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Abstract

Background: Our aim is to understand the evolution of species-rich plant groups that shifted from tropical into cold/
temperate biomes. It is well known that climate affects evolutionary processes, such as how fast species diversify,
species range shifts, and species distributions. Many plant lineages may have gone extinct in the Northern Hemisphere

due to Late Eocene climate cooling, while some tropical lineages may have adapted to temperate conditions and
radiated; the hyper-diverse and geographically widespread genus Hypericum is one of these.

Results: To investigate the effect of macroecological niche shifts on evolutionary success we combine historical
biogeography with analyses of diversification dynamics and climatic niche shifts in a phylogenetic framework.
Hypericum evolved cold tolerance ¢. 30 million years ago, and successfully colonized all ice-free continents, where
today ~500 species exist. The other members of Hypericaceae stayed in their tropical habitats and evolved

into ~120 species. We identified a 15-20 million year lag between the initial change in temperature preference in
Hypericum and subsequent diversification rate shifts in the Miocene.

Conclusions: Contrary to the dramatic niche shift early in the evolution of Hypericum most extant species occur
in temperate climates including high elevations in the tropics. These cold/temperate niches are a distinctive
characteristic of Hypericum. We conclude that the initial release from an evolutionary constraint (from tropical to
temperate climates) is an important novelty in Hypericum. However, the initial shift in the adaptive landscape into
colder climates appears to be a precondition, and may not be directly related to increased diversification rates.
Instead, subsequent events of mountain formation and further climate cooling may better explain distribution
patterns and species-richness in Hypericum. These findings exemplify important macroevolutionary patterns of
plant diversification during large-scale global climate change.

Keywords: Adaptive landscape, BAMM, Bayou, Divergence time estimation, Climate change, Cold tolerance,
Diversification rate shifts, Historical biogeography, Hypericum (St. John's wort, Hypericaceae), Niche shift

Background

At the onset of evolutionary theory it was observed that
“species of the same genus have usually [...] some simi-
larity in habits and constitution” ([1], p 76). That is,
closely related species or lineages are expected to be
more similar in ecology than to more distantly related
taxa because of their more recent common ancestry
[2,3]. Accordingly, it has been observed that under chan-
ging environmental conditions organisms tend to retain
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their ancestral ecological characteristics rather than
evolving into a new ecological niche [4-6].

Large-scale global climate change dramatically alters
the distribution of major biomes [7], and thus the eco-
logical niches available to entire taxonomic groups
[8,9]. During the Early Eocene Climatic Optimum, c. 55
million years (Ma) ago, tropical biomes dominated the
Earth’s surface even at high latitudes [10]. Within the
last 50 Ma, however, the world has experienced a tran-
sition: a fluctuating but overall decrease in mean
temperatures [7,11,12] that shifted the distribution of
frost-intolerant plants towards the equatorial zones. The
flowering plant families Araceae [13], Chloranthaceae [14],
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and Malpighiaceae [15] are well-studied examples of
formerly more widely distributed lineages that are cur-
rently mostly restricted to the tropics.

Only some lineages of flowering plants have managed
the transition from tropical to temperate climates
[16,17], despite presumably having had ample opportun-
ities to do so with the Neogene expansion of temperate
habitats [18,19]. Adaptation to cold is supposed to in-
volve complex reorganizations of the genome and physi-
ology [20], implying that the evolution of tolerances to
temperate climates with highly seasonal conditions may
pose particular problems [21,22], especially for warm-
adapted plant taxa confronted with cooling climate [19].
In contrast, all extant plant lineages that do occur in
temperate areas underwent adaptation to cooler climates
at some point [23,24]. Also, in an area that undergoes
environmental changes and that lacks suitable migration
routes, only such resident lineages will survive that can
develop the relevant traits necessary to persist [25-27].
In a recent study of angiosperms, Zanne et al. suggest
that “many of these solutions were probably acquired be-
fore their foray into the cold” [24]. On the other hand, it
has been suggested that in the absence of obvious key
innovations, climate cooling may have acted as an im-
portant driver of diversification, e.g., in the hyper-diverse
genus Carex [28].

We provide a macroevolutionary study of the genus
Hypericum L. (St. John’s Worts, Hypericaceae Juss.) in
the context of changing global climate conditions during
the Neogene. Hypericum belongs to the clusioid clade of
the Malpighiales [29,30], which, apart from Hypericum,
is almost exclusively composed of tropical taxa (Figure 1).
More than 80% of the known species within the family
Hypericaceae occur within Hypericum [31,32]; the
remaining 20% consist of tropical plants from four gen-
era [33] in the tribes Vismieae Choisy (Vismia Vand.,
and Harungana Lam., incl. Psorospermum Spach) and

Page 2 of 13

Cratoxyleae Benth. & Hook.f. (Cratoxylum Blume and
Eliea Cambess. [34]).

Hypericum has a nearly cosmopolitan distribution
(Figure 1) with a primary center of species-richness in
the temperate regions of Eurasia [35,36]. In temperate
regions, Hypericum species are mostly native to low-
and mid-elevation areas, while in the tropics they are al-
most always confined to high-elevation mountains, such
as the South American Andes or mountains in topical
Africa [37]. The divergence time of the Hypericum
crown node has been estimated to the Upper Eocene, c.
35 Ma ago [38], based on a single (seed-) fossil calibra-
tion. The same study reconstructed the Western
Palearctic as the ancestral area for Hypericum. However,
Séanchez Meseguer et al. [38] employed a Bayesian ap-
proach [39,40] that limits ancestral areas to only single
states in the reconstruction (i.e. it is not possible to infer
the occurrence of ancestral populations in multiple
areas). For a genus like Hypericum that has several spe-
cies that span very wide geographic ranges, this assump-
tion is likely inadequate.

Within an otherwise pantropic clade [30] Hypericum is
a cold-adapted but species-rich lineage. Because the
clade is of worldwide cold/temperate distribution and
evolved during the Paleaogene to Neogene (23.3 Ma
[41]) climate transition, Hypericum is ideal for studying
the effects of broad-scale climate change on plant dis-
tribution and diversification. Furthermore, the evolu-
tion of morphological characters in the genus has been
studied at length [36-38,42], providing a foundation to
further investigate evolutionary patters and processes in
Hypericum.

In this study, we test the hypotheses that (i) Hypericum
originated in the Western Palearctic prior to the Oligocene,
as suggested by Meseguer et al. [38], that (if) the occupa-
tion of temperate environments is derived in the Hyperica-
ceae and a distinctive characteristic of Hypericum, and that

. Hypericum

Figure 1 Distribution map of Hypericaceae and collection sites. Blue shading and collection sites (points) in red mark the distribution of Hypericum
(Hypericeae). Grey shading and collection sites in light-grey mark the distribution of the tropical members of the family (Cratoxyleae and Vismieae).
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(éii) it has stimulated the radiation of this lineage globally.
To do so, we estimate a species phylogeny based on nu-
clear and chloroplast sequence variation. We calibrate our
time-tree using six fossils and compare the effect on node
ages of the specific assignment of the oldest known fossil
in Hypericum. To evaluate historical biogeography, we em-
ploy parametric models that allow for the incorporation of
paleogeographic information. Applying recently developed
Bayesian approaches, we estimate the magnitude and
placement of climatic niche shifts, and investigate the im-
pact of the transition from the tropical into the cold/tem-
perate climate niche by assessing the placement of shifts in
diversification rates.

Results

Hypericaceae phylogenetics

Maximum likelihood (ML) topologies were similar for
both chloroplast (petD + truL—trnF) and nuclear (ITS)
data. Discordance between nuclear and chloroplast trees
was present only in two places, although without strong
support (Additional file 1: Phylogenetic inference). Thus,
we concatenated the chloroplast and nuclear sequence
data into a combined data set, which contained 24.1%
missing data (0.1% missing in ITS, 21.2% in petD, and
59.4% in trnL—trnF).

We included 100 representative species (103 acces-
sions; online Additional file 1: Voucher) in the combined
sequence data set that contained 2024 nucleotide posi-
tions after alignment and removal of ambiguous sites.
Phylogenetic inference revealed the same major groups
as reported in other studies [37,38,43,44], but with
strong support (Additional file 1: Figure S1). Most basal
splits within Hypericum, however, lack sufficient sup-
port, a result also revealed in previous studies that in-
cluded deeper sampling [37,38]. Ten major clades
consistent with current taxonomy are present within
Hypericaceae (Figure 2 and Additional file 1: Figure S1),
allowing us to assign species richness to each clade for
comparative analyses (Figure 3).

Divergence times depend on fossil assignment

Bayesian estimation of divergence times was done by
assigning the oldest known fossil in Hypericum as a
minimum time constraint to (A) the stem node, and (B)
to the crown node of Hypericum (Additional file 1:
Calibration; Additional file 1: Figure S2). For both analyses,
we tested the effect of missing data on age estimates
using a reduced data set that did not contain any miss-
ing data. Results of the complete sampling and the re-
duced data sets were congruent, regardless of the
calibration approach used, deviating maximally at the
Hypericum node with less than 1.6 Ma in mean ages
(Table 1).
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Divergence time estimates produced by the two ana-
lyses (A and B) differed by ~10 million years at the Hy-
pericum crown node (Table 1 and Additional file 1:
Table S1). Analysis A is congruent with Xi et al. [30],
which focused on family level relationships and esti-
mated divergence times within Malpighiales using 82
chloroplast DNA regions and 16 external fossil calibra-
tions. In analysis B the inferred crown age is ¢. 8 million
years older for the Hypericaceae (the most recent com-
mon ancestor [MRCA] of Hypericum, Vismieae, and
Cratoxyleae; Table 1 and Additional file 1: Table SI)
compared to Xi et al. [30]. It is conservative to assign a
fossil to a stem node given that a hard minimum time
constraint is used for calibration [45]. Therefore, we use
the divergence time estimate of analysis A (fossil assign-
ment to the stem node; mean crown age of Hypericum
25.9 Ma [33.3-19.6 95% HPD]; Table 2, Additional file 1:
Figure S2) to discuss the results of the biogeographic
optimization, diversification analyses, and climatic niche
shifts in the historic context (results of these analyses
using both divergence time estimations are given in the
supplementary materials; Additional file 1: Table S1, S2,
and S3, Figures S4 and S5).

Ancestral area estimation is equivocal at the Hypericum
crown node

Ancestral areas were optimized over both divergence
time estimations taking phylogenetic uncertainty into ac-
count by analyzing a posterior subset of 1000 trees. Add-
itionally, two models were compared which differed in
their dispersal/extinction probabilities both between
areas and over time; a stratified M1 model that accounts
for varying connectivity of areas over time (Additional
file 1: Figure S3), and a unconstrained M2 model with
equal probabilities of movement between areas at any
time (i.e. equal dispersal/extinction probabilities). The
ancestral areas estimated per node were highly congru-
ent in all analyses, except for four nodes for which the
ancestral states differed (Additional file 1: Table S2).
Two of these affected nodes are located at basal dichoto-
mies, one at the Hypericum crown node (Figure 2), and
one at the ‘Ascyreia s’ crown node. In all four cases of
incongruence, and independent of the used age estima-
tion, the evidence ratio [46] is generally higher in the
stratified model when compared to unconstrained model
(Additional file 1: Table S2).

Niche shifts during the evolution of the Hypericum stem
lineage in the Oligocene

We used the first principal components (PC1) scores ob-
tained from a phylogenetic PCA as an approximation of
the climatic niche. The PC1 scores were dominated by
the thermal bioclim variables (biol-11; with the most
influence from mean annual temperature [biol]), and
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Figure 2 Dated phylogeny of Hypericaceae detailing historical biogeography. (a) Present occurrence of species is marked at the tips of the tree
using the color code defined in the map top right. Multiple occurrences are indicated. Historical distribution of ancestral populations is given at
nodes in the tree (ancestral areas estimated under the M1 model). Node bars indicate the 95% highest posterior density (HPD) produced in divergence
time estimation A. Vertical bars define the clades used to assign species-richness in the diversification rates analysis. (b) Comparison of ancestral areas
optimized for the Hypericum crown node under two DEC models, the stratified (M1) and the uncostrained (M2). Maps illustrate the reconstructed
distribution of ancestral populations and bar charts the likelihood of range optimization (expressed by AIC weights w; WP, western Palearctic; NA, North
America). Global temperature (oxygen-isotope curve as a proxy for temperature [11]) is given below the geological time scale. Grey vertical bars indicate
major climatic events (EECO, Early-Eocene Climatic Optimum; TEE, Terminal Eocene Event; MMCO, Mid-Miocene Climatic Optimum; Ma, million years
ago). Note that the cold adapted Hypericum lineage splits form its tropical sister and starts to diversify during periods of climate cooling.
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credible regions on the distribution of rates. Shifts in the adaptive landscape to a new climatic niche are located on the respective branches in
the tree (to the right) by circles colored according to the scale detailing the new phenotypic optima (in PC1 score units). Note that shifts in the
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Table 1 Results of divergence time estimation using different fossil assignments
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Node (mrca)

Bayesian relaxed clock - crown ages

Analysis A

complete sampling

‘no missing’ data

Analysis B

complete sampling

‘no missing’ data

Hypericaceae

Vismieae

Cratoxyleae

Hypericum

Brathys s.l. + Myriandra

Brathys s.l.

core Hypericum + Ascyreia s.l.

5231
(62.66-45.00)
19.59
(32.66-10.22)
27.52
(41.08-11.23)
2587
(33.32-19.59)
15.03
(19.99-10.99)
877
(11.82-6.26)
1246
(16.44-8.80)

5313
(64.05-45.15)

2745
(36.50-19.00)
16.12
(22.67-10.77)
897
(13.06-5.76)
12,65
(18.00-8.40)

5963
(71.25-49.26)
23.25
(37.69-12.73)
3250
(48.89-14.38)
3520
(39.31-33.90)
19.63
(24.56-14.87)
11.08
(14.63-7.94)
15.86
(20.63-11.66)

57.22
(69.06-47.94)

3577
(40.97-33.90)
20.70
(26.52-15.01)
11.24
(15.28-7.71)
15.54
(21.17-10.80)

Mean crown ages in Ma are given with the 95% HPD in brackets below. HPD, highest posterior density; Ma, million years.
Both calibration approaches (A and B) are detailed, and results of analyses A and B repeated using the reduced data set that did not contain missing sequence

data (‘no missing’ data).

account for c¢. 34% of the variation within the data.
Bayesian fitting of multi-optima OU models to the ap-
proximation of the climatic niche space estimated the
placement and magnitude of two shifts. Both shifts were
estimated to have occurred in the Oligocene, the first shift
during the evolution of the stem lineage of Hypericum,

and the second shift one divergence event latter at the
stem lineage of the MRCA of ‘core Hypericum’ — ‘Triade-
num (Table 2; for a comparison of results produced under
the two age estimations see Additional file 1: Figure S5,
Table S3). Both shift magnitudes were negative, indicating
a niche shift into colder climates during the early

Table 2 Summary statistics detailing node support, age estimation, diversification rates, and niche shifts

Node (mrca) Node support Crown age* Diversification rates* Bioclimatic niche shifts*
(pp|ML) (Ma) shift probability speciation rate pp phenotypic optimum

Hypericaceae 11100 5231 — 0.66 — 0.00
(62.66-45.00) (0.46-0.88)

Vismieae 11100 19.59 — 043 — 1.63
(32.66-10.22) (0.19-0.83) (0.07)

Cratoxyleae 56[60 27.52 — 041 — 111
(41.08-11.23) (0.18-0.81) (0.15)

Hypericum 11100 25.87 — 0.75 0.53 —4.24
(33.32-19.59) (0.54-1.0) (0.01)

core Hypericum — Brathys s.l. 8365 23.67 — 0.83 0.34 -4.40
(30.41-18.08) (0.59-1.08) (0.01)

Brathys s.l. 11100 8.77 0.64 1.04 — -3.67
(11.82-6.26) (0.54-1.75) (0.06)

core Hypericum + Ascyreia s.l. 1199 1246 0.93 1.06 — —4.67
(16.44-8.80) (0.75-1.51) (0.03)

*Results produced using age estimation A. For the diversification rate analysis, detected shifts are marked by their probability. The mean speciation rate (species/
Ma) per clade is detailed with the 5%, and 95% HPD in brackets below. For the bioclimatic niche analysis, shifts are marked by their probability, and the new
phenotypic optimum (PC1 score optimum) is detailed with the standard error in brackets below. HPD, highest posterior density; pp, posterior probability; ML,
maximum likelihood bootstrap support; Ma, million years; shift probability, marginal probability of rate shifts.
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evolution of Hypericum (Table 2 and Additional file 1:
Table S3). The phylogenetic half-life (In(2)/a = 0.009
Ma; based on a rate of adaptation of o =1.525, and a
total tree length of 52.31 Ma) signifies that the move-
ment to the primary climatic optimum in Hypericum
was rapid and resembles an OU process rather than
Brownian motion [47].

Diversification rate shifts in Hypericum in the Miocene

In the Hypericaceae, two shifts in diversification dynam-
ics were detected within Hypericum with strong support:
(i) at the stem lineage of ‘core Hypericum + Ascyreia s.l.,
and (ii) with the divergence of Central- and South
American ‘Brathys sl from its relatives (Figure 3,
Table 2). In both dating approaches, the same clades are
identified to show diversification rate shifts comparing
the Bayesian credible sets of distinct shift configurations
(Additional file 1: Figure S4). In the analysis using the
dating approach A, the first increase in diversification
rates is inferred to have occurred at about 13.93 Ma with
a marginal probability of 0.93, and the second at about
12.54 Ma with a marginal probability of 0.64, resulting
in a rate of 1.04 and 1.06 species per million year, re-
spectively (for a comparison of results see Additional file
1: Figure S4, Table S3).

Discussion

Historical biogeography of Hypericaceae

There is strong evidence that the MRCA of Hyperica-
ceae occurred in Africa in the Eocene (Figure 2), a result
also recovered in a previous study [38]. The MRCAs of
the tropical taxa within the Hypericaceae (Cratoxyleae
and Vismieae) are revealed to have occurred in Africa +
Southeastern Asia and Africa + South America, respect-
ively. During the Early Eocene the higher thermal max-
imum allowed megathermal organisms, such as the
MRCA of Hypericaceae, to disperse throughout the
Northern Hemisphere, which explains the vicariance of
many tropical lineages [10,19,48].

At the onset of worldwide climate cooling, ¢. 40 Ma
the Hypericum stem lineage split from its tropical rela-
tives. The ancestral area estimated for the MRCA of Hy-
pericum is in the Northern Hemisphere, either solely in
the Western Palaearctic, or more widely distributed be-
tween the Western Palaearctic and the Nearctic (Figure 2,
Additional file 1: Table S2). The Nearctic has been con-
nected to the Western Palearctic through islands that
could have easily functioned as stepping-stones facilitating
dispersal over the North Atlantic [49-51]. Seeds of Hy-
pericum are tiny, ca. 1.5 to 2.5 mm long, and are easily
dispersed by birds or strong winds [32], promoting
long-distance dispersal. However, an ancestral distribu-
tion from the Western Palaearctic to the Nearctic is
somewhat surprising given the fact that the oldest

Page 7 of 13

known fossil is from Siberia and SW China [52]. Differ-
ential extinction may explain the partial absence of re-
constructed ancestral populations in the areas of the
oldest fossil record [38]. Hence, the assumption of a
widespread MRCA of Hypericum from the Palaearctic
to the Nearctic connected via Beringia [19,53] would be
plausible as well. On the other hand, it is likely that the
fossil record does not accurately represent actual ances-
tral distributions, and thus, may be misleading for an-
cestral area estimations. Regardless, Hypericum is of
Northern Hemisphere origin, likely around the late Te-
thys estuaries in the Palaearctic [37], perhaps as part of
a deciduous mixed-mesophytic forest [54]. The ecology
of basal lineages within Hypericum, however, is diverse
reaching from dry rocky Mediterranean to shallow
aquatic habitats, and montane cloud forests. Thus, ex-
tensive differential extinction of intermediate ancestral
populations (ecologically and geographically) and/or
intercontinental long-distance colonization early in the
evolutionary history is needed to explain biogeographic
patterns in Hypericum.

Cold adaptation in the Hypericum stem lineage but later
diversification
Initially, no speciation seems to have taken place in Hy-
pericum — or extinction may have erased the evidence of
earlier divergence in the genus leading to a stem lineage
of ¢. 15 million years (c. 40-25 Ma). However, the gen-
esis of modern species diversity in Hypericum traces to
¢. 25 Ma (Figures 2 and Additional file 1: Figure S2),
after the Oligocene climate cooling caused a substantial
decrease in mean temperatures [11]. This worldwide
cooling, which led to a period of rather constant cold
temperatures [55], initiated the expansion of temperate
habitats in the Northern Hemisphere, replacing the
more tropical vegetation dominant during the Eocene
[10]. With the exception of Hypericum, the remaining
lineages of Hypericaceae stayed in tropical climates, i.e.
their distributions experienced a restriction with the re-
treat of tropical areas towards equatorial zones after the
Eocene Thermal Maximum [10]. In contrast, Hypericum
adapted to colder climates c¢. 30 Ma (Figure 3) and con-
sequently dispersed and diversified in temperate habitats.
The adaptation towards the new climatic optimum (esti-
mated by the phylogenetic half-life [56]) was rapid,
meaning that Hypericum species were well adapted to
the cold/temperate niche [47]. Hence, following this ini-
tial niche shift, Hypericum never completely left the
colder climates. Even in equatorial areas, Hypericum is
only found at high elevations with a cool climate, such
as the South American Andes and the high mountains
of Africa.

Two shifts in diversification rates were detected with
strong support in Hypericum (Figure 3). The first is an
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increase in speciation rates that coincides with a sudden
decrease of temperature during the Middle Miocene Cli-
mate Transition at about 14 Ma [11]. The second in-
crease in speciation rates was likely the result of
dispersal into the South American continent and may
have been triggered by the orogeny of the Andes [43].
That is, the adaptation of Hypericum to colder climates
first evolved during the Oligocene but diversification
rates increased c¢. 13—17 million years later during the
Miocene, in nested clades within Hypericum. The evolu-
tion of a shrubby habit at the Hypericum stem lineage
[37] might well be a life history trait that facilitated the
initial adaptation to cold [24], but no obvious intrinsic
(morphological or physiological) traits that could be
interpreted as key innovations were identified for these
rapidly diversifying clades [37,38]. However, our results
suggest that cold tolerance is likely an important initial
adaptation that was exploited when new biogeographic
opportunities were presented (i.e. Andean orogeny).
Only after a long lag phase when global temperatures
dramatically decreased following the Mid-Miocene Ther-
mal Optimum [11], did changing environments and
expanding temperate regions (including tropical high
mountains) allow Hypericum to spread and diversify. Be-
cause ¢. 42% of extant Hypericum species are found in
montane biomes (c. 72% of this diversity in tropical high
mountains), we postulate that the onset of extensive
mountain formation in Eurasia and the Americas [57] is
likely to have contributed to both detected rate shifts.

Conclusion

After divergence from its tropical relatives, adaptation
towards colder climates ¢. 30 Ma ago enabled Hypericum
to stay in the Northern Hemisphere, while its tropical
relatives experienced habitat restriction towards equator-
ial zones. This niche shift offered dispersal and possible
diversification opportunities in the expanding temperate
areas in the Northern Hemisphere during the Oligocene.
After the last thermal maximum in the Miocene, massive
mountain formations and further climate cooling may
have stimulated the radiation of this lineage globally. As a
consequence, cold-adapted Hypericum contains 80% of
the species present in the family. Despite its worldwide
distribution and tropical ancestry, even the species grow-
ing in the tropics retain their temperate climate niche by
growing exclusively in cool climates of higher elevation
habitats.

Higher species richness in temperate climates is rather
atypical and contrary to the usual pattern observed in
plants where tropical groups generally tend to have more
species than temperate relatives [6,23]. However, our find-
ings mirror patterns described in sedges (Carex) [28], and
to varying extents in buttercups (Ranunculaceae) [58],
grasses (Poaceae) [59-62], and heaths (Ericales) [63].
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We have demonstrated that a pronounced lag phase is
present between the initial niche shift and diversification
in new habitats. Therefore, we conclude that the dispro-
portionate species numbers of Hypericum in comparison
to its tropical relatives are not only a result of initial
cold-climate adaptation. Our analyses indicate a rela-
tively late increase in speciation rate, i.e. with the onset
of further cooling and especially mountain formation
during the Upper Miocene (and Pliocene). Likewise,
Carex, the most diverse non-tropical sedge lineage
(Cyperaceae) [28] has a stem lineage of c¢. 20 million
years, with most extant lineages having diversified subse-
quent to the Oligocene in montane biomes. Thus, we
emphasize that both (i) a niche shift following the Eo-
cene Thermal Optimum as a precondition for the pres-
ence of cold-adapted lineages in temperate regions, and
(ii) an extrinsic trait (perhaps in addition to lineage-
specific intrinsic traits), ie. the availability of emerging
temperate and/or mountain habitats, are key events po-
tentially triggering diversification rates in these cold-
adapted, species-rich plant groups.

Methods

Taxon sampling and species richness

Plant material from herbarium specimens or silica dried
samples were chosen for 100 species (and 3 subspecies)
representing the distribution range of all major lineages
present in Hypericaceae [30,37] (see Additional file 1:
Voucher). Following Xi et al. [30], Garcinia xanthochy-
mus Hook.f. ex T.Anderson (Clusiaceae Lindl.) was
chosen as outgroup in the phylogenetic analyses.

The monograph of Hypericum [31,32,42,64-72] was
used for data on species richness and distribution (for
Hypericum sensu Robson 2012). Stevens [34] lists infor-
mation for the remaining taxa of Hypericeae Choisy
(Triadenum Raf., Thornea Breedlove & E.M.McClint.,
and Lianthus N.Robson; included in Hypericum in
Ruhfel et al. [33]), as well as the tropical genera of the
family Hypericaceae. Xi et al. [30] provides information
on distributions for Clusiaceae and Calophyllaceae
J.Agardh (Additional file 1: Voucher). Total species
numbers with evidence from taxonomy [32], morpho-
logical cladistics [36], and molecular phylogenetic ana-
lyses [37,38] were used to assign species richnesses to
the major clades defined in the diversification rate
analyses.

Molecular marker and sequencing

We sequenced two fragments from the chloroplast gen-
ome, namely petD (including the petB—petD intergenic
spacer, the petD-5"-exon, and the petD intron) and
trul—trnF (including the trnL"** intron and the inter-
genic spacer between the trnL"** 3" exon and trnF**
gene), and the nuclear rDNA internal transcribed spacer
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region (including ITS-1, 5.8S rDNA, and ITS-2). Extrac-
tion of DNA was done according to Niirk et al. [37]. In
the case of well preserved herbarium material or silica
dried samples, entire regions were amplified using the
primers ITS-A(F) and ITS-B(R) [73], PlpetB1411F and
PlpetD738R [74], c(F) and f(R) designed by Taberlet [75]
for the trnl—truF region. In the case of degraded herbar-
ium materials, ITS-1 and ITS-2 were amplified separ-
ately using in addition two internal primers, ITS-C(R)
and ITS-D(F) binding in the conserved 5.8S rDNA [73].
Similarly for petD, using the two internal primers
SALpetD599F and OpetD897R designed by Korotkova
et al. [76]. PCR amplification of ITS was performed as
described in Niirk et al. [37]. PCR reaction mixes for
petD and trnL—trnF were chosen according to Niurk
et al. [37], but without adding MgCl,, and PCR pro-
files consisted of an initial denaturation at 96°C for 1.5
min, followed by 35 cycles of 95°C for 30s, 50°C for
60s, 73°C for 90s and a final step at 72°C for 10 min.
Primer combinations as described above for poorly
preserved samples were used for cycle sequencing.
DNA sequencing was done by Eurofins MWG Operon
(Ebersberg, Germany). All newly generated sequences
have been submitted to the to the EMBL nucleotide
database (Accession No. LK871650-LK871782).

Phylogenetic inference

Sequences were assembled and edited with Geneious
v5.4 [77], aligned using the automatic selection of an ap-
propriate strategy in Mafft v6.903b [78,79] and manually
adjusted using PhyDE v0.996 (available online: http://
www.phyde.de). In order to remove poorly aligned or
length variable data partitions the alignments were sub-
jected to Gblocks 0.91b sever [80] with the ‘less strin-
gent’ options selected.

Phylogenetic analyses were performed under max-
imum likelihood (ML) [81] and Bayesian inference (BI)
[82] to reveal confidence limits of the data. ML analyses
were performed with the RAxML GUI v1.1 [83,84] and
BI in MrBayes 3.2.2 [85]. To test for discordance we an-
alyzed the nuclear (ITS) and chloroplast data partitions
(petD, trnl—trnF) separately by ML search under the
GTRCAT model of sequence evolution. Clade support
was evaluated with 1000 rapid bootstrap replicates [86].

The combined data set (ITS + petD + truL—trnF) was
analyzed under ML with the partitions defined and the
settings chosen as described for the ML analysis above.
For BI we started 4 simultaneous runs, each with 4
chains, set to run 10° cycles, with sampling every 10*
cycle, setting temperature to 0.01, and with the appro-
priate model of sequence evolution specified per parti-
tion: GTR+1+T for ITS and petD and HKY + [+ T for
truL—truF; selected in MrModeltest [87] under the
Akaike Information Criterion (AIC) [88]. We used the
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ML tree as a starting tree, but introduced random per-
turbations into it to enable detection of possible conver-
gence problems (using the command “mcmcp nperts =
5”). A ‘corrected’ exponential prior on a branch length of
1/A=0.1 [“prset brlenspr = Unconstrained:Exp(100)”]
was specified [89]. Convergence of parameter estimates
was monitored using Tracer v1.5 [90]. After discarding
25% of the sampled trees as burnin, posterior probabil-
ities were calculated on the BI stationary sample. Trees
and alignments are available at TreeBASE study number
16298.

Divergence time estimation and fossil assignment

The likelihood ratio test [91] conducted on the BI con-
sensus tree in PAUP* [92] rejected a global molecular
clock (P < 0.05) for the combined data set. Therefore, di-
vergence times were estimated under a relaxed molecu-
lar clock employing the uncorrelated lognormal model
[93] in BEAST v1.7 [94]. Eight external time-constraints
were imposed for calibration, comprising six fossils
[52,95-97] and two secondary calibrations [30] (for de-
tails see Additional file 1: Age estimation, calibration).
Fossil calibrations were constrained by hard minimum
bounds and secondary calibrations by lognormal distri-
butions to incorporate the uncertainty reported in the
original study [30]. Two approaches were designed dif-
fering only in the assignment of the seed fossil Hyperi-
cum antiguum Balueva & V.P. Nikitin [97]: (i) to the
stem node of Hypericum in analysis A, and (ii) to the
crown node of Hypericum in analysis B (other calibra-
tions remained unchanged in the two analyses; for a dis-
cussion of fossil assignment see Additional file 1: Age
estimation, calibration).

A birth and death model of speciation considering in-
complete species sampling [98] was set as tree prior.
Both divergence time estimations (A and B) were started
with two independent Monte Carlo Markov Chain
(MCMC) runs, each set to run 10° cycles with sampling
every 10* cycles. The substitution and clock models were
not linked between the partitions. The ML tree was used
as starting tree. To ensure that the prior branching times
of the starting tree fulfilled the constraints imposed by
the calibration priors we transformed branch length into
absolute time using penalized likelihood [99] with the
chronopl command in the R [100] package ape [101].
Convergence of parameter estimates was monitored
using Tracer [90]. The resulting trees were combined in
LogCombiner with a burnin of 50%. On the remaining
10,002 trees means and confidence intervals were calcu-
lated in TreeAnnotator [94] to obtain the final consen-
sus tree, the ultrametric time calibrated maximum clade
credibility (MCC) chronogram that has 95% of the high-
est posterior density (HPD). Because missing data can
have deleterious effects on analyses that depend on
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branch length [102], we tested the effect on age esti-
mates of missing sequences in our data set. We repeated
both analyses (A and B) using a data set that did not
contain missing data (‘no missing’ data) and that had
therefore a reduced species sampling containing only 73
accessions (xml input files are available at the Dryad re-
pository [103]).

Ancestral area estimation

Historical biogeography was analyzed by classifying the
species to be distributed within six biogeographic re-
gions, following Brummit et al. [104] for area subdiv-
ision. The region were defined to reflect general
biogeographic entities, and to be meaningful for the
study group: (A) Afrotropical [central Africa, the south-
ern Arabian peninsula, Madagascar, and the West Indian
Ocean islands], (WP) western Palearctic, (EP) eastern
Palearctic, (IP) Indo-Pacific [SE tropical Asia, Australasia,
and the Pacific], (NA) North America [Nearctic], (SA)
South America [Neotropic].

We employed a parametric likelihood approach that
uses the DEC model [105] implemented in Lagrange
[106]. Two models were designed, differing in dispersal
probabilities between areas and time to take into ac-
count the impact of dispersal/extinction probabilities.
The first model (M1) was stratified, i.e. incorporating pa-
leogeographic information on area connectivity, e.g., the
existence of land bridges, by varying the dispersal prob-
abilities between areas and over time (Additional file 1:
historical biogeography; Additional file 1: Figure S3).
The second model (M2) was unconstrained, assuming
equal dispersal probabilities between areas over time.
Ancestral areas were optimized under both models over
1000 post-burnin posterior trees randomly chosen [107]
and generated by divergence time estimation A and, in a
second analysis, by estimation B. Composite Akaike
weights [108] were used to summarize the likelihood of
range optimizations. Evidence ratios (the ratio of Akaike
weights w;/w; [46]) were used to evaluate which scenario
is the most favored.

Bioclimatic niche analysis

We used the WorldClim [109] global climate layers con-
sidering all 19 Bioclim variables as an approximation of
the climatic niche of the species. Collection sites were
taken from the voucher specimens, or manually geo-
referenced (if not documented on the specimen) while
comparing voucher information with collection sites per
species recorded in the Global Biodiversity Information
Facility (GBIF). The bioclimatic variables for each collec-
tion locality were extracted using the R package raster
[110]. To identify significant changes in the adaptive
landscape (i.e. the climatic niche space) within the study
group we employed a reversible-jump Bayesian method
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of fitting multi-optima Ornstein-Uhlenbeck (OU) models
to the bioclim variables [47]. To do so, we first trans-
formed the bioclim variables using a phylogenetic princi-
pal components analysis (PCA) [111] in the R package
phytools [112] to obtain principal components (PC) scores
per species while correcting for phylogenetic history (i.e.
the correlation of independent contrasts [111]). Then, we
analyzed the PC1 scores using in the R package bayou
[113] with a standard error of 0.5 to estimate the place-
ment and magnitude of shifts in the climatic niche directly
from the data [47]. We allowed only one shift per branch
and assigned an equal probability of each branch having a
shift. We placed a corrected Poisson distribution as prior
on adaptive optima and a probability density for a half-
Cauchy distribution on the number of shifts between
adaptive regimes [using make.prior((tree, dists = list(dal-
pha = “dhalfcauchy”, dsig2 = “dhalfcauchy”, dsb =“dsb”,
dk = “cdpois”, dtheta=“dnorm”), param = list(dalpha =
list(scale = 1), dsig2 = list(scale = 1), dk = list(lambda = 15,
kmax = 200), dsb =list(bmax =1, prob =1), dtheta = list(-
mean = mean(dat), sd = 2*sd(dat))))], and run MCMC for
10° cycles. To verify that MCMC analyses converged to
the same posterior distribution, we applied the Gelman
diagnostic [114] in the R package coda [115]. After dis-
carding the first 30% of samples per run as burnin param-
eter estimates of the two runs were combined and
summarized using the Lposterior command in bayou
[113] to obtain a posterior of shift locations and magni-
tudes, the rate of adaptation (), and phylogenetic half-life
(the amount of time it takes for the expected trait value to
get halfway to the phenotypic optimum, defined as In(2)/a
units of time [56]).

Diversification rate analysis

We used the Bayesian approach for studying patterns of
rate variation through time and among lineages imple-
mented in BAMM (Bayesian analysis of macroevolution-
ary mixtures) [116,117]. The method aims at detecting
and quantifying heterogeneity in evolutionary rates by
using reversible-jump Markov Chain Monte Carlo to de-
tect subclades that share common parameters of speci-
ation and extinction. BAMM identifies sets of shifts (i.e.
configurations) that are sampled together and allows one
to compute relative and marginal probability of those
configurations (given in the 95% credible set of distinct
shift configurations). We analyzed both the MCC con-
sensus tree produced by divergence time estimation A,
and B, respectively (outgroup taxa were removed prior
to the analyses to increase statistical power). To do so,
we assigned species richness (i.e. sampling fraction) to
ten well-supported clades to account for incomplete
sampling, and ran MCMC over 10® cycles with default
settings. Convergence of parameter estimates was evalu-
ated by means of effective samples size (ESS) diagnostics



Nurk et al. BMC Evolutionary Biology (2015) 15:80

using the R package coda [115] after discarding 10% of
samples as burnin. Results were summarized and visual-
ized using the R package BAMMTtools [116].

Additional file

Additional file 1: Phylogenetic inference and topological
discordance. Figure S1 - Phylogeny of Hypericaceae (detailing species
names and node support). Discussion of topological discordance. Age
estimation, calibration. Discussion of fossil assignment. Figure S2 -
MCC chronogram of Hypericaceae (detailing time-constraints). Table S1 -
Crown group ages of major clades (results of analyses A and B). Historical
biogeography. Figure S3 - Paleogeographical model designed for the
stratified ancestral area reconstruction (M1). Table S2 - Summary statistics
obtained by optimization of ancestral areas over 1000 trees generated by
age estimations A and B detailing results using models M1 and M2.
Diversification rate analysis. Figure S4 - Diversification rate shifts
obtained by analysis A and B, with respective credible sets of distinct
shift configurations. Table S3. Results of diversification rate analyses
under the different age estimations. Bioclimatic niche analysis. Niche
shifts obtained by analysis A and B. Table S3. Results of niche analyses
under the different age estimations. Voucher. Species in this study,
detailing names, reference, EMBL/Genbank ID, and species distribution
(area coding and coordinates). The data sets supporting the results of
this article are available in the Dryad repository, http://dx.doi.org/
10.5061/dryad.4tm8j (BEAST xml input files). Sequence alignments and
produced BI/ML trees and are available at the TreeBASE repository
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sequence files are stored at the EMBL nucleotide repository, http://
www.ebi.ac.uk/ena/data/view/LK871650-LK871782.
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