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Abstract

Septic encephalopathy is associated with rapid deterioration of cortical functions. Using magnetic resonance
imaging (MRI) we detected functional abnormalities in the hippocampal formation of patients with septic delirium.
Hippocampal dysfunction was further investigated in an animal model for sepsis using lipopolysaccharide (LPS)
injections to induce endotoxemia in rats, followed by electrophysiological recordings in brain slices. Endotoxemia
induced a deficit in long term potentiation which was completely reversed by apamin, a blocker of small conductance
calcium-activated potassium (SK) channels, and partly restored by treatment with physostigmine (eserine), an
acetylcholinesterase inhibitor, or TBPB, a selective M1 muscarinic acetylcholine receptor agonist. These results suggest
a novel role for SK channels in the etiology of endotoxemia and explain why boosting cholinergic function restores
deficits in synaptic plasticity. Drugs which enhance cholinergic or M1 activity in the brain may prove beneficial in
treatment of septic delirium in the intensive care unit.
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Introduction
Septic encephalopathy is sepsis-related brain dysfunction
with a rapid deterioration of cortical functions leading to
disorientation, confusion, cognitive deficits and memory
impairment [10, 39, 59]. The pathogenesis is multifactor-
ial and the underlying mechanisms are not yet fully
understood [9, 22, 30, 44, 47, 49]. Indeed, septic enceph-
alopathy remains a clinical diagnosis of exclusion with a
high mortality rate (50–70 %) [5, 18]. Several clinical
screening methods have been developed to improve the
diagnosis of septic delirium [4, 21, 58], however pharma-
cological sedation of many intensive care unit (ICU)
patients complicates or prevents the evaluation of their
cognitive status [20]. A few novel diagnostic procedures
have been recently described and several studies have
detected changes in the septic brain using functional

brain imaging [3, 23, 42, 45, 53]. However, the accurate
diagnosis of septic delirium remains problematic, often
requiring the combination of various approaches.
A cholinergic anti-inflammatory pathway is known to

modulate the systemic inflammatory response to endo-
toxin. Inflammatory activation of acetylcholine release from
vagus fibres stimulates hypothalamic-pituitary-adrenal
axis responses. Vagal stimulation also can attenuate
pro-inflammatory cytokine release and alterations in
synaptic function accompanying sepsis in the prefrontal
cortex [11, 24]. Moreover, advances in the field of neuroim-
munology have shown that the nervous and immune sys-
tems interact during inflammation [31, 40, 43, 46, 54, 57].
This interaction has been previously described as the
‘inflammatory reflex’ [55]. Our group has previously
shown that increasing acetylcholine receptor activity
with either blood–brain barrier permeable (physostigmine)
or impermeable (neostigmine) cholinesterase inhibitors,
which prolong the lifetime of endogenous acetylcholine,
reduces intracellular cytokine synthesis by macrophages,
thus reducing the inflammatory response and improving
survival [26]. However, the alterations in cholinergic

* Correspondence: aleksandar.zivkovic@med.uni-heidelberg.de; bengtson@
nbio.uniheidelberg.de
†Equal contributors
1Department of Anesthesiology, Heidelberg University Hospital, Im
Neuenheimer Feld 110, 69120 Heidelberg, Germany
2Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of
Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
Full list of author information is available at the end of the article

© 2015 Zivkovic et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zivkovic et al. Acta Neuropathologica Communications  (2015) 3:67 
DOI 10.1186/s40478-015-0245-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-015-0245-8&domain=pdf
mailto:aleksandar.zivkovic@med.uni-heidelberg.de
mailto:bengtson@nbio.uniheidelberg.de
mailto:bengtson@nbio.uniheidelberg.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


neurotransmission or the clinical efficacy of anticholines-
terases in sepsis-induced delirium remain unclear.
A causal link between cholinergic dysfunction and

delirium has been hypothesized on the basis of clin-
ical observations [27]. Delirium involving impaired
learning and memory occurs in central anticholinergic
syndrome (CAS), a condition caused by general anesthesia
including anticholinergic agents. CAS is commonly
treated with cholinesterase inhibitors [32]. Clinical
studies examining the treatment of sepsis-induced de-
lirium with the cholinesterase inhibitor, rivastigmine,
have shown positive results, although sample sizes were
too small to be conclusive [36, 38]. A multi-center
double-blind and placebo-controlled study was inter-
rupted due to increased mortality in the rivastigmine
treatment group [19]. Thus the use of cholinesterase
inhibitors to treat delirium in critically ill patients
remains controversial and further studies investigating
the pathophysiological mechanism underlying septic
delirium are required.
The mechanism linking cholinergic dysfunction with

delirium may involve cholinergic modulation of gluta-
matergic synapses in the hippocampus. Glutamatergic
synapses can undergo use-dependent changes in synaptic
strength, commonly referred to as synaptic plasticity, be-
lieved to underlie learning and memory. Bursts of synaptic
activity can induce long lasting strengthening of excitatory
synapses, a phenomenon termed ‘long-term potentiation’
(LTP), which was discovered in the hippocampus [7] and
has been observed at virtually every glutamatergic synapse
in the brain [6]. Interestingly, LTP can be modulated by
other neurotransmitters such as dopamine and acetylcho-
line [37, 56] and the muscarinic M1 subtype of cholinergic
receptors are known to mediate synaptic plasticity by inhi-
biting small-conductance Ca2+-activated potassium (SK)
channels at hippocampal synapses [8, 13, 25].
Here we present evidence from magnetic resonance

imaging (MRI) revealing functional abnormalities in the
hippocampus of critically ill patients diagnosed with
sepsis-induced encephalopathy. We used a rat model of
sepsis, endotoxemia, to investigate alterations in hippo-
campal function and LTP in rat brain slices using the
single cell electrophysiology technique of whole-cell
patch clamp. Basic cell functions were not affected by
endotoxemia, however, synaptic plasticity was impaired
as has been previously shown [33, 52]. Here we identify
the involvement of SK channels in this LTP deficit
which could be partly rescued by boosting cholinergic
function. We thus postulate that SK channels are the
mechanistic link explaining why endotoxemia-induced
downregulation of cholinergic activity affects hippocampal-
dependent cognitive functions by suppressing the ability of
hippocampal synapses to undergo changes in their synaptic
efficacy.

Materials and methods
Patient recruitment criteria
The study included 5 patients diagnosed with severe
systemic inflammation, according to the criteria of the
Surviving Sepsis Campaign: International Guidelines for
Management of Severe Sepsis and Septic Shock [17].
Identifying the precise starting time point of the sys-
temic inflammation in critically ill patients is a complex
procedure. Therefore, the inclusion criteria for the
patients, based on International Guidelines for Manage-
ment of Severe Sepsis and Septic Shock allowed for a
standardized and early diagnosis and therapy in the ICU
environment.

MRI imaging
MRI was performed on human patients using a 1.5 T
scanner (Magnetom Aera; Siemens Medical Systems,
Erlangen, Germany) with echo planar hardware (gradient
power 45 mT/m and rise time 200 mT/m/ms). After
using orthogonal localizers, standard transverse continu-
ous 5 mm images, T2 Flair with a FOV of 270 mm, DWI
(echo planar, SE, repetition time 6300 ms; echo time
113 ms, 250 mm FOV, 5 mm slice thickness, 192 × 192
matrix, three b values = 0 to 1000, diffusion gradients in
three orthogonal planes) images in the transverse oblique
plane were acquired. Further DW sequences and matching
high-resolution T2 images (voxel size 0.6 × 0.6 × 2 mm,
FOV of 220, repetition time 6470 ms; echo time 105 ms)
were aligned with the hippocampus and positioned per-
pendicular to the hippocampal coronal sequences with
differing phase-encoding directions to evaluate the medial
temporal lobes with reduced artifacts. Maps of the appar-
ent diffusion coefficient (ADC) were obtained by a linear
least-squares fit on a pixel-by-pixel basis after averaging of
the direction-dependent DW images (Additional file 1).
ADC maps and DW, T2-weighted images were analyzed
for acute and chronic abnormalities [45]. The study proto-
col was approved by the local ethical committee. Written
informed consent was received from participants or their
legal designees prior to inclusion in the study (Ethics
Committee of the Medical Faculty of Heidelberg Trial-
Code No. S-248/2013).

Endotoxic challenge
All experimental procedures and protocols used in this
study were reviewed and approved by the Governmental
Animal Protection Committee (Protocol Code No. 35–
9185 81/G-147/12). Adult Wistar rats, weighing 250–350 g
were kept in a 12 h day/light cycle and had free access to
food and water. Endotoxemia was induced by injecting
animals with 6 mg/kg lipopolysaccharide (LPS, Sigma)
i.p. and returning them to the cage. Control animals
did not receive any treatment. Vital functions of the
pretreated animals were visually monitored every hour.
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Six hours after LPS injection, rats were sacrificed. This
technique provided stable and reproducible experimental
conditions, improving our comparison between treatment
groups. Alternative animal sepsis models such as peritonitis
induced by bacterial inoculum or cecal ligation and perfor-
ation (CLP) are well established approaches, however, the
ensuing immune reactions are more difficult to quantify,
producing unnecessary experimental variability.

Acute brain slice preparation
Brain slices were prepared either from LPS-pretreated or
control rats. Rats were anesthetized with Sevoflurane
(Abbott, Wiesbaden, Germany) by inhalation and killed
by decapitation. The brain was rapidly removed and
submerged in ice cold artificial cerebrospinal fluid (ACSF,
in mM: NaCl, 125; KCl, 3.5; MgCl2, 1.3; NaH2PO4, 1.2;
CaCl2, 2.4; glucose, 25; NaHCO3, 26; gassed with 95 O2

and 5 % CO2). A vibratome (CU65 Cooling Unit &
HM650V Vibratome, Microm, Walldorf, Germany) was
used to cut 300 μm thick horizontal hippocampal slices in
ACSF maintained at 0 °C. Slices were collected and trans-
ferred to a holding chamber containing either ACSF or
ACSF with physostigmine (10 μM, Dr. F. Köhler Chemie
GmbH, Bensheim, Germany). Slices were maintained at
32 °C for the first 30 min and then returned to
room temperature until used for recordings over the
subsequent four hours.

Patch-clamp recordings
Single slices were transferred to a recording chamber
(PM-1, Warner Instruments, Hamden, CT, USA or PC-
R, Siskiyou, OR, USA), secured with a platinum harp
and completely submerged with continuously flowing
(3 ml/min) ACSF. Whole-cell patch-clamp recordings
were made from CA1 hippocampal pyramidal neurons.
Patch electrodes (3–4 MΩ) were made from borosilicate
glass (1.5 mm, WPI, Sarasota, FL, USA) and filled with a
potassium gluconate based solution (containing in mM:
K-gluconate, 105; KCl, 30; HEPES, 10; K2-phosphocreatine,
10; Mg2-ATP, 4; Na3-GTP, 0.3; 293 mOsm: pH 7.3 with
KOH). Recordings were made with a Multiclamp 700A
or 700B amplifier, digitized through a Digidata 1322A
A/D converter and acquired using pClamp 9 software
(Axon Instruments and Molecular Devices, CA, USA).
Data analysis was performed using IGOR PRO soft-
ware (Wavemetrics, Lake Oswego, OR). All membrane
potentials have been corrected for the calculated junc-
tion potential of −11 mV (JPCalc program by Dr. Peter
H. Barry).

Stimulation protocols
Paired pulse recordings were performed in standard so-
lutions using a stimulation intensity adjusted to produce
an EPSC around 200 pA in amplitude. Whole-cell LTP

recordings were made in voltage clamp mode with the
holding membrane potential at −70 mV. Evoked excita-
tory post-synaptic currents (EPSCs) were recorded in
response to 100 μs long constant current pulse stimuli
from constant current bipolar stimulus isolator units
(A365, World Precision Instruments, Sarasota, Florida,
USA). Stimulus isolators were connected to an Ag/AgCl
electrode in the recording chamber and a glass patch
pipette filled with ACSF and placed onto the surface of
the slice. Stimuli were evoked at 0.1 Hz at an intensity
adjusted to produce a single EPSC with average ampli-
tude of 100–200 pA. EPSCs in the paired and control
pathways were stimulated 400 ms apart. One stimulating
electrode was positioned in stratum radiatum, in a prox-
imity of the patched cell. Second stimulating electrode
was placed in stratum radiatum, 50–100 μm away from
the patched cell. Stable baseline measurements were
obtained for at least 10 min before LTP was induced.
High frequency stimulation (HFS) protocols consisted of
100 Hz stimulations of 1 s (i.e., 100 stimuli), repeated 4
times at 60 s intervals. During the HFS cell was current-
clamped at 0 pA. The average response amplitude 10 min
before LTP induction was taken as the baseline, and all
values were normalized to this number. All recordings
were made at room temperature.

Statistics
Normal distribution of the data was tested using D’Agostino
and Pearson omnibus normality test. One-way ANOVA
followed by Tukey’s or Sidak’s multiple comparisons
tests were performed using GraphPad Prism version
6.0f for Mac (GraphPad Software, La Jolla California USA,
www.graphpad.comworks). The statistical analysis has
been corrected for repeated measures. The sample size for
each experiment was determined by power calculations
based on previous experience with similar experiments.
Data are presented as mean ± SEM.

Results
Hippocampal changes observed in MRI scans of patients
with septic delirium
Critically ill human patients, diagnosed with severe
sepsis and septic encephalopathy (Additional file 2)
received serial diffusion-weighted MRI (DWI MRI)
brain scans. The results revealed localized hyperin-
tense signals in the hippocampal formation (Fig. 1a, c,
d, e). Restricted diffusion in the lateral hippocampus was
observed in the DWI MRI of all four septic patients, inde-
pendent of their disease history or secondary diagnoses,
such as signal elevation in the left frontal lobe of one pa-
tient due to pre-existing ischemic stroke (Fig. 1c). DWI
signal abnormality, therefore, could suggest a functional
change in the hippocampus of patients diagnosed with
septic delirium. A DWI MRI brain scan taken 18 months
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later in one patient, who had recovered from sepsis and
septic encephalopathy, confirmed that the hippocampal
hyperintensities were reversible (Fig. 1b). This does not
exclude however, that other factors contributed to the ob-
served hippocampal lesions. Patients with critical illness
often suffer from impaired vascular perfusion. Hyperin-
tense lesions in the hippocampus can also arise from glo-
bal hypoxic/ischemic changes, a local vascular occlusion
provoked by an embolism, or as a consequence of

systemic hypoperfusion. Indeed, a DWI scan of a non-
septic patient, suffering from global hypoxic damage re-
vealed a more intense signal elevation affecting more of
the hippocampus but still confined to this region (Fig. 1f).
Thus septic delirium, like global hypoxia, causes the
hippocampus to become hyperintense on DWI MRI
scans. In septic patients without delirium such hippocam-
pal hyperintensities were absent as shown in the DWI scan
from a patient with sepsis but without delirium (Fig. 1g).
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Fig. 1 Pathologic signal changes in diffusion-weighted magnetic resonance imaging (DWI MRI) of the hippocampal formation in sepsis-induced delirium
in human patients. a, b, c, d, e Images show coronal (a, b, patient 1 and c, patient 2, d, patient 3) and horizontal (e, patient 4) diffusion-weighted MRI
scans of patients with sepsis and sepsis-induced delirium. Scores for delirium and sepsis shown in (panels a, c, d, e and g) were obtained within 24 h
from the MRI scan. Boxed areas of the hippocampal formation are shown on an enlarged view in the top of each panel. White arrows indicate localized
hyperintense signal elevations. b A scan taken from patient 1 eighteen months later shows no hyperintensities. The broad signal elevation in the left
temporal lobe of patient 2 (c) was due to a previous occlusion of the left medial cerebral artery. f A scan from a non-septic patient with global cerebral
hypoxia exhibits bilateral and broad signal elevation observed in the hippocampal formation. g Hippocampal hyperintensities were absent
in septic patient without delirium. Hyperintense movement artifacts (right cerebellar area in a, left cerebellar area in d) or susceptibility artifacts (left
temporal bone area in f) are occasionally observed in the DWI MRI scans. L: left; R: right; RASS: Richmond agitation sedation scale; CAM ICU: Confusion
assessment method for intensive care unit; ICDSC: Intensive care delirium screening checklist; WBCC: white blood cell count; CRP: c-reactive protein;
PCT: procalcitonin
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These findings suggest that the hippocampal formation
undergoes functional changes during global ischemia
or sepsis with associated delirium. Thus hippocampal
dysfunction may correlate with or be indicative of delir-
ium among septic patients and may play an important role
in the pathomechanism underlying septic delirium.

Studying hippocampal cell function in an animal model
of sepsis
To further investigate the cellular mechanisms of sepsis-
induced hippocampal dysfunction, we induced endotox-
emia in rats, an animal model for sepsis, and performed
single cell patch clamp electrophysiology experiments in
the hippocampus of these rats. Wistar rats (250–350 g
weight) received 6 mg/kg body weight lipopolysaccharide
(LPS) i.p. and were returned to their cage to recover. After
6 h of endotoxemia, rats were sacrificed and acute brain
slices were prepared for electrophysiological recordings
(Fig. 2a). In addition to studying the effects of endotoxemia
in LPS treated rats we included an analysis of the effects of
enhancers of cholinergic activity since they are known to
reduce cognitive deficits associated with both central anti-
cholinergic syndrome and sepsis-induced delirium (see
Introduction). Slices from control and LPS treated rats
were thus treated in vitro for 2 h with either physostigmine
(10 μM), a reversible cholinesterase inhibitor able to cross
blood–brain barrier or TBPB [1-(1′-2-methylbenzyl)-1,4′-
bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one], a highly
selective muscarinic M1 receptor allosteric agonist, or apa-
min, a blocker of SK2 channels which are known to be
inhibited by muscarinic M1 subtype receptor activation in
the rat hippocampus [13, 29]. Somatic whole cell patch
clamp recordings were established from pyramidal neurons
in the CA1 region of the hippocampus whose identity was
confirmed from their characteristic action potential (AP)
firing pattern in response to depolarizing current steps
(Fig. 2b, Additional file 3). Except for more APs observed
in the control rats after TBPB treatment, there were no dif-
ferences in the number of APs induced by a 300 pA step
between any of the treatment conditions (Fig. 2b, e,
Additional file 3). The resting membrane potential of hip-
pocampal neurons was also not significantly affected by
LPS treatment or in vitro treatment with apamin, physo-
stigmine or TBPB (Fig. 2f, Additional file 3).
To detect any changes in presynaptic function and

neurotransmitter release probability we performed
paired-pulse ratio analysis. Paired-pulse facilitation is a
form of short-term plasticity, mainly of presynaptic
origin, and very sensitive to presynaptic functional
perturbations. Using a paired-pulse stimulation proto-
col with two different inter-pulse intervals (50 ms,
Fig. 2c and 100 ms, Fig. 2d, Additional file 3), we
found that the paired-pulse ratio did not significantly

differ between any of the treatment groups (Fig. 2g, h,
Additional file 3).
In summary, the analysis of resting membrane poten-

tial and paired-pulse ratios revealed no significant effects
of LPS treatment, apamin, physostigmine or TBPB in vitro
treatment on hippocampal pyramidal neurons. The ana-
lysis of cell excitability showed an elevated AP frequency
in TBPB treated control cells.

LPS treatment augments the apamin-sensitive component
of the AHP of hippocampal CA1 neurons
The analysis of APs recorded from CA1 pyramidal
neurons revealed altered afterhyperpolarization (AHP) in
LPS treated rats. An AP in hippocampal pyramidal cells
is followed by an AHP which can be divided into three
components: a fast AHP (lasting 2–5 ms), medium AHP
(lasting 50–100 ms) and a slow AHP (lasting longer than
1 s) [50]. Medium AHPs are mediated by SK channels
and the apamin-sensitive SK2 subunit has been shown
to be abundantly expressed in hippocampal CA1 pyram-
idal neurons [51].
We examined the AHPs of the second last AP evoked

by a 1 s 300 pA current injection (Figs. 2b and 3a). The
peak amplitude of the AHP measured 2–100 ms after
repolarization was increased in the LPS treated group,
as compared to the control group (Fig. 3a-c, Additional
file 3). The increased AHP amplitude in the LPS pre-
treated group peaked at a time point 50 ms after AP repo-
larization suggesting enhanced SK channel activation in
the LPS treatment group. Indeed, acute treatment of these
cells from LPS treated rats with bath applied apamin (100
nM), an SK2 channel antagonist, reduced AHP ampli-
tude to below that of the control group. The apamin
treatment of control rats revealed comparable results
(Fig. 3c, Additional file 3).
The hyperpolarization observed following a series of

APs (often termed an AP burst) is much larger than that
following a single AP due to the removal of the 300 pA
depolarizing current injection. We therefore also analyzed
the post-burst hyperpolarization to assess any effects of
LPS treatment (Fig. 3d, e, Additional file 3). Indeed, burst
induced hyperpolarization was significantly increased in
the LPS treated group. Application of apamin to the LPS
pretreated group greatly reduced the amplitude of this hy-
perpolarization verifying that SK channels are strongly ac-
tivated by a series of APs (Fig. 3e, Additional file 3).
In conclusion this data shows that the LPS treatment

increased an AP afterhyperpolarization as well as hyper-
polarization following an AP burst recorded from CA1
pyramidal neurons. Application of apamin reversed this
effect, suggesting that enhanced activation of SK2
channels mediates the LPS treatment-induced increase
of AHPs and post burst hyperpolarization.
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Apamin-sensitive AHP enhancement in LPS treated rats is
reduced by boosting cholinergic activity
To assess the effect of anticholinesterases in treating
sepsis induced delirium (see Introduction) we tested the
effect of physostigmine in our rat sepsis model. We
found that in vitro physostigmine application restores
the LPS-induced enhancement of AHP peak amplitude
(Fig. 3b, c, e, Additional file 3).
Since the muscarinic M1 subtype of cholinergic recep-

tors inhibit apamin-sensitive SK2 channels in the rat
hippocampus [13] we tested whether the muscarinic M1
receptor allosteric agonist TBPB could restore the effect
of LPS treatment on AHPs. Indeed the enhanced AHP
seen after LPS treatment was reversed by TBPB (Fig. 3b,
c, e, Additional file 3).

Taken together, these results suggest that LPS expos-
ure upregulates the apamin-sensitive SK2 channels, re-
sponsible for shaping medium AHPs and that this effect
can be reversed by increasing endogenous acetylcholine
activity or applying an M1 receptor agonist.

Impaired hippocampal LTP in LPS treated rats is partly
rescued by activation of M1 muscarinic acetylcholine
receptors
Given the observed alteration in hippocampal function
in septic patients (Fig. 1), we postulated that the sys-
temic inflammation, induced by LPS injection, would
affect hippocampal synaptic plasticity, a phenomenon,
reported to be critical for learning and memory [34]. To
this end we recorded from CA1 neurons and measured
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excitatory postsynaptic currents (EPSCs) in response to
two stimulating glass pipettes placed on the Schaffer col-
lateral pathway from the CA3 region (Fig. 4a, b, c). Syn-
aptic inputs stimulated by one pipette were potentiated
with 4 bursts of high frequency stimulation while the
second pipette served as a control pathway to monitor
the stability of the recording. Indeed, cellular LTP, which
persisted for more than 60 min after its induction in
slices from control rats was abolished in slices obtained
from rats pretreated with LPS (Fig. 4d-f, Additional file 3).
In vitro application of apamin (100 nM) to the LPS
pretreated rats resulted in a full rescue of LTP
(Fig. 4g-i, Additional file 3). Since physostigmine and
TBPB reversed the effects of LPS treatment on the
SK channel mediated AHP, we next asked whether
they could similarly rescue the LPS-induced deficit in
LTP. Application of 5 μM and 10 μM physostigmine
into the bath solution immediately prior to the re-
cordings did not rescue the LPS induced deficit in

LTP (Additional file 4). However, addition of physo-
stigmine (10 μM) to the slice holding chamber at
least 2 h before the recording and during the record-
ing partly rescued the LTP deficit in LPS treated rats
(Fig. 4j-l, Additional file 3). Application of TBPB to
the slices immediately prior to the recordings also
partly rescued the loss of LTP observed in the LPS
treated rats (Fig. 4m-o, Additional file 3).
To further investigate the mechanism by which SK

channels appear to mediate reduced LTP in LPS
treated rats, we analyzed the AP bursts induced by
the high frequency stimulation protocol used to in-
duce LTP. These postsynaptic responses consist of a
burst of APs superimposed on a prolonged baseline
depolarization (Fig. 5a). Analysis of the number of
spikes and the AUC during the entire AP burst did
not reveal any effect of LPS treatment on the post-
synaptic response to LTP-inducing stimulation (Fig. 5b,
c, Additional file 5). An increased AP number was
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observed in the control groups treated with physostig-
mine (Fig. 5b, Additional file 5) and TBPB (Fig. 5b,
Additional file 5, Additional file 3). From the AUC
analysis, an increase specifically in the LPS treated
rats was seen after apamin, physostigmine and TBPB
treatment. This data suggests that apamin, physostig-
mine and TBPB increase the postsynaptic response to
synaptic stimulation in terms of either action potential
generation or depolarization or both. LPS treatment alone,
however, did not affect AP generation or depolarization of
these synaptically-induced, LTP-generating bursts.
Taken together, our data show an endotoxin in-

duced disruption of synaptic plasticity in the rat brain
accompanied by an increased SK channel-mediated
AHP. Inhibiting SK channel function with either the
specific blocker, apamin, or with an M1 muscarinic

acetylcholine receptor activation or by increasing the
lifetime of endogenous acetylcholine with cholinesterase
inhibitors can partly restore the deficit in synaptic plasti-
city induced by sepsis.

Discussion
In this study we observed functional changes in the
hippocampus of patients diagnosed with sepsis-associated
encephalopathy by using DWI MRI. In an animal model
for sepsis, LPS-induced endotoxemia, we also show hippo-
campal dysfunction in the form of a deficit in synaptic
plasticity as well as an increase in a component of the
AHP presumably mediated by SK channels. The partial
rescue of the effects of endotoxemia by increasing en-
dogenous cholinergic activity or applying an exogenous
M1 receptor agonist in our animal model identify
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pharmacological targets for treatment of sepsis induced
delirium in patients in the ICU. Potential mechanisms
causing increased SK activity following endotoxemia
include reduced central cholinergic function, increased
SK channel expression or increased calcium influx fol-
lowing synaptic activity.
Previous studies have shown that the septic brain

undergoes functional and structural changes [5]. How-
ever, a region specific approach, in particular hippocam-
pal function has not been thoroughly described. The
implementation of a DWI scan protocol, commonly
used in the field of epilepsy and stroke research, allows
for improved spatial and functional analysis of the
hippocampus [53] and may prove useful to identify sepsis
associated encephalopathy in septic delirium patients in
the ICU. However, only a combined approach, including
laboratory tests, clinical examination, clinical scores as
well as diagnostic imaging can verify a clinical diagnosis of
this disorder.
Our DWI MRI analysis has identified the hippocam-

pus as the site of dysfunction and pathology in sepsis-
induced delirium. Cognitive deficits often associated

with delirium during sepsis include spatial and temporal
disorientation, confusion as well as impaired learning
and memory. These clinical features are typically associ-
ated with hippocampal dysfunction. Nonetheless, condi-
tions such as hypoxia, hypercarbia, hypotension or
pharmacotherapy with drugs affecting brain function
should be taken in account when interpreting cognitive
disorders in septic patients.
Sepsis-induced delirium and global ischemia both re-

duce hippocampal ADC. This hippocampus specific
pathology of both sepsis and global cerebral ischemia
suggests that hypoperfusion may also play a role in the
pathomechanism of sepsis-induced delirium. Indeed
imbalances in the sympathetic and parasympathetic
nervous system in sepsis and septic shock lead to
hypotension which can result in organ hypoperfusion and
ischemia. Thus brain hypoperfusion and any resulting
brain ischemia could contribute to the cognitive deficits
associated with hippocampal dysfunction in sepsis
induced delirium.
Endotoxin, administered peripherally in rats did not

affect hippocampal neuron resting membrane potential,
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firing patterns or short term synaptic plasticity but
augmented SK channel function and AHP amplitude.
Although basal excitability was unaffected in this septic
state, the calcium influx, caused by a burst of synaptic
activity, more strongly activated SK channels to increase
post-burst hyperpolarization which most likely caused
the reduction in long term synaptic potentiation, the
cellular mechanism widely believed to underlie memory.
In line with this, the LPS-induced increase in AHP
was reversed, and the deficit in synaptic plasticity was
partly restored by in vitro pharmacological enhancement
of cholinergic neurotransmission, which is known to in-
hibit SK function via M1 receptor activation. Cholinergic
conditioning of an animal, during the initial 6 h after LPS
injection, might more effectively rescue the LTP deficits
through both central and peripheral mechanisms. Vagal
stimulation has been shown to restore synaptic function
and reduce cytokine production in endotoxemia [11, 24]
and our group has previously shown that systemic physo-
stigmine reduces the capillary leakage and the leukocyte-
endothelial interaction caused by endotoxemia [41]. A
cholinergic deficiency hypothesis involving reduced tone
in the autonomic nervous system has emerged to explain
such results. A central deficit in cholinergic activity has
also been implicated by results showing increased anticho-
linesterase activity in the brain during endotoxemia [54].
Our current result showing a partial rescue of the
LPS-induced deficit in LTP in rat brain slices identi-
fies a central anti-inflammatory effect of anticholinester-
ase inhibitors and is consistent with a sepsis-induced
cholinergic deficiency in the central nervous system which
parallels the reduced vagal tone in the periphery. However,
causal evidence for a central cholinergic deficiency in
sepsis is lacking.
Diverse mechanisms of cholinergic modulation of syn-

aptic plasticity have been proposed both for in vitro and
in vivo experimental settings [2, 12, 15, 55]. In particular,
the M1 subtype of muscarinic acetylcholine receptors
has been shown to play important role in shaping the
plastic changes of hippocampal excitatory synapses [48].
The ability of muscarinic M1 receptor subunits to in-
directly affect LTP by inhibiting SK2 channels has
been proposed as a mechanism underlying cholinergic
control of synaptic plasticity [8, 13, 25]. In fact, we
were able to demonstrate that this mechanism might
play a crucial role in the septic brain. Indeed, the SK
blocker apamin has been shown to be of protective
benefit in the treatment of septic shock in mice when
injected prior to LPS [14]. Both TBPB and physostig-
mine caused increased number of action potentials
evoked by high frequency stimulation, reduced AHP
and post burst hyperpolarisation without affecting
resting membrane potential or paired pulse ratio.
These effects of TBPB and physostigmine indicate

increased excitability due to cholinergic M1 receptor-
induced suppression of SK independent of the presence
of sepsis. A more input specific or sepsis-selective cholin-
ergic boost may be necessary to avoid side-effects and
more fully restore endotoxemia-induced deficits in
LTP. Such side-effects and a lack of selectivity may
be related to the failure of rivastigmine in recent
human trials [19].
It is unlikely that the deficits in LTP which we show

are an anomaly of our endotoxemia model of sepsis. A
deficit in Schaffer collateral LTP has also been shown to
occur following septic encephalopathy induced by cecal
ligation and puncture (CLP) in mice [28]. Thus a dimin-
ished capacity for hippocampal synaptic potentiation
appears to be a consequence of sepsis independent of
the animal sepsis model used.
The N-Methyl-D-aspartate (NMDA) subtype of glu-

tamate receptors play a crucial role in the induction of
cellular LTP by allowing Ca2+ influx into the postsynap-
tic dendritic spines during LTP induction. This leads to
the activation of intracellular cascades such as calcium/
calmodulin-dependent protein kinase II (CaMKII), result-
ing in increased postsynaptic responses [16]. Besides the
ability to shape AHPs, SK2 channels are known to interact
with postsynaptic NMDA receptors in an activity-
dependent feedback manner resulting in the rapid Mg2+

block of the NMDA channels [1, 35]. Thus the mechanism
by which SK2 channel blockade promotes LTP or rescues
LPS-induced deficits in LTP may be via promoting
NMDA receptor activation during AP bursts.

Conclusions
To conclude, our findings using an animal model of sep-
sis, point to a dysfunction in a calcium-activated potas-
sium channel in the hippocampus which most likely
underlies plasticity deficits in rats and could be involved
in sepsis-induced delirium in humans. Furthermore, we
propose that increased activation of cholinergic M1 re-
ceptors, which rescued LTP deficits in our rat model,
might be beneficial in the therapeutic treatment of septic
delirium in the ICU.
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