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Summary 

Development of polarity is well studied in cell systems such as mammalian neurons, epithelial 

cells and Caenorhabditis elegans zygotes. In Plasmodium the spherical and presumed apolar 

female gamete morphs during the 24 hours after fertilisation in the mosquito midgut into a 

polarised ookinete, however, little is known about how Plasmodium zygotes develop polarity. 

It is known that endocytosis-mediated protein transport is generally necessary for the 

establishment and maintenance of polarity in epithelial cells and neurons, and Rab11A 

GTPase is an important regulator of protein transport via recycling endosomes. Rab11A has 

been predicted to be involved in cytokinesis in Plasmodium falciparum and is essential in 

Plasmodium berghei. Here I show the expression profile of P. berghei Rab11A (PbRab11A) 

across the life cycle and use a promoter swap strategy to investigate the role of PbRab11A in 

ookinete development. By expressing PbRab11A under the clag promoter or ama-1 promoter, 

its expression in sexual stages is greatly reduced while its essential expression in asexual 

blood stages is maintained. Whilst gamete production and fertility rates remained unaffected, 

the ookinete conversion rates of CLAG and AMA-1 promoter swap mutants are reduced by 

up to 99% and 98% respectively and transmission through the mosquito is prevented. TEM 

analysis and immunofluorescence microscopy of developmental and structural markers show 

that Rab11A-CLAG promoter swap mutant zygotes lay down the Inner Membrane Complex 

(IMC) and are apically oriented but appear stop morphological progression and remain 

spherical. Western blot and transcriptome analysis of Rab11A - CLAG promoter swap mutant 

suggest marginal expression delay as well as deregulation of some of the transcripts of 

ookinete development and structural markers, and the majority of deregulated transcripts are 

independent of previously shown translationally stored transcripts. We predict that Rab11A is 

not involved in the establishment of P. berghei zygote polarity, mitosis, activation of stored 

mRNAs nor extensive reactivation of post-meiotic transcription but conceivably in the 

delivery of plasma membrane to the growing apical outgrowth which is expected to be a 

coordinated process of Rab11A mediated membrane trafficking and cytoskeletal dynamics. 

As a second line of enquiry, the establishment of polarity in P. berghei zygote with respect to 

the point of male and female gamete fusion is ongoing. Establishment of polarity in embryos 

and zygotes is dependent on the development of the axis of polarity and fertilization signals 

mediated by the male gamete in C. elegans and some plants. Establishment of the axis of 

polarity and therefore the emergence of apical complex with respect to the point of gamete 
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fusion has not been previously studied in Plasmodium. To visualise the process of 

fertilization, membrane localized green fluorescence protein (GFP) expressing P. berghei 

male gamete producer parasites were generated. Female specific protein phosphatase with 

kelch-like domain (PPKL), IMC sub-compartment protein 1 (ISP1) and Glideosome-

associated protein 50 (GAP50) are known to be associated with the apical complex, and are 

essential for P. berghei zygote to ookinete transition. Further, female specific MTOC 

(Microtubule Organising Center) markers - spindle pole body protein (SPBP) is also predicted 

to be associated with apical complex development during zygote to ookinete transition. 

Therefore, to investigate the emergence of the apical bud with respect to the point of gamete 

fusion during fertilization and through the zygote to ookinete transition, female gamete 

specific membrane localized mCherry expressing or PPKL/ ISP1/ GAP50/ SPBP labelled 

with mCherry expressing P. berghei parasite cell lines were generated in male gamete specific 

GFP producing P. berghei parasites. Initial fluorescent microscopy confirms the stage specific 

red-green fluorescence in respective transgenic P. berghei parasite lines. Further studies to 

confirm the hypothesis that the point of male gamete fusion cues for the point of emergence 

of apical bud in the zygote are ongoing.-----------------------------------------------------------------
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Zusammenfassung 

Die Entwicklung von Polarität ist in Zellsystemen, wie menschlichen Neuronen und 

Epithelzellen sowie der Zygote des Nematoden Caenorhabditis elegans, gut untersucht. Die 

direkt nach der Befruchtung spärische Zygote von Plasmodium, verändert ihre Gestalt 

innerhalb der ersten 24 Stunden nach der Befruchtung im Moskitomitteldarm in den 

polarisierten Ookineten. Es ist jedoch wenig darüber bekannt wie die Zygote von Plasmodium 

diese Polarität entwickelt. 

Es ist bekannt, dass Endozytose-vermittelter Proteintransport für die Etablierung und 

Beibehaltung der Polarität in Epithelzellen und Neuronen notwenig ist; die GTPase Rab11A 

ist ein wichtiger Regulator von Proteintransport; das Protein ist an dem Recycling von 

Endosomen massgeblich beteiligt. Rab11A ist vermutlich an der Zytokinese in P. falciparum 

beteiligt und das Protein ist essentiell für P. berghei. 

Hier zeige ich das Expressionsprofil von Rab11A in verschiedenen Stadien des Lebenszyklus 

von P. berghei und ich untersuche die Rolle der Rab11A GTPase für die 

Ookinetenentwicklung dieser Parasiten mit Hilfe der Promotor-Swap Strategie. P. berghei 

rab11a wurde unter der Kontrolle des CLAG- oder des AMA1-Promotors in P. berghei 

exprimiert, was zur Reduzierung des Expressionslevel des Proteins in den sexuellen Stadien 

der Parasiten führte, während die Expression in den asexuellen Stadien nicht beeinflusst 

wurde. Die Ergebnisse zeigen, dass weder Gametenproduktion noch Fertilität durch den 

Promotor-Swap beinträchtig waren, während die Ookineten-Bildung der CLAG-und AMA-1 

Promotor-Swap Mutanten um 99% beziehungsweise 98% reduziert war; die Entwicklung des 

sexuellen Transmissionszyklus der Mutanten war komplett unterbrochen. 

Transmissionselektronmikroskopie und Immunfluoreszenzmikroskopie der Ookineten 

Entwicklung sowie von Struktur-Markern zeigten, dass die Rab11A-CLAG Promotor-Swap 

Mutanten den „Inner Membrane Complex“ (inneren Membrankomplex; IMC) bilden und dass 

sie apikal orientiert sind, aber sie scheinen sich morphologisch nicht zu entwickeln und 

verbleiben abgerundet. Western Blot Analysen und Transkriptom Analysen der P. berghei 

Rab11A – CLAG Promotor-Swap Mutanten zeigten, dass Expression einiger Transkripte 

leicht verspät war, und dass ausserdem einige Transkripte der Ookineten-Entwicklung und 

Struktur-Marker misreguliert waren. Ausserdem konnte gezeigt werden, dass die Mehrzahl 

der misregulierten Transkripte unabhängig von früher beschriebenen, translationell 

gespeicherten Transkripten sind. Wir nehmen an, dass Rab11A nicht an der Etablierung der P. 



Zusammeenfassung 

 

4 
 

berghei Zygotenpolarität, Mitose, der Aktivierung der gespeicherten mRNAs oder an der 

extensiven Reaktivierung der post-meitotischen Transkription beteiligt ist. Vielmehr 

vermuten wir, dass das Protein an der Bereitstellung und Lieferung von Bestandteilen der 

Plasmamembran beteiligt ist, die notwenig ist, um die morphologischen Veränderungen zu 

erlauben, die mit  apikalem Wachstum verbunden sind. Unsere Daten deuten darauf hin, dass 

Rab11A die Prozesse des Membrantransports und die Dynamik des Zytoskelets, beides 

notwendig für das Auswachsen des Apikalpols, koordiniert. 

Eine zweite Fragestellung im Zusammenhang mit der Polaritäts-Entwicklung in der P. 

berghei Zygote ist die Fusion von männlichen und weiblichen Gameten. Die Polarität in 

Embryos und Zygoten ist in der Regel von der Polaritätsachse abhängig und wird von 

Fertilisationsmarkern des männlichen Gameten vermittelt. 

Die Etablierung der Polaritätsachse und damit die Entstehung des Apikalkomplexes in 

Zusammenhang mit der Gametenfusion ist bisher in Plasmodium nicht untersucht worden. 

Um den Prozess der Fertilisation zu analysieren, wurden Parasiten genetisch so manipuliert, 

dass sie männliche Gameten generieren, die membranlokalisiertes grün fluoreszierndes 

Protein (GFP) exprimieren. Es ist bekannt, dass Proteine, wie das weibliche Gameten-

spezifische Protein Phosphatase mit kelch-ähnlicher Domaine (PPKL), das „inner membrane 

complex“ (IMC) sub-Kompartiment Protein 1 (ISP1) und das Glideosome-assoziierte Protein 

50 (GAP50), mit dem Apiklalkomplex assoziert sind. Desweiteren wissen wir, dass diese 

Proteine essentiell für den Übergang von Zygote zum Ookineten sind. Ausserdem ist der 

Mikrotubuli-Organisations Zentrum (MTOC) Marker, das Spindelpolkörper Protein SPBP, 

vermutlich mit der Entwicklung des Apikalkomplexes während der Entwicklung des 

Ookineten assoziiert. Aus diesen Gründen wurden all diese weiblichen Gamtenmarker mit  

mCherry getagged und die Plasmide wurden in die Parasiten transfiziert, die bereits den 

männlichen GFP-Marker exprimierten. Diese Mutanten exprimierten beide 

Fluoreszenzmarker und ihre Expression wurde fluoreszenzmikroskopisch von Fertilisation der 

Gameten bis zur Entstehung des Apikalkomplexes in Ookineten, untersucht, um den Prozess 

der Entstehung des Apikalkomplexes detaliert zu studieren. In den ersten Studien konnten 

grün und rot fluoreszierende Parasiten gezeigt werden. Die transgenen Parasitenlinien stehen 

jetzt für weitere Analysen zur Verfügung, um die Hyopthese zu testen, dass der Fusionspunkt 

des männlichen Gameten mit dem weiblichen Gameten der Entstehungspunkt des 

Apikalkomplexes ist.--------------------------------------------------------------------------------------- 



 

5 
 

 

 

 

 

 

 

 

 

 

 

Chapter 1: Introduction



Introduction 

 

6 
 

1.0 Introduction to Malaria 

Malaria has been a major disease of human since past and it continues to be a major public 

health concern. It is estimated that around 3.2 billion people are under threat of getting 

infected and acquiring malaria, and around 1.2 billion people are at great risk. In 2013, 198 

million cases of malaria were estimated globally and 584,000 malaria deaths were recorded of 

which 90% of deaths were in Africa. This indicates a decrease of 30% and 47% in malaria 

cases incidence and mortality rates since 2000 respectively. 78% of total death victims were 

children under the age of 5 years (World_Malaria_Report 2014). Regardless of remarkable 

malaria control it still remains a major public health issue in low and lower-middle income 

countries (Figure 1.0), primarily affecting poor communities having least access to 

preventive, diagnosis and treatment services. Therefore, malaria control and eradication are 

intricately associated with the health system and infrastructure development and poverty 

reduction (World_Malaria_Report 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

7 
 

1.1 Causative agents of human malaria 

Malaria in humans is caused by obligate intracellular protozoa parasites from phylum 

Apicomplexan and genus Plasmodium, which are intra-erythrocytic protozoan parasites. The 

major cause of human mortality is P. falciparum, predominantly located in Africa. The 

second most common species is P. vivax, mainly located in Southeast Asia. P. vivax may 

remain dormant for months or even years in liver and the dormant stage is known as the 

hypnozoite (Krotoski 1989, Hulden 2011, Markus 2011, Markus 2011, Dembélé, Franetich et 

al. 2014). African individuals lacking the Duffy antigen on the surface of red blood cells 

(RBCs) were considered to be resistant to P. vivax blood stage infection. Interestingly, recent 

evidence suggests that P. vivax can infect individuals having Duffy negative erythrocytes 

(Herrera, Gómez et al. 2005, Ryan, Stoute et al. 2006, Maestre, Muskus et al. 2010, Ménard, 

Barnadas et al. 2010, Mendes, Dias et al. 2011, Carvalho, Queiroz et al. 2012, Woldearegai, 

Kremsner et al. 2013, Zimmerman, Ferreira et al. 2013, Ngassa Mbenda and Das 2014). The 

other species that infect humans are P. malariae, P. ovale and P knowlesi (Putaporntip, 

Hongsrimuang et al. 2009, Antinori, Galimberti et al. 2013, Calderaro, Piccolo et al. 2013). 

Recently, a natural infection of simian Plasmodium species - P. cynomolgi to human was 

reported in Malaysia (Ta, Hisam et al. 2014).  
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Figure 1.0 Global malaria map showing the proportion of human malaria caused by P. 

falciparum and P. vivax. 

A global malaria map showing more than 90% infections caused by either P. falciparum in 

countries highlighted in dark red or P. vivax in countries highlighted by faint purple. Faint 

orange is the area of mixed infections by both P. falciparum as well as P. vivax. Source: 

(Feachem, Phillips et al. 2010) – reproduced with permission. 
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1.2 Strategies for malaria control and elimination 

1.2.1 Vector management 

Anopheles mosquitoes are the vectors principally responsible for transmission of Plasmodium, 

the major species being An. gambiae and An. funestus. Vector management has been the most 

effective of all the measures taken to control malaria.  Insecticide-treated nets (ITN) and/or 

Long-Lasting Insecticidal Nets (LLINs), Indoor Residual Spraying (IRS) and environmental 

management have been shown to reduce malaria transmission significantly. In the 1950s, 

DDT (dichlorodiphenyltrichloroethane) was heavily used in indoor spraying for the control of 

vectors of malaria and other vector borne diseases, e.g. leishmaniasis, however, after that use 

of DDT moved towards pyrethroids which are less toxic to humans and other non-target 

organisms. Resistance to pyrethroids has now emerged, putting challenges to malaria control 

programme (N'Guessan, Corbel et al. 2007, Yadouleton, Padonou et al. 2010, Asale, 

Getachew et al. 2014). The emergence of resistance was due to extreme use of insecticides in 

households and pesticides in agriculture (Akogbeto, Djouaka et al. 2005, Yadouleton, Asidi et 

al. 2009, Nkya, Poupardin et al. 2014). Therefore, alternative strategies for vector control 

should be put in place to minimize the contact of vector and human. Another strategy to 

control the vector borne diseases is the use of the sterile insect technique (SIT) to impede 

mating habits. SIT relies on interfering with the genetic system of vectors in order to make the 

males sterile by the use of radiation, chemicals, Wolbachia-mediated cytoplasmic 

incompatibility or genetic modification and mass release of sterile males, which compete with 

wildtype (WT) males to fertilize with WT females producing no offspring or offspring which 

are not viable after part of their life cycle. One of the most successful examples of SIT is the 

eradication of Screwworm, a pathogen of cattle and mammals and occasionally  infects 

humans, from North America (Krafsur, Whitten et al. 1987). Early studies on the utilization of 

SIT for malaria control have shown promising results, although these technologies are still in 

their initial stages [reviewed by (Oliva, Vreysen et al. 2014, Gentile, Rund et al. 2015)]. Use 

of current vector control strategies, its management and monitoring of insecticide resistance 

along with the development of new technologies such as SIT is imperative if malaria control 

is to be achieved. 
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1.2.2 Treatment and diagnosis of malaria 

To treat malaria infection and illness, to eliminate the dormant stages and to prevent 

transmission of Plasmodium parasites, antimalarial drugs are used. Hopes of malaria 

eradication started with the use of chloroquine. Along with DDT and ITNs, chloroquine 

proved substantially successful to reduce the burden of malaria in 1950s, however, malaria 

eradication efforts were affected due to increased resistance to chloroquine (Harinasuta, 

Suntharasamai et al. 1965, Sandhinand, Pinswasdi et al. 1965) as well as to the insecticides. 

And in the 1970s, the use of mefloquine and other quinine derivative along with sulfadoxine-

pyrimethamine (SP) resulted in the emergence of multi-drug resistance. The resistance against 

SP was previously found in Asia and have been developed in Africa (Wongsrichanalai, 

Pickard et al. 2002). New artemisinin based combination therapy (ACT) is proving beneficial 

in treating previous drug resistant malaria parasites, including immature gametocytes 

(lifecycle stage of malaria parasite responsible for infection of mosquitoes when they bite 

humans, see section 1.3 of the life cycle of Plasmodium) and have been widely used (Eastman 

and Fidock 2009, Grueninger and Hamed 2013). With the use of ACT and vector 

management, reduction in malaria morbidity and mortality has been achieved to the greatest 

extent to date, however, elimination of malaria still requires the strategic use of malaria 

treatments with preventive measures (malERA_Consultative_Group_on_Drugs 2011). These 

approaches include mass drug administration (von Seidlein and Greenwood 2003), mass 

screening and targeted treatment (Aregawi, Ali et al. 2011), and focal screening and targeted 

treatment of malaria hotspots (Lawpoolsri, Klein et al. 2009). To achieve a radical cure, it is 

necessary to use ACT treatment with the combination of gametocidal agent (a drug that 

destroys gametocytes as a result preventing communal transmission of malaria) such as 

primaquine, however, primaquine are oxidative anti-malarials and can cause haemolytic 

anaemia on individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency and 

there is difficulty detecting this deficiency (Kuwahata, Wijesinghe et al. 2010, Smithuis, 

Kyaw et al. 2010, Hoyer, Nguon et al. 2012, Grueninger and Hamed 2013, Ashley, Recht et 

al. 2014). Research is needed to develop screening tests for G6PD deficiency as well as the 

detection of malaria diagnosis.  

 

The conventional clinical diagnosis of malaria was based on signs and symptoms of malaria 

such as headache, fever, diarrhoea, chills, tiredness, nausea, vomiting and muscle ache. 

Laboratory methods using microscopy have been a gold standard in malaria diagnosis, 
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however, new rapid diagnostic test/ molecular tests based on PCR and ELISA provide more 

accuracy, specificity and have the ability to differentiate between various Plasmodium species 

(Tangpukdee, Duangdee et al. 2009, Port, Nguetse et al. 2014, Thongdee, Chaijaroenkul et al. 

2014).  

 

Malaria in pregnancy is a threat to mother and baby having the risk of maternal anaemia and 

low birth weight (Brabin 1983, Guyatt and Snow 2001, Fitri, Jahja et al. 2014). Multiple 

approaches are employed to reduce the risk of malaria in pregnancy, such as intermittent 

preventive treatment of pregnant women using sulfadoxine-pyrimethamine (IPTp-SP) and use 

of ITNs. At least two doses of SP are administered in IPTp despite of absence of parasites 

(Mubyazi, Bloch et al. 2005, Hill and Kazembe 2006, Menéndez, Bardají et al. 2010, 

Harrington, Mutabingwa et al. 2011, Gutman, Mwandama et al. 2013, Mbu, Takang et al. 

2014). However, some studies show increased resistance to the IPTp-SP particularly in East 

and Southern Africa and therefore increasing the need for development of new drugs and 

strategies (Feng, Simpson et al. 2010, Harrington, Mutabingwa et al. 2011). 

 

1.2.3 Malaria vaccines 

People living in malaria endemic regions develop protective immunity against malaria 

symptoms throughout childhood (Marsh and Howard 1986, Bull, Lowe et al. 1999, Nielsen, 

Staalsoe et al. 2002) and this developed immunity is responsible for some protection against 

malaria (Marsh and Kinyanjui 2006, Doolan, Dobaño et al. 2009). Protection against infection 

by passive transfer of antibodies from immunized individuals to non-immunized individuals 

had been shown (COHEN, McGREGOR et al. 1961, MCGREGOR 1964) and this is 

supported by studies in rodents (Martínez, Yandar et al. 2009, Sack, Miller et al. 2014). This 

principle led to the development of human malaria vaccine. Despite of active attempts of 

vaccine development over the past 50 years, developing an effective vaccine remains a 

challenge. Even with multiple attempts, several vaccine candidates have been studies from 

‘whole parasite’ approach and to ‘subunit approach’ have had highly variable efficacy. 

Attenuated sporozoites, the mosquito stage of malaria parasite responsible for infection of 

humans (see section 1.3 life cycle of Plasmodium), with chemical and genetic modification 

are being studied as possible malaria vaccine candidates (Hoffman, Goh et al. 2002, 

Roestenberg, McCall et al. 2009, Teirlinck, McCall et al. 2011), however, there are some 

difficulties associated with this of having high cost, scaling up and dose requirement (Hill 
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2011) including the possibility of a threat of reversibility (Richards and Beeson 2009). 

Therefore, alternative approaches of subunit vaccine development are evaluated (Stanisic, 

Barry et al. 2013). Currently, only one candidate appears to show promising results known as 

RTS,S and is likely to unveil in 2015 (Barry and Arnott 2014), although RTS,S is partially 

protective and diminishes over time (Stoute, Kester et al. 1998, Doherty, Pinder et al. 1999, 

Bojang 2006, Cohen, Benns et al. 2010, Swysen, Vekemans et al. 2011, Stanisic, Barry et al. 

2013, Barry and Arnott 2014, Umeh, Oguche et al. 2014). Therefore, the second generation of 

vaccine needs to have higher efficacy than RTS,S for malaria eradication. Recently, several 

vaccine candidates are being studied, with function at every stage of parasite life cycle and 

categorized as follows.  

 

(1) Pre-erythrocytic vaccines: Pre-erythrocytic vaccines intend to prevent infection at 

sporozoite (a human infective form of Plasmodium) stage such as RTS,S or at the liver 

stages of the parasite to counteract the emergence of parasites into the bloodstream. 

However, this vaccine might not be ideal, as only few sporozoites are injected by a 

vector and this may not be sufficient to produce an immune response as only one 

sporozoite is sufficient to establish an infection in hepatocytes (Hill 2011, Barry and 

Arnott 2014).  

 

(2) Blood stage vaccines: The majority of vaccines are developed to target the blood 

stages of Plasmodium as all of the symptoms of malaria occur at the blood stages. 

These vaccines are designed to protect against the blood stages of parasite, i.e. 

merozoite stages, therefore, targeting exposed merozoite surface antigens or antigens 

contained in the apical organelles (organelles containing secretory proteins involved in 

the invasion of host cells, e.g. RH5, AMA-1, MSP1-19 etc, see results 1.3.2 for details 

about blood stages of Plasmodium) is one approach (Richards and Beeson 2009). 

Another example of a blood stage vaccine candidate is targeting the exported surface 

protein of P. falciparum-infected RBCs (erythrocytes) known as erythrocyte 

membrane protein 1 (PfEMP1), which facilitates adhesion of iRBCs (infected red 

blood cells) to different host receptors and is related to pregnancy associated malaria 

(Doritchamou, Bertin et al. 2012, Hviid and Jensen 2015). Blood stage vaccines are 

also meant to prevent transmission stages i.e. gametocytes (Richards and Beeson 

2009, Hill 2011, Barry and Arnott 2014). Examples of antigens present on the surface 

of gametocytes are Pfs48/45 and Pfs230 (Jones, Grignard et al. 2015). 
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(3) Transmission blocking vaccines (TBV): These vaccines are targeted against the 

antigens expressed during mosquito stages of parasite life cycle such as antigens 

expressed in gametocytes or ookinetes. Despite the fact these vaccines would not 

prevent the disease or an infection of an individual; they would significantly assist in 

preventing transmission (Hill 2011, Barry and Arnott 2014) and therefore are an 

important strategy when considering the elimination of malaria. TBV are categorised 

as antigens present either on the surface of gametocytes (pre-fertilization) e.g. 

Pfs48/45 and Pfs230 or on the surface of zygotes and ookinetes (post-fertilization) e.g. 

Pfs25 and Pvs25 (Wu, Ellis et al. 2008, Miyata, Harakuni et al. 2011). 
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Figure 1.3.1 Life Cycle of Malaria parasite. 

Image taken from (Pasvol 2010). 

Sporozoites are injected through mosquito during blood meal and travel to liver to infect 

hepatocytes. Within hepatocytes, sporozoites grow and form liver stage merozoites (Pre-

erythrocytic stage) which are released into the blood stream to start erythrocytes/blood stages. 

Merozoites keep infecting RBCs through continuous asexual lifecycle stages of ring to 

trophozoites to schizonts. Very few asexual blood stage parasites undergo sexual development 

to form male and female gametocytes (erythrocytic stages). During a blood meal, gametocytes 

are taken up into the mosquito midgut. Within 10 minutes (min) gametocytes activate and 

rapture RBCs and male gametocytes exflagellate to form up to 8 male gametes 

(microgametes) and single male gamete fertilize with a female gamete (macrogamete) to form 

a zygote. Within 20-24 h zygote undergoes morphological changes to form a banana shape 

invasive form called an ookinete, which crosses the mosquito midgut epithelium to form the 

oocyst under basal lamina. After maturation, oocyst releases thousands of sporozoites into 

hemoceol. Sporozoites then travel to mosquito salivary gland and ready to transmit into to 

new host during a blood meal (mosquito stages).  
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1.3 Life cycle of Plasmodium 

Malaria is a disease of mankind since antiquity caused by Plasmodium species. These 

apicomplexan parasites are part of the alveolate group (Cavalier-Smith 1993) and are obligate 

intracellular parasites of medical importance. Alveolates include Plasmodium species 

causative agents of malaria and Toxoplasma, which causes toxoplasmosis, Cryptosporidia is 

an opportunistic pathogen of human and animals, Eimeria sp. are poultry and cattle 

pathogens, while Babesia and Theileria are cattle parasites. The alveolate group also consists 

of free living protozoa such as Paramecium and Tetrahymena and also the dinoflagellates 

(Baker 2010). These parasites require a vertebrate and an arthropod host to complete the life 

cycle (figure 1.3.1). Many advances in our understanding of the biology of Plasmodium come 

from the use of rodent models e.g. P. berghei, P. chabaudi and in-vitro culture of human 

parasite P. falciparum. The molecular mechanism of development of malaria parasites in their 

host is not completely clear. To tackle malaria, it is necessary to understand the missing links 

of parasites. 

 

1.3.1 Pre-erythrocytic stage 

 

The mammalian life cycle of Plasmodium starts with the injection of parasite form known as 

sporozoite in the skin during the mosquito blood meal. Although, mosquitoes carry vast 

number of sporozoites, only few sporozoites get deposited into the skin during a blood meal 

(Beier, Davis et al. 1991). This infection by sporozoites is clinically silent and does not induce 

immunological factors. After deposition into the skin, sporozoites enter the blood stream and 

in few minutes rapidly travel to the liver (Vaughan, Aly et al. 2008, Ménard, Tavares et al. 

2013). Sporozoites leave the blood circulation through the liver sinusoidal endothelium and 

pass through Kupffer cells - resident macrophages of the liver (Vaughan, Aly et al. 2008, 

Ménard, Tavares et al. 2013). A family of five putative secreted proteins termed as perforin-

like proteins (PPLPs) is conserved across the Plasmodium species. All of the PPLPs consist of 

a MACPF-like (membrane-attack complex/perforin) domain involved in pore formation. 

PPLP1/SPECT2 (sporozoite microneme protein is essential for cell traversal) is expressed in 

sporozoites and has a critical function in crossing the liver sinusoidal cells(Ishino, Chinzei et 

al. 2005). Sporozoites continue to pass through several hepatocytes to infect a final 

hepatocyte and establish infection with the formation of the parasitophorous vacuole (PV) 

(Hollingdale, Leef et al. 1981, Mazier, Beaudoin et al. 1985, Spielmann, Montagna et al. 
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2012). The pre-erythrocytic stages i.e. sporozoites are present in small numbers and therefore 

represent a transmission bottleneck and are suitable for vaccine development, offering a 

chance of prevention of malaria (Ménard, Tavares et al. 2013). After invading hepatocytes, 

sporozoites differentiate from a slender form to a large spherical liver stage form (also called 

a liver trophozoite) (Mikolajczak and Kappe 2006), which then undergoes schizogony to form 

thousands of merozoites (Coppens, Sullivan et al. 2010). Another aspect of liver stages is 

about modification of hepatocytes and controlling hepatocyte survival which is beyond the 

scope of this report (Mikolajczak and Kappe 2006, Vaughan, Aly et al. 2008, Ménard, 

Tavares et al. 2013).  The parasitophorous vacuole membrane (PVM) (Spielmann, Montagna 

et al. 2012) is lysed and merozoites are exposed to hepatocyte cytoplasm, ready to pack into 

vesicles, called merosomes, and bud out from hepatocyte membrane. Merosomes travel to the 

heart and arrive in the lungs where they liberate merozoites which are ready to invade RBCs 

(Mikolajczak and Kappe 2006, Baer, Klotz et al. 2007, Vaughan, Aly et al. 2008, Ménard, 

Tavares et al. 2013). 

 

1.3.2 Blood stages 

1.3.2.1 Asexual stages of malaria parasite  

Merozoite invasion of RBCs is essential for asexual blood stage replication and establishment 

of malaria pathology. After invasion by P. falciparum, the intra-erythrocyte merozoite grows 

within a parasitophorous vacuole (PV) and develops into ring stage (0-22 hours post-

infection, hpi) to trophozoite (22-36 hpi) and apparently to schizont (36-48 hpi) containing 16 

or more merozoites in approximately 48 hpi. Subsequently, these merozoites are released by 

rupturing of red blood cell and invade nearby RBCs. Merozoite invasion of RBC is a rapid 

process and can occur within 1 min in P. falciparum (Gilson and Crabb 2009). Many proteins 

required for invasion are essential and unique to parasite species and the fact that merozoites 

are extracellular and therefore exposed to host immune system means that merozoites surface 

antigens are viewed as potential targets for blood stage vaccine development as well as targets 

for the design of novel drug compounds (Cowman and Crabb 2006, Boyle, Wilson et al. 

2013). The invasion step consists of contact of the merozoite and RBC, reorientation of 

merozoite apical end to attach to the RBC and formation of a tight junction (TJ) followed by 

invasion (Gilson and Crabb 2009, Riglar, Richard et al. 2011). Merozoite invasion of RBC is 

a series of coordinated process of cell signalling events and consists of number of receptor 
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ligand events (Boyle, Wilson et al. 2013). Numerous merozoite antigens having roles in RBC 

invasion have been identified and are located at the apical end of the merozoite e.g. MSP1, 

EBA and PfRh, PfRh5 and basigin interaction, AMA1 –RON2 and etc. (Weiss, Gilson et al. 

2015).   

RBCs are devoid of a nucleus and other cell organelles and are highly specialized cells 

designed to transport O2 and CO2. They have great ability of deformity enabling their 

movement through the microvasculature (An and Mohandas 2008). RBC modification is 

essential for parasite survival as RBCs lack the support systems that parasite might hijack and 

therefore must be made by parasite to survive (Moxon, Grau et al. 2011). Inside erythrocyte, 

merozoites hide from the host immune system as it grows; it induces modification of the host 

cell to facilitate import of nutrients, dispose of waste, and export of proteins across parasite-

plasma membrane, PVM and erythrocyte cytosol. RBCs are full of haemoglobin and the 

intracellular parasite uses the amino acids obtained from haemoglobin digestion (Goldberg 

2005) for protein synthesis and haematin - a by-product of haemoglobin digestion is stored in 

a crystalline form called haemazoin (Pagola, Stephens et al. 2000). Other changes in RBCs 

are formation of PV, PVM and formation of new membranous structures, Maurer's clefts 

(Lanzer, Wickert et al. 2006, Wickert and Krohne 2007) which are involved in protein export. 

Many alterations are made to the RBC membrane including formation of novel channels in 

PVM (de Koning-Ward, Gilson et al. 2009) and RBC membrane (Staines, Powell et al. 2004), 

small protrusions on the surface of the iRBC called knobs where erythrocyte membrane 

protein such as PfEMP1 and other virulent proteins are transported (Cooke, Mohandas et al. 

2004, Haldar, Hiller et al. 2005, Moxon, Grau et al. 2011, Prajapati and Singh 2013). These 

modifications to the iRBC membrane allow the parasite to adhere to vasculature endothelial 

cells causing rosetting and cytoadherence thus avoiding splenic clearance. Cytoadherence and 

rosetting cause severe malaria and organ complications.  

 

1.3.2.2 Sexual differentiation and gametogenesis 

Very few asexual blood stage parasites, after ring stage, are differentiated into sexual stages to 

become male and female gametocytes (micro or macro gametocytes respectively) - 

intraethyrthocytic precursors of the parasite sexual stage. Differentiation of asexual to sexual 

stages is crucial for transmission of parasite to complete the life cycle. Sex through gamete 

mating, which occurs in the mosquito midgut, gives an opportunity of genetic recombination 
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with other genotypes. The ratio of gametocytes to asexual stages can be very low, in one of 

the P. falciparum study it is calculated as 1:156 (Eichner, Diebner et al. 2001) however, it is 

known to be varying (Boyle, Wilson et al. 2013, Wampfler, Mwingira et al. 2013). The half-

life of gametocytes is variable from 2.4 days to 6.4 days (Talman, Domarle et al. 2004). The 

ratio of male to female gametocytes is generally 1:3 as observed in P. falciparum, however, 

the ratio may be variable and vary between clones as discussed (Talman, Domarle et al. 2004, 

Baker 2010). Additionally, environmental factors might influence the gametogenesis in 

malaria parasite such as density of parasites, RBC lysis and cyclic AMP metabolism, the 

presence of anti-malarial drugs, growth inhibitors and immunological factors discussed by 

(Alano and Carter 1990, Baker 2010). The master regulator of sexual commitment was 

completely unknown, however recently Sinha et al and Kafsack et al have shown that AP2-G, 

a conserved member of the parasite specific ApiAP2 family of DNA-binding proteins, is 

essential for the commitment to sexual stages in P. berghei and P. falciparum respectively 

(Kafsack, Rovira-Graells et al. 2014, Sinha, Hughes et al. 2014). Further, recent studies show 

that expression of ap2-g itself is epigenetically regulated by class II histone deacetylases 

protein - histone deacetylase 2 (Coleman, Skillman et al. 2014) and heterochromatin protein 1 

(Brancucci, Bertschi et al. 2014) in P. falciparum. A proteomic study of P. falciparum 

detected 1289 proteins, of which 315 are solely present in gametocytes, 103 are shared in 

between schizonts and trophozoite, 163 shared with gametes and 350 are shared with 

trophozoites, schizonts, gametes and gametocytes (Lasonder, Ishihama et al. 2002). Gender 

specific distribution of gene expression has also been shown in the rodent malaria parasite, P. 

berghei gametocytes (Khan, Franke-Fayard et al. 2005). Transcriptional data shows that 

almost 250-300 genes are specifically up-regulated in Plasmodium gametocytes (Khan, 

Franke-Fayard et al. 2005, Silvestrini, Bozdech et al. 2005, Young, Fivelman et al. 2005).  

This indicates the expression of a large number of different sets of genes in gametocytes. 

Considering the importance of gametocytes, sexual stages are regarded to have potential for 

vaccine and drug development to stop the transmission of malaria (Baker 2010). A wide range 

of potential surface antigens which can reduce the transmission have been investigated. 

Current potential TBV candidates  are the surface antigens expressed of sexual stages such as 

P48/45 (Roeffen, Mulder et al. 1996, Bousema, Drakeley et al. 2007), P230 (Eksi, Czesny et 

al. 2006, van Dijk, van Schaijk et al. 2010) and HAP2 (Blagborough and Sinden 2009, Miura, 

Takashima et al. 2013) which are essential for fertility of male gametes.   
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In P. falciparum, gametocytogenesis is a long process (8-12 days) and consists of stage I to V 

which are defined by morphology (Hawking, Wilson et al. 1971, Sinden 2009). A sexually 

committed merozoite grows and become enlarged and elongated occupying most of the RBC. 

A stage I gametocyte is difficult to discriminate from trophozoite in Giemsa stain, still typical 

pigmentation pattern and roundness may be noticeable (Baker 2010). In P. berghei, 

gametogenesis is short (~30h) as compared to P. falciparum and therefore different 

developmental stages I to V are difficult to distinguish and P. berghei gametocytes remain 

spherical. After commitment to the sexual development protein synthesis and haemoglobin 

digestion decrease while DNA synthesis ceases (Raabe, Billker et al. 2009, Baker 2010, 

Guttery, Holder et al. 2012). Nucleic acid synthesis is restricted to RNA synthesis which are 

transcriptionally repressed in female gametocytes in the form of quiescent messenger 

ribonucleoprotein particles (mRNPs) that include a DDX6 class RNA helicase called DOZI 

(development of zygote inhibited) (Mair, Braks et al. 2006). Although asexual stages are 

haploid (N), the DNA content of P. berghei gametocytes is more than haploid and less than 

diploid (~1.2N) most likely due to selective gene amplification (Janse, van der Klooster et al. 

1986). Apparently, gametocytes are arrested at G0 phase of cell cycle (Guttery, Holder et al. 

2012). 

 

1.3.3 Mosquito stages  

Within the vector, the parasite undergoes multiple transition stages which can potentially be 

effectively blocked for malaria control which are a) gamete formation and fertilization to 

zygote; b) zygote to ookinete; c) Ookinete to oocyst and finally d) oocyst to sporozoite 

development (Beier 1998). As a consequence of the bottleneck in parasite numbers during the 

early stages of this process (Sinden and Billingsley 2001), the first 24h between gametes and 

ookinete are likely to be the best potential targets for a transmission blocking strategy. 

Understanding parasite-vector biology could reveal the mechanisms of parasite development 

and therefore help design the anti-malaria-transmission strategies. 

 

1.3.3.1 Fertilization and zygote to ookinete transition 

The Plasmodium parasite enters the vector midgut through the blood meal and gametocytes 

are activated. Within 10 minutes, gametes (both male and female) start to emerge from 
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erythrocytes stimulated by a change of environmental conditions, which includes a 

temperature drop of around 5°C, pH shift to about 8 from 7.3, presence of xanthurenic acid  

(Nijhout and Carter 1978, Billker, Shaw et al. 1997, Billker, Lindo et al. 1998, Garcia, Wirtz 

et al. 1998), cGMP dependent activation of Protein Kinase G (PKG) which controls 

mobilization of Ca
2+

 through regulation of phosphoinositide metabolism (Brochet, Collins et 

al. 2014).  

 

Unlike the egress of merozoites, egress of gametes is a less well-understood process and has 

been shown to be blocked with gene deletion or inhibition with the treatment of protease 

inhibitors such as Pfg377 deletion in P. falciparum female gametocytes (de Koning-Ward, 

Olivieri et al. 2008) or protease inhibitors and PPLP2 deletion in both gametocytes (Sologub, 

Kuehn et al. 2011, Wirth, Glushakova et al. 2014) and actin-II and PPLP2 in P. berghei male 

gametocytes (Deligianni, Morgan et al. 2011, Deligianni, Morgan et al. 2013) or PbGEST in 

both (Ponzi, Sidén-Kiamos et al. 2009, Talman, Lacroix et al. 2011). MDV-1/PEG3 (male 

development-1/protein of early gametocyte 3) has an important role in the mosquito 

transmission as MDV-1/PEG3 defective male and female gametocytes are largely unable to 

disrupt PVM and erythrocyte membrane (Lal, Delves et al. 2009, Ponzi, Sidén-Kiamos et al. 

2009). Changes in the shape and fusion of osmophilic bodies with the plasma membrane 

releasing the content in the surrounding PV just before the emergence of gametes cause 

gametogenesis (Sinden, Canning et al. 1976).  

 

Male gametocytes undergo three successive genome replications from >haploid to octaploid 

(>N to 8N) and segregation and assembly of each nucleus with the MTOC (Microtubule 

Organizing Centre), axoneme and tubulin (Sinden, Canning et al. 1976) leading to the release 

of 8 microgametes, in a process known as exflagellation, while macrogamete DNA content 

remains >haploid (~1.2N) (Janse, van der Klooster et al. 1986, Janse, Ponnudurai et al. 1988). 

A Ca
2+

-dependent protein kinase (CDPK4) is responsible for DNA replication in male 

gametocytes (Billker, Dechamps et al. 2004) and phosphorylates MAP2 Kinase (mitogen 

activated protein) which is predicted to regulate cytokinesis in the male gametocyte during 

exflagellation (Tewari, Dorin et al. 2005). 

PPLP2 is dispensable in asexual blood stage, however, is important for male exflagellation 

highlighting differences in the mechanisms of egress of merozoites and the egress of 

gametocytes from RBC (Deligianni, Morgan et al. 2013, Wirth, Glushakova et al. 2014). A 

Plasmodium homologue of serine/arginine-rich protein kinase (SRPK) is also essential for 
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male gamete exflagellation as deletion of srpk completely blocks the male gamete 

exflagellation (Tewari, Straschil et al. 2010).  Recently, a copper-transporting P-type ATPase 

has been shown to be critical for the fertility of both male and female gametes (Kenthirapalan, 

Waters et al. 2014) and egress from the host cell and the formation of beating flagella is 

dependent on the functional actin-II (Deligianni, Morgan et al. 2011). 

 

A free microgamete swiftly swims to find a macrogamete and fuses to fertilise. The process of 

male and female gametes fusion largely remains unknown, yet studied with ultrastructural 

analysis (Aikawa, Carter et al. 1984, Sinden 1984, Sinden, Hartley et al. 1985) and as 

explained in section 1.5. In Plasmodium, P48/45 is required for gamete adhesion (van Dijk, 

Janse et al. 2001) and HAP2 is required for fusion (Liu, Tewari et al. 2008), therefore, 

depicting P48/45 and HAP2 as potential transmission-blocking candidates. After fusion, male 

nucleus (~1.2N) enters the macrogamete then gives rise to a diploid (2N) zygote which 

undergoes meiosis (Sinden, Hartley et al. 1985) and becomes tetraploid (4N) (Janse, van der 

Klooster et al. 1986), however, karyokinesis does not take place. NIMA (never in 

mitosis/Aspergillus) related Kinases - Nek4 and Nek2 are essential for the DNA replication 

after fertilization where male and female nuclei remain separate or fuse to form a diploid 

zygote, however, further development is aborted in Nek4 and Nek2 gene deletion mutants 

(Reininger, Billker et al. 2005, Reininger, Tewari et al. 2009). Atypical protein kinase 7 

(PK7) associated with the melatonin signalling in asexual blood stages of P. falciparum 

(Koyama, Ribeiro et al. 2012) and Cyclin G-associated kinase (GAK) involved in the 

clathrin-mediated membrane trafficking  (Shimizu, Nagamori et al. 2009) play a major role in 

Plasmodium zygote morphogenesis, however, their exact function remains to be elicited 

(Tewari, Straschil et al. 2010). The zygote is spherical presumably without obvious polarity 

and undergoes complex changes. The success of fertilization depends on the stored mRNAs in 

mRNPs as deletion of either DOZI (Mair, Braks et al. 2006) or the Sm-like factor CITH 

(homolog of worm CAR-I and fly Trailer Hitch) (Mair, Lasonder et al. 2010) inhibit the 

zygote to ookinete transformation in P. berghei. DOZI negative zygotes remains diploid 

unlike CITH negative zygotes, which undergo meiosis and become a tetraploid but further 

zygote to ookinete development remains aborted in both gene deletions (Mair, Lasonder et al. 

2010). This implies further activation of transcription only after the completion of DNA 

replication, and development of the zygote as far as meiosis depends on stored mRNAs which 

include mRNAs of ap2-o transcription factor responsible for initiation of ookinete specific 

gene transcription (Yuda, Iwanaga et al. 2009). It is thought that de novo transcription within 



Introduction 

 

22 
 

a developing ookinete does not initiate until retort outgrowth (approximately until 7-8h post-

fertilization) and development of the parasite until retort stage can proceed reliant solely on 

stored mRNAs (Guerreiro, Deligianni et al. 2014) (A. Srivastava- Waters group, 

Unpublished).  Activation of set of stored mRNAs in developing zygote has been shown to be 

reliant on a CDPK1 (Sebastian, Brochet et al. 2012).  
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Figure 1.3.2 Development of ookinete from zygote. 

Fusion of male and female gametes leads to a spherical zygote which is assumed to be a non-

polar cell. After about 2-3h nuclear DNA underdoes meiosis without karyokinesis and 

cytokinesis and zygote becomes tetraploid. After about 6h apical complex starts emerging 

from spherical zygote and zygote transforms itself into a banana shaped specialized cell called 

ookinete, which is invasive, polar and motile.    

Source: Prof. A. P. Waters adapted from Sinden (2004) and kindly donated for this thesis. 
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Microtubules start elongating and after about 6-8h the apical complex starts emerging from 

zygote (Aikawa, Carter et al. 1984, Sinden, Hartley et al. 1985). In P. berghei, the integrity of 

microtubules is dependent on a Protein Phosphatase with Kelch-Like Domains (PPKL) 

(Guttery, Poulin et al. 2012, Philip, Vaikkinen et al. 2012) and two unique IMC [reviewed in 

(Morrissette and Sibley 2002, Santos, Lebrun et al. 2009, Harding and Meissner 2014)] (Inner 

Membrane Complex is a layer of flattened membranous vesicles present beneath the plasma 

membrane) sub-compartment proteins (ISP1 and ISP3) are required for apical polarity from 

gametocytes to ookinete and ISP1 being essential (Poulin, Patzewitz et al. 2013). Within 24h 

the zygote completely transforms itself into a specialized banana shaped cell called an 

ookinete which has defined polarity with micronemes, polar ring and collar at its apical end 

(figure 1.3.2) (Aikawa, Carter et al. 1984, Sinden, Hartley et al. 1985, Morrissette and Sibley 

2002). Microneme maturation and differentiation depends on SHLP1 (Shewanella-like protein 

phosphatase) (Patzewitz, Guttery et al. 2013), paternally donated Formin-like protein MISFIT 

(Bushell, Ecker et al. 2009) and partially on PPM2 and PPM5 (metallo-dependent protein 

phosphatases 2 and 5) (Guttery, Poulin et al. 2014). MISFIT is also involved in ookinete DNA 

replication along with phosphatase PPM2 (Bushell, Ecker et al. 2009, Guttery, Poulin et al. 

2014). 

The polar ring acts as a MTOC from where subpellicular microtubules extend into the body of 

the cell. The cell structure is supported with a sac of IMC having an aperture at either of the 

ends and the space between the plasma membrane and IMC is known as supra-alveolar space 

(Raibaud, Lupetti et al. 2001). Underneath IMC, subpellicular microtubules extend from the 

apical end spanning at least ¾ of an ookinete towards the posterior end, the subpellicular 

network (SPN), and a framework of a family of related IMC proteins recently grouped as 

alveolins (Gould, Tham et al. 2008) exist. Microtubules appear to be connected to the 

cytoplasmic side of the IMC via 9nm intra-membranous particles and the IMC shows pores 

which are predicted to be involved in trafficking of components between parasite endoplasm 

and supra-alveolar space (Raibaud, Lupetti et al. 2001). Recently, it was identified that a 

family of six-pass transmembrane proteins, termed the GAPM (Glideosome associated 

protein with multiple-membrane spans) may have a role in tethering IMC or actin-myosin 

motor (necessary for parasite motility and invasion) to the cytoskeleton (Bullen, Tonkin et al. 

2009). Another vital yet poorly studied organelle of the ookinete is the crystalloid which is 

also present in young oocysts. The crystalloid contains proteins of LCCL family which are 
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essential for oocyst to sporozoite progression (Carter, Shimizu et al. 2008, Saeed, Carter et al. 

2010, Guerreiro, Deligianni et al. 2014). 

  

Compared with sporozoites and merozoites, ookinetes are the largest motile form of the 

malaria parasite and develop in an extracellular environment. P berghei ookinetes are 7-8 μm 

long and ~1.5 μm wide and other Plasmodium species show some variability. All zoites 

(merozoites, sporozoites and ookinete) have an apical complex involved in host cell invasion 

containing various secretory organelles: Rhoptries (required for host cell adhesion and PV 

formation), micronemes (host cell adhesion and rupture) and dense granules (DG, involved in 

post-invasion host cell modification) (Kats, Cooke et al. 2008). The apical organelles found in 

three invasive forms are similar. Most of our understanding of host cell invasion has come 

from studies on the merozoite as less is known about the apical proteins found in the ookinete 

and sporozoite. During invasion process, parasite pushes itself into RBC by creating PV with 

the help of actin-myosin motor (Opitz and Soldati 2002) (Ookinete motility is explained in 

detail at section 1.4.2), and  discharges the content of micronemes, rhoptries and dense 

granules which are vital for the host cell invasion and intracellular survival of the parasite 

(Gilson and Crabb 2009, Riglar, Richard et al. 2011). However, microscopic observations 

denote that ookinete has micronemes and does not have dense granules and rhoptries (Lal, 

Prieto et al. 2009). This assumption was later validated by the absence of rhoptry proteins in 

ookinetes (Tufet-Bayona, Janse et al. 2009). Recent findings suggest that microneme proteins 

have roles in motility and invasion, whereas dense granule and rhoptry components 

participate in PV formation.  

An ookinete microneme proteome analysis has identified 345 proteins including many 

proteins associated with ookinete infectivity e.g. chitinase, CTRP, SOAP, P28, WARP, 

CelTOS (See below for more detail about these proteins) and some putative novel proteins 

such as M1 aminopeptidase and the chaperone, protein disulphide isomerase (Lal, Prieto et al. 

2009). Numerous other proteins of known vesicle trafficking (Rab11a, Rab1, Rab6, Rab7, 

SNARE and many more), motility (MyosinA, MTIP, actin) and signalling (CDPK1 and 

CDPK4) have also been reported to be part of the microneme, except subtilisin 2 and MAOP 

(see table 1.3 and description below for more details about these proteins) were not identified 

(Lal, Prieto et al. 2009). P. berghei proteomic and transcriptomic data show up-regulation of 

tri-carboxylic acid cycle, oxidative phosphorylation and many mitochondrial proteins in 

gametocytes and abundant in ookinetes, along with up-regulated yet poorly understood BIR 
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proteins in the mosquito stages indicating pre-adaptation to life in mosquito (Hall, Karras et 

al. 2005).  

P25 and P28 are the predominant surface proteins of ookinete membrane and are similar in 

human-, rodent- and bird-infectious species of Plasmodium (Tomas, Margos et al. 2001). 

These are synthesized just after the formation of female gamete and expression is enormously 

increased after 6-12h post-gametogenesis (Kumar and Carter 1985, Fries, Lamers et al. 1990, 

Paton, Barker et al. 1993, Vlachou, Lycett et al. 2001). Both proteins consist of N-terminal 

signal sequence followed by three to four epidermal growth factor (EGF) domains and a 

glycosylphosphatidylinositol (GPI) anchor (Tomas, Margos et al. 2001, Saxena, Singh et al. 

2006) and are detected in ookinete surface proteome along with CTRP (circumsporozoite- and 

thrombospondin-related adhesive protein) (Wass, Stanway et al. 2012)(Wass, Stanway et al. 

2012)(Wass, Stanway et al. 2012). P25 and P28 are effective candidates for transmission-

blocking vaccine as the antibodies against the P25 and P28 can significantly inhibit ookinete 

to oocyst development, and functions of P25 and P28 are overlapping to some extent (Tomas, 

Margos et al. 2001). Possibly, P25 and P28 have a role in the ookinete surface interaction 

with midgut environment such as protection of the ookinete with midgut lethal factors or 

recognition, attachment and penetration of midgut epithelial cells where laminin of basal 

lamina acts as ligand for ookinete attachment (Vlachou, Lycett et al. 2001, Wass, Stanway et 

al. 2012). P25 structure has been studied in P. vivax which shows that PvP25 (P. vivax P25) 

consists of a triangular prism structure made up of four EGF like domains bound to the 

parasite surface by GPI anchor, and the residues forming triangular structures are conserved 

in P25 and P28 of all Plasmodium species (Saxena, Singh et al. 2006). Homology modelling 

suggest that PvP28 (P. vivax P28) also consist of triangular structure made up of four EGF 

like domains except the presence of C loop in EGF domain IV (Sharma, Ambedkar et al. 

2009). Recently, PvP25 has been to shown to interact with An. albimanus midgut microvilli 

protein calreticulin suggesting its role in midgut recognition (Rodríguez, Martínez-Barnetche 

et al. 2007).  

 

CTRP is an adhesive protein belonging to Plasmodium sporozoite surface protein family 

called thrombospondin-related anonymous protein (TRAP), and somewhat similar with the 

circumsporozoite protein (Trottein, Triglia et al. 1995). TRAP family proteins have 

combination of two adhesive elements - the von Willebrand factor A-domain (A domain) and 

the thrombospondin type I repeat, a transmembrane domain (TM) and a cytoplasmic tail 
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domain (Heiss, Nie et al. 2008). CTRP is secreted through micronemes (Lal, Prieto et al. 

2009) and essential for ookinete motility (Dessens, Beetsma et al. 1999, Yuda, Sakaida et al. 

1999). In P. berghei, CTRP is expressed about 10h post-activation (hpa) of gametocytes 

(Dessens, Beetsma et al. 1999, Yuda, Sakaida et al. 1999) and is required for binding of basal 

lamina components - collagen and laminin (Arrighi and Hurd 2002, Mahairaki, Voyatzi et al. 

2005) but not for in vitro oocyst development (Nacer, Underhill et al. 2008). 

 

Chitinase is another important enzyme secreted by ookinete microneme which hydrolyses 

chitin in peritrophic matrix, the chitin and protein rich thick barrier which is formed after a 

blood meal and disintegrates following digestion of blood meal (Shahabuddin and Kaslow 

1994, Langer and Vinetz 2001) along with other proteases, however, is not absolutely 

required to overcome the peritrophic matrix (Dessens, Mendoza et al. 2001).  

 

Recent research efforts have elucidated a number of unknown ookinete molecules that may 

perform vital functions in the mechanism of epithelium recognition, assist in the ookinete 

adhesion and transverse through epithelial cells such as SOAP (secreted ookinete adhesive 

protein) is involved in the interactions with mosquito laminin (Dessens, Sidén-Kiamos et al. 

2003). Although the oocyst development is reduced in soap
-
 P. berghei ookinetes, it is not 

absolutely required for the ookinete to oocyst transformation (Dessens, Sidén-Kiamos et al. 

2003, Nacer, Underhill et al. 2008). 

 

PPLP3 also known as MAOP (membrane attack ookinete protein) (Kadota, Ishino et al. 2004) 

and PPLP5 (Ecker, Pinto et al. 2007) are expressed in the ookinetes and involved in host 

epithelium membrane rupture and invasion while function of PPLP4 (Raibaud, Brahimi et al. 

2006) is still to be verified. Large aggregates of Subtilisin-like protease 2 (SUB2), usually 

implicated in the invasion process of blood stage merozoites by processing of MSP1 

(Merozoite Surface Protein 1) and modifying RBC surface along with other proteases, were 

found in ookinete invaded mosquito midgut cells while exhibiting a granular localisation 

pattern in the ookinete cytoplasm. Therefore, SUB2 appears to be secreted into invaded 

mosquito midgut cells and is probably engaged in disruption of cytoskeleton there (Han, 

Thompson et al. 2000). Surprisingly, SUB2 and MAOP were not detected in ookinete 

microneme proteome (Lal, Prieto et al. 2009) or whole cell ookinete proteome (Hall, Karras et 

al. 2005). Additional proteins implicated in molecular interaction of the ookinete with midgut 

epithelial cells, invasion and traversal are: enolase interacting with the midgut epithelium and 
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conversion of plasminogen to plasmin therefore helping invasion process (Ghosh, Coppens et 

al. 2011), WARP (von Willebrand factor A-domain-related protein) possibly have a role in 

motility and attachment of ookinetes to epithelium (Yuda, Yano et al. 2001) and CelTOS (cell 

traversal protein of Plasmodium ookinetes and sporozoites) is required for ookinete migration 

through the epithelial cell cytoplasm to basal lamina i.e. transversal (Kariu, Ishino et al. 2006) 

[reviewed in (Angrisano, Tan et al. 2012)] (See Table 1.3 for details of proteins involved in 

ookinete attachment, motility and invasion through the midgut epithelium including some 

proteins involved in ookinete development). 

 

Ookinetes exhibit three distinct motility patterns: stationary rotation, translocational 

spiralling, and straight-segment during the invasion of the mosquito midgut epithelium 

(Vlachou, Zimmermann et al. 2004). The motility of ookinete is achieved through the actin-

myosin motor (Opitz and Soldati 2002) embedded in the plasma membrane and IMC 

(Ookinete motility is explained in detail at section 1.4.2). The motile ookinete leaves the 

tightly packed blood bolus and invades peritrophic matrix and midgut epithelium tissue and 

enters haemolymph to develop into the oocyst. Whether ookinete invades a specific cell type 

of midgut epithelium or not and if the infected epithelium dies or is there any 

Plasmodium/Anopheles species specific variation between invading epithelium remains 

controversial (Shahabuddin and Pimenta 1998, Han, Thompson et al. 2000, Zieler and Dvorak 

2000, Shahabuddin 2002). 
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Name Function Reference 

P25 Probably involved in ookinete 

entry into mosquito midgut and 

protection of ookinete from 

midgut enzymes 

(Tomas, Margos et al. 2001) 

P28 Probably involved in ookinete 

entry into mosquito midgut and 

protection of ookinete from 

midgut enzymes 

 (Tomas, Margos et al. 

2001) 

CTRP Ookinete motility and 

interaction with basal lamina  

 (Dessens, Beetsma et al. 

1999, Yuda, Sakaida et al. 

1999, Templeton, Kaslow et 

al. 2000, Nacer, Underhill et 

al. 2008) 

Chitinase Penetration of peritophic 

membrane 

 (Dessens, Mendoza et al. 

2001, Tsai, Hayward et al. 

2001) 

SOAP Ookinete interactions with 

mosquito laminin  

 (Dessens, Sidén-Kiamos et 

al. 2003, Nacer, Underhill et 

al. 2008) 

MOAP/PPLP3 host epithelium membrane 

rupture and invasion  

 (Kadota, Ishino et al. 2004) 

PPLP5 host epithelium membrane 

rupture and invasion  

,     (Ecker, Pinto et al. 2007) 

SUB2 Possibly disrupting the actin 

cytoskeleton on midgut 

epithelium 

 (Han, Thompson et al. 

2000) 

enolase Interaction with midgut 

epithelium and plasminogen 

 (Ghosh, Coppens et al. 

2011) 

WARP Motility and attachment of 

ookinetes to epithelium 

 (Yuda, Yano et al. 2001) 

CelTOS  Oonkine migration through 

midgut epithelium 

 (Kariu, Ishino et al. 2006) 

M1 aminopeptidase  Possibly protein breakdown in 

ookinete stages ( haemoglobin 

breakdown in asexual stages) 

(Florent, Derhy et al. 1998, 

Allary, Schrevel et al. 2002, 

Lal, Prieto et al. 2009, Sahi, 

Rai et al. 2014, Drinkwater, 

Bamert et al. 2015) 

Putative secreted 

ookinete protein 2 

(PSOP2) 

Possible midgut recognition and 

transversal 

 (Ecker, Bushell et al. 2008) 

Putative secreted 

ookinete protein 7 

(PSOP7) 

Possible midgut recognistion 

and transversal 

 (Ecker, Bushell et al. 2008) 
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protein disulfide 

isomerase 

 Catalyses the oxidation, 

reduction and isomerisation of 

disulfide bonds 

 (Florent, Mouray et al. 

2000, Mahajan, Noiva et al. 

2006, Lal, Prieto et al. 2009) 

Guanylate cyclase-β  Ookinete motility  (Hirai, Arai et al. 2006, 

Moon, Taylor et al. 2009) 

Protein Kinase G 

(PKG) 

Ookinete motility (studied 

through inhibitor interactions) 

 (Moon, Taylor et al. 2009, 

Brochet, Collins et al. 2014) 

 

Phosphodiesterases 

δ (PDEδ) 

Gametogenesis and ookinete 

morphology 

(Taylor, McRobert et al. 

2008, Moon, Taylor et al. 

2009) 

CDPK3 Ookinete motility 

 

(Ishino, Orito et al. 2006, 

Siden-Kiamos, Ecker et al. 

2006) 

 SHLP1 Microneme maturation (Patzewitz, Guttery et al. 

2013) 

MISFIT Microneme maturation, ookinete 

DNA replication, oocyst 

formation 

(Bushell, Ecker et al. 2009) 

PPM2 Zygote/Ookinete DNA 

replication, possibly micromeme 

development 

(Guttery, Poulin et al. 2014) 

PPM5 Microneme development (Guttery, Poulin et al. 2014) 

MDV-1/PEG3 Egress of gametes from host cell 

and reduced ookinete 

transformation 

(Lal, Delves et al. 2009, 

Ponzi, Sidén-Kiamos et al. 

2009) 

 

Table 1.3 Plasmodium ookinete proteins associated with midgut transversal. 
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1.3.3.2 Oocysts and sporozoites development in mosquito 

An oocyst is another mosquito stage of parasite which undergoes multiple mitoses to generate 

up to 13000 haploid sporozoites in an extracellular environment. Little is known about oocyst 

development. P. berghei oocyst size grows in 10-12 days up to 30-40μm in diameter (Thathy, 

Fujioka et al. 2002), making it one of the largest stages of the whole parasite life cycle. It is 

surrounded by plasma membrane and a thick capsule containing dividing nuclei and 

cytoplasmic membranes with a network of flattened cisternae and vesicles at the periphery 

(Thathy, Fujioka et al. 2002). Oocysts further develop to form a multi-nuclei pool of lobes 

called sporoblast. Following the assembly of MTOC-subpellicular microtubules, apical 

complex, nuclei and IMC; sporozoites bud-off from sporoblast. Another GPI anchored protein 

called circumsporozoite protein (CSP) plays a key role in the oocyst development as csp
-
 

oocysts are incapable of sporozoite formation (Ménard, Sultan et al. 1997, Thathy, Fujioka et 

al. 2002). CSP is present and its labelling increases from the surface of lobes in sporoblast till 

mature sporozoites formation (Thathy, Fujioka et al. 2002). This whole process takes up to 21 

days from blood meal to infective salivary gland sporozoites (Sinden and Billingsley 2001, 

Baton and Ranford-Cartwright 2005). Release of sporozoites from the oocyst is dependent on 

egress cysteine protease 1 (ECP1) and it also has a vital role after oocyst egress of sporozoites 

which remains unidentified (Aly and Matuschewski 2005). Once the sporozoites pass the 

basal lamina and enter into the hemocoel, they are carried away to all the organs via 

hemolymph circulation and pass through only salivary gland epithelial cells which is 

mediated by TRAP (thrombospondin-related anonymous protein) (Sultan, Thathy et al. 2001) 

and several other proteins for example TRAP-like molecule UOS3 (up-regulated in oocyst 

sporozoites 3) (Mikolajczak, Silva-Rivera et al. 2008), cysteine repeat modular proteins 

(CRMPs) CRMP-1 and CRMP-2 (Thompson, Fernandez-Reyes et al. 2007), MAEBL 

(membrane antigen/erythrocyte binding-like) protein (Kappe, Kaiser et al. 2003) reviewed 

elsewhere (Aly, Vaughan et al. 2009). Gliding motility of sporozoites is mediated by an actin-

myosin motor (Opitz and Soldati 2002) which is similar to that employed by ookinetes and 

merozoites. After crossing the epithelial lining of salivary gland, sporozoites enter secretary 

cavity where they remain viable for the life of a mosquito and are ready to transmit again into 

vertebrate hosts. These salivary gland sporozoites, then injected into the new host skin during 

blood meal of female Anopheles mosquito and travel to liver (Yuda, Sakaida et al. 1999, 

Ghosh, Edwards et al. 2000, Vanderberg and Frevert 2004, Amino, Thiberge et al. 2006). 

Although oocyst derived sporozoites (ODS) and salivary gland derived sporozoites (SGS) 
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show identical morphology under light microscope, P. berghei ODS are less infective to 

mammalian cells than SGS (Matuschewski, Nunes et al. 2002). In agreement to this, the 

microarray (Mikolajczak, Silva-Rivera et al. 2008) and proteomic profile (Lasonder, Janse et 

al. 2008) of SGS is different from the proteome of ODS. In P. gallinaceum, SGS cannot re-

invade the salivary gland if injected into haemocoel, however, can infect chickens. On the 

other hand, ODS can invade salivary gland but shows reduced infectivity to chickens 

suggesting the irreparable pattern of programming (Touray, Warburg et al. 1992). This 

exhibits the differential pattern of regulation of the malaria parasite to acclimatize in mosquito 

and vertebrate host.    
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Figure 1.4.1 Structure of apical complex in merozoite. 

A merozoite showing apical complex: polar ring, micronemes, rhoptries, dense granules and 

subpellicular microtubules and internal organelles.  

Source: (Cowman and Crabb 2006) 
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1.4 Cytoskeleton and Inner membrane complex of Apicomplexan 

parasites 

All apicomplexan parasites are obligate intracellular parasites having a very complex cell 

cycle, involving differentiation into diverse host tissue. All apicomplexan share 

morphological and replicative similarities and have a collection of unique cell components 

such as the apical complex and pellicle. The pellicle consists of plasma membrane, IMC and 

SPN (figure 1.4.2) while apical complex (figure 1.4.1) consists of three specialised secretory 

organelles: micronemes, rhoptries and dense granules. The apical complex also consists of 

polar rings, which acts as MTOC, and the conoid.  

 

1.4.1 Apical complex  

At the apical end of motile parasite stages subpellicular microtubules gather in a ring like 

structure called apical polar ring which acts as MTOC (Russell and Burns 1984). The conoid 

is a cone shaped structure made up of spiral filaments and in T. gondii, these filaments are 

called conoid filaments which are made up of tubulin and share structural features with 

microtubules but are not microtubules (Hu, Roos et al. 2002). The conoid remains covered 

under the shell of subpellicular microtubules and is thought to project out with upper polar 

ring upon calcium signal when parasites are motile in the extracellular environment 

(Mondragon and Frixione 1996, Hu, Roos et al. 2002). In T. gondii, the conoid consists of 

TgDLC, TgCAM1, and TgCAM2 along with a further predicted 59 proteins (Hu, Johnson et 

al. 2006). The conoid is supposed to play the mechanical role during invasion and is not 

present in all Apicomplexans (Morrissette and Sibley 2002) including Plasmodium 

(Morrissette and Sibley 2002). Nevertheless, Plasmodium has a cone like electron dense 

structure with a central aperture surrounding the polar ring in connection with IMC called 

collar (Moon, Taylor et al. 2009, Philip, Vaikkinen et al. 2012, Sebastian, Brochet et al. 

2012). 

 

Micronemes are small oval shaped secretory organelles, through calcium signalling 

microneme release its content mostly adhesion proteins required for invasion and entry into 

host cells, also contribute for gliding motility of parasite and egress from the host cell. 
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Content of P. berghei ookinete micronemes (CTRP, SOAP, WARP, chitinase, etc.) and their 

functions are described above in section 1.3.2.2.  

 

Rhoptries are rather large club-shaped organelles having a bulbous body and narrow neck 

which pass through the conoid and has opening at apical tip and rhoptries are formed de novo 

in daughter cells (Bannister, Hopkins et al. 2000). P. berghei rhoptry proteome suggests that 

about 36 proteins are localized in rhoptries. Among these potential rhoptry proteins are 

homologues of known rhoptry proteins, some are proteases and lipid metabolism enzymes, 11 

of them are secreted during the host cell invasion and are associated either with RBC 

membrane or with PVM (Sam-Yellowe, Florens et al. 2004). Rhoptry neck components in T. 

gondii are designated as RON proteins and some of them are conserved in Plasmodium 

(Alexander, Mital et al. 2005). Following microneme secretion, the content of rhoptries is 

secreted after the attachment of host cell at the beginning of invasion process and involved in 

PV formation. However, some of the neck proteins studied in Plasmodium are reticulocyte-

binding homologous (Rh) Rh1/2a/2b/4/5 involved in merozoite invasion [reviewed in 

(Proellocks, Coppel et al. 2010, Counihan, Kalanon et al. 2013)], and RON 2/4/5 are involved 

in TJ formation along with microneme protein AMA1 (apical membrane antigen 1). Rhoptry 

bulb proteins (ROP) are generally distinct (Boothroyd and Dubremetz 2008) and in T. gondii  

ROP proteins have kinase activity. On the contrary, rhoptry bulb proteins studied in P. 

falciparum predicted to have kinase activity and they have been implicated in a variety of 

roles from rhoptry biogenesis, host cell invasion, PV formation, and host-cell modification, 

however, the study done about this is limited and is reviewed by (Counihan, Kalanon et al. 

2013). Some of the well characterised examples of P. falciparum rhoptry bulb proteins are: 

RAMA (rhoptry associated membrane antigen) is an essential protein thought to be involved 

in the rhoptry biogenesis and interacts with RAP/LMW (Rhoptry-associated protein/ low 

molecular weight) complex (Richard, Kats et al. 2009), Rhoptry-associated protein 1 (RAP1) 

is transferred to PV after the invasion (Richard, Kats et al. 2009) and rhoptry high molecular 

weight (RhopH) protein complexes have several functions after invasion such as 

cytoadherance, RBC membranes permeabilization assist in nutrient acquisition and possibly 

associated with Maurer's Clefts [reviewed by (Proellocks, Coppel et al. 2010, Counihan, 

Kalanon et al. 2013)].  

 

Dense granules (DG) are microspheres surrounded by unique membrane present in the 

invasive forms of Apicomplexa (Mercier, Adjogble et al. 2005). Most of our understanding 
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about DG comes from studies done in T. gondii and Sarcocystis tenella (Mercier, Adjogble et 

al. 2005). Unlike micronemes and rhoptries, DG exocytosis is mediated by Rabs and the 

NSF/SNAP/SNARE machinery and not dependent on intracellular calcium rise (Chaturvedi, 

Qi et al. 1999). DG membrane fuses with parasite membrane at sup-apical region to release 

the content and DG secretion appear to take place during the first hour of invasion along with 

PV formation (Mercier, Adjogble et al. 2005. In T. gondii, DG contains a group of small 

proteins (GRA 1 to 9 proteins) (Mercier, Adjogble et al. 2005). The first identified 

Plasmodium DG proteins are Pf155/RESA (Ring-infected Erythrocyte Surface Antigen) 

thought to cross PVM and interacts with RBC cytoskeleton, a ring membrane antigen RIMA 

(Blackman and Bannister 2001) and possibly two subtilisin-like serine proteases PfSUB1 

(Blackman, Fujioka et al. 1998) and PfSUB2 accountable for chopping of MSP1 complex and 

thus allows parasite entry into PV (Barale, Blisnick et al. 1999). However, PfSUB2 was also 

claimed to be localized to micronemes (Harris, Yeoh et al. 2005) and this is supported by 

detection of PbSUB2 in midgut epithelium infected with ookinete given the fact P. berghei 

ookinetes lack dense granules.  

 

1.4.2 Pellicle 

Although the rhoptry and dense granule structure described above are not thought to be 

present in ookinete stages of the parasites (Lal, Prieto et al. 2009, Tufet-Bayona, Janse et al. 

2009), the Pellicle and underlying IMC structures are present in both the merozoite and 

ookinete stages. All invasive form (sporozoites, merozoites, ookinetes) cell structures are 

supported by a pellicle consist of a plasma membrane and underneath plasma membrane a 

double layer structure of flattened membranous sacs is termed as Inner membrane complex 

(IMC) (Morrissette and Sibley 2002, Santos, Lebrun et al. 2009, Harding and Meissner 2014). 

These flattened vesicles are interconnected with the cytoskeleton and provide structural 

rigidity and shape to the cell, scaffold for daughter cell generation and location for actin-

myosin based motor complex called glideosome (Opitz and Soldati 2002) necessary for 

parasite motility, also helps in host cell invasion (Hu, Mann et al. 2002, Khater, Sinden et al. 

2004, Baum, Richard et al. 2006, Jones, Kitson et al. 2006, Agop-Nersesian, Naissant et al. 

2009, Bullen, Tonkin et al. 2009, Frénal, Polonais et al. 2010).   

 

The IMC is multi-functional and composed of multiple proteins which can be grouped 

according to their structure and functions as transmembrane proteins, alveolins (Gould, Tham 
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et al. 2008) and non-alveolins (Kono, Herrmann et al. 2012). Actin-myosin motor is, situated 

in between the outer layer of IMC and plasma membrane, composed of a class XIV 

unconventional myosin - myosin A (MyoA) (Herm-Götz, Weiss et al. 2002), Myosin tail 

interacting protein (MTIP) (Bergman, Kaiser et al. 2003) and glideosome associated proteins 

GAP45, GAP50 (Gaskins, Gilk et al. 2004). Recently, additional glideosome associated 

proteins GAP40 and GAP70 have been identified (Frénal, Polonais et al. 2010). GAP45 acts 

as a molecular glue connecting IMC in close contact with plasma membrane (Sebastian, 

Brochet et al. 2012) and GAP50 is a transmembrane protein resides in alveoli (Gaskins, Gilk 

et al. 2004, Bosch, Paige et al. 2012) and functions anchoring acto-myosin motor complex 

and possibly GAP40 could also have the role in anchoring motor complex. MyoA is firmly 

associated with IMC through glideosome complex and MyoA-actin interaction is necessary 

for parasite motility (Dobrowolski and Sibley 1996, Meissner, Schlüter et al. 2002). During 

an invasion of host cells, transmembrane proteins of TRAP family released from microneme 

are thought to make intracellular connection with actin via aldolase (Trottein, Triglia et al. 

1995, Dessens, Beetsma et al. 1999, Jewett and Sibley 2003, Baum, Richard et al. 2006, 

Ramakrishnan, Dessens et al. 2011) and MyoA glides over actin filament pushing parasite in 

forward direction. IMC is connected to subpellicular microtubules via GAPM proteins which 

interact with actin-myosin motor as well as SPN (Raibaud, Lupetti et al. 2001, Bullen, Tonkin 

et al. 2009) as explained in section 1.3.2.2. Further details of the IMC are extensively 

reviewed by (Harding and Meissner 2014).  

 

A network of intermediate filaments known as subpellicular network (SPN) is located on the 

cytoplasmic side of IMC which provides mechanical strength to the pellicular membranes 

(Mann and Beckers 2001, Gould, Tham et al. 2008). Subpellicular microtubules originating 

from the apical polar ring also provide support to the pellicular membrane and runs almost ¾ 

towards the posterior end. SPN is composed of family of IMC1 proteins of structurally related 

to ciliates and dinoflagellate algae protein family called ‘alveolins’ (Gould, Tham et al. 2008). 

In Plasmodium, there are 13 alveolins have been described (IMC1a to IMC1h and IMC1i to 

IMC1m) (Al-Khattaf, Tremp et al. 2014). Alveolins are expressed at different stages and 

possess intermittent tandem repeats of 12 amino acids (Al-Khattaf, Tremp et al. 2014). In P. 

berghei, deletion studies have shown that IMC1a is expressed in sporozoites (Khater, Sinden 

et al. 2004) and immunofluorescence studies detected IMC1a in ookinetes (Philip, Vaikkinen 

et al. 2012), IMCb is expressed in ookinetes (Tremp, Khater et al. 2008) and IMC1h is 

expressed in sporozoites as well as ookinetes (Tremp and Dessens 2011, Volkmann, Pfander 
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et al. 2012) are associated with morphological abnormalities while IMC1c (expressed almost 

throughout the life cycle) and IMC1e (expressed in mosquito stages, weak expression in 

blood stages) are essential in asexual blood stages (Tremp, Al-Khattaf et al. 2014). Another 

novel protein expressed in P. berghei ookinetes to sporozoites stages and co-localizes to SPN 

is G2 (glycine at position 2). PbG2 does not show structural similarity with known alveolins 

and gene disruption study indicates its role in subpellicular microtubule assembly and parasite 

transmission is abolished (Tremp, Carter et al. 2013).   
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Figure 1.4.2 Model of glideosome and associated IMC proteins.  

Schematic of glideosome complex and related IMC proteins of Plasmodium and Toxoplasma 

showing invasion of host cell. MyoA is attached to MTIP and connected to IMC by 

glideosome proteins GAP50 and GAP45. After intracellular signals, actin is polymerised, 

secreted TRAP like adhesin proteins are moved outward through the parasite plasma 

membrane and MyoA glides over the F-actin to move parasite. Microtubules are shown 

connected to IMC and not all the proteins are shown.  

Figure adapted from (Baum, Gilberger et al. 2008)  
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1.5 Comparison of cell biology of replication and daughter cell 

formation in asexual cells and zygote 

 

The mechanism of apicomplexan cell division is relatively different from the mammalian cell 

division. The generic eukaryotic cell cycle employs checkpoints e.g. CDK (cyclin dependent 

kinases) to ensure the regulation of cell development.  In G1 phase, cells grow in size and cell 

cycle checkpoints ensure accurate functions of DNA synthesis machinery while in S phase 

actual DNA synthesis takes place. During G2 phase, the cell grows and checkpoints ensure 

preparation for mitosis, a machinery which is divided into four sub-phases: prophase, 

metaphase, anaphase and telophase. At the beginning of prophase, chromosomes may 

condense and nuclear envelope partially or completely disappears after division of centrosome 

(consisting of a pair of centrioles) which acts as MTOC. During metaphase, centromeres (part 

of chromosomes) are connected to spindle microtubules of MTOC via kinetochores (a DNA 

binding protein). At anaphase, sister chromatids are pulled in opposite directions towards the 

spindle poles followed by telophase where nuclear membrane reappears and chromosomes 

decondense and the cell starts to divide into daughter cells via cytokinesis. G0 phase may exist 

after cytokinesis depending on the cell type and its function where cells cease growth and 

goes into quiescence [reviewed in (Gerald, Mahajan et al. 2011, Francia and Striepen 2014)].   

 

In contrast, in Plasmodium parasites the nuclear envelope does not disappear (also known as 

cryptomitosis or closed mitosis) and this caused difficulties in analysing interactions of 

chromosomes with spindle microtubules (Read, Sherwin et al. 1993). During asexual blood 

stages, the apicomplexan parasite undergoes multiple rounds of DNA replication yielding a 

polyploid cell (syncytium) and nuclear division is initially non-synchronous (Read, Sherwin 

et al. 1993) though the last round of replication is synchronous (Vaishnava, Morrison et al. 

2005) and daughter cells are formed by budding out each haploid nucleus from the plasma 

membrane, this mechanism is known as schizogony. According to the mechanism to produce 

progeny cells and the number of progeny cells, the kind of nuclear division and cytokinesis in 

apicomplexan, cell division can be differentiated into three mechanisms: (1) Schizogony used 

by Plasmodium sp. and Eimeria tenella (as described above). (2) endodyogeny - In T. gondii, 

single round of DNA replication and nuclear mitosis occurs followed by assembly of two 

daughter cells inside the mother cell, which is similar to generic cell division, however, cell 

division takes place via budding of daughter cells unlike in mammalian cells where cell 
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fission occurs (3) endopolygony is used by Sarcocystis neurona where multiple DNA 

replications take place without nuclear division with a cell having only a polyploid nucleus 

and daughter cells are formed at the surface of the mother cell coinciding with last round of 

mitosis and karyokinesis then the polyploid nucleus packs individual haploid nucleus into 

each daughter cell [ reviewed in (Francia and Striepen 2014)].  

 

Cytokinesis in mammalian cells is a true cell division where a mother cell divides into the 

daughter cells. Whilst in apicomplexa, cytokinesis occurs via budding and mother cell may 

split into two or more daughter cells. Assembly of daughter cells has been widely studied in 

T. gondii (endodyogeny) where duplication of centrosome provides cue for development of 

daughter cytoskeleton scaffold formation which comprise of IMC and subpellicular 

microtubules. This scaffold grows and after cytokinesis two daughter cells are formed (Hu, 

Mann et al. 2002, Anderson-White, Beck et al. 2012, Francia and Striepen 2014). The 

mechanism of Plasmodium daughter cell assembly during schizogony largely remains 

unknown. TgMORN1 a marker of endodyogeny is conserved across apicomplexa (Gubbels, 

Vaishnava et al. 2006) and is localized to form a ring like structure near each nucleus in late 

schizonts, however this needs further confirmation (Ferguson, Sahoo et al. 2008). In early 

schizonts (showing up to 8 nuclei) PfGAP50, GAPM1 and GAPM2 are expressed in daughter 

cells and localized to developing IMCs of daughter cells (Bullen, Tonkin et al. 2009, Yeoman, 

Hanssen et al. 2011). GAP45 with MyoA and MTIP are translated in the cytoplasm and form 

a complex and successively interact with GAP50, likely at IMC (Ridzuan, Moon et al. 2012). 

Recently, an Aurora-related kinase, Pfark-1 has been shown to be engaged with SPB (spindle 

pole body) of a subset of nuclei within individual schizonts (Reininger, Wilkes et al. 2011). 

 

The zygote to ookinete transformation has been studied in P. yoelii nigeriensis, P. berghei 

and P. gallinaceum about 30 years ago through ultrastructural analysis (Sinden, Canning et al. 

1976, Aikawa, Carter et al. 1984, Sinden, Hartley et al. 1985). During fertilization a male 

gamete nuclei and axoneme are visible in the zygote (fertilized female gamete) cytoplasm 

where a male nucleus seems moving towards the female nucleus via ER (endoplasmic 

reticulum) (Aikawa, Carter et al. 1984). Before fusion the axoneme separates from the 

microgamete nucleus and chromosomes decondense (Sinden, Canning et al. 1976). In the 

course of zygote to ookinete development only one round of DNA replication takes place 

generating a 4N zygote (Janse, van der Klooster et al. 1986) through meiosis (Sinden, Hartley 

et al. 1985) and unlike schizogony the zygote does not undergo karyokinesis and cytokinesis 
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rather develops into an invasive ookinete. Successive fertilization with multiple male gametes 

appeared to be prevented and nucleus of zygote becomes elongated in P. gallinaceum 

(Aikawa, Carter et al. 1984) however, elongated nucleus is not observed in P. berghei zygotes 

(Sinden, Hartley et al. 1985). Within 2h to 2.5h an electron dense structure, possibly the collar 

(and surrounding pre-IMC) appears just beneath the plasma membrane and near the nuclear 

membrane/ nuclear tip which grows surrounding the cell. Two centrioles were observed in P. 

gallinaceum zygotes (Aikawa, Carter et al. 1984) but not in P. berghei zygotes (Sinden, 

Hartley et al. 1985) At about 6h post-fertilization of gametocytes, a small tip protrudes out of 

spherical zygote showing collar, polar ring flanked by the inner membrane complex and 

subpellicular microtubules and the whole complex grows and defined retort outgrowth is 

visible with collar and microtubules running towards the posterior end along with the IMC. 

During this development, the cytoplasm becomes more electron dense with an increase in 

mitochondrial number, endoplasmic reticulum and Golgi like structures (micronemes) and 

crystalloids (Aikawa, Carter et al. 1984, Sinden, Hartley et al. 1985). Within 20-24h the 

zygote completely transforms itself into banana shape (ookinete).  

 

Despite these ultrastructural studies, molecular markers involved in zygote to ookinete 

development have only just begun to be understood. IMC sub-compartment proteins - PbISP1 

and PbISP3 are polarized to the membrane of late female gametocytes and follow the 

development of zygote retort shape. Ultrastructural analysis shows PbISP1 is majorly 

localized to IMC near the apical region and marginally with apical collar and polar rings 

during zygote to ookinete development and both the ISPs are partially co-localise with IMC 

marker GAP45 and cytoskeletal marker α-tubulin (Poulin, Patzewitz et al. 2013). Alveolar 

proteins required for normal morphology of P. berghei ookinetes, IMC1b localizes to the 

periphery of protrusion of developing zygote (Tremp, Khater et al. 2008) while IMC1h 

localises to the periphery of ookinetes and is absent from apical and posterior ends (Tremp 

and Dessens 2011, Volkmann, Pfander et al. 2012). Another alveolar protein required for 

sporozoite morphology, PbIMC1a was not detected in ookinetes using anti-GST-tagged 

peptide (456-632) antibody raised against PbIMC1a (Khater, Sinden et al. 2004), however, it 

was shown to localise at the periphery and the apical tip of ookinetes excluding only in the 

apical region (Philip, Vaikkinen et al. 2012). At about 6h post fertilization, PPKL majorly 

concentrates at the pellicle of the growing zygote. Motility motor proteins - MyoA and MTIP 

are localised to the periphery with more concentration at apical collar region. Although, 

secreted microneme proteins - chitinase and CTRP are present throughout the cell cytoplasm, 
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they are concentrated at the apical tip of the P. berghei ookinete as shown by 

immunofluorescence studies (Philip, Vaikkinen et al. 2012). Additionally PbG2 was 

identified as a late marker of ookinete, localized to the periphery of ookinete as well as to the 

apical cap like structure with central aperture (Tremp, Carter et al. 2013). PbMDV-1 

localization is found to be dynamic during zygote to ookinete transition, being cytoplasmic in 

early zygotes to polarized at the apical complex during retort outgrowth and apparently at 

posterior end of the ookinete (Lal, Delves et al. 2009). 

 

In general, some of the above markers are associated from pre-fertilization of female gamete 

(e.g ISP1) to mature ookinetes (e.g.G2) and some of them have a critical role in oocysts to 

sporozoite development. During the zygote to ookinete development, a number of processes 

are known to happen such as activation of stored mRNAs, translation and delivery of zygote 

to ookinete developmental and structural markers to their respective location, reactivation of 

further transcription, secretion of microneme content and apparently assembly of IMC and 

SPN including microtubule extension remains poorly understood. Further questions such as 

whether or not the extra plasma membrane is needed for zygote transformation and how 

plasma membrane delivery is regulated with respect all the above changes remains 

stimulating. Complex DNA replication mechanisms of Plasmodium and all other apicomplexa 

indicate the molecular machinery engaged in DNA replication is complicated. Despite the 

unique characteristics of Plasmodium cell cycle, homologues of eukaryotic cell cycle 

regulators - CDK and cyclins are described in Plasmodium (Doerig, Endicott et al. 2002, 

Merckx, Le Roch et al. 2003, Anamika, Srinivasan et al. 2005, Francia and Striepen 2014). 
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1.6 Generation of cell polarity  

 

All zooites formed by the Apicomplexa are polarized cells exhibiting an asymmetric 

distribution of content with defined apical and posterior ends. One of the key events during 

mosquito transmission of the parasite is the initial development from (what is assumed to be) 

a non-polar zygote to a motile and polarized ookinete. This is essential for the parasite to be 

able to escape the hostile environment of the mosquito midgut and unique in Plasmodium as it 

occurs out-with a host cell. Although little is known about the generation of polarity in 

Plasmodium species, it has been studied in other organisms. All eukaryotes achieve cell 

polarity through a conserved set of proteins which includes signalling molecules of the rho 

family of GTPases, cytoskeleton assembly and recruitment, mobilization of proteins from the 

intracellular pool to the tip of growth via vesicle delivery (Nelson 2003). Although, the rho 

family GTPases such as Cdc42 and its homologues seem to be conserved in majority of 

organisms studied, there are species specific varieties of polarity determining proteins with 

little discernible general conservation (Chant 1994).   

 

1.6.1 Apical organelles and generation of polarity in fungi  

 

In fungal systems, the proteins involved in hyphal tip growth and polarity all together 

constitute a polarisome or sometime referred Spitzenkόrper (SPK) which drives the growth of 

cell in a defined direction. Currently, the development of polarity is a popular topic in 

filamentous fungus and yeast. SPK is mainly associated with fungal cell morphogenesis, 

present at actively growing tips/ hyphae and vanishes when growth terminates and consists of 

microfilaments, microtubules, micro and macrovesicles and ribosomes (Grove and Bracker 

1970, Howard 1981, Riquelme and Sánchez-León 2014). Recycling of SPK vesicles is very 

rapid and occurs in minutes (Dijksterhuis and Molenaar 2013), however, very little is known 

about the content of these vesicles. Nevertheless, it can be expected to contain components of 

the cell membrane, proteins needed for membrane extension, fusion and signalling molecules 

since it is present at the growing end.  

The few components identified in such vesicles are Rab GTPase sec4 homologue in 

Aspergillus Niger (Billker, Lindo et al. 1998), plenty of chitin synthase containing vesicles 

(chitosomes) near the hyphal tip in Ustilago maydis (Weber, Assmann et al. 2006), in 
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Aspergillus nidulans (Takeshita, Ohta et al. 2005) and in Neurospora crassa (Sietsma, Beth 

Din et al. 1996). N. crassa also shows the presence of GS-1 - a protein required for synthesis 

β-1,3-glucan (component of cell wall) in SPK (Verdín, Bartnicki-Garcia et al. 2009) 

indicating cell wall synthesis and secretion are polar processes. In Aspergillus nidulans, FlbB 

a protein involved in sexual morphogenesis is localised to SPK suggesting SPK might serve 

as a signalling hub for coordinating developmental transitions (Etxebeste, Herrero-García et 

al. 2009). Cytoplasmic calcium plays a significant role in eukaryotic signal transduction and it 

seems to be present at the tip growth of polarised cell; likewise a high calcium gradient is 

seen at the hyphae tip growth of N. crassa (Silverman-Gavrila and Lew 2001, Torralba, Heath 

et al. 2001). Cell secretary and endocytic pathways are heavily reliant on the cytoskeleton for 

their proper functioning where myosin, kinesin and dyneins have been shown to be involved 

in membrane trafficking (Goodson, Valetti et al. 1997). Some consequences of kinesin and 

dynein deficiency are the loss of establishment of SPK and reduced numbers of vesicles in 

SPK respectively (Seiler, Nargang et al. 1997, Riquelme, Roberson et al. 2002). In 

Aspergillus nidulans, actin associated motor proteins- MyoA and MyoE (Myosin E) are 

enriched at the hyphal tip growth. MyoA is essential for viability and necessary for polarised 

growth, secretion and plays role in endocytosis (McGoldrick, Gruver et al. 1995, Yamashita 

and May 1998, Yamashita, Osherov et al. 2000). MyoE is responsible for moving vesicles to 

SPK while MyoB (Myosin B) is required for septation and branching and not present in SPK 

(Taheri-Talesh, Xiong et al. 2012). Together with vesicles, microfilament and microtubule; 

the presence of ribosomes is also reported in the SPK indicating the active translation at the 

hyphal tip (Grove and Bracker 1970, Howard 1981). The exocyst, a multi-protein complex 

required for the final step of the exocytosis, helps tethering vesicles to plasma membrane and 

is necessary for the formation of SPK in N. crassa (Riquelme, Bredeweg et al. 2014).  

Proteins involved in the polarisome could be transported to the apical complex by one of two 

mechanisms: (1) proteins synthesized in cytoplasm and moved to vesicles through the signal 

sequence to transport to apical complex (2) mRNAs are moved to the apical complex and then 

translated (localized translation). It is not clear whether the polarisome is same as the SPK or 

part of it, but both of them share many components. A key unanswered question is what 

determines the position of tip outgrowth. Observations of filamentous branching of an 

Aspergillus niger ‘ramosa’ mutant suggest that SPK vanishes before new branches are formed 

(Reynaga-Pena and Bartnicki-Garcia 1997). This indicates the site selection of polarity might 

be spontaneous by ‘symmetry breaking’ or involves other mechanisms such as external cues 

(cell-cell contact, chemo-attractants or morphogen gradients) implicating signalling proteins 
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(e.g. Cdc42 and Cdc24 mechanism) in which case the SPK is only required for maintenance 

of polarity (Virag and Harris 2006).  

During mating, pheromones secreted by opposite partners are sensed through G protein 

signalling pathway which further directs the formation of polarity in yeast (Johnson 1999). 

Chant (Chant 1994) reported that the cell builds an axis of polarity first which is controlled by 

conserved Rho family GTPase- Cdc42 in yeast, Saccharomyces cerevisiae. The cytoskeleton 

is established corresponding to the axis of polarity marking front and back and other 

organelles orient accordingly. Most of the bud selection markers are transmembrane proteins 

(TM) which can interact with GTP and GDP bound state governed by GEF (GDP/GTP 

exchange factor or Guanine nucleotide exchange factor) and GTPases and apparently interacts 

with Cdc42 (Park and Bi 2007). In support of this, Bud1 (also known as Rsr1), a ras-like 

GTPase mediates polarity in yeast through activation of Cdc42. Rsr1, a marker of bud 

selection site, is evenly scattered on the plasma membrane and interacts with itself to form a 

homodimer and its GDP-GTP exchange factor Bud5 along with Cdc42 and Cdc24 (GEF of 

Cdc42) (Park, Kang et al. 2002, Kozminski, Beven et al. 2003, Kang, Béven et al. 2010). 

According to recent study, S. cerevisiae shows multiple polarity (bud) selection sites where 

only one final polarity site wins and the polarity complex is possibly stabilized by actin (Wu, 

Savage et al. 2013). Activation of Cdc42 leads to its localization at the selected bud site 

(Howell and Lew 2012) and is governed by GEF and GAP (GTPase-activating protein) 

regulators. Cdc42 and Cdc24 are the central proteins to cell polarity development and deletion 

of cdc42 and cdc24 is not possible in yeast showing its essentiality. Temperature sensitive 

cdc42 and cdc24 mutants of yeast show all the internal growth patterns except bud formation 

is ceased (Sloat, Adams et al. 1981, Johnson and Pringle 1990). Cdc42 recruits and utilises 

variety of effector proteins such as Bem1 to form polarity complex whereby activating 

formins (e.g.Bni1p and Bnr1p). Actin filaments nucleation mediated by formins is essential to 

establish the delivery of secretory vesicles towards the bud site (Evangelista, Zigmond et al. 

2003, Chen, Kuo et al. 2012). Furthermore, Cdc42 diffuses from the bud site and regulates the 

vesicle trafficking towards the bud site in order to maintain the polarity of the cell. The role of 

vesicle trafficking in polarity establishment in higher eukaryotes is explained in section 1.6.2. 
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1.6.2 Generation of polarity across various cell systems  

 

Cell polarity is vital to carry out specific functions such as cell growth, migration, protein 

transport and invasion (Nelson 2003). Proteins involved in the regulation of mammalian 

epithelial cell polarity can be grouped as 1) Par proteins (localized to the sub-apical region) 2) 

Crumbs complexes (also localised to the sub-apical region) 3) Scribble complex (localised at 

the baso-lateral region) 4) Planer polarising Vang and Frizzled complex (Muthuswamy and 

Xue 2012). These proteins interact with each other during polarity development and are often 

found altered in cancer (Muthuswamy and Xue 2012). Polarity establishment and 

development is regulated by internal as well as external factors. Internal factors such as 

protein trafficking, microtubules and actin dynamics while external factors are cell-cell and 

cell-matrix interactions regulate the cell polarity in epithelium [reviewed in (Muthuswamy 

and Xue 2012)]. Here we discuss the protein trafficking and its regulation via Rab GTPase 

across various cell systems.  

 

Protein trafficking is important for the establishment and maintenance of cell polarity, and 

epithelial cells use both exocytic and endocytic pathway for polarity development (Nelson 

and Yeaman 2001). Membrane targeted proteins transported from ER to Golgi and apparently 

to the membrane with the help of coat proteins such as COPII, COPI and adapter protein 

complex (e.g. AP-1, AP-2, AP4 and AP-1B). Apparently, SNAREs (soluble N-

ethylmaleimide-sensitive factor attachment protein receptors) proteins (e.g. Syntaxins -

STX1A, STX1B, STX2, STX3 and STX4) assist in docking and fusion of protein containing 

vesicles at the membrane (Muthuswamy and Xue 2012, Keder and Carmena 2013). Other 

major regulators of protein trafficking are Rab GTPases, among them Rab8 (Esseltine, 

Ribeiro et al. 2012) and Rab11 [reviewed in (Jing and Prekeris 2009)] have direct link in the 

establishment of polarity.   

 

1.6.3 Introduction to Rab GTPases 

The members of Ras GTPase subfamily (Ras, Ral, Rap, Rho and Rab) are majorly involved in 

cell growth, differentiation and survival [reviewed in (Reuther and Der 2000, D'Adamo, 

Masetti et al. 2014)]. Rab proteins belong to a small Ras GTPase family and regulate vesicle 

transport in eukaryotes. To date, about 70 rabs have been found in humans demonstrating the 
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potential complexity of vesicle transport [reviewed in (D'Adamo, Masetti et al. 2014)]. Small 

GTPases are active when bound to GTP and remain inactive in GDP bound form. Complexity 

of GTPase function is achieved by the huge number of interacting proteins, among those most 

common are: Guanine nucleotide exchange factors (GEFs), helping to bind GTP to small 

GTPases (activating GTPases), associated with membranes; GTPase activating proteins 

(GAPs) which help GTPases to dissociate from GDP (inactivating GTPases). Guanine 

nucleotide dissociation inhibitors (GDIs) help small GTPase having a farnesyl or the 

geranylgeranyl group in their C-terminus in cytosol/ membrane alterations [reviewed in 

(Behnia and Munro 2005, Cherfils and Zeghouf 2013)]. Conservation of Rab GTPases in 

eukaryotes from yeast to mammals indicates the importance of Rab GTPase during cell 

development. Small GTPases and their regulators including GEFs, GAPs and GDIs operate 

critical pathways for cell development and therefore are linked to many human diseases such 

as cancer, cardiovascular, infectious and developmental diseases [reviewed in (Finlay 2005, 

Newey, Velamoor et al. 2005, Tidyman and Rauen 2009, Loirand and Pacaud 2010, Vigil, 

Cherfils et al. 2010) respectively]. Generally, Rab GTPases are involved in protein trafficking 

and endocytic recycling and some of them are predicted to be involved in plasma membrane 

delivery [reviewed in (D'Adamo, Masetti et al. 2014)], and Rab GTPases are also known to 

interact with cytoskeletal components. 

 

1.6.4 Role of Rab GTPases in protein trafficking 

Rab11 and its effector Rip11 have been found to regulate apical membrane trafficking in 

epithelial cells (Prekeris, Klumperman et al. 2000). Polarised cells such as Madin-Darby 

Canine Kidney (MDCK) cells exhibits domain specific early endosomes such as apical 

(distributed in the apical plasma membrane to the nucleus) and basolateral early endosomes 

(distributed down in basolateral plasma membrane) to carry out protein transport in respective 

region (Apodaca, Katz et al. 1994, Matter and Mellman 1994). E-cadherin, required for cell 

polarity and cell-cell contact, is localized to the Rab11 positive intermediate compartment in 

HeLa and MDCK cells. A rab11 mutant (constitutively active Rab11Q70L-GFP) disrupts the 

localization of E-cadherin in polarised MDCK cells suggesting a significant role of Rab11 in 

targeting proteins involved in polarity development (Lock and Stow 2005). In intestinal 

epithelial cells, the localization of atypical Protein Kinase C (aPKC) and Ste20 family kinase 

Mst4 (responsible for phosphorylation of  ezrin - a protein important for the apical plasma 

membrane and microvilli development in a variety of epithelial cells) to the apical region is 
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dependent on Rab11A and Myosin Vb (Dhekne, Hsiao et al. 2014). In mammalian cells, 

Rab11 endosomes have been shown to carry microtubule nucleating materials at spindle pole 

(Hehnly and Doxsey 2014) (figure 1.7B). 

   

Neurons are highly polarised and differentiated cells with distinct dendritic and axonal 

domains, internally carry differential compartments to carry biochemical signals and therefore 

the range of Rabs regulate the vesicle trafficking involved in a variety of functions [reviewed 

at (Villarroel-Campos, Gastaldi et al. 2014)] for example Rab10 binds kinesin1 through the 

adaptor protein JIP1 and regulates the transport of vesicles towards the axonal outgrowth of 

hippocampal neurons (Deng, Lei et al. 2014), Rab8 (involved in the regulation of trafficking, 

docking and fusion of intracellular membrane compartments) regulates endocytosis of 

mGluR1a (metabotropic glutamate receptor1a), a neurotransmitter receptor (Esseltine, Ribeiro 

et al. 2012). Plus, it has been shown that Rab35 activates other Rabs (Rab8, Rab13 and 

Rab36) through a common interacting protein MICAL-L1 during neurite outgrowth of PC12 

cells indicating a novel mechanism by which master Rab can recruit multiple Rabs during cell 

growth (Kobayashi, Etoh et al. 2014). Additional forms of Rabs are present and some of them 

belong to TGN while other resides in endosome network and their role might vary depending 

on the cell system. A detailed description of Rab proteins involved in neurite development is 

given in Table 1.6. Furthermore, Cdc42 and other members of Rho and Rac family seem to be 

associated in the animal neuronal biology where they recruit downstream signalling 

components such as Par proteins and aPKC (Horton and Ehlers 2003). 

   

Other models studied for polarity establishment are Drosophila and Caenorhabditis elegans. 

The regulators of Drosophila apical polarity also include Cdc42, aPKC, Crumbs and adaptor 

or scaffolding proteins (Tepass 2012). In Drosophila, Rab11 is shown to regulate oocyst 

polarization: OSK protein is localized to the oocyst posterior end and is required for the 

formation of pole cells and abdominal segment. The localization of osk mRNA at the 

posterior pole is Rab11 dependent whereas OSK itself is also required for partial localization 

of Rab11 at the oocyst posterior pole (Dollar, Struckhoff et al. 2002), therefore Rab11 plays a 

key role in determining the sub-cellular localization of both mRNA and protein. Moreover, 

Rab6 is shown to be involved in secretion, organisation of microtubule plus end at the 

posterior end of the oocyst and transportation and localization of osk mRNA (Januschke, 

Nicolas et al. 2007). In F. distichus, Rho family member Rac1 has been shown to localise 

zygote undergoing rhizoid tip growth (Fowler, Vejlupkova et al. 2004). This suggests that 
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Ras/ Rho family GTPases and their effectors are versatile proteins involved in the variety of 

cellular processes. 
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Tables 1.6 of Rab GTPase with subcellular localization and their functions in 

immortalised cell lines.   

Reviewed by  (Villarroel-Campos, Gastaldi et al. 2014) (Published with permission) 
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(A) 
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(B) 

 

 

Figure 1.7 Models show role of Rab11 in microtubule nucleation and cytokinetes. 

(A) Recycling endosomes travel through kinesin towards the cleavage site and donate the 

plasma membrane and are directed back to MTOC via dynein/ dynactin motors in animal 

models. Taken from (Ai and Skop 2009)  (B) Model depicting Rab11 mediated endosomes 

carry microtubule nucleation components in human osteosarcoma cell line (U20S, HeLa) 

Taken from (Hehnly and Doxsey 2014). 

 

 

 



Introduction 

 

54 
 

1.7 Hypotheses  

The aim of our study is to define the establishment and development of polarity in the malaria 

parasite, specifically the developing zygote. Since the active presence of Rab GTPases, 

regulators of protein tracking, in Plasmodium we asked if Rab GTPases might be responsible 

for either establishment, maintenance or in both the processes of polarity in Plasmodium. We 

particularly focused towards the Rab11A considering its previously described role in polarity 

development, microtubule nucleation and cytokinesis in higher eukaryotes. Rab11A is 

predicted to be associated with apicomplexan cytokinesis. Further, Rab11A transcript is 

abundant and is translationally repressed in P. berghei gametocytes. Therefore, we asked 

whether or not Rab11A has role in the establishment and development of P. berghei ookinete 

polarity.  

Moreover, fertilization is important for the establishment of polarity in single cell embryo in 

C. elegans and fertilization process or a marker (e.g. centrins donated by male gametes in C. 

elegans) are critical for further development of embryos/ zygote in many organisms. 

Fertilization is not well studied in Plasmodium and it is unknown whether or not fertilization 

is important for establishment of polarity and/or further development in Plasmodium. 

Therefore, we also asked if the male gamete fusion site (point of male gamete fusion on the 

female gametes surface) cues for the polarity development in Plasmodium zygotes.  

Thus, in Plasmodium, our research questions are: 

1) Is Rab11A involved in the establishment and development of zygote polarity?  

2) Is the point of microgamete fusion on the macrogamete the determinant for polarity in the 

ookinete? 
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1.8 Plasmodium berghei: model for malaria research 

The focus of this research project is transmission stages, particularly gamete fertilization and 

ookinete development in the rodent malaria parasite, P. berghei as the cultivation of sexual 

stages of human malaria parasite, particularly P. falciparum is difficult. Furthermore, use of 

P. falciparum infected mosquitoes brings important safety considerations. On the other hand, 

P. berghei is extensively studied as a model for human malaria because much of the basic 

biology of human and rodent malaria is similar, also the genome organization and genetics is 

generally conserved (Matz and Kooij 2015). P. berghei offers a variety of techniques for 

genetic modification, in vitro cultivation of sexual stages on a large scale and to analyse 

various stages of the life cycle. The whole life cycle of P. berghei can be studied in vivo 

routinely and safely as it is not infectious to humans. The molecular basis of drug sensitivity 

and resistance is also similar in human and rodent malaria parasites.  Moreover, the structure 

and function of potential candidates for vaccine development are analogous 

(Leiden_Malaria_Research_Group). Three participants in rodent malaria: P. berghei, rodent 

(mouse) and mosquito can be genetically modified and their genomes are known. Therefore, 

the rodent malaria parasite P. berghei can be employed for in vivo host parasite interactions. 

For these reasons studying P. berghei can shed light on the essential biology of P. falciparum. 
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1.9 Review of available techniques used for genetic modification of 

Plasmodium 

Classical reverse genetic approaches cannot be employed for many blood stage haploid genes 

in Plasmodium since their deletion is lethal, e.g. Rab11A precluding their analysis by this 

approach in P. berghei asexual stages (Agop-Nersesian, Naissant et al. 2009). Therefore, 

conditional Plasmodium gene knockouts/knockdowns systems are required. In one approach 

called promoter exchange or promoter swap, the promoter of an essential blood stage gene is 

replaced by that of a blood stage active gene that is silent at the later stage of interest. For 

example, MyoA of P. berghei (PbMyoA) was expressed under ama-1 promoter maintaining 

PbMyoA expression in blood stage development but turning off PbMyoA during 

gametocyte/zygote/ookinete development (Siden-Kiamos, Ganter et al. 2011). Similar 

approaches have been described elsewhere validating the approach (Laurentino, Taylor et al. 

2011). However, protein can be carried over from the previous stage and leakiness may be 

observed depending upon the promoter used to make the approach potentially problematic.  

 

Another approach called protein destabilization domain (DD) system uses the fusion of the 

destabilization domain of FKBP (ddFKBP) to protein under study which is targeted for 

degradation and stabilized when the ligand is present (Armstrong and Goldberg 2007, 

Striepen 2007). DD system is shown to work well in P. falciparum. However, the DD system 

is not always perfect and shows leakiness so that the amount of protein degradation is not 

enough to produce the phenotype. Furthermore, loss of protein function or mis-targeting of 

fusion proteins might occur and the system cannot be adapted for use with P. berghei since it 

requires the continuous binding of the small ligand Shield to stabilise the protein which is 

both very expensive and of unknown pharmacodynamic behaviour in the mouse bloodstream. 

Tight regulation is shown to work in a tetracycline regulatable system in T. gondii and less 

well in P. falciparum (Meissner, Krejany et al. 2005) and P. berghei, however has difficulties 

to apply at mosquito stages (Pino, Sebastian et al. 2012). Transcript knock down by antisense 

RNA has been reported in Plasmodium (Gardiner, Holt et al. 2000), however, there remain 

doubts about its specificity and efficacy.  

 

In case of knockdown of proteins one cannot assay the phenotype immediately because of 

either the presence of a little amount of proteins or activation of supplementary pathways. 

And therefore re-routing of the protein of interest from its pocket of activity to somewhere 
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else is called Knock Sideways (Robinson, Sahlender et al. 2010, Hirst, Borner et al. 2012) has 

been applied to P. berghei (K. Hughes -Waters group, Unpublished data). RNA interference 

(RNAi) is not applicable in Plasmodium as some of the key enzymes required for RNA 

interference are absent (Baum, Papenfuss et al. 2009). However, the site specific 

recombinases (integrase family of recombinase) such as Cre recombinase/ loxP system have 

been shown to work in T. gondii (Brecht, Erdhart et al. 1999, Andenmatten, Egarter et al. 

2013) and Flp/frt function in P. berghei (Lacroix, Giovannini et al. 2011). A plant derived 

auxin-inducible degron system (Nishimura, Fukagawa et al. 2009) has been shown to work in 

P. falciparum (Kreidenweiss, Hopkins et al. 2013) and is under application in P. berghei (N. 

Philip- Waters Group, Unpublished) along with Cre recombinase/ loxP system (R. Cameron, 

A Graham, R. Kent - Waters and Meissner group, Unpublished data). 

 

Recently, a glucosamine dependent gene regulation of target genes bearing a glmS ribozyme 

in the 3′ untranslated region (UTR) has been described in P. falciparum (Prommana, 

Uthaipibull et al. 2013) along with highly efficient genome editing with customized zinc-

finger nucleases (ZNF) (Straimer, Lee et al. 2012). Although, ZFN is highly efficient, it is not 

popular being time consuming, costly and laborious. Another powerful genome editing 

technique adapted from many organisms, CRISPER/Cas9 (clustered regularly interspaced 

short palindromic repeats and Cas9 endonuclease-mediated genome editing) has been applied 

to P. falciparum (Ghorbal, Gorman et al. 2014, Wagner, Platt et al. 2014), P.  yoelii (Zhang, 

Xiao et al. 2014) and T. gondii (Shen, Brown et al. 2014) and is under application in P. 

berghei (O. Billker Group, Wellcome Trust Sanger Institute, Cambridge, unpublished data). 

Additionally, tetracycline dependent TetracylineRepressor-aptamer based system has been 

shown to reversibly regulate the gene expression in P. falciparum (Goldfless, Wagner et al. 

2014) and is under development in P. berghei (H. Patil, C. Manakanata, T. Hannay - Waters 

group, Billker group, unpublished data).----------------------------------------------------------------- 
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2.0 Materials 

2.0.1 Molecular Biology products, kits and equipments 

All the restriction enzymes were obtained from New England Biolabs. Plasmid ligations were 

performed using Roche rapid DNA ligation kit, plasmid DNA extractions were performed 

using QIAprep spin mini prep kit (Qiagen) and Highspeed plasmid midi kit (Qiagen) and 

plasmid gel extraction were performed by QIAquick Gel Extration Kit (Qiagen). PCR Clean 

ups were performed using QIAquick PCR purification Kit (Qiagen). TRIzol (Life 

Technolgoies), RNAeasy Universal mini kit (Qiagen) with RNase free DNase set (Qiagen) 

and SuperScript® III Reverse Transcriptase (Life Technologies) were used for isolation of 

total RNA.  

Most of the primary antibodies were obtained from Proteintech raised against unique peptides 

predicted from the gene sequence (Table 2.0.1.1). Anti-enolase antibody is a peptide based 

(C-KTYDLDFKTPNNDK) antibody raised in rabbit from Biogenes. Rabbit anti-PPKL 

antibody (Ab) was obtained from Proteintech raised against recombinant PPKL and kindly 

offered by Dr. N. Philip, Waters group. Mouse anti-MTIP and mouse anti-GAP45, mouse anti 

α-tubulin antibodies were kind gifts from Prof. Judith Green, NIMR, London and Helen 

Banks respectively (Table 2.0.1.2). Anti-TgCentrinI antibody was kindly provided by Dr. 

Marc-Jan Gubbels, Boston College, USA.  

Mouse anti-GFP monoclonal antibody (mAb), anti ϒ-tubulin mAb, rabbit anti-cMyc, mouse 

anti-human CentrinI 20H5 mAb and erythoid cell marker/ anti-mouse TER-119 PE-Cyanine5 

(Cy5) are commercially available from Roche, Sigma, Abcam, Millipore and eBioscience 

respectively (Table 2.0.1.2). FITC and Cyanine3 (Cy3) tagged anti-P25 mAbs were received 

from Prof. Takafumi Tsuboi, Ehime University, Japan and grown and purified by AbD 

Serotec (Table 2.0.1.2). 

Secondary antibodies used for immunofluorescence studies or FACS analysis such as: Alexa 

Fluor-594 Goat anti rabbit-IgG, Alexa Fluor-594 goat anti mouse-IgG, Alexa Fluor-488 goat 

anti-rabbit-IgG, Alexa Fluor-488 goat anti mouse-IgG, Alexa Fluor-633 goat anti mouse-IgG 

were obtained from Life Technologies. Secondary antibodies for conventional ECL 

(ThermoFisher
TM

 Pierce
TM

 ECL western blotting substrate) and films (Kodak Carestream 

Medical X-ray films) based western Polyclonal goat anti-rabbit or goat anti-mouse Ig/HRP 
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were obtained from Dako. For infrared imaging based western, secondary antibodies IRDye® 

680LT Goat anti-mouse IgG and IRDye® 800CW Goat anti-rabbit IgG antibodies were 

obtained from LI-COR Biosciences. All the secondary antibodies were diluted to 1000 times 

for immunofluorescence and 10,000 times for western blotting with respective solutions (for 

more details see methods). All the primers used for PCR amplification and sequencing were 

ordered from Eurofins MWG Biotech (see Appendix A -Table 1 for primer details). 

Equipment for gel electrophoresis and SDS PAGE were purchased from Biorad. Agarose for 

electrophoresis and ladders: 1kb Plus DNA ladder, PageRuler Plus Prestained Protein ladder 

(10 to 250kDa) were obtained from Roche and Life Technologies respectively.   
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Protein Peptide used to raise antibody 
Raised 

In 

Ab dilution for 

immunofluorescence 

assays 

Ab dilution for 

western blotting 

Anti-MyoA MAVTNEELKTAHKIVRRVS Rabbit 1000 1000 

Anti-DOZI MAGKNILARAKNGTGKTAA Rabbit 250 2500 

Anti-CITH ESTVALQNVRSYGTEGRRQPD Rabbit 250 2500 

Anti-GAP45 HKYENDSDKLETGSQLTL Rabbit 1000 5000 

Anti-GAP50 HKLGLKKRKTLDKVNSL Rabbit 1000 1000 

Anti-IMC1a CEYKNLSEGKYMNDKEVEKE Rabbit 1000 - 

Anti-IMC1b HDNEMPNMEKLYDQLSFQKC Rabbit 1000 - 

Anti-IMC1h FEKIKKLLKVNKLVPSVSEV Rabbit 1000 - 

Anti-actinI GNVKAGVAGDDAPRS   Rabbit 1000 1000 

Anti-Rab11A CRGKK INVDNDNDEDEKKTK Rabbit 1000 1000 

Anti-Rab11B CKVDLAEEDETKRKVTYE Rabbit 1000 1000 

Anti-P28 CVSKPQAPGTGSETP Rabbit - 1000 

Anti-CTRP 
CLNGGETPHNSNMEFENVENN

DGIIEEENEDFEVIDANDPMW 
Rabbit 5000 5000 

Anti-

chitinase 
HTEKQYKSLSHVDALC Rabbit 4000 4000 

Anti-Spindle 

Pole Body 

Protein 

KKPNKKHKYTKKRNGH Rabbit 1000 1000 

Anti-iLov RNARFLQGPETDQATVQK Rabbit - 1000 

Table 2.0.1.1 Peptide raised primary antibodies from Proteintech used for 

immunofluorescence or western blotting. 
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Source Protein Raised In Ab dilution 

for immune-

fluorescence 

assays 

Ab dilution 

for western 

blotting 

Ab dilution 

for FACS 

analysis 

Prof. Takafumi 

Tsuboi, Japan. 

Grown and 

purified by 

Serotec  

 

FITC and Cy3 

tagged anti-P25 

Rabbit 2000 - - 

Roche anti-GFP mAb Rabbit - 2000 - 

Proteintech anti-P25 mAb Mouse - - 1000 

eBioscience Anti-mouse TER-

119 PE-Cyanine5 

Mouse - - 500 

Dr. N Philip, 

Waters group 

anti-PPKL Rabbit 1000 1000 - 

DR Judith 

Green NIMR, 

London  

anti-enolase Rabbit - 4000 - 

Helen Banks  anti α-tubulin Mouse 2000 5000 - 

Sigma anti ϒ-tubulin mAb Mouse 2000 - - 

Prof. Judith 

Green, NIMR, 

London  

anti-MTIP Rabbit 1000 1000 - 

Dr. Marc-Jan 

Gubbels, 

Boston College, 

USA 

Anti-TgCentrinI  Rabbit 1000 - - 

Abcam anti-cMyc  Rabbit - 1000 - 

Millipore anti-human CentrinI 

20H5 mAb 

Mouse 1000 - - 

Table 2.0.1.2 Primary antibodies obtained from external sources, their dilutions used for 

immunofluorescence, western blotting or FACS analysis.  
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2.0.2 Buffers, Media and Solutions 

2.0.2 a) Ookinete culture medium: RPMI1640 (Sigma) containing 25 mM HEPES and 2 

mM L-glutamine, 10 mM Na2CO3, 5 Uml-1 Penicillin, 5 µgµl-1 streptomycin, 50 µg ml-1 

hypoxanthine, 50 mM xanthurenic acid, pH 8, 10 % (v/v) heat inactivated foetal bovine  

serum.  

2.0.2 b) Schizont culture media: RPMI1640 (Sigma) containing 25 mM HEPES and 2 mM 

L-glutamine, 10 mM Na2CO3, 5 Uml-1 Penicillin, 5 µgµl-1 streptomycin, pH 8.0 with 25 % 

(v/v) foetal bovine serum 

2.0.2 c) Luria Bertani (LB) Broth: Available commercially as LB broth powder (Tryptone 

1%, Yeast extract 0.5%, NaCl 0.5%) from Sigma plus ampicillin 100µg/ml (if needed). 

2.0.2 d) Luria Bertani (LB) Agar: Available commercially as LB broth powder (Tryptone 

1%, Yeast extract 0.5%, NaCl 0.5%, 15% Agar) from Sigma plus ampicillin 100µg/ml. 

2.0.2 e) Phosphate Buffered Saline (PBS): 10 times concentrated PBS (0.01M KH2 PO4, 

1.37M NaCl, and 0.027M KCl, pH 7.0) commercially available from Roche. Working stock: 

diluted 10 times with d/w.  

2.0.2 f) RichPBS: PBS supplemented with 2mM HEPES, 2mM Glucose, 0.4mM NaHCO3, 

0.01% BSA 

2.0.2 g) TNE buffer: 10 mM Tris pH 8.0, 5 mM EDTA pH 8.0, 100 mM NaCl  

2.0.2 h) TBE buffer: 89mM Tris base, 89mM Boric acid, 2mM EDTA  

2.0.2 i) Erythrocyte lysis buffer: 1.5M NH4Cl, 0.1M KHCO3, 0.01 EDTA  

2.0.2 j) Heparin: 200 I.U./ml PBS (pH 7.2) 

2.0.2 k) Phenylhydrazine: Phenylhydrazine- HCl stock solution (Merck): 12.5mg/ml (250mg 

phenylhydrazine dissolved in 10 ml 0.9% NaCl and store at -20C).  
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2.0.2 l) Giemsa staining buffer: Giemsa solution (Merck) diluted in Sörensen staining buffer 

(KH2 PO4 - 2,541g per 5 liter, Na2 HPO4 .2 H2O - 0,5507g per 5 liter, adjust the pH to 7.2 

with NaOH). A 12.5 % Giemsa staining buffer was used to stain slides for 15 minutes. 

2.0.2 m) FACS buffer: 2% (v/v) Fetal Bovine Serum (defined), 0.05% (w/v) sodium azide 

(NaN3) and 2 mM EDTA in PBS. 

2.0.2 n) Nycodenz solution: 138g Nycodenz powder (Axis Shield) dissolved in buffered 

medium (5mmol/l Tris/HCl, 3mmol/l KCl, 0.3 mmol/l Ca Na 2EDTA) (density 1.15g/ml at 

20ºC). Autoclave for 20min at 120ºC and store at 4ºC 

2.0.2 o) 5 X TBE electrophoresis buffer: 445 mM Tris, 445 mM Boric acid, 10 mM EDTA 

(pH 8.0) 

2.0.2 p) 5X Agarose loading buffer: 50mM, 20% (w/v) Ficoll, 0.1% (w/v) Bromophenol 

blue in TE buffer (10 mM Tris-Cl, pH 8.0, 1 mM EDTA - pH 8.0 autoclaved at 121
0
C/20min)  

2.0.2 q) Net2+ buffer: 140 mM NaCl, 50 mM Tris- pH 7.4, 4mM Dithiothreitol, 0.01% 

Nonidet P-40 supplemented with complete EDTA free Protease Inhibitor Cocktail 

Tablets (Roche) (1 tablet/10ml)  

2.0.2 r) SDS running buffer: 25 mM Tris, 190 mM Glycine, 0.1 % (w/v) SDS  

2.0.2 s) Transfer buffer: 25 mM Tris, 190 mM Glycine, 0.1% (w/v) SDS, 20% Methanol 

2.0.2 t) 2x Laemmli buffer: 4% SDS, 10% β-mercaptoethanol, 20 glycerol, 0.004% 

bromophenol blue, 0.125M Tris HCL, pH 6.8 
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2.1 Methods 

2.1.1 Generation of constructs  

2.1.1 a) Polymerase Chain Reactions: All the protein coding genes, 5’UTRs and 3’UTRs  

PCR amplifications were performed using either Expand high fidelity PCR system (Roche) or 

KAPA HiFi PCR system (KAPA Biosciences). PCR conditions were followed as per 

manufacturer’s instructions. Diagnostic PCRs were performed using Taq DNA polymerase 

(5U/µl)(Invitrogen), 10x PCR buffer (200 mM Tris-HCL pH 8.4, 500 mM KCL) (Invitrogen), 

50 mM MgCl2 (Invitrogen), 10 pM/µl primers (Eurofins MWG Biotech) and PCR conditions 

were adjusted to 94
0
C/ 30 seconds, 52

0
 to 57

0
C for 30 seconds, 68

0
C for amplification for 30 

cycles or as per manufacturer’s instructions. All the gDNA were extracted by phenol- 

chloroform extraction method (see below).  

2.1.1 b) Isolation of DNA by phenol-chloroform method: Parasite pellet (approximately 

100μl) (see section 2.1.2 for parasite pellet) were re-suspended in 700μl of TNE buffer with 

1% (v/v) SDS (100 μl of 10% SDS solution) and demineralised water to make up the total 

volume to 1ml and incubated at 37
0
C for 10 minutes. 200 μg of Proteinase K (20 μl of a 10 

mg/ml solution) was added and further incubated at 37
0
C for 1h (divided all the volumes by 

two for smaller parasite pellets). Then added buffered phenol (Life Technologies) to make up 

the total volume up to 1.5 ml and mixed by inverting the tube several times, spun at maximum 

speed for 5 minutes, and upper aqueous phase was collected in a new tube. Similar steps were 

performed with buffered phenol:chroroform:isoamylalcohol (25:24:1) (Life Technologies) 

and chloroform:isoamylalcohol (obtained from Fisher Scientific as separate chemicals) (24:1). 

Final upper aqueous phase was collected in a new tube and 0.1 volume of 2M Sodium acetate 

(pH 5.2) and 2 volumes of 96% ethanol were added, mixed by inverting tube several time and 

DNA was precipitated overnight at -20
0
C (ethanol precipitation method). Precipitated DNA 

was pelleted by 15-20 minutes spin at maximum speed/ 4
0
C and washed with 500 μl of 70% 

ethanol,  air dried and mixed with 50-500 μl of distilled water (depending on the size of 

parasite pellet initially started with). 

2.1.1 c) Molecular cloning: Standard molecular methods were used for generation of 

plasmids via restriction enzymes and buffers (New England Biolabs). Ligations were 

performed using Rapid DNA ligation kit (Roche) as per manufacturer’s instructions. 
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Amplification of plasmid copies were performed via transformation using heat shock method 

into competent E. coli fusion blue strain as follows: Competent E. coli fusion blue cells were 

thawed on ice. Mixed with ligation mixture (80 μl of cells with 20 μl of ligation mixture) 

gently pipetting up and down and incubated for 10 minute on ice. Heat shocked at 42
0
C water 

bath for 45 seconds, and immediately kept on ice for 2 minutes and incubated with pre-

warmed (37
0
C) LB broth for 30-45 minutes at 37

0
C wish shaking (250 rpm/min).  

Transformed E. coli cells were selected on LB agar plate containing 100 μg/ml ampicillin. 

Plasmid DNA extractions were performed using QIAprep spin miniprep kit or Hispeed 

plasmid midi kit (Qiagen). Diagnostic digestions and PCR reactions were analysed by 

electrophoresis on 0.8% agarose gel in TBE buffer and stained with Syber safe (Life 

Technologies). 

2.1.1 d) Generation of rab11a promoter swap plasmids: A plasmid containing 3’UTR of 

snare, putative:promoterclag:2cmyc::rab11a called as pG72 (see Appendix A) was generated by 

Dr. L. Starnes-Waters Group. 3’UTR of snare, putative is a rab11a upstream gene and this 

region, required for recombination, needed updating and was amplified from gDNA of WT P 

berghei strain HPTBB by using forward primer GU1620 and reverse primer GU1621, and 

amplified 3’UTR of snare, putative was re-cloned into pG72 to obtain updated 3’UTR of 

snare, putative in pG72 (henceforth referred as pclag:2cmyc::rab11a).  

Another plasmid pama-1:2cmyc::rab11a (‘p’ stands for promoter) was obtained by replacing 

clag 5’UTR in Plasmid pclag:2cmyc::rab11a with PCR amplified 1.7 Kb 5’UTR of ama-1 

(PBANKA_091500) ORF from gDNA of WT P. berghei strain HPTBB using forward primer 

GU1622 and reverse primer GU1623. Order of genes in Plasmid pclag:2cmyc::rab11a and 

pama-1:2cmyc::rab11a was first determined by restriction digestion and these plasmids were 

sequenced (Eurofins MWG biotech) to check mutations and opened with HindIII and NotI 

and transfected in order to express endogenous Rab11A under the control of either clag or 

ama-1 promoter by double homologous recombination (see Appendix A- Table 1 for primer 

details).  

(Note: Plasmid pclag:2cmyc::rab11a and pama-1:2cmyc::rab11a were referred as 

pclag::rab11a and pama-1::rab11a throughout the report respectively.) 

2.1.1 e) Generation of cMyc and iLOV tagged Rab11A plasmid: The 0.9kb 5’UTR of 

rab11a ORF was PCR amplified using forward primer GU2366 and reverse primer GU2367  
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and replaced by clag promoter in plasmid pclag:2cmyc::rab11a (5’ 600bp of rab11a) to 

generate plasmid prab11a:2c-myc::rab11a0.6kb (5’ 600bp of rab11a). To tag Rab11A, small 

green fluorescent protein iLOV was PCR amplified with forward primer GU2491 and reverse 

primer GU2492 from p77_yhao_LOV (internal plasmid, see Appendix A) and ligated in 

between Rab11A endogenous promoter (prab11a) and 2c-myc of prab11a:2c-myc::rab11a0.6kb 

to generate plasmid prab11a:ilov:2c-myc::rab11a0.6kb (5’ 600bp of rab11a).  

Another plasmid prab11a:ilov:2c-myc::rab11a1.55kb (complete rab11a ORF- 1559bp) was 

generated by PCR amplification of complete rab11a ORF (1559bp) using forward primer 

GU2857 and GU2858 and replacing rab11a0.6kb (5’ 600bp of rab11a) from plasmid 

prab11a:ilov:2c-myc::rab11a0.6kb. Gene order was confirmed by restriction digestion followed 

by sequencing (Eurofins MWG Biotech). Plasmids were opened by HindIII and NotI to tag 

rab11a by double homologous recombination (see Appendix A- Table 1 for primer details).  

2.1.1 f) Generation of green male gametocyte plasmid: 1.5kb 5’UTR of dynein heavy chain 

(DHCP, PBANKA_041610) previously validated in the 820 line (Ponzi, Sidén-Kiamos et al. 

2009) was amplified from gDNA of WT P. berghei strain HPTBB using forward primer 

GU1504 and reverse primer GU1505, and gfp was amplified using gfp-forward primer 

GU2042 and gfp-reverse primer GU1515 from pG78 (internal plasmid, see Appendix A). 

Then dynein heavy chain and gfp fragments were inserted into vector pG89 (K. Hughes, 

Waters Group, see Appendix A), in front of a transmembrane protein (TM), Triose Hexose 

Transporter (PBANKA_110790) (K. Hughes- Waters group unpublished) (male specific 

promoter:gfp::TM). After initial restriction digests to confirm correct inserts the plasmid was 

sequenced (Eurofins MWG Biotech) over the newly inserted and default protein coding gene 

regions and deemed to be correct and opened by SacII for double homologous recombination 

to occur. These parasites were referred as green male gametocyte producers (see Appendix A- 

Table 1 for primer details).  

2.1.1 g) Generation of red female gametocyte plasmid: 2kb 5’UTR of LCCL domain 

containing protein (PBANKA_130070, LDCP) previously validated in the 820 line (Ponzi, 

Sidén-Kiamos et al. 2009)  was amplified from gDNA of WT P berghei strain HPTBB using 

LDCP forward primer GU1587 and LDCP reverse primer GU1509, and mcherry was 

amplified using mcherry-forward primer GU2139 and mcherry-reverse primer GU2140 from 

pG89 (K. Hughes, Waters group). Then LDCP and mcherry fragments were inserted into 

vector green male plasmid (male specific promoter:gfp::TM), in front of a transmembrane 
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protein (TM), triose hexose transporter (PBANKA_110790). P230p (PBANKA_030600) 

homology arms were obtained from pL15 (internal plasmid, Appendix A) which are different 

than those used in green male plasmid. Confirming after restriction digests plasmid was 

sequenced (Eurofins MWG Biotech) and deemed to be correct, opened by SacII for double 

homologous recombination (see Appendix A- Table 1 for primer details). 

2.1.1 h) Generation of plasmids for polarity development markers: The mcherry was 

amplified using mcherry-forward primer GU2139 and mcherry-reverse primer GU2140 from 

pG89 (K. Hughes, Waters group) and replaced with gfp in ppkl::gfp plasmid (Philip, 

Vaikkinen et al. 2012)(Appendix A) and mcherry amplified using mcherry-forward primer 

GU1934 and mcherry-reverse primer GU1935 was replaced with gfp in pL31-gfp (K. Hughes, 

Waters Group- unpublished) (Appendix A) to generate ppkl::mcherry and pL31-mcherry 

plasmids respectively.  

To tag Spindle Pole Body protein (PBANKA_040210), 1.2kb 3’ORF was PCR amplified with 

forward primer GU2373 and reverse primer GU2374 from gDNA of WT P. berghei strain 

HPTBB and replaced with ppkl in ppkl::mcherry plasmid to generate 

spindlepolebodyprotein::mcherry construct.  

The gap50 (PBANKA_081900) was PCR amplified through gDNA of WT P. berghei strain 

HPTBB using oppositely facing and overlapping primers GU2003 (facing towards 3’ end) 

and GU2004 (facing towards 5’ end) containing EcoRV restriction site and the generated PCR 

products with overhangs (and EcoRV restriction site) was used for further PCR implication of 

gap50 using forward primer GU2005 and reverse primer GU2002. Apparently generated 

gap50 fragment containing EcoRV restriction site was placed upstream of mcherry in pL31-

mcherry plasmid to generate gap50::mcherry construct.  

The isp1 (PBANKA_120940) was PCR amplified through gDNA of WT P. berghei strain 

HPTBB using oppositely facing and overlapping primers GU2866 (facing towards 3’ end) 

and GU2867 (facing towards 5’ end) containing EcoRV restriction site (similar strategy to 

generate gap50:mcherry plasmid)and the generated PCR products with overhangs and EcoRV 

restriction site was used for further PCR implication of isp1 using forward primer GU2864 

and reverse primer GU2865. Subsequently, generated isp1 fragment containing EcoRV 

restriction site was replaced with ppkl in ppkl:mcherry to generate isp1:mcherry construct. 

Introduced EcoRV restriction site enables to open isp1::mcherry and gap50::mcherry 
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plasmids with EcoRV restriction enzyme without interfering with endogenous isp1 and gap50, 

respectively, after transfection (see Appendix A- Table 1 for primer details).   

All the gene ligations were confirmed by restriction digest followed by sequencing (Eurofins 

MWG Biotech) and deemed to be correct. Plasmid ppkl:mcherry, gap50::mcherry, 

spindlepolebodyprotein::mcherry and isp1::mcherry were opened by BglII, EcoRV, BsaBI, 

and EcoRV  respectively for tagging respective genes by single cross over 
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2.1.2 Plasmodium berghei methods 

2.1.2 a) Parasite maintenance: Parasites were maintained in Theiler’s original (TO) or NIH 

Swiss outbred female mice (approximate weight 25 g and not less than 6 weeks old) mice 

according to UK home office licence.  

2.1.2 b) Stabilate creation: Stabilates of transgenic and WT P. berghei HPTBB parasites 

were made by mixing equal amounts of infected blood (parasitemia between 1 to 10%) with 

PBS containing 30% (v/v) glycerol and 0.05 ml of heparin stock solution. Transferred 

suspension to cryovials (400 μl/cryovial) and stored gently at -80
0
C in cardboard box for few 

hours and transferred to liquid nitrogen.  

2.1.2 c) Infection of mice: Infection of mice was done by intraperitoneal (i.p.) injection 

either by fresh infected blood with PBS or by approximately 200μl of blood suspension 

(parasitemia 3-5% or volume adjusted according to parasitemia) from thawed cryovials. After 

infection mice develop parasitemia approximately in between 0.5-3% on day 3.  For some 

experiments mice were given a dose of 100 μl phenylhydrazine (stock solution 12.5 mg/ml) 

(mice bodyweight ratio 125mg/kg) i.p. to enhance numbers of reticulocytes usually 2 days 

before infection.  

2.1.2 d) Analysis of asexual stages: Parasitemia was monitored daily by making thin smears 

of mouse tail blood on glass slide, fixed with methanol for 1 second, air dried and stained 

with Giemsa staining buffer (12.5% v/v) for 15 minutes. Giemsa stained slides were rinsed in 

water and air dried to count the parasitemia under oil immersion (Immersion oil from 

Invitrogen) 100x lense of light microscope (Primo Star- Zeiss). Images were captured through  

PAXcam5 camera using PAXcam software and processed using Fiji/ImageJ software 

(National Institute of Health http://rsbweb.nih.gov/ij/ OR http://fiji.sc/Fiji). Blood was 

collected by cardiac puncture under terminal anaesthesia for various experiments.   

2.1.2 e) In vitro culture of schizonts: Schizonts were generated by placing heart blood into 

schizont culture media (1ml blood into 30ml medium) followed by gasification (5% CO2, 5% 

O2, 90% N2) and incubated at 37
0
C for 16-18h. Examination of development of schizonts 

were done by taking small amount (0.2 to 0.5 ml) of schizont culture (spun for 30 seconds, 

maximum speed and discard supernatant) and preparing Giemsa stained slide. 

http://rsbweb.nih.gov/ij/
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2.1.2 f) Analysis of gametocytes: For enrichment of gametocytes mice were treated with 

sulfadiazine (30 mg/litre) in drinking water (tap water) for 48h to kill asexual parasite stages. 

Gametocytes were analysed by Giemsa staining of thin layer of tail blood. To analyse 

activation centres heart blood was placed immediately into ookinete culture medium (1x 

blood: 30 ookinete medium) and 10 µl of ookinete media with blood placed on a 

haemocytometer. After 15 minutes at 21⁰C activation centres defined as actively moving 

clumps of cells were counted using 10X objective on the light microscope (Primo Star- 

Zeiss).  

2.1.2g) In vitro culture of ookinete: For ookinete cultures, heart blood (1 ml) containing 

gametocytes was placed into ookinete culture medium (30ml) and incubated at 21
0
C for 24h. 

Ookinete development was observed by Giemsa staining of thin smears (as done for schizont 

cultures). Ookinete conversion rate were calculated either from Giemsa staining or 

immunofluorescence microscopy using Cyanine3 tagged anti-P25 antibody (see 

immunofluorescence assay methods) of ookinete culture. Ookinete conversion rates were 

calculated according to following formula:  

 

                     

 (
                                                                      

                    (            )                              (           )
) 

 

2.1.2 h) Purification by Nycodenz density gradient: Parasite cultures (30ml) [schizont 

culture, ookinete culture or blood containing gametocytes in richPBS (37
0
C)] were transferred 

into 50ml falcon tubes. Using 10ml pipette and S1 pipette filler at zero speed (ThermoFisher), 

10ml Nycodenz solution (53% Nycodenz stock solution/PBS for ookinetes and gametocytes 

and 55% Nycodenz stock solution/PBS for schizonts) was gently added at the bottom of 

parasite culture in order to get clear division between parasite culture and nycodenz solution, 

spun for 20 minutes in a swing out rotor with no brake at room temperature. A brown layer 

visible in between the interface of culture and Nycodenz solution was collected using Pasteur 

pipette and washed with respective culture solutions at 1800 rpm/ 6-8 minutes/ room 

temperature. Parasite purity was checked by Giemsa staining.     
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2.1.2 i)Transfection, parasite cloning and negative selection: Purified and linearized 

plasmid  DNA was obtained by gel extraction (QIAquick Gel Extration Kit) of 50-100 µg 

digested plasmid DNA and subsequent ethanol precipitated similar to gDNA precipitation 

(see 2.1.1 b). >5µg of linearized plasmid DNA was mixed with schizonts of WT P. berghei 

strain HPTBB or WT-GFP P. berghei strain HPTBB (also called as 507tbb where constitutive 

expression of GFP under ef1α promoter)(Franke-Fayard, Trueman et al. 2004) or negatively 

selected green male gametocyte producer P. berghei line (for negative selection see below) 

and 100 µl of human T cell nucleofector solution (Lonza) in a cuvette, and electroporation 

was performed using an Amaxa nucleofector device (Lonza) (programme U33) according to 

manufacturer’s instructions. Transfected parasite (transfectants) culture was injected 

intravenously (i.v.) into a TO female mouse obtained from Harlan labs. Transfectants were 

selected on pyrimethamine (7 mg/ml, pH 4.0) provided in drinking water (tap water) which 

was provided to the mouse from 24h post-transfection. Clones were obtained by diluting 

transfectants (showing integration of respective plasmid by diagnostic PCR) with richPBS in 

10 mice such that 0.4 parasite per mouse was injected i.v. into each mouse. In most (all) 

cloning experiments 4 out of 10 (or fewer) mice became infected.  

A mouse injected with transgenic P. berghei parasites having negative selection cassette 

integrated into the genome, was placed on 5-fluorocytosine (5FC) once the parasites were 

visible. Parasites were collected at approximately 3% parasitemia after decline of initial  

parasitemia (For more details see Chapter 4 Results – section 4.1 and figure 4.1.3 B) (Braks, 

Franke-Fayard et al. 2006, Maier, Braks et al. 2006, Orr, Philip et al. 2012).    

2.1.2 j) Transmission: 200 or 300 mosquitoes (Anophelese Stephensi) were allowed to feed 

for 10 min on an infected mice (no phenylhydrazine treatment) having 2-8% parasitemia. 

Mosquito midguts were analysed at day 11 or 14 and either day 17/18 or 22/27. Midguts were 

examined with Leica M205 FA Fluorescence Stereomicroscope and images were capture 

using Leica DFC340FX camera and through LAS AF Lite 2.2.0 build 4758 (Leica 

Microsystems Ltd.) and processed through ImageJ/Fiji software (National Institute of Health 

http://rsbweb.nih.gov/ij/ OR http://fiji.sc/Fiji). Oocyst numbers were counted by live images. 

2.1.2 k) Motility assay: MACS purified ookinetes were embedded in Matrigel and incubated 

for 1h at 210C before imaging. Time-lapse movies were acquired every 10 seconds for 10 min 

on a Leica M205 FA fluorescence stereomicroscope employing the GFP and mCherry filter 

sets (0.5 second exposure for each). Ookinete speeds were calculated on Fiji software 

http://rsbweb.nih.gov/ij/
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(National Institute of Health http://rsbweb.nih.gov/ij/  OR http://fiji.sc/Fiji) using the MtrackJ 

plugin (Meijering, Dzyubachyk et al. 2012). 

2.1.2 l) Immunofluorescence assay: A thin smear of P. berghei ookinete or schizont culture 

or sporozoites or oocysts obtained from crushed midgut of P. berghei infected Anophelese 

Stephensi in PBS was air dried and fixed with 4% paraformaldehyde (Electron Microscopy 

Science- EM grade) for 10 minutes. Cells (slides) were rinsed with PBS and permeabilized 

with 0.1% Triton in PBS for 5minutes. PBS Rinsed and blocked with 1% BSA/PBS for 45 

minutes followed by incubation with primary antibodies (Table 2.0.1.1 and Table 2.0.1.2) 

diluted with 1% bovine serum albumin (Sigma) in PBS (1% BSA/PBS) for an hour. Slides 

were washed 3 times 5 mins each with PBS and blocked with secondary antibodies (1:1000 in 

1% BSA/PBS). PBS rinsed 3 times 5 min each followed by rinsed with 70% ethanol and 

absolute ethanol 1 min each, air-dried and mounted in VectaShield (Vectorlabs) containing 

DAPI (4', 6-diamidino-2-phenylindole) in glycerol for nuclear staining. Access VectaShield 

was blotted with medical wipes by gently pressing the cover slip which were fixed with nail 

vanish and parasites were examined either under Delta Vision Epifluorescence microscope 

(Applied Precision)/ 100x objective, images were captured with CoolSNAP HQ camera 

(Photometrics) and deconvoluted using SoftWoRx software (Applied Precision) or under 

Axioplane2 (Zeiss) 100x objective, images were taken through HAMAMATSU ORCA_ER 

camera (HAMAMATSU) and Velocity software 4.1.0 (PerkinElmer). Images were processed 

using ImageJ/Fiji (National Institute of Health http://rsbweb.nih.gov/ij/  OR http://fiji.sc/Fiji ) 

as well as SoftWoRx explorer 1.3. Super-resolution images were captured through Elyra PS.1 

super-resolution microscope (Zeiss) with sCMOS PCO camera and images were visualized 

with ZEN Black software (Zeiss) and processed with ZEN LITE software (Zeiss).      

2.1.2 m) Live microscopy of P. berghei parasites: Small amount of (0.5ml) parasite 

cultures: iRBCs containing gametocytes (in ookinete medium or in richPBS kept at 37
0
C) or 

after activation of gametocytes (1 to 24hpa, zygotes, retorts and ookinetes) were spun at 

maximum speed for 30 seconds and resuspended in PBS/richPBS with or without 10 μM 

Hoechst 33342 (Life Technologies) for 10 seconds and washed with PBS once (spun at 

maximum speed for 30 seconds) and re-suspended in small amount of PBS. Alternatively, 

parasite suspensions were probed with Cy3 tagged anti-P25 mAb (1:2000) in richPBS with or 

without 10 μM Hoechst 33342 on rotating mixer for 30 minutes, washed three times with PBS 

(spun at maximum speed, 30 seconds each) and re-suspended in small amount of PBS. A drop 

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
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of parasite suspension was placed on slide. A coverslip was placed on top of the drop, excess 

liquid was blotted with medical wipes and coverslip was sealed with nail vanish. After air-

drying of nail vanish, images were captured by Deltavision or Axioplan microscopes as 

mentioned in above (method 2.1.2 l) with little variation in settings.   

2.1.2 n) Western Blotting: For analysis of Rab11A and ookinete development markers 

parasites were collected at different growth stages. Mixed asexual blood stage parasites were 

collected from an infected mouse by cardiac puncture, filtered through CF11 cellulose 

columns (Whatman-GE Healthcare Life Sciences) to exclude mice white blood cells and 

immediately lysed with ice cold erythrocyte lysis buffer for 15 min on ice. Parasite pellets 

were then obtained by spinning at 1800 rpm for 10 minutes, washed with ice cold erythrocyte 

lysis buffer (spin for 30 seconds at maximum speed) and stored at -20
0
C or proceeded 

immediately to sample lysis (see below). Schizonts, gametocytes and ookinete were obtained 

and purified by nycodenz density gradient as described above.  

Equal amount of parasite material from mixed asexual stage, schizonts, gametocytes and 

ookinetes were lysed in Net2+ buffer, mixed with equal amount of 2X Laemmli sample buffer 

containing 15% (v/v) β-mercaptoethanol and separated on 10 or 12 % SDS polyacrylamide 

gels (SDS and Tris by Flowgen Biosciences). Subsequently proteins were transferred onto 

nitrocellulose membrane (Amersham- GE Healthcare Life Sciences), using electrophoretic 

transfer in transfer buffer. Membranes were then blocked with 5% milk/PBS-tween and 

probed with appropriate primary antibodies (see Table 2.0.1.1 and 2.0.1.2) in 5% milk/PBS-

Tween (PBST) overnight at 4
0
C. Blots were washed three times with PBST for 10 min each 

and re-probed with HRP coupled secondary antibody (Polyclonal Goat anti-Rabbit or anti-

mouse Ig/HRP-Dako) 10,000 time diluted in 5% milk/PBST, for 1h at room temperature. 

Blots were visualised by treating with ECL solution (ThermoFisher
TM

 Pierce
TM

 ECL western 

blotting substrate) and exposed to X-ray film (Kodak Carestream Medical X-ray films) and 

developed.  For infrared based western appropriate secondary antibodies were used (IRDye® 

680LT Goat anti-mouse IgG and IRDye® 800CW Goat anti-rabbit IgG antibodies) and 

nitrocellulose blots were scanned on Odyssey® Sa Infrared Imaging System ( LI-COR 

Biosciences).  Blots were stripped  two times 5 min each with 0.2M NaOH solution and 

intermittent washing with distilled water and re-blocked in PBST plus milk before re-probing 

with further antibodies typically GFP, actinI or enolase as loading controls (see Table 2.0.1.1 

and Table 2.0.1.2 for concentrations of antibodies). 

https://licor.secure.force.com/catalog/?sku=925-32210
https://licor.secure.force.com/catalog/?sku=925-32210
https://licor.secure.force.com/catalog/?sku=925-32210
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2.1.2 o) RNA isolation and Reverse transcriptase PCR: To prevent the post-meiotic 

transcription in WT-GFP zygotes, WT-GFP gametocytes immediately filtered through 

Plasmodipur filters (EuroProxima) were cultured in the ookinete culture medium 

supplemented with 5 μ/ml actinomycinD (Sigma) and collected after 24 hpa giving retorts (A. 

Srivastava-Waters group, Unpublished data).  

To prevent fertilization of female gametes, unactivated gametocytes were cultured in richPBS 

containing 100 mM 2-Deoxy-D-glucose (Sigma) for 45min and filtered through Plasmodipur 

filters (EuroProxima), washed with 5ml ookinete medium and re-cultured in ookinete medium 

without 2-Deoxy-D-glucose (2DG) for 24h. Female gametocytes get activated and 

fertilization is prevented due to blockage in male gamete exflagellation (K. Hughes-Waters 

Group, Unpublished data) (see Chapter 3- Results section 3.6 for details).  

Unactivated gametocyte (immediately filtered through Plasmodipur filter at 37
0
C) and 

ookinetes (unactivated gametocytes were immediately filtered through Plasmodipur filters at 

37
0
C before setting up ookinete cultures at 21

0
C) of WT-GFP and pclag::rab11a parasites 

along with drug treated gametocytes obtained 24h after culturing (2-Deoxy-D-glucose and 

actinomycinD treated) were enriched with 53% nycodenz gradient and mixed vigorously with 

1ml of TRIzol (ambion-Life Technologies) and stored either at -80
0
C or immediately kept on 

ice for RNA isolation.  

Total RNA were isolated using RNAeasy Universal Mini kit (Qiagen) with on-column DNase 

digestion by RNase free DNase set (Qiagen) according to manufacturer’s instruction. Reverse 

transcriptase PCRs were performed using SuperScript® III Reverse Transcriptase kit (Life 

Technologies) according to manufacturer’s instructions. RNA samples were sequenced 

through Glasgow Polyomics, UK (www.polyomics.gla.ac.uk ).        

2.1.2 p) RNA Sequencing: RNA Sequencing (RNA-Seq) reads were prepared (see Table 

2.1.2.1 and Table 2.1.2.2 for parameters of RNA-Seq) using Life Technologies stranded 

mRNA library kit and sequencing was carried out on Life Technologies Ion Proton platform.  

Fastq files were quality controlled using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, version 0.10.1) and trimmed for 

adapters and with a quality threshold >2=20 using cutadapt  [(Martin 2011), version 1.6 

version, "-m 16 -b GGCCAAGGCG -q 20"]. Reads were then aligned to the Plasmodium 

berghei ANKA genome [ (Aurrecoechea, Brestelli et al. 2009) PlasmoDB version 11.1] using 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Tophat [  (Kim, Pertea et al. 2013). version 2.0.12 , "--keep-fasta-order -b2-D 20 --b2-R 3 --

b2-N 1 --b2-L 20 --b2-i S,1,0.50  -g 10 -I 5000 --library-type fr-firststrand"]. In order to have 

maximum sensitivity to low abundance or divergent transcripts reads that failed to align with 

Tophat2 were extracted using bed tools (http://bedtools.readthedocs.org/en/latest/, version 

2.19.1, "bamtofastq") and aligned to the same reference using bowtie2 local alignments 

[(Langmead and Salzberg 2012), version 2.2.1 , "--local -D 20 -R 3 -N 1 -L 20 -i S,1,0.50 --

mm"]. The Tophat accepted hits and bow tie2 aligned reads were then merged to form the 

alignment for that sample using Picard tools (http://broadinstitute.github.io/picard/, version 

1.112). Gene-level expression analysis was carried out using the cufflinks2 package 

[(Trapnell, Hendrickson et al. 2013) version 2.2.1] using annotated genes only (PlasmoDB 

VERSION 11.1 GFF file).  Differential expression was carried out using cuffdiff (version 

2.2.1). Subsequent analyses were carried out using the CummeRbund package 

(http://compbio.mit.edu/cummeRbund/, version 2.0).  
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Materials and Methods 

 

77 
 

 

 

 

 

 

 

Samples 

Set1 Set2 Set3 

Trimmed Raw Trimmed Raw Trimmed Raw 

WT-GFP gametocytes 9999709 10631567 10333258 10910347 9424540 10202613 

pclag::rab11a gametocyte 7380562 7724709 7658106 8236185 7493549 8107180 

WT-GFP Ookinetes 8330977 8781630 6913529 7396991 8082056 8607430 

pclag::rab11a ookinetes 7386774 7956256 9882800 10630975 8867802 9418792 

AUFG 8617514 9084250 8615066 9150651 7819104 8309714 

TAR 7864661 8364489 8210194 8788797 7522889 8026224 

 

Table 2.1.2.1 RNASeq reads trimmed and raw for three sets of parasite samples 

AUFG – Activated-Unfertilized WT-GFP female gametocytes (2-Deoxy-D-glucose treated 

WT-GFP female gametes), TAR – Transcriptionally arrested WT-GFP retorts (actinomycinD 

treated WT-GFP gametocytes) See 2.1.2 o and 2.1.2 p for more details. 
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Set1 

     WT-GFP gametocytes1.merge.bam 

 

pclag::rab11a gametocytes1.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:           8609950   

 

Total reads:          3264448   

Mapped reads:      8609950 -100% 

 

Mapped reads:      3264448 -100% 

Forward strand:    4133611 -48.01% 

 

Forward strand:    2315093 -70.92% 

Reverse strand:     4476339 -51.99% 

 

Reverse strand:     949355 -29.08% 

Failed QC:            0 0% 

 

Failed QC:          0 0% 

Duplicates:            0 0% 

 

Duplicates:          0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads: 0 0% 

     WT-GFP ookinetes1.merge.bam 

 

AUFG1.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:           5290409   

 

Total reads:           2757519   

Mapped reads:      5290409 -100% 

 

Mapped reads:      2757519 -100% 

Forward strand:    2897080 -54.76% 

 

Forward strand:    1676352 -60.79% 

Reverse strand:     2393329 -45.24% 

 

Reverse strand:    1081167 -39.21% 

Failed QC:           0 0% 

 

Failed QC:           0 0% 

Duplicates:           0 0% 

 

Duplicates:           0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads:  0 0% 

     
pclag::rab11a ookinetes1.merge.bam 

 

TAR1.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:           6317982   

 

Total reads:           4920463   

Mapped reads:      6317982 -100% 

 

Mapped reads:      4920463 -100% 

Forward strand:    3486291 -55.18% 

 

Forward strand:    2628076 -53.41% 

Reverse strand:    2831691 -44.82% 

 

Reverse strand:    2292387 -46.59% 

Failed QC:            0 0% 

 

Failed QC:            0 0% 

Duplicates:           0 0% 

 

Duplicates:           0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads:  0 0% 
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Set2 

     WT-GFP gametocytes2.merge.bam 

 

pclag::rab11a gametocytes2.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:           8943276   

 

Total reads:          5569828   

Mapped reads:      8943276 -100% 

 

Mapped reads:      5569828 -100% 

Forward strand:    4095083 -45.79% 

 

Forward strand:    2492556 -44.75% 

Reverse strand:    4848193 -54.21% 

 

Reverse strand:    3077272 -55.25% 

Failed QC:            0 0% 

 

Failed QC:           0 0% 

Duplicates:           0 0% 

 

Duplicates:           0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads:  0 0% 

     WT-GFP ookinetes2.merge.bam 

 

AUFG2.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:           3555698   

 

Total reads:          2221042   

Mapped reads:      3555698 -100% 

 

Mapped reads:      2221042 -100% 

Forward strand:    1958254 -55.07% 

 

Forward strand:    1378494 -62.07% 

Reverse strand:    1597444 -44.93% 

 

Reverse strand:     842548 -37.93% 

Failed QC:            0 0% 

 

Failed QC:           0 0% 

Duplicates:            0 0% 

 

Duplicates:           0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads:  0 0% 

     
pclag::rab11a ookinetes2.merge.bam 

 

TAR2.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:          7054508   

 

Total reads:           3703151   

Mapped reads:      7054508 -100% 

 

Mapped reads:      3703151 -100% 

Forward strand:    3728459 -52.85% 

 

Forward strand:    2022857 -54.63% 

Reverse strand:    3326049 -47.15% 

 

Reverse strand:    1680294 -45.37% 

Failed QC:           0 0% 

 

Failed QC:           0 0% 

Duplicates:           0 0% 

 

Duplicates:           0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads:  0 0% 
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Set3 

     WT-GFP gametocyte3.merge.bam 

 

pclag::rab11a gametocytes3.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:           7128574   

 

Total reads:           6836368   

Mapped reads:      7128574 -100% 

 

Mapped reads:      6836368 -100% 

Forward strand:    3587661 -50.33% 

 

Forward strand:    3348360 -48.98% 

Reverse strand:    3540913 -49.67% 

 

Reverse strand:    3488008 -51.02% 

Failed QC:            0 0% 

 

Failed QC:           0 0% 

Duplicates:            0 0% 

 

Duplicates:           0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads:  0 0% 

     WT-GFP ookinetes3.merge.bam 

 

AUFG3.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:           5834001   

 

Total reads:           2158042   

Mapped reads:      5834001 -100% 

 

Mapped reads:      2158042 -100% 

Forward strand:    3390716 -58.12% 

 

Forward strand:    1943669 -90.07% 

Reverse strand:    2443285 -41.88% 

 

Reverse strand:    214373 -9.93% 

Failed QC:            0 0% 

 

Failed QC:            0 0% 

Duplicates:           0 0% 

 

Duplicates:            0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads:  0 0% 

     
pclag::rab11a ookinetes3.merge.bam 

 

TAR3.merge.bam 

Stats for BAM file(s):  

 

Stats for BAM file(s):  

Total reads:           4044348   

 

Total reads:           3186032   

Mapped reads:      4044348 -100% 

 

Mapped reads:      3186032 -100% 

Forward strand:    2591261 -64.07% 

 

Forward strand:    2147336 -67.40% 

Reverse strand:    1453087 -35.93% 

 

Reverse strand:    1038696 -32.60% 

Failed QC:             0 0% 

 

Failed QC:            0 0% 

Duplicates:            0 0% 

 

Duplicates:           0 0% 

Paired-end reads:  0 0% 

 

Paired-end reads:  0 0% 

 

Tables 2.1.2.2 Number of reads aligned to the genome of P. berghei ANKA for 

comparison with the original read counts. 

AUFG – Activated-Unfertilized WT-GFP female gametocytes (2-Deoxy-D-glucose treated 

WT-GFP female gametes), TAR – Transcriptionally arrested WT-GFP retorts (actinomycinD 

treated WT-GFP gametocytes) See 2.1.2 o and 2.1.2 p for more details. 
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2.1.2 q) GO term analysis: Generic GO slim terms were obtained using Princeton 

University’s GOTERMMAPPER (http://go.princeton.edu/cgi-bin/GOTermMapper) for P. 

falciparum as GOTERMMAPPER is not available for P. berghei. Obtained GO parent terms 

were further grouped manually to less than 30 groups for convenience of representation in pie 

charts. For simplicity only Biological Process terms were shown. 

2.1.2 r) Scanning and transmission electron microscopy: -For scanning electron 

microscopy P. berghei gametocytes 8hpa (in ookinete medium) were initially fixed with 0.1M 

Sodium Cacodylate buffer containing 2% Glutaraldehyde and 2% Paraformaldehyde. 

Additionally, parasites were fixed with chlorides (0.2% MgCl, 0.1% CaCl) for 1h and rinsed 

three times (5 min each) with 0.1M Sodium Cacodylate buffer (0.2% Mgcl, 0.1% Cacl) to 

remove Glutaraldehyde. Parasite sample drops were placed onto Poly-l-Lysine coated 10mm 

diameter glass coverslips and left to settle for 30 min to allow specimens to stick to glass 

surface, further fixed with 1% Osmium Tetroxide in Sodium Cacodylate buffer and rinsed 1h, 

following three changes of distilled water 10 minutes each to remove Osmium fixative. 

Successively, stained with 0.5% Uranyl Acetate aqueous solution for 1h in dark to avoid stain 

precipitation by light and dehydrated through ethanol series 30%, 50%, 70%, 90% for 10 min 

each then with 100% ethanol four times 5 min each, followed by four 5 min changes of dried 

100% ethanol (dried 100% ethanol is 100% ethanol containing 3A molecular sieve). Parasite 

specimens attached to coverslips were critically point dried using a Polaron E3000 and Liquid 

CO2. Dried parasite specimens on coverslips were mounted onto aluminium pin stubs and 

gold Palladium coated using a Polaron SC515 sputter coater and examined on a JEOL6400 

SEM running at 10kV and tiff images captured using Olympus Scandium software. 

For transmission electron microscopy, after fixation of parasite samples with following 

fixatives: 2% Glutaraldehyde and 2% Paraformaldehyde containing 0.1M Sodium Cacodylate 

and chlorides (0.2% MgCl, 0.1% CaCl),  parasites specimen suspensions were spun down to a 

pellet and cut into 1-2mmᴲ pieces and left in fixative for 1h. Rinsed three times - 5 minutes 

each with 0.1M Sodium Cacodylate buffer (0.2% MgCl, 0.1% CaCl) and subsequently rinsed 

with Sodium Cacodylate buffer containing Osmium Tetroxide for 1h, washed with three times 

distilled water 10 minutes each. En bloc stain with 0.5% Uranyl Acetate aqueous solution for 

1h in dark and dehydrated through series of ethanol similar to SEM samples until dried 

ethanol step. Three 5 minute changes in Propylene Oxide (this solvent mixes better with resin 

and evaporates quickly) and mixing overnight with 1:1 Propylene Oxide: Araldite/ Epon 

http://go.princeton.edu/cgi-bin/GOTermMapper
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(TAAB 812) on rotator (Pure resin changes next day). Embed specimens in fresh resin 

transferred into moulds and polymerised in oven at 60
0
C for at least 24h. Ultrathin sections 

60-70nm thickness cut using a LEICA ULTRACUT UTC and a DRUKKER diamond 

Ultramicrotome knife angled at 6˚. Parasite specimen sections attached to 100 mesh formvar 

coated copper grids were contrast stained in 2% Methanolic Uranyl Acetate/5 mins and 

Reynolds Lead Citrate/ 5 mins and viewed on either a Tecnai T20 (FEI) running at 200kV or 

Leo 912AB TEM running 120kV and images captured using Gatan Digital Micrograph 

Software (Gatan, Japan). Images were processed using ImageJ (National Institute of Health 

http://rsbweb.nih.gov/ij/).  

 

2.1.2 s) Flow Cytometry analysis: 1) Fertilization and analysis of meiosis by DNA content 

in WT-GFP and pclag::rab11a zygotes were verified by flow cytometry. WT-GFP and 

pclag::rab11a gametocytes were collected 4hpa and 24hpa in ookinete media and purified 

using 53% nycodenz density gradient centrifugation, washed with richPBS two times and 

vigorously vortexed three times 10 seconds each to break the zygote/ookinete clumps. 

Parasites were incubated with anti-P25 mAb (1:1000) in richPBS for 30 min on rotating mixer 

and washed with richPBS three times (spun at maximum speed, 30 seconds each) and re-

probed with secondary antibodies Goat anti-mouse Alexa Flour 633 (1:1000) and erythroid 

cell marker anti-Ter119 PE/Cy5 antibody (eBioscience) (1:500) in richPBS containing 5 μM 

Hoechst 33342 for 30 min and washed two times with richPBS  and with FACS buffer once 

(spun at maximum speed, 30 seconds each) and vortexed for 10 seconds. Parasites were re-

suspended in 1ml FACS buffer and filtered through nylon filtration fabric NITEX 40 μm pore 

size (Cadisch Precision Meshes) to remove parasite aggregates. Samples were run on a FACS 

CyAn (BeckmanCoulter) equipped with a 405 nm, 488 nm and 633 nm laser and 5000 to 

10000 events (infected RBCs) were acquired.  Post-acquisition analysis was performed using 

Kaluza software (BeckmanCoulter). Due to unavailability of two colour background in the 

mutant (pclag::rab11a) parasites, it was not possible to differentiate between male and female 

gametes using red/green colours as previously shown (Mair, Lasonder et al. 2010). A gating 

strategy was implemented to identify parasites (based on GFP and Hoechst positive). 

Activated gametocytes/ gametes were negative for RBC membrane detected by erythroid cell 

marker anti-Ter119 PE/Cy5 antibody, and female gametes/ zygotes become positive for P25 

staining. Negative controls of uninfected RBCs, infected RBCs with asexual stages of 

parasites and unstained samples were used to validate the gating strategy. The DNA content 

http://rsbweb.nih.gov/ij/
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was then analysed by comparing the Hoechst 33342 stain levels of these parasites. All the 

experiments were performed on three independent occasions with similar results  

 

2) For iLOV::2CMYC::Rab11A cell sorting (FACS cloning), schizont cultures of WT P. 

berghei HPTBB and ilov::2cmyc::rab11a1.55kb parasites were washed twice with richPBS and 

re-suspended in 1ml FACS buffer, filtered through NITEX 40 μm pore membrane to exclude 

of cell clumps. Parasites were sorted on FACSAria III (BD Biosciences) and analysed on BD 

FACSDIVA V8.0.1 .Cells were collected in numbers 50, 500 and 5000 for each parasite line 

and injected i.p. into TO female animals. Ookinete cultures of the resulting FACS cloned 

ilov::2cmyc::rab11a1.55kb were analysed by live fluorescence microscopy (methods 2.1.2 m). 
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3.0 Introduction: Rabs in Plasmodium 

Evidence of the presence of Rab GTPase in Plasmodium came in early 1990s. Whilst 

studying the compartment and the mechanism of chloroquine effects in P. falciparum, Jambau 

et al discovered the presence of Rab proteins in P. falciparum (Jambou, Zahraoui et al. 1996). 

The first characterised Plasmodium Rabs were Rab4 and Rab6. PfRab4 (Plasmodium 

falciparum Rab4) localizes near plasma membrane, on the membranes of early endosome like 

structure and on small vesicles (Jambou, Zahraoui et al. 1996). Rab6 is the most widely 

studied P. falciparum Rab and has been described in the rodent malaria model P. berghei 

(Ming, VanWye et al. 1999), and its crystal structure has been solved (Chattopadhyay, 

Langsley et al. 2000, Chattopadhyay, Smith et al. 2000). Immunoelectron microscopy shows 

PfRab6 localization in the vicinity of trans-Golgi network (Golgi and vesicular structure) 

(Van Wye, Ghori et al. 1996) while immunofluorescence microscopy confirms dynamic 

localization of PfRab6 and it is expressed during asexual blood stages with highest presence 

at trophozoite stage (de Castro, Ward et al. 1996). PCR analysis allowed detection of further 

P. falciparum Rabs which are Rab1A, Rab1B, Rab5, Rab7, Rab11 (Langsley and Chakrabarti 

1996) and ARA4 (de Castro, Ward et al. 1996). Rabs are associated with membranes via its 

C-terminal prenylation a process that is mediated by prenyl transferases whilst recycling of 

Rabs from donor to acceptor membrane is mediated by RabGDI. The presence of protein 

geranylgeranyl transferase-I along with protein farnesyl transferase (Chakrabarti, Azam et al. 

1998) and RabGDIs (Attal and Langsley 1996)  were demonstrated in P. falciparum. 

Complete Plasmodium genome sequence (Bowman, Lawson et al. 1999, Gardner, Hall et al. 

2002, Hall, Pain et al. 2002)  analysis shows that Plasmodium spp encode 11 Rab GTPases 

(Quevillon, Spielmann et al. 2003) (similar to the number of rabs in yeast S. cerevisiae where 

Ypts/Rabs are well characterised, see figure 3.0 A) and also putative homologues of protein 

trafficking machinery such as GAP, GDI and SNARE proteins (www.plasmodb.org) 

suggestive of the existence of active trafficking. Potential functions of PfRabs were predicted 

by comparing with S. cerevisiae Rabs. It has been shown by RT-PCR that ten members of P. 

falciparum Rab family are expressed in erythrocytic stages of parasite except PfRab11B (P 

falciparum Rab11B) as no transcripts of it were detected (Quevillon, Spielmann et al. 2003). 

However, recent transcriptomic studies shows the presence of Rab11B in erythocytic stages 

(Langsley, van Noort et al. 2008, Otto, Böhme et al. 2014)(RNA-Seq by A Religa – Waters 

Group, unpublished). Rab GTPases are also present in other closely related Apicomplexan 

http://www.plasmodb.org/
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parasites such as T. gondii which encode 12 Rabs (Kremer, Kamin et al. 2013), 

Theileria and Babesia parasites have 9 Rabs while Cryptosporidia have 8 Rabs (Langsley, 

van Noort et al. 2008). The complete family of 11 Rabs of Plasmodium has been 

characterized (Quevillon, Spielmann et al. 2003). Depending on the expression profile at 

erythrocytic stages, Rab proteins can be divided into three groups. The rab1a, rab1b, rab5a 

and rab5c transcripts fall in one cluster and appear to peak in trophozoite stage; 

rab2, rab5b, rab6 and rab11b transcripts fall into another cluster and peak in late schizont 

stage whereas rab7, rab11a and rab18 transcripts do not share any expression profile and 

therefore do not form any cluster (Langsley, van Noort et al. 2008).  

Sequence analysis of PfRab5 proteins show that unlike all other PfRabs, PfRab5b might have 

a different function as it lacks C-terminal prenylation motif (geranylgeranylation motif) 

necessary for membrane attachment, however, it has a myristoylation site at N-terminus 

(Quevillon, Spielmann et al. 2003, Howe, Kelly et al. 2013, Ezougou, Ben-Rached et al. 

2014). PfRab5b has been shown be associated with the plasma membrane as well as the food 

vacuole and PbRab5b is refractory to deletion in haploid blood stages. (Ezougou, Ben-Rached 

et al. 2014). During blood stages, PfRab5a localised to the haemoglobin-containing vacuoles 

and therefore predicted to be involved in haemoglobin uptake via haemoglobin-containing 

vacuoles transport to food vacuole (Elliott, McIntosh et al. 2008). Both PfRab5a and PfRab5b 

are mislocalized from parasite to erythrocyte upon inhibition of isoprenoid synthesis by MEP 

(methylerythritol 4-phosphate) pathway by small molecule fosmidomycin  (Howe, Kelly et al. 

2013). Rab5a shows presence of an unusual 30 amino acids insertion (compared with other 

Rabs of P. falciparum) indicating interactions with novel effectors (Quevillon, Spielmann et 

al. 2003). Additionally, Rab interactome studies have revealed the casein kinase 1 as an 

effector of Rab5b and cAMP-dependent protein kinase A as an effector of Rab5a and Rab7 in 

P. falciparum (Rached, Ndjembo-Ezougou et al. 2012). Also, PfRab7 was shown to localize 

at the putative endosome along with the retromer cargo-complex and putative Golgi-to-

endosome protein sorting pathway was depicted in asexual blood stages (Krai, Dalal et al. 

2014).   
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Figure 3.0 Phylogenic analysis of various eukaryotic Rabs and structure of P. berghei 

Rab11A. 

(A) Table showing evolution of various Rabs in different phyla and (B) their phylogenic tree. 

(LECA: Last eukaryotic common ancestor). Chart and tree taken from (Klöpper, Kienle et al. 

2012) (C) Domains of Pbrab11a: transmembrane domain 12-176 amino acids (aa) (blue), low 

complexity region 201-214 aa (brown) and C-terminal CC where is C is cysteine (underlined). 

Analysed from http://smart.embl-heidelberg.de  

 

 

 

 

 

(C) 

http://smart.embl-heidelberg.de/
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Rab proteins are probably involved in vesicle trafficking in P. berghei, and we will focus on 

the role of Pbrab11a (P. berghei rab11a) particularly in the regulation of protein trafficking 

during the development of ookinete (polarity).  

Plasmodium Rab11 was first described in P. falciparum (Pfrab11). PfRab11 has a C-terminal 

extension of 20 amino acids when compared to human RAB11, and has two isoforms 

(Langsley and Chakrabarti 1996): Pfrab11a and Pfrab11b encoded by distinct genes. Rabs 

from different organisms have conserved domains particularly in GTP binding domain 

(Grosshans, Ortiz et al. 2006). Typically, all RAB proteins have a C-terminal CC, CXC 

motifs (where C stands for cysteine) which are isoprenylated (Khosravi-Far, Lutz et al. 1991, 

Howe, Kelly et al. 2013). Consistent with this a C-terminal CC domain has been found in 

PbRab11A (figure 3.0 C). Proteins embedded in vesicles are transported to their target via the 

microtubule and/or actin filament system. Rab11A is involved in regulating vesicular traffic 

during recycling endosomes (Ullrich, Reinsch et al. 1996) and assist in cytokinesis (Agop-

Nersesian, Naissant et al. 2009) and interacts with PI4Ks (phosphatidylinositol-4 kinases) 

(McNamara, Lee et al. 2013, Burke, Inglis et al. 2014) and its effectors such as FIPs (Rab11A 

– family of interacting proteins)(Kelly, Horgan et al. 2012). PfRab11A is expressed in asexual 

blood stages and shows punctate localization in schizonts (Quevillon, Spielmann et al. 2003, 

McNamara, Lee et al. 2013). This is further supported by microarray analysis available on 

www.plasmodb.org (PF13_0119) and RNA-Sequencing data across lifecycle stages of P. 

berghei (A. Religa, Waters Group, unpublished)(Otto, Böhme et al. 2014)(figure 3.1.1).  

T. gondii expressing ddFKBP-Rab11A dominant negative form (ddFKBP-Rab11ADN) shows 

reduced invasion of host cells by   85%. Furthermore, Shld-1 treated parasites show 

significantly less parasites in PV(Herm-Gotz, Agop-Nersesian et al. 2007). This indicates that 

Rab11A is essential for extracellular and intracellular stages of this parasite. Additionally, no 

parasites were obtained upon deletion of rab11a in haploid blood stage of in P. berghei 

(Pbrab11a is PBANKA_141890) although parasites where the nuclear copy is deleted could 

be rescued by providing an episomal copy of GFP-Rab11A. Therefore, Rab11A is appears to 

be an essential gene for P. berghei (Agop-Nersesian, Naissant et al. 2009).     

PfRab11A is shown to be associated with vesicular like structures in schizonts (Quevillon, 

Spielmann et al. 2003) and only Rab11A seems to be associated with rhoptries in T. gondii 

(Tgrab11a) (Bradley, Ward et al. 2005) suggesting a role of Rab11A in the rhoptry protein 

transport and release of rhoptry content during the invasion of host cells. PfRab11A also 
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localizes with rhoptries when they form (Agop-Nersesian, Naissant et al. 2009). However, 

Rab11A might carry out other functions during development of the parasite. Rab11A seems to 

co-localize with MSP1 in young schizonts and yet is largely separate (from MSP1) in 

merozoites (Agop-Nersesian, Naissant et al. 2009). Co-localization studies of GAP45 and 

Rab11A supports the notion that Rab11A mediates the delivery of GAP45 to IMC (Agop-

Nersesian, Naissant et al. 2009). Pull-down experiments suggest that only Rab11A interacts 

with MTIP when compared with Rab5C and Rab7, suggesting that Rab11A guided transport 

is driven by MTIP/MLC motor (Agop-Nersesian, Naissant et al. 2009). During replication, T. 

gondii expressing Rab11ADN (i.e. Rab11AN126I) showed no defects in the generation of 

various cell organelles such as Golgi, apicoplast, nucleus and mitochondrion  including IMC 

formation and localization of sub-pellicular microtubules (Agop-Nersesian, Naissant et al. 

2009). In T. gondii, the delivery of major surface antigen SAG-1 to cell membrane needs 

functional Rab11A as Rab11ADN shows patchy (abnormal) instead of smooth (normal) 

localization of SAG1 (Agop-Nersesian, Naissant et al. 2009). Over-expression of Rab11A is 

not deleterious. However, over-expression of MyoA tail generates defect in IMC assembly, 

daughter cell IMCs are completely collapsed within the mother cell (Agop-Nersesian, 

Naissant et al. 2009). Rab11A controls the necessary step after biogenesis of secretary 

organelles but before assembly of the motor complex during cell division. These data suggest 

that Rab11A along with unconventional myosin controls the IMC assembly and budding of 

daughter cells.  

A P. berghei ookinete microneme proteome performed using a highly sensitive MudPIT 

method shows presence of Rab11A along with Rab1, Rab6, Rab7 and other proteins involved 

in secretory pathways indicating Rab11A could be involved in microneme trafficking (Lal, 

Prieto et al. 2009). Furthermore, the transcript encoding rab11a is one of 370 transcripts 

which are stabilized and translationally repressed by the DOZI translational repression 

complex in P. berghei (Mair, Braks et al. 2006), indicating its potential role in ookinete 

development. Taken together, the data indicates that Rab11A is encoded by an mRNA that is 

translationally repressed in gametocytes and might be associated with ookinete development 

at the level of determining the subcellular localization of mRNA and/or protein and thus 

influence the generation of zygote/ookinete polarity. Therefore, further investigation of 

Rab11A function in the fertilised female gamete (zygote) may reveal insights into the 

development of polarity in ookinetes, in P. berghei. 

 



Results, Discussion and conclusion – Rab11A approach 

 

92 
 

In addition, another isoform of Rab11A, Rab11B is exclusively required for IMC formation 

through vesicle transport from the Golgi in T. gondii. Disruption of IMC formation shows the 

random distribution of organelles several times indicating that loss of cell polarity due to loss 

of IMC. Disruption of IMC also blocks the development and relocation of posterior polar ring 

and the generation of multinucleated cells (nuclear division takes place but no cytokinesis). 

However, these studies suggest that these multinucleated cells may or may not undergo 

daughter cells formation. This shows that formation of polar ring is dependent on IMC 

formation. However, other phenomena such as segregation of the centrocone and Golgi, 

polymerisation of sub-pellicular microtubules are independent of Golgi to IMC vesicular 

transport. Blocking microtubule polymerization by plant herbicide oryzalin also blocks IMC 

formation. This indicates that IMC formation is dependent on sub-pellicular microtubule 

formation but not vice-versa (Agop-Nersesian, Egarter et al. 2010). Therefore, presumably 

after completion of IMC formation, Rab11A mediated vesicle transport is needed for the 

completion of cytokinesis (Agop-Nersesian, Naissant et al. 2009), similar to other eukaryotes 

(Chapter 1- figure 1.7 A). 
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3.1 PbRab11A is expressed throughout P. berghei lifecycle and 

localizes to the periphery and apical tip of the ookinete 

To analyse the expression of PbRab11A (PBANKA_141890), we examined Rab11A 

transcript profile (RNASeq data by A. Religa- Waters Group, Unpublished)(Otto, Böhme et 

al. 2014) which demonstrated the presence of Rab11A mRNA at ring, trophozoite, schizont 

and ookinetes while gametocytes the greatest abundance of Rab11A mRNA (figure 3.1.1 A). 

A polyclonal antibody raised against C-terminal end of Rab11A (Cysteine tagged peptide C-

RGKK INVDN DNDED EKKTK, Proteintech) (figure 3.1.1 B) was used to detect the 

protein. Western analysis of WT parasites which constitutively expresses GFP (WT-GFPCON, 

henceforth referred as WT-GFP for simplicity) (Franke-Fayard, Trueman et al. 2004) showed 

the expression of PbRab11A across mixed asexual stages, schizonts, gametocytes and 

ookinetes (figure 3.1.1 C). Post-activation of gametocytes, expression of PbRab11A gradually 

increases with maximum expression in fully developed ookinetes (figure 3.1.1 D). In 

schizonts and mature ookinetes, an extra band is detected indicating possible differential 

regulation of Rab11A (dotted arrows in figure 3.1.1 C and D). The reason for the expression 

and the nature of the additional smaller band detected with the anti-Rab11A sera is not yet 

known. 

Immunofluorescence microscopy showed expression of PbRab11A in WT-GFP parasites 

(Franke-Fayard, Trueman et al. 2004) at mature schizonts (individual merozoites), 6h zygotes, 

ookinetes, oocysts as well as midgut sporozoites (figure 3.1.2). In merozoites, oocyst (day10) 

and midgut sporozoites (day10), the localization of Rab11A is cytoplasmic. In the 6h zygote, 

Rab11A localization is cytoplasmic and appears punctate while in the ookinete Rab11A is 

more peripheral and focused at apical tip suggesting a role of Rab11A at the apical complex 

(figure 3.1.2).   

 

 

 

 



Results, Discussion and conclusion – Rab11A approach 

 

94 
 

 

 

 

 

 

 

 

 

Figure 3.1.1 Rab11A expression during P. berghei lifecycle stages. 

(A) PbRab11A transcription profile in FPKM (fragments per Kb of open reading frame per 

million reads) at ring, trophozoite, schizont, gametocytes and ookinete stage (Source: RNA-

Seq data by A. Religa - Waters Group, unpublished) (Otto, Böhme et al. 2014). (B) Sequence 

of PbRab11A with the cysteine tagged peptide used to raise polyclonal rabbit anti-PbRab11A 

antibody shown in bold. (C) Expression of Rab11A in: A, mixed asexual stages; S, schizonts; 

G, unactivated gametocytes and O, ookinete and (D) after post-activation of gametocytes i.e. 

zygote to ookinete development using rabbit anti-PbRab11A antibody. Blots were scanned on 

Odyssey® Sa Infrared Imaging System (LI-COR Biosciences). Arrows indicate the additional 

small PbRab11A band in schizont and ookinete. hpa= hours post-activation (of gametocytes). 
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Figure 3.1.2 Rab11A localization during P. berghei lifecycle.  

Localization of Rab11A in WT-GFP parasites determined through anti-PbRab11A antibody 

during blood stage: schizont (separated merozoites), mosquito stages: zygote, ookinete, day 

10 oocyst and midgut sporozoites. Rab11A localization is predominantly cytoplasmic in 

merozoites, oocyst and sporozoites while cytoplasmic and punctate in 6h zygote. In ookinetes, 

Rab11A localization is peripheral as well as focused at the apical tip. Inset shows a magnified 

image of separated merozoite and ookinete tip in respective images. Scale 3 μm. (Schizonts, 

zygote and ookinete images are Deltavision deconvoluted single slices. Oocysts and 

sporozoites images are taken through Axioplan) 

*Negative control- no anti-PbRab11A antibody in WT-GFP sporozoite.  
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3.2 N-terminal fluorescent tagging of PbRab11A using 

endogenous 5’UTR is not possible.  

To study the localization in live parasites, C-terminal tagging is the standard approach in 

Plasmodium. However, to avoid interfering with conserved C-terminal geranylgeranylation 

and to study PbRab11A localization in live parasites, a double cross-over strategy was used 

for N-terminal tagging of PbRab11A with a small green fluorescent protein – iLOV (342bp) 

(Chapman, Faulkner et al. 2008, Christie, Hitomi et al. 2012) and two copies of C-MYC 

expressed under PbRab11A endogenous 5’UTR (877bp upstream of rab11a ORF) [Plasmid 

ilov::2c-myc::rab11a0.6kb with the selectable marker (SM) human dhfr/ts] (figure 3.2.1 A, D 

upper). The plasmid ilov::2c-myc::rab11a0.6kb with human dhfr/ts was generated and 

transfected to WT P. berghei HPTBB parasites (no constitutive green fluorescence) and 

transgenic clones were selected and analysed by diagnostic PCRs (figure 3.2.1 B). The 

selectable marker (human dhfr/ts) from plasmid ilov::2c-myc::rab11a0.6kb underwent genomic 

integration excluding ilov and possibly 2c-myc during homologous recombination. The 

possibility of exclusion of ilov and 2c-myc is assumed to be due to the presence of the 

endogenous rab11a 5’UTR which might have undergone recombination (figure 3.2.1 C).  

A second version of the double crossover tagging plasmid (ilov::2c-myc::rab11a1.55kb) with 

complete rab11a ORF of 1559bp included for recombination was generated (figure 3.2.1 D 

lower), transfected in WT P. berghei HPTBB and cloned by flow cytometry (Kenthirapalan, 

Waters et al. 2012) and referred as FACS Clones. Diagnostic PCR of FACS clones showed 

correct integration of SM (5’-end), however multiple attempts failed to confirm the 

integration of ilov and 2cmyc at the 3’-end (figure 3.2.2 A). Therefore, to check the size and 

localization of iLOV::2CMYC::Rab11A, western blotting was performed using the rabbit 

anti-PbRab11A antibody which demonstrated that the size of “transgenic” Rab11A was 

similar to WT (figure 3.2.2 B). Live images of ilov::2c-myc::rab11a ookinetes appeared 

similar to WT ookinetes (show background green fluorescence) and were not fluorescent 

(figure 3.2.2 C). Therefore, the genotype of FACS cloned ilov::2c-myc::rab11a parasites 

seem to be without ilov and 2cmyc (like in figure 3.2.1 C) confirming N-terminal tagging of 

Pbrab11a with ilov and 2cmyc using Pbrab11a endogenous 5’UTR was not successful.  
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Figure 3.2.1 Approaches used for N-terminal tagging of Rab11A. 

(A) Schematic representation of generation of ilov::2c-myc::rab11a parasites from ilov and 

2cmyc tagging construct containing 600bp of 5’rab11a ORF. (B) Diagnostic PCR showing 

integration of selectable marker- human dhfr/ts and elimination of ilov and 2c-myc and (C) its 

schematic representation. (D) Construct for ilov tagging using 600 5’rab11a ORF (ilov::2c-

myc::rab11a0.6kb) and complete (1559bp) rab11a ORF (ilov::2c-myc::rab11a1.55kb).  
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Figure 3.2.2: Analysis of iLOV tagged Rab11A parasites. 

(A) Diagnostic PCR showing 5’ integration of plasmid ilov::2cmyc::rab11a1.55kb in WT 

genome. Multiple attempts of diagnostic PCR for 3’ integration failed. (B) Western blotting 

with anti-PbRab11A, anti-CMYC antibodies and anti-iLOV antibodies from rabbit 1 (R1) and 

2 (R2) showing size of Rab11A in FACS cloned ilov::2cmyc::rab11a1.55kb parasites similar to 

WT. Black arrow shows WT protein i.e. RAB11A and dotted grey arrow suggest the area 

where recombinant protein i.e. iLOV::2CMYC::RAB11A (40.3Kd) might have been 

appeared. ActinI is a loading control. Double amount (2x) of ilov::2cmyc::rab11a1.55kb sample 

was loaded on the gel as compared to WT sample (1x). (C) Live images taken on Deltavision 

microscope (deconvoluted single slice) of FACS cloned ilov::2cmyc::rab11a1.55kb ookinetes 

showing background fluorescence as seen in WT ookinetes. Scale bar 3 µm. 
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3.3 Rab11A is crucial for ookinete morphology and is contributed 

by both male and female gamete 

Rab11A mRNAs are more abundant in gametocytes (RNA-Seq data by A. Religa- Waters 

Group, Unpublished)(Otto, Böhme et al. 2014) (Results 3.1) and are translationally repressed 

(Mair, Braks et al. 2006, Guerreiro, Deligianni et al. 2014). Therefore, to determine the role of 

Rab11A during the development of the ookinete, a promoter swap approach has been used as 

Pbrab11a is refractory to deletion (Agop-Nersesian, Naissant et al. 2009). Both CLAG 

(PBANKA_140060) and AMA-1 (PBANKA_091500) promoters are known to remain silent 

in sexual stages while keeping expression level high during asexual blood stages (Laurentino, 

Taylor et al. 2011, Siden-Kiamos, Ganter et al. 2011, Otto, Böhme et al. 2014) (RNA-Seq 

data by A. Religa- Waters Group, Unpublished, figure 3.3.1 A). The 0.9 kb 5’UTR of rab11a 

were replaced by 2 kb 5’UTR of clag (promoter of clag referred as pclag) or 1.7 kb 5’UTR of 

ama-1 (promoter of ama-1 referred as pama-1) and 2cmyc in WT-GFP parasites (Franke-

Fayard, Trueman et al. 2004) and cloned via serial dilution. Both independently generated 

Rab11A promoter-swap mutants: pclag:2cmyc::rab11a and pama-1:2cmyc::rab11a 

(henceforth referred as pclag::rab11a and pama-1::rab11a for simplicity) show appropriate 

genomic integration of respective plasmids (pclag::rab11a and pama-1::rab11a 

plasmids)(Figure 3.3.1 B, C, D).   

The two independently generated Rab11A promoter-swap mutants: pclag::rab11a and pama-

1::rab11a show no apparent growth defects during blood stages and gametogenesis, analysed 

by observation of morphology of pclag::rab11a and pama-1::rab11a gametocytes and 

pclag::rab11a and pama-1::rab11a male exflagellation as well as ratio of male gametocytes to 

female gametocytes in pclag::rab11a and pama-1::rab11a parasites were comparable to WT-

GFP blood stages (figure 3.3.2). However, in vitro ookinete cultures of pclag::rab11a and 

pama-1::rab11a parasites show a severely impaired zygote to ookinete development by up to 

99% and 98% respectively (figure 3.3.3 A). Ookinete cultures of pclag::rab11a and pama-

1::rab11a 24hpa shows spherical possibly arrested zygotes (referred as round/spherical 

ookinetes throughout this report) (figure 3.3.3 B). Due to the poorer ookinete conversion rate 

in pclag::rab11a parasite line as compared to pama-1::rab11a parasite line, pclag::rab11a line 

was chosen for further analysis.  

Western analysis of pclag::rab11a and pama-1::rab11a show normal expression of Rab11A 

in mixed asexual blood stages including schizonts, however, Rab11A is reduced in 
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gametocytes and pclag::rab11a and pama-1::rab11a ookinetes (figure 3.3.4 A, B). Analysis 

of Rab11A post-fertilization shows continued absence of Rab11A in pclag::rab11a from 2hpa 

(hours post activation) till 24hpa (figure 3.3.4 B). Immunofluorescence studies support the 

down-regulation of Rab11A in pama-1::rab11a ookinetes (figure 3.3.4 C). No expression 

defect was observed for the closely related Rab11B during zygote to ookinete development 

(figure 3.3.4 D, E). Activated-unfertilized 24h WT-GFP female gametes (AUFG - treated 

with 2-Deoxy-D-glucose, 2DG) show expression of Rab11A indicating activation of 

translationally stored Rab11A mRNAs (figure 3.3.4 B, C).  

The large nucleus of the pclag::rab11a and pama-1::rab11a spherical ookinetes indicate that 

pclag::rab11a and pama-1::rab11a female gametocytes do fertilize and possibly undergo 

meiosis (figure 3.3.3 B and figure 3.3.4 C, E). The FACS pattern for DNA content of 

pclag::rab11a zygotes 4hpa is similar to WT-GFP zygotes 4hpa (figure 3.3.5 A, B), 

suggesting meiosis has occurred; however, pclag::rab11a zygotes fail to undergo 

morphological differentiation. 

Next, we studied if the defect is gender-specific by performing genetic crosses between the 

pclag::rab11a and male deficient (p48/45
-
) (van Dijk, Janse et al. 2001) or female deficient 

(p47
-
) gametocytes (van Dijk, van Schaijk et al. 2010). Cross fertilization of pclag::rab11a 

female gametocytes where pclag::rab11a male exflagellation is blocked with 100mM 2-

Deoxy-D-glucose, a non-metabolizable analogue of D-glucose (K. Hughes, Waters group, 

unpublished data), with female deficient gametes (p47
-
,male active) did rescue the phenotypes 

partially giving up to 10.1% ookinetes while cross fertilization of pclag::rab11a male 

gametocytes (pclag::rab11a female gametocytes are still active) with active female gametes 

(p48/45
-
, male gamete deficient) rescued the phenotypes partially giving up to 10.7% 

ookinetes demonstrating that partial rescue was same for both the genders so the requirement 

for Rab11A is through both male and female gametes, is equivalent and likely to be a 

consequence of having two active rab11a alleles as opposed to one i.e. gene dose effect 

(figure 3.3.6 A, B).                           
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Figure 3.3.1 Generation of Rab11A promoter swap parasites.  

(A) P. berghei RNA-Seq data for Rab11A, CLAG and AMA-1 with FPKM (fragments per 

Kb of open reading frame per million reads) values. (RNA-Seq data by A. Religa, Waters 

group, unpublished)(Otto, Böhme et al. 2014) (B) Schematic of the generation of 

pclag::rab11a and pama-1::rab11a parasites. (C and D) Diagnostic PCRs for integration of 

pclag::rab11a and pama-1:: rab11a plasmids into WT-GFP gDNA showing the 5’ and 3’ 

integration of respective constructs (PCR fragment as annotated in the schematic). W 

indicates a fragment present only in WT-GFP parasites. DNA ‘+’ is an unrelated positive 

PCR control and ‘-’ is a no DNA template negative PCR control.  
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Figure 3.3.2 Development of asexual stages of pclag::rab11a and pama-1::rab11a 

parasites.  

(A) Images of Giemsa stained pclag::rab11a and pama-1::rab11a gametocytes (B) 

pclag::rab11a (n=4, mean +/-SD, two tailed student t test, p-value 0.9891) and pama-

1::rab11a (n=3, mean +/-SD, two tailed student test, p-value 0.4337) male gametocyte 

exflagellation count. (C) Ratio of pclag::rab11a (n=6, mean +/-SD, two tailed student t test, p 

value 0.00046) and pama-1::rab11a (n=3, mean +/-SD, two tailed student test, p-value 

0.0111) male to female gametocytes.  
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Figure 3.3.3 Spherical pclag::rab11a and pama-1::rab11a ookinetes.  

(A) Plot of pclag::rab11a and pama-1::rab11a ookinete development (n=3, mean +/-SD, two 

tailed student t test, p-value 0.0001). (B) Fertilized pclag::rab11a and pama-1::rab11a 

spherical ookinetes i.e. 24h post-activation showing enlarged nucleus (Images taken on 

Axioplan). Scale bar 5 μm. 
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Figure 3.3.4 PbRab11A is down-regulated in pclag::rab11a and pama-1::rab11a 

ookinetes. 

(A) Western blot for Rab11A in pclag::rab11a and pama-1::rab11a parasites at various life 

cycle stages probed with anti-PbRab11A, anti-CMYC antibody. GFP is a loading control. (B) 

Western blots showing the expression of Rab11A in pclag::rab11a at 2, 4, 6, 8 and 24hpa as 

well as in AUFG 6 and 24hpa. Red arrows show the presence of extra bands in schizont and 

ookinete stages when the blot is probed with anti-PbRab11A antibody. Blue arrows show the 

absence of these extra bands when probed with an anti-CMYC antibody. (C) Western blot 

showing expression of Rab11B in pclag::rab11a at 2, 4, 6, 8 and 24hpa as well as in 

unfertilized female gametes 6 and 24hpa. hpa-hours post-activation. PbRab11A is tagged to 

two copies c-myc (MW = 2.67 kd) in pclag::rab11a and pama-1::rab11a and not in WT-GFP. 

Western blots were scanned on Odyssey® Sa Infrared Imaging System (LI-COR 

Biosciences). (D) Microscopy images of immunofluorescence on fixed parasites using anti-

RAB11A, anti-Rab11B, anti-P25 antibodies as indicated and DAPI as a nuclear stain. Image 

shown is a single slice of Deltavision deconvoluted Z stack, scale bar 3 μm.  
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Figure 3.3.5 pclag::rab11a spherical ookinetes undergo meiosis.  

(A) Flow cytometry analysis on FACsCYAN to illustrate DNA content of pclag::rab11a 

gametocytes 4hpa. Parasites stained with DNA stain Hoechst were gated for activation using 

anti-P25 antibody and DNA content in these compared to WT-GFP gametocytes 4hpa and 

WT-GFP unfertilized female gametes 4hpa. FACS plots showing results of one of three 

independent experiments while (B) bar graph shows percentage of 4N (zygotes underwent 

meiosis), 2N (fertilized female gametes, meiosis is incomplete or blocked) and 1N 

(gametocytes or asexual) parasites. Data from (activated) female gamete was used to verify 

the gating strategy (n=3, mean +/-SD, two tailed student t test, p-value 0.129292).  
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Figure 3.3.6 Rab11A is contributed by both male and female gametes. 

(A) Cross-fertilization of pclag::rab11a with male defective (P48/45
-
) and female defective 

(p47
-
) mutants  (n=3, mean +/- SD, p value 0.0001) and (B) Representative Giemsa images of 

ookinetes and zygotes obtained after cross fertilization .       
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3.4 Rab11A is essential for transmission of P. berghei through 

mosquitoes. 

To determine if the spherical pclag::rab11a and pama-1::rab11a ookinetes are able to 

complete the life cycle through invertebrate host, mosquito transmission experiments were 

performed. Female Anopheles stephensi mosquitoes were allowed to feed on WT-GFP, 

pclag::rab11a or pama-1::rab11a infected mice. The resulting presence of oocysts in the 

mosquito midgut was examined on day 11 or 14. Mosquito midguts were also analysed on 

day 17, 18 or 22 assuming that pclag::rab11a and pama-1::rab11a spherical ookinetes might 

have delayed midgut transversal and oocyst development. The WT-GFP showed normal 

oocyst development in mosquito midgut [median 150, mean 227.16 oocysts per midgut (n=3), 

mosquitoes infected with WT-GFP parasites were counted per experiment in 3 independent 

transmissions] while pclag::rab11a (maximum of 4 oocysts per midgut with small size, mean 

0.269, median 0 and n=3) or pama-1::rab11a (maximum of 5 oocysts per midgut with small 

size, mean 0.31, median 0, n=2) (independent WT-GFP control for pama-1::rab11a showed 

mean 83.66, median 130.47, n=2) showed greatly reduced numbers of oocysts (figure 3.4 A, 

B and D, E ) and salivary gland analysis showed a complete absence of pclag::rab11a and 

pama-1::rab11a sporozoites (figure 3.4 C,E). Upon feeding of infected mosquitoes on mice 

(bite-back) on day 18, 22 or 24, no parasites were observed in pclag::rab11a (n=3) or pama-

1::rab11a (n=2) infected mice monitored until day 14 post infection while WT-GFP parasites 

were observed on day 3 in all experiments. This effectively suggests that pclag::rab11a and 

pama-1::rab11a spherical zygotes are unable to transmit through mosquitoes and therefore 

Rab11A is essential for the transmission of P. berghei and might have critical function during 

ookinete development.   

Due to inability of pclag::rab11a ookinetes to cross mosquito midgut and its spherical shape, 

we examined motility of pclag::rab11a spherical ookinetes. Motility of pclag::rab11a 

ookinetes were analysed with WT-mCherry ookinetes by embedding ookinete cultures in 

Matrigel (see 2.1.2 k in Chapter 2: Materials and Methods for details). WT-mCherry 

ookinetes showed normal corkscrew like movement with average speed of ~10µm/min 

whereas pclag::rab11a spherical ookinetes were completely immobile (n=2). This indicates 

that pclag::rab11a ookinetes are immobile due to spherical morphology caused by lack of 

Rab11A or probable lack of motility associated proteins and therefore transmission through 

mosquitoes is blocked. 
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Figure 3.4.1 pclag::rab11a and pama-1::rab11a parasites are unable to transmit through 

mosquitoes 

 (A) Plot of oocyst load in dissected midguts of pclag::rab11a fed mosquitoes (n=3, two tailed 

student t test, p-value 0.0001). (B) Image of dissected midguts and (C) salivary glands from 

WT-GFP and pclag::rab11a parasites. (D) Plot of oocyst load in dissected midguts of pama-

1::rab11a fed mosquitoes (n=2, two tailed student t test, p-value 0.0001). (E) WT-GFP and 

pama-1::rab11a infected midguts (E) and salivary glands.  
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3.4.2 Motility of pclag::rab11a spherical ookinetes 

(A) Speed of WT-mCherry and pclag::rab11a spherical ookinetes. For graph speed of 16 

ookinetes for each genotype were measured; bottom and top boxes denote first and third 

quartiles respectively, whickers denote minimum and maximum. P<0.0001(B) Path of WT-

mCherry and pclag::rab11a ookinetes for 10 minutes (n=2). 
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3.5 IMC and apical components are assembled in pclag::rab11a 

zygotes 

Rab11A is involved in protein trafficking and endocytic recycling therefore we questioned 

whether Rab11A is involved in the delivery of surface and IMC markers as predicted by 

(Agop-Nersesian, Naissant et al. 2009). To understand the role of Rab11A in the delivery of 

surface and IMC markers, immunofluorescence microscopy was performed for P25 - a 

surface marker of ookinete and GAP45 - an IMC marker, revealing that P25 is delivered to 

the plasma membrane and GAP45 underneath the plasma membrane indicating possible 

assembly of the IMC in 24h spherical pclag::rab11a ookinetes (figure 3.5.1-C). Further 

analysis by time course GAP45 immunofluorescence studies on early and late zygotes show 

that 4h post-fertilization GAP45 is localized at a focal point which is then distributed into the 

emerging retort shape in WT-GFP retorts (6hpa). At 24hpa, GAP45 is localized throughout 

IMC of mature WT-GFP ookinetes (figure 3.5.1- A to C). pclag::rab11a zygotes show similar 

localization of GAP45 at 4h post-fertilization compared to WT-GFP, which indicates an 

initial focal point or bud development site from which the leading apical end will emerge 

(figure 3.5.1 – A to C). However, although pclag::rab11a 6h zygotes lack a prominent retort 

outgrowth, GAP45 is deposited along the IMC showing an arc-like localization and 

apparently bordering the whole IMC at 24h post fertilization. This indicates dynamic 

localization of GAP45, during zygote-to-ookinete development in WT-GFP parasites, initially 

at the apical bud (focal point) and then all over the developing IMC. Similarly, localization of 

GAP45 is observed in pclag::rab11a parasites from focal point to possibly the complete IMC; 

however, pclag::rab11a zygotes do not achieve the form of a mature ookinete even after 24h 

post fertilization.  

The IMC and apical complex are important for the maintenance of Plasmodium cell structure 

and function therefore we performed ultrastructural analysis of pclag::rab11a zygotes through 

scanning and transmission electron microscopy (SEM and TEM) to detect the integrity of the 

apical complex and IMC. SEM analysis shows 8h WT-GFP zygotes have noticeable retort 

outgrowth (now referred to as ‘retorts’ instead of ‘8h zygotes’) while 8h pclag::rab11a 

zygotes have a small outgrowth of plasma membrane indicating a site for apical complex 

development (white arrow, figure 3.5.2).  

TEM analysis shows integrity of IMC in 6h pclag::rab11a zygotes and fully developed apical 

complex consisting collar (Co) with an aperture (Ap), micronemes (Mn), Inner membrane 
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complex (IMC) and subpellicular microtubules (Mt) in 8h pclag::rab11a zygotes (figure 3.5.3 

A,B). This suggests the likelihood that a full and functional apical complex is developed 

consisting of the IMC and internal organelles (e.g. micronemes shown by 

immunofluorescence of chitinase and CTRP, see section 3.10) in pclag::rab11a ookinetes 

(Therefore, verifying that pclag::rab11a 24h zygotes are indeed pclag::rab11a ookinetes).   
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Figure 3.5.1 Dynamic localization of GAP45  

Time course immunofluorescence of pclag::rab11a zygotes for P25 and GAP45 [images A 

are taken through Axioplan (Zeiss) and images B and C are taken via Deltavision, showing a 

single slice of a deconvoluted Z stack. Scale Bar for A and C=5 µm, B=3µm.  
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Figure 3.5.2: Ultrastructural analysis of pclag::rab11a 8h zygotes  

SEM images of 8h pclag::rab11a zygotes showing the typical small yet specific membrane 

extension (see white arrow) as compared to retort outgrowth in WT-GFP 8h zygotes.   
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Figure 3.5.3: Ultrastructural analysis of pclag::rab11a 8h zygotes.  

(A) TEM images of pclag::rab11a 6h and (B) 8h zygotes showing integrity of Collar (Co) 

with aperture (Ap), IMC and subpellicular microtubules (Mt) and nuclear microtubules 

(nMt)(Thickness of samples is 70nm). Images of pclag::rab11a 8h zygotes taken on Leo 912 

AB TEM running 120kV while rest of the images were taken though FEI Tecnai T20 running 

at 200kV.   
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3.6. Preparation of RNA samples for RNASeq  

TEM and immunofluorescence analysis suggested assembly of apical complex and IMC in 

pclag::rab11a zygotes (Results 3.5). Development of the zygote depends on translationally 

stored mRNAs in mRNPs. DOZI and CITH are the best characterised components of these 

mRNPs and deletion of either of them inhibits the zygote to ookinete transition in P. berghei 

although at different stages of that transition (Mair, Braks et al. 2006, Mair, Lasonder et al. 

2010). Research from our group and others suggests that development of the zygote until 

retort stage (approximately 7 to 8hpa) is dependent on translationally stored mRNAs (i.e. 

DOZI/CITH stored mRNAs) while development of retort is exclusively dependent on further 

activation of transcription (A. Srivastava- Waters group, unpublished)(Guerreiro, Deligianni 

et al. 2014). 

Therefore, to examine if PbRab11A is involved (at least partially) in the stabilization or 

deployment of translationally stored transcripts (i.e. DOZI/CITH stored transcripts) (Mair, 

Braks et al. 2006, Mair, Lasonder et al. 2010, Guerreiro, Deligianni et al. 2014) and/or re-

initiation of transcription after meiosis (also referred as post-meiotic transcription), apparently 

to establish the coordination of cellular events during zygote to ookinete development which 

are already known to happen in WT, we performed RNA Sequencing (RNA-Seq) for total 

mRNAs of un-activated gametocytes and spherical ookinetes of pclag::rab11a parasites. Total 

RNAs of pclag::rab11a gametocytes (Question: are mRNAs translationally stored?) and 

spherical ookinetes (Questions: are the stored mRNAs translated? Is the post-meiotic 

transcription active?) were isolated. Along with WT-GFP un-activated gametocytes where 

mRNAs are translationally repressed and stored (Mair, Braks et al. 2006, Mair, Lasonder et 

al. 2010) and ookinetes which have active transcription as well as DOZI/CITH stored mRNAs 

(M. Stewart –Waters group, Unpublished data), two additional controls: Pre-activated WT-

GFP gametocytes treated with 2-Deoxy-D-glucose (2DG- analogue of D-glucose) or WT-

GFP gametocytes cultured into ookinete medium supplemented with actinomycinD (actD, a 

potent transcription blocking agent) were also included (figure 3.6 A) (see Materials and 

Methods 2.1.2 o for details of sample preparation). 2DG inhibits the activation of male 

gametocytes leaving female gametocytes activated and unfertilized (K. Hughes, Waters 

group-unpublished data) therefore translationally stored mRNAs might be stored or degraded 

24hpa. ActD treated gametocytes are able to fertilize and grow until retort stage 

(approximately 7 to 8hpa), indicating utilization of pre-existing translationally stored mRNAs 
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to drive the growth until retort stage and further development is terminated due to the 

presumed transcriptional block (no mRNAs transcribed for further growth: A. Srivastava, 

Waters group-unpublished data)(Guerreiro, Deligianni et al. 2014) (figure 3.6 A). 

  Prior to RNA-Seq, total extracted RNAs were converted to cDNAs by reverse and 

transcriptase PCR and tested for possible gDNA contamination (occurrence of gDNA during 

RNA extraction) by PCR. Total RNA samples were deemed to be free of any detectable levels 

of gDNA (figure 3.6 B) therefore used for RNA-Sequencing (see Table 2.1.2.1 and Tables 

2.1.2.2 in Chapter 2: Materials and Methods for parameters of RNA-Seq experiment). Three 

repetitions of each set of samples (each set consists of total six samples: pclag::rab11a 

gametocytes, pclag::rab11a spherical ookinetes, WT-GFP gametocytes, WT-GFP ookinetes, 

WT-GFP gametocytes treated with 2DG and actD, figure 3.6 A) were performed.  

Our RNA-Seq experiment was designed to identify mRNAs, therefore only protein coding 

transcripts were analysed in this study. Recently, Otto et al has shown that, in an RNA-Seq 

study performed across various life cycle stage of P. berghei, the cut off FPKM values vary 

between 10 to 24 in various life cycle stages and even in the replicates of same life cycle stage 

(Otto, Böhme et al. 2014) (It depends on expression levels in introns and setting up limit 

assuming the top 10% of expression levels are real- personal communication with Dr. 

Thomos Otto, Wellcome Trust Sanger Institute, Cambridge). Therefore, mRNAs having 

FPKM value ≥10 were considered as ‘significantly expressed transcripts’ (to exclude scarce 

transcripts) in WT-GFP gametocytes and WT-GFP ookinetes. For drug treated WT-GFP 

parasites, pclag::rab11a gametocytes and spherical ookinetes, transcripts having FPKM value 

≥10 and significant Log2(fold_change) values where significance is shown by p-values were 

considered as ‘significantly deregulated transcripts’.  

To investigate whether or not a particular set of transcripts are deregulated, we performed 

gene ontology (GO) enrichment for significantly deregulated mRNAs of pclag::rab11a 

gametocytes, pclag::rab11a ookinetes and drug treated WT-GFP parasites. Initially 3276 

significantly expressed transcripts (FPKM ≥10) in WT-GFP gametocytes (figure 3.7.1) and 

3451 significantly expressed transcripts (FPKM ≥10) in WT-GFP ookinetes (figure 3.7.6) 

were distributed into four groups of percentile expression according to their rank order of 

abundance in the different stages: Group 1: Transcripts expressed in 100-75%, and similarly 

Group 2: 75-50%, Group 3: 50-25% and Group 4: 25-0%. Accordingly deregulated transcripts 

in pclag::rab11a gametocytes, pclag::rab11a ookinetes and drug treated WT-GFP parasites 
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were also distributed into percentile expression groups for further analysis. GO enrichment 

terms for deregulated transcripts were analysed manually (see Method 2.1.2 q in Chapter 2: 

Materials and Methods). For simplicity only GO- Biological Process terms are discussed for 

respective samples. 
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 Gene IDs PBANKA_112970 PBANKA_145120 PBANKA_134500 

 Primer1 GU1948 GU1952 GU1950 

 Primer2 GU1949 GU1953 GU1951 

Expected size in 

base pairs 
gDNA 646 606 1460 

Expected size in 

base pairs 
cDNA 404 410 572 

  a b c 

 

 

 Gene IDs PBANKA_131130 PBANKA_134500 PBANKA_010570 

 Primer1 GU1948 GU1950 GU1935 

 Primer2 GU1949 GU1951 GU1936 

Expected size in 

base pairs 
gDNA 623 1460 1015 

Expected size in 

base pairs 
cDNA 404 572 510 
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Figure 3.6 Sample preparations for RNA-Seq. 

(A) Images of Giemsa stained pclag::rab11a gametocytes, spherical pclag::rab11a  ookinetes 

(24hpa) and controls: mixed WT-GFP gametocytes, WT-GFP ookinetes (24hpa), WT-GFP 

24h female gamete (treated with 2DG), WT-GFP 24h retorts (treated with actD) (B) Tables 

show primers used and expected PCR band sizes in reverse transcriptase PCR. See Appendix 

A, Table 1 for primer sequence. Colours indicate percentage expression values for respective 

transcripts as Red showing genes having percent RNA expression values in between 100 -

75%, Orange showing values in between 75-50% and Yellow showing values in between 50-

25%. Reverse Transcriptase PCRs of total RNA isolated from above parasite preparations to 

check the purity of isolated total RNA. DNA ladder unit = base pairs (bp). 
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3.7 Analysis of RNA-Seq data 

3.7. a) Comparison of transcriptome of pclag::rab11a gametocytes with the 

transcriptome of WT-GFP gametocytes 

The genome of P. berghei encodes 5020 protein coding genes out of total 5164 genes 

(www.plasmodb.org- PlasmoDB version 24). Out of total 5020 protein coding genes in P. 

berghei (PlasmoDB version 24, Gene type: protein coding, including pseudogenes), the 

transcriptome of WT-GFP gametocytes shows significant expression of 3276 protein coding 

transcripts (cut off FPKM values ≥10 to exclude scarce transcripts) (figure 3.7.1). Similarly, 

the transcriptome of pclag::rab11a gametocytes shows that only 2834 protein coding 

transcripts are significantly expressed (with cut off FPKM ≥ 10) (figure 3.7.1). Therefore, the 

difference between the transcriptomes of WT-GFP gametocytes and that of pclag::rab11a 

gametocytes is appears to be 542 transcripts (=3276-2834), however, significance shown by 

p-values suggests that only 368 protein coding transcripts (with cut off FPKM ≥ 10) are 

deregulated (119 are more abundant and 249 are less abundant) in pclag::rab11a gametocytes 

as compared to WT-GFP gametocytes (see Appendix B - Table 1 for details of individual 

transcripts) i.e. pclag::rab11a gametocytes transcriptome is 11.23% (368 out of 3276) 

variable from WT-GFP gametocyte transcriptome and these 368 deregulated transcripts 

includes Rab11A transcripts which is -3.4 fold less than that of WT-GFP gametocyte Rab11A 

transcripts ( p-values 0.00005) (figure 3.7.2 A). This implies that almost 88.77% (except 368 

transcripts out of 3276 transcripts in WT-GFP gametocytes) transcriptome of pclag::rab11a 

gametocytes is similar to the transcriptome of WT-GFP gametocytes (figure 3.7.2 B). 

Additionally, the fold change values of most of the deregulated transcripts of pclag::rab11a 

gametocytes are in between 2 and -2 (figure 3.7.2 A and Table 3.7.8).  

Out of 119 significantly more abundant transcripts, four transcripts: PBANKA_020890 

(StAR-related lipid transfer protein, putative), PBANKA_051900 (S-antigen, putative), 

PBANKA_114540 (Rodent Plasmodium exported protein, unknown function) and 

PBANKA_000480 (BIR protein) are exclusively more abundant in pclag::rab11a 

gametocytes transcriptome and are not present in WT-GFP gametocyte transcriptome (Table 

3.7.3). Out of these four transcripts, BIR protein and S-antigen are known to be associated 

with antigenic polymorphism (Mahajan, Farooq et al. 2005, Otto, Böhme et al. 2014) and 

therefore probably do not represent the real up-regulation. Similarly, out of 249 less abundant 

transcripts in pclag::rab11a gametocytes, six transcripts are BIR proteins (PBANKA_040050, 

http://www.plasmodb.org-/
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PBANKA_114630, PBANKA_060030, PBANKA_080010, PBANKA_070020, 

PBANKA_120040) and two are Pb-fam-1 proteins (PBANKA_146570, PBANKA_000350) 

associated with antigenic variation (Otto, Böhme et al. 2014).  

Recently, it had been shown that DOZI/CITH stored transcripts are essential for P. berghei 

zygote to ookinete transformation (Mair, Braks et al. 2006, Mair, Lasonder et al. 2010). 

Furthermore, it has been shown that P. berghei female gametocytes store 733 transcripts with 

DOZI/CITH (Guerreiro, Deligianni et al. 2014). Therefore, we looked at whether or not 368 

significantly deregulated transcripts in pclag::rab11a gametocytes share any of the 733 

DOZI/CITH associated transcripts. Out of total 368 deregulated mRNAs (in pclag::rab11a 

gametocytes), 19 are exclusively translationally stored with DOZI (Guerreiro, Deligianni et 

al. 2014) and 26 are translationally stored with CITH (Guerreiro, Deligianni et al. 2014) while 

36 mRNAs are translationally stored with both DOZI as well as CITH (Guerreiro, Deligianni 

et al. 2014)(figure 3.7.2 A, C). In total, 81 out of 368 deregulated transcripts in pclag::rab11a 

gametocytes are associated with DOZI/CITH. 

In summary, the majority of significantly deregulated mRNAs in pclag::rab11a gametocytes 

i.e. 287 (=368-81) are independent of translationally stored mRNAs. Additionally, out of total 

733 DOZI/CITH stored transcripts (Guerreiro, Deligianni et al. 2014), 11.05% (i.e. 81 out of 

733) are deregulated in the absence of Rab11A transcripts in pclag::rab11a gametocytes. This 

suggests that Rab11A is partially associated with translational repression of mRNAs.  
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Figure 3.7.1 Distribution of total protein coding transcripts (5020) in WT-GFP 

gametocytes and their status in pclag::rab11a gametocytes. 

Left side: Circle suggests transcripts having FPKM ≥ 10, Diamond suggests the transcripts 

having FPKM < 10 and > 0 whereas triangle suggests transcripts not detected in WT-GFP 

gametocytes. Right side: Status of identical transcripts of WT-GFP gametocytes in 

pclag::rab11a gametocytes. Brackets indicate the sum of respective sections.  
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Figure 3.7.2 Comparison of pclag::rab11a gametocyte transcriptome with the 

translationally stored transcripts. 

(A) Scatter plot showing fold change values of significantly deregulated 368 transcripts in 

pclag::rab11a gametocytes and common transcripts associated with DOZI and CITH. Arrow 

shows position of Rab11A (B) Bar graph showing the percent variance and similarity in 

between the transcriptome of WT-GFP gametocytes and the transcriptome of pclag::rab11a 

gametocytes. (C) Chart and Venn diagram showing common transcripts of 368 deregulated 

transcripts in pclag::rab11a gametocytes and DOZI/CITH stored transcripts. Square brackets 

represent the original DOZI/CITH associated transcript numbers from (Guerreiro, Deligianni 

et al. 2014).  
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gametocyte stage of P. berghei (FPKM≥10) 

368 (=119 up + 249 down) protein coding transcripts are 

significantly deregulated in 
p
clag::rab11a gametocytes 

(FPKM≥10 and p-values) 

  
         36 

(=6up+30 down) 

        

  

         [309] 

Total DOZI associated transcripts 489 and total CITH associated transcripts 553 

(Guerreiro, Deligianni et al. 2014) 

DOZI CITH 

19 

(=4up+15down)  

 

[180] 

26 

(=11up+15down) 

 

[244] 
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3.7. b) Gene ontology enrichment for Gametocytes 

Out of 119 more abundant (/up regulated) transcripts in pclag::rab11a gametocytes, 112 

transcripts have syntenic orthologues in P. falciparum 3D7 and 114 have syntenic orthologues 

in P. vivax Sal-1 (PlasmoDB, Version 24). These 119 more abundant transcripts are divided 

into four subgroups according to four percentile expression groups of WT-GFP gametocytes 

transcriptome, their distribution across annotated GO terms and DOZI/CITH association 

(Table 3.7.3). Out of these 119 significantly more abundant transcripts in pclag::rab11a 

gametocytes, less than half i.e. only 57, 54 and 54 have annotations as GO- Molecular 

Function, Biological Process and Cellular Components respectively (Table 3.7.3). The 

majority of these 119 more abundant transcripts in pclag::rab11a gametocytes (i.e. 83 out of 

119) fall into the highly expressed percentile expression group of 100-75% (Table 3.7.3). 

Also, out of 119 more abundant transcripts, most of the DOZI/CITH associated transcripts (6 

and15) come under the same percentage expression group of 100-75% (Table 3.7.3). GO 

Biological Process term analysis indicates a major up-regulation of 22 translation related 

biological processes followed by six transport, five transcription, four chromosome 

organization and three electron transport chain associated biological processes (figure 3.7.5 

A). All the translation associated transcripts which are more abundant in pclag::rab11a 

gametocytes are clustered into percentage expression group of 100-75% (figure 3.7.5 C). 

Most of them are 40s, 60s ribosomal proteins (see Appendix B, Table 1).  

Out of 249 less abundant (/down regulated) transcripts in pclag::rab11a gametocytes, 239 

transcripts have syntenic orthologues in P. falciparum 3D7 and 238 transcripts have syntenic 

orthologues in P. vivax Sal-1 (PlasmoDB, Version 24). Like the 119 more abundant 

transcripts in pclag::rab11a gametocytes, 249 less abundant transcripts (in pclag::rab11a 

gametocytes) are divided into four percentile expression groups compared with the percentage 

expression groups of WT-GFP gametocytes, annotated GO and DOZI/CITH association 

(Table 3.7.4). These percentage expression groups (of 249 less abundant transcripts) and their 

GO analysis suggests that less than half i.e. 112, 80 and 52 have annotated GO- Molecular 

Function, Biological Process and Cellular Components respectively (Table 3.7.4). The 

majority of these 249 low abundant transcripts in pclag::rab11a gametocytes i.e. 77+73 are 

grouped in the percentage expression group of 75-50% and 50-25% respectively , however, 

most of the DOZI/CITH associated transcripts (28 and 26) fall within 100-75% group (Table 

3.7.4). GO- Biological process term analysis suggests that 14 transcripts associated with 

biosynthetic processes are majorly affected in pclag::rab11a gametocytes and are distributed 
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among 100-75%, 75-50% and 50-25% percentage expression group (figure 3.7.5 C). Other 

significantly affected processes are protein modification and processing (10), transport (10) 

and metabolic processes (9) (figure 3.7.5 B). Some of the greatly affected (2 fold change) 

transcripts associated with these processes are Rab11B, MTIP, GAPM3, and enzymes 

involved in biosynthesis of cell constituents such as dihydrolipoamide dehydrogenase, 

putative GDP-mannose 4,6-dehydratase; putative aspartate carbamoyltransferase; putative 

pyridoxal 5'-phosphate synthase; putative phosphomannomutase and putative glutaminyl-

peptide cyclotransferase. There are some transcripts associated with DNA replication and 

chromosome organization such as NEK2, putative chromatin assembly factor 1 P55 subunit 

are also less abundant in pclag::rab11a gametocytes (Appendix B, Table 1). 

This strongly suggests that in pclag::rab11a gametocytes due to absence of Rab11A mRNAs, 

translation related transcripts are up-regulated while transcripts associated with biosynthetic 

processes, protein modification and processing, metabolic processes are hampered the most as 

compared to WT-GFP gametocytes. Down-regulation of various transport related processes in 

pclag::rab11a gametocytes were expected as Rab11A is shown to be associated with various 

cellular transport mechanisms in many eukaryotic organisms. In addition, a significantly 

greater percentage of the down-regulated transcripts (81 out of 368) were associated with the 

conditional translation repression apparatus (DOZI/CITH associated). This is known to store 

transcripts that prepare the cell for its future development and it is perhaps not surprising that 

a general failure to activate (a subset of) these processes results in a defective zygote. 
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 100-75% 75-50% 50-25% 25-0% Not expressed 

in  WT-GFP 

gametocytes 

Total 

119 more abundant 

transcripts in 

pclag::rab11a 

gametocytes      
 
 (112 Pf and 114 Pv 

orthologues) 

83 23 6 3 4 119 

DOZI associated 6 2 2 - - 10 

CITH associated 15 1 1 - - 17 

Annotated GO Term - 

Molecular Function 
49 5 2 - 1 57 

Annotated GO Term - 

Biological Process 
44 7 2 - 1 54 

Annotated GO Term - 

Cellular Component 
44 7 1 - 2 54 

 

Table 3.7.3 Table showing distribution of 119 more abundant transcripts in 

pclag::rab11a gametocytes across translationally stored transcripts as well as annotated 

GO terms. Pf- P. falciparum 3D7 and Pv – P. vivax Sal-1. 

 

 100-75% 75-50% 50-25% 25-0% Total 

249 less abundant transcripts 

in pclag::rab11a gametocytes     
 
(239 Pf and 238 Pv 

orthologues) 

53 77 73 46 249 

DOZI associated 28 9 5 3 45 

CITH associated 26 12 6 1 45 

Annotated GO Term - 

Molecular Function 
21 37 35 19 112 

Annotated GO Term - 

Biological Process 
15 26 23 16 80 

Annotated GO Term - 

Cellular Component 
10 16 14 12 52 

 

Table 3.7.4 Table showing 249 less abundant transcripts in pclag::rab11a gametocytes 

and their distribution across translationally stored transcripts as well as annotated GO 

term. Pf- P. falciparum 3D7 and Pv – P. vivax Sal-1. 
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Figure 3.7.5 GO- (Biological Process) term analysis for deregulated transcripts in 

pclag::rab11a gametocytes. 

(A) Pie chart showing GO (Biological Process) term enrichment for more abundant/up 

regulated transcripts and (B) less abundant/ down regulated transcripts in pclag::rab11a 

gametocytes. (C) Deregulated transcripts of pclag::rab11a gametocytes having GO annotated 

as Biological Process (BP) and their distribution across percentile expression groups 

compared to the percentile expression groups of WT-GFP gametocytes transcriptome. Most 

up-regulated and most down-regulated transcripts in pclag::rab11a gametocytes are colour 

coded as per pie charts A and B. Up-regulated transcripts in pclag::rab11a gametocytes which 

are not detected in the transcriptome of WT-GFP gametocytes were given an arbitrary 

percentage expression value of -25%.  
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3.7. c) Comparison of transcriptome of pclag::rab11a ookinetes, AUFG and 

TAR with the transcriptome of WT-GFP ookinetes 

Out of total 5020 protein coding genes in P. berghei (PlasmoDB version 24, Gene type 

protein coding, including pseudogenes), WT-GFP ookinetes transcriptome identifies 3451 

protein coding transcripts expressed above the chosen cut-off value (FPKM ≥10) (figure 3.7.6 

A). Similarly, transcriptome of pclag::rab11a ookinetes identifies 3489 protein coding 

transcripts (FPKM ≥10) (figure 3.7.6 A). Despite the difference of 38 transcripts (=3489-

3451) in between the transcriptome of WT-GFP ookinetes and the transcriptome of 

pclag::rab11a ookinetes, significance shown by p-values suggest that 144 transcripts are 

significantly deregulated in pclag::rab11a ookinetes (FPKM ≥10) (figure 3.7.6 A) (see 

Appendix B- Table 2 for details of individual transcripts). Therefore, it appears that out of 

these 3451 significantly expressed transcripts in WT-GFP ookinetes, 4.17 % i.e. 144 

transcripts are significantly deregulated (40 are significantly more abundant while 104 are 

significantly less abundant) in pclag::rab11a ookinetes (figure 3.7.6 A, D). Out of these 40 

more abundant transcripts only one might be associated with antigenic variation 

(PBANKA_000480, BIR protein) and out of 104 less abundant transcripts only one might be 

associated with antigenic variation (PBANKA_062340, Pb-fam-1 protein) (See Appendix B, 

Table 2 for details).  

Compared to the transcriptome of WT-GFP ookinetes (Significantly expressed 3451 protein 

coding transcripts), in AUFG 3063 transcripts are significantly expressed (FPKM ≥ 10) 

(figure 3.7.6 B). There is difference of 388 transcripts (=3451-3063) in between the 

transcriptomes of WT-GFP ookinetes and that of AUFG ,however, significance shown by p-

values suggests that in AUFG 1637 i.e. 47.43% transcripts (1637 out of 3451 of WT-GFP 

ookinetes) are significantly deregulated (638 more abundant, 999 less abundant) (figure 3.7.7 

B, D) (Appendix B- Table 3 for details). 

Likewise, as compared to the transcriptome of WT-GFP ookinetes where significantly 

expressed transcripts are 3451, the transcriptome of TAR shows significant expression of 

3498 transcripts (FPKM ≥ 10) (figure 3.7.6 C). Although, the difference between the 

transcriptome of WT-GFP ookinetes and TAR is 47 transcripts (=3498-3451), the significance 

shown by p-values suggests that in TAR 977 i.e. 28.31% transcripts (977 out of 3451 of WT-

GFP ookinetes) are significantly deregulated (453 more abundant, 524 less abunadant) (figure 

3.6.7 C, D) (Appendix B- Table 4 for details).  
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In other words, the transcriptome of AUFG and TAR which are 52.57% and 71.69% similar 

respectively to the transcriptome of WT-GFP ookinetes are nevertheless less similar than the 

that of pclag::rab11a ookinetes (which is almost 95.83% similar) and that of WT-GFP 

ookinetes (figure 3.6.7 D).  

Additionally, the fold changes of 99.30% (143 out of 144) deregulated transcripts of 

pclag::rab11a ookinetes are not more than 2 and -2, whereas the fold changes of the 48.69% 

(797 out of 1637) deregulated transcripts in AUFG and 28.86% (282 out of 977) deregulated 

transcripts in TAR are above 2 and -2 (Table 3.7.8). This clearly signifies that, with the 

exception of 144 deregulated mRNAs, the rest of the pclag::rab11a ookinete transcriptome 

appears to be similar with WT-GFP ookinetes and the fold changes of 144 deregulated 

transcripts of pclag::rab11a ookinetes are not large and the impact of Rab11A upon 

transcription during the zygote-ookinete transition is not great and apparently less than the 

effect on the steady state mature gametocyte.  

Out of 144 significantly deregulated transcripts in pclag::rab11a ookinetes (compared to WT-

GFP ookinete transcriptome), the majority (60.41%, 87 out of 144) transcripts are common 

with the deregulated transcripts of both AUFG as well as TAR (compared to WT-GFP 

ookinete transcriptome), whereas 11.80% (17 out of 144) are common only with AUFG, 

13.19% (19 out of 144) are common only with TAR and 14.58% (21 out of 144) are 

exclusively deregulated in pclag::rab11a ookinetes (figure 3.7.9 A). Interestingly, the pattern 

of significantly up/down regulation of the 144 deregulated pclag::rab11a ookinete transcripts 

is similar to AUFG and TAR (figure 3.7.9 B).  
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Figure 3.7.6 Distribution of total protein coding transcripts (5020) in WT-GFP ookinetes 

and their status AUFG, TAR and pclag::rab11a ookinetes.  

(A) Distribution of total protein coding transcripts in WT-GFP ookinetes and their status in 

pclag::rab11a ookinetes or (B) in AUFG or (C) in TAR. Left side: Circle suggests transcripts 

having FPKM ≥ 10, Diamond suggests the transcripts having FPKM < 10 and > 0 whereas 

triangle suggests transcripts not detected in WT-GFP ookinetes. Right side: Status of identical 

transcripts of WT-GFP ookinetes in pclag::rab11a ookinetes, AUFG and TAR respectively. 

Brackets indicate the sum of respective sections. 
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Figure 3.7.7 Comparison of transcriptome of pclag::rab11a ookinetes, AUFG, TAR and 

WT-GFP ookinetes. 

(A) Scatter plots showing fold changes of deregulated transcripts of pclag::rab11a ookinetes 

or (B) AUFG or (C) TAR as compared to the transcriptome of WT-GFP ookinete. (D) Bar 

graph showing percent similarity and variance between the transcriptomes of pclag::rab11a 

ookinete or AUFG or TAR with the transcriptome of WT-GFP ookinete.  
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Comparison of 

transcriptome 
Number of 

deregulated 

transcripts                    

(Cut off FPKM ≥10) 

Distribution of Log2(fold_Change)  

Number of 

transcripts within the 

range of fold change 

≤ 2 and -2 ≥ 

Number of 

transcripts within the 

range of fold change 

> 2 and -2 <  

WT-GFP gametocytes v 

pclag::rab11a gametocytes 
368                         

(=119Up+249Down) 
329                            

(=87Up+242Down) 
39                              

(=32Up+7Down) 

WT-GFP ookinetes v 

pclag::rab11a ookinetes 
144                        

(=40Up+104Down) 
143                           

(=40Up+103Down) 
1 (Down) 

WT-GFP ookinetes v AUFG 1637                        

(=638Up+999Down) 
840                              

(=316Up+524Down) 
797                    

(=322Up+475Down) 

WT-GFP ookinetes v TAR 977                           

(=453Up+524Down) 
695                           

(=319Up+376Down) 
282                          

(=134Up+148Down) 

 

Table 3.7.8 Table showing distribution of deregulated transcripts across fold changes. 
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Figure 3.7.9 Pattern of the 144 deregulated transcripts in pclag::rab11a ookinetes 

(A) Venn diagram showing the overlap of significantly deregulated transcripts in 

pclag::rab11a ookinetes, AUFG and TAR transcriptome. (B) Scatter plot showing fold 

changes of the 144 deregulated transcripts in pclag::rab11a ookinetes and fold changes of 

common deregulated transcripts of AUFG (87+17) and TAR (87+19).  
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3.7. d) Gene ontology enrichment for ookinetes 

Thus, compared to the transcriptome of WT-GFP ookinetes, that of pclag::rab11a ookinetes 

showed deregulation of 144 transcripts (40 more abundant and 104 less abundant). These 144 

deregulated transcripts were divided into four percentile expression group according to the 

percentage expression groups of the transcriptome of WT-GFP ookinetes (Table 3.7.10 and 

Table 3.7.11).  

Out of 40 more abundant transcripts of pclag::rab11a ookinetes, only 21, 16 and 13 are 

annotated as GO - Molecular Function, Biological Process and Cellular Components 

respectively. Most of the 40 more abundant transcripts of pclag::rab11a ookinetes i.e. 11 out 

of 40 are associated with the percentile expression group of 100-75% (Table 3.7.10). The GO 

Biological Process terms indicate that four DNA replication and four proteolysis associated 

biological processes are the most significantly up-regulated in pclag::rab11a ookinete (figure 

3.7.12 A), however, the four DNA replication associated transcripts fall in the WT-GFP 

ookinete 25% percentile and may be marginal and prior analysis indicated no apparent defect. 

Three out of four proteolysis associated transcripts are above the 25% percentile and may 

represent noteworthy up-regulation (figure 3.7.12 C). Some of the transcripts associated with 

the proteolysis are proteasome subunit beta type 7 precursor (putative), 26S proteasome 

regulatory subunit (putative) and aspartyl protease (putative) (Appendix B, Table 2). This 

might suggest that protein degradation might be involved in cellular remodelling associated 

with the morphological development of the ookinete from the zygote. 

Out of 104 less abundant transcripts of pclag::rab11a ookinete distributed across four 

percentile expression groups, less than half the transcripts (50 Molecular Function, 31 

Biological Process, 19 Cellular Components) have annotated GO-terminologies (Table 

3.7.11). GO Biological Processes suggest that six biosynthetic processes, five ribosome 

biogenesis, three transport and three proteolysis are majorly down-regulated biological 

processes (Table 3.7.12 B). Out of six down-regulated biosynthetic processes, four are above 

50% percentile and therefore suggests notable down-regulation (figure 3.7.12 C). However 

they do not form a coherent pathway that might indicate a specific biological process was 

being affected. Transcripts associated with ribosome biogenesis involve rRNA processing 

protein which might be affected in a non-growing cell (Appendix B, Table 2). 
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  100-75% 75-50% 50-25% 25-0% not expressed 

in WT-GFP 

ookinetes 

Total 

40 more abundant 

transcripts in 

pclag::rab11a 

ookinetes                                       
 
(39 Pf and 43 Pv 

orthologues)  

11 7 9 7 6 40 

Annotated GO - 

Molecular Function 
5 2 5 5 4 21 

Annotated GO - 

Biological Process 
4 0 4 5 3 16 

Annotated GO - 

Cellular Components 
6 0 2 2 3 13 

 

Table 3.7.10 Table showing distribution of 40 more abundant transcripts in 

pclag::rab11a ookinetes across annotated GO terms. Pf- P. falciparum 3D7 and Pv – P. 

vivax Sal-1. 

 

  100-75% 75-50% 50-25% 25-0% Total 

104 less abundant  

transcripts in pclag::rab11a 

ookinetes  
                                      (98 Pf 

and 100 Pv orthologues)  

38 30 22 14 104 

Annotated GO - Molecular 

Function 
14 16 10 10 50 

Annotated GO - Biological 

Process 
13 9 5 4 31 

Annotated GO - Cellular 

Components 
10 5 1 3 19 

 

Table 3.7.11 Table showing 104 less abundant transcripts in pclag::rab11a ookinetes and 

their distribution across annotated GO terms. Pf- P. falciparum 3D7 and Pv – P. vivax 

Sal-1.  
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Figure 3.7.12 GO- (Biological Process) term analysis for deregulated transcripts in 

pclag::rab11a ookinetes. 

(A) Pie chart showing GO (Biological Process) term enrichment for more abundant (up 

regulated) transcripts and (B) less abundant (down regulated) transcripts in pclag::rab11a 

ookinetes. (C) Deregulated transcripts of pclag::rab11a ookinetes having GO annotated as 

Biological Process (BP) and their distribution across percentile expression groups compared 

to the percentile expression groups of WT-GFP ookinete transcriptome. Most up regulated 

and most down regulated transcripts in pclag::rab11a ookinete are colour coded as per pie 

charts A and B. Up regulated transcripts in pclag::rab11a ookinete which are not detected in 

the transcriptome of WT-GFP ookinetes were given an arbitrary percentile expression value 

of -25%.  
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3.7. e) The transcriptome of AUFG is completely different to the 

transcriptome of TAR 

The transcriptome of AUFG and TAR are compared with the transcriptome of WT-GFP 

ookinetes, and not with the transcriptome of WT-GFP gametocytes, as AUFG and TAR 

samples used for RNA-Seq were collected at the same time point as for the samples of WT-

GFP ookinetes i.e. 24hpa  and the number of deregulated transcripts were analysed.  

Compared to the transcriptome of WT-GFP ookinetes (3451 protein coding transcripts 

expressed), that of TAR is 71.69% similar and AUFG is 52.56% similar (figure 3.7.7 D)(See 

Appendix B, Table 3 and 4 for details of transcripts). This indicates that the transcriptome of 

TAR is more similar to the transcriptome of WT-GFP ookinetes than that of AUFG. When the 

transcriptome of AUFG is compared with the transcriptome of TAR, they show almost 75% 

similarity with each other and therefore 25% difference (figure 3.7.13), although very 

different processes have been blocked experimentally (transcription in TAR and fertilization 

in AUFG). This shows that only 25% of the transcriptome is essentially deregulated when 

fertilization is blocked and transcription is arrested and this 25% of the transcriptome appear 

to be essential for the development of zygote into ookinete.  

Since destabilisation of translationally repressed/ stored (i.e. DOZI/CITH associated) 

transcripts gives a similar phenotype (Mair, Braks et al. 2006, Mair, Lasonder et al. 2010) , 

the transcriptome of AUFG and TAR were analysed in detail. The transcriptome of AUFG 

and TAR were compared with that with WT-GFP ookinetes but referred to the catalogue of 

733 DOZI/CITH associated transcripts in WT-GFP gametocytes (Guerreiro, Deligianni et al. 

2014), to assess if gametocyte stored transcripts were stabilised and to assess the further 

development of the experimentally manipulated parasites (TAR & AUFG). 

The comparison of the transcriptome of AUFG with that of the transcriptome of WT-GFP 

ookinetes, indicates significantly more abundance of 638 transcripts and significantly less 

abundance of 999 transcripts. Out of these 638 more abundant transcripts, 222 transcripts are 

associated with DOZI/CITH i.e. 30.28% (222 out of 733) and out of 999 down regulated 

transcripts 119 are associated with DOZI/CITH i.e. 16.28% (119 out of 733) (figure 3.7.14 

A). This suggests that significant amount (30.28% i.e. 222 out of 733) of the translationally 

stored mRNAs (which remain less abundant in WT-GFP ookinetes) remain more abundant, 

stable and possibly untranslated after the activation of female gametocytes when fertilization 
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is inhibited and withheld (DOZI/CITH stored) from mRNA degradation mechanisms in 

AUFG even at 24hpa (figure 3.7.14 B).   

The comparison of the transcriptomes of WT-GFP ookinetes and TAR revealed 453 

transcripts to be significantly more abundant and 524 transcripts are significantly less 

abundant. Of the 453 more abundant transcripts, 173 are common with DOZI/CITH i.e. 

23.74% (174 out of 733) and out of 524 less abundant transcripts, 67 are common with 

DOZI/CITH i.e 9.17% (67 out of 731) (figure 3.7.15 A). Retention of a subset of DOZI/CITH 

stored mRNAs i.e. 23.74% (174 out of 733) in TAR, and the same subset of transcripts 

remain less abundant in WT-GFP ookinetes, indicates the utilization of most of the 

DOZI/CITH stored mRNAs (Guerreiro, Deligianni et al. 2014)  and perhaps explains why the 

partial outgrowth of apical complex is achieved (figure 3.7.15 B).  

Compared to the transcriptome of WT-GFP ookinetes, that of AUFG shows significant 

deregulation of 1637 transcripts and that of TAR shows deregulation of 977 transcripts. Out 

these 1637 deregulated transcripts of AUFG and 977 deregulated transcripts of TAR, 719 

transcripts are common (figure 3.7.14 A). Out of these 719 transcripts, 285 transcripts are 

more abundant in both AUFG and TAR, 433 transcripts are less abundant in both AUFG and 

TAR and only 1 transcript is less abundant in AUFG yet more abundant in TAR. 353 

transcripts are exclusively more and 565 are exclusively less abundant in AUFG whereas 167 

are exclusively more and 91 are exclusively less abundant in TAR (figure 3.7.13 B). 

Altogether, the data from figure 3.7.14 A and B suggest that more transcripts are deregulated 

in AUFG as compared to TAR. This indicates the importance of fertilization process and 

activation of post-meiotic transcription to co-ordinate cellular events for zygote development 

in P. berghei.  
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Figure 3.7.13 Similarity of AUFG and TAR transcriptome. 

(A) Venn diagram showing common transcripts in AUFG and TAR (B) percentage similarity 

and variance of AUFG and TAR transcripome with each other.  
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5020 protein coding transcripts in whole P. berghei genome 

3451 protein coding transcripts are significantly expressed 

at ookinete stage of P. berghei 

 (FPKM≥10) 

1637 (=638 up + 999 down) protein coding transcripts are 

significantly deregulated in AUFG 

(FPKM≥10 and p-values) 

 

  

            164 

(=127up+37down) 

           

           [309] 

Total DOZI associated transcripts 489 and total CITH associated   

transcripts are 553(Guerreiro, Deligianni et al. 2014) 

DOZI CITH 

            99 

(=57up+42down) 

           

           [244] 

            78 

(=38up+40down) 

           

           [180] 

(A) 
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Figure 3.7.14 Comparison of the AUFG transcriptome with translationally stored 

transcripts.  

(A) Chart and Venn diagram showing common transcripts of deregulated transcripts in AUFG 

and translationally stored transcripts (Guerreiro, Deligianni et al. 2014).  (B) Scatter plot 

showing FPKM values of 222 common transcripts of 638 more abundant and 733 

DOZI/CITH associated transcripts (Guerreiro, Deligianni et al. 2014) in AUFG. Y axis shows 

log scale.   
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5020 protein coding transcripts in whole P. berghei genome 

3451 protein coding transcripts significantly expressed at 

ookinete stage of P. berghei  

(FPKM≥10) 

 

977 (=423 up + 524 down) protein coding transcripts 

significantly deregulated in TAR  

(FPKM≥10 and p-values) 

 

  

           138 

(=116up+22down) 

           [309] 

Total DOZI associated transcripts 489 and total CITH associated   

transcripts are 553(Guerreiro, Deligianni et al. 2014) 

DOZI CITH 

            59 

(=39up+20down) 

         [244] 

           44 

(=19up+25down) 
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Figure 3.7.15 Comparison of the TAR transcriptome with translationally stored 

transcripts.  

(A) Chart and Venn diagram showing common transcripts of deregulated transcripts in TAR 

and translationally stored transcripts. Square brackets represent the original DOZI/CITH 

associated transcripts numbers from (Guerreiro, Deligianni et al. 2014). (B) Scatter plot 

showing FPKM values of 174 common transcripts of 423 more abundant and 733 

DOZI/CITH associated transcripts (Guerreiro, Deligianni et al. 2014) in TAR. Y axis shows 

log scale.   
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Figure 3.7.16 Overlap of deregulated transcripts of the drug treated WT-GFP parasites 

transcriptome.  

(A) Venn diagram showing common deregulated transcripts in AUFG and TAR (B) and 

details of up and down regulation.  
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3.7. f) Gene ontology enrichment for AUFG 

The distribution of the 638 more abundant transcripts in AUFG transcriptome across the four 

WT-GFP percentile expression groups and compared to those of WT-GFP ookinete 

transcriptome (because AUFG samples were collected at 24hpa) and the distribution across 

DOZI/CITH and GO terms examined (Table 3.7.17). Out of 638 more abundant transcripts, 

almost 33% (229 Molecular Function, 171 Biological Process, 134 cellular components) have 

annotated GO terms (Table 3.7.17). The majority of the more abundant transcripts (221 out of 

638) of AUFG fall in 25-0% percentile (Table 3.7.17). Common transcripts of 638 more 

abundant transcripts and 733 DOZI/CITH associated transcripts (65 and 64) come under 100-

75% percentile (Table 3.7.17). The GO-Biological Process terms analysis indicates that 28 

protein modification and processing, 22 transport, 18 translation, 15 DNA repair/replication 

and 14 proteolysis related biological processes are the most up-regulated (figure 3.7.19 A). 

The most up-regulated protein modification and processing related transcripts are spread 

across the entire percentiles (figure 3.7.19 C) (See Appendix B, Table 3 for details about 

transcripts). 

The 999 less abundant transcripts in AUFG transcriptome were also classified according to 

the WT-GFP ookinete percentile groups and distribution of these 999 down regulated 

transcripts in AUFG across DOZI/CITH and GO were shown in table 3.7.18. Of these 999 

down regulated transcripts in AUFG, only half of them have GO annotation (489 Molecular 

Function, 354 Biological Process and 262 Cellular Component). Most of the less abundant 

transcripts (438 out of 999) fall into 25-0% WT-GFP ookinete percentile whereas the most of 

the shared DOZI/CITH transcripts (35 and 36 transcripts) fall under 100-75% percentile 

(Table 3.7.18). The biological process GO indicates major down-regulation of transport (56), 

protein modification and processing (43), translation associated biological processes (38) 

(figure 3.7.19 B). The most affected transport related transcripts are spread across all the 

percentage expression groups above 0% (figure 3.7.19 C) (See Appendix B, Table 3 for 

details about transcripts).  

In summary, the same general biological processes appear to be deregulated although the 

direction of deregulation can be either up or down.  Those that are up-regulated may be 

further stabilised due to remaining associated with the translation repression apparatus.  The 

extent of the deregulation is profound affecting almost 25% of the parasite transcriptome 

(figure 3.7.13 B). 
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  100-75% 75-50% 50-25% 25-0% Not expressed 

in WT-GFP 

ookinetes 

Total 

638 more abundant 

transcripts in 

AUFG                   

 

(Pf 603, Pv 594) 

145 130 - 221 142 638 

DOZI 65 39 - 49 11 164 

CITH 64 39 - 61 19 183 

Annotated GO - 

Molecular Function 

56 50 - 74 49 229 

Annotated GO - 

Biological Process 

42 41 - 51 37 171 

Annotated GO - 

Cellular 

Component 

43 30 - 41 20 134 

 

Table 3.7.17 Table showing distribution of 638 more abundant transcripts in AUFG 

across translationally stored transcripts as well as annotated GO terms. Pf- P. 

falciparum 3D7 and Pv – P. vivax Sal-1. 

  100-75% 75-50% 50-25% 25-0% Total 

999 less abundant 

transcripts in TAR                                 

 

(Pf 993, Pv 984) 

285 276 - 438 999 

DOZI 35 26 - 16 77 

CITH 36 26 - 17 79 

Annotated GO - Molecular 

Function 

128 147 - 214 489 

Annotated GO - Biological 

Process 

109 110 - 135 354 

Annotated GO - Cellular 

Component 

90 71 - 101 262 

 

Table 3.7.18 Table showing distribution of 999 less abundant transcripts in AUFG 

across translationally stored transcripts as well as annotated GO terms. Pf- P. 

falciparum 3D7 and Pv – P. vivax Sal-1. 
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Figure 3.7.19 GO- (Biological Process) term analysis for mis-regulated transcripts in 

AUFG. 

(A) Pie chart showing GO (Biological Process) term enrichment for more abundant transcripts 

and (B) less abundant transcripts in AUFG. (C) Deregulated transcripts of AUFG having GO 

annotated as Biological Process and their distribution across percentile expression groups 

compared to the percentile expression groups of WT-GFP ookinete transcriptome. Most up-

regulated and most down-regulated transcripts in AUFG are colour coded as per pie charts A 

and B. Up-regulated transcripts in AUFG which are not detected in the transcriptome of WT-

GFP ookinetes were given an arbitrary percentile expression value of -25%.  
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3.7. g) Gene ontology enrichment for TAR   

The most abundant 423 transcripts in the TAR transcriptome (when compared to the 

transcriptome of WT-GFP ookinete), were examined for their distribution across the WT-GFP 

ookinete percentile expression groups and for their predicted association with DOZI/CITH 

and GO terminology. 33% have annotated GO terms (151-Molecular Function, 115 

Biological Process and 105 Cellular Components) (Table 3.7.20). Most of these 423 more 

abundant transcripts come under the percentage expression group of 50-25% and most of the 

shared transcript with DOZI/CITH (46 and 45) fall under 100-75% (Table 3.7.20). 

Interestingly a large number of transcripts which are exclusively more abundant in TAR are 

not present in the WT-GFP ookinete transcriptome (103 out of 423) implying that they would 

normally be degraded in the WT-GFP parasite. GO- Biological Process term enrichment 

suggests that 21 transport, 15 protein modification and processing, 14 DNA replication/repair 

and 8 biosynthetic processes related transcripts are the majorly affected (figure 3.7.22 A). The 

up-regulated 21 transport related transcripts are spread across all the percentiles (figure 3.7.22 

C) (See Appendix B, Table 4 for details of transcripts). 

The less abundant 524 transcripts in TAR were examined for their distribution across the WT-

GFP ookinete percentile expression groups; for their predicted association with DOZI/CITH 

and their GO terminology and shown in Table 3.7.21 and almost half of the less abundant 

transcripts (267 Molecular Function, 180 Biological Process and 125 Cellular Components) 

have annotated GO. Most of the less abundant transcripts (185 out of 524) and most of the 

DOZI/CITH associated transcripts (29 and 22) fall in 100-75% percentile expression group 

(Table 3.17.21). GO biological process term enrichment suggest that 29 transport, 28 protein 

modification and processing, 25 RNA processing and 21 biosynthetic processes are the most 

affected processes (figure 3.7.22 B). The down regulated transport related biological 

processes are also spread across all the percentage expression groups above 0% (figure 3.7.22 

C) (See Appendix B, Table 4 for details of transcripts). 

In summary transport, protein modification and processing are the two most up/down 

regulated biological processes in TAR compared to WT-GFP ookinetes. 
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  100-75% 75-50% 50-25% 25-0% Not expressed 

in WT-GFP 

ookinetes 

Total 

453 more 

abundant 

transcripts in 

AUFG   
                           

(Pf 423, Pv 419) 

77 76 103 94 103 453 

DOZI 46 26 30 21 11 134 

CITH 45 30 34 26 19 154 

Annotated GO - 

Molecular 

Function 

17 34 31 39 30 151 

Annotated GO - 

Biological 

Process 

17 28 26 22 22 115 

Annotated GO - 

Cellular 

Component 

21 17 30 16 21 105 

 

Table 3.7.20 Table showing distribution of 453 more abundant transcripts in TAR 

transcriptome distributed across translationally stored transcripts as well as annotated 

GO terms. Pf- P. falciparum 3D7 and Pv – P. vivax Sal-1. 

  100-75% 75-50% 50-25% 25-0% Total 

524 less abundant  

transcripts in TAR  
                                        

(Pf 524, Pv 519) 

185 150 130 59 524 

DOZI 29 13 3 2 47 

CITH 22 11 6 3 42 

Annotated GO - 

Molecular Function 

81 86 64 36 267 

Annotated GO - 

Biological Process 

64 55 39 22 180 

Annotated GO - Cellular 

Component 

50 37 24 14 125 

 

Table 3.7.21 Table showing distribution of 524 less abundant transcripts in the 

transcriptome of TAR distributed across translationally stored transcripts as well as 

annotated GO terms. Pf- P. falciparum 3D7 and Pv – P. vivax Sal-1. 
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Figure 3.7.22 GO- (Biological Process) term analysis for mis-regulated transcripts in 

AUFG. 

(A) Pie chart showing GO (Biological Process) term enrichment for up regulated transcripts 

and (B) down regulated transcripts in TAR. (C) Deregulated transcripts of TAR having GO 

annotated as Biological Process (BP) and their distribution across percentile expression 

groups compared to the percentage expression groups of WT-GFP ookinete transcriptome. 

Most up regulated and most down regulated transcripts in TAR are colour coded as per pie 

charts A and B. Up regulated transcripts in TAR which are not detected in the transcriptome 

of WT-GFP ookinetes were given an arbitrary percentile expression value of -25% .  
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3.7. h) Summary of RNA-Seq results  

Comparative transcriptome analysis demonstrated that eleven biological processes are mainly 

affected when pclag::rab11a gametocytes were compared to WT-GFP gametocytes and when 

pclag::rab11a ookinetes, AUFG and TAR were compared to WT-GFP ookinetes. Out of these 

11 affected biological processes, cellular transport, protein modification and processing, 

translation, biosynthetic processes and proteolysis were common across all samples (figure 

3.7.20).  

Figure 3.7.23 also suggested that pclag::rab11a gametocytes are more affected than 

pclag::rab11a ookinetes despite the fact that pclag::rab11a gametocytes are able to fertilize 

and internal structural development is achieved with only a slight delay/reduction in protein 

synthesis being evident (see Results 3.10 for delay/reduction in protein synthesis). In absence 

of Rab11A transcripts, most affected biological processes are translation, biosynthetic 

processes, transport and some metabolic processes. Furthermore, deregulation of these 

processes is only up to 2 fold (Table 3.7.8). 

AUFG shows more severe deregulation of various but similar biological processes than TAR 

(figure 3.7.23). Most affected biological processes 24hpa in absence of fertilization (in 

AUFG) and transcriptional block (TAR) are transport, RNA processing and translation. Other 

major processes affected in AUFG and TAR are proteolysis and biosynthetic processes. This 

suggests that cellular transport system is most affected biological process in absence of 

fertilization as well as in presence of transcriptional block in P. berghei 24hpa. Deregulation 

of these biological processes in AUFG and TAR is more severe than in pclag::rab11a 

parasites (figure 3.7.23).  
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Figure 3.7.23 Major deregulated biological processes. 

Graph showing 11 major up and down-regulated biological processes in pclag::rab11a  

gametocytes (as compared to WT-GFP gametocytes) and in pclag::rab11a  ookinetes, AUFG 

and TAR ( as compared to WT-GFP ookinetes). 
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3.8 The trend of gametocyte to ookinete transition in pclag::rab11a 

is comparable to WT-GFP P. berghei. 

When the significantly deregulated 368 transcripts from pclag::rab11a gametocyte and 

significantly deregulated 144 transcripts of pclag::rab11a ookinetes are combined, only 18 

transcripts were found shared at gametocyte and ookinete stage leading to 350 transcripts 

exclusively and significantly deregulated in pclag::rab11a gametocyte and 126 solely in 

pclag::rab11a ookinetes (figure 3.8.1). This again suggests that pclag::rab11a gametocytes 

are more severely affected as compared to pclag::rab11a ookinetes in absence of Rab11A. 

Upon comparing the transcriptome of WT-GFP gametocytes to that of WT-GFP ookinetes, it 

looks like that these transcriptomes are almost similar (figure 3.8.2 A), however, significant 

fold change (shown by p-values) suggests that only 2011 transcripts are regulated during WT-

GFP gametocyte to ookinete development (cut off FPKM >0). Out of these 2011 significantly 

regulated transcripts, 953 are more abundant and 1058 are less abundant in WT-GFP 

ookinetes as compared to WT-GFP gametocytes (figure 3.8.3 A) (Appendix B, Table 5).  

Similarly, during transition of pclag::rab11a gametocytes to ookinetes, where the 

transcriptome of these two appears almost similar (figure 3.8.2 B) (cut off FPKM >0), instead 

of 2011 transcripts in WT-GFP parasites only 1651 transcripts are significantly regulated 

(significance shown by p-values). Of these 1651, 1071 are more abundant and 580 are less 

abundant in pclag::rab11a ookinetes as compared to pclag::rab11a gametocytes (figure 3.8.3 

B)(Appendix B, Table 6).  

To compare the pattern of transcriptional regulation during gametocyte to ookinete 

development in WT-GFP and pclag::rab11a parasites, 2011 significantly regulated transcripts 

in WT-GFP parasites and 1651 significantly regulated transcripts in pclag::rab11a parasites 

were compared to each other. These two sets of transcripts show 1212 common transcripts 

while 799 transcripts are exclusively significantly (significance shown by p-values) regulated 

only in WT-GFP parasites and 439 in pclag::rab11a parasites (figure 3.8.4 A). The common 

1212 transcripts have more or less similar fold changes during gametocytes to ookinete 

development in both WT-GFP and pclag::rab11a parasites (figure 3.8.4 B). This suggest that 

though the transcripts of most of the protein coding genes are present at gametocytes and 

ookinetes stages, not all of them significantly regulated during this transition and not all of 
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them are translated in gametocytes and ookinetes (see section 3.9 for details of stage specific 

transcript analysis).   
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Figure 3.8.1 Venn diagram showing overlap of deregulated transcripts in pclag::rab11a 

gametocytes and pclag::rab11a ookinetes. 
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Figure 3.8.2 Distribution of total protein coding transcripts (5020) in gametocytes and 

ookinetes.  

(A) Distribution of total protein coding transcripts in WT-GFP gametocytes and their status  

in WT-GFP ookinetes (B) Distribution of total protein coding transcripts in pclag::rab11a 

gametocytes and their status in  pclag::rab11a ookinetes. Left side: Rectangle suggests 

transcripts having FPKM ≥ 10, hexagon suggests the transcripts having FPKM < 10 and > 0 

whereas pentagon suggests transcripts not detected in gametocyte stage. Right side: Status of 

identical transcripts at ookinete stage. Blue area and brackets indicates the sum of respective 

sections. 
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Figure 3.8.3 Significantly regulated transcripts during gametocytes to ookinete 

development.  

(A) Significantly regulated 2011 transcripts during gametocytes to ookinete development in 

WT-GFP parasites (B) Significantly regulated 1651 transcripts during gametocytes to 

ookinete development in pclag::rab11a parasites. 
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Figure 3.8.4 Trend of significantly regulated transcripts during gametocytes to ookinete 

transition in WT-GFP and pclag::rab11a parasites. 

(A) Venn diagram showing overlap of more and less abundant transcript during gametocyte to 

ookinete transition in WT-GFP and pclag::rab11a parasites. (B) Scatter plot showing fold 

changes of common 1212 transcripts during gametocytes to ookinete transition in WT-GFP 

and pclag::rab11a parasites. (C) Scatter plot showing fold changes of 799 exclusively 

significantly regulated transcripts during gametocytes to ookinete development in WT-GFP 

parasites and 439 exclusively significantly regulated transcripts during gametocytes to 

ookinete development in pclag::rab11a parasites.  
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3.9 Determining the cut of FPKM in RNA-Seq is difficult. 

Next, we looked at some of the transcripts and their fold changes during gametocytes to 

ookinete transition in WT-GFP as well as pclag::rab11a parasites. These transcripts were 

selected according to their biological role in the development of WT ookinetes such as 

structural and developmental markers of ookinete development including surface markers, 

IMC components/glideosome associated proteins and Rabs where already published data is 

available. Some of these selected transcripts also include the genes where time-course of 

transcription and translation is already published. The structural and developmental markers 

analysed in this study, through western or immunofluorescence microscopy (see section 3.10), 

in pclag::rab11a parasites (and compared with WT-GFP parasites) were also included in the 

list of selected transcripts and apparently 45 transcripts were selected (see Appendix A- Table 

2).  

Out of total selected 45 transcripts of P. berghei, transcripts of 43 genes were detected in 

gametocyte stages and 44 were detected at ookinete stage (Appendix A- Table 2). Out of 

these 45 selected transcripts, eight transcripts show significant deregulation at pclag::rab11a 

gametocytes (as compared to WT-GFP gametocyte transcriptome) and only one transcript is 

significantly affected at pclag::rab11a ookinetes (as compared to WT-GFP ookinete 

transcriptome). No deregulation was found for surface markers P25 and P28 at pclag::rab11a 

gametocytes and ookinetes stage. Therefore, we looked at the FPKM values of 8 (out of 45) 

deregulated transcripts in pclag::rab11a gametocytes (Table 3.9.1). Table 3.9.1 shows that the 

FPKM values of IMC1a, Conserved Plasmodium protein -unknown function, CDPK3 and 

CTRP are very low in WT-GFP gametocytes, also CDPK3 is expressed (as protein) 16hpa 

(Li, Baker et al. 2000, Ishino, Orito et al. 2006) and CTRP is expressed (as protein) 10hpa of 

gametocytes (Dessens, Beetsma et al. 1999) and therefore not considered for further analysis. 

Out of the remaining four transcripts, low abundance of Rab11A transcripts was expected as 

promoter swap strategy was designed to knockdown Rab11A post-activation of gametocytes. 

Rest of the three transcripts - MTIP, GAPM3 and Rab11B have a very high to considerable 

amount of difference in the FPKM values in pclag::rab11a gametocytes as compared to WT-

GFP gametocytes. However, we did not detect a significant amount of down-regulation of 

MTIP and Rab11B at protein level (see figure 3.10.1 E and figure 3.3.4 D, No western was 

performed for GAPM3). Therefore, it is assumed that despite of a very high down-regulation 

of mRNAs, no significant expression defect is observed at protein level (e.g. MTIP and 
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Rab11B). In addition, MTIP and Rab11B mRNAs are DOZI/CITH stored (Table 

3.9.1)(Guerreiro, Deligianni et al. 2014). Therefore, it further supports the notion that lack of 

Rab11A mRNAs cause partial deregulation of some of the DOZI/CITH stored transcripts.  

Despite of arbitrarily setting the cut off FPKM to 10 to determine the number of ‘significantly 

expressed transcripts’ and to minimize the number of scarce transcripts in all the samples 

studied along with setting up the cut off FPKM to 10 and with significant fold change values 

(where significance is shown by p-values) to establish the numbers of ‘significantly 

deregulated transcripts’ in pclag::rab11a and WT-GFP drug treated parasite samples, still the 

noise of some of low expressing transcripts were noticed in the list of ‘significantly 

deregulated transcripts’ as well as ‘significantly expressed transcripts’ e.g. occurrence of 

CTRP, CDPK3 and IMC1a in the list of 368 ‘significantly deregulated transcripts’ in 

pclag::rab11a gametocytes and occurrence of same transcripts in the list of 3276 

‘significantly expressed transcripts’ of WT-GFP gametocytes (when cut off FPKM ≥10 was 

used).  

CTRP mRNAs are low expressing and still present in gametocytes while CTRP (protein) is 

expressed only 10hpa (Dessens, Beetsma et al. 1999). Despite of poor mRNA expression of 

IMC1a and CDPK3 in gametocytes and even in asexual stages, IMC1a and CDPK3 proteins 

are expressed only at ookinete-sporozoite stage and 16hpa respectively (Li, Baker et al. 2000, 

Ishino, Orito et al. 2006). Therefore, to minimize the occurrence of such poorly expressed 

transcripts (in gametocytes and ookinete stage), which also show significant fold change 

(shown by p-values), however actually do not get translated in respective stages and hence 

need to be ignored from the list of ‘significantly deregulated transcripts’ as well as 

‘significantly expressed transcripts’.  

For this reason, increasing the FPKM cut off from 10 to higher values would minimize the 

low expressing noise from ‘significantly expressed transcripts’ in WT-GFP parasites e.g.  At 

cut off FPKM ≥10, WT-GFP gametocytes show significant expression of 3276 transcripts, 

however, at the cut off FPKM of ≥50 WT-GFP gametocytes show significant expression of 

top 1634 transcripts (figure 3.9.2). Increasing the cut off FPKM to higher values will also 

reduce the number of ‘significantly deregulated transcripts’ in pclag::rab11a and WT-GFP 

drug treated parasites compared to respective controls e.g. At cut off FPKM ≥10, 

pclag::rab11a gametocytes show significant deregulation of 368 transcripts (as compared to 

the transcriptome of WT-GFP gametocytes), however, increasing the FPKM cut off to ≥50 the 
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list of 368 deregulated pclag::rab11a gametocytes reduces to top 235 deregulated transcripts 

(figure 3.9.3). 

Therefore, cut off FPKM value is further increased from 10 to 50 and 100; and accordingly 

the number of ‘significantly expressed transcripts’ in WT-GFP, WT-GFP drug treated and 

pclag::rab11a parasites were recalculated (figure 3.9.2). Additionally, the number of 

‘significantly deregulated transcripts’ in WT-GFP drug treated and pclag::rab11a parasites 

were also reanalysed (figure 3.9.3).   

In summary, in RNA-Seq study setting up the lower limit to determine whether a particular 

gene is expressed at given stage is difficult and therefore considering only top 10% to 25% of 

deregulated transcripts would give more realistic results. Although, the cut off FPKM of 10 

was used in this study, the emphasis was given to top 25% deregulated transcripts.   
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Gene ID Description Log2(fold change) at 

gametocytes stage                 

(WT-GFP v pclag::rab11a) 

FPKM in    

WT-GFP 

gametocytes 

FPKM in 

pclag::rab11a 

gametocytes 

DOZI 

associated 

CITH 

associated 

PBANKA_041290 circumsporozoite- and TRAP-related 

protein (CTRP) 

-1.26508 14.913 6.20493 YES YES 

PBANKA_136440 conserved Plasmodium protein, 

unknown function 

-1.53257 50.7001 17.5251 YES NO 

PBANKA_103540 glideosome associated protein with 

multiple membrane spans 3, putative 

(GAPM3) 

-1.61416 4590.64 1499.56 YES YES 

PBANKA_040260 inner membrane complex protein 1a 

(IMC1a) 

-1.55766 43.7192 14.8515 NO NO 

PBANKA_145950 myosin light chain 1, putative,myosin 

A tail domain interacting protein 

MTIP, putative (MTIP) 

-1.70637 7418.04 2273.11 YES YES 

PBANKA_141890 Rab GTPase 11a (Rab11a) -3.40816 2592.69 244.226 YES YES 

PBANKA_135410 Rab GTPase 11b -1.26062 577.033 240.834 NO YES 

PBANKA_040820 calcium-dependent protein kinse 3 

(CDPK3) 

-1.02298 39.3438 19.361 YES NO 

 

Table 3.9.1 Eight deregulated transcripts in pclag::rab11a gametocytes as compared to WT-GFP gametocytes.  

All of the eight transcripts were deregulated in pclag::rab11a gametocytes and only one (CDPK3) was deregulated in pclag::rab11a ookinete.
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Table 3.9.2 Number of significantly expressed transcripts in given samples with various FPKM cut offs.   
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Table 3.9.3 Number of significantly deregulated transcripts with various FPKM cut offs.   
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3.10 The expression and distribution of most developmental 

marker proteins remain unaffected in pclag::rab11a spherical 

ookinetes 

Ultrastructural analysis and GAP45 immunofluorescence microscopy had suggested no 

apparent defects in IMC and apical complex assembly in 6 to 8h pclag::rab11a zygotes in 

absence of Rab11A. RNA-Seq of pclag::rab11a gametocytes suggests significant 

deregulation of 11.23% (368 out of 3276) of total gametocyte stage transcriptome and nearly 

similar percentage (11.05% i.e. 81 out of 733) of DOZI/CITH stored transcripts, and RNA-

Seq of pclag::rab11a ookinete suggests deregulation of 4.17% (144 out of 3451) of total 

ookinete stage transcripts. These deregulated transcripts (in pclag::rab11a gametocytes and 

ookinete stage) are majorly associated with translation, transcription, transport, protein 

modification and processing, biosynthetic processes and metabolic processes. Therefore, to 

investigate the expression and localization defects, we used western and immunofluorescence 

to study 12 and 16 of the structural and developmental markers respectively where antibodies 

were available.   

 

3.10.1 Western analysis shows delayed/reduced expression of some of the 

developmental and structural markers  

Expression of two glideosome associated proteins: GAP45 and GAP50, motility protein 

MyoA suggest possible marginal reduction of protein level at 6 to 8h pclag::rab11a zygotes, 

however, no significant change was observed at pclag::rab11a ookinetes (figure 3.10.1 A, B 

and D). Similarly, the ookinete surface marker P28 expression seems to be delayed/ reduced 

at 6 and 8h in pclag::rab11a zygotes but not at 24hpa (figure 3.10.1 C). Expression of another 

motility marker –MTIP shows single band during 2 to 8hpa and two bands at 24hpa in WT-

GFP. In pclag::rab11a, MTIP expression was similar to WT-GFP during 2 to 8hpa, however, 

only one band was identified at 24hpa (figure 3.10.1 E). Expression of the RNA helicase 

DOZI and another RNA binding protein CITH, responsible for storage of mRNAs in female 

gametocytes (Mair, Braks et al. 2006, Mair, Lasonder et al. 2010) seemed to be normal in 

pclag::rab11a zygotes and ookinetes as compared to WT-GFP zygotes and ookinetes 

respectively (figure 3.10.1 F, G ). On the other hand, whereas the protein phosphatase 
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containing kelch-like domains (PPKL) which is essential for ookinete development, motility 

and mosquito invasion (Guttery, Poulin et al. 2012, Philip, Vaikkinen et al. 2012), appeared to 

show normal expression levels analysed by western blot during pclag::rab11a zygote to 

ookinete development (figure 3.10.1 H), ookinete secretory proteins chitinase and CTRP 

appeared slightly down-regulated in pclag::rab11a ookinetes (figure 3.10.1 I and J). 

 

3.10.2 Immunofluorescence microscopy suggest normal localization of some 

of the developmental and structural markers  

Localization of GAP45 is dynamic from 4hpa till 24hpa and appeared to be normal in 

pclag::rab11a zygotes and ookinetes (figure 3.5.1). Despite of detection of a clear band in 

GAP50 western (figure 3.10.1 B), anti-GAP50 antibody does not show the ookinete 

peripheral localization of GAP50 (figure 3.10.2 A) as seen by protein tagging studies by K. 

Hughes -Waters group (unpublished data) and our GAP50::mCherry results (Chapter 4- figure 

4.4.2 I) (figure 3.10.2 A). Expression of motility marker- MyoA was detected at 8hpa in WT-

GFP but not in pclag::rab11a 8h zygotes supporting the reduced/delayed expression levels 

seen by Western analysis yet MyoA appears to be localized at the apical complex as well as 

towards the periphery of WT-GFP ookinete and similar localization was detected in 

pclag::rab11a ookinetes (figure 3.10.1 D and figure 3.10.2 B). Despite of absence of upper 

MTIP band at pclag::rab11a ookinetes (24hpa) as seen in WT-GFP ookinetes, we could 

detect normal localization of MTIP by immunofluorescence in pclag::rab11a ookinetes 

(figure 3.10.2 C). Immunofluorescence shows weak polarization of Chitinase possibly 

towards apical end and peripheral-cum-cytoplasmic localization of CTRP, therefore, CTRP 

localization mostly appeared to be variable in pclag::rab11a ookinetes as compared to WT-

GFP ookinetes (figure 3.10.2 D, E). Localization of RNA helicase DOZI (figure 3.10.2 F) and 

other protein involved in storage of mRNAs in female gametocytes – CITH (figure 3.10.2 G), 

IMC markers: IMC1a, IMC1b and IMC1h (figure 3.10.2 H, I, J), cytoskeletal components 

actin-I (figure 3.10.2 K) and α-tubulin (component of microtubules) (figure 3.10.2 L, M, N) 

and MTOC marker SPBP seem typical (figure 3.10.2 L). However, as opposed to a punctate 

apical localisation of PPKL (Philip, Vaikkinen et al. 2012), the pclag::rab11a ookinetes do 

not contain a punctate spot of PPKL but just show a diffuse cytoplasmic localisation of the 

protein (figure 3.10.2 M, N). 
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3.10.3 Expression and distribution of structural and developmental 

markers is variable in AUFG 

We also studied the expression and localization of ookinete development and structural 

markers in activated-unfertilized female gamete (AUFG) 24hpa. Expression of DOZI, CITH, 

PPKL, actinI and α-tubulin was normal as they are expected to be present in un-activated 

female gametocytes (figure 3.10.1 and figure 3.10.2). Surprisingly, we could detect the 

normal expression of translationally stored small GTPase Rab11A, motility protein MTIP and 

reduced expression of glideosome protein GAP50, small GTPase Rab11B at 6 and 24hpa and 

ookinete surface marker P28 at 24hpa in AUFG by Western which we assumed to be 

expressed only in fertilized female gametes (i.e. zygotes) and ookinetes, however, we could 

not detect expression of other translationally stored proteins: motility protein MyoA and 

glideosome protein GAP45 and late zygote development markers: chitinase and CTRP in 

AUFG by western. Immunofluorescence studies show the presence of Rab11A, Rab11B, 

MTIP, GAP50, PPKL, DOZI, CITH, actinI and α-tubulin in AUFG 24hpa, but most of them 

are not localized to their appropriate cell organelles as compared to WT-GFP ookinetes 

(figure 3.10.1 and figure 3.10.2). This implies that some of the translationally stored mRNAs 

are activated to undergo translation in absence of fertilization and remains mis-localized. 

Sometimes, the nucleus of the AUFG itself looks disintegrated after 24hpa (figure 3.10.2 and 

figure 3.3.4 C, E).  
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Figure 3.10.1 Western analysis of ookinete development and structural markers.  

Western blots for WT-GFP and pclag::rab11a gametocytes at 2,4,6,8 and 24hpa, and for 

AUFG at 6 and 24hpa using (A) anti-GAP45, (B) anti-GAP50, (C) anti-P28, (D) anti-MyoA, 

(E) anti-MTIP, (F) anti-DOZI, (G) anti-CITH, (H) anti-PPKL (I) anti-Tubulin (J) anti-

chitinase and (K) anti-CTRP antibodies. Blots were stripped and reproved with either anti-

enolase, anti-actinI and/or anti-GFP antibodies as loading controls. All the blots were scanned 

on Odyssey® Sa infrared Imaging System (LI-COR biosciences) except for anti-CTRP 

antibody. Anti-CTRP antibody blot was treated with ECL and a film was developed 

(conventional method) (for details see Chapter 2- section 2.1.2 n). Red arrows show down-

regulation or delay in respective bands.  
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Figure 3.10.2 Immunofluorescence microscopy for ookinete development and structural 

markers 

Fixed WT-GFP ookinetes, pclag::rab11a spherical ookinetes and AUFG were probed with 

primary antibodies (A) anti-GAP50, (B) anti-MyoA, (C) anti-MTIP, (D) anti-chitinase, (E) 

anti-CTRP, (F) anti-DOZI, (G) anti-CITH, (H) anti-IMC1a, (I) anti-IMC1b, (J) anti-IMC1h 

(K) anti-actinI (L) anti-SpindlePoleBodyProtein (M) anti-PPKL antibodies dilution mixed 

with either FITC-tagged anti-P25 or anti-tubulin antibodies. Images shown are single slice of 

Deltavision deconvoluted Z stack. (N) Single slice images of Z stacks obtained from ELYRA 

3D SIM microscope of fixed parasite preparation using anti-PPKL antibody mixed with α-

tubulin antibody (For details see Chapter 2- section 2.1.2 l). Scale bar 5 μm.   
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3.11 Discussion 

Previous attempts to delete PbRab11A in haploid blood stages of P. berghei were 

unsuccessful indicating its essentiality (Agop-Nersesian, Naissant et al. 2009). The abundance 

of Rab11A mRNA in gametocytes (Otto, Böhme et al. 2014) (RNASeq data by A. Religa, 

Waters group, unpublished data, figure 3.1.1 A) and its translational repression (Mair, Braks 

et al. 2006) suggested a role for Rab11A in ookinete development. Our results validated the 

expression of PbRab11A throughout the P. berghei lifecycle (figure 3.1.1 and 3.1.2). Western 

analysis suggested two bands of Rab11A in schizonts as well as in ookinetes (figure 3.1.1 C, 

D and 3.3.4 A, B) but the significance of the observation remains unclear. Rab11A has been 

previously predicted to be involved in the cytokinesis of Plasmodium (Agop-Nersesian, 

Naissant et al. 2009, McNamara, Lee et al. 2013) therefore one possibility is that Rab11A 

might be more active than normal and possibly undergo differential (post-translational) 

regulation during zoite development enabling detection of additional band in schizont and 

mature ookinetes (figure 3.1.1 C, D).  

Rab11A localization is dynamic at different stages of lifecycle from cytoplasmic to peripheral 

(figure 3.1.2). In ookinetes, Rab11A mostly remains peripheral and also appears to localise to 

the apical complex (figure 3.1.2) like SPBP, a marker of MTOC, localization (figure 3.10.2 L) 

suggesting by analogy with other systems (Gnazzo and Skop 2014, Hehnly and Doxsey 2014) 

Rab11A and SPBP might have important functions at the apical complex and probably at 

MTOC, possibly transport of microtubule nucleation components, cell membrane synthesis 

components, cell surface markers and adhesin proteins and/or in secretion (Prekeris, 

Klumperman et al. 2000, Dollar, Struckhoff et al. 2002, Jing and Prekeris 2009, Lapierre, 

Avant et al. 2012, Takahashi, Kubo et al. 2012, Burke, Inglis et al. 2014, Chutna, Goncalves 

et al. 2014, Hehnly and Doxsey 2014, Welz, Wellbourne-Wood et al. 2014).  However, due to 

the rabbit origin of both anti-Rab11A and anti-SPBP antibodies, we were unfortunately 

unable to perform co-localization studies. In segmented schizonts/merozoites, we detected a 

cytoplasmic localization of PbRab11A by immunofluorescence and not the apically punctate 

shown by GFP-tagged and immunofluorescence microscopy in P. berghei and P. falciparum 

(Agop-Nersesian, Naissant et al. 2009, McNamara, Lee et al. 2013).  This might suggest that 

the GFP-tagged PbRab11A is mis-localised, however this appeared to have little effect on 

function as the parasite behaved as wild type, and the other possible explanation of the data is 

the difference between the imaging of live and fixed parasites. 
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Despite of three independent attempts of N-terminal tagging, Rab11A failed to tag with small 

green fluorescent protein iLOV (Chapman, Faulkner et al. 2008, Christie, Hitomi et al. 2012) 

and two copies of C-MYC when constructed to express under PbRab11A endogenous 5’UTR 

and targeted to the endogenous rab11a (figure 3.2.1 and 3.2.2). This clearly implied that 

PbRab11A endogenous 5’UTR participate in recombination. Alternatively, expression of N-

terminal tagged copy of rab11a (with endogenous 5’UTR and 3’UTR) inserted as a transgene 

at a redundant location followed by deletion of endogenous rab11a may be useful to tag 

Rab11A with fluorescent protein without the concern of overexpression. In another approach, 

the use of a different 5’UTR with a similar expression profile to rab11a 5’UTR might be 

useful to fluorescently tag the endogenous copy of rab11a as shown by (McNamara, Lee et 

al. 2013). C-terminal tagging of Rab11A was not attempted as it would be predicted to 

interfere with the conserved C-terminal geranylgeranylation in a similar way discussed by 

(Pereira-Leal, Hume et al. 2001, Chakrabarti, Da Silva et al. 2002, Agop-Nersesian, Naissant 

et al. 2009). 

Our inability to delete PbRab11A in haploid blood stages (Agop-Nersesian, Naissant et al. 

2009) meant that it was not possible to generate a conventional gene-deletion knock out in 

order to examine the role of PbRab11A during asexual parasite development therefore we 

used a promoter swap strategy (Laurentino, Taylor et al. 2011, Siden-Kiamos, Ganter et al. 

2011) in order to study PbRab11A during sexual stages. To examine the function of 

PbRab11A in zygote to ookinete development, we generated two independent mutant parasite 

lines: pclag:rab11a and pama-1:rab11a (figure 3.3.1 B, C, D). CLAG and AMA-1 promoters 

were shown to control the expression of protein to normal level and therefore showing no 

obvious growth defect during blood stage and remain silent during sexual stage and therefore 

reducing the protein levels producing phenotype (Laurentino, Taylor et al. 2011, Siden-

Kiamos, Ganter et al. 2011, Sebastian, Brochet et al. 2012). As it is not possible to delete 

Pbrab11a at haploid blood stages (Agop-Nersesian, Naissant et al. 2009), CLAG and AMA-1 

promoters were used to drive the expression of Rab11A in P. berghei parasite to study its 

function during sexual stage development whilst ensuring correct asexual blood stage 

development. Indeed development of asexual stages, morphology and ratio of gametocytes 

along with gametogenesis observed by male gamete exflagellation and fertilization remain 

normal in pclag:rab11a and pama-1:rab11a (figure 3.3.2), however, ookinete development 

was almost completely blocked (figure 3.3.3). Fertilized pclag:rab11a female gametes remain 

spherical after 24hpa (figure 3.3.3B) yet appear to undergo meiosis (figure 3.3.5). Expression 
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and localization of PbRab11A is normal in blood stages and reduced only in pclag:rab11a and 

pama-1:rab11a parasites as early as from 2h post-fertilization of gametocytes (figure 3.3.4 A, 

B) while closely related Rab11B is unaffected showing that PbRab11A is specifically 

depleted by the promoter swap strategy (figure 3.3.4 D).  

Genetic crossing of pclag::rab11a gametocytes with male deficient (p48/45
-
) (van Dijk, Janse 

et al. 2001) or female deficient (p47
-
) gametocytes (van Dijk, van Schaijk et al. 2010) 

demonstrated that expression of PbRab11A occurs from both male and female gamete alleles 

(figure 3.3.6).  

The ability of pclag:rab11a and pama-1:rab11a ookinetes to transmit through mosquito was 

prevented as extremely low amount of oocysts and no sporozoites were observed (figure 

3.4.1) indicating major role of PbRab11A during transmission through mosquito midgut and 

possibly in oocyst development as Rab11A is also expressed in oocysts (figure 3.1.2). Upon 

feeding of pclag:rab11a and pama-1:rab11a infected mosquitoes on naïve mice, pclag:rab11a 

(n=3) and pama-1:rab11a (n=2) infections were unsuccessful indicating an absolute role of 

Rab11A in transmission (figure 3.4.1).  

Like pclag::rab11a and pama-1::rab11a spherical ookinetes, similarly spherical (and 

developmentally arrested) 20h zygotes were obtained when GAP45 was specifically down 

regulated post-fertilization in P. berghei using a similar promoter swap strategy. The spherical 

cell was at least in part due to the IMC floating inside the cytoplasm of the gap45 promoter 

swap zygotes suggesting that GAP45 is involved in attaching the IMC to the cell membrane 

and is also essential for P. berghei retort formation (Sebastian, Brochet et al. 2012). GAP45 is 

believed to be delivered to the IMC by Rab11A-mediated vesicles (Agop-Nersesian, Naissant 

et al. 2009). Localization studies of GAP45 suggest the selection of a focal point in 

pclag:rab11a 4h zygotes which then grows along the membrane of pclag:rab11a 6h zygotes 

lacking the WT retort outgrowth and lays down the IMC across the entire cytoplasmic side of 

the plasma membrane of the spherical pclag:rab11a ookinete (24hpa) indicating the assembly 

of IMC (figure 3.5.1). Our data however, suggest that delivery of GAP45 does not depend on 

Rab11A mediated vesicles. SEM analysis also suggest appearance of a small, cone-like 

outgrowth in 8h pclag:rab11a zygotes (figure 3.5.2). TEM analysis of 6h and 8h pclag:rab11a 

zygotes strongly suggest the outgrowth is associated with the assembly of the collar with an 

aperture, apical microtubules and the IMC (figure 3.5.3). Therefore, assembly of complete set 

of internal organelles such as IMC, apical complex and micronemes (shown by 
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immunofluorescence studies for Chitinase and CTRP, Results 3.10) is expected in spherical 

pclag:rab11a ookinetes and is comparable with the morphology of round dedifferentiated 

PDEδ KO P. berghei ookinetes which do form apical organelles, however possess an 

incomplete IMC (Moon, Taylor et al. 2009). These round dedifferentiated PDEδ KO P. 

berghei ookinetes rotate rapidly and have little or no forward motility. Since the external 

morphology of our pclag:rab11a ookinete is similar to round PDEδ KO P. berghei zygotes 

also IMC and apical complex are assembled, pclag:rab11a spherical ookinetes were 

anticipated to have little  motility or rotational movement. However, motility assays suggest 

that pclag:rab11a spherical ookinetes do not have little motility or even rotational movement 

(figure 3.4.2). )  

Translationally stored mRNAs are stored in mRNP complexes (with DOZI and CITH) which 

are translated in a coherent and phased programme following activation and/or fertilization 

for zygote development. Despite substantial mRNA loss, DOZI and CITH gene deletion 

mutants remain fertile and ookinete development is terminated early in zygote development 

(Mair, Braks et al. 2006, Mair, Lasonder et al. 2010). This prompted us to speculate that 

PbRab11A might have some role in regulating the expression or stability of DOZI/CITH with 

a further effect on the stabilization and deployment of translationally repressed transcripts 

(Mair, Braks et al. 2006, Mair, Lasonder et al. 2010). However, our western blots showed 

normal or slightly delayed expression of some of the ookinete developmental and structural 

components in pclag:rab11a zygotes and ookinetes which are stored translationally in 

DOZI/CITH complex demonstrating translation of at least some DOZI/CITH stored mRNAs 

is possible in pclag:rab11a zygotes and ookinetes (Results 3.5 and 3.10). To investigate in-

depth, the fate of DOZI/CITH stored (translationally stored) mRNAs and reactivation of post-

meiotic transcription in pclag:rab11a gametocytes and spherical ookinetes respectively, we 

performed RNA-Seq and compared their transcriptomes to those of WT-GFP gametocytes 

and ookinetes, AUFG and TAR respectively (figure 3.6). RNA-Seq data suggest that down-

regulation of Rab11A transcript (in pclag:rab11a  gametocytes due to the promoter swap 

strategy) majorly affects the gametocytes than ookinetes, and causes deregulation of almost 

11% of the total (pclag:rab11a ) gametocyte transcriptome up to 2 folds including the same 

percentage and fold change of translationally stored (DOZI/CITH associated) transcripts 

(figure 3.7.2 and Table 3.7.3 and 3.7.4).Taken together the data suggest that the protein 

coding potential of the transcriptome that is sequestered by the DOZI/CITH apparatus in 
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gametocytes is fully realised although the timing of expression of some elements might be 

somewhat delayed/ reduced. 

GO- Biological Process - term analysis of the transcriptome of pclag:rab11a gametocytes 

revealed less than half of deregulated transcripts have annotated GO terms (Table 3.7.3 and 

Table 3.7.4). GO- Biological Process – term enrichment suggested gross defects and 

significant up-regulation of translation associated transcripts which consists of ribosomal 

proteins, and down-regulation of various biosynthetic processes, protein modification and 

processing, cellular transport and metabolic processes which comprises of various enzymes 

involved in biosynthesis of cellular components, protein modification/processing, metabolism 

and some of the known transcripts associated with zygote development (Rab11B involved in 

the biogenesis of IMC in T. gondii), zygote DNA replication (NEK2), ookinete invasion and 

motility (CTRP, MTIP, PSOP2, PSOP6, PSOP12, CDPK3, SUB2), sporozoite development 

(TRAP, IMC1a) (figure 3.7.4) (Appendix B- Table 1). However, despite the significant down-

regulation of NEK2 associated with zygote DNA replication (Reininger, Tewari et al. 2009), 

DNA contents of pclag:rab11a 4h zygotes analysed by FACS were found to be similar to 

WT-GFP 4h zygotes (figure 3.3.5). Similarly, no reduction in protein levels of Rab11B was 

detected despite the reduced amounts of rab11b steady state transcript. Rab11B is associated 

with IMC biogenesis in T. gondii (Agop-Nersesian, Egarter et al. 2010) which appears to be 

normal (figure 3.3.4 D, E). However expression of microneme proteins CTRP (also associated 

with ookinete motility) and chitinase appears to be slightly less in pclag:rab11a ookinetes 

than WT-GFP ookinetes (figure 3.10.1 J) although micronemes are formed. We were unable 

to perform the expression and localization studies of other significantly up/down-regulated 

transcripts due to unavailability of respective antisera but the cross-section of candidates 

analysed in this study shows that down regulation of steady state transcript levels might not 

accompanied by a similar down regulation of protein abundance. GO (Biological Process) 

enrichments suggested the significant up-regulation of some of the biological processes 

associated with chromosome organization and DNA replication (in pclag:rab11a gametocytes 

and spherical ookinetes, respectively) and this could account for enlarged nucleus seen in 

immunofluorescence images of most of the pclag:rab11a ookinetes as compared to WT-GFP 

ookinetes (figure 3.3.3 B, figure 3.3.4 C, E, figure 3.5.1 C and 3.10.2).   

Similar to the deregulated transcripts in pclag:rab11a gametocytes stage, almost half of the 

deregulated transcripts in pclag:rab11a ookinetes have annotated GO (Table 3.7.10 and Table 

3.7.11). GO (Biological Process) enrichment suggested major up regulation of proteolysis 
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associated biological processes and down regulation of a variety of transcripts in pclag:rab11a 

ookinetes (figure 3.7.12) consisting of transcripts of genes associated with proteolysis, 

biosynthetic processes, ribosome biogenesis and transport including some of the transcripts 

associated with sporozoite development such as thrombospondin related sporozoite protein 

(TRSP), sporozoite invasion-associated protein 1 (SIAP1) and up-regulated in infective 

sporozoites (UIS4) (Appendix B – Table 2). The appearance of sporozoite stage transcripts is 

not unexpected as the ookinete appears to re-establish the DOZI/CITH translational 

repression apparatus with a different cohort of mRNA cargo and largely similar protein 

components (M. Stewart- Waters group, unpublished data). Therefore, it appears that the 

ookinete, like the gametocyte, prepares stocks of stored mRNA to be deployed later in 

development. The down-regulation of Rab11A in the pclag:rab11a parasites appear to affect 

transcripts in gametocytes more than pclag:rab11a  ookinetes  (figure 3.7.2 A, figure 3.7.7 A 

and figure 3.8.1).  

A very high number of transcripts are deregulated 24hpa when fertilization is inhibited (i.e. in 

AUFG) than 24hpa when transcription is arrested (i.e. in TAR) (figure 3.7.7). Transcriptome 

of AUFG and TAR show almost 75% similarity with each other and, therefore, approximately 

25% variance (figure 3.7.13). This indicates that only 25% of transcriptome is important for 

development from gametocytes to ookinete stage. Additionally, AUFG also shows almost 

30.28% of DOZI/CITH stored transcripts indicating that RNA degradation mechanisms are 

inactive in absence of fertilization (figure 3.7.14). Withholding of small subgroup (i.e. 

23.74%) of DOZI/CITH stored transcripts in TAR suggests that most of the DOZI/CITH 

stored transcripts are consumed until retort growth takes place (figure 3.7.15). Our western 

also suggest that some of the translationally stored transcripts are also translated in absence of 

fertilization. GO- Biological Process enrichment suggested up and down regulation of a 

variety of biological processes (figure 3.7.19 and figure 3.7.22). 

Also pclag:rab11a ookinetes  show a very small number of deregulated transcripts (144) as 

compared to AUFG (1637) and TAR (977) (when all these three samples are compared to the 

transcriptome of WT-GFP ookinetes) indicating that the transcriptome of pclag:rab11a 

ookinetes is more similar to WT-GFP ookinetes rather than transcriptome of AUFG and TAR 

(figure 3.7.7)., however, 144 of deregulated transcripts in pclag:rab11a ookinetes mirrors the 

transcriptome pattern of AUFG  (figure 3.7.9).  
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The transcriptome pattern during gametocyte to ookinete development in pclag:rab11a and 

WT-GFP parasites is generally similar for 1212 transcripts having more or less similar fold 

changes (figure 3.8.4). These 1212 common transcripts have generally similar expression 

profile to their respective WT-GFP transcripts during gametocytes to ookinete development 

(figure 3.8.4). However, during the same developmental transition a set of 439 transcripts is 

exclusively and significantly regulated in pclag:rab11a  parasites rather than 799 transcripts in 

WT-GFP parasites (figure 3.8.4). 

Also, we tried to use several FPKM cut off values to enrich the top ‘significantly expressed 

transcripts’ in WT-GFP parasites and ‘significantly deregulated transcripts’ in pclag::rab11a 

and drug treated WT-GFP parasites (figure 3.9.2 and figure 3.9.3). Therefore, it is expected 

that determining cut off FPKM in RNA-Seq analysis is not robust tool and for that reason 

considering <25% more or less abundant transcripts in pclag::rab11a and drug treated WT-

GFP parasites (compared to respective controls) would provide a more reasonable results. 

PPKL, essential for ookinete development, motility and mosquito transmission (Guttery, 

Poulin et al. 2012, Philip, Vaikkinen et al. 2012), was expressed normally throughout post-

activation of pclag:rab11a female gametocytes, however, localization of PPKL appear to be 

cytoplasmic in pclag:rab11a ookinetes rather than focused at apical collar as in WT-GFP 

ookinetes (figure 3.10.3). Deletion of ppkl, causes defect in apical complex integrity (Philip, 

Vaikkinen et al. 2012), however, the apical complex and IMC appear normal in pclag::rab11a 

8h zygotes (Results 3.5). Therefore, PPKL appears to be at least partially functional in 

pclag::rab11a ookinetes and our analysis might imply additional functions for this protein 

phosphatase.  
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3.11.1 Conclusion  

Together, these results illustrate that pclag:rab11a zygotes are morphologically arrested and 

remain spherical. Furthermore, the expression of many of the zygote-to-ookinete development 

and structural markers is unaltered in timing, localisation and extent and therefore uncoupled 

from ookinete morphology. This independent repertoire of cellular events includes meiosis as 

the pclag:rab11a mutant showed no defect in DNA replication, however its chromosomes 

appear to remain decondensed 24 hours after fertilisation. Formation and organisation of the 

apical organelles as well as the IMC appeared to be unaffected by the absence of PbRab11A 

indicating no role for this protein in the establishment of zygote polarity in P. berghei as well 

as meiosis. Instead the defect most obviously manifests itself at the level of a failure to mature 

morphologically. 

Transcriptome data suggests that pclag:rab11a “ookinetes” are generally similar to WT-GFP 

ookinetes more so than AUFG and TAR. In absence of Rab11A mRNAs, there is slight but 

significant reduction of various transcripts having role at either ookinete maturation or at later 

stages (e.g. sporozoites) and no absolute reduction of any particular transcript or set of 

transcripts associated with ookinete development except Rab11A itself. Most of the 

significantly deregulated transcripts in pclag:rab11a gametocytes and ookinetes are not 

translationally stored. Therefore, I predict that cumulative effect of all the minor defects 

associated with either expression, delay, localization or reduction of variety of transcripts (and 

proteins) in absence of Rab11A causes morphological arrest of pclag:rab11a ookinetes. The 

pclag:rab11a “ookinetes” undertake the early landmarks of zygote development such as 

meiosis and P25/28 expression even in the absence of PbRab11A but ultimately the 

morphological transformation is not possible. Therefore, I propose that PbRab11A is required 

for morphological transformation and not for the establishment of zygote polarity in P. 

berghei. 
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3.11.2 Proposed model for role of Rab11A in P. berghei zygote development 

Based on current results and past studies, I propose a model for developmental block of 

pclag:rab11a spherical ookinetes (figure 3.11 A). ISP1 is polarised in late female zygote 

indicating pre-selection of the focal point of ookinete and deletion of ISP1 was unsuccessful 

in seven independent experiments suggesting the essentiality of ISP1 during asexual stages of 

P. berghei (Poulin, Patzewitz et al. 2013). Published data (Sebastian, Brochet et al. 2012) and 

our results (figure 3.5.1) suggest that GAP45 is also important for further development of the 

focal point, however, we assume that along with  GAP45,  Rab11A is critical for the retort 

outgrowth of P. berghei zygote. Once the focal point is marked through ISP1, GAP45 might 

start assembling at the focal point 4h post-fertilization along with as yet unknown focal point 

markers but which might include components of IMC, collar, MTOC (Mahajan, 

Selvapandiyan et al. 2008, Tran, de Leon et al. 2010, Francia and Striepen 2014) through 

which microtubules extend. Subsequently, Rab11A along with cytoskeletal components such 

as actin as well as microtubules assist in the retort shape formation. Specifically, Rab11A 

endosomes might provide plasma membrane to the growing tip or to the joint of the retort and 

the main body of the zygote (here I refer to it as the ‘neck’ region) (figure 3.11 B) and 

anticipate a role for Rab11A in the secretion, delivery of membrane synthesis components e.g. 

PI4K (McNamara, Lee et al. 2013) and other necessary proteins while donating plasma 

membrane to assist the intended morphological transformation. Along with plasma 

membrane, the Rab11A endosome might help directly or indirectly in the incorporation of 

marker(s) at the neck region (referred to here as ‘neck marker(s)’) forming a transition point 

segregating the main spherical body of the zygote from the retort outgrowth. Forces might be 

generated at the transition point that pushes the growing apical complex outwards by donating 

plasma membrane. Furthermore  the transition point ‘neck marker/s’ may act as a centre for 

pulling the plasma membrane during ookinete development, possibly during late hours to 

reorganize the last bulge of zygote and apparently to form complete a banana shape ookinete. 

In pclag::rab11a zygotes, developmental and structural markers are formed normally 

however,  due to a lack of Rab11A mediated endosomes no plasma membrane is available for 

the growing apical complex and ‘neck marker/s’ are probably mis-localized and thus no 

forces are generated and the apical bud is formed but not moved. In pclag::rab11a, GAP45 

delivered to the focal point and in the absence of a retort shape and/or absence of the 

transition point (and unknown ‘neck marker/s’ responsible for pull and push mechanism of 
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plasma membrane or deposition of GAP45 into the retort outgrowth), GAP45 is distributed all 

over the spherical pclag::rab11a zygotes (figure 3.5.1).  

It has been observed that retort outgrowth extends immediately after 6h post-fertilization in 

WT P. berghei. Hence, any membrane delivery machinery must be extremely active during 

6hpa and thus, Rab11A assisted endosomes involved in the delivery of plasma membrane and 

probably ‘neck marker/s’. And our zygote time course western results show that Rab11A is 

expressed as early as 2h post-fertilization (figure 3.1.1). This suggests PbRab11A might have 

other function(s) in addition to membrane delivery in the early hours of post-fertilization 

plausibly preparation for deposition of cell membrane synthesis machinery or microtubule 

nucleation components, as shown recently in human cells (Hehnly and Doxsey 2014), which 

might acts as ‘neck marker/s’ involved in pull and push mechanism. In addition to acts as a 

source of plasma membrane and force generation, PbRab11A vesicles might play part in the 

delivery of mRNAs to the apical complex for on-site translation (Dollar, Struckhoff et al. 

2002, Januschke, Nicolas et al. 2007). .  
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Figure 4: Proposed model Rab11A mediated delivery of plasma membrane in P. berghei.  

(A) Rab11A mediated vesicles are involved in the delivery the plasma membrane and 

transmembrane proteins to the growing tip or to the neck region of retort / zygote. These are also 

possibly involved in secretion, development and maintenance of cell shape, protein trafficking 

coordinating with cytoskeletal components. ‘Four blue dots with ?’ suggest possible numbers of 

spindle poles in a zygote (B) WT-GFP 8h retort showing possible site for membrane expansion 

either apical tip ‘a’ or neck region ‘b’.---------------------------------------------------------------------  

----
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4.0 Introduction: Fertilization and establishment of polarity 

Fertilization is a very important phenomenon of living organisms which provides opportunity for 

genetic recombination for a new life. Generally, fertilization is a multistep complex process and 

generally involves a cascade of cell signalling events comprising Cdcs, Cdks, protein kinases and 

MAP kinases as well as calcium signalling and a number of other cell components (Sato 2014), 

merging of cytoplasm, genetic recombination and the emergence of the new fertilised entity. In 

humans, (male gamete) spermatozoa need to travel through a long distance through the female 

reproductive tract and have to cross a number of barriers to fertilize with oocyte (female gamete) 

which is covered by cumulus cells embedded in a cumulus matrix (containing proteins and 

carbohydrates and rich in no-sulfated glycosaminoglycan known as hyaluronan) and the zona 

pellucida (ZP) (Anifandis, Messini et al. 2014, Gupta 2014). Sperm penetrates extracellular 

cumulus matrix via hyaluronidase (Martin-Deleon 2011) and ZP with numbers of acrosomal 

proteins (sp56 and zonadhesin) and enzymes such as acrosin protease, GPI-anchored serine 

protease-TESP and the multi-subunit proteasome having proteolytic activities which interacts 

with ZP markers (Anifandis, Messini et al. 2014). The adhesion of sperm and oocyst plasma 

membranes is mediated by various membrane molecules expressed on the surface of sperm 

(CD46, ADAM2) as well as oocyst (CD9, CD81, CD11b/CD18). Sperm surface markers 

IZUMO1 and SPESP1 have been studied in a fusion pore formation where IZUMO1 pairs with 

Juno on oocysts surface and assists in the fusion process (Anifandis, Messini et al. 2014, 

Bianchi, Doe et al. 2014, Klinovska, Sebkova et al. 2014). Similarly, in Xenopus laevis (and 

other invertebrates and amphibians) oocyst are surrounded by two glycol-protein rich 

membranes known as vitelline envelope (equivalent to ZP in mammals) made up of 

glycoproteins such as gp37, gp41, gp80 and gp120, gp69/64 and a jelly layer of J1, J2, J3 and 

allurin which is responsible for the chemotactic movement of sperm towards the oocyte. The 

feature of an oocyte being surrounded by multiple layers is conserved in many species e.g. 

nematodes C. elegans  (Johnston and Dennis 2012). Sperm surface glycoproteins interacts with 

oocyte membrane associated Src family Kinase (P57 kinase in Xenopus and Fyn, Yes and Fgr in 

mice) and activates the downstream phosphorylation and calcium signalling events for fusion to 

take place. In mice, inhibition or deletion of Fyn kinase disrupts oocyst polarity but not the 

fusion process (Luo, McGinnis et al. 2009). The exact mechanism of these events is not well 

understood, however, similar mechanisms are functional in rat, frog, sea urchin and mouse eggs 

(Sato 2014).  
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In general, fertilization in Plasmodium comprises of interactions between male and female 

gamete surface molecules, membrane fusion, nuclear fusion, and meiosis followed by 

development of the resulting zygote. Some of the molecules involved in gamete interactions and 

fusion have been studied and they appear to be physically if not necessarily functionally 

conserved, although the exact mechanisms of interactions remain poorly understood. Some of 

the molecules from either of the gametes are essential or nearly essential in fertilization. P48/45 

(van Dijk, Janse et al. 2001) and P230 surface protein of male gametes and P47 surface marker 

of female gametes (van Dijk, van Schaijk et al. 2010) play a major role in P. berghei gamete 

fertility. Although the roles of Pf230 (P. falciparum 230) and Pf48/45 appear to be conserved in 

P. falciparum, Pf47 however seems dispensable for gamete fertility (van Schaijk, van Dijk et al. 

2006) and has instead been shown to be involved in evasion of the mosquito innate immune 

system (Molina-Cruz, Garver et al. 2013) a mechanism that engages the Jun-N-terminal kinase 

(JNK) pathway (Ramphul, Garver et al. 2015). One of the well-studied molecules in plants and a 

number of other lower eukaryotic organism fertilization is GSC1 (generative cell-specific) also 

known as HAP2 has been described and shown to be essential for Plasmodium male gamete 

fusion to the female gamete (Mori, Kuroiwa et al. 2006, Liu, Tewari et al. 2008, Orias 2014).   

 

The oocytes of some of the ascidian species are polarised along the animal–vegetal axis and 

sperm entry makes significant changes to the embryo (zygote) architecture. For example, sperm 

derived centrosomes may define the posterior pole of the embryo (Sardet, Paix et al. 2007). 

Likewise, in C. elegans, the sperm entry site determines the axis of polarity. A guanosine tri-

phosphate activating protein (GAP)-CYK-4 donated by sperm, guanosine nucleotide exchange 

factor (GEF)- ect-2 and rho-1 signal for the establishment of single celled embryonic polarity 

related to the sperm entry site. CYK-4 orthologues are found in the sperm of other species (e.g. 

MgcRacGAP in Drosophila) which indicates that this phenomenon might be conserved (Sardet, 

Prodon et al. 2004, Jenkins, Saam et al. 2006). However, in the Drosophila embryo the axis of 

polarity is established before fertilization as sperm entry is guided by egg’s micropyle (Sardet, 

Prodon et al. 2004, Jenkins, Saam et al. 2006). In the rice zygote, establishment of the axis of 

polarity was studied with respect to the site of male gamete fusion. In vitro, the zygote to two 

cell embryo development suggests that male gamete fusion and surrounding environmental clues 

are necessary for the zygote to embryo development, however, the establishment of asymmetry 

(polarity) seems to be independent of the site of male gamete fusion (Okamoto 2010).   
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As an alternative approach to study the development of polarity in P. berghei ookinete, we 

assumed that the point of male gamete fusion would be the same as the point of emergence of the 

apical complex in P. berghei zygote (we call it ‘the point of fusion’ hypothesis) (see Chapter 1: 

General Introduction 1.7 for details about the hypothesis). To study this hypothesis, multiple 

fluorescently tagged P. berghei parasite lines were generated and analysis of these lines is 

ongoing. Therefore, data presented in this chapter is preliminary but details the generation of the 

necessary lines and the establishment of the experimental approach, however multiple repeats are 

important to conclude the results.       
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Figure 4.0 Hypothesis of point of gamete fusion and the point of emergence of apical bud in 

P. berghei zygotes. 

(A) Schematic of fertilization and zygote to ookinete development using membrane localized 

GFP (green fluorescent protein) male gametocytes and membrane localized mCherry female 

gametocyte producer P. berghei parasites. (B) Schematic of fertilization and zygote to ookinete 

development using membrane localized GFP male gametocytes and mCherry tagged to female 

specific marker (PPKL/ISP1/SPBP/GAP50) producer P. berghei parasite lines. M- male 

gametocyte, F- female gametocyte, Z-zygote and O- ookinete. See text for details. 
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4.1 Generation of membrane localized green male gametocyte 

producer parasites. 

A construct to generate GFP targeted to the parasite membrane under the control of a male 

specific promoter [5’UTR of PBANKA_041610, based on the 820 line by (Ponzi, Sidén-Kiamos 

et al. 2009, Mair, Lasonder et al. 2010)] was generated (see Methods 2.1.1 f for plasmid details) 

and transfected into the WT P. berghei HPTBB strain to generate green male gametocyte 

producer (GMGP) parasites (figure 4.1.1 A). It has been confirmed by live fluorescence 

microscopy that GMGP generates green gametocytes and green fluorescence appears to be 

located in the parasite membrane (figure 4.1.1 B). These green gametocytes undergo 

exflagellation to give green microgametes therefore green gametocytes deemed to be male 

gametocytes (also referred as membrane localized green male gamete producer) (figure 4.1.1 B, 

C) and no green fluorescence was observed in other developmental stages (not shown). The 

GMGP was cloned by limiting dilution into 10 mice and four clones were obtained (see Method 

2.1.2 i for cloning procedure). Diagnostic PCRs on gDNA isolated from clone 2 of GMGP 

(GMGPcl2) show appropriate integration at 5’ and 3’ end of plasmid targeted at P230p locus 

(figure 4.1.2 A). GMGPcl2 was used for further examination and was able to exflagellate 

normally (not shown) and generate a normal amount of ookinetes (figure 4.1.2 C, D).  

After confirming membrane localised green male gametocytes, GMGPcl2 was negatively 

selected to permit further genetic modification (Braks, Franke-Fayard et al. 2006, Maier, Braks 

et al. 2006, Orr, Philip et al. 2012). A mouse was infected with GMGPcl2 and parasitemia was 

monitored daily by Giemsa smears and prodrug 5-fluorocytosine (5FC) was given through 

drinking water to remove the selectable markers (yFCU and human dhfr/ts) when parasites were 

visible (parasitemia 0.156%) (See Method 2.1.2 i for negative selection). The mixed population 

of parental GMGPcl2 and negatively selected and recombined GMGPcl2 (GMGPcl2n) was 

further cloned by serial dilution. Diagnostic PCRs shows appropriate bands showing removal of 

selectable markers (yFCU and human dhfr/ts) in GMGPcl2ncl1, GMGPcl2ncl2 and 

GMGPcl2ncl3 (figure 4.1.3).  
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Figure 4.1.1 Generation of green male gametocyte producer P. berghei parasites.                

(A) Schematic representation of the generation of green male gametocyte producer (GMGP) 

parasite as described in text (B) Representative image of live fluorescence microscopy of 

membrane localized GFP in an un-activated male gametocyte (C) male gamete exflagellation 

showing green microgametes moving out of the cell body (C) Individual microgamete showing 

green fluorescence. Live images were taken on Axioplan as given in methods 2.1.2 m. Scale bar 

5 μm.  
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Figure 4.1.2 Diagnostic PCR and ookinete conversion of green male gametocyte producer 

P. berghei parasites. 

(A) Diagnostic PCR of the green male gametocyte producer-clone2 (GMGPcl2) confirming the 

appropriate integration of 5’ and 3’ end of the green male construct in WT P. berghei genome 

and absence of band corresponding to wild-type (W). (B) Giemsa images of the ookinete 

morphology of green male gametocyte producer-clone2 (GMGPcl2) and wild type parasites (C) 

Ookinete conversion rate of GMGPcl2  (n=3, mean +/-SD,  two tailed student t test, p-value 

0.505). 
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Figure 4.1.3 Negative selection of green male gametocyte producer P. berghei parasites.  

(A) Schematic representation of negative selection of green male gametocyte producers where 

prodrug 5FC selects for parasites that have removed the selectable markers yFCU and human 

dhfr/ts (B) Graph of increasing parasitemia after initial decline post-application of fresh 5FC in 

drinking water (C) PCR analysis of clones of negatively selected green male gametocyte 

producers showing correct 5’ and 3’ integration. DHC – Dynein heavy chain. 
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4.2 Generation of membrane localised green male and red female 

gametocyte producer line. 

A construct to express mCherry targeted to the parasite membrane under the regulation of a 

female specific promoter [5’UTR of PBANKA_130070, based on the 820 line by (Ponzi, Sidén-

Kiamos et al. 2009, Mair, Lasonder et al. 2010)] was generated (see Methods 2.1.1 g for plasmid 

details) and transfected into GMGPcl2ncl2. Diagnostic PCRs show appropriate integration of red 

female construct at 5’ and 3’ end (figure 4.2 A, B). The presence of green and red gametocytes 

has been confirmed by fluorescence microscopy where green and red fluorescence is located in 

the membrane of male and female gametocytes respectively (figure 4.2 C, D). Parasites with 

mCherry localised to the membrane, visualised through fluorescence microscopy of gametocyte 

enriched culture, do not exflagellate and therefore are deemed to be female gametocytes 

(Therefore, the negatively selected green male gametocyte producer clone2 with red female 

gametocyte producer is referred as GMGPcl2ncl2-RFGP or membrane localized green male 

gametocyte:: membrane localized red female gametocyte producer). Further, ookinetes obtained 

from red-green parasite show red fluorescence therefore confirming that the female gametocytes 

membrane is red and that there is little turnover of the female gamete membrane by the 

developing zygote (figure 4.2 E).     
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Figure 4.2 Generation of membrane localized green male red female P berghei parasites. 

(A) Schematic of the generation of membrane localized green male-red female P berghei 

parasites. (B) Diagnostic PCRs of (pre-cloned) green male-red female gametocyte producers 

(GMGPcl2ncl2-RFGP) showing 5’ and 3’ integration of red female and green male constructs 

(C) Membrane localised red female gametocytes after transfection of red female construct in 

GMGPcl2ncl2 and (D) membrane localized green male gametocytes in the same parasite line. 

(E) Ookinete obtained from GMGPcl2ncl2-RFGP P. berghei parasites is red. Deltavision 

deconvoluted single slice live images taken on Axioplan (see Methods 2.2.2 m for details). Scale 

5μm.  
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4.3 Generation of fluorescently tagged polarity marker lines  

Recently, it has been shown that IMC sub-compartment protein 1 (ISP1) localizes to the 

periphery of late female gametocytes (Poulin, Patzewitz et al. 2013). Also, a protein phosphatase 

PPKL (PBANKA_132950) localises to the apical prominence in the zygote as the retort stage is 

initiated (Guttery, Poulin et al. 2012, Philip, Vaikkinen et al. 2012). Furthermore, research within 

our group has suggested the localisation of GAP50 at the apical bud of the developing zygote (K. 

Hughes - Waters’ group, unpublished). The apical polar ring of the zygote/ookinete acts as an 

MTOC, therefore, to assess the delivery/development of the MTOC during the zygote to 

ookinete transition, we attempted to fluorescently tag C-terminal of Spindle Pole body protein 

(SPBP, PBANKA_040210), a marker of MTOC (Communication with Dr. O. Billker, Wellcome 

Trust Sanger Institute, Cambridge). Localization of ISP1, GAP50, PPKL and SPBP during 

zygote to ookinete development would be correlated along with the distribution of the male 

gamete membrane signal to examine the point of male gamete fusion and the characteristics of 

the emergence of the retort in the zygotes (figure 4.0). The constructs for isp1::mcherry, 

ppkl::mcherry, gap50::mcherry and spbp::mcherry have been generated (see Methods 2.1.1 h) 

and transfected into GMGPcl2ncl2 to generate following fluorescent P. berghei lines (figure 4.3 

A) to study the hypothesis that the point of male gamete fusion defines the point of emergence of 

apical bud from the zygote. The following P. berghei lines were created: 1) isp1::mcherry in 

GMGPcl2ncl2 background (GMGPcl2ncl2-isp1::mcherry) 2) ppkl::mcherry in GMPcl2ncl2 

background (GMGPcl2ncl2-ppkl::mcherry) 3) gap50::mcherry in GMPcl2ncl2 background 

(GMGPcl2ncl2-gap50::mcherry) 4) spbp::mcherry in GMPcl2ncl2 background (GMGPcl2ncl2-

spbp::mcherry). The diagnostic PCRs performed on above fluorescent parasites (pre-cloned) 

confirm the integration of isp1::mcherry, ppkl::mcherry, gap50::mcherry and spbp::mcherry 

constructs into genome of independent GMPcl2ncl2 (figure 4.3 A to E).  

However, we could not detect mCherry via fluorescence microscopy in the schizonts, 

gametocytes, zygotes or ookinetes obtained from three independently generated (pre-cloned) 

GMGPcl2ncl2-spbp::mcherry and GMGPcl2ncl2-isp1::mcherry enriched with pyrimethamine. 

Due to my inability to detect spbp::mcherry or isp1::mcherry (in GMGPcl2ncl2 background), 

we studied the point of male gamete fusion and the point emergence of apical bud hypothesis by 

recently FACS cloned (see Methods 2.1.2 s for FACS cloning) GMGPcl2ncl2-gap50::mcherry 

parasite line (Western blotting was still to be performed to detect the tagging of GAP50 with 

mCherry).  
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Figure 4.3: Generation of polarity markers P. berghei parasites.   

(A) Schematic representation of the generation of polarity marker P. berghei parasites as 

described in text. (B) Diagnostic PCR showing integration of the gap50::mcherry construct at 

the 5’ end (C) the spbp::mcherry construct as the 5’ end (D) the ppkl::mcherry construct at the 5’ 

end (E) isp1::mcherry construct as 5’ and 3’ end in the genome of GMGPcl2ncl2 parasites. W- 

Wild type, E- Episome  
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4.4 Analysis of the point of male gamete fusion hypothesis  

To assess the hypothesis that the point of male gamete fusion is the point of emergence of apical 

bud in developing ookinetes, live fluorescent microscopy was performed. Live fluorescence 

microscopy verified the apical localization of PPKL::mCherry in the ookinetes obtained from 

pre-cloned GMGPcl2ncl2-ppkl::mcherry  parasites with cytoplasmic green fluorescence possibly 

coming from the green male gamete (figure 4.4.1 A).  

Live fluorescence microscopy performed on gametocytes enriched GMGPcl2ncl2-

gap50::mcherry parasite suggests the presence of GAP50::mCherry in un-activated male 

gametocytes (figure 4.4.1 B), however, female gametocytes can be clearly differentiated from 

male gametocytes as they (female gametocytes) do not show green fluorescence. Localization of 

GAP50 in GMGPcl2ncl2-gap50::mcherry female gametocytes approximately within 30 minutes 

of activation suggesting polar localization of GAP50::mCherry and a small nucleus associated 

with green fluorescence on the surface (figure 4.4.2 A to C), probably identifying fusion of a 

green microgamete with the activated red female gamete.  At 1.5 hpa, a point of microgamete 

fusion (a green dot) is clearly visible on the surface of red zygote (figure 4.4.2 D, E). At 5hpa, 

6hpa and 8hpa, a point of microgamete fusion (a green dot) is generally noticeable on the surface 

of red zygotes and retorts (figure 4.4.2 F-i, F-ii, F-iii, G-ii, H-i), however, occasionally green 

fluorescence appears to be distributed over the surface of zygote as a smear/ multiple points 

(figure 4.4.2 F-iv, G-i, G-iii and H-ii, H-iii). At 24hpa, multiple green points were observable on 

the surface of ookinete (figure 4.4.2 I) unlike the green cytoplasmic fluorescence as in 

GMGPcl2ncl2-ppkl::mcherry ookinetes (figure 4.4.1 A).  
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Figure 4.4.1 Localization of mCherry tagged ookinete development markers.   

(A) Ookinetes of GMGPcl2ncl2-ppkl::mcherry showing PPKL localization at the apical bud. 

Live images of parasites, obtained from non-phenyhydrazine treated mouse, taken on Deltavision 

microscope - deconvoluted single slice. (B) Un-activated male gametocyte of GMGPcl2ncl2-

gap50::mcherry parasites. Deconvoluted single slice images taken on deltavision. Scale bar 3 

μm. 

 

 

 

 

GMGPcl2ncl2- 

PPKL::mCherry             GFP                    Hoechst                 Merged                  DIC  

(B) 

(A) 

GMGPcl2ncl2- 

GAP50::mCherry             GFP                    Hoechst                    DIC                    Merged  



Results and Discussion – Gamete fusion approach 

 

224 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) 

(B) 

GMGPcl2ncl2-  

GAP50::mCherry       GFP               Hoechst            Merged             

DIC  

Merged ( DIC and Hoechst)  

X                                       Y                                         

Z 

3D projection (GAP50::mCherry, Hoechst- blue, Green microgamete 

membrane)  (C

) 

X                                       Y                                         Z 

3D projection (GAP50::mCherry, Hoechst- blue, Green microgamete 

membrane)  (E) 

GMGPcl2ncl2-   

GAP50 ::mCherry       GFP               Hoechst            DIC               Merged  

(D) 

 2
0
-3
0
 m
in
u
tes p

o
st-activ

atio
n

 
1
.5
h
p
a 

Slice 15           Slice 8 



Results and Discussion – Gamete fusion approach 

 

225 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5
h
p
a 

  GAP50::mCherry, Blue-Hoechst, Green membrane of male gamete 

 (GMGPcl2ncl2-gap50::mcherry parasites) 

 GAP50::mCherry, Blue-Hoechst, Green membrane of male 

gamete 

(GMGPcl2ncl2-gap50::mcherry) 

 GAP50::mCherry, Blue-Hoechst, Green membrane of male gamete 

(GMGPcl2ncl2-gap50::mcherry) 

6
h
p

a 

8
h
p
a 

(F) 

(G

) 

(H

) 

(i) (ii) 

(iii) (iv) 

(i) (ii

) 

(iii) 

(i) (ii

) 

(iii) 

(I) 



Results and Discussion – Gamete fusion approach 

 

226 
 

 

 

 

 

 

 

 

 

Figure 4.4.2 Point of male gamete fusion with respect to point of emergence of apical bud. 

(A) Quick projection images showing a green microgamete attached (see white arrow) to red 

female gamete and (B) merged DIC and Hoechst (Deltavision deconvoluted single slice) images 

showing nucleus of male gamete attached to the surface female gamete. Slice 15 showing female 

nucleus and slice 8 showing male nucleus (see white arrow). (C) Deltavision deconvoluted 3D 

projection across X,Y and Z axis of a green male gamete attached to red female gamete shown in 

A. White arrows show nucleus of male gamete. (D) 1.5h zygote showing a green point over the 

surface of red female gamete and (E) Deltavision deconvoluted 3D projection of the 1.5h zygote 

across X,Y and Z axis. White arrows show green dots. (F) Zygote showing either a green point 

(i, ii and iii) or the green patch (iv) over the surface 5h zygote. (G) 6h retorts showing either a 

green point (ii) or the green patch/ multiple points (i and iii) over the surface. (H) 8h retorts 

showing either a green point (i) or the green patch (ii and iii) over the surface. (I) Deltavision 

deconvoluted 3D projections of ookinete across X,Y and Z axis showing green fluorescence over 

the red surface. Deconvoluted deltavision images of live parasites obtained from non-

phenyhydrazine treated mice. Scale bar 3 μm for A and D, scale bar 5 μm for B, C, E to J. 
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4.5 Discussion, challenges and outlook of fusion project   

Our results from Chapter 3 suggested that despite of knockdown of PbRab11A post-activation of 

gametocytes, the spherical cells that are presumed to be the resulting 24hpa forms still appeared 

to have a defined polarity. IMC markers and therefore the complete IMC is apically oriented 

with prominent apical bud, although clearly the banana shape morphology of the ookinete does 

not develop. Therefore, we concluded that Rab11A does not have a role in the establishment of 

zygote polarity. Hence, we would like to examine how polarity is established in Plasmodium 

zygote. One hypothesis is that the point of microgamete fusion cues for the point of emergence 

of apical bud in the P. berghei zygote. Consequently, we wanted to investigate if there is a 

correlation between the point of male gamete fusion and the emergence of focal point (apical 

bud) in the P. berghei zygote. Recently, it has been shown that polarity in P. berghei zygote is 

marked by ISP1  and that PPKL accumulated at the apical bud (Philip, Vaikkinen et al. 2012) of 

the P. berghei zygote is essential for the normal ookinete morphological development. Our 

current data show that GAP45 accumulates at the focal point at 4h zygote (Chapter 3- figure 

3.5.1). It is also known that GAP50 localizes to the apical bud during ookinete development (K. 

Hughes- Waters group, unpublished data). Therefore, it is intriguing to monitor the fertilization 

process in several parasite lines generated, to enable analysis of polarity development with 

respect to the point of microgamete fusion, are as follows: 

 

1) Membrane localized green male gametocytes::membrane localized red female 

gametocytes line (GMGPcl2ncl2-RFGP) 

2) Membrane localised green male gametocytes and ppkl::mcherry (GMGPcl2ncl2-

ppkl::mcherry) 

3) Membrane localised green male gametocytes and gap50::mcherry (GMGPcl2ncl2-

gap50::mcherry) 

4) Membrane localized green male gametocytes and isp1::mcherry (GMGPcl2ncl2-

isp1::mcherry) 

5) Membrane localized green male gametocytes and spindle pole body protein::mcherry 

(GMGPcl2ncl2-spbp::mcherry) 
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These lines were all successfully generated and verified by PCR for correct plasmid integration. 

ISP1, SPBP were not visible via fluorescence microscopy, however, molecular diagnostics PCRs 

confirmed the correct plasmid integration at at-least at one of the ends (figure 5.3.1) – a finding 

that is often typical of single cross over integration events in this parasite. Lack of fluorescence 

could be because of the low expression levels of SPBP. Furthermore, a C-terminal tag on SPBP 

might be lethal to the parasite and so alternatively, N-terminal tagging might be useful. We 

attempted to express ISP1::mCherry under the control of endogenous isp1 5’UTR and P48/45 

3’UTR, however, again we could not detect the expression of ISP1::mCherry. Therefore, 

replacing P48/45 3’UTR with those used by (Poulin, Patzewitz et al. 2013) might be beneficial to 

express ISP1::mCherry. Elimination of the episomes, parasite cloning and confirmation of 

plasmid integration at both the ends by Southern blotting, protein size confirmation by western 

blotting and perhaps even more sensitive microscopes are all needed to generate stable 

transgenic P. berghei parasites, to confirm the tag of respective proteins and to visualize 

mCherry tagged low expressing proteins. Cloning and microscopic analysis of GMGPcl2ncl2-

RFGP parasite has to be completed although the data shown here are valid since the fluorescent 

signal allows identification of the relevant parasite forms. 

  

Initial microscopy observation of the GMGPcl2ncl2-ppkl::mcherry parasites suggest localization 

of PPKL::mCherry at the apical bud of the ookinete and green fluorescence appeared 

cytoplasmic (figure 4.4.1 A). Initial microscopy experiments using GMGPcl2ncl2-

gap50::mcherry have shown that the point of male gamete fusion is generally visible until first 5 

to 6hpa and may be  different from the point of emergence of apical bud (figure 4.4.2 ), however, 

more repeats are needed with other fluorescently tagged parasite lines to confirm the correlation 

of point of male gamete fusion with the point of emergence of apical bud. Also this hypothesis 

needs to be statistically significant. Analysis by diagnostic PCRs, parasite cloning and western 

blotting of GMGPcl2ncl2-ppkl::mcherry and diagnostic PCRs and western blotting of 

GMGPcl2ncl2-gap50::mcherry has to be done although again the fluorescent signals allow valid 

observations to be made. In GMGPcl2ncl2-gap50::mcherry parasites, it appears that green point 

on the surface of red females is visible, however, the auto fluorescence seen in WT parasites (as 

shown in Chapter 3-figure 3.2.2 C,) needs to be distinguished from the real GFP fluorescence of 

male gamete membrane by keeping WT parasite as a negative control. However, keeping WT 

ookinete cultures (obtained from non-phenylhydrazine treated mice) as a control will be time 

consuming due to the low amount of production of gametocytes (Chapter 2, Methods 2.1.2 f for 
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details about phenyl hydrazine treatment) and hence lengthening the time to locate WT parasites 

in a microscopic field therefore reducing the chances of getting images at a particular time point. 

Therefore, further repeats with more than one fluorescently tagged parasite lines mentioned 

above along with fast imaging techniques or purifying zygotes with MACS columns would be 

beneficial. Along with GMGPcl2ncl2-gap50::mcherry, GMGPcl2ncl2-isp1::mcherry parasite 

line would also be better to study the point of gamete fusion as ISP1 has been shown to present 

as a single dot on the surface of female gametocytes. However, GMGPcl2ncl2-RFGP  would 

give more information about membrane fusion and would enable to study co-localization of 

green and red fluorescence of membranes. These lines will be used for further analysis of the 

fusion and integration events through more focussed microscopy analysis on live cells. To 

increase the chance of seeing the less abundant fluorescently tagged proteins that we failed to see 

on live cell imaging (such as SPBP) will be visualized in fixed cells with the use of an antibody 

raised against less abundant proteins/ raised against the fluorescent tag.   

 

From the above experiments, it seems that the point of emergence of apical bud may be different 

from point of fusion of male gamete. The point of apical budding may be chosen randomly as 

discussed in Chapter 1: General Introduction under 1.6 or may be selected at a particular angle to 

the point of male gamete fusion/axis of polarity, however, signals from male gamete such as 

Centrin-1 (H. Patil, Waters group, unpublished data) and other possible unknown markers from 

male gamete may be vital for the development of zygote into the ookinete by conceivably 

triggering, at least some of, the signalling processes essential for zygote to ookinete 

development. Clearly, studying fertilization using fluorescently tagged cell lines during the 

zygote to ookinete transition should help to understand if the point of male gamete fusion 

correlates at all with the establishment/ development of zygote polarity or activation of signalling 

pathways needed for transition into the ookinete. More experimental repeats and robust 

experiments with the tools described in this chapter will certainly shed more light on the 

fundamental question of how polarity is established in the P. berghei zygotes.  
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5.0 Future research directions 

Current results allow us to predict that Rab11A is not involved in the establishment of zygote 

polarity, mitosis, activation of stored mRNAs nor extensive reactivation of transcription but in 

the establishment of the point of outgrowth of the retort form and conceivably in the delivery of 

plasma membrane to the growing apical outgrowth which is expected to be a coordinated process 

of Rab11A mediated membrane trafficking and cytoskeletal dynamics and is also essential for 

mosquito transmission.  

Since, putting a cut off FPKM 10 in RNA-Seq data does not provide clear indication of 

up/down-regulation of transcripts, quantitative proteomic analysis of pclag::rab11a parasites and 

therefore combining proteomic data with RNA-Seq would give more clear results. 

The IMC and plasma membrane were shown to be separated by C. septicum α-toxin  treatment in 

T. gondii (Wichroski, Melton et al. 2002, Gaskins, Gilk et al. 2004) and 20h spherical zygotes of 

gap45 promoter swap have their IMC-microtubules detached from the plasma membrane 

(Sebastian, Brochet et al. 2012). This parasite line and C. septicum α-toxin treatment can be used 

to examine if Rab11A is exclusively associated with plasma membrane or IMC or both, by 

immunofluorescence microscopy including super-resolution microscopy, immunoelectron 

microscopy of fixed parasites with anti-Rab11A antibody along with either anti-IMC marker 

antibody (e.g. GAP45, GAP50) or with anti-Plasma membrane marker antibody (e.g. surface 

marker P25). 

Additionally, detergent-based extraction of microtubules from plasma membrane and IMC 

(negative staining) has been studied in the Plasmodium fallax merozoite (Aikawa 1967) and T. 

gondii tachyzoite (Lemgruber, Kloetzel et al. 2009). Our attempts to perform negative staining 

and immunoelectron microscopy on P. berghei WT ookinetes were unsuccessful. Optimization 

of these protocols for P. berghei ookinetes will permit immunoelectron and immunofluorescence 

studies with anti-Rab11A antibody and demonstrate if PbRab11A interacts with microtubules. 

Recently, (Hehnly and Doxsey 2014) has shown that Rab11 vesicles are involved in the 

extension and the organization of microtubules. Also, we noticed apically-concentrated 

localization of Rab11A similar to SPBP . Therefore, it will be interesting to study whether or not 

Rab11A vesicles are associated with microtubules extension/organization or delivery of 

microtubule components and if Rab11A colocalizes with SPBP at apical complex of P. berghei 

zygotes.  
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PI4K and Rab11A are predicted to be involved in the membrane delivery in P. falciparum during 

cytokinesis (McNamara, Lee et al. 2013). Furthermore, I propose that Rab11A endosomes 

donate plasma membrane as well as regulate morphology probably through the interaction of 

microtubules and other unknown markers during the retort outgrowth of the P. berghei zygote 

(i.e. zygote to ookinete transition). It will be interesting to examine if Rab11A endosomes are 

involved in the transport of lipids and proteins to the growing plasma membrane in P. berghei 

zygotes. mRNA transport and localized translation appear to be important for a number of 

cellular events, including axis formation, and mRNA are transported as ribonucleo-protein 

particles  [reviewed in (Donnelly, Fainzilber et al. 2010, Czaplinski 2014)]. Rab11 and Rab6 are 

predicted to be involved in the localization of osk mRNA in the Drosophila oocyte (Dollar, 

Struckhoff et al. 2002, Januschke, Nicolas et al. 2007). Similarly, whether or not Rab11A 

vesicles are involved in the transportation of (translationally stored) mRNAs to the growing 

apical bud of P. berghei zygotes can be studied by the combination of fluorescent in situ 

hybridization as well as immunofluorescence microscopy. 

Anti-PbRab11A and anti-PbRab11B antibodies raised in this study will be useful to identify 

common interacting proteins of PbRab11A and PbRab11B and can be utilized to extract Rab11A 

endosomes allowing to perform the mass spectroscopic analysis for identification of Rab11A and 

Rab11B vesicle content. Further investigations to determine Rab11A interacting proteins in 

Plasmodium will expedite the understanding of Rab11A function.  

Moreover, Rab11A tagged with fluorescent proteins such as iLOV or GFP to observe the flow of 

Rab11A containing vesicles in live zygotes and ookinetes with continuous live microscopy will 

help to understand whether or not Rab11A containing vesicles flow towards the apical complex.  

However, we are also studying the hypothesis of point of male gamete fusion with respective to 

the point of emergence of the apical bud in P. berghei zygotes. To study this hypothesis, I have 

generated some fluorescent parasite lines. Some of these lines show the development of IMC in 

growing zygotes and feasibility of the strategy of ‘point of gamete fusion’, however, more 

detailed analysis and number of experimental repeats are required to conclude whether or not the 

point of gamete fusion cues directly or indirectly for the point of emergence of the apical bud.  

It is also appealing to investigate if the surface area of young zygotes (first few hour post-

activation) is any greater than the surface area of mature banana shape ookinetes. This will allow 

to understand whether and how much additional plasma membrane is synthesized during the 

zygoe –ookinete transition. Our GMGPcl2ncl2-RFGP parasite line  may allow such 
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measurement of surface areas of young zygotes and ookinetes. Also, calculating the surface area 

of pclag::rab11a young zygotes and spherical ookinetes will allow an investigation of the 

possibility that the plasma membrane delivery system is active or mis-regulated in absence of 

Rab11A.  

Moreover, whether or not a male gamete donates any fertilization markers (such as CentrinI - H. 

Patil, unpublished data) to the female gamete, allowing zygote to coordinate cellular events, to 

establish and develop the polarity will be interesting.  

Rab11B mediated transport has been proposed to be associated with biogenesis of IMC in T. 

gondii (Agop-Nersesian, Egarter et al. 2010). Correspondingly, it is exciting to examine the roles 

of Rab11B in P. berghei zygote development.  

In summary, studying the above mechanisms will allow some of the fundamental questions 

about ookinete development to be answered, such as  

 Does quantitative proteome analysis of pclag::rab11a parasites provide more sensitive 

measure of cell morphological arrest? 

 Does Rab11A interact with microtubules, its extension and organization in P. berghei 

zygotes? 

 Is Rab11A associated with plasma membrane delivery? and does plasma membrane 

delivery take place in P. berghei zygotes? 

 Does Rab11A colocalizes with SPBP in P. berghei apical complex?  

 Is there mRNA transport and localized translation in P. berghei zygotes? and how these 

processes are regulated? 

 Which are the common and particular interacting proteins of Rab11A and Rab11B?  

 What is the content of Rab11A and Rab11B vesicles and their directionality?  

 How polarity is established and developed in P. berghei zygotes? Does the point of 

gamete fusion cue for the point of emergence of apical bud? 

 Is ookinete surface area greater than young zygote?  

 Does a male gamete donate fertilization markers to a female gamete and assist in the 

establishment and development of polarity in P. berghei zygotes? 

 Is Rab11B associated with IMC biogenesis in P. berghei zygotes? 

Answering these fundamental questions may lead to develop novel anti-transmission blocking 

strategies, and these zygote developmental processes will also be correlated with the 
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developmental events of other infectious forms of Plasmodium such as sporozoites and 

merozoites. 
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Figure 1 Basic vectors (CLC maps) used to generate plasmids mentioned in this study.    
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Number Primer sequence Restriction 

Site 

GU0013 TGCTCTAGAATGAATTTTAAATACAGTTTTATT   

GU0014 TGCTCTAGATTACATTACTATCACGTAAATAAC   

GU1504 GTAGGTACCATATTTAAACAGATTAAGTACCGAAGATAAT KpnI 

GU1505 AGACTCGAGTTTTTATCATTTGGATAATTAATTCTTATATTTATTC XhoI 

GU1507 AAGCTCGAGATGGCTATGAGTAAAGGAGAAGA XhoI 

GU1508 GATGGTACCAATACCCCAATACGAATATTTGTAACA  KpnI 

GU1509 CTAGGTACCCCCGGGTTCTATTAATAAAAAATATAAATATATGTATGTGTTAA XmaI+KpnI 

GU1515 GATGTCGACCCCTTTGTATAGTTCATCCATGCCATG SalI 

GU1587 GATGGTACCATTTTTATAAATGAAGCAATACCACATTTTTA KpnI 

GU1588 GTGCCCGGGATGGTGAGCAAGGGCGAG XmaI 

GU1589 CCTCCCGGGCGCATATCGAAATGATGCTATCA XmaI 

GU1620 TGACAAGCTTTTGGTATAAACCTAACTTCTCCAGG HindIII 

GU1621 GGATCCGCGGCCCTTTCTTATAATTACCTAAGGGC SacII 

GU1622 GGCGGTACCCTATTCCATTCACGTAAATGTTAGCA KpnI 

GU1623 CGCTGATATCCTCGAGTTTTATATCGTTTTATTTTATTAATATTTTTAATTTACAAAT EcoRV/XhoI 

GU1624 CGCTGATATCCTCGAGCAATTACCATACAATACTTATATATACACAC EcoRV/XhoI 

GU1766 CGGGATCAGCAAAAATTGATGAAAG   

GU1767 GTAGCGAATTCTACGCCTATAG   

GU1933 GATGGATCCATGGCTATGGTGAGCAAGGGCGAG BamHI 

GU1934 TGTCATATGTTACTTGTACAGCTCGTCCATG NdeI 

GU1935 CTTGAGCAGACTTCTCTATGATTAAACC   

GU1936 CATGAACGAAAATTTATATGAACAGCTACC   

GU1948 GCATGTAATTCATGTAAATGTTCCTGTGG   

GU1949 CATTCACATTTGCATTCTTGAGGGC   
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GU1950 GGTTGTGGATGTAGGGGAGCTG   

GU1951 GCATCATTGGCGCCTTTAACTTTATGG   

GU1952 GCCTGATATGGACAGTAGAACCTTTG   

GU1953 CTAAGATTAACTCCTCTTATGTTACATTCAGAACG   

GU2002 AGTGGATCCCCTCCTTTCATATTCTTTGATAAAAAAGAGGAT BamHI 

GU2003 GTAGTTGGAGATAAACCTATTTATTCGATATCAGGTTTATCCAGGGGTA EcoRV 

GU2004 TACCCCTGGATAAACCTGATATCGAATAAATAGGTTTATCTCCAACTAC EcoRV 

GU2005 TTAGCGGCCGCTTGTGGATGGAGTAAAAGGATTAA NotI 

GU2016 GACACATTTTACTTATAGAAGAAGGC   

GU2017 GGAATTGATATGGCTGTAAAGGA   

GU2020 AGTCCCGGGTTTGTATAGTTCATCCATGCCATG XmaI/SmaI 

GU2023 GGAGCTAGCTATTTAATACCTTTTTGTGTTATGTATAAATATAAC NheI 

GU2035 GAATTAAGCTGGGCTGCAGG   

GU2036 GAATTACCTGAAAAGTCACATCC   

GU2037 AAGTTTTGGTTTTAGATGCCCAG   

GU2038 CCCCACATTTAACTGATTTTCAC   

GU2039 ATGCAGCTGGCACGACAG   

GU2041 GCCCTCGCCCTCGATC   

GU2042 AAGGCTAGCATGGCTATGAGTAAAGGAGAAGA NheI 

GU2096 GGCCAGCATTGGGTCTAATA   

GU2097 GCCTTTCTCCTCCTGGAC   

GU2098 CGCTGTGTCCCAGAACATG   

GU2138 CTACTCGAGTTCTATTAATAAAAAATATAAATATATGTATGTGTTAA XhoI 

GU2139 GATCTCGAGATGGCTATGGTGAGCAAGGG XhoI 

GU2140 TGTGTCGACTTACTTGTACAGCTCGTCCATG SalI 

GU2143 CATCATCATTATTATCTTCGGTACTTAA   

GU2144 GGTACTGCATCTATATTTATAAAAAAAAATGA   
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GU2171 TGTGTCGACCTTGTACAGCTCGTCCATGC SalI 

GU2366 AAGGGTACCCAGATAACAATAATAATATTGATTCTGTTTTATTTC KpnI 

GU2367 AAGGCTAGCTATTTAATACCTTTTTGTGTTATGTATAAATATAACTA NheI 

GU2368 AGATCCGCGGATAATACGGTATTCATATAATAAATATACAAAATATATAG SacII 

GU2369 TGACAAGCTTTCAAGAAGGAAAACATGTTGGTATAAAC HindIII 

GU2370 AAGGCTAGCATGGCTATGAGTAAAGGAGAAGAAC NheI 

GU2373 GCCCCGCGGATTAACCGAAGTTTGGATAAATCATATGTAT SacII 

GU2374 ATTGGATCCAATGTTAAACATTCTGCTGTTGTTCATAC BamHI 

GU2386 AGTGGATCC TTTCATATTCTTTGATAAAAAAGAGGAT BamHI 

GU2387 ATAAAATATTTAAATAATGTATTTCCTATAAATAAATTTACAGA   

GU2388 GTTCATTTTGGAGCAGTTATATCAATGT   

GU2389 TTTTTTATTTATTTATAAGCAAATATATATTTTTATATATTTATACAC   

GU2390 ATCAATATTAATATTTTTTCTTTGTAAAATTGAATAGTGA   

GU2391 TGATTTTGCATTACTTGTTCGAAAAATTTCT   

GU2392 CGACACGGAAATGTTGAATACTCAT   

GU2393 TTGAAATAGGGATAATAAATATTCATTATAATCAG   

GU2394 ATGACGATTGTAAATTTAAAAAGCAAGATTAAT   

GU2395 TCATTATTAAGTTTATCATTATTTTTAATAAGATCGT   

GU2396 ATTTTTTTGAAATGAAAAAGTATTATTTGAACAATTATAT   

GU2402 GCCCCCGGGTTATTTGTATAGTTCATCCATGCCAT XmaI 

GU2435 CATGATATCTTTGTATAGTTCATCCATGCCATGT EcoRV 

GU2453 ATGCCCATGTTCTGGGACAC   

GU2454 CCAAGATTAGATCGATATGTAAAATTTTCAAAT   

GU2455 AGCATGCACATATAAATACATTAAACACC   

GU2456 CTTTTAACTCGATTCTATTAACAAGGGTA   

GU2457 TACCCTTGTTAATAGAATCGAGTTAAAAG   

GU2459 GCTATGGTCATATTACCATTTTTGGTAT   
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GU2460 GACCTGCAGGCATGCAAG   

GU2461 ATGAATATTTCTAAAACATTGTTTAGCGTATTTT   

GU2462 CAAATCGGAGTATATGTCTATGAATGAA   

GU2463 CGAATAGTTGCGATATTGATATAAGTC   

GU2490 GTGTGCAGTTTTTGTTTTAAATTAAATAAATAAAC   

GU2491 GCGGCTAGCATGATCGGTACCATTGAGAAGAATTT KpnI 

GU2492 CGCGATATCTACGTGGTCAGAACCATCCAG EcoRV 

GU2666 CCTAGTTATATTTATACATAACACAAAAAGG   

GU2667 GCTGCAGTATTTCATCGGCGT   

GU2857 TTACCCGGGATGTCAATGAAAGAGGATTATTACGATTA XmaI 

GU2858 TTCGCGGCCGCTCAACAGCATTTTGTTTTTGTTTTTTTTTCAT NotI 

GU2862 ATAGGTACCGTTCAAGTTAAATGTCCAAAAATTATAAAAAG KpnI 

GU2863 GTCGAATTCATATTTTCTATATTTTCGGTTGTTTGTTCATT EcoRI 

GU2864 TAGGCGGCCGCATGGGGAATATTGTATCCTGTTGTT NotI 

GU2865 CCAGGATCCTTAATTTTTTTTATAATCTCTCATAATATAAATAAATAAGTTTTT BamHI 

GU2866 CTATTTTGAGTTTTTCTTAATATATAGAGAATAAAAAATGATATCTTTATGTTTGGTGAAATATAAATATTTTTAT

ACAA 

EcoRV 

GU2867 TTGTATAAAAATATTTATATTTCACCAAACATAAAGATATCATTTTTTATTCTCTATATATTAAGAAAAACTCAAA

ATAG 

EcoRV 

GU2868 GGATACAGCAGGCCAAGAAAG   

GU2869 TTAGTTATATCATAAACTAGCAATGCCC   

GU2915 GATGTTTTTTATATATTATAGTTAAAAACTATCACG   

GU2919 ATCGGATCCTATTTTGAATAGTTTATTCTTTTATTAATAAATTTATATTCACACAAA BamHI 

GU2920 TCAGGATCCAGCAGTTAAGCAATGCTTTTTTATAAATTCATAAAA BamHI 

GU2923 TCAGATATCATCATGATGAGTAAAGGAGAAGAACTTTTCAC EcoRV 

GU2924 GAAATTATTAGTGATGAAAAAGAAATATATGAATT   

GU2925 GATTTTATTTTTTGTCACAAGATTTTGCTG   

GU2926 TATTTGGTGATGGAATGGCAAAATC   
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GU2927 GCACTTGCTTTGTTTTACTCAAAAAG   

GU2928 ACGACCAGACACACCGGT   

GU2929 TGTAAACTTAAGCATAAAGAGCTCG   

GU2989 CAAATTAGAGAAGAAATTAAGTAAATAAATGTATA   

GU2990 AATATATATTAGTCAAAGAATGTTGAGATAAAG   

GU2991 AGTTGGTGAATGAAATAAGATCATGG   

GU2992 ATTAGGTTTGTTTAAAAATGCATGAAGCTA   

GU2993 GTTGAATCTCTTGCCGACTGAT   

GU2994 TATTTTATTTCCACAATATTTATTTATTATTTATTGTTGA   

GU2995 TGATACCGCGAGACCCAC   

GU2996 CGGCCGCATGGGGAATAT   

 

Table 2 Total primers used for PCR amplifications, generation of plasmids and diagnostic PCRs. 
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Gene ID Description Log2(fold change) at 

gametocytes stage  

Log2(fold change) at 

ookinete stage 

(WT-GFP v 

pclag::rab11a) 

(WT-GFP v 

pclag::rab11a) 

PBANKA_051500 25 kDa ookinete surface antigen precursor (P25) - - 

PBANKA_051490 28 kDa ookinete surface protein (P28) - - 

PBANKA_145930 actin I - - 

PBANKA_050510 ADP-ribosylation factor, putative (ARF1) - - 

PBANKA_041770 alpha tubulin 1 - - 

PBANKA_052270 alpha tubulin 2 - - 

PBANKA_121770 ATP-dependent RNA Helicase (DOZI) - - 

PBANKA_080050 chitinase (CHT1)   -* - 

PBANKA_041290 circumsporozoite- and TRAP-related protein (CTRP) -1.26508 - 

PBANKA_110990 conserved Plasmodium protein, unknown function - - 

PBANKA_136440 conserved Plasmodium protein, unknown function -1.53257 - 

PBANKA_093210 DHHC-type zinc finger protein, putative - - 

PBANKA_121430 enolase, putative (ENO) - - 
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PBANKA_133890 glideosome associated protein with multiple membrane 

spans 1, putative (GAPM1) 

- - 

PBANKA_052390 glideosome associated protein with multiple membrane 

spans 2, putative (GAPM2) 

- - 

PBANKA_103540 glideosome associated protein with multiple membrane 

spans 3, putative (GAPM3) 

-1.61416 - 

PBANKA_111530 glideosome-associated protein 40, putative (GAP40) - - 

PBANKA_143760 glideosome-associated protein 45, putative - - 

PBANKA_122330 GTPase, Rab18, putative - - 

PBANKA_040260 inner membrane complex protein 1a (IMC1a) -1.55766   -
+
 

PBANKA_090710 inner membrane complex protein 1b (IMC1b) - - 

PBANKA_143660 inner membrane complex protein 1h (IMC1h) - - 

PBANKA_120940 inner membrane complex protein, putative - - 

PBANKA_123730 inner membrane complex protein, putative - - 

PBANKA_132430 inner membrane complex protein, putative - - 

PBANKA_135850 inner membrane complex protein, putative   -* - 

PBANKA_040270 membrane skeletal protein, putative - - 

PBANKA_120200 membrane skeletal protein, putative - - 
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PBANKA_124060 membrane skeletal protein, putative - - 

PBANKA_135570 myosin A (MyoA) - - 

PBANKA_145950 myosin light chain 1, putative,myosin A tail domain 

interacting protein MTIP, putative (MTIP) 

-1.70637 - 

PBANKA_132950 protein phosphatase containing kelch-like domains 

(PPKL) 

- - 

PBANKA_141890 Rab GTPase 11a (Rab11a) -3.40816 - 

PBANKA_135410 Rab GTPase 11b -1.26062 - 

PBANKA_111350 Rab1a, putative - - 

PBANKA_111230 Rab1b, putative - - 

PBANKA_030800 Rab5a, GTPase, putative - - 

PBANKA_140910 Rab5b, GTPase, putative - - 

PBANKA_020650 Rab5c, GTPase, putative - - 

PBANKA_090410 Rab6 - - 

PBANKA_081900 secreted acid phosphatase, putative,glideosome-

associated protein 50, putative (GAP50) 

- - 

PBANKA_144580 small GTPase Rab2, putative - - 

PBANKA_130130 trailer hitch homolog, putative (CITH) - - 



Appendix 

 

282 
 

PBANKA_092730 zinc finger, DHHC-type, putative - - 

PBANKA_040820 calcium-dependent protein kinse 3 (CDPK3) -1.02298 -0.29378 

 

Table 2 Selected 45 transcripts containing surface markers, secretory proteins, IMC and glideosome associated proteins and Rabs.   

Only one out of these 45 transcripts is deregulated in pclag::rab11a ookinete stage as compared to the transcriptome of WT-GFP ookinete. 

Only eight out of these 45 transcripts are deregulated in pclag::rab11a gametocyte stage as compared to the transcriptome of WT-GFP 

gametocytes. 

* Not detected in gametocyte stage (pclag::rab11a as well as WT-GFP) 

+ Not detected in ookinete stage (pclag::rab11a as well as WT-GFP)
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7.2 Appendix B 

Please check the CD provided with this thesis. 

Contents of CD 

1. Table 1 to 6 RNA-Seq data in MS Excel 

2. A PDF version of this thesis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 


