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Die Mathematiker sind eine Art Franzosen:
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if one talks to them, they translate it into their own language,
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Abstract

The mammalian hippocampus is a brain region in which neural stem cells (NSCs)
continuously generate new neurons and astrocytes during adulthood. The produc-
tion of the former cell type is known as adult neurogenesis. This new progeny,
neurons and also astrocytes, is crucial for cognitive tasks such as learning and mem-
ory. Understanding the mechanisms that allow for adult neuron generation forms
the basis of new clinical applications. Due to the complexity of adult neurogenesis,
mathematical modeling is needed in order to identify its dynamics and to evaluate
experimental data.
In this thesis, we model the dynamics of neural stem cells and downstream cell

compartments using systems of ordinary differential equations (ODEs). To study
the role of sudden changes in neural stem cell dynamics, we develop a method to
compute the sign of the derivative of the ODE solution with respect to model param-
eters. Moreover, we compare different hypotheses about NSC dynamics by analyzing
the quasi steady-state to which the respective system converges and propose a com-
promise model. The quasi steady state approach is also used to reveal age-related
changes of neural stem cell dynamics. In the case of evaluating single-cell level data,
we additionally employ stochastic simulations utilizing the Gillespie algorithm [26].
Finally, to achieve the original aim of this modeling project, we apply our devel-

oped model to evaluate the knockout experiment of the Dkk1 gene, a study published
by the group of our collaborator Prof. Martin-Villalba (DKFZ) [51]. We demonstrate
that our model is a suitable description of adult hippocampal neurogenesis and give
a data-driven identification of the parameters most probably changing to explain
the observed effects upon Dkk1 deletion.
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Zusammenfassung

Der Hippocampus vieler Säugetierarten beherbergt neuronale Stammzellen, welche
im Erwachsenenalter kontinuierlich neue Nervenzellen und Astrozyten bilden. Die-
se Produktion von neuen Neuronen (Neurogenese) und ebenso Astrozyten ist für
kognitive Funktionen wie das Lernen oder die Gedächtnisleistung von wesentlicher
Bedeutung. Ein Verständnis der zugrundeliegenden Mechanismen, welche die Pro-
duktion neuer Neuronen im Erwachsenenalter ermöglichen, bildet zudem die Basis
neuer klinischer Anwendungen. Aufgrund der Komplexität des Produktionsprozes-
ses von neuen Neuronen werden mathematische Modelle benötigt um dessen Ablauf
zu entschlüsseln und um experimentelle Daten auszuwerten.
In dieser Dissertation modellieren wir die Dynamik von neuronalen Stammzellen

und deren nachgeschalteten Kompartimenten mit Systemen gewöhnlicher Differenti-
algleichungen (DGL). Um eine abrupte Änderung der Stammzelldynamik zu verste-
hen, entwickeln wir eine neue Methode, die es erlaubt das Vorzeichen der partiellen
Ableitung der DGL Lösung nach Parametern des Modells zu berechnen. Außerdem
vergleichen wir verschiedene Hypothesen zur Dynamik neuronaler Stammzellen in-
dem wir die zugehörigen Quasigleichgewichte, gegen welche die jeweilige Dynamik
konvergiert, analysieren. Außerdem schlagen wir ein Konsensusmodell vor, welches
sich aus den verschiedenen Hypothesen zusammensetzt. Die Analyse von Quasi-
gleichgewichten nutzen wir auch, um altersbedingte Veränderungen der neuronalen
Stammzelldynamik aufzudecken. Um auch Daten zu verstehen, die aus einigen we-
nigen Zellen bestehen, nutzen wir zudem den Gillespie-Algorithmus [26], um ent-
sprechende stochastische Simulationen durchzuführen.
Abschließend widmen wir uns der ursprünglichen Zielsetzung dieses Dissertati-

onsprojektes und analysieren ein Knockoutexperiment des Dkk1 Gens, welches in
der Gruppe unseres Kollaborationspartners Prof. Martin-Villalba (DKFZ) durchge-
führt wurde [51]. Wir zeigen, dass das von uns etablierte Modell Neurogenese im
Hippocampus zutreffend beschreibt. Außerdem treffen wir eine datenbasierte Aus-
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sage darüber, wie sich die Dynamik neuronaler Stammzellen aufgrund des Dkk1
Knockouts aller Wahrscheinlichkeit nach ändert.
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Chapter 1

Introduction

In almost all mammals including humans, neural stem cells (NSCs) continuously
give rise to new neurons during adulthood [30, 45, 54]. This process, called adult
neurogenesis, predominantly occurs in two regions of the brain: The subgranular
zone of the hippocampal dentate gyrus and the subventricular zone of the lateral
ventricles [3, 25, 41]. The focus of this work is on identifying the dynamic behavior
of the neuron production system in the hippocampus with respect to cell cycle
kinetics, self-renewal properties and apoptosis. Moreover, we aim to understand how
the dynamics of neurogenesis change upon inducing a stem cell targeting knockout
(KO) of the Dkk1 gene. The latter application is a follow-up on a study which has
been published by the group of our collaborator Prof. Martin-Villalba [51].

These aims are being approached using mathematical modeling methods. We
employ two kinds of models to account for the different types of data that have been
generated. Population level data, which originate from observing a large amount of
cells, admit inferences about the collective behavior of a whole cell population. In
this case, we use ODEs to describe mean properties of the cell system. In contrast,
clonal data collect single-cell level behavior by tracing the progeny of individual
cells. Here, stochastic effects emerging from the biological variability among cells
need to be taken into account. Accordingly, we use the Gillespie method [26] to
perform stochastic simulations corresponding to the ODE models.

1
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1.1 Motivation

Since the first evidence of adult hippocampal neurogenesis by Altman and Das [3],
extensive research has been carried out to gain further insights into the topic. In
particular, progress has been made towards establishing links between adult hip-
pocampal neurogenesis and several diseases. For instance, it has been shown that
Alzheimer’s disease (AD) and Parkinson’s disease are correlated with impaired hip-
pocampal neurogenesis [18, 27, 44, 60] and that a breakdown of the blood brain
barrier, also occurring in AD patients, begins in the hippocampus [42]. Moreover,
hippocampal neurogenesis is involved in the development of chronic seizures [15]
and mouse models of human epilepsy report an increase of hippocampal volume
[47]. Apart from being crucial for cognitive tasks such as learning and memory [55],
the hippocampus has been shown to be involved in buffering stress responses and de-
pressive behavior [53]. Taken together, these studies identify the adult hippocampus
as potential target for many therapeutic applications. Understanding the dynamic
behavior and regulation of hippocampal neurogenesis is therefore of great clinical
relevance.

1.2 Biological Background

1.2.1 Adult Hippocampal Neurogenesis

In the adult hippocampus, neurogenesis takes place in the subgranular zone of the
dentate gyrus. Here, neuron production originates from neural stem cells, which
constitute the top of a hierarchical cell system, leading to mature neurons at the
end of the differentiation cascade [25]. Recent data obtained from single-cell level
analysis demonstrate that neural stem cells may undergo four different types of
events in order to produce progeny: Symmetric divisions by dividing into two stem
cells, two types of asymmetric divisions by either dividing into a stem cell and an
astrocyte or a stem cell and a neural progenitor cell, and astrocytic transformation,
the direct conversion of a stem cell into an astrocyte [9]. Originating from stem cells,
neural progenitors are capable of expanding their own pool by symmetric divisions
and produce immature neurons called neuroblasts. After a transient period in which
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a large majority of neuroblasts die, the remaining cells mature to become granule
cell neurons [9, 52].

On a population level, it has been shown that the number of neural stem cells,
progenitors and immature neurons decreases during aging [7, 21, 31] with an accom-
panying decrease of the number of newborn neurons [37]. Although hippocampal
neurogenesis is in a steady decline during the aging process, the fraction of divid-
ing stem cells as well as the total number of granule neurons in the dentate gyrus
remains constant during aging [7, 21].

1.2.2 Knockout Experiments

A gene-knockout is a procedure that eliminates a certain gene (a DNA sequence
encoding a protein) from an organisms’ DNA. Thus, the corresponding protein is
not synthesized and it is said to be “knocked out”. In order to study the protein-
driven regulatory mechanisms involved in the dynamics of adult neural stem cells,
such knockout experiments have been conducted in the past. A particular version
of knockout experiment is the inducible knockout: Cells with a pre-marked gene-
sequence react to the administration of Tamoxifen, a chemical that is injected in the
animal. The reaction leads to the activation of a cutting enzyme (Cre-recombinase)
that excises the marked sequence. Since it is possible to generate an animal in
which this cutting enzyme is only present in cells expressing a certain protein, for
instance the NSC characteristic protein Nestin, one can selectively knock out the
gene of interest in NSCs. The advantage of an inducible knockout is the control over
the time point of Tamoxifen injection. In this way, it is possible to influence that
the knockout affects neurogenesis only during adulthood, hence eliminating possible
developmental effects.

Over the last few years, knockout experiments have been used to study the regu-
latory mechanisms governing adult hippocampal neurogenesis [1, 9, 17, 24, 29, 51].
Evaluating the results of such experiments is a non-trivial task due to the multifac-
torial nature of the neurogenesis process. These complex dynamics severely limit
intuitive interpretation of experimental data and call for tools such as mathematical
modeling and analysis.
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1.3 State-of-art in Modeling of Neurogenesis

Mathematical and computational models have been applied before to study adult
neurogenesis. Ashbourn et al. [4] provide a system of partial differential equations to
model the migration of immature neurons from the subventricular zone of the lateral
ventricles to the olfactory bulb and investigate parameters that lead to biologically
plausible solutions. Aimone et al. [2] model the functional integration of new neurons
to the hippocampus as an artificial neural network. To our knowledge, there exists
no model addressing the cellular dynamics of adult hippocampal neurogenesis.
Our proposed model is a neurogenesis adjusted modification of the model of

hematopoiesis investigated by Marciniak-Czochra et al. [40] and Stiehl and Marciniak-
Czochra [56]. Dynamics of hierarchical cell production systems, which maintain a
continuous supply of differentiated functional cells to various parts of a living organ-
ism, have attracted the attention of biologists and mathematicians since a long time
in the context of blood cell production [59]. Besides common elements that can be
found in all cell production systems, there are significant differences depending on
the type of cells considered. To model the hierarchical structure of neurogenesis we
apply a system of ODEs, each of which describes a discrete differentiation stage. In
such models the pace of commitment is dictated by successive divisions. However,
in the case of neurogenesis there are indications that stem cell differentiation also
involves direct (continuous) transitions. Our proposed model also accounts for these
observations.

1.4 Outline of the Thesis

The thesis is organized as follows:
In Chapter 2 we construct an ODE model of adult hippocampal neurogenesis,

incorporating the existing knowledge about this process, which has been outlined
in the previous section. The model is applied to simulate the effects of knockout
experiments by computing the derivatives of the ODE solution with respect to stem
cell parameters. Using this approach, we show that the effects of an inducible
knockout experiment are time-dependent in the sense that there exist distinct time-
intervals in which cell counts are either increased or decreased. The method of
computing parameter-derivatives of the ODE solution allows to describe knockout
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effects only qualitatively. This is due to the fact that the constructed model cannot
be quantified using the available experimental data. In order to fully understand
knockout experiments, it is important to develop a quantitative model that makes
it possible to estimate parameters based on experimental data.

Chapter 3 is devoted to build such a quantitative model, departing from the
hypotheses of Bonaguidi et al. [9] and Encinas et al. [21]. In both studies, a model
for the dynamic behavior of NSCs has been suggested based on their experimental
findings. To differentiate between the two hypotheses, we translate both scenarios
into ODE models and estimate parameters based on population level data generated
by Sascha Dehler in the Martin-Villalba laboratory. In addition, we translate the
ODE models into stochastic counterparts using the Gillespie method [26] to also take
single-cell level data into account, which has been published by Bonaguidi et al. [9].
The key point for estimating parameters is that the two hypotheses of Bonaguidi
et al. [9] and Encinas et al. [21] distinguish between cycling and quiescent (non-
cycling) stem cells, a feature that was missing in the model proposed in Chapter
2.

We then demonstrate that the model based on the hypothesis of Bonaguidi et al.
[9] provides a better fit considering all the data, since it allows to maintain a constant
fraction of proliferating stem cells, a feature that is observed in vivo. Additionally,
we reveal age-related changes in the dynamics of neural stem cells and provide
experimentally testable predictions.

Chapter 4 considers the dynamic contribution of progenitor cells to the neuron
production process. Using the data published in ref. [21], we analyze the hypothesis
that progenitors, being generated from stem cells, perform several rounds of sym-
metric divisions followed by either apoptosis or differentiation into a neuroblast. We
show that under a steady state assumption, these dynamics do not agree with the
data. However, the data can be explained under the assumption of a non-steady
initial distribution, indicating that the steady state was not attained at the time
point of the experiment.

In Chapter 5, we couple the stem cell model of Chapter 3 and the progenitor
model of Chapter 4 to investigate the Dkk1 experiment of Seib et al. [51]. The very
good fit to the wild type data independently confirms that we have developed a
suitable model of adult hippocampal neurogenesis. Moreover, we demonstrate that



6 Chapter 1 Introduction

the Dkk1 knockout can best be explained by an increased activation of NSCs, rather
than the hypothesized increased self-renewal of NSCs.
Chapter 6 includes a summary and discussion of the findings of this thesis as

well as an outlook for further studies.
Moreover, we provide an Appendix to give an introduction into the foundations

of nonlinear regression. This theory forms the basis of estimating parameters for
the developed ODE models.
The results of Chapter 2 have already been published in ref. [62].



Chapter 2

Modeling of Knockout Experiments

In this chapter, we propose a basic ODE model of adult hippocampal neurogenesis
based on experimental data. To analyze the results of knockout (KO) experiments,
we investigate how changes of cell properties, reflected by model parameters, influ-
ence the dynamics of cell counts and of the experimentally observed counts of cells
labeled by the cell division marker bromodeoxyuridine (BrdU).

We find that changing cell proliferation rates or the fraction of self-renewal, re-
flecting the balance between symmetric and asymmetric cell divisions, may result
in multiple time phases in the response of the system, such as an initial increase in
cell counts followed by a decrease. Furthermore, these phases may be qualitatively
different in cells at different differentiation stages and even between BrdU labeled
cells and all cells existing in the system.

2.1 Derivation of a Multicompartmental Model

Based on the experimental evidence outlined in Chapter 1, we propose a model of
adult neurogenesis consisting of five cellular compartments: Stem cells (c1), (neural)
progenitors (c2), neuroblasts (c3), mature neurons (c4) and astrocytes (c5):

7
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d

dt
c1(t) = (2a1θ1 − 1)p1c1(t),

d

dt
c2(t) = θ12(1− a1)κp1c1(t) +

(
(2a2θ2 − 1)p2 − d2

)
c2(t),

d

dt
c3(t) =

(
(1 + θ2)− 2a2θ2

)
p2c2(t)− p3c3(t)− d3c3(t),

d

dt
c4(t) = p3c3(t)− d4c4(t),

d

dt
c5(t) =

(
θ12(1− a1)(1− κ) + 1− θ1

)
p1c1(t)− d5c5(t).

(2.1.1)

The model equations describe the following events: Stem cells can either divide
with probability θ1 or perform an astrocytic transformation with probability 1− θ1.
The rate at which stem cells undergo these events is given by the parameter p1,
called further as the proliferation rate. The balance between symmetric self-renewal
and asymmetric divisions is reflected by the fraction of self-renewal a1 ≥ 1/2, which
is the probability of a daughter cell to have the same fate as the mother cell. The
relation

a1 = 1 (2a1 − 1) +
1

2
(1− (2a1 − 1)) (2.1.2)

shows that 2a1 − 1 is the corresponding probability of a symmetric division and
1−(2a1−1) = 2(1−a1) the probability of an asymmetric division, since the fraction
of progeny cells that are stem cells is 1 in a symmetric and 1/2 in an asymmetric
division. It follows that the expected net change of the number of stem cells after
one stem cell event (division or transformation) is given by

θ1(2a1 − 1) + (1− θ1)(−1) = 2a1θ1 − 1.

Asymmetric cell divisions may lead to two types of differentiated cells. The non-
stem daughter cell is assumed to be either a neural progenitor with probability κ or
an astrocyte with probability 1−κ (see Figure 2.1 for the diagram showing possible
scenarios followed by a stem cell).
For the proliferative capacity of progenitors, we again assume two possible modes

of generating progeny: Division, which occurs with probability θ2, or direct transfor-
mation to a neuroblast with probability 1−θ2. Analogously to stem cells, progenitors
have a proliferation rate p2 and a fraction of self-renewal a2. Neuroblasts mature
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S ?p1

division

θ1

transformation

1− θ1

S → A

?

symmetric

2a1 − 1

S → S + S

asymmetric

2(1− a1)

?

S → S + P

κ

S → S +A

1− κ

Figure 2.1: Proliferation diagram of a stem cell. Red nodes indicate events with
stochastic outcome (e.g. division or transformation; symmetric or asym-
metric division), blue nodes describe the outcome of particular events
using chemical reaction notation (S: stem cell, P: neural progenitor, A:
astrocyte). θ1 denotes the probability of stem cell division, p1 the prolif-
eration rate; a1 reflects the probability that a daughter cell has the same
fate as its parent cell (self-renewal takes place) and κ is the probability
that a neural progenitor is produced in an asymmetric division rather
than an astrocyte.

by transforming into a neuron at the rate p3. Furthermore, we assume that all
cell types except stem cells are subject to apoptosis, modeled by the parameters di
corresponding to the compartment i.

The independent time variable t is used in two contexts. In section 2.2, we analyze
age-related properties of the neurogenesis system and we use time t for the adult age
of the animal, i.e. the time point t = 0 refers to the beginning of adult age and the
initial data consists of the number of cells present at t = 0 for each compartment.
In section 2.3 and 2.4, we investigate the effect of altered stem cell dynamics on cell
counts and on the number of BrdU labeled cells in the framework of an inducible
knockout experiment, which imposes altered dynamics upon administration of a
certain chemical. In this context, the variable t is used as the time after the knockout,
i.e. t = 0 refers to the start at which the neurogenesis system operates under the
altered dynamics.
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2.2 Decline of Stem Cell and Progenitor Counts

Since it was observed that the number of stem and progenitor cells declines with
age [21], we first derive parameter conditions that account for this effect.

Lemma 2.2.1. The solutions c1(t) and c2(t) of (2.1.1) are monotonically decreasing
for all t ≥ 0 if and only if

a1θ1 <
1

2
and

c1(0)

c2(0)
<
d2 − (2a2θ2 − 1)p2

κθ12(1− a1)p1

.

Furthermore

lim
t→∞

c1(t)

c2(t)

> 0 (2a1θ1 − 1)p1 > (2a2θ2 − 1)p2 − d2,

= 0 otherwise.

Proof. It holds d
dt
c1(t) < 0 if and only if a1θ1 <

1
2
. To analyze the decay conditions

of the progenitor compartment c2, we introduce the abbreviations

p := (2a1θ1 − 1)p1,

q := κθ12(1− a1)p1,

r := d2 − (2a2θ2 − 1)p2.

Firstly, let us note that p < 0 and r > 0 is a necessary though not sufficient condition
for d

dt
c2(t) < 0. Furthermore, it can be seen that the quantity c1

c2
satisfies a Riccati

differential equation:

d

dt

(
c1(t)

c2(t)

)
=
c1(t)

c2(t)

(
p+ r − q c1(t)

c2(t)

)
. (2.2.1)

Since q > 0, the right-hand side of (2.2.1) describes a downward opening parabola
with roots 0 and p+r

q
. If p + r > 0, the state p+r

q
is globally asymptotically stable.

Otherwise, 0 is globally asymptotically stable. In both cases, the steady state is
approached monotonically. Furthermore, p < 0 and q, r > 0 imply

p+ r

q
<
r

q
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and hence
c1(0)

c2(0)
<
r

q
implies

c1(t)

c2(t)
<
r

q
for all t ≥ 0. (2.2.2)

Note from (2.1.1) that d
dt
c2(t) < 0 holds if and only if

c1(t)

c2(t)
<
r

q
.

Taken together with (2.2.2), we see that d
dt
c2(t) < 0 for all t ≥ 0 if and only if

c1(0)

c2(0)
<
r

q
.

Biological Interpretation. Lemma 2.2.1 states that the depletion of the stem cell
pool takes place if and only if symmetric stem cell divisions, accompanied by a gain
of stem cells, are less likely than astrocytic transformations with the resulting loss
of the stem cell. The second part states that the ratio of the number of stem cells to
the number of progenitors converges to zero, if the net depletion rate of stem cells
is higher than the one of progenitors. Otherwise, it converges to a positive value.
Furthermore, the positive steady state is achieved monotonically, either increasing
or decreasing. Interestingly, both behaviors have been observed experimentally. In
ref. [21] it was reported that the ratio of the number of stem cells to the number
of progenitors is monotonically decreasing while [31] reports an increasing progres-
sion. The discrepancy in both observations might thus result from different labeling
procedures and measurements of different sub-populations.

In [21, Supplementary Table 2], a time series for the age-related decline of the stem
cell and progenitor count was presented. Fitting those data to the solution of (2.1.1)
indicates that the parameters of our model satisfy the relations (2a2θ2− 1)p2− d2−
(2a1θ1− 1)p1 < 0 and a1θ1 < 1/2 (see section 2.4.1). Hence, the data are consistent
with the scenario in which the net depletion rate of progenitors is higher than the
net depletion rate of stem cells. This results in the following assumption of our
subsequent mathematical analysis in order to stay consistent with the experimental
data of [21]:
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Assumption 2.2.2. The parameters of model (2.1.1) have the properties

(2a2θ2 − 1)p2 − d2 − (2a1θ1 − 1)p1 < 0

and
a1θ1 <

1

2
.

2.3 Analysis of Altered Stem Cell Parameters

2.3.1 Preliminaries

As already described in Chapter 1, KO experiments have been used to manipulate
the dynamics of neural stem cells in the adult hippocampus. If the knockout of a
certain gene results in a difference between knockout and wild-type (non-knockout)
individuals regarding the number of counted cells, the question arises of which stem
cell parameter was affected by the knockout and caused the observed difference. To
treat this question in a general way, we examine the effects of alterations of the
stem cell parameters a1 (fraction of self-renewal), θ1 (division probability) and p1

(proliferation rate) on the number of existing cells and the number of cells labeled by
BrdU, a chemical that is incorporated in cell’s DNA after they performed a division
and are in the stage of DNA synthesis.

Basic notation: We occasionally write x(t; p) to emphasize the dependence of the
solution x(t) of a differential equation on a parameter p and sgn(a) denotes the sign
of a real number a.

Modeling of Two Experimental Scenarios

We consider two scenarios related to knockout experiments, for which we analyze
the effect of altered stem cell parameters. Scenario (i), (Figure 2.2a): Starting
from a time point zero, which corresponds to the fixed age of the studied animal at
which the knockout is conducted, the number of cells of compartment i is analyzed
at t time units after time point zero. Scenario (ii), (Figure 2.2b): At time t?

after the initial time point of the knockout, BrdU is administered and is present
in the organism for a duration δ, thus labeling DNA synthesizing cells during that
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0

KO

t

ci(t)

time

(a) Cell counts ci(t) are evaluated
at time t after the knockout

0

KO

t?

BrdU

δ

τ = 0,
li(t

?, 0)

τ

li(t
?, τ)

time

(b) The number of BrdU labeled cells is evaluated at
time τ after the end of the labeling period (τ = 0)
and BrdU was given at time t? after knockout

Figure 2.2: Graphical representation of the analyzed knockout scenarios

period. At τ time units after the labeling has ended, the number of BrdU labeled
cells (li(t

?, τ)) is examined.

To evaluate in both scenarios the effects of a change of a parameter p ∈ {a1, p1, θ1}
from a value p̂ to a value p̂ + ∆p (∆p > 0), we analyze the sign of the derivative
∂pci(t; p̂), respectively ∂pli(t?, τ ; p̂), with respect to the parameter p. Thus, we as-
sume that ∆p is so small that

sgn(ci(t; p̂+ ∆p)− ci(t; p̂)) = sgn(∂pci(t; p̂))

and
sgn(li(t

?, τ ; p̂+ ∆p)− li(t?, τ ; p̂)) = sgn(∂pli(t
?, τ ; p̂)).

To model scenario (i), we use model (2.1.1) together with initial data ci(0) cor-
responding to the number of cells of compartment i, which are present at the time
point of the knockout. For scenario (ii), the initial data is li(t?, 0), the number of
cells that have incorporated BrdU at the end of the labeling period, where BrdU
was given at time point t? and the independent variable in this scenario is τ , the
time that passed since the end of the labeling period.

Initial Data for BrdU Labeled Cells

It is known from the theory of branching processes that in a model of proliferation
in which particles (cells) have exponentially distributed lifetimes, mean counts of
particles (cells) follow a system of ordinary differential equations [34, Chapter 4].
Conversely, if the population of cells is described by a system of ODEs, then the
interpretation is that the cells have exponentially distributed lifetimes. This is
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a simple and widely used model (see relevant discussion of the cell proliferation
models in Kimmel and Axelrod [34]), despite the fact that it has been known that
cell lifetime distributions are not exponentially distributed [28]. Thus, we apply
the relationship between ODEs and the exponential distribution in order to derive
equations for the number of cells belonging to type i and have incorporated BrdU
(li(t?, 0)).

Recall that BrdU is a chemical which is incorporated in cells after they performed
a division and are in the stage of DNA synthesis. Thus, in order to be labeled by
BrdU, a cell must be in S-phase during a time interval of length δ in which BrdU is
present in the animal. Assuming that the fraction of dividing cells equals the fraction
of DNA-synthesizing cells during any time interval of fixed length, it follows that
the number of cells that have incorporated BrdU at the end of the labeling period,
starting with labeling at time t?, is given by

l1(t?, 0) = 2a1θ1(1− e−p1δ)c1(t?),

l2(t?, 0) = κθ12(1− a1)(1− e−p1δ)c1(t?) + θ2(2a2 − 1)(1− e−p2δ)c2(t?),

l3(t?, 0) = θ22(1− a2)(1− e−p2δ)c2(t?),

l4(t?, 0) = 0,

l5(t?, 0) = (1− κ)θ12(1− a1)(1− e−p1δ)c1(t?)

where ci(t?) is the number of cells of compartment i, present at time t? of BrdU
injection. More specifically, a random variable X, exponentially distributed with
parameter λ, has the property

Pr({X ∈ [t, t+ δ]}|{X > t}) = 1− e−λδ.

Thus, the fraction of stem cells performing a transformation or division during
marker exposure is 1 − e−p1δ and a fraction θ1 of them divides with each divi-
sion contributing, on average, 2a1 stem cells. Analogous considerations lead to the
equations for all other cell compartments. Note that neurons are assumed to be the
result of a transformation from neuroblasts rather than a division. Thus, there are
no BrdU labeled neurons right after the BrdU labeling period has ended.
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2.3.2 Effects of Altered Stem Cell Parameters

We model the scenarios (i) and (ii) of section 2.3.1 using the system of ODEs that
follows. The equations for the quantities li(t?, τ) have been derived based on the
assumption that labeled cells of type i follow the same dynamics as their correspond-
ing compartment ci. Thus, the initial data for the labeled cells, li(t?, 0), depend on
ci(t

?), the number of cells present at the time point t = t? of BrdU injection. We
obtain the following system of equations.

d

dt
c1(t) = (2a1θ1 − 1)p1c1(t),

d

dt
c2(t) = θ12(1− a1)κp1c1(t) +

(
(2a2θ2 − 1)p2 − d2

)
c2(t),

d

dt
c3(t) =

(
(1 + θ2)− 2a2θ2

)
p2c2(t)− d3c3(t),

d

dt
c4(t) = p3c3(t)− d4c4(t),

d

dt
c5(t) =

(
θ12(1− a1)(1− κ) + 1− θ1

)
p1c1(t)− d5c5(t),

ci(0) = ni,

d

dτ
l1(t?, τ) = (2a1θ1 − 1)p1l1(t?, τ),

d

dτ
l2(t?, τ) = θ12(1− a1)κp1l1(t?, τ) +

(
(2a2θ2 − 1)p2 − d2

)
l2(t?, τ),

d

dτ
l3(t?, τ) =

(
(1 + θ2)− 2a2θ2

)
p2l2(t?, τ)− d3l3(t?, τ),

d

dτ
l4(t?, τ) = p3l3(t?, τ)− d4l4(t?, τ),

d

dτ
l5(t?, τ) =

(
θ12(1− a1)(1− κ) + 1− θ1

)
p1l1(t?, τ)− d5l5(t?, τ),

l1(t?, 0) = 2a1θ1(1− e−p1δ)c1(t?),

l2(t?, 0) = κθ12(1− a1)(1− e−p1δ)c1(t?) + 2a2θ2(1− e−p2δ)c2(t?),

l3(t?, 0) = θ22(1− a2)(1− e−p2δ)c2(t?),

l4(t?, 0) = 0,

l5(t?, 0) = (1− κ)θ12(1− a1)(1− e−p1δ)c1(t?),

(2.3.1)
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where ni is the number of cells of compartment i at the fixed age of the animal where
the knockout is induced. We will analyze the derivatives of c1(t), c2(t) and l1(t, 0),
l2(t, 0) and l5(t, 0) with respect to the parameter p ∈ {a1, θ1, p1}, thus evaluating
the implications of altered stem cell parameters on the number of existing stem
cells and progenitors and on the number of BrdU labeled stem cells, progenitors
and astrocytes at the end of the labeling period. The parameter-derivatives of the
number of neurons and BrdU labeled neurons (c4(t) and li(t, τ)) cannot be analyzed
in full generality for arbitrary τ . They are investigated numerically in section 2.4.
For notational convenience, we define

l0i (t
?) := li(t

?, 0)

and denote this quantity as the number of BrdU incorporating cells of the compart-
ment i.

Proposition 2.3.1. It holds

∂a1c1(t; a1) = 2θ1p1tc1(t)

∂p1c1(t; p1) = (2a1θ1 − 1)tc1(t)

∂θ1c1(t; θ1) = 2a1p1tc1(t)

(2.3.2)

and
∂pci(t; p) =

(eαt − 1)(αβ + γ)− αγt
α2

c1(t) (2.3.3)

for i ∈ {2, 5} and p ∈ {a1, θ1, p1}, where α, β and γ depend on both, i and p (cf.
Table 2.3).

p i = 2 i = 5

a1

α = (2a2θ2 − 1)p2 − (2a1θ1 − 1)p1 − d2

β = −2κθ1p1

γ = 4κθ2
1p

2
1(1− a1)

α = −(d4 + (2a1θ1 − 1)p1)

β = 2θ1(κ− 1)p1

γ = 2θ1p
2
1(θ1(1− κ)2(1− a1) + 1− θ1)

p1

α = (2a2θ2 − 1)p2 − (2a1θ1 − 1)p1 − d2

β = κθ12(1− a1)

γ = κθ12(1− a1)(2a1θ1 − 1)p1

α = −(d4 + (2a1θ1 − 1)p1)

β = θ1(1− κ)2(1− a1) + 1− θ1

γ = (2a1θ1 − 1)p1(θ1(1− κ)2(1− a1) + 1− θ1)

θ1

α = (2a2θ2 − 1)p2 − (2a1θ1 − 1)p1 − d2

β = κ2(1− a1)p1

γ = κθ14(1− a1)a1p
2
1

α = −(d4 + (2a1θ1 − 1)p1)

β = ((1− κ)2(1− a1)− 1)p1

γ = 2a1p
2
1(θ1(1− κ)2(1− a1) + 1− θ1)

Table 2.3: Coefficients of ∂pci(t; p) for p ∈ {a1, p1, θ1}
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For the proof of Proposition 2.3.1, we need a technical lemma.

Lemma 2.3.2. Let p, h ∈ R, f, g real-valued non-zero functions and consider the
system

d

dt
x(t) = f(p)x(t),

d

dt
y(t) = g(p)x(t) + hy(t)

together with non-zero initial conditions x(0) and y(0), which are independent of p.
The solution then satisfies

∂px(t; p) = f ′(p)tx(t)

and
∂py(t; p) =

(eαt − 1)(αβ + γ)− αγt
α2

x(t),

where
α = h− f(p), β = g′(p) and γ = f ′(p)g(p). (2.3.4)

Proof. Define xp(t) := ∂px(t; p) and yp(t) := ∂py(t; p). Since x(0) and y(0) are
independent of p, we have

xp(0) = yp(0) = 0 (2.3.5)

and it follows from symmetry of second partial derivatives that

d

dt
xp(t) = f ′(p)x(t) + f(p)xp(t),

d

dt
yp(t) = g′(p)x(t) + g(p)xp(t) + hyp(t).

Hence,
d

dt

(
xp(t)

x(t)

)
= f ′(p) + f(p)

(
xp(t)

x(t)

)
− xp(t)

d
dt
x(t)

x(t)2
= f ′(p).

The assumption x(0) 6= 0 leads to
(xp
x

)
(0) = 0 by (2.3.5) and solving the above

differential equation yields
xp(t) = f ′(p)tx(t).



18 Chapter 2 Modeling of Knockout Experiments

Furthermore,

d

dt

(
yp(t)

x(t)

)
= g′(p) + g(p)f ′(p)t+ (h− f(p))

(
yp(t)

x(t)

)
and

yp(0)

x(0)
= 0

imply
yp(t)

x(t)
=

(eαt − 1)(αβ + γ)− αγt
α2

,

with α, β and γ as stated in (2.3.4), since a differential equation of the form

x′(t) = αx(t) + β + γt,

x(0) = 0

has the solution
x(t) =

(eαt − 1)(αβ + γ)− αγt
α2

.

Proof of Proposition 2.3.1. We apply Lemma 2.3.2 to (2.3.1) with x = c1, y ∈
{c2, c4} and p ∈ {a1, p1, θ1}. Thus, the derivatives appearing in (2.3.4) have to
be understood as partial derivatives with respect to the considered parameter p ∈
{a1, p1, θ1}. It follows that

f = (2a1θ1 − 1)p1.

If y = c2, we have
g = κθ12(1− a1)p1,

h = (2a2θ2 − 1)p2 − d2

and if y = c4, it holds

g = (θ1(1− κ)2(1− a1) + 1− θ1)p1,

h = −d4.

The explicit values of α, β and γ appearing in (2.3.4) are summarized in Table
2.3.
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In order to evaluate (2.3.3), we need a second technical lemma.

Lemma 2.3.3. For t ≥ 0, α < 0 and β, γ ∈ R, consider the function

f(t) =
(eαt − 1)(αβ + γ)− αγt

α2
.

It holds f(0) = 0, f(t) ∈ O(t) and f has the following properties:

(P1) If β > 0 and γ > 0,

f is monotonically increasing.

(P2) If β > 0 and γ < 0, there exists a unique t0 > 0 such that for all t > 0

sgn(f(t)) = − sgn(t− t0).

(P3) If β < 0 and γ > 0, there exists a unique t0 > 0 such that for all t > 0

sgn(f(t)) = sgn(t− t0).

Proof. Follows from evaluating f ′(t) = 1
α

((αβ + γ)eαt − γ) for every single case.

Furthermore, we introduce a notion for the sign-sequence of a real-valued function:

Definition 2.3.4 (Sign-sequence). Let f : [0,∞) → R be a function. The sign-
sequence σ(f) is defined as the sequence of distinct signs of f(t) that are encountered
by traversing the domain of f from zero to infinity. For instance, σ((t− 1)(t− 2)) =

(+, 0,−, 0,+).

Altered Fraction of Self-Renewal

In this section, we describe the effect of increasing the fraction of self-renewal of stem
cells. Recall that the fraction a1 is defined as the probability that a progeny cell,
which resulted from a stem cell division, becomes a stem cell itself. Thus, increasing
the fraction of self-renewal increases the proportion of symmetric stem cell divisions
that give rise to two stem cells at the expense of asymmetric stem cell divisions.
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Lemma 2.3.5. The solution of (2.3.1) satisfies

σ(∂a1c1(t; a1)) = (0,+),

σ
(
∂a1l

0
1(t; a1)

)
= (+),

σ(∂a1c2(t; a1)) = (0,−, 0,+),

σ
(
∂a1l

0
2(t; a1)

)
= (−, 0,+),

σ
(
∂a1l

0
5(t; a1)

)
= (−, 0,+).

Proof. From (2.3.1) and (2.3.2), it follows that

∂a1c1(t; a1) = 2θ1p1tc1(t),

∂a1l
0
1(t; a1) = 2θ1(1− e−p1δ)(1 + 2a1θ1p1t)c1(t),

∂a1l
0
2(t; a1) = κθ1(1− e−p1δ)(−2 + 2(1− a1)2θ1p1t)c1(t)

+ 2a2θ2(1− e−p2δ)∂a1c2(t; a1),

∂a1l
0
5(t; a1) = (1− κ)θ1(1− e−p1δ)(−2 + 2(1− a1)2θ1p1t)c1(t).

(2.3.6)

Thus, ∂a1c1(t; a1) and ∂a1c1(0; a1) are positive for all positive t and ∂a1l01(0; a1) = 0.
Consider now the quantity ∂a1c2(t; a1). Assumption 2.2.2 together with Table 2.3
imply that the first factor of ∂a1c2(t; a1) in (2.3.3) has the property (P3) in Lemma
2.3.3. Consequently, ∂a1c2(t; a1) is negative on (0, t0) and positive on (t0,∞) for
some positive t0. From (2.3.6), we deduce that the same is true for ∂a1l02(t; a1) and
∂a1l

0
5(t; a1), since the term −2 + 2(1 − a1)2θ1p1t is negative for t = 0 and positive

for sufficiently large t.

Biological Interpretation. Lemma 2.3.5 shows that increasing stem cells self-
renewal increases the stem cell count and the number of BrdU incorporating stem
cells at any time point after the increase was performed. Conversely, the increased
self-renewal initially decreases the progenitor count and the number of BrdU incor-
porating progenitors and astrocytes. However, the decrease is reversed and turns
into an increase after the initial period. Furthermore, the effect of altered self-
renewal is instantaneous on the number of BrdU labeled cells in the sense that the
corresponding parameter-derivative is non-zero at time zero. Figure 2.4 depicts a
simulation of the time-dependent responses of an increased fraction of self-renewal.
The simulation is consistent with Lemma 2.3.5.
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The two-phase progression on progenitors and astrocytes can be explained intu-
itively as follows: The increased number of symmetric stem cell divisions at the
expense of asymmetric divisions reduces the proportion of events at which progeni-
tors are born. Thus, a decreased number of progenitors is observed initially. At the
same time, the increased number of symmetric stem cell divisions, which result in
an enlarged stem cell pool, benefits the progenitor count in the long run: Although
a reduced fraction of stem cells generates progenitors via asymmetric divisions, the
increased number of stem cells dominates this effect, meaning that the total num-
ber of asymmetric stem cell divisions is elevated. The immediate effect on BrdU
incorporating progenitors and astrocytes can be explained by the observation that
changing a parameter that affects division instantaneously changes the output of
the division and that the mitotic marker BrdU exactly labels this output. Thus, the
number of cells labeled by BrdU is faster influenced by a parameter change than the
actual cell count.
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0

Figure 2.4: Simulated responses to an infinitesimal increase in stem cells fraction of
self-renewal a1 of the number of stem cells (c1), progenitors (c2), BrdU
incorporating stem cells (l01) and BrdU incorporating progenitors (l02)
respectively at time t after the increase. The parameter set of section
2.4.2 was used.

Altered Proliferation Rate

The proliferation rate p1 is the rate at which stem cells undergo division or trans-
formation events. Increasing this rate shortens the waiting time between successive
events of a given stem cell.
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Lemma 2.3.6. The solution of (2.3.1) satisfies

σ(∂p1c1(t; p1)) = (0,−),

σ
(
∂p1l

0
1(t; p1)

)
= (+, 0,−),

σ(∂p1c2(t; p1)) = (0,+, 0,−),

σ
(
∂p1l

0
2(t; p1)

)
= (+, 0,−),

σ
(
∂p1l

0
5(t; p1)

)
= (+, 0,−).

Proof. (2.3.1) and (2.3.2) imply

∂p1c1(t; p1) = (2a1θ1 − 1)tc1(t),

∂p1l
0
1(t; p1) = 2a1θ1(δe−p1δ + (1− e−p1δ)(2a1θ1 − 1)t)c1(t),

∂p1l
0
2(t; p1) = κθ12(1− a1)(δe−p1δ + (1− e−p1δ)(2a1θ1 − 1)t)c1(t)

+ 2a2θ2(1− e−p2δ)∂p1c2(t; p1),

∂p1l
0
5(t; p1) = (1− κ)θ12(1− a1)(δe−p1δ + (1− e−p1δ)(2a1θ1 − 1)t)c1(t).

Because of Assumption 2.2.2, it holds 2a1θ1 − 1 < 0. Thus, ∂p1c1(t; p1) is negative
on (0,∞) and ∂p1l

0
1(t; p1) is positive on (0, t0) and negative on (t0,∞) for some

positive t0. The same holds true for ∂p1l05(t; p1), but with different t0. Consider
now ∂p1c2(t; p1). The first factor of ∂p1c2(t; p1) in formula (2.3.3) has the property
(P2) in Lemma 2.3.3. Hence, ∂p1c2(t; p1) and ∂p1l02(t; p1) show the same qualitative
progression as stated for ∂p1l01(t; p1). Analogously to the considerations of an altered
fraction of self-renewal, the BrdU incorporating quantities ∂p1l01(t; p1), ∂p1l

0
2(t; p1)

and ∂p1l05(t; p1) are positive at time zero whereas ∂p1c0
1(0; p1) = ∂p1c

0
2(0; p1) = 0.

Biological Interpretation. The above lemma shows that an increased prolifer-
ation rate of stem cells decreases the stem cell count while the number of BrdU
incorporating stem cells initially increases and later on decreases. This effect can be
explained by the observation that an increased proliferation rate causes more stem
cell divisions over any given time interval, resulting initially in more BrdU incorpo-
rating stem cells. Furthermore, the increased proliferation rate also causes a higher
rate of astrocytic transformations, the events responsible for the depletion of the
stem cell pool. As time progresses, the increased decay rate of stem cells compen-
sates for the higher proportion of BrdU incorporating cells and results thus in a net
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decrease of labeled stem cells. See Figure 2.5 for a corresponding simulation, which
is consistent with the above lemma. It is not surprising that the number of progeni-
tors and BrdU labeled progenitors and astrocytes display the same qualitative trend
as labeled stem cells, since these quantities also depend on stem cell divisions.
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Figure 2.5: Simulated responses to an infinitesimal increase in stem cells prolifer-
ation rate p1 of the number of stem cells (c1), progenitors (c2), BrdU
incorporating stem cells (l01) and BrdU incorporating progenitors (l02) re-
spectively at time t after the increase. The parameter set of section 2.4.2
was used.

Altered Division Probability

The division probability θ1 of a stem cell is the probability that the next event a stem
cell undergoes is a division rather than a transformation. Consequently, increasing
the division probability causes more division and fewer transformation events.

Lemma 2.3.7. The solution of (2.3.1) satisfies

σ(∂θ1c1(t; θ1)) = (0,+),

σ
(
∂θ1l

0
1(t; θ1)

)
= (+),

σ(∂θ1c2(t; θ1)) = (0,+),

σ
(
∂θ1l

0
2(t; θ1)

)
= (+),

σ
(
∂θ1l

0
5(t; θ1)

)
= (+).
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Proof. It holds

∂θ1c1(t; θ1) = 2a1p1tc1(t),

∂θ1l
0
1(t; θ1) = 2a1(1− e−p1δ)(1 + θ12a1p1t)c1(t),

∂θ1l
0
2(t; θ1) = κ2(1− a1)(1− e−p1δ)(1 + θ12a1p1t)c1(t)

+ 2a2θ2(1− e−p2δ)∂θ1c2(t; θ1),

∂θ1l
0
5(t; θ1) = (1− κ)2(1− a1)(1− e−p1δ)(1 + θ12a1p1t)c1(t).

Thus, ∂θ1c1(t; θ1), ∂θ1l01(t; θ1) and ∂θ1l05(t; θ1) are positive for positive t. Furthermore,
the first factor of ∂θ1c2(t; θ1) in (2.3.3) has the property (P1) in Lemma 2.3.3. Hence,
∂θ1c2(t; θ1) and ∂θ1l02(t; θ1) are also positive for positive t.

Biological Interpretation. From the above lemma we conclude that increasing the
stem cell division probability causes an increase in cell counts and in the number
of BrdU incorporating cells for all considered compartments. There is no two-phase
progression displaying increased or decreased cell numbers in distinct phases after
the change in stem cell dynamics. The effect on the progenitor count is qualitatively
the same as on the stem cell count; the same holds true for BrdU incorporating
stem cells and progenitors. Figure 2.6 illustrates a corresponding simulation of the
discussed quantities.
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Figure 2.6: Simulated responses to an infinitesimal increase in stem cells division
probability θ1 of the number of stem cells (c1), progenitors (c2), BrdU
incorporating stem cells (l01) and BrdU incorporating progenitors (l02)
respectively at time t after the increase. The parameter set of section
2.4.2 was used.



2.4 Numerical Investigations 25

2.3.3 Conclusion of the Analysis

The above considerations show that all derivatives of the quantities c1, c2, l01, l02 and
l05 with respect to the stem cell parameters fraction of self-renewal, proliferation rate
and division probability are products of the exponentially decreasing function c1(t)

and a factor that can be bounded by an affine linear function of t. Thus, the effects
of an altered stem cell parameter on the number of existing cells and the number
of BrdU incorporating cells weakens with time due to the decline of the stem cell
compartment. The effect of altered stem cell parameters on the number of existing
astrocytes, ∂pc5(t; p), cannot be analyzed due to no available data on the sign of
αβ + γ with α, β and γ as stated in Table 2.3.
The sign sequences of the parameter-derivatives of the five quantities stem cell

count, progenitor count and BrdU incorporating stem cells, progenitors and astro-
cytes with respect to the three considered parameters a1, p1 and θ1 are summarized
in Table 2.7.

p
σ(∂pc1(t; p)) σ(∂pl

0
1(t; p)) σ(∂pc2(t; p)) σ(∂pl

0
2(t; p)) σ(∂pl

0
5(t; p))

(stem cells) (Brdu inc. stem cells) (progenitors) (Brdu inc. progenitors) (BrdU inc. astrocytes)

a1 (0,+) (+) (0,−, 0,+) (−, 0,+) (−, 0,+)

p1 (0,−) (+, 0,−) (0,+, 0,−) (+, 0,−) (+, 0,−)

θ1 (0,+) (+) (0,+) (+) (+)

Table 2.7: Time-dependent responses of stem cells (c1), BrdU incorporating stem
cells (l01), progenitors (c2), BrdU incorporating progenitors (l02) and BrdU
incorporating astrocytes (l05) respectively to an infinitesimal increase of
the respective parameter p

2.4 Numerical Investigations

2.4.1 Parameter Estimations

Our neurogenesis model (2.1.1) involves 18 parameters, including 5 parameters for
the initial data of each compartment. We first analyze the parameter region that
is consistent with the data presented in [21, Supplementary Table 2]. For this
purpose, we simultaneously fit the analytical solution of (2.1.1) either for c1 and c1

c2



26 Chapter 2 Modeling of Knockout Experiments

(the number of stem cells and the ratio of the number of stem cells to the number
of progenitors), depicted in Figure 2.8, or for c1 and c2 (the number of stem cells
and the number of progenitors), shown in Figure 2.9.
Throughout this thesis, fitting is performed using the NonlinearModelFit proce-

dure of Mathematica 9 to numerically minimize the weighted sum of squared resid-
uals (cf. equation (A.2.8) in the appendix). The weights σi were chosen as the data
points standard error of the mean as documented in the Mathematica reference for
fitting data involving measurement errors. For numerical minimization, the random
search method is chosen, which results in the highest coefficient of determination
(R2) value among all available minimization methods.
Fitting the solution for c1(t) and c1(t)

c2(t)
of (2.1.1) to the stated data results in the

values
(2a1θ1 − 1)p1 = −5.16× 10−4 h−1,

κθ12(1− a1)p1 = 1.71× 10−4 h−1,

d2 − (2a2θ2 − 1)p2 = 5.41× 10−4 h−1.

(2.4.1)

Although this parameter set agrees with the data of [21] for the age related decay
of the stem cell compartment and the dynamics on the ratio of the number of stem
cells and the number of progenitors, the fit underestimates the number of progenitors
at late time points (Figure 2.8). Conversely, fitting the solution for c1(t) and c2(t)

to the data of [21, Supplementary Table 2] displays agreement with the stem cell
and the progenitor compartment, but not with their ratio (Figure 2.9).
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Figure 2.8: Fitting model (2.1.1) to the number of stem cells and the ratio of the
number of stem cells to the number of progenitors in [21, Supplementary
Table 2] results in a poor agreement with the number of progenitors.

It appears that the decay of the stem cell compartment involves a saturation
effect for late time points, which cannot be reproduced by our linear model. More



2.4 Numerical Investigations 27

100 200 300 400 500 600 700
0

10000

20000

30000

40000

age [d]

Number of stem cells

100 200 300 400 500 600 700
0.0

0.5

1.0

1.5

2.0

2.5

3.0

age [d]

Ratio stem cells / progenitors

100 200 300 400 500 600 700

2000

4000

6000

8000

10000

12000

14000

age [d]

Number of progenitors

Figure 2.9: Fitting model (2.1.1) to the number of stem cells and the number of
progenitors in [21, Supplementary Table 2] results in a poor agreement
with the ratio of the number of stem cells to the number of progenitors.

precisely, the solution of (2.1.1) for the number of stem cells (c1) is an exponentially
declining curve and fitting this curve to the data estimates 5 stem cells remaining at
2 years of age, while this number was measured to be 320. We hypothesize that this
saturation is caused by either a feedback mechanism on stem cells that induces their
quiescence with increasing age or by the existence of a mixture of two populations
with one population performing adult neurogenesis and a quiescent one. Moreover,
physiological conditions of a1, p1, θ1 and κ, i.e. a1 ≈ 0.5, 1/p1 < 2 years, θ1 > 0.1

and κ > 0.5 contradict the restrictions imposed by (2.4.1), potentially because of the
missing saturation effect that cannot be explained with our model. Thus, our current
model indicates that there are some novel aspects in adult neurogenesis required to
explain the experimental data. The proposed explanation of how saturation could
be achieved should be the subject of future experimental validation.

2.4.2 Simulations

The mathematical analysis conducted in section 2.3 depends on Assumption 2.2.2.
Since the purpose of this section is to extend our analysis to the effects of altered
stem cell parameters on the number of neurons (c4) and the number of BrdU labeled
cells (li(t, τ)) for τ > 0, we utilize a parameter set satisfying Assumption 2.2.2 for
our numerical investigations. Unless otherwise stated, we set a1 = 0.55, θ1 = 0.7,
p1 = 1, κ = 0.6, a2 = 0.7, θ2 = 0.4, p2 = 2.5, d2 = 0.1, p3 = 1.5, d3 = 0.4, t̂ = 10,
d4 = 0.05, d5 = 0.05, c1(0) = 10000, c2(0) = 5000, c3(0) = 15000, c4(0) = 350000,
c5(0) = 100000 to numerically solve (2.1.1) by employing the NDSolve framework of
Mathematica. Note that the chosen parameter set does not include any time units,
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since a choice of physiological parameters is not feasible as explained in section 2.4.1.
Thus, there are no time units in any figure using this parameter set.
At first, we investigate the effect of altered stem cell parameters on the number

of existing neurons at time t after the KO, i.e. ∂pc4(t; p) for p ∈ {a1, p1, θ1}.
An increase of a1, which increases the proportion of symmetric stem cell divisions

at the expense of asymmetric divisions, displays the same qualitative progression on
the number of neurons as the effect of an increase in a1 on the number of progeni-
tors: Initially, the neuron count is decreased, followed by an always ongoing period
displaying an increase. Moreover, simulations suggest that the magnitude of the in-
crease weakens with time, i.e. limt→∞ ∂a1c4(t; a1) = 0. Interestingly, the weakening
effect depends on the decay rate of neurons: If there is no decay (d4 = 0), we find
that ∂a1c4(t; a1) converges to a positive value (Figure 2.10a). Hence, the magnitude
of the increase will not decline with time if neurons do not decay.
Increasing the stem cell proliferation rate p1 affects the number of neurons in the

same way as the number of progenitors. Consequently, the neuron count is increased
in the initial period while it is decreased afterwards. The magnitude of the increase
declines with time. Interestingly, assuming that neurons do not decay, the two-phase
progression is lost and the number of neurons always increases but the magnitude
of the increase weakens with time (Figure 2.10b).
Increasing the probability of stem cell divisions θ1 yields an increase in the number

of neurons. If d4 > 0, our simulations indicate that the magnitude of the increase
converges to zero and if d4 = 0 that it converges to a positive value (no figure shown).
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Figure 2.10: Responses to an infinitesimal increase in stem cells fraction of self-
renewal and proliferation rate respectively on the number of neurons

Our analysis indicates that the effect of altered stem cell dynamics on the num-
ber of neurons depends on the death rate of neurons. Thus, investigating whether
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neurons have the ability to decay and if so determining their decay rate is vital in
order to understand the short- and long-term impact of altered stem cell dynamics
on the number of neurons in the dentate gyrus.
Next, we turn our investigations to the quantity li(t

?, τ), the number of BrdU
labeled cells of cellular compartment i, where BrdU was applied at a particular time
point t = t? and t = 0 corresponds to the time point of the knockout. The effect of
an increase of stem cells fraction of self-renewal on BrdU labeled cells depends on
the time point t?. If BrdU was given directly after the fraction of self-renewal was
increased, i.e. t? = 0, the number of BrdU labeled progenitors l2(0, τ) shows a two-
phase progression with an initial decrease and subsequent increase. The same holds
true for the number of BrdU labeled neurons l4(0, τ) (Figure 2.11, first row). As the
time t? between the change of dynamics and the BrdU administration increases, the
first phase that shows a decrease in the number of progenitors and neurons becomes
shorter (Figure 2.11, second row) until there remains only a one-phase progression,
with increased numbers of BrdU labeled progenitors and neurons at every time point
τ after BrdU was given (Figure 2.11, third row).
Similarly to an increased fraction of self-renewal, the effect of an increased stem

cell proliferation rate depends on the time t? between the change of dynamics an
BrdU administration. If t? = 0, BrdU labeled progenitors and neurons display a two-
phase progression with increased numbers in the initial phase and decreased numbers
subsequently (Figure 2.12, first row). Interestingly, the two-phase progression after
BrdU labeling gains an additional phase as t? increases, displaying now an initial
decrease, a subsequent increase and again a later on decrease in the number of BrdU
labeled progenitors and neurons (Figure 2.12, second row). Increasing t? further,
the three-phase progression will be lost and then the number of labeled progenitors
and neurons is decreased at any time τ after BrdU was given (Figure 2.12, third
row).
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Figure 2.11: Effect of an infinitesimally increased stem cell self-renewal on BrdU la-
beled stem cells, progenitors and neurons at time τ after BrdU labeling,
where BrdU was given at time t = 0 (first row), t = 1 (second row) and
t = 4 (third row)
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Figure 2.12: Effect of an infinitesimally increased stem cell proliferation rate on
BrdU labeled stem cells, progenitors and neurons at time τ after BrdU
labeling, where BrdU was given at time t = 0 (first row), t = 5.5
(second row) and t = 10 (third row)
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2.5 Summary

We have established a mathematical model of adult hippocampal neurogenesis based
on experimental data. Although we consider a basic model not accounting for any
feedback mechanisms or a spatial component, we demonstrate that modifying the
dynamics of adult neural stem cells, which corresponds to inducing a stem cell
targeting knockout, exhibits a rich variety of effects due to the high complexity of
the hippocampal neurogenic niche.
Our investigation shows that observed differences in cell numbers due to altered

stem cell dynamics depend not only on the alteration that was induced by a partic-
ular knockout but also on the time at which cell counts were measured. Therefore,
it is necessary to perform measurements at multiple time points in order to draw
conclusions from knockout experiments. Moreover, we find that cell numbers of cells
at different differentiation stages may respond qualitatively different to altered stem
cell dynamics. Additionally, this response may also be different between the total
number of cells and the number of BrdU labeled cells of a given cellular compart-
ment and also depends on the time point of BrdU administration after the knockout.
Thus, labeling cells with BrdU does not generate a subset of the neurogenesis system
that is sufficient to perform an analysis of the impact of altered stem cell dynamics.
The reason for this is that changing stem cell dynamics influences either the number
of cell divisions or the ratio of symmetric to asymmetric divisions, which in turn
affects the initial distribution of cell types among all BrdU labeled cells. Further-
more, our reasoning proves that under the assumptions of our model, the effect of
altered stem cell dynamics declines as time passes and that this decline is a result
of the depletion of the stem cell pool. Evaluating differences in cell counts at late
time points after a knockout can therefore be used to test the notion of a declining
stem cell population.



Chapter 3

A Refined Model of Stem Cells

Although multiple studies have been conducted in the past to identify qualitative
features of neural stem cells (NSCs) such as multipotency or the age-related decline
of the NSC pool, a quantitative understanding of the dynamics of adult neurogenesis
is still missing. This lack of quantification is mainly due to sparse data and diverse
labeling approaches used by different studies in order to observe NSCs. In particular,
the two landmark studies of Bonaguidi et al. [9] and Encinas et al. [21] propose
different hypotheses about the dynamics of neural stem cells.
In this chapter, we examine both hypotheses by formulating them as ODE models.

We find that the Bonaguidi hypothesis explains a wider range of data than the one of
Encinas, provided that it subscribes to Encinas’ theory of NSC depletion. Moreover,
our analysis shows that repeated activation is an important feature of NSCs in order
to maintain a constant fraction of proliferating stem cells. In addition, we provide
new data to test Encinas’ theory that NSCs deplete by transforming into astrocytes
and find that these transformation events can account for at least 40% of the NSC
decline. Finally, we develop novel experimentally testable predictions and reveal
possible age-related changes during adult hippocampal neurogenesis.

3.1 Problem Formulation

Understanding the dynamic behavior of adult hippocampal NSCs in the process of
neuron production has been subject to many studies in recent years [9, 10, 11, 21, 39,
52]. Moreover, much of current research has been focused in discovering age-related
changes during hippocampal neurogenesis [7, 24, 31, 32, 33, 51, 58].

33
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The two landmark studies on neural stem cell dynamics have been conducted
by Bonaguidi et al. [9] and Encinas et al. [21]. Although both studies focus on
identifying the dynamics of NSCs, they arrive at different conclusions. Bonaguidi
et al. [9] performed clonal analysis and concluded that NSCs can get activated
multiple times from their quiescence in order to produce offspring. Upon division,
NSCs return to quiescence and have the ability to get activated again. Additionally,
they infer that NSCs are multipotent and can give rise to multiple cell types such as
astrocytes, transit amplifying progenitors and other stem cells. In contrast, Encinas
et al. [21] carried out population level analysis and reasoned that NSCs get activated
only once, enter a series of asymmetric divisions by producing additional progenitor
cells and finally vanish by transforming, i.e. directly differentiating, into an astrocyte.
We will refer to the reasoning of Bonaguidi et al. [9] as repeated activation hypothesis
and to the one of Encinas et al. [21] as one-time activation hypothesis.

We show that the repeated activation hypothesis has a greater capability of col-
lectively explaining the data, since repeated activation is a robust construct in order
to maintain the observed constant fraction of proliferating stem cells. Moreover,
the repeated activation dynamics needs to be accompanied by the ability of NSCs
to perform depletion in general and astrocytic transformation in particular. Other-
wise, the age-related decline of NSC numbers in conjunction with an accumulation
of astrocytes cannot be explained.

3.2 Modeling Data

In order to investigate the one-time and repeated activation hypothesis, it is impor-
tant to examine how well both theories can explain experimental data. We consider
two data sets. The first, which we refer to as population level data was generated by
Sascha Dehler (Martin-Villaba laboratory) as an extension of the data set of Encinas
et al. [21]. In the experiment, the number of NSCs, the fraction of BrdU incorporat-
ing NSCs and the number of astrocytes was measured at several time points during
adulthood (Figures 3.1a-3.1c).

The new data set confirms the results of ref. [21], showing that the number of NSCs
declines during aging (Figure 3.1a) and that at the same time the fraction of BrdU
incorporating NSCs remains constant at about 1% (Figure 3.1b). Interestingly, we
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also find an accumulation of the number of astrocytes during aging, an observation
pointing towards the in ref. [21] suggested relationship between NSC decline and the
production of new astrocytes (Figure 3.1c).
The second data set, which we refer to as clonal data, has been published by

Bonaguidi et al. [9]. In the study, individual NSCs were labeled at an age of 8-12
weeks and the clonal progeny of these cells was evaluated at one month, two months
and one year after labeling. The authors then classified these NSC clones in the
categories quiescent, i.e. only one NSC is present, active, i.e one NSC and at least
one additional cell is present and depleted, i.e. no NSC is present (Figure 3.1d).
The discussed clonal data set complements the population level data and the

aim of our subsequent analysis of the one-time and repeated activation model is to
evaluate whether the two hypotheses can explain both data sets.
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Figure 3.1: Data used during modeling. The population level data of Figures a-
c were generated in the lab of Prof. Martin-Villalba. The clonal data
displayed in Figure d has been published in ref. [9].
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3.3 Analysis of the One-Time Activation Model

We implement the one-time activation hypothesis of Encinas et al. [21] with the
equations

d

dt
c0(t) = −rc0(t),

d

dt
cn1 (t) = rc0(t)− pcn1 (t),

d

dt
ck1(t) = pck+1

1 (t)− pck1(t),

d

dt
c0

1(t) = pc1
1(t)− qc0

1(t),

(3.3.1)

where n ∈ N is the maximum number of NSC divisions. Moreover, c0 denotes
quiescent NSCs and ck1 (1 ≤ k ≤ n) cycling NSCs with k divisions remaining. The
variable r represents the activation rate of quiescent NSCs, p the division rate of
proliferating NSCs and q is the rate of NSCs with no remaining divisions to transform
into astrocytes.

Figure 3.2 depicts a graphical representation of system (3.3.1). For subsequent
simulations, we consider the case of n = 3 asymmetric divisions, which has been sug-
gested by Encinas et al. [21]. Assuming a different number of asymmetric divisions
leads to similar results and does not impact the conclusions drawn.

quiescent NSC

activation

r

1st division NSC → NSC +X
p

2nd division NSC → NSC +X
p

3rd division NSC → NSC +X
p

post-mitotic NSC → A
q

Figure 3.2: Graphical representation of system (3.3.1). Quiescent NSCs can get
activated to enter the cell cycle, subsequently perform a series of (three)
asymmetric divisions by producing a NSC and another cell (X) before
entering the post-mitotic stage and transforming into an astrocyte (A).
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The dynamics of system (3.3.1) is given by

Theorem 3.3.1. Let n ∈ N and p > q > r > 0. Let C(t) = (c0(t), cn1 (t), . . . , c0
1(t))

ᵀ

be the solution of (3.3.1) and denote with eᵀC(t) the sum of all components of C(t).
Then

lim
t→∞

C(t)

eᵀC(t)
= c̄ > 0

if c0(0) > 0. Moreover, if C(0) = c̄, then

eᵀC(t) = e−rt (3.3.2)

and
c1

1(t) + . . .+ cn1 (t)

eᵀC(t)
=

(
1− r

q

)(
1−

(
1− r

p

)n)
. (3.3.3)

To proof the above Theorem, we need an auxiliary lemma and a corollary.

Lemma 3.3.2. Let A be a matrix and let x(t) be the solution of

d

dt
x(t) = Ax(t),

x(0) = x0

where x0 can be written as linear combination of normalized eigenvectors of A, i.e.

x0 =
∑
i

µivi

with Avi = λivi and eᵀvi = 1. Let

λmax = max
i
λi.

Then

lim
t→∞

x(t)

eᵀx(t)
=

 ∑
{j|λj=λmax}

µjvj

/ ∑
{j|λj=λmax}

µj


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Proof. We use the fact that if v is an eigenvector of A with eigenvalue λ, v is also
an eigenvector of exp(tA) with eigenvalue eλt. It holds

x(t)

eᵀx(t)
=

exp(tA)x0

eᵀ exp(tA)x0

=
exp(tA)

∑
i µivi

eᵀ exp(tA)
∑

i µivi
=

∑
i µie

λitvi∑
i µie

λit
.

Hence

lim
t→∞

x(t)

eᵀx(t)
= lim

t→∞

e−λmaxt
∑

i µie
λitvi

e−λmaxt
∑

i µie
λit

=

 ∑
{j|λj=λmax}

µjvj

/ ∑
{j|λj=λmax}

µj

 .

Corollary 3.3.3. Let A be a matrix with the largest eigenvalue λ? having geometric
multiplicity 1. Let x(t) be the solution of

d

dt
x(t) = Ax(t),

x(0) = x0

where x0 has an eigenvector decomposition

x0 = µ?v? +
∑
i

µivi

with µ? 6= 0, Av? = λ?v?, Avi = λivi, λ? > max
i
λi, eᵀv? = 1 and eᵀvi = 1. Then

lim
t→∞

x(t)

eᵀx(t)
= v?.

Moreover, if x0 = v?,
x(t) = eλ

?tv?.

Proof. Lemma 3.3.2 implies

lim
t→∞

x(t)

eᵀx(t)
= (µ?v?)/µ? = v?.
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Since v? is an eigenvector of A, x0 = v? implies

x(t) = exp(tA)v? = eλ
?tv?.

Proof of Theorem 3.3.1. System (3.3.1) can be written as

d

dt
C(t) = (−pIn+2 + A)C(t)

with

A =



p− r
r 0 0

p
. . .
. . . . . .

. . . . . .

0 . . . 0

p p− q


∈ Rn+2×n+2.

The solution C(t) satisfies

C(t) = exp(t(−pIn+2 + A))C(0) = e−pt exp(tA)C(0).

The matrix A has characteristic polynomial

χA(x) = (−x)n(p− q − x)(p− r − x)

and the condition p > q > r > 0 implies that

λ? = p− r

is the largest eigenvalue of A and has geometric multiplicity 1. Thus, Corollary 3.3.3
implies that x(t) := exp(tA)C(0) being the solution of

d

dt
x(t) = Ax(t),

x(0) = C(0)
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satisfies
lim
t→∞

C(t)

eᵀC(t)
= lim

t→∞

x(t)

eᵀx(t)
= c̄

where c̄ is the eigenvector of A with eigenvalue λ? satisfying

eᵀc̄ = 1.

Moreover, Corollary 3.3.3 implies that if C(0) = c̄,

C(t) = e−ptx(t) = e−pteλ
?tc̄ = e−rtc̄.

Thus
eᵀC(t) = e−rt

and
c1

1(t) + . . .+ cn1 (t)

eᵀC(t)
=

∑n+1
i=2 C(t)(i)

eᵀC(t)
=

n+1∑
i=2

c̄(i)

where the superscript (i) denotes the i-th component of a vector. The vector

v =

(
(p− r)n
rpn

,
(p− r)n−1

pn
, . . . ,

(p− r)0

p
,

1

q − r

)ᵀ

is an eigenvector of A with eigenvalue p− r. Hence,

c̄ =
v

eᵀv
.

We have
n+1∑
i=2

v(i) =
1

p

n−1∑
j=0

(
p− r
p

)j
=

1−
(
p−r
p

)n
r

and

eᵀv =
(p− r)n
rpn

+
1−

(
p−r
p

)n
r

+
1

q − r =
q

r(q − r) .

Thus

c1
1(t) + . . .+ cn1 (t)

eᵀC(t)
=

n+1∑
i=2

c̄(i) =

∑n+1
i=2 v

(i)

eᵀv
=

(
1− r

q

)(
1−

(
1− r

p

)n)
.
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To estimate the parameters of model (3.3.1), we assume that at t = 0, the begin
of adult age, the system is already in the steady state c̄ mentioned in Theorem
3.3.1. We justify this assumption with the observation of a constant fraction of BrdU
incorporating stem cells throughout life (Figure 3.1b). The value of the proliferation
rate p can be inferred from the literature [11], since the cell cycle length of NSCs
was measured as

Tc = 22.8 h

and we can interpret this value as the doubling-time of an exponential growth pro-
cess, leading to

p = log(2)/Tc.

The remaining two parameters q and r can be estimated from the population level
data using Theorem 3.3.1, since they appear in the equation for the total number
of NSCs (3.3.2) and the equation for relative amount of cycling NSCs on all NSCs
(3.3.3). To estimate q and r, the decline of the number of NSCs (Figure 3.1a) is
fitted to a function of the form

ne−αt

and the fraction of BrdU incorporating NSCs (Figure 3.1b) is fitted to a constant
value c. The resulting equations for q and r are thus given by

α = r

and
c =

(
1− r

q

)(
1−

(
1− r

p

)n)
Ts
Tc
.

Here, we use that the fraction of BrdU incorporating NSCs is the product of the
fraction of cycling NSCs on all NSCs times the relative length of the S-phase in the
cell cycle, i.e. Ts/Tc, with Ts = 9.7 h [11].
As can be seen from Figure 3.3, the one-time activation model (3.3.1) can be fit

to our population level data of the decline of the NSC count and the fraction of
BrdU incorporating NSCs. To compare the dynamics of this fit to the clonal data
of Bonaguidi et al. [9], we use the Gillespie method [26] to translate (3.3.1) into a
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corresponding stochastic processes. However, comparing the dynamics derived from
the population level fit to the clonal data, we find that the clonal behavior of NSCs
cannot be predicted accurately (Figure 3.4). The reason for this is on the one hand
the rapid rise of the fraction of activated clones within the first two months after
labeling (Figure 3.4b) and on the other hand the persistence of a fraction of ∼ 8%

of quiescent clones over a one year period (Figure 3.4a).
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Figure 3.3: Fit of the one-time activation model (system (3.3.1)) to population level
data (Figures 3.1a and 3.1b).
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Figure 3.4: Simulation of the clonal evolution of the one-time activation model with
parameters estimated from population level data (Figure 3.3). Results
are obtained by simulating 100 NSC clones for 1000 times. Simulation
data is represented as mean (solid black line) and (gray) band containing
95% of all simulated trajectories. Black dots correspond to the data of
Figure 3.1d.

Conversely, the one-time activation model can be fitted to the clonal data of
Bonaguidi et al. [9] by estimating model parameters based on this clonal data set
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(Figure 3.5). Interestingly, in order to explain the clonal data with the one-time
activation model, it is necessary to introduce an additional population of resilient
NSCs, cells that never deplete or get activated. Without this extra population, which
makes up ∼ 8% of all NSCs in a ten weeks old mouse, the fraction of quiescent clones
would decrease very rapidly to zero and the one year time point of the fraction of
quiescent clones could not be matched.
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Figure 3.5: Fit of the one-time activation model to the clonal data of Figure 3.1d.

Although the one-time activation model can be fit to the clonal data of Bonaguidi
et al. [9], the dynamics necessary to obtain this fit is biologically implausible (Figure
3.6): Assuming an initial composition of the NSC pool with 8% of resilient NSCs
and the remaining cells being in quiescent phase, then, under the dynamics of the
fit of Figure 3.5, within less than three months the fraction of cycling NSCs would
initially grow and thereafter decline to make up less than 1% of all NSCs. However,
a dynamics causing cycling NSCs to make up less than 1% of the whole stem cell
population within only three months contradicts the observation of 1% of all NSCs
being in S-phase and incorporating BrdU constantly throughout aging ([21] and
Figure 3.1b).
In conclusion, the one-time activation model can be fit to the population level data

(Figure 3.3), but then it fails to explain the clonal data (Figure 3.4). Conversely,
the model can be fit to the clonal data (Figure 3.5), but the dynamics necessary to
obtain this fit are accompanied by a rapid extinction of the pool of cycling NSCs
(Figure 3.6), contradicting the observation of dividing NSCs in old-age animals.
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Figure 3.6: Time course of the composition of the NSC pool in the one-time acti-
vation model with the dynamics of the clonal fit (Figure 3.5). X-axis
represents time in days, Y -axis relative amount in per cent.

3.4 Analysis of the Repeated Activation Model

The repeated activation hypothesis of Bonaguidi et al. [9] is implemented with the
equations

d

dt
c0 = −(r + q)c0 + 2apc1,

d

dt
c1 = rc0 − pc1,

(3.4.1)

where c0 represents quiescent NSCs and c1 cycling NSCs (Figure 3.7). Quiescent
NSCs are assumed to either enter the cell cycle with rate r or deplete with rate q. The
justification for the depletion process is that the data of Bonaguidi et al. [9] display
an increase of the number of NSC depleted clones (Figure 3.1d) and the reasoning
of the authors that there exist NSC depletion events. Moreover, cycling NSCs are
assumed to proliferate with rate p. Since the repeated activation hypothesis also
considers symmetric NSC divisions, we introduce the parameter a as the fraction of
self-renewal, which is the probability of a progeny cell to have the same fate as the
mother cell [40]. Moreover, since the hypothesis of Bonaguidi et al. [9] assumes that
cycling NSCs return to quiescence after division, the resulting 2a units of progeny
cells that stay stem cells are assumed to return to the compartment c0.
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division
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depletion

q

NSC → ∅

?

symmetric

2a− 1

NSC → 2×NSC

asymmetric

2(1− a)

NSC → NSC +X

Figure 3.7: Graphical representation of system (3.4.1). Quiescent NSCs are either
activated to enter the cell cycle and subsequently perform a symmetric
or asymmetric division, or vanish from the pool of NSCs by perform-
ing a depletion event. Moreover, cycling NSCs re-enter the quiescent
phase after division. Thus, stem cells have the potential get activated
repeatedly.

The dynamics of system (3.4.1) is given by

Theorem 3.4.1. Define s :=
√

(p− r − q)2 + 8apr, then the solution of (3.4.1)
satisfies

lim
t→∞

c0(t)/c1(t) = ϕ :=
p− r − q + s

2r
(3.4.2)

and if c0(0)/c1(0) = ϕ, it holds that

c1(t)/(c0(t) + c1(t)) = 1/(1 + ϕ) (3.4.3)

and
c0(t) + c1(t) = exp

(
− t

2
(p+ q + r − s)

)
. (3.4.4)

Proof. Rewriting (3.4.1) as
d

dt
c(t) = Ac(t),

where c(t) = (c0(t), c1(t))ᵀ, and

A =

(
a b

c d

)
:=

(
−(r + q) 2ap

r −p

)
, (3.4.5)
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it follows that
s =

√
(a− d)2 + 4bc

and
d

dt

(
c0

c1

)
= b+

(
c0

c1

)(
a− d− c

(
c0

c1

))
. (3.4.6)

Since c = r > 0, the right-hand side of the above equation defines a downward-
opened parabola with roots

x1/2 =
a− d± s

2c
.

Since bc = 2apr > 0,
s > |a− d|

and there is exactly one positive root

ϕ :=
a− d+ s

2c
, (3.4.7)

which is the globally asymptotically stable steady state of (3.4.6) thus showing
(3.4.2).

The solution of (3.4.1) is given by

c(t) = exp(tA)c(0) = eδ

(
cosh(∆)I +

sinh(∆)

∆

(
γ tb

tc −γ

))(
c0(0)

c1(0)

)

with
δ =

t

2
(a+ d), γ =

t

2
(a− d), ∆ =

√
γ2 + t2bc. (3.4.8)

Here, we have used a general formula for the two-dimensional matrix exponential
[57] and I denotes the two-dimensional identity matrix. It holds c0(0) = ϕ/(ϕ + 1)

and c1(0) = 1/(ϕ+ 1). Hence,

c0(t) + c1(t) =
eδ

ϕ+ 1

(
cosh(∆)(ϕ+ 1) +

sinh(∆)

∆
(γϕ+ tb+ tcϕ− γ)

)
= eδ

(
e∆ − sinh(∆) +

sinh(∆)

∆(ϕ+ 1)
(γϕ+ tb+ tcϕ− γ)

)
.
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From (3.4.7) and (3.4.8), it follows that ϕ = (γ + ∆)/(tc). Thus, tcϕ− γ = ∆ and

γϕ+ tb =
γ∆ + γ2

tc
+ tb =

γ∆ + ∆2

tc
= ∆ϕ.

Taken together, it holds

γϕ+ tb+ tcϕ− γ
∆(ϕ+ 1)

=
∆ϕ+ ∆

∆(ϕ+ 1)
= 1,

and consequently
c0(t) + c1(t) = eδ+∆.

Substituting back using (3.4.8) and then (3.4.5) establishes (3.4.4).

To estimate parameters for model (3.4.1), we assume for the fraction of self-
renewal a that 2a− 1, the corresponding probability of a NSC division being sym-
metric, is 5% (cf. equation (2.1.2)). We justify this choice of a with the suggestion of
Bonaguidi et al. [9] that the fraction of symmetric NSC divisions on all divisions is
relatively small. A different value of a does not affect the drawn conclusions. Next,
we follow the same parameter estimation procedure for system (3.4.1) as already
conducted for system (3.3.1) using steady state initial data: Equation (3.4.4) im-
plies that the total number of NSCs is given by an exponentially declining function
ne−αt and equation (3.4.3) implies that the ratio of the number of cycling NSCs to
all NSCs is given by a constant value c. The resulting equations for q and r are thus
given by

α =
p+ q + r − s

2

and
c =

1

1 + ϕ
· Ts
Tc
.

Theorems 3.3.1 and 3.4.1 show that the temporal progression of the total number
of NSCs and the ratio of cycling NSCs on all NSCs are identical for model (3.3.1)
and model (3.4.1) under steady state initial conditions (function of the form ne−αt

respectively as constant value c). Accordingly, the fit of model (3.4.1) to the popu-
lation level data is identical to the one of model (3.3.1) (Figure 3.8). This indicates
that the one-time activation hypothesis of Encinas et al. [21] and the repeated acti-
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vation hypothesis of Bonaguidi et al. [9] are indistinguishable solely with population
level data.
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Figure 3.8: Fit of the repeated activation model (system (3.4.1)) to the population
level data (Figures 3.1a and 3.1b).

Comparing the dynamics derived from the population level fit of the repeated
activation model to the clonal data shows a lack of fit for the same reasons as in the
one-time activation case (Figure 3.9). Moreover, the repeated activation model can
be fit to the clonal data as well, assuming a population of resilient NSCs (Figure
3.10). An important aspect of this fit is that it does not lead to a biologically
implausible contradiction as is the case for the one-time activation model: Under
the dynamics of the fit of Figure 3.10, the fraction of cycling NSCs stays relatively
constant over a two year period (Figure 3.11), a feature which is necessary to explain
the constant fraction of BrdU incorporating NSCs during aging.
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Figure 3.9: Simulation of the clonal evolution of the repeated activation model with
parameters estimated from population level data (Figure 3.8).
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Figure 3.10: Fit of the repeated activation model to the clonal data of Figure 3.1d.
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Figure 3.11: Time course of the composition of the NSC pool in the repeated acti-
vation model with the dynamics of the clonal fit (Figure 3.10). X-axis
represents time in days, Y -axis relative amount in per cent. As can be
seen, the relative amount of cycling NSCs stays constant throughout
aging.

To summarize, both, the one-time activation model (3.3.1) and the repeated ac-
tivation model (3.4.1), can be fit to the population level and to the clonal data, but
not simultaneously. The difference between the two models is that the repeated ac-
tivation model displays a wider range of flexibility to explain the data, since it does
not have biologically implausible implications when fitted to the clonal data set.
Because of this flexibility, we further investigate the repeated activation model by
analyzing age-related changes of the dynamics of NSCs and evaluating the hypoth-
esis that NSCs deplete by transforming into astrocytes. The values of all estimated
parameters for the one-time activation model and the repeated activation model are
summarized in Table 3.12.
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Figure # Model Type Data Type Parameters
3.3 One-time activation Population level q = 0.0265 d−1

r = 0.0140 d−1

ρ = 0
3.5 One-time activation Clonal q = 0.00476 d−1

r = 0.0402 d−1

ρ = 0.08
3.8 Repeated activation Population level q = 0.0154 d−1

r = 0.0195 d−1

ρ = 0
3.10 Repeated activation Clonal q = 0.00601 d−1

r = 0.0429 d−1

ρ = 0.08

Table 3.12: Parameters estimated during the comparison between the one-time and
repeated activation model. Figure # displays the number of the corre-
sponding figure in the main text. Data type indicates whether the model
was fitted to the population level data (Figures 3.1a and 3.1b) or to the
clonal data (Figure 3.1d). The parameter ρ is the fraction of resilient
NSCs on all NSCs at the start of the experiment.

3.5 Age-Dependent Changes of Neural Stem Cell

Dynamics

The age-related decline of the NSC pool is the central characteristic of the neuron
production process in the adult hippocampus. A related question is whether this
decline occurs uniformly throughout aging or whether the dynamics of NSCs change
during adulthood.

Exponential decline is one of the most widely observed decay processes in nature.
Thus, it is natural to expect that the decline of NSC numbers is also exponential,
implying a constant decline rate of NSC throughout aging. However, as outlined in
our previous study [62], the decline of NSC numbers saturates during aging (Figure
3.13), indicating a non-constant decline. To discuss possible mechanisms that can
account for this saturation, we modify system (3.4.1) in several ways. Our subse-
quent evaluation consists of six possible mechanisms, of which only the first one
is biologically plausible. The reason for this is that in addition to explaining the
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saturation pattern of NSC’s decline, the mechanism also needs to predict the time
course of BrdU incorporating NSCs (Figure 3.1b).
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Figure 3.13: Logarithmic plot of the time course of NSC numbers (data of Figure
3.1a) together with the fit of an exponentially declining function. At
late time points, the number of NSCs is higher than expected based on
the exponential decline process, indicating a saturation effect.

3.5.1 Discussion of Possible Scenarios

Decreasing Depletion

The repeated activation model contains two competing processes associated with
quiescent NSCs. Activation causes NSCs to enter the cell cycle and leads to a
maintenance or expansion of the NSC pool, depending on whether an asymmetric
or symmetric division occurred. In contrast, depletion causes NSCs to disappear.
The relative frequency of the two processes determines whether the pool of NSCs
expands or declines over time.
The depletion process is the integral part of the NSC decline. Without it, the

number of NSCs would not decrease. One possibility to explain the saturation of
NSC’s decline is that the depletion rate of NSCs declines during aging, leading to a
decreased fraction of depleting stem cells at old age. Accordingly, we modify (3.4.1)
by assuming

q = q(t) = qmaxe
−βqt. (3.5.1)

As can be seen from Figure 3.14, the discussed mechanism is a very good explanation
for the population level data.
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Figure 3.14: Fit of the repeated activation model to population level data, assuming
a decreasing fraction of depleting NSCs during aging.

Increasing Activation

Another possibility to explain the saturation of the NSC decline is to assume that
the fraction of quiescent NSCs that get activated per time unit increases during
aging. Thus, activation will counteract the decline of NSC numbers at old age. The
increasing activation scenario is implemented with

r = r(t) = rmin + αrt.

However, comparing the above mechanism to our population level data shows that
an increase of activation fails to explain the saturation of NSC’s decline (Figure
3.15).
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Figure 3.15: Fit of the repeated activation model to population level data, assuming
that the fraction of activated stem cells increases during aging.
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Increasing Quiescence

An increase of NSC’s quiescence, corresponding to an age-related lengthening of
the G0 phase, could also explain the decline pattern of NSCs. Since leaving the
quiescent phase is associated with a higher tendency to deplete than to maintain
or expand the pool of NSCs—otherwise it could not be explained why this pool
declines—remaining in quiescence would neutralize the decline. The modification of
system (3.4.1) takes the form

q = q(t) = qmaxe
−βqrt

and
r = r(t) = rmaxe

−βqrt.

The justification for these equations is that leaving the quiescent phase c0 is driven
by a joint decay process consisting of activation (rate r(t)) and depletion (rate q(t))
[38]. The mean time of a NSC to sojourn in quiescence is thus given by

1

q(t) + r(t)
=

1

qmax + rmax
eβqrt.

However, in order to explain the saturation of NSC’s decline in this scenario, the
strong increase of quiescence reduces the fraction of cycling NSCs and alongside the
fraction of BrdU incorporating stem cells, contradicting what is observed in the data
(Figure 3.16).
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Figure 3.16: Fit of the repeated activation model to population level data, assuming
that stem cells stay progressively longer in quiescence during aging.
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Increasing Self-Renewal

The saturation of the NSC decline could also indicate that NSCs increase their self-
renewal to counteract the depletion. The corresponding modification of (3.4.1) takes
the form

a = a(t) = amin + αat.

An analysis of this scenario shows that in order to explain our population level
data, NSC numbers would start to increase after about 1 year of age (Figure 3.17).
However, this implication contradicts the fact that NSCs and other downstream
compartments such as neural progenitors and immature neurons decline in numbers
even at later time points than one year of age [21, 58].
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Figure 3.17: Fit of the repeated activation model to population level data, assuming
that stem cells increase their self-renewal during aging.

Lengthening of the Cell Cycle

If NSCs take progressively longer during aging to complete the cell cycle, the number
of stem cells entering the quiescent phase declines with time, which in turn leads
to a decreasing net depletion of stem cells residing in quiescence. Accordingly, we
assume a decline of the proliferation rate given by

p = p(t) = pmaxe
−βpt.

A comparison of the suggested mechanism with the data again shows a lack of fit
(Figure 3.18).
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Figure 3.18: Fit of the repeated activation model to population level data, assuming
an age-related lengthening of NSCs cell cycle.

Existence of Resilient NSCs

Our preceding analysis of the clonal data set of Bonaguidi et al. [9] points towards
a possible second population of resilient NSCs, cells that can neither get activated
nor deplete. The additional population cres is implemented with

d

dt
cres(t) = 0,

cres(0)

c0(0) + c1(0)
=

ρ

1− ρ,

where ρ is the fraction of resilient NSCs on all NSCs at the start of adulthood.
However, the existence of such a population in combination with the decline of NSCs
leads to a decrease of the fraction of cycling NSCs (Figure 3.19), contradicting the
observed constant fraction of BrdU incorporating NSCs [21].
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Figure 3.19: Fit of the repeated activation model to population level data, assuming
an additional population of resilient NSCs.
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3.5.2 Model Selection

To further evaluate the plausibility of the different scenarios of age-dependent NSC
dynamics, we can compare their corresponding Akaike weights [12]. Table 3.20
displays the weight of each scenario together with the estimated values of the cor-
responding parameters. The recommendation is that the level of empirical support
of a certain model i is substantial, if 0 ≤ ∆i ≤ 2, considerably less, if 4 ≤ ∆i ≤ 7

and essentially none, if ∆i > 10 [12, Section 2.6]. Thus, the only two considerable
mechanisms besides the decreasing depletion mechanism are the scenario of increas-
ing self-renewal and the existence of a population of resilient NSCs. However, as
outlined previously, the former scenario contradicts the observation of a decline of
NSCs and downstream cell types at old age [58], while the latter contradicts the
observation of a constant fraction of BrdU incorporating NSCs [21].

Figure # Mechanism Parameters R2 AICc ∆i

3.14 Decreasing depletion qmax = 0.0431 d−1

r = 0.0198 d−1

βq = 0.00921d−1

0.915 242.2 0

3.15 Increasing activation q = 0.0107 d−1

rmin = 0.0200 d−1

αr = 0 d−1

0.865 267.5 25.3

3.16 Increasing quiescence qmax = 0.0307 d−1

rmax = 0.0383 d−1

βqr = 0.00707 d−1

0.903 249.6 7.4

3.17 Increasing self-renewal q = 0.0241 d−1

r = 0.0203 d−1

αa = 0.00183 d−1

0.910 245.7 3.5

3.18 Cell cycle lengthening q = 0.0106 d−1

r = 0.0200 d−1

βp = 0 d−1

0.865 267.5 25.3

3.19 Resilient population q = 0.0206 d−1

r = 0.0261 d−1

ρ = 0.04

0.910 245.6 3.4

Table 3.20: Parameters estimated during the analysis of different mechanisms to
explain the saturation of the NSC decline. AICc is the small sample size
corrected Akaike information criterion and ∆i the corresponding Akaike
weight [12].
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3.6 Neural Stem Cell Depletion by Astrocytic

Transformation

In order to explain the decline of NSC numbers during aging, Encinas et al. [21]
suggested that NSCs deplete by transforming into astrocytes. To test this theory,
we calculate the expected number of astrocytes based on the age-related decline of
NSC numbers and compare this prediction to our newly generated data. To analyze
this hypothesis, we take model (3.4.1) together with our best explanation of the
saturation of the NSC decline (equation (3.5.1)) and add a new compartment c2 of
astrocytes satisfying

d

dt
c2 = θq(t)c0(t).

Here, θ ∈ [0, 1] is the fraction of NSC depletion events where depletion occurs
via astrocytic transformation. An estimation of this parameter yields θ = 0.395,
indicating that astrocytic transformation can account for about 40% of the NSC
decline (Figure 3.21).
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Figure 3.21: Age-related accumulation of astrocyte numbers. Dashed line represents
expected number of astrocytes, assuming that 100% of the NSC decline
is caused by astrocytic transformation. Solid line results from fitting the
fraction of transformation events to the data of Figure 3.1c, indicating
that ∼ 40% of the NSC decline is caused by astrocytic transformation.
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3.7 Predictions

One central element in mathematical modeling of natural phenomena is to develop
model-based predictions, which can be tested experimentally by future studies. This
part of model validation is an important step within the scientific method [46].
In the previous section, we discussed possible mechanisms to explain the satura-

tion pattern of the decline of NSC numbers. Our best explanation is that of a declin-
ing fraction of depleting NSCs during aging. In order to quantify this time-dependent
depletion process given by equation (3.5.1), recall that leaving the quiescent phase
c0 is a joint decay process consisting of activation (rate r) and depletion (rate q(t)).
Thus, the fraction of stem cells leaving c0 within a period δ is 1 − e−(q(t)+r)δ and a
fraction q(t)/(q(t) + r) of those cells undergoes depletion. The fraction ψ of stem
cells that deplete at age t within a period δ is thus given by

ψ(t, δ) =
qmaxe

−βqt

qmaxe−βqt + r

(
1− e−(qmaxe

−βqt+r)δ
)
.

Using the corresponding parameter values from Tables 3.12 and 3.20, the quantifi-
cation predicts that the fraction of NSCs that deplete within δ = 1 week decreases
from 15% at the age of two months via 1% at one year of age to 0.2% at one and a
half years of age (Figure 3.22).
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Figure 3.22: Predicted time course of the fraction ψ(t, δ) of NSCs that undergo de-
pletion within δ = 1 week.

Another prediction concerns the total number of divisions a certain stem cell
performs. Entering the cell cycle multiple times is the key element of the repeated
activation model. Thus, we can ask how the number of already performed divisions is
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distributed in the whole pool of existing NSCs along aging. To answer this question,
we have simulated 20000 stem cells starting at 2 months of age, which is the total
number of existing NSCs at that age, and then evaluated the number of performed
divisions at different time points during aging (Figure 3.23). As can be seen, the
resulting time course of the distribution of performed divisions depends on whether
the dynamics of the best clonal fit (Figure 3.10) or the best population level fit
(Figure 3.14) is assumed. In the clonal case, the fraction of NSCs with no divisions
initially drops and later on increases. This dynamics can be explained with the
postulated existence of resilient NSCs. Initially, quiescent NSCs that enter the cell
cycle and perform divisions cause a drop of the fraction of cells with no divisions.
As time progresses, the fraction of resilient NSCs starts to grow owing to the decline
of non-resilient NSCs. In contrast, the fraction of NSCs with no divisions constantly
declines under the population level dynamics. Moreover, the difference between the
dynamics of the clonal and the population level fit is that stem cells with divisions
have performed on average almost twice as many divisions in the clonal case than
in the population level one.
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Figure 3.23: Composition of the pool of existing NSCs regarding the number of
divisions performed since the age of 2 months. Left panel assumes
the dynamics of the best fit to the clonal data (Figure 3.10). Right
panel assumes the dynamics of the best fit to the population level data
(Figure 3.14). To obtain the respective distributions, 20000 stem cells
were simulated. X-axis represents time in days, Y-axis relative amount
in per cent.
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3.8 Summary

The studies of Bonaguidi et al. [9] and Encinas et al. [21] arrived at different theories
about the dynamics of neural stem cells in order to explain their respective data.
Although both hypotheses seem to be fundamentally different, we were able to
use mathematical modeling in order to identify features of both models which are
plausible in the context of our own as well as their published data.

In a first step, we have seen that both models are able to explain our population
level data of the age-related decline of NSC numbers as well as the constant fraction
of BrdU incorporating stem cells. However, only the repeated activation model
can predict the clonal data of Bonaguidi et al. [9]. The reason for this is that the
one-time activation model causes NSCs to accumulate in the post-mitotic phase,
leading to a rapid extinction of the pool of cycling stem cells. In contrast, repeated
activation allows NSCs to revisit the cell cycle, thus keeping a constant fraction of
cycling cells. Moreover, we found that the clonal data not only allows to distinguish
between one-time and repeated activation, but also points towards a subpopulation
of resilient NSCs, cells that do not have the ability to either enter the cell cycle or
to deplete. The biological implication of such a population remains speculative, but
one possible explanation could be that these cells constitute a backup of non-resilient
NSCs and could be activated in case of demand.

We then asked for possible mechanisms that can explain the saturation pattern of
the age-related decline of NSC numbers, an observation we were able to reproduce
from the study of Encinas et al. [21]. After evaluating multiple mechanisms, the
only explanation left is that of a declining fraction of stem cells performing depletion
events. Moreover, a quantification of the decline needed in order to reproduce the
saturation has led to a new prediction.

The second major postulation of the one-time activation hypothesis is that NSCs
deplete by transforming into astrocytes. Here, we were able to partially confirm
this hypothesis by observing an age-related accumulation of astrocyte numbers and
our mathematical analysis showed that these transformation events can account
for about 40% of the NSC decline. Taken together, our study shows that the best
model predicting the considered data constitutes a compromise: Repeated activation
together with astrocytic depletion.
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Although the repeated activation model can predict the population level as well
as the clonal data, it should be noted that both datasets require a different dynam-
ics, i.e. different parameters, of the model in order to be explained. To work out
this difference, we simulated a high number of NSCs with the respective dynam-
ics to predict the relative abundance of the number of performed divisions in the
pool of existing NSCs. This prediction could be used by future studies in order to
differentiate between both dynamics.
An interesting aspect of the repeated activation model is that leaving the qui-

escent phase is a stochastic event with the two random outcomes being activation
or depletion. In the case of depletion, the stem cell vanishes, whereas in the case
of activation, the stem cell progresses through the cell cycle, returns to quiescence
and the two possible outcomes are again randomly determined. Such stochastic be-
havior of single cells has been found in other tissues using mathematical modeling
[16, 19, 20, 35] and also motivated theoretical work on the subject [48].
Our study shows that mathematical modeling plays an important role in under-

standing the dynamics of a complex cell system like the neurogenic niche of the
hippocampus. Moreover, we were able to derive experimentally testable predictions
that can be addressed by future studies in order to validate the suggested compro-
mise model of repeated activation together with astrocytic transformation.





Chapter 4

The Dynamics of Progenitor Cells

Neural progenitors are generated from stem cells via asymmetric divisions [9]. It is
believed that the role of these cells is a rapid expansion of the pool of undifferentiated
cells via symmetric divisions, followed by a subsequent differentiation into immature
neurons (neuroblasts) [21]. Understanding the dynamic behavior of progenitors is
important, since the magnitude of the expansion influences the net output of a stem
cell to generate new neurons.
In this chapter, we model the dynamics of neural progenitors. We propose the

concept of a capacity, which is inherent in all progenitor cells and guides their
potential to divide multiple times into two progenitor cells with lower capacity or
to directly transform into a neuroblast. In the simplest case, the capacity can be
thought of measure for the number of already performed divisions.
We find that this concept is consistent with experimental data of BrdU labeled

progenitors [21], provided that the cell cycle of these cells lengthens with the number
of performed divisions or that the distribution of the capacity among progenitors is
not in a steady state at the time of the experiment. In addition, we can show that
two alternative scenarios where either the rate of apoptosis is capacity dependent or
where progenitors divide asymmetrically by giving rise to a progenitor with equal
and one with lower capacity cannot explain the experimental data.

4.1 Problem Formulation

In the study of Encinas et al. [21], the authors observed an interesting behavior of
neural progenitor cells: After labeling a cohort of dividing cells with the S-phase

63
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marker BrdU, the number of labeled progenitors increases rapidly within 48 hours
and decreases thereafter (Figure 4.1). The authors claim that this dynamics is con-
sistent with a model stating that progenitors are born from stem cells via asymmetric
divisions, perform a series of on average 2.3 symmetric divisions and subsequently
transform into neuroblasts.
In the following sections, we evaluate the biological plausibility for several scenar-

ios of neural progenitor dynamics. In section 4.2, we formulate a generalization of
the dynamics suggested in ref. [21] and proof that it fails to reproduce the experi-
mental data under steady state conditions. In section 4.3, we provide an alternative
scenario—division-coupled lengthening of the cell cycle—which can explain the data
with steady state assumptions. Sections 4.4 and 4.5 address two other possibilities
to explain the BrdU data, but we show that both scenarios fail to reproduce the
experimental observations. Section 4.6 is devoted to conclude our findings.
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Figure 4.1: Time course of the dynamics of neural progenitor cells. Two months
old mice were injected with 150 mg/kg BrdU and sacrificed at several
time points after injection. Depicted is the number of BrdU positive
progenitor cells. Data is reproduced from the publication of Encinas
et al. [21].

4.2 A Division Capacity-Structured Model of

Progenitor Dynamics

To model the proposed progenitor dynamics of Encinas et al. [21], we make the
following assumptions.
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Assumption 4.2.1 (Dynamics of progenitors).

(A1) Progenitors are born from stem cells via asymmetric divisions.

(A2) Each progenitor has a capacity x ∈ [0, 1].

(A3) A progenitor which is born from a stem cell has capacity 1.

(A4) A progenitor with positive capacity can either divide symmetrically by giving
rise to two progenitors with lower capacity or transforms into a neuroblast.

(A5) A progenitor with capacity 0 always transforms into a neuroblast.

(A6) The rate at which division or transformation events occur is independent of
the capacity.

In order to model the dynamics of progenitor cells with ordinary differential equa-
tions, we assume that the capacity x is discrete, i.e. we are given an N ∈ N such
that

x ∈
{

0,
1

N
, . . . ,

N − 1

N
, 1

}
.

This assumption implies that N is the maximum number of divisions a progenitor
can perform. Moreover, we assume that the division probability of a progenitor with
capacity x is a [0, 1]-valued function f(x) with f(0) = 0.

4.2.1 Model Formulation

Given the preceding considerations, the dynamics of progenitors is given by

d

dt
Pk(t) = 2f

(
k + 1

N

)
pPk+1(t)− pPk(t),

d

dt
PN(t) = −pPN(t) + b

(4.2.1)

for k = 0, . . . , N − 1. Here, Pi is the number of progenitor cells with i remaining
divisions having capacity i

N
, p > 0 is the rate at which progenitors perform a

symmetric division or transformation event and b ≥ 0 is the rate at which progenitors
of capacity 1 are born from stem cells via asymmetric divisions.
We use system (4.2.1) in two contexts: At first, we calculate the steady state

distribution of the capacity among all progenitor cells by calculating the steady
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state of (4.2.1) . For this, we assume a constant input into the compartment of
capacity 1 progenitors, i.e. b > 0 and the independent time variable t means the
adult life time of the animal, i.e. t = 0 refers to the begin of adult age. Second,
we analyze the temporal progression of progenitor cells that were labeled with the
S-phase marker BrdU. In this context, t refers to the time after labeling and we need
to specify Pi(0), i.e. the initial number of BrdU labeled progenitors having capacity
of i/N . Here, we assume that the distribution of the capacity among progenitors is
in a steady state at the time of BrdU administration. Furthermore, we have b = 0

in this scenario, since we only analyze labeled cells and progenitors that are born
from stem cells after BrdU labeling stopped are not captured.

4.2.2 Analysis of BrdU-labeled Progenitors

Initial Data

As mentioned in the previous section, we assume a steady state of the capacity
distribution among progenitors at the time point of BrdU labeling. Setting the
right-hand side of (4.2.1) to zero results in

P̄N =
b

p

and
P̄k = 2f

(
k + 1

N

)
P̄k+1

for k = 0, . . . , N − 1. Consequently

P̄k =
b

p
2N−k

N∏
i=k+1

f

(
i

N

)
(4.2.2)

for all k = 0, . . . , N . The number of BrdU labeled progenitors having capacity k/N
is then given by

Lk = ρP̄k.

with
ρ = min

(
ts + δ

tc
, 1

)
, (4.2.3)
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where tc is the cell cycle length of progenitors, ts the length of the S-phase and δ

the length of BrdU bioavailability in the organism. To see this, consider a periodic
interval of length tc corresponding to the cell cycle (Figure 4.2). We assume that
cells are uniformly distributed within the cell cycle at time point of BrdU injection.
Moreover, we assume that a cell receives the BrdU label if and only if the time inter-
val of BrdU bioavailability intersects with the S-phase. Thus, a cell is labeled with
BrdU either if the time point of BrdU injection falls within the S-phase or if BrdU
injection occurs outside of the S-phase and during the time of BrdU bioavailability,
the S-phase is reached. The probability of the first case is the relative length of the
S-phase within the cell cycle, i.e. ts/tc. The second case occurs if the cell is outside
the cell cycle and within a duration δ the S-phase is reached, thus the corresponding
probability is δ/tc. Furthermore, we assume that the case ts + δ > tc is biologically
implausible, since the length of the cell cycle is several hours, the S-phase makes up
about half of the length of the cell cycle and BrdU bioavailability is about 1/4 hour
for the data shown in Figure 4.1 [11, 21, 23, 39].

Taken together, the initial data for BrdU labeled progenitors is given by

Pk(0) =
ts + δ

tc
· b
p
· 2N−k

N∏
i=k+1

f

(
i

N

)

for k = 0, . . . , N .

0 ts tc, 0 ts tc

BrdU
δ

BrdU
δ

Figure 4.2: Graphical representation of the two scenarios leading to a BrdU labeled cell.
In the first case, BrdU injection takes places during the S-phase, in the second,
injection takes place outside the S-phase but within the time interval of BrdU
bioavailability (length δ), the S-phase is reached. The time point 0 corresponds
to the start of the S-phase.
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Temporal Progression of BrdU-labeled Progenitors

Our previous considerations have shown that the dynamics of BrdU labeled progen-
itors is given by the system

d

dt
Pk(t) = 2f

(
k + 1

N

)
pPk+1(t)− pPk(t),

d

dt
PN(t) = −pPN(t),

Pl(0) =
ts + δ

tc
· b
p
· 2N−l

N∏
i=l+1

f

(
i

N

) (4.2.4)

for k = 0, . . . , N − 1 and l = 0, . . . , N . In order to compare this dynamics with the
data depicted in Figure 4.1, we need to consider the total number of progenitors,
i.e.

eᵀP (t) =
N∑
k=0

Pk(t), (4.2.5)

since it is not possible to distinguish progenitors by the number of remaining divi-
sions based on the BrdU data.
However, the total number of progenitors of system (4.2.4) is monotonically de-

clining, thus showing that the dynamics of (4.2.1) does not correspond to the data
of Figure 4.1 under steady state conditions. In order to prove this result, we rescale
time in (4.2.4) by setting p = 1. Moreover, the temporal progression of (4.2.5) does
not change by setting

ts + δ

tc
· b
p

= 1.

We now apply the subsequent theorem to show that the total number of progenitors
in declining under the dynamics of (4.2.4).

Theorem 4.2.2. Let N ∈ N and consider the system

d

dt
xk(t) = 2f

(
k + 1

N

)
xk+1(t)− xk(t),

d

dt
xN(t) = −xN(t),

xl(0) = 2N−l
N∏

i=l+1

f

(
i

N

)
,

(4.2.6)
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for k = 0, . . . , N − 1 and l = 0, . . . , N , where f is a positive function defined on the
interval [0, 1]. The solution

x(t) = (x0(t), . . . , xN(t))ᵀ

has the property that the function

eᵀx(t) =
N∑
k=0

xk(t)

is monotonically decreasing on (0,∞).

Before proofing the above theorem, we need a technical lemma.

Lemma 4.2.3. Let n ∈ N and consider the n+ 1× n+ 1 matrix

X =



0 x1

0 x2 0
. . .

0 0 xn

0


.

Then

exp(X) =



1 x1
1
2!
x1x2

1
3!
x1x2x3 · · · 1

n!
x1 · . . . · xn

1 x2
1
2!
x2x3 · · · 1

(n−1)!
x2 · . . . · xn

1 x3 · · · 1
(n−2)!

x3 · . . . · xn
. . .

0 1 xn

1


.

Proof. Since X is nilpotent, i.e. Xn+1 = 0, exp(X) =
∑n

k=0
Xk

k!
. The statement thus

follows from a direct calculation.
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Proof of Theorem 4.2.2. For A = −IN+1 +B and

B =



0 2f
(

1
N

)
0 2f

(
2
N

) 0
. . .

0 0 2f(1)

0


,

equation (4.2.6) takes the form

d

dt
x(t) = Ax(t). (4.2.7)

The solution of (4.2.7) is given by

x(t) = exp(tA)x(0).

The initial data x(0) of (4.2.6) is the steady state of the equation

d

dt
y(t) = Ay(t) + eN+1,

i.e.
x(0) = −A−1eN+1,

where eN+1 is the (N + 1)-st unit vector. Thus

d

dt
x(t) = − exp(tA)eN+1.

Since A is the sum of a scalar multiple of the identity matrix and the nilpotent
matrix B, i.e. BN+1 = 0, it holds

exp(tA) = e−t exp(tB).
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Using Lemma 4.2.3, we have

exp(tB) =



1 2tf
(

1
N

) (2t)2

2!
f
(

1
N

)
f
(

2
N

)
· · · (2t)N

N !

∏N
i=1 f

(
i
N

)
1 2tf

(
2
N

)
· · · (2t)N−1

(N−1)!

∏N
i=2 f

(
i
N

)
. . .

0 1 2tf
(
N
N

)
1


.

Thus
d

dt
x(t) = − exp(tA)eN+1

= −e−t exp(tB)eN+1

= −e−t
N∑
j=0

(2t)N−j

(N − j)!
N∏

i=j+1

f

(
i

N

)
< 0

for t > 0.

Convergence to the Steady State Distribution

Model (4.2.4) assumes that the distribution of the capacity among progenitors is in
a steady state at the time point of BrdU injection. However, since BrdU was admin-
istered at the start of adulthood in the experiment of Figure 4.1, adult neurogenesis
was only active for a short amount of time. Thus, it is necessary to quantify the
convergence speed of model (4.2.1) to its steady state in order to justify the steady
state assumption.
For quantification purposes, we assume that there are no progenitors at the start

of adulthood, i.e. we consider the dynamics of (4.2.1) together with the initial data

Pk(0) = 0

for k = 0, . . . , N . The distribution of progenitors regarding their capacity is given
by P (t)/(eᵀP (t)) where eᵀP (t) denotes the sum of all components of the solution
vector P (t) = (P0(t), . . . , PN(t))ᵀ of (4.2.1). Denoting with P̄ = (P̄0, . . . , P̄N)ᵀ the
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steady state given by (4.2.2), we consider the total variation distance

∆(t) = dTV

(
P (t)

eᵀP (t)
,
P̄

eᵀP̄

)
=

1

2

∥∥∥∥ P (t)

eᵀP (t)
− P̄

eᵀP̄

∥∥∥∥
1

as measurement for the distance between the distribution of the solution and the
steady state distribution, where ‖·‖1 denotes the l1-norm. Figure 4.3 shows the
time course of ∆(t) for different division probabilities f and a biologically plausible
cell cycle length of log(2)/p = 20 h [11, 21]. For all considered f , ∆(t) is within a
10% distance to the steady state after 5 days, indicating a rapid convergence to the
equilibrium distribution and that the steady state assumption is valid.
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Figure 4.3: Time course of the total variation distance between the steady state and
the solution of model (4.2.1) for the initial data Pk(t) = 0 and a division
rate p = log(2)/(20 h).

4.3 Division-Coupled Lengthening of the Cell Cycle

The previous section has shown that the assumptions made in Assumption 4.2.1
contradict the observed data of the time progression of BrdU labeled progenitors
under steady state conditions. We thus refine (A6) of Assumption 4.2.1 by assuming
that the division rate of progenitors depends on their capacity, i.e. the number of
remaining divisions. This assumption is in line with the observation that neural
progenitors lengthen their cell cycle during embryonic development [13].
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The refined model takes the form

d

dt
Pk(t) = 2p

(
k + 1

N

)
Pk+1(t)− p

(
k

N

)
Pk(t),

d

dt
PN(t) = −p(1)PN(t) + b

(4.3.1)

where
p(x) = pmin + x(pmax − pmin).

We now follow the modeling procedure of the previous section by computing the
steady state of the above system to specify the initial data for the dynamics of
BrdU labeled progenitors. The right-hand side of (4.3.1) is zero at

P̄N =
b

p(1)

and

P̄k =
2p
(
k+1
N

)
p
(
k
N

) P̄k+1,

thus,

P̄k =
b

p(1)

N−1∏
i=k

2p
(
i+1
N

)
p
(
i
N

)
= 2N−k

b

p
(
k
N

)
for k = 0, . . . , N − 1. The initial data of BrdU labeled progenitors is then given by

Pk(0) =
ts + δ

tc
P̄k,

where tc is the length of the cell cycle, ts the length of the S-phase and δ the length
of BrdU bioavailability. However, the length of the cell cycle corresponds to the
proliferation rate p via p = log(2)/tc, which in turn decreases along with a decline
of capacity. We assume that the length of the S-phase is preserved during cell cycle
lengthening, since it has been shown that changes of the cell cycle length are caused
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by a shrinking or stretching of the G1- or G2-phase [13, 14, 36]. Hence,

Pk(0) =
p
(
k
N

)
(ts + δ)

log(2)
2N−k

b

p
(
k
N

)
=

(ts + δ)b

log(2)
2N−k.

The dynamics of BrdU labeled progenitors incorporating a division-coupled length-
ening of the cell cycle is thus given by

d

dt
Pk(t) = 2p

(
k + 1

N

)
Pk+1(t)− p

(
k

N

)
Pk(t),

d

dt
PN(t) = −p(1)PN(t),

Pl(0) =
(ts + δ)b

log(2)
2N−l,

p(x) = pmin + x(pmax − pmin),

ts < log(2)/pmax

(4.3.2)

for k = 0, . . . , N − 1 and l = 0, . . . , N , where the last condition ensures that the
S-phase is always shorter than the shortest cell cycle.

4.3.1 Parameter Estimation

Model (4.3.2) features six free parameters, b, δ, N , ts, pmin and pmax. The duration of
BrdU bioavailability δ for the dosage used in Figure 4.1 was measured as δ = 15min
[39]. Moreover, measurements of cell cycle and S-phase length indicate that the
S-phase makes up about half of the cell cycle, i.e. ts = log(2)/(2pmax) [11, 21]. In
addition, we assume that progenitors undergo N = 2 rounds of symmetric divisions,
which was suggested by Encinas et al. [21]. The remaining three parameters b, pmin

and pmax will be estimated.

As can be seen from Figure 4.4, model (4.3.2) can predict the increase of BrdU
labeled progenitor numbers under steady state conditions. However, the best fit
assumes a minimum cell cycle length of about 5 hours (Figure 4.4, left plot), which
contradicts the experimentally measured length of about 20 hours [11, 21]. Con-
versely, we can restrict the fitting procedure to satisfy tmin

c = log(2)/pmax = 20 h. In
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that case however, the model cannot predict the increase of BrdU labeled progenitor
numbers (Figure 4.4, right plot).
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Figure 4.4: Fit of model (4.3.2) to the data of Figure 4.1. The fit of the left plot
assumes no restrictions on the minimum length of the cell cycle, for
the right plot, the assumption is tmin

c = log(2)/pmax = 20 h. Estimated
parameters are tmin

c = log(2)/pmax = 4.6 h, tmax
c = log(2)/pmin = 27.5 h

and b = 11.9 h−1 (left plot, R2 = 0.89) respectively tmin
c = 20 h, tmax

c =
20.6 h and b = 2.7 h−1 (right plot, R2 = 0.75).

ε-Hybrid Initial Data

We have seen that model (4.3.2) can explain the experimentally observed increase of
BrdU labeled progenitors, but not under the assumption of a biologically plausible
cell cycle length. Moreover, even the best fit fails to explain that this increase of
labeled progenitors is about 2-fold.

The dynamics of model (4.3.2) assume that the initial distribution of progenitors
prior to BrdU labeling is in a steady state. As discussed earlier, it is possible that
adult neurogenesis acted just a short amount of time and the system was not in a
steady state but close to it. To incorporate this effect, we introduce a new parameter
ε ∈ [0, 1] to measure the distance of the initial data to the respective steady state
and assume that the BrdU experiment started in a so-called ε-hybrid state.

Definition 4.3.1 (ε-Hybrid state). Let A be a matrix with all eigenvalues having
negative real part, b 6= 0 and consider the system

d

dt
x(t) = Ax(t) + b,

x(0) = 0
(4.3.3)
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with asymptotically stable steady state

x̄ = −A−1b

and solution
x(t) =

(
I− exp(tA)

)
x̄.

Let
δ(t) = dTV

(
x(t)

eᵀx(t)
,
x̄

eᵀx̄

)
be the total variation distance between the steady state distribution and the distri-
bution of the solution. For ε ∈ [0, 1], let

tε = inf{t > 0 | δ(t) ≤ ε}

be the first time where this distance is below ε. We now define

x̄ε = x(tε)

as ε-hybrid state of (4.3.3).

Remark 4.3.2. Under the conditions of the preceding definition, we have x̄1 = 0

and
lim
ε→0

x̄ε = x̄.

The first assertion follows from the distance of total variation being less or equal to
1, the second from

lim
t→∞

x(t) = x̄.

We now refine the initial condition of model (4.3.2) and consider the model

d

dt
Pk(t) = 2p

(
k + 1

N

)
Pk+1(t)− p

(
k

N

)
Pk(t),

d

dt
PN(t) = −p(1)PN(t),

Pl(0) = P̄ (l)
ε ,

p(x) = pmin + x(pmax − pmin),

ts < log(2)/pmax

(4.3.4)
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for k = 0, . . . , N−1 and l = 0, . . . , N , where P̄ε is the ε-hybrid steady state of (4.3.1).
This assumption is based on the idea that initially no progenitors are present at the
start of adult neurogenesis, that the distribution of the capacity among progenitors
converges to the steady state distribution during adult neurogenesis and that ε ∈
[0, 1] measures the discrepancy between the distribution of the capacity at the time
point of BrdU labeling and the steady state distribution.
We now ask whether model (4.3.4) results in a better fit to the data and a bio-

logically more plausible cell cycle length tmin
c than model (4.3.2). For this, model

(4.3.4) was fitted to the data of Figure 4.1, assuming different values for (ε, tmin
c ) in

the region [0, 1] × [8 h, 24 h] (Figure 4.5). As can be seen, the fit improves towards
large values of ε (Figure 4.5, left plot). The explanation for this is that large values
of ε correspond to a capacity distribution among progenitors shortly after the begin
of neurogenesis. In that case, most of the progenitors have full capacity, leading
to many consecutive divisions and an expansion of the progenitor pool. Interest-
ingly, a very good fit to the data (R2 ≥ 0.9) can only be achieved with tmin

c < 16 h,
which is still shorter than the experimentally measured cell cycle length of about
20h. Moreover, the fitting procedure shows that the ratio ϕ = tmax

c /tmin
c increases

towards small values of ε and tmin
c (Figure 4.5, right plot), indicating that model

(4.3.4) predicts a division-coupled lengthening of the cell cycle under almost steady
state conditions and a short minimum cell cycle length.
Another question is whether the maximum number N of progenitor divisions can

be deduced from model (4.3.4). Figure 4.6 displays the goodness-of-fit measure R2

dependent on tmin
c and N . The best fits are obtained for N = 3 or N = 4 with a

small minimum cell cycle length, however only N = 2 admits a good fit (R2 ≥ 0.9)
for a minimum cell cycle length which is close to the experimentally measured 20 h.
This result is in line with the finding of Encinas et al. [21], stating that progenitors
undergo on average N = 2.3 rounds of divisions.
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Figure 4.5: Characterization of the plausibility of model (4.3.4). Dependent on the
closeness-to-steady-state measure ε and the minimum cell cycle length
tmin
c , model (4.3.4) was fitted to the data of Figure 4.1. Left plot shows
the goodness-of-fit measure R2, right plot the ratio ϕ = tmax

c /tmin
c . A

very good fit to the data and a biologically plausible cell cycle length
can be achieved with tmin

c = 16 h, in which case tmax
c = 16.2 h.
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4.4 Division-Coupled Death Rates

It has been reported that neural progenitors are subject to death via apoptosis [52].
To see whether this effect can explain the time course of BrdU labeled progenitors,
we assume a model satisfying

d

dt
Pk(t) = 2pPk+1(t)−

(
p+ d

(
k

N

))
Pk(t),

d

dt
PN(t) = −(p+ d(1))PN(t) + b,

d(x) = dmax + (dmin − dmax)xα

(4.4.1)

for k = 0, . . . , N − 1 and dmin < dmax. The reason for this form of death rate d(x) is
that progenitors are more likely to die in the transition phase to immature neurons
[21, 52], i.e. after having completed their symmetric divisions. The steady state of
(4.4.1) is given by

P̄k = b(2p)N−k
N∏
j=k

1/
(
p+ d(j/N)

)
. (4.4.2)

We now follow the approach of the previous section by estimating parameters for
model (4.4.1) under steady state initial conditions and without the source term
(b = 0). As can be seen from Figure 4.7, the model cannot predict the increase of
BrdU labeled progenitors.
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Figure 4.7: Fit of model (4.4.1) with steady state initial conditions to the data of
Figure 4.1. Estimated parameters are α = 0.14, dmin = 0.0029 h−1 and
dmax = 0.022 h−1. R2 = 0.82.
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The reason for this discrepancy is that without death, the steady state number of
progenitors with few divisions remaining is relatively high (Figure 4.8, left plot),
thus causing a declining progression. On the other hand, the amount of apoptosis
necessary to reverse the steady state distribution will then dominate the division
rate (Figure 4.8, right plot), resulting also in a decline of labeled progenitors.
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Figure 4.8: Steady state distribution of progenitors corresponding to equation
(4.4.2). The parameters used are p = log(2)/(20 h) = 0.035 h−1 and
α = 1. Left plot shows the case dmin = dmax = 0, right plot dmin = 0 and
dmax = 0.5 h−1.

4.5 Asymmetric Progenitor Divisions

The previous chapters have shown that it is necessary to consider a progenitor
dynamics admitting a steady state distribution with a high abundance of cells with
many remaining divisions. Otherwise, the rapid increase of BrdU labeled progenitors
cannot be explained. Another possibility to achieve the desired distribution is to
consider asymmetric progenitor divisions. While usually an asymmetric division
results in a cell with the same properties as the mother cell and a more differentiated
cell, we consider asymmetric divisions where the mother cell gives rise to a cell with
the same capacity (same number of remaining divisions) and one with lower capacity.
We assume a model of the form

d

dt
Pk(t) = 2

(
1− a

(
k + 1

N

))
pPk+1(t) +

(
2a

(
k

N

)
− 1

)
pPk(t),

d

dt
PN(t) = (2a(1)− 1)PN(t) + b,

a(x) = amin + (amax − amin)xα

(4.5.1)
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for k = 0, . . . , N − 1 and amin < amax < 1/2, where a(x) is the fraction of self-
renewal. The reason for this choice of a is that the steady state abundance increases
with increasing self-renewal and that we aim to increase the steady state number of
cells with high capacity. The steady state of (4.5.1) is then given by

P̄k =
b2N−k

p(1− 2a(1))

N∏
j=k+1

1− a
(
j
N

)
1− 2a

(
j−1
N

) . (4.5.2)

Fitting the model under steady state initial conditions to the data results in the
plot of Figure 4.9. As can be seen, the model fails to reproduce the rapid increase
of BrdU labeled progenitors. The reason for this discrepancy is again the form of
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Figure 4.9: Fit of model (4.5.1) with steady state initial conditions to the data of
Figure 4.1. Estimated parameters are α = 1.02 and amin = amax = 0 h−1.
R2 = 0.75.

the steady state distribution. If all cells have zero self-renewal, there exist only
symmetric divisions leading to the distribution displayed in the left plot of Figure
4.10. On the other hand, even if progenitors with the maximum number of remaining
divisions have high self-renewal and all other cells have zero self-renewal, the steady
state distribution cannot be reversed (Figure 4.10, right plot).
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Figure 4.10: Steady state distribution of progenitors corresponding to equation
(4.5.2), p = log(2)/(20 h) = 0.035 h−1. Left plot shows the case
amin = amax = 0, right plot the case a(1) = .49 and a(k/N) = 0
for k < N .

4.6 Summary

We have investigated multiple scenarios to explain the experimental data on the
time course of BrdU labeled progenitor numbers. It becomes apparent that at the
time of the experiment, the majority of progenitor cells must have a high number
of remaining divisions. Otherwise, the rapid increase of BrdU labeled progenitors
cannot be explained. To model the data, we have used steady state initial conditions.
This approach is based on the assumption that neurogenesis was active prior to the
experiment and at the time point of labeling, progenitors attained the equilibrium
distribution regarding the number of remaining divisions.

The dynamics suggested in ref. [21] lead to a steady state distribution where the
relative proportion of cells with k remaining divisions is twice as high as the one
of cells with k + 1 remaining divisions. As a result, the rapid rise of BrdU labeled
progenitor numbers cannot be explained. The scenarios ‘Asymmetric Progenitor
Divisions’ and ‘Division-Coupled Death Rates’ are also not able to predict the ob-
served data. The former fails to shift the equilibrium distribution towards a high
abundance of cells with many remaining divisions. The latter can achieve that prop-
erty, but the amount of death necessary then dominates the division rate, causing
an always declining progression.

A lengthening of the cell cycle along with the number of already performed divi-
sions can explain the rapid increase of BrdU labeled progenitors under steady state
conditions. However, the predicted cell cycle length disagrees with the experimen-
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tally measured one. This has led to the conclusion that system is not in a steady
state at the start of the experiment but that it is close to it. In that case, the
fit to the data improves as well as the agreement between the predicted and ex-
perimentally measured cell cycle length. However, it is possible that in this case a
lengthening of the cell cycle is too small in order to be detected experimentally.





Chapter 5

Analysis of the Dkk1 Knockout

To study the role of Dickkopf-1 (Dkk1) in the regulation on neural stem cells (NSCs),
Seib et al. [51] performed a knockout experiment in which the Dkk1 gene was deleted
in adult animals. The authors suggest that a loss of Dkk1 causes NSCs to increase
their self-renewal, counteracting the age-related decline of adult neurogenesis.

The aim of this chapter is to investigate how the dynamics of NSCs change upon
deletion of Dkk1. To address this question, we use the repeated activation model of
Chapter 3 and the progenitor model of Chapter 4 to reproduce the data of the wild
type (WT) group as well as introducing additional parameters to account for the
knockout (KO) dynamics. Our findings show that a shift of the balance between
NSC activation and depletion towards a higher fraction activation events is the best
explanation for the KO dynamics. In contrast, an increased self-renewal of NSCs
results in a considerably worse fit to the KO data.

5.1 Experimental Procedure and Data

To compare the dynamics of Dkk1 deficient animals to the one of wild type indi-
viduals, Seib et al. [51] utilized the following experimental setup (Figure 5.1): 8-to
12-week-old mice were injected with Tamoxifen (TAM) for 5 days. Next, BrdU was
administered 5 weeks after the Tamoxifen treatment and the number of BrdU la-
beled cells was examined at 24 hours and 4 weeks after the BrdU injection. The
difference between the KO and WT group was that KO mice had both Dkk1 alleles
floxed, such that Cre-mediated Dkk1 excision only occurred in those individuals.

85
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age 8-12w,
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5w

BrdU

24h

†
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†

Figure 5.1: Graphical representation of the Dkk1 experiment of Seib et al. [51].

In order to study the effects of Dkk1 deletion during the neuron production pro-
cess, cells at different stages of differentiation were quantified. At 24 hours after
BrdU injection, the number of labeled stem cells, progenitors and neuroblasts was
examined. Additionally, BrdU positive stem cells, neurons and astrocytes were
quantified at 4 weeks after BrdU labeling. Moreover, apoptotic (Caspase positive)
neuroblasts were analyzed at the 5 weeks after Tamoxifen time point. The data
indicates a higher abundance of all neurogenesis related cell types except neurons.
Moreover, the number of Caspase positive neuroblasts is increased in Dkk1 deficient
animals (Figure 5.2).
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Figure 5.2: Reproduction of the Dkk1 data published by Seib et al. [51].
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5.2 Modeling of the Knockout Experiment

To model the data of the Dkk1 experiment, we employ a coupled model consisting of
the repeated activation model of Chapter 3 and the progenitor model of Chapter 4.
In addition, since the Dkk1 data also contains neuroblasts and neurons, we extend
the joint model to contain these cell types. We assume that progenitors of the lowest
capacity directly differentiate into neuroblasts and that in turn neuroblasts either
perform apoptosis or directly differentiate into mature neurons. Taken together, the
full model of WT adult hippocampal neurogenesis is given by the set of equations

d

dt
stemQ(t) = −(r + qmaxe

−βqt) stemQ(t) + 2apstem stemA(t),

d

dt
stemA(t) = r stemQ(t)− pstem stemA(t),

d

dt
progN(t) = −pprog(1) progN(t) + κ2(1− a)pstem stemA(t),

d

dt
progk(t) = 2pprog

(
k + 1

N

)
progk+1(t)− pprog

(
k

N

)
progk(t),

d

dt
nblast(t) = pprog(0) prog0(t)− (d+ f) nblast(t),

d

dt
neuron(t) = f nblast(t),

d

dt
astro(t) = θqmaxe

−βqt stemQ(t) + (1− κ)2(1− a)pstem stemA(t),

pprog(x) = pprog
min + x

(
pprog

max − pprog
min

)
,

(5.2.1)

where stemQ denotes quiescent stem cells, stemA active (cycling) stem cells, progi
progenitors with i remaining divisions (1 ≤ i ≤ N), nblast neuroblasts, neuron
mature neurons and astro astrocytes. The parameter values corresponding to the
model are displayed in Table 5.3. As can be seen, the parameters κ, d and f are not
known prior to the Dkk1 experiment and need to be inferred from fitting the above
model to the WT part of the data.

In order to reconstruct the Dkk1 data, it is necessary to accurately simulate the
experimental protocol of Figure 5.1 using our neurogenesis model: We make the
simplifying assumption that all mice start at 10 weeks of age with a fixed number
n0 of stem cells, which needs to be estimated from the data. Next, we simulate
the dynamics of these cells and their offspring according to (5.2.1) until the age
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parameter value source
qmax 0.0431 d−1 Table 3.20
r 0.0198 d−1 Table 3.20
βq 0.009 21 d−1 Table 3.20
a 0.525 Section 3.4
θ 0.395 Section 3.6

pstem log(2)/(22.8 h) Brandt et al. [11]
pprog

min log(2)/(16 h) Figure 4.5
pprog

max log(2)/(16.2 h) Figure 4.5
N 2 Encinas et al. [21]

Table 5.3: Parameter values of system (5.2.1), which is used to model the Dkk1
experiment of Seib et al. [51].

of 15 weeks, at which BrdU was administered. Since the dynamics of progenitors
(cell cycle length of about 16 h) is relatively fast compared to this first time interval
of 5 weeks, the initial number of progenitors is negligible because of their minor
contribution to the number of existing cells at the BrdU time point. To calculate
the fraction ϕ of dividing cells that acquire the BrdU label, we make use of the
previously derived formula (4.2.3),

ϕ =
ts + δBrdU

tc
,

where δBrdU = 15min has been measured by Mandyam et al. [39] for the BrdU
dosage used during the Dkk1 experiment. Having computed the number of BrdU
labeled cells at 15 weeks of age, we again use (5.2.1) to calculate the number of
BrdU positive cells at 24 hours and 4 weeks after labeling. In addition, the number
of apoptotic (Caspase positive) neuroblasts is given by

nblast† =
d

d+ f

(
1− e−(d+f)δphag

)
nblast.

Here, we use the fact that apoptotic cells are cleared via phagocytosis within δphag =

1.35 h [52] and that leaving the neuroblast stage during that period is a joint decay
process consisting of apoptosis (parameter d) and differentiation (parameter f) [38].

To model the effects of Dkk1 deletion, we introduce additional parameters for
the WT model (5.2.1). Since the knockout of Dkk1 selectively occurred in NSCs,
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we assume that knockout effects were the result of changes in the value of stem
cell parameters. Thus, we consider changes of the parameters a, pstem, qmax and r.
In addition, the data indicates an increased death rate d of neuroblasts. For each
parameter

p ∈ {a, pstem, qmax, r, d},

we introduce a change ∆p such that the corresponding WT and KO parameters are
related via

pKO = (1 + ∆p)pWT.

Hence, ∆p denotes the relative change of the WT parameter p.

5.3 Results

The first step in understanding Dkk1 deletion is to reconstruct the WT part of the
Dkk1 data by estimating the non-quantified parameters of model (5.2.1). As can be
seen from Figure 5.4, the model shows a very good fit to the data, indicating that it
is a suitable description of WT neurogenesis. Moreover, the parameters estimated
are biologically plausible: The value of κ = 77%, reflecting the probability that
an asymmetric NSCs division produces a progenitor rather than an astrocyte, is
in line with experimental observations that most of the asymmetric NSC divisions
generate progenitors [9]. Interestingly, d/(d + f) = 61%, denoting the probability
that a neuroblast dies rather than differentiating into a neuron, is consistent with
experimental evidence stating that the major part of neuroblasts does not mature
into neurons [21, 52].
Having achieved a very good fit to the WT part of the Dkk1 data, we next aim

to understand how WT parameters change in order to explain the KO part. How-
ever, since the model fit to the WT part is not perfect, instead of the KO data we
consider KO effects, defined as the ratio of the KO data to the corresponding WT
data, i.e. (KO effect) = (KO data)/(WT data). To find the best explanation for
the KO effects, we employ a nested approach by starting with simple explanations
and later on transition to more complex scenarios (Table 5.5). At first, we assume
that only one of the stem cell parameters a, pstem, qmax or r and in addition the
neuroblast death rate d changes (Table 5.5). The best fit to the data is achieved
by a decrease of the depletion rate qmax (R2 = .923) or an increase of the activation
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Figure 5.4: Plot of the WT part of the Dkk1 data (Figure 5.2) versus the best fit
of model (5.2.1). Estimated parameters are κ = 0.771, d = 0.0214 d−1,
f = 0.0137 d−1, n0 = 23300. R2 = 0.89.

rate r (R2 = .916). In contrast, the by the authors suggested increased self-renewal
scenario displays a considerably worse fit (R2 = 0.862). The decreased depletion
and increased activation scenario both lead to a shift of the balance between NSC
activation and depletion towards a higher fraction activation events. We thus con-
sider a scenario in which both parameters, qmax and r can change and find that it
improves the fit (R2 = 0.923). It is also possible that all NSC parameters change,
resulting in a slightly better fit (R2 = 0.925). Although the model fit improves with
an increasing number of parameters, model selection theory suggests there to be a
trade-off between the capability to predict the data and the complexity (number
of free parameters) of a certain model [12]. This trade-off can be quantified using
Akaike’s information criterion (AIC) and the corresponding Akaike weight (∆AIC).
As previously discussed in Chapter 3, the recommendation for the level of empirical
support of a certain model is substantial, if 0 ≤ ∆AIC ≤ 2, considerably less, if
4 ≤ ∆AIC ≤ 7 and essentially none, if ∆AIC > 10 [12]. Applying this recommen-
dation to the cases displayed in Table 5.5, scenarios leading to the discussed shift of
the balance between NSC activation and depletion towards a higher fraction activa-
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tion events should be considered first. Moreover, the in ref. [51] suggested increased
self-renewal of NSCs can be disregarded to explain the effects of Dkk1 deletion.

∆a ∆pstem ∆qmax ∆r ∆d R2 ∆AICc
.20 - - - .94 .862 29
- -.33 - - .97 .821 42
- - -.52 - 1.6 .923 0
- - - .45 1.6 .916 4.2
- - -.42 .09 1.6 .923 2.0
.05 -.17 -.11 .29 1.5 .925 5.9

Table 5.5: Estimated changes of WT parameters to account for the Dkk1 KO effects.
∆AICc denotes the Akaike weight of the respective model corresponding
to the small-sample-size corrected Akaike information criterion (AICc).

To further substantiate our findings, we plot the best explanation of the KO
effects according to ∆AICc (Figure 5.6) as well as the in ref. [51] suggested increased
activation scenario (Figure 5.7) versus the experimental data. Given our previous
discussion, it is not surprising that Figure 5.6 displays a much better fit to the
data than Figure 5.7. Interestingly, even our best explanation for the KO effects
fails to accurately reproduce the 24h after BrdU time point of stem cells (Figure
5.6). Further studies using manual adjustments of NSC parameters show that both
the 24h and 4w time point of stem cells cannot be matched. The reason is that
reproducing the 24h time point would imply a much higher number of 4w BrdU
positive stem cells. This discrepancy could possibly hint towards a negative feedback
mechanism acting on stem cells.
As discussed in the previous chapters, scientific discovery is driven by deriving pre-

dictions that can be tested experimentally by future studies [46]. We thus quantify
our best explanation for the KO effects (∆qmax = −0.52 and ∆d = 1.6) with respect
to neurogenesis dynamics. Recall from equation (5.2.1) that leaving the quiescent
stem cell stage is a joint decay process consisting of activation (parameter r) and
age-dependent depletion (parameter q(t) = qmaxe

−βqt). In the case of Dkk1 KO, the
decreased depletion rate results in an increased fraction of NSC activation events,
which is greater than 50% even at the start of adulthood (Figure 5.8a). In addition,
the resulting increase of neurogenesis is counteracted by an increased fraction of
apoptotic neuroblasts (Figure 5.8b).
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Figure 5.6: Plot of the KO effects of the Dkk1 data (Figure 5.2) versus the best fit of
model (5.2.1), assuming that qmax and d change. Estimated parameters
are ∆qmax = −0.52 and ∆d = 1.6. R2 = 0.92.
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Figure 5.7: Plot of the KO effects of the Dkk1 data (Figure 5.2) versus the best fit
of model (5.2.1), assuming that a and d change. Estimated parameters
are ∆a = 0.20 and ∆d = 0.94. R2 = 0.86.
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Figure 5.8: Comparison of wild type and Dkk1 knockout neurogenesis dynamics.

5.4 Summary

Using the mathematical model, which has been established in the previous chapters,
we were able to reconstruct the experimental data of the Dkk1 study of Seib et al.
[51]. In a first step, we have used the model to reproduce the WT part of the
data and the resulting very good fit confirms the validity of our model to describe
WT neurogenesis. We then used a gradual approach to assess different scenarios
regarding their ability to explain the KO effects. Our analysis indicates that the
best explanation for the effects of Dkk1 deletion is a shift of the balance between NSC
activation and depletion towards a higher fraction of activation events. Moreover,
this shift is accompanied by an increased fraction of apoptotic neuroblasts. In
contrast, we were able to rule out the by the authors suggested scenario of an
increased self-renewal of NSCs using model selection theory. Additionally, we have
quantified our best explanation for the KO data. This quantification can serve
as a basis to test our new hypothesis by examining whether the fraction of active
(non-quiescent) NSCs increases in the case of Dkk1 deletion.





Chapter 6

Summary and Outline of Future
Research

The subgranular zone of the hippocampal dentate gyrus is one of the two best de-
scribed regions in the brain where stem cells continuously give rise to new neurons
during adulthood. Understanding the special micro environment of the dentate
gyrus, which allows neuron production, has been subject of extensive research for
the past decade. In order to study stem cell behavior, knockout experiments have
become a widely used tool, because they allow to investigate the regulatory mech-
anisms of specific proteins. However, this approach comprises a black box system,
since the knockout introduces an unknown change in the cellular dynamics, which
can only be measured indirectly by quantifying cell counts. Mathematical modeling
is needed in order to evaluate knockout experiments by reconstructing how experi-
mental measurements are related to the unknown change of the biological system.

6.1 Summary of the Thesis

This thesis was motivated by the aim to understand the knockout of Dkk1, a study
that has been published by the laboratory of our collaborator Prof. Martin-Villalba
[51]. As a first step, we proposed a simplistic ODE model of hippocampal neuro-
genesis. The model was then used to investigate how a knockout-induced change
of cellular dynamics, reflected by a changed parameter value, affects cell counts.
Surprisingly, we have found that the effects of the knockout are time-dependent and
that opposing effects can be observed at different time points after the knockout.
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The analysis of the model was performed without an underlying quantification, us-
ing only minor assumptions on the parameters and computing the time-dependent
signs of parameter-derivatives of the ODE solution. Accordingly, the obtained re-
sults were only qualitative and could not be applied to experimental data. This
demonstrated that a quantification of the underlying model was needed to attribute
observed knockout effects to changes in specific parameters.
We then proceeded with building a quantitative model of adult hippocampal

neurogenesis, starting from the hypotheses of Bonaguidi et al. [9] and Encinas et al.
[21]. The core of the model consists of the dynamics of neural stem cells, which
are on top of the neurogenic differentiation cascade. Although both theories differ
regarding the dynamics of neural stem cells, we were able to combine the two hy-
potheses into a unified model consisting of Bonaguidi’s hypothesis of repeated stem
cell activation and Encinas’ suggestion that stem cells deplete by transforming into
astrocytes. It became apparent that a return to quiescence is needed in order to
maintain a fraction of proliferating stem cells, a feature that was observed in exper-
iments. Also, we provided new data indicating that a part of the stem cell decline
can be ascribed to astrocytic transformation. Interestingly, we could demonstrate
that the two models of Bonaguidi et al. [9] and Encinas et al. [21] are indistinguish-
able when fitted to population level data. The reason is that in both models the
ratio of the number of non-dividing to dividing stem cells converges to a globally
asymptotically stable steady state. Moreover, if the ratio starts at the steady state,
the total number of stem cells is described by a single exponential decay term. This
finding demonstrates that neural stem cells exhibit a certain type of self-stabilizing
dynamics, if instead of total cell counts, the composition of cell compartments rela-
tive to the whole population is considered. In addition, we have examined how stem
cell dynamics change during aging and found that the best explanation for our data
is an age-related decrease of the depletion rate of stem cells. This indicates that the
survival chances of stem cells improve with increasing age.
The next step towards a quantitative model of hippocampal neurogenesis was to

reconstruct the dynamics of progenitors, a cell population characterized by rapid
symmetric divisions leading to an expansion of the pool of precursor cells. Using
the BrdU data published by Encinas et al. [21], we examined several scenarios to
explain the rapid increase of BrdU labeled progenitor numbers within the first 48 h of
the experiment. Again it became apparent that the overall dynamics depend on the
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initial distribution of the cell compartments within the whole population. To explain
the data, the initial distribution must be such that at the time of the experiment,
the number of progenitors with many remaining divisions is high compared to the
one with few divisions remaining. However, the dynamics of consecutive symmetric
divisions suggested in ref. [21] results in a distribution with many progenitors having
few remaining divisions. This led to the conclusion that either at the time of the
experiment, the system was close to the steady state or that progenitors exhibit a
division-coupled lengthening of the cell cycle, a feature that can shift the steady
state distribution towards a high abundance of cells with many remaining divisions.

Finally, to accomplish the initial objective of this thesis, we applied our quanti-
tative neurogenesis model to the Dkk1 study [51] in order to investigate how neural
stem cell dynamics change upon Dkk1 deletion. To evaluate the experiment, we
first reconstructed the wild type part of the data by simulating the experimental
protocol. The very good fit to the data independently confirmed the validity of
our model to be a suitable description of hippocampal neurogenesis. We then ana-
lyzed different scenarios to account for the knockout data and found that the best
explanation is an increased fraction of stem cell activation events in the case of
Dkk1 deletion. Moreover, we were able to rule out the by the authors hypothesized
increased self-renewal of stem cells.

The example of the Dkk1 knockout shows that multi-stage cell systems such as the
neurogenic niche of the adult hippocampus harbor a deep complexity which cannot
be fully understood using purely intuitive reasoning. In contrast, our study demon-
strates that mathematical modeling is a powerful tool to handle this complexity and
to provide novel insights that can be tested by future experiments.

6.2 Outline of Future Research

Our model of adult hippocampal neurogenesis consists of a system of linear ODEs
or in the case of modeling single-cell level data a stochastic counterpart based on
the Gillespie algorithm. Due to the linearity of the model, nonlinear feedbacks could
not be taken into account. However, there has been a growing amount of knowledge
about the signaling mechanisms regulating hippocampal neurogenesis [22]. One
natural extension of our model is to introduce regulatory mechanisms, in particular
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negative feedbacks acting on stem cells, and to study their influence on the stability
of the system. Another possibility to extend the model is to introduce a spatial
component. Since hippocampal neurogenesis takes place in a solid tissue, spatial
effects need to be considered. Possible sources of such effects are for instance the
cell-cell contact based Notch signaling pathway [1] or diffusible Wnt signaling [29, 51].
In addition, our model may be used to evaluate further knockout experiments in the
same way as already demonstrated in the case of Dkk1 deletion.



Appendix

Parameter Estimation

In this section, we give a concise introduction into the theoretical foundation of
estimating parameters for the developed ODE models. This question leads to the
theory of nonlinear regression. By expanding the least-squares objective function
into a Taylor series, the results of linear regression analysis can be applied in the
nonlinear case via linear approximation. We start with some basic results from mul-
tivariate probability theory, which serve as a basis for the theoretical understanding
of regression analysis.
The presented theory is a summary of the existing methods for linear and non-

linear regression analysis, tailored to our needs of parameter estimation for ODE
models of neurogenesis dynamics [5, 6, 8, 43, 49, 50, 61].

A.1 Multivariate Distributions

Definition A.1.1 (Multivariate normal distribution). Let µ ∈ Rn and Σ ∈ Rn×n

a symmetric and positive definite matrix. The multivariate normal distribution is
given by the probability density function

p(x) =
1

(2π)
n
2 |Σ| 12

exp

[
−1

2
(x− µ)ᵀΣ−1(x− µ)

]
Accordingly, a random vector X is said to be normally distributed with mean µ and
covariance matrix Σ if it has probability density p(x). In that case, we write

X ∼ Nn(µ,Σ).
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Proposition A.1.2. Let X ∼ Nn(µ,Σ), A ∈ Rm×n, b ∈ Rm and m ≤ n, then

AX + b ∼ Nn(Aµ+ b, AΣAᵀ).

Proof. See Moser [43, Theorem 2.1.2].

Definition A.1.3 (Chi-squared distribution). Let X1, . . . , Xn be independent stan-
dard normal distributed random variables. The chi-squared distribution with n

degrees of freedom is defined as the distribution of the random variable

Z =
n∑
i=1

X2
i

and we denote this by Z ∼ χ2
n.

Definition A.1.4 (Noncentral chi-squared distribution). Let X ∼ Nn(µ, In) and
P ∈ Rn×n a rank p projection, i.e. P 2 = P . Then

Z = XᵀPX

has noncentral chi-squared distribution with p degrees of freedom and non-centrality
parameter λ = (µᵀPµ)/2. In that case, we write Z ∼ χ2

p(λ = (µᵀPµ)/2).

Proposition A.1.5. Let X ∼ Nn(µ,Σ), then

(x− µ)ᵀΣ−1(x− µ) ∼ χ2
n.

Proof. See Moser [43, Theorem 3.1.2].

Proposition A.1.6. Let Y ∼ Nn(µ,Σ), A ∈ Rm×n such that AΣ = cP with c > 0

and P a rank p projection. Then

Y ᵀAY ∼ χ2
p(λ = µᵀAµ/(2c)).

Proof. See Moser [43, Corollary 3.1.2a].

Proposition A.1.7. Let Y ∼ Nn(µ,Σ), A ∈ Rm×n and B ∈ Rl×n. AY and BY are
independent if and only if

AΣBᵀ = 0.



A.2 Linear Regression 101

Proof. See Seber and Lee [49, Theorem 2.5].

Definition A.1.8 (F -distribution). Let X1 ∼ χ2
n1

and X2 ∼ χ2
n2

be independent.
The F -distribution with n1 and n2 degrees of freedom is defined as the distribution
of

Z =
X1/n1

X2/n2

and we write Z ∼ Fn1,n2 .

A.2 Linear Regression

The simplest task in linear regression is fitting a straight line to a set of data. That
is, assume we are given points (x1, y1), . . . , (xn, yn) ∈ R2 and want to find parameters
a, b ∈ R such that

yi = a+ bxi.

Usually, however, such a fit doesn’t exist, since the yi might be subject to random
fluctuations. Assuming that these fluctuations are normally distributed with mean
zero and known variance σ2, the model becomes

yi = a+ bxi + εi (A.2.1)

with εi ∼ N(0, σ2). If we define

Y =


y1

...
yn

 , X =


1 x1

...
...

1 xn

 , β? =

(
a

b

)
, ε =


ε1

...
εn

 , (A.2.2)

equation (A.2.1) can be written as

Y = Xβ + ε, ε ∼ Nn(0, σ2In), (A.2.3)

which is the general form of a linear regression problem. In that context, Y ∈ Rn×1

is the vector of observations (responses), X ∈ Rn×p the design matrix of independent
(explanatory) variables, β? ∈ Rp×1 the parameter vector and ε the error vector.
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The aim of linear regression is now to produce an estimator β̂ of the true but
unknown parameter β?. We will see that this estimator β̂ minimizes a certain
functional S(β).

Considering equation (A.2.3), the probability of an observation Y , given a linear
model with parameters β and variance σ2 is given by the probability density

P
(
Y | β, σ2

)
= (2πσ2)−

n
2 exp

[
−1

2

(Y −Xβ)ᵀ(Y −Xβ)

σ2

]
,

which is equivalent to
Y ∼ Nn(Xβ?, σ2In). (A.2.4)

If we consider this probability density as a function of the parameters instead of a
function of the data, we arrive at the likelihood of the parameters, given the data,
i.e.

L(β, σ2 | Y ) = (2πσ2)−
n
2 exp

[
−1

2

‖Y −Xβ‖2

σ2

]
. (A.2.5)

The principle of maximum likelihood now states that the best estimate β̂ for β? is
the one that maximizes the above likelihood function. Thus, we seek to minimize

S(β) := ‖Y −Xβ‖2 =
n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

.

The following proposition gives the solution to the above problem.

Theorem A.2.1. Let Y ∈ Rn, X ∈ Rn×p with rank(X) = p. The unique solution
of

min
β∈Rp

S(β)

is given by
β̂ = (XᵀX)−1XᵀY.

Proof. Since the mapping β 7→ Xβ is linear, there is no solution with components
of β tending to infinity. Thus, it suffices to consider only local solutions. It holds

S(β) = (Y −Xβ)ᵀ(Y −Xβ) = Y ᵀY − 2Y ᵀXβ + βᵀXᵀXβ.
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The gradient of S is zero if and only if

0 = ∇S(β) = −2(Y ᵀX)ᵀ + 2XᵀXβ,

which holds only if
β̂ = (XᵀX)−1XᵀY.

Since p = rank(X) = rank(XᵀX), the matrix XᵀX has full rank and is invertible.

Remark A.2.2.

(i) From now on, we will only consider regression problems satisfying rank(X) =

p. In the case of fitting a straight line (equation (A.2.2)), this condition merely
means that at least two of the xi are distinct, i.e. there is data for at least two
different values of the independent variable.

(ii) There exist several approaches addressing the case rank(X) < p under the
keyword non-full-rank models. Commonly used methods involve a general-
ized inverse of the matrix XᵀX [61, Chapter 7] or introducing identifiability
constraints [49, Section 3.9].

(iii) In the case (A.2.2) of fitting a straight line to data,

S(β) = ‖Y −Xβ‖2 =
n∑
i=1

(yi − (a+ bxi))
2 =:

n∑
i=1

e2
i .

Thus, β̂ = (XᵀX)−1XᵀY is called the least squares estimator of β, since it
minimizes the sum of the squared residuals e2

i .

(iv) For later considerations, it is important to attain a geometrical view of the
least squares estimation: The set

E = {Xβ | β ∈ Rn}

contains all possible values of the true but unknown expectation Xβ? of
the random variable Y and is thus called expectation surface. It forms a
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p-dimensional linear surface in Rn and the estimate β̂ yields the point

Ŷ = Xβ̂

on that surface, which is closest to Y in the euclidean norm.

The maximum likelihood estimator β̂ is computed from the data vector Y , which
itself is normally distributed via (A.2.4). Thus, β̂ is normally distributed too.

Theorem A.2.3. The maximum likelihood estimator β̂ of (A.2.3) is an unbiased
estimator for β? and satisfies

β̂ ∼ Np(β
?, σ2(XᵀX)−1).

Proof. Follows from Proposition A.1.2.

In order to address the uncertainty of β̂, one is interested in a confidence region
of β̂ that contains the true parameter β? with a certain probability:

Theorem A.2.4. Let β̂ be the maximum likelihood estimator of (A.2.3). The set{
β |
∥∥∥Xβ̂ −Xβ∥∥∥2

≤ σ2χ2
n,α

}
is a 100(1−α)%-confidence region for β?, i.e. it contains the true parameter β? with
probability α. Here, χ2

n,α is the upper α-quantile of the χ2
n-distribution.

Proof. Proposition A.1.5 and Theorem A.2.3 imply∥∥∥Xβ̂ −Xβ?∥∥∥2

σ2
=

(β̂ − β?)ᵀXᵀX(β̂ − β?)
σ2

∼ χ2
n.

Thus
P

(∥∥∥Xβ̂ −Xβ?∥∥∥2

≤ σ2χ2
n,α

)
= 1− α.

Remark A.2.5. The assumption rank(X) = p that the columns of X are linearly
independent implies that the corresponding Gram matrix XᵀX is positive definite.
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Thus, the confidence region defined in the preceding proposition forms an ellipsoid
around β̂, since it is defined by the quadratic form

(β̂ − β)XᵀX(β̂ − β) ≤ σ2χ2
n,α.

A.2.1 Unknown Variance

So far, we have assumed that the variance σ2 of the error term ε was known addition-
ally to the data Y . In our case of neurogenesis modelling as in most applications
however, there is no a priori knowledge of the error variance and it needs to be
estimated from the data as well.

Theorem A.2.6. Consider the linear problem (A.2.3) and let β̂ be the minimum of
S(β) = ‖Y −Xβ‖2. The quantity

s2 =
S(β̂)

n− p

is an unbiased estimator for σ2 and satisfies

s2 ∼ σ2

n− pχ
2
n−p.

Proof. See Seber and Lee [49, Theorems 3.3 and 3.5].

In Theorem A.2.4, we have seen that the confidence region for the estimator β̂
depends on the known error variance σ2. In the case of unknown variance, s2 takes
the place of σ2 and a similar result can be obtained.

Theorem A.2.7. Let β̂ be the maximum likelihood estimator of (A.2.3). The set{
β |
∥∥∥Xβ̂ −Xβ∥∥∥2

≤ ps2Fp,n−p,α

}
is a 100(1− α)%-confidence region for β?. Here, Fp,n−p,α is the upper α-quantile of
the Fp,n−p-distribution.

Proof. Analogously to Theorem A.2.4, it suffices to show that

(β̂ − β?)ᵀXᵀX(β̂ − β?)
ps2

∼ Fp,n−p.
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We have seen already that

(β̂ − β?)ᵀXᵀX(β̂ − β?)
σ2

∼ χ2
n

and
s2

σ2
∼ 1

n− pχ
2
n−p.

Thus,
(β̂ − β?)ᵀXᵀX(β̂ − β?)

ps2
∼ χ2

n/p

χ2
n−p/(n− p)

and what remains to show is the independence of (β̂ − β?)ᵀXᵀX(β̂ − β?) and s2. It
holds

(XᵀX)−1Xᵀσ2In
(
In −X(XᵀX)−1Xᵀ

)ᵀ
= 0.

Using Proposition A.1.7,
β̂ = (XᵀX)−1XᵀY

and
Y −Xβ̂ =

(
In −X(XᵀX)−1Xᵀ

)ᵀ
Y

are independent of each other. Since (β̂ − β?)ᵀXᵀX(β̂ − β?) and s2 continuously
depend on β̂ and Y −Xβ̂ respectively, they are independent of each other as well.

In linear regression analysis, one is sometimes interested in a confidence interval
for a linear combination of the components of β?. The following theorem addresses
this question.

Theorem A.2.8. Let β̂ be the maximum likelihood estimator of (A.2.3) and let
a ∈ Rp. A 100(1− α)%-confidence interval for aᵀβ? is given by

aᵀβ̂ ± se(aᵀβ̂)t
α/2
n−p,

where tα/2n−p is the upper α/2 quantile of Student’s t-distribution with n− p degrees of
freedom and

se(aᵀβ̂) = s(aᵀ(XᵀX)−1a)1/2

is the standard error of the estimate aᵀβ̂.

Proof. See Seber and Lee [49, Example 4.7].



A.2 Linear Regression 107

An important corollary of the preceding theorem is the derivation of the standard
error and confidence interval of a certain component β?j of the parameter vector β?,
which follows from setting a equal to the j-the canonical eigenvector ej.

Corollary A.2.9. A 100(1 − α)% confidence interval for the j-th parameter β?j of
model (A.2.3) is given by

β̂j ± se(β̂j)t
α/2
n−p,

where
se(β̂j) = s

√
(XᵀX)−1

jj

is the standard error of β̂j and (XᵀX)jj the j-th diagonal element of the matrix
(XᵀX)−1.

A.2.2 Generalized Least Squares

In the previous two sections, it was assumed that the errors εi of all observations were
i.i.d. normally distributed with zero mean and common variance σ2. Dropping the
latter assumption leads to the generalized least squares (GLS) estimation procedure.
The modified linear model takes the form

Y = Xβ? + ε, ε ∼ Nn(0, σ2V ), (A.2.6)

where V ∈ Rn×n is a symmetrical positive definite matrix. The new model can
be transformed to the form (A.2.3) via linear transformation: Since V is positive
definite, there exists a Cholesky decomposition

V = TT ᵀ,

where T is an invertible matrix. If we define

Yw = T−1Y, Xw = T−1X and εw = T−1ε,

Proposition A.1.2 implies

Yw = Xwβ
? + εw, εw ∼ Nn(0, σ2In). (A.2.7)
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From Theorem A.2.1, it follows that the least squares estimator of (A.2.7) satisfies

β̂w = (Xᵀ
wXw)−1Xᵀ

wYw

= ((T−1X)ᵀ(T−1X))−1(T−1X)ᵀT−1Y

= (XᵀV −1X)−1XᵀV −1Y.

Analogously to the previous two sections, the following results can be shown by
replacing XᵀX with XᵀV −1X:

Theorem A.2.10. The least squares estimator β̂w of (A.2.7) has the following prop-
erties:

(i) β̂w minimizes

Sw(β) := ‖Yw −Xwβ‖2 = (Y −Xβ)ᵀV −1(Y −Xβ)

and is given by
β̂w = (XᵀV −1X)−1XᵀV −1Y.

(ii) β̂w is an unbiased estimator for β?, i.e.

β̂w ∼ Np(β
?, σ2(XᵀV −1X)−1),

(iii)

s2
w :=

S(βw)

n− p ∼
σ2

n− pχ
2
n−p,

(iv) The set {
β | (β̂w − β)ᵀXᵀV −1X(β̂w − β)

ps2
w

≤ Fp,n−p,α

}
is a 100(1− α)%-confidence region for β?.

A.2.3 Weighted Least Squares

A special case of (A.2.6) is the case of σ2V being a diagonal matrix,

σ2V = diag
(
σ2

1, . . . , σ
2
n

)
,
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and thus the assumption is that the i-th component of ε has variance σ2
i . Considering

Theorem A.2.10 (i), the least squares functional then takes the form

S(β) =
n∑
i=1

1

σ2
i

(yi − (Xβ)i)
2 . (A.2.8)

with the variances σ2
i being weights associated to the i-th residual

ei = yi − (Xβ)i.

The resulting minimizer of S(β) is called weighted least squares estimator.

A.2.4 Linear Model with Replication

In our case of neurogenesis modeling, multiple measurements (usually five) of cell
numbers originating from distinct animals have been taken at different time points.
Such a situation leads to regression models based on replication [49, Section 10.4].
In the linear case, the corresponding model has the form

yij = xᵀi β
? + εij, εij ∼ N(0, σ2

i ),

for i = 1, . . . , ni and j = 1, . . . ,m. Thus, the assumption is that there are ni
independent responses for the vector of independent variables (observations) xi and
that the errors for the i-th observation are i.i.d. normally distributed with zero mean
and common variance σ2

i . This model is a special case of the weighted least squares
model.

As previously discussed, the variances σ2
i might not be known and need to be

estimated from the data. An obvious method would be to estimate σ2
i from the

sample variance

s2
i =

1

ni − 1

ni∑
j=1

(
yij −

1

ni

ni∑
k=1

yik

)
and use the s2

i as weights instead of σ2
i in the weighted least squares functional.

However, as discussed in [49, Section 10.4], this estimation is very imprecise in the
case of ni < 6 and leads to a much higher variance of the so obtained estimator β̂.



110 Appendix A Parameter Estimation

A better approach is to estimate the variance σ2
i from

s̃i
2 =

1

ni

ni∑
j=1

e2
ij,

where eij is the residual of the ordinary least squares estimation and then use the
s̃i

2 as weights.

A.3 Nonlinear Regression

Up to now, the functional relationship between independent variables and observa-
tions was considered to be linear in the parameters. In the case of fitting differential
equations to data however, this assumption will not hold in general.
We consider a non-linear model of the form

yi = f(xi, θ
?) + εi,

for i = 1, . . . , n. Here, xi ∈ Rk is the i-th experimental design, εi ∼ N(0, σ2) the
error term and θ? is the true but unknown parameter vector, which is assumed to
belong to a parameter space Θ ⊂ Rp. In vector notation, the nonlinear model can
be written as

Y = η(θ?) + ε, (A.3.1)

with η(θ) = (f(x1, θ), . . . , f(xn, θ))
ᵀ and ε ∼ Nn(0, σ2In).

Analogously to the linear case, the least squares estimate θ̂ of θ? minimizes the
functional

S(θ) =
n∑
i=1

(yi − f(xi, θ))
2 = ‖Y − η(θ)‖2

and is also a maximum likelihood estimator of θ?.

A.3.1 Linear Approximation

Following Seber and Wild [50], we motivate the use of a linear approximation of
the function f in order to apply the linear theory of the previous section and make
approximate statistical inferences about the least squares estimator θ̂.
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Developing η(θ) into a Taylor series about θ? leads to

η(θ) ≈ η(θ?) + Jη(θ
?)(θ − θ?),

where Jη is the Jacobian of η. It follows that

S(θ) = ‖Y − η(θ)‖2 ≈ ‖Y − η(θ?)− Jη(θ?)(θ − θ?)‖2.

Assuming further that θ̂ is close to θ? so that Jη(θ?) ≈ Jη(θ̂), it follows

S(θ) ≈ S̃(θ) =
∥∥∥Y − η(θ?)− Jη(θ̂)(θ − θ?)

∥∥∥2

in the neighborhood of θ?. We now apply Theorem A.2.1 to find that the minimum
θ̃ of S̃(θ), which is because of the above relation close to the minimum θ̂ of S(θ)

satisfies
θ̂ − θ? ≈ θ̃ − θ? = (V̂ .ᵀV̂ .)−1V̂ .(Y − η(θ?)),

where we have set V̂ . = Jη(θ̂). The matrix V̂ . is called velocity matrix and has a
physical interpretation which will be discussed in the next section. From (A.3.1),
we have Y − η(θ?) ∼ Nn(0, σ2I) and Proposition A.1.2 implies

θ̂ − θ? ≈ θ̃ − θ? ∼ Np(0, σ
2(V̂ .ᵀV̂ .)−1).

Comparing the above relation with the one in Theorem A.2.3, it can be seen that
in the linear approximation, the matrix V̂ . takes the place of the design matrix
X. Moreover, since θ̂ is approximately normally distributed, the preceding linear
regression theory implies that an approximate 100(1−α)%-confidence region for θ?

is the ellipsoid {
θ |
∥∥∥V̂ .θ̂ − V̂ .θ∥∥∥2

≤ ps2Fp,n−p,α

}
, (A.3.2)

where s2 = S(θ̂)/(n− p).
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A.3.2 Geometrical Considerations

Recall from the linear regression section that the expectation surface

E = {Xβ | β ∈ Rp}

is a p-dimensional linear surface in Rn. Moreover, an α-confidence region for the
true parameter β? was given by{

β |
∥∥∥Xβ̂ −Xβ∥∥∥2

≤ ps2Fp,n−p,α

}
,

which is the set of all β in parameter space that are mapped by X into a sphere in
the expectation surface with center Xβ̂ and radius

√
ps2Fp,n−p,α. In addition, this

confidence region forms an ellipsoid centered at β̂.

The reason that the definition of the confidence region is based on a sphere in E
can be seen from (A.2.5): Points in Rn with equal distance to the data vector Y
have equal likelihood of being the true but unknown expectation of Y . Since Xβ̂
is the point closest to Y on E, points on E with same distance to Xβ̂ have same
distance to Y and have thus equal likelihood of being the true expectation of Y . We
denote a region on the expectation surface that is used to define a confidence region
as described above as the associated reference region.

As discussed by Bates and Watts [6], the nonlinear regression case differs from
the linear one in two aspects. The first, which is called intrinsic curvature, is that
the corresponding expectation surface

Eη = {η(θ) | θ ∈ Θ}

is curved rather than flat. Thus, points on Eη with same distance to Y do in general
not form a sphere around η(θ̂) and the goodness of a spherical approximation of
the reference region as performed in (A.3.2) depends on the flatness of Eη in the
neighborhood θ̂.

The other difference, called parameter effects curvature, is that the mapping θ 7→
η(θ) is nonlinear and hence the preimage of a sphere on Eη under η does in general
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not form an ellipsoid. From the Taylor approximation

η(θ̂)− η(θ) ≈ V̂ .(θ̂ − θ),

it can be seen that the set of (A.3.2) is an ellipsoidal approximation of the confidence
region {

θ |
∥∥∥η(θ̂)− η(θ)

∥∥∥2

≤ ps2Fp,n−p,α

}
. (A.3.3)

The name parameter effects curvature stems from the fact that the goodness of
ellipsoidal approximation of (A.3.3) by (A.3.2) can change by a reparametrization
of the nonlinear model, that is, by replacing η with η ◦ g where g is a bijection on
Θ. In contrast, intrinsic curvature does not change by a reparametrization, since
Eη = Eη◦g.
In conclusion, intrinsic curvature means the degree of curvature of the expectation

surface and is related to the deviation of the reference region from a sphere, while
parameter effects curvature means the nonlinearity of the mapping θ 7→ η(θ) and is
related to the ellipsoidal approximation of (A.3.3) by (A.3.2).

A.3.3 Measures of Curvature

In order to assess the validity of statistical inferences based on linear approxima-
tion, Bates and Watts [5] introduced measures for intrinsic and parameter effects
curvature.
Expanding the model function η into a second order Taylor series about θ̂ leads

to
η(θ̂ + h) = η(θ̂) + V̂ .h+

1

2
hᵀV̂ ..h,

where
V̂ . =

(
∂ηi
∂θj

)∣∣∣∣
θ=θ̂

is the Jacobian of η and

V̂ .. =

(
∂ηi

∂θj∂θk

)∣∣∣∣
θ=θ̂

is the n×p×p array of the second derivative. In order to measure the nonlinearity of
the function η, Bates and Watts [5] suggested to compare the size of the first-order
term V̂ .h with the one of the second order, hᵀV̂ ..h.



114 Appendix A Parameter Estimation

To obtain a geometrical interpretation of the first and second order derivative,
consider for a fixed direction h ∈ Rp the line in parameter space given by

θ(t) = θ̂ + th.

The model function η maps this line to

ηh(t) = η(θ̂ + th).

The tangent to the curve ηh at t = 0 is then given by

η̇h =
∂ηh
∂t

∣∣∣∣
t=0

=

p∑
i=1

∂η

∂θi

∣∣∣∣
θ̂

· ∂θi(t)
∂t

∣∣∣∣
t=0

= V̂ .h,

which can be interpreted as the velocity of a point at t = 0 moving along the line
ηh. The second derivative at t = 0, given by

η̈h =
∂2ηh
∂t2

∣∣∣∣
t=0

= hᵀV̂ ..h

is the corresponding acceleration.

To measure intrinsic and parameter effects curvature, the acceleration vector η̈h
needs to be decomposed into components η̈Nh normal to the tangent plane at η(θ̂)

and η̈Th tangential to the tangent plane, such that

η̈h = η̈Nh + η̈Th .

How to achieve such a decomposition is explained in [50]. Next, Bates and Watts
[5] introduce the quantities

KN
h =

∥∥η̈Nh ∥∥/‖η̇h‖2 and KT
h =

∥∥η̈Th ∥∥/‖η̇h‖2

and discuss that 1/KN
h is the radius of the circle that best approximates Eη in the

direction η̇h at θ̂. Thus, a small value of KN
h indicates a large radius and a small

intrinsic curvature. Since KN
h only depends on the curvature of the expectation

surface, it measures intrinsic curvature and it can be seen that KN
h is independent of
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the parametrization of the nonlinear model [50]. In contrast, KT
h is not independent

of the parametrization and measures parameter effects curvature.

Both curvature quantities depend on the scale of the nonlinear model (A.3.1):
Multiplying η and Y by a certain constant will divide KN

h and KT
h by that constant.

Thus, Bates and Watts [5] use the so called standard radius

ρ = s
√
p

as a scaling factor such that

γNh = ρKN
h and γTh = ρKT

h

are dimensionless quantities defining the relative intrinsic curvature and relative
parameter effects curvature respectively.

The advantage of scaling with ρ is that ρ
√
Fp,n−p,α is also the radius of the spher-

ical reference region in the expectation surface used to define the confidence region
(A.3.2). Analogously, the curvature of this sphere is 1/(ρ

√
Fp,n−p,α). To assess

whether the intrinsic curvature of the expectation surface is small over the reference
region, we are interested in the ratio

KN
h

1/(ρ
√
Fp,n−p,α)

=
γNh

1/
√
Fp,n−p,α

.

The quantities γNh and γTh both depend on the direction h ∈ Rp. To overcome this
dependency, Bates and Watts [5] define

ΓN = max
h∈Rp

γNh and ΓT = max
h∈Rp

γTh

as maximum intrinsic curvature and maximum parameter effects curvature respec-
tively. From an analysis of 24 data sets, they found that the relation

ΓN <
1

2
√
Fp,n−p,α
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can be considered as a good rule to asses whether the linear approximation is ac-
ceptable, provided that the model is parametrized in a way such that

ΓT < ΓN .

Remark A.3.1. In the software package Mathematica, nonlinear regression analysis
can be done with the NonlinearModelFit function, which returns a FittedModel

object. If nlm is the variable storing that object, the function call

nlm["ParameterTable"]

lists the values of estimated parameters together with their corresponding (linearly
approximated) confidence intervals. Moreover,

nlm["ParameterCurvatureTable"]

displays the values of ΓN , ΓT and 1/
√
Fp,n−p,α respectively to assess the validity of

the linear approximation. The default setting assumes a confidence level of 1−α =

95%.

A.4 Error Propagation

An important aspect of mathematical modeling is to develop model-based predic-
tions, which can be tested experimentally, in order to further validate a mathematical
model. Since the model depends on parameters, θ, the prediction is a function f(θ)

of the parameters as well. In order to assess the confidence one has in a certain
prediction, it is necessary to carry over the uncertainty of the estimate θ̂ to an un-
certainty of f(θ̂). In the case of f being linear, i.e. f(θ) = aᵀθ, Theorem A.2.8 shows
how to compute a confidence interval and the standard error of f(θ̂). If this rela-
tionship is nonlinear however, approximate inferences can be made based on linear
approximation of f .
Let θ be an n-dimensional real-valued random vector with expectation E(θ) = µ,

covariance matrix cov(θ) = Σ and f : Rn → R a nonlinear function. Developing f
about µ into a Taylor series leads to the first order approximation

f(x) ≈ f(µ) +∇f (µ)(x− µ).
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Thus, the random variable f(θ) has expectation E(f(θ)) = f(µ) and approximately
variance

var(f(θ)) ≈ ∇f (µ)Σ∇f (µ)ᵀ. (A.4.1)

In the case of uncorrelated components of θ, the covariance matrix has the form
Σ = diag(σ2

1, . . . , σ
2
n), with σ2

i being the variance of the i-th component of θ. Then,
(A.4.1) implies that f(θ) has variance

σ2
f(θ) = var(f(θ)) ≈

n∑
i=1

(
∂f(x)

∂xi

∣∣∣∣
µ

)2

σ2
i ,

which is also known as the error propagation formula [8].
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