z.B. Ozon) bislang unterschätzt wird.
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Chapter 1

Introduction

The formation of photooxidants like ozone and their associated impact on human

health is a major environmental issue worldwide today. High ozone levels are one

aspect of the phenomenon which is commonly known as photochemical smog (or

summer-smog). The term ”photochemical” reflects the essential role that solar ra-

diation plays in driving the chemistry of volatile organic compounds (VOCs) in the

presence of NOx (sum of NO + NO2). The degradation of the VOCs leads to the

formation of ozone, a variety of further oxidizing species (in sum called photooxi-

dants) and particles that form different aspects of the photosmog. Due to its first

observation in the Los Angeles basin in the mid-fourties photosmog is alternatively

referred to as Los Angeles smog [Finlayson-Pitts and Pitts, Jr. 2000].

The importance of aromatic hydrocarbons in this context was recog-

nized back in the sixties [Altshuller et al. 1962] after the discovery that

hydrocarbons/NOx/light-mixtures are actually responsible for the forma-

tion of ozone [Haagen-Smit and Fox 1956]. The first atmospheric measure-

ments of aromatic concentrations were carried out by the end of the sixties

[Lonnemann et al. 1968]. At that time, the primary oxidizing agent was assumed

to be ozone. The importance of the OH-radical for the photochemical degra-

dation of airborne hydrocarbons was proposed in the late sixties/early seventies

[Weinstock 1969; Levy II 1971]. It coincided with evidence from laboratory studies

that indicated that the oxidation of aromatic hydrocarbons may be triggered by an

electrophilic reactant [Glasson and Tuesday 1970]. However, it was not until the

mid-seventies that this electrophilic reactant was unambiguously identified as OH-

radical [Doyle et al. 1975; Perry et al. 1977] and not ozone [Nojima et al. 1974]. In

addition, the OH-substituted phenol-type compounds were found to react rapidly

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Hydrocarbons in presently used fuels and the urban atmosphere.

Class mixing ratio [%(w./w.)] a mixing ratio [%(ppbC)] b

Normal Normal SUPER Leipzig Wuppertal Wuppertal

leaded unleaded unleaded urban air traffic tunnel

Alkanes 72.1 61.1 56.7 51 42 37

Alkenes 9.2 11.5 7.5 7 14 16

Aromatics 18.8 26.9 35.8 42 44 47

a fuel composition from [Patyk and Höpfner 1995]
b data from [Knobloch and Engewald 1997; Kurtenbach et al. 2001]

with NO3-radicals [Carter et al. 1981]. Today it is known that the degradation of

most aromatic hydrocarbons (i.e. benzene, toluene, xylene-isomers etc.) is initiated

exclusively by the reaction with OH-radicals [Atkinson 1994].

Aromatic hydrocarbons are emitted into the urban atmosphere as part of auto-

mobile exhaust. Further emissions are primarily linked with anthropogenic activ-

ity such as solvent use, gasoline evaporation and spillage, industrial processing,

the use of household chemicals and coal-heating [Piccot et al. 1992; Legett 1996].

In rural areas, monocyclic aromatic hydrocarbons can also contribute about 10%

of the Non Methane Hydrocarbons (NMHCs) [Nutmagul and Cronn 1985]. Here,

an important contribution to the aromatic budget is transport from polluted

and industrialized regions. However, some natural emission also occurs from

biomass burning [Blake et al. 1994; Eyde and Richards 1991] and volcanic erup-

tions [Isidorov et al. 1990]. Further natural sources include the biogenic production

in sediments [Hunt et al. 1980], seawater and lakes [Juettner and Henatsch 1986].

Aromatic hydrocarbons may further be emitted from plants under conditions of en-

vironmental stress [Heiden et al. 1999].

In Europe, the importance of aromatic compounds in urban air started to increase

in the mid-eighties when the portion of aromatics in gasoline was increased as a

substitute for lead. The aromatic portion of presently used unleaded SUPER fu-

els typically accounts for about 40% (% by weight: w./w.) (see Table 1.1) and

ranges between 35% and 55% (w./w.) [Patyk and Höpfner 1995]. Thereby, the

sum of benzene, toluene and xylene-isomers - the so-called BTX aromatics - ac-
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counts for the major part of about 75% of all monocyclic aromatic hydrocarbons

[Patyk and Höpfner 1995; Kurtenbach et al. 2001]. Considerable reductions in hy-

drocarbon emissions (i.e. including aromatics) were achieved by the introduction of

three-way catalysts. In fact, the emissions of petrol cars equipped with a three-way

catalyst are reduced as compared to those of non-equipped cars by about a factor of

ten [Sigsby et al. 1987; Fontaine 2000]. In Germany, the overall hydrocarbon emis-

sions were estimated to have been reduced by a factor of two from 1417 kt (1985) to

742 kt (1994) [Umweltbundesamt 1998]. Despite this trend in hydrocarbon emissions

in Germany, considerable scatter exists among the absolute numbers in the emission

inventories. Thus, the overall VOC-emissions for the former Bundesländer were es-

timated at 2667 kt - about twice as high - with aromatic compounds contributing

about 306 kt [Piccot et al. 1992].

Recent field measurements have shown that the high aromatic content in presently

used gasolines is also reflected in the relative abundance of aromatic compounds com-

pared to alkanes and alkenes in urban air (see Table 1.1). For instance, the fraction of

aromatic hydrocarbons in the city air of Wuppertal in Germany accounted for about

47%ppbC of all volatile organic compounds (VOCs) [Ackermann 2000]. Due to their

relative importance in urban air aromatic hydrocarbons substantially contribute to

urban air pollution. They are assumed to be responsible for a significant fraction of

the photooxidants formed in the industrialized countries. Even though the oxida-

tion mechanisms of aromatics are not understood as-yet, model calculations indicate

that the daytime oxidation of aromatics leads to the formation of up to 40% of the

photooxidants formed from VOCs [Derwent et al. 1996]. In comparison to the alka-

nes and alkenes, aromatic hydrocarbons are among those species that are ascribed

Photochemical Ozone Creation Potential (POCP) [Derwent et al. 1996]. Though

the assigned POCP-values vary considerably among different aromatics, species like

the xylene-isomers and trimethylbenzenes (TMB) are ascribed high POCP-values,

comparable to and even above the values of alkenes. Another aspect of the impact

of aromatic hydrocarbons on the atmospheric environment is their effect on health.

Benzene, for example, is carcinogenic and its use is therefore strictly controlled

[Kelly et al. 1994]. In addition, the photooxidation products of aromatic hydrocar-

bons are known to show both toxic and mutagenic effects, in contrast to the products

of most smaller alkanes and alkenes [Bufalini 1989]. Finally, photochemical degrada-

tion products from aromatic hydrocarbons are a source of secondary organic aerosol

(SOA) in urban air [Odum et al. 1997].
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Despite their importance, however, our knowledge of the atmospheric degradation

mechanisms of aromatic hydrocarbons, in particular of benzene, is still poor. In the

past, most experimental studies focused on the more reactive aromatic hydrocarbons

like toluene and the xylene isomers [Bandow and Washida 1985; Yu et al. 1997]

whilst studies on benzene were comparably scarce. In general considerable un-

certainty still exists on the principal oxidation steps in the degradation of aromatic

compounds.

The general aim of this work was to obtain a better understanding of the oxi-

dation pathways of monocyclic aromatic hydrocarbons, i.e. benzene, toluene, p-

xylene (hereafter referred to as BTX) and 1,3,5-trimethylbenzene (TMB). More

than 150 experiments were performed under simulated atmospheric conditions at

the outdoor simulation chamber EUPHORE, located at CEAM-Institute in Valen-

cia/Spain. DOAS (Differential Optical Absorption Spectroscopy) was applied to

investigate the ring-retaining and ring-cleavage pathways in the degradation of aro-

matic compounds.
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1.1 Guide to this work

After this introduction, the present state-of-knowledge on the aromatic degradation

pathways is summarized and assessed in Chapter 2. Chapter 3 introduces the experi-

mental techniques as well as the experimental conditions and evaluation procedures

that have been employed to derive the results of this study.

In Chapter 4 the results are presented. The calibration results obtained from the

UV-spectra that have been recorded of phenol and glyoxal are presented first (Sec-

tion 4.1), followed by the characterization of the wall-influence as a sink for gas-phase

compounds (Section 4.2.1). These results and the OH- and NO3 rate-constants

of selected aromatic aldehydes and phenols (Section 4.2.2 and 4.2.3) as well as

photolysis-frequencies of aromatic aldehydes (Section 4.2.4) represent essential pre-

liminary information for the further investigation of the three major parts of this

study. The first part includes the results on the ring-retaining pathways of benzene

(Section 4.3), p-xylene (Section 4.4) and 1,3,5-trimethylbenzene (Section 4.5). The

second part is dedicated to the ring-cleavage pathways of benzene, toluene and p-

xylene (BTX). By investigating the glyoxal formation from BTX the identification

of a major ring-cleavage pathway of BTX has been possible (Section 4.6). Further

insight into this ring-cleavage pathway is described in the Section 4.7 from the results

on the formaldehyde (HCHO) formation from toluene. The third part is devoted

to the role of NO3-radicals in the context of the formation of Secondary Organic

Aerosol (SOA) in an exemplary study on p-xylene (Section 4.8).

In Chapter 5 the results are discussed in the context of available literature values

(all Sections). As a result of the discussion some further insight into the mechanism

of aromatic oxidation is obtained in spots. These further results concern the phenol

yields from benzene in the high-NOx-range (see Section 5.3.2), similar results for

toluene and p-xylene (see Section 5.4.2), the dominant influence of photolysis in the

aromatic oxidation (see Section 5.5.2) as well as the evidence for highly reactive

stable intermediate compounds from toluene (see Section 5.6.1).

Chapter 6 briefly summarizes the most important results and concludes how they

contribute to a better understanding of the mechanism of aromatic oxidation. Fi-

nally, in Chapter 7, the outcome of this work is discussed in terms of the atmospheric

relevance of the results.

The abbreviations used for compounds, groups of compounds, names and symbols

are compiled in a glossary at the end of the text.
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1.2 Collaborations

This PhD-thesis is largely based on data obtained within the scope of a Marie Curie

Fellowship granted by the Commission of the European Communities. During the

funding period of two years, the Fellowship was hosted by CEAM-Institute in Va-

lencia/Spain. Further data was obtained after the end of the funding period in a

collaboration between Prof. Dr. U. Platt, University of Heidelberg who supervised

this PhD-thesis over the whole time-span and Dr. Klaus Wirtz, CEAM-Institute

who supervised the Marie Curie grant.

Ten experiments on the phenol yields from benzene were performed in collaboration

with Dr. Björn Klotz from the group of Prof. Dr. K.H. Becker, BUGH Wuppertal,

Germany. The cooperation with Dr. Klotz continued during his post-doctoral stay

in the group of Prof. Dr. N. Washida, NIES, Tsukuba Japan.

The data obtained from these collaborations will be published in joint articles that

are presently in preparation.



Chapter 2

State of knowledge

Despite many years of research on aromatic hydrocarbons our knowledge on the oxi-

dation mechanism in the atmosphere is still limited to the principal oxidation steps.

It is well established that most aromatic compounds exclusively react with OH-

radicals. Reactions with NO3-radicals are further important for the OH-substituted

(phenol-type) compounds. The reaction with ozone and photolysis is essentially

unimportant under the conditions that prevail in the atmosphere. Figure 2.1 il-

lustrates the initial oxidation steps in the OH-reaction with benzene and includes

the different mechanisms currently proposed for the formation of phenol. Despite

the fact that unlike alkylated aromatic hydrocarbons, benzene reacts exclusively

through the OH-addition pathway to the aromatic ring, the initial steps of benzene

oxidation are fundamental also for the understanding of other aromatics.

2.1 Proposed pathways for phenol formation

It is well established that the reaction of the OH-radical with benzene 1 proceeds

by addition to the aromatic ring giving a hydroxy cyclohexadienyl-radical 2, also

termed benzene-OH adduct 2 (reaction (1) in Figure 2.1). Under atmospheric con-

ditions the benzene-OH adduct 2 (aro-OH) only slowly decomposes back to reac-

tants (-1) and primarily reacts with molecular oxygen [Knispel et al. 1990]. Recent

progress on the products of this reaction gave final evidence for the reversible for-

mation of the hydroxycyclohexadienyl-peroxy-radical 3 (aro-OH-O2), see reaction

(2) [Bohn and Zetzsch 1999]. With k2≈ 2·10−15 cm3·(molec·s)−1 and k−2≈ 8·103
s−1 [Bohn and Zetzsch 1999], this second equilibrium between 2 and 3 is rapidly

attained (< 1ms), and it was not yet possible to differentiate between the two

compounds with respect to the further loss-processes. The equilibrium constant

7
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Figure 2.1: The initial steps in the OH initiated oxidation of benzene 1. Cur-

rently proposed loss-processes of the aromatic-OH adduct 2 and the peroxy-radical

3 (which are in rapidly established equilibrium) that lead in part to the formation of

phenol 4. Intermediate species are marked in bold numbers. The reaction pathways

are indicated by numbers in circles. Corresponding rate-constants, if available, are

given in the text. Similar schemes for the phenol forming pathways can also be

drawn for the alkyl-substituted aromatics.
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was determined Keq =k2/k−2=2.7·10−19 cm3 at T=296K [Bohn and Zetzsch 1999]

indicating that 2 and 3 are present at roughly equal concentration in air of

one atmosphere. Both compounds 2/3 may form in chemically activated states

[Lay et al. 1996]. For reasons of simplicity these are not explicitly shown in Fig-

ure 2.1.

With respect to the formation of phenol-type compounds 4 (and its methylated

derivates) from 2/3 the explicit formation mechanism is subject to an ongoing

debate. At present the different pathways (3) to (6) shown in Figure 2.1 have

been proposed. Channel (3) forms HO2 from the hydrogen abstraction reaction

of 2 with molecular oxygen. Channel (4) yields the same products through the

direct elimination of HO2 from 3 [Lay et al. 1996]. An alternative phenol for-

mation pathway have been proposed to proceed without the involvement of O2

directly from the replacement of a ring-bound H atom from 2, see reaction (5)

[Bjergbakke et al. 1996]. However, this pathway is controversly discussed in the

literature [Koch 1997; Pagsberg 1997; Bohn and Zetzsch 1999; Berndt et al. 1999].

Finally, pathway (6) was postulated by Klotz et al. [1997]. Reaction of aro-OH 2

with O2 could yield a HO2-radical and benzene oxide 5, which is in rapid equilibrium

with its monocyclic isomer oxepin 6. Mixtures of benzene oxide/oxepin 5/6 (also

termed areneoxides) have been shown to yield phenol on photolysis with sunlight, re-

action (7) in Figure 2.1, while its OH initiated oxidation gives ring-opening products

[Klotz et al. 1997]. Despite the mechanistic controversy, considerable progress was

recently made on the overall branching ratio of the phenols formed from the different

pathways in the toluene system [Smith et al. 1998; Klotz et al. 1998]. At present,

toluene can be regarded as the only compound where the yields of the cresol-isomers

are known under conditions that are representative for the atmosphere.

Reactions (8) to (12) have been proposed as further loss-processes of the species

2/3. Of these, channels (8) and (9) are thought to dominate under atmospheric

conditions (see Figure 2.2). Channel (10), the reaction of 2 with NO2, can be im-

portant under (smog-chamber) conditions with high NO2 concentrations. Channel

(11), the reaction with NO, on the other hand will be essentially negligible under

most conditions [Zetzsch 1997]. Finally, channel (12) indicates the reaction of inter-

mediate 3 with NO. This process is found negligible under atmospheric NO concen-

trations [Bohn and Zetzsch 1999] but it may become an important loss-process from

the equilibrium 2/3 under simulated atmospheric conditions if NO concentrations

are considerably higher.
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2.2 Further proposed intermediate compounds

In Figure 2.2, the initial oxidation steps were somewhat simplified and are shown

for toluene 1. For reasons of simplicity, those compounds which are similar in

structure to the compounds drawn in Figure 2.1 have been assigned the same num-

bers. For toluene and the further alkyl-substituted aromatics (e.g. p-xylene), a

minor fraction of the initial attack of the OH-radical will proceed via the abstrac-

tion reaction of a H-atom from the side-chain (≤ 10%). This reaction pathway is

comparably well known and in the presence of NO forms benzaldehyde 9 (BALD)

[Finlayson-Pitts and Pitts, Jr. 2000]. However, the major OH-reaction with toluene

1 proceeds via the addition to the aromatic ring (≥ 90%). The formation of aro-

OH-O2 3, phenolic compounds 4 and areneoxides 5/6 has been discussed above.

Further products from the reaction of aro-OH 2 with oxygen (pathways (8) or (9)

in Figure 2.1) could be the bicycloalkyl-radical 7 and an epoxide-alkoxy-radical

8 [Bartolotti and Edney 1995]. Up to date little is known about the branching

ratio for the formation of the different intermediates (if, indeed, all of them are

formed). With the exception of the phenols 4 (discussed above) the branching

ratio of the highly reactive intermediates 3,5/6,7,8 is presently unknown. This

is partly due to difficulties in the direct observation of the highly reactive inter-

mediates in the experiment [Klotz et al. 1997; Atkinson 2000]. An indirect iden-

tification of these intermediates through observable stable products has been ex-

tensively studied [Darnall et al. 1979; Becker and Klein 1987; Bierbach et al. 1994;

Kwok et al. 1997; Yu and Jeffries 1997; Yu et al. 1997] and in fact the presently

available product data is consistent with all the proposed intermediates 3,5/6,7,8

[Atkinson 2000]. Nevertheless, the quantitative identification of these intermedi-

ate compounds from this product data is not straightforward since - in principle

- a given product may be formed through different pathways. Even for a com-

pound like glyoxal 10, which is known to be a significant ring-cleavage product from

the OH-reaction of aromatic compounds [Bandow et al. 1985; Tuazon et al. 1986;

Becker and Klein 1987; Bierbach et al. 1994; Smith et al. 1999] no definite forma-

tion pathways could be established. The several possible formation pathways of

glyoxal 10 from the intermediates 3,5/6,7,8 are discussed in Section 5.5.1.

Experimental indications for fast ring-cleavage involving the homologous

bicycloalkyl-radical 7 formed from o-xylene have up-to-now been derived from

two studies [Darnall et al. 1979; Kwok et al. 1997]. Both studies investigate the

formation of biacetyl, a C4-α-dicarbonyl that is formed only from o-xylene and not
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latter case can react with molecular oxygen to yield one of the five proposed in-

termediate compounds 3-8. Analogous intermediates are proposed for benzene and

other alkyl-substituted aromatic compounds.
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from other aromatic compounds [Atkinson 1994]. Darnall et al. [1979] observed

the biacetyl with a time-resolution of 30minutes and postulated the formation

of the homologous bicycloalkyl-radical intermediate 7 to explain the observed

concentration-time-profile of biacetyl. Nevertheless, primary products observed at

sampling rates of tens of minutes may be difficult to distinguish from secondary

products formed from highly reactive stable intermediate species, and these mea-

surements cannot rule out the involvement of such intermediates [Atkinson 2000].

Even though time-resolution is not a limitation with the API-MS (Atmospheric

Pressure Ionisation Mass Spectrometry) measurements of Kwok et al. [1997] the

reported data is only qualitative. Furthermore, the API-MS technique is limited

to observing biacetyl as the only α-dicarbonyl compound due to problems of the

technique with the detection of low molecular weight molecules [Kwok et al. 1997].

The API-MS technique is hence restricted to the investigation of the o-xylene system.

The highly time-resolved, simultaneous DOAS detection of ring-retaining products

4,9 and glyoxal 10 eliminates these limitations since glyoxal is formed from almost

any aromatic system, i.e. benzene, toluene and p-xylene. Furthermore, limited infor-

mation is presently available about the dependence of product yields on temperature

and oxygen concentration as well as the NO and NO2 concentration (which if dis-

cussed at all are treated as NOx). The influence of these parameters is investigated

explicitly in this work.
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2.3 Assessment of the state of knowledge

As described in the previous Section, the understanding of the oxidation mech-

anism of aromatic hydrocarbons is far from complete. The uncertainties in the

principal oxidation steps of aromatic compounds are primarily related to the OH-

addition channel. They concern the branching ratios and explicit formation mech-

anism of ring-retaining (phenol-type) products as well as the explicit mechanisms

that lead to the ring-cleavage of aromatic compounds. Further important questions

are related to the NOx-losses that are observed in smog-chamber studies on the

OH-radical initiated oxidation of aromatic compounds [Killus and Whitten 1982;

Martín-Reviejo et al. 1996] as well as the formation of Secondary Organic Aerosol

(SOA) [Stern et al. 1987; Odum et al. 1997].

The uncertainties related to the aromatic degradation schemes affect the results

obtained from photochemical models that describe the formation of photooxi-

dants (e.g. ozone) from urban air. In fact, aromatics are considered a ma-

jor source of uncertainty in these models [Derwent and Jenkin 1991; Carter 1995].

In an attempt to minimize these uncertainties most models use so-called ad-

justed oxidation schemes for the representation of aromatic degradation. These

mechanisms were adjusted to fit the concentration-time-profiles of ozone and

NOx derived from smog-chamber runs on aromatic oxidation [Atkinson et al. 1980;

Killus and Whitten 1982; Leone et al. 1985; Carter 1995]. In most of these smog

chamber runs the initial concentrations of reactants and NOx were increased (typ-

ically by several orders of magnitude) as compared to those concentrations that

prevail in the polluted and semi-rural atmosphere where the aromatics are mostly

oxidized. Furthermore, the model-code typically reduced the complexity of the sys-

tem to a few parameters and (unless for selected products like glyoxal and methyl-

glyoxal) widely ignored secondary reactions of the products. The interpolation of

the thus derived oxidation schemes to the atmosphere is therefore highly speculative.

Improving our understanding of the oxidation of aromatic hydrocarbons is there-

fore indispensable in order to allow realistic estimates of the product distribution

from these models (including photooxidants, hazardous air pollutants and SOA) as

they are a prerequisite for the development of effective abatement strategies that

reduce the environmental impact of urban air pollution. It especially needs to be

demonstrated that the adjustable model-parameters (e.g. product yields, photolysis-

frequencies etc.) are actually representative for the atmosphere.
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Chapter 3

Experimental

This chapter briefly describes the outdoor simulation chamber EUPHORE (Euro-

pean Photo Reactor) where the experiments presented in this work were carried

out (Section 3.1). Further, Differential Optical Absorption Spectroscopy (DOAS) is

described and the improvements to the DOAS-system that were implemented over

the time-scale of this work are presented (Section 3.2). In Section 3.3 the further

analytical instruments of relevance to this work are presented. Section 3.4 gives an

overview about the procedures followed to set-up the experimental conditions for the

kinetic and product studies. Finally, Section 3.5 describes the employed evaluation

procedures.

3.1 The EUPHORE facility

The EUPHORE installations, located at the Centro de Estudios Ambientales del

Mediterraneo (CEAM) in Valencia/Spain, consist of two large-volume (approximate

volume of ≈ 187m3) outdoor simulation chambers. The two hemispherical chambers

(designated chamber A and B) are made of 120µm thick fluorine-ethene-propene

(FEP) foil which is highly transmittive for visible as well as UV light (transmit-

tance in the visible is approximately 85-90%, at 290 nm still about 75%). A top

view of the chamber used in this study is shown in Figure 3.1. The flat aluminium

floor panels of the chamber, covered by FEP sheet, can be water cooled to avoid

heating of the chamber by sun light during the experimental runs, maintaining real-

istic atmospheric temperature conditions during the course of an experiment. Two

mixing fans (see Figure 3.1) of 67 m3·min−1 throughput of air are mounted inside

the chamber to provide homogeneous mixing of the volume. An air-purification-and-

drying-system provides NOy-, NMHC-free and dry air allowing the background con-

15
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Figure 3.1: Top view of the EUPHORE chamber A that was used in this study.

centration of NMHC species to be as low as 0.3 mg·m−3. A hydraulically controlled

steel housing allows to protect the chamber from sunlight and weather [Becker 1996].

Inside this chamber two White-type multireflection cells are mounted, one coupled

to an FTIR interferometer, one to the DOAS spectrometer. The FTIR-system and

additional equipment used in this work is presented in Section 3.3. This study was

mainly focused on experiments using the DOAS system, which in the following is

therefore described in more detail below.

3.2 Differential Optical Absorption Spectroscopy

Since the first remote sensing measurements of ozone in the earth’s atmosphere by

Dobson and Harrison [1926] spectroscopic techniques have become an increasingly

important branch in the measurement of atmospheric trace gases. In 1975 and 1979,

Noxon [1975] [Noxon et al. 1979] and Platt et al. [1979] introduced a new method
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to measure atmospheric trace gas concentrations, Differential Optical Absorption

Spectroscopy (DOAS). Since then, DOAS has been applied to measure trace-gas

concentrations in the troposphere and stratosphere [Platt 1994; Solomon et al. 1987]

as well as under simulated atmospheric conditions [Etzkorn 1998]. In fact, several

important atmospheric trace gases were measured for the first time using DOAS, e.g.

HONO [Perner and Platt 1979; Platt and Perner 1980], OH [Perner et al. 1976],

NO3 [Platt et al. 1980], BrO [Hausmann and Platt 1994] and IO [Alicke et al. 1999]

in the troposphere, and OClO and BrO [Sanders et al. 1988] in the stratosphere. A

large number of other molecules absorbing light in the UV and the visible wavelength

region, e.g. NO2, NO, NH3, ClO, IO, O3, SO2, CS2, HCHO can also be detected

[Platt 1978; Platt 1994] (see also Section 3.2.5).

A further interesting application of the DOAS technique is the measurement of

absolute concentrations of aromatic hydrocarbons. Most aromatic hydrocarbons

show a characteristic and well structured absorption in the wavelength range below

300 nm. However, the DOAS detection of aromatics suffers the spectral overlap from

absorptions of atmospheric oxygen in the Herzberg-bands. For most atmospheric

applications the oxygen absorptions will be the dominant spectral structure in the

measured spectra [Trost 1997; Volkamer et al. 1998]. Since more recently, the prob-

lems due to interfering oxygen absorption in the wavelength range between 243 nm

and 290 nm could be overcome [Volkamer et al. 1998] this interesting spectral range

is available for the DOAS detection of a variety of aromatic hydrocarbons. In recent

years, the absorption cross-sections of a variety of aromatics like benzene, toluene, o-,

m-, p-xylene, TMBs, phenol, cresol-isomers, DMP-isomers, aromatic aldehydes and

further aromatic compounds have been determined [Trost 1997; Etzkorn et al. 1999]

and were applied to the DOAS measurement of aromatic compounds in the atmo-

sphere [Volkamer et al. 1998; Ackermann 2000].

The major advantages of the DOAS technique is its ability to measure absolute

trace gas concentrations of different isomers (i.e. m-xylene and p-xylene are easily

separated) at a good time-resolution in the absence of wall-reactions. DOAS is

therefore especially useful in the measurement of highly reactive species, such as

the free radicals OH, NO3, halogenoxides or NO2 as well as polar compounds, i.e.

aromatic aldehyde- and phenol-type compounds. The simultaneous determination

of the concentration of several trace gases, by analyzing the sum of their absorptions

in one wavelength interval, reduces measurement time and gives well time-resolved

insight about the average chemical composition of the observed air mass.
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3.2.1 The measurement principle

In Figure 3.2 the components of a simplified DOAS instrument, set-up to measure

tropospheric trace gases, is shown. Light, with an initial intensity I0(λ, L), emitted

by a suitable source passes through the observed air mass and is collected by a

telescope. Extinction of light on the lightpath, due to absorption processes by

different trace gases and scattering by air molecules and aerosol particles, reduces

the initial intensity. After the light has traveled a pathlength L, the I0(λ, L) is

reduced to I(λ, L) as is expressed from Equation 3.1 using Lambert-Beer’s law:

I(λ,L) = I0(λ,L) · exp
∫ l=L
l=0 −(

∑
j σj(λ,p,T)·cj(l)+εR(λ,l)+εM(λ,l))dl +N(λ) (3.1)

where for each trace species j the parameters σj(λ,p,T) is the absorption cross-section

which depends on the wavelength λ, the pressure p and the temperature T, cj(l)

its number density at the position l along the light path of length L. The Rayleigh-

extinction and Mie-extinction coefficients are here described by εR and εM . N(λ)

is the photon noise dependent on I(λ, L). In Figure 3.2a the spectrum of I(λ, L)

that arises from light that passed the atmosphere with one absorber (formalde-

hyde: HCHO) is shown. In most DOAS instruments, the light is focused on the

entrance slit of a grating spectrograph, with a detector system recording the spec-

trum. Due to the limited resolution of the spectrograph the shape of spectrum

I(λ, L) changes. The mathematical description of this process is a convolution of

I(λ, L) with the instrument function H of the spectrograph. Figure 3.2b shows the

spectrum I∗(λ,L) after a convolution with a typical instrument function H as it is

projected by the spectrograph on the detector. During the recording by the de-

tector the wavelength range is mapped into n discrete pixels, numbered by i, each

integrating the light in a wavelength interval from λ(i) to λ(i+1). This interval is

given by the wavelength-pixel-mapping ΓI of the instrument. In the case of a linear

dispersion (ΓI : λ(i)=λ(0)+γ· i) the spectral width of a pixel (∆λ(i) = λ(i+1) -

λ(i) = γ0) is constant. The signal I’(i) seen by a pixel i (omitting any instrumental

factors, i.e. the response of individual pixels) is given by:

I′(i) =
∫ λ(i+1)

λ(i)

I∗(λ′,L)dλ′ (3.2)

In general the wavelength-pixel-mapping ΓI of the instrument can be approximated

by a polynomial:

ΓI : λ(i) =

q∑
k=0

γk · ik (3.3)
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Figure 3.2: The components of a simplified DOAS set-up. Collimated light un-

dergoes absorption processes on its way through the observed air mass. (a): an

example-spectrum of this light entering the spectrograph is shown, assuming only

formaldehyde (HCHO) to be present in the observed air mass. This absorption spec-

trum shows the ro-vibronic structure of HCHO. (b): the same spectrum convoluted

by the spectrographs instrumental function reaches the detector. (c): the spectrum

after it was mapped by the detector to discrete pixels as it is actually stored to the

hard-disk of a PC and can be analysed numerically.
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The parameter vector (γk) determines the mapping of pixel i to the wavelength λ(i).

A change in parameter γ0 describes a spectral shift of the spectrum. Changing γ1

squeezes or stretches the spectrum linearly. Parameters γk with higher k describe a

distortion of the wavelength scale of higher order. Changes in the parameter vector

γk can be caused by different measurement conditions of the spectra, as grating

spectrometers usually show a temperature drift of 1/10 of a pixel per K. It is there-

fore necessary to correct these effects in the analysis procedure. Figure 3.2c shows

the discrete spectrum I’(i) as it is recorded and stored in a computer.

The DOAS technique was originally designed to match the needs of absorption

spectroscopy in the atmosphere [Platt 1994]. In contrary to the laboratory, the

absolute absorption signal of an observed trace gas in the atmosphere can not be

accessed due to the lack of information about the measurement-light intensity in the

absence of the atmosphere. The basic concept behind DOAS allows to bypass this

lack of information separating the cross section σj into two terms:

σj = σb
j + σ′

j (3.4)

where for a trace gas j the σbj represents broad spectral features and σ′
j the differ-

ential cross-section which represents narrow spectral structures. Considering only

σ′
j in the spectra evaluation process avoids interferences from Rayleigh- and Mie-

extinction. The separation of the absorption cross-section is illustrated in Figure 3.3

for ozone.

The logarithm of I’(i) (see Figure 3.2c), J(i)= ln(I’(i)), can be described by:

J(i) = J0(i) +
m∑
j=1

a′j · S′
j(i) + B′(i) + R′(i) + A′(i) + N′(i) (3.5)

where for each trace gas species j, S’j(i) indicates the differential absorption struc-

ture (S’j(λ)=ln(exp(-σ′
j(λ))
H) corresponds to the convolution of the differential

cross-section of the trace gas j with the same instrument function H), B’(i) the

broad absorption, R’(i) the sum of extinction by Mie- and Rayleigh scattering, A’(i)

summarises any variations in the spectral sensitivity of detector or spectrograph and

N’(i) = ln(N(λ)) is caused by the detector noise and photon statistics. The scaling

factors a’j = cj
− ·L are then the product of the average number densities over the

path-length L.
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Figure 3.3: The fundamental DOAS principle is the separation of the absorption

cross-section (in this example of ozone, upper part) into ’slowly’ varying (broad

band, second from top), ’rapidly’ varying (narrow band, third from top), and high

frequency parts (bottom graph) by applying a numerical band pass filter in the

evaluation procedure.
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The overlaying absorption structures of several trace gases are represented by the

sum in Equation 3.5. In practice the number of absorbers m can be limited to those

trace gases with their absorption structures are sufficiently strong to be detectable

with the respectively used DOAS instrument. As the strength of the absorption

structures varies with wavelength, the number of trace gases to be included in Equa-

tion 3.5 varies with the observed wavelength interval and the trace gas composition

of the probed airmass. Typically m=2 to 10 trace gas absorptions can be identified

in a single atmospheric DOAS spectrum [Platt 1994]. The concentrations of these

trace gases can, therefore, be measured simultaneously. To retrieve the concen-

trations, the superimposed absorption structures have to be separated numerically.

The task of the evaluation procedure is: (1) to retrieve the parameters a’j (Equa-

tion 3.5) and thus the concentration of the trace gases taking into account all the

atmospheric and instrumental effects. (2) to estimate the error ∆a’j of the param-

eters a’j and therefore of the measured trace gas concentrations. Both tasks can be

solved with linear least-squares methods if no instrumental effects are encountered

[Stutz and Platt 1996].

3.2.2 The analysis procedure

The evaluation procedure is based on a model that describes the physical behavior

of DOAS spectra according to Equation 3.5. The logarithm of the discrete measured

intensity, J(i), is modeled by a function F(i):

F(i) = Pr(i) +
m∑
j=1

aj · Sj(dj,0, dj,1, ...)(i) (3.6)

where the absorption structures of the trace gases Sj, e.g. measured in the laboratory

are input data to the procedure. The polynomial Pr(i) describes the broad spectral

structures caused by the characteristics of the lamp I0(i), the scattering processes

R’(i) the spectral sensitivity A’(i), the broad absorptions by the trace gases B’(i)

and can be expressed as:

Pr(i) =
r∑

h=0

ch · (i− ic)
h (3.7)

where the parameter ic = int(n/2) represents the center pixel of the spectral region

used for the evaluation. The polynomial refers to ic to maximize the influence of

the nonlinear terms. The scaling parameters aj (Equation 3.6) and the polynomial

coefficients ch (Equation 3.7) are found by linearly fitting F to J. The scaling factors
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aj are in the further used to calculate the average concentration of the respective

trace gases:

cj
− =

aj
σ′
j · L

(3.8)

where σ′
j denotes the differential absorption cross-section of trace gas j, L the ab-

sorption path-length.

The analysis procedure aligns the reference spectra S’j(i) (wavelength-pixel-mapping

Γj) to the spectrum J(i) (wavelength-pixel-mapping ΓJ). The procedure therefore

has to recalculate the reference spectrum S∗
j(i) with the wavelength-pixel-mapping

ΓJ . This can be seen as ’shifting and stretching/squeezing’ the reference spectrum in

wavelength. As Γj (identical to ΓI in Equation 3.3) is a strong monotonous function,

its inverse also can be described by a polynomial:

Γ−1
j : x(λ) =

q∑
k=0

βk · λk (3.9)

where x(λ) represents the non integer ’pixel number’ that results from this inverse

transformation. Sj(λ) can now be calculated from the continuous spectrum Sj(x).

This spectrum has to be approximated using a cubic spline interpolation on the

discrete spectrum Sj(i).

S∗
j(i) with the wavelength-pixel-mapping ΓJ can be calculated by deriving Sj(λ)

with Γ−1
j from Sj(x), which is approximated by a interpolation on Sj(i), and then

applying ΓJ :

Sj(i) −→interpolation Sj(x) −→Γ−1
j Sj(λ) −→ΓJ S∗

j (i) (3.10)

It is possible to refrain from calculating Sj(λ) and combine Γ−1
j and ΓJ to a formula,

which links i to x using a polynomial with parameters δk:

x(i) = x (λ(i)) =

qs·ql∑
k=0

δk · ik (3.11)

In the analysis procedure a slightly modified equation equivalent to 3.11 is used,

which has the advantage that their spectral alignment parameters dj,k, determining

the transformation, are zero if the wavelength-pixel-mappings of J and Sj are equal:

x = i + fj(i) with fj(i) =

pj∑
k=0

dj,k · (i− ic)
k (3.12)
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The spectrum Sj(dj,0,dj,1,...)(i) = S∗
j(i) has now the wavelength-pixel-mapping ΓJ ,

which was calculated with the parameters dj,k following Equations 3.10 and 3.12 and

a cubic spline interpolation on Sj(i). The parameters dj,k are derived by performing

a nonlinear fit of the model F to the spectrum J with fixed parameters aj and ch.

If pj = 0 the spectrum Sj is shifted by dj,0 pixels, if pj = 1 the spectrum is addi-

tionally linearly squeezed or stretched according to parameter dj,1. Higher values

of pj represents a squeeze or stretch of higher order. To achieve the best physical

description of the spectra, it is possible to select the degree of the squeeze process

pj for every reference spectrum Sj. It is also possible to use one set of parame-

ters dj,k for two or more reference spectra if the wavelength calibration is identical

for these spectra. The analysis procedure is a combination of the well-known non-

linear Levenberg-Marquardt-Method [Levenberg 1944; Marquardt 1963] determining

dj,k and a standard linear least-squares fit [Albritton et al. 1976; Bevington 1969] to

derive the aj and the ck. Both methods minimize χ2 between F and J:

χ2 =
n∑
i=0

(J(i)− F(i))2 (3.13)

The procedure begins with the calculation of the linear fit with starting values dj,k.

The results of this fit, the parameters aj and ck, are used as input data in the follow-

ing call of the nonlinear Levenberg-Marquardt fit. Only one step of this nonlinear

iterative method is then performed. The resulting parameters dj,k are used in the

next call of the linear fit. This results are used in the next call of the nonlinear fit.

The procedure then invokes the two methods alternating, always using the result

of the last call of one method as values for the other fit method. This procedure

is repeated until one of several stopping conditions for the nonlinear fit is fulfilled.

Normally the fit is aborted, when the relative changes of χ2 in the last step is smaller

than a given value (usually 10−6) and thus the fit has converged. The fit also stops

if a number of repetitions of the iteration, determined by the user, is exceeded or

if the nonlinear method becomes unstable [Gomer et al. 1993; Stutz and Platt 1996].

In Figure 3.4 a sample evaluation is shown for the spectral range between 432 nm

and 463.5 nm as it was used to derive the concentration of glyoxal and NO2. The

spectrum shown in the upper part (indicated A) was recorded in experiment PX24

(see also Figure 4.15) at 11:45 GMT. The spectrum was corrected for offsets and

devided by a background spectrum recorded in the clean chamber. In addition to

the reference spectra of NO2 (Part B)) and glyoxal (Part C)) spectral features of the

lamp need to be corrected in this spectral range. This was done by simultaneously
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fitting two independent reference spectra of the lamp which are added and shown

in the part indicated D). In the lower most part E) the residual structure that

remained after subtracting all the shown reference spectra is shown. Note that part

E) is expanded by a factor of five as compared to parts A)-D).

3.2.3 The DOAS system

The components of the DOAS-system are described in more detail elsewhere

[Etzkorn et al. 1996; Etzkorn 1998]. The basic components of the DOAS-system are

briefly summarized here: light source, White-system, spectrograph-detection unit as

well as a PC for data-storage. As light-source, a 500W high-pressure Xenon short-

arc lamp was used (PLI HSAX5002). The White-system is described in more detail

below. The spectrograph-detection-unit consists of a UV-transmittive quartz-fiber

(AS UV...Vis, �optical=200µm) equipped with a mode-mixer [Stutz and Platt 1997]

coupled to an ACTON Spectra Pro 500. This f/6.9-spectrograph has a fo-

cal length of 500mm and is equipped with three plane diffraction gratings

(grating #1: 1200 grooves/mm, blaze: 300 nm, dispersion: 0.03894 nm/pixel

(around 272 nm central wavelength), spectral resolution: FWHM=0.2 nm; grat-

ing #2: 600 grooves/mm, blaze: 500 nm, dispersion: 0.07645 nm/pixel (around

643 nm central wavelength), spectral resolution: FWHM=0.4 nm; grating #3:

300 grooves/mm, blaze: 300 nm, dispersion: 0.16199 nm/pixel (around 329 nm cen-

tral wavelength), spectral resolution: FWHM=0.84 nm) interchangeable upon com-

puter control. It was thermostated to a temperature of T= (301±0.2)K. For record-

ing of the spectra, a 1024-pixel photodiode-array detector (Hoffmann Messtech-

nik, photodiode array: Hamamatsu S3904-1024N, cooled to a temperature of

T= (253±0.2)K) is mounted in the focal plane of the spectrograph. A more detailed

description of the basic components of the DOAS-system is found in Etzkorn [1998].

The White-System

The White-system coupled to the DOAS system is based on the design first pre-

sented by [White 1942; White 1976] and further developed by Ritz [1992]. It was

incorporated into the EUPHORE-facility by Etzkorn [1998] and further improved

within this work, as described in Section 3.2.4.

In the following, the components of the White-system are listed and their function

is briefly adressed:
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Figure 3.4: Sample evaluation of a spectrum measured in the p-xylene oxidation

experiment PX24 at 11:45 GMT. Part A): the measured smog-chamber spectrum;

Part B): (thin line) scaled reference spectrum of NO2 (≈ 7.6 · 1011 molec·cm3 or

≈ 30 ppb), (thick line) reference spectrum with added residual; Part C) (thin line)

scaled reference spectrum of glyoxal (≈ 1.6 · 1012 molec·cm3 or ≈ 63 ppb), (thick line)

reference spectrum with added residual; Part D) scaled lamp reference spectrum (see

text); Part E) residual (here: 1.7 · 10−3 peak to peak, shown on an expanded scale).
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� The transfer-optics consists of two Newton-telescopes. Each Newton-

telescope consists of one plane-mirror, elliptical in shape and one spherical-

mirror. The transfer optics matches the f-numbers of the White-system (F53)

to that of the in- and out-coming light-beam (F6.9).

� the field-mirror consists of a round spherical objective-mirror (diameter

�optical = 25 cm; focal length f =4m) mounted inside an aluminum-frame

which further supports a round-shaped diaphragm (in-coming light beam).

The field-mirror is cut on one side to allow the mounting of the quartz-prisms

(see below). The manual adjustment of the field mirror is possible in two

degrees-of-freedom.

� three quartz-prisms, different in shape, are mounted on the aluminum-

support of the field-mirror. The adjustment of each of the three prisms is

possible independently in three-dimensions.

� the two objective-mirrors consist of a round spherical-mirrors each (diam-

eter �optical = 15 cm; focal length f =4m) which are mounted inside of com-

mercially available cardan-type mirror-holders. The two degrees-of-freedom of

each mirror-holder are coupled to four stepper-motors which allow to change

the relative orientation of the objective-mirrors relative to the field mirror.

These stepper motors are controlled from the automated laser-alignment (see

Section 3.2.4).

The field-mirror and objective-mirros are mounted in a distance of approximately

(8± 0.15)m facing each other (the exact distance varies slightly with the employed

set of mirrors). The light from the light-source enters the White-system via the

diaphragm near the field-mirror. It is projected without amplification by one of

the objective-mirrors back to the field-mirror where an image of the diaphragm is

generated in the plane of the field-mirror. This image serves as object for the second

projection etc. From this set-up two rows of light-dots are generated on the field-

mirror. At that place where the light-beam misses to hit the field-mirror the first

of the three prisms is mounted. The function of each prism is twofold. First, each

prism shifts the object-light-dot by a few centimeters. With each traversal of a prism

this generates for each existing light-dot a neighboring light-dot in the distance of

the shift in the light-beam. Each prims thereby doubles the light-path. Second,

the light-beam is back-reflected into the direction that the ligth-beam entered the

prism thereby compensating small de-adjustments in the White-system (e.g. caused
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from density fluctuations along the light-beam which deviate the light-beam, de-

adjustment of the objective-mirrors). This way of stabilizing the White-system is

limited to small de-adjustments that do not cause the light-beam to miss one of

the prisms. The number of traverses inside the White-system can be varied at EU-

PHORE between 16, 48, 80, 112 and 144 traverses. The minimum and maximal

achievable path-lengths are 130m and 1154m, respectively.

For further details on the White-system see [Ritz 1992; Volkamer 1996;

Etzkorn 1998; Ackermann 2000; Alicke 2000].

3.2.4 Improvements to the DOAS system

The original set-up of the DOAS-system as described by Etzkorn [1998] has been

subject to changes in order to increase the absorption path length, up-to-then lim-

ited to 130m in the open chamber [Etzkorn 1998], to a maximum achievable path

length (1154m). The effects that had to be overcome are characterized in detail in

two diploma-thesis that were carried out at the University of Heidelberg in cooper-

ation with the CEAM Institute [Utz 1997; Ücker 1999]. In brief, dis-alignment of

the White-system caused a reduction of the light intensity available for the DOAS-

measurements. The dis-alignment could become that large, that the light beam

missed the prisms located near the main mirror and no light reached the detec-

tor at all. Three effects were identified responsible for the dis-alignment and are

summarized as follows:

� Upon opening of the chamber the movement of the heavy steel housing (ap-

proximate weight of 20 t) caused bending of the aluminum floor panels that

support the mirror of the White-system and dis-align the mirror system.

� Similarly, thermal heating of the floor panels upon exposure to sun-light trans-

fer into a change of the relative orientation of the field mirror towards the

objective mirrors.

� The chamber is exposed to a slight overpressure (≈ 0.05mbar) in order to keep

it infladed. Given the large surface of the chamber, considerable forces act via

the teflon foil and lift up the panels that support the mirrors of the White

system.

For a quantitative description of these effects see Utz [1997]. The following changes

were applied to the original set-up:
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� The measurement platform below the chamber, where the transfer optics is

located, was changed. The main mirror inside the chamber was mechanically

dis-coupled from the floor panels and coupled to the measurement platform

where the transfer optics is located [Utz 1997].

� An automatic laser-alignment system [Geyer 1997] was incorporated into the

chamber that actively compensates the dis-adjustments of one objective mirror

and maintains it in a fix relative position to the field mirror [Utz 1997]. The

alignment of the second mirror at that stage was performed from optimizing

the light intensity that reached the detector from the measurement software

package Mfc [Gomer et al. 1993] as described earlier [Etzkorn 1998].

� The laser-alignment electronics was improved [Ücker 1999] in order to actively

align also the second objective mirror. The thus dis-coupled alignment of the

White-system from the measurement software allowed to improve the time-

resolution of the DOAS measurements.

� The detector of the second laser-alignment was mounted on a stepper-motor

allowing to move it horizontally in the plane of the field mirror. In this set-up,

a change of the pathlength (number of traverses) is realized from moving the

stepper motor (controlled from the software package Mfc). The thus moving

detector forces the objective mirror to follow it via the laser alignment until

the desired position is reached. An optimized software package was developed

(see annex) that sequentially controls both laser-alignments at a sufficiently

high frequency in order to allow changes of the pathlength within few seconds.

Any desired pathlength in this setup corresponds to a fix absolute position of

the stepper motor.

� All components of the actively aligned White-system were equipped with a

shade made of teflon to avoid direct heating of the lasers and optics from

sunlight.

� An optimized design for a quartz-fiber bundle was developed. Preliminary tests

have been performed which are not further described here. An improvement

of the light-balance of the White-system by a factor of five to ten is likely.
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3.2.5 Detection limits of selected trace gases

The improved DOAS set-up allows the detection of various trace-gases at an in-

creased pathlength. In Table 3.1 typical detection limits are given for the respec-

tively specified spectrometer settings, using different mirror sets and pathlengths for

the detection of selected compounds.

In Figure 3.5 the differential absorption cross-sections σ′(λ) of selected trace gases

are shown (left axis). For these species, typical detection limits are indicated on the

right axis for the respectively indicated absorption pathlengths.

3.3 Further analytical instruments employed

In addition to the data obtained from the DOAS-system, the data from the following

equipment is relevant to the results of this work:

� FTIR (Fourier Transform InfraRed spectroscopy): the second White-system

(see Figure 3.1) is coupled to an IR-interferometer. It is equipped with gold-

coated mirrors and was operated at 40 traverses, corresponding to an absorp-

tion path length of 326.8m. The FTIR interferometer, a NICOLETMagna 550

equipped with a liquid-N2-cooled MCT detector, was operated to yield spectra

of the spectral range between 400 cm−1 and 4000 cm−1 at 1 cm−1 spectral res-

olution. Typically, 280 to 550 scans were co-added yielding a time-resolution

of 5 to 15minutes.

� GC-FID (gas chromatography, flame-ionisation-detection): a Hewlet Packard

6890 equipped with a HP-5 column (crosslinked 5% PHME silicone 30m x

0.32mm x 0.25µm) was operated at a constant temperature to follow the

decay of aromatic educt (e.g. benzene: T=40◦C). Sampling was performed

via a teflon-tube directly connected to the chamber. Gas samples were injected

onto the column from the sampling loop typically every 4minutes.

� JNO2 filter radiometers: photolysis-frequencies of NO2 were measured by 2

filter radiometers which covered a 180◦ field of view each. One of the radiome-

ters was pointed upwards to measure the UV-flux from the upper hemisphere,

the other one was pointed towards the floor to measure the flux reflected by

the floor panels. Maximum daytime values for the sum of both channels were

JNO2≈ 9·10−3 s−1.
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Table 3.1: Detection limits of the DOAS set-up at EUPHORE.

Compound Calibration Spectrometer Mirror- Path- Detection

Settings a set b length [m] Limit c [ppt]

Ozone [Bass and Paur 1985] #1, 272 nm Alu 386 3000

SO2 [Vandaele et al. 1994] #1, 290 nm Alu 386 260

NO2 [Harder et al. 1997] #1, 350 nm Diel 1154 800

#1, 450 nm Diel 1154 500 d

NO3 [Wayne et al. 1991] #2, 643 nm Ag 1154 20

HONO [Stutz et al. 1999] #2, 350 nm Diel 1154 500

HCHO [Cantrell et al. 1990] #1, 350 nm Diel 1154 3500

#1, 330 nm Diel 1154 2500 d

GLY see Section 5.1.2 #1, 450 nm Alu 386 1500

#1, 450 nm Diel 1154 500 d

Benzene [Etzkorn et al. 1999] #1, 272 nm Alu 386 500

Toluene [Etzkorn et al. 1999] #1, 272 nm Alu 386 650

p-Xylene [Etzkorn et al. 1999] #1, 272 nm Alu 386 450

TMB [Etzkorn et al. 1999] #1, 272 nm Alu 386 1900

BALD [Etzkorn et al. 1999] #1, 284 nm Alu 386 180

pTALD [Etzkorn et al. 1999] #1, 284 nm Alu 386 350

DMBA [Ücker 1999] #1, 284 nm Alu 386 900

PHEN see Section 5.1.1 #1, 272 nm Alu 386 50

pCRE [Etzkorn et al. 1999] #1, 272 nm Alu 386 100

DMP [Etzkorn et al. 1999] #1, 272 nm Alu 386 1200

TMP [Etzkorn et al. 1999] #1, 272 nm Alu 386 1700

a first number: # of grating (see Section 3.2.3), second number: central wavelength.
b Alu: Aluminum coating; Ag: Silver coating; Diel: dielectric coating.
c for typical experimental conditions, conversion factor: 1 ppt ≡ 2.46·107molec·cm−3.
d possible with optimized set-up.
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Figure 3.5: Differential absorption cross-sections σ′(λ) of selected trace gases and

typcial detection limits for the DOAS measurement using the set-up at EUPHORE

at the respectively indicated absorption pathlength L.
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� NOx-monitor: a gas phase chemoluminescence NOx-analyser equipped with

photolytic NO2-converter (ECO Physics CLD 770) was used for the detection

of NO and NO2. It was typically operated in the maximum NOx-range of

500 ppb. The integration-time of the three sequentially measured channels

was 30 seconds, resulting in a time-resolution of the measurements of about

2minutes. The calibration of the NO2-channel of the device was performed

periodically.

� ozone-monitor: a photometric ozone-monitor (Monitor Labs ML9810) was

used. It was operated in either the 500 ppb or 1 ppm range.

� particle-counter: a TSI particle counter (model 3022A) was used in selected ex-

periments. This device only obtained information about the integral number-

density of particles (diameters between 7 nm and 3µm) and no information

about the particle volume was accessed.

� hygrometer: the dewpoint temperature TDEW and air-temperature inside the

reactor was monitored by a Walz TS-2. With one exception (experiments using

radical-source (2), see Section 3.4.4) the chamber air during the experiments

was dry (TDEW <−40◦C) reflecting that water was efficiently removed from

the air-drying-system (see above).

� thermo-sensors: temperature was measured in addition from at least two Pt-

100 temperature dependent resistors, one measuring the floor-temperature and

the other the air-temperature inside the chamber. Inter-comparison of the PT-

100 and Walz TS-2 measurements of the air-temperature yielded agreement

within ∆T≤ 0.2◦C throughout the experiments.

The data from the JNO2 filter radiometers, NOx monitor, ozone-monitor, particle-

counter, hygrometer and thermo-sensors were stored to the hard-disk of a PC acting

as a data-acquisition-unit. In addition, data from the OH-LIF device (laser induced

fluorescence) is shown (see Figure 4.7) that was obtained from joint experiments

with the BUGH Wuppertal. The OH-LIF was operated by the BUGH Wuppertal

and is described in more detail elsewhere [Becker et al. 1999]. As further employed

equipment GC-ECD (electron capture detection) was used for measurements of PAN

in selected experiments (not shown). For an overview of the available equipment at

EUPHORE see Becker [1996].
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Throughout this work the concentration-data derived from spectroscopic measure-

ments is given in units of molec·cm−3. Only exceptionally these quantities have

been converted into ppb (parts per billion, 0.001 ppm= 1000 ppt=1ppb= 2.46 · 1010
molec·cm−3 at T=298K) for reasons of simplicity. The concentration-data from

point-sampling devices (GC-FID, ozone-monitor, NOx-monitor etc.) is given in

units of ppb.

3.4 Experimental conditions

The experiments described in this work were set-up as follows. The closed chamber

was flushed over night. After the flushing was turned off and a reference background

spectrum was recorded with the DOAS and FTIR instrument in the clean chamber.

After the data-acquisition-unit (see Section 3.3) had been started reactants were

introduced. First, about 7.5 · 1011molec·cm−3 of SF6 were added. The introduction

of reactants is described in the respective Section. The radical production in the

experiments was started as described in the respective part of Section 3.4.3. After

each experiment, the closed chamber was flushed over the night.

3.4.1 Calibration experiments

For the experiments to measure absorption cross-section spectra (that serve as a cal-

ibration for the DOAS measurements), the chamber was first prepared as described

above.

Phenol

For the determination of the PHEN absorption cross section, pre-weighed amounts

of PHEN were dissolved in water and introduced into the reactor via the spraying

unit. Spectra were recorded using a pathlength of 130m at a spectral resolution of

0.2 nm (grating 1) at various PHEN concentrations between 2 · 1011molec·cm−3 and

8 · 1011molec·cm−3.

Glyoxal

For the determination of the UV-spectrum of GLY this compound was synthesized as

follows. About equal amounts of glyoxal-trimer-dihydrate and phosphorus pentoxide

were mixed in a glas reaction vessel and heated gently to about 180◦C. The glyoxal

monomer, formed as a product of dehydration in the gas-phase, was transferred
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by a stream of nitrogen into an impinger cooled by a bath of liquified ethanol to a

temperature of −80◦C where it was trapped. When the reaction had ceased, the trap

was disconnected and maintained cold while it was connected to the chamber. GLY

was extracted by removing the cold trap from the ethanol bath and gently heating,

allowing the GLY to sublimise in a stream of dried air connected to the chamber.

Spectra were recorded at two absorption paths (386m and 514m) and spectrometer

settings (grating 1: spectral resolution of 0.17 nm, central wavelength of the spectral

range under observation: λcentre=450 nm; grating 3: spectral resolution of 0.84 nm,

λcentre=470 nm) variing the observed column density of GLY and the resolution of

the spectrometer.

3.4.2 Kinetic studies

For the experiments to determine the OH- and NO3 rate-constants the chamber

was first prepared as described above. Then, the target and reference compounds

were introduced into the chamber injecting the liquid compounds via the sprayer

unit. PHEN and isomers of CRE were dissolved in about 10ml of water, while the

2,5-DMP was dissolved in about 1-2ml of acetonitril and hence these compounds

introduced into the chamber via the spraying unit. Typical concentrations of reac-

tants ranged between 1.2 · 1012molec·cm−3 and 5 · 1012molec·cm−3 and were chosen

to give a reasonable signal to noise ratio (S/N≈ 50) in the UV-absorption signal.

For those experiments where the rate-constants of products of 1,3,5-TMB were de-

termined relative to the rate-constant of 1,3,5-TMB the initial concentrations of

reactants were chosen to influence the apparent decay by less than 3%. Prior to the

experiment, the loss of reactants was monitored over periods between 30minutes to

3 hours in the dark. For the OH-kinetic experiments HONO was used as a source

of OH-radicals (see Section 3.4.4). For the NO3-kinetic experiments two different

radical-sources were employed (see Section 3.4.5).

The photolysis of aromatic aldehydes

The experimental set-up is identical to that described above. As an OH-

scavenger about 6 · 1014molec·cm−3 cyclohexane (CYHE) were added (kOH,CY HE =

(7.20± 0.53)· 10−12 cm3·(molec·s)−1, [Kramp and Paulson 1998]). In addition to the

aromatic aldehydes, about 2.8 · 1014 molec·cm−3 of BEN were added as a tracer for

OH-radicals (see Section 3.5.6).
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3.4.3 Product studies

For the experiments to determine the product yields the chamber was first prepared

as described above. All investigated compounds were liquids and their amount was

determined by volume from calibrated syringes before it was injected into the reactor

via the spraying-unit. The initial gas-phase concentrations of each experiment is

listed together with the respectively employed radical-source in Table 4.5 (BEN),

Table 4.7 (pXYL) and Table 4.8 (product studies on GLY). The loss of compounds

was monitored between 30minutes to 3 hours in the dark.

3.4.4 Employed OH-radical-sources

To generate OH-radicals the following five sources were applied:

1. ”Photosmog” system: In this system an aromatic reactant, NO and if appli-

cable an OH-tracer were introduced into the chamber and the system was left

approx. 30minutes for stabilization in the dark. The radical formation in the

experiments was started from opening the chamber housing. The origin of

the initially formed OH-radicals is presently not completely clarified but most

likely involves the photolysis of small amounts of HONO (see below).

2. Ozone-photolysis system: In this ”NOx-free” system, ozone (60 ppb to

300 ppb) and water vapor (approx. 50% relative humidity) were introduced

into the chamber. The radical formation in the experiments was started by

opening the chamber housing. Photolysis of ozone forms OH-radicals from the

following reaction sequence:

O3 + hν −→ O · (1D) + O2 (
1∆g) (3.14)

O · (1D) + H2O(g) −→ 2 OH· (3.15)

where radical-type species are indicated by a dot. The primary photochemical

process is most effective in the presence of light corresponding to λ< 310 nm.

This OH-source was hence used primarily during the summer months, when

the UV-flux is maximal. After exposing the chamber to sunlight, small

amounts of NOx were observed to build up in the reaction-system. Typical

NOx-concentrations were below 2 ppb.

3. HONO-system: About 5 · 1011molec·cm−3 to 2.5 · 1012molec·cm−3 of HONO

were introduced together with small amounts of NO and NO2 into the chamber.
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The radical formation in the experiments was started by opening the chamber

housing. Photolysis of HONO forms OH-radicals:

HONO + hν −→ OH · + NO· (3.16)

This process requires light corresponding to λ< 390 nm. Typically about

100 ppb of NO were added in addition to delay the formation of ozone in

the system.

4. H2O2-system: About 5 · 1011molec·cm−3 of H2O2 were added by injecting an

aqueous solution of 30%. The radical formation in the experiments was started

by opening the chamber housing. Photolysis of H2O2 forms OH-radicals:

H2O2 + hν −→ 2 OH· (3.17)

The absorption cross-section of H2O2 rapidly drops above the cutoff wave-

length at λ≈ 290 nm. As in the case of ozone, this OH-source was hence

primarily used in the summer months, when the UV-flux is maximal. Again,

small amounts of NOx were observed to build up in the reaction-system, typ-

ically below 2 ppb.

5. HCHO-system: About 1.5 · 1012molec·cm−3 of HCHO and 20 ppb of NO were

added. The radical formation in the experiments was started by opening the

chamber housing. HCHO photolysis generated OH-radicals from the following

reaction sequence:

HCHO + hν −→ H · + HCO· (3.18)

−→ H2 + CO (3.19)

H · + O2 −→ HO2· (3.20)

HCO · + O2 −→ HO2 · + CO (3.21)

HO2 · + NO· −→ OH · + NO2· (3.22)

The primary photochemical process (reaction (3.18)) leads to the formation of

OH-radicals, while reaction (3.19) forms non-radical products. Reaction (3.18)

requires light corresponding to λ< 330 nm while reaction (3.19) is operative

already at longer wavelengths [Atkinson et al. 1997]. Hence, the relative frac-

tion of these photolysis channels will depend on the solar zenith angle (SZA)

and the maximum OH-formation is expected around noon.

Selected rate-constants and photolysis-frequencies of relevance for these OH-sources

are included in Table 3.2.
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3.4.5 Employed NO3-radical-sources

Two different sources to generate NO3-radicals in the closed chamber were employed:

1. The NO2/ozone-system: NO3-radicals were generated from the reaction:

NO2 · + O3 −→ NO3 · (3.23)

The rate-constant for this reaction at T=298K is k3.23 = 3.2 · 10−17 cm3·
(molec·s)−1 [DeMore et al. 1997]. About 200 ppb of ozone were introduced

into the reactor together with the reactants (described above). Ozone was gen-

erated by passing a stream of pure oxygen through an ozone generator. This

device generates oxygen atoms from silent discharge that further re-combine

with molecular oxygen to produce ozone. The radical formation in the ex-

periments was started by adding about 200 ppb of NO2 into the gas-stream

connected to the chamber.

2. The N2O5-system: NO3-radicals were generated from the thermal decomposi-

tion of N2O5.

NO3 · + NO2 · ⇀↽ N2O5 (3.24)

The method is described in detail by Wängberg et al. [1997] and uses a sep-

arate reaction volume (pre-reactor) to form N2O5 from the titration reaction

of NO2 with ozone. The NO3-radicals formed from the above Reaction 3.23

in the pre-reactor primarily react with NO2 to form N2O5 which decomposes

back to reactants. At typical reactor temperatures, the thermal lifetime of

N2O5 is of the order of several ten seconds and almost instantaneously forms

NO3-radicals once the N2O5 is diluted in the reactor. The radical formation

in the experiments was started from connecting the gas-stream of N2O5 to the

reactor.

The main difference between the two employed NO3-radical-sources is the NO2-

concentration during the initial phase of the experiment. With the first method the

initial concentration of NO2 is comparably high (200 ppb) and decreases with the

reaction progresses. Using the second method almost no NO2 is present in the initial

phase of an experiment and the NO2 concentration increases with reaction-time due

to the continuously added N2O5.



3.5. EVALUATION PROCEDURES 39

3.5 Evaluation procedures

This Section first gives an overview about the rate-constants employed in the var-

ious evaluation procedures to derive the results of this study. The well established

relative-rate method (employed to derive the OH- and NO3 rate-constants) is briefly

described and the evaluation methods employed to derive the monoexponential loss-

rates, i.e. photolysis-frequencies, wall-deposition-rates and leakage. Finally, the var-

ious evaluation methods that were used to derive the product yields are presented.

3.5.1 The kinetic data used in the evaluation

In Table 3.2 the rate-constants of aromatic reactants, products and further inorganic

species are listed as they were used in the evaluations for this work. The data corre-

spond to the recommended values at T=298K (see also the notes in the Table). The

temperature dependent recommendations quoted in the notes were used to calculate

corresponding values at different temperatures. The accuracy of the rate-constants is

discussed where applicable in the respective Sections. Table 3.2 also includes selected

kinetic data that was determined within this work (see Section 4.2). Results have

been quoted here if either no kinetic data was up-to-now available in the literature

or the error limits of the presently recommended k-values were significantly reduced

within this work (see Section 5.2). The photolysis-frequencies of glyoxal (JGLY ) and

formaldehyde (JHCHO) are given as estimates here. Photolysis-frequencies in general

were scaled linearly, relative to the measured JNO2, before applied. The J-value for

GLY was calculated from the expression listed in the notes of Table 3.2. The J-value

for NO3-photolysis was calculated as JNO3=20.6 · JNO2. That for HCHO-photolysis

was calculated using the parametrization from Derwent et al. [1998] and was scaled

accordingly. The atmospheric lifetime τdaytime was calculated from the listed kinetic

parameters of Table 3.2 based on the assumptions described in the notes of the

Table.

3.5.2 Calibration experiments

The absorption cross-section of PHEN was determined as follows. After each injec-

tion the wall-deposition of the compound was characterized and the optical density of

PHEN at 275 nm was back-interpolated to derive the optical density at the injection

time (see also Section 3.5.4 and Section 4.2.1). The difference in optical density be-

fore and after each addition was added and compared with the pre-weighed amounts
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Table 3.2: Kinetic parameters and atmospheric lifetimes for selected compounds.

Compound kOH kNO3 kO3 Jphot.
a atmospheric lifetime

[10−12 cm3·(molec·s)−1] [10−6 s−1] τdaytime
b

Benzene 1.23 c <2.3 · 10−5 1 d 21 h

Toluene 6.0 d 1.8 · 10−5 9 h 15min

p-Xylene 14.3 1.4 · 10−4 3 h 53min

1,3,5-TMB 57.5 8 · 10−4 58min

BALD 12.9 2.6 · 10−3 8 x 3 h 50min

pTALD 21.2 x < 6 x 2 h 37min

3,5-DMBA 34.2 x < 6 x 1 h 37min

PHEN 26.3 e 3.8 1 h 58min

pCRE 47 11.2 x 1 h 4min

2,5-DMP 81.7 x 24.4 x 37min

2,4,6-TMP 131 x 25min

GLY 11.5 ≈ 2 · 10−3 g 79 h 2 h 2min

HCHO 9.2 f,k 2 · 10−3 26 i 3 h 51min

Ozone 0.068 k 1 · 10−5 l 26 i ≈ 4 d

NO2 8.9 k 1.27 k 3.2 · 10−5 k 7500 i 2min 12 sec

HONO 4.5 k < 5 · 10−7 k 1770 i 9min 18 sec

NO 7.5 k 26 k 0.018 k ≈ 1min

H2O2 1.7 k 6.3 i 18 h 46min

The rate-constants correspond to recommended values at T=298K [Atkinson 1994].
a photolysis-frequencies, scaled relative to JNO2=7.5 ·10−3 s−1 (see also other notes).
b based on: [OH]=5·106; [NO3] = 2.5·106; [O3] = 9.8·1011, units: molec·cm−3.
c k = 2.47·10−12· exp(-207/T) cm3·(molec·s)−1 [Atkinson 1994]
d k = 1.81·10−12· exp(+355/T) cm3·(molec·s)−1 [Atkinson 1994]
e k = 6.75·10−12· exp(+405/T) cm3·(molec·s)−1 [Atkinson 1994]
f k = 8.59·10−12· exp(+20 K/T) cm3·(molec·s)−1 [Atkinson et al. 1997]
g estimated value, based on: kNO3(HCHO).
h based on [Klotz et al. 2001]: JGLY ≈ 0.0105 ·JNO2; here: JNO2=7.5 ·10−3 s−1.
i based on [Derwent et al. 1998]; here: SZA=16 degrees, JNO2=7.5 ·10−3 s−1.
k reference: [DeMore et al. 1997]
l reference: [Hjorth et al. 1992]
x determined as part of this work. See Section 4.2.
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of PHEN following in the further the procedure described in [Etzkorn et al. 1999].

The absolute value of the absorption cross-section of GLY was determined from

cross-calibration with the FTIR. The IR absorption cross-section of [Moortgat 2000]

were used for calibration.

3.5.3 The relative-rate method

In the kinetic experiments to obtain the OH- and NO3-reaction rate-constants the

relative-rate method was employed which determines the ratio of the rate-constant

of a target compound (ktarget) relative to the known value of a reference compound

(kreference) [Atkinson 1986]. The principle of this method is described by:

ln

(
[TAR]t=0

[TAR]t

)
=

kTAR
kREF

· ln

(
[REF]t=0

[REF]t

)
(3.25)

where [TAR]t=0 and [REF]t=0 denote the concentration of the target and reference

compound at the start of the experiment, [TAR]t and [REF]t their concentration

at the time t. A graphical representation of ln([TAR]t=0/[TAR]t) as a function of

ln([REF]t=0 / [REF]t) hence should yield a straight line, with the slope correspond-

ing to the ratio between the rate-constant of the target compound kTAR and the

rate-constant of the reference compound kREF . In praxis most compounds are not

only lost by the reaction under investigation but show further loss through e.g. de-

position to the chamber walls, leakage or photolysis. Thus Equation 3.25 needs to

be extended:

ln

(
[TAR]t=0

[TAR]t

)
− RTAR · t =

kTAR
kREF

·
{
ln

(
[REF]t=0

[REF]t

)
− RREF · t

}
(3.26)

where t denotes the reaction-time and RTAR and RREF represent the sum of all

monoexponential loss-processes for the two compounds. The different R-values were

determined in separate experiments.

3.5.4 Monoexponential loss-processes

Three loss-processes were approximated monoexponentially in this work: (1) The

leakage of the reactor L, (2) the wall-deposition-rate W (see Section 4.2.1) and (3)

the photolysis-frequency J (see Section 4.2.4). Any monoexponential loss-process

can be characterized by a single parameter, the time constant L, W or J, which all
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are expressed in units of s−1. Any loss-rate R, that may be due to one or several of

the above processes was determined from:

R = ln

(
[Comp]t1
[Comp]t2

)
· t−1 (3.27)

where [Comp]t1 and [Comp]t2 correspond to the concentrations of the tracer at the

begin and end of the period for which the respective loss-process is studied. If

ln([Comp]t2/[Comp]t1) is plotted as a function of time, a straight line is expected for

truly monoexponential loss-processes and R corresponds to the slope of the plotted

data. To determine the system-leakage L [Comp] in Equation 3.27 corresponded to

the concentration of SF6. For wall-deposition and photolysis [Comp] corresponded

to the concentration of the respective chemical compound under investigation.

The monoexponential loss-processes (1) to (3) are additive. In most cases two or even

all three processes were operative. Individual loss-rates were determined by subtract-

ing the respective further processes. The W used to correct for wall-deposition in

most experiments were comparable to the mean-values listed in Table 4.1 of Sec-

tion 4.2.1. Photolysis-frequencies were derived as described in Section 3.5.1.

Further, any compound (e.g. PHEN) that is lost through bimolecular reaction with

a reaction partner (e.g. OH-radical) can be attributed a monoexponential loss-rate

ROH if the rate-constant, i.e. kOH,PHEN and the concentration of [OH] are known:

ROH = kOH,PHEN · [OH] (3.28)

This is a helpful concept to compare the relative importance of loss via bimolecular

reactions and monoexponential loss-processes. The reciprocal value of R, L, W or J

is generally identical to the lifetime of the compound for the respective loss-process

(in units of seconds).

3.5.5 Employed methods to derive product yields

The following five evaluation procedures (a, b1, b2, b3, c) were employed to determine

the product yields ΦProduct:

a) The steady-state assumption

The product yield ΦProduct was determined from the measured concentrations of the

product and educt when steady-state was reached in the course of an experiment

according to:
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ΦProduct =
(kOH,Product · [OH] + JProduct) · fc

kOH,Educt · [OH] · [Educt]
(3.29)

where kOH,Educt, kOH,Product represent the OH-rate-constant of the reactant and prod-

uct, JProduct denotes the photolysis-frequency of the product, values in squared

brackets are concentrations of the respective compounds. The concentration of

OH was determined from equation 3.36 in Section 3.5.6. The correction factor

fc=(1+W/(kOH,Product·[OH]) accounts for product loss to the wall (see Section 3.5.4

and Section 4.2.1).

In the case, the product does not photolyse, Equation 3.29 can be simplified:

ΦProduct =
kOH,Product · [Product] · fc

kOH,Educt · [Educt]
(3.30)

In this case the yield becomes essentially independent of the OH-concentration (only

fc depends on [OH]).

b) Direct kinetic analysis of product yields

Three different approaches were applied: approach b1) derived the product yield

within the first few minutes of an experiment with the advantage that loss-processes

of the product as well as effects of temperature changes were small in this phase.

Approach b2) determined the product yield over a time span that was considerable

longer and corrections for product loss through OH-reaction, wall-deposition were

applied as well as temperature changes considered. Approach b3) determines the

ratio of the yield of a target product (Φtarget) relative to the known yield of a

reference product (Φreference).

b1) Determination of ΦProduct from the product production-rate

The product yield ΦProduct from the measured production-rate of the product:

ΦProduct =
PProduct

kOH,Educt · [OH] · [Educt]
(3.31)

where PProduct denotes the average production-rate of the product over the first few

minutes of reaction-time (as measured by DOAS). The average OH-concentration

[OH] for this time-interval was determined from equation 3.36 in Section 3.5.6. The

average educt concentration [educt] was calculated from the initial educt concen-

tration subtracting the half amount of reacted educt as calculated from the average

OH-concentration.
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b2) Determination of ΦProduct from the educt-product time-series

The measured product concentrations determined experimentally were corrected

for losses through reaction with OH-radicals, photolysis and wall-deposition. The

total amount of product lost from the start time t0 of an experiment until the time t

(coincides with the central recording time of a DOAS spectrum) was then calculated

from:

[Product]loss =

∫ t

t=0

(kOH,Product · [OH]t + JProduct,t + W) · [Product]t · dt

(3.32)

where the OH-concentration [OH]t was calculated from equation 3.36. JProduct,t

was calculated as described in Section 3.5.1 and was set zero for products that do

not photolyse. The wall-deposition-rate W was determined in separate experiments

as described in Section 3.5.4 and Section 4.2.1. For the temperature dependent

studies, the k-values were determined from the mean temperature of the experiment

(see Table 3.2).

A correction factor F was calculated:

F = 1 +
[Product]loss
[Product]t

(3.33)

and applied:

[Product]corr = [Product]t · F (3.34)

to determine the concentration of formed product, corrected for secondary loss-

processes [Product]corr. The product yield was hence calculated from the slope of

the corrected product concentration plotted as a function of the amount of reacted

educt. Data points for which F> 2 were discarded in the evaluation throughout this

work.

b3) Relative yield method

The relative yield method is inspired from the well established relative rate method

described above.

The measured product concentrations determined experimentally were corrected for

losses through reaction with OH-radicals, photolysis and wall-deposition as described

above. The ratio of the yield of a target product (Φtarget) relative to the known yield

of a reference product (Φreference) was determined from:
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ΦTAR

ΦREF

=
PTAR

PREF

=
[TAR]corr
[REF]corr

(3.35)

From a plot of the corrected concentration of the target product as a function of the

corrected concentration of the reference product a straight line is expected if both

products are formed as primary products. Any secondary formation of the product

leads to deviations from the linear relation. The yield ratio was determined from the

slope of the data. The relative yield method was employed in this work to determine

the PGLY yield relative to a ring-retaining primary product that was formed from

the same educt (see Section 4.6). Nevertheless, this is not necessarily a limitation

and the two products may in principle also form from different educts.

c) Numerical simulation of educt-product time-profiles

Product yields were determined by a method similar to that used for toluene exper-

iments reported by Klotz et al. [1998]. Briefly, numerical simulations were carried

out in which the OH-concentrations were fitted to the observed degradation rate of

educt or an respectively added OH-tracer substance. The yields were fitted so that

the observed concentration-time-profile of the product was reproduced. The fits were

performed with the ChemSimul software package which was developed at the Dan-

ish Research Center at Risø. Additional loss-processes that were taken into account

were reaction of product with OH-radicals and monoexponential loss-processes.

3.5.6 Employed methods to trace the OH-concentration

Two different methods were employed to trace the OH-radical concentration.

Following the degradation of an OH-tracer substance

The relative loss of an OH-tracer substance (Trac) was used to calculate the con-

centration of OH-radicals from:

[OH](tn−tn−1) =
ln([Trac]tn−1/[Trac]tn) + (L + W) · (tn − tn−1)

kOH,Trac · (tn − tn−1)
(3.36)

where (tn-tn−1) denotes a time interval between two consecutive DOAS spectra

recorded at times tn and tn−1. The compounds ”Trac” used were: di-n-butylether,
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1,3,5-TMB and pCRE. In experiments with no OH-tracer was added, ”Trac” corre-

sponded to the educt. L denotes the system leakage and W the wall-deposition-rate

which corresponded to the mean W in most cases (see Section 4.2.1).

Alternatively, the OH-concentration was also derived from the numerical simulation

of the concentration-time-profiles of the reactant decay as described above.

Following the formation of a product

Benzene was added to trace extremely low levels of OH. Thereby it was exploited

that benzene effective forms phenol upon OH-attack (see Section 4.3). The phenol

formation was measured in the system and used to calculate the OH-radical con-

centration from:

[OH] =
δ[PHEN]/δt + (L +W)

kOH,BEN · ΦPHEN · [BEN] − kOH,PHEN · [PHEN] (3.37)

where δ[PHEN]/δt denotes the temporal variation of the phenol concentration (as

measured by DOAS), kOH,BEN and kOH,PHEN denote the OH-reaction rate-constants

of benzene and phenol (listed in Table 3.2), ΦPHEN is the phenol yield (see Sec-

tion 4.3), values in squared brackets correspond to concentrations in molec·cm−3.

L and W correspond to the PHEN loss-rate through leakage and wall-deposition

as defined above. It was assumed that only BEN formed PHEN in the system. If

there were other pathways forming PHEN, Equation 3.37 would give an upper-limit

for the OH-concentration. Under the conditions specified in Section 3.4.2 for the

experiment on the photolysis of aromatic aldehydes it was possible to trace the OH-

concentration down to levels of about 1 · 104molec·cm−3.

To the best of our knowledge it is the first time that the OH-concentration was traced

following the formation of a product (here PHEN) and not, like it is generally done,

the decay of an OH-tracer substance.



3.5. EVALUATION PROCEDURES 47

3.5.7 Employed methods to trace the NO3-concentration

Two different methods were employed to trace the NO3-radical concentration.

The steady-state approach

The NO3-concentration was calculated from Equation 3.38 assuming its concentra-

tion to be in steady-state between sources and known sinks. In the example of the

pXYL system this approach leads to the following expression:

[NO3]t =
kNO2,O3 · [NO2]t · [O3]t

JNO3,t + kNO3,NO · [NO]t + kNO3,DMP · [DMP]t
(3.38)

where k-values represent the respective reaction rate-constant, values in squared

brackets correspond to concentrations of the respective species at time t and JNO3

is the photolysis frequency of NO3 at time t (see Section 3.5.1). This method will

only yield an upper-limit estimate of the NO3-concentration.

Following the degradation of a NO3-tracer substance

The concentration-time-profile of 2,5-DMP was used to trace the average NO3-

concentration. The following equation was used:

[NO3] =
−δ[DMP]/δt + [OH] · (kOH,pXYL · ΦDMP · [pXYL]− kOH,DMP · [DMP])− (W + L)

kNO3,DMP · [DMP]
(3.39)

where δ[DMP]/δt denotes the temporal variation of the 2,5-DMP concentration (as

measured by DOAS), [OH] the OH-concentration (see above), k-values denote rate-

constants (pXYL: p-xylene), ΦDMP is the yield of 2,5-DMP from pXYL (see Sec-

tion 4.4.1), values in squared brackets correspond to concentrations of the respective

species, W and L denote the wall-deposition-rate and leakage of the 2,5-DMP. This

method was employed in combination with a chemical modell that described the

OH-chemistry and monoexponential loss-rates (see Figure 4.11 and Section 3.5.5).
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Chapter 4

Results

4.1 Calibration

The calibration of the DOAS measurements requires the knowledge of the absorption

cross-section of the measured species (see Section 3.2.1). In the further the results

obtained for the absorption cross-sections of phenol and glyoxal are presented.

4.1.1 Phenol absorption cross-section

The σ of phenol in the UV spectral range was re-determined in the course of this

study at a spectral resolution of 0.2 nm (FWHM, determined at 253.65 nm). The

error of the cross section of phenol hereby was dominated by uncertainties of the

exact volume of the reactor, which is known with an accuracy of approximately 3%.

The value of σ from the absorption band at 275 nm was σ275nm=(1.97± 0.08) · 10−17

cm2 (see Table 5.1). Application of a 1000-times triangular high-pass filter, reduced

the differential absorption cross-section at 275 nm to 0.83 times of its un-filtered

value (σ’275nm=1.64 · 10−17 cm2).

4.1.2 Glyoxal absorption cross-section

The σ of glyoxal in the UV-vis spectral range between 431 nm and 461.6 nm is

shown in Figure 4.1 for a spectral resolution of 0.17 nm (FWHM, determined at

435.84 nm). Calibration was performed from the simultaneously recorded FTIR

spectra using the cross-sections from [Moortgat 2000]. The value of σ’ from the

absorption band at 455 nm was determined σ455nm=(5.5± 1.1) · 10−19 cm2 (see also

Table 5.2). The absorption cross-sections was observed to decrease (about 6%) if at

49
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Figure 4.1: Absorption cross-section spectrum of glyoxal recorded at a spectral

resolution of 0.17 nm (FWHM at 435.84 nm).

a given spectral resolution the observed column density of glyoxal was increased. The

cross-section spectrum shown in Figure 4.1 was recorded observing a glyoxal-column-

density C ·L≈ 4.5 · 1017 molec·cm2 and corresponded to the maximum observed

absorption cross-section.
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4.2 Kinetic studies

The determination of the OH- and NO3-rate-constant requires the knowledge of the

deposition-rate of polar compounds in order to accurately correct for the influence of

the chamber walls. It is further of fundamental interest to what extend the chamber

walls represent a sink for polar products that form from a chemical reaction.

4.2.1 The influence of the chamber-walls

In Table 4.1 the experimentally determined W-values are listed. For each com-

pound the observed maximum and minimum W is given together with a mean W

determined for all values. W varied by more then two orders of magnitude for the

investigated compounds and was found maximal for the 2,4,6-TMP. Systematic vari-

ations with the degree of alkyl-substitution were visible for the mean W-values in

Table 4.1 for the different classes of aromatic compounds, i.e. the alkylbenzenes,

the aldehydes and the phenols. The minimum W was observed for glyoxal. Two

compounds, i.e. pTALD and phenol were investigated in more detail and the results

for the pTALD are shown in Figure 4.2. As can be seen the variability of W is con-

siderable. At a given time (e.g. 2 hours) the individual W-values scatter by up to a

factor of 3. This factor was assumed as the maximum uncertainty of the W-value

in different experiments. The scatter among the W-values indicate the influence of

other parameters (e.g. temperature, the chemical composition of the walls surface)

that were not further considered here (see Section 5.2.2). Nevertheless, the decrease

of W with time is clearly visible. This effect was observed in all experiments and can

be explained from the progressive saturation of the chamber walls with pTALD. The

maximum W decreased to about one fourth of its initial value after about 3 hours.

Moreover, the decrease was observed most prominent in the initial phase of an ex-

periment. Similar results were observed for the phenol. This variation was used to

estimate the desorption-rate for pTALD in the dark using the following approach:

W(t) = − Radsorption + Rdesorption · [pTALD]deposit(t)

[pTALD]gas−phase(t)
(4.1)

where W(t) corresponds to the wall-loss-value observed after the time t relative

to the injection into the reactor, Radsorption is the adsorption-rate (which here was

identified with the initial wall-loss-rate), Rdesorption corresponds to the desorption-

rate, [pTALD]gas−phase (t) corresponds to the concentration of pTALD in the gas-

phase at time t and [pTALD]deposit(t) is the calculated amount of pTALD deposited

on the chamber walls at time t. Using the numbers from Figure 4.2 for t= 2
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Figure 4.2: The deposition-rate of pTALD to the chamber walls as a function of the

time after the injection of pTALD into the chamber. The data was corrected for

leakage.

hours (W(t)= 8·10−6 s−1, Radsorption=2.2·10−6 s−1, [pTALD]gas−phase(t)= 50 ppb,

[pTALD]deposition(t)= 4 ppb) a value of the deposition-rate of Rdesorption≈ 2 · 10−4

s−1 was derived. This value corresponds to a lifetime of pTALD on the dark walls

with respect to desorption back into the gas-phase of 1 hour 30minutes.

The value of Radsorption nevertheless may still have been underestimated here. From

Figure 4.2 it is in fact expected higher and correspondingly the deposition-rate W

may be higher. The ratio of the maximum (observable) W and mean W was found

3.4 for pTALD and phenol (see Table 4.1). The similaritiy of this value for both

compounds reflects the fact that the mean W for both, and i.e. also all the other

compounds, was determined - on average - after the same time. This factor in a first

approximation is representative for all compounds and was applied to estimate the

initial wall-deposition-rate also for the other products (mean W multiplied by 3.4)
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Table 4.1: Wall deposition-rates W of reactants and products.

Compound Wall deposition-rates [10−6 s−1] walls as a sink

Wmax
a Wmin

b Wmean
c Winitial

d τinitial
e [%] f

Benzene < 0.3 < 0.3 < 0.3

Toluene 1.4 0.3 1.0± 0.7

p-Xylene 2.3 0.5 1.5± 0.7

1,3,5-TMB 5.6 2.1 3.1± 2.6

BALD 4.3 1.4 2.6± 1.4 9 1 d 7 h 14

pTALD 22 2.9 6.9± 2.2 24 11 h 30min 23

3,5-DMBA 17.2 9.7 13.1± 3.4 45 6 h 10min 27

Phenol 26 4.4 7.2± 3.8 26 10 h 40min 20

p-Cresol 20 10.8 15.3± 4.6 52 5 h 20min 22

2,5-DMP 21.4 16.6 19.0± 3.4 65 4 h 15min 16

2,4,6-TMP 55 19.2 28.4± 11.6 97 2 h 50min 15

Glyoxal 0.6 0.2 0.4± 0.2 1.4 8 d 6 h < 2

a loss-rate R corrected for leakage L; observed maximum value.
b observed minimum value.
c average value from various experiments.
d initial wall-loss-rate, estimated value (see text).
e lifetime with respect to initial wall-loss, calculated as W−1

initial.
f Wmax divided by ROH ([OH]=5·106 molec·cm−3, see Equation 3.28).

and is listed in Table 4.1. In a further approximation, the loss to the chamber walls

was assumed independent of whether the compound was manually injected into the

reactor or formed as a product from a chemical transformation. The importance of

the walls as a sink in the product studies was estimated from dividing the initial W

by the product loss-rate through e.g. OH-reaction (kOH · [OH], kOH from Table 3.2).

It turned out that between 15% and 25% of the product loss occurred on the cham-

ber walls. With the exception of glyoxal, this number was found to be about equal

for all the investigated products.
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4.2.2 Reaction rate-constants towards the OH-radical

The relative-rate technique, see Section 3.5.3 was used to determine the OH-reaction

rate-constants of the compounds listed in Table 4.2. The investigated target com-

pounds were pTALD, 3,5-DMBA as well as 2,4,6-TMP. For these compounds no

values of kOH so-far were available in the literature. In addition, it was decided to

determine the rate-constants of BALD, phenol and 2,5-DMP, since for these com-

pounds literature values are available and hence allowed to confirm the employed

evaluation method. The most intensively studied compound was pTALD for which

kOH was determined in a total of 14 experiments relative to four different refer-

ence compounds, i.e. toluene, m-xylene, 1,3,5-TMB and phenol. Table 4.2 gives an

overview about the investigated pairs of target and reference compounds. Several

experiments (two to five) were carried out relative to each of these reference com-

pounds. The results are also included in Table 4.2. The listed rate-constant ratios

correspond to the average ratios with the error indicating the 2-sigma variability

among the different experiments. The individual experiments agreed within their

uncertainties. Figure 4.3 shows the experimental data of an experiment where the

rate-constants of pTALD and 3,5-DMBA were determined relative to the reference

compound m-xylene. The data has been corrected for compound loss through leak-

age, wall-deposition and for BALD also photolysis (see Section 3.5.4). For reasons of

simplicity, the experimental error bars were only shown for a single data point (for

each compound). The excellent correlation observed for both pairs of compounds

was representative also for the other experiments. The slopes of the plotted data

correspond to the rate-constant ratios as described by Equation 3.5.3. These were

found reproducible as is reflected in the small variations of the mean rate-constant

ratios listed in Table 4.2 (mostly 3% to 7%, exceptionally > 10%).

The rate-constants used to place kOH of the target compounds on an absolute

basis are included in Table 4.2 (bottom line) and were obtained combining the recom-

mended values [Atkinson 1994] with recent kinetic data [Kramp and Paulson 1998],

[Semadeni et al. 1995] and the results of this work. For 1,3,5-TMB the kOH value

from Kramp and Paulson [1998] was used which agrees well with the presently rec-

ommended value [Atkinson 1994] but is reduced in error ( 9%). For toluene and

m-xylene the recommended values from Atkinson [1994] were preferred. Though

the k-values of Kramp and Paulson [1998] agree within the uncertainties, their use

would have resulted into systematic discrepancies for the rate-constants of pTALD,

3,5-DMBA and 2,4,6-TMP. However, comparing the minimum value that falls within

the experimental error of Kramp and Paulson [1998] to the recommended value
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Figure 4.3: Plot of Equation 3.26 for an experiment where m-xylene was used as

a reference compound to determine the rate-constants of OH-radicals with pTALD

and 3,5-DMBA.

[Atkinson 1994] this data was used to reduce the error of the toluene and m-xylene

rate-constants (both ≈ 17%). Similarly the experimental error of the phenol value

[Atkinson 1994] was reduced to 6% using the data by Semadeni et al. [1995]. Ex-

cellent agreement was observed for the target compounds if placed on an absolute

basis using this data set of reference rate-constants.
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Table 4.3: The NO3-rate-constant determined in this work.

Target compound ktarget/kPHEN
a kNO3

b

[10−12 cm3·(molec·s)−1]

pCRE 2.97± 0.17 11.2± 1.3

2,5-DMP 6.45± 0.64 24.4± 3.4

PHEN 3.78± 0.39 c

a mean values of various experiments.
b placed on an absolute basis using kNO3,PHEN

c; error: 2-σ overall error.
c value: [Atkinson 1994]; reduced error (see text).

4.2.3 Reaction rate-constants towards the NO3-radical

The relative-rate technique, see Section 3.5.3 was used to determine the kNO3 values

of p-cresol and 2,5-DMP relative to the reference compound phenol. The target

compound of principal interest was 2,5-DMP where no value of kNO3 was so-far

available in the literature. It was decided to further determine the rate-constant of

p-cresol, since for this compound several literature values are available and hence

allowed to confirm the employed evaluation method. The results are listed in Ta-

ble 4.3. The listed rate-constant-ratios correspond to the average ratios with the

error indicating the 2-sigma variability among the different experiments. Figure 4.4

shows experimental data for the loss of p-cresol and 2,5-DMP as compared to that

of phenol. The data has been corrected for compound loss through leakage and

wall-deposition (see Section 3.5.4). For reasons of simplicity, the experimental error

bars were only shown for a single data point (for each compound). The excellent

correlation observed for both pairs of compounds was representative for the other

experiments.

Though the differences among individual experiments were slightly larger than in

the case of the OH-kinetic experiments the rate-constant ratios were still in satis-

factorily agreement and varied by less than 10%.

The rate-constant of phenol used to place kNO3 on an absolute basis is included in

Table 4.3 (bottom line). It corresponded to the recommended value [Atkinson 1994].

Nevertheless, the error was reduced using the data from [Atkinson et al. 1992] and

this work. From the well agreement of the p-cresol rate-constant with litera-

ture values (see Section 5.2.1, Table 5.3) and the comparably small error among

the available literature values for p-cresol [Carter et al. 1981; Atkinson et al. 1984;
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Figure 4.4: Plot of Equation 3.26 for two experiments. In both experiments phenol

was used as an reference compound to determine the NO3-rate-constants of p-cresol

and 2,5-DMP.

Atkinson et al. 1992] (see section 5.2.1, Table 5.3) the value of the phenol rate-

constant was assumed to be more accurate than the 35% uncertainty specified by

Atkinson [1994]. The uncertainty was hence calculated from comparing the max-

imun value that falls within the error limits of Atkinson et al. [1992] with the rec-

ommended value [Atkinson 1994]. The error of the reference rate-constant of phenol

was hence estimated 10% (see Table 4.3).

The rate-constant ratio of p-cresol and phenol was found independent from the

NO2 concentration. Among the two employed sources for the NO3-radical (see Sec-

tion 3.4.5) the initial NO2 concentration varied by about an order of magnitude.

Despite this variability, only insignificant scatter was observed in the ratio of the

rate-constants of phenol and p-cresol (< 6%).
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Table 4.4: The photolysis-frequencies determined in this work.

Compound Jphot.
a

[10−6 s−1]

BALD 8± 6

oTALD 200± 10

mTALD 11± 8

pTALD < 6

3,5-DMBA < 6

a experimental conditions: JNO2≈ 7.5 ·10−3 s−1; SZA=50◦.

4.2.4 Photolysis of aromatic aldehydes

The photolysis of BALD, o-, m-, pTALD and 3,5-DMBA was studied in one exper-

iment with the aim to characterize the importance of the photolytic sink of these

compounds in the OH-kinetic experiments. The measured photolysis-frequencies are

listed in Table 4.4. The given data was corrected for loss of the compounds through

leakage, deposition to the chamber walls and OH-reaction (see Section 3.5.4). The

OH-concentration was determined [OH]≤ 5 · 104molec·cm−3 (see Section 3.5.6) and

corrections due to OH-loss in general were small. For the fastest aldehyde, i.e.

3,5-DMBA (see Table 4.2) the above OH-concentration corresponds to an OH-loss-

rate ROH ≤ 1.7 ·10−6 s−1. ROH was lower for the other compounds indicating that

the OH-radicals had been effectively suppressed. For pTALD and 3,5-DMBA no

photolytic-loss was observed and the photolysis-frequencies listed in Table 4.4 are

upper-limit values that were estimated from the experimental error of the measure-

ments. For BALD, o- and mTALD however, significant photolytic-loss was observed.

The highest value was observed for the oTALD which showed a distinctly different

behaviour than the other aromatic aldehydes. This is illustrated in Figure 4.5,

where the total-loss of o- and pTALD is shown (no corrections applied). Both com-

pounds were found to be lost at a comparable rate in the initial phase when the

chamber was closed (overall loss-rate R≈ 1.9 ·10−5 s−1 for both compounds) that can

be explained from leakage (here: L=1.1 ·10−5 s−1) and the mean deposition-rates

of pTALD listed in Table 4.1. The chamber was opened at 12:03 GMT (Green-

wich Mean Time≈ local time). In the presence of sunlight the oTALD was rapidly

lost while pTALD continued to be lost at essentially the same rate as in the ab-

sence of sunlight. The mean NO2-photolysis-frequency (JNO2) was determined
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Figure 4.5: Plot of the total-loss of o- and pTALD in the presence of cyclohexane

as a function of time. From 12:00 to 12:05 GMT the chamber housing was opened.

Solid lines indicate linear regressions to the data. The dashed line indicates the loss

of oTALD in the dark chamber, where both compounds were lost at comparable

rate.

JNO2≈ 7.5 ·10−3 s−1. The mean solar zenith angle (SZA) during the measurements

was SZA=50◦ which is a typical value around noon during winter (February).
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4.3 The phenol yield from benzene

A total of 26 experiments on the photooxidation of benzene were conducted. In

these experiments the initial benzene concentration was varied by two-to-three or-

ders of magnitude, while the initial NOx-concentrations were varied by three-to-four

orders of magnitude (see Table 4.5) by principally varying the initially added NO.

In addition, the parameters OH-source, temperature and oxygen concentration were

varied to obtain information on the phenol formation mechanism in the OH-initiated

oxidation of benzene. The results on benzene are exemplary for the other investi-

gated aromatic compounds. The numbers of reactions and intermediate compounds

in this paragraph refer to the numbers given in Figure 2.1.

The phenol yields determined for the individual experiments are listed in Ta-

ble 4.5. Also included are the results from seven experiments which were con-

ducted and evaluated by Dr. Björn Klotz at the indoor simulation-chamber at

NIES, Tsukuba/Japan (indicated NBE1-NB21 in the lower part of Table 4.5). In

order to assess the influence of the employed evaluation procedure together with each

yield two errors are specified (both referring to the 2-sigma confidence interval). The

first error denotes the error that refers to the evaluation procedure excluding the

systematic errors due to calibration and errors in the kinetic parameters, while the

second denotes the overall error of the absolute phenol yield.

In the following, the data of two example-experiments is presented. In Figure 4.6

the experimental data obtained during the first five minutes of experiment BE26 is

shown that was used to determine the phenol yield (see Table 4.5). The OH-profile

determined from Equation 3.36 (not shown) was used here to calculate the amount of

reacted benzene and to correct the measured phenol concentration for loss through

reaction with OH (F< 1.08). An average OH-concentration of 1.3 · 107 molec·cm−3

was traced from the decay of 1,3,5-TMB for this experiment. In Figure 4.6 phe-

nol was identified to form as a primary product. The yield determined from the

slope of the linear regression (included in Figure 4.6) corresponded to a phenol yield

of (50.3± 2.1)%. The error indicates the 2-sigma error from the evaluation (see

Section 4.3.6).

Figure 4.7 shows the results of the numerical simulation of experiment BE15, an

experiment without added OH tracer. In this experiment, some formaldehyde was

added to the reaction mixture in order to enhance the reactivity of the system. The

high radical concentrations in this experiment lead to a high turnover of benzene,

and despite the fact that a large proportion of the phenol reacted with OH-radicals
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Table 4.5: Experimental conditions and results for the experiments on benzene.

Name Benzene NOx Phenol Yield, Error of Overall Experi- Evaluation
Φphenol evaluation Error mental method β

[1012 cm−3] [ppb] [%] only [%] [%] type α

BEN1 58.3 95 47.7 5.4 6.8 (1) (c)
BEN2 28.9 105 49.4 7.8 9.8 (1) (c)
BEN3 29.3 150 44.1 9.0 11.3 (1) (c)
BEN4 29.2 105 48.3 5.7 7.1 (1) (c)
BEN5 1 57.3 195 47.3 3.1 5.1 (1) (c)
BEN6 1 28.0 245 51.4 2.5 4.2 (1) (c)
BEN7 28.3 210 46.9 4.6 5.8 (1) (c)
BEN8 1 28.5 51 49.2 2.4 4.0 (1) (c)
BEN9 1 11.8 100 54.6 3.3 5.5 (1) (c)
BEN10 24.1 53 55.3 6.2 7.7 (1) (c)
BEN11 1.5 50 56.1 6.0 7.4 (1) (a)
BEN12 9.9 (2)* 55.8 2.3 5.6 (2) (a)
BEN13 1.6 (6)* 58.4 6.1 7.4 (2) (a)
BEN14 1.4 (2)* 66.6 6.3 8.4 (4) (a)
BEN15 γ 23.6 21 54.5 5.8 7.2 (5) (c)
BEN16 84.2 200 47.8 3.8 4.7 (1) (c)
BEN17 113.0 260 43.5 3.4 4.2 (1) (c)
BEN16II γ 22.1 13 56.6 7.5 9.1 (5) (c)
BEN17II 13.5 135 54.5 3.2 4.5 (3) (a)
BEN18 26.8 120 50.5 8.0 9.0 (3) (b1)
BEN19 1.1 86 57.8 7.0 8.5 (3) (a)
BEN24 2 105.9 176 50.4 5.6 7.9 (3) (b1)
BEN26 2 48.9 113 50.3 2.1 5.8 (3) (b1)
BEN28 3 441.8 790 42.1 2.1 5.2 (3) (b1)
BEN28II 3 411.5 1705 26.6 3.0 4.4 (3) (b1)
BEN31 3,δ 378.2 240 53.5 4 7 (3) (b1)

NBE1 1 122.3 1072 33.5 5.4 5.9 (1) (b2)
NBE2 1 122.5 1084 34.6 2.9 3.9 (1) (b2)
NBE3 1 49.7 1940 25.0 4.9 5.0 (1) (b2)
NBE4 1 123.2 2009 25.8 2.1 2.8 (1) (b2)
NB19 1 185.7 213 42.7 4.3 5.1 (1) (b2)
NB20 1 183.3 106 44.8 5.1 5.6 (1) (b2)
NB21 1 185.8 314 43.1 6.4 7.1 (1) (b2)
∗ NOx-free at start of experiment.
1 di-n-butylether added as tracer for OH-radicals.
2 1,3,5-TMB added as tracer for OH-radicals.
3 p-cresol added as tracer for OH-radicals.
α the number refers to the OH-source used, see Section 3.4.4.
β see Section 3.5.5.
γ Experiments performed in collaboration with Forschungszentrum Juelich.
δ the mixing ratio of oxygen in this experiment was raised to 40%.
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Figure 4.6: Plot of the phenol concentration, corrected for OH-reaction as a function
of the amount of reacted benzene as determined during the initial phase (roughly
5minutes) of experiment BE26.

(see the dotted line in Figure 4.7), the calculated concentration-time-profile of phe-

nol closely matched the measured one. The thin line included in Figure 4.7 shows an

experimentally determined concentration-time profile of OH-radicals. This profile

was measured with an LIF (laser induced fluorescence) system, which had been in-

stalled in the chamber just prior to this experiment [Becker et al. 1999]. The device

was undergoing first tests during this experiment, and though the calculated OH-

concentration-time-profile showed an almost 20% higher maximum concentration

than the measurement, the agreement was generally satisfactorily. The performance

of the methods employed to calculate the OH-radical concentrations from the hydro-

carbon decays was hence confirmed by these direct OH- measurements, though only

in a single experiment. Despite the large correction factors of phenol (up to F=2)

the phenol yield agreed well with the average yield from this work. The correction

of phenol-loss through OH-reactions are therefore believed to be accurate.
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Figure 4.7: Result of the numerical simulation of experiment BE15. The following
data is shown: (dots) benzene; (solid line) calculated benzene decay, left axis; (thin
jagged line) OH-concentration as measured by the OH-LIF instrument; (dashed-
dot-dotted line) calculated OH-concentration; (dotted line) loss of phenol, both
right scale, divided by 106); (diamonds) phenol; (dashed line) calculated phenol.

4.3.1 Dependence on the NOx-concentration

In Figure 2.1 the initial reaction steps of the oxidation of benzene are shown. Given

these loss-processes from the equilibrium of intermediates 2/3 the phenol yield

Φphenol is described by Equation 4.2:

Φphenol =
kphenol

kphenol + k8 + k9 /Keq + k10 · [NO2] / (Keq · [O2]) + k12 · [NO]
(4.2)

Hereby, the following simplifications were made:

� the effective sum of the pathways that form phenol was defined as

kphenol=k3 /Keq +k4.

� the dissociation reaction (-1) of 2 was not considered since it accounts for

less then one percent of the total loss-rate from the equilibrium 2/3 under

atmospheric conditions [Knispel et al. 1990; Bohn and Zetzsch 1999].
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� the rate-constant for channel (5) was set to zero based on the results of

Bohn and Zetzsch [1999] who estimated an upper-limit of 5% for this pathway.

� the rate-constant for channel (6) was assumed to be zero.

� channel (11) was assumed to be essentially negligible for NO concentrations

up to > 10 ppm [Zetzsch 1997] and hence was not considered here.

The following rate coefficients were used that are valid for a temperature

of T=298K and atmospheric oxygen concentrations: Keq =(2.7± 0.4) · 10−19

cm3 [Bohn and Zetzsch 1999], ktot=(k3+k9) /Keq +k4+k8 = (760± 80) s−1

[Bohn and Zetzsch 1999], k10=(2.75± 0.2) ·10−11 cm3·s−1 [Knispel et al. 1990],

k12=(1.1± 0.4) ·10−11 cm3·s−1 [Bohn and Zetzsch 1999]. The phenol yield was used

to calculate kphenol.

In Figure 4.8 the experimental data of the phenol yield as determined in the individ-

ual experiments of this study is shown. The errors of the phenol yield correspond to

the specific error sources of the evaluation method only. The error bars with respect

to NOx-values in the Figure 4.8 correspond to the variability of the respective NOx

species over the time span of evaluation. In the upper part indicated (a) the phenol

yield as a function of the NO mixing ratio and (b) the NO2 mixing ratio is given.

The solid line indicates the theoretical phenol yield as calculated from Equation 4.2

assuming only influence from the NOx species plotted on the x-axis of Figure 4.8a

and 4.8b, respectively. The dotted lines indicate respective uncertainties in the

rate-constants k10 and k12. As can be seen this approach allowed to reproduce the

experimental data for the low NOx-concentrations (several 10 ppb). The differences

of the experimental and theoretical data nevertheless become significant with in-

creasing concentrations of NOx (> 100 ppb) where the influence of reactions (10)

and (12) becomes competitive. It is also apparent that NO2 influences the phenol

yield already at a lower concentration as compared to NO reflecting the fact that

k10 is about 2.5 times higher than k12.

In Figure 4.8c and 4.8d, the influence of NO2 and NO have been corrected, re-

spectively. The NO and NO2 values used in the corrections were taken from the

experimental data averaged for the time period when the phenol yield was deter-

mined. Correction factors were calculated as the ratio of Equation 4.2 assuming

k10=0 divided by Equation 4.2 assuming k10 
=0 to correct for the NO2 influence

in Figure 4.8c. These factors for most experiments were smaller then 1.035 with a
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Figure 4.8: The phenol yield as a function of the mixing ratio of (a) NO and (b)
NO2 was well as (c) NO, corrected for NO2-influence and (d) NO2, corrected for NO
influence. Different symbols represent the different evaluation methods (a) to (c) (see
text). Further: (solid line) phenol yield calculated from Equation 4.2; (dashed line)
uncertainties in the calculated yields due to the error of k10 and k12 in Equation 4.2.
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maximum of 1.34. Accordingly, in Figure 4.8d the corrections for NO were calcu-

lated assuming k12=0 and k12 
=0. Here, the factors ranged between 1.0 and 1.22.

The represented phenol yields in Figure 4.8c and 4.8d correspond to the phenol

yields in Figure 4.8a and 4.8b multiplied with the respective factors.

When Figure 4.8c and 4.8d are compared to Figure 4.8a and 4.8b it is evident

that the corrections significantly improve the agreement with the calculated yields

from Equation 4.2. As can be seen, Equation 4.2 equally well describes the de-

pendence of the phenol yield with respect to NO and NO2 for the high NOx-range

(> 100 ppb). Within the uncertainties excluding systematic errors all data points are

in good agreement with the calculated phenol yields indicating that the mechanism

described by Equation 4.2 is suitable to represent the observed dependence of the

phenol yield on the NOx-concentration.

4.3.2 The average phenol yield

The parameter kphenol in Equation 4.2 was determined as follows. All the exper-

iments with added OH-tracer (see Table 4.5) were considered. In addition, BE15

and BE16II were considered due to the enhanced benzene turn-over and the corre-

spondingly reduced error of these experiments. Further the experiments evaluated

from method (a) (see Section 3.5.5) were considered since these phenol yields were

essentially uninfluenced from uncertainties in the OH concentration. Experiment

BE14 was not considered due to the systematically higher phenol yield that was ob-

served using radical-source (4) (see also Section 5.4.3). The yields of the individual

experiments were corrected for NOx influence using the correction factors described

above. Experiments with overall correction factors > 1.4 were neglected to avoid

the overall error to be dominated from the uncertainties in k10 and k12 and to avoid

that the high NOx-concentration influenced the decay of the OH-tracer.

Independent of the evaluation procedure (see also Section 4.3.6) the yields were

found to coincide within the specific evaluation error. The average phenol yield of

this work was found to be (53.0± 6.6)%. The error hereby represents the overall

2-sigma confidence interval.

Based on the value for the total loss from the equilibrium 2/3, i.e. ktot=(760± 80)

s−1 [Bohn and Zetzsch 1999] the average phenol yield corresponds to a value of

kphenol= (403± 66) s−1 in Equation 4.2. Consequently, the value of the effec-

tive sum of loss-rates through channels (8) and (9), i.e. kotherproducts=(ktot -

kphenol)= (k9/Keq +k8) is estimated kotherproducts=(357± 59) s−1.
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4.3.3 Dependence on the oxygen concentration

The mixing ratio of oxygen was raised in a single experiment to about 40% (BE31,

Table 4.5). No effect of the phenol yield was observed; the yield of (53.5± 4)%

agreed well with the average yield determined in air.

This result further confirmed Equation 4.2 under low NOx conditions where the reac-

tions (10) and (12) (Figure 2.1) were found to be unimportant and the intermediates

2/3 exclusively reacted with oxygen.

4.3.4 Dependence on the temperature

The phenol yields used to determine the average phenol yield are plotted as a func-

tion of temperature in Figure 4.9a. The solid line denotes the error weighted linear

regression to the data points. For relative comparison, the plotted error bars cor-

respond to the 2-sigma confidence interval neglecting systematic error sources. The

annual cycle of the ambient temperature of EUPHORE is reflected in the tempera-

ture scale that covers about 20K. An upper-limit of about 307K (34◦C) corresponds

to a hot day during summer while the lower-limit of about 287K (14◦C) reflects typ-

ical achievable temperatures in EUPHORE during winter. The slope of Φphenol(T)

is determined (0.026± 0.1)%·K−1 (Figure 4.9a). Though positive it is essentially

zero within the experimental error.

Attempts were made to use the enthalpy data from Lay et al. [1996] to estimate

whether channel (3) or channel (4) lead to the formation of phenol. The enthalpy

and entropy data of Lay et al. [1996] is in reasonable agreement with the measured

Keq value of Bohn and Zetzsch [1999]. From this data, Keq is expected to change by

a factor of five over a 20K temperature range around room temperature. Further,

Lay et al. [1996] gave detailed enthalpy data for the rate-constants k3, k4, k8 and

k9 that essentially determine the phenol yield here. Even though, the calculated

absolute values for these rate-constants may be wrong [Bohn and Zetzsch 1999] the

enthalpy data is promising to describe the variations of the rate-constants with

temperature adequately. The values of k3, k4, k8 and k9 from Lay et al. [1996]

were scaled linearly (by ≈ 24 for k3 and k4; by ≈ 7 for k8 and k9) to match the

absolute value of kphenol and kotherproducts using Keq from Bohn and Zetzsch [1999]

at T=296K. Equation 4.2 was then used to calculate the temperature dependent

phenol yield. In Figure 4.9b the relative change of the phenol yield is shown for

two scenarios. First, k3 was set to zero (dotted line) and second, k4 was set to

zero (dashed line). In addition, the relative change of the phenol yield from the
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Figure 4.9: The phenol yield as a function of temperature for experiments with
OH-tracer. In the upper part the data points are labeled with the name of the
respective experiment. In the lower part, the relative change of the phenol yield is
estimated from the enthalpy data by Lay et al. (1996) and are compared to the
observed variation (see text).

regression to the experimental data is included (solid line). The three lines have

been normalized to T=298K in this representation.

As can be seen in Figure 4.9b, the two phenol forming channels (3) and (4) exhibit a

distinctly different temperature dependence. In the case of only channel (3) forming

phenol the yield is expected to increase with temperature though only slightly with

a assumed linear relative change of +0.23%·K−1. On the contrary, if only channel

(4) forms the phenol a pronounced decrease of the phenol yield is expected at a rate

of -0.63%·K−1. This characteristic behaviour allowed to distinguish both channels

already within the small temperature interval covered by the data points. From the

slope of the linear regression to the data points a relative change of 0.05± 0.2%·K−1

is obtained which is consistent with channel (3) contributing about (80± 25)% of

the phenol and channel (4) contributing about (20± 25)% . Despite the large errors

this result points to the major fraction, if not all the phenol is formed through

channel (3) meanwhile it is not conclusive with only channel (4) forming the phenol.
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4.3.5 The formation mechanism of phenol

Attempts were made to distinguish the relative contributions of pathways (3) to (5)

in Figure 2.1 that result in the direct formation of phenol (primary phenol) from

pathway (6) which forms phenol via the stable, i.e. a ”long-lived” intermediate com-

pound benzeneoxide-oxepin [Klotz et al. 1997] (secondary phenol).

The photolysis of benzeneoxide-oxepin, reaction (7) in Figure 2.1 forms phe-

nol at a yield of (43.2± 4.5)% [Klotz et al. 1997]. Additionally, the reaction

with OH-radicals is fast at a rate-constant of kOH(benzeneoxide-oxepin)= 1 · 10−10

cm3·(molec·s)−1 [Klotz et al. 1997]. Assuming an OH-radical concentration of 3 · 106
cm−3 and an NO2-photolysis-frequency of JNO2=8.5 · 10−3 s−1 (typical for the ex-

periments conducted here) loss of the benzeneoxide/oxepin due to photolysis and

OH-reaction is about equal. Assuming a unity yield for the formation of benzeneox-

ide/oxepin the sequence (6/7) in Figure 2.1 could form no more than 40 - 50% of

the observed phenol.

The overall loss-rate of benzeneoxide/oxepin in this example was about 6.8 · 10−4

s−1 which corresponds to a lifetime of roughly 25minutes. Hence, any formation

of secondary phenol via pathway (6/7) should become operative with considerable

delay and should influence the formation kinetics of phenol during the first few min-

utes of reaction-time to a very minor extend. Nevertheless, the primary phenol yield

determined for experiment BE26 in Figure 4.6, see Table 4.5, compared well to the

yield as it was calculated from Equation 4.2 of (52.1± 0.4)% for the correspond-

ing NO and NO2 concentrations of BE26. Since Equation 4.2 fitted equally well

the phenol yields determined after several hours of reaction-time (e.g. experiment

BE12, Figure 4.8) there was no indication that pathway (6/7) contributed to the

observed phenol.

Further, the numerical simulations conducted in this study adequately reproduced

the concentration-time-profile of phenol by a mechanism involving channel (3) only,

as is evident from Figure 4.7. This study therefore provided no evidence for chan-

nel (6/7) to be operative in the OH initiated oxidation of benzene. The combined

experimental errors from the relative comparison of two phenol yields, i.e. at the

very start (BE26) and after several hours of reaction-time (BE12) was 3.1%. Under

the conditions of experiments BE12 and BE26 about 26% and 34% of benzeneox-

ide/oxepin were expected to photolyse, respectively. Hence, an upper-limit for the

formation of benzeneoxide/oxepin of about 24% was estimated on the basis of the

uncertainty of the phenol yields.
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4.3.6 Error considerations

In Table 4.6 the error sources of Φphenol are listed. They were grouped in systematic

and specific error sources. In the column denoted ”method” the evaluation method

is indicated where the respective error applied (see Section 3.5.5).

Systematic error sources of Φphenol were the uncertainties in the absorption cross-

sections σ and the OH-reaction rate-constants of phenol, benzene and the OH-tracer

substances. The σ of benzene and phenol are known with an error of 3.9% and 2.6%

[Etzkorn et al. 1999]. Also, the benzene and phenol concentrations measured just

after addition into the chamber were consistent with the concentrations calculated

from the added amounts and the volume of the chamber and hence further support

the agreement between literature values [Trost 1997; Etzkorn et al. 1999]. See Sec-

tion 5.1.1 for a detailed discussion for the phenol. The values of the OH-reaction

rate-constants are comparably well known with a remaining uncertainty of about 4%

for the OH-reaction of benzene and < 6% for that of phenol [Semadeni et al. 1995;

Atkinson 1994] (and references therein). The OH-reaction rate-constants for the

tracer substances are known with an accuracy of about 3%, 9% and 11% for the

di-nbutyl ether [Wallington et al. 1988; Wallington et al. 1989; Nelson et al. 1990;

Semadeni and Kerr 1993; Mellouki et al. 1995; Kramp and Paulson 1998], 1,3,5-

TMB [Kramp and Paulson 1998; Atkinson 1994] (see also Section 4.2.2) and p-

cresol [Semadeni et al. 1995; Atkinson 1994], respectively. The overall systematic

uncertainty of Φphenol for the different evaluation procedures is listed in Table 4.6

and ranged between 7.5% and 12%. Additional error sources were specific for

the employed methods of evaluation of Φphenol and included the evaluation er-

ror of the spectra (depending on the signal to noise ratio, typically few percent)

[Stutz and Platt 1996].

For method a the correction factor fc employed in Equation 3.29 ranged between

1.025± 0.014 to 1.08± 0.04 reflecting the minor but non negligible influence of the

walls for phenol. The uncertainty of fc adds a minor amount of < 4% to the overall

uncertainty of the phenol yield. Further, for the runs where ozone-photolysis was

used to generate OH-radicals, traces of NO2 were detected to build up that may form

NO3-radicals from reaction with ozone. Under the experimental conditions (ozone:

80 ppb, NO2: 2 ppb) the NO3-concentration may have reached levels of about 0.1 ppt

corresponding to a phenol loss-rate of about 9·10−6 s−1. This loss-process may have

become comparable to the rate for phenol deposition to the chamber walls and was

included into the errors given in Table 4.5 (about 3%).
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Table 4.6: Error sources for the experiments on benzene.

Error source Error [%] Method ψ Reference / Remarks
Systematic error sources
Absorption cross-section of benzene 3.9 a, b1, b2, c see text
Absorption cross-section of phenol 2.6 a, b1, b2, c see text
kOH,benzene 4 a, b1, b2, c see text
kOH,phenol 6 a, b2 α, c α see text
kOH,di−n−butylether 3 b2, c see text
kOH,1,3,5−TMB 9 b1, b2 see text
kOH,p−cresol 11 b1 see text
Overall systematic error 8.6 a
Overall systematic error 10.9 - 12.6 b1
Overall systematic error 7.5 - 11.3 b2
Overall systematic error 7.5 c
Specific error sources
Evaluation of the DOAS spectra 1 - 10 a, b1, b2, c see text
Evaluation of the FTIR spectra 2.5 - 25 a, b1, b2, c see text
Conversion of benzene 1.5 b1 see Section 3.5.5
OH-concentration without OH-tracer 3.2 γ - 16 δ c see Section 3.5.6
Correction of OH-tracer leakage

di-n-butylether 0.2 γ - 0.7 δ b2, c see Section 3.5.6
1,3,5-TMB < 0.1 γ - 0.3 δ b1 see Section 3.5.6
p-cresol 0.1 γ - 0.4 δ b1 see Section 3.5.6

Correction of OH-tracer deposition to the wall
1,3,5-TMB 0.1 γ b1 see Section 3.5.6
p-cresol 1.5 γ b1 see Section 3.5.6

Temperature dependence kOH,benzene 1.6 b2, c ε see Table 3.2
Deposition of phenol to the chamber walls

Correction factor β fc 2.5 a see Section 3.5.5
Correction for wall losses α 2.5 b2
Unaccounted wall loss α,δ 5 c see Section 5.2.2

phenol loss through reaction with NO3-radicals 3 a only (2) π, see text
Temperature dependence of kOH,phenol 2.7 b2, c ε see Table 3.2
Temperature dependence of kOH,tracer

di-n-butylether < 2 b2, c ε see text
1,3,5-TMB < 2 b1 φ see text
p-cresol < 2 b1 φ see text

Overall specific error 4.1 - 14.7 a
Overall specific error 2.5 - 3.1 b1
Overall specific error 4.5 b2
Overall specific error 5.8 - 16.6 c
α correction of phenol loss through OH-reaction. Here: F=1.5.
β fc applied in Equation 3.29. Here: fc = 1.05.
γ OH-source (3) π and (5) π: [OH]=1.3 · 107 cm−3, L= (5.5± 0.6) · 10−6 s−1.
δ OH-source (1) π: [OH]=3 · 106 cm−3, L= (5.5± 0.6) · 10−6 s−1.
ε typical temperature change. Here: T=298K, ∆T=6K.
φ typical temperature change. Here: T=298K, ∆T=2K.
π the number refers to the OH-source used, see Section 3.4.4.
ψ see Section 3.5.5.
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For methods b and c, the major uncertainties arised from the uncertainty of the

traced OH-concentration. As can be seen in Table 4.5, the error of the experiments

without OH-tracer was considerably higher due to an error of the leakage-correction

(up to 17%). For the experiments with OH-tracer substance this error was reduced

to < 2%. All tracer compounds exclusively reacted with OH-radicals. The wall

loss could be adequately corrected if necessary. The main error sources in method

b2 and c were the correction of phenol deposition to the walls (about 3%) and

the effect of temperature on the OH-reaction rate-constants of benzene and phe-

nol. Though the latter was taken into account based on the average temperature

of the respective experiment, temperature changes of about 6K resulted in a mi-

nor though non-negligible error of about 3%, respectively [Semadeni et al. 1995;

Bohn and Zetzsch 1999]. The overall error due to the specific uncertainties of the

employed evaluation methods are listed in Table 4.6. The overall uncertainty of the

phenol yields for experiments with OH-tracer, identified as the sum of the average

specific error (7.5%) and the average systematic error (10%), was about 12.5%.

In Figure 4.10 the phenol yields are plotted as a function of the evaluation method.

All yields but not those obtained at high NOx concentration (overall NOx correction

F> 1.4) were plotted. Note that the yields were plotted on an expanded y-axis. The

error of the plotted data corresponds to the 2-sigma uncertainty of the evaluation

method only (that is described in more detail in Section 4.3.6) neglecting system-

atic error-sources. In general, the individual experiments agreed even within the

thus reduced experimental error. However, the peak-to-peak scatter was consider-

able (26%). The horizontal bars in Figure 4.10 indicate average phenol yields that

were calculated for the experiments covered by the bars. For method (c) the data

was split in two groups. Group 1 consists of six experiments of which four were

carried out with an added OH-tracer substance. In two experiments a different OH-

source (see Table 4.5) was used to enhance the benzene turn-over. Group 2 of the

method-(c)-experiments used the decay of benzene to trace the OH-concentration.

Though the experiments of both groups agreed within the uncertainties of the in-

dividual experiments, the scatter among the Group-2-experiments was considerably

higher. This is in part due to the higher uncertainties in the OH-concentration with

these experiments. Moreover, the average yield of these experiments tended to be

systematically lower. These Group-2-experiments were hence not considered in the

evaluation of the average phenol yield. Further, the yields obtained at NIES tended

to be systematically lower than those measured at EUPHORE. The reason for this
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Figure 4.10: The phenol yields are plotted as a function of the evaluation method.
The error corresponds to 2-sigma uncertainty of the specific errors of each method
only (see text) and neglects systematic error sources. Despite the considerable vari-
ation among individual experiments the yields agree within their error limits. The
horizontal bars indicate average phenol yields calculated for the respectively covered
yields (see text).

discrepancy is not clear at present. The NIES experiments were considered in the

average phenol yield of this work.

Selected data from this Section has been presented on a Workshop

[Volkamer et al. 2000] and a publication is currently in preparation

[Volkamer et al. 2001].
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4.4 The ring-retaining yields from p-xylene

The yields of pTALD and 2,5-DMP were evaluated from 11 experiments on the

photooxidation of p-xylene. The obtained yields of both compounds as well as

the initial conditions of the individual experiments are summarized in Table 4.7

together with the employed OH-source and the evaluation procedure that was used

to derive the results. The 2,5-DMP yields are given in two columns. The raw-

yields of the first column were normalized to a temperature of T=298K and the

corrected yields of 2,5-DMP are given in a second column. The data from experiment

PXY7 (see Table 4.7) confirm the systematic deviations in the product yields already

observed for benzene (see also Table 4.5) for experiments using radical-source (4).

This data was not considered in the further discussion of this Section and is discussed

separately in Section 5.4.3. In the following, the results of an example-experiment

PX10 are presented. In the upper part of Figure 4.11 (designated a)), the results

of the numerical simulations are shown, the bottom part b shows the measured

NOx-species, NO3 and ozone (see the caption for further explanations).

The high turn-over of p-xylene is typical for this system. It is well reproduced by

the model and allowed to trace the number of OH-radicals directly from the decay of

p-xylene. The calculated concentration-time-profile of pTALD closely matches the

measured one. This is also the case for the concentration-time-profile of 2,5-DMP,

though it is reproduced satisfactorily only in the initial phase of the experiment.

The yield of the phenol was determined from this part of the experiment. Significant

amounts of 2,5-DMP are lost through reaction with OH-radicals already in the early

part of the experiment. The deviations of the 2,5-DMP concentration-time-profile

after about 45minutes of reaction-time however could not be explained in terms of

OH-chemistry. It was rather found to coincide with the number of NO3-radicals,

as calculated from Equation 3.38 increased. The NO3-reaction of phenol-type com-

pounds is known to be fast (several 10−12 cm3·(molec·s)−1, see Section 4.2.3) while it

is three orders of magnitude slower for the aldehyde-type compounds (see Table 3.2).

Hence, only the phenolic compound is sensitive to the considerable concentration of

NO3 (several ppt at maximum, see also Section 4.8). The formation of NO3-radicals

is known to be a significant sink for phenols under simulated atmospheric conditions

[Carter et al. 1981; Klotz et al. 1998]. It forms also an significant sink for phenols

in the daytime atmosphere [Volkamer et al. 1998; Ackermann et al. 2000] as is dis-

cussed in Section 7. As further aspects of this experiment, the particle formation is

discussed in the Section 4.8.
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Figure 4.11: Concentration-time-profiles from experiment PX10. Upper part (a):
Simulated data, describing the OH-chemistry neglecting NO3-radical initiated pro-
cesses are indicated by solid lines. The calculated OH-concentration-time-profile
is given by the dash-dot-dotted line; the 2,5-DMP-loss due to OH-reaction by the
dotted line (both right scale ”Products”, OH-divided by 106). Experimental data:
(solid triangle) p-xylene; (dashed line) relative SF6-decay, both left axis; (solid dot)
2,5-DMP; (open dot) pTALD, both right axis. Lower part: (solid square) NO;
(open square) NO2; (open triangle) ozone, scaled by a factor of two; all left axis;
(diamonds) NO3; (dotted line) JNO2; both right axis.
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Table 4.7: Experimental conditions and results for the experiments on p-xylene.

Name p-Xylene NOx pTALD 2,5-DMP Experi- Evalu-
Yield Yield mental ation

[1012 cm−3] [ppb] ΦPTALD [%] ΦDMP [%] ΦDMP,corr α [%] type β method γ

PXY1 28.0 46 6.6± 1.1 12.9 12.1± 1.4 (1) (c)
PXY3 83.1 143 9.4± 1.4 14.0 13.2± 1.7 (1) (c)
PXY4 55.3 1.5* 7.7± 2.1 10.5 9.9± 2.1 (2) (c)
PXY7 38.4 0.3* 1.6 - 7.3 δ 17.5 17.2± 2.8 (4) (c)
PX10 41.2 285 8.0± 1.0 13.7 13.1± 1.4 (1) (c)
PX11 40.8 19 8.6± 2.0 10.8 10.2± 1.5 (1) (c)
PX12 41.3 800 10.1± 1.4 12.9 12.9± 1.5 (1) (c)
PX14 40.8 450 9.2± 1.3 10.9 11.2± 1.1 (1) (c)
PX15 19.8 65 8.4± 1.0 12.2 12.8± 1.4 (1) (c)
PX16 83.1 68 7.3± 1.0 9.1 9.3± 2.0 (1) (c)
PX24 18.5 68 6.9± 1.8 10.0 11.7± 2.5 (3) (b2)
∗ NOx-free at start of experiment.
α values in this column have been normalized to T=298K (see text).
β the number refers to the OH-source used, see Section 3.4.4.
γ see Section 3.5.5.
δ the yield is not constant; numbers indicate the range of the yield (see text).

4.4.1 Dependence on the NOx concentration

In Figure 4.12 the experimental data of the yields of pTALD and 2,5-DMP as de-

termined in the individual experiments of this study are shown. The Figure shows

the yields of both compounds as a function of the NO- and NO2-concentration. The

yields of both compounds were observed constant over the employed range of NOx

concentrations, indicating that the influence of NOx reactions is reduced for the

p-xylene as compared to benzene (see Section 4.3.1). The yields of pTALD and 2,5-

DMP, calculated as average values of the data listed in Table 4.7 (neglecting PXY7,

see above) were determined (8.2± 2.3)% and (11.6± 2.8)%, respectively. Thereby,

the normalized yields were used in case of the 2,5-DMP. Using these values did not af-

fect the observed mean value of ΦDMP but reduced the scatter among the individual

experiments. The data from this Section has been published [Volkamer et al. 1998].
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Figure 4.12: The yields of the ring-retaining products from p-xylene are plotted

as a function of the NO- (upper part) and NO2-concentration (lower part). The

dashed line corresponds to the average pTALD yield of all experiments. The 2,5-

DMP yields were normalized to T=298K (see text) and the solid line corresponds

to the average normalized yield. The NOx-concentrations correspond to the mean

concentrations over the time-interval when the yield was determined and error bars

correspond to the variability over this time-interval.

4.4.2 Dependence on the temperature

The raw-yields of pTALD and 2,5-DMP are shown as a function of temperature

in Figure 4.13. The plotted lines in the upper diagram denote the error weighted

linear regressions to the pTALD (dotted line) and 2,5-DMP (solid line) data. The

covered temperature range of ∆T≈ 18K corresponded to the seasonal cycle of the

ambient temperature, as discussed in Section 4.3.4. The ΦpTALD was found inde-

pendent of the temperature (slope: (0.006± 0.1)%·K−1, upper part of Figure 4.13).

However, the ΦDMP was found to increase towards higher temperatures at a rate

of (0.14± 0.10)%·K−1. This temperature dependence of ΦDMP (T) was used to nor-

malize ΦDMP to a temperature of T=298K. The applied corrections were as high

as 6%.
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Figure 4.13: The ring-retaining product yields from p-xylene are plotted as a func-

tion of the temperature. The lines in the upper part indicate a regression to the

pTALD yields (dashed line) and the 2,5-DMP yields (solid line). For the lower part,

the yields were normalized to the value at T=298 K and the relative variation of

the yields is plotted as a function of the temperature.

The fact that pTALD and 2,5-DMP showed a different temperature dependence rule

out any systematic error sources that influenced both yields in a similar way (e.g.

temperature dependence of the k-value of OH-reaction of p-xylene, wall-deposition

etc.). One possible source of error may be the unknown temperature dependence of

the rate-constants used in the applied OH-correction of both compounds. It will be

small for the pTALD. However, it is assumed significant for the 2,5-DMP which, in

analogy to phenol and the cresol-isomers [Oliaru et al. 2000], most likely reacts pre-

dominantly through OH-addition to the aromatic ring. It was decided to adopt the

temperature dependence of the k-value of phenol for the 2,5-DMP (see Section 3.5.5).

Though the temperature dependence might be different for the 2,5-DMP it is not

expected to influence significantly the results on the ΦDMP since the yields were

determined mainly during the intial phase of an experiment (see Figure 4.11) where
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the corrections due to OH-loss were small (F< 1.2). Hence, the error in the assumed

temperature dependence of the OH-reaction rate-constant of 2,5-DMP affects ΦDMP

only marginally.

The observed difference in the temperature dependence of PhipTALD and PhiDMP

may rather be explained from the different formation pathways of pTALD and 2,5-

DMP. With respect to the formation pathway of the 2,5-DMP the enthalpy data is

limited for the p-xylene system. However, the increase of the 2,5-DMP with tem-

perature points towards a 2,5-DMP formation proceeding directly from the reaction

of p-xylene-OH-adduct with O2, in analogy to the phenol formation from benzene

discussed in Section 4.3.4 (see channel (3) in Figure 2.1).

4.5 The ring-retaining yields from 1,3,5-TMB

In a previous work, Ücker [1999] estimated the yields of 3,5-DMBA and 2,4,6-TMP,

the ring-retaining products of 1,3,5-TMB. At that time no kinetic data was available

to correct for the product loss trough OH-reaction and estimated values were used

in that work. However, the errors then were dominated from the uncertainty of the

estimates. The rate-constants are now available (see Section 5.2.2). They were used

to re-determine the yields based on the data from Ücker [1999]. In addition, an

improved evaluation method (see Section 3.5.5) and the results on wall-deposition

(see Section 4.2.1) were employed. The correction factor for the DMBA was F< 1.34;

in case of the TMP all data points with F> 2 were neglected. The amount of product

formed is plotted in Figure 4.14 as a function of the reacted amount of TMB. The

error bars, which were indicated for one data point, correspond to the overall 2-sigma

confidence interval. Both products were identified as primary products. The yields

of DMBA and TMP were determined (2.7± 0.4)% and (6.7± 1.0)%, respectively.

The employed corrections lead to essentially no change of the yield of DMBA as

determined by Ücker [1999] though with a considerably reduced error. For the

TMP, the re-determined yield is about 25% higher than the value by Ücker [1999]

but still falls within the specified error margins of that work. Again, the error of

the re-determined value is considerably reduced.
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Figure 4.14: Plot of the concentration of ring-retaining product concentrations,

corrected for OH-reaction (see text) as a function of the amount of reacted amount

of 1,3,5-TMB.
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4.6 The glyoxal yields from BTX

In this Section the separation of the fraction of glyoxal formed as a primary product

(primary glyoxal yield, see Section 4.6.1) from the overall yield of glyoxal is demon-

strated for BTX. The glyoxal yields determined in a series of experiments on the

oxidation of benzene, toluene and p-xylene are listed in Table 4.8. The errors cor-

respond to the 2-sigma confidence interval without consideration of the uncertainty

of the differential absorption cross-section of glyoxal (≈ 20%, see Section 4.1.2, see

Table 5.8 for absolute uncertainties). Experiments where both yields are specified

used DOAS for the separation of the primary and secondary glyoxal yields. In the

other experiments the glyoxal concentration was obtained from FTIR. Also included

in Table 4.8 are the initial conditions, the experimental type (see Section 3.4.4) and

the employed evaluation method. The data from experiment PXY7 (see Table 4.8)

confirm the systematic deviations in the product yields obtained for the benzene sys-

tem in experiments using radical-source (4) (see Table 4.5 and 4.7). This data was

not considered in the further discussion of this Section and is discussed separately

in Section 5.5.4.

In the following, the data of experiment PX24 on p-xylene is presented (see

Figure 4.15). OH-radicals in this experiment were generated from the photoly-

sis of nitrous acid (HONO). The values of JNO2 (dotted line) show a steep rise

upon opening of the chamber housing; later variations are due to passing clouds.

The OH-concentration, as calculated from the decay of p-xylene, was maximum

([OH]≈ 8 · 106 molec cm−3, see Equation 3.36) directly after the opening of the

chamber housing. The decay in p-xylene then is most pronounced as can be seen

from comparing the p-xylene decay (solid line, fit through data points) to the di-

lution (dashed line). The concentrations of glyoxal and the ring-retaining products

were observed to build up quickly and in fact all these compounds were detected

in the very first DOAS spectra after the opening of the chamber housing. The

concentration-time-profiles of pTALD and 2,5-DMP were observed to be similar to

those shown in Figure 4.11 and discussed in Section 4.4. Note, that these concen-

trations have been scaled by a factor of ten as compared to those of glyoxal and

formaldehyde. The concentration of glyoxal steadily increased up to a distinct max-

imum concentration of about 1.5 · 1012 molec cm−3 (≈ 62ppb) at 11:50 GMT. By that

time almost clear sky conditions prevailed. The OH-concentration had decreased to

about [OH]≈ 2.3 · 106 molec cm−3. Afterwards, the glyoxal concentration dropped

until the end of the experiment with photolytic loss of glyoxal gaining importance
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Table 4.8: Experimental conditions and results for the product studies on glyoxal.

Compound Name Aromatic NOx Glyoxal Experi Evaluation
Primary Yield Overall Yield -mental method β

[1012 cm−3] [ppb] ΦPGLY [%] ΦGLY [%] type α

Benzene BE18 25.2 118 36.3± 3.9 35.5± 6.6 (3) (b1, b2, b3)

Toluene TOL2 21.2 120 40.0± 4.2 37.9± 6.5 (3) (b1, b2, b3)
TOL4 103 107 29.3± 3.0 30.3± 6.9 (3) (b2, b3)

p-Xylene PXY1 28.0 46 36.4± 4.4 (1) (c)
PXY3 83.1 143 37.1± 4.5 (1) (c)
PXY4 55.3 1.5* 41.9± 10.1 (2) (c)
PXY7 38.4 0.3* 9.2± 1.4 (4) (c)
PX10 41.2 285 34.3± 4.2 (1) (c)
PX11 40.8 19 37.4± 4.6 (1) (c)
PX12 41.3 800 37.1± 4.5 (1) (c)
PX14 40.8 450 31.5± 5.2 (1) (c)
PX15 19.8 65 36.7± 4.5 (1) (c)
PX16 83.1 68 28.0± 3.5 (1) (c)
PX24 18.5 68 42.3± 5.3 38.4± 7.0 (3) (b1, b2, b3)

∗ NOx-free at start of experiment.
α the number refers to the OH-source used, see Section 3.4.4.
β see Section 3.5.5.

with decreasing reactivity in the reaction-system. The concentration of NO3-radicals

was estimated from Equation 3.38 and reached levels of about 2.5 ppt. Under these

conditions, the fast reaction of phenol-type compounds with NO3-radicals becomes

an important sink, as discussed in Section 4.4. However, for glyoxal and the alde-

hydes loss due to reaction with NO3-radicals is found negligible due to the slow

reaction of these species with NO3. For benzene however, NO3 levels were effec-

tively suppressed from added NO. The reactions of NO3-radicals were neglected in

the further evaluation.

The concentration-time-profiles of the ring-retaining products and glyoxal were eval-

uated to determine the glyoxal yields at different times during each experiment, as

indicated by the arrows in Figure 4.15. The left arrow indicates the primary gly-

oxal yield that was obtained from the relative yield method (see next Section), the
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Figure 4.15: Concentration-time-profiles from experiment PX24. The following data

is shown: (solid triangle) p-xylene; (solid line) fit to the p-xylene data; (dashed line)

SF6, all left axis; (solid dot) 2,5-DMP; (open dot) pTALD; (diamond) glyoxal; (open

triangle) HCHO; (dotted line) JNO2; all right axis. Also included are ΦPGLY the

primary glyoxal yield and ΦGLY the overall glyoxal yield.

right arrow indicates the overall yield of glyoxal after about 1 hour and 30minutes

of reaction-time (see Section 4.6.2).

4.6.1 The primary glyoxal yields

The primary glyoxal yield from benzene, toluene and p-xylene was determined rela-

tive to the yield of a ring-retaining product using the relative yield method described

in Section 3.5.5 (indicated b3).

Ring-retaining product yields as reference yields

The reported yields of aldehyde-type compounds from toluene, i.e. BALD

[Smith et al. 1998; Klotz et al. 1998] and p-xylene, i.e. pTALD (see Table 5.5
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for literature values) are found to be constant over a wide range of experimental

conditions (see e.g. Figure 4.12 of this work). There exists little uncertainty in the

yields of aldehyde-type compounds. The aldehyde yields of toluene and p-xylene

are therefore well suited reference yields to quantify the yield of the direct formation

of glyoxal.

The use of phenol-type compounds suffers several disadvantages. First, they are con-

siderably (about a factor of four times) more reactive towards the OH-radical than

the respective aldehyde-type product (see Table 3.2). Second, they are highly reac-

tive to the NO3-radical. Consequently, where possible the less reactive aldehyde-type

compounds were chosen as reference compounds to determine the yield of glyoxal

from toluene and p-xylene. For benzene, however, the only ring-retaining reference

yield is that of phenol. This is not necessarily a limitation for this system. First,

the DOAS technique is very sensitive to phenol (about a factor of 10-times more

sensitive than for most other phenol-type compounds). Second, benzene is by far

the slowest reacting aromatic compound. It is therefore well possible to suppress the

formation of NO3-radicals effectively over an extended time-span. For benzene, the

phenol yield was used as reference yield to quantify the yield of the direct formation

of glyoxal.

The reference yields employed in this work were the phenol yield (see Sec-

tion 4.3.2) for benzene, the mean BALD yield of ΦBALD=(5.9± 0.6)% for toluene

[Smith et al. 1998; Klotz et al. 1998] and the mean literature value of the pTALD

yields listed in Table 5.5 for p-xylene.

The relative-yield plot

At the time-resolution of the DOAS system, the initial three-to-seven data points

after opening the chamber housing were essentially not influenced by OH losses

(F< 1.1, Equation 3.33)). In order to be able to include more data points in the

analysis it was decided to account for secondary loss of products. Under the con-

ditions described above, the photolytic-loss of glyoxal is about comparable to that

through reaction with OH-radicals and both processes needed to be corrected. The

ring-retaining products were essentially lost through OH-reaction. Photolysis of the

aromatic aldehydes as well as deposition of the products, i.e. phenolic compounds

to the chamber walls were minor loss-processes here and were therefore neglected in

the further evaluation.

In Figure 4.16 the glyoxal concentration is plotted against the respective ring-
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retaining products from benzene (Figure 4.16a, Fphenol< 1.7, FGLY < 1.4), toluene

(Figure 4.16b, FBALD< 1.17, FGLY < 1.13) and p-xylene (Figure 4.16c, Fp−TALD< 1.13,

FGLY < 1.1). The glyoxal concentration is observed to increase linearly with re-

spect to the formation of the respective primary ring-retaining products. From

Figure 4.16a-c the ratios of the glyoxal production-rate relative to that of the re-

spective ring-retaining product were determined from a least square fit to the data.

The primary glyoxal yield (ΦPGLY in Table 4.8), i.e. within the first five-to-ten min-

utes, was hence calculated by multiplying this ratio with the respective reference

yield (described above). The resulting yield for p-xylene is indicated in Figure 4.15

by the left arrow.

Identification of glyoxal as a primary product from BTX

The linear relations of glyoxal and the respective ring-retaining product in Fig-

ure 4.16a-c indicate that glyoxal was formed without observable delay as compared to

the reference compounds. The aldehyde-type reference compounds are formed from

the OH-radical abstraction reaction with alkyl-substituted aromatic compounds.

The reaction sequence of this abstraction reaction is well understood and in the

presence of NO (only a few ppb) it is expected to form aldehyde-type compounds

at close-to-unity yield. From the reaction sequence shown in Figure 2.2, the NO-to-

NO2 conversion reaction is expected to be the rate-limiting step for the formation

of the aldehydes. In the presence of 2 ppb of NO the delay from this reaction will

be as small as a few seconds. Initial concentrations of NO in this study were in the

range of several tens of ppbs and the aldehyde-type compounds were formed within

less than a second after the initial OH-radical attack on the side-chain. Hence, the

aldehydes were observed as primary products. The pathway of phenol-formation

has been identified as part of this work (see Section 4.3.5) to proceed directly from

the reaction of the aromatic-OH adduct with oxygen. The delay resulting from

this reaction for phenol formation under atmospheric conditions was of the order of

milliseconds. Accordingly phenol was also observed as a primary product (see also

Section 4.3. Consequently also glyoxal is formed as a primary product.

4.6.2 The overall glyoxal yields

The sum of the primary and secondary glyoxal formed through a sequence of stable

intermediate compounds was determined for benzene, toluene and p-xylene following

method a. After about 90 minutes of reaction-time the concentration-time-profile
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Figure 4.16: Plot of the concentration of glyoxal, corrected for reaction with OH-

radicals and photolysis (see text) as a function of the concentration of a ring-

retaining product, corrected for loss through OH-reaction, from (a) benzene, (b)

toluene and (c) p-xylene. The primary glyoxal yield was determined from the slope

of the data (see Section 3.5.5).
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of glyoxal showed a well characterized maximum concentration indicating that a

steady-state concentration of glyoxal had been reached. The overall yield was cal-

culated from Equation 3.29 and is given in Table 4.8 as ΦGLY . For p-xylene it is

also indicated by the right arrow in Figure 4.15.

4.6.3 The negligible formation of secondary glyoxal

The overall yield of glyoxal determined after approximately 90 minutes of reaction-

time was found to be essentially identical to the primary glyoxal yield for all the

three investigated systems. Hence, no significant indication for any secondary for-

mation of glyoxal through the further reaction of stable intermediate compounds

was observed.

This result is further confirmed by the data shown in Figure 4.17a-c where the

amounts of glyoxal (F< 1.6) and a respective ring retaining product (F< 1.55) are

plotted against the reacted amount of benzene (Figure 4.17a), toluene (Figure 4.17b)

and p-xylene (Figure 4.17c), as determined from the GC-FID data (corrected for

dilution). The highly time-resolved DOAS data was correlated to match the sam-

pling time of the GC. The given data cover about 90 minutes of reaction-time. A

fixed relation (i.e. straight line) was observed for the amount of ring-retaining prod-

uct and glyoxal formed from a given amount of aromatic hydrocarbon. The yields

were calculated following method b2 (see Section 3.5.5) and were found to be in

good agreement with those determined from method a and b3. The linear increase

observed for glyoxal further reflects the insignificant secondary contributions to the

overall yield of glyoxal from BTX.

It is concluded that the glyoxal formed from BTX can be explained essentially in

terms of primary glyoxal (10a in Figure 5.3). Any secondary sources of glyoxal

are found to be of minor importance under the experimental conditions of this

work. The uncertainty in the absorption cross-section of glyoxal cancels out if two

yields are compared relatively. Hence, the conclusion on the negligible importance

of secondary glyoxal formation under the conditions of this work is unaffected from

this uncertainty.

4.6.4 Identification of the bicycloalkyl-radical intermediate

From the good time-resolved detection of glyoxal, it was possible to assess the role

of stable intermediate species in the ring-cleavage pathways of BTX. Any hypo-

thetical stable intermediate compound involved in glyoxal formation was either lost
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Figure 4.17: Plot of the concentration of glyoxal, corrected for reaction with OH-

radicals and photolysis and a ring-retaining product, corrected for OH-reaction (see

text), as a function of the amount of reacted (a) benzene, (b) toluene and (c) p-

xylene. The aromatic decay was determined by GC-FID and all units were accord-

ingly converted into ppb.
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via photolysis or OH-reaction. During the initial phase of the experiments further

processes could be ruled out. Likely glyoxal precursors are listed in Table 5.7 (see

Section 5.5.2). The fastest photolysis-frequency from these compounds is 1.6 · 10−3

s−1. Moreover, a fast (nearly collision-rate limited) OH-reaction rate-constant of

kOH =1 · 10−10 cm3·(molec·s)−1 may be assumed to estimate an upper-limit of the

loss-rate through OH-reaction of 1.0 · 10−3 s−1 (based on an upper-limit OH-radical

concentration of [OH]=107 molec·cm−3). Hence, assuming both loss-processes, a

lower-limit for the overall lifetime is obtained to be 385 s, i.e. 6-to-7 minutes.

Any hypothetical in-this-way-delayed glyoxal formation would be observable at the

time-resolution of our measurements. No delay was observed for the formation of

glyoxal from benzene, toluene and p-xylene as compared to the directly formed

ring-retaining products (see Figure 4.16a-c), respectively. Consequently, no reaction

pathway including the stable intermediates listed in Table 5.7 (see Section 5.5.2) is

fast enough to contribute to the observed primary yield of glyoxal.

The rapid glyoxal formation is consistent with a reaction sequence involving the

bicycloalkyl-radical (intermediate 3, Figure 2.2)) since glyoxal is formed from this

pathway rapidly in a sequence of radical reactions without the involvement of stable

intermediate compounds. The rate-limiting step for glyoxal formation from this se-

quence is supposed to be the conversion of the bicyclic-peroxy-radical to the bicyclic-

alkoxy-radical through reaction with NO [Atkinson et al. 1980; Yu et al. 1997].

This reaction is not expected to delay the formation of glyoxal significantly

(< 2 secs). Assuming this reaction to be the only fate of the bicyclic-peroxy-radical

[Atkinson et al. 1980; Yu et al. 1997] will result in the formation of α-dicarbonyls,

i.e. glyoxal as primary products, and the primary yield of glyoxal can be identified

as a quantitative indicator for the formation yield of the bicycloalkyl-radical inter-

mediate 3 formed from the reaction of the aro-OH 2 with oxygen for benzene and

is a lower-limit for the alkyl-substituted aromatics.

4.6.5 Dependence on the NOx concentration

In Figure 4.18 the experimental data of the yields of glyoxal determined in the

individual experiments on p-xylene are shown. The error bars here correspond to the

2-sigma overall error but neglects the calibration error of glyoxal. The Figure shows

the overall glyoxal yield of p-xylene (which under the experimental conditions of this

work was accounted for essentially from the primary glyoxal yield, see above) as a

function of the NO- and NO2-concentration in the upper and lower part, respectively.
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Figure 4.18: The overall glyoxal yield from p-xylene is plotted as a function of

the NO- (upper part) and NO2-concentration (lower part) of the individual exper-

iments. The NOx-concentrations were determined as mean concentrations over the

time-interval when the yield was determined. Their error bars correspond to the

variability over this time-interval. The solid line indicates the average glyoxal yield

of all experiments.

With increasing concentrations of NO and NO2 the glyoxal yield was observed to be

constant over the employed range of NOx-concentrations, as it was observed also for

the ring-retaining products. The glyoxal yield from p-xylene, calculated as average

values of the data listed in Table 4.8, corresponded to (35.8± 3.8)%. If further the

20% uncertainty of the glyoxal calibration is considered the absolute glyoxal yield

is determined (35.8± 8.1)%.

The glyoxal yield from toluene, calculated as average values of the data listed in

Table 4.8, was determined (34.4± 11.5)%. The error hereby includes the 20%

uncertainty of the glyoxal calibration. A publication of selected data from Sec-

tion 4.6 is currently in preparation and will soon be available in the literature

[Volkamer et al. 2001]. Further, the data from Section 4.6.5 has been presented

at a Workshop [Volkamer et al. 2000].
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4.7 The overall formaldehyde yields from toluene

The relative yield method was employed to compare the formation of formaldehyde

to that of glyoxal. In Figure 4.19 the concentrations of formaldehyde (open dots,

F≤ 1.24) and glyoxal (solid dots, F≤ 1.7), corrected for OH-loss and photolysis (see

Equation 3.32 and Section 3.5.1), are plotted as a function of the BALD concentra-

tion (F≤ 1.22), corrected for OH-reaction for experiment TOL4. The photolysis of

BALD was not corrected in this representation. However, given the small correction

factor of BALD, this is expected to be of minor importance (error < 3%). The

plotted data was obtained during the first about 2 hours and 20minutes of reaction-

time.

The glyoxal concentration increased in a fix relation to the BALD-concentration,

as it was also observed in Figure 4.16b. This confirms the formation of glyoxal

as a primary product (see Section 4.6.1). The regression to the data (solid line,

hardly visible behind the solid dots) yielded [GLY]corr= 4.95 · [BALD]corr - 1.08 · 1011
molec · cm−3. The offset is not significantly different from zero. If the slope is multi-

plied by the BALD yield the primary glyoxal yield listed in Table 4.8 was obtained.

The formaldehyde concentration showed a distinctly different behaviour. Formalde-

hyde in this experiment was first detected after about 20minutes of reaction-time.

This is in part due to the less sensitive detection of formaldehyde as compared to

glyoxal. A dotted line was drawn from the origin of the plot to the first formalde-

hyde detection. Once formaldehyde was detected its concentration increased in a fix

relation to that of BALD for about 40minutes until about one hour of reaction-time.

In the further a change in the ratio of the formaldehyde and BALD concentration

was observed ([BALD]corr≈ 4.0·1011 molec·cm−3). After about 1 hour 40minutes,

the formaldehyde concentration again was observed to increase in a fix relation to

that of BALD until the end of the observation period. From the regression to the

formaldehyde data during the first time-span (dashed line), the following expression

could be obtained: [HCHO]corr= 6.31 · [BALD]corr - 8.48 · 1011 molec · cm−3. The off-

set here is non-zero within the combined error of the BALD and formaldehyde mea-

surements, indicating that formaldehyde is indeed formed as a secondary product

from toluene. The slope during this time-interval corresponded to a formaldehyde

yield of ΦHCHO=(37.2± 7.9)%. Further evidence for the formation of formaldehyde

as a secondary product was found from the comparison of the dotted line and the

dashed line in Figure 4.19. The slope of the dotted line would correspond to a hypo-



4.7. THE OVERALL FORMALDEHYDE YIELDS FROM TOLUENE 93

� � � � � � � � 	
�

��

��

��

��

��


��
����

�
�

�
�
�
� �
�
��
�

�
�
�
�

�
�
��

�
�
�
�
�

�
�
��
�

�
�

��
�

�������� 
��
FRUU

���

��


�����
��
��

�


!������� 
��

Figure 4.19: Relative-yield plot of the concentration of glyoxal and formaldehyde

in the toluene-OH system, corrected for reaction with OH-radicals and photoly-

sis as a function of the concentration of BALD, corrected for loss through OH-

reaction, for experiment TOL4. The different lines were adjusted to the formalde-

hyde concentration-time profile at different times of the experiment (see text).
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thetical primary formaldehyde yield of 12.6%. However, this number considerably

overestimated the true yield as is evident in Figure 4.19 from the non-steady change

in the slopes of the dotted line and the dashed line. The data is in fact compatible

with a zero primary formaldehyde yield in agreement with the present understand-

ing of toluene oxidation. It is concluded that the predominant fraction (possibly all

of the formaldehyde) was formed as a secondary product from toluene. The dashed

line was extrapolated to [HCHO]corr=0. The corresponding BALD concentration of

1.34 · 1011 molec · cm−3 was formed after about 10minutes of reaction-time. The de-

lay in the formation of formaldehyde can be explained from the following simplified

reaction sequence:

Toluene + OH· −→ Intermediate (4.3)

Intermediate −→OH·
hν −→ HCHO (4.4)

where the intermediate compound ”Intermediate” is a stable, i.e. long-lived, non-

radical-type primary product from toluene. Under the conditions of the experiment

(high NO concentration, absence of ozone) the ”Intermediate” may have reacted with

OH-radicals or have been photolysed. From this sequence, the delay in formalde-

hyde formation will be of the order of the lifetime of the short-lived ”Intermediate”

formaldhyde precursor substance. Given a lifetime of ten minutes, the Intermedi-

ate compound will reach its steady-state concentration after less then half an hour.

Formaldehyde formation will then be operative from the above sequence at a maxi-

mum production-rate, in agreement with the observed linear relation to BALD.

After the change in the yield ratio ΦHCHO/ΦBALD (observed at about one hour

of reaction-time) a linear regression to the data (solid line) yielded [GLY]corr =

8.86 · [BALD]corr - 19.82 · 1011 molec · cm−3. The slope during this time-interval cor-

responds to a formaldehyde yield of ΦHCHO=(52.3± 11.1)%.
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4.8 Secondary Organic Aerosol formation

In the experiments on the photo-oxidation of p-xylene (and other experiments on

TOL, oXYL, mXYL, 1,2,4-TMB and 1,3,5-TMB) particle numbers were counted.

Though the employed measurement device did not allow to give quantitative infor-

mation on the particle mass, it allowed to determine whether or not a formation

of Secondary Organic Aerosol (SOA) occured. Moreover, it allowed to determine

the time when SOA formation started with quite good precision. In Figure 4.20 the

results related to SOA formation obtained from experiment PX10 are presented (see

also Figure 4.11 in Section 4.4 for further data from this experiment). SOA forma-

tion was observed shortly after 11:30 GMT when the number-density of particles

increased to 1.75 · 105 particles·cm−3 within about 15minutes of reaction-time. Af-

ter this steep increase, the number-density slowly decreased probably accompanied

with particle growth from the association of fine particles. This decrease contained

no information about the actual particle mass (see Section 3.3) which despite the

decreasing particle number may have further increased.

In the following Section special interest was paid to the role NO3-radicals may play in

the formation of SOA. If not noted elsehow, the presently recommended temperature

dependent rate-constant data by DeMore et al. [1997] was used at a temperature of

T=305K, representative for experiment PX10.

4.8.1 The NO3-radical balance

The principal source of NO3-radicals in experiment PX10 was the reaction of NO2

with O3 (see Section 3.4.5). Both compounds, NO2 and O3 were measured during

the experiment and their data is shown in Figure 4.11b (see Section 4.4). The accu-

mulated production of NO3-radicals from this data was calculated. Over the entire

experiment PX10, Reaction 3.23 formed about (88.7± 13.4) ppb of NO3-radicals

that reacted in the system. The error hereby represents the combined error of the

temperature dependent rate-constant data and an assumed 5% uncertainty of the

ozone and NO2 measurements.

The obvious sinks to the NO3-radical were the reaction with NO, photolysis and the

fast reaction of NO3-radicals with 2,5-DMPs. The relative importance of these sinks

varied throughout the experiment as can be seen in the upper part of Figure 4.20

(indicated a). By the time the maximal NO2 concentration had been reached (11:25

GMT), their relative importance was about 100 : 44 : 1. Half an hour later, when the

maximum NO3-concentration had been reached the importance of the DMP-reaction
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Figure 4.20: Data related to SOA formation from experiment PX10. Upper part:

Calculated loss-rates for the NO3-radical. (solid line) overall loss-rate, divided by

20; (dashed line) NO-loss-rate; (dotted line) 2,5-DMP-loss-rate; (dashed-dot-dotted

line) photolytic-loss-rate, all left axis; (open dots) calculated ratio of the 2,5-DMP

loss-rates towards NO3- and OH-reaction, right axis; Lower part: (solid line) particle

numbers, left axis; (solid dots) calculated NO3-radical mixing ratio (see text); (open

triangles) ozone mixing ratio; (dashed line) calculated relative N2O5 profile (see

text); (dashed-dotted line) accumulated N2O5 formation; (dotted line) sum of ONC

(see text), all right axis.
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dominated (relative importance 6 : 18 : 1). Towards the end of the experiment the

relative importance of the three sinks was 0.2 : 14 : 1 (12:45 GMT). Photolysis of

NO3-radicals became a non-negligible sink only in the later phase of the experiment.

As can be seen in Figure 4.11a about (5.7± 0.7) · 1011 molec·cm−3 of 2,5-DMP were

lost via the reaction with NO3-radicals. This sink hence contributed about 23 ppb

of NO3-radical loss. Over the course of the experiment, the time-integrated amount

of NO3-radicals that was lost through NO-reaction and photolysis was estimated

from the loss-rates shown in Figure 4.20a. It accounted for an about similar amount

of ≈ 18 ppb. Hence from this estimate an integral amount of NO3-radicals of about

47 ppb was identified to react with further species over the entire experiment:

NO3 · + species −→ products (4.5)

The concentration-time-profile of NO3-radicals was calculated in a first estimate

from Equation 3.38. NO3-peak levels reached mixing ratios of up to ≈ 5 ppt. How-

ever, this is only an upper limit value for the actual NO3-concentration, since Equa-

tion 3.38 neglects further NO3-sink-reactions.

In a second approach, the NO3-concentration was traced from Equation 3.39 us-

ing the temporal variation of 2,5-DMP to determine the number density of NO3-

radicals (see Section 3.5.7). Over the time-interval from 11:30 to 11:50 GMT, when

maximal NO3 was expected, this approach yielded an average NO3-concentration

of [NO3] = (1.8± 0.3) ppt. If the NO3-concentration as calculated from the first

approach (see above) was averaged for the same time-interval, a mean value of

[NO3] = (4± 0.8) ppt was obtained. This difference of about a factor of (2.2± 0.6)

indicates, that the lifetime of the NO3-radical was indeed determined from the re-

action with other species to a similar extend than it was limited from the NO-

and 2,5-DMP-sinks. The concentration-time-profile of NO3-radicals shown in Fig-

ure 4.20b (and Figure 4.11b) was derived from dividing the NO3-concentrations (as

calculated from Equation 3.38) by the difference-factor of 2.2 and in this form re-

produces the traced NO3-concentrations. The thus determined NO3-concentrations

were used to determine the relative importance of NO3-radicals as compared to OH-

radicals for the loss-processes of 2,5-DMP. Therefore, the OH- and NO3-loss-rate of

2,5-DMP were calculated over the course of the experiment. In Figure 4.20a the

ratio of the loss-rates towards NO3- and OH-reaction of the 2,5-DMP were plotted

as a function of time (right scale). This data demonstrates, that the influence of

NO3-radicals is found to dominate the OH-reaction in the later phase of the experi-

ment. The NO3-loss of 2,5-DMP peaks shortly after the maximum concentration of
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NO3-radicals had been reached. At that time about 80% of the 2,5-DMP was lost

via NO3-reactions.

In the further the actual production-rate of products from these unknown re-

actions 4.5 was calculated as the sum of the reaction-rates of NO and 2,5-

DMP towards NO3-radicals (kNO3,NO · [NO]+kNO3,DMP · [DMP]) multiplied by the

difference-factor observed for the NO3-radical concentration (i.e. 2.2). It turned out

that the overall production of products from reactions 4.5 were operative at an av-

erage production-rate of P(products)≈ 6 · 108 molec·(cm3·s)−1. Over the time span

of 20minutes this corresponded to a time-integrated production of about 28.8 ppb

of unknown products from Reaction 4.5. This amount was scaled over the entire

experiment (comparing the amount of 2,5-DMP lost at 11:40 GMT and 12:30 GMT)

and corresponded to ≈ 50 ppb of unknown products. It is hence in good agreement

with the estimated 47 ppb (see above).

One possible sink of NO3-radicals could be the reaction of NO2 to form N2O5.

This compound is thermally in-stable and under the experiment conditions rapidly

decomposed back into reactants (thermal lifetime (RN2O5,th)
−1≈ 1 s at T=305K).

Hence, the reaction with NO2 is not expected to influence the NO3-radical bal-

ance (and was therefore not considered in Equation 3.38). However, if N2O5 was

lost via alternative pathways, the reaction with NO2 would become a net-sink

for NO3-radicals. The calculated concentration-time-profile of N2O5 is shown in

Figure 4.20b (dashed line). It was derived from the steady-state assumption of

sources and sinks of N2O5 (see Equation 3.38 for a similar approach for the NO3-

radical). Assuming thermal decomposition of N2O5 as only loss-process, the peak

N2O5-concentration corresponded to a value of [N2O5]max≈ 8 ppt. However, due

to the uncertainties related to the sinks of this compound (see Section 5.7) is was

preferred to include only the relative profile in Figure 4.20b (scaled to fit the dia-

gram). The hydrolysis of N2O5 is a known removal process of N2O5 in the atmo-

sphere [Wayne et al. 1991; Geyer 2000]. At EUPHORE hydrolysis primarily takes

place on the chamber walls (dry air was used in the experiments, see Section 3.3).

The N2O5-lifetime with respect to hydrolysis was determined (RN2O5,hy)
−1≈ 6 hours

30minutes [Wängberg et al. 1996] and hence hydrolysis is too slow to be of impor-

tance. However, the maximal - though hypothetical - NO2-influence was estimated

assuming all N2O5 to be instantaneously lost. The accumulated N2O5 production

from NO3-reactions with NO2 was calculated and the result is shown in Figure 4.20b

(dashed dotted line). It was scaled by a factor of 10 for better representation. Over
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the course of the experiment, this amount was as high as (13.3± 6.8) ppb. If in-

stantaneous N2O5-loss is assumed, the NO3-reaction with NO2 accounts for roughly

15% of all NO3-reactions. Though the NO2 influence may be significant it can not

explain the missing NO3-sink.

Overall, the NO3-radicals reacted besides with NO and 2,5-DMP with further

species. These further NO3-reactions were operative at high rate in the later course

of the experiment, i.e. by the time when also SOA formation was observed. The

reaction with NO2 can not explain the missing NO3-sink though it in principle may

contribute about 30% of the unaccounted NO3-sink-reactions.

No SOA formation from the NO3-reaction of 2,5-DMP

No SOA formation was observed, when approx. 120 ppb 2,5-DMP were consumed

by the reaction with NO3-radicals in the dark (see discussion in Section 5.7).

4.8.2 The NOx-balance

Attempts were made to estimate the NOx-balance from the oxidized nitrogen

compounds (ONC) shown in Figure 4.20b (dotted line). The considered ONC-

compounds were NO, NO2, NO3, HNO3 and PAN-type compounds (sum of perox-

ynitrates as measured by FTIR). The HNO3 as measured by the FTIR was corrected

for deposition to the chamber walls (F< 1.27). Of the overall formed (57± 8) ppb

of HNO3, about (20± 3) ppb were formed from the reaction of OH with NO2 (as

calculated from the OH profile in Figure 4.11a and the measured NO2 concentra-

tions in Figure 4.11b, error: ∆[NO2] = 5%, ∆[OH]=10%, rate-constant error:

8% [DeMore et al. 1997]). Additional HNO3 is expected to form from the NO3-

reaction of 2,5-DMP. This reaction contributed an about equal amount of HNO3

((23± 3) ppb). Interestingly, these two reactions account for about 75% of the

formed HNO3. The missing amount of HNO3 ((14± 4) ppb) was well below the

unaccounted amount of NO3-radicals ((47± 8) ppb) and hence could be understood

from further NO3-reactions. However, the majority of the unaccounted NO3-radicals

was lost through pathways that do not form HNO3, e.g. via addition-reaction to the

double-bond of unsaturated oxidation products from p-xylene.

If the sum of ONC at the end of the experiment (150 ppb) was compared to the

initial amount, corrected for leakage (273 ppb), it turned out that only 55% of the

initially added NOx was detected then in form of the measured ONC. Despite this

poor NOx-balance, the sum of ONC showed a characteristic time-profile that was
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in the following separated into three time-intervals. The first interval was defined

from the start of the experiment (10:30 GMT) until the time when the maximum

NO2 concentration had been reached (11:25 GMT). The second interval ranged from

11:25 GMT until the time, when the number of NO3-radicals began to drop (12:05

GMT). During this second time-interval the highest activity of NO3-radical reactions

occurred. In addition, during this time-interval most of the NO2 was converted into

non-observed species (NOS) and the production of NO3-radicals finally ceased. In

this second period the sum of ONC was observed to show maximal variability. The

third interval ranged until the end of the experiment and was characterized by an

essentially constant sum of ONC and a significant decrease of the reactivity in the

system.

It should be noted however, that the sum of ONC represented in Figure 4.20b ac-

counted for a selection of all ONC formed in the reaction of p-xylene and hence

represents a lower-limit for the total amount of gas-phase ONC.

4.8.3 The temporal coincidence of NO3 and SOA formation

The formation of SOA in the reaction-system was observed to be delayed until NO

was widely converted into NO2. The formation of SOA was found to coincide with

the time the concentration of NO3-radicals progressively increased in the reaction-

system (see Figure 4.20b). Since, in the presence of NO2 the formation of N2O5

depends solely on the presence of NO3-radicals the moment of SOA formation also

correlates well with the moment of N2O5 formation.



Chapter 5

Discussion

5.1 Calibration

5.1.1 Comparison of the σ(phenol) with literature values

The re-determined absorption cross-section of phenol (see Section 4.1.1) was inter-

compared with the spectra of Etzkorn et al. [1999] and the result is given in Ta-

ble 5.1. The listed values were scaled relative to the their work due to the smaller

error of σ’. The calibration of both spectra is in excellent agreement. However,

the re-determined phenol spectrum was used in the evaluation of the experiments

of this study in order to accurately account for the wavelength calibration, that is

somewhat uncertain in the work of Etzkorn et al. [1999]. Further included in Ta-

ble 5.1 are available literature data together with the spectral ranges observed in

the respective study. The inter-comparison value for Trost [1997] was adopted from

Etzkorn et al. [1999]. The two values compare well. The observed good agreement

is especially interesting, since Trost [1997] used an essentially different calibration

based on the vapor pressure of phenol, in contrast to the method employed in this

study and by Etzkorn et al. [1999].

Inter-comparison of the phenol measurements performed by the DOAS and FTIR

systems is shown in Figure 5.1. Different symbols represent the different experiments

BEN1 to BE10. Only data that overlap at least 50% of the measurement time are

shown. The linear regression to the data yield: [PHEN]FTIR=(1.0004± 0.0026) ·
[PHEN]DOAS - (5.6± 1.0) · 109. It is evident that the agreement between the DOAS

and FTIR techniques is excellent. In Figure 4, error bars have been included for some

data points, and it becomes clear that the offset of -5.6·109 cm−3 is lower than the

101
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Table 5.1: Comparison of the phenol absorption cross-section to literature values.

Reference spectral range a diff. cross-section σ’ b rel. cal. c,d

[Bjergbakke et al. 1996] e UV: 275 nm 6.6 10−18 cm2 0.40 ± 0.08

[Trost 1997] UV: 245-283 nm 1.88 10−17 cm2 1.13 ± 0.14

[Etzkorn et al. 1999] UV: 248-287 nm 1.66 10−17 cm2 1

IR: 400-4000 cm−1 1

[Berndt et al. 1999] IR: 1000-4000 cm−1 1.20 ± 0.12

[Berndt 2000] IR: 1000-4000 cm−1 1.10 ± 0.12

this work UV: 255-282 nm 1.64 10−17 cm2 0.99 ± 0.04

a respective spectral ranges under observation; UV: ultraviolet; IR: infrared.
b UV: σ’ of the 275 nm absorption band at a resolution of 0.2 nm (FWHM).
c relative calibration, normalized to the values from Etzkorn et al. [1999].
d IR: integrated σ-values of four bands were compared, see [Etzkorn et al. 1999].
e the specified absolute σ = 7.9 10−18 cm2 was multiplied by 0.83 (see Section 4.1.1).

uncertainties of the individual measurements (≈ 7·1010 cm−3 for the FTIR). The er-

rors also show that the phenol concentrations determined by DOAS are significantly

more accurate than those determined by FTIR. Therefore, in the experiments where

both systems were available, the DOAS data have been employed in the evaluations.

This good correlation of the both techniques demonstrates the quality of the phenol

measurements in this work and reflects the fact that calibration of the UV- and IR-

data is based on simultaneously determined UV- and IR- absorption cross-sections

[Etzkorn et al. 1999].

Comparing the data from this work to the independent calibration of

Berndt et al. [1999] gives agreement within ± 20%. The re-determined cross-section

[Berndt 2000] leads further to a minor correction of their σ and agreement with the

value of this work is within ± 10%. Larger deviations are observed for the UV-

absorption cross-section as specified in the work of Bjergbakke et al. [1996]. The

authors measured the whole spectrum of phenol at T=300K and specify a value

of the absorption cross-section at the 275 nm band, which is about a factor of 2.5

smaller than that of the other studies. This discrepancy can however be explained

by the experimental conditions employed in the work of Bjergbakke et al. [1996].

Based on the differential cross-section of this work, the differential optical density

calculated for the conditions specified by Bjergbakke et al. [1996] should have been

about 2.2 (base e). If such optical densities of narrow absorption features i.e. as
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Figure 5.1: Plot of the phenol concentrations measured by DOAS and FTIR during

experiments BEN1-BE10. Different symbols indicate the different experiments (see

text).

that of phenol are observed at a resolution that is lower then the natural line-width

of the observed absorption-band, deviations from Lambert-Beers law are likely to

influence the apparent unresolved absorption signal. In fact, this was tested for

benzene, comparable to phenol in this aspect, and the apparent differential absorp-

tion signal decreased by about 10% at an apparent (low resolution) optical density

of roughly 0.5 (base e). Such ”saturation”-effects are documented in the literature

[Volkamer et al. 1998; Mellqvist and Rosén 1996] and lead to an underestimation of

the apparent absorption cross-section. Given the fact that this effect is non-linear

the observed factor of 2.5 difference between the two values can be rationalized.

The larger absorption cross-section used in [Berndt et al. 1999] leads to an under-

estimation of the specified phenol yield of 23%. On the basis of the calibration of

this work their published value would correspond to 28%. Similarly, the specified

phenol yield of 25% by Bjergbakke et al. [1996] is obtained 10% if it is based on the

calibration of this work. The re-evaluated phenol yields are given in Table 5.4 and

are discussed in Section 5.3.1.
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Table 5.2: Comparison of the glyoxal absorption cross section to literature values.

Reference spectral resolutiona λpeak [nm] σ’ b [cm2] rel. cal.c

[Bierbach 1994] IR: 1 cm−1 0.83

[Moortgat 2000] IR: 1 cm−1 1

[Klotz 2001] IR: 1 cm−1 0.9

[Plum et al. 1983] UV-vis: n.n. ∗ 456.69 4.08 10−19 1.04

[Horowitz and Moortgat 1999] UV-vis: n.n. ∗ 454.68 5.22 10−19 1.08

this workd UV-vis: 0.17 nm 454.99 5.47 10−19 1

∗ no number.
a UV-vis: ultraviolet-visible; IR: infrared; FWHM: Full Width at Half Maximum.
b differential absorption cross-section σ’ at λpeak in the UV-vis spectral range.
c relative calibration, normalized to the values from [Moortgat 2000], see text.
d placed on an absolute basis from the IR-value of [Moortgat 2000].

5.1.2 Comparison of the σ(glyoxal) with literature values

The absorption cross-section of glyoxal is inter-compared with literature values in

Table 5.2. From the simultaneously recorded FTIR and DOAS spectra of this work

it was possible to inter-compare literature values measured in both spectral ranges.

The peak to peak scatter among the available values listed in Table 5.2 is found

to be ≈ 25%. Thereby, the IR-calibration of Moortgat [2000] is bracketed from the

other values and indeed represents a good approximation. The maximum deviation

of the calibration used in this work is 17% towards the value of Bierbach [1994].

Hence, the glyoxal calibration of this work is believed to be correct within 20%.

However, additional uncertainties arise for the values recorded in the UV-

visible spectral range (UV-vis) where the spectral resolution varies with the

spectral range under observation. For the instruments [Plum et al. 1983;

Horowitz and Moortgat 1999] it is characterized by two quantities: (1) The FWHM-

value (value in nanometers of the full width of an atomic emission line at half

maximum if observed in the spectral interval of interest) and (2) wavelength of the

measured emission line. The direct comparison of the peak absorption cross-section

at about 455 nm suffers uncertainties in the exact characterization of the resolution

among the literature values. However, the integrated absorption between 459.25 nm

and 447.1 nm was compared and normalized relative to this work (see Table 5.2, indi-

cated ”relative calibration”), which in principle should be less sensitive to the uncer-
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tain spectral resolution. If the peak absorption is weighted by the thus obtained rel-

ative calibration factors, the lowest peak absorption cross-section is observed for the

spectra recorded at a comparably low spectral resolution Plum et al. [1983] while the

values by Horowitz and Moortgat [1999] and this work are about equal and higher

then the value by Plum et al. [1983]. Furthermore, in the recording of the spectra

by Horowitz and Moortgat [1999] a dependence of the apparent absorption signal

on the column-density of glyoxal was observed [Moortgat and Horowitz 2000], which

as discussed above is an indication for non-resolved fine-structure in the apparent

absorption signal of glyoxal observed under moderate resolution (see Section 5.1.1).

Even though the UV-absorption cross-section of glyoxal is not well known at present,

the uncertainties influence the σ’ only to a minor extent [Etzkorn et al. 1999;

Stutz et al. 1999]. The main uncertainties are due to the saturation effects of indi-

vidual lines measured at rather low spectral resolution which result in distortions

in the apparent absorption cross-section spectra. These line-shape changes in this

work were eliminated by recording a reference spectrum of glyoxal using the same

apparatus as for the measurements.

A general solution to these problems can be derived from the high-resolved cross-

section spectrum of glyoxal. First measurements using the Fourier Transform Spec-

trometer at the Institut für Umweltphysik, University of Bremen have been carried

out and a further collaboration is planned.
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5.2 Kinetic studies

5.2.1 Comparison with literature values

The OH-rate-constants

The study of the OH-reaction rate-constants of selected ring-retaining products of

the OH-initiated oxidation of p-xylene and 1,3,5-TMB was necessary for this work

since i.e. for the alkyl-substituted aldehydes and 2,4,6-TMP no values were available

in the literature. The knowledge of kOH nevertheless is a prerequisite to accurately

account for OH-loss in the products studies and hence is indispensable to determine

accurate product yields (see Section 3.5.5). Literature values were available for

BALD, phenol and 2,5-DMP and hence allowed to confirm the employed evaluation

method.

For BALD the available values of kOH in the literature in general show little scatter

(< 15% peak to peak difference). The value determined in this work is found to be

in excellent agreement with the reported values. The photolysis-correction applied

for BALD thereby resulted in a downward correction of the mean k-value for this

compound of 8%. Though this was a minor correction the observed value was higher

than the highest reported value if no correction had been applied. Taking BALD as

an indicator for the other aromatic aldehydes this result indicates the importance

of photolysis-correction in the OH-kinetic studies on aromatic aldehydes for rate-

constants that are determined in the presence of sun-light.

For phenol the available literature values of kOH were found to be in even better

agreement (scatter < 7.7%). The value determined in this work was again found

to be in excellent agreement with all available data. The overall error of the value

(14.6%) hereby was dominated from the error of the reference compounds. Exclud-

ing this systematic error source the evaluation error was < 7%.

For 2,5-DMP the value determined in this study was found to be in good agree-

ment with the only available literature value [Atkinson and Aschmann 1990]. The

overall error for this rate-constant (10.4%) was again dominated from the error of

the reference compound. In fact, the rate-constant determined in this work is con-

siderably reduced in error (a factor of 2.7) as compared to the previously available

rate-constant [Atkinson and Aschmann 1990].

In addition, literature values exist on isomers of the DMBA and the TMP

[Tse et al. 1997], though only on different isomers than those that were investi-

gated in this work. For the DMBA the reported values vary by a factor of two and
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Table 5.3: Comparison of the kinetic parameters with literature values.

Compound kOH kNO3 Jphot. Reference a

[10−12 cm3·(molec·s)−1] [10−6 s−1]

BALD 13± 0.9 [Niki et al. 1978]
11± 2 [Kerr and Sheppard 1981]

12.3± 2.5 [Semadeni et al. 1995]
12.9± 3.2 b [Atkinson 1994]
12.5± 2.5 8± 6 d this work

oTALD n.n. c 200± 10 d this work
mTALD n.n. c 11± 8 d this work
pTALD 21.2± 2.5 d < 6 d this work
3,5-DMBA 34.2± 6.8 d < 6 d this work

PHEN 28± 6 [Rinke and Zetzsch 1984]
26± 2 [Witte 1987]
26± 3 [Semadeni et al. 1995]
26.3 b [Atkinson 1994]

26.4± 3.8 this work
pCRE 13.0± 2.0 [Carter et al. 1981]

12.7± 3.6 [Atkinson et al. 1984]
10.7± 1.0 [Atkinson et al. 1992]
10.7± 5.35 b [Atkinson 1994]
11.2± 1.3 this work

2,5-DMP 80± 23 [Atkinson and Aschmann 1990]
81.7± 8.5 24.4± 3.4 d this work

2,4,6-TMP 131± 15 d this work
a for data from this work see Section 4.2.2.
b present recommendation.
c no number, see also the text.
d to the best of our knowledge, no data is available for comparison at the time of this writing.
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range from (2.14± 0.34) · 10−11 cm3·(molec·s)−1 (2,5-DMBA) to (4.37± 0.68) · 10−11

cm3·(molec·s)−1 (3,4-DMBA). The value of (3.42± 0.68) · 10−11 cm3·(molec·s)−1 de-

termined in this work for the 3,5-isomer is found to be bracketed by these values. For

the TMP the available values for a comparison with this work are (11.8± 1.8) · 10−11

cm3·(molec·s)−1 (2,3,6-TMP) and (12.5± 1.8) · 10−11 cm3·(molec·s)−1 (2,3,5-TMP)

and hence are comparable in the range of their experimental errors. The value of

(13.1± 1.5) · 10−11 cm3·(molec·s)−1 determined in this work for the 2,4,6-TMP is

found to be in good agreement to these values.

The small scatter observed among the OH-rate-constants from different experiments

reflects the successful correction of wall-influence in the sun-lit chamber.

The NO3-rate-constants

The study of the rate-constant of 2,5-DMP was a prerequisite to obtain valuable

information on the concentration of the NO3-radical in the oxidation of p-xylene

(see Sections 4.8). No information was available in the literature for this compound.

In addition, kNO3 of p-cresol was re-determined to confirm the employed evaluation

method.

For p-cresol the available kNO3-literature-values vary by about 20% (peak to peak

difference). Nevertheless, the reported literature values are all conclusive within

their specified experimental errors that range down to a minimum error of 9%

[Atkinson et al. 1992]. As discussed in Section 4.2.3 the comparably small error

of p-cresol determined in this work could be transferred into an reduced error of

kNO3-value of phenol (10%). On the basis of this reduced uncertainty in the phenol

value the agreement between the p-cresol value determined here and the value from

Atkinson et al. [1992] is still excellent. The rate-constant ratio of p-cresol and phe-

nol was found independent from the NO2-concentration. This result confirms the

independence of the rate-constant from the NO2 concentration in the low NO2 range

(≈ 15 ppb to 200 ppb) as it was already reported for the high NO2-concentration

range (several ppm) by [Atkinson et al. 1992].

The rate-constant of 2,5-DMP was determined with an overall uncertainty of about

14%. Thereby the error is dominated from the uncertainty of the k-value of the

reference compound.

The small observed scatter among the NO3-rate-constants from different experi-

ments reflect the successful correction of wall-influence in the dark chamber.
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The photolysis of aromatic aldehydes

The photolysis-frequencies listed in Table 5.3 are representative for February.

Though almost clear sky conditions prevailed during the experiment the UV-flux

here was reduced by about a factor of 2 as compared to similar conditions during

summer. Despite this uncertainty the results indicate that the photolysis-quantum-

yields will be considerably lower than unity, in agreement with the qualitative pre-

liminary data presented by Thiault et al. [2000]. Hence, the OH-reaction will be the

predominant fate for compounds like BALD, pTALD as well as 3,5-DMBA. Taking

BALD for example, more than 90% were lost via OH-reaction rather than photolysis

under the employed experimental conditions. From the observed variability of the

measured photolysis-frequencies (see Table 5.3) the photolysis-quantum-yields how-

ever are expected to vary considerably among the different isomers. No information

is presently available with respect to the wavelength dependency of these quantities.

If, like for other aldehydes photolysis primarily takes place at wavelengths around

300 nm an additional uncertainty in the J-values of a factor of 2 to 3 is expected.

Due to the uncertainties related to the photolytic correction it was decided to cor-

rect only the kOH-value of BALD (see Section 4.2.2) for photolytic-loss, where the

photolysis is slow and experiments under comparable experimental conditions were

available. For the o- and mTALD the uncertainty in their photolysis-frequency be-

comes a dominate error source and their OH-kinetic data is still under evaluation.

Further investigation on the aldehyde photolysis is therefore necessary.

5.2.2 Influence of the walls in the dark and sun-lit reactor

The motivation for the puzzling and time-consuming task to characterize the de-

position of polar compounds to FEP was two-fold. First, the deposition-rate was

indispensable preliminary information for the kinetic experiments on polar com-

pounds. It was found to vary by a factor of three from one experiment to another

and by a factor of four within a single experiment (see Section 4.2.1). If not cor-

rected adequately this would have introduced a systematic error in the determined

rate-constants as high as 25% (see Table 4.1).

Second, the wall-influence is of fundamental interest for smog-chamber studies. It is

an ongoing debate [Jeffries et al. 1999] to what extend the chamber walls influence

the radical production in smog-chamber studies and represent a sink for products

that form from a chemical reaction. It is presently known that for compounds such

as HNO3 [Finlayson-Pitts and Pitts, Jr. 2000] this sink is non-negligible. At EU-
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PHORE the loss-rate of HNO3 in the dark chamber was determined to vary between

5.7 · 10−5 s−1≤WHNO3≤ 1.5 · 10−4 s−1 and deviations from the first order decay have

been observed [Wirtz and Martín-Reviejo 1997]. The estimates given in Table 4.1

for the initial wall-deposition-rate of the aromatic hydrocarbons investigated in this

study suggest that the importance of the walls as a sink may be as high as 25%

of the loss through OH-reaction. Interestingly, this number was found to be rather

constant (variation between 15% and 25%) and on average was estimated 20% for

the investigated compounds of this study.

The wall-deposition-rates listed in Table 4.1 are representative for the dark cham-

ber. During the setup-phase of an experiment the chamber housing was closed and

considerable amounts of compound deposited on the walls. For example, in the

experiment on aldehyde-photolysis, described in Section 4.2.4, about 6.5% of the

initially added pTALD (here 4 ppb out of 60 ppb) had deposited on the walls over

the period of two hours prior to the opening of the chamber housing. This amount

corresponded to ≈ 9.85·1010molec·cm−3 or 1.85·1019molec which had been lost to

the walls.

Upon opening of the chamber housing the temperature inside the reactor typi-

cally increased a few degrees (∆T< 15K) and most likely shifted the equilibrium

between adsorption (of gas-phase molecules to the sheet) and desorption (of ad-

sorbed molecules back into the gas-phase) towards desorption. In addition, light-

absorption of compounds adsorbed on the FEP-sheet may have facilitated desorption

of molecules contained within the organic film on the FEP-sheet. If the 4 ppb of

pTALD deposited on the walls were instantaneously desorbed from the walls upon

opening of the chamber housing (assuming Rdeposition to increase by a factor of 100)

this would have been observed in a change of the observable R (see Section 3.5.4).

However, a change in R was not significant in the open chamber in Figure 4.2 and

Rdeposition changed by a factor of ≤ 4.

Further support comes from experiment PX10 (see Figure 4.11 and 4.20, HNO3

not shown) where HNO3 formation was measured by FTIR in the oxidation of p-

xylene. After about 12:15 GMT, the HNO3 production of the system had ceased

and the concentration as measured by FTIR decreased (not shown) due to the loss

of HNO3 to the walls of the sun-lit chamber. This decrease could be adecuately com-

pensated assuming a wall-deposition-rate of HNO3 of WHNO3=11 · 10−5 s−1. This

value is close to the upper-limit W reported by Wirtz and Martín-Reviejo [1997] in

the closed chamber. The wall-depositon rate of HNO3 in the sun-lit chamber during

this experiment hence agreed well with the wall-deposition in the dark.
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It is concluded that the loss-rate of products to the chamber walls in the sun-lit

chamber was rather similar to that of the dark chamber. It ranged between 5%

and 25% of product loss-rate through OH-reaction for all the aromatic compounds

investigated in this study. These numbers may represent a lower-limit for the wall

influence (see Section 4.2.1).
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5.3 The phenol yield from benzene

5.3.1 Comparison with literature values

The phenol yield obtained in this work is compared to literature values in Table 5.4.

It is evident that the value given here is more than twice as high as the previously

reported values. There are two studies that used a spectroscopic technique for the

detection of phenol [Bjergbakke et al. 1996; Berndt et al. 1999]. An advantage with

the spectroscopic techniques is, that calibration solely depends on physical prop-

erties that are independent of the measurement instrument, i.e. the absorption

cross-section spectrum σ(λ) of phenol. Both studies have been scaled to match the

calibration of this work in the column indicated ”re-evaluated” in Table 5.4 (as de-

scribed above). As can be seen, the apparently conclusive literature values show

considerable scatter if placed on a common basis of calibration.

Under NOx-free conditions the phenol yield by Bjergbakke et al. [1996] was calcu-

lated based on residual absorptions observed at a wavelength of 275 nm in a pulse

radiolysis study. The OH-concentration observed around 309 nm was used to calcu-

late the benzene decay at a temperature of T=340K. A considerably lower phenol

yield at this temperature would be in contradiction with the enthalpy data from

Lay et al. [1996] and would further contradict the observed temperature dependence

of this work. The difference in the yields is too high in order to be explained on the

basis of a temperature change of 40 K. The reason for the differences in the phenol

yield may be found in the high radical concentrations that Bjergbakke et al. [1996]

reported for their system. Given the considerably lower re-evaluated phenol yield of

10%, residual reactions that were not completely suppressed may have contributed

significant amounts to the observed phenol. In the presence of oxygen, the high

concentrations of H atoms produced in the pulse radiolysis would form HO2 radicals

which react with the aromatic-OH adduct thus introducing an additional loss process

from the equilibrium 2/3 which could explain the lower phenol yield. In addition, an

uncertainty about the experimental conditions arises from the proposed formation

mechanism of phenol, that Bjergbakke et al. [1996] attribute to channel (5) in Fig-

ure 2.1. This conclusion is in conflict with a recent study [Bohn and Zetzsch 1999]

in which an upper limit of 5% is determined for this reaction.

The phenol formation yield given by Berndt et al. [1999] was determined in a flow

system using FTIR spectrometry for the detection of both benzene and phenol. OH-

radicals were generated by microwave discharge of H2 in the presence of O2. The

resulting HO2-radicals gave OH by self-reaction. According to the authors, no cor-
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Table 5.4: Comparison of the phenol yield with literature values.

Reference NO NO2 phenol yield [%]

[ppm] [ppm] literature re-evaluated a

[Bjergbakke et al. 1996] NOx-free 25 ± 5 10 ± 5

[Berndt et al. 1999] NOx-free 23 ± 7 28 ± 7

this work NOx-free
b 66.6 ± 8.4 66.6 ± 8.4

[Atkinson et al. 1989] 0.6-10 0.6-10 23.6 ± 4.4 n.n. ∗

this work < 0.01 - 1.2 < 0.01 - 0.5 53.0 ± 6.6 53.0 ± 6.6

∗ no number.
a see Section 5.1.1
b conditions: initially NOx-free, several ppm of H2O2 present, see Section 5.4.3.

rection of measured product concentrations for secondary reactions were necessary.

However, this appears to be in contrast to the observation of CO and formic acid

as products of the benzene + OH reaction, which, according to all currently pro-

posed benzene degradation schemes, should be secondary products. Also, the two

strongest absorptions observed in the residual FTIR spectra of Berndt et al. [1999]

(Fig. 3 in that paper) are very similar to those of E,E-2,4-hexadienedial published

by Klotz et al. The most likely pathway for the formation of this compound un-

der NOx-free conditions is reaction of the hydroxycyclohexadienyl peroxyl radical

(3 in Figure 2.1) with another organic peroxyl radical RO2 to give a hydroxycyclo-

hexadienyl oxyl radical, an RO radical and O2. The hydroxycyclohexadienyl oxyl

radical can then ring-open and react with O2 to give HO2 and Z,Z-2,4-hexadienedial,

which can isomerise to the more stable E,E-2,4-hexadienedial. If this were the case

in the study of Berndt et al. [1999] it would indicate the presence of extremely

high radical concentrations in their reaction system. This reaction sequence would

represent an additional loss channel of hydroxycyclohexadienyl peroxyl radicals 3

not present under atmospheric conditions, which could explain the lower phenol

yields. Alternatively, an intramolecular H transfer from the OH group to the per-

oxyl group of 3, followed by elimination of OH may also account for the formation

of E,E-2,4-hexadienedial, but this channel thought to be energetically unfavourable

[Lay et al. 1996]. Additionally, this pathway would also be operative under the con-

ditions of the present study, however, no E,E-2,4-hexadienedial was observed in our

experiments and an upper limit for the formation of hexadienedials from benzene

was determined to be 8% (see Section 5.5.2).
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In this study, different phenol yields were observed in the presence and absence of

NOx. A definitive reason for this discrepancy and the differences observed among

the literature values listed in Table 5.4 under NOx-free conditions still needs to be

elucidated. One possible explanation for the differences in the phenol yield may be

found in the different experimental conditions as is discussed in Section 5.4.3).

The study of Atkinson et al. (1989) was conducted in a 6.4 m2 reaction chamber,

OH-radicals were generated by blacklight irradiation of CH3ONO/NO/air mixtures

with the initial NOx-concentration being varied between about 1 ppm and 20 ppm.

Benzene was determined by GC-FID, phenol by collecting samples on Tenax adsor-

bent followed by GC-FID analysis. Corrections were applied for secondary reactions

of phenol with OH-radicals. The lower phenol yield is in agreement with the results

of this work which were obtained at high NOx (≈ 1 ppm). A direct comparison with

Equation 4.2 suffers from the marginal overlap of the employed NOx-concentrations.

Nevertheless, there is one experiment, i.e. ITC#1295 [Atkinson et al. 1989] that was

carried out at an initial NOx-concentration of 1.25 ppm comparable to the upper-

limit of NOx-concentrations employed in this study. From the given experimental

data a phenol yield for the initial phase of this experiment of 34.8% can be calcu-

lated. The mean mixing ratios of NO and NO2 over the corresponding time span

are 0.61 ppm and 0.64 ppm respectively that transfer into a phenol yield as calcu-

lated from Equation 4.2 of 33.8%. The agreement is surprisingly good and confirms

Equation 4.2 to be valid up to a NOx-concentration of 1 ppm without any major

formation of phenol from the competing NOx reactions.

5.3.2 The high NOx-concentration range

As shown in the previous Section the phenol yield decreases with increasing concen-

trations of NOx. This dependence is reasonably well reproduced from Equation 4.2

over the range of NOx-concentrations employed in this work. However a discrepancy

arises if the results from Atkinson et al. [1989] are compared with the predictions

made from Equation 4.2 for NOx-concentrations of several ppm. For the upper-limit

NOx-range of the conditions employed by [Atkinson et al. 1989] the phenol yield is

expected to decrease down to about 5%. This behavior contrasts with the mean

phenol yield of 23.6% [Atkinson et al. 1989]. Though from the scatter in their plot-

ted data (Figure 5 of [Atkinson et al. 1989]) the yield rather ranges between 19.4%

and 34.8% it does not decrease significantly below 20%. This observation points
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towards a phenol forming chemistry under high NOx concentrations (several ppm)

which is different to the one described by Equation 4.2 for NOx-concentrations be-

low about 1 ppm. Atkinson et al. [1989] propose the formation of phenol to proceed

from the reaction of the aromatic-OH adduct with NO2 which for the upper-limit

NOx concentrations of their work accounts for the predominant fraction of the total

loss from equilibrium 2/3 in Figure 2.1.

Assuming the yield of phenol from channel (10), in the further denoted Φphenol,10 to

be non-zero Equation 4.2 can be extended to 5.1:

Φphenol =
kphenol + Φphenol,10 · k10 · [NO2]/(Keq · [O2])

kphenol + k8 + k9 /Keq + k10 · [NO2] / (Keq · [O2]) + k12 · [NO]
(5.1)

From the raw data given by Atkinson et al. [1989] a phenol yield from channel (10)

of about Φphenol,10=18% was deduced. Given this value, the deviation of Equa-

tion 5.1 from Equation 4.2 for the NOx-values of ITC#1295 (see above) is below

15%. The estimate from Equation 4.2 hence is still reasonable. The good agree-

ment with Atkinson et al. [1989] remains astonishing given the fact that indica-

tions of NO3-radical formation were observed in their reaction-system (ITC#1295

[Atkinson et al. 1989]), though only at longer irradiation times. The estimated phe-

nol yield from ITC#1295 is based on the initial phase of the experiment and seems

not yet to be affected by NO3-radicals, though this can not be ruled out from the

given data. The additional phenol loss through reaction with NO3-radicals could

nevertheless by chance correspond to the amount that Equation 4.2 possibly un-

derestimates the phenol yield. Finally, it is remarked that the uncertainties in k10

(≈ 10%) and k12 (≈ 35%) become important error sources for the calculated phenol

yields at 1 ppm of NOx.

The conclusion on the different phenol forming chemistry under high NOx-

concentrations thereby remains unchanged. At present, the exact value of Φphenol,10

is not known. Equation 4.2 gives a reasonably good estimate for the phenol yield

up to NOx-concentrations of about 1 ppm. From Equation 4.2 it is evident, that for

several 10 ppb of NOx (here: [NO]=10 ppb; [NO2]=10 ppb) the phenol yield under-

goes a relative change of less then 1%. The phenol yield will hence be essentially

uninfluenced for most NOx concentrations as they are observed in the atmosphere.

5.3.3 The formation mechanism of phenol

The results of Section 4.3 indicate that the observed decrease of the phenol yield

at high NOx-levels can be quantitatively understood from Equation 4.2 in terms of
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the channels (9) to (12) that begin to compete with the channels (3) to (6). This

indicates that the channels (9) to (12) form phenol much less efficient than channels

(3) to (6) under the experimental conditions employed in this work.

With regard to channel (6) no definit statement on the occurrence of benzene ox-

ide/oxepin in the OH initiated oxidation of benzene can be made from the present

data. However, it can be said that the majority of the phenol formed must come

from either channel (3) or (4), and that the observed temporal variability of phenol

can be adequately described by these channels, without invoking pathway (6/7).

Within this study it is not possible to explicitly differentiate whether the phenol is

formed from channel (3) or channel (4) since both pathways lead to the same prod-

ucts. Nevertheless, it is in principle possible to differentiate both processes from

temperature dependent studies of the phenol yield. Our attempts to determine the

temperature dependency of the phenol yield result in essentially no correlation of

the phenol yield with temperature. Although the temperature range covered in this

study is limited this result shows that the major fraction, if not all of the phenol

is formed through channel (3) (see Section 4.3.4). In particular it also shows that

channel (4) can only make a minor contribution (20± 25%). The determination

of the temperature dependence of the phenol yield over a wider temperature range

seems to be promising to pin down the relative importance of channel (3) and (4).

5.3.4 Additional support

The high phenol yield from benzene in this work is further supported from the results

obtained for glyoxal (see Section 4.6). As can be seen in Figure 4.16 the ratio of the

glyoxal yield to that of a respective ring-retaining product from benzene, toluene

and p-xylene (BTX) is in fix relation for all the three systems. For the toluene and

p-xylene system the data was found to be compatible with the well known yields of

BALD and the pTALD, respectively. Nevertheless, the observed ratio in the benzene

system can not be explained on the basis of the low phenol yields and was found

consistent only with the high phenol yield discussed in this Section.

Further evidence for the high phenol yield comes from recent field studies

[Ackermann et al. 2000] which indicate that the phenol/benzene ratios observed by

DOAS in urban areas are significantly higher than it can be explained by known

sources of phenol and the previously accepted phenol yields in the OH initiated

oxidation of benzene.
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Finally, a high phenol yield of around 50% is also consistent with the results of a

recent study by Bohn and Zetzsch [1999] who indirectly determined the formation

of HO2-radicals through channels (3) or (4) in Figure 2.1. Despite the large er-

ror, Bohn and Zetzsch [1999] concluded that the observed yield of ”prompt” HO2

is higher than the 25% inferred from previous phenol yields. This observation is

in-line with the high phenol yields of this work.

5.3.5 The influence of O2-concentration and temperature

As described in Section 4.3.3 the elevated concentration of oxygen employed in ex-

periment BE31 was found to have no influence on the phenol yield under the com-

parably low NOx-concentrations employed in this work, in agreement with Equa-

tion 4.2. Though the phenol yield from this experiment tends to be slightly higher

then the values observed in air at comparable NOx-concentrations (see Table 4.5)

it compares well with the average phenol yield determined in this work from the

NOx corrected values. This tends to further confirm Equation 4.2 though the data

is not significant to demonstrate the oxygen concentration dependence of Φphenol

that is predicted from Equation 4.2 under different experimental conditions, when

the influence of reaction (10) is significant. Finally, elevated O2 has no effect on the

influence of NO. The parameter ”oxygen concentration” hence can be used in future

studies to vary the relative importance of influencing NO and NO2 reactions.

A further parameter of interest in laboratory studies is temperature. As discussed

in Section 4.3.4 an increase in temperature by 20K is expected to lower the value of

Keq by a factor of five [Lay et al. 1996; Bohn and Zetzsch 1999]. From Equation 4.2

this is expected to increase the relative importance of channels (3), (9) and (10) as

compared to channels (4), (8) and (12). In Section 4.3.4 the variation of tempera-

ture was used to distinguish between the two phenol forming channels (3) and (4)

(see also Section 5.3.3). Similarly, temperature dependent product studies may give

further insight in the future.

Temperature and oxygen concentration are promising parameters to be varied in

the future work on degradation pathways of aromatic hydrocarbons. The theory of

the phenol yield formulated by Equation 4.2 accounts for both parameters under

atmospheric conditions.
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5.4 The ring-retaining yields from alkylbenzenes

5.4.1 Comparison with literature values

p-Xylene

The results for the yields of pTALD and 2,5-DMP (see Section 4.4) are compared

to available literature values in Table 5.5.

For the yield of pTALD there is in general good agreement among the numer-

ous available literature values. The average value calculated from all available

values is found almost identical to the value of this work. There is excellent

agreement among the studies by Bandow and Washida [1985, Atkinson et al. [1991,

Barnes et al. [1991] (the specified error of ΦpTALD from these studies ranges be-

tween 12.5% and 23%) and this work. The agreement is also reasonable with the

most recent value determined by Smith et al. [1999]. The experimental conditions

with respect to NO and NO2 concentrations have been included in Table 5.5 where

specified. The yield of pTALD is found insensitive to the NO and NO2 concen-

tration for NOx-concentrations between < 1 ppb (this work) up to levels of 20 ppm

[Atkinson et al. 1991]. Overall, there exists little uncertainty on the yield of pTALD

from p-xylene.

For a comparison of the yield of 2,5-DMP there are five values available in the lit-

erature. The mean value of these is found to almost coincide with the value of

this work (see Table 5.5). However, the peak to peak variability among the liter-

ature values is as high as a factor of two. With the exception of the data from

Etzkorn [1998], all values are representative for a temperature of T=298K. The

value of Etzkorn [1998] was listed in Table 5.5 as the average value of two experi-

ments (6.11.96: ΦDMP =(9.4± 2.4)%, mean temperature T= (292± 5)K; 21.11.96:

ΦDMP =(5.3± 1.3)%, mean temperature T= (295± 5)K). Both values were deter-

mined at a lower temperature as the reference temperature of T=298K. If the

temperature dependence of ΦDMP (see Section 4.4.2) is used to calculate the yield

for the temperature of the first experiment (ΦDMP,292K =(10.8± 2.7)%, error: in-

cluding the uncertainty of the temperature dependence) this value agrees well. The

temperature of 292K is also representative for the initial phase of the second ex-

periment of Etzkorn [1998]. However, the differences with this experiment can not

be explained in terms of a temperature dependence of ΦDMP and the value tends

to be low. Nevertheless, the average value of both experiments agrees within the

error limits with the value calculated at 292K . The lower values may be taken
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Table 5.5: Comparison for p-xylene and 1,3,5-TMB with literature values.

Compound NO NO2 ΦAldehyde ΦPhenols Reference
[ppm] [ppm] [%] [%]

p-Xylene NOx-free a 7.0± 7.0 [Perry et al. 1977]
NOx-free a 4.0±n.n. ∗ [Nicovich et al. 1981]
200 - 4000 15.0± 2.0 [Kenley et al. 1981]

≤ 1.5 ≥ 0.5 8.0± 1.0 [Bandow and Washida 1985]
ppm-range b 10.0±n.n. ∗ [Becker and Klein 1987]

0.85 - 10 0 - 10 7.0± 1.0 18.8± 3.8 [Atkinson et al. 1991]
NOx-free 6.4± 1.5 8.0±n.n. ∗ [Barnes et al. 1991]

< 0.04 < 0.04 4.9± 3.8 c 7.3± 4.3 c [Etzkorn 1998]
0.25 - 1.08 0.34 - 0.7 d 10.3± 1.6 13.0± 1.8 [Smith et al. 1999]

8.1± 3.3 e 11.8± 5.3 e average value
< 0.01 - 0.82 < 0.01 - 0.25 8.2± 2.3 11.6± 2.8 this work

NOx-free f 4.5± 4.0 g 17.2± 2.8 this work

1,3,5-TMB 200 - 4000 2.1± 0.6 [Kenley et al. 1981]
0.7 0.3 3.0± 1.0 4.0± 1.0 [Smith et al. 1999]
< 3 0.4 - 1.2 2.7± 0.4 6.7± 1.0 this work h

∗ no number.
a derived from temperature dependence studies.
b conditions not further specified.
c average yield of two experiments (see text).
d estimated value for experiment pX61004.
e calculated from the listed literature values, error: 1-sigma variability among these values.
f conditions: initially NOx-free, several ppm of H2O2 present, see Section 5.4.3.
g average yield, error: reflects the observed variability (see Section 4.4).
h the data from [Ücker 1999] were re-evaluated here (see Section 4.5).
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as an indication for a confirmation of the temperature dependence of ΦDMP ob-

served in this work. Nevertheless, given the uncertainties related to the second

value [Etzkorn 1998] the values were not considered in the calculation of the tem-

perature dependence (see Figure 4.13).

For the other literature values good agreement is observed at moderate NOx-

concentrations [Smith et al. 1999]. The value by Barnes et al. [1991] determined

in the absence of NOx, though slightly lower, is still in reasonable agreement with

the value of this work, determined in the presence of moderate concentrations of

NOx though it differs significantly from the value determined in the presence of

H2O2 (see Section 5.4.3).

However, the value of ΦDMP =(18.8± 3.8)% determined by Atkinson et al. [1991]

is considerably higher. The study by Atkinson et al. [1991] differs from the other

studies with respect to the employed NOx-concentrations that are up to one order

of magnitude higher than the upper-limit NOx-concentration of the other studies.

A direct comparison with the values of this work suffers from the marginal overlap

of the employed NOx-concentrations. Nevertheless, there are two experiments, i.e.

ITC#1562 and ITC#1562 [Atkinson et al. 1991] that was carried out at an initial

NOx-concentration of 1.46 ppm and 0.96 ppm, respectively and hence these exper-

iments are comparable to the upper-limit of NOx-concentrations employed in this

study. From the given experimental data the yields of 2,5-DMP can be calculated

for the initial phase of the experiments to be 10.6% and 10.2%, respectively. The

mean NOx mixing ratios over the corresponding time span were [NO]=0.79 ppm

and [NO2] = 0.67 ppm as well as [NO]=0.66 ppm and [NO2] = 0.30 ppm, respectively.

Both values are in excellent agreement with those values obtained under compara-

ble NOx-concentrations in this and other studies. The differences with the higher

mean value specified by [Atkinson et al. 1991] is hence attributed to the higher mean

NOx-concentrations as is discussed in more detail below.

1,3,5-trimethylbenzene

There are only few studies available to compare the yields of 3,5-DMBA and 2,4,6-

TMP (that were re-evaluated here from the data by Ücker [1999], see Section 4.5)

with literature values. As can be seen in Table 5.5, the agreement is excellent for the

DMBA. Even within the reduced experimental error of the re-evaluation (15%) the

values can be regarded as identical. The good agreement is observed despite the quite

different concentrations of NO and NO2 that were employed in the different studies
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(see Table 5.5). In the experiments of Ücker [1999] high initial concentrations of NO

(3 ppm) were employed in order suppress the formation of ozone (and hence NO3)

over an extended time span. As a consequence of the rapid conversion of NO into

NO2, typical for the 1,3,5-TMB, high concentrations of NO2 accumulated during an

experiment (mean [NO2] = (806± 414) ppb). The insensitivity of the DMBA yield

on the NOx-concentration hence confirms the above discussion on p-xylene also for

the TMB system.

The only TMP-yield which is presently available [Smith et al. 1999] is smaller than

the re-evaluated value from this work. Within the specified 2-sigma confidence

error-limits (see Table 5.5) the difference of the two values is significant. This result

confirms the increase of the phenol-type yield with increasing NOx-concentration

observed for p-xylene (see above discussion) also for the TMB.

5.4.2 Comparison to the results from benzene

The high NOx concentration range

The NOx dependent considerations of the phenol yield from benzene lead to the

extension of Equation 4.2 (applicable under atmospherically relevant NOx concen-

trations) to Equation 5.1 (see Section 4.3.1 and Section 5.3.2).

Similarly to the benzene system, the yields of phenol-type products from p-xylene

and TMB were observed to depend on the NOx-concentration when the yields

from this work are compared to literature values (see above). This is most ob-

vious for the p-xylene, where more data is available in the literature (see Table 5.5).

The mean value of ΦDMP =18.8± 3.8% [Atkinson et al. 1991] is significantly higher

than the other values. However, from the scatter in their plotted data (Figure 2 of

Atkinson et al. [1991]) the yield rather ranges between 10.6% and 23.5% and shows

a clear tendency to increase towards higher NOx-values. Qualitative evidence for

tendentially higher phenol-type yields from p-xylene at elevated NOx-concentrations

were further reported by Wiesen [1995]. In the context of the results from benzene

this behavior seems to be in contradiction with Equation 5.1 from which the in-

fluence of NO is expected to reduce the phenol-type yield also for the p-xylene.

Nevertheless, the fact that ΦDMP from p-xylene increases by about a factor of 2

with the levels of NO2 increase points to a more effective formation of phenol-type

products from reaction (10) in Figure 2.1 for p-xylene as compared to benzene.

The apparently reduced influence of NO for p-xylene is not in contradiction with

Equation 5.1 but may rather reflect different experimental conditions and a higher
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ΦDMP,10 in the case of p-xylene. From the raw-data given by Atkinson et al. [1991]

the phenol yield from reaction (10) is estimated ΦDMP,10=40% for p-xylene.

For toluene, the yield of o-cresol was found to increase with increasing con-

centrations of NOx [Atkinson and Aschmann 1994]. Under NOx-free conditions

the o-cresol yield by Atkinson and Aschmann [1994] is essentially identical with

the value from [Klotz et al. 1998; Smith et al. 1998]. At NOx-concentrations of

≈ 3 ppm and ≈ 14 ppm, the yield of o-cresol increased to about (14.5± 0.7)% and

(16.0± 0.8)%, respectively [Atkinson and Aschmann 1994]. Similar conclusions

were drawn by Bierbach [1994] who observed comparable, though slightly lower, o-

cresol yields ΦoCRE than Atkinson and Aschmann [1994] (ΦoCRE =(14.3± 2.5)% at

[NOx] = 20 ppm, ΦoCRE =(18.8± 1.5)% at [NOx] = 40 ppm, ΦoCRE =(23.3± 2.5)%

at [NOx] = 75 ppm). Similarly to p-xylene, this data points towards an effective

o-cresol formation from the reaction of the toluene-OH adduct with NO2. Thereby,

the values of Bierbach [1994] most likely represent lower-limit values since a

significant influence of wall-reactions was observed. The further discussion is

primarily based on the values of Atkinson and Aschmann [1994] where the explicit

concentrations of NO and NO2 were specified. In a first approximation the results

on o-cresol were scaled by a factor of 1.5 to calculate the overall sum of cresol-

isomers. This generalization of the o-cresol data seems to be a feasible approach,

although it may slightly overestimate the cresol-yield since the NO2-reaction forms

m-cresol less effective than the other isomers [yield-ratios of o-, m- and p-cresol

(isomer/sum-of-isomers) determined by Klotz et al. [1998] under conditions with

negligible NOx-influence (o:m:p= (67± 12):(15± 4):(18± 4)) were compared to the

respective ratios determined by Gery et al. [1985] under conditions of influencing

NOx-reactions (o:m:p= (81± 9):(2.5± 2.1):(17± 7))]. Since the major product is

o-cresol the error in this interpolation is estimated < 15%. The overall sum of

cresol yields [Atkinson and Aschmann 1994] is hence supposed to vary between

21.8% and 24% over the specified NOx-range. Given this variability, the cresol

yield from reaction (10) is estimated ΦCRE,10=40% also for toluene.

In Table 5.6 the values of the kinetic parameters that enter in Equation 5.1 are

listed for benzene, toluene and p-xylene. The benzene data [Bohn and Zetzsch 1999]

was already specified in Section 4.3.1 and was included in Table 5.6 for a better

comparison with the values of toluene and p-xylene. Toluene is the only alkyl-

substituted aromatic compound for which the elementary kinetic data (Keq, ktot and
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k12) as yet is available [Bohn 2001]. The ring-retaining yields of toluene have been

subject to a previous study [Etzkorn 1998; Klotz 1998] and literature data on the

cresol-yields (here considered as the sum of all isomers) was used [Klotz et al. 1998;

Smith et al. 1998] to estimate a value for kphenol, consistent with the results from

Bohn [2001]. For the p-xylene system no experimental data so-far is available for

the parameters Keq, ktot and k12. The values listed in Table 5.6 for the p-xylene

were estimated from analogy considerations to benzene and toluene using the data

from Andino et al. [1996] and Koch et al. [1993]. Slightly higher values for Keq are

expected for p-xylene as compared to toluene if the relative energy data from both

compounds (reaction-coordinate diagrams by [Andino et al. 1996]) are compared.

Similarly, the value of ktot is expected higher for p-xylene from a relative compari-

son of the rate-constants for the reaction of the aromatic-OH adduct with oxygen

[Koch et al. 1993]. The value of k12 was adopted from toluene.

The data from this work are also included in Table 5.5 and the yields of phenol-type

compounds from benzene (phenol), toluene (cresol-isomers) and p-xylene (2,5-DMP)

were calculated from Equation 5.1. The resulting phenol-type yields are plotted in

Figure 5.2 as a function of the NOx-concentration. In the upper part of the Figure

two lines were drawn for each educt (one solid and one dotted line). Solid lines

indicate phenol-type yields that were calculated assuming equal amounts of NO and

NO2 ([NOx] = 2 · [NO]=2 · [NO2]). Dotted lines indicate yields that were calculated

assuming that all NOx corresponds to NO and the effect of NO2 hence is negligible

([NOx] = [NO], [NO2] = 0 ppb). In the lower part of the Figure the solid lines cor-

respond to the lines in the upper part, re-drawn here to facilitate comparison with

the dashed lines. Dashed lines indicate the yields as calculated assuming that all

NOx corresponds to NO2 and the effect of NO hence is negligible ([NOx] = [NO2],

[NO]=0ppb).

The range of scatter observed for the phenol-type yields from benzene

[Atkinson et al. 1989] (see Section 5.3.2), toluene [Atkinson and Aschmann 1994]

and p-xylene [Atkinson et al. 1991] (see above) is thereby well reproduced from the

solid lines for the NOx-ranges employed in these studies (typically between 1 ppm

and 20 ppm). Further, the cresol-yields of Bierbach [1994] are reasonably fit for

the value at [NOx] = 20 ppm (see above). At higher NOx-concentrations (between

40 ppm and 75 ppm) the calculated cresol-yields are lower than their measured data.

This discrepancy can in principle be explained from the uncertainties in the rate-

constant data for the NOx-reactions (k10 and k12 in Table 5.6) and is reflected in

the error of the value of Φphenol,10 listed in Table 5.6.
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Figure 5.2: The NOx-dependence of the phenol-type yields from benzene, toluene

and p-xylene as calculated from Equation 5.1 using the kinetic data from Ta-

ble 5.6. The NOx in this plot corresponds to three different scenarios: (solid line)

[NO]= [NO2]; (dotted line) [NOx] = [NO]; (dashed line) [NOx] = [NO2] (see text).

The constant yields obtained for the atmospherically relevant low NOx-range were

discussed for benzene already in Section 5.3.2. They are confirmed constant also

for the toluene and p-xylene though over a slightly extended NOx-range. The com-

parison of the two lines drawn for each aromatic educt in the upper part indicate,

that the influence of NO leads to a reduction of the phenol-type yields for all three

compounds. As it is seen in the lower part of Figure 5.2, the influence of NO2 is ob-

served to increase the phenol-type yields from toluene and p-xylene. This contrasts

with the behavior of benzene and is in agreement with the experimental results.

The results point to significantly higher values of Φphenol,10 for the alkyl-substituted

aromatic compounds as compared to benzene.

The formation mechanism of 2,5-dimethylphenol

The significant temperature dependence of the yields of 2,5-DMP (see Section 4.3.4)

tends to confirm the results from benzene, that phenol formation proceeds directly
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from the reaction of the aromatic-OH adduct with oxygen (pathway (3) in Fig-

ure 2.1). However, no enthalpy data is as-yet available for the p-xylene system and

this conclusion at present is based on the enthalpy data of benzene [Lay et al. 1996]

(see Section 4.3.4).

5.4.3 Differences under NOx-free conditions

In those experiments where several ppm of H2O2 were added as a source of

OH-radicals (radical-source (4), see Section 3.4.4) systematically higher yields of

phenol-type compounds were observed from benzene (see Table 5.4) and p-xylene

(see Table 5.5). These higher phenol-type yields are consistent with the results

observed previously [Seuwen and Warneck 1996; Bierbach 1994; Becker et al. 1997]

in the toluene/H2O2 system, where more than two times higher cresol yields have

been observed. Bierbach [1994] observed the yields of cresol-isomers to increase with

higher amounts of H2O2 were present in the reaction-system and concluded that the

cresol-yields back-interpolated to atmospheric conditions should not be significant.

Similar results were observed byWiesen [1995] for the 2,5-DMP yield from p-xylene

(see also [Becker et al. 1997]). However, this is in contrast to the results of various

other studies on the phenol-type-yields from toluene [Atkinson and Aschmann 1994;

Klotz et al. 1998; Smith et al. 1998] and p-xylene (see Table 5.5) where comparable

yields were obtained in the presence and absence of NOx and the yields are found

to be non-negligible. Although the higher phenol-type yields from benzene and

p-xylene observed in the presence of H2O2 in this work tend to confirm the results

described above it should be noted, that for benzene (see Table 5.4) and p-xylene

(Table 5.5, [Wiesen 1995] and references therein) considerable scatter is visible

among the phenol-yields determined in the absence of NOx.

One possible explanation for the differences in the yields may be linked to the

presence of H2O2. This radical-source may influence the formation of phenol-type

products via reactions involving H2O2 or HO2-radicals (which are expected to form

in considerable amounts). Reaction rate-constants for the reaction of the benzene-

OH adduct with H2O2 (kH2O2 ≤ 1·10−14 cm3·(molec·s)−1 [Bohn and Zetzsch 1999])

and HO2 (kHO2 =(7± 4) ·10−11 cm3·(molec·s)−1 [Bohn et al. 1999]) however indi-

cate that both reactions are too slow in order to contribute significant amounts of

phenol under the experimental conditions of this work. For example, for a 10%

change in the phenol-yield from benzene more than 220 ppm of H2O2 or 30 ppb of

HO2-radicals were needed. However, the concentrations of both species were lower
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by more than a factor of ten under the experimental conditions employed in this

work. Consequently, the formation of additional phenol from the aromatic-OH

adduct via these reactions can be ruled out. However, these pathways become

important under different experimental conditions [Bierbach 1994; Wiesen 1995;

Seuwen and Warneck 1996]. It is concluded, that the presence of H2O2 is not

directly responsible for the observed higher phenol yield under NOx-free conditions.

An explanation for the higher phenol yields in the absence of NOx can be found

on the basis of a single assumption: the reversibility of the non-phenol-forming-

loss-processes from equilibrium 2/3, i.e. reactions (8) and/or (9) in Figure 2.1.

Both pathways may form the bicycloalkyl radical which at present is considered to

decompose at an almost negligible rate [Lay et al. 1996]. Further reversible addition

of oxygen is thought to give the bicycloperoxy radical. However, unless converted

into the respective oxy radical (through reaction with another peroxy radical or NO),

decomposition via the bicycloalkyl radical may in principle yield back the species

2/3 (in Figure 2.1). With the above assumption the phenol yield becomes dependent

on the peroxy radical concentration under conditions when the overall lifetime of

the bicycloperoxy radical (and other peroxy radicals) is considerably larger than the

lifetime of the bicycloalkyl radical with respect to decomposition. In the absence

of NOx and in the presence of low radical concentrations the phenol yield should

increase. Indeed, the variable pTALD yield observed for experiment PXY7 indicates

that peroxy + peroxy-radical reactions were actually in competition with peroxy-

radical + NO reactions. On the basis of the above assumption the higher yield of

phenol-type compounds observed in this experiment as in experiment BE14 can be

understood in terms of additional phenol which was formed via the known pathways

(see Section 4.3.4 for benzene; Section 4.4.2 for p-xylene). On the other hand, lower

phenol yields [Bjergbakke et al. 1996; Berndt et al. 1999] may be explained from

high radical concentrations (see discussion of this data in Section 5.3.1).

At present, difficulties in the exact quantification of the low NOx-concentration in

the presence of considerable amounts of H2O2 (variable with time) limit the further

discussion of these results. The phenol formation in the absence of NOx is subject

to ongoing investigations.
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5.5 The glyoxal yields from BTX

In this Section, the separation of the primary and the overall glyoxal yield described

in Section 4.6 is discussed in the context of available literature data. In Section 5.5.1

the various pathways - proposed or identified - in the literature to form glyoxal are

discussed (see also Section 4.6.4 on the identification of the bicycloalkyl-radical path-

way). In Section 5.5.2 the negligible secondary glyoxal formation (see Section 4.6.2)

is quantitatively understood. Finally, in Section 5.5.3 the glyoxal yields from this

work are compared to the available literature data.

5.5.1 Precursors for the formation of glyoxal

In Figure 5.3 several possible pathways resulting in the formation of glyoxal are

shown for the toluene system. In principle all five intermediates 3-8 formed from

the reaction of the toluene-OH adduct with oxygen may result in glyoxal, either as

a primary product 10a or a higher-generation product 10b. The experimentally

identified products are shown in round-edged boxes, and the products that were

demonstrated to yield glyoxal in the laboratory are shown on a shaded background.

The thick arrows indicate the ring-cleavage pathway in agreement with the results

of this study. Similar schemes can be adapted for the other aromatic compounds.

Phenols 4 are highly reactive towards the OH- and NO3-radical. Despite the im-

portance of NO3-radical reactions for these compounds (see Sections 4.4, 4.8 and

7) the principal fate of phenol will be reaction with the OH-radical. The major

primary products from this reaction are dihydroxybenzenes, nitrophenols and ben-

zochinones [Oliaru et al. 2000]. Only a minor fraction (less than 10%) may undergo

ring-cleavage and thereby lead to the formation of glyoxal as a secondary product

10b.

The formation of a peroxy-radical 3 was postulated in the late seventies

[Darnall et al. 1979], but it took until recent years for tentative experimental evi-

dence of its formation to be reported for the benzene system [Bjergbakke et al. 1996].

More recently, the existence of a peroxy-radical 3 has been proven experimentally,

though indirectly, for benzene [Bohn and Zetzsch 1999] and toluene [Bohn 2001]

by cw UV-laser long-path absorption spectroscopy. The further fate of the

peroxy-radical 3 may be intramolecular rearrangement [Bartolotti and Edney 1995]

or reaction with NO. The reaction with NO may result in the formation of

muconaldehydes (di-unsaturated 1,6-dicarbonyls; 11a,11b as primary products
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Figure 5.3: Different possible pathways for glyoxal formation from the OH-addition

pathway of toluene. In principle, any intermediate compounds 3-8 (see Figure 2.2)

may result in the formation of glyoxal as either a primary 10a or higher-generation
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yield glyoxal 10b. Similar scheemes can be adopted for the other aromatic com-

pounds.
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[Hoshino et al. 1978; Dumdei and O’Brien 1984; Yu et al. 1997]. The formation

of glyoxal 10b from muconaldehydes may proceed via OH-reaction of the hexadi-

enedials formed from benzene or the methyl-substituted derivatives of type 11a

formed from toluene and p-xylene. Moreover, the methyl-substituted derivatives

of type 11b may react with OH and form an unsaturated 1,4-dicarbonyl that

under further OH attack may form glyoxal. This indirect glyoxal formation

was demonstrated from the 2-methylhexa-2,4-dienedial 11b to proceed through

the further OH reaction of butenedial 12 [Klotz et al. 1995]. For both, the mu-

conaldehydes [Klotz et al. 1999] and the unsaturated 1,4-dicarbonyl-type products

[Sørensen and Barnes 1997; Graedler and Barnes 1997], photolysis competes with

OH-reaction and only the OH-reaction of the latter yields glyoxal.

The bicycloalkyl-radical 7 may form from the peroxy-radical 2 through intramolec-

ular 1,3-oxygen-bridge formation and has in fact been identified as one of the three

likely intermediates to form on the basis of density-function-based-calculations on

the reaction of the toluene-OH adduct with oxygen [Bartolotti and Edney 1995].

The bicycloalkyl-type radicals 3 can add additional O2 and then react with NO

to form the respective alkoxy-radical. Alternative pathways are in principal pos-

sible [Atkinson et al. 1980] though considered non-operative [Andino et al. 1996;

Atkinson et al. 1980] (see Section 5.6). The alkoxy-radical can further decompose

in a sequence of two unimolecular decomposition steps into two radicals that

subsequently yield an α-dicarbonyl (glyoxal 10a from benzene; glyoxal 10a

and methylglyoxal (not shown) for alkylsubstituted aromatics) and an unsatu-

rated 1,4-dicarbonyl compound 12,13, respectively, as primary products. The

following 1,4-dicarbonyls of type 12,13 have been experimentally identified:

butenedial 12 [Besemer 1982; Shepson et al. 1984; Dumdei and O’Brien 1984;

Dumdei et al. 1988; Bierbach 1994; Yu et al. 1997; Smith et al. 1998] and 4-oxo-

pentenal 13 [Shepson et al. 1984; Dumdei and O’Brien 1984; Dumdei et al. 1988;

Bierbach 1994; Yu et al. 1997; Smith et al. 1998] from toluene, as well as 2-methyl-

butenedial (not shown) [Becker et al. 1997; Smith et al. 1999] and 3-hexene-

2,5-dione (not shown) [Becker and Klein 1987; Wiesen 1995; Smith et al. 1999;

Bandow and Washida 1985; Becker et al. 1997] from p-xylene. For the unsaturated

1,4-dicarbonyl coproducts of glyoxal 10a, photolysis competes with OH-reaction.

With the exception of 3-hexene-2,5-dione the OH-reaction of the unsaturated

1,4-dicarbonyls may contribute to the secondary formation of glyoxal 10b.



5.5. THE GLYOXAL YIELDS FROM BTX 131

The epoxide-alkoxy-radical 8, the most stable of the three intermediate species

proposed by Bartolotti and Edney [1995], may either form directly when oxygen

is added to the ring or through intramolecular oxygen transfer from the peroxy-

radical 3 [Bartolotti and Edney 1995]. As primary products, stable ring-retaining

or stable long-chain (C6 to C8) ring-cleavage epoxide-type compounds 14 were

proposed [Yu and Jeffries 1997]. Experimentally, these compounds were tenta-

tively identified in product studies on different alkylbenzenes including toluene

[Yu and Jeffries 1997] and p-xylene [Kwok et al. 1997; Yu and Jeffries 1997] with

the molecular weights of the expected primary epoxide-type products 14,15 match-

ing the observed mass peaks from PFBHA-derivative GC/MS[Yu and Jeffries 1997]

and API-MS [Kwok et al. 1997] analysis. However, positive quantitative confirma-

tion of the formation of these compounds still requires standards. A secondary

formation of glyoxal 10b may result from the OH-reaction or ozonolysis of type

14 epoxides [Yu and Jeffries 1997]. Furthermore, these compounds may undergo

photolysis and yield type 15 epoxide-type products [Yu and Jeffries 1997]. Pre-

sumably, products of type 15 may further react with OH and also contribute to

the secondary formation of glyoxal. From the aldehyde-type structure of these

compounds it is likely that, as in the case of the dicarbonyls, photolytic-loss

competes with OH-reaction. However, little is known about the formation yield

and principal fate of these epoxide-type compounds 14,15 in the atmosphere.

A second epoxide-type intermediate, benzeneoxide/oxepin, and its methylated

derivatives, termed areneoxides 5/6, was postulated by Klotz et al. [1997].

The main difference between this pathway and the epoxide-alkoxy-radical 8

pathway [Bartolotti and Edney 1995] is that a stable epoxide-type species 5

and additional ”prompt HO2” are formed as primary products of the reaction

of the aromatic-OH adduct with oxygen. Apart from the tentative assign-

ment of 1,6-dimethylbenzeneoxide/oxepin (not shown) in the oxidation of o-xylene

[Shepson et al. 1984], the areneoxides 5/6 so far have not been observed experimen-

tally [Bjergbakke et al. 1996]. Even though the OH-reaction of benzeneoxide/oxepin

[Klotz et al. 1997] may result in the formation of the epoxide-alkoxy-radical 8,

the only products identified from this reaction are muconaldehydes 11a,11b

[Klotz et al. 1997]. The further fate of the muconaldehydes 5/6 and the pathways

presumably leading to secondary glyoxal 10b are discussed above.
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The primary glyoxal 10a yield was separated from further glyoxal 10b formation

via stable intermediate compounds in this work (see Section 4.6.1). The primary

glyoxal 10a yield is high in any investigated system (see Table 4.8), indicating

that fast ring-cleavage, involving the bicycloalkyl-radical intermediate 7, is a major

operative ring-cleavage pathway for aromatic hydrocarbons, i.e. BTX.

5.5.2 Photolytic processes

As indicated in Figure 5.3 the principal fate of precursors for secondary glyoxal 10b

is either OH-reaction or photolysis. Table 5.7 gives an overview of the available

kinetic data for the OH-reaction and photolysis of likely glyoxal precursors and gly-

oxal. The photolysis-frequencies given were scaled relative to JNO2 to reflect the

experimental conditions during the experiments, as described in the notes of Ta-

ble 5.7.

For butenedial 12 and the 4-oxo-pentenal 13, the measured values for the photolysis-

frequency [Sørensen and Barnes 1997] correspond to the cis-isomers. In the fol-

lowing discussion no difference for the trans-isomer is assumed. Photolysis and

OH-reaction will be the prominent loss-processes for the two compounds. Under

the employed experimental conditions photolysis was found to be extremely fast

(photolytic lifetimes are only of the order of ten minutes) for both compounds,

dominating the OH-reaction by a factor of five. Only a small fraction of about

15% may undergo OH-reaction and thereby yield some secondary glyoxal 10b. As-

suming unity yield for the glyoxal formation from this reaction, secondary glyoxal

10b would still be in the range of the experimental error. Since the formation of

maleic-anhydrid is an alternative pathway of this reaction [Bierbach et al. 1994] the

secondary glyoxal 10b yield should be even lower.

The atmospheric chemistry of the 2-methyl-butenedial is unknown at present. Nev-

ertheless, it is likely from the structural similarity of this compound with butenedial

that photolysis will be the dominant fate in the presence of sunlight. Though the

OH-reaction may be faster than that of butenedial 12, the secondary yield of glyoxal

from 2-methyl-butenedial is expected to be well below unity and thus should not

significantly contribute to secondary glyoxal formation.

For 3-hexene-2,5-dione, the listed photolysis-frequency [Graedler and Barnes 1997]

corresponds to an equilibrium mixture of E/Z-isomers with a measured E/Z-ratio

of 1/2. This ratio was used to estimate an effective OH-reaction rate-constant,

given in Table 5.7. In addition, reaction with ozone may be of importance for the
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3-hexene-2,5-dione [Liu et al. 1999]. On the basis of the ozonolysis rate-constant

kO3=3.6 · 10−18 cm3(molec·s)−1 and about 300 ppb of ozone, this pathway may con-

tribute about 10% to the total loss of 3-hexene-2,5-dione, making reaction with OH

its dominant fate. From the OH- and O3-reactions, however, methylglyoxal is ex-

pected to be formed primarily [Bierbach et al. 1994] and glyoxal 10b is expected to

be a minor product. In summary, secondary glyoxal formation from 3-hexene-2,5-

dione should be insignificant.

The EZ-2,4-hexadienedial in the presence of sunlight is found to rapidly isomerize

into the EE-isomer (similar to 11) [Klotz et al. 1999]. From the described pho-

tolytic behavior of the EE-2,4-hexadienedial [Klotz et al. 1999] loss through OH-

reaction will be the dominant removal process for this isomer. Hence, high yields of

hexadienedials were expected to result in significant amounts of secondary glyoxal

10b in the benzene system. The negligible secondary formation of glyoxal observed

from benzene is thus an indicator that hexadienedials were not formed in signifi-

cant amounts under the experimental conditions employed in this work. From the

experimental error of the measurements (6.6% for the overall glyoxal yield from

benzene) an upper-limit of the formation yield of hexadienedial-type compounds

can be estimated to be < 8%. Similarly, the EE-2-methyl-2,4-hexadienedial (11b in

Figure 5.3) expected to form from toluene will primarily react with the OH-radical

yielding butenedial 12 as primary product. Hence, the secondary formation of gly-

oxal 10b from this compound should not be observable due to the rapid photolysis

of butenedial 12 under the employed experimental conditions.

Overall, the negligible contribution of secondary glyoxal 10b observed from BTX

(see Section 4.6.2) can be understood from the rapid photolysis of the unsaturated

1,4-dicarbonyls. This result contrasts with the predictions made by state-of-the-art

chemical models that up to 40% of the glyoxal should be formed as secondary gly-

oxal. Possibly, photolysis is underestimated by these models.

Secondary glyoxal 10b formation may, nevertheless, become important if under dif-

ferent experimental conditions OH-reactions dominate over the photolytic-loss of

glyoxal precursors.

5.5.3 Comparison with literature values

In Table 5.8 the glyoxal yields of this study are compared to the available litera-

ture values. The values of this work are given as average values of the data from

Table 4.8. The error includes the uncertainty of the σ of glyoxal. The values are in
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general found to be comparable to the reported upper-limit values or even above.

A direct comparison to the listed values suffers the differences in the experimental

conditions, that have been characterized in Table 5.8 in terms of the employed NO-

and NO2 concentrations. An additional uncertainty in the direct comparison of the

data obtained from this work with literature values arises from the fact, that most

studies did not correct for secondary loss of glyoxal via OH-reaction and photolysis.

Excellent agreement is found for the p-xylene system, with the value of a recent

study [Smith et al. 1999] being virtually identical to the value from this work. The

NOx-concentrations employed by Smith et al. [1999] actually overlap with the NOx-

concentration employed in this work. In addition, excellent agreement is observed

with the value of ΦGLY =36% determined by Becker and Klein [1987] in the absence

of light. In the same study a significantly lower glyoxal yield of ΦGLY =10% was

observed in the presence of light. The reason for this discrepancy is not immedi-

ately obvious and may be found in different experimental conditions. Unfortunately

a further comparison with the data of this work is not possible due to the limited

information about their experimental conditions. In an attempt to re-investigate the

glyoxal yield Wiesen [1995] determined a yield of (9.7± 1.8)%C (per cent carbon)

and concluded that a direct comparison with the value from Becker and Klein [1987]

was not possible due to differences in the experimental conditions. Agreement was

reported with the value by [Tuazon et al. 1984]. However, if their value is multiplied

by 4 in order to obtain molar yields, the value agrees well with the value of this work.

As is apparent from Table 5.8 studies that employed elevated concentrations of NOx

(several ppm) determined tendentially lower glyoxal yields [Tuazon et al. 1984;

Bandow and Washida 1985; Tuazon et al. 1986]. As discussed in Section 5.4.2,

the p-xylene system is the less sensitive among the BTX species towards the

NOx-influence in the formation of ring-retaining, i.e. phenol-type compounds.

The well agreement of the glyoxal yields from p-xylene between this work and

Smith et al. [1999] (mean NOx concentrations are about five times higher than

in this work) tends to confirm this result also for a ring-cleavage product. The

constant glyoxal yield over the range of NOx-concentrations employed in this work

indicates that the ring-cleavage pathways from p-xylene are essentially uninfluenced

from the NOx-concentration up to roughly 1 - 1.5 ppm of NOx.

In fact, for toluene the differences in the glyoxal yields from this work and

Smith et al. [1998] (mean NOx-concentrations are about three time higher than in
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Table 5.8: Comparison of the glyoxal yield with literature values.

Compound NO NO2 glyoxal yield Reference

[ppm] [ppm] ΦGLY [%]

Benzene < 5 ≤ 1 - 8 a 20.7± 1.9 [Tuazon et al. 1986]

< 0.01 - 0.1 < 0.01 - 0.12 35.9± 9.6 this work

Toluene 1.9 - 4.7 < 4.2 b 8.0±n.n. ∗ [Shepson et al. 1984]

< 5 ≤ 1 - 8 a 11.1± 1.3 [Tuazon et al. 1984]

≈ 4.5 - 20 c 9.8±n.n. ∗ [Gery et al. 1985]

< 0.17 - 1.5 0.5 - 1.8 d 15.0± 4.0 [Bandow et al. 1985]

< 5 ≤ 1 - 8 a 10.5± 1.9 [Tuazon et al. 1986]

< 0.9 0.05 - 0.85 a 20.3±n.n. ∗ [Dumdei et al. 1988]

< 0.075 - 0.42 0.046 - 0.6 23.8± 2.5 [Smith et al. 1998]

< 0.01 - 0.1 < 0.01 - 0.09 34.4± 11.5 this work

p-Xylene < 5 ≤ 1 - 8 a 12.0± 2.0 [Tuazon et al. 1984]

≤ 1.5 ≥ 0.5 24.0± 2.0 [Bandow and Washida 1985]

< 5 ≤ 1 - 8 a 22.5± 3.9 [Tuazon et al. 1986]

ppm-range e 36.0±n.n. g [Becker and Klein 1987]

ppm-range e 10.0±n.n. h [Becker and Klein 1987]

NOx-free 14.0± 6.0 [Barnes et al. 1991]

0.25 - 1.08 0.34 - 0.7 f 39.4± 11.0 [Smith et al. 1999]

< 0.01 - 0.82 < 0.01 - 0.25 35.8± 8.1 this work

NOx-free
i 9.2± 1.4 this work

∗ no number.
a author estimate: NO2 concentration range.
b author estimate of the final NO2 concentration.
c range of the initial NOx-concentration.
d author estimate of the final NO2 concentration (run#3).
e the concentrations were not further specified.
f final NO2 concentration for experiment pX61004 (Smith et al., 1999).
g OH-radicals generated from PNA in the dark.
h determined in a p-xylene/NOx-system in the presence of light.
i conditions: initially NOx-free, several ppm of H2O2 present, see Section 5.5.4.
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this work) are observed larger. Further, the glyoxal yields from studies that em-

ployed NOx-concentrations in the several-ppm-range tends to be lower for toluene

(8%≤ΦGLY ≤ 15%) as compared to the p-xylene system (12%≤ΦGLY ≤ 24%).

Bandow et al. [1985] systematically varied the initial NO-to-NO2 ratio in their ex-

periments. Though they finally averaged their data and do not discuss explicitly the

dependence on the NOx-concentration, their ΦGLY -values vary by a factor of almost

two. A systematic dependence on the employed experimental conditions on first

sight is not obvious (see Table 2 of their work). However, the highest glyoxal yield

was observed in the experiment with lowest NOx (ΦGLY =20% , [NOx] = 0.67 ppm).

This value is in reasonable agreement with that from Smith et al. [1998] which was

determined under comparable, though slightly lower, NOx-concentrations. Fur-

ther, from the two experiments that Bandow et al. [1985] carried out at a NOx-

concentration of 2 ppm, the experiment with initial NO being in excess over NO2

(ratio of [NO]/[NO2] = 3) resulted in a yield of ΦGLY =15% while the experiment

carried out with NO2 in excess over NO (intial [NO]/[NO2] = 0.33) resulted in

ΦGLY =11%. In fact, this lower-most glyoxal yield is in good agreement with the

average yield obtained from the other studies that employed NOx-concentrations

of several ppm. These lower glyoxal yields hence seem to reflect the influence of

reactions involving NOx rather than to be due to experimental scatter. The depen-

dence on the ratio of [NO]/[NO2] may be taken as an indication that once NOx-

reactions become important, the NO2-influence is more pronounced than that of

NO with respect to a reduction of the glyoxal yield. From a comparison of the

values of [Bandow et al. 1985; Smith et al. 1998] and this work it appears, that

NOx-reactions reduce the glyoxal yield already at NOx-levels between 500 ppb to

1 ppm for toluene.

In the case of benzene only one study is available for comparison. In the study by

Tuazon et al. [1986] considerably higher NOx-concentrations were employed. How-

ever, it is the only study that explicitly corrected for secondary loss of glyoxal via

OH-reaction and photolysis. The differences to the results of this work are sig-

nificant. Interestingly, the observed difference in the glyoxal yields for benzene

is smaller then that observed for the toluene system and is rather comparable to

that observed for p-xylene (see above). The similarity of the NOx-influence for

benzene and p-xylene seems to be in contradiction with benzene being the most

sensitive system towards these NOx-reactions. However, in the presence of high

NOx-concentrations [Tuazon et al. 1986] the peroxy-radical (intermediate 3 in Fig-

ure 2.1) will react with NO and most likely form hexadienedials. The glyoxal for-



138 CHAPTER 5. DISCUSSION

mation from the further OH-reaction of these compounds is expected to occur in

high yields (see Section 5.5.2). Hence it is likely, that glyoxal in their study will

form from essentially different pathways as in this work. However, the lower glyoxal

yields observed by Tuazon et al. [1986] tend to confirm the discussion on toluene,

that the influencing NO2-reaction does not result into the formation of glyoxal in

high yields.

Table 5.8 gives convincing evidence that lower glyoxal yields were observed for BTX

at elevated NOx-concentration (several ppm). With respect to the ring-retaining

product yields from BTX and TMB (see Section 5.4.2) the influence of NOx-reactions

was only identified for the phenol-type compounds but not for the aldehyde-type

compounds. Since phenols and glyoxal both are formed from the OH-addition re-

action to the aromatic ring, the influence of NOx reactions on the glyoxal forming

pathways is in principle in-line with the results obtained for the phenols. However,

the analogy to the ring-retaining products seems not to be straightforward. More-

over, the direct comparison of the glyoxal yields suffers various uncertainties such as

(1) unaccounted secondary loss-reactions of glyoxal, (2) possible differences in the

glyoxal forming chemistry as well as (3) possible differences in the calibrations. A

systematic study of the NOx-influence of ΦGLY is therefore desirable.

5.5.4 Differences under NOx-free conditions

In experiment PXY7, where several ppm of H2O2 were added as a source of OH-

radicals (radical-source (4), see Section 3.4.4) an about a factor of four times lower

glyoxal yield was observed from p-xylene (see Table 5.8). The lower glyoxal yield is in

reasonable agreement with the value by Barnes et al. [1991] which was determined

in the absence of NOx. However, it should be noted that the consistency among the

lower glyoxal yields from both studies contrasts with the discrepancies observed for

the 2,5-DMP yields (see Section 5.4.3). Nevertheless, it appears that under condi-

tions of low NOx, where peroxy + peroxy-radical reactions are in competition with

peroxy-radical + NO reactions lower glyoxal yields are observed. The confirmation

of this result in the absence of H2O2 is subject to ongoing investigations.
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5.6 The formaldehyde formation from toluene

Formaldehyde was identified in Section 4.7 to form as a secondary product from

the OH-radical initiated oxidation of toluene. The distincly different behavior of

the formation of formaldehyde and glyoxal further confirms that the separation of

primary products from secondary products that are formed from secondary reactions

of rapidly reacting stable intermediate compounds indeed has been demonstrated in

this work (see Section 4.6 and Section 5.5.1).

5.6.1 Evidence for short lived stable intermediates

An efficient formaldehyde production was identified in Section 4.7 to become opera-

tive already shortly after the start of the experiment shown in Figure 4.19. The fact,

that formaldehyde is formed rather quickly as a secondary product from toluene indi-

cates that the formaldehyde-precursors must be rather short-lived stable intermedi-

ate compounds. The overall lifetime of the intermediate with respect to OH-reaction

and photoysis was identified to be of the order of 10minutes (see Section 4.7).

Potential intermediates with comparable lifetime are the likely co-products of the

α-dicarbonyls, listed in Table 5.7. For toluene, the two γ-dicarbonyl-type co-

products are butenedial (intermediate 12 in Figure 5.3) and 4-oxo-pentenal (in-

termediate 13 in Figure 5.3). Both compounds have been identified in various

product studies on the OH-radical initiated oxidation of toluene (see Section 5.5.1).

However, so-far only two studies are available where the yields of butenedial

12 (ΦBUDIAL=0.5 - 1% [Shepson et al. 1984; Dumdei and O’Brien 1984]) and 4-

oxo-pentenal 13 (ΦOPEAL≈ 3.1 -8.1% [Dumdei et al. 1988; Smith et al. 1998]) have

been quantified, respectively. These yields are significantly lower (about a factor of

ten to fourty) than the simultaneously determined yields of the α-dicarbonyls. From

the discussion in Section 5.5.2 this may in part be due to the fact that the dominant

photolytic sink of the γ-dicarbonyls (see Section 5.5.2) was not corrected in either of

these studies. Under experimental conditions representative for experiment TOL4,

both compounds are expected to live about ten minutes, see Table 5.7. The tempo-

ral coincidence with the delay in formaldehyde formation in the reaction-system is

striking.

Experimental evidence for the formation of formaldehyde as a major product from

4-oxo-pentenal 13 has been derived from Bierbach et al. [1994] in the irradiation of

4-oxo-pentenal 13 with light from VIS lamps (λmax=360 nm) in the laboratory. In

the same study, no formation of formaldehyde was reported from butenedial 12. In a
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further study, using natural sun-light as light source, Liu et al. [1999] found consid-

erable amounts of formaldehyde to form from 4-oxo-pentenal 13. Considerably lower

formaldehyde amounts were observed to form from butenedial 12 (see Figures 3 and

4 of their work) and possibly may be attributed to secondary reactions of glyoxal 10b

in their study. From the γ-dicarbonyls listed in Table 5.7 only the 4-oxo-pentenal 13

hence is expected to yield formaldehyde on a sufficiently fast time-scale. The 4-oxo-

pentenal may form formaldehyde via the formation of methyl-radicals (CH3·) upon
photolysis and OH-reaction. The formation of formaldehyde from methyl-radicals

in air is expected to proceed at unitiy yield [Bandow et al. 1985] (on a time-scale

of miliseconds under the employed experimental conditions of this work). The ex-

pected co-product of the methyl-radicals may result into the formation of maleic

anhydrid [Bierbach et al. 1994; Forstner et al. 1997].

The formaldehyde formation on a short time-scale in principle is a useful tracer sub-

stance to determine the role short-lived non-radical intermediate compounds such

as e.g. 4-oxo-pentenal 13. The following argument is based on the hypothesis that

4-oxo-pentenal 13 is the single formaldehyde precursor of the Reaction-sequence 4.3

in the toluene system. Equation 5.2 describes the link of the yield of 4-oxopentenal

13 (ΦOPEAL) to the observed formaldehyde concentration from toluene:

ΦOPEAL =
[HCHO]corr · ΦBALD

[BALD]corr
· JOPEAL + kOH,OPEAL · [OH]

ΦHCHO,J · JOPEAL + ΦHCHO,OH · kOH,OPEAL · [OH]
(5.2)

where the first ratio denotes the formaldehyde yield as calculated from the rela-

tive yield plot (see above), JOPEAL and kOH,OPEAL denote the photolysis-frequency

and OH-reaction rate-constant of 4-oxo-pentenal 13, [OH] the OH-concentration,

ΦHCHO,J and ΦHCHO,OH denote the formaldehyde yields from the photolysis and

OH-reaction of 4-oxo-pentenal 13. If ΦHCHO,J =ΦHCHO,OH =1 is assumed the ob-

served formaldehyde yield from toluene (see Section 4.7) corresponds to a 4-oxo-

pentenal-yield of (ΦOPEAL=(37.2± 7.9)%), as calculated from Equation 5.2. The

measured glyoxal 10a yield in this experiment was ΦGLY =(29.8± 9.1)%. Despite,

the apparently larger calculated yield of 4-oxo-pentenal 13, both values agree within

their error limits. The high formaldehyde yield hence can be accounted for taking

4-oxo-pentenal 13 as only formaldehyde precursor.

On the other hand, any additional formaldehyde-precursor would lower the calcu-

lated 4-oxo-pentenal 13 yield. The α-dicarbonyl co-product butenedial 12 was not

observed to form formaldehyde upon photolysis or OH-reaction [Bierbach et al. 1994].
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Further, the glyoxal to methylglyoxal yield-ratios from toluene typically range be-

tween 1 and 1.4 [Dumdei et al. 1988; Smith et al. 1998; Becker et al. 1997]. On the

basis of the glyoxal yields from this work the α-dicarbonyls and their respective co-

products hence account for roughly 65% of the primary products from toluene. If

further the sum of ring-retaining products is considered, about 90% of the primary

products formed from toluene are accounted for. Further primary products may

be hexadienedial-type compounds 11a,11b. However, the low upper-limit-value

determined for the formation of hexadienedials from benzene (see Section 5.5.2)

may be taken as an indication that also the methylated derivatives, if formed from

toluene, are most likely minor pathways. Moreover, these compounds, though

highly reactive, do not react fast enough (see Table 5.7) to explain the observed

fast formaldehyde formation from toluene. Hence hexadienedials can be ruled out

to contribute substantial amounts of formaldehyde here. Finally, the epoxide-type

compounds 14,15 may contribute some formaldehyde. However, based on the above

estimate these compounds most likely constitute minor pathways in the oxidation

of toluene (≤ 10%). Little is known about the atmospheric chemistry of the epox-

ides, i.e. whether they react fast enough in order to contribute significantly to the

observed fast formaldehyde formation. Hence, 4-oxo-pentenal 13 seems to be the

only presently identified formaldehyde precursor in the oxidation of toluene which,

as was demonstrated, would in principle further allow to understand the observed

rapid formation of formaldehyde. However, additional formaldehyde was observed

in the later phase of the toluene-oxidation (see Section 4.7), indicating that further

intermediate species form formaldehyde with some delay.

Despite the uncertainties related to the atmospheric chemistry of the γ-dicarbonyls

and epoxide-compounds, the effective and fast formaldehyde formation from toluene

in principle could be understood from the formation of 4-oxo-pentenal as coprod-

uct of glyoxal. However, the fate of the bicycloalkyl-radical is presently not well

understood and may result into the formation of further glyoxal co-products. The

observation of 5-methyl-3(2H)-2-furanone as a primary product [Smith et al. 1998]

seems to support this hypothesis. Given that formation of this compound from the

bicycloalkyl-radical requires intramolecular rearrangement it is likely that further

C4- or C5-type hydrocarbons may form, which according to their molecular struc-

ture were not immediately obvious to form as coproducts of glyoxal (e.g. further

long-chain α-dicarbonyls, furan-type compounds, furandiones etc.).
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The formaldehyde data suggests two criteria for the intermediate compounds that

actually form from the toluene + OH reaction: (1) short-lived (lifetime of the order of

10minutes) and (2) efficient formation of methyl-radicals upon further degradation.

In order to elucidate the fate of the bicycloalkyl-radical the simultaneous and direct

determination of the yields of α- and γ-dicarbonyls under consideration of their

highly effective photolytic sink (ideally in the dark) is desirable.



5.7. SECONDARY ORGANIC AEROSOL FORMATION 143

5.7 Secondary Organic Aerosol formation

The results of the qualitative aerosol measurements in the photo-oxidation exper-

iments of different aromatics (see Section 4.8 for results on pXYL) indicate that

the formation of Secondary Organic Aerosol (SOA) started at a time when NO was

largely converted into NO2, and NO-levels were too low to suppress the formation

of ozone effectively. Ozone is generally assumed to play an important role in SOA

formation [Odum et al. 1997] and the role of NO3 radicals has so far been fairly

neglected. However, as was seen in Figure 4.20b NO3-radicals form simultaneously

with ozone.

The results obtained from the NO3-radical balance in the example-experiment PX10

(see Section 4.8.1) indicate that considerable levels of NO3-radicals are present at

the time SOA formation is observed. The overall time-integrated amount of NO3-

radicals that are formed and react is as high as 88 ppb. The known NO3-radical

sinks due to reaction with NO and photolysis (together ≈ 20%) and reaction with

2,5-DMP (≈ 26%) thereby only account for less than half of the NO3-reactions. Al-

though the influence of sunlight on SOA formation from the reaction of NO3-radicals

with 2,5-DMP was not yet investigated, the absence of any particle formation in the

dark (under the conditions specified in Section 4.8) indicates that this reaction is

unlikely to be directly responsible for the observed SOA formation from p-xylene.

The major fraction of 53% (47 ppb) of the overall formed NO3-radicals was lost

through presently un-identified sink-reactions. Because, the reaction with NO2, if

important at all, is a minor pathway for the NO3-radicals (< 14%, see Section 4.8)

it is likely that the predominant fraction of 39% to 53% (≈ 34 ppb to 47 ppb) of all

formed NO3-radicals are lost via the reaction with presently unknown hydrocarbons,

most likely in majority unsaturated oxidation products from p-xylene.

In order to distinguish between the role of ozone and NO3-radicals in the conversion

of NOx into NOS (not-observed species containing oxidized nitrogen, gas-phase or

heterogeneous phase), in Figure 4.20b (see Section 4.8) the calculated concentration-

time-profile of the NO3-radicals was drawn as an indicator for the simultaneous

presence of ozone and NO2. Also included was the N2O5-profile as an indicator for

the simultaneous presence of NO2- and NO3-radicals. The latter profile is observed to

exactly match the prominent decrease in ONC (ONC: Sum of NO, NO2, NO3, HNO3

and PAN-type compounds, see Section 4.8.2). The maximum N2O5 concentration

thereby is observed at the time of maximum variability in ONC (11:45 GMT). This
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is taken as an indication that NO3-radicals rather than ozone are involved into the

converion of ONC into NOS. This conclusion is further supported from the fact, that

about 70% of the overall variability of ONC took place within the about 40minutes

of reaction-time when maximum concentrations of NO3-radicals were observed. The

amount of NOx (mostly NO2) that was converted into NOS during this time-span

corresponds to 100 ppb. If the loss of ONC that was already observed during the

first period (in part due to the formation of nitrophenols and organic nitrates; nitro-

alkylbenzene-formation will be negligible under the experimental conditions of this

work, see Section 5.4.2) is interpolated, this amount corresponds to a net-loss of

80 ppb of ONC due to reactions only occuring during period 2.

Possible NO3-radical reactions that result into the formation of NOS are: (1) reac-

tion with phenol-type products to form nitro-phenols [Atkinson 1994] (2) reaction

with NO2 to form N2O5 and heterogeneous N2O5-removal on organic aerosol sur-

faces (proposed in this work). As a further reaction (3) the NO3-reaction with

presently unknown unsaturated products from p-xylene (identified in Section 4.8)

under conditions of high NO2 may lead to the formation of small amounts of di-

nitrates [Finlayson-Pitts and Pitts, Jr. 2000]. With respect to the OH- and NO3-

reaction of 2,5-DMP at present the nitro-phenol yields are unknown. However, in

Figure 4.20a the degradation pathways of 2,5-DMP were demonstrated to undergo

a change from conditions where all 2,5-DMP reacts with OH-radicals to conditions

where NO3-reactions form the predominant loss-process for 2,5-DMP. It is notewor-

thy that the time-integrated amounts of 2,5-DMP that were lost via reaction with

OH-radicals (≈ 66%) and NO3-radicals (≈ 33%) in principle reflect the approximate

relative importance of OH- and NO3-loss-reactions for this compound in the daytime

atmosphere (OH-loss:NO3-loss≈ 80:20 [Volkamer et al. 1998]), although the chang-

ing experimental conditions are not representative for the atmosphere. In fact, dur-

ing the later phase of the experiment, NO3-reactions substitute OH-radicals with

respect to the atmospherically relevant branching-ratio of 2,5-DMP loss-processes.

Similarly, the degradation pathways of the presently unknown species that were

identified to react with NO3-radicals are likely to be influenced from the changing

experimental conditions over the course of such a photooxidation-experiment. It is

interesting to note, that the moment of SOA formation thereby coincides with the

time when NO3-reactions begin to dominate the sink-reactions of 2,5-DMP.

Given the fact, that the NO3-reaction of phenol and the cresol-isomers show consider-

ably higher nitrophenol yields [Atkinson 1994] than the OH-reaction [Atkinson 1994;

Oliaru et al. 2000] the NO3-reaction may contribute considerable amounts of NOS
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(between 5 ppb and 17 ppb, depending on the nitro-phenol yield). The observation

of nitrophenols in the particle phase [Forstner et al. 1997] confirms that NOx-losses

and SOA are actually inter-linked. If further the heterogeneous reaction of N2O5

on organic aerosol surfaces effectively removes N2O5 from the gas-phase (two ONC-

molecules were lost per N2O5 molecule) this reaction in principle could contribute

up to 30% (26 ppb) of the NOS formed from NO3-reactions during period 2. Ne-

glecting any contribution from process (3) the NO3-reactions of type (1) and (2)

in sum could in principle explain about half of the NOS formed from NO3-radical

initiated reactions during period 2. The relation of the observed NOx-losses to SOA

is further supported from the high amounts of different NOS that were observed in

the particle phase [Grosjean 1984; Forstner et al. 1997; Lee et al. 2001].

The initial steps that lead to the formation of SOA are unclear at present. Given

the considerable amounts of unaccounted NO3-reactions (47 ppb) in the example-

experiment NO3-reactions may in principle be involved in the initial processes that

lead to the formation of SOA from aromatic hydrocarbons (either directly or via fur-

ther reactions of NO3-reaction products). For example, in the NO3-radical initiated

oxidation of biogenic hydrocarbons, SOA formation has been observed already at

a much lower product concentration, i.e. few ppb for β-pinene [Hjorth et al. 1999].

However, it is evident that the source-strength for the formation of NO3-radicals

in smog-chamber experiments that are typically carried out in the presence of sev-

eral hundred ppbs of NOx and ozone [Odum et al. 1997; Forstner et al. 1997] is

increased by rather two-to-three orders of magnitude as compared to the conditions

that prevail in urban air. It is concluded that the chemistry of NO3-radicals needs to

be considered if smog-chamber data on SOA formation obtained under elevated con-

centrations of NOx is extrapolated to atmospheric conditions. Given the fact that

the reaction of NO3-radicals with phenols is operative in significant amounts also

during daytime [Volkamer et al. 1998; Kurtenbach et al. 2001], the involvement of

NO3-radical reactions in SOA formation in the atmosphere can not be ruled out.
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Chapter 6

Summary and conclusions

The overall objective of this work was to obtain a better understanding of the OH-

radical initiated oxidation mechanism of benzene, toluene, p-xylene (in sum referred

to as BTX) and 1,3,5-trimethylbenzene (TMB). The results of this work can be

devided in three major parts: (1) the investigation of the ring-retaining pathways

from benzene, p-xylene and TMB (investigated products: aldehyde- and phenol-

type compounds), (2) the ring-cleavage pathways from BTX (investigated products:

glyoxal as well as formaldehyde from toluene) and (3) the formation of secondary

organic aerosol (SOA).

Within the first part of this work, the formation of ring-retaining products from

the OH-reaction of benzene (phenol: PHEN), p-xylene (p-tolualdehyde: pTALD;

2,5-dimethylphenol: DMP) and TMB (3,5-dimethylbenzaldehyde: DMBA; 2,4,6-

trimethylphenol: TMP) was investigated. In a first step missing rate-constant data

(k-values) for the OH-reaction of pTALD, DMBA and TMP were determined. In

addition, the kOH of benzaldehyde (BALD), PHEN and DMP were re-determined in

order to validate the method. Deposition of such polar compounds to the FEP-foil

(chamber walls) was found responsible for significant scatter among rate-constants

determined from individual experiments (up to 25%). The wall-loss of all the inves-

tigated compounds was characterized and taken into account resulting in a signif-

icantly reduced scatter for individual experiments (generally between 4% to 7%).

The rate-constants of the latter set of compounds were found to be in excellent

agreement with the presently recommended literature values. In the case of DMP

the experimental error of kOH could be considerably reduced as compared to the

literature value. Further, the NO3-rate-constant kNO3 of DMP was determined for

the first time and that of p-cresol (pCRE) was re-determined in order to validate

147
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the method. It was found to be in excellent agreement with recommended lit-

erature values. In addition, first estimates of the photolysis-frequencies of BALD,

m-tolualdehyde (mTALD) and o-tolualdehyde (oTALD) were determined and upper-

limit values for pTALD and DMBA could be obtained.

The kinetic data was employed to determine the product yield of the ring-

retaining products from benzene (ΦPHEN =(53.0± 6.6)%) and p-xylene

(ΦpTALD=(8.2± 2.3)%, ΦDMP =(11.6± 2.8)%). The data presented by

Ücker [1999] was re-evaluated to obtain the ring-retaining yields from TMB

(ΦDMBA=(2.7± 0.4)%, ΦTMP =(6.7± 1.0)%). In combination with the recent

results from the toluene and the TMB system [Smith et al. 1998; Klotz et al. 1998;

Smith et al. 1999] a dependence of the ring-retaining product yields (ΦRR: sum

of aldehyde- and phenol-yields) on the alkyl-substitution of the parent aromatic

became visible: the yield was highest for benzene ΦRR=53% (only phenol is

formed) and was found lower for toluene ΦRR≈ 24% and p-xylene ΦRR≈ 20% to

be lowest for TMB ΦRR≈ 7%. Both, the phenol-type yields and ΦRR decreased

when the number of alkyl-groups substituted on the aromatic ring increased. This

systematic dependence reflects the influence of the alkyl-groups on the aromatic

ring as it is already visible in the overall OH-rate-constants (see Table 3.2). The

more reactive among the investigated aromatic compounds were identified to more

efficiently break the ring.

In the following, the reaction mechanism of the ring-retaining products was inves-

tigated. Within the time-resolution of our measurements all the investigated ring-

retaining products were identified as primary products. The formation mechanism

of phenol (intermediate 4 in Figure 2.1) was identified to proceed directly from the

reaction of the aromatic-OH adduct (aro-OH) with oxygen (see pathway (3) in Fig-

ure 2.1). This pathway accounts for (80± 25)% of the overall phenol formation from

benzene. Additional phenol from the decomposition of the peroxy-radical (aro-OH-

O2) remains possible though it will be only a minor pathway. There was no evidence

for the involvement of benzeneoxide/oxepin in the phenol-formation from benzene.

The conclusion on the direct phenol-forming channel (3) is further supported by the

results obtained for the 2,5-DMP formation from p-xylene.

The ΦPHEN from benzene was determined to be more than twice as high as available

literature values. While the yield was found to decrease at high NOx-concentrations,
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the high phenol yield from benzene was found to be representative for most con-

ditions of the urban atmosphere. The decreasing phenol yields at higher NOx-

concentrations, as they are typical for most smog chamber studies, indicate a change

in the oxidation mechanism of benzene. Based on the experimental data from this

and other studies [Knispel et al. 1990; Bohn and Zetzsch 1999] the observed NOx-

dependence of the phenol yield was adequately reproduced from elementary kinetic

parameters up to about 2 ppm of NOx. The phenol yield from Atkinson et al. [1989],

which is about a factor of two lower, was understood from Equation 4.2. The differ-

ence was identified to be due to the reactions of aro-OH with NO2 and aro-OH-O2

with NO that are essentially unimportant in this study as in the atmosphere. The

results from the p-xylene system gave evidence that the NOx-influence was reduced

for this compound as compared to benzene. However, the comparison of the re-

sults of this study with available literature values, including toluene and TMB (see

Table 5.5 and Table 5.6) confirmed the influence of reactions involving NOx for all

the investigated aromatic compounds (BTX and TMB). For the high-NOx-range,

available literature values on the phenol yields from BTX were used to estimate

the phenol yields from the reaction of aro-OH with NO2 (Φphenol,10). Considerably

higher values of Φphenol,10 were derived for the alkyl-substituted aromatic compounds

as compared to benzene. It is concluded that under conditions of high NOx (several

ppm) quite different chemical mechanisms are operative.

In the second part of this work, the yields of glyoxal (GLY, intermediate

10a in Figure 5.3) were determined from benzene (ΦGLY =(35.9± 9.6)%), toluene

(ΦGLY =(34.4± 11.5)%) and p-xylene (ΦGLY =(35.8± 8.1)%). Moreover, glyoxal

was identified a primary product from the oxidation of BTX indicating that ring-

cleavage pathways involving the bicycloalkyl-radical (intermediate 7 in Figure 2.2)

are major operative pathways in the OH-initiated oxidation of aromatic compounds.

Further, formaldehyde (HCHO) was identified to form rapidly as a high-yield

secondary-product from toluene (ΦHCHO=37.2%). The yield of formaldehyde is

compatible with 4-oxo-pentenal (intermediate 13 in Figure 5.3), the respective un-

saturated 1,4-dicarbonyl-type co-product of glyoxal, being a high yield primary prod-

uct from toluene. These results give evidence that α-dicarbonyls (i.e. glyoxal and

methylglyoxal: MGLY) and unsaturated 1,4-dicarbonyls are formed from the fur-

ther reaction of the bicycloalkyl-radical. Based on typical ratios of ΦGLY /ΦMGLY

(≈ 1.2) the branching ratio for the bicycloalkyl-radical pathway was estimated 65%
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from toluene. Including further the ring-retaining pathways (see above) about 90%

of the primary reaction pathways from toluene were accounted for.

Systematic differences in the glyoxal yields were observed for BTX when the yields

from this work were compared to literature values. In analogy to the results obtained

for the phenol-type products (see above) these differences could be attributed to in-

fluencing NOx-reactions which lower the yields of glyoxal from BTX. The glyoxal

yields determined in this study were found to be constant over the range of NOx-

concentrations employed for p-xylene (≤ 1.1 ppm) and are representative for the

atmosphere for BTX.

The glyoxal formation from BTX under the experimental conditions of this study

was essentially understood in terms of glyoxal which is formed as a primary product

(primary glyoxal). The negligible contribution of pathways forming glyoxal through

the OH-reaction of stable intermediate compounds (secondary glyoxal) was found

to be consistent with the dominant photolysis of potential precursors for secondary

glyoxal, i.e. the unsaturated 1,4-dicarbonyl-type products. It further indicates that

- under the experimental conditions employed in this work - hexadienedial-type

compounds (HDD) are minor products from benzene (ΦHDD< 8%). The secondary

formation of glyoxal may nevertheless become important under different experimen-

tal conditions. Despite the fact that the atmospheric chemistry of 1,4-dicarbonyls

is widely unknown at present, the fast and effective formation of formaldehyde ob-

served from toluene is in line with the results presented by Bierbach et al. [1994]

according to which the degradation of 4-oxo-pentenal forms radical-type products.

The importance of these radical forming pathways is very likely to have important

consequences for the photooxidant formation from aromatic compounds.

In the third part of this work, substantial evidence was found that NO3-radicals

play an important role in the oxidation of aromatic compounds under simulated at-

mospheric conditions. It was demonstrated that under conditions of elevated NOx-

concentrations (several 100 ppb), as they are typically applied in smog-chamber

studies [Odum et al. 1997; Forstner et al. 1997], NO3-chemistry is closely corre-

lated with the observed NOx-losses in p-xylene/NOx/Air irradiations. However,

it is evident that the NO3-source-strength in photosmog experiments in the pres-

ence of several hundred ppbs of NOx and ozone [Grosjean 1984; Odum et al. 1997;

Forstner et al. 1997] exceeds the NO3-source-strength of the daytime atmosphere
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by two-to-three orders of magnitude. In addition, the relative importance of NO3-

radical reactions is variable in a way as it is not representative for the atmosphere.

NO3-radicals were demonstrated to be involved in the conversion of NOx into ox-

idized nitrogen compounds (ONC). The observation of ONC in the particle phase

[Grosjean 1984; Forstner et al. 1997] further indicates that an overall loss of NOx

into the particles occurs. No definite statement on the involvement of NO3-radicals

in the processes that initiate secondary organic aerosol (SOA) formation can yet be

given. However, the fact that the moment of SOA formation is delayed and coin-

cides with the moment when NO3-reactions become competitive with OH-reactions

as a sink for 2,5-DMP may be taken as an indication for such an involvement. It

was concluded that if the role of NO3-radicals in SOA formation is not understood,

the extrapolation of the results obtained from smog-chamber data to atmospheric

conditions remains speculative.

It was demonstrated that the formation of phenol-type compounds from BTX under

conditions of high NOx (ppm-range) proceeds through quite different mechanisms

as under typical NOx-concentrations that prevail in the atmosphere. Similarly, the

glyoxal yields and possibly also SOA formation are influenced under conditions of

high NOx (and ozone) as they are typical for most smog-chamber studies. The

following question arises: how representative are the degradation schemes of aro-

matic compounds developed to fit the smog-chamber data obtained at high NOx-

concentrations in order to describe the atmospheric chemistry of these compounds

in the urban atmosphere?
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Outlook

During the last few years, the understanding of aromatic oxidation has improved

principally from the joint approach of experimental and theoretical studies on aro-

matic compounds. The future experimental work should be aimed at elucidating

the phenol forming chemical mechanisms under elevated concentrations of NOx as

well as under NOx-free conditions. Similarly, a NOx dependent study of the glyoxal

yields is required. The atmospheric degradation of aromatic aldehydes requires fur-

ther investigation. In addition, temperature and oxygen concentration dependent

studies over a wider range of experimental conditions would be desirable. Moreover,

the experimental error of the glyoxal yields determined in this study is dominated by

the uncertainty of the UV-absorption cross-section of glyoxal. An improved determi-

nation of the absolute cross-section is needed. Finally, the role of NO3-radicals in the

observed NOx-losses and SOA formation in the degradation of aromatic compounds

needs further investigation.

From the data presented in this work, the atmospheric chemistry of unsaturated

1,4-dicarbonyls and possibly also the epoxide-type compounds is likely to have a

significant impact on the radical regeneration from the oxidation of aromatic com-

pounds. The chemistry of these compounds is incompletely understood at present

and requires further investigation.
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Atmospheric Implications

The results on the oxidation mechanism of the OH-reaction of BTX and TMB, as

summarized in the previous chapter, have direct implications on the formation and

degradation of airborne toxics (i.e. phenol- and dicarbonyl-type compounds) as well

as the expected photooxidant formation from aromatics.

With respect to the formation of toxic phenol-type compounds, the yields deter-

mined within this study are representative for the atmosphere. For example, the

phenol yield from benzene obtained for NOx-concentrations of several 10 ppb is es-

sentially constant. Hence, the value of ΦPHEN = (53.0± 6.6)% should be represen-

tative for the boundary layer, including most conditions of the urban atmosphere.

Under conditions with exceptionally high NOx-concentrations, i.e. near the exhaust

tubes of cars or near traffic tunnels, ΦPHEN may be lower. Benzene was demon-

strated to be the most sensitive aromatic compound among the BTX species. The

phenol-type yields from toluene and p-xylene will be essentially uninfluenced from

NOx-reactions in the urban atmosphere.

The observed direct formation mechanism of phenol-type compounds implies that

BTX species will photochemically form phenolic compounds already in the ur-

ban atmosphere. This is especially important for the alkyl-substituted aromatic

compounds which, despite the lower phenol-yields, are considerably more reac-

tive than benzene. Their atmospheric lifetime is comparably short (TMB: 1 hour;

xylenes: 4 hours, see Table 3.2) and hence these compounds will already form con-

siderable amounts of phenol close to their source of emission i.e. < 50 km dis-

tance from the source. Despite the relatively low reactivity of benzene as com-

pared to the alkyl-substituted aromatics, the high ΦPHEN indicates that consid-

erable amounts of phenol will also be formed from benzene, though on a differ-
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ent timescale (atmospheric lifetime of benzene: ≈ 2 d to several weeks). Assum-

ing a typical relative concentration among the BTX aromatics in urban air (ben-

zene:toluene:xylenes = 0.4:1:0.6, see e.g. [Ackermann 2000]; all xylenes assumed to

form phenol-type compounds with ΦDMP from p-xylene), the phenol production-

rate (kOH ·Φ(phenol−type) · [Aromatic] · [OH]) will be highest from xylenes (see also

[Volkamer et al. 1998]). In industrial air masses, where TMB concentrations may

be considerably higher, phenol-production from TMB may even exceed that of the

xylenes.

The further fate of the phenol-type compounds will be the reaction with OH- and

NO3-radicals. Based on typical daytime concentrations of OH-radicals (0.2 ppt)

and NO3-radicals (0.1 ppt) about 10% to 20% of the total radical induced daytime

phenol loss is due to NO3-reactions [Volkamer et al. 1998; Kurtenbach et al. 2001].

Recent experimental evidence for a missing phenol-sink in urban air was derived

from field measurements by Ackermann [2000] who concluded that the daytime

concentration of NO3-radicals in the urban environment may actually be higher

than in the above estimate (≈ 0.5 ppt). Under these conditions, the daytime NO3-

reaction becomes a competitive daytime phenol-sink, and in fact dominates over the

OH-loss for the cresol-isomers and 2,5-DMP. The atmospheric implications of the

NO3-reaction of phenols are twofold. First, the reaction forms HNO3 and hence con-

tributes to the acidification of the atmosphere. Second, the NO3-reaction leads to

the formation of nitro-phenol-type compounds in much higher yields as the reaction

with OH-radicals [Atkinson 1994; Oliaru et al. 2000]. The formation of phenol-type

compounds in the urban environment (see above) is hence of relevance for the for-

mation of nitro-phenol-type compounds, which are phytotoxic and have been ob-

served in the gas- and partice-phase, as well as in fogwater, rainwater, snow and in

clouds [Kelly et al. 1994; Forstner et al. 1997; Barletta et al. 2000] (and references

therein).

Of further relevance for the formation of airborne hazards in the urban environment

is the identification of a fast ring-cleavage mechanism as a major pathway from

BTX. The products formed from ring-cleavage are typically attributed the muta-

genic effects of aromatic hydrocarbon photooxidation products [Shepson et al. 1985;

Dumdei et al. 1988; Eder et al. 1994]. Since further the more reactive among the

investigated aromatic compounds tend to form higher yields of ring-cleavage prod-

ucts, considerable amounts of ring-cleavage products will already be formed close to

their source of emission.
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The impact on photooxidant formation in the troposphere requires a detailed analy-

sis based on chemical modeling [Atkinson et al. 1980; Jenkin et al. 2000]. However,

the recent model results on the TMB [Jenkin et al. 2000] were used here in order

to illustrate the relevance of the results of this study for photooxidant formation in

the atmosphere. Jenkin et al. [2000] determined the photochemical ozone creation

potentials (POCP; a concept used to rank the VOCs relative to ethene by their abil-

ity to form ozone; POCPethene=100) of the five pathways starting from comparable

intermediates as 3-8 in Figure 2.2. The bicycloalkyl-radical pathway was ascribed

by far the highest POCP value (POCP=111).

The identification of this pathway as a major pathway for the oxidation of BTX,

can explain significant amounts of photooxidants as they have been predicted to

form from aromatic hydrocarbons [Derwent et al. 1996]. Moreover, the POCP val-

ues were found to be sensitively coupled to the kinetic parameters used for the

photolysis-reactions of e.g. α-dicarbonyls [Jenkin et al. 2000]. Apart the identifica-

tion of high yields of α-dicarbonyls the importance of further photolysis reactions

(of unsaturated 1,4-dicarbonyls) becomes obvious in this study. The presently used

photolysis-frequencies of compounds like butenedial and 4-oxopentenal are under-

estimated by more than two orders of magnitude and need to be updated. Since

the photolytic pathways are likely to represent significant radical-sources (see Chap-

ter 6) this update most likely will lead to a substantial increase of the as-yet high

POCP-values assigned to the bicycloalkyl-radical pathway in the future.

On the other hand, the ring-retaining pathways were ascribed low POCP values

(POCPTMP =15). In consequence, the higher alkyl-substituted aromatic com-

pounds will form photooxidants much more efficient than benzene (per reacted

amount of aromatic compound). This is particularly true because the alkylbenzenes

are chemically transformed widely in air masses where sufficient NOx is available

to promote the photochemical formation of ozone. This may not necessarily be the

case for benzene which given its much longer residence time in the atmosphere is

sufficiently long-lived as to be transported into remote regions where not enough

NOx may still be available to promote the formation of ozone (i.e. NOx-limited

air-masses).

A fundamental aspect of the results’ relevance in the atmosphere is linked to the

fact that chemical mechanisms in the past have been developed from high-NOx smog
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chamber data. It was demonstrated in Chapter 5 that the distribution among the

oxidation products changes as levels of NOx increase. At high NOx-concentrations

(several ppm) the product spectrum is essentially changed and no longer relevant

for the atmosphere. In especially the alkylbenzenes tend to form higher yields of

phenol-type and further ring-retaining products (e.g. nitrophenols and possibly also

nitroalkylbenzenes [Atkinson and Aschmann 1994]). These ring-retaining products

are much longer lived and less effective to regenerate radicals than the dicarbonyl-

type products of ring-cleavage (atmospheric lifetimes are increased by up to two

orders of magnitude). Further, under conditions when reactions involving NOx

are in competition with oxygen in the early stages of oxidation, the yields of pri-

mary ring-cleavage products (i.e. primary glyoxal) were demonstrated to decrease,

thus reducing an efficient radical source (from the consecutive degradation of ring-

cleavage products) and thus lowering the formation of photooxidants. Consequently,

smog-chamber experiments which in the past were conducted at high-NOx concen-

trations are very likely to have resulted into a reduced photooxidant formation -

which transferred into the predictions made from chemical mechanisms developed

from such data. Unless the elementary reactions steps are known and are treated

explicitly by the model code, the in principle possible extrapolation to atmospheric

conditions remains questionable. Deviations in the oxidation routes at an early stage

together with limitations in our understanding of aromatic oxidation and the need

for ”adjusted oxidation schemes” due to limited resources in computational-power

are very likely to have resulted in a systematic underestimation of the photooxidant

formation from e.g. the alkylbenzenes in the past.

The contribution of aromatic hydrocarbons to the overall photooxidant formation

from non-methane hydrocarbons emitted into the urban atmosphere is presently

estimated ≈ 40% [Derwent et al. 1996]. From the results of this work this portion

seems to be a lower limit estimate of the role that aromatic compounds play in the

formation of photooxidants today.



Glossary

Φ molar branching-ratio (yield); units: % (mol./mol.)
Aromatic molecule containing the base-structure of benzene (BEN)
BALD benzaldehyde (C7H6O); CHO-substituted benzene
BEN benzene (C6H6); hexagonal planar-ring-molecule, simplest aromatic
BTX generally referred to as the sum of BEN, TOL and XYL

in this work also referred to as the sum of BEN, TOL and pXYL
BUDIAL butenedial (C4H4O2); unsaturated 1,4-dicarbonyl, different stereo-isomers
BUGH Bergische Universität und Gesamthochschule, Wuppertal/Germany
CEAM Centro de Estudios Ambientales del Mediterraneo, Paterna/Spain
CRE cresol (C7H8O); oCRE: ortho-cresol (2-methyl-phenol),

mCRE: meta-cresol (3-methyl-phenol), pCRE: para-cresol (4-methyl-phenol)
DMBA dimethylbenzaldehyde (C9H10O); different isomers
DMP dimethylphenol (C8H10O); different isomers
DOAS Differential Optical Absorption Spectroscopy
EUPHORE European Photo Reactor located at CEAM-Institute
FEP fluorine-ethene-propene
FTIR Fourier Transform InfraRed Spectroscopy
FWHM Full Width at Half Maximum
GLY glyoxal (C2H2O2); 1,2-dicarbonyl-type compound
GMT Greenwich Mean Time
HCHO formaldehyde (CH2O)
HDD hexadienedial (C6H6O2); unsaturated 1,6-dicarbonyl, different stereo-isomers
IUP Institut für Umweltphysik, University of Heidelberg/Germany
MGLY methylglyoxal (C3H4O2); 1,2-dicarbonyl-type compound
NIES National Institute for Environmental Studies, Tsukuba/Japan
NMHC Non Methane HydroCarbons
NOS reactive N-compounds that were not considered in this study (NOy - ONC)
NOx sum of NO and NO2

NOy sum of NOx, PAN, HNO3, NO
−
3 (Particles), 2N2O5, reactive N-compounds

ONC Oxidized Nitrogen Compounds, defined as the sum of the considered
reactive N-compounds: NO, NO2, NO3, HNO3, 2N2O5, PAN-type comp.

OPEAL 4-oxo-pentenal (C5H6O2); unsaturated 1,4-dicarbonyl, different stereo-isomers
PAN Peroxy-Acetyl-Nitrate (C2H3NO5); structure: CH3C(O)OONO2

PAN-type PAN and other molecules with structural similarity: RC(O)OONO2

PGLY glyoxal which is formed as a primary product
PHEN phenol (C6H6O); OH-substituted benzene
SOA Secondary Organic Aerosol
SZA Solar Zenith Angle
TALD tolualdehyde (C8H8O, methyl-BALD): oTALD, mTALD, pTALD (see CRE)
TMB trimethylbenzene (C9H12); different isomers
TMP trimethylphenol (C9H12O); different isomers
TOL toluene (C7H8); CH3-substituted benzene
VOC Volatile Organic Compounds
XYL xylene (C8H10, dimethylbenzene): oXYL, mXYL, pXYL (see CRE)
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Appendix A

Annex

Figure A.1: Foto of the EUPHORE chamber A. The DOAS-system is mounted in
the shadow of the teflon shades. For cleaning of the chamber air, purified air is lead
into the chamber in the central part of the chamber and exhaled via the chimney
(shown on the left side).
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Figure A.2: Foto taken inside the EUPHORE chamber A. Forground: (left) Fluores-
cence cell of the OH-LIF-system; (right) Matrix Isolation Electron-Spin-Resonance
(MIESR) sampling-unit; Background: The improved field mirror of the DOAS-
system (see Section 3.2.4).

In the following the Turbo-Basic-code (file: WHITE2.BAS) is listed, which was de-

veloped to control the auto-align of both objective mirrors of the White-system via

the laser-alignment (see also Section 3.2.4):

10 REM Programm zur aktiven Laserjustage bei Whitesystem mit Mod Diodenlaser

50 rem SM initialisieren
51 OPEN ”com1:9600,N,8,1,RS,CS,DS,CD” as #1
52 OPEN ”PROT2311.dat” FOR APPEND AS #3: rem Protokollfile
53 write#3,date$,time$
54 PRINT#1,”@07”:GOSUB 2000
55 Z=0 : X=0 : Y=0
58 OPEN ”com2:9600,N,8,1,RS,CS,DS,CD” as #2
59 PRINT#2,”@07”:GOSUB 3000

70 rem Justageparameter
75 wdh=5
76 minAh=1.2: minAv=1.2: maxAh=2: maxAv=2
77 IBh=1.5: IIBh=6: IIIBh=15: IVBh=50: VBl=100: VBr=100:minBv=1.5:maxBv=3:okB=3
78 wmin=15 : wmax=65 : wdia=55 : wext=310
79 wt=0
80 Iao=0: IIao=0: IIIao=0: VIao=0: rem gemessener Offset
81 Ibo=0: IIbo=0: IIIbo=0: IVbo=0: rem gemessener Offset
82 Iao=1050: IIao=1100: IIIao=1050: IVao=1150: rem gemessener Offset
83 Ibo=120: IIbo=20: IIIbo=250: IVbo=50: rem gemessener Offset
84 VertB=0: HorB=0: VertA=0: HorA=0
85 rem VertB=-1240: HorB=-440: VertA=-1490: HorA=-330

100 rem Start Justageschleife
101 A=0 : B=0 : rem goto 150
102 rem Justage von B
103 Z=Z+1
104 gosub 1000 : rem Auleseroutine
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105 gosub 850 : rem Ausgabe der 4QD Werte
106 SummeB=IB+IIB+IIIB+IVB: rem stop
107 if inkey$><”” then stop
108 gosub 4000 : rem Laserlichtcheck
109 rem goto 150 : rem B ueberspringen

110 IF (A>2 AND B>2) then goto 120
114 IF (linksB/rechtsB>VBr) then goto 291
115 IF (rechtsB/linksB>VBl) then goto 319
116 IF (linksB/rechtsB>IVBh) then goto 350
117 IF (linksB/rechtsB>IIIBh) then goto 340
118 IF (rechtsB/linksB>IVBh) then goto 371
119 IF (rechtsB/linksB>IIIBh) then goto 365
120 IF (linksB/rechtsB>IIBh) then goto 300
121 IF (linksB/rechtsB>IBh) then goto 310
122 IF (rechtsB/linksB>IIBh) then goto 325
123 IF (rechtsB/linksB>IBh) then goto 331
124 IF (obenB/untenB>maxBv AND rechtsB/linksB>maxBh) then goto 201
125 IF (untenB/obenB>maxBv AND rechtsB/linksB>maxBh) then goto 220
126 IF (linksB/rechtsB>maxBh AND obenB/untenB>maxBv) then goto 210
127 IF (linksB/rechtsB>maxBh AND untenB/obenB>maxBv) then goto 230
135 IF (obenB/untenB>maxBv) then goto 250
136 IF (obenB/untenB>minBv) then goto 260
137 IF (untenB/obenB>maxBv) then goto 270
138 IF (untenB/obenB>minBv) then goto 280

139 print ””
140 print ”Sicherheitsabfrage RR:”
142 print ”o/u B :” obenB/untenB ”u/o B :” untenB/obenB
144 print ”r/l B :” rechtsB/linksB ”l/r B :” linksB/rechtsB

145 rem A ueberspringen
150 rem goto 193
151 rem Justage von A
153 rem cls
154 Z=Z+1
158 gosub 1000 : rem Auleseroutine
159 SummeA=IA+IIA+IIIA+IVA
160 GOSUB 850 : rem Ausgabe der 4QD Werte
162 gosub 5000 : rem Laserlichtcheck
163 if inkey$><”” then stop
164 rem goto 193 : rem A ueberspringen

174 IF (obenA/untenA>maxAv AND rechtsA/linksA>maxAh) then goto 401
176 IF (untenA/obenA>maxAv AND rechtsA/linksA>maxAh) then goto 420
177 IF (linksA/rechtsA>maxAh AND obenA/untenA>maxAv) then goto 410
178 IF (linksA/rechtsA>maxAh AND untenA/obenA>maxAv) then goto 430
179 IF (obenA/untenA>maxAv) then goto 450
180 IF (obenA/untenA>minAv) then goto 460
181 IF (untenA/obenA>maxAv) then goto 470
182 IF (untenA/obenA>minAv) then goto 480
183 IF (linksA/rechtsA>maxAh) then goto 500
184 IF (linksA/rechtsA>minAh) then goto 510
185 IF (rechtsA/linksA>maxAh) then goto 520
186 IF (rechtsA/linksA>minAh) then goto 530

190 print ””: print”Sicherheitsabfrage LR:”
191 print ”o/u A :” obenA/untenA ”u/o A :” untenA/obenA
192 print ”r/l A :” rechtsA/linksA ”l/r A :” linksA/rechtsA
193 print ”Ende Justage”
194 FOR p=1 to wt : next p
195 if inkey$><”” then stop
196 Z=0 : rem print”” : print”Summe A: ”IA+IIA+IIIA+IVA:print”Summe B: ”IB+IIb+IIIB+IVB
199 goto 100

200 rem Diagonale Justage B
201 print Z
202 print”Justage RR ... diagonal 50 Schritte nach links-unten”
203 print#2,”@0A 0,3000,50,3000,50,3000,0,3000”
204 HorB=HorB+50 : VertB=VertB+50
205 write#3,date$,time$,0,0,50,50,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
206 for p=1 to wdia: next p : goto 100

210 print Z
211 print”Justage RR ... diagonal 50 Schritte nach rechts-unten”
212 print#2,”@0A 0,3000,-50,3000,50,3000,0,3000”
213 HorB=HorB-50 : VertB=VertB+50
214 write#3,date$,time$,0,0,-50,50,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
215 for p=1 to wdia: next p : goto 100

220 print Z
222 print”Justage RR ... diagonal 50 Schritte nach links-oben”
223 print#2,”@0A 0,3000,50,3000,-50,3000,0,3000”
224 HorB=HorB+50 : VertB=VertB-50
225 write#3,date$,time$,0,0,50,-50,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
226 for p=1 to wdia: next p : goto 100

230 print Z
232 print”Justage RR ... diagonal 50 Schritte nach rechts-oben”
234 print#2,”@0A 0,3000,-50,3000,-50,3000,0,3000”
235 HorB=HorB-50 : VertB=VertB-50
236 write#3,date$,time$,0,0,-50,-50,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
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237 for p=1 to wdia: next p : goto 100

240 print ”Vertikale Justage RR...”
250 print Z
252 print”Justage RR ... vertikal 30 Schritte nach unten”
253 print#2,”@0A 0,3000,0,3000,30,3000,0,3000”
254 VertB=VertB+30
255 write#3,date$,time$,0,0,0,30,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
256 for p=1 to wmax: next p : goto 100

260 print Z
262 print”Justage RR ... vertikal 10 Schritte nach unten”
263 print#2,”@0A 0,3000,0,3000,10,3000,0,3000”
264 VertB=VertB+10
265 write#3,date$,time$,0,0,0,10,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
266 for p=1 to wmin: next p : goto 100

270 print Z
272 print”Justage RR ... vertikal 30 Schritte nach oben”
273 print#2,”@0A 0,3000,0,3000,-30,3000,0,3000”
274 VertB=VertB-30
275 write#3,date$,time$,0,0,0,-30,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
276 for p=1 to wmax: next p : goto 100

280 print Z
282 print”Justage RR ... vertikal 10 Schritte nach oben”
283 print#2,”@0A 0,3000,0,3000,-10,3000,0,3000”
284 VertB=VertB-10
285 write#3,date$,time$,0,0,0,-10,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
286 for p=1 to wmin: next p : goto 100

290 print ”Horizontale Justage RR...”
291 print Z
292 print”Justage RR ... horizontal 300 Schritte nach rechts”
293 print#2,”@0A 0,3000,-300,3000,0,3000,0,3000”
294 HorB=HorB-300
295 write#3,date$,time$,0,0,-300,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
296 A=A+1
297 for p=1 to wext: next p : goto 100

300 print Z
302 print”Justage RR ... horizontal 50 Schritte nach rechts”
303 print#2,”@0A 0,3000,-50,3000,0,3000,0,3000”
304 HorB=HorB-50
305 write#3,date$,time$,0,0,-50,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
306 for p=1 to wmax: next p : goto 100

310 print Z
312 print”Justage RR ... horizontal 10 Schritte nach rechts”
313 print#2,”@0A 0,3000,-10,3000,0,3000,0,3000”
314 HorB=HorB-10
315 write#3,date$,time$,0,0,-10,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
316 for p=1 to wmin: next p : goto 100

319 print Z
320 print”Justage RR ... horizontal 300 Schritte nach links”
321 print#2,”@0A 0,3000,300,3000,0,3000,0,3000”
322 HorB=HorB+300
323 write#3,date$,time$,0,0,300,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
324 B=B+1: for p=1 to wext: next p : goto 100

325 print Z
326 print”Justage RR ... horizontal 50 Schritte nach links”
327 print#2,”@0A 0,3000,50,3000,0,3000,0,3000”
328 HorB=HorB+50
329 write#3,date$,time$,0,0,50,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
330 for p=1 to wmax: next p : goto 100

331 print Z
332 print”Justage RR ... horizontal 10 Schritte nach links”
333 print#2,”@0A 0,3000,10,3000,0,3000,0,3000”
334 HorB=HorB+10
335 write#3,date$,time$,0,0,10,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
336 for p=1 to wmin: next p : goto 100

340 print Z
342 print”Justage RR ... horizontal 85 Schritte nach rechts”
343 print#2,”@0A 0,3000,-85,3000,0,3000,0,3000”
344 HorB=HorB-85
345 write#3,date$,time$,0,0,-85,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
346 for p=1 to wmax: next p : goto 100

350 print Z
352 print”Justage RR ... horizontal 120 Schritte nach rechts”
353 print#2,”@0A 0,3000,-120,3000,0,3000,0,3000”
354 HorB=HorB-120
355 write#3,date$,time$,0,0,-120,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
356 for p=1 to wmin: next p : goto 100

365 print Z
366 print”Justage RR ... horizontal 85 Schritte nach links”
367 print#2,”@0A 0,3000,85,3000,0,3000,0,3000”
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368 HorB=HorB+85
369 write#3,date$,time$,0,0,85,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
370 for p=1 to wmax: next p : goto 100

371 print Z
372 print”Justage RR ... horizontal 120 Schritte nach links”
373 print#2,”@0A 0,3000,120,3000,0,3000,0,3000”
374 HorB=HorB+120
375 write#3,date$,time$,0,0,120,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
376 for p=1 to wmin: next p : goto 100

400 rem Diagonale Justage A
401 print Z
402 print”Justage LR ... diagonal 50 Schritte nach links-unten”
403 print#1,”@0A 0,3000,50,3000,50,3000,0,3000”
404 HorA=HorA+50: VertA=VertA+50
405 write#3,date$,time$,50,50,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
406 for p=1 to w: next p : goto 150

410 print Z
411 print”Justage LR ... diagonal 50 Schritte nach rechts-unten”
412 print#1,”@0A 0,3000,-50,3000,50,3000,0,3000”
413 HorA=HorA-50: VertA=VertA+50
414 write#3,date$,time$,-50,50,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
415 for p=1 to w: next p : goto 150

420 print Z
422 print”Justage LR ... diagonal 50 Schritte nach links-oben”
423 print#1,”@0A 0,3000,50,3000,-50,3000,0,3000”
424 HorA=HorA+50: VertA=VertA-50
425 write#3,date$,time$,50,-50,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
426 for p=1 to w: next p : goto 150

430 print Z
432 print”Justage LR ... diagonal 50 Schritte nach rechts-oben”
433 print#1,”@0A 0,3000,-50,3000,-50,3000,0,3000”
434 HorA=HorA-50: VertA=VertA-50
435 write#3,date$,time$,-50,-50,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
436 for p=1 to w: next p : goto 150

440 print ”Vertikale Justage LR...”
450 print Z
452 print”Justage LR ... vertikal 30 Schritte nach unten”
453 print#1,”@0A 0,3000,0,3000,30,3000,0,3000”
454 VertA=VertA+30
455 write#3,date$,time$,0,30,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
456 for p=1 to w: next p : goto 150

460 print Z
462 print”Justage LR ... vertikal 10 Schritte nach unten”
463 print#1,”@0A 0,3000,0,3000,10,3000,0,3000”
464 VertA=VertA+10
465 write#3,date$,time$,0,10,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
466 for p=1 to w: next p : goto 150

470 print Z
472 print”Justage LR ... vertikal 30 Schritte nach oben”
473 print#1,”@0A 0,3000,0,3000,-30,3000,0,3000”
474 VertA=VertA-30
475 write#3,date$,time$,0,-30,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
476 for p=1 to w: next p : goto 150

480 print Z
482 print”Justage LR ... vertikal 10 Schritte nach oben”
483 print#1,”@0A 0,3000,0,3000,-10,3000,0,3000”
484 VertA=VertA-10
485 write#3,date$,time$,0,-10,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
486 for p=1 to w: next p : goto 150

490 print ”Horizontale Justage LR...”
500 print Z
502 print”Justage LR ... horizontal 30 Schritte nach rechts”
503 print#1,”@0A 0,3000,-30,3000,0,3000,0,3000”
504 HorA=HorA-30
505 write#3,date$,time$,-30,0,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
506 for p=1 to w: next p : goto 150

510 print Z
512 print”Justage LR ... horizontal 10 Schritte nach rechts”
513 print#1,”@0A 0,3000,-10,3000,0,3000,0,3000”
514 HorA=HorA-10
515 write#3,date$,time$,-10,0,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
516 for p=1 to w: next p : goto 150

520 print Z
521 print”Justage LR ... horizontal 30 Schritte nach links”
522 print#1,”@0A 0,3000,30,3000,0,3000,0,3000”
523 HorA=HorA+30
524 write#3,date$,time$,30,0,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
525 for p=1 to w: next p : goto 150
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530 print Z
532 print”Justage LR ... horizontal 10 Schritte nach links”
533 print#1,”@0A 0,3000,10,3000,0,3000,0,3000”
534 HorA=HorA+10
535 write#3,date$,time$,10,0,0,0,HorA,VertA,HorB,VertB,IA,IIA,IIIA,IVA,SummeA, IB,IIB,IIIB,IVB,SummeB
536 for p=1 to w: next p : goto 150

840 STOP
850 REM Ausgabe der 4QD Werte
855 CLS
856 Print””:print””
860 Print”QI A : ”,IA,”QII A : ”,IIA
861 Print”QIII A : ”,IIIA,”QIV A : ”,IVA
862 Print””
863 Print”QI B : ”,IB,”QII B : ”,IIB
864 Print”QIII B : ”,IIIB,”QIV B : ”,IVB
865 Print””
900 Print”Oben A : ”,obenA,”Unten A : ”,untenA
901 Print”Links A : ”,linksA,”Rechts A : ”,rechtsA
902 Print””
903 Print”Oben B : ”,obenB,”Unten B : ”,untenB
904 Print”Links B : ”,linksB,”Rechts B : ”,rechtsB
910 RETURN

1000 REM 4QD Auslesen bis 1410 von Detektor A
1005 IA=0 : IIA=0 : IIIA=0 : IVA=0
1006 IB=0 : IIB=0 : IIIB=0 : IVB=0
1010 FOR slope = 1 to wdh
1020 K=1
1021 DIN$=”111101110001”:GOTO 1070 : rem Kanal 1
1022 DIN$=”111101110011”:GOTO 1070 : rem Kanal 2
1023 DIN$=”111101111001”:GOTO 1070 : rem Kanal 3
1024 DIN$=”111101111011”:GOTO 1070 : rem Kanal 4
1025 DIN$=”111101110101”:GOTO 1070 : rem Kanal 5
1026 DIN$=”111101110111”:GOTO 1070 : rem Kanal 6
1027 DIN$=”111101111101”:GOTO 1070 : rem Kanal 7
1028 DIN$=”111101111111”:GOTO 1070 : rem Kanal 8
1070 B=512
1075 VOUT=0
1080 REF=5
1090 REM
1100 FOR I = 1 TO 12
1110 OUT &H3EC,(&HFE AND INP (&H3EC))
1120 IF MID$ (DIN$, 13-I,1)=”0” THEN OUT &H3EC, (&HFD AND INP (&H3EC)) ELSE OUT &H3EC, (&H2 OR
INP(&H3EC))
1130 OUT &H3EC, (&H1 OR INP (&H3EC))
1140 IF (INP (&H3EE) AND 16) = 16 THEN D = 0 ELSE D = 1
1150 VOUT=VOUT+(D*B) : B=B/2
1160 NEXT I
1170 REM
1200 OUT &H3EC, (&HFD AND INP (&H3EC))
1210 OUT &H3EC, (&H2 OR INP (&H3EC))
1220 REM
1230 FOR J=1 TO 20 : NEXT J : REM schneller Rechner
1240 REM
1250 REM PRINT VOUT
1260 VIN=INT((VOUT/1023)*REF*1000)
1261 IF K=1 THEN 1275
1262 IF K=2 THEN IB=IB+VIN
1263 IF K=3 THEN IVA=IVA+VIN
1264 IF K=4 THEN IIIA=IIIA+VIN
1265 IF K=5 THEN IIA=IIA+VIN
1266 IF K=6 THEN IA=IA+VIN
1267 IF K=7 THEN IIB=IIB+VIN
1268 IF K=8 THEN IIIB=IIIB+VIN
1269 IF K=9 THEN IVB=IVB+VIN
1272 IF K=9 THEN GOTO 1310
1275 K=K+1: ON K GOTO 1021,1022,1023,1024,1025,1026,1027,1028,1028
1310 rem FOR I= 1 to 10000: Next I:
1410 NEXT slope
1411 IA=INT(IA/wdh-Iao): IIA=INT(IIA/wdh-IIao)
1412 IIIA=INT(IIIA/wdh-IIIao): IVA=INT(IVA/wdh-IVao)
1413 IB=INT(IB/wdh-Ibo): IIB=INT(IIB/wdh-IIbo)
1414 IIIB=INT(IIIB/wdh-IIIbo): IVB=INT(IVB/wdh-IVbo)
1415 obenA=IIIA+IIA:untenA=IA+IVA:linksA=IA+IIA:rechtsA=IVA+IIIA
1416 obenB=IB+IIB:untenB=IIIB+IVB:linksB=IB+IVB:rechtsB=IIB+IIIB
1420 RETURN

1990 rem Schrittmotorinitialisierung
2000 if loc(1)<1 then goto 2000: rem Fehlermeldung Karte SM
2010 a$=input$(1,1)
2020 if a$=”0” then return
2030 print ”Karte meldet Fehler: ”;a$
2040 stop

3000 if loc(2)<1 then goto 3000: rem Fehlermeldung Karte SM
3010 a$=input$(1,2)
3020 if a$=”0” then return
3030 print ”Karte meldet Fehler: ”;a$
3040 stop

4000 rem Check ob Laser gefunden sind
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4010 print””
4020 X=X+1 : print ”Auslesung B Nr: ”X,”SummeB: ”SummeB HorB VertB
4030 print ”Auslesung A Nr: ”Y,”SummeA: ”SummeA HorA VertA
4100 IF (IB<100 AND IIB<100 AND IIIB<100 AND IVB<100) then goto 4120 else print ”Laser RR gefunden!” : goto 4200
4120 print”Laser RR nicht gefunden!”
4200 IF (IA<100 AND IIA<100 AND IIIA<100 AND IVA<100) then goto 4220 else print ”Laser LR gefunden!” : goto 4300
4220 print”Laser LR nicht gefunden!”
4300 IF (IB<100 AND IIB<100 AND IIIB<100 AND IVB<100) then goto 4320 else return
4320 print”” : print”Justage RR abgebrochen...!” : goto 150

5000 rem Check ob Laser gefunden sind
5010 print””
5015 print ”Auslesung B Nr: ”X,”SummeB: ”SummeB HorB VertB
5020 Y=Y+1 : print ”Auslesung A Nr: ”Y,”SummeA: ”SummeA HorA VertA
5100 IF (IB<100 AND IIB<100 AND IIIB<100 AND IVB<100) then goto 5120 else print ”Laser RR gefunden!” : goto 5200
5120 print”Laser RR nicht gefunden!”
5200 IF (IA<100 AND IIA<100 AND IIIA<100 AND IVA<100) then goto 5220 else print ”Laser LR gefunden!” : goto 5300
5220 print”Laser LR nicht gefunden!”
5300 IF (IA<100 AND IIA<100 AND IIIA<100 AND IVA<100) then goto 5320 else return
5320 print”” : print”Justage LR abgebrochen...!” : goto 193

10000 END
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