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Histone deacetylase inhibition sensitizes
osteosarcoma to heavy ion radiotherapy
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Abstract

Background: Minimal improvements in treatment or survival of patients with osteosarcoma have been achieved
during the last three decades. Especially in the case of incomplete tumor resection, prognosis remains poor. Heavy
ion radiotherapy (HIT) and modern anticancer drugs like histone deacetylase inhibitors (HDACi) have shown
promising effects in osteosarcoma in vitro. In this study, we tested the effect of HIT and the combination of HIT and
the HDACi suberoylanilide hydroxamic acid (SAHA) in a xenograft mouse model.

Methods: Osteosarcoma xenografts were established by subcutaneous injection of KHOS-24OS cells and treated
with either vehicle (DMSO), SAHA, HIT or HIT and SAHA. Tumor growth was determined and tumor necrosis,
proliferation rate, apoptotic rate as well as vessel density were evaluated.

Results: Here, we show that the combination of HIT and SAHA induced a significant delay of tumor growth
through increased rate of apoptosis, increased expression of p53 and p21Waf1/Cip1, inhibition of proliferation and
angiogenesis compared to tumors treated with HIT only.

Conclusion: HIT and in particular the combination of HIT and histone deacetylase inhibition is a promising
treatment strategy in OS and may be tested in clinical trials.

Keywords: Osteosarcoma, Carbon ion radiotherapy, Histone deacetylase inhibition, Suberoylanilide hydroxamic acid,
Radiosensitization, Mouse model
Background
Osteosarcoma (OS) is the most frequent primary malig-
nant bone tumor in children and adolescents. They ac-
count for up to 15 % of all extracranial solid neoplasms
in patients aged 15–19 years. Despite significant ad-
vancements in the diagnosis and treatment to date, over-
all survival has remained relatively constant for about
three decades and is still poor for non-resectable tumors
and advanced metastatic disease [1]. Until now the only
therapy that is validated in a large number of patients is
complete tumor resection combined with neo-adjuvant
and adjuvant chemotherapy to establish local control.
With this therapy regimen, the survival rate for patients
with localized osteosarcoma is in the range of 60–70 %,
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for patients with metastases in the range of 15–30 %.
However, there is also a considerable fraction of patients
(about 10 %) with non-resectable tumors. Moreover sur-
gery is often denied by patients when a complete surgi-
cal resection can only be reached by amputation of a
limb. In these cases radiation therapy and chemotherapy
is a possible option that has been validated in a limited
number of patients [2]. Radiotherapy in this setting is
still being discussed controversially: particularly for
children since high radiation doses are required, bearing
unwanted side-effects including acute and late local tox-
icity and the considerable risk for secondary malignan-
cies. Therefore novel therapeutic approaches like
irradiation with heavy ions (HIT) or the use of radiation
sensitizers that selectively augment the response of
osteosarcomas to radiation and thus increase the thera-
peutic ratio are urgently needed.
HIT offers significant advantages in comparison to

conventional photon therapy (XRT). The physical depth-
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dose distribution in tissue of heavy ions is characterized
by a small entrance dose and a distinct maximum (Bragg
peak) near the end of range with a sharp fall-off at the
distal edge. These facts allow delivery of the dose with
millimeter precision. In addition, HIT exhibit an en-
hanced biological effectiveness in the Bragg peak region
caused by the dense ionization of individual particle
tracks resulting in reduced cellular repair. These advan-
tages will potentially reduce undesirable side-effects and
the risk of secondary malignancies as well as improve
outcome and quality of life. Therefore, it makes them
particularly attractive for the treatment of pediatric pa-
tients and young adults as well as for radio-resistant tu-
mors such as osteosarcomas [3–6].
Histone deacetylase inhibitiors (HDACi) are epigenetic

modulators with manifold effects on tumor cells [7]. In a
number of in vitro and in vivo experimental models,
HDACi have been shown to act as radiosensitizers in a
number of solide tumors including gliomas, colorectal
carcinomas and melanoma [8–11]. The HDACi suberoy-
lanilide hydroxamic acid (SAHA) has been approved for
the treatment of T-cell lymphoma. Furthermore, promis-
ing effects of SAHA in solide tumors have been shown
clinical trials [12]. Recently, we showed a significant
radiosensitizing effect of SAHA in combination with
XRT in osteosarcoma in vivo [13]. First in vitro data
showed promising effects by the combination HIT and
SAHA in infantile sarcoma cell lines [14,15].
The aim of the present study was to evaluate the effi-

cacy of HIT alone and in combination with SAHA as
well as potential underlying mechanisms in osteosar-
comas in vivo.
Methods
Cells and reagents
The KHOS-24OS human OS cell line was purchased from
the American Type Culture Collection (ATCC; Rockville,
MD) and maintained in complete culture medium
(DMEM) supplemented with 10 % FCS. SAHA was ob-
tained from Alexis Biochemicals (Lörrach, Germany),
DMSO from Carl Roth Biochemicals (Karlsruhe, Germany).
Ketamine (0.4 mg/20 g BW) and xylazine (Bayer Germany)
(90 mg/20 g BW) were used to anesthetize mice during ra-
diation treatments.
Animal model
All animal experiments were approved by the ethics
committee of the “Regierungspräsidium Karlsruhe” (ref-
erence number 35-9185.81/G-165/08).
For the pilot experiment were 30 mice used to define

the HIT dose: control group and irradiated mice with
2 Gy, each with 5 mice, irradiated mice with 1, 3, 5, 10
and 20 Gy, each with 4 mice.
The number of mice for the main experiment was calcu-
lated with 24 mice per treatment group. Xenografts of
human KHOS-24OS cells were established by subcutane-
ous inoculation of tumor fragments (diameter 1–2 mm)
into the hind legs of 10 weeks old SCID mice (CB17/Icr-
Prkdcscid/IcrCrl) (Charles River, Wilmington, Mass.). The
tumor fragments were generated from a donor animal
after inoculation of 5 x 106 KHOS-24OS cells into the
hind legs. When the tumor reached a size of about
14 ×e 14 mm, they were fragmented and implanted into
all experimental animals. In a preliminary dose finding
trial 6 different doses between 1 and 20 Gy of carbon ions
were given and compared to a control group. Every group
consisted of 5 mice. The mice were maintained under spe-
cific pathogen-free conditions, food and water were sup-
plied ad libidum. Housing and all procedures involving
the mice were performed according to the protocols ap-
proved by the local regional board.
When tumors reached 90–100 mm3, mice were ran-

domly assigned to one of four treatment groups: vehicle
(DMSO) control (24 animals), SAHA alone (21 animals),
radiation alone (20 animals), or combined SAHA and ra-
diation (21 animals). In total, 10 of 96 animals died dur-
ing the investigation period due to anesthesia-related
complications (3 mice in the SAHA group, 4 mice in the
XRT group and 3 mice in the combination treatment
group. Therefore, these groups are smaller than the con-
trol group. SAHA 100 mg/kg was solubilized in DMSO
(99.5 %), given intraperitoneally (i.p.), started 24 h before
radiation and applied for 5 days a week, 3 weeks in total.
On day 1, mice tumors were irradiated with carbon ions
in a single dose of 2.5 Gy. For HIT, mice were anesthe-
tized with ketamine and xylazine and then exposed to
HIT directed at the tumor site. In the following, the mice
were weighed, and the tumor sizes were measured using a
caliper twice a week. Tumor length (L) and width (W) were
measured and tumor volume calculated as (L ×W2/2),
where L = longest diameter and W= shortest diameter. For
each tumor, tumor size and multiplication to initial tumor
size was assessed and documented. Animals were eutha-
nized by cervical dislocation when tumors reached a vol-
ume of 2.0 cm3 or severe necrosis latest 45 days after
treatment start.
Immunohistochemical analysis
Immunohistochemistry was performed in three tumors
per treatment group at the following time points: 24 h,
8 days, 24 and 45 days after HIT.
3 micrometre thick whole tumor sections were cut from

formalin-fixed, paraffin-embedded (FFPE) tissue blocks.
Sections were stained with hematoxylin-eosin (HE; Sigma-
Aldrich, St Louis, USA). On these H&E stained slides, the
total amount of necrotic versus vital tissue was analyzed
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in 5 % increments and means for all treatment groups
were calculated.
Immunohistochemical staining for the evaluation of

proliferative capacity and microvessel density was carried
out with anti- Ki-67 (monoclonal mouse clone MIB-1,
1:200; Dako, Hamburg, Germany) and anti- CD34 (1:25,
pH6; Dako, Hamburg, Germany) antibodies as recom-
mended by the manufacturer.
Ki-67-positive tumor cell nuclei were counted in 5 rep-

resentative areas of each tumor. Evaluation of vessel dens-
ity was done on the slides stained for CD34. The two
most vascularized areas within a given tumor (‘hot spots’)
were chosen at low magnification (×10) and vessels were
counted in a representative high magnification (× 400;
image size 385.9 × 251 μm) field in each of these two
areas. Single immunoreactive endothelial cells, or endo-
thelial cell clusters separate from other microvessels, were
counted as individual microvessels. Endothelial staining in
large vessels with tunica media, and nonspecific staining
of nonendothelial structures, was disregarded.
Apoptosis was detected by an in situ apoptosis detection

kit, ApopTAG® (S7100; Chemicon International (Millipore),
Temecula, CA, USA) on 3 μm thick formalin-fixed,
paraffin-embedded whole tumor sections as specified by
the manufacturer. TUNEL-positive cells were counted at
40x magnification 5 representative areas of each tumor.
For protein detection, the following primary antibodies

were employed: rabbit monoclonal anti-p21 (1:100, pH9,
Abcam, Cambridge, UK; #ab92675) and anti-p53 (1:100,
pH9, Dako, Hamburg, Germany. After heat-induced
antigen retrieval, slides were incubated with primary
antibody at 4 °C overnight. Bound antibody was detected
by a Super Sensitive IHC-Detection- System (BioGenex,
San Ramon, CA). For colour development, a DAB sys-
tem (DAKO, Hamburg, Germany) was used. The scores
of p21Waf1/Cip1 and p53 expression were calculated by
multiplication of staining intensity and staining percent-
age. Staining intensity was defined as follows: 0 = no
staining, 1 = weak staining, 2 =moderate and 3 = strong
staining. Staining percentage was defined as follows: 0 =
no cells, 1 = 1–10 % cells, 2 = 11–50 % cells, 3 = 51–
80 % and 4 > 80 % cells. Evaluation of all tissue based
parameters was done by two experienced pathologist
(WW and AS) together on a multiheaded microscope.
Both observers were blinded to the mouse treatment
allocation.
Data analysis
The two-sided t-test was used to analyze the differences
between the treatment groups. P values < 0.05 were con-
sidered statistically significant. Data are presented either
as mean or as median, error estimation was performed
by calculation of the standard error of mean (SEM).
Actual tumor growth delay was calculated with (T’x-Tx)/
Tx as the time it took the irradiated tumors (T’) and the
tumors of the control group to x-fold multiply their vol-
ume. Local control was estimated by Kaplan-Meier curves,
and the differences in time-to-failure (TTF) between
groups were assessed using the log-rank test.

Ethical statement
All authors confirm that the animal experiments comply
with the “Animal Research: Reporting In Vivo Experi-
ments” (ARRIVE) guidelines.

Results
Previously, we assessed the potency of XRT and SAHA
in osteosarcoma xenografts [13]. Now, HIT and SAHA
were investigated using the same mouse model and re-
sults were compared.

HIT is superior to XRT in OS xenografts
Our dosimetry trial revealed that a higher biologic ef-
fectiveness of HIT compared to XRT in our osteosar-
coma model can be observed especially at higher single
dose levels above 5 Gy (Fig. 1). On the basis of these
data, for the combination trial a single dose of 2.5 Gy
was picked in order to prevent from covering up a pos-
sible supraadditive effect. This dose showed significant
growth retardation within the first 14 days after treat-
ment, comparable to that observed after 5 Gy with XRT,
but was not too effective to mask the anticipated add-
itional effect of SAHA (Fig. 2).

SAHA sensitizes OS to HIT in vivo
Mice bearing KHOS-24OS xenografts were injected i.p.
with SAHA (100 mg/kg) for 5 days a week, 15 days in
total, starting 24 h before HIT with a dosage of 2.5Gy.
SAHA given as a single-agent for 15 days induced no

significant tumor growth delay compared to mice of the
control group.
In analogy to our recent publication about the combin-

ation of XRT with SAHA [16], the combination of HIT
with SAHA led to a significantly delayed tumor growth
rate compared to HIT alone (pd23 = 0.005). Comparing
HIT as mono-treatment to SAHA only, HIT seemed to be
superior from day 10 on after treatment start reaching sig-
nificance at day 24 (pd24 = 0.04). The combination of HIT
and SAHA yielded a significant tumor growth retardation
(measured by tumor volume) compared to SAHA only
and HIT only starting day 20 (pd20 = 0.005) and day 25
(pd25 = 0.04) respectively (Fig. 3).
The significant (p < 0,05) superior effect of HIT and

SAHA was most pronounced between days 25 and 35
after treatment as visualized after calculation according
to Kaplan-Meier. As planned, neither treatment was
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Fig. 1 HIT is superior to XRT in osteosarcoma xenografts. Tumor duplication after treatment with different doses of HIT and XRT was compared in
to animal groups. Actual tumor growth delay was calculated with (T’x-Tx)/Tx as the time taken for the irradiated tumors (T’) and the control
tumors (T) to x-fold multiply their volume (x)
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dosed intensively enough to yield tumor control beyond
40 days (Fig. 4).
Heavy ion radiation and SAHA application were toler-

ated without observable toxicity in mice. In total, 4 of 86
animals died during the investigation period due to
anesthesia-related complications. After treatment all
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Fig. 3 The combination of HIT and SAHA results in a significant tumor growth delay compared to treatment with HIT or SAHA only.
Osteosarcoma xenografts were treated with DMSO (controls), suberoylanilide hydroxamic acid (SAHA), irradiation (HIT) or SAHA plus HIT and
tumor growth was determined until day 45 after HIT. Comparing HIT as mono-treatment to SAHA only, HIT seemed to be superior from day 10
on after treatment start reaching significance at day 23. The combination of HIT and SAHA yielded a significant (*) tumor growth retardation
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Fig. 4 Combination of HIT and SAHA induces an increased local control. Tumor growth of osteosarcoma xenografts was determined after
treatment with DMSO (controls), suberoylanilide hydroxamic acid (SAHA), irradiation (HIT) or SAHA plus HIT. Local control was defined as tumor
growth > 1000 m3 and calculated according to the method of Kaplan and Meier. The combination of HIT and SAHA led to a significant local
control compared to SAHA only and HIT only starting day
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The combination of HIT and SAHA inhibits proliferation
Analysis of tumors was performed 24 h, as well as 8, 24
and 45 days after HIT.
The proliferation rate was significantly reduced in tu-

mors after treatment with SAHA and HIT at all investiga-
tion time points. HIT only treatment led to a significantly
lower proliferation rate 8 and 24 days after irradiation
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Fig. 5 Treatment with HIT and SAHA results in a reduced proliferation in o
treated with DMSO (control), suberoylanilide hydroxamic acid (SAHA), irrad
reduced in tumors after treatment with SAHA and HIT at all investigation t
rate 8 and 24 days after irradiation compared to the control group. SAHA o
compared to the control group. SAHA only treatment had
no significant effect on tumor proliferation (Fig. 5).

HIT and SAHA treatment induces apoptosis and necrosis
The TUNEL assay showed a significant induction of
apoptosis after treatment with HIT and SAHA compared
to HIT only treatment 1, 8 and 45 days (p = 0.002) after
time post irradiation (hours / days)
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HIT. Apoptosis was also increased after SAHA only and
HIT only 24 h, 8 and 45 days after irradiation but not as
much as treatment with HIT and SAHA (Fig. 6).
We further analyzed expression of p53 and p21Waf1/Cip1

in three tumors per treatment group. Our results re-
vealed a higher p53 expression in all SAHA treated
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Fig. 6 Impairment of apoptosis and necrosis after HIT and SAHA treatment
after treatment with DMSO (control), suberoylanilide hydroxamic acid (SAH
to a significant (*) induction of apoptosis one day, 8 and 45 days after HIT
SAHA only and HIT only 24 h, 8 and 45 days after irradiation but not as mu
lead to a significant (*) induction of necrosis on day 45. SAHA only and HIT
day 24 on but not at earlier time points compared to the control groups
tumors compared to the vehicle treated control and
only irradiated tumors on day 24 and 45. p21Waf1/Cip1

expression was increased in tumors after SAHA only
and SAHA and HIT treatment compared to the con-
trols and the HIT treated tumors on day 8 but not at
other points of time (Fig. 7).
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. Apoptosis and necrosis in osteosarcoma xenografts were analyzed
A), irradiation (HIT) or HIT and SAHA. The combination treatment lead
compared to HIT only treatment. Apoptosis was also increased after
ch as treatment with HIT and SAHA. Combination of HIT and SAHA
only treatment resulted in a significantly higher rate of necrosis from
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Fig. 7 Expression of p53 and p21WAF1/CIP1 is impaired in osteosarcoma xenografts after treatment with HIT and SAHA. Expression of p53 and
p21WAF1/CIP1 was analyzed after treatment with DMSO (control), suberoylanilide hydroxamic acid (SAHA), irradiation (HIT) or HIT and SAHA. p53
expression was increased in all SAHA treated tumors compared to the vehicle treated control and only irradiated tumors on day 23 and 45.
Increased p21Waf1/Cip1 expression was detected in tumors after SAHA only and SAHA and HIT treatment compared to the controls and the HIT
treated tumors on day 8
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After treatment with SAHA only, the rate of necrosis
was significantly increased on day 45 compared to the
controls but not before (Fig. 7).
Combination of HIT and SAHA lead to a significant

induction of necrosis on day 45 (p = 0.01). Furthermore,
SAHA only and HIT only treatment resulted in a signifi-
cantly higher rate of necrosis from day 24 on but not at
earlier time points compared to the control groups
(Fig. 6). However, rate of necrosis was highest in the
combination treatment group.
SAHA significantly impairs angiogenesis in combination
with HIT
We also evaluated the number of microvessels by CD34
immunohistochemistry. Compared to the control group,
the density of microvessels was reduced in tumors of all
treatment groups at all investigation time points. Tu-
mors treated with HIT and SAHA showed a significant
lower vascularization compared to tumors treated with
HIT from day 24 on (p = 0.02) and the lowest
vascularization at all (Fig. 8).
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Fig. 8 Density of microvessels is significantly reduced in
osteosarcoma after combination treatment. Xenografts were treated
with DMSO (control), suberoylanilide hydroxamic acid (SAHA),
irradiation (HIT) or HIT and SAHA. The density of microvessels was
reduced in tumors of all treatment groups at all investigation time
points. Tumors treated with HIT and SAHA showed a significant (*)
lower vascularization compared to tumors treated with HIT from day
24 on and the lowest vascularization at all
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Discussion
Osteosarcoma are highly malignant bone tumors and ra-
ther resistant to radiotherapy. Prognosis is fatal when-
ever local control cannot be achieved by surgery or/and
radiotherapy [17,18]. Therefore, for patients with inoper-
able or not completely resectable osteosarcoma new
treatment strategies with novel irradiation techniques
like proton or heavy ion beams or new therapeutic sub-
stances with radiosensitizing effects are under investiga-
tion. HDACi have been shown to be effective anticancer
agents [12]. In solid tumors, the full therapeutic poten-
tial of HDACi can, however, only be achieved in combin-
ation with other agents and / or radiation [19,20]. SAHA
is one of the well-established HDACi and has been
shown to act as a radiosensitizer in vitro and in vivo in
different tumor entities [7–10,12,13]. The current study
is the first that investigates the efficacy of HDACi in
combination with HIT, the most effective form of radi-
ation in osteosarcoma in clinical practice [21].
Comparing the current study with the results of our re-

cently published study [12], we observed a higher efficacy
of HIT at higher single doses > 5 Gy. Although these data
correspond well to previous findings, this observation
needs to be reevaluated as the rate of growth in the con-
trol animals of the two subsequently performed studies
varied considerably.
Furthermore, our study clearly shows that SAHA sig-

nificantly and effectively radiosensitizes osteosarcoma to
HIT in vivo and that the combination of SAHA and HIT
is superior to either agent alone. Growth of tumors
treated with SAHA and HIT was significantly delayed
compared to tumors treated with either HIT only or
SAHA without observable toxicity in our mice.
Immunhistochemical analysis of tumor xenografts re-

vealed a significant increase of necrosis on day 45 after
HIT and SAHA treatment compared to HIT alone. Pro-
liferation was impaired in tumors after combination
treatment compared to tumors treated with HIT only.
Furthermore, apoptosis was significantly induced by
treatment with HIT and SAHA compared to irradiated
tumors.
Our results are in line with the observations of many

other studies [22–25]. HDACi are regarded as agents cap-
able of reactivating apoptosis in tumor cells by affecting
very different parts of the apoptosis cascade; for example,
through increased expression of death receptors like
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) cell surface receptors or by directly stimulating a
death receptor pathway without altered receptor expres-
sion [26]. Henderson et al. reported about HDACi - in-
duced cell death by activation of caspases but also could
show that inhibition of caspases did not block HDACi -
induced cell death [27]. Furthermore, apoptosis-inducing
effects of HDACi might not only be due to histone deace-
tylation and subsequent transcriptional regulation. HDACi
can also block deacetylation of important proteins, such
as the tumor suppressor gene TP53 [28]. P53 is one of the
most commonly altered transcription factors in cancer
and plays a pivotal role in the cellular response to DNA-
damaging agents [29]. A number of studies demonstrate
activation of p53 in cells after exposure to HDACi and
ability of HDACi to enhance radiation response in cancer
cells through increase of p53 acetylation-phosphorylation
[30–32]. Correspondingly, we were able to observe an in-
crease of p53 expression in all SAHA treated samples.
However, there was no difference between SAHA only
and SAHA plus HIT treated tumors and no supraadditive
effect that might prove a sensitization to HIT beyond the
SAHA only effect.
HDACi-mediated effects on the cell cycle are also pos-

tulated to be a key reason for their toxicity in tumor
cells. Most HDACi lead to a cell cycle arrest at G1 asso-
ciated with induction of CDKN1A/p21WAF1/CIP1 [33].
Recently, we observed a HDACi-induced cell cycle arrest
at G1 accompanied with up-regulation of p21WAF1/CIP1

in vitro. However, this effect does not fully explain the
radiosensitizing property because multiple underlying
mechanisms are described like effects on DNA damage
repair, angiogenesis and apoptosis.
Solid tumors are frequently angiogenesis dependent.

The immunohistochemical assessment of angiogenesis
in our animal model showed a significant decrease of
microvessels in all tumors treated with HIT and SAHA
compared to tumors treated with either HIT or SAHA.
Vascularization of malignant lesions depends on the
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expression of specific genes in both endothelial and
tumor cells. There is evidence that several members of
the histone deacetylase family play key roles in the regu-
lation of these genes. Indeed, numerous in vitro and
in vivo studies demonstrated that inhibitors of HDAC
modulate angiogenic gene expression in both endothelial
and cancer cells and disturb the delicate and complex
balance between the collective action of pro-angiogenic
factors and angiogenesis inhibitors [34].

Conclusions
Taken together, we demonstrate that SAHA leads to a
significant tumor growth delay of OS in vivo when com-
bined with HIT. This effect in our in vivo model is most
likely caused by a combination of an induction of apop-
tosis, an impairment of angiogenesis and a supraadditive
impact of the combination treatment on proliferation.
Our results indicate that a combination of HDACi and
HIT might be a strategy therapeutic option for patients
with OS, particularly if tumors are non-resectable.
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