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Summary 

 
The assessment of highly domain-general problem solving skills is increasingly important 

as problem solving is increasingly demanded by modern workplaces (e.g., Autor, Levy, & 

Murnane, 2003) and increasingly present in international large-scale assessments such as 

the Programme for International Student Assessment (PISA, e.g., OECD, 2014). This 

thesis is about the computer-based assessment of problem solving skills based on Multiple 

Complex Systems (MCS, Greiff, Fischer, Stadler, & Wüstenberg, 2014): The main idea of 

the MCS approach is to present multiple computer-simulations of “minimally complex” 

problems (Greiff, 2012) in order to reliably assess certain problem solving skills. In each 

simulation, the problem solver has to interact with a problem in order to find out (a) how to 

adequately represent the problem, and (b) how to solve the problem. Up to now, two 

instances of the MCS approach have been proposed: (1) the MicroDYN approach (based 

on simulations of linear equation systems) and – more recently, in the second paper of this 

thesis – (2) the MicroFIN approach (based on simulations of finite state machines). In the 

current thesis I will elaborate on three research questions regarding the validity (cf. 

Bühner, 2006) of the MCS approach: (1) its content validity with regard to the concept of 

complex problem solving; (2) the convergent validity of different instances of the MCS 

approach; (3) the discriminant validity of the interactive problems of the MCS approach 

with regard to traditional static measures of reasoning and analytic problem solving skills. 

Each research question will be addressed in one corresponding paper:  

 In a first paper (Fischer, Greiff, & Funke, 2012) complex problem solving is 

defined as the goal-oriented control of systems that contain multiple highly interrelated 

elements. After reviewing some of the major strands of research on complex problem 

solving (e.g., research on strategy selection, information reduction, intelligence, or on the 

interplay of implicit and explicit knowledge in the process of complex problem solving) a 

theoretical framework outlining the most important cognitive processes involved in solving 

complex problems is derived. The theoretical framework highlights both interactive 

knowledge acquisition (problem representation) and interactive knowledge application 

(problem solution) as the two major phases in the process of complex problem solving. 

Both phases are represented in all current instances of the MCS approach. 

 In a second paper (Greiff, Fischer et al., 2013) the convergent validity of 

MicroDYN and MicroFIN is investigated (thereby introducing MicroFIN as an alternative to 

MicroDYN) in order to demonstrate that both instances address the same kind of problem 
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solving skills. Based on a multitrait-multimethod analysis of a sample of university students 

(N = 339) it is demonstrated that – in addition to method-specific skills – both instances 

assess a common set of skills (method-general traits) related to (1) representing and (2) 

solving different kinds of interactive problems. In a regression of science grades on 

reasoning and the skills assessed by the instances of the MCS approach it is 

demonstrated that only the method-general representation trait and reasoning have 

substantial unique contributions. Thus, MicroDYN and MicroFIN seem to address a 

common set of skills and this set of skills is relevant for explaining school grades in 

science classes even beyond reasoning. 

 In a third paper (Fischer et al., in press) the discriminant validity of the 

interactive MicroDYN test is investigated by relating it to reasoning and traditional static 

measures of Analytic Problem Solving skills (APS) as they were applied in PISA 2003 

(OECD, 2004). Besides a common core of problem solving skills addressed by both kinds 

of tasks (e.g., analyzing complex information about the information given at a certain 

moment in time) Fischer et al. (in press) expected to find evidence for additional skills that 

were related to interactive problems only (e.g., systematically generating information and 

interactively testing hypotheses). Results indicate that MicroDYN shares a lot of variance 

with APS even after controlling for reasoning in a sample of high-school students (N = 

577) and the university student sample (see above). With regard to the explanation of 

school grades MicroDYN had an incremental value compared to reasoning and APS in the 

high-school student sample but not significantly so in the university student sample 

(whereas APS had an incremental value in both samples).  

 Basically these findings highlight both potential and limitations of the MicroDYN 

approach in its current form. Current instances of the MCS approach address a small set 

of problem solving skills reliably, but it takes more than these skills to competently solve 

complex problems. Implications for future research on the assessment of problem solving 

skills are discussed. 
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1. Introduction 

When people are confronted with complex problems there are a variety of strategies and 

heuristics1 that can be observed (e.g., Klahr, 2002; Dörner, 1996; Schaub, 2013): Some 

people systematically gather information on multiple aspects of the situation (as well as the 

situation’s dynamic development over time), generate detailed plans and hypotheses 

about how the situation may be transformed into a better one, and they scientifically adjust 

their plans and hypotheses to informative feedback. However, many people prefer less 

systematic strategies when confronted with complex problems: They focus on irrelevant 

details, rely on rigid methodism or gather confirmative instead of informative feedback 

(basically relying on dogmatic beliefs, e.g., Schaub, 2013; Dörner, 1996). Individual 

differences of this kind have received increasing interest in assessment contexts (cf. 

Fischer, Greiff, & Funke, under review), especially since “cross-curricular” problem solving 

skills have been included to complement curricular competencies (like reading, math or 

science) in large-scale assessments such as the Programme for International Student 

Assessment (PISA) 20002.  

Two different kinds of problems have been proposed to measure cross-curricular 

problem solving skills (cf. OECD, 2014; Wirth & Klieme, 2003; Fischer, et al., in press): (1) 

static problems, which disclose all the information relevant to a solution at the outset and 

that can be solved by analytically deriving a solution from the information given (Analytic 

Problem Solving, APS); (2) interactive problems that demand additional skills because 

relevant information has to be uncovered in the process of problem solving by dynamically 

interacting with complex situations (Complex Problem Solving, CPS). Skills related to 

solving static and interactive problems are increasingly demanded by workplaces all over 

the world as a result of technological developments (e.g., Autor, Levy, & Murnane, 2003; 

for an overview see OECD, 2014). Correspondingly, in PISA 2012 problem-solving skills 

were assessed by means of multiple static and interactive problems in an international 

                                            
1
 In this context the term “strategy” refers to “a plan –some sort of consciously intended course of action, a guideline 

(or set of guidelines) to deal with a situation.” (Mintzberg, 1987, p.11) According to Gigerenzer and colleagues, 
“Heuristics are efficient cognitive processes, conscious or unconscious, that ignore part of the information. “ 
(Gigerenzer & Gaissmaier, 2011, p. 451) that can be understood as a certain kind of “strategies that guide information 
search and modify problem representations to facilitate solutions” (Goldstein  & Gigerenzer, 2002, p.75) 
2
 In PISA 2000 both static and interactive problems were applied in a German national extension (Klieme, Hartig, & 

Wirth, 2005). In PISA 2003 static problems were applied on an international level, whereas interactive problems were 
applied in the national extension (Leutner, Fleischer, Wirth, Greiff, & Funke, 2012). In PISA 2012 both static and 
interactive problems were applied on an international level for the first time (OECD, 2014). 
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sample of about 85.000 students from 44 countries and economies around the world (cf. 

OECD, 2014).  

In the current thesis both kinds of problem will be investigated from a psychometric 

point of view: The focus will be on the Multiple Complex Systems approach (Greiff et al., 

2014) to assessing interactive problem solving skills (MCS approach, section 2) and its 

two instances MicroDYN (which is based on dynamic linear equations; see section 2.1) 

and MicroFIN (which is based on finite state machines; see section 2.2). After elaborating 

on the problem solving skills that are addressed by the MCS approach (section 2.3) three 

core papers of this thesis will be presented in order to address three main research 

questions regarding this approach: (1) its content validity: what are complex dynamic 

problems and which cognitive components and skills are most relevant for solving them 

(section 3.1; Fischer et al., 2012); (2) its convergent validity: how are different instruments 

for assessing some central interactive problem solving skills – MicroDYN and MicroFIN – 

related to each other and to school grades as external criteria of problem solving skills in 

educational contexts (section 3.2; Fischer, Greiff, et al., 2013); and (3) its discriminant 

validity: how are these interactive skills for solving complex dynamic problems different 

from reasoning and from performance in static problems that can be solved analytically 

(section 3.3; Fischer, et al., in press). In a final section (section 4) the main findings of this 

thesis will be summarized, and implications for future research will be outlined.  

 

2. Conceptual Background 

Before the core papers of this thesis will be presented in section 3, some of the basic 

terms and concepts of problem solving research, as well as the MCS approach and its 

history in psychometric contexts shall be introduced:  

Complex and Dynamic Problem Solving. Formally speaking there is a problem if a 

person has a goal but does not instantly know how to reach it given his or her current state 

(e.g., Duncker, 1945). For instance, if a person wants to change the language settings of a 

new smartphone but does not know where to find them, this person has a problem. 

Characteristically, solving a problem requires conscious thinking about the next steps 

towards a goal state (e.g., Funke, 2003). According to Fischer et al. (2012) complex and 

dynamic problems consist of many highly interrelated elements, which have to be 

considered simultaneously (i.e., “complexity”, cf. Pollok, Chandler, & Sweller, 2002; 

Dörner, 1996; Weaver, 1948; Rey & Fischer, 2013) and a series of decisions with 

subsequent decisions depending on previous decisions as well as on environmental 
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features that may change over time (i.e., “dynamics”, cf., Edwards, 1962; Gonzalez, Lerch, 

& Lebiere, 2003; Fischer et al., 2012).  

For example, consider the problem of managing a corporation: This is a complex 

problem with multiple highly-interrelated decisions that have to be made simultaneously 

(e.g., the optimal decision on how many employees to hire – given a certain amount of 

money – may strongly depend on how much you pay them and upon how many machines 

you buy for them to work with, e.g., Sager, Barth, Diedam, Engelhart, & Funke, 2011). This 

set of decisions can be revised dynamically at multiple points in time (e.g., at the end of 

each month). Each decision can be evaluated with respect to multiple criteria (e.g., short-

term and long-term profit), and has to be made under a high amount of "subjective 

uncertainty" (Osman, 2010) as the causal structure of the problem is not known in detail. 

Accordingly, the most characteristic features of complex dynamic problems have often 

been described as (1) complexity, (2) interconnectedness, (3) dynamics, (4) polytely, and 

(5) intransparency (Funke, 2001; 2003; Fischer et al., 2012).  

Figure 1 visualizes the formal structure of a complex system that – although not highly 

complex3 – exemplifies these five most characteristic features of complex problems (cf. 

minimal complexity, Greiff, 2012).  

 

Figure 1. Structure of a minimally complex MicroDYN-task, characteristically unknown to the test subject, 
with two simultaneous decisions (A and B) and two goal-dimensions (criterion C and D) at multiple points t in 
time. A has multiple consequences, and criterion D is dependent on both decisions. 

 
Please note that models applied for the purpose of simulation are always simplified 

representations of reality (Meadows, Randers, & Meadows, 2004). For instance, in a 

medical context, a structure of this kind may be used to simulate the dynamics of certain 

                                            
3
 Please note, even systems with less variables and relations have been labeled “complex systems” in the literature, 

e.g., the sugar factory proposed by Berry & Broadbent (1984) – which can be understood as a MicroDYN task with the 
goal of regulating the sugar production by hiring and firing workers. The sugar factory is based on the linear equation 
[Productiont = (– 1)*Productiont-1 + 2*Workerst-1 + random shock].  

t 

t 

t 

t 
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symptoms (C & D), which can be regulated by varying the amounts of two kinds of 

intervention (A & B). Even if reality is more complex than this model or any other model, a 

simple linear model like this may allow for valid conclusions about the reality it represents 

(cf. Vester, 2012; Meadows et al., 2004; Strunk & Schiepek, 2006). Of course, a minimally 

complex system may never be able to adequately represent all the aspects involved in 

managing a corporation, regulating climate change or organizing developmental aid (i.e., 

highly complex problems). Nevertheless it can still be highly interesting from a 

psychometric perspective (e.g., Funke, 2010): Due to minimal complexity, multiple 

independent problems can be presented to subjects in a short amount of time (e.g., 12 

problems with 5 minutes per problem can be presented in one hour testing time, see Greiff 

& Fischer, 2013) which allows for highly reliable conclusions about specific problem 

solving skills (Funke, 2010; Fischer et al., in press). Additionally, the skills required for 

solving each problem (see section 2.3) can be clearly identified (and varied between 

problems, e.g., Greiff, Fischer, et al., 2013) which is more difficult with regard to realistic 

and highly complex problems (see Funke, 2001). To illustrate this point the research 

tradition, which led to the development of the MCS approach, will be outlined before the 

MCS approach itself will be elaborated on in more detail.  

The history of Complex Problem Solving Research. Empirical research on 

Complex Problem Solving started in the late 1970’s (Fischer et al., under review), when 

Dietrich Dörner and colleagues implemented computer simulations of highly complex 

problems in order to examine problem solving in realistic environments (e.g., Dörner, 

1976; Dörner, Kreuzig, Reither Stäudel, 1983). Some of these simulations have also been 

proposed for assessment purposes (e.g., Dörner, 1986) because their cognitive demands 

seemed to be fundamentally different from traditional static problems (e.g., Funke 2001; 

Putz-Osterloh, 1981) and because traditional measures of intelligence seemed to be weak 

predictors of performance in complex problems (Süß, 1999; Wittmann & Süß, 1999). 

However, some severe psychometric issues impeded the high potential of complex 

problems in assessment contexts:  

Performance in single highly-complex problems often proved to be unreliable (Süß, 

1999) and did not sufficiently correlate with performance in other problems, with 

intelligence or with external criteria (e.g., Dörner & Kreuzig, 1983; Kluwe, Misiak, & Haider, 

1991; Süß, 1999). Moreover, because CPS simulations usually take a lot of testing time, it 

has been difficult to present more than one problem in order to increase reliability (Greiff & 

Fischer, 2013). However, as Süß (1999) argues, when CPS performance is aggregated 
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over multiple complex systems, convergent validity could indeed be demonstrated: For 

instance, Süß (1999) reports data on multiple complex problems (the simulations 

Tailorshop, PowerPlant, & Learn, cf. Wittmann & Süß, 1999). Each simulation was 

presented twice in order to increase reliability (with the exception of the simulation Learn, 

because this simulation took two hours of testing time for a single trial, Wittmann & Süß, 

1999). Süß (1999) reports the complex problems to be correlated with each other (r = .22 - 

.38) and fluid intelligence to be correlated with performance in each CPS simulation (r = 

.35 - .46) as well as with an aggregate score of CPS performance (the sum of performance 

measures over all complex problems; r = .56). In a regression of CPS performance on 

problem-specific knowledge (assessed after an exploration phase, where “subjects played 

each simulation for several trial runs to acquire familiarity with the simulation”, Wittmann & 

Hattrup, 2004, p. 401) and fluid reasoning both predictors proved to have unique 

contributions for each of the three problems4. Findings like these highlight that CPS – 

aggregated over multiple problems – depends on reasoning, but they also highlight the 

incremental value of prior knowledge and knowledge acquisition skills for the solution of 

complex problems (Greiff & Fischer, 2013). However, the results of Süß (1999) also 

demonstrate the high heterogeneity between different complex problems. Additionally the 

number of CPS simulations applied in this study was rather low compared to traditional 

and static psychometric tests. The Multiple Complex Systems (MCS) approach presented 

in this thesis emerged as an answer to these problems (Funke, 2001; Greiff & Fischer, 

2013): The idea of the MCS approach (cf. Greiff, 2012) is to present a larger number of 

less complex dynamic problems (typically up to twelve problems) and to ensure a sufficient 

amount of homogeneity between problems by means of formal frameworks such as linear 

equation systems of finite state machines (see below) as proposed by Funke (2001). As a 

result, current instances of the MCS approach do not address all the skills potentially 

relevant for different kinds of CPS, but they do address a small set of skills – central to 

solving a wide range of problems – reliably (cf. Fischer, et al., in press). For a detailed 

overview concerning the history of Complex Problem Solving, see Funke (2003) or 

Fischer, Greiff, & Funke (under review). 

                                            
4
 When problem-specific knowledge and reasoning were controlled for, correlations between CPS tasks (see above) 

dropped to insignificant values around zero (r = .04 - .15). 
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The Multiple Complex Systems approach. Modern computer-based assessment 

of complex dynamic problem solving is increasingly based on the seminal work of Funke 

(2001) who proposed to use the interaction with computer-simulations5 of (a) dynamic 

linear equation systems (the MicroDYN approach, proposed by Greiff & Funke, 2010) or 

(b) finite state machines (the MicroFIN approach, proposed by Greiff, Fischer, et al., 2013 

in the second paper of this thesis) as indicators of the problem solving skills involved in 

identifying (i.e., representing) and controlling (i.e., solving) complex dynamic problems. 

Both approaches (see sections 2.1 and 2.2) and the problem solving skills involved (see 

section 2.3) will be outlined in more detail below. To exemplify how these kinds of tasks 

work in general, let us refer to Cronbach (1961, p.7), one of the early predecessors of the 

idea of applying multiple complex problems as tasks for assessing complex problem 

solving abilities:  

 “We inquire about a piece of apparatus with a ring of lights [i.e., dependent 

variables] and a few pushbuttons [i.e., independent variables]. ‘This’ he says, ‘is an 

experimental test which permits us to present much longer and more complex tasks 

than the usual puzzle. It is used to measure abilities of high-level scientific and 

technical workers; (…) The apparatus is wired so that it follows some simple rules. 

These rules change with every problem. There are three pushbuttons which turn on 

and off various combinations of lights. The person’s task may be to turn on light 

number 3 only. He presses the buttons in turn to find out what lights each button 

controls [i.e., to represent the problem]. For instance, when he presses button 1, 

lights 3, 4, and 5 go on. When he has all the information, he must find a sequence 

of actions which will leave only light 3 lit [to solve the problem].” (Cronbach, 1961, 

p.7) 

Likewise, in the MCS approach, each test comprises multiple minimally complex 

problems, and each problem has to be represented and solved interactively by a series of 

inputs and resulting outputs (cf. Fischer et al., in press). According to Funke (2001) the 

formal frameworks of linear equation systems and finite state machines both allow for (a) 

designing multiple independent tasks based on a well-defined set of commonalities and for 

(b) systematically varying item-characteristics related to task difficulty. Using multiple 

complex systems based on the formal frameworks proposed by Funke (2001) for 

                                            
5
 In the research literature different labels refer to this kind of simulations (e.g., „Microworlds“, „complex problems”, 

“dynamic problems”, “interactive problems”).  
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psychometric purposes is regarded as the Multiple Complex Systems approach (MCS 

approach).  

As the current thesis is meant to present recent research on both MicroDYN and 

MicroFIN – the two instances of the MCS approach proposed so far – the specifics of both 

approaches (see section 2.1 for MicroDYN and 2.2 for MicroFIN) and the problem solving 

skills that are required for solving problems in both approaches (see 2.3) will be outlined, 

before the core papers of this thesis will be presented (see 3). 
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2.1 MicroDYN – Microworlds based on dynamic linear equations 

The MicroDYN approach to assess problem solving skills is based on multiple tasks. Each 

task is an interactive simulation of a linear equation system (e.g., Greiff & Fischer, 2013). 

For example, one task – as depicted in Figure 2 – may simulate the variables “Motivation”, 

“Power of throw” and “exhaustion” of a handball team, as well as their linear dependence 

on the amounts of certain kinds of training (e.g., Training A, B and C). In each task, the 

test subject can set the amount of each kind of training (i.e., the independent variables at 

the left side of Figure 2) and watch the resulting changes in each of the other variables 

(i.e., the dependent variables at the right side of Figure 2).  

 

Figure 2. Screenshot of the second phase of a MicroDYN-task. Independent variables (left side of the 
screen) are labeled with fictional pseudo-words, in order to not trigger any helpful prior knowledge about the 
problem’s causal structure. In a first phase, a problem solver has to interact with the problem and draw the 
causal structure in a causal diagram (representation at lower part of the screen). Afterwards, in a second 
phase, certain goal ranges are shown for each dependent variable (solution at the right side of the screen).  

 
Procedure: At the beginning of each task the test subject does not know how 

independent and dependent variables are interrelated. Thus, in a first phase of the task, he 

or she has to find out about the relations by interacting with the simulation. For instance, if 

the test subject wants to know if Training A is related to Motivation, he or she may 
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increase the amount of Training A (e.g., by setting the corresponding slider to “++”), click 

on the “Apply”-button and monitor if Motivation changes as a result of this variation. At the 

end of phase 1, hypotheses about the causal relations between variables have to be 

drawn in a causal diagram at the bottom of the screen and phase 2 begins. In phase 2 the 

test subject is confronted with specific goal values for each dependent variable, and has to 

reach these goal values in less than five turns. If each dependent variable equals its 

corresponding goal value (or if “apply” was clicked five times or if time is up), the 

MicroDYN task ends.  

Scoring: For each MicroDYN task, performance in each phase is typically assessed 

based on the correctness of the causal model (problem representation) and on the number 

of goals reached (problem solution). For alternative ways of scoring see Greiff (2012). 

 

2.2 MicroFIN – Microworlds based on finite state machines 

The MicroFIN approach to assessing problem solving skills is also based on multiple 

tasks. Each task is an interactive simulation of a finite state machine (Greiff, Fischer et al, 

2013). At each moment in time a finite state machine is in a certain state, and inputs to the 

machine (e.g., pressing buttons or time passing by) can cause a state transition from one 

state to another (with the set of state transitions being finite, see Buchner & Funke, 1993; 

Funke & Buchner, 1992). Thus, the machine can only be in a finite number of states and 

typically either the current state or the most current state transition is related to some form 

of output (see Funke, 2001, or Buchner & Funke, 1993, for a more detailed description of 

finite state machines). MicroFIN-tasks are highly heterogeneous in nature, as every well-

defined problem space – consisting of goals, states and state transitions regarding a 

problem (see Newell and Simon, 1972) – can approximately be described in this 

framework. Most characteristic instances of finite state machines are automatons like 

washing machines (Figure 3, left), toy cars similar to the “BigTrak” toy (Figure 3, middle) or 

virtual pets similar to the “Tamagotchi” toy (Figure 3, right). A detailed formal description of 

these automatons can be obtained by the author of this thesis. 
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Figure 3. Exemplary finite automatons – simulated in the Finite AUtomaton Simulation Tool (FAUST) – which 
can be obtained by the author of this thesis. 

 

Procedure: At the beginning of each task the test subject does not know about the 

transition matrix of the automaton. Thus, in a first phase of the task, he or she has to find 

out about the consequences (e.g., visual output of the automatons in Figure 3) of each 

possible input (e.g., a button of an automaton in Figure 3) in different states of the 

automaton. For instance, if the test subject wants to know how the “RPT”-button in the 

BigTrak simulation works, he or she may click the “RPT”-buttons in different states of the 

automaton (e.g., after clicking one of the other buttons) and monitor the state transitions 

resulting from these inputs. At the end of phase 1, a series of questions about possible 

state transitions of the automaton are to be answered. In phase 2 the test subject is 

confronted with a specific goal (e.g., “make BigTrak drive left, up, left”) and has to reach 

this goal using as few inputs as possible. If the goal is reached (or time is up), the 

MicroFIN task ends.  

Scoring: MicroFIN task performance in each phase is typically assessed based on the 

correctness of the answers to questions about the automaton’s state transitions (problem 

representation) and on whether the goal was reached or not (problem solution). For 

alternative possibilities of scoring please refer to Buchner & Funke (1993). 
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2.3 Problem Solving Skills assessed by means of MicroDYN and MicroFIN 

In this section, some of the cognitive and behavioral processes that are generally involved 

in solving MicroDYN and MicroFIN tasks will be elaborated on. Please note, some 

cognitive and behavioral processes may be considered useful for solving all tasks of this 

kind (e.g., systematically building and testing hypotheses on the automaton’s causal 

structure; or carefully monitoring the consequences of one’s inputs before deciding on the 

next input) whereas other processes may be involved in solving a specific task but 

irrelevant to solving other tasks (e.g., regarding the automatons in Figure 3, many facts 

about toy cars may be helpful in controlling a toy car, but irrelevant for setting up a 

washing machine). Thus, by definition the former can be assumed to be more general than 

the latter (cf. Anderson, 2013) even if typically both kinds of processes are closely 

intertwined and referring to each other (e.g., deciding which hypothesis to build and which 

aspect to test may be informed by task-specific knowledge).  

In this section I will temporarily abstract from task-specific processes and focus on the 

problem solving skills that are assumed to be generally involved in (and therefore 

assessed by) both MicroDYN and MicroFIN tasks: For instance, every task in both 

MicroDYN and MicroFIN requires the dual-search for hypotheses and information on how 

to viably represent the problem (cf. Klahr & Dunbar, 1988; Klahr, 2002), followed by the 

search for a solution in the resulting problem space (cf. Newell & Simon, 1972). Each kind 

of search happens in a corresponding search space (e.g., a solution is searched within the 

space of all possible states of the problem that can be reached by state transitions) which 

is usually assumed to be ordered and constrained by task-specific prior knowledge (e.g., 

knowledge about the value of certain states or state transitions for reaching one’s goals, 

cf. Damasio, 1994; Newell & Simon, 1972).  

In the following sections the dual-search for information and hypotheses as well as the 

search for a solution (and the corresponding problem solving skills assessed by all kinds of 

MicroDYN and MicroFIN tasks) will be elaborated on in more detail. A problem solving skill 

in this context can be considered to be the knowledge on when and how to apply different 

strategies (or on how to generate this kind of knowledge) in order to search for adequate 

representations and solutions to problems effectively (cf. Greiff et al., 2015; Anderson, 

1982)6. Please note, this conceptualization of the skills MicroDYN and MicroFIN address – 

                                            
6
 As complex problem solving is a fairly complex process itself (see section 3.1) some researchers have proposed 

additional search spaces for certain kinds of problems (e.g., Schunn and Klahr, 2002, proposed a space of possible 
data-representations, and Burns & Vollmeyer (1996) proposed a space of model assumptions). 
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i.e., the conceptual relation of the MCS approach to prior research on scientific discovery 

and problem solving – is highly influenced by the studies of Fischer et al. (2012) and 

Greiff, Fischer et al. (2013) and thus can be considered a contribution of the current thesis 

(even though this section precedes sections 3.1 and 3.2 due to a better flow of reading).  

Search for a Representation. Klahr and Dunbar (1988) proposed to think of scientific 

discovery and interactive concept formation as a complex7 problem solving process, which 

involves the coordinated search in two spaces – (a) the space of hypotheses and (b) the 

space of experiments that are informative for testing these hypotheses (Klahr, 2002). 

According to the dual-space model (cf. Klahr, 2002), in order to adequately represent a 

problem, the problem solver has to (1) state hypotheses concerning how different aspects 

of the problem are interrelated (e.g., based on prior knowledge or based on interactions 

with the problem), to (2) test hypotheses by interacting with the problem (i.e., conducting 

an experiment on focal aspects of the problem and comparing the problem’s state 

changes with the hypotheses’ predictions), and to (3) evaluate evidence in order to come 

to a conclusion (i.e., to accept or reject hypotheses or to initiate further inquiry). 

Corresponding to the two problem spaces, Klahr and Dunbar (2002, p.57f) highlight two 

essential problem solving skills that are highly domain-general and relevant for 

representing MicroDYN and MicroFIN tasks: These skills can be described as “knowing 

where to look and understanding what is seen. The first skill – experimental design – 

involves the design of experimental and observational procedures [such as applying the 

principle of isolated variation of variables]; the second – hypothesis formation – involves 

the formation and evaluation of theory.” (Klahr & Dunbar, 2002, p. 57f.)  

Search for a Solution. When the problem’s structure is sufficiently known, problem 

solving can be described as the search for a solution in a single problem space (Newell & 

Simon, 1972). In this case, the problem space can be described by the set of states the 

problem can be in, the set of operators applicable to the states (i.e., state transitions), and 

the set of goal states (see section 1.2 for the close relation of problem spaces and finite 

state machines). Corresponding to this problem space, Newell and Simon (1972) highlight 

a range of highly domain-general problem solving skills, which can also be applied to 

MicroDYN and MicroFIN tasks: Depending on the task-specific knowledge, which 

constrains the problem space, these methods can range from (1) applying a viable series 

                                            
7
 Please note in this case – and independent of the problem – it is the search space that is complex, i.e., containing 

multiple interrelated search spaces (Klahr, 2002, p. 27). The idea is based on the General Rule Inducer (Simon & Lea, 
1974) – a single information processing system accounting for performance in both rule induction and problem 
solving. 
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of inputs from memory over (2) means-end-analysis or the planning heuristic, to (3) 

randomly generating and testing inputs. 

MicroDYN and MicroFIN – Comparing Eggs and Oranges? At the outset MicroFIN 

and MicroDYN seem to address different kinds of problems: The former is about 

quantitative relations between numerical variables, whereas the latter is about qualitative 

relations between discrete inputs and states (Greiff, Fischer et al., 2013). Indeed, some 

problems are more intuitively – and less computationally costly – described as finite 

automatons, others are more intuitively described as as linear equation systems. In the 

recent past, this may have fostered a high heterogeneity between tests following the 

MicroDYN and MicroFIN approach (see sections on MicroDYN and MicroFIN for 

characteristic examples of each approach). Thus, on the one hand, one may argue that 

MicroDYN and MicroFIN are likely to address different problem solving skills. On the other 

hand, the searches for representations and solutions have been described as domain-

general and basic problem solving processes (e.g., Klahr, 2002) and as inherently involved 

in representing and solving both MicroDYN and MicroFIN tasks (Greiff, Fischer, et al., 

2013). Therefore, besides all the differences, it seems reasonable to assume a common 

core of problem solving skills, assessed by both MicroDYN and MicroFIN (in fact this is a 

major point that will be made in section 3.2 when presenting the study of Greiff, Fischer, et 

al., 2013).  

Additionally, both formal frameworks proposed by Funke (2001) should not be 

misperceived as mutually exclusive: On a conceptual level, both frameworks are more like 

different perspectives on complex problems in general, and (although this may seem 

cumbersome at first) it may foster our understanding of both approaches to note, that both 

approaches can approximately emulate each other: For instance, Table 1 shows a small 

excerpt of the transition matrix of a MicroFIN task (i.e., a finite state machine) “emulating” 

key aspects of a MicroDYN-task8 (i.e., a linear equation system) as the one shown in 

Figure 1. 

 

                                            
8
 Schoppek (2002) introduced a similar approach to understanding MicroDYN tasks, when he formally described the 

problem space of MicroDYN tasks by means of a set of states and state transitions. Buchner, Berry, & Funke (1995) 
demonstrated how to emulate the linear equation of the Sugar Factory simulation within the framework of finite state 
machines. 
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Table1. Excerpt of the transition matrix of a MicroDYN-automaton. Each line represents a state (see first 
column) with a certain output (column 2) and a set of state transitions (column 3 to 7) triggered by input 
events (e.g., buttons labeled “More A”, “Less A”, “More B”, “Less B”, or “Apply”).  
 

State Output More A Less A More B Less B Apply 

0 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=0 ; Medizin B=0  1 0 3 0 0 

1 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=1 ; Medizin B=0  2 0 4 1 1 

2 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=2 ; Medizin B=0  2 1 5 2 11 

3 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=0 ; Medizin B=1  4 3 6 0 3 

4 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=1 ; Medizin B=1  5 3 7 1 4 

5 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=2 ; Medizin B=1  5 4 8 2 113 

6 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=0 ; Medizin B=2  7 6 6 3 6 

7 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=1 ; Medizin B=2  8 6 7 4 106 

8 
Symptom 1=00% ; Symptom 2=00% ; 
Medizin A=2 ; Medizin B=2  8 7 8 5 215 

9 
Symptom 1=10% ; Symptom 2=00% ; 
Medizin A=0 ; Medizin B=0  10 9 12 9 0 

10 
Symptom 1=10% ; Symptom 2=00% ; 
Medizin A=1 ; Medizin B=0  11 9 13 10 10 

 

The complete matrix of this automaton contains 1090 states and can be obtained by 

the author of this thesis. As one can see in Table 1, each state of the automaton is 

associated with a certain output (e.g., “Symptom C = 10%; Symptom D = 00%; Medicine A 

= 0; Medicine B = 0”) which visualizes the current level of independent variables (Medicine 

A & Medicine B) and dependent variables (Symptom C & Symptom D). A state transition is 

triggered whenever the user makes an input to the automaton (“More A”, “Less A”, “More 

B”, “Less B”, and “Apply”). The state transition matrix specifies the resulting state for each 

input: For instance, like specified in Table 1, if the problem solver presses the “Apply”-

Button in state 9 (“Symptom 1 = 10%; Symptom2 = 00%; Medicine A = 0; Medicine B = 

0”), the resulting state is state 0 (“Symptom 1 = 00%; Symptom 2 = 00%; Medicine A = 0; 

Medicine B=0”). Of course, the automaton just described is a rather simplistic simulation of 

a MicroDYN task (and it may well be expanded to cover more input-events per 

independent variable, more states, and a more impressive visual output), but it serves well 

as a proof of concept: MicroFIN tasks can emulate MicroDYN tasks with an arbitrary 

degree of approximation. Of course, MicroFIN, in turn, can also be emulated in a linear 

equation framework (by using dummy-variables and nonlinear transformations of variables 

in the linear equation model, cf. Bortz, 2005) but for the sake of brevity this point will not be 

elaborated on in this thesis.  

To summarize, based on commonalities in (a) the kind of skills required to solve both 

kinds of problems (cf. Greiff, Fischer et al., 2013), and (b) the problems that can be 
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formulated within each approach, besides all potential differences (which will be addressed 

in the discussion, section 4) there also seems to be a common core of skills underlying 

performance in both instances of the MCS approach. Consistent with this idea, in the PISA 

2012, a global problem solving score is built based on both MicroDYN and MicroFIN tasks 

(amongst others, cf. OECD, 2014).  

 

3 Research on Tools and Perspectives concerning the MCS approach 

Regarding empirical research on the assessment of CPS skills, the MicroDYN approach 

was applied in a wide range of studies: For instance, the skills assessed by means of 

MicroDYN tasks (see section 2.3) proved to be incrementally valid for explaining school 

grades beyond different measures of reasoning (e.g., Wüstenberg, Greiff, & Funke, 2012; 

Greiff & Fischer, 2013; Greiff, Wüstenberg, Molnár, Fischer, Funke, & Csapó, 2013; Greiff, 

Kretzschmar, Müller, Spinath, & Martin, 2014), structurally invariant across different school 

grades (Greiff, Wüstenberg et al., 2013) and, as reported in Greiff (2012), closely related 

to representation (R² = .43, p < .01) and solution (R² = .45, p < .01) of a complex dynamic 

problem called “space shuttle” or “HEIFI” (a finite state machine with 120 states and 20 

input-buttons, applied in a national extension of PISA 2000, cf. Wirth & Klieme, 2003).  

Thus, MicroDYN evolved to be the method of reference when it comes to assessment 

of problem solving skills by means of multiple complex systems. MicroFIN, on the other 

hand, is a more recent approach (Greiff, Fischer et al., 2013; Neubert, Kretzschmar, 

Wüstenberg, & Greiff, 2014) with a lot of potential for going beyond MicroDYN (see below). 

Both instances of the MCS approach (MicroDYN and MicroFIN) have been applied in PISA 

2012 to assess how students interactively solve minimally complex problems (OECD, 

2014). 

In this thesis three questions related to the validity of the MCS approach are 

investigated. Three different studies on the MCS approach are reviewed, emphasizing 

both potential and limitations of current assessment instruments: (1) The first study defines 

CPS and proposes a theoretical framework for understanding the main components of 

CPS (knowledge acquisition and knowledge application); (2) the second study relates 

different MCS assessment instruments – a traditional MicroDYN test, a MicroFIN test and 

the test GeneticsLab – to each other. For the first time, this study demonstrates external 

validity of these instruments on a latent level (with incremental validity for explaining 

science grades beyond fluid intelligence), and allows for clearly separating both method-

specific and method-general aspects of variance; after examining the relations of different 



Assessment of Problem Solving Skills 

 
23 

 

MCS instruments to each other, (3) the third study is about the relation of the interactive 

MicroDYN test to static measures of reasoning and Analytic Problem Solving (APS, as it 

was assessed in PISA 2003). This study proves MicroDYN to substantially complement 

the traditional and static measures of APS in a high-school student sample, but not 

significantly so in a university student sample. APS, on the other hand, has substantial 

unique contributions to predicting school grades beyond both reasoning and MicroDYN in 

both samples. Thus, the study demonstrates an empirical value of assessing problem 

solving skills by means of MicroDYN in high-school student samples (as it is done in PISA 

2012, for example), but also points at additional (analytic) problem solving skills current 

instances of MicroDYN do not address.  

In all of these studies, the MicroDYN approach proved to allow for highly reliable and 

sufficiently valid assessment of a narrow set of problem solving skills (see section 2.3). 

However, results concerning the interactive MicroFIN test in study 2 and the static APS 

test in study 3 also point towards additional aspects of complex problem solving that are 

insufficiently addressed by current operationalizations of the MicroDYN approach.  

 

3.1 Review 1: Content Validity (cf. Fischer, Greiff, & Funke, 2012) 

Fischer et al. (2012) outlined some of the major strands of research on CPS (e.g., 

research on strategy selection, information reduction, intelligence, or on the  interplay of 

implicit and explicit knowledge in the process of CPS) in order to derive a theoretical 

framework for the most important cognitive processes involved in solving complex 

problems. The framework highlights both problem representation (knowledge acquisition) 

and problem solution (knowledge application) as the two major phases in the process of 

CPS. Additionally, the framework is closely related to the five most characteristic features 

of complex problems:  

In a first phase, the problem solver has to acquire a parsimonious and viable 

representation of the problem: The problem solver is assumed to generate information 

about the problem (to cope with intransparency), to infer the relevant elements and 

relations of the system (to cope with interconnectedness) and to increasingly focus on the 

most relevant aspects only (to cope with complexity). When there is a sufficient amount of 

knowledge it has to be applied effectively: In this phase, the problem solver is assumed to 

make a dynamic choice by (a) instantly choosing an action that is known to be effective in 

the current situation, or by (b) deriving a solution based on the knowledge available (to 

influence the system’s dynamics). Finally, evaluation of the resulting problem state (and its 
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deviation from the current set of goals) may indicate progress, result in further knowledge 

acquisition9 or - if the current goal cannot be reached in time or is less important than other 

goals – result in a change of goals10 (due to polytely). 

 Please note the theoretical framework is formulated on a rather abstract level, 

because many details of CPS depend on attributes of problem and/or problem solver that 

can hardly be generalized across problems or problem solvers. For instance, some 

problems are emotionally11 disturbing or existential (e.g., Baltes & Smith, 1990) while 

others are not – and problem solvers may differ with regard to the strategies they assume 

to be efficient. The theoretical framework proposed by Fischer et al. (2012) focuses on the 

cognitive processes that are relevant for characteristic instances of CPS (cf. Funke, 2003). 

As Fischer et al. (2012) suggest it may well be expanded to cover (a) the processes 

involved in specific kinds of CPS, or (b) the processes that will empirically prove to be part 

of CPS in the future. In its current state, the framework reflects the research results it was 

based upon – a least common denominator of an interdisciplinary field of research. 

The framework explicitly highlights knowledge acquisition as part of the CPS 

process and has considerably shaped the understanding of MicroDYN and MicroFIN: 

Before this theory was published, MicroDYN and MicroFIN were assumed to address three 

different facets of CPS (e.g., Wüstenberg, et al., 2012; Greiff, 2012), but based on the 

framework of Fischer et al. (2012), knowledge acquisition and knowledge application were 

increasingly conceptualized as the main facets of CPS that are addressed by both 

MicroDYN and MicroFIN (whereas information generation and model building were 

regarded as closely intertwined processes as a result of the dual-search for information 

and hypotheses involved in knowledge acquisition, see Greiff & Fischer, 2013b). In 

accordance with the framework, MicroDYN and MicroFIN address problem solving skills 

related to both knowledge acquisition (i.e., problem representation) and knowledge 

application (i.e., problem solution). However, the framework also points towards 

shortcomings regarding the content validity of MicroDYN and MicroFIN, as it highlights 

heuristics that are relevant for CPS but not applicable to current instances of the MCS 

approach (e.g., asking an expert). The skills addressed by MicroDYN and MicroFIN may 

                                            
9
 As Funke (2003) noticed, in problem solving the lack of knowledge that may be revealed during the attempt of 

problem solving may refer to both means (e.g., the applicability or the consequences of important operators may not 
be known) and ends (e.g., criteria for goal-achievement may be too unspecific, cf. Dörner, 1976). 
10

 for more detailed considerations about the process of goal selection please refer to Dörner et al. (1983) 
11

 For a noteworthy attempt to address the complex interaction of motivation, cognition & emotion in human action 
regulation regarding existential problems (hunger, thirst, pain, etc.) the interested reader may refer to Dörner et al. 
(2002) or Dörner & Güß (2013) 
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be central for solving many kinds complex problems (especially in scientific domains, see 

section 3.2), but the process of CPS seems to depend on different factors as well (Fischer 

et al., 2012). Additionally certain problem solving skills, related to the problem solver’s 

switching between knowledge acquisition and knowledge application are not addressed by 

MicroDYN and MicroFIN, due to the artificial separation of phases (see sections 2.1 and 

2.2). I will elaborate on these shortcomings of the MCS approach in the discussion 

(section 4).  

 

3.2. Review 2: Convergent Validity (cf. Greiff, Fischer et al., 2013) 

Greiff, Fischer et al. (2013) presented the first empirical study on MicroFIN tasks and their 

empirical relation to two kinds of MicroDYN tasks (a traditional MicroDYN test and a 

simplified MicroDYN test with binary input-variables, called “GeneticsLab”, cf. Greiff, 

Fischer et al., 2013). More specifically, Greiff, Fischer et al. (2013) demonstrated that the 

incremental value of MicroDYN tasks beyond measures of fluid intelligence (which was 

reported in a lot of studies using a wide range of different measures for fluid intelligence, 

e.g., Wüstenberg et al., 2012; Greiff & Fischer, 2013; Greiff, Wüstenberg et al., 2013) can 

also be found on a latent level if different instances of the MCS approach (MicroFIN and 

two instances of MicroDYN) are used to indicate method-general representation and 

solution skills. Please note each single homogenous test of CPS skills (e.g., MicroDYN) 

necessarily addresses a wide range of cognitive skills and abilities to a certain degree 

(Horn & Masunaga, 2006). By assessing specific skills (e.g., representation and solution 

skills) by means of multiple heterogenous tests each, it becomes possible to examine the 

method-general factors (i.e., “traits”, related to representing and solving problems in 

different tests) and how well they are tapped by each test. With regard to the MCS 

approach Greiff, Fischer, et al. (2013) report sufficient convergent validity of the different 

tests (with substantial loadings of all measures and trait consistencies mostly between .50 

and .60), a moderate relation of both latent traits to a measure of fluid intelligence / 

reasoning (b = .49-.53; p < .01 ) and incremental validity of the latent problem 

representation trait (as measured by different instances of the MCS approach) for 

explaining science grades (b = .22; p < .01) beyond fluid intelligence. So on a general level 

all tests seem to address a common core of problem solving skills, and these skills are 

incrementally valid for predicting school grades. 

However, on average, trait consistency was about 50% for both MicroFIN (with 

method-specificity up to .89) and GeneticsLab (with method-specificity up to .59). This 
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implies, that different tasks of MicroFIN had as much in common with the method-general 

traits as they had uniquely in common with each other (i.e., different MicroFIN tasks seem 

to additionally address something beyond the method-general representation and solution 

skills described in section 2.3 of this thesis) and the same applies for GeneticsLab. For 

instance, in MicroFIN each automaton represents a different aspect of reality and requires 

different strategies to be applied. Thus the method-specific aspects of MicroFIN may 

represent the impact of analogy-building or strategy selection skills as well as different 

kinds of world knowledge (concerning each of the automatons or concerning finite state 

machines in general) for instance.  

With regard to GeneticsLab these method-specific factors of representation and 

solution (which may be related to differences in the tasks’ Graphical User Interface, see 

Greiff, Fischer et al., 2013) were correlated with the method-general factors solution and 

representation (please note the reversed order, cf. Greiff, Fischer, et al., 2013). 

Concerning MicroFIN, the method-specific factors concerning representation and solution 

(i.e., the skills that were assessed in addition to the skills that are common to both 

MicroDYN and MicroFIN) were not significantly related to the method-general factors. 

These findings render MicroFIN especially interesting for future research on additional 

aspects of CPS. However, for MicroFIN there also was a higher variance in trait and 

method loadings (compared to the GeneticsLab) which indicates a greater heterogeneity 

of MicroFIN tasks (see section 2.2). Implications for future research on MicroFIN will be 

outlined in detail in the discussion of this thesis (section 4). 

In addition to introducing MicroFIN and to proving convergent validity between 

different measures of the MicroFIN and MicroDYN approach, the study of Greiff, Fischer et 

al. (2013) also was the first study to prove that the skills assessed by means of MicroDYN 

and MicroFIN were especially related to science grades on a latent level, emphasizing the 

close relation between both approaches and the process of scientific discovery (see 

section 2.3). In previous studies, MicroDYN was simply thought of as assessing domain-

general problem solving skills, but obviously, the skills required to interactively solve 

MicroDYN and MicroFIN tasks are more similar to understanding and solving scientific and 

technical problems (e.g., Scherer & Tiemann, 2012; Cronbach, 1961) than to problem 

solving in the domain of reading or writing for instance. Please note, these skills – involved 

in interactively representing and solving complex problems – may nevertheless be 

applicable to a wide variety of problem domains (such as fixing automatons, dynamically 

managing corporations, coordinating developmental aid, etc.) and curricula (e.g., biology, 
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physics, chemistry). Thus, the problem solving skills assessed by means of the MCS 

approach may still be considered as being cross-curricular and highly domain-general, 

even if they are neither universally applicable nor sufficient for solving every kind of 

complex problem. 

From today’s point of view, the major contribution of Greiff, Fischer, et al. (2013) 

may have been to introduce the MicroFIN approach as an alternative to the MicroDYN 

approach, and to highlight the heterogeneity inherent in MicroFIN automatons (see 

Neubert et al., 2014, for a recent replication of these findings in a high school-student 

sample). Please note, complex problems in real-life are highly heterogeneous (e.g., Funke, 

2001) and this heterogeneity has to be carefully addressed by each approach to assessing 

CPS. We will come back to this point in the discussion (section 4). 

 

3.3. Review 3 Discriminant Validity (cf. Fischer et al., in press) 

The third study of this thesis elaborated on the relation of interactive MicroDYN tasks to 

the traditional static tasks that were applied in PISA 2003 to assess Analytic Problem 

Solving (APS). Besides a common core of problem solving skills addressed by both kinds 

of tasks (e.g., analyzing complex information about the information given at a certain 

moment in time) Fischer et al. (in press) expected to find evidence for additional skills that 

were related to interactive problems only (i.e., not indicated by static problems and static 

tests of reasoning). For instance, in contrast to APS, MicroDYN tasks require (1) 

interactively gathering information in the light of hypotheses and (2) adapting plans and 

hypotheses to the information uncovered. Corresponding to this interpretation, in PISA 

2012 MicroDYN tasks are referred to as “interactive problem solving” and they are meant 

to complement traditional static problems. Fischer et al. (in press) put this assumption to 

the test for the first time, by contrasting interactive MicroDYN tasks (indicating CPS skills) 

with static problems (indicating APS skills) and a static matrices test (indicating logical 

reasoning), in order to determine (a) the amount of covariance between CPS and APS 

skills, as well as (b) if there was an incremental value of the interactive MicroDYN tasks 

compared to static problem solving tasks and the reasoning test with regard to explaining 

external criteria.  

With regard to the first question (a), in a sample of university students (n = 339) as 

well as in a sample of high-school students (n = 577) there was a large overlap between 

APS and both representing and solving MicroDYN tasks (r = .73 - .77). Commonality 

analyses revealed that a large amount of variance in APS can be explained by variance 
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that is common to representation and solution in MicroDYN, but not common to reasoning 

(ΔR² = .33 - .52). This empirical overlap indicates non-fluid aspects of problem solving 

competency assessed by both APS and MicroDYN tests (Fischer et al., in press) and may 

be due to strategic knowledge (Strohschneider & Güss, 1999) on when and how to apply 

different search strategies in the process of problem solving (cf. operative intelligence, 

Dörner, 1996). In a similar vein Horn & Masunaga (2006) report that expert reasoning and 

expert working memory tasks (with stimuli from a subject’s domain of expertise) address 

different constructs – and evoked different kinds of strategies – than traditional fluid 

reasoning and working memory tasks. The findings of Fischer et al. (in press) indicate 

sufficient discriminant validity of MicroDYN with regard to reasoning (r = .21 - .52). 

With regard to the second question (b), the APS test proved to be incrementally 

valid for predicting school grades (compared to MicroDYN and reasoning) in both samples 

(ΔR² = .04-.14), whereas the MicroDYN test was incrementally valid in the high-school 

student sample (ΔR² = .03) but not significantly so in the university student sample. 

Basically, results indicate that in university student samples APS may address the same 

problem solving skills, which account for the incremental validity of the problem 

representation score in MicroDYN beyond reasoning (please note, this incremental validity 

of MicroDYN has been reported in a wide variety of studies, e.g., Greiff & Fischer, 2013; 

Wüstenberg et al., 2012; Greiff, Wüstenberg, et al., 2013). These findings demonstrate 

that there are aspects of problem solving competency that are not sufficiently addressed 

by MicroDYN. At the same time they question the incremental value of MicroDYN 

compared to traditional static measures of problem solving competency. Future research is 

needed to clarify the conditions an incremental value of MicroDYN depends upon. In 

general, APS seems to be even more closely related to school grades than MicroDYN is.  

In summary, MicroDYN has proven to be a highly reliable and valuable tool for 

assessing a small range of problem solving skills (Funke, 2010) that are closely related to 

and not substantially different from APS (Fischer et al., in press). The high relations 

between MicroDYN and APS (beyond reasoning) may be interpreted as convergent 

validity of both approaches as measures of method-general problem solving skills: For 

instance, both measures may address skills like systematically building hypotheses based 

on complex information (i.e., “understanding what is seen”, Klahr, 2002, p.57). These skills 

seem to be helpful for coping with static problems (e.g., the APS test) as well as with 

interactive problems (e.g., the MicroDYN test). However, the findings reported also render 

static APS tests an interesting alternative to MicroDYN tests for assessing problem solving 
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skills in adult samples (as in this sample there was no incremental value of MicroDYN 

beyond APS). Consequently, future research should (a) elaborate on the cognitive 

processes that account for an incremental value of the APS approach beyond the 

MicroDYN approach in more detail and may also (b) expand MicroDYN to address 

additional aspects of problem solving competency that are not addressed by current 

operationalizations of the MicroDYN approach or the APS approach. 

 

4 Discussion and outlook 

In the present thesis I elaborated on the Multiple Complex Systems approach to assessing 

problem solving skills (and its two instances MicroDYN and MicroFIN, see sections 2.1 

and section 2.2) in more detail. Major findings and contributions include (1) a clear 

conceptual understanding of complex problem solving and the cognitive processes 

assessed by current operationalizations of the MCS approach (see sections 2.3 and 3.1), 

(2) empirical evidence for the convergent validity of MicroDYN tasks, MicroFIN tasks and 

tasks of the GeneticsLab test (see section 3.2) and (3) only limited support for discriminant 

validity of MicroDYN tasks with regard to static tasks of problem solving and reasoning 

(see section 3.3).  

Both instances of the MCS approach seem to address a common set of skills that 

explains school grades in science even beyond logical reasoning, and there are close 

relations between the MCS approach and static problem solving tasks (that cannot be 

attributed to reasoning). With regard to the regression of school grades, an incremental 

value of the MCS approach (beyond reasoning and static problem solving tasks) was 

found in the high-school student sample, but not in the university-student sample (Fischer 

et al., in press). The static problem solving tasks were incrementally valid compared to 

reasoning and MicroDYN tasks. In summary, the MCS approach still has a lot of potential 

that waits to be explored in more detail. In the following sections some directions for future 

and ongoing research on the MCS approach will be outlined. 

External Criteria. First of all, research on the MCS approach to assessing CPS should 

consider a wider range of external criteria for establishing external and construct validity. 

In many studies on the MCS approach, school grades have been applied as the major 

external criterion. This may have been a good starting point: School grades are easily 

assessed and can be conceived of as a highly aggregated measure of a person’s problem 

solving competency in multiple domains (e.g., the highly general Grade Point Average). 

Please note, in PISA 2012, problem solving – aggregated over multiple static and 
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interactive tasks – proved to be highly related to school-related competencies like reading 

(r=.75), mathematics (r=.81) and science (r=.78) on a latent level (OECD, 2014).  

However, as this step is taken for all current instances of the MCS approach (e.g., 

Wüstenberg et al., 2012; Greiff, Fischer et al., 2013), different external criteria may 

increasingly be considered in order to conclusively prove the validity of MCS instruments 

as measures of highly-domain general aspects of problem solving competency (cf. Süß, 

1999). For instance, in previous studies, MicroDYN tasks proved to be predictive for 

performance in a complex in-basket simulation (Fischer & Funke, 2013) and different 

measures of performance in the space shuttle simulation HEIFI (Greiff, Wüstenberg, & 

Funke, 2012). In a similar vein, MicroDYN proved to explain performance in static problem 

solving tasks beyond fluid intelligence (as we reported in the third study of this thesis, cf. 

section 3.3). This approach of validation could be expanded by relating performance in 

MicroDYN and MicroFIN tasks to behavior and performance in highly-complex and/or high-

fidelity simulations of real complex problems. Other external criteria with both a high 

relevance and a close conceptual relation to domain-general problem solving skills may be 

self-efficacy (e.g., Sherer, Maddux, Mercandante, Prentice-Dunn, Jacobs, & Rogers, 

1982), mastery (e.g., Pearlin & Schooler, 1978), or measures of job performance of 

managers (or other agreed-upon experts in solving complex problems). External criteria of 

this kind may also be important for further investigating if MicroDYN tasks have an 

incremental value compared to static problems in adult samples (cf. section 3.3). 

Critical Concerns. Over the past few years, many studies shed light on the 

MicroDYN approach, on what it measures, and on what it does not measure. Some of 

these aspects deserve careful consideration: For instance, given the findings of the third 

study of this thesis (see section 3.3) in university student samples, it may be more 

informative to apply traditional static problems than to use interactive MicroDYN tasks at 

least with regard to explaining academic success (Fischer et al., in press). Of course, 

MicroDYN in turn may be more informative for explaining different criteria (e.g., the 

interactive HEIFI problem, see above), or act as a criterion for other psychometric tests 

(similar to the study of Süß, 1999), but this remains a question yet to be answered 

empirically. Please note, these results do not question the validity of MicroDYN as a 

measure of problem solving skills, but only its incremental value compared to traditional 

(static) measures of Analytic Problem Solving (see section 3.3). Future research may 

demonstrate an incremental value of MicroDYN tasks for explaining other criteria or in 
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other samples, but – due to the large empirical overlap of MicroDYN and static problem 

solving tasks reported in Fischer et al. (in press) – they may also fail to do so. 

From a conceptual point of view MicroDYN tasks bear another shortcoming I would 

like to address: All MicroDYN tasks can be solved by applying the same narrow set of 

skills and strategies. Although this can also be seen as a benefit (with regard to reliability 

of MicroDYN tasks), it comes at a cost: Choosing a strategy adequate to the specific 

problem at hand (closely related to searching the model space of Burns & Vollmeyer, 

1996) – possibly switching strategies between (sub-) problems – may be an interesting 

skill on its own. This skill may be involved in solving the first MicroDYN task of a test, but in 

later tasks this search may be heavily constrained by previous tasks. For instance, 

subjects may simply apply the same strategy again, instead of searching a promising 

strategy from scratch. Thus the average over performance in multiple MicroDYN tasks 

does not represent the skills in searching for a strategy well. Instead MicroDYN focuses on 

know-how concerning the search for information, hypotheses and solutions only (see 

section 2.3). APS tests (e.g., section 3.3) and current operationalizations of the MicroFIN 

approach (e.g., section 3.2), on the other hand, do require the search for adequate 

strategies for each single task. Each task within these tests requires different strategies to 

be applied and different assumptions to be made. From this point of view, it is interesting 

to note that in PISA 2012, MicroDYN tasks were also mixed with multiple finite automata, 

in order to assess “interactive problem solving” (OECD, 2014). Consequently, in all these 

instances (APS, MicroFIN and problem solving in PISA 2012), searching for a strategy 

adequate for solving the problem at hand, seems to be involved to a larger extend 

(compared to traditional MicroDYN tests). With regard to MicroFIN, this additional demand 

may even explain part of the method-specific covariance reported in the second study of 

this thesis (section 3.2; Greiff, Fischer, et al., 2013). However, Greiff, Fischer, et al. (2013, 

p.590) also report the method-specific factors of representation and solution in MicroFIN to 

be related to reasoning (with r=.43 for representation and r=.25 for solution) and they 

report no unique contributions of any method-specific factors to explaining school grades 

(when compared to all other method-specific factors and the method-general traits; Greiff, 

Fischer, et al., 2013, p.591). Additionally, even if MicroFIN captures an interesting 

additional aspect of problem solving competency, this aspect may be central for solving 

intelligence tests as well and there may not be a unique contribution beyond reasoning. In 

this case, one may argue, it may suffice to complement MicroDYN tasks with a separate 

intelligence test in order to cover the most important general aspects of problem solving 
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competency. However, Greiff, Fischer, et al. (2013, p.589) also report correlations 

between method-specific factors (r = .02-.52). These correlations in turn may have 

artificially reduced unique contributions of MicroFIN’s method-specific factors in the 

regression model reported. Thus, the assumption of an incremental value of the unique 

aspects of MicroFIN (which are as large as the commonalities between MicroFIN and 

MicroDYN) cannot be rejected conclusively. Also, as emphasized above, school grades 

are not the only relevant criterion for a test of problem solving skills. Thus, the incremental 

value of MicroFIN’s unique demands remains another question to be answered empirically 

in future studies. In order to make adequate use of the heterogeneity inherent in MicroFIN 

tasks, it may be fruitful to address this issue. 

Embracing Heterogeneity of CPS. As mentioned above, operationalizations of 

MicroFIN proved to be more heterogeneous in nature than operationalizations of 

MicroDYN (e.g., Greiff, Fischer, et al., 2013; Neubert et al., 2014; Greiff et al., 2014). This 

heterogeneity between minimally complex systems could be a benefit for addressing a 

larger range of skills relevant to solving complex and dynamic problems. In contrast to 

highly complex problems12 multiple minimally complex problems can more easily be 

applied in order to address different well-defined problem solving skills. However, to make 

adequate use of the heterogeneity of MicroFIN tasks, a heterogeneous set of tasks 

(representing a broad range of demands inherent in different kinds of complex dynamic 

problems) with multiple homogenous clusters (i.e., multiple tasks sharing the same 

constellation of demands) has to be applied.  

For example, one of these clusters may well be described by current 

operationalizations of the MicroDYN-approach – as problem representation in MicroDYN 

tasks is a factor that already proved to be reliably indicated by multiple homogenous tasks 

and predictive for external criteria beyond logical reasoning. Having tasks of this kind – 

representing one homogenous cluster of tasks – and knowing how they work empirically, 

is an important first step in research on the assessment of complex and dynamic problem 

solving. But given the large heterogeneity of MicroFIN tasks (and complex dynamic 

problems in general, cf. Fischer et al., 2012), these tasks should definitely be 

complemented by additional clusters, in order to address the full spectrum of demands 

inherent in different kinds of complex dynamic problems (for an overview see Dörner, 

1996).  

                                            
12

 e.g., the simulations Tailorshop, Power Plant, or Learn – who also proved to be heterogeneous with regard to the 
cognitive demands they pose on the problem solver (see Süß, 1999).  
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Examples of how additional (creative) skills can be assessed by means of finite 

automatons can be found in the PISA 2012 operationalization of problem solving skills 

(see OECD, 35ff): For instance, one question on a simulated MP3-Player (with three 

buttons:    ,    ,   ) may be stated as follows: “Describe how you could change the way the 

MP3-player works so that there is no need to have the bottom button (   ). You must still be 

able to change the type of music, and increase or decrease the volume and the bass 

level”, OECD, 37). Questions like these may help exploiting additional aspects of the 

potential inherent in the MCS approach which may be useful to a wider range of 

assessment contexts. 

Of course, from a practitioner’s point of view, the addition of tasks with additional 

cognitive demands may not be a goal in itself (for it may not be feasible to apply a test that 

addresses all the demands possibly inherent in every kind of complex problem). However, 

research on the assessment of CPS has to highlight and address the multitude of 

demands inherent in different complex problems (e.g., Dörner, 1996), in order to 

adequately determine (a) the structure of problem solving competency and (b) the best 

and most valid indicators for each important factor of this structure. Taxonomies of CPS 

(like the taxonomy proposed by Wagener, 2001), may propose a conceptual starting point 

for systematically looking for characteristic task demands that may complement the task 

demands inherent in MicroDYN tasks. For example, other finite state machines may 

include time-dependent transitions, feedback-loops, random shocks, interactive and 

nonlinear relations between variables, etc. (cf. Dörner 1996). Addressing this issue in 

detail is beyond the scope of this thesis, but it should definitely be elaborated on in future 

studies. 

Formal Models of Complex Problem Solving. Cognitive modelling of concrete 

complex problems (Anderson, 2007) may be applied to further inquire about the individual 

differences (i.e., person-specificity) and the domain-generality of processes involved in 

solving concrete complex problems (Fischer et al., 2012). Computational models require 

specific assumptions about every detail of the process. Thus, specifying models13 of 

different problem solving strategies, and applying them to a heterogeneous set of complex 

problems (e.g., constructed according to the MicroDYN or MicroFIN approach) may reveal 

information about the degree of domain-generality for each combination of strategies. As 

we outlined in section 2.3, some cognitive processes (e.g., instance-based learning, 

Gonzalez, Lerch, & Lebiere, 2003) are applicable and useful in a wide range of complex 
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problem situations, whereas others – e.g., applying the “Vary One Thing At a Time” 

(VOTAT) strategy (cf. Tschirgi, 1980) – may be useful only in a small subset of problems 

(e.g., traditional MicroDYN tasks). If the behavior predicted by different cognitive models is 

compared to participants’ behavior (e.g., mouse-clicks while working on a MicroFIN task) it 

may also be possible to identify individual differences in the process of CPS (instead of 

just fitting one model to data aggregated over multiple participants). See Scheibehenne, 

Rieskamp, & Wagenmakers (2013) for a concrete example of how a “cognitive-toolbox”-

approach like the one proposed by Fischer et al. (2012) could be rigorously tested on both 

individual and aggregate levels. Modelling individual problem solving behavior with regard 

to different complex problems may deepen our understanding of CPS and may allow for 

systematically going beyond the general level of understanding proposed by Fischer et al. 

(2012). 

Final remarks. After having talked a lot about the MCS approach to assessing 

important problem solving skills – and how it differs from previous approaches – let me 

end this thesis by relating our conception back to other approaches of CPS research. For 

even if I am convinced that our approach makes a unique contribution to the assessment 

of problem solving skills, In my opinion it is  not simply “better” (or worse) than other 

approaches. Rather, I want to emphasize that no approach proposed so far is able to 

capture the whole picture of Complex Problem Solving and thus it may be wiser to 

complement different approaches instead of deciding for one single approach only.  

For instance, domain-specific knowledge (and more general skills like building 

analogies to prior knowledge, which may be an important aspect of Analytic Problem 

Solving, cf. section 3.3; Fischer et al., in press) is an important aspect of problem solving 

in each domain (Fischer et al., 2012). This aspect is not explicitly addressed by current 

instances of the MCS approach. Additionally, there are a lot of highly domain-general skills 

that are relevant for many kinds of CPS but not addressed by current instances of the 

MCS approach (Fischer et al., in press; Dörner, 1996).  

In real life problem solving (in every domain) both domain-specific and domain-

general skills and abilities (e.g., intelligence, cf. Wittmann & Hattrup, 2004) have to be 

integrated effectively. Also, in real life there is no artificial separation of phases and no 

explicit instruction that tells a problem solver when to start and when to stop representing 

the problem. Instead, the skills assessed by the MCS approach have to be integrated in an 

adaptive way (as described in the first paper of this thesis, in section 3.1). As this kind of 

                                                                                                                                                 
13

 The idea of crossing multiple models with multiple finite state machines evolved in a discussion with Dr. Daniel Holt.  
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adaptive integration strongly depends on various features (e.g., features of the situation as 

well as of the problem solver, cf. Fischer et al., 2012) highly complex and realistic 

problems may be required to assess it (e.g., Fischer & Funke, 2013). Again, it may be 

wiser to complement well-validated highly complex problems with the MCS approach 

instead of substituting the former with the latter. For instance, Paul Baltes and colleagues 

(Baltes & Smith, 1990; Baltes & Staudinger, 2000; Staudinger & Baltes, 1996) developed a 

well-validated approach to assess human wisdom14 based on performance in complex and 

fundamental life problems: Baltes and colleagues scored solutions to hypothetical life 

problems on five criteria: Besides (1) rich declarative and (2) procedural knowledge about 

the fundamental pragmatics of life (i.e., knowledge of goals and how to reach them, cf. 

Baltes & Smith, 1990), wise solutions acknowledge complexity by considering (3) multiple 

relevant contexts (lifespan contextualism) and (4) multiple possible perspectives, goals 

and values implicit in the problem description (value relativism), as well as (5) the 

uncertainty resulting from participants’ bounded rationality (uncertainty management). 

Several authors have noticed conceptual relations between these aspects of wisdom and 

complex problem solving (Dörner, 1986; Staudinger & Baltes, 1996; Maercker, 1995; 

Baumann & Linden, 2008; Sternberg, 2007) and it seems to me that each of Baltes’ criteria 

is relevant to many instances of problem solving in real life (where problem solvers often 

have to consider multiple intra- and interpersonal goals, to transcend the initial problem 

description by exploring various contexts, and to manage the uncertainty inherent in 

characteristic instances of CPS). Most of these aspects are not sufficiently addressed by 

current operationalizations of the MCS approach.  

The assessment of problem solving skills has always been and will always be a 

complex endeavor as an adequate selection of assessment instruments strongly depends 

on a variety of factors. Based on the findings of this thesis I consider the MCS approach a 

reliable and valid assessment instrument addressing a narrow set of problem solving skills 

(with an incremental value for explaining science grades and Analytic Problem Solving 

over and above fluid reasoning). But even if these skills may be central to many instances 

of CPS, they are not sufficient for every kind of CPS and I want to emphasize that no 

single reliable measure of skills is likely to address all the skills possibly relevant to all 

                                            
14

 In Western research traditions, “wisdom” can be understood as knowledge and deep understanding of the most 
important truths – i.e., “knowledge about what is good and right for humans” (Baltes & Freund, 2003, p.251). Baltes & 
Smith (1990) defined wisdom as a psychological construct to be expert knowledge in the domain of the fundamental 
pragmatics of life (i.e., knowledge of important goals and how to reach them) that allows for exceptional judgment 
and advice concerning existential life problems. 
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kinds of complex problems. As I put it in Fischer et al. (2012, p. 37): “The more we learn 

about the process of problem solving, the more we have to acknowledge the complexity of 

both the process and the kind of problems that are involved in realistic problem solving in 

naturalistic environments.” 
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Abstract

This article is about Complex Problem Solving (CPS), its history in a variety of research 
domains (e.g., human problem solving, expertise, decision making, and intelligence), a 
formal definition and a process theory of CPS applicable to the interdisciplinary field. 
CPS is portrayed as (a) knowledge acquisition and (b) knowledge application concerning 
the goal-oriented control of systems that contain many highly interrelated elements (i.e., 
complex systems). The impact of implicit and explicit knowledge as well as systematic 
strategy selection on the solution process are discussed, emphasizing the importance of 
(1) information generation (due to the initial intransparency of the situation), (2) informa-
tion reduction (due to the overcharging complexity of the problem’s structure), (3) model 
building (due to the interconnectedness of the variables), (4) dynamic decision making 
(due to the eigendynamics of the system), and (5) evaluation (due to many, interfering 
and/or ill-defined goals).
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1. Introduction

In times of increasing globalization and technological advances, many problems humans 
have to face in everyday life are quite complex, involving multiple goals as well as many 
possible actions that could be considered, each associated with several different and 
uncertain consequences, in environments that may change dynamically and indepen-
dent of the problem solvers’ actions (Funke, 2003). In order to solve complex problems, 
people usually have to acquire and to apply knowledge about complex systems concern-
ing the systems’ structure and dynamics (Funke, 2001). Examples for Complex Problem 
Solving (CPS) are easily found, e.g., using unknown complex technical devices (like a new 
mobile phone, a computer, a vending machine, etc.), managing complex organizations 
(like corporations or communities) or making predictions in complex environments (like 
forecasts of the weather, political elections or the stock market, etc.). In research on hu-
man problem solving CPS is a matter of interest since the 1970s, when there was a shift 
of emphasis from simple, static, well-defined and academic problems (like the Tower of 
Hanoi or items of classical intelligence tests), to more complex, dynamic, ill-defined, and 
realistic problems (Wenke, Frensch, & Funke, 2005). Since then, research on human problem 
solving focused on interviewing experts of certain knowledge domains, on studying the 
effects of expertise on problem solving activities and decision making, or on simulating 
complex problems1 based on real systems humans could have to deal with in their daily 
lives (like planning a day, managing an organization, fire fighting, and so on). Along with 
more complexity in research on problem solving new questions arose: How does expertise 
and prior knowledge influence problem solving in complex situations? Are there certain 
strategies especially useful for coping with complex problems? How is a complex situa-
tion represented in the human mind with its restricted capabilities? Which facets of intel-
ligence are most important for solving complex problems? Some of these questions were 
addressed by different fields of research (e.g., research on problem solving, on expertise, 
on information reduction, on decision making, and research on intelligence), but in spite 
of a lot of fruitful research on CPS in these areas, up to now most of this research has been 
conducted with a focus on empirical data mining rather than theoretical considerations 
(see Funke, 2010), without a clear-cut definition (see Quesada, Kintsch, & Gomez, 2005) 
commonly accepted in the scientific community.

The article at hand wants to contribute to the solution of this shortcoming: After 
summarizing the most important empirical and theoretical contributions to the field, we 
want to come up with a process theory of CPS based on a formal definition, applicable 
to the interdisciplinary field. We want to consider (a) what is known about the most im-

1Osman (2010) refers to the complex scenarios of this kind as “Complex Dynamic Control Tasks” and points 
out that these tasks are known in the fields of CPS, dynamic decision making, naturalistic decision making, 
and process control amongst others.
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portant determinants of the process of CPS in the different domains of research (such as 
expertise, decision making, and intelligence) and (b) how these contributions fit together 
if viewed under an integrative perspective.

2. What is meant by Complex Problem Solving?

Research on CPS produced a lot of characterizations and operationalizations of complex 
problems (for an overview see Frensch & Funke, 1995), but up to now there has not 
been a definition of complex problems commonly accepted in the scientific community 
(Quesada et al., 2005). There is an ongoing debate about (a) what should be considered 
complex in CPS and (b) how complexity might be measured in detail (see Quesada et al., 
2005 for a discussion).

The definition of CPS proposed and applied in this article is based on the constitutive 
concepts “complexity”, “problem”, and “problem solving” which in turn are understood as 
follows:

Figure 1. The structure of the CPS scenario TAILORSHOP, with the positive and negative de-
pendencies between the influential variables. Diamonds represent the participant’s control 
possibilities. (Engelhart, Funke & Sager, 2011)
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1.	 The complexity of a system2 may be defined as the number of elements and rela-
tions of the system (see Funke, 1985). As Dörner (1989) stated, “the complexity of 
a domain of reality is the higher, the more features there are and the more these 
features are interdependent” (Dörner, 1989, p. 60, translated by the authors).

2.	 A problem is considered to exist, “when a living creature has a goal but does 
not know how this goal is to be reached. Whenever one cannot go from the 
given situation to the desired situation simply by action, then there has to be 
recourse to thinking” (Duncker, 1945, p.1). Dörner has gone into more detail 
when he emphasized that ”barriers“ between the given situation and the de-
sired goal state, i.e., the lack of knowledge, can be further classified according 
to the amount of (a) ignorance of the means/operators applicable, and (b) lack 
of concreteness concerning the goal state (see Dörner, 1976, or Funke, 2003).

3.	 Problem solving can be defined as successfully searching for an operation or a 
series of operations in order to transfer the given actual state of the system to 
a goal state (Newell & Simon, 1972; Dunbar, 1998).

Based on these three concepts, CPS can be defined as a kind of problem solving, with 
the problem itself (the structure of (a) the external problem representation and/or (b) 
the mental representation of the problem), or the process of its solution having to be 
formalized as a set of many highly interrelated elements, i.e., a complex system. Accord-
ing to Halford, Wilson and Phillips (1998) the complexity of relations can be quantified by 
the number of variables related to each other: For example, the mental representation 
of a criterion y depending on a predictor x could be expressed as a binary relation r(y,x), 
whereas a dependency on multiple predictors could be represented as a relation of higher 
rank, e.g., the ternary relation r(y,x1,x2), and thus would be considered more complex. 
Structures more complex than quaterny relations are assumed to have to be processed 
by either conceptual chunking or segmentation in order to not exceed human processing 
capacity (Halford et al., 1998).

One famous example for CPS—that can be considered complex because the structure 
of the external problem representation (see Figure1) is to be formalized as a complex sys-
tem—is the TAILORSHOP (see, e.g., Funke, 2003), a computer simulated scenario of a small 
organization involved in shirt production. Originally programmed by Dörner in the 1980s 
on his calculator it was implemented on many platforms and used in a variety of contexts.

In this scenario, the problem solver takes the role of managing a small tailorshop, 
deciding what actions to take or what information to gather, aiming at the maximization 
of the capital at the end of each simulated month (a global goal which is dependent on a 
set of conflicting subgoals). On an abstract level, the structure of the TAILORSHOP scenario 
is formalized as a complex dynamic3 system, consisting of many highly interrelated vari-

2”A system is understood as an entity functionally closed and separated from its environment, consisting 
of elements which are in interaction with each other. Systems can be open to processes of exchange with 
their environment. Depending on the depth of system analysis there can be different hierarchical layers dis-
criminated within systems and heterarchical interactions between systems.” (Strunk & Schiepek, 2006, p.102)
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3A dynamic system is a system, that contains a vector of variables, that is dependent on former states of the 
same vector, e.g., Y(t) = f(Y(t-1)) (see Funke, 1985, p.4)

ables (see Funke, 2003). In the literature on CPS, it is mostly the structure of the external 
problem representation that is considered complex. So a problem usually is considered 
being of a certain complexity, even if it might seem less complex to problem solvers with 
more expertise (as well as it is considered being of a certain difficulty, independent of the 
ability of a problem solver). This view is essential in order to understand the research on 
some of the most noteworthy aspects of CPS: For instance, using parsimonious but viable 
heuristics (see research on decision making strategies) and representations (see research 
on information reduction) are often considered most important for coping with complex 
problems (see Gigerenzer & Brighton, 2009; Gonzalez & Lebiere, 2005; Klauer, 1993). To ef-
ficiently cope with complex problems using adequate heuristics and representations (see 
research on intelligence) the problem solver has to either use or acquire sufficient implicit 
or explicit knowledge about the problem (see research on expertise). Especially when the 
problem is not presented as a set of nameless and abstract variables, but embedded in 
a plausible semantic context (like the TAILORSHOP, described above), prior knowledge 
about the elements to focus on or about the strategies to apply best, helps in reducing 
the problem space that has to be searched through for a solution to the problem (see 
research on human problem solving).

On the following pages we will review what is known about these most important 
aspects of CPS, and how it fits together in an integrative process theory of CPS. Therefore 
we will review and summarize findings of five fields of research that have contributed 
most to the understanding of CPS: (a) human problem solving, (b) expertise, (c) decision 
making strategies, (d) information reduction and (e) intelligence.

3. Human Problem Solving

The most general conception of problem solving up to now, which might as well be 
expanded and applied to CPS, has been Newell’s and Simon’s (1972) Theory of Human 
Problem Solving. The theory was proposed to explain findings on simple static and well-
defined problems not as complex as the TAILORSHOP, but Newell and Simon already ad-
dressed all the aspects necessary to solve problems of arbitrary complexity. 

Following the authors, some of the most important aspects of human problem solv-
ing may be summarized as follows:

1.	 Human problem solving starts with constructing an internal representation of 
the external problem statement, a “problem space” (i.e., a set of possible states 
of the problem, given the initial state, the applicable operators, and certain 
goal states). Which operators can be considered applicable might be different 
for problem solvers of different expertise and intelligence (see Newell & Simon, 
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1972).
2.	 Given an internal representation of the problem, a method for reaching the cur-

rent goal is being searched for. General searching algorithms (like “hill-climbing”, 
or “means-end-analysis”) are distinguished from more domain specific methods 
(like “take the hammer to get the nail into the wall“)

3.	 Using a method can change the external problem as well as the internal rep-
resentation. Of course, changes in the environment or the consequences of a 
method may lead to new (sub-)problems or new possible solutions. Methods 
also can be aborted when metacognitive processes do interfere. When a method 
does not lead to a goal state, (1) another method can be tried, (2) the internal 
representation may be changed, i.e., the problem may be reformulated, or (3) 
the attempt of solving the problem may be aborted.

When it comes to CPS constructing a parsimonious but viable internal representation 
is far from trivial (in contrast to the problems Newell and Simon used in their studies, 
where a correct internal representation is usually assumed to be given). Usually a problem 
solver has to actively acquire knowledge about the complex problem by systematically 
interacting with it (see Funke, 2001) as the initial assumptions about the structure of the 
problem are mostly false or incomplete (Dörner, 1989). Often the problem solver has to 
define one or more of the problem’s components him- or herself based on aspects like 
prior knowledge (e.g., experience with analogous problems, or generalized schemas for 
this kind of problems) and features of the task (Novick & Bassok, 2005) and usually building 
a viable internal representation of a complex problem involves processes like rule induc-
tion (Simon & Lea, 1974), generating and testing hypotheses (Klahr & Dunbar, 1988) and 
causal learning (Buehner & Cheng, 2005). 

Fortunately, there are some theories that elaborated on certain aspects of knowl-
edge acquisition in more detail (e.g., explaining when active information generation takes 
place and how it leads to better representations): Ohlsson (1992) proposed a Theory of 
Representational Change. When the current problem representation does not cue the 
operators sufficient to solve the problem, Ohlsson speaks of an “impasse”. An impasse can 
be broken, when the problem representation is changed, as a different problem repre-
sentation might cue other concepts in long-term memory. Representational change may 
occur in different ways: (1) Elaboration of (or search for additional) information about the 
problem; (2) constraint relaxation, i.e., removing inhibitions on what is regarded as per-
missible; (3) re-encoding, i.e., reinterpreting the problem representation. With his theory 
of representational change he emphasized the importance of a viable problem represen-
tation for solving problems and thus elaborated on an aspect of special importance to 
CPS. MacGregor, Ormerod, and Chronicle (2001) proposed that changes in the problem 
representation and in strategy use may occur due to monitoring processes, when the rate 
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of progress is perceived to be too slow to solve the problem in time. According to their 
theory, it is not as much the impasse, but the perception of an impasse (or even an unac-
ceptable slow-down in progress) that leads to phenomena like restructuring, considering 
new operators and insight.

Simon and Lea (1974) have further elaborated on Newell’s and Simon’s (1972) con-
cept of problem space in a way that also proved to be fruitful for the CPS research. They 
conceptualized the problem space as divided into a rule-space (containing possible rules 
of the problem) and an instance-space (containing possible states of the problem) with 
information in each space guiding the search in the other space (see also Klahr & Dunbar, 
1988, for an extension and application of the dual-search concept to the complex field of 
scientific discovery). This conception sheds light on how instances and rules of the problem 
are explored (i.e., how a solid representation of a complex problem is built) and can be 
considered fundamental in modeling the influence of knowledge about instances and 
structural knowledge on problem solving as it is considered by research on the influence 
of expertise on CPS.

In summary, information processing theories on human problem solving have pro-
posed some useful ideas and assumptions that are most relevant when building a process 
theory of CPS. E.g., they try to explain when information generation and elaboration takes 
place, how it leads to viable internal representations (or models) of the problem system, 
and how the internal representation of the problem determines the solution strategies 
applicable. Especially the distinction of structural knowledge and knowledge about in-
stances proved to be very fruitful for thinking about the influence of expertise on CPS. The 
next section will further elaborate on this distinction, and propose the most influential 
theories on how different kinds of knowledge may influence the process of CPS.

4. Expertise

There is a large quantity of research on differences between experts and novices of a 
certain knowledge domain concerning the influence of different kinds of domain-specific 
knowledge on CPS. In fields as different as reading, writing, arithmetic, mechanics, policies, 
jurisdiction, management, or debugging (for an overview see Sternberg & Frensch, 1991) 
there has been a lot of research on the processes and kinds of knowledge involved in CPS. 
What could have seemed to be a turning away from general aspects of problem solving in 
favor of more domain-specific problem solving strategies nonetheless produced a deep 
insight in some general effects of expertise on general problem solving. 

For instance:
•	 Experts can (a) apprehend a greater number of elements in working memory 

and (b) retain these elements for a longer duration, when the elements are part 
of a meaningful configuration within their domain of expertise (see expertise 
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wide-span memory; Horn & Blankson, 2005). 
•	 Experts classify problems according to deep features, relevant to the solution, 

rather than superficial features (Chi, Feltovich, & Glaser, 1981);
•	 There are differences in the semantic memory of experts, compared to novices 

regarding, e.g., the associations between concepts (Chi et al., 1981);
•	 Experts are faster in solving problems if they are asked to do so (Chi, Glaser, & 

Rees, 1982);
•	 Experts are more precise if not working under uncertainty (Johnson, 1988);
•	 Experts seem to have better metacognitive abilities (like self-monitoring) (Larkin, 

1983).

Consequently the process of gaining expertise concerning a certain problem via building 
explicit and implicit representations of the problem at hand was of special interest to the 
research community and stimulated a lot of interesting theoretical and empirical results 
on CPS as will be outlined in the next paragraphs.

One of the most influential theories on (1) gaining explicit declarative knowledge 
and on (2) the effects of expertise on problem solving and learning is John Sweller’s Cog-
nitive Load Theory (CLT). Sweller (2005) assumed that the human cognitive architecture, 
in order to efficiently adapt to dynamic environments, consists of (a) a working memory, 
which is capable of processing (e.g., combining, contrasting or manipulating) two to 
four elements/chunks simultaneously (see also Halford et al., 1998), and (b) a long-term 
memory with almost unlimited capacity for chunks of declarative knowledge. To spare 
working memory capacity for processes relevant to learning (i.e., elaboration and self-
explanation) work load has to be as small as possible. In CLT there are three kinds of work 
load differentiated: (a) intrinsic load, resulting from the complexity of the task (dependent 
on learner’s expertise and the interactivity of elements to be processed); (b) extraneous 
load, determined by demands resulting from suboptimal instructional design; (c) germane 
load, resulting from effortful learning and elaboration and leading to schema construc-
tion or automation (Sweller, 2005). Schemata are assumed to be stable representations 
of transient experiences, assumed to (1) guide future recognition (assimilation) of similar 
experiences, (2) initiate appropriate actions and expectations and/or (3) be accommodated 
to new experiences if necessary (see von Glasersfeld, 1997). When it comes to problem 
solving, according to Sweller (2005), an expert can assimilate what seems to be multiple 
elements to a novice under one single schema to spare work load via working on a chunk 
of higher order (i.e., a chunk containing chunks) instead of having to work on multiple 
chunks. Furthermore, schemata are assumed to have an executive function, guiding the 
problem solving process of experts, whereas novices have to rely on inefficient and more 
general search strategies causing additional work load. Therefore, gaining expertise about 
the structure and the dynamics of the problem plays one of the most important roles in 
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solving complex problems, as expertise (a) helps to reduce intrinsic load given a certain 
interactivity between the elements of the task and (b) is assumed to moderate the useful-
ness of certain strategies and the effect of problem characteristics (this moderating effect 
is commonly referred to as the expertise reversal effect, see Kalyuga, 2007). The principles 
derived from CLT have successfully been applied to CPS tasks such as air traffic control 
and interactive games (for an overview see Osman, 2010).

Whereas CLT has its focus predominantly on explicit declarative chunks of knowl-
edge, other approaches have emphasized the importance of implicit knowledge for CPS. 
The importance of implicit knowledge in controlling dynamic systems was made clear by 
Berry and Broadbent (1984) who found that practice and learning did enhance perfor-
mance, although it did not lead to verbalizable knowledge about the system structure. 
Broadbent and colleagues examined implicit learning in system control using minimal 
complex dynamic systems like the SUGAR FACTORY (which is based on the equation Pt 
= 2*W - Pt-1 + e; where W is the number of workers, P is the amount of sugar produced 
at a moment in time t, and e is a random error term. (See Berry & Broadbent, 1984). They 
proposed an instance-based theory of system control, claiming that successful interactions 
with a dynamic system were stored in memory as a kind of “look-up table” of instances, 
containing information about (a) the perceived state of the system and (b) the input neces-
sary to reach the target level (Broadbent, Fitzgerald, & Broadbent, 1986). Decisions about 
what action to execute in a given situation can then be based on the instance matching 
the perceptual properties of the current situation best. A lot of instance-based theories 
have been proposed since then (e.g. Dienes & Fahey, 1995; Lebiere, Wallach, & Taatgen, 
1998; Logan, 1988), each able to reproduce the behavior of participants trying to solve 
the SUGAR FACTORY. A modern version of the instance-based learning theory within the 
framework of the cognitive architecture ACT-R was proposed by Gonzalez, Lerch, and Leb-
iere (2003) in order to explain decision making in complex, dynamic situations especially 
under uncertainty (Gonzalez & Lebiere, 2005). Gonzalez et al. (2003) assumed that every 
decision is stored as an instance, i.e., as a chunk of knowledge with slots containing (a) a 
set of features of the situation, (b) the decision made, and (c) the expected utility of this 
decision. In the absence of instances similar to the current situation, the decision maker is 
assumed to rely on simple heuristics for making his or her decision (e.g., random choice). 
When instances similar to the current situation are retrieved from memory, the decision 
maker is assumed to rely on the alternative with the highest aggregated utility after she 
or he has evaluated a certain amount of alternatives (depending on factors like the as-
piration level of the decision maker and the perceived urgency of decision, in regard to 
the time remaining). After a decision was made, the utility-slot of the decision is updated 
according to the outcome of the decision via a feedback process.

Even though instance-based learning often leads to successful system control (e.g., in 
systems like the SUGAR FACTORY), it is of limited transferability as it does not involve infor-
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mation about the properties of the system structure (Berry & Dienes, 1993). See Figure 2 for 
the difference between knowledge about (a) an instance of a system and (b) the structure 
of the system. Structural knowledge is transferable and allows for building expectations 
about the consequences of certain decisions and actions in a given situation. It may be 
action-guiding even in hypothetical situations or in situations never encountered before.

As Schoppek (2002) pointed out, the usefulness of instance knowledge also depends 
on the size of the problem space, i.e., on the number of possible input- and output-states 
of a system as well as their relations. He emphasized that additional knowledge about 
the system structure becomes necessary when larger systems have to be controlled as an 

instance-based model would require a tremendous amount of input-output-instances to 
cover a substantial part of the problem state when the system that has to be controlled 
consists of many input- and output-variables. Structural knowledge may be of use even in 
situations never seen before. Empirically this assumption proved to be valid: Funke (1993) 
studied slightly more complex systems (with three input- and three output-variables) 
and indeed found significant correlations between structural knowledge and control 
performance (as well as effects of the system’s complexity on both measures). Quesada 
et al. (2005) supplemented Schoppek’s view as they mentioned the moderating role of 
expertise: Experts may be able to have sufficient implicit instance knowledge even about 
large systems.

The acquisition of structural knowledge about complex systems seems to depend on 
conscious thought and mental effort (corresponding to the germane load; Sweller, 1988). 
The acquisition of structural knowledge thus may be fostered by the intention and the 
opportunity to explore the system before or instead of having to achieve a certain goal 
(Sweller, 1988; Vollmeyer, Burns, & Holyoak, 1996). Instance knowledge, on the other hand, 
seems to be acquired without germane load, automatically as a result of practice (Schop-

Figure 2. Visualization of two different kinds of knowledge about an exemplary system con-
taining 5 variables: (a) An instance of the system (consisting of a set of numerical values) and 
(b) the structure (consisting of the relations between abstract variables).
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pek, 2002). Logan (1988) pointed out that in the absence of implicit knowledge finding 
the solution to a problem (i.e., the response to a stimulus) requires conscious thought 
and the application of rules. Only after a vast amount of practice the correct response can 
be retrieved rapidly and automatically. So in the absence of relevant implicit knowledge 
there have to be general heuristics and explicit knowledge guiding the course of problem 
solving (see Gonzalez et al., 2003; Sweller, 2005).

Each interaction with the system may be considered generating an instance that 
could be stored in memory to implicitly guide future decisions in the face of similar sys-
tem states—under certain circumstances (factors like time pressure, stress, uncertainty, 
and high cognitive load may foster the reliance on instance knowledge. See Gonzalez 
and Lebiere, 2005). In addition to knowledge about instances, systematic strategy use 
may allow inference of knowledge about the system structure (see section on decision 
making strategies) which might come in handy under different circumstances (e.g., when 
trying to reach system states never seen before, maybe due to a large problem space and 
insufficient expertise).

So after having considered different kinds of knowledge that can be assumed to have 
an influence on CPS, in order to build a process model of CPS it seems promising to further 
examine (a) the circumstances determining which kind of knowledge (e.g., structural or 
instance based) problem solvers usually rely on to make their forecasts, plans and deci-
sions, and (b) what strategy is chosen when no knowledge about the correct solution to 
a problem is available yet. Answers to this question were proposed in the field of research 
on decision making and will be reported in the next section.

5. Decision making strategies

Research on decision making has developed a set of decision making strategies contain-
ing viable strategies and heuristics for (a) generating relevant information and (b) making 
good forecasts and decisions in complex environments. When the goal is to specify an 
input or a series of inputs in order to regulate certain output-variables of a complex system, 
each possible input vector (e.g., an action in a complex scenario) can be considered an 
option, with several expected consequences (e.g., changes in the output variables). Each 
consequence may have a subjective utility and an expected probability specific to the 
current context (i.e., the consequences of an action may be of different perceived use and 
certainty, dependent on factors like the perceived features of the situation). In complex 
scenarios there seldom can be an exhaustive evaluation of all possible options and their 
weighted consequences (due to time pressure and the tremendous amount of variables 
that would have to be considered). Instead, decisions have to be based on strategies us-
ing less information and only a small amount of computation (e.g., by taking the option 
which has the highest value on the most important consequence – the so-called “take the 



The Journal of Problem Solving •

30	 Andreas Fischer, Samuel Greiff, and Joachim Funke

best”-heuristic). With regard to CPS, it is of special interest to note that simple heuristics 
like “take the best” or simple tallying can actually achieve higher accuracy in predicting 
the best outcome than more complex algorithms under certain circumstances – e.g., low 
predictability of a criterion, combined with small sample sizes relative to the number of 
available cues, and dependency between cues (Gigerenzer & Brighton, 2009). So when 
it comes to predicting new observations (instead of just fitting data already observed) 
sometimes the “less-is-more”-approach holds to be true and it proves to be more accurate 
to make decisions based on only one good reason (i.e., “take the best”) than using tally-
ing, multiple regression or even heavy-weight nonlinear strategies like neural networks 
(Gigerenzer & Brighton, 2009). Therefore, the question is not as much which strategy is 
the best but which is the best in a certain environment, i.e., under certain conditions.

The applicability and/or the usefulness of some strategies—their ecological ratio-
nality (Gigerenzer & Brighton, 2009)—can depend on the existence of prior experiences 
with the system, on the amount of detailed structural knowledge about the values and 
weights, on knowledge about the alternatives available, etc. Thus, memory on the one 
hand constrains the set of heuristics applicable (each long-term and working memory can 
be considered to constrain what is possible in a certain situation) and on the other hand 
“selects” heuristics that are likely to yield accurate decisions in a mostly unconscious process 
(Gigerenzer & Brighton, 2009). Furthermore, the ecological rationality of a heuristic in a 
given environment is assumed to depend on factors like the structure of the environment 
and feedback, amongst others. According to Rieskamp and Otto (2006), the ecological 
rationality can be learned by the decision maker via simple reinforcement learning. When 
goal-oriented decisions are dependent on former decisions and their consequences in an 
environment that may change both spontaneously or as a consequence of earlier actions, 
it is commonly referred to as Dynamic Decision Making (DDM; Edwards, 1962). Busemeyer 
(1999) has given an overview of the research on DDM, stating that on the one hand human 
performance usually can be considered suboptimal, but that on the other hand systematic 
learning effects were found in almost all of the studies reviewed.

So, during the process of CPS, problem solvers seem to increasingly rely on strategies 
that are efficient and ecologically rational, i.e., they (1) rely on the correct solution if it is 
known automatically (instance knowledge), elsewise (2) search for a solution based on the 
current problem representation (structural knowledge), or (3) gather new information about 
the problem (e.g., via random or systematic interaction with the system, via asking an ex-
pert, etc.). This conception seems to be consistent with the “Elshout-Raaheim-Hypothesis” 
(Leutner, 2002), stating that correlations between problem solving and intelligence may 
be dependent on knowledge about the system in an inverted-U-shaped way (i.e., the cor-
relation may be minimal when prior knowledge is very high or very low as consequently 
no reasoning is necessary in these cases). In some cases it might even be an option to 
abandon certain goals due to their unattainability (see Brandtstädter, 2007), or to give up 
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the attempt of a rational solution.
When it comes to gathering information (e.g., when the structural knowledge about 

the problem proves to be insufficient), some strategies may be especially useful for gen-
erating viable structural knowledge about the system. As Vollmeyer et al. (1996) pointed 
out, systematicity in strategy use allows a problem solver to coherently infer the conse-
quences of single interactions, i.e., to build viable structural knowledge about parts of 
the system structure. For example, following Tschirgi (1980), to “vary one thing at a time” 
(while setting the other variables on a constant value like zero)—commonly referred to 
as the VOTAT-strategy—may be a strategy useful to systematically identify the effects 
of independent (exogenous) variables on dependent (endogenous) variables in certain 
scenarios (especially when each exogenous variable was contrasted to the other ones at 
least one time. Setting the increments of all input variables to a value of zero from time 
to time may facilitate the detection of eigendynamics and indirect effects). Systematic 
strategy use and generating (as well as using) structural knowledge might be especially 
important in complex systems when there is no (or even cannot be) sufficient implicit 
knowledge about a correct solution of the problem. But as human cognitive resources 
are limited, even detailed and extensive structural knowledge about all the aspects of 
a complex system may not be fostering CPS per se as they may overcharge the human 
working memory. Based on this crucial aspect of complex problems the following sec-
tion proposes the most influential theories on how and why information reduction is an 
essential aspect of CPS.

6. Information reduction

As large amounts of knowledge may overcharge human processing capabilities, a most 
important aspect of coping with complexity is information reduction. Klauer (1993) pro-
posed a theory of information reduction in CPS. Based on the assumption that problem 
solving involves processes of using certain searching strategies (implicit procedural knowl-
edge) applied to a mental representation of the problem (explicit declarative knowledge) 
demanding resources of working memory with its limited capacities, Klauer stated, based 
on his empirical findings, that it was mainly the (declarative) representation of the problem 
that was reduced in case of capacity overload. Two mechanisms for reducing processing 
load imposed by complex representations are conceptual chunking and segmentation 
(Halford, et al., 1998). The consequence is a parsimonious representation.

As Gonzalez and Lebiere (2005) pointed out, the development of effectiveness in 
DDM involves an increasing selectivity in the use of information, via focusing on relevant 
features whereas ignoring irrelevant features of the situation. The relevance of features 
may be determined based on explicit or implicit knowledge. For instance, in their IBLT 
(see section on expertise) the relevant features of a current situation are assumed to stand 
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out in the recognition process, because they resemble cues in the instances stored in 
memory. With increasing practice the common features of past instances, similar to the 
current situation, can be abstracted to guide the attention to the important aspects of the 
situation (Gonzalez & Lebiere, 2005). This is consistent with the predictions of the chunk-
ing/template theories (Chase & Simon, 1973; Simon & Gobet, 1996) and the information 
reduction hypothesis (Haider & Frensch, 1996).

Newell and Simon (1972) considered a method for planning that emphasized the 
importance of information reduction regarding irrelevant differences and operators in 
order to approximately find a way through huge problem spaces. This method consisted 
of (1) abstracting from details of objects or operators, (2) generating an abstract problem 
space, (3) searching for a solution in the abstract problem space, and finally (4) trying to 
map the abstract solution on the concrete problem space with all its details. These con-
siderations are of special importance to CPS, where the abstraction from irrelevant details 
often is the only way to make adequate forecasts of the system’s behavior in spite of the 
tremendous amount of variables and relations involved. Gaschler (2009, p.5) stated, that 
“research on information reduction emphasizes practice-related changes of which rather 
than how information is being processed. Information reduction applies in situations in 
which tasks contain both relevant and irrelevant information, and denotes a change from 
a strategy that is based on exhaustive processing of all elements of a task to a strategy 
that skips the irrelevant task components”.

To summarize research on information reduction, in CPS omitting irrelevant task 
components and finding a parsimonious representation of the problem may enable and 
foster the search for a solution to a complex problem. Because the search for a solution 
based on a viable parsimonious model of the problem involves processes like inductive 
and deductive reasoning, that are commonly subsumed under the concept “intelligence”, 
the next section of this article will review the empirical and theoretical findings on how 
different aspects of intelligence influence CPS before we will integrate the findings re-
ported so far in a process model of CPS.

7. Intelligence

Theoretically, general intelligence may be defined as “the global capacity of a person to act 
purposefully, to think rationally, and to deal effectively with his environment” (Wechsler, 
1944). Originally, general intelligence as a concept was proposed to explain covariance 
between a wide range of cognitive tasks, and reasoning as well as problem solving have 
traditionally been a part of the definition (Sternberg, 1982). Research on intelligence is 
about the cognitive processes involved in solving tasks and problems and thus may con-
tribute to a profound understanding of CPS. According to the very broad conceptualiza-
tion of intelligence, it seems quite natural to ask about (1) the amount of variance in CPS 
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performance that can be explained by traditional tests of general intelligence, and about 
(2) the facets of intelligence that may be most relevant for CPS.

At the beginning of CPS research intelligence surprisingly seemed to be only loosely 
correlated with performance in complex scenarios (see e.g., Wenke et al., 2005). From to-
day’s point of view this lack of evidence in the early days of research on CPS can partially 
be attributed to the insufficient psychometric qualities of early measures of performance 
in complex scenarios (e.g., in the TAILORSHOP neither the absolute capital values at the 
end of each simulated month, nor the changes of capital, but the sum of changes proved 
to be a reliable and valid measure for CPS performance; for a review, see Danner et al., 
2011). According to Danner et al. (2011), using a reliable performance measure revealed 
substantial correlations of performance in the TAILORSHOP with intelligence measured 
by Advanced Progressive Matrices (r=.31, p=.001), job performance rated by supervisors 
(r=.19, p=.025), and other measures for CPS performance (r=.31, p<.001). Süß, Oberauer, 
and Kersting (1993) also found significant correlations of a TAILORSHOP performance mea-
sure with the intelligence facet capacity measured by the BIS test (Jäger, Süß, & Beauducel, 
1997). In another influential study, Wittman and Süß (1999) also revealed a substantial 
effect of working memory capacity on the performance in different CPS scenarios, and 
the authors also stated, that correlations between the different scenarios became about 
zero when system-specific knowledge and intelligence were partialed out. According to 
these findings, working memory capacity and the processes involved in generating system-
specific knowledge seem to be the most important facets of intelligence in explaining CPS 
performance. There is currently an ongoing debate if the generation and application of 
knowledge in CPS address some facets of general intelligence that are not yet addressed 
for by traditional intelligence tests (see Wenke et al., 2005).

Generally, traditional intelligence tests, aiming primarily at speed and quality of hu-
man symbol processing (i.e., fluid reasoning) as well as working memory capacity, were 
criticized for their primary focus on the results instead of the process of efficient problem 
solving behavior (Dörner, 1986). Additionally Horn and Blankson (2005) criticized that there 
may be more complex “expertise abilities” (Horn & Blankson, 2005, p. 60) different from fluid 
reasoning, working memory and cognitive speed, which are not adequately addressed for 
by the tests that are assumed to indicate human intelligence. Putz-Osterloh (1981) stated 
that the most important differences between the demands of classical tests for measuring 
intelligence and complex problems were the (1) polytelic situation, the need for an (2) 
active search for relevant information, for (3) specifying concrete goal states and for (4) 
choosing productive actions, as well as for (5) a greater relevance of prior knowledge in 
the latter case. According to this line of argumentation, there are facets of general intel-
ligence that are not yet accounted for by traditional intelligence tests.

With his concept of operative intelligence Dörner (1986) emphasized the importance 
of examining not only speed and precision of some of the basic intellectual processes, but 
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also the more formative aspects of problem solving, for example (1) circumspection (e.g., 
anticipation of future and side effects of interventions), (2) the ability to organize cognitive 
operations (e.g., knowing when to do trial-and-error and when to systematically analyze 
the situation at hand; when to use exhaustive algorithms and when to rely on heuristics, 
when to incubate an idea etc.) or (3) the availability of heurisms (e.g., being able to build 
helpful subgoals, to constrain the problem space efficiently). This list of examples is not 
exhaustive, but it gives an idea of what is meant by the “operative” aspects that are not 
adequately addressed by traditional intelligence tests but may still be considered relevant 
for an organized course of intellectual processes (Dörner, 1986). With its explicit focus on 
gaining and using information and knowledge about the cognitive operations adequate, 
operative intelligence can be considered one of the most relevant expansions of intel-
ligence as it is measured with current measurement devices:

Intelligence in a problem solving situation turns out to be being able to 
collect information, to integrate and structure information goal-oriented, 
to make prognoses, to plan and to make decisions, to set goals and to 
change them. To achieve all this, an individual has to be able to produce an 
organized series of information processing steps, flexibly adapting these 
steps to the demands of the situation, and then it is intelligent. (Dörner, 
1986, p. 292; translated and emphasized by the authors).

The facets of operative intelligence emphasized in the characterization just given 
closely resemble the facets most relevant for coping with the characteristic features of 
complex problems (see Burmeister, 2009; Dörner, Kreuzig, Reither, & Stäudel, 1983; Funke, 
1992, 2001, 2003, 2011):

1.	 the complexity of the structure (calling for information reduction),
2.	 the interconnectedness of the variables (calling for building a model of the most 

relevant effects),
3.	 the polytely of the task (calling for evaluation and for setting priorities),
4.	 the intransparency of the situation (calling for systematically generating infor-

mation), and
5.	 the dynamics of the system (calling for Dynamic Decision Making).

These characteristic features of complex problems and the corresponding facets of CPS 
(see Funke, 2001) can be considered a fruitful starting point for measuring operative intel-
ligence, which in turn might be the most important determining factor of CPS performance. 
According to Dörner (1986) the most relevant facets of operative intelligence could be 
measured evaluating and quantifying the “questions” (meaning behavior to explore the 
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system actively generating information) and “decisions” (meaning behavior to control the 
system goal-oriented) of testees solving complex problems (see the MicroDYN approach 
presented in Greiff, in press, or Wüstenberg, Greiff, & Funke, in press, for a promising at-
tempt to do so). As Dörner (1986) emphasized, the demands of CPS situations are char-
acteristically intertwined in an inseparable way, and the problem solving process has to 
be studied as a whole because the parts are interacting with each other and hardly can 
nor should be examined in isolation:

1.	 Information retrieval and information integration: The problem solver needs a 
model adequately representing the system and the goal state to aim at. There-
fore she or he has to systematically generate, gather, and integrate information 
to adjust this model to the system.

2.	 Goal elaboration and goal balancing: The problem solver has to specify and sub-
stantiate the often vague and global goals she or he wants to achieve. If some 
specified goals turn out to be contradictory, she or he has to find a satisfying 
trade-off or balance in only partially reaching the goals.

3.	 Action planning and decision making: The problem solver has to decide what 
actions to execute, i.e., what decision making strategies to apply (see section 
on decision making strategies), and which kind of knowledge to rely on (see 
section on expertise). By forecasting future developments given the system’s 
prior states and her or his own actions she or he can efficiently plan her or his 
next steps (e.g., chains of consecutive actions with each action building on the 
results of the previous one).

4.	 Self management: The problem solver may have to face time pressure, stress, 
and frustration as well as conflicts between his inner values. She or he has to 
manage these non-cognitive affordances by either changing the system or his 
own behaviors and habits.

So after these considerations about how efficient CPS may look like and what facets of 
intelligence may influence the CPS performance we want to proceed by integrating the 
contributions of all the fields of research mentioned above in a process theory of CPS.

8. Discussion

After reviewing some of the most important fields of research on CPS, and based on the 
definition given above, we are now going to summarize the interdisciplinary findings in a 
process theory of CPS, concluding with a short outlook for upcoming research. CPS can be 
understood as the process of solving problems that have to be considered “complex” (i.e., 
containing many highly interrelated elements). For instance, every scientist, who wants to 
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describe, explain, and predict a complex system by means of her or his hypotheses (con-
taining a parsimonious but viable subset of all variables possibly relevant) might be facing 
a complex problem. A mayor of a city as well as a manager of an organization or a policy 
maker trying to get rid of climate change, each may be considered as having a complex 
problem to cope with. Trying to make a modern computer do what it is supposed to can 
turn out to be a complex problem as well as changing certain settings of an unknown 
mobile phone device. The process of CPS usually consists of different phases: (1) knowl-
edge acquisition and (2) goal-oriented knowledge application (Leutner, Wirth, Klieme, & 
Funke, 2005). Usually a problem solver switches between these phases in a complex way:

1.	 At first, the problem solver has to acquire knowledge about the problem.
a.	 The problem solver is assumed to explore the system’s behavior using a 

strategy that (a) she or he knows of and (b) seems to be most ecologically 
rational to her or him (e.g., random or systematic interaction with the 
system, reading the instructions, asking an expert, etc.).

b.	The exploration leads to (a) knowledge about the system’s states and the 
actions taken (instance knowledge) as well as (b) an internal representa-
tion of the problem, containing the most important elements and relations 
of the system (structural knowledge) which usually is inferred from the 
instance knowledge.

c.	 As the capacity of the problem solver’s working memory is limited, the 
internal representation is object to information reduction. Relations and 
elements that prove to be less relevant for system control in the course 
of exploration are assumed to be omitted in order to allow more efficient 
planning and forecasting.

2.	 When the problem solver has a certain amount of knowledge about the problem 
that has to be solved, she or he is assumed to apply the knowledge in order to 
reach her or his goals.

a.	 The problem solver is assumed to use her or his internal representation 
to make forecasts about the system’s dynamics in order to decide (a) if 
she or he has to intervene and (b) what intervention will have acceptable 
consequences in the current situation. When the current situation cues the 
correct intervention immediately (due to instance knowledge), the problem 
solver is assumed to rely on her or his instance knowledge instead.

b.	Monitoring processes are assumed to detect (a) the progress in solving 
the problem and (b) the implications of feedback from the environment 
for the problem representation. When the problem representation proves 
to be not viable for reaching the goals in time, the problem solver is as-
sumed to either switch back to knowledge acquisition or to change the 
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goals (depending on factors like the importance of the goals and on the 
assumed effort of further knowledge acquisition).

This process theory of CPS summarizes what is known about the most important aspects 
of CPS and is based on the theoretical and empirical contributions of the interdisciplin-
ary field presented in the previous sections. As CPS is a rather abstract concept, further 
research is needed to specify the process of CPS concerning concrete operationalizations 
of complex problems (e.g., handling a complex mobile phone may be represented in 
other ways than regulating an economic system or managing a tailorshop). Concerning 
this, it seems to be a fruitful approach to build cognitive models of the CPS process (e.g., 
Schoppek, 2002) in order to develop a deeper understanding of CPS processes taking 
place in real life.

But even on a more abstract level our theory on the CPS process may be subject to 
further research. It may be seen as a starting point for further experiments, in order to 
gradually improve our understanding of what CPS is and how it works (e.g., experimen-
tal psychology may further contribute knowledge about variables or interactions with 
a significant impact on the process of CPS). Psychometrics may contribute to a better 
understanding of CPS by developing reliable and valid measures for the processes that 
are assumed to be important for efficient and intelligent CPS (Greiff, in press; Wüstenberg, 
Greiff, & Funke, in press). Those measurement devices in turn can be used to test process 
theories on CPS in more detail.

Our conception of CPS is inspired by the pioneering works of Dörner, especially by 
the concept of operative intelligence (Dörner, 1986) and the considerations of Funke 
(2001), emphasizing (a) information generation (due to the initial intransparency of the 
situation), (b) information reduction (due to the overcharging complexity of the prob-
lem’s structure), (c) model building (due to the interconnectedness of the variables), (d) 
dynamic decision making (due to the dynamics of the system), and (e) evaluation (due to 
many, interfering and/or ill-defined goals). In unison with Dörner we want to emphasize 
that in order to develop a sufficient understanding of the problems humans have to face 
in their everyday lives, research on problem solving has to further elaborate on complex 
problems, with both a large amount of possible actions for the problem solver, and a lot 
of uncertain and surprising consequences in naturalistic environments. The more we learn 
about the process of problem solving, the more we have to acknowledge the complexity 
of both the process and the kind of problems that are involved in realistic problem solving 
in naturalistic environments.
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Recently published studies on Complex Problem Solving (CPS) suggest that assessments of CPS
using multiple complex systems are only moderately related to tests of classical cognitive
abilities. Further, CPS assessments show incremental validity beyond tests of other cognitive
abilities when predicting relevant outcomes. However, these empirical accounts have relied on
single CPS assessment instruments. We do not know whether these findings will generalize to
the construct level across different CPS assessment instruments. To answer this question, we
tested a sample of N = 339 German university students who completed three CPS assessment
instruments based on multiple complex systems (MicroDYN, the Genetics Lab, and MicroFIN)
and the matrices subtest of the Intelligence Structure Test as measure of reasoning. Students
further reported their school grades. Analyses including latent multitrait–multimethod models
provided support for the conceptualization of CPS as a complex cognitive ability. Results
indicated that different CPS assessment instruments showed sufficient convergent validity
(with a consistency mostly between .50 and .60). In addition, we found evidence for the
divergent validity of CPS from reasoning (reasoning predicted two CPS facets, knowledge and
control, βKNOW = .49 and βCON = .53, respectively). In the prediction of academic achieve-
ment, CPS explained variance in natural science grades after we controlled for reasoning
(βCPS = .22), whereas social science grades were not predicted. Our findings suggest that the
validity of CPS generalizes across different measurement instruments.
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1. Introduction

Across the last century, the relevance of cognitive abilities
has been demonstrated numerous times, and the assessment of
cognitive abilities has been a major concern in areas such as
education, the economy, public health, and politics. Cognitive
abilities have been shown to be related to outcomes such as
longevity (Gottfredson & Deary, 2004), individuals' personality
(Salas & Cannon-Bowers, 2001), job success (Schmidt & Hunter,
2004), or low crime rates (Herrnstein & Murray, 1994). Results
of tests of cognitive performance have been used to promote the
selection of students for higher education (Kuncel, Hezlett, &
Ones, 2001), to allocate individuals to jobs according to their
ability profiles (Autor, Levy, & Murnane, 2003), or to enhance
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cognitive performance by teaching specific strategies (Klauer &
Phye, 2008).

After long relying on paper–pencil tests, a shift toward
computer-based assessments has recently been initiated. In
its earliest implementation about two decades ago, the main
purpose of computer-based assessment was to increase
standardization and efficiency in testing (Baker & O'Neil,
2002). This practice produced several advantages such
as automatic scoring and adaptive testing, but so far, the
assessment instrument itself has been limited to a transfor-
mation of paper–pencil tests into computer-based tests
(Bunderson, Inouye, & Olsen, 1989; Williamson, Bejar, &
Mislevy, 2006).

However, if computerized testing is used simply to
present computerized versions of paper–pencil tests, the
advantages that computers can offer will not be fully utilized
(Baker & O'Neil, 2002). That is, computers enable researchers
to assess abilities that are not assessable by paper–pencil
tests (Kyllonen, 2009) and to develop tasks that interactively
respond to examinees' inputs. According to Williamson et al.
(2006), the highest added value of using computers in
assessment is expected from interactive tasks. Further,
Rigas, Carling, and Brehmer (2002) have identified dynamic
and interactive task environments as a general source of
innovation in cognitive ability testing.

Two major advantages of computer-based assessment—
higher efficiency and the inclusion of interactive tasks—
were acknowledged by international large-scale assessments
such as the Programme for International Student Assessment
(PISA; OECD, 2006). In PISA, a major shift from paper–
pencil to computer-based test administration was recently
implemented, and complex interactive task environments
were included in the current assessment cycle (OECD,
2010). For instance, an assessment of problem solving
in interactive and dynamically changing task environ-
ments to assess Complex Problem Solving (CPS; Funke,
2001; Rigas et al., 2002) was part of the international
PISA 2012 survey (OECD, 2010). However, given the
short history of computer-based assessment, our knowl-
edge about constructs such as CPS is limited. In this study,
we therefore focused on CPS and important questions
related to it.

CPS fits into the category of broad cognitive abilities
(Funke, 2010), which are viewed as essential for lifelong
learning by the OECD (2010). It is assessed in complex
simulations (Funke, 2001) that allow for dynamic interac-
tions between examinees and task situations (Raven, 2000;
Wirth & Klieme, 2003). This feature makes it impossible to
assess CPS without a computer. CPS is usually decomposed
into a phase of knowledge acquisition (from here on:
knowledge; actively acquiring knowledge about the task;
Mayer & Wittrock, 2006) and knowledge application (from
here on: control; actively controlling the task; Novick &
Bassok, 2005). Recent research on CPS has shown divergent
validity with regard to reasoning (e.g., Greiff, Holt, & Funke,
2013; Greiff, Wüstenberg, et al., 2013; Wüstenberg, Greiff, &
Funke, 2012) and working memory (e.g., Schweizer,
Wüstenberg, & Greiff, 2013) as well as the predictive validity
of CPS beyond other cognitive abilities (e.g., Greiff & Fischer,
2013; Wüstenberg et al., 2012). After some controversy with
regard to its assessment (e.g., Kröner, Plass, & Leutner, 2005;

Wüstenberg et al., 2012), CPS has recently experienced
advances in terms of its scalability and psychometric
properties. These assessment advances were substantially
facilitated by the introduction of two formal frameworks—
linear structural equations and finite state automata—and
by the introduction of multiple complex systems (MCS; see
below; Funke, 2010; Greiff, Wüstenberg, & Funke, 2012).

However, it is not quite appropriate to talk about the
construct of CPS when describing these recent results. In
fact, the results that we mentioned above were conducted
only with single homogenous CPS assessment instruments.
If we want to generalize these results to CPS as a construct
independent of a particular measurement procedure, we
need to use a variety of assessment instruments to measure
CPS (Campbell & Fiske, 1959; Eid, Lischetzke, & Nussbeck,
2006).

In order to facilitate our understanding of CPS not only
on the level of specific assessment instruments but on the
construct level, we applied a combination of different CPS
assessments instruments. Specifically, we employed three
CPS instruments based on multiple complex systems (Greiff
et al., 2012) to address (a) the convergent validity of these
instruments by combining them in a multitrait–
multimethod (MTMM) approach and (b) their divergent
validity by relating CPS on the construct level to reasoning
and to academic achievement. To this end, we will first
outline the conceptual background behind these two
research questions and continue with our presentation of
empirical studies. We will conclude by discussing the
relevance of CPS and its implications for research on
cognitive abilities.

1.1. Research Question 1: Measurement of CPS by different
assessment instruments

According to Baker and O'Neil (2002), CPS amplifies
the learning of children and adults in a number of formal
and informal settings. Further, Mayer and Wittrock (2006)
point to the importance of CPS in educational settings aimed
at making students better problem solvers. To this end,
the OECD (2010) views CPS as a complex cognitive ability
that has the interaction between task and examinee (and,
thus, computer-based assessment) as a central component.
Buchner (1995) defines CPS as:

The successful interaction with task environments that
are dynamic (i.e., change as a function of user's interven-
tion and/or as a function of time) and in which some, if
not all, of the environment's regularities can only be
revealed by successful exploration and integration of
the information gained in that process (p. 14).

In line with this definition, Funke (2001) and Raven
(2000) argue that solving complex problems involves a
series of complex cognitive operations, and that complex
problems can be described by several characteristic features
such as complexity, intransparency, interconnectedness,
and dynamics. Coping with complex problems further
involves monitoring (Osman, 2010) and learning (Leutner,
2002). It requires knowledge about when and how to
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structure the search for viable hypotheses, informative
experiments, and goal-oriented interventions (Klahr, 2002).

For the first time since it was introduced by its founding
father Dietrich Dörner (e.g., Dörner, 1986), cognitive theories
on CPS and human behavior in computer-simulated environ-
ments are rather well-developed (e.g., Dunbar, 1998; Fischer,
Greiff, & Funke, 2012; Klahr, 2002). At the same time,
translating the concept of CPS into tasks suitable for
assessment has proven to be exceptionally difficult (Greiff
et al., 2012; Kröner et al., 2005). In general, two approaches
for assessing CPS have been developed: microworlds and
scenarios based on formal frameworks/multiple complex
systems.

Computer-simulated microworlds were implemented as the
first CPS scenarios in the 1970s andwere developedwith the aim
of administering task environments with a high resemblance to
the real world. However, the goals of producing a reliable
measure of CPS and of sufficiently simulating reality with
microworlds were quickly overshadowed by measurement
issues (e.g., Buchner, 1995; Kröner et al., 2005; Wüstenberg et
al., 2012). As a reaction to problems with microworlds, Funke
(2001) introduced two formal frameworks: Linear Structural
Equation systems (LSE) and Finite State Automata (FSA), which
allow for the description of underlying task structures indepen-
dent of their semantic embedment. In particular, the LSE
formalism has been widely adopted by CPS research and has
led to the development of a considerable number of tasks.

It was only recently that tasks based on these two
formalisms were further augmented by the multiple complex
system (MCS) approach (Greiff et al., 2012). Within this
expansion, the assessment framework is altered by shortening
the time on each task (in early tasks: at least 45 min for one
task; in MCS: approximately 5 min) and by administering
different tasks with varying difficulty (in early tasks: only one
task in one specific context is administered; in MCS: several
tasks in different contexts are administered). Hence, exam-
inees work on several independent tasks of varying difficulty
and are confronted with an entire battery of CPS tasks in MCS.

Even though results on the validity of CPSmentioned above
were largely conducted within the MCS approach, they were
gathered by using single assessment instruments. Thus, our
knowledge of CPS is limited to specific operationalizations.
Given that CPS plays a major role in PISA, showing that
different assessment instruments target the same underlying
construct and can be used as alternative forms instead of
merely accumulating instrument-specific variance is a major
concern yet unanswered by empirical research. To this end, the
first research question in this study was aimed at evaluating
whether assessment instruments based onMCSwould indicate
one underlying CPS construct (i.e., whether different measures
would converge). Thus, we used three different instruments
based on MCS (MicroDYN and the Genetics Lab based on the
LSE formalism; MicroFIN based on the FSA formalism) to link
different CPS instruments. We will now describe the three
instruments in more detail.

1.1.1. Multiple complex systems within LSE: MicroDYN and the
Genetics Lab

1.1.1.1. MicroDYN. In the first assessment approach to CPS,
MicroDYN, examinees are asked to detect quantitative

causal relations between input and output variables and
to control the underlying system. For instance, within
the MicroDYN task handball training (see Fig. 1), different
trainings (labeled Training A, Training B, Training C) influence
characteristics of a handball team (labeledMotivation, Power of
the throw, Exhaustion). While working on the system,
examinees face two different phases: In Phase 1, examinees
can freely explore the task and are asked to learn how variables
are related (3 min). Simultaneously, examinees are asked to
identify the most central variable and to draw the connections
between variables as they suppose they are (e.g., between
Training A and Motivation). In Phase 2, examinees are asked to
reach given target values on the output variables (1.5 min). A
MicroDYN set consists of approximately 10 tasks that sum to an
overall testing time of about 1 h including the instructions.

In line with the two phases, MicroDYN captures two facets
of problem solving: acquisition of knowledge (i.e., knowledge;
Mayer & Wittrock, 2006) and application of this knowledge
(i.e., control; Novick & Bassok, 2005). In MicroDYN, knowledge
is assessed by the correctness of the model drawn in Phase 1
(see bottom of Fig. 1), and control is assessed by the ability
to reach target values in Phase 2. A detailed description of
MicroDYN and its procedure can be found in Greiff et al. (2012).

Recent results suggest validity of the MicroDYN ap-
proach. For instance, CPS measured by MicroDYN showed
incremental validity in predicting school grades even
beyond measures of reasoning (Greiff, Holt, et al., 2013;
Greiff, Wüstenberg, et al., 2013; Wüstenberg et al., 2012)
and working memory (Schweizer et al., 2013). In the
2012 cycle of PISA, MicroDYN tasks are applied worldwide
to measure 15-year-olds' proficiency levels in CPS (OECD,
2010).

1.1.1.2. Genetics Lab. An alternative way to assess CPS within
MCS is the Genetics Lab (Fig. 2). Like MicroDYN, the Genetics
Lab is based on the LSE framework and quantitatively
connects a set of variables. In each task, examinees have to
first figure out how physical characteristics of a fictive
creature (output variables) are influenced by its genes
(input variables; see Fig. 2) and subsequently apply their
knowledge. Please note that prior knowledge about genetics
does not facilitate performance in the Genetics Lab as labels
of variables and causal relations are unrelated to the real
world. This also applies to MicroDYN. There, labels for input
and output variables are either fictitious or without deep
semantic meaning. The Genetics Lab is comprised of 12
independent tasks, which are to be completed in 35 min.

Comparable to MicroDYN, examination of a creature is
split into two consecutive phases: a first phase indicating
knowledge and a second phase indicating control. In the
knowledge phase, the test taker actively manipulates the
creature's genes and documents the acquired knowledge in
a database (see Fig. 2). In the control phase, given target
values on specific characteristics have to be achieved. Both
phases are used to derive performance scores about test
takers' knowledge and their ability to control the creature.
A detailed description of the Genetics Lab is found in
Sonnleitner et al. (2012).

In previous studies, performance scores in the Genetics
Lab have been found to be reliable and valid measures of CPS.
They were shown to have external and construct validity as
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they showed substantial relations to reasoning ability and
school grades (Sonnleitner, Keller, Martin, & Brunner, 2013).

1.1.2. Multiple complex systems within FSA: MicroFIN
MicroFIN within the MCS approach is based on the second

formalism of finite state automata. Compared to LSE, FSA
relate a set of discrete states of a problem to each other. FSA
have been used considerably less in CPS research because
developing this type of task is complex and complicated
compared to developing LSE tasks such as MicroDYN and the
Genetics Lab.

In FSA, examinees are asked to transfer an automaton that
can take on a finite set of discrete states from its current state
to a goal state by applying a finite set of inputs (Buchner &
Funke, 1993). For instance, think of a television device (see
Fig. 3) that can take on different states (e.g., “off” or “on”). By
pressing buttons on a remote control, the television is
transformed into a different state (e.g., it turns “off” when
the power button is pushed while the television is on). Even
if visualizations of states can semantically imply ordinal
relations between states (e.g., Volume 9 may be assumed to
be louder than Volume 8), the formal structure of a finite
automaton is defined by a finite set of states and qualitative
state changes. Thus, in contrast to MicroDYN and the
Genetics Lab, the finite state automata used in MicroFIN

focus on qualitative connections between variables with
different discrete states (Buchner & Funke, 1993).

In the current study, the task shown in Fig. 3 was used
to provide interactive instructions to demonstrate the
principle of MicroFIN. The instructions were followed by
two computer-simulated FSA tasks1: a simulated pet and a
social situation. The simulated pet was presented in different
moods depending on its hunger, fatigue, and boredom. For
each of the pet's needs, the set of operators contained one
button for performing an intervention (e.g., feeding the pet).
The social situation contained two people and a set of objects.
Each person could donate each object to the other person,
and either person could be happy, neutral, or unhappy,
depending on (a) the gifts he or she retrieved, (b) his or her
prior mood, and (c) the other person's mood. The overall
testing time for these two MicroFIN tasks and the instruc-
tions lasted about 15 min.

Like MicroDYN and the Genetics Lab, each FSA consisted
of two subsequent phases: First, examinees were instructed
to generate knowledge by freely exploring the automaton. At
the end of Phase 1, examinees had to answer a set of

1 Only two FSA tasks were included because the development and
implementation of these tasks has proven to be extremely difficult and little
is known about their assessment characteristics.

Fig. 1. Screenshot of the MicroDYN task “Handball training.” The controllers of the input variables range from “- -” to “++.” The current values and the target
values of the output variables are displayed numerically (e.g., current value for Motivation: 21; target values: 20–22) and graphically (current value: dots; target
value: red line). The correct model is shown at the bottom of the figure (cf. Wüstenberg et al., 2012). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 2. Screenshot of a Genetics Lab task. Test takers have to actively manipulate genes of fictive creatures (inputs; left part, depicted in red) to find out about their impact on the creatures' characteristics (outputs; left part,
depicted in green). The gathered knowledge can be documented by means of a causal diagram in a related database (right picture). Examinees can switch between those interfaces at any time by clicking on the buttons in
the upper left part of the screen. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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questions (Buchner & Funke, 1993) indicating their knowl-
edge (about 3 min overall). In the current study, we applied
three multiple-choice questions per automaton (e.g., “Which
of the following four pictures describes a state of the FSA
that results in the depicted state after applying a specific
series of operators?”). In Phase 2, examinees had to guide the
automaton toward a certain goal (e.g., “Set the TV to Channel 3
and tomute”) applying as few steps as possible (about 1 min) to
indicate control. For further information on psychometric
applications of FSA, see Buchner and Funke (1993).

As an FSA task was used to assess CPS in the German
national extension of PISA 2000, knowledge and control of FSA
are known to address dynamic aspects of CPS distinct from
intelligence and school-related literacy (Wirth & Klieme, 2003).
Like MicroDYN, FSA tasks are applied in the international PISA
2012 survey (Greiff, Holt, et al., 2013).

Similar to research on psychometric g, scholars interest-
ed in CPS can rely on a number of assessment instruments.
With regard to the convergence of microworlds, Wittmann
and Süß (1999) reported that the moderate correlations
between three microworlds drop to nonsignificance after
controlling for reasoning and prior knowledge. Therefore,
the authors questioned the relevance of a CPS construct and
concluded that CPS was fully explained by reasoning and
prior knowledge. Wittmann and Hattrup (2004) reported
another study based on the same three microworlds used
by Wittmann and Süß (1999). There, a CPS factor extracted
from these three microworlds was substantially predicted by
measures of general mental ability, reasoning, and creativity,
but no analyses were conducted on the uniqueness of a CPS
factor after controlling for these influences. On the other
hand, Danner, Hagemann, Schankin, Hager, and Funke (2011)
showed convergence between two different CPS tests and the
incremental validity of CPS. Using a latent state-trait approach,
they showed that different CPS microworlds converged even
though the overlap in variance between the CPS tasks ranged
from only 29% to 44%. However, this shared trait variance
predicted supervisory ratings beyond measures of intelligence.
Further, Wüstenberg et al. (2012) reported moderate rela-
tions between CPS and reasoning and incremental validity
for the former beyond the latter when predicting academic
achievement using only one CPS assessment instrument
based on MCS.

Given this inconsistent state of knowledge on CPS, it
is difficult to decide whether CPS assessment instruments
sufficiently converge and whether the aforementioned results
are related to specific assessment instruments or to CPS as
a construct. Research Question 1 is thus posed as follows:
“Do computer-simulated CPS assessment instruments show
convergent validity or is the assessment of CPS essentially
measurement-specific?” .

1.2. Research Question 2: Construct validity of CPS and its
relation to reasoning and academic achievement

Some characteristic features of problem solving abilities
are part of almost any definition of intelligence (Sternberg &
Berg, 1986). However, the translation of these features into
measures of intelligence such as reasoning tests is usually
limited to basic problem solving abilities. That is, the afore-
mentioned characteristics of complex problems are usually
not found in tests of intelligence. Specifically, the concept of
CPS is incremental tomeasures of reasoning insofar as not all of
the necessary information is available for CPS at the outset of
the problem, active exploration of the system is inevitable,
and procedural knowledge has to be used in order to control
the underlying systemand to account for the feedback received
while interacting with it (Wüstenberg et al., 2012). For
example, in CPS, the problem solver has to forecast the effects
of multiple simultaneous interventions or counteract dynamic
changes initiated by the system (Funke, 2001). On the other
hand, typical reasoning tasks usually require examinees to
draw conclusions to achieve goals but without these specific
characteristics of a complex problem (Leighton, 2004). Thus,
measures of reasoning (or intelligence in general; Wüstenberg
et al., 2012) lack the characteristic features of complex
problems. However, empirical findings on the relation between
CPS and reasoning have been surprisingly inconsistent.
Whereas Putz-Osterloh (1981) reported no relation between
a CPS task and a test of fluid intelligence, Kröner et al. (2005)
found high correlations between the two and thus concluded
that CPS tasks could be used to assess fluid intelligence.
However, these inconsistencies are likely to be related to
some of the CPSmeasurement issues mentioned above. Recent
findings based on MCS assessment instruments such as
MicroDYN, the Genetics Lab, and MicroFIN have indicated
that CPS and fluid intelligence are related but separate
constructs (e.g., Greiff & Fischer, 2013; Greiff, Holt, et al.,
2013; Greiff, Wüstenberg, et al., 2013; Wüstenberg et al.,
2012). In this study, we tested for the first time how CPS and
reasoning are related to each other on the construct level.
After trying to establish the convergence of different CPS
assessment instruments in Research Question 1, we aimed
to generalize the results regarding the relation between CPS
and reasoning to the construct level in Research Question 2.

Further, we evaluated the incremental validity of CPS on
the construct level beyondmeasures of reasoning in predicting
academic achievement in the natural and social sciences. We
expected that both CPS and reasoning would be more strongly
related to grades in the natural sciences than in the social
sciences as CPS tasks require cognitive processes that are
similar to those required in the natural sciences such as
designing experiments or testing hypotheses (e.g., Klahr, 2002;
Klahr & Dunbar, 1988). More specifically, the rationale behind

Fig. 3. Screenshot of the MicroFIN task “television”. Operators are visualized
as buttons on a remote control, which can be freely explored by examinees.
The current state is visualized as text on the screen.
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CPS tasks is closely related to the process of scientific discovery
(Klahr & Dunbar, 1988). To this end, we interpreted a relation
between CPS tasks and science grades as an indication of
convergent validity. In the attempt to establish construct
validity, we related different CPS assessment instruments in a
multitrait–multimethod approach to ameasure of reasoning as
an indicator of fluid intelligence and to academic achievement.
Research Question 2was thus posed as follows: “Howdoes CPS
as captured across different assessment instruments relate to
reasoning and to academic achievement?”

To address Research Questions 1 and 2, we used three
assessment instruments based on MCS to target different CPS
dimensions (i.e., knowledge and control) in order to establish
construct validity. Establishing construct validity is achieved by
thoroughly investigating research questions that have not been
sufficiently addressed in previous studies.

2. Method

2.1. Participants2

Participants were 339 German university students (229
female, 92 male, 18 missing gender; mean age: 22.30 years;
SD = 4.02), who were in their second year of study on
average (M = 1.99, SD = 1.69) and who were enrolled
in different undergraduate and graduate programs (57%
in social studies, 28% in the natural sciences, and 15% in
others). Students could choose between receiving partial
course credit or a financial reimbursement of 20 € (approx-
imately $25 US) for their participation. In a small number of
cases, the technical delivery platform did not save the data
correctly. Participants with this type of missing data were
excluded from all analyses. According to the guidelines
by Muthén and Muthén (2010), covariance coverage was
generally acceptable. Testing took place at the Department
of Psychology at the University of Heidelberg, Germany.

2.2. Testing and scoring procedures

Testing lasted approximately 4.5 h and was split into
two sessions of 2.5 and 2 h, respectively. In the first session,
participants worked on MicroDYN and provided demograph-
ic information and their school grades. In the second session,
participants worked on the Genetics Lab, on MicroFIN, and
on the matrices subtest of the Intelligence Structure Tests as
a measure of reasoning (see below). Additional measures
that are not relevant for this article were administered at
both sessions. The entirely computer-based assessment was
administered within the EE4CBA, a stand-alone test-delivery
platform. Research assistants who had been thoroughly
trained in test administration supervised the sessions.

Detailed descriptions of the three CPS assessment instru-
ments can be found above. These instruments as well as the
reasoning test were scored in line with the manuals or as
described in the publications, in which the instruments were
introduced.

2.2.1. MicroDYN Scoring

2.2.1.1. Knowledge. For knowledge, full credit was given if the
model drawn by participants was completely correct, and no
creditwas given if participants'model contained at least oneerror.

2.2.1.2. Control. For control, full credit was given if the target
values of all variables were achieved, whereas no credit was
given if at least one target value was not achieved.

In summary, each task was scored with respect to its two
phases, yielding 20 items overall across the 10MicroDYN tasks.

2.2.2. Genetics Lab scoring

2.2.2.1. Knowledge. For knowledge, an established scoring
algorithm (Müller, 1993) was applied combining relational
knowledge (i.e., an effect exists or does not) and knowledge
about the type and strength of a relation. For computing
the global knowledge score, relational knowledge was
emphasized by multiplying it by a weight of .75, whereas
knowledge about the strength of an effect was weighted
by .25 (for further details on this scoring, see Müller, 1993).3

2.2.2.2. Control. Participants' control performance was scored
with regard to the quality of each applied control step (Keller
& Sonnleitner, 2012). Only if a step maximally reduced the
distance to the target values was it considered optimal and
thus scored with 1 point. As there were three steps per
control phase, the maximum score was 3 points.

2.2.3. MicroFIN scoring

2.2.3.1. Knowledge. Knowledge about each automaton was
assessed by a total of three questions (see the description of
MicroFIN for examples). Answers were scored dichotomously
as either right or wrong.

2.2.3.2. Control. Full credit was given if the goal state was
achieved with the minimal number of possible interventions.
Partial credit was given if the goal was achieved with more
interventions than necessary. No credit was given if the goal
was not reached.

2.2.4. Matrices subtest of the Intelligence Structure Test
Reasoning was assessed by the matrices subtest of the

“Intelligence Structure Test-Revised” (Beauducel, Liepmann,
Horn, & Brocke, 2010). The test consisted of 20 2 × 2 matrices
with a figural stimulus in all but one cell. In each matrix, one
stimuluswasmissing, andparticipants had to choose themissing
figural stimulus out of five alternatives. Answers were scored as
right or wrong. This test assesses reasoning, which is known to
be a good indicator of fluid intelligence (Carroll, 1993).

2.2.5. School grades
Participants were asked to report their final school grades in

four natural science subjects (math, physics, chemistry, biology)
and four social science subjects (German, history, geography,
social studies). School grades ranged from 1 (excellent) to 6

2 The full correlation matrix including parcels/manifest variables on
MicroDYN, the Genetics Lab, MicroFIN, reasoning, and school grades can be
downloaded as a supplement from the Elsevier Intelligence homepage.

3 Please note that in MicroDYN, examinees are only asked to represent
their relational knowledge of effects and not the strength of these effects.

585S. Greiff et al. / Intelligence 41 (2013) 579–596



(poor) as is usual in German schools. However, when calculating
relations to other variables, we reversed the grades so that
higher numerical values reflected better performance.

2.3. Statistical analysis

To tackle the first research question on the convergence
of different CPS assessment instruments, we specified a latent
multitrait–multimethod model with trait andmethod factors.
This model was introduced by Eid, Lischetzke, Nussbeck, and
Trierweiler (2003) and Eid et al. (2006). They refer to it as
correlated trait correlated method minus 1 (CTC(M-1)) model
(see below) and it was developed to tackle questions of
measurement consistency. We then used structural equation
modeling (SEM; Kline, 2011) to relate the CTC(M-1) model
including MicroDYN, the Genetics Lab, and MicroFIN to
reasoning and academic achievement to address the second
research question. All relevant methods are explained in detail
when they appear for the first time in the Results section.

In CTC(M-1) and in SEM, we interpreted path coefficients
in the structural parts of the models and factor loadings in
the measurement parts. To evaluate model fit, we reported
standard model fit indices such as the CFI, TLI, RMSEA, and
SRMR (or WRMR if the manifest variables were scored as
ordered categorical variables) endorsing the cut-off values
recommended by Hu and Bentler (1999). The Weighted
Least Squares Mean and Variance adjusted (WLSMV;
Muthén & Muthén, 2010) estimator for categorical out-
comes was used whenever observed variables with ordered
categorical scoring were involved; otherwise, we applied
standard maximum likelihood (ML) estimation. Analyses
were conducted in Mplus 6.11 (Muthén & Muthén, 2010).

2.4. Research Question 1 results: The measurement of CPS with
different assessment instruments

In order to tackle ResearchQuestion 1,measurementmodels
for the three CPS assessment instruments based on the MCS
approach were derived. Subsequently, a comprehensive
CTC(M-1) model (Eid et al., 2003) of knowledge and control as
trait factors and the Genetics Lab and MicroFIN as method
factors was calculated. MicroDYN was chosen as the reference
method in this model, which generally contains one method
factor less (i.e., 2) than the number ofmethods included (i.e., 3).

2.4.1. Measurement models of MicroDYN, the Genetics Lab, and
MicroFIN

With regard to measurement models for MicroDYN and the
Genetics Lab, we assigned items to parcels by considering the
large number of free parameters to be estimated in models with
single indicators and acknowledging that previous research
indicated 2-dimensional structures for both measures (e.g.,
Wüstenberg et al., 2012, for MicroDYN and Sonnleitner et al.,
2012, for the Genetics Lab). Having empirically based assump-
tions on dimensionality is a prerequisite for applying parceling
(Kline, 2011). Thus, we used the item-to-construct balance
recommended by Little, Cunningham, Shahar, and Widaman
(2002) to combine items into parcelswith each parcel consisting
of at least three items. For MicroDYN and the Genetics
Lab, a 2-dimensional model with the dimensions knowledge
and control showed a good to acceptable fit (for MicroDYN:

χ2 = 20.26; df = 8; p b .001; CFI = .983; TLI = .967;
RMSEA = .069; SRMR = .027; for the Genetics Lab: χ2 =
59.04; df = 19; p b .001; CFI = .976; TLI =.965; RMSEA =
.083; SRMR = .028) and significantly outperformed a
1-dimensional model (results not reported in detail). Latent
correlations between the dimensions were .84 and .85 (both
p b .001) for MicroDYN and Genetics Lab, respectively.

With regard to the third measure, MicroFIN, no research
had empirically indicated its dimensionality and, therefore,
no parceling was applied. The six knowledge items (three in
each task) and the two control items (one in each task)
constituted a measurement model with two CPS dimensions,
which showed a correlation of r = .68 (p b .001) between
knowledge and control and exhibited acceptable fit (χ2 =
32.13; df = 19; p b .05; CFI = .936; TLI = .906; RMSEA =
.047; WRMR = .8314). When combining the two dimensions
into one, there was hardly any drop in fit (χ2 = 33.54; df =
20; p b .05; CFI = .934; TLI = .908; RMSEA = .046;
SRMR = .854) and evidence for a substantial difference
between the 2- and 1-dimensional models was limited
according to the χ2-difference test (χ2-difference = 1.71;
df = 1; p N .10).5 However, we decided to retain the
2-dimensional model to allow for a comparison between
MicroFIN and the other two CPS measures in the MTMM
analyses. When discussing the results, we need to keep in mind
that a more parsimonious 1-dimensional model showed essen-
tially equivalent fit to the 2-dimensional model in MicroFIN.

In sum, for MicroDYN and the Genetics Lab, 2-dimensional
models including knowledge and control described the data
well and showed good fit. For MicroFIN, results were less
consistent, but a structurally identical model with knowledge
and control was retained.

2.4.2. CTC(M-1) model of MicroDYN, the Genetics Lab, and
MicroFIN

2.4.2.1. Background information on the CTC(M-1) model.
According to Kline (2011), specific MTMM models within the
SEMapproach offer amore systematicway to delineate trait and
method effects than the mere inspection of latent MTMM
matrices (please refer to the online supplementarymaterials for
the current study's standard latent MTMMmatrix). However, a
number ofmodels have been proposed in the literature (e.g., Eid
et al., 2006;Marsh&Grayson, 1995). Some of thesemodels pose
unrealistic restrictions such as uncorrelatedmethod effects, thus
allowing only traits to be related to each other (Eid et al., 2003),
whereas other models assume both correlated traits and
correlated methods. Such correlated trait correlated method
(CTCM)models suffer from a number of problems. Specifically,
analyses of CTCMmodels tend to yield inadmissible or unstable
solutions (Kline, 2011) as they are not globally identified, and
substantive interpretation problems arise when method
factors are allowed to correlate, even though this is usually a
reasonable assumption (e.g., Kenny & Kashy, 1992).

4 When the WLSMV estimator for ordered categorical outcomes is used,
the WRMR is reported instead of the SRMR.

5 When using the WLSMV estimator for ordered categorical outcomes,
differences in χ2 values and dfs cannot be obtained by directly computing
their difference, but follow a nonstandard procedure (Muthén & Muthén,
2010). We applied this procedure for all χ2 difference tests that included the
WLSMV estimation method.
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As an alternative, Eid et al. (2003, 2006) introduce a model
that is not affected by identification issues. This model contains
one method factor less than methods included in the assess-
ment and is labeled the correlated trait correlated method
minus 1 (CTC(M-1)) model. That is, one method has to be
chosen as the referencemethod, which constitutes the standard
against which the othermethods are compared. Eid et al. (2003,
2006) lay out the advantages of this model in detail. In the
CTC(M-1) model, a method factor is specified for each trait–
method combination except for the standardmethod, for which
no method factors are defined. Thus, each observed variable of
the nonstandardmethods loads on its respective trait factor and
its method factor, whereas each observed variable of the
reference method loads on its respective trait factor only.
Further, method factors may covary with each other and with
trait factors. Method factors of one trait are not allowed to
correlate with the respective trait factor (Eid et al., 2006). For
instance, the knowledgemethod factor for the Genetics Labwas
not allowed to correlate with the knowledge trait factor.

2.4.2.2. A CTC(M-1) model for MicroDYN, the Genetics Lab, and
MicroFIN. For the current analyses,MicroDYNwas chosen as the
referencemethod because the existing body of evidence is most
comprehensive forMicroDYN (e.g., Greiff et al., 2012; Schweizer
et al., 2013; Wüstenberg et al., 2012). Thus, in the CTC(M-1)
model with MicroDYN as the reference method, four method
factors were specified in addition to the two trait factors
knowledge and control: two for the Genetics Lab, constituting
the method effect of the Genetics Lab on knowledge and the
control parcels in the Genetics Lab, respectively, and two for
MicroFIN, specifying the method effects of MicroFIN on the
knowledge and control items in MicroFIN. Thus, each of the
Genetics Lab and the MicroFIN indicators were specified to load
on a trait factor and a method factor. Further, the four method
factors were allowed to correlate with each other and with the
trait factors of the other trait. For instance, the Genetics Lab
method factor for knowledge was allowed to correlate with all
other method factors as well as with the trait factor control but
not with the trait factor knowledge.

The CTC(M-1) model is depicted in Fig. 4. Please note
that not all paths are displayed in Fig. 4. The fit for this
CTC(M-1) model was very good (Model 1 in Table 1), and
the trait correlation of knowledge and control with regard
to MicroDYN as the standard method was high (r = .83,
p b .001), but slightly different from 1. Specifically, if the
correlation between knowledge and control was constrained
to 1.00, the drop in fit was significant (χ2 difference = 7.15,
df = 1, p b .01),6 showing some discriminant validity between
traits. The factor loadings of the indicators on the trait and
method factors are displayed in Table 2. Further, Table 2
displays the variance components due to trait variation
(consistency) and due tomethod variation (method specificity)
for the nonstandard methods. Consistency and method speci-
ficity add up to 1.00 (Eid et al., 2003). Reliability estimates

reported in Table 2 are defined as the total percentage of
variance of an observed variable explained by the factors in the
model.

For MicroDYN as the standard method, the consistency was
per definition perfect. Considering that items were parceled for
MicroDYN and the way reliability was defined, reliability
estimates for MicroDYN were satisfactory. Eid et al. (2003)
remind us that the CTC(M-1)model tends to underestimate the
reliability of observed variables. For the Genetics Lab and
MicroFIN, trait consistency and method-specific influences
were substantial (Table 2), with consistency indicating conver-
gent validity. Whereas the result pattern for different parcels
varied little for the Genetics Lab with just over 50% consistency
on average, the variance in the consistency coefficients was
much larger for MicroFIN. In fact, MicroFIN showed lower
reliability and higher variation in trait and method loadings
overall. Knowledge Item 5 for MicroFIN was not substantially
associated with the trait or method factors.

2.4.2.3. Relations of method factors with each other and with
CPS trait factors in the CTC(M-1) model. CTC(M-1)models yield
additional important information about the relations between
the method factors and the relations between the method
factors associated with one trait (e.g., MicroFIN knowledge)
and the trait factor of the other trait (e.g., control).

As displayed in Table 3, method factors of different
methods (i.e., the Genetics Lab and MicroFIN) were only
loosely related, with coefficients ranging from .02 to .27.
That is, there was little evidence that knowledge factors that
were specific to GL or MF shared any variance when the
common knowledge variance was taken into account. Method
factors for different traits within one method, on the other
hand (e.g., the Genetics Lab method factors knowledge and
control) showed substantial correlations (.39 and .52), indi-
cating some generalizability of method effects across traits.
However, when the correlations between trait-specific method
factors of one traitwere constrained to 1, theχ2 value decreased
significantly (χ2 difference = 25.94, df = 1, p b .001, for
the Genetics Lab and 4.73, df = 1, p b .05, for MicroFIN)
indicating that the strong assumption of perfect generalizability
of method effects across traits had to be rejected (Eid et al.,
2006). Thus, the method effects of the Genetics Lab and
MicroFIN, respectively, on knowledge and control were differ-
ent for both traits.

Table 3 further reports the correlations between themethod
factors of one trait and the other trait factor (e.g., MicroFIN
method knowledge and control trait factor). Specifically, the
knowledge method factors for the Genetics Lab and MicroFIN
were correlatedwith control, and the controlmethod factors for
the Genetics Lab andMicroFINwere correlated with knowledge
even though they were not substantial, ranging from .01 to .23.
The method factors of one trait were not allowed to correlate
with the factor of the same trait (Eid et al., 2003).

Whereas correlations between the method factors for
MicroFIN and the trait factors reported in Table 3 were
not substantial, the relations between the Genetics Lab
method factors and the other trait were positive and
significant. Albeit small in magnitude (.17 and .18, p b .01),
these heteromethod coefficients of discriminant validity
showed that the Genetics Lab's specific method effects
were related to the traits of the standard method MicroDYN

6 Throughout this article, a large number of models are evaluated, and most
of them are similar versions of each other. We do not report fit statistics for all
of these models, but only for the measurement models (in the text) and the
main models (Table 1). If the fit for slightly changed models was not reported,
the fit indices were generally favorable (i.e., CFI N .95; TLI N .95; RMSEA b .06;
WRMR b 1.00; SRMR b .05).
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Table 1
Goodness of fit indices for different models.

Model χ2 df p CFI TLI RMSEA CIRMSEA 90% WRMR

Model 1: CPS CTC(M-1) model 193.66 182 .26 .993 .991 .014 [.000; .028] .541
Model 2: CPS CTC(M-1) model predicted by reasoning 306.04 270 .06 .981 .978 .020 [.000; .030] .630
Model 3: CPS CTC(M-1) model predicting academic achievement 369.64 367 .45 .999 .998 .005 [.000; .020] .642
Model 4: reasoning and CPS CTC(M-1) model predicting academic achievement 513.54 492 .24 .991 .989 .011 [.000; .022] .707

Note. df = degrees of freedom; CFI = comparative fit index; TLI = Tucker Lewis index; RMSEA = root mean square error of approximation; CI = confidence
interval; WRMR = weighted root mean square residual; χ2 and df estimates are based on WLSMV.

Fig. 4. Conceptual depiction of the CPS CTC(M-1) model for knowledge and control as trait factors with MicroDYN as the standard method and four method
factors for the Genetics Lab and MicroFIN. MD = MicroDYN; GL = Genetics Lab; MF = MicroFIN; Par = parcel; Know = knowledge; Con = control. Error
terms for endogenous variables are not depicted. Correlations between method factors and trait factors are not depicted. See the text for details.
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after controlling for influences due to the same method.
According to Eid et al. (2003), these coefficients are pure
discriminant validity correlations for traits not biased by
common method influences. For instance, relations between
the Genetics Lab method factor control and the trait factor
knowledge (.17; Table 3) showed that participants with high
knowledge also showed better performance in control in the
Genetics Lab beyond what would have been expected due to
their control performance in MicroDYN. The same interpre-
tation applies to the Genetics Lab method factor knowledge
and the trait factor control (.18). These coefficients, in fact,
might indicate that the delineation between the two trait
factors, knowledge and control, was not reliable.

Overall, the CTC(M-1) model of the traits knowledge
and control and the methods MicroDYN, the Genetics
Lab, and MicroFIN allowed an in-depth understanding
of trait and method effects when measuring CPS by
multiple complex systems. Trait loadings were substantial
for MicroDYN and the Genetics Lab and exhibited high
variance for MicroFIN. The consistency of the measures was

acceptable, but substantial method effects were present as
well. Correlations between method effects for the Genetics
Lab and MicroFIN with knowledge and control beyond
MicroDYN were existent but small in size with a good
overall model fit for the CTC(M-1) model. In subsequent
analyses to address Research Question 2, reasoning and
academic achievement were added to the analyses on the
CTC(M-1) model displayed in Fig. 4, and the relations of
these constructs to the trait factors knowledge and control
as well as to the method factors of the Genetics Lab and
MicroFIN were inspected.

2.5. Research Question 2 results: The construct validity of CPS
and its relation to reasoning and academic achievement

To establish construct validity, we related the CTC(M-1)
model to reasoning and, in a second step, to academic
achievement. Additionally, we evaluated the potential of the
CTC(M-1) trait and method factors to incrementally predict
school grades in the natural and social sciences. In all these

Table 2
Standardized trait and method loadings, consistency, method specificity, and reliability for the CTC(M-1) model.

Method Trait Indicator Trait loading Method loading Consistency Method specificity Reliability

MicroDYN Knowledge Parcel 1 .80⁎⁎ 1.00 .00 .63
Parcel 2 .71⁎⁎ 1.00 .00 .50
Parcel 3 .78⁎⁎ 1.00 .00 .62

Control Parcel 1 .76⁎⁎ 1.00 .00 .57
Parcel 2 .67⁎⁎ 1.00 .00 .45
Parcel 3 .74⁎⁎ 1.00 .00 .54

Genetics Lab Knowledge Parcel 1 .59⁎⁎ .71⁎⁎ .41 .59 .85
Parcel 2 .57⁎⁎ .64⁎⁎ .44 .56 .74
Parcel 3 .61⁎⁎ .60⁎⁎ .51 .49 .73
Parcel 4 .65⁎⁎ .59⁎⁎ .55 .45 .77

Control Parcel 1 .53⁎⁎ .49⁎⁎ .54 .46 .52
Parcel 2 .63⁎⁎ .56⁎⁎ .56 .44 .70
Parcel 3 .53⁎⁎ .58⁎⁎ .46 .54 .62
Parcel 4 .53⁎⁎ .43⁎⁎ .60 .40 .46

MicroFIN Knowledge Item 1 .37⁎⁎ .70⁎⁎ .22 .78 .63
Item 2 .24⁎⁎ .55⁎⁎ .16 .84 .36
Item 3 .27⁎⁎ .71⁎⁎ .13 .87 .57
Item 4 .36⁎⁎ .26⁎⁎ .66 .34 .20
Item 5 .17⁎ .03 .97 .03 .03
Item 6 .38⁎⁎ .26⁎⁎ .68 .32 .21

Control Item 1 .55⁎⁎ .25 .83 .17 .37
Item 2 .24⁎⁎ .69 .11 .89 .54

⁎ p b .05.
⁎⁎ p b .01.

Table 3
Correlations between trait and method factors in the CTC(M-1) model.

Knowledge Control Method GL
Knowledge

Method GL
Control

Method MF
Knowledge

Method MF
Control

Knowledge
Trait factors Control .83⁎⁎

Method Knowledge XX .18⁎⁎

Genetics Lab Control .17⁎⁎ XX .52⁎⁎

Method Knowledge XX .01 .19⁎ .23⁎

MicroFIN Control .23 XX .02 .27 .39

Note. GL = Genetics Lab; MF = MicroFIN. XX = correlations are restricted to 0 in the CTC(M-1) model.
⁎ p b .05.

⁎⁎ p b .01.
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analyses, we used the CTC(M-1) model introduced above,
checking for relations of reasoning and academic achieve-
ment with the trait factors knowledge and control measured
by the standard method MicroDYN and with the four method
factors of the Genetics Lab and MicroFIN.

2.5.1. Relating MicroDYN, the Genetics Lab, and MicroFIN to
reasoning

2.5.1.1. The reasoning measurement model. For the matrices
test of the Intelligence Structure Test, the 20 available items
were assigned to parcels. The fit for a 1-dimensional model was
excellent (χ2 = .31; df = 2; p N .05; CFI = 1.000; TLI =1.000;
RMSEA = .000; SRMR = .001).

2.5.1.2. Prediction of CPS trait and method factors in the
CTC(M-1) model by reasoning. The model fit for the overall
structural model in which the two CPS trait factors and the four
method factors of the CTC(M-1) model were predicted by
reasoning was good (Model 2 in Table 1). Both trait factors,
knowledge and control, were substantially predicted by reason-
ing (Fig. 5), explaining 28% and 24% of the variance, respectively.
Even after controlling for reasoning, knowledge and control
remained substantially correlated. In fact, after controlling for
reasoning, the latent correlation between knowledge and control
increased compared to amodelwithout reasoning (from r = .83
to r = .93, p b .05) indicating almost identity between the two
dimensions. This surprising result suggests that the somewhat
different amounts of reasoning in knowledge and control led
to discriminant validity between the two. Specifically, the
“reasoning aspects” in knowledge were correlated only to a
certain extent with control (the same was true for those in
control and their correlations with knowledge). If these aspects

were controlled for, only the unique proportions of knowledge
and control were correlated, but these—apparently—have more
in common than knowledge and control with the “reasoning
aspects” included.

Interestingly, both method factors for the Genetics Lab and
the knowledge method factor for MicroFIN showed significant
relations of moderate size to reasoning (Fig. 5), explaining
between 6% and 18%. That is, the Genetics Lab and MicroFIN
shared common variance with reasoning beyond MicroDYN.
However, the overall amountof variance in theGenetics Lab and
MicroFIN explained by reasoning (indirectly through the two
trait factors and directly through the method factors) ranged
between 22% and 28% of the variance and was comparable to
the explained variance in MicroDYN as the standard method.

In summary, discriminant validity between reasoning and
CPS was supported in our study: An average of around 25% of
the variance in the CTC(M-1) model was predicted by
reasoning independent of the specific method (i.e., MicroDYN,
Genetics Lab, MicroFIN).

2.5.2. Relating MicroDYN, the Genetics Lab, and MicroFIN to
academic achievement

In order to establish the construct validity of CPS, it is
crucial to show that it has discriminant validity with
reasoning (see Fig. 5), but beyond this, the prediction of
relevant external criteria needs to be shown as well.

2.5.2.1. The academic achievement measurement model. Aca-
demic achievementwas composed of two latent factors: grades
in the natural sciences (math, physics, chemistry, and biology)
and social sciences (German, history, geography, and social
studies). Each of the grades was specified to load on its
respective factor. Both school grade factors were substantially

Fig. 5. The CPS CTC(M-1) model predicted by reasoning. Rea = reasoning; MD = MicroDYN; GL = Genetics Lab; MF = MicroFIN; Par = parcel; Know =
knowledge; Con = control. Only parts of the CTC(M-1) model are displayed (for all information, see Fig. 4, Tables 2 and 3); parcel loadings for reasoning are
reported in the text. Only significant paths depicted. Error terms for endogenous variables are not depicted. *p b .05. ***p b .001.
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correlated at r = .67 (p b .001). The overall model fit was very
good (χ2 = 22.86; df = 19; p N .10; CFI = .992; TLI = .989;
RMSEA = .026; SRMR = .037) and substantially better than
for a 1-dimensional model (results not reported in detail).

2.5.2.2. The prediction of academic achievement by CPS trait and
method factors in the CTC(M-1) model. Model fit for a
structural CTC(M-1) model with the trait factors knowledge
and control and the four method factors predicting the two
latent grade factors for the natural and social sciences was
good (Model 3 in Table 1). Out of the two trait factors, only
knowledge explained substantial amounts of variance in
natural science grades (standardized path size: .30; p b .001;
R2 = .09), whereas control was not statistically relevant
(p N .10), and social science grades were not predicted at all
(p N .10). Further, none of the paths regressing grades on the
four method factors were significant, thus indicating that the
Genetics Lab and MicroFIN did not contain unique variance
that was relevant for predicting school grades and that was
not already captured by MicroDYN.

2.5.2.3. The prediction of academic achievement by CPS trait and
method factors in the CTC(M-1) model controlling for reasoning.
In order to evaluate whether CPS would uniquely predict
school grades—that is, whether it would exhibit incremental

validity beyond reasoning—we evaluated a model in which
knowledge and control as trait factors were regressed on
reasoning, and only the proportion of variance unrelated to
reasoning predicted school grades. This approach corre-
sponds to a latent stepwise regression with reasoning as a
first step predictor and CPS as a second step predictor.
Relations between the four method factors and academic
achievement after controlling for reasoning were not esti-
mated because in the model without reasoning, these
relations were already nonsignificant (Model 3 in Table 1).

The final structural model with reasoning and trait factors
in the CTC(M-1) model predicting academic achievement
showed good fit (Model 4 in Table 1). It is depicted in Fig. 6.
As expected, reasoning predicted natural science grades
(standardized path size: .28; p b .001; R2 = .08) and, weakly,
social sciences (standardized path size: .12; p b .05; R2 = .01).
Those parts of the CPS trait factor knowledge unrelated to
reasoning further predicted natural science grades (standard-
ized path size: .22; p b .01; R2 = .05) beyond reasoning,
whereas control did not yield substantial paths. CPS did not
explain social science grades.

As the two trait factors knowledge and control were
highly related (around .85) in the CTC(M-1) model and this
correlation even increased when controlling for reasoning (to
.95; see Figs. 5 and 6), we combined them into one second

Fig. 6. Reasoning and the CPS CTC(M-1) model predicting academic achievement. Rea = reasoning; MD = MicroDYN; GL = Genetics Lab; MF = MicroFIN;
Par = parcel; Know = knowledge; Con = control; Res = residual. Only parts of the CTC(M-1) model are displayed (for all information, see Fig. 4, Tables 2 and
3). Only significant paths are depicted. Method factors are not depicted. Error terms for endogenous variables are not depicted. **p b .01. ***p b .001.
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order CPS factor in order to evaluate whether the incremental
validity results would remain essentially the same in an
additional model. In this model, reasoning was a good
predictor of natural science grades (standardized path size:
.28; p b .001; R2 = .08) and a weak predictor of social science
grades (standardized path size: .14; p b .05; R2 = .02). Addi-
tionally, CPS in the CTC(M-1) model (this time as a second
order factor) showed incremental validity beyond reasoning
with a path size that was virtually unchanged (standardized
path size: .18; p b .01; R2 = .03).

In summary, the analyses for Research Question 2
revealed that the CPS trait factors knowledge and control
were moderately related to reasoning and incrementally
predicted natural science grades beyond reasoning, addi-
tionally explaining approximately 3% to 5% of the variance.
The Genetics Lab and MicroFIN as nonstandard methods did
not show unique incremental proportions of variance
beyond the standard method of MicroDYN.

3. Discussion

The overarching aim of this study was to facilitate our
understanding of CPS as a complex cognitive ability. As
previous research has largely relied on specific assessment
instruments, we administered a variety of different CPS
assessment instruments to a sample of German university
students. In general, the results of our study provided
support for the conceptualization of CPS as a complex
cognitive ability. Specifically, the results of Research Ques-
tion 1 indicated that CPS assessment instruments based on
the MCS approach sufficiently converged in a CTC(M-1) model
(Main Finding 1). Surprisingly, in contrast to previous research,
support from this model for delineating CPS into knowledge
and control was limited (Main Finding 2). For Research
Question 2, CPS and reasoning were moderately related and
CPS predicted academic achievement beyond reasoning (Main
Finding 3). Overall, this study provided evidence for the
construct validity of CPS both in terms of convergent validity
as addressed by Research Question 1 and in terms of construct
validity as addressed by Research Question 2.

3.1. Main finding 1: CPS assessment instruments converge
sufficiently

The trait loadings of MicroDYN, the Genetics Lab, and
MicroFINwere acceptable, ranging from .17 to .80with generally
smaller loadings for MicroFIN. Consistency coefficients, as the
percentage of trait loadings that were not attributable
to method effects, were substantial for almost all indicators,
ranging from .41 to .60 for the Genetics Lab and from .11 to
.97 for MicroFIN in relation to MicroDYN as the reference
method. In a different research context, Höfling, Schermelleh-
Engel, and Moosbrugger (2009) reported consistency coeffi-
cients between .17 and .44 as benchmarks, and they considered
these to be substantial in their application of a CTC(M-1)model
with self-reports and different types of peer reports as method
factors. In a recent study on CPS using more than one
assessment instrument (albeit not based on MCS but on
classical microworlds), Danner et al. (2011) reported consis-
tency estimates between .29 and .44. Comparing these results

with our results suggests that the MCS approach may be
advantageous in terms of consistency across measures.

Whereas MicroDYN and the Genetics Lab are both based on
LSE, MicroFIN is based on FSA, and in our study, MicroFIN was
included in only two of the CPS tasks. As a consequence,
MicroFIN trait loadings and consistency coefficients exhibited a
higher variance and were not satisfactory in part. For instance,
one knowledge item on the second MicroFIN task (Item 5)
showed a small trait loading of only .17. That is, all three MCS
approaches applied in this study—MicroDYN, the Genetics Lab,
and MicroFIN—cover somewhat different aspects of CPS with
relations being closest between MicroDYN and the Genetics
Lab. The OECD (2010) states that the LSE formalism (in
MicroDYN and the Genetics Lab) usually leads to a consistent
and homogenous set of tasks, whereas the FSA formalism (in
MicroFIN) covers a broader variety of tasks (Wirth & Klieme,
2003), which in turn may lower consistency and make
scalability more difficult, but which also allows test developers
to represent a richer collection of complex problem situations.
Bearing this in mind, MicroFIN was “disadvantaged” in this
study in a number of ways: fewer items, no parceling, and less
empirical experience with CPS assessment through MicroFIN.
To this end, it would be premature to certify that MicroFIN
offers bad scalability or insufficient fit within the CTC(M-1)
model. Instead, we suggest further pursuing MicroFIN as a CPS
assessment approach both from conceptual and empirical
points of view to fully understand its role and how it may
complement LSE assessment approaches.

We conclude that there is a convergence across different CPS
assessment instruments,which is a prerequisite for ameaningful
application of CPS in international large-scale assessments such
as the PISA survey. This availability of alternative assessment
instruments touches another important point: training to the
test. If, for instance, MicroDYN were used in high-stakes
situations such as personnel selection or entrance testing to
tertiary education, commercial training programs and guide-
books could quickly appear on the market. In MicroDYN,
systematically varying one input variable (e.g., Training A;
Fig. 1) while holding the others constant (e.g., Trainings B and
C) helps develop an understanding of the causal relations
between inputs and outputs and substantially enhances
performance (Wüstenberg et al., 2012). Teaching this rather
simple strategy may change the nature of the underlying
construct assessed with MicroDYN, thus rendering the devel-
opment of alternative assessment instruments essential for
the field of CPS. Our results indicate that the development of
alternative assessment instruments such as the Genetics Lab
or MicroFIN is indeed possible even though this study can only
provide a tentative starting point.

3.2. Main finding 2: Support for delineating CPS into knowledge
and control was limited

There was mixed evidence in our study with regard to the
number of CPS dimensions. In fact, evidence partly suggested
that CPS should not be delineated into knowledge and control.
When controlling for reasoning in the CTC(M-1) model, the
latent relation between the two dimensions increased from
around .85 to .95 (i.e., almost identity), and a second order
factor of CPS was as incrementally predictive of academic
achievement as knowledge and control separately. Thus, we
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could not find consistent differences between the two trait
factors knowledge and control. On the other hand, a 2-
dimensional measurement model showed a clearly better
fit than a 1-dimensional model for both MicroDYN and
the Genetics Lab. This latter result pattern was expected as
the position that knowledge and control were overlapping
yet distinct processes has been widely adopted in CPS
research and has been backed up by a number of empirical
studies (e.g., Wirth & Klieme, 2003; Wüstenberg et al., 2012).

In line with previous research, we expected moderate to
high relations between knowledge and control and found
only limited evidence for delineating the two at all. An
explanation can be found in the rationale underlying the MCS
approach. There, the control phase following the knowledge
phase (cf. description of MicroDYN, the Genetics Lab, and
MicroFIN) is deliberately kept short and does not encompass
more than five independent interactions with any specific
CPS task to facilitate standardization of the assessment
(Greiff et al., 2012) and to prevent examinees from further
acquiring knowledge during the control phase (Wüstenberg
et al., 2012). However, in this trade-off between standardi-
zation and complexity, examinees have limited opportunity
to display their ability to interactively regulate a CPS task
over longer series of interventions. Thus, control perfor-
mance naturally relies more strongly on the knowledge
acquired in the knowledge phase (Wüstenberg et al., 2012).
As a solution, MCS tasks could be extended by presenting
several short control phases on each CPS task, enabling
examinees to display their full control potential while
restricting the acquisition of knowledge in the control phase.

Further, the relation between knowledge and control
increased substantially when controlling for reasoning in our
study. To this end, both method effects (please remember:
method effects in the CTC(M-1) model did not generalize
across methods or traits) and different aspects and/or different
amounts of reasoning in knowledge and control might have
facilitated a spurious empirical difference between the two
trait factors. That is, even though reasoning explained knowl-
edge and control roughly to the same extent, different aspects
of reasoning (e.g., inductive reasoning for knowledge) might
be related to knowledge and control, respectively. After
controlling for these aspects by partialling reasoning out, the
distinction between knowledge and control vanished, indicat-
ing differential influences of reasoning. However, with no
straightforward explanation at hand at this stage, we need to
further understand the relations of different aspects of CPS in
terms of internal validity and in combination with other
cognitive abilities such as reasoning. The results reported here
should be considered a first starting point.

3.3. Main finding 3: CPS shows incremental validity beyond
reasoning

Recent results indicate that CPS is moderately related to
other cognitive abilities and exhibits predictive validity beyond
them (e.g., Danner et al., 2011; Greiff, Holt, et al., 2013; Greiff,
Wüstenberg, et al., 2013). In fact, these empirical findings along
with a strong focus on problem solving in education (Mayer &
Wittrock, 2006) facilitated the inclusion of CPS in the PISA 2012
survey.

Nevertheless, all previous accounts of the predictive validity
of CPS using academic achievement as the criterion have been
limited to specific assessment instruments and, thus, lacked
generalizability. In this study, we examined relations between
CPS and reasoning on the construct level and extended accounts
of predictive validity to several CPS assessment instruments
(Campbell & Fiske, 1959). In the CTC(M-1) model we tested,
knowledge and control were different from reasoning, and CPS
exhibited predictive validity beyond reasoning when predicting
natural science grades, thus indicating construct validity and
convergent validity for CPS. Reasoning predicted social science
grades weakly and CPS not at all, which was expected as grades
in the social area are generally less well-predicted than in the
natural sciences. Beyond this explanation, the finding that CPS
predicts natural science grades but does not predict grades in the
social sciences is aligned with the conceptualization of CPS.
MicroDYN, the Genetics Lab, and MicroFIN all require a
systematic approach to understanding causal connections in
new situations and, subsequently, they require the application of
this knowledge. That is, taking a scientific and systematic
approach toward MCS tasks usually results in better perfor-
mance, and according to Klahr and Dunbar (1988), such an
approach can be directly related to problem solving in the
context of scientific discovery.

Klahr and Dunbar (1988) describe the scientific acquisi-
tion of knowledge as a dual search for hypotheses and
information that involves searching for hypotheses to
explain information as well as searching for information to
test these hypotheses (see also Klahr, 2002). The result of
this search is assessed in CPS knowledge scores (i.e., by
evaluating causal diagrams in MicroDYN and the Genetics
Lab or by asking questions about the causal structure of the
problem situation in MicroFIN). Applying the knowledge
generated in the subsequent attempt of system control in
CPS is essentially the search for a solution to the problem
(Newell & Simon, 1972). The effectiveness of searching for
information, hypothesis building, and carrying out solutions
in the process of CPS may depend heavily on explicit and
implicit knowledge about when and how to apply specific
strategies such as systematic variation and on the use of
heuristics (Kuhn, 2000) such as a means-end analysis,
hill-climbing, or random generate-and-test (Klahr, 2002).
For instance, if participants want to control a MicroDYN task
after having acquired a sufficient amount of knowledge
via hypothesis testing, they have to know how to plan
interventions and how to use certain heuristics such as a
means-end analysis. That is, participants have to abstract
from irrelevant details and have to generate a plan for the
specific problem at hand (cf. Klahr, 2002; Newell & Simon,
1972). Further, they have to understand that some strategies
may be more efficient than others and some heuristics more
appropriate than others for a specific complex problem
(Klahr, 2002). Thus, principles of scientific discovery (i.e.,
experimental hypothesis testing) as well as the use of heuristics
(i.e., means-end analysis) may play important roles in CPS.

Beyond the ability to use domain-general principles of
scientific discovery and the application of strategies and
heuristics, learning may play an important role in CPS tasks. In
fact, acquiring knowledge about an unknown nontransparent
complex system tells us a lot about a person's ability to learn
within the testing procedure itself. Subsequently, this novel
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information needs to be applied in CPS tasks. Flexibly adapting
to new situations, penetrating them, and applying new
information is closely related to learning and applying what
was learned. Both aspects are integral parts of CPS. To this end,
CPS tasks are very similar to trainability tests.7 Typically,
trainability tests contain work samples to test behavior that is
important for specific jobs (e.g., the job of an electrician)
without relying on previous experience in this job (Sackett,
2000). They involve a period of time in which participants can
acquire relevant knowledge before performance is assessed
(Roth, Buster, & Bobko, 2011), similar to the exploration phase
found in CPS tasks (Greiff et al., 2012). Although important
differences between CPS tasks and trainability tests exist (e.g.,
trainability tests clearly apply to a specific content area,
whereas this holds for CPS tasks to a lesser extent), the
principle of learning central to trainability tests is also found
in the concept of CPS and its assessment instruments.

Given that learning and general principles of scientific
discovery are integral parts of CPS, we argue that these
aspects may be responsible for the added value of CPS. Apart
from these explanations, other cognitive and noncognitive
constructs such as personality or motivation may be related
to the incremental validity of CPS. However, empirical
evidence on these issues is scarce, and we strongly encourage
future research to address these issues more comprehen-
sively by providing further empirical evidence.

3.4. Limitations

Some limitations in our study need consideration. First,
the sample size was small with respect to the number of data
points and parameters. Nevertheless, parameter estimates
remained stable across analyses, and Yu (2002) reports that
valid parameter estimates can be found in SEM for N b 200.
In addition, the variance in our sample was restricted as only
university students were assessed. We can only conjecture
about the specific impact of this restriction, but usually
restricted variance artificially decreases correlations and path
coefficients. We may, therefore, expect higher correlations
between CPS, reasoning, and natural science grades in a
nonrestricted sample. This restriction in variance may further
be responsible for the lack of (substantial) prediction of social
science grades, which are usually predicted by measures of
cognitive ability. On the other hand, in comparison to this
study, Greiff, Wüstenberg, et al. (2013) found similarly sized
relations between CPS and reasoning in a sample that
covered the full range of cognitive ability. Thus, we conclude
that our results need to be interpreted with caution and that
future research needs to pay special attention to providing
data based on less selective samples. Further, in CTC(M-1)
models, one reference method is arbitrarily chosen
(MicroDYN in our study). A disadvantage is that results may
change depending on which method is used as the bench-
mark. However, several advantages of the CTC(M-1) model
outweigh this disadvantage, andMicroDYN appeared to work
well as the reference method as indicated by the nonsignif-
icant paths between the other two methods and academic
achievement when evaluating predictive validity. The

operationalization of intelligence was rather narrow given
that only reasoning was assessed. However, reasoning is
considered an excellent marker of fluid intelligence, and
Carroll (1993) places it at the core of intelligence. Neverthe-
less, in line with Wüstenberg et al. (2012), we agree that a
more comprehensive operationalization of intelligence
would be useful, which, for instance, should relate to the
Carroll–Horn–Cattell theory of general mental ability
(McGrew, 2009). In fact, limiting intelligence to measures
of reasoning is a general shortcoming in studies investigat-
ing the relation between CPS and intelligence, and this
conceptualization needs to be expanded in future research.

3.5. Conclusion

Complex cognitive abilities were considered relevant long
before computers became available in assessment practice to
place more complex demands on examinees, but the
translation of these abilities into valid assessment instru-
ments was severely constrained by the limitations that were
inherent to paper–pencil tests. That is, one could say that
there was an “impasse” in cognitive ability testing—a
mismatch between the assessment requirements and the
operators available to develop it further. As a consequence,
researchers had to rely on paper–pencil-based assessments
of intelligence despite the limitations associated with them
(Rigas et al., 2002). With the introduction of computers into
assessment practices, an entirely new world of opportunities
both in terms of concepts and assessment instruments
opened up (Bunderson et al., 1989), but just a few years
agoWilliamson et al. (2006) stated that our knowledge about
abilities such as CPS had advanced surprisingly little over the
last 2 decades. To this end, this study provided evidence for
the convergence of different measures of CPS and extended
previous results on predictive validity gathered with specific
CPS assessment instruments.

On a more general level, there is no doubt that measures
of intelligence are relevant predictors of (cognitive) out-
comes, but demands in our world are moving rapidly toward
increased complexity and, thus, toward an increased de-
mand for CPS (Autor et al., 2003). In other words, cognitive
challenges in our lives grow more complex every single day
and so do the cognitive abilities we need. Bearing in mind
that people must constantly interact with dynamic environ-
ments (OECD, 2010), solely using simple task environments
to measure cognitive performance does not meet the
requirements of modern assessment. The world moves on
and the assessment of cognitive abilities such as CPS has to
keep pace.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.intell.2013.07.012.
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This study is about different approaches to assessing Problem Solving Competency (PSC) applied in international
large-scale assessments: Analytic Problem Solving (APS) and Interactive Problem Solving (IPS). Based on a uni-
versity student sample (n = 339) and a high-school student sample (n = 577) we found that both approaches
are highly interrelated in both samples, even after controlling for reasoning (R2= .33 to .52) indicating that both
approaches address a common core of PSC. However, our results also indicate that unique aspects of APS and IPS
(beyond each other and reasoning) are explanatory for school achievements in the high-school student sample.
However, in the university student sample, only APS has a unique contribution to explaining school achieve-
ments (beyond IPS and reasoning) and our findings indicate, that APS – and not interactivity itself –may explain
the incremental validity of IPS (beyond reasoning) reported in previous studies. Implications for problem solving
research and educational practice are discussed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Solving real problems is a complex endeavor: Even the most intelli-
gent persons can fail solving realistic and complex problems, if they
don't have important content knowledge or don't know adequate
search strategies as well as when to apply them in an adaptive way
(cf. Dörner, 1996; Fischer, Greiff, & Funke, under review). This paper is
about some of the most important components of Problem Solving
Competency (PSC, cf. Fleischer, Wirth, & Leutner, 2014; Greiff &
Fischer, 2013a;Wirth & Klieme, 2003) and their interrelations. Problem
Solving Competency can be understood as the ability to figure out a so-
lution method for reaching ones goal if no such method is obvious (cf.,
Duncker, 1945; Wirth & Klieme, 2003), that is, to represent and solve
problems in various domains (cf. Bassok & Novick, 2012; Schoppek &

Putz-Osterloh, 2003). In international large-scale assessments two dif-
ferent kinds of problems have been proposed for assessing PSC (OECD,
2014):

1) One kind of problem requires a single choice of a solution based on
the information given at the outset. A characteristic example for
this kind of problem is the problem of finding the shortest path be-
tween a set of locations based on a map before actually starting to
travel. Problems of this kind can be solved analytically, as all the in-
formation required for finding a solution is given at the outset of the
problem. We will refer to this kind of problem solving as Analytic
Problem Solving (APS).

2) The other kind of problem requires a series of multiple choices,
where later choices can be influenced by the results of previous
choices (also known as Dynamic Decision Making, e.g., Gonzalez,
Lerch, & Lebiere, 2003). For instance, after starting a travel, the initial
plan of which locations to see may be adapted dynamically to
unforeseen changes in the situation (e.g., road works on certain
paths). In this kind of problem, the problem solver can adapt his
or her initial plans and knowledge at multiple points in time, be-
cause there is feedback after each interaction with the problem.
We will refer to this kind of problem solving as Interactive Problem
Solving (IPS).
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Both kinds of problems1 have been proposed tomeasure PSC, but up
to now it has never been tested conclusively, if performance in both
measures (APS and IPS) indicates distinct facets of PSC, or if they can
be considered to address a common core of PSC (e.g., strategies for ana-
lyzing complex problem statements, or for systematically structuring
prior knowledge and complex information in a goal-oriented way)
sufficiently distinct from logical reasoning (Raven, 2000). In the
Programme for International Student Assessment (PISA) 2012, both
kinds of problems have been used to assess a single underlying PSC fac-
tor (OECD, 2014). The studies of Wirth and Klieme (2003) and Scherer
and Tiemann (2014) presented first evidence for a multidimensional
structure of PSC but they did neither control for reasoning nor analyze
external validity of the facets reported.

In the current paper we will clarify the conceptual interrelations of
reasoning and PSC and we will present empirical evidence based on
two samples (577 high-school students and 339 university students)
to demonstrate that APS and IPS address a common core of PSC that
cannot be explained by reasoning, and that APS and IPS additionally ad-
dress unique aspects each, which are important for explaining external
criteria beyond reasoning. In the discussion we will focus on findings
consistent between samples.

1.1. (Why) PSC is conceptually different from reasoning

It seems obvious that basic logical reasoning (e.g., forming inductive
or deductive conclusions based on facts or premises, cf. Carpenter, Just,
& Shell, 1990; Mayer, 2011), is closely related to problem solving
(Mayer, 2011) and necessarily involved in each valid approach to assess
PSC (cf. Greiff & Fischer, 2013a; Wüstenberg et al., 2012). However, in
addition to this kind of reasoning PSC also implies a large amount of
crystallized2 abilities (Postlethwaite, 2011), that is, “the knowledge and
language of the dominant culture” (Horn & Masunaga, 2006, p. 590).
More specifically, solving problems in a competent way involves
“experimental interactions with the environment” (Raven, 2000,
p. 54) and depends on a large base of procedural and declarative knowl-
edge on how andwhen to perform different search strategies in order to
adequately represent and solve problems (e.g., Dörner, 1996). The im-
portance of crystallized knowledge, especially knowledge about strate-
gies, for PSC has often been emphasized (e.g., Scherer & Tiemann, 2014;
Schoppek & Putz-Osterloh, 2003; Strohschneider & Guss, 1999; Tricot &
Sweller, 2014) and is a central conceptual difference to basic logical
reasoning.3

If this claim is correct, each valid operationalization of PSC should
prove to be incrementally valid, compared to tests of reasoning with re-
gard to external criteria such as academic or occupational success. To
our knowledge, it is an open question if common variance between cur-
rent instances of Analytic and Interactive Problem Solving (e.g., Scherer
& Tiemann, 2014) can be attributed to reasoning only.

The present study aims to clarify if both APS and IPS are valid ap-
proaches to assessing PSC, that is, if they address “more than reasoning”
(Wüstenberg et al., 2012) with regard to explaining (1) each other or
(2) school grades (as external criteria of PSC).

1.2. Concept and empirical results concerning Analytic Problem Solving

For a long time, PSC has been assessed by APS tasks, that is, by
confronting participants withmultiple heterogenous problems each re-
quiring a single solution to be generated analytically (e.g., Boggiano,
Flink, Shields, Seelbach, & Barrett, 1993; Fleischer, Buchwald, Wirth,
Rumann, & Leutner, under review; Fleischer, Wirth, Rumann, &
Leutner, 2010; OECD, 2003). For instance, in PISA2003 PSCwas assessed
by a set of multiple problems (OECD, 2003) that required (1) decision
making under constraints, (2) evaluating and designing systems for a
particular situation, or (3) trouble-shooting a malfunctioning device or
system based on a set of symptoms (OECD, 2004, p. 61). All problems
were designed to be realistic and refer to “cross-disciplinary situations
where the solution path is not immediately obvious andwhere the liter-
acy domains or curricular areas thatmight be applicable are notwithin a
single domain of mathematics, science or reading” (OECD, 2003, p. 156;
see also Leutner, Funke, Klieme, & Wirth, 2005a,b; Leutner, Wirth,
Klieme, & Funke, 2005b).

Empirically, APS is highly correlated to performance in different
domains like mathematics (r = .89), reading (r = .82) and science
(r = .80) on a latent level (OECD, 2004, p. 55). Due to its broad
operationalization APS is also closely related to – but yet empirically dis-
tinct from – reasoning (r= .72; Leutner, Klieme, Meyer, &Wirth, 2004;
r = .67, Leutner, Fleischer, & Wirth, 2006; r = .60 Scherer & Tiemann,
2014). In general, APS seems to bemore strongly related to intelligence
and school achievements than IPS is (cf., Leutner et al., 2005a,b; Leutner,
Fleischer, Wirth, Greiff, & Funke, 2012; Wirth & Klieme, 2003). To our
knowledge there is no study explicitly examining the incremental
value of APS over and above measures of reasoning and IPS.

1.3. Concept and empirical results concerning Interactive Problem Solving

IPS tasks are a more recent and computer-based approach to
assessing PSC that evolved from research on Complex Problem Solving
and Dynamic Decision Making (cf. Fischer, Greiff, & Funke, 2012). The
defining feature of IPS is that the problem solver can not only rely on
the information given at the outset, but must adapt his or her hypothe-
ses (about how the problem works) and plans (about how to reach
one's goals) while interacting with the problem (cf. Fischer et al.,
2012; Klahr, 2000). Thus, the IPS approach focuses on effective strate-
gies for searching the spaces of information and hypotheses as well as
the resulting problem space (Greiff et al., 2013b). Fig. 1 illustrates an ex-
ample of a typical interactive problem: This problem is an interactive
computer-simulation based on a complex4 abstract linear equation
model (cf. MicroDYN approach, Greiff, 2012; Greiff, Fischer, Stadler, &
Wüstenberg, in press). It is about a handball-team, that can be trained
by applying different amounts of three different trainings (labeled A,
B, & C), with each training possibly influencing motivation, power of
throw and exhaustion of the team. The problem has to be solved in
two subsequent phases: In a first phase, the problem solver can vary
the values of certain input variables (in this case representing the
amounts of three trainings, shown on the left side of the screen in
Fig. 1), and observe the values of certain output variables (on the right
side of the screen in Fig. 1). In this phase, his or her goal is to find out
about the causal structure of the simulation and to draw his or her
hypotheses into a causal model at the bottom of the screen (problem
representation, sometimes referred to as knowledge acquisition, see
Fig. 1). In a subsequent phase the problem solver is instructed to reach
a set of well-defined goals (see the values in brackets in Fig. 1) by

1 In the literature on complex problem solving (e.g., Funke, 2003; Scherer & Tiemann,
2014) and dynamic decision making (e.g., Edwards, 1962), sometimes APS and IPS have
also been referred to as static vs. dynamic decision problems, or as simple vs. complex
problems, respectively.

2 Traditional measures of “crystallized intelligence” are often tests of highly general de-
clarative knowledge. They focus on breadth instead of depth of the individual's knowledge
base (i.e., they “measure only the elementary knowledge, the beginning [declarative]
knowledge, in the various fields of human culture”, Horn & Masunaga, 2006, p. 597).
The concept of crystallized intelligence represents a broader and more diverse range of
knowledge (Horn&Masunaga, 2006)— e.g., procedural knowledge as it is tapped by some
tests of expertise or PSC, for example.

3 As a result of these crystallized aspects, PSC can be assumed to be less domain-general
than reasoning as well as more prone to training (cf. Scherer & Tiemann, 2014).

4 Of course one could also simulate even more complex problems containing aspects like
negative feedback (e.g., predator–prey-systems, Cushing, 1977; or the sugar-factory-
simulation, Berry & Broadbent, 1984), phase transitions, or deterministic chaos
(e.g., Verhulst, 1839) within the framework proposed by Funke (2001) but each of these as-
pects again is likely to address additional or different skills and strategies. Traditional
MicroDYN tests seem to reliably address a small set of skills (cf. Greiff & Fischer, 2013a,b;
Funke, 2010), that are central for solving a wide range of analytic and/or complex problems.
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specifying a series of inputs (problem solution sometimes referred to as
knowledge application, see Fig. 1).

Recent empirical studies shed light on the aspects of PSC that are
assessed within this operationalization of the IPS approach: In the first
phase, finding an adequate problem representation seems to primarily
depend on applying the control-of-variables strategy, that is, varying
one thing at a time (r = .97 on a latent level; Wüstenberg et al.,
2012), and it seems to indicate a thoughtful application of adequate
strategies in the dual-search of hypotheses and information (Greiff
et al., 2013b). In the second phase of IPS,finding a solution primarily de-
pends on the application of basal strategies for searching well-defined
problem spaces, that is, functional equivalents of means–end analysis
(Greiff et al., 2013b; Simon, 1975). The strategies for solution in IPS
are highly similar to the ones involved in solving tests of reasoning. Cor-
respondingly, most studies on the incremental validity of the IPS ap-
proach demonstrated incremental validity over and above different
measures of reasoning only for the representation but not for solution
in IPS (Greiff & Fischer, 2013a; Greiff et al., 2013b; Wüstenberg et al.,
2012).

1.4. Hypotheses

In the current paper, wewill test hypotheses regarding twomain re-
search questions: (1) doAPS and IPS address a common core of Problem
Solving Competency that cannot be explained by reasoning? And (2) do
APS and IPS additionally address unique aspects of external criteria
each?

With regard to the first research questionwe expect APS to be corre-
lated to both facets of IPS due to a common impact of reasoning
(Hypothesis 1a). Furthermore, when regressing APS on both facets of

IPS aswell as on reasoning, we expect a unique contribution of problem
representation in IPS (Hypothesis 1b) due to the additional impact of
PSC on both IPS and APS, but we expect no unique contribution of prob-
lem solution in IPS because the search for a solution is very closely relat-
ed to reasoning (Hypothesis 1c).

With regard to the second research question, we will examine the
external validity of the IPS and the APS approach: We expect both ap-
proaches to be predictive for school grades as external criteria of Prob-
lem Solving Competency (Hypothesis 2a). More specifically, when
regressing school grades on APS and IPS as well as on reasoning we ex-
pect a unique contribution of problem representation in IPS (Hypothesis
2b) because the strategic knowledge indicated by the representation
may be important for school grades even beyond APS due to interactive
aspects (cf.Wüstenberg et al., 2012). Again,we expect no unique contri-
bution of problem solution in IPS because of its close relation reasoning
(Hypothesis 2c). Most of all we expect a unique contribution of APS
(Hypothesis 2d), because APS is known to be more closely related to
school grades in different domains (cf. Scherer & Tiemann, 2014).

2. Method

2.1. Participants

We assessed two samples: One sample consists of 577 German un-
dergraduate high-school students (age:M=14.94; SD=1.29; gender:
44.2% male, 46.8% female, 9% missing), mainly in the 9th grade (45.1%)
but also from 8th grade (26.7%), 10th grade (14.6%) and 11th grade
(7.4%) — with 6% missing an entry. Participants in the high-school stu-
dent sample received 50 Euro for their class inventory. Two samples
were chosen to ensure a sufficient amount of generality concerning

Fig. 1. Screenshot of aMicroDYN simulation. Input-variables (left side of the screen) are labeledwith fictional pseudo-words, in order to not trigger any helpful prior knowledge about the
problem's causal structure. In afirst phase, a problem solver has to interactwith the problemand draw the causal structure in a causal diagram (representation at lower part of the screen).
Afterwards, in a second phase, certain goal ranges are shown for each output-variable (solution at the right side of the screen).
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our findings (factorial invariance of IPS holds across grade levels 5 and
12, e.g., Greiff et al., 2013c; Scherer & Tiemann, 2014).

The second sample consisted of 339 German university students
(age: M = 22.30, SD = 4.02; gender: 27.1% male, 67.6% female; 5.3%
missing) from different fields of study. Most participants of this sample
studied social sciences (57%), some participants studied natural sci-
ences (28%) or had a different field of study (15%). Participants in this
sample received either 25 Euro for participation or 4 h course credit.

The relations of APS, IPS, reasoning and GPA are original to this
paper.5

2.2. Materials

2.2.1. Interactive Problem Solving (representation and solution)
The IPS approach to measuring Problem Solving Competency was

operationalized by the MicroDYN test of Problem Solving Competency,
based on a set of 10 tasks in each sample. According to the detailed de-
scription in Section 1.3 of this paper each task consisted of searching for
representation and solution as two subsequent interactive subtasks (for a
detailed description of MicroDYN refer to Wüstenberg et al., 2012;
Greiff & Fischer, 2013a,b).

For each task, both the correctness of the causal diagram after phase
1 (representation) and the value of output-variables after phase 2 (solu-
tion) were scored dichotomously as either (1) correct or (0) incorrect
(cf. Wüstenberg et al., 2012) to indicate strategic knowledge for finding
adequate representations and solutions tominimal-complex interactive
problems.

2.2.2. Analytic Problem Solving
The APS approach to measuring Problem Solving Competency was

based on a set of realistic static problems that were applied in PISA
2003. In the university student sample we applied 4 items (Transit
System Q1, Holiday Q2, Course Design Q1 and Freezer Q2) whereas in
the high-school student sample we applied 6 items (Cinema Outing
Q1, Cinema Outing Q2, Irrigation SystemQ3, Holiday Q2, Transit System
Q1, Childrens' CampQ1). A detailed description of items can be found in
OECD (2004, pp. 59 ff.). The approach is elaborated in more detail in
Section 1.2.

For some problems, answers were scored dichotomously as
incorrect (0) or correct (1), for some problems answers were scored
polytomously as completely incorrect (0), partially correct (1), or
correct (2).

2.2.3. Reasoning (subtest of I-S-T 2000 R; KFT 4-12+R)
In the university student sample, reasoning was assessed using the

matrix subtest of the “Intelligence Structure Test-Revised” (I-S-T 2000
R; Liepmann, 2007). This test consisted of 20 2 × 2-matrices, each con-
taining a figural stimulus in each but one cell. In each matrix, one stim-
ulus was missing, and participants had to choose the missing figural
stimulus out of five alternatives. Answers were scored as right or
wrong. Missing values were considered wrong answers.

In the high-school student sample reasoning was assessed by the
subscale “figural reasoning” of the KFT 4-12+R (Heller & Perleth,
2000). This test consists of 23 items requiring to identify the relation
of a pair of two figures and to choose one out of five alternatives
in order to complete a second pair of figures with the same relation.
Answerswere scored as right orwrong.Missing valueswere considered
wrong answers.

2.2.4. School grades
Subjects were asked to report their final Grade Point Average (GPA;

university student sample) or their last grades in each course (high-
school student sample). In the high-school student samplewe used a la-
tent factor model to estimate the current GPA. As grades in the German
school system range from 1 (very good) to 6 (insufficient), we reversed
GPA, so that higher numerical values indicate better performance.

2.3. Procedure

The university students were tested in two sessions (each lasting
about 120 min). In the first session participants worked on the IPS test
(about 60 min) and the APS test (about 15 min). In the second session
they worked on a set of tests including the reasoning task (about
10 min).

The high-school students were tested in two sessions (45min each).
In the first session participants worked on the IPS test and in the second
session on the APS test (about 35 min) and the reasoning tasks (about
10 min).

3. Results

All latent analyses were obtained by using MPlus 5.21 (Muthén &
Muthén, 2008), commonality analysis was run in Gnu R by using the
yhat package (Rya-Mukherjee et al., 2014). WLSMV-estimators were
chosen for the structural equation models with ordinal items (cf.
Muthén & Muthén, 2007).

3.1. Measurement models

This section specifiesmeasurementmodels for each latent construct.
With regard to fit indices Hu and Bentler (1999) recommend to use
models with Comparative Fit Index (CFI) and a Tucker Lewis Index
(TLI) value above .95 and a Root Mean Square Error of Approximation
(RMSEA) below .06.

IPS was modeled as a construct with the two correlated factors
representation and solution, which fitted the data well (CFI ≥ .955,
TLI≥ .970; RMSEA≤ .053). APSwasmodeled as a one-dimensional con-
struct (CFI ≥ .949; TLI ≥ .923; RMSEA ≤ .054) in accordance with the
modeling procedure in PISA 2003 (OECD, 2005). Cronbach's Alpha for
APS was comparatively low (see Tables 1 and 2) which is consistent
with PISA 2003 (OECD, 2005; Fleischer et al., 2014) andwith prior stud-
ies on APS (Fleischer et al., 2014). Reasoningwas alsomodeled as a one-
dimensional construct (CFI≥ .96; TLI≥ .988; RMSEA≤ .046) according
to the test manual. In the university student sample each item of the
reasoning test was assigned to one of four parcels as described by
Greiff et al. (2013b) (CFI = 1.00; TLI = 1.00; RMSEA b .001). In the
high-school student sample Grade Point Average was modeled – with
slightly suboptimal fit – as a one-dimensional construct indicated by
current grades in German, English, Math, Physics, Chemistry, and Biolo-
gy (CFI = .946; TLI = .953; RMSEA = .166).

5 Other data of the university student sample was published in Greiff et al., (2013b),
who studied complex problem solving as a latent construct, with theMicroDYN test being
one of multiple indicators of complex problem solving. Part of the MicroDYN- and
reasoning-data of a subsample of the high-school student data was published in
Frischkorn, Greiff andWüstenberg (2014)who studied thedevelopment of complexprob-
lem solving.

Table 1
Latent correlations of both aspects of IPS (representation and solution), APS, reasoning and
grade point average (GPA) in the high-school student sample.

Representation Solution APS Reasoning GPA

Representation α = .807
Solution .777⁎⁎⁎ α = .766
APS .747⁎⁎⁎ .729⁎⁎⁎ α = .543
Reasoning .520⁎⁎⁎ .469⁎⁎⁎ .562⁎⁎⁎ α = .914
GPA .341⁎⁎⁎ .226⁎⁎⁎ .379⁎⁎⁎ .264⁎⁎⁎ α = .811

Note. α: Cronbach's Alpha; n = 577.
⁎⁎⁎ p b .001.
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3.2. Structural models

In order to address our first research question (Section 3.2.1) we ran
latent regressions of APS on representation, solution, and reasoning for
the high-school student sample (R2 = .643; CFI = .966; TLI = .981,
RMSEA = .035) and for the university student sample (R2 = .672;
CFI = .963; TLI = .975, RMSEA= .038). In order to address our second
research question (see Section 3.2.2) we ran latent regressions of GPA
on representation, solution and reasoning for the high-school student
sample (R2= .172; CFI= .964; TLI= .979, RMSEA= .035) and the uni-
versity student sample (R2 = .186; CFI = .963; TLI = .975, RMSEA =
.037). Explained variance was highly significant in all models (p b .01)
and variance-inflation was not indicated (variance-inflation factors
below 5 for all predictors, cf. O'Brien, 2007).

Latent correlations between all constructs assessed (see Tables 1
and 2) proved to be positive and substantial for all measures.

Additionally we ran commonality analyses (Nimon, Lewis, Kane, &
Haynes, 2008; Rya-Mukherjee et al., 2014) for each of these regression
models in order to decompose the explained variance of the criterion
into unique and shared contributions for each predictor (Rya-
Mukherjee et al., 2014).

3.2.1. Research question 1: does APS share variance with the facets of IPS
over and above reasoning?

Our first research question was whether the IPS facets representa-
tion and solution were predictive for APS performance over and above
reasoning. The regression of APS on representation, solution, and rea-
soning (see Fig. 2 for the high-school sample) indicated significant
unique contributions of representation (ß = .372–.438; p b .05) and
reasoning (ß= .209; p b .01) in both samples. The unique contribution
of solutionwas significant in the high-school student sample (ß= .341;
p b .01) but not in the university student sample (ß = .334; p = .10).

The corresponding commonality analyses (see Tables 3 and 4) re-
vealed that a large amount of the explained variance in APS could be at-
tributed to variance that is common to representation and solution (and
not common to reasoning) in both samples (R2 = .23–.43). Additionally,

a substantial amount of explained variance in APS could be attributed to
variance common to representation, solution and reasoning in both
samples (R2 = .10–.24).

In summary, we found substantial commonalities between IPS, APS
and reasoning (supporting Hypothesis 1a) as well as a unique contribu-
tion of IPS representation to explaining APS, beyond IPS solution and
reasoning (supporting Hypothesis 1b). We did not find consistent
evidence for a unique contribution of IPS solution (partially supporting
Hypothesis 1c).

3.2.2. Research question 2: can GPA be explained by unique aspects of APS
or the facets of IPS over and above reasoning?

Our second research question was whether there were unique con-
tributions of APS and the facets of IPS over and above reasoning to
predicting school grades as an external criterion of Problem Solving
Competency. The regression of GPA on representation, solution,
APS, and reasoning (see Fig. 3 for the high-school sample) indicated a
significant unique contribution of APS (ß = .336–.644; p b .05) and no
significant unique contribution of reasoning (ß = − .067–.060; p =
.392–.352) in both samples. The unique contributions of representation
and solution were significant in the high-school student sample (ß =
.241 to − .234; p b .05) but not in the university student sample
(ß = − .159 to − .133; p = .43 to 51).

The corresponding commonality analyses (see Tables 5 and 6)
underlined the importance of APS as they revealed a substantial amount
of the explained variance in GPA (R2Total = .17–.19) could be attributed
to variance that is unique to APS in both samples (R2

APS = .04–.14).
Please note, negative coefficients in Table 5 are not problematic for
the analysis: Given the positive correlations among all predictors they
indicate statistical suppression effects related to solution in the high-
school sample (Rya-Mukherjee et al., 2014).

In summary, we found substantial correlations between GPA and
both IPS and APS (supporting Hypothesis 2a) as well as a unique contri-
bution of APS to explaining GPA, beyond IPS and reasoning (supporting
Hypothesis 2d). In this regard, we did not find consistent evidence for a
unique contribution of IPS representation or IPS solution (partially
supporting Hypotheses 2b and 2c).

Table 2
Latent correlations of both aspects of IPS (representation and solution), APS, reasoning and
grade point average (GPA) in university student sample.

Representation Solution APS Reasoning GPA

Representation α = .792
Solution .846⁎⁎⁎ α = .765
APS .768⁎⁎⁎ .763⁎⁎⁎ α = .462
Reasoning .214⁎⁎⁎ .273⁎⁎⁎ .395⁎⁎⁎ α = .820
GPA .209⁎⁎⁎ .206⁎⁎⁎ .395⁎⁎⁎ .118⁎ –

Note. α: Cronbach's Alpha; n = 339.
⁎ p b .05.

⁎⁎⁎ p b .001.

Fig. 2.Unique contributions of IPS representation, IPS solution and reasoning in predicting
APS (model b) in the high-school student sample. For correlations between predictors see
Table 2. **: p b .01.

Table 3
Unique and common commonality coefficients ΔR2 and the corresponding percent of ex-
plained variance (%total) for each predictor in the regression of APS on representation, so-
lution, and reasoning based on the high-school student sample.

Variables ΔR2 %total

Unique to representation 0. 051 7. 93
Unique to solution 0. 045 7. 04
Unique to reasoning 0. 031 4. 80
Common to representation, and solution 0. 232 36. 04
Common to representation, and reasoning 0. 031 4. 83
Common to solution, and reasoning 0. 010 1. 60
Common to representation, solution, and reasoning 0. 243 37. 76
Total 0. 645 100. 00

Table 4
Unique and common commonality coefficients ΔR2 and the corresponding percent of ex-
plained variance (%total) for each predictor in the regressions of APS on representation,
solution, and reasoning based on the university student sample.

Variables ΔR2 %total

Unique to representation 0. 056 8. 26
Unique to solution 0. 030 4. 45
Unique to reasoning 0. 041 6. 03
Common to representation, and solution 0. 434 64. 19
Common to representation, and reasoning −0. 003 −0. 45
Common to solution, and reasoning 0. 015 2. 23
Common to representation, solution, and reasoning 0. 103 15. 29
Total 0. 676 100. 00
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4. Discussion

In the current paper we have outlined and contrasted two different
approaches to assessing aspects of Problem Solving Competency: One
approach is based on static problems that have to be solved analytically
(i.e., APS), whereas the other approach is about dynamic decisions in
problem situations which have to be represented and solved interac-
tively (i.e., IPS).

4.1. Research question 1: does APS share variance with the facets of IPS over
and above reasoning?

Our first question was whether performance in APS shares variance
with the crystallized strategic knowledge assessed by IPS. Indeed, we
foundAPS highly correlated to both facets of IPS, and commonality anal-
ysis revealed that – besides a medium to large amount of variance that
APS shares with IPS and reasoning (supporting Hypothesis 1a) – a large
amount of variance in APS can be explained by the facets of IPS (over
and above reasoning). Especially representation in IPS consistently
had a significant unique contribution to explaining APS (supporting
Hypothesis 1b), which demonstrates the relevance of crystallized stra-
tegic knowledge on generating and testing hypotheses (Greiff &
Fischer, 2013a,b).

The unique contribution of solution in IPS was significant in the
high-school student sample but not in the university-student sample
(partially supporting Hypothesis 1c). In this regard we didn't expect to

find a unique contribution because of the close conceptual relation be-
tween solution and reasoning. However according to the theoretical
framework of Fischer et al. (2012), in many cases of IPS it may be
more effective to rely on implicit knowledge about inputs thatwork (in-
stance-based knowledge) than to actually reason about structural
knowledge (i.e., reasoning and representation). This kind of knowledge
is not addressed in the causal model that indicates representation in IPS
(Greiff & Fischer, 2013b). Future studies should elaborate on these in-
cremental aspects of solution in IPS (cf. Fischer et al., 2012) in more de-
tail in order to clarify what they depend upon.

4.2. Research question 2: can GPA be explained by unique aspects of APS or
the facets of IPS over and above reasoning?

Our second research question was whether IPS and APS can explain
school grades and if they have unique contributions compared to each
other. Indeed, we found substantial correlations between Grade Point
Average and both APS and the facets of IPS (supporting Hypothesis
2a). More importantly, APS had a unique contribution to explaining
school grades beyond reasoning and both aspects of IPS in both samples
(supportingHypothesis 2d). Thiswas expected becauseAPSwas known
to be highly predictive for school achievements in different domains
(OECD, 2004; Scherer & Tiemann, 2014), but it has never been proven
empirically up to now.

With regard to representation and solution in IPS we found unique
contributions in the high-school student sample but not in the universi-
ty student sample (partially supportingHypotheses 2b and 2c).With re-
gard to representation in IPS we expected a unique contribution
whereas for solution in IPS we did not expect a unique contribution be-
cause of its close conceptual relation to deductive reasoning (however,
there are theoretical differences, see above). Again, future research is
needed to determine the conditions for an incremental value of IPS
with regard to the regression of GPA.

4.3. Shortcomings

First, comparisons between samples have to be drawn with caution,
as the tests we used differed between samples.6 Of course they were
highly similar in nature and can be assumed to address the same con-
structs. Nevertheless, we see a potential shortcoming here. Second,
the operationalization of school grades may have had different mean-
ings for high-school students (current grades) compared to university
students (final Grade Point Average). Future studies should additionally

Fig. 3. Unique contributions of IPS representation, IPS solution, APS and reasoning to
predicting GPA (model c) in the high-school student sample. For correlations between
predictors see Table 1. *: p b .05; **: p b .01.

Table 5
Unique and common commonality coefficients ΔR2 and the corresponding percent of ex-
plained variance (%total) for each predictor in the regressions of GPA on representation,
solution, APS, and reasoning based on the high-school student sample.

Variables ΔR2 %total

Unique to representation 0. 019 10. 73
Unique to solution 0. 019 11. 02
Unique to APS 0. 040 23. 34
Unique to reasoning 0. 002 1. 36
Common to representation, and solution −0. 013 −7. 27
Common to representation, and APS 0. 031 17. 74
Common to solution, and APS −0. 013 −7. 79
Common to representation, and reasoning 0. 003 1. 46
Common to solution, and reasoning −0. 000 −0. 10
Common to APS, and reasoning 0. 010 5. 62
Common to representation, solution, and APS 0. 020 11. 80
Common to representation, solution, and reasoning −0. 001 −0. 51
Common to representation, APS, and reasoning 0. 017 10. 12
Common to solution, APS, and reasoning −0. 002 −0. 91
Common to representation, solution, APS, and reasoning 0. 040 23. 39
Total 0. 172 100. 00

Table 6
Unique and common commonality coefficients ΔR2 and the corresponding percent of ex-
plained variance (%total) for each predictor in the regressions of GPA on representation,
solution, APS, and reasoning based on the university student sample.

Variables ΔR2 %total

Unique to representation 0. 006 3. 33
Unique to solution 0. 005 2. 40
Unique to APS 0. 135 72. 59
Unique to reasoning 0. 004 1. 95
Common to representation, and solution 0. 018 9. 63
Common to representation, and APS −0. 002 −0. 90
Common to solution, and APS −0. 003 −1. 44
Common to representation, and reasoning −0. 001 −0. 69
Common to solution, and reasoning 0. 001 0. 29
Common to APS, and reasoning 0. 001 0. 42
Common to representation, solution, and APS 0. 013 6. 93
Common to representation, solution, and reasoning −0. 001 −0. 63
Common to representation, APS, and reasoning 0. 001 0. 53
Common to solution, APS, and reasoning 0. 001 0. 37
Common to representation, solution, APS, and reasoning 0. 010 5. 23
Total 0. 186 100. 00

6 Thiswasdonebecause of thedifferent levels of competence between the two samples.
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investigate concurrent measures of success for university students, to
replicate our findings and to further validate measures of IPS and APS
(especially as skills and competence may change over time, see
Molnár, Greiff, & Csapó, 2013). On the other hand, both shortcomings
also highlight the robustness of our findings: Even in spite of these
differences, most of our findings were consistent between samples
highlighting the generalizability of our conclusions.

Please note, up to now the incremental value of assessing IPS strate-
gies compared to reasoning has been demonstrated using a variety of
reasoning tests and school grades (Greiff & Fischer, 2013a; Greiff et al.,
2013b,c; Wüstenberg et al., 2012) and the results seem to be indepen-
dent of different operationalizations as they can be attributed to a latent
underlying construct (Greiff et al., 2013b). One may argue, that repre-
sentation and solution in IPS do not cover thewhole range of interactive
strategies, but – even if we totally agree with this point – the high pro-
portion of variance in APS explained by representation and solution be-
yond reasoning (R2 = .33 to .52) indicates the centrality of the
strategies assessed for cross-curricular Problem Solving Competency
(which is basically the understanding of problem solving in PISA 2003
and PISA 2012).

4.4. Summary and outlook

Our findings clearly indicate close relations between Interactive and
APS (beyond reasoning), as well as the incremental value of APS for
predicting school grades (beyond IPS and reasoning) in both samples.
For the first time, these findings show that APS – just like IPS – requires
more than reasoning and thus is a promising measure of Problem Solv-
ing Competency for both High-School students and University Students.
We did not find consistent evidence for a unique contribution of IPS
(beyond APS and reasoning). More specifically, we found an incremen-
tal value of representation in IPS in the high-school sample, but not in
the university student sample. This finding empirically supports the
idea of complementing measures of APS with measures of IPS in
school-related assessments, as it was done in PISA 2012 for instance.

In both samples, we found IPS to be closely related to APS beyond
reasoning. Thus, both APS and IPS seem to address a common core of
Problem Solving Competency (beyond reasoning) and APS seems to
be more closely related to school grades than IPS. Our findings indicate
that the analytic aspects of ProblemSolving Competency assessed by IPS
tasks (Scherer & Tiemann, 2014)may account for the incremental value
of IPS beyond reasoning reported in previous studies on university stu-
dent samples (e.g., Wüstenberg et al., 2012).

Implications for educational practice are manifold: In assessment
contexts APSmay beused to complement traditional assessment instru-
ments (especially when GPA is an intended criterion) and in training
contexts PSC maybe fostered by training and teaching strategic knowl-
edge concerning how to acquire and how to apply knowledge or how
to analyze evidence in IPS and APS (Scherer & Tiemann, 2014) – and
much more easily so than reasoning. Realistic complex problems –

from managing a Tailorshop (e.g., Danner et al., 2011) to solving in-
basket tasks (e.g., Fischer & Funke, 2013) – shed light on the complexity
of Problem Solving Competency itself (cf. Fischer et al., 2012). The tasks
presented in the current studymaybe afirst step to assessing certain as-
pects of PSC reliably, but the full potential of computer-based assess-
ment still waits to be fully exploited.
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