Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

IFNγ+ Treg in-vivo and in-vitro represent both activated nTreg and peripherally induced aTreg and remain phenotypically stable in-vitro after removal of the stimulus

Daniel, Volker ; Trojan, Karina ; Adamek, Martina ; Opelz, Gerhard

In: BMC Immunology, 16 (2015), Nr. 45. pp. 1-13. ISSN 1471-2172

[thumbnail of 12865_2015_Article_111.pdf]
Preview
PDF, English
Download (3MB) | Lizenz: Creative Commons LizenzvertragIFNγ+ Treg in-vivo and in-vitro represent both activated nTreg and peripherally induced aTreg and remain phenotypically stable in-vitro after removal of the stimulus by Daniel, Volker ; Trojan, Karina ; Adamek, Martina ; Opelz, Gerhard underlies the terms of Creative Commons Attribution 3.0 Germany

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Background: IFNγ-producing CD4+CD25+Foxp3+CD127- Treg represent the first line of Treg during an immune response. In the present study we determined whether IFNγ+ Treg in-vivo and in-vitro are Helios-positive representing activated natural (nTreg) or Helios-negative representing adaptive Treg (aTreg) and whether they originate from CD4+CD25+ and/or CD4+CD25- PBL. Furtheron, we investigated whether they are inducible by recombinant IFNγ (rIFNγ) as a single stimulus, decrease in-vitro after elimination of the stimulus, and have a demethylated Foxp3 Treg-specific demethylated region (TSDR) which is associated with stable Foxp3 expression. Method: Subsets of IFNγ+ Treg were determined in peripheral blood of healthy controls using eight-color flow cytometry and were further investigated in-vitro. Foxp3 TSDR methylation status was determined using bisulphite polymerase chain reaction (PCR) and high resolution melt (HRM) analysis. Results: Nearly all Treg in the peripheral blood were Helios+IFNγ- (1.9 ± 1.1/μl) and only few were Helios+IFNγ+ or Helios-IFNγ+ Treg (both 0.1 ± 0.1/μl). Enriched IFNγ+ Treg subsets showed in part strong Foxp3 TSDR demethylation. In-vitro, rIFNγ was unable to induce Treg. CD4+CD25+ enriched PBL stimulated with PMA/Ionomycin in the presence of rIFNγ were rather resistant to the effect of rIFNγ, in contrast to CD4+CD25- enriched PBL which showed increasing total Treg with Helios+ Treg switching from IFNγ- to IFNγ+ and increasing Helios-IFNγ+ Treg. The data indicate that rIFNγ, in combination with a polyclonal stimulus, activates nTreg and induces aTreg. When phorbol 12-myristate 13-acetate (PMA)/Ionomycin was washed out from the cell culture after 6 h stimulation, Treg induction continued for at least 96 h of cell culture, contradicting the hypothesis that removal of the stimulus results in significant decrease of IFNγ- and IFNγ+ CD4+CD25+Foxp3+CD127- Treg due to loss of Foxp3 expression. Conclusions: IFNγ+Helios- aTreg as well as IFNγ+Helios+ nTreg are detectable in the blood of healthy individuals, show in part strong Foxp3 TSDR demethylation and are inducible in-vitro. The present data provide further insight concerning the in-vivo and in-vitro characteristics of IFNγ+ Treg and help to understand their role in immunoregulation. Alloantigen-specific demethylated IFNγ+Helios+ nTreg might represent a suitable marker for monitoring graft-specific immunosuppression in renal transplant recipients.

Document type: Article
Journal or Publication Title: BMC Immunology
Volume: 16
Number: 45
Publisher: BioMed Central
Place of Publication: London
Date Deposited: 18 Jan 2016 13:41
Date: 2015
ISSN: 1471-2172
Page Range: pp. 1-13
Faculties / Institutes: Medizinische Fakultät Heidelberg > Institut für Immunologie
DDC-classification: 610 Medical sciences Medicine
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative