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GENERAL INTRODUCTION   1 

1 General Introduction 

1.1 Emotion Perception in Infancy 

Communication is one of the most important aspects of the social human life. Through 

communication we share our thoughts, intentions and feelings with others. In our daily 

interactions we communicate through spoken language but also heavily rely on other verbal 

and nonverbal signals when conveying information to another person. For example, our words 

are accompanied by emotional vocal expressions and non-verbal signals such as facial and 

body expressions. In general, the expression of emotions is highly adaptive as it provides a 

rich source of information regarding one’s own intentions and feelings (Darwin, 2009/1872). 

The ability to then recognize those inner states is an essential social skill that allows us to 

adequately respond to others’ needs (Frith, 2009; Izard, 1977), thus contributing to our social 

relationships. 

From birth, infants are interested in the social world and have a high preference to 

orient towards social signals, such as faces and voices (Ecklund-Flores & Turkewitz, 1996; 

Johnson, Dziurawiec, Ellis, & Morton, 1991). Within the first year infants not only show 

various emotional expressions themselves, but also develop the ability to detect and 

distinguish between emotions expressed by others (see de Haan & Matheson, 2009 for 

review). A host of behavioral studies has been conducted to study infants’ emerging 

sensitivity to emotional signals. In particular, infants’ ability to discriminate, categorize, and 

recognize emotions has been investigated (see Walker-Andrews, 1997 for review). More 

recently work has begun to focus on the brain processes that underlie emotion perception in 

infancy. For example, infant neural responses to a variety of emotional facial and vocal 

expressions were investigated in order to extend behavioral findings (de Haan & Matheson, 

2009; Grossmann, 2013a). While previous research has provided important insights into how 
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infants process emotions, there are several remaining questions. Past research on infants’ 

emotion perception mainly used samples of the basic emotions, such as happiness, anger and 

fear (LaBarbera, Izard, Vietze, & Parisi, 1976; Nelson & de Haan, 1996; Nelson & Dolgin, 

1985; Peltola, Leppänen, Mäki, & Hietanen, 2009; Soken & Pick, 1992). However, very little 

is known about other emotions, or whether infants can discriminate between negative 

emotional expressions. For example, it is currently unclear how infants process facial 

expressions of pain and whether they can distinguish them from other negative expressions. 

Previous research with infants and toddlers in the second year of life focused on behavioral 

responses to others in distress (expressing pain) (Bandstra, Chambers, McGrath, & Moore, 

2011; Young, Fox, & Zahn-Waxler, 1999; Zahn-Waxler, Radke-Yarrow, Wagner, & 

Chapman, 1992). However, whether infants in the first year of life are able to discriminate 

pain from other facial expressions and how this process manifests itself in the brain has yet to 

be studied. Furthermore, studies investigating emotion perception focused on the perception 

of facial and vocal expressions. However, in our daily interactions we do not express 

emotions only via the face and the voice but use our body movements and postures to 

communicate emotional states. While there is recent behavioral work examining the 

perception of emotions from body expressions (Zieber, Kangas, Hock, & Bhatt, 2014b), its 

neural correlates are yet to be determined. Moreover, the majority of previous infant studies 

mostly used static displays to investigate emotion perception. The perception of emotion from 

dynamic expressions is an important extension of this work, because it provides a way to 

present infants with more ecologically valid emotional stimuli (Hess & Blairy, 2001; Kilts, 

Egan, Gideon, Ely, & Hoffman, 2003). 

The next sections aim to describe infants’ developing ability to perceive emotions from 

facial expressions (1.2) and from body expressions (1.3) by reviewing empirical behavioral 

and neural evidence. In the following section (1.4) the research questions are formulated with 
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respect to the previous findings. In Chapter 2 the method is described with an introduction to 

EEG/ERP as well as frontal EEG asymmetry in the alpha frequency band. The following 

empirical Chapters 3 to 6 contain the studies that contributed to this thesis. In Chapter 7, the 

current findings are summarized and discussed in the context of previous neurophysiological 

and behavioral studies on emotion perception in infancy. 

1.2 Emotion Perception from Faces 

Research on infants’ emotion perception from faces has a long tradition (see Nelson, 

1987 for review). More generally, perception can be defined as a process to obtain 

information about our environment, making inferences about what we see and hear in order to 

understand the situation and allowing us to interact in the social world (Gibson, 1988; Gordon, 

2004). With respect to infant research on emotion perception, studies mainly investigated 

whether infants are able to discriminate, categorize, and recognize emotional expressions (see 

Walker-Andrews, 1997). Discrimination can be defined as the ability to perceive differences 

between two or more stimuli, while categorization refers to the ability to recognize that 

certain stimuli belong to the same group even if they are expressed in different ways or by 

different people, e.g. different variants of expressing happiness in the face all belong to the 

group of happy expressions (de Haan & Nelson, 1997a; Quinn & Slater, 2003). Emotion 

recognition refers to the capacity of identifying emotions in others, including the 

understanding of the meaning of the expression (Walker-Andrews, 1997). This in turn, 

provides us with information about others’ intentions and inner states during social 

interactions (Bornstein & Arterberry, 2003; Frijda, 1969). For example, viewing a person 

expressing fear in response to an object or event signals that this stimulus might be harmful 

and should therefore be avoided (L. J. Carver & Cornew, 2009). 
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Infant research made use of a variety of methods to approach emotion perception 

including behavioral techniques, such as familiarization, visual preference tasks, or 

habituation paradigms (Nelson & Dolgin, 1985; Nelson, Morse, & Leavitt, 1979; Walker-

Andrews, 1997). In contrast to the behavioral measurement of emotion perception event-

related-brain potentials (ERPs), which offer a good temporal resolution, are examined in order 

to study the neural processes involved in emotion perception (e.g.,  de Haan & Matheson, 

2009; de Haan & Nelson, 1997a). Most recently functional near-infrared spectroscopy 

(fNIRS), which offer a good spatial resolution, has been used to investigate the activation of 

brain areas during various tasks by measuring hemodynamic responses in the infant brain 

(Aslin & Mehler, 2005; Lloyd-Fox, Blasi, & Elwell, 2010).  

Facial expressions are one of the most important means to convey social signals and 

providing cues to guide our behavior during social interactions (Frith, 2009; Izard, 1977, 

2007). Facial communication is also thought to serve as a vital basis for early mother and 

child attachment and bonding (Bowlby, 1969). Within hours after birth infants preferentially 

orient to faces (Goren, Sarty, & Wu, 1974; Johnson et al., 1991) and despite newborns’ low 

visual acuity, at close distance, newborn infants are able to detect salient facial features such 

as eyes, nose and mouth (Ramsey-Rennels & Langlois, 2007). Newborns’ face preferences 

suggest that their perception is tuned to the characteristic structural configuration of faces 

(Johnson, 2005; Morton & Johnson, 1991). Within the first days infants also preferentially 

attend to their mothers face over a strangers face (Bushnell, 2001; Bushnell, Sai, & Mullin, 

1989; Walker-Andrews & Dickson, 1997). However, this early recognition of their mother’s 

face appears to be based on information from the outer contour of the head and the hairline, in 

addition to the internal configuration of eyes, nose and mouth (Bushnell et al., 1989). Only by 

the age of 6 months, when visual acuity and contrast sensitivity improves significantly and 

reaches adult-like levels (Gwiazda, Bauer, & Held, 1989), infants ability to discern fine detail, 
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such as distances between eyes and eyebrows, develops, which is important to detect 

differences between facial expressions (Hainline & Abramov, 1992). 

1.2.1 Emotion Perception from Faces – Behavioral Evidence 

There is some evidence to suggest that shortly after birth newborns are able to 

discriminate between some facial expressions, such as happy, sad or surprised faces (Field, 

Woodson, Greenberg, & Cohen, 1982). However, subsequent work has failed to replicate 

these findings (Kaitz, Meschulach-Sarfaty, Auerbach, & Eidelman, 1988). This is in line with 

the host of behavioral studies indicating that the ability to detect and discriminate emotional 

facial expressions develops during the first year of life (Barrera & Maurer, 1981; LaBarbera et 

al., 1976; Schwartz, Izard, & Ansul, 1985; Young-Browne, Rosenfeld, & Horowitz, 1977). 

For example, 3-month-old infants discriminated smiling (happy) from frowning (angry) faces 

(Barrera & Maurer, 1981), happy from surprised faces and happy from sad expressions 

(Young-Browne et al., 1977). Moreover, Schwartz and colleagues (1985) showed that some 

5-month-old infants can visually discriminate angry, sad and fearful facial expressions. In a 

study by LaBarbera and colleagues (1976) 4- to 6-month-old infants looked longer to a happy 

face than to an angry or neutral expression, indicating that they discriminate happy 

expressions from the other expressions. With the age of 6 months infants reliably also 

distinguish between varying intensities of sad and happy facial expressions (Striano, Brennan, 

& Vanman, 2002). By 7 months of age, infants look longer at fearful expressions than at 

happy expressions as shown in a visual preference test (Nelson & Dolgin, 1985). 

That infants can discriminate between various facial expressions does not necessarily 

imply that they are able to categorize facial expressions. Infants need to grasp that a particular 

emotional facial expression belongs to the same category, independent of the individual who 

shows it and regardless of the intensity of the expression. In studies that investigate these 
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categorization abilities, multiple exemplars of the same category are presented and infants are 

tested with a new exemplar of the familiarized category or a new exemplar from a different 

category (Bornstein & Arterberry, 2003; de Haan & Nelson, 1998; Walker-Andrews, 1997). 

Although both stimuli are novel to the infants, it is assumed that, if infants have formed a 

category of the expression, the time they spent looking at the stimulus should only increase to 

the new exemplar of the novel category (de Haan & Nelson, 1998). For example, in a study 

by Nelson and colleagues (1979), 7-month-old infants were familiarized with happy 

expressions posed by two actresses. After the familiarization phase infants were shown a new 

actress posing either a happy or a fearful facial expression. In this study, infants looked longer 

to the fearful expression than to the happy expressions, indicating that they represent 

emotional information at the categorical level. However, when infants were first familiarized 

with fearful expressions they did not show this categorization ability (Nelson et al., 1979), 

suggesting that they can categorize happy but not fearful expressions at this age. That 7-

month-old infants can recognize the similarity of happy facial expressions over changing 

identities has been further demonstrated in a study by Kestenbaum and Nelson (1990). In 

another study, 7-month-old infants showed also the ability to categorize happy facial 

expressions of varying intensity (Kotsoni, de Haan, & Johnson, 2001). To summarize these 

results, infants at the age of 7 months rely on categorical information when perceiving happy 

facial expressions.  

Towards the end of the first year, when infants start to locomote and explore the 

environment they begin to use others’ expressions which later on will guide their behavior 

(Moses, Baldwin, Rosicky, & Tidball, 2001; Mumme, Fernald, & Herrera, 1996). This is the 

best evidence to suggest that, beyond discriminating and categorizing emotions, infants begin 

to grasp the meaning of facial expressions. The phenomenon that infants use others’ 

emotional expressions is referred to as social referencing (Campos & Stenberg, 1981; 
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Klinnert, Campos, Sorce, Emde, & Svejda, 1983). For example, in a study by Mumme and 

Fernald (2003) 12-month-old infants were shown an experimenter on a television screen 

expressing happy, fear, or neutral facial and vocal signs towards a novel toy (target) while 

another novel toy was ignored. Then, these novel toys were presented to the infants, and 

infants’ interactions with the toys were examined. No differences in interactions with the 

target were found when comparing happy and neutral conditions, whereas in the fear 

condition infants avoided the target more often when compared with the neutral condition 

(Mumme & Fernald, 2003). More evidence for infants being able to recognize facial 

expressions around this age comes from behavioral work showing that infants can integrate 

emotional information across modalities (face and voice) (Walker-Andrews, 1997).  

1.2.2 Emotion Perception from Faces – Neural Evidence 

From a neuroscience perspective, neuroimaging studies using functional magnetic 

resonance imaging (fMRI) with adults have identified a face sensitive region in the fusiform 

gyrus, the fusiform face area (FFA), which is activated more strongly by passive viewing of 

faces compared to objects (Kanwisher, McDermott, & Chun, 1997; Kanwisher & Yovel, 

2006). In addition to the FFA, the superior temporal sulcus (STS) and the inferior and middle 

occipital gyri show selective activations during face processing (Haxby et al., 1999; 

Kanwisher et al., 1997). FFA and STS are sensitive to durable characteristics of a face and 

changeable (dynamic) aspects of faces, respectively (Haxby et al., 1999).With respect to 

detecting emotional information from faces, adult research has demonstrated selective 

activation in the medial prefrontal cortex (mPFC), orbito-frontal cortex (OFC), the insula, and 

the amygdala, especially in response to fearful facial expressions (Adolphs, 2002; Hornak, 

Rolls, & Wade, 1996; Vuilleumier, Armony, Driver, & Dolan, 2001). 
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The use of functional neuroimaging techniques such as fMRI is limited for studying 

emotion perception in infancy, because they require the participant not to move and expose 

them to a fairly noisy environment. However, EEG and fNIRS are methods well suited to 

study the neural correlates of emotion perception in infancy, because they do not suffer from 

these limiting factors. There is evidence to suggest that cortical processes involved in face and 

emotion perception are functional during infancy (Grossmann & Johnson, 2007). With respect 

to emotion perception, infant ERP studies provide neural evidence for infants’ ability to 

discriminate between various emotional facial expressions (Grossmann, Striano, & Friederici, 

2007a; Kobiella, Grossmann, Reid, & Striano, 2008; Nelson & de Haan, 1996). For example, 

in a study by Nelson and de Haan (1996), 7-month-old infants’ ERPs were measured in 

response to happy and fearful facial expressions. Fearful facial expressions elicited an 

enhanced negative component (Nc) at 370 to 680 ms when compared to happy expressions 

(Nelson & de Haan, 1996). The Nc is a negative deflection that has its maximum at frontal 

and central electrode sites and has been associated with greater orientation and increased 

attention allocation to the stimulus (Reynolds & Richards, 2005). On this basis Nelson and de 

Haan (1996) concluded that infants allocate more attention towards fearful facial expressions 

compared to happy facial expressions. Moreover, the results of this study showed that happy 

facial expressions elicited a larger positivity (Pc) during a later time window of 680 to 1280 

ms at frontal, central and parietal electrodes when compared to fearful expressions. This 

enhanced late positive component evoked by viewing happy facial expressions is thought to 

reflect processes associated with recognition memory for happy facial expressions (Nelson & 

de Haan, 1996). 

Building on this prior study, Peltola and colleagues (2009) measured ERPs in 5- and 

7-month-old infants when infants were presented with happy and fearful facial expressions in 

order to investigate when sensitive responding to fearful facial expressions emerges. Critically, 
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only in 7-month-old infants, but not in 5-month-old infants, fearful facial expressions elicited 

an increased Nc between 350 to 600 ms compared to happy expressions. This suggests that 

infants’ increased attention to fearful faces emerges between 5 and 7 months of age (Peltola et 

al., 2009). This is indicative of an important change in infants’ emotion perception skills 

during the first year (see Grossmann, Striano, & Friederici, 2007, for evidence how the 

perception of angry faces follows a different time course in infancy).  

There is also evidence that infants at the age of 7 months can distinguish between 

different negative facial expressions. Specifically, in a study by Kobiella and colleagues 

(2008), 7-month-old infants were presented with angry and fearful facial expressions and 

ERPs were measured. Angry facial expression elicited a larger Nc at fronto-central electrodes 

between 300 to 600 ms indicating greater attention allocation to angry when compared to 

fearful expressions (Kobiella et al., 2008). 

To summarize, these findings demonstrate that around the age of 7 months, infants’ 

ERP responses differ between various emotional facial expressions. This is in congruence 

with prior results from behavioral research. The research reviewed here suggests that, by the 

age of 7 months, infants (a) can discriminate between positive and negative emotions (i.e., 

happy and fearful facial expressions), as well as between some negative expressions (i.e., 

angry and fearful expressions) as reflected in the Nc and (b) recognize positive facial 

expressions as reflected in the Pc.  

1.3 Emotion Perception from Bodies 

Similar to facial expressions, body expressions provide an important means of 

communicating information regarding the intentions and emotional states of a person (Argyle, 

1988; de Gelder, 2009; Walk & Homan, 1984). From an evolutionary point of view, body 

expressions are argued to be the most immediate and phylogenetically preserved way of 
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expressing emotions essential to communicating affect, especially over larger distances when 

one cannot see the precise expression in the face (de Gelder, 2009). Adults are able to readily 

detect various emotions from body expressions (Coulson, 2004; Shaarani & Romano, 2007). 

This has also been shown in studies using point-light displays (PLDs)
1
 of body expressions 

that only provide little information about the body shape (Atkinson, Dittrich, Gemmell, & 

Young, 2004; Atkinson, Tunstall, & Dittrich, 2007; Atkinson, Vuong, & Smithson, 2012). 

Similar to what is known about the perception of faces, fMRI studies with adults show 

that the perception of human bodies is associated with specific brain areas. For example, the 

extrastriate body area (EBA) is more strongly activated during the perception of human 

bodies and body parts compared to other objects including faces (Downing, Jiang, Shuman, & 

Kanwisher, 2001). Another brain area that was identified to be sensitive to the human body is 

the fusiform body area (FBA). Specifically, the FBA is more activated to the whole body 

form than only to parts of the body (Taylor, Wiggett, & Downing, 2007) and plays a role 

when distinguishing between familiar and unfamiliar bodies (Hodzic, Kaas, Muckli, Stirn, & 

Singer, 2009). This work suggests that faces and bodies are processed in adjacent and 

overlapping but distinct networks that are part of the fusiform gyrus (Peelen & Downing, 

2005).  

Emotional body expressions have been found to elicit increased amygdala activation 

when participants were presented with fearful, angry or neutral bodies (Hadjikhani & de 

Gelder, 2003; Pichon, de Gelder, & Grèzes, 2008, 2009; van de Riet, Grèzes, & de Gelder, 

2009). Brain imaging studies with patients and healthy adults showed that the ability to 

recognize emotions from body expressions relies on specific brain processes in the right 

hemisphere, such as right temporo-parietal junctions, right temporal pole and lateral orbital 

cortex (Grèzes, Pichon, & de Gelder, 2007; Heberlein, Adolphs, Tranel, & Damasio, 2004; 

                                                           
1
 Point-light displays (PLDs) are illuminated moving dots that reflect the motion of the major key joints of a 

moving character. PLDs were first invented and described by Gunnar Johansson in 1973. 
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Heberlein & Saxe, 2005). Furthermore, areas that have been associated with structural 

encoding of bodies (EBA and FBA) are modulated by emotional body expressions (Peelen, 

Atkinson, Andersson, & Vuilleumier, 2007). 

From a developmental perspective, infant research on body expressions primarily 

focused on infants’ perception of biological motion but not on the perception of emotional 

information. In behavioral studies, it has been shown that from very early on in development 

infants prefer biological motion (i.e., a walking hen), over non-biological (i.e., randomly 

drifting dots) (Johansson, 1973; Simion et al., 2008). This preference for biological motion is 

also orientation specific as newborns prefer upright over inverted biological motion (see 

Bertenthal, 1993 for reviews; Simion et al., 2008). 

Infants’ perception of biological motion has also been examined in ERP studies (Hirai 

& Hiraki, 2005; Reid, Hoehl, & Striano, 2006). In a study by Hirai and Hiraki (2005), 8-

month-old infants were presented with biological and scrambled motion displays. The results 

of this study showed that the amplitude in response to biological motion was more negative at 

right hemisphere occipito-temporal electrodes after 200 to 300 ms compared to scrambled 

motion displays (Hirai & Hiraki, 2005). In another study by Reid and colleagues (2006), 8-

month-old infants were shown upright and inverted PLDs depicting human movement. In 

response to upright presented PLDs a larger positive amplitude was observed at right parietal 

electrodes between 200 and 300 ms when compared to inverted PLDs (Reid et al., 2006). 

Although the ERP responses differed with respect to the direction of the amplitude 

modulation (positive vs. negative deflection), the results generally indicate that the infant 

brain develops brain processes that are specialized in detecting upright body expressions that 

involve the structural information typical for the human body. In addition, these ERP results 

support the notion that the processing of body movement is lateralized to the right hemisphere. 
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With regard to infants’ perception of emotions from bodies so far only one behavioral 

study has addressed the discrimination of emotions when viewing body expressions (Zieber et 

al., 2014b). In this study, a paired-comparison looking procedure was applied in order to test 

6.5-month-old infants looking behavior when they viewed videos of upright and inverted 

happy and neutral full-light body expressions (Zieber et al., 2014b). Infants preferred the 

happy expressions over the neutral expressions but only when they were presented in an 

upright orientation. In a second experiment, 6.5-month-old infants heard either a happy or an 

angry vocalization (i.e., laughing or grunting) while viewing videos of upright and inverted 

happy and angry full-light body expressions. The results indicated that infants were able to 

match happy and angry body expressions to the corresponding vocalization when the 

expressions were presented in an upright orientation but not when they were inverted. These 

findings suggest that 6.5-month-old infants are sensitive to bodily expressed emotions and are 

able to match them to corresponding affective vocalizations (Zieber et al., 2014b). However, 

to the best of our knowledge, hitherto no study has investigated the neural underpinnings of 

emotional body processing. 

1.4 Present Studies/ Research Questions 

The major aim of this dissertation was to contribute to the understanding of how the 

infant brain processes emotional signals. Specifically, the focus was on investigating the 

neural bases of infants’ emotion perception from others’ emotional facial and body 

expressions using EEG. Based on and expanding upon the existing work reviewed in the 

introduction, I will present four empirical studies examining infants’ processing of emotional 

facial (Study 1) and body expressions (Studies 2, 3 and 4). The research questions addressed 

in these four studies will now be briefly outlined.  
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Study 1: Facial expressions. Much work has addressed infants’ perception of emotional facial 

expressions at both behavioral and neural levels. These studies approached infants’ perception 

of positive and negative expressions by relying on basic emotions, such as the expression of 

happiness, sadness, fear or anger. However, one facial expression that has been greatly 

neglected in infant research is the facial expression of pain. Pain is not considered to be a 

basic emotion, but nonetheless constitutes an unpleasant affective state that is associated with 

a facial expression distinct from other basic emotions (Williams, 2002). From a 

developmental perspective the perception of pain in others has mainly been assessed in 

studies on the development of empathic responding in the second year of life (Eisenberg, 

2000; Eisenberg, Fabes, & Spinrad, 2006; Zahn-Waxler et al., 1992). But how infants in the 

first year of life process the facial expression of pain and whether they are able to discriminate 

it from other negative emotional expressions, such as anger, has not been studied so far. 

Moreover, how does the neural processing of pain and anger facial expressions compare 

between infants and adults? And, how do individual differences, especially infant 

temperament and adult dispositional empathy impact the brain responses to these expressions? 

In order to address these questions a multi-measure approach was applied by combining 

EEG/ERPs, frontal EEG alpha asymmetry and the assessment of individual differences 

through questionnaires. Specifically, in the first study of this dissertation, 8-month-old infants’ 

processing of pain and anger facial expressions was examined by measuring infants’ ERP 

responses. In order to compare infants’ brain responses to the mature processing in adults, 

ERPs were examined in adults in response to the same expressions. To assess individual 

differences we obtained information about dispositional empathy in adults and infant 

temperament using questionnaires. As opposed to previous studies that mainly used static 

displays of emotional facial expressions, in the present study, dynamic facial expressions 

were presented, which provide a more naturalistic representation of these emotions.  
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In addition, we examined whether the perception of pain and anger facial expressions 

would elicit brain processes that are linked to motivational processes. Previous studies with 

adults and infants measuring asymmetrical frontal brain activity in the alpha frequency band 

suggest that the lateralization of frontal cortical activity can be seen as an index of the 

experience of certain motivational states, namely, approach and withdrawal tendencies 

(Davidson, 1984; Davidson & Fox, 1982; Harmon-Jones, 2003). Furthermore, studies have 

demonstrated that frontal EEG asymmetry might be involved in moderating emotional 

experiencing and perception (Coan & Allen, 2004; Davidson, 1992; Davidson, Ekman, Saron, 

Senulis, & Friesen, 1990; Harmon-Jones & Allen, 1998; Harmon-Jones, Gable, & Peterson, 

2010). The question arises whether the observation of emotional facial expressions is 

associated with changes in asymmetrical frontal brain activity? 

Study 2: Body expressions (dynamic displays). In the second study, we investigated at what 

point during development the infant brain becomes tuned to emotional body expressions. 

Reading others’ emotional body expressions is an essential social skill and adults are readily 

able to recognize emotions from body movements and postures (Atkinson, 2013; Atkinson et 

al., 2004; de Gelder, 2009). However, it is unclear when in development the infant brain 

becomes sensitive to bodily expressed emotions. Hitherto, only one behavioral study has 

examined whether infants are able to distinguish between emotional body expressions. 

Namely, Zieber and colleagues (2014b) have shown that 6.5-month-old infants discriminate 

happy dynamic body expressions from neutral expressions and are able to match happy and 

angry body expressions to corresponding vocalizations. However, the underlying neural 

correlates that contribute to this ability have not been studied so far. Furthermore, it is unclear 

whether (a) infants are to able to discriminate between other emotional body expressions such 

as happy and fearful bodies, (b) when during development this ability arises, and (c) whether 

the perception of emotional body expressions is specifically tuned to upright bodies. 
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Therefore, in the second study of this dissertation, ERPs were measured in 4-and 8-month-old 

infants in response to happy and fearful body expressions using PLDs presented in two 

orientations, upright and inverted. On the basis of prior work on facial expressions processing 

in infancy (Leppänen et al., 2009), we predicted that 8-month-old infants, but not 4-month-old 

infants, would show distinct brain responses to emotional body expressions. We also 

predicted that infants’ discrimination between emotions would mainly be evident in the 

upright condition but not in the inverted condition, because prior work with adults and infants 

has demonstrated that the perception of body expressions is impaired by stimulus inversion 

(Atkinson et al., 2007; Stekelenburg & de Gelder, 2004; Zieber et al., 2014b). 

Study 3: Body expressions (static displays). In the third study, we addressed the question 

whether infants are able to discriminate between static emotional body expressions as an 

extension of Study 2. It is unknown whether infants at the age of 8-months are able to detect 

differences between emotional body expressions in the absence of motion cues as it has been 

shown in adults (Atkinson et al., 2004). Therefore, 8-month-old infants were presented with 

static happy and fearful full-light body expressions in two orientations, upright and inverted. 

We predicted that, similar to Study 2, 8-month-old infants would be able to discriminate 

between static emotional body expressions. However, since in Study 3 static displays as 

compared to Study 2 (dynamic displays; PLDs) were presented, we predicted that the neural 

correlates might differ in timing and topography when compared between studies.  

Study 4: Body expressions (dynamic displays) and frontal EEG alpha asymmetry. After 

assessing the perception of emotional information, specifically the discrimination between 

emotional expressions through faces and bodies (Study 1, 2, and 3), in the fourth study, we 

examined whether the observation of emotional body expressions elicits brain responses that 

are associated with motivational processes (Study 4). In Study 4, the dataset of 4- and 8-

month-old infants who participated in Study 2 was used in order to examine frontal EEG alpha 
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asymmetry in response to upright and inverted happy and fearful dynamic body expressions. 

We predicted that only for the group of the 8- month-old infants’ frontal EEG alpha 

asymmetry patterns would differ in response to emotional body expressions. Furthermore, 

EEG asymmetry patterns would differ in the upright but not in the inverted condition, as the 

detection of emotions is impaired when body expressions are inverted.  

In the concluding chapter (Chapter 7), findings from all four studies will be discussed in 

relation to each other as well as to other research in this area. Furthermore, based on the 

empirical findings presented in this dissertation, implications and directions for future work 

will be formulated. 
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2 Methods 

2.1 Electroencephalography (EEG) 

To approach neuroscientific questions in infant research the possible measures are 

limited. One measure that is most frequently used to study different processes in the infant 

brain is electroencephalography (EEG). The human brain constantly produces electrical 

activity that is associated with different brain states, such as states of activation and rest, and 

is associated with specific sensory, cognitive, and motor events (Luck, 2005). The EEG is an 

adequate method to capture this electrical activity and to study cognitive development in the 

preverbal infant because responses to events can be measured even though more explicit 

behavioral responses are not yet in the infant’s behavioral repertoire or verbal instruction of 

the infant participant as sued with adults and older children is not an option. The EEG 

measurement in infant research represents an option of using a non-invasive and child-

friendly technique to investigate brain processes in early development. 

2.2 From EEG to ERP - Recording and Processing 

Every process in the brain is accompanied by electric activity. This electric brain 

activity originates from action potentials at the axons of a neuron and postsynaptic potentials 

occurring during the changes in the membrane potential of the postsynaptic cell (for more 

detailed information see Creutzfeld & Houchin, 1974). The postsynaptic potentials can last up 

to hundreds of milliseconds, allowing the potentials from large groups of neurons that are 

active in synchrony and are aligned in parallel orientation, to sum (Luck, 2005). These 

changes in the postsynaptic potentials are measurable with the EEG. The EEG measures brain 

activity by offering a high temporal resolution in the range of milliseconds. Because the 

recorded brain activity at the scalp reflects activity that originates from many sources of the 
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brain, the spatial resolution of the EEG is poor so that conclusions about source locations are 

limited (Luck, 2005). 

The EEG measures the ongoing electric activity in the brain, whereas event-related 

potentials (ERPs) reflect time-locked changes of brain activity in response to a discrete event 

(DeBoer, Scott, & Nelson, 2005). The EEG signal is recorded via electrodes that are placed 

on the scalp at defined positions. The international 10-20 system of electrode placement is a 

commonly used layout (Jasper, 1958; Sharbrough et al., 1991). In this layout, the electrodes 

are positioned at relative distances of either 10 or 20 % from each other along an anterior and 

posterior and a lateral axis. In order to decrease the impedances, a conductive gel maximizing 

the skin conductance is applied to the head at the electrode positions. The recorded EEG 

measures the voltage fluctuations that originate from the differences in potentials between the 

electrodes that record the signal and a reference electrode (Luck, 2005). 

Before the EEG data can be analyzed several preprocessing steps are applied. After 

recording the EEG signal, the data is filtered and artifact rejection can be applied to remove 

artifacts, which are unrelated to brain processes such as eye blinks and head movement. 

Various filters can be applied in order to minimize the effects of noise, drifts, and 

spontaneously occuring activity unrelated to the processing of the stimulus (Luck, 2005; 

Spencer, 2005).  

The changes in potential are usually too small in order to be detected in a single trial 

against the ongoing background activity and to that effect the signal-to-noise ratio in a single 

trial is low. That is why a stimulus must be presented repeatedly and the EEG waves are 

averaged over large number of trials (Luck, 2005). Following the preprocessing steps, time-

locked epochs (i.e., a defined time window in the EEG data related to the onset of a 

stimulus/condition) are extracted and averaged separately for each condition. With this 

process the signal-to-noise ratio is increased and the specific ERPs, consisting of positive and 
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negative deflections that represent the average processing of a stimulus over a time period, 

can be observed (Luck, 2005). 

2.3  Event-related Brain Potentials (ERPs) 

ERP components (deflections in the averaged signal) are usually labeled according to 

their latency (the point in time at which the ERP component peaks relative to the onset of a 

stimulus) and by the direction of their deflection (positive or negative). ERP components with 

a negative polarity are labeled by giving an N for negative polarity and a P for positive 

polarity (Luck, 2005). The number following the N or P indicates the latency in relation to 

stimulus onset. For example, the N170 observed in adults indexes a negative deflection 

peaking around 170 ms after stimulus onset. Besides latency and deflection, ERP components 

can be distinguished with regard to their distribution on the scalp (topography). With respect 

to infant ERP work, it should be mentioned that ERP components tend to vary considerably in 

terms of polarity, latency, and topography in comparison to known adult ERP components (de 

Haan, 2007; DeBoer et al., 2005; McCulloch, 2007). In the following sections, two ERP 

components that are commonly observed during infancy and were of main interest in the 

experiments described later on will be briefly introduced. 

2.3.1 Negative Component (Nc) 

The negative component (Nc) is one of the most well-studied component in infant ERP 

research. The Nc is a negative deflection that typically occurs in the time range of 400 to 800 

ms post stimulus onset and is most prominent over frontal and central electrodes (de Haan, 

Johnson, & Halit, 2003). In several studies using a visual oddball paradigm the Nc has been 

found to be larger to infrequently than to frequently presented stimuli (Ackles & Cook, 1998; 

Karrer & Ackles, 1987; Karrer & Monti, 1995). With regard to these findings, the Nc is 

thought to reflect infants’ allocation of attention, with greater negative deflection to the 
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infrequently presented stimulus indicating greater allocation of attention to the novel or 

unexpected event (Courchesne, Ganz, & Norcia, 1981; Nelson, 1994). Furthermore, the Nc 

might also reflect arousal that is elicited by novel or infrequent stimuli (Richards, 2002, 2003). 

The Nc has also been discussed in relation to recognition processes, because the Nc amplitude 

is modulated by the familiarity of a stimulus (de Haan & Nelson, 1997b, 1999). For example, 

at 6 months of age, the Nc amplitude is greater in response to a mother’s than to a stranger’s 

face  (de Haan & Nelson, 1997b) or to familiar toys than novel toys (de Haan & Nelson, 

1999). Moreover, the Nc has been shown to be sensitive to emotional information displayed 

in faces (Nelson & de Haan, 1996). In a longitudinal study by Webb and colleagues (2005) 

the Nc was shown to decrease in latency and increase in amplitude towards the end of the first 

life, indicating that the properties of this component undergo change during infancy (Webb, 

Long, & Nelson, 2005). In summary, these empirical findings indicate that the Nc reflects 

attentional processes affected by the expectancy, familiarity and emotional content of the 

stimulus. 

2.3.2 N290/ N170 

The infant N290 is a negative-going deflection observed over posterior electrodes, 

whose peak latency decreases from 350 ms at 3 months of age to 290 ms at 12 months of age 

(Halit, de Haan, & Johnson, 2003). It has been suggested that the infant N290 is a precursor 

of the adult N170, a face-sensitive component seen in adults (Bentin, Allison, Puce, Perez, & 

McCarthy, 1996; de Haan et al., 2003). In particular, this component is thought to be related 

to the structural encoding of faces (Bentin & Deouell, 2000; Eimer, 2000). In other studies 

with infants and adults, ERPs were measured in response to upright and inverted human and 

monkey faces (de Haan, Pascalis, & Johnson, 2002; Halit et al., 2003). The findings of these 

studies indicate that, by the age of 12 months, infants show an adult-like pattern of responding: 

enhanced amplitude of the N290 to inverted human faces compared to upright human faces, 
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but not to inverted monkey faces when compared to upright monkey faces (Halit et al., 2003). 

However, at an earlier stage at 3 and 6 months of age the stimulus inversion did not modulate 

the amplitude of the N290 (de Haan et al., 2002; Halit et al., 2003). These results suggests that 

the N290 becomes more sensitive to upright human faces with age, pointing to the 

development of face-sensitive processing during infancy (de Haan et al., 2002; Halit et al., 

2003). 

2.4  Frontal EEG Alpha Asymmetry 

Using ERPs is the most common way to analyze EEG data, but they capture only one 

specific aspect of the information contained in the EEG signal that is highly synchronized and 

time-locked to a certain event (evoked changes). However, this leaves out any changes in the 

EEG that occur in response to an event but vary in latency (induced changes). These induced 

changes can be assessed by analyzing oscillatory brain activity (Herrmann, Grigutsch, & 

Busch, 2005). The EEG, like any other continuous signal, can be described as the sum of 

oscillating sine and cosine functions of different frequencies (Herrmann et al., 2005). 

Depending on the sampling rate and analysis technique the EEG can be decomposed into 

frequency components with varying resolutions. A time-frequency-analysis for example 

retains the time as well as the frequency information. 

Traditionally, the EEG oscillatory components are grouped into five different frequency 

bands: delta (≤ 4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (≥ 30 Hz) 

(see Buzsáki, 2006; Herrmann et al., 2005 for defined frequency ranges in adult populations). 

One established method to study motivational processes evoked in response to emotional 

information is the analysis of frontal EEG asymmetry in the alpha frequency band (Coan & 

Allen, 2004; Davidson, 1992; Davidson et al., 1990; Fox, 1991). Specifically, Davidson (1994, 

1998) proposed a model that links differential activation of the left and right frontal cortices in 
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the alpha frequency range to different motivational tendencies (approach and withdrawal 

tendencies). With respect to the neural correlates of these motivational tendencies (Davidson, 

1994, 1998), studies have demonstrated that approach motivation is associated with relatively 

greater left frontal cortical activation, whereas withdrawal motivation is associated with 

relatively greater right frontal cortical activation (Buss et al., 2003; Coan, Allen, & Harmon-

Jones, 2001; Davidson, 1984, 1994, 1998; Davidson & Fox, 1982; Harmon-Jones, 2003). 

Approach motivation is associated with increased exploration of a stimulus, whereas 

withdrawal motivation is linked to inhibition of exploration or withdrawal from harmful 

stimuli (Fox, 1991). 
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Developmental and individual differences in the neural processing of dynamic 

expressions of pain and anger 
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We examined the processing of facial expressions of pain and anger in 8-month-old 

infants and adults by measuring event-related brain potentials (ERPs) and frontal EEG alpha 

asymmetry. The ERP results revealed that while adults showed a late positive potential (LPP) 

to emotional expressions that was enhanced to pain expressions, reflecting increased 

evaluation and emotional arousal to pain expressions, infants showed a negative component 

(Nc) to emotional expressions that was enhanced to angry expressions, reflecting increased 

allocation of attention to angry faces. Moreover, infants and adults showed opposite patterns 

in their frontal asymmetry responses to pain and anger, suggesting developmental differences 

in the motivational processes engendered by these facial expressions. These findings are 

discussed in the light of associated individual differences in infant temperament and adult 

dispositional empathy. 

Keywords: emotion, face, ERPs, empathy, pain 
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3.1 Introduction 

Facial expressions play an important role in communicating emotions and in providing 

cues that guide behavior during social interactions (Frith, 2009). Our ability to detect pain and 

anger in other people is likely to serve vital social and protective functions, enabling us to 

become aware of and respond appropriately to potentially harmful and dangerous situations. 

Observing someone expressing pain can convey harm and elicit empathic helping behavior, 

while observing someone expressing anger signals interpersonal threat and may result in 

readiness for aggression or a submissive flight response in the observer. 

The facial expression that accompanies the experience of pain is highly specific and 

can be readily distinguished by observers from facial expressions of negative basic emotions 

such as anger and fear (Craig, Prkachin, & Grunau, 2001). Expressing pain through facial 

expression is characterized by the lowering of the eyebrows and narrowing/closing of the eyes, 

raising of the cheeks, raising the upper lips, or vertically stretching the mouth open (Craig et 

al., 2001; Prkachin & Craig, 1995).  

The facial expression of anger is somewhat similar to the expression of pain as far as 

the eye regions are concerned, because it is also characterized by furrowed eyebrows and by 

staring eyes. However, in particular the mouth and cheek region differ across these two 

expressions, with angry expressions showing a closed mouth with tense lips (Ekman & 

Friesen, 1975). 

The neural correlates of responding to pain in others have been studied extensively in 

adults (see Lamm, Decety, & Singer, 2011 for review). This work provides evidence for 

shared representations in the human brain that are active both when adults feel pain and when 

they observe others in pain. On the basis of these findings, it has been argued that these shared 

representations constitute the neural basis of empathy for pain (Singer & Lamm, 2009). 

Adults’ brain responses to pain in others have been examined in various experimental 
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contexts such as (a) by knowing that another person was receiving a painful stimulation to the 

hand as indexed by a symbolic (arrow) cue (Singer et al., 2004), (b) by viewing body parts of 

actors in painful situations (Jackson, Meltzoff, & Decety, 2005; Jackson, Rainville, & Decety, 

2006; Morrison & Downing, 2007; Morrison, Lloyd, Pellegrino, & Roberts, 2004), and (c) by 

observing facial expressions of pain (Botvinick et al., 2005; Lamm, Batson, & Decety, 2007; 

Saarela et al., 2007; Simon, Craig, Miltner, & Rainville, 2006). Across these different 

contexts painful situations systematically resulted in activation of the anterior cingulate cortex 

(ACC) and the anterior insula (AI) (Lamm et al., 2011). The notion that brain activation in 

these regions is a neural correlate of empathy for pain receives support from findings showing 

that brain responses to pain in others vary as a function of individual differences in empathic 

abilities, with individuals that score higher in empathy showing greater activation in their 

brain responses to pain (Saarela et al., 2007; Singer et al., 2004). Furthermore, brain responses 

within these regions show a great level of specificity and indicate that adults discriminate 

between pain and other negative emotional states (Benuzzi, Lui, Duzzi, Nichelli, & Porro, 

2008). 

Adults’ ability to discriminate between pain and other negative expressions has also 

been shown in recent event-related brain potential (ERP) studies (González-Roldan et al., 

2011; Reicherts et al., 2012). The ERP method provides precise information concerning the 

timing of brain processes associated with emotion perception. In prior work a general 

distinction has been made between early processes related to emotional attention as reflected 

in an early posterior negativity (EPN) and late evaluative processes reflected in a late positive 

potential (LPP) (see Olofsson, Nordin, Sequeira, & Polich, 2008 for a review of the adult ERP 

literature on emotional processing from visual stimuli). More specifically, in previous ERP 

studies it was found that whereas seeing angry facial expressions resulted in an enhanced EPN 

indexing increased perceptual (visual) processing related to the rapid detection of threatening 
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faces (Schupp, Junghöfer, Weike, & Hamm, 2003; Schupp et al., 2004), facial expressions of 

pain elicited an LPP response that was enhanced in its amplitude compared to angry and 

fearful facial expressions (González-Roldan et al., 2011; Reicherts et al., 2012). An enhanced 

LPP is thought to reflect increased evaluation of an emotionally arousing stimulus (Olofsson 

et al., 2008). These studies thus provide evidence that the adult brain not only distinguishes 

between negative facial expressions but also shows an increased sensitivity and arousal to 

facial expressions of pain as indexed by an enhanced LPP. Similar ERP effects were observed 

when adults watched others in painful situations (Fan & Han, 2008), supporting the notion 

that the neural processes reflected in this ERP component can be flexibly triggered by 

observing others in pain even in the absence of overt facial cues. 

From a functional perspective it is important to add that, apart from eliciting empathic 

responses, painful expressions may also serve an adaptive alarm function leading to the 

facilitation of defensive responses in the observer (Goubert, Vervoort, & Crombez, 2009; 

Williams, 2002; Yamada & Decety, 2009). In line with this view, Yamada and Decety (2009) 

showed that pain detection was enhanced after subliminal priming with negative affective 

stimuli when compared to priming with positive affective stimuli. It has been argued that the 

perception of pain might therefore be associated with an activation of threat-related brain 

systems (Yamada & Decety, 2009). The notion that experiencing pain or observing pain in 

others evokes activity in threat-related brain systems has also been shown in fMRI studies that 

found increased activation of the amygdala in response to pain (Botvinick et al., 2005; Simon 

et al., 2006). 

From a developmental perspective, it has been argued that it may be adaptive for 

humans to respond sensitively to emotional expressions from early on in development 

(Campos, Thein, & Owen, 2003; Darwin, 2009/1872; Walle & Campos, 2012). There is 

evidence from behavioral and neural studies showing that infants from around 7 months of 
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age can reliably discriminate between a variety of affective facial expressions (Kotsoni et al., 

2001; LaBarbera et al., 1976; Nelson & de Haan, 1996; Serrano, Iglesias, & Loeches, 1992). 

For example, findings from studies using ERPs demonstrate that infants at the age of 7 

months discriminate happy from fearful and angry expressions (Grossmann, Striano, & 

Friederici, 2007; Peltola et al., 2009), as indexed by differences in a negative component (Nc) 

elicited over anterior brain regions between 300 and 600 ms. Critically, evidence for 7-month-

old infants’ ability to discriminate between different negative emotional expressions has been 

provided by Kobiella and colleagues (2008). In this study, infants were presented with static 

angry and fearful facial expressions. Angry compared to fearful facial expressions elicited a 

larger fronto-central negativity in the time range from 300 to 600 ms (Kobiella et al., 2008). 

An enhanced negativity over anterior brain regions in this time window is thought to reflect 

greater orientation and attention allocation to the stimulus (Richards, 2003), suggesting 

increased allocation of attentional resources to angry faces. Even though there is evidence that 

infants at the age of 7 months can discriminate between various facial expressions as reflected 

in amplitude modulations of the Nc, it is not well understood how the infant Nc component 

relates to the ERP components generally reported during emotion processing in adults (EPN 

and LPP) (see above). For example, there is evidence showing that although at the age of 7 

months infants exhibit an enhanced Nc over anterior electrodes in response to angry faces, it 

is not until 12 months of age that infants, like adults, show an enhanced EPN over posterior 

(occipital) electrodes in response to angry faces (Grossmann et al., 2007). Moreover, very 

little is known about how infants respond to facial expressions of pain and its neural 

correlates. Closing this gap in our understanding of emotional responding during infancy by 

studying infants’ brain responses to expressions of pain is particularly pertinent given the role 

that responding to pain in others has played in the investigation of empathy in general (de 

Vignemont & Singer, 2006; Decety, 2010; Jackson et al., 2006; Singer & Lamm, 2009) and 
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its development in particular (Decety, Michalska, & Akitsuki, 2008; Eisenberg, Fabes, et al., 

2006; Zahn-Waxler et al., 1992).  

In light of the work discussed above, three main questions were addressed in this 

study: (a) How does the neural processing of dynamic facial expressions of pain and anger 

compare between infants and adults; (b) Can infants discriminate between facial expressions 

of pain and anger; (c) Whether and how individual differences in dispositional empathy 

(adults) and temperament (infants) impact brain responses to these emotional expressions, and 

if so, what can this tell us about the function of those specific brain processes under 

investigation? 

In order to examine these questions, we measured ERPs in response to dynamic facial 

expressions of pain and anger in adults and 8-month-old infants. In the present study, dynamic 

facial expressions were used because: (a) prior work with adults suggests an improved 

performance across a range of face perception tasks including face identity recognition and 

facial emotion recognition (Ambadar, Schooler, & Cohn, 2005; Harwood, Hall, & Shinkfield, 

1999), (b) dynamic facial expressions are thought to be more ecologically valid since this is 

how they are typically experienced during social interactions, and (c) infants may better 

attend to the dynamic presentations than watching static displays (Burnham, 1987; Burnham 

& Day, 1979; Wilcox & Clayton, 1968). 

In addition, we assessed frontal EEG alpha power asymmetry to elucidate the 

motivational processes related to approach and withdrawal tendencies evoked by viewing 

these facial expressions. Approach and withdrawal are assumed to reflect basic motivational 

dimensions in human behavior (Schneirla, 1959). Specifically, while approach motivation is 

linked to increased exploration of the social and physical environment, withdrawal motivation 

is associated with inhibition of exploration and most frequently related to negative affect (Fox, 

1991). With respect to the neural correlates of these motivational tendencies, Davidson 
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(Davidson, 1994, 1998) proposed a model that links frontal EEG asymmetry to motivational 

tendencies and affective styles. Asymmetrical frontal brain activity in the alpha frequency 

band in adults and infants suggests that the lateralization of cortical activity measured at 

frontal electrode sites is associated with different motivational tendencies and can be seen as 

an index of approach or withdrawal motivations (Buss et al., 2003; Davidson, 1984, 1994, 

1998; Davidson & Fox, 1982; Harmon-Jones, 2003). These studies show that approach 

motivation is associated with relatively greater left frontal cortical activation whereas 

relatively greater right frontal cortical activation is associated with withdrawal motivation. 

Specifically, frontal EEG alpha asymmetry research suggests that anger, while being a 

negatively valenced emotion, is typically associated with approach motivation, eliciting 

greater relative left frontal activation during anger-evoking events (C. S. Carver & Harmon-

Jones, 2009; Harmon-Jones et al., 2010).  

Finally, in order to investigate individual (trait) differences in emotional sensitivity 

and its relation to the neural processing of pain and anger, we obtained information about 

adult dispositional empathy and infant temperament using questionnaires. This approach was 

informed by previous studies (a) with adults: demonstrating that individuals that score higher 

in empathy, as measured by an empathy questionnaire, exhibit greater activation in their brain 

responses to pain (Saarela et al., 2007; Singer et al., 2004), and (b) with infants: 

demonstrating that differences in emotion regulation abilities, as measured by a parental 

questionnaire (IBQ-R), were associated with differences in the brain responses to negative 

facial expressions (Martinos, Matheson, & de Haan, 2012). The temperament of the infants, in 

particular approach- and withdrawal-related traits as measured by a parental questionnaire 

(IBQ-R), was found to be related to general differences in frontal EEG alpha asymmetry 

patterns in 7- to 9-month-old infants (LoBue, Coan, Thrasher, & DeLoache, 2011). On the 
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basis of these findings, we expected that infants’ ERP and frontal EEG asymmetry responses 

to negative facial expressions would be similarly related to measures of infant temperament. 

3.2  Materials and Methods 

Adults 

Participants: Twenty right-handed young adults aged between 21 and 28 years (10 

female, Median age = 25.5 years, Range = 7 years) participated in the study. The participants 

had no prior history of psychiatric illness. Ethical approval was obtained from the Ethics 

Committee of the University of Leipzig. The participants provided written informed consent 

and were paid for their participation.  

Stimuli: The stimulus material consisted of video clips of dynamic facial expressions 

of pain and anger as well as happy and neutral expressions displayed by two actresses. In 

keeping with the stimulus presentation protocols of prior infant facial emotion processing 

ERP studies (e.g., Peltola et al., 2009) each participant  was presented with expressions of 

only one of the actresses. Happy and neutral facial expressions were presented but not used 

for analysis in order to avoid overwhelming the infants with negative expressions, thereby 

improving the testing atmosphere and reducing the dropout rate (ERP responses and frontal 

asymmetry responses to all four emotional expressions in infant and adults are provided in the 

supplementary information; see also supplementary Figures 3.7 and 3.8). Presenting negative 

expressions against a background of neutral and happy expressions also likely presents the 

infants with a more ecologically valid task, as in typical development they are thought to only 

infrequently encounter negative affect in daily interactions (see Vaish, Grossmann, & 

Woodward, 2008). All stimuli were taken from a previously published study by Simon and 

colleagues (Simon, Craig, Gosselin, Belin, & Rainville, 2008; Simon et al., 2006) and slightly 

modified (see Figure 3.1). The actresses provided written informed consent, transferring the 

copyright of the produced material to the research group (Simon et al., 2008). The original 
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video clips had a duration of 1 s and were cut backward from the peak of expression in order 

to control for different lengths, variability of exposure to the visual stimuli, and to assure that 

the peak of expression was captured within the clip (Simon et al., 2008; Simon et al., 2006). 

In addition, we analyzed the motion onset and overall amount of motion across emotional 

expressions based on a procedure by Pichon and colleagues (2008). Critically, this analysis 

showed that there were no systematic differences in the onset and overall amount of motion 

between the facial expression videos. In order to focus the participants’ attention on the facial 

expressions, the original clips were edited by cropping external features such as the shoulders. 

All video clips had a duration of 3 s. Each clip consisted of a 1-s static image displaying a 

neutral expression followed by a 1-s dynamic expression followed by another 1-s static image 

displaying the peak of expression. The first static image was taken from the first frame and 

the second static image was taken from the last frame of the dynamic expression.  

Procedure: The participants sat in a dimly lit, sound-attenuated, and electrically-

shielded room facing a computer screen. They were instructed to attentively view the stimuli 

but no task was given in order to ensure that the data could be compared between adults and 

infants. The stimuli were presented in the center of the screen on a black background, using a 

70-Hz, 17-inch computer screen at a distance of 70 cm. Each participant was randomly 

assigned to one of the two actresses. The presentation of either actress was counterbalanced. 

Before each video clip started, an alert signal sounded. Then a fixation cross appeared (for 

1000 ms) on the screen to draw participants’ attention to the center of the screen. This was 

followed by a black screen (for 300 ms) and then by the stimuli (3000 ms). The stimuli were 

presented in a pseudo-randomized order. The randomization was such that no expression was 

repeated more than once in a row in the course of the experiment. Participants viewed 41 

trials of each facial expression. After the session, the stimuli were shown again and 
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participants were asked to rate the facial expressions for arousal using the Self-Assessment 

Manikin (SAM) self-report scale (Bradley & Lang, 1994). 

Questionnaire: To assess individual differences in empathic abilities, participants 

filled out the self-report questionnaire Interpersonal Reactivity Index (IRI) (Davis, 1980, 1983; 

German version by Paulus, 2009). The questionnaire consists of four sub-scales that are 

related to empathy. The two subscales empathic concern and personal distress are related to 

the emotional component of empathy. The perspective-taking subscale is related to the 

cognitive dimension of empathy, and the fantasy-empathy subscale represents the ability to 

identify with fictional characters in movies and novels (Davis, 1980). Based on prior work 

with adults (Singer et al., 2004), we focused our analysis on only two subscales of the IRI, 

namely the empathic concern and the perspective-taking scales. 
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Figure 3.1. Examples of the stimuli. This figure shows representative examples of the stimuli. Single 

video frames of facial expressions of pain (top two rows) and anger (bottom two rows) for both 

actresses are shown. 

 

EEG Measurement and ERP Analysis: The EEG was recorded from 63 Ag/AgCl 

electrodes attached to an elastic cap (EasyCap GmbH, Germany) using the 10-20 system of 

electrode placement. The data were online referenced to the left mastoid and offline re-

referenced to the algebraic mean of the left and right mastoid electrode. The horizontal 

electrooculogram (EOG) was bipolarly recorded from two single electrodes placed at the 

outer canthi of both eyes and the vertical EOG from electrodes on the infra- and supraorbital 

ridges of the right eye. The EEG was amplified using a 72-channel REFA8 amplifier (Twente 

Medical Systems International) in the frequency band between DC and 67.5 Hz and digitized 
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at a rate of 250 Hz. Electrode impedances were kept below 5 kΩ. Data processing for ERP 

analysis was performed using an in-house software package EEP, commercially available 

under the name EEProbe
TM

 (Advanced Neuro Technology, Enschede). The raw EEG data 

were bandpass filtered between 0.3 and 20 Hz, and the recordings were segmented into 

epochs time-locked to the stimulus onset, lasting from 200 ms before onset until the offset of 

the video clips (total duration 3200 ms). The epochs were baseline corrected by subtracting 

the average voltage in the 200-ms baseline period (prior to video onset) from each post-

stimulus data point. Data epochs were rejected off-line whenever the standard deviation 

within a gliding window of 200 ms exceeded 60 μV in any of the two bipolar EOG channels 

and 50 μV at EEG electrodes (F3, Fz, F4, C3, Cz, C4, T7, T8, P3, Pz, P4, O1, O2). At each 

electrode, artifact-free epochs were averaged separately for angry and painful facial 

expressions to compute the ERPs. The average number of epochs included in the final 

analyses was 37.1 for angry facial expressions and 37 for painful expressions. Statistical 

analyses were based on the visual inspection of the ERP waveforms and prior work focusing 

on the EPN (González-Roldan et al., 2011; Schupp et al., 2003) and LPP (González-Roldan et 

al., 2011). On the basis of this information, mean amplitude effects were assessed over a 

posterior occipital region (O1, O2) during an early time window from 250 to 350 ms post 

movement onset (EPN) and at an anterior ROI comprising frontal and central electrodes (F3, 

FZ, F4, C3, CZ, C4) during a later time window from 400 to 500 ms post movement onset 

(LPP). Mean amplitude effects were compared between facial expressions using paired-

sample t-tests. 

EEG Measures of Asymmetrical Activation: Frequency analysis of the EEG data was 

performed using the FieldTrip software (http://fieldtrip.fcdonders.nl/; Oostenveld, Fries, 

Maris, & Schoffelen, 2011) in combination with custom-made MATLAB scripts. The raw 

EEG data were highpass filtered with a cut-off frequency of 1 Hz in order to reduce slow 
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drifts and remove DC components. The recordings were segmented into epochs of 4000 ms 

duration, lasting from 1000 ms prior to stimulus onset until video offset. Epochs were visually 

inspected and excluded from further analyses if they were contaminated by large non-

stereotyped artifacts (e.g., gross muscle activity or movement artifacts). Remaining 

stereotyped artifacts (originating e.g., from eye blinks or eye movements, tonic muscle 

activity, or pulse artifacts) were corrected using a signal processing procedure (Jung et al., 

2000) based on Independent Component Analysis (ICA). The segmented EEG data were 

decomposed into 60 independent components (ICs) by application of the symmetric FastICA 

algorithm. ICs representing physiological or electrode artifacts were identified by visual 

inspection of the components’ scalp topographies, frequency spectra, and single-trial time 

courses. They were removed from the data before back projection to the electrode space. For 

the analysis of event-related oscillations, time-frequency representations of artifact-cleaned 

single trials were computed using Morlet wavelets with a width of 5 cycles. Mean alpha 

power during the processing of facial expressions was estimated by averaging the squared 

magnitude of the complex wavelet transform coefficients across trials (separately for angry 

and painful facial expression), over time points during the presentation of the dynamic stimuli 

(0–1000 ms post movement onset) and frequency bins (8–13 Hz). Mean alpha power values 

were then log-transformed using the natural logarithm function (ln) to normalize their 

distribution. EEG alpha power asymmetry scores were calculated for the mid-frontal (F3, F4) 

and lateral frontal (F7, F8) regions. The scores were obtained by subtracting left log-

transformed alpha power values from the corresponding right log-transformed values (ln(right) 

– ln(left)). It has been shown that increases in alpha power are associated with decreased 

cerebral activation and vice versa (Goldman, Stern, Engel Jr., & Cohen, 2002; Laufs et al., 

2003). The asymmetry score reflects the power in one hemisphere relative to the power in the 

opposite hemisphere. Higher scores on this metric suggest relatively greater left activity 
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(Davidson, 1988). For comparison reasons, as in prior studies (Davidson & Fox, 1982), 

asymmetry scores were also computed for the central region (C3, C4) and the parietal region 

(P3, P4). 

 

Infants 

Participants: The final sample consisted of 20 8-month-old infants aged between 247 

and 271 days (10 females, Median age = 259 days, Range = 24 days) and all came from a 

middle-class background in a medium-sized German city. The infants were born full term 

(between 37 and 41 weeks) and had a normal birth weight (> 2500 g). Twenty additional 

infants were tested but had to be excluded from the final sample due to fussiness (n = 6) or 

too many artifacts (n = 14). Ethical approval was obtained from the Ethics Committee of the 

University of Leipzig. All parents provided written informed consent prior to the study and 

were paid for their children’s participation. 

Stimuli: The stimuli were the same as those used in the adult experiment (see above). 

Procedure: The infants sat on their parent’s lap during testing. Parents were asked not 

to talk to or interact with their infant during the course of the experiment. Each participant 

was randomly assigned to one of the two actresses. The presentation of either actress was 

counterbalanced.  

In order to attract infants’ attention to the screen, each facial expression video was 

preceded by a sound and a fixation cross (1000 ms). This was followed by a black screen (300 

ms) and then the stimuli (3000 ms). During the inter-stimulus interval infants were presented 

with an abstract screensaver for the purpose of keeping infants’ attention. The inter-stimulus 

interval lasted at least 1000 ms and varied depending on infants’ attentiveness, as stimulus 

presentation was controlled by an experimenter in such a way that stimuli were only presented 

when infants were looking at the screen. In order to control for infants’ attention to the stimuli, 
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infants’ were video monitored throughout the EEG recording. The EEG session ended when 

the infant became restless or inattentive. The mean number of trials seen per condition was 

15.08. The criterion for the minimum number of trials for inclusion in the final ERP average 

was 5 artifact-free trials per condition. The mean number of trials included in the ERP 

average per condition was 10.78. While the minimum number of trials and the mean number 

of trials to be included in the final analysis might appear lower than in previous studies, 

please note that we used dynamic video stimuli in the current design that were substantially 

longer (about 2 seconds longer) than those used in prior research with static facial displays of 

emotion and applied a strict criterion for inclusion, which required the entire trial epoch (3200 

ms) to be artifact free (for a similar design using video material and similar analysis criteria, 

see Grossmann, Missana, Friederici, & Ghazanfar, 2012). This and the additional use of 

neutral and happy dynamic stimuli likely accounts for the smaller trial numbers in the current 

study. 

Questionnaire: Parents were asked to fill out a temperament questionnaire (Infant 

Behavior Questionnaire in its revised form, IBQ-R, German version). The IBQ-R is the most 

commonly used questionnaire to assess differences in temperament in infants. The IBQ-R 

consists of 14 subscales that cover a wide range of temperamental traits: approach, vocal 

reactivity, high intensity pleasure, smiling and laughter, activity level, perceptual sensitivity, 

sadness, distress to limitations, fear, falling reactivity/rate of recovery from distress, low 

intensity pleasure, cuddliness, duration of orienting, soothability (Gartstein & Rothbart, 2003). 

In accordance with previous studies that investigated the influence of temperament on infants 

perception of emotions and frontal EEG alpha asymmetry (LoBue et al., 2011; Martinos et al., 

2012), temperament analyses in the present study were limited to two dimensions of infant 

temperament, namely, ‘negative emotionality’ (as indexed by the subscales fear, sadness, 
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distress to limitations, recovery from distress) and approach oriented temperament (as indexed 

by the subscales approach and duration of orienting).  

EEG Measurement and ERP Analysis: The EEG was recorded from 27 Ag/AgCl 

electrodes attached to an elastic cap (EasyCap GmbH, Germany) using the 10-20 system of 

electrode placement. The data were online referenced to the CZ electrode and offline re-

referenced to the algebraic mean of the left and right mastoid electrode. The horizontal 

electrooculogram (EOG) was recorded from two electrodes (F9, F10) which are part of the 

cap located at the outer canthi of both eyes. The vertical EOG was recorded from an electrode 

on the supraorbital ridge (Fp2) which is part of the cap and an additional single electrode on 

the infraorbital ridge of the right eye. The EEG was amplified using a Porti-32/M-REFA 

amplifier (Twente Medical Systems International) and digitized at a rate of 500 Hz. Electrode 

impedances were kept between 5 to 20 kΩ.  

Further processing was done analogously to the adult data analyses with the exception 

that infant data epochs were rejected off-line whenever the standard deviation within a gliding 

window of 200 ms exceeded 100 μV in any of the two bipolar EOG channels and 80 μV at 

EEG electrodes (F3, Fz, F4, C3, Cz, C4, T7, T8, P3, Pz, P4, O1, O2). At each electrode, 

artifact-free epochs were averaged separately for angry and painful facial expressions to 

compute the ERPs. 

Statistical analyses were based on the visual inspection of the ERP waveforms and 

prior work focusing on the Nc (Kobiella et al., 2008). On the basis of this information, mean 

amplitude effects were assessed at an anterior ROI comprising frontal and central electrodes 

(F3, FZ, F4, C3, CZ, C4) during a 500 to 600 ms time window post movement onset (Nc). 

Visual inspection of the infant ERP data revealed no clearly defined ERP components at 

occipital electrodes and no discernable amplitude differences between facial expressions at 
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these electrodes. Mean amplitude effects were compared between facial expressions using 

paired-sample t-tests. 

EEG Measures of Asymmetrical Activation: Analyses for measuring infant EEG alpha 

asymmetry was done, with some exceptions, analogously to adult data analyses. Because 

infant data contained 50-Hz notch noises, a 50-Hz notch filter was applied after segmentation 

of the data. For artifact correction using the ICA procedure (Jung et al., 2000) the segmented 

EEG data were decomposed into 24 independent components. Power values were obtained in 

the alpha frequency band from 6 to 9 Hz. The alpha frequency band is lower in infants than in 

adults, therefor, as suggested in previous work, we studied alpha power ranging from 6 to 9 

Hz (Stroganova, Orekhova, & Posikera, 1999). The calculation of the EEG alpha power 

asymmetry scores was done analogously to the adult data.  

3.3 Results 

ERP Analysis 

Adults. Our ERP analysis revealed a significant difference for the EPN in response to 

pain and anger facial expressions between 250 and 350 ms post movement onset at occipital 

electrodes, t(19) = 3.62, p = .002. Visual inspection of the ERP data indicated a difference in 

peak latency for the EPN in response to anger and pain expressions (see Figure 3.2). An 

additional analysis of peak latency effects during a 500 to 600 ms time window post 

movement onset revealed a significant difference in peak latency, t(19) = -2.23, p = .037, with 

the EPN to angry faces peaking earlier than the EPN to pain faces. Our ERP analysis further 

revealed a significant difference for the LPP in response to painful and angry facial 

expressions at fronto-central electrode sites between 400 and 500 ms after movement onset, 

t(19) = -2.97, p = .008. Specifically, the LPP elicited by facial expressions of pain was greater 

(more positive) in its amplitude (M = 2.62 μV; SE = 0.61) than the LPP elicited by facial 

expressions of anger (M = 1.13 μV; SE = 0.60) (see Figure 3.2). Behavioral arousal ratings 
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obtained after the EEG measurement showed that there was a significant difference in arousal 

between pain and anger, with pain expressions (M = 3.45; SE = 0.153) rated as being more 

arousing than anger expressions (M = 2.85; SE = 0.182), t(19) = -2.69, p = .014. No 

significant correlations between the arousal ratings for facial expressions of pain and LPP 

responses to facial expressions of pain were found. 

 

Figure 3.2. Adult ERP results. This figure shows the average event-related brain potentials (ERPs) 

time-locked to the movement onset in adults elicited by facial expressions of anger (solid line) and 

pain (dotted line) expressions. The time windows during which significant differences between the 

anger and pain condition were observed are marked in grey. 

 

Empathy self-report questionnaire. Our analysis revealed a significant negative 

correlation between the ERP response to facial expressions of anger at fronto-central 

electrodes and the perspective-taking score as measured by the IRI (r = -.496, p = .026) (see 

Figure 3.3). The perspective-taking score is an index of a person’s ability and motivation to 



STUDY 1  43 

 

adopt another person’s point of view (Davis, 1980). Specifically, the correlation was such that 

the higher adults rated themselves as possessing the ability and motivation to take another 

person’s perspective, the smaller the amplitude of the LPP to angry expressions. There were 

no correlations between the ERPs in response to pain facial expressions and the IRI.  

 

 

Figure 3.3. Correlation for adult ERP results. This figure shows the correlation between the 

amplitude of adults’ brain responses to facial expressions of anger at fronto-central electrodes and 

individual perspective-taking scores as measured by the IRI (the correlation was significant on the p < 

0.05 level). 

 

Infants. Our ERP analysis revealed that, unlike adults, watching dynamic facial 

expressions of pain and anger resulted in a negativity elicited over anterior brain regions in 

infants that differed in its amplitude between facial expressions (see Figure 3.4). Specifically, 

infants discriminated between the two negative expressions as revealed by a significant 

difference between the ERP response to facial expressions of pain and anger between 500 and 

600 ms after movement onset, t(19) = -2.64, p = .016. The ERP response to facial expressions 

of anger was more negative in its mean amplitude (M = -8.19 μV; SE = 2.42) than the ERP 

response to facial expressions of pain (M = -1.89 μV; SE = 1.79). No ERP differences 

between expressions were found at occipital electrodes. 
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Figure 3.4. Infant ERP results. This figure shows the average event-related brain potentials (ERPs) 

time-locked to the movement onset in 8-month-old infants elicited by facial expressions of anger 

(solid line) and pain (dotted line). The time windows during which significant differences between the 

anger and pain condition were observed are marked in grey. 

 

Infant temperament questionnaire. Our analysis revealed a significant negative 

correlation between the ERP response to facial expressions of anger and the recovery from 

distress score as measured by the IBQ-R, r = -.545, p = .013 (see Figure 3.5). The recovery 

from distress score reflects parents’ ratings of their infants’ ability to regulate emotions and 

regain calm after distress (Gartstein & Rothbart, 2003). Specifically, the correlation was such 

that the higher the parents rated their infants’ ability to regulate and recover from distress, the 

more negative the amplitude of the ERP in response to angry expressions. Other subscales of 

the IBQ-R were not related to infants’ ERP responses to anger and pain facial expressions. 
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Figure 3.5. Correlation for infant ERP results. This figure shows the correlation between the 

amplitude of infants’ brain responses to facial expressions of anger at fronto-central electrodes and 

individual recovery from distress scores as measured by the IBQ-R (the correlation was significant on 

the p < 0.05 level). 

 

Frontal EEG alpha asymmetry analysis 

Adults. Our analysis revealed a significant difference between the frontal EEG alpha 

asymmetry scores in response to facial expressions of anger and pain at lateral-frontal 

electrodes (F7, F8), t(19) = 3.10, p = .006. Facial expressions of anger were found to result in 

greater (positive) frontal EEG alpha asymmetry scores indicative of a greater relative left 

frontal activation, while facial expressions of pain were found to result in smaller (negative) 

frontal EEG alpha asymmetry scores indicative of greater relative right frontal activation (see 

Table 3.1). A similar effect with greater relative left frontal activation in response to anger as 

compared to greater relative right frontal activation to pain was also observed at mid-frontal 

electrodes (F3, F4) where the difference between the frontal EEG alpha asymmetry scores in 

response to facial expressions of anger and pain was marginally significant, t(19) = 1.90, p 

= .072 (see Table 3.1). For central (C3, C4) and parietal regions (P3, P4) there were no 

differences in EEG alpha asymmetry scores between expressions. 
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Empathy self-report questionnaire. Our results revealed a significant negative 

correlation between individuals’ frontal EEG alpha asymmetry scores (F3, F4) in response to 

facial expressions of pain and empathic concern scores as measured by the IRI, r = -.460, p 

= .041 (see Figure 3.6). The empathic concern score refers to the individual’s degree of 

participating in other people’s emotions, and experiencing feelings of sympathy and concern 

for others (Davis, 1980, 1983). Specifically, the observed correlation was such that the higher 

adults rated themselves as possessing the ability and motivation to experience feelings of 

sympathy and concern for others, the more right lateralized their frontal EEG alpha 

asymmetry score, indexing a greater motivational tendency to withdraw. 

 

 

Figure 3.6. Correlation for adult frontal EEG alpha asymmetry results. This figure shows the 

correlation between frontal EEG alpha asymmetry observed in adults during the presentation of facial 

expressions of pain and individual empathic concern scores as measured by the IRI (the correlation 

was significant on the p < 0.05 level). 

 

Infants. Our results revealed a significant difference between the frontal EEG alpha 

asymmetry scores in response to facial expressions of anger and pain at mid-frontal electrodes 

(F3, F4), t(19) = -2.11 p = .048 (see Table 3.1). Contrary to the results in adults reported 

above, in infants, viewing facial expressions of pain was associated with greater (positive) 
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frontal EEG alpha asymmetry scores, while viewing facial expressions of anger was 

associated with smaller (negative) frontal EEG alpha asymmetry scores. This pattern reflects 

greater relative left frontal activation when processing pain, indexing the motivational 

tendency to approach and greater relative right hemisphere activation when processing anger, 

indexing the motivational tendency to withdraw. There were no differences between the EEG 

alpha asymmetry scores at the lateral-frontal electrodes (F7, F8), t(19) = .2 p = .841. 

Furthermore, EEG alpha asymmetry at central (C3, C4) and parietal (P3, P4) electrodes did 

not differ between expressions. 

Infant temperament questionnaire. There were no correlations between frontal EEG 

alpha asymmetry scores in response to anger and pain and infant temperament scores as 

measured by the IBQ-R. 

 

Table 3.1. Frontal EEG alpha asymmetry scores. This table shows the mean (± standard deviation) 

of the frontal EEG alpha asymmetry scores during the presentation of facial expressions of anger and 

pain. Please note that higher numbers indicate greater relative left-side activation. 

**p<.01.,*p<.05.,+p=marginal significant 

 

3.4 Discussion 

The current study investigated the neurodevelopment of processing dynamic expressions 

of pain and anger. To our knowledge, this is the first study to compare infants’ and adults’ 

emotion processing by measuring both ERPs and frontal EEG alpha asymmetry in brain 

activation and linking differences in brain response to individual differences in infant 
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temperament and adult dispositional empathy. Our study demonstrates that taking such a 

multi-measure (ERP, frontal EEG alpha asymmetry, temperament, empathy) and multi-

method (EEG/ERPs and questionnaire methods) approach is very useful in investigating 

developmental differences between infants and adults and may contribute to a more 

comprehensive understanding of the development of emotion processing (see Table 3.2 for an 

overview of the ERP and frontal EEG alpha asymmetry findings in the current study). 

Table 3.2. Overview of findings. This table provides an overview of the findings of the current study. 

 

The ERP results indicate that the brain processes elicited by expressions of pain and 

anger differ substantially between infants and adults. Our ERP data show that, in adults, facial 

expressions elicited an EPN at posterior (occipital) electrodes that peaked earlier in response 

to angry faces than to pain faces, suggesting that the perceptual (visual) processing was 

facilitated in response to angry faces. This facilitation effect evident in the response to angry 

faces is in line with prior work with adults showing that angry faces as evolutionary important 

signals of interpersonal threat are detected more readily than other facial expressions (Öhman, 

Lundqvist, & Esteves, 2001). This early ERP difference between processing anger and pain 

facial expressions is unlikely to be the result of differences in low-level motion properties 

between the two expressions, as motion onset and overall motion did not differ across 

expressions (see Method). Moreover, the early ERP differences between the facial 

expressions were not evident in the infant group even though they watched the same stimuli 

and at this age possess similar visual acuity to adults (Gwiazda et al., 1989). The absence of 
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an EPN in 8-month-old infants is in line with prior work showing that it is not until 12 months 

of age that infants show an enhanced EPN over posterior (occipital) electrodes in response to 

angry faces (Grossmann et al., 2007).  

Our analysis further revealed significant amplitude differences between processing 

dynamic expressions of pain and anger for the LPP at frontal and central electrodes in adults. 

Specifically, the LPP was enhanced in its amplitude in response to pain expressions when 

compared to anger expressions. This replicates prior adult ERP findings using static 

expressions of pain (González-Roldan et al., 2011) and suggests that adults show an increased 

evaluation and emotional arousal in response to seeing others in pain (Fan & Han, 2008). 

Supporting the notion that painful expressions evoked greater arousal in adults, subjective 

behavioral ratings of facial expressions revealed that pain faces are judged as being more 

arousing than angry faces. Taken together, these findings in adults are in agreement with other 

studies showing higher arousal ratings for pain faces compared to other negative expressions 

(e.g., anger and fear) (González-Roldan et al., 2011; Reicherts et al., 2012; Simon et al., 2006) 

and also correspond to ERP work indicating arousal modulation effects on the LPP with more 

arousing stimuli eliciting greater LPPs (see Olofsson et al., 2008). 

Infants watching the same expressions showed ERP responses at frontal and central 

electrodes that were different from what was observed in adults. Specifically, angry 

expressions when compared to pain expressions elicited an enhanced negative component at 

frontal and central electrodes between 500 and 600 ms in 8-month-old infants. This finding is 

consistent with previous work in which 7-month-old infants showed a similar fronto-central 

ERP enhancement in response to static angry faces when compared to fearful faces (Kobiella 

et al., 2008). Thus, these ERP data demonstrate that infants at 8 months of age are able to 

discriminate between facial expressions of pain and anger, and seeing angry expressions 

results in a greater allocation of attentional resources than seeing expressions of pain. Such an 
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early developing attentional sensitivity as indexed by the increased ERP sensitivity to anger 

might be particularly critical when it comes to detecting potential sources of aggression and 

threat (Campos et al., 2003; Darwin, 2009/1872; Walle & Campos, 2012). However, prior 

work suggests that only at around one year of age do infants begin to show adult-like neural 

processes that indicate threat detection from angry faces as reflected in the EPN (see 

Grossmann et al., 2007). Moreover, the observed differences in the infant and adult ERP 

responses to pain suggest that there is developmental change that occurs sometime after 8 

months that sensitizes children to facial expressions of pain. This is in line with a host of 

behavioral work showing that empathic responding by helping and comforting others in pain 

only emerges later during ontogeny, namely, during the second year of life (Eisenberg, Fabes, 

et al., 2006; Zahn-Waxler et al., 1992). It might therefore be particularly important in the 

future to extend the current paradigm by testing infants in their second year of life.  

Our analysis further revealed that the amplitude of the ERP responses to angry facial 

expressions at frontal and central electrodes in adults was negatively correlated with their self-

reported perspective-taking score on the IRI. Specifically, the higher adults rated themselves 

as possessing the ability and motivation to relate to others and to understand others’ 

perspectives, the smaller the LPP amplitude to angry expressions.  

In infants the ERP response to angry expressions was negatively correlated with their 

recovery from distress on the IBQ-R. Specifically, the better the infants were able to self-

regulate their emotions (distress) as judged by their parents, the greater the negative amplitude 

of the ERP response to angry expressions. Although we expected IBQ-R subscales 

representing negative emotionality to be related to infants’ ERP responses to negative facial 

expressions, no associations between these measures were found. Our results are similar to the 

findings by Martinos and colleagues (Martinos et al., 2012) showing that only infants’ self-

regulation abilities but not infants’ negative emotionality per se was associated with infants’ 
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ERP responses to negative (fearful) emotional expressions. In line with our findings, Martinos 

and colleagues (Martinos et al., 2012) showed that infants that were better at self-regulation 

showed a larger Nc response to fearful facial expressions. 

The finding that behavioral ratings of perspective-taking in adults and emotional self-

regulation in infants correlated with the ERP response to angry faces suggests that sensitive 

responding to angry faces as a signal of interpersonal threat may afford specific self-

regulatory mechanisms and that this ability to self-regulate/take the perspective of others may 

vary systematically across individuals. Moreover, it may further indicate that, in line with 

prior work (Decety & Jackson, 2004; Eisenberg, 2000; Eisenberg et al., 1994), there is a 

developmental link between emotion regulation in infancy and perspective-taking later in life. 

However, this possible link should be assessed more explicitly in future work employing a 

longitudinal design. 

These findings are in line with theoretical proposals in the empathy literature that have 

postulated a link between emotion (self) regulation and perspective-taking (Eisenberg et al., 

1994; Eisenberg, Smith, Sadovsky, & Spinrad, 2004) and with empirical findings with adults 

that show the influence of perspective-taking on anger regulation (Mohr, Howells, Gerace, 

Day, & Wharton, 2007). However, while these data may provide preliminary correlational 

evidence for this potential link, longitudinal work would be required to assess this association 

and its developmental trajectory systematically.  

Infants and adults showed opposite patterns in their frontal EEG alpha asymmetry 

responses to pain and anger, suggesting developmental changes in the motivational processes 

engendered by the perception of these expressions. While pain resulted in greater relative left 

frontal activation in infants, indexing a motivational tendency to approach, adults showed a 

greater relative right frontal activation, indexing a motivational tendency to withdraw. 

Critically, in adults, greater relative right frontal activation to pain was correlated with a 
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higher score of empathic concern. This might indicate a higher degree to which adults 

participate in other people’s emotions and experience feelings of sympathy or concern for 

others in pain or distress (Davis, 1980, 1983). In other words, adults who judged themselves 

as having higher dispositional empathic concern responded with greater withdrawal to 

expressions of pain, indicative of a vicarious experience of the aversiveness of another 

person’s pain (Eisenberg, Fabes, et al., 2006; Singer, 2006). This effect observed in adults is 

in line with a host of studies emphasizing the role of experiencing another person’s pain in 

empathic understanding (Goubert, Craig, & Buysse, 2009; Singer & Lamm, 2009). Another 

explanation for the observed greater relative right frontal activation during the observation of 

pain in the adult group is that, as suggested by prior work (Goubert, Vervoort, et al., 2009; 

Williams, 2002; Yamada & Decety, 2009), painful expressions might be perceived as 

threatening. Therefore, the resulting motivational tendency in adults might have been to 

withdraw from the painful expression. 

In contrast to adults, 8-month-old infants showed greater relative left frontal activation, 

indicating a tendency to approach expressions of pain. This suggests that infants do not 

experience another person’s pain expression as aversive or negative but might rather be 

interested in the expression possibly to gather more information concerning the person’s 

situation. While prior work measuring infants’ behavioral responses to distress vocalizations 

and distress/pain simulations demonstrates that feelings of empathic concern already emerge 

in the first year of life (Geangu, Benga, Stahl, & Striano, 2010; Roth-Hanania, Davidov, & 

Zahn-Waxler, 2011), our data suggest that infants at 8 months of age do not yet respond 

empathically to facial expressions of pain. This might have something to do with differences 

between vocally and facially expressed emotions and signs of vocal distress, as witnessed by 

infants in prior studies (Geangu et al., 2010; Roth-Hanania et al., 2011), being a more direct 

and more powerful trigger of early forms of emotional and empathic responding (see Vaish & 
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Striano, 2004 for how vocal emotional cues are more powerful than facial cues in guiding 

infants' behavior). Nevertheless, the ability to differentiate facial expressions of pain from 

other emotional facial expressions forms a prerequisite for the further development of 

empathy-related responding.  

For an infant to experience an approach tendency towards facial expressions of pain as 

suggested by the current frontal EEG alpha asymmetry findings might provide an important 

mechanism to gather further information concerning the person’s situation and may hence 

serve an important learning function.  

The perception of angry faces resulted in greater relative left frontal activation in 

adults, indexing a motivational tendency to approach, while infants showed a greater relative 

right frontal activation to angry faces indexing a motivational tendency to withdraw. Our 

finding of greater relative left frontal activation in adults during the perception of angry faces 

is in line with prior work that obtained similar EEG asymmetry patterns when adults were 

experiencing anger themselves (Harmon-Jones, 2003; Harmon-Jones & Sigelman, 2001), 

suggesting that perceiving and expressing anger may result in approach behaviors. The 

opposite pattern, relatively greater right frontal activation during the perception of angry faces, 

was found in the infant group, pointing to a developmental difference in the motivational 

evaluation of angry faces between infants and adults. This developmental difference may be 

explained by the fact that adults might respond to seeing angry faces as conveying 

interpersonal threat that elicits aggressive (attack) tendencies resulting in approach tendencies, 

whereas infants might feel frightened by an adult looking at them angrily resulting in 

withdrawal tendencies.  

The developmental differences between infants and adults evident in the frontal EEG 

alpha asymmetry findings are consistent with the current ERP findings that indicate similar 

differences across ages, pointing to a general developmental change in responding to 
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emotional expressions of pain and anger. More specifically, our data suggest that between 

infancy and adulthood there is considerable change when it comes to (a) discriminating 

between pain and anger as evident in the ERP responses and (b) perceiving the significance of 

these emotions for motivational brain systems as evident in the frontal EEG alpha asymmetry. 

This suggests that only through extensive experience with these facial expressions and the 

associated situations can a deeper understanding of these emotions be achieved (Decety & 

Svetlova, 2012). As alluded to above, when exactly this development is achieved remains an 

open question and should be addressed in future studies with older infants or toddlers. 

With regard to the expected correlation between infants’ temperament measures and 

frontal EEG alpha asymmetry responses, no such correlations were found in the present study. 

This appears to be in contrast to a previous study by LoBue et al. (LoBue et al., 2011) that 

reported correlations between approach and withdrawal-related temperament traits and EEG 

alpha asymmetry in 7- to 9-month-old infants. However, LoBue and colleagues (LoBue et al., 

2011) only found such correlations when they looked at frontal EEG asymmetry collapsed 

across emotion and neutral conditions but not when examining correlations for the 

experimental conditions separately, which were negative (e.g., threatening stimuli, such as 

snakes) and positive (e.g., non-threatening stimuli, such as giraffes) visual stimuli. Taken 

together, our findings and the findings from LoBue and colleagues (LoBue et al., 2011) 

therefore suggest that there are no emotion-specific associations between frontal EEG 

asymmetry patterns and infants’ temperament. 

There are a few limitations of this study that require discussion. First, it should be 

noted that in the current study behavior was not measured directly to assess approach and 

withdrawal tendencies in infants and adults. Therefore, the present findings are limited to 

neural indexes of motivational tendencies and future research is needed to examine to what 

extent the brain measures correlate with overt behavioral responses. Second, with respect to 
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the correlational analysis it should be acknowledged that the sample size is relatively small 

for a study investigating individual differences in emotion processing and that the measures 

used rely on self-report in the case of the adults and parental report in the case of the infants, 

which are prone to reporting biases. It would thus be important to further investigate the 

obtained individual differences by including more direct measures of temperament and 

empathy and correlate them with emotion processing in a larger sample across development. 

In summary, it can be concluded that exploring the neural processes that underpin 

infants’ and adults’ responses to pain and anger has provided important insights into the 

nature of emotion perception and particularly its developmental and individual differences. 

Our data suggest that processing expressions of pain and anger is shaped by developmental 

changes that occur in the context of individual differences in emotional sensitivity that can be 

detected already very early on in ontogeny. Furthermore, the current study demonstrates that 

it is critical to utilize novel methodological approaches using multiple methods and measures 

in order for developmental differences to be uncovered and better understood. 
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Figure 3.7. Adult event-related brain potentials. This figure shows the event-related potentials of 

adults in response to facial expressions. 

 

Figure 3.8. Infant event-related brain potentials. This figure shows the event-related potentials of 

infants in response to facial expressions. 
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Table 3.3. Means of adult amplitudes at occipital electrodes. Means of adult amplitudes in response 

to facial expressions in the time range of 250 to 350 ms at occipital electrodes (O1, O2). 

 

 

Table 3.4. Means of adult amplitudes at fronto-central electrodes. Means of adult amplitudes in 

response to facial expressions in the time range of 400 to 500 ms at fronto-central electrodes (F3, Fz, 

F4, C3, Cz, C4). 

 

 

Table 3.5. Means of infant amplitudes at occipital electrodes. Means of infant amplitudes in 

response to facial expressions in the time range of 200 to 300 ms at occipital electrodes (O1, O2). 

 

 

Table 3.6. Means of infant amplitudes at fronto-central electrodes. Means of infant amplitudes in 

response to facial expressions in the time range of 500 to 600 ms at fronto-central electrodes (F3, Fz, 

F4, C3, Cz, C4). 
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Table 3.7. Mean adult lateralization scores (log-transformed) in response to facial expressions. 

 

 

Table 3.8. Mean infant lateralization scores (log-transformed) in response to facial expressions. 
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Research Highlights 

 ERPs were measured in response to emotional body expressions in infants using point-

light displays 

 8-month-old infants, but not 4-month-old infants, discriminated between the 

orientation (upright, inverted) and the emotion (fearful, happy) of bodies in motion 

 neural evidence for the developmental emergence of emotion perception from body 

cues 

 

Reading others’ emotional body expressions is an essential social skill. Adults readily 

recognize emotions from body movements. However, it is unclear when in development 

infants become sensitive to bodily expressed emotions. We examined event-related brain 

potentials (ERPs) in 4- and 8-month-old infants in response to point-light displays (PLDs) of 

happy and fearful body expressions presented in two orientations (upright and inverted). The 
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ERP results revealed that 8-month-olds but not 4-month-olds respond sensitively to the 

orientation and the emotion of the dynamic expressions. Specifically, 8-month-olds showed (i) 

an early (200-400 ms) orientation-sensitive positivity over frontal and central electrodes, and 

(ii) a late (700-1100 ms) emotion-sensitive positivity over temporal and parietal electrodes in 

the right hemisphere. These findings suggest that orientation-sensitive and emotion-sensitive 

brain processes, distinct in timing and topography, develop between 4 and 8 months of age. 

4.1 Introduction 

Reading others’ emotional expressions is a vital skill that helps us predict others’ 

actions and guide our own behavior during social interactions (Frijda & Mesquita, 1994; Frith, 

2009; Izard, 1977, 2007). Emotional communication is inherently multidimensional and 

multisensory in nature as emotional information can be gleaned from various sources such as 

the face, the voice and the body posture and motion of a person (Heberlein & Atkinson, 2009). 

The bulk of research investigating emotion expression perception has focused on facial and 

vocal expressions (Belin, Campanella, & Ethofer, 2012). Much less work has been dedicated 

to understanding the perception of emotional body expressions, even though body expressions 

may be the most evolutionarily preserved and immediate means of conveying emotional 

information (de Gelder, 2006). The work on emotional body expressions has revealed that 

adults are readily able to detect and recognize various emotions from body expressions 

(Atkinson, 2013; de Gelder, 2009). This ability to recognize emotions from body expressions 

relies on specific brain processes localized principally in the right hemisphere, including 

superior temporal, somatosensory and premotor cortices (Atkinson, 2013; de Gelder, 2006; 

Grèzes et al., 2007; Heberlein et al., 2004; Heberlein & Saxe, 2005). 

Already during the first year of life infants become sensitive to various facial and vocal 

expressions (Grossmann, 2013a). In particular, there is behavioral and neural evidence to 
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suggest that infants begin to discriminate between positive and negative emotional 

expressions during the first year of life (Vaish et al., 2008). For example, 7-month-old infants 

but not 5-month-old infants showed longer looking times to fearful faces when compared to 

happy faces and differences in their event-related brain potentials (ERPs) during the 

processing of these facial expressions, indicating that infants’ ability to discriminate between 

emotions emerges during the first year of life (Nelson & de Haan, 1996; Peltola et al., 2009). 

Specifically, a series of ERP components discriminate between fearful and happy expressions 

(early- latency: Positivity before [Pb], mid-latency: Negative component [Nc], and late-

latency Positive component [Pc]) (Nelson & de Haan, 1996); these components are thought to 

be associated with attentional/novelty (early Pb and mid-latency Nc) and recognition memory 

(late-latency Pc) processes engaged by infants during visual experiments (see Webb et al., 

2005). Critically, ERP differences similar to those that discriminate between facial 

expressions have been described in 7-month-olds when angry voices were compared to happy 

and neutral voices (Grossmann, Oberecker, Koch, & Friederici, 2010; Grossmann, Striano, & 

Friederici, 2005), suggesting that the sensitivity to emotional information across face and 

voice emerges during the first year of life. Indeed, there is ERP evidence showing that 7-

month-old infants can integrate emotional information across face and voice (Grossmann, 

Striano, & Friederici, 2006). Specifically, in this study, 7-month-olds showed an enhanced 

late-latency Pc, when emotional information matched across face and voice, indexing the 

recognition of common affect across modalities, while mismatching emotional information 

resulted in a greater mid-latency Nc, indexing greater allocation of attention to novelty. 

Despite the progress that has been made in understanding the ontogeny of emotion perception 

from face and voice, how the ability to perceive and respond to others’ emotional body 

expressions develops during infancy is only poorly understood. 
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This is an important question because from very early in development infants have 

been shown to be sensitive to biological motion, serving as a foundation for detecting and 

interpreting body movements. Behavioral research using point-light displays (PLDs) 

(Johansson, 1973) suggests that, from birth, human infants prefer to look at biological motion 

(e.g., walking hen) over non-biological motion (e.g., randomly drifting dots), and they also 

show a preference for upright over inverted biological movement (for similar findings with 3-

month-old infants using point-light walkers see Bertenthal, 1993; Simion et al., 2008). Infants 

have also been shown to detect distortions of body configuration at 3 months of age (Gliga & 

Dehaene-Lambertz, 2005) and perceive human point-light displays as solid forms at 5 months 

of age (Moore, Goodwin, George, Axelsson, & Braddick, 2007), suggesting that they are 

sensitive to form and form-from-motion information related to the configuration of body parts. 

These findings suggest that human infants possess an early developing system that allows for 

the detection of biological motion and human bodies. 

This early perceptual sensitivity to biological motion can also be traced at the neural 

level. In one study, upright compared to inverted human point-light motion elicited a greater 

right posterior positivity (P290) at parietal sites in 8-month-old infants’ ERPs (Reid et al., 

2006). In another ERP study, 8-month-olds showed greater (more negative) amplitude ERPs 

at right parietal sites 200 to 300 ms post stimulus onset to upright motion in PLDs when 

compared to scrambled point-light motion (Hirai & Hiraki, 2005). Despite the inconsistencies 

concerning the direction of the modulation of the ERP component across these studies, these 

findings suggest that 8-month-olds’ neural systems are able to detect human biological motion 

and this likely relies on posterior regions in the right hemisphere. In 5-month-old infants, the 

ERP effect discriminating between upright and scrambled motion was not lateralized to the 

right hemisphere as in 8-month-olds but observed at posterior electrode sites over both 



STUDY 2  63 

 

hemispheres (Marshall & Shipley, 2009). This suggests that the right hemisphere dominance 

in dealing with biological motion cues emerges only after 5 months of age. 

Although much work has been concerned with infants’ emerging abilities to make 

sense of bodies in motion, so far only one published study has addressed the development of 

the ability to sensitively respond to emotional information carried in body motion. Zieber and 

colleagues (2014b) examined infants’ ability to discriminate between emotional body 

expressions in a series of behavioral experiments with 6.5-month-old infants (using video 

full-light body expressions taken from Atkinson et al., 2004; Atkinson et al., 2007). In this 

study, 6.5-month-olds showed a visual preference for happy over neutral body expressions 

and were shown to look longer at body-voice pairings that conveyed congruent emotional 

information (happiness or anger) than incongruent emotional information. Critically, these 

effects were specific to body expressions presented in an upright orientation, since infants did 

not show any difference in their looking responses when the body expression was presented 

upside-down (Zieber et al., 2014b). While these findings provide first insights into infants’ 

perceptual ability to discriminate between emotional body expressions, there are a number of 

vital remaining questions that are addressed in the current study. In particular, it is not known: 

(a) what neural processes underpin the behaviorally expressed sensitivity, (b) whether the 

brain responses elicited by positive and negative bodily expressed emotions are similar to 

those elicited by facial and vocal expressions, and (c), at what age this (neural) sensitivity to 

bodily expressed emotions develops. 

Therefore, the aim of our study was to investigate the developmental emergence of 

infants’ neural sensitivity to emotional body expressions. We examined when the infant brain 

becomes tuned to emotional body expressions by presenting 4- and 8-month-olds with upright 

and inverted happy and fearful dynamic body expressions using PLDs. We used PLD stimuli 

because they provide very little static information and no information regarding the facial 
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expression but contain the essential motion cues that allow adult observers to recognize 

emotions from body motion (Atkinson et al., 2004; Atkinson et al. 2007). We had three main 

predictions with respect to infants’ developing ability to discriminate emotional body 

expressions. First, based on prior work using facial and vocal expressions (Grossmann et al., 

2005; Nelson & de Haan, 1996; Peltola et al., 2009) we predicted that 8-month-olds, but not 

4-month-olds, would be able to discriminate between emotional expressions conveyed 

through body movement. Second, based on prior work that has shown that body expression 

perception in adults is impaired (but not abolished) by stimulus inversion (Atkinson et al., 

2007; Stekelenburg & de Gelder, 2004), we predicted that infants’ discrimination between 

emotions would mainly be evident in the upright condition but not, or at least not as clearly, 

in the inverted condition (see Zieber et al., 2014b for behavioral evidence showing that infants’ 

detect emotional information better in upright orientation). Third, given previous findings of 

right-hemisphere lateralization of emotional body-expression processing in adults (Grèzes et 

al., 2007; Heberlein et al., 2004; Heberlein & Saxe, 2005), we predicted that the brain 

responses indicating the ability to discriminate between emotional body expressions in infants 

will be observed mostly or only over the right hemisphere. In addition, with respect to infants’ 

sensitivity to the orientation (upright or inverted) of body expression, we predicted a main 

effect of stimulus orientation similar in topography and timing to Reid and colleagues’ (2006) 

ERP findings with 8-month-olds using upright and inverted walking and kicking movements. 

Given that the current study was the first to examine orientation effects using ERP measures 

in infants younger than 8 months, we did not have any specific predictions concerning 

development of the ERP responses to orientation of body movements. However, prior 

behavioral work suggests that infants younger than 8 months of age are sensitive to stimulus 

inversion as indexed by a looking preference for upright movement (Bertenthal, 1996; Simion 

et al., 2008). 
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4.2 Materials and Methods 

Participants. The final sample consisted of 20 four-month-old infants aged between 

123 and 137 days (10 females, Median age = 129 days, Range = 14 days) and 20 eight-

month-old infants between 230 and 259 days (9 females, Median age = 251, Range = 29 days). 

An additional 15 four-month old infants and 20 eight-month-old infants were tested but were 

excluded from the final sample due to fussiness (n = 5) or too many artifacts (n = 30). The 

infants were born full-term (between 37 and 41 weeks) and had a normal birth weight (> 2500 

g). All parents gave informed consent prior to the study. Ethical approval was obtained from 

the ethics committee of the University of Leipzig. All parents provided written informed 

consent prior to the study and were paid for their children’s participation. The children were 

given a toy after the session. 

Stimuli. The stimulus material consisted of 2-second clips of point-light body 

movements displaying eight different fearful and eight different happy expressions (from 

Atkinson et al., 2012), which were presented upright and inverted (see Figure 4.1). Stimulus 

inversion was achieved by creating vertical mirror duplicates of the upright stimuli. Stimulus 

motion was equated across the two emotion categories by selecting 8 expressions from the 

original set of 10 for each emotion, such that the differences in the means of 3 similar 

measures of stimulus motion were as small as possible. Stimulus motion was calculated as the 

sum of the distance, in pixels, traveled by the dots in each display (a) from one frame to the 

next across the length of the movie clip (fearful M = 1212.50, happy M = 1329.00), (b) across 

every two frames (fearful M = 1157.75, happy M = 1296.88) and (c) every three frames 

(fearful M = 1140.25, happy M = 1237.13). Pairwise comparisons revealed no differences 

between fearful and happy displays for any of the 3 measures (all ts < 0.9, all ps ≥ .4). 
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Figure 4.1. An example of the PLD stimuli. The figure shows two still frames taken at the maximum 

of the emotional expression. 

 

Procedure. The infants were seated on their parent’s lap in a dimly lit, sound-

attenuated and electrically shielded room during testing. The stimuli were presented in the 

center of the screen on a black background, using a 70-Hz, 17-inch computer screen at a 

distance of 70 cm. Each trial began with an alerting sound and a fixation cross (1000 ms), in 

order to attract the infants’ attention to the screen, followed by a black screen (400 ms) and 

then a point-light body expression movie clip (2000 ms). During the inter-trial interval infants 

were presented with an abstract screensaver for the purpose of keeping infants’ attention. The 

inter-trial interval lasted at least 1000 ms and varied depending on the infants’ attentiveness, 

as stimulus presentation was controlled by an experimenter in such a way that stimuli were 

only presented when infants were looking at the screen. The stimuli were presented in a 

randomized order with the exception that no two stimuli with the same emotion and 

orientation combination were presented consecutively. In addition, the sessions were video-

recorded to off-line code for infants’ attention to the stimulus. The EEG session ended when 

the infant became fussy, or inattentive. 

ERP analysis. The EEG was recorded from 27 Ag/AgCl electrodes attached to an 

elastic cap (EasyCap GmbH, Germany) using the 10-20 system of electrode placement. The 
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data were online referenced to the CZ electrode and offline re-referenced to the algebraic 

mean of the left and right mastoid electrode. The horizontal electrooculogram (EOG) was 

recorded from two electrodes (F9, F10) that are part of the cap located at the outer canthi of 

both eyes. The vertical EOG was recorded from an electrode on the supraorbital ridge (Fp2) 

that is part of the cap and an additional single electrode on the infraorbital ridge of the right 

eye. The EEG was amplified using a Porti-32/M-REFA amplifier (Twente Medical Systems 

International) and digitized at a rate of 500 Hz. Electrode impedances were kept between 5 

and 20 kΩ. Data processing for ERP analysis was performed using an in-house software 

package EEP, commercially available under the name EEProbeTM (Advanced Neuro 

Technology, Enschede). The raw EEG data were bandpass filtered between 0.3 and 20 Hz. 

The recordings were segmented into epochs time-locked to the start of the video clip. The 

video clips were cut in such a way that the video clip onset coincided with the movement 

onset of the PLD. The epochs were baseline corrected by subtracting the average voltage in 

the 200 ms baseline period (prior to video or picture onset) from each post-stimulus data point. 

The baseline period contained a 200 ms black screen. Data epochs were rejected off-line 

whenever the standard deviation within a gliding window of 200 ms exceeded 80 μV in any 

of the two bipolar EOG channels and 60 μV at EEG electrodes. EEG data were also visually 

inspected offline for artifacts. At each electrode, artifact-free epochs were averaged separately 

for fearful upright, happy upright, fearful inverted and happy inverted body expressions to 

compute the ERPs. The criterion for the minimum number of trials for inclusion in the final 

ERP average was 7 artifact free trials per condition. For the 4-month-olds the mean number of 

trials seen per condition was 17.81. The mean number of trials included in the ERP average 

was 11.10 for the fearful upright condition, 11.40 for happy upright, 10.55 for fearful inverted 

and 10.30 for the happy inverted condition. The minimum number of trials was 7 and the 

maximum number of trials was 19. For the 8-month-olds the mean number of trials seen per 
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condition was 19.98. The mean number of trials included in the ERP average was 11.45 for 

the fearful upright condition, 11.80 for the happy upright condition, 10.75 for fearful inverted 

and 12.10 for the happy inverted condition. The minimum number of trials was 7 and the 

maximum number of trials was 20. While the mean number of trials included in the final 

analysis might appear lower than in previous studies, note that we used dynamic video stimuli 

that were substantially longer in duration than in previous studies. Furthermore, we applied a 

strict criterion for inclusion in the analysis, which required the entire trial epoch (2200 ms) to 

be artifact free (for a similar design using video material and similar analysis criteria, see T. 

Grossmann et al., 2012). Decisions pertaining to the statistical analyses were informed by 

visual inspection of the ERP waveforms and by prior work focusing on infant facial 

expression processing (Nelson & de Haan, 1996; Peltola et al., 2009). Specifically, based on 

this information, three consecutive time-windows were selected to investigate effects of the 

experimental manipulations on the three ERP components (Pb: 200-400 ms, [early-latency 

component], Nc: 400-700ms, [mid-latency component], Pc: 700-1100ms [late-latency 

component]). To account for the longer latencies (approximately 100 ms longer) for the ERP 

components in the group of 4-month-old infants, the time windows for the ERP analyses were 

shifted by 100 ms for all three ERP components (Pb, Nc, and Pc). These components have 

been commonly studied in visual experiments in infants (Webb et al., 2005) and have been 

shown to be modulated by facial emotional information (happy versus fear) in prior work 

(Nelson & de Haan, 1996). The selection of regions of interest was informed by visual 

inspection of the ERP waveforms and prior work using point-light displays (Hirai & Hiraki, 

2005; Reid et al., 2006) and happy and fearful emotional facial expressions (Nelson & de 

Haan, 1996; Peltola et al., 2009). Specifically, based on this information, ERP effects were 

examined for two regions of interest: (1) an anterior fronto-central region of interest including 

frontal and central electrodes (F3, F4, C3, C4) for analyzing the Pb, Nc, and Pc, and (2) a 
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more posterior temporo-parietal region of interest including temporal and parietal electrodes 

(T3, T4, P3, P4) for analyzing the Pc. This latter region of interest was chosen because in 

prior work effects on the Pc were reported over both fronto-central and temporo-parietal 

regions (de Haan & Nelson, 1997b; Grossmann et al., 2006). In keeping with prior work 

(Leppänen et al., 2007), main statistical analyses were carried out separately for the two age 

groups. Mean amplitude ERP effects for these regions and time windows were assessed in 

repeated measures ANOVAs with the within-subject factors emotion (happy versus fear), 

orientation (upright versus inverted), and hemisphere (left versus right). Main statistical 

analyses were carried out separately for the two age groups because (a) it has been 

recommended not to combine ERPs for infants more than 1- to 2-months apart in age 

(DeBoer et al., 2005), and (b) prior work suggests that Pb, Nc and Pc undergo developmental 

change during this period of infancy (Webb et al., 2005) (see Figure 4.2). In addition, in order 

to examine potential age differences in our study the factor age was added as a between-

subjects factor in supplementary analyses.  

4.3 Results 

Pb (200-400 ms). Our analysis for the Pb revealed a significant main effect of 

orientation at the anterior region of interest (frontal and central electrodes) in 8-month-old 

infants, F(1, 19) = 4.788, p = 0.041, η² = 0.201. In particular, inverted body expressions 

elicited a larger (more positive) Pb (M = 7.588 μV, SE = 1.651) than upright body expressions 

(M = 4.083 μV, SE = 1.6). No other main effects or interactions reached significance. No 

effects on the Pb were observed in the group of 4-month-old infants (all Fs < 1.301). 

Additional analysis comparing Pb responses across ages revealed no significant interactions 

with age (all Fs < 2.95). 
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Nc (400-700 ms). Our analysis for the Nc revealed that infants did not show any 

significant effects at either age or region. However, given that there was a significant main 

effect of the factor stimulus orientation in the group of 8-month-old infants during the early 

time window (Pb: 200-400 ms), we carried out a further analysis that assessed the effects of 

emotion separately for the two stimulus orientations (upright and inverted) at fronto-central 

electrodes. No significant effects or interactions reached significance (all Fs < 1.421). No 

effects on the Nc were observed in the group of 4-month-old infants (all Fs < 1.404). 

Additional analysis comparing Nc responses across ages revealed no significant interaction 

with age (all Fs < 1.155). 

Pc (700-1100 ms). For the group of the 8-month-old infants the analysis revealed a 

significant effect for orientation at anterior electrodes, F(1, 19) = 6.495, p = 0.020, η² = 0.255. 

Inverted body expressions elicited a more positive amplitude (M = 1.223 μV, SE = 1.171) 

than upright body expressions (M = -1.465 μV, SE = 1.264). No other significant differences 

were found (all Fs < 1.726). No significant effects were observed in the group of 4-month-old 

infants (all Fs < 3.689; this F-value resulted from a marginally significant main effect of the 

factor hemisphere, F(1, 19) = 3.689, p = 0.07). Additional analysis comparing Pc responses 

across ages revealed no significant interaction with age (all Fs < 3.344; this F-value resulted 

from a marginally significant interaction between the factors orientation and age, F(1, 19) = 

3.344, p = 0.075). 

Our analysis for the Pc at the posterior region of interest (temporal and parietal 

electrodes) revealed a significant three-way interaction between the factors emotion, 

hemisphere and age, F (1,38) = 4.746, p = 0.036, partial η² = 0.111. In further analyses a 

significant interaction between emotion and hemisphere for the posterior region of interest in 

8-month-old infants was found, F(1, 19) = 8.05, p = 0.011, η² = .298. For this posterior region 

mean amplitude during this time window differed between emotions only in the right 
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hemisphere, F(1, 19) = 5.524, p = 0.03, η² = .225 (where happy body expressions elicited a 

larger (more positive) Pc [M = 1.349 μV, SE = 1.138] than fearful body expressions [M = - 

0.688 μV, SE = 1.1]), but not in the left hemisphere. More specifically, this discrimination 

between emotions in the right hemisphere at posterior electrodes appeared to be driven by the 

upright condition, in which happy body expressions elicited a more positive Pc [M = 1.821 

μV, SE = 1.415] than fearful body expressions [M = - 2.076 μV, SE = 1.341], t (19) = 2.551, p 

= 0.02, whereas no such differences were observed in the inverted condition, t (19) = 0.141, p 

= 0.889 (happy body expressions [M = 0.877 μV, SE = 1.393], fearful body expressions [M = 

- 0.7 μV, SE = 1.436]). We justified these separate analyses of the effects of emotions for the 

two stimulus orientations (upright and inverted) on the basis of the finding of a main effect of 

stimulus orientation during an early time window (Pb: 200-400 ms). No effects on the Pc 

were observed in the group of 4-month-old infants (all Fs < 1.402).  
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Figure 4.2. Infant ERP responses. The event-related potentials (ERPs) time-locked to the stimulus 

onset in 4- and 8-month-old infants elicited by fearful upright (red solid line), fearful inverted (red 

dotted line), happy upright (blue solid line) and happy inverted (blue dotted line) point-light body 

expressions. The time windows during which significant differences were observed are marked in grey. 
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4.4 Discussion 

 In this study, we examined ERPs in 4- and 8-month-old infants in response to dynamic 

displays of happy and fearful body expressions presented in two orientations (upright and 

inverted). Our ERP results revealed that 8-month-olds but not 4-month-olds respond 

sensitively to the orientation and the emotion of the dynamic body expressions. Specifically, 

8-month-olds showed (i) an early (200-400 ms) orientation-sensitive Pb at frontal and central 

electrodes, and (ii) a late (700-1100 ms) emotion-sensitive Pc at temporal and parietal 

electrodes over the right hemisphere. These findings demonstrate that orientation-sensitive 

and emotion-sensitive brain processes, that are distinct in timing and topography, develop 

between 4 and 8 months of age. The ERP data therefore provide evidence that an important 

developmental transition in the neural processing of body expressions occurs between 4 and 8 

months of age.  

Our ERP results show that it is not until around the age of 8 months are infants’ brains 

able to distinguish between upright and inverted body motion from PLDs. The current study 

was the first to examine orientation effects using ERP measures in infants younger than 8 

months of age, and the ERP responses measured indicate that younger infants fail to 

distinguish between upright and inverted body movements. This might be seen as discrepant 

to prior behavioral work suggesting that younger infants (newborns and 3-month-olds) are 

sensitive to stimulus inversion as indexed by a looking preference for upright movement 

(Bertenthal, 1996; Simion et al., 2008). However, it should be noted that a similar dissociation 

between neural and behavioral measures is evident when examining the work investigating 

face inversion effects (de Haan et al., 2002; Farroni et al., 2005). This may have to do with the 

fact that in looking time studies stimuli are presented for much longer durations allowing for 

greater exploration by the infants, whereas in ERP studies stimuli are presented for much 

shorter durations required for the rapid detection of the relevant information. In any case, our 
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data show an orientation-sensitive ERP response in 8-month-old infants during an early time 

window (between 200 and 400 ms). The timing of this ERP effect is in line with prior ERP 

work with 8-month-old infants using upright and inverted kicking and walking motion (Reid 

et al., 2006), suggesting that orientation of body motion is detected during early processing 

stages. However, while in the current study the orientation-sensitive ERP response (Pb) was 

found to be greater in amplitude to inverted body motion and observed at frontal and central 

electrodes, prior work found that upright body motion elicited larger positivity at posterior 

(parietal) electrodes, suggesting that topography and direction of modulation of the 

orientation-sensitive ERP response differ across studies. This difference might be explained 

by the fact that across these studies the PLD stimuli varied with respect to the kind of 

movement displayed. Namely, Reid and colleagues (2006) used walking and kicking 

movements that provide cues regarding the direction of biological motion in the horizontal 

plane to the infant, which may result in evoked activity in brain regions sensitive to such 

directional information (de Lussanet et al., 2008; Oram & Perrett, 1994; Vangeneugden et al., 

2011). It is important to emphasize that, in Reid and colleagues (2006) study, the directional 

cues were in principal also available in the inverted condition, however, the coding of the 

direction of body movement may require for the body motion to be presented in the upright 

orientation (Gurnsey, Roddy, & Troje, 2010; Troje & Westhoff, 2006).  

In the current study, no uniform direction of body movement was evident across the 

stimulus set or in many of the individual stimuli, suggesting that infants’ discrimination of 

upright and inverted body motion did not involve such directional cues but may have relied 

on more general brain processes detecting and discriminating familiar from unfamiliar visual 

events. Indeed, the current data show that the orientation-sensitive responding occurred for 

the Pb, which is an infant ERP component that has been found to be sensitive to the 

familiarity of a visual stimulus (Webb et al., 2005). Even though much less is known about 
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the Pb than the Nc, prior work suggests that the response properties of the Pb are very similar 

to the Nc and may thus also reflect attentional resource allocation related to stimulus 

familiarity, whereby a smaller Pb is thought to reflect greater allocation of attention to a 

visual stimulus (Grossmann, 2013a; Hoehl, Wiese, & Striano, 2008). This suggests that 8-

month-old infants dedicated increased attentional resources to processing upright body 

expressions. Increased attention to upright body expressions in 8-month-old infants may thus 

have an impact on later brain processes that follow the early orientation-sensitive ERP 

response. 

Our analysis further revealed emotion-sensitive brain processing during a later time 

window (700-1100 ms). Critically, in line with our prediction based on prior work 

investigating facial and vocal emotion processing across infancy (Grossmann et al., 2010; 

Nelson & de Haan, 1996; Peltola et al., 2009), 8-month-old infants, but not 4-month-olds 

infants, distinguished between emotions. This supports the notion that brain processes 

associated with emotion detection and discrimination undergo some general development 

during this period of life (see Leppänen & Nelson, 2009). The finding that the ERP effect 

reflecting sensitive responding to emotional body expressions emerges between 4 and 8 

months of age might be explained by a number of factors. One possibility is that the 

observation and own experience of emotional states plays a critical role in the emergence of 

these discrimination processes. In particular, it has been argued that towards the end of the 

first year of life, the frequent and repeated exposure to happy emotions in self and others 

shapes infants’ responses to emotional information and their ability to distinguish between 

positive and negative emotions (Vaish et al., 2008). Another possibility is that infants develop 

a better grasp of emotions expressed by others as the result of more wide-ranging 

improvements in their social cognitive abilities that have been reported to occur towards the 

end of the first year of life, especially in relation to the sharing and understanding of the 
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attention and intentions of others (Tomasello & Carpenter, 2007; Tomasello, Carpenter, Call, 

Behne, & Moll, 2005). Regardless of the exact mechanisms that underlie the developmental 

change observed between 4 and 8 months, our findings support the notion of an early 

ontogenetic emergence of the ability to respond sensitively to emotions displayed by others, 

thus providing a vital foundation for later emerging empathic and prosocial abilities in infancy. 

More specifically, 8-month-olds showed an increased Pc in response to happy when 

compared to fearful body expressions. In prior work it has been shown that the Pc reflects 

neural processes associated with recognition memory. In particular, this work demonstrated 

that an increased Pc indexes the recognition of an item (Grossmann et al., 2006; Nelson, 

Thomas, de Haan, & Wewerka, 1998). Therefore, an increased Pc in response to happy body 

expressions as observed in the current data suggests that 8-month-old infants recognized the 

highly familiar (positive) expression and discriminated it from the less familiar (negative) 

expression. Furthermore, recognition reflected in the Pc might occur at the categorical level, 

as prior work has shown that a greater Pc is specifically evoked by new individual exemplars 

of a familiar visual category (Grossmann, Gliga, Johnson, & Mareschal, 2009). This appears 

likely given that infants in the current study were confronted with completely new and several 

different exemplars of happy body expressions. Importantly, this finding is in line with prior 

work showing a similar modulation of the Pc in response to happy when compared to fearful 

facial expressions (Nelson & de Haan, 1996), suggesting that recognizing positive emotional 

information is reflected in a neural signature common to face and body processing. 

Contrary to prior work using facial expressions (Leppänen, Moulson, Vogel-Farley, & 

Nelson, 2007; Nelson & de Haan, 1996), we did not observe an effect of emotion for any of 

the earlier ERP components (Pb and Nc). This discrepancy might be explained by differences 

in the type of stimulus material used across studies. Notably, the stimuli differed not only 

regarding whether they provided bodily expressed or facially expressed emotions but also 
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with respect to whether static or dynamic emotion displays were used. Importantly, in recent 

work, using ERPs we examined 8-month-old infants’ processing of happy and fearful full-

light static body expressions taken at the peak of the expression (Missana, Rajhans, Atkinson, 

& Grossmann, 2014) and found earlier emotion effects (N290 and Nc) than in the current 

study when using PLDs. This suggests that the discrimination of emotions from bodily 

expressions occurs faster for static displays than for dynamic displays, which is likely to do 

with the fact that in the dynamic context the emotional expression unfolds over time, whereas 

in the static context the peak of the expression is presented immediately. 

Confirming our predictions, our findings further revealed that infant brain response 

sensitive to emotional body expressions (Pc) was lateralized to the right hemisphere. This 

finding is in agreement with prior work on biological motion processing with 8-month-old 

infants (Hirai & Hiraki, 2005; Reid et al., 2006) and emotional body expression processing 

with adults (Grèzes et al., 2007; Heberlein et al., 2004; Heberlein & Saxe, 2005) that has also 

shown a lateralization of the brain responses to the right hemisphere. It should also be noted 

that this finding is in line with prior infant ERP research on the Pc, suggesting that this ERP 

component is lateralized to the right hemisphere and can be localized to the temporal cortex 

(Nelson, 1996; Reynolds & Richards, 2005). This furthers the notion that right hemispheric 

processes play an important role in the perception of emotions from body movement. While 

this finding is in overall agreement with prior work concerning body movement processing, 

no lateralization in the ERP responses sensitive to facial and vocal expressions of emotions 

was reported in previous studies with infants (Grossmann et al., 2005; Peltola et al., 2009). 

This suggests that body expression processing during infancy might rely more exclusively on 

brain processes localized in the right hemisphere than facial and vocal expression processing. 

However, more work possessing better brain activation localization properties than ERPs such 

as functional near-infrared spectroscopy (fNIRS) with infants (for a review, see Lloyd-Fox, 
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Blasi, & Elwell, 2010) is needed to obtain a clearer picture regarding the lateralization of 

infant brain responses.  

With respect to the developmental change observed in the current ERP study one 

limitation should be discussed. Namely, in our additional analysis, we did not observe any 

interactions of the factor age (4 versus 8 months) with any of the ERP effects related to 

infants’ discrimination of upright and inverted PLDs and happy and fearful PLDs. This 

indicates that, while our ERP data show that only at the age of 8 months, but not at 4 months, 

infants discriminate between the orientation and the emotion of a PLD, the ERP differences 

across age are not evident when directly assessed by including age as a between-subjects 

factor in our analyses. One possibility is that the age difference is not as strong as suggested 

by the results from the analyses carried out separately for the two ages, which might have to 

do with the fact that at least some of the 4-month-olds showed similar ERP responses to the 8-

month-olds. In any case, it should be emphasized that the common way to assess development 

in infant perception research is by examining effects separately for different age groups as 

was done in the current study. Therefore, our analytical approach is in keeping with most 

prior work in this regard. Nonetheless, further work is needed to clarify the exact nature and 

time course of the identified developmental change. 

This is the first study to use PLD body stimuli to display emotions to infants (previous 

behavioral work had relied on full-light displays of emotional expressions, Zieber et al., 2014). 

PLDs provide little static form information but contain the essential motion cues that allow 

adult observers to recognize emotions from body motion (Atkinson et al., 2004; Atkinson et 

al., 2007). Using PLDs we were able to show that 8-month-old infants can discriminate 

between emotional body expressions on the basis of motion cues. This finding critically 

extends prior work that has investigated infants’ perception of biological motion from PLDs 

(Bertenthal, 1993; Hirai & Hiraki, 2005; Reid et al., 2006) by showing that infants can detect 
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not only biological and human motion more generally but also extract specific information 

concerning the emotional state of the biological agent. Moreover, we observed that inversion 

of the body motion disrupts the discrimination of emotions, as indicated by the finding that 

the Pc did only differ between emotions in the upright context but not in the inverted context 

(note that, in our analysis we did not obtain an interaction between the factors emotion and 

orientation, but that this finding relies on separate comparisons between emotions performed 

for the two stimulus orientation). This suggests that 8-month-old infants require upright body 

motion to successfully extract emotional information. This effect is in agreement with (a) 

what has been reported in adults who show impaired recognition of dynamic body 

expressions when presented upside down (Atkinson et al., 2007) and (b) what has been shown 

in infants using behavioral looking time methods (Zieber et al., 2014b). The ERP differences 

between fearful and happy stimulus conditions are unlikely to be purely the result of 

differences in low-level motion properties between the two stimulus sets, however, for two 

reasons. First, we controlled for the amount of dot motion across the happy and fearful 

expressions. Second, the ERP differences between emotions were not evident for the inverted 

PLD stimuli, in which the available kinematic and dynamic information is identical to that 

available in the upright stimuli. Thus 8-month-olds are likely to be using higher-level motion 

cues, such as form-from-motion information or kinematics, to discriminate between the 

emotions.  

Taken together, the findings presented in the current study have informed, at three 

levels, our understanding of how emotional body expressions are processed. First, at the 

developmental level, we have seen that over the course of the first year of life the human 

brain becomes tuned to emotional body expressions. The ontogenetic emergence of infants’ 

ability to discriminate emotional body expressions occurs at a time in development when 

facial and vocal emotion processing capacities undergo similar change. These findings thus 
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provide evidence for accounts that conceive of emotion perception as a unified ability that 

develops in concert across various processing channels (face, voice and body). Second, at the 

perceptual level, we have shown that for emotion discrimination processes to occur the infant 

requires to see the body motion in an upright orientation. This is similar to what is known 

from adults (Atkinson et al., 2007) and it is also in line with work investigating the effects of 

inversion on the perception of faces in the first year of life (de Haan et al., 2002). The 

disruption of emotion discrimination by body inversion can be seen as evidence for the 

developmental emergence of configural processing of body motion. That is, rather than 

relying on individual features of the body that are also present in the inverted stimulus, 8-

month-olds require to see the configuration of body features in order for the discrimination 

process to take place. Third, at the neural level, we have shown that emotion discrimination 

from body expressions elicits brain responses that are lateralized to the right hemisphere. In 

agreement with prior work (Grèzes et al., 2007; Heberlein et al., 2004; Heberlein & Saxe, 

2005), this suggests that the right hemisphere begins to play an important role in emotional 

body expression processing from early in ontogeny. All in all, the current data has shed new 

light on the developmental, perceptual and neural processes that underpin emotional body 

expressions thereby critically extending and informing accounts of emotion perception. 
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Responding to others’ emotional body expressions is an essential social skill in 

humans. Adults readily detect emotions from body postures, but it is unclear whether infants 

are sensitive to emotional body postures. We examined 8-month-old infants’ brain responses 

to emotional body postures by measuring event-related potentials (ERPs) to happy and fearful 

bodies. Our results revealed two emotion-sensitive ERP components: body postures evoked 

an early N290 at occipital electrodes and a later Nc at fronto-central electrodes that were 

enhanced in response to fearful (relative to happy) expressions. These findings demonstrate 

that, (a) 8-month-old infants discriminate between static emotional body postures, and (b) 

similar to infant emotional face perception, the sensitivity to emotional body postures is 

reflected in early perceptual (N290) and later attentional (Nc) neural processes. This provides 
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evidence for an early developmental emergence of the neural processes involved in the 

discrimination of emotional body postures. 

Keywords: emotion, infants, body expressions, ERP, development 

5.1 Introduction 

Reading others’ emotional expressions is a vital skill that helps us predict others’ 

actions and guide our own behavior during social interactions (Frith, 2009). Emotional 

communication is inherently multidimensional and multisensory in nature as emotional 

information can be gleaned from various sources such as the face, the voice, the body posture 

and motion of a person (Heberlein & Atkinson, 2009). The bulk of research investigating 

emotion expression perception has focused on facial and vocal expressions (Belin et al., 2012). 

Much less work has been dedicated to understanding the perception of emotional body 

expressions, even though body expressions may be the most evolutionarily preserved and 

immediate means of conveying emotional information (de Gelder, 2006). The work on 

emotional body expressions has revealed that adults are readily able to detect and recognize 

various emotions from body expressions (Atkinson, 2013; de Gelder, 2009) and that in some 

instances emotional body cues can even be detected in the absence of conscious awareness 

(see Tamietto & de Gelder, 2010). Furthermore, there is recent evidence to show relatively 

better discrimination between positive and negative emotions from body cues when compared 

to facial cues (Aviezer, Trope, & Todorov, 2012). This ability to recognize emotions from 

body expressions relies on specific brain processes localized principally in the right 

hemisphere, including superior temporal, somatosensory and premotor cortices (Atkinson, 

2013; de Gelder, 2006; Grèzes et al., 2007; Heberlein et al., 2004; Heberlein & Saxe, 2005). 

Concerning the temporal dynamics of the brain processes involved in differential responding 

to emotional body expressions in adults, using event-related brain potentials (ERPs), it has 
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been shown that fearful body postures evoke enhanced activity during early stages of visual 

processing (Van Heijnsbergen, Grèzes, & de Gelder, 2007) and further result in sustained 

activity over fronto-central brain regions during later processing stages (Stekelenburg & de 

Gelder, 2004).  

 Only recently, research has begun to examine how the ability to perceive and respond 

to others’ emotional body expressions develops during infancy. Specifically, Zieber and 

colleagues (2014b) examined infants’ sensitivity to emotional body expressions in a series of 

behavioral experiments with 6.5-month-old infants (using video full-light body expressions 

taken from Atkinson et al., 2004; Atkinson et al., 2007). In this study, 6.5-month-olds showed 

a visual preference for happy over neutral body expressions and were shown to look longer at 

body-voice pairings that conveyed congruent emotional information (happiness or anger) than 

incongruent emotional information. Critically, these effects were specific to body expressions 

presented in an upright orientation, since infants did not show any difference in their looking 

responses when the body expression was presented upside-down (Zieber et al., 2014b). While 

these findings provide first insights into infants’ perceptual sensitivity to emotional body 

expressions, a number of vital remaining issues were addressed in a recent event-related brain 

potential (ERP) study (Missana, Atkinson, & Grossmann, 2015).  

In this study Missana and colleagues (2015) investigated the developmental 

emergence of infants’ neural sensitivity to emotional body expressions by presenting 4- and 

8-month-olds with upright and inverted happy and fearful dynamic body expressions using 

point-light displays (PLDs). This ERP study yielded three main findings with respect to 

infants’ developing sensitivity to emotional body expressions. First, similar to prior work 

using facial and vocal emotional expressions (Grossmann et al., 2005; Nelson & de Haan, 

1996; Peltola et al., 2009) 8-month-olds, but not 4-month-olds, showed a neural 

discrimination between fearful and happy body movements, suggesting that the ability to 
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process the emotional content of body movements develops during the first year of life. 

Second, in line with prior work that has shown that body expression perception in adults and 

infants is impaired by stimulus inversion (Atkinson, 2013; Zieber et al., 2014b), the 

differential ERP responses to fearful vs. happy expressions in 8-month-old infants was mainly 

evident in the upright condition but not in the inverted condition. Third, in agreement with 

previous findings of right-hemisphere lateralization of emotional body-expression processing 

in adults (Grèzes et al., 2007; Heberlein et al., 2004; Heberlein & Saxe, 2005), 8-month-old 

infants emotion-sensitive brain responses were lateralized to the right hemisphere. 

Given what has been shown in recent work (Missana et al., 2015; Zieber et al., 2014b), 

another important question that arises is, once infants are sensitive to body expressions, how 

flexible are they in detecting them? Specifically, can infants discriminate between emotional 

body expressions in the absence of motion cues like adults can (Atkinson et al., 2004; 

Atkinson et al., 2012; de Gelder, Snyder, Greve, Gerard, & Hadjikhani, 2004; Stekelenburg & 

de Gelder, 2004)? Such an extension of prior work is critical because (a) it provides a 

developmental perspective on emotional body expression processing by allowing for a 

comparison between prior ERP findings with adults (Stekelenburg & de Gelder, 2004; Van 

Heijnsbergen et al., 2007) and the current infant data, and (b) it establishes a link to the 

literature on facial expression processing since most prior ERP work on infants’ processing of 

emotional facial expressions has been focused on static but not dynamic facial expressions 

(Missana, Grigutsch, & Grossmann, 2014).  

 In order to examine the question posed above, we conducted an experiment in which 

we presented a group of 8-month-old infants with static photographs of upright and inverted 

happy and fearful body expressions while measuring their ERPs. We hypothesized that if 8-

month-olds are sensitive to emotional information conveyed through the body even in the 

absence of motion cues, then they would show evidence for discriminating between fearful 
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and happy emotional body postures in their ERP responses. Regarding this hypothesis it is 

important to emphasize that from prior work with adults (Atkinson et al., 2004; Atkinson et 

al., 2007) we know that while inversion of body expressions impairs the recognition of 

emotion from body expressions, it does not completely abolish it. That is, adults’ emotion 

recognition rates from inverted body expressions are still above chance. Similarly, in prior 

ERP work with infants (Missana et al., 2015) using dynamic body expressions, while there 

was a significant main effect of emotion (fearful, happy), no evidence for an interaction 

between the emotion and orientation (upright, inverted) was obtained, which is probably to do 

with the fact that ERP modulations occurred in a similar direction for upright and inverted 

displays of emotion. However, further analysis revealed that only in the upright condition did 

infants’ neural responses discriminate between emotions (Missana et al., 2015). We 

hypothesized that neural evidence for emotion discrimination is related to the orientation of 

the body; however, given previous findings, we expected that this effect might not be directly 

reflected in a significant interaction between stimulus orientation and emotion. This 

hypothesis is also based on prior work that has shown that body expression perception in 

adults and in infants is impaired (but not completely abolished) by stimulus inversion 

(Atkinson et al., 2007; Missana et al., 2015; Stekelenburg & de Gelder, 2004; Zieber et al., 

2014b). We therefore predicted that infants’ discrimination between emotions would mainly 

be evident in the upright condition but not, or at least not as clearly, in the inverted condition. 

More specifically, we focused our investigation on infant ERP components linked to early 

visual processes (N290) at posterior sites, and later attentional processes (Nc) at anterior sites, 

which are reliability observed in response to visual stimuli and known to be modulated by 

emotional information (Grossmann et al., 2006; Kobiella et al., 2008; Peltola et al., 2009). 

Based on prior work (Missana et al., 2015), we had also planned to assess effects on a late 

ERP component referred to as the Pc, evoked at temporal and parietal electrodes, that has 
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been found to be modulated by dynamic emotional body expressions. However, already at the 

level of the visual inspection of the ERP data there was no discernible Pc observed in the 

ERPs, which prevented us from studying this component further. This approach also allowed 

us (a) to assess potential differences between statically (current study) and dynamically 

presented body expressions (Missana et al., 2015) and (b) to examine whether the body 

inversion effects and hemispheric lateralization of the ERP responses observed in prior work 

using PLDs (Missana et al., 2015) could be replicated with a different group of 8-month-

infants using static body expressions.  

5.2 Methods and Materials 

Participants. The final sample consisted of 15 eight-month-old infants aged between 

243 and 261 days (10 females, Median age = 251, Range = 18 days). An additional 23 eight-

month-old infants were tested, but were excluded from the final sample due to fussiness (n = 

5), too many artifacts (n = 16) and experimenter error (n =2). Note that an attrition rate at this 

level is within the normal range for an infant ERP study (DeBoer et al., 2005). The infants 

were born full-term (between 37 and 41 weeks) and had a normal birth weight (> 2500 g). 

Ethical approval was obtained from the ethics committee of the Medical School at the 

University of Leipzig. All parents gave written informed consent prior to the study and were 

paid for their children’s participation. The children were given a toy after the session. 

Stimuli. The stimulus material consisted of full-light static body expressions 

displaying six different fearful and six different happy expressions (from Atkinson et al., 

2004). These expressions were taken from the same actors posing the same emotions as in a 

previous ERPs study (Missana et al., 2015) by selecting still frames of the full-light version of 

the body expression recording at the peak of the expression (see Figure 5.1A). From the 

original set of 8 stimuli per condition used in Missana et al.’s (2015) study, 6 stimuli for each 



STUDY 3  87 

 

emotion were selected on the basis of their recognition rate by a group of adults (Atkinson et 

al., 2004) (at least 40 % mean percentage correct identification of the emotion displayed; 

chance level was 16.7 %). The stimuli had a mean height of 11.9 cm subtending a visual angle 

of 9.74° (SD = 3.5 cm) and a mean width of 6.5 cm subtending a visual angle of 5.4° (SD 3.1 

cm). 

 Procedure. The infants were seated on their parent’s lap in a dimly lit, sound-

attenuated and electrically shielded room during testing. In order to rule out that the parents 

influenced the infants’ responses to the stimuli we asked the parents not to talk or interact 

with their infant during the course of the experiment (Kobiella et al., 2008). Furthermore, we 

instructed the parents to look down at the infant but not at the screen and the sessions were 

video-recorded so that trials during which the parent interacted with the infant could be 

excluded from the analysis. The stimuli were presented in the center of the screen on a black 

background, using a 70-Hz, 17-inch computer screen at a distance of 70 cm. Each trial began 

with an alerting sound and a fixation cross (1000 ms), in order to attract the infants’ attention 

to the screen, followed by a black screen (400 ms), followed by the full-light static expression 

(2000 ms). During the inter-trial interval infants were presented with an abstract screensaver 

for the purpose of keeping infants’ attention. The inter-trial interval lasted at least 1000 ms 

and varied depending on the infants’ attentiveness, as stimulus presentation was controlled by 

an experimenter such that stimuli were only presented when infants were looking at the screen. 

The stimuli were presented in a randomized order with the exception that no two stimuli with 

the same emotion and orientation combination were presented consecutively. In addition, the 

sessions were video-recorded to allow for off-line coding of infants’ attention to the screen. 

The EEG session ended when the infant became fussy, or inattentive. 

ERP analysis. The EEG was recorded from 27 Ag/AgCl electrodes attached to an 

elastic cap (EasyCap GmbH, Germany) using the 10-20 system of electrode placement. The 
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data was online referenced to the CZ electrode and offline re-referenced to the algebraic mean 

of the left and right mastoid electrodes. The horizontal electrooculogram (EOG) was recorded 

from two electrodes (F9, F10) that are part of the cap located at the outer canthi of both eyes. 

The vertical EOG was recorded from an electrode on the supraorbital ridge (Fp2) that is part 

of the cap and an additional single electrode on the infraorbital ridge of the right eye. The 

EEG was amplified using a Porti-32/M-REFA amplifier (Twente Medical Systems 

International) and digitized at a rate of 500 Hz. Electrode impedances were kept between 5 

and 20 kΩ. Data processing for ERP analysis was performed using an in-house software 

package EEP, commercially available under the name EEProbeTM (Advanced Neuro 

Technology, Enschede). The raw EEG data was bandpass filtered between 0.3 and 20 Hz. The 

recordings were segmented into epochs time-locked to the stimulus onset, lasting from 200 

ms before onset until the offset of the frame (total duration 2200 ms). The epochs were 

baseline corrected by subtracting the average voltage in the 200 ms baseline period (prior to 

video or picture onset) from each post-stimulus data point. The baseline period contained a 

200 ms black screen. Data epochs were rejected off-line whenever the standard deviation 

within a gliding window of 200 ms exceeded 80 μV in any of the two bipolar EOG channels 

and 60 μV at EEG electrodes. EEG data was also visually inspected offline for artifacts.  At 

each electrode, artifact-free epochs were averaged separately for fearful upright, happy 

upright, fearful inverted and happy inverted body expressions to compute the ERPs. The 

mean number of trials presented within each condition was 17.18. The mean number of trials 

included in the ERP average was 6.60 (SE = .73) for the fearful upright condition, 7.80 (SE = 

1.15) for the happy upright condition, 5.93 (SE = .53) for the fearful inverted condition and 

7.60 (SE = 1.05) for the happy inverted condition. The criterion for inclusion was a minimum 

of 4 trials per condition. The mean number of trials is somewhat lower than in prior infant 

ERP studies but this is likely to do with the fact that the current design consisted of four 
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conditions, which is more than in prior studies. We note that the low trial number can be seen 

as a limitation of the current study but want to stress that, (a) in order to allow for 

comparisons, our procedure and analysis were closely matched to previous work that used 

dynamic displays of emotional body expressions (Missana et al., 2015), and (b) conservative 

rejection criteria were applied so that only artifact-free trials were included in the analysis. In 

this context it is also important to mention that the Nc, as one of the main components 

examined in this study, is a rather large deflection, discernible and present in individual 

infants even when a relatively small number of trials is used (see Hoehl & Wahl, 2012, recent 

methods paper that provides extensive information regarding ERP measurement and analysis 

standards for infants and present data from individual infants demonstrating that 5 trials are 

sufficient to evoke clear Nc responses). Based on prior ERP work (Kobiella et al., 2008; 

Leppänen et al., 2007; Missana et al., 2015; Peltola et al., 2009) and the visual inspection of 

the ERP data three ERP components distinct in timing (early and late) and topography 

(occipital and fronto-central) were analyzed. First, to assess ERP effects on the N290 over 

visual cortex at occipital electrodes (O1, O2), ERPs were statistically analyzed during an early 

time window of 250 to 350 ms after stimulus onset. Second, to assess ERP effects on the Nc 

over frontal cortex at frontal and central electrodes (F3, F4, C3, C4), ERPs were statistically 

analyzed during a late time window of 700 to 800 ms after stimulus onset. Note that the onset 

and exact timing of the Nc has been shown to vary considerably across studies and might 

depend on the stimulus duration and other characteristics of the presentation protocol (de 

Haan et al., 2003; Grossmann et al., 2007; Leppänen et al., 2007; Luyster, Powell, Tager-

Flusberg, & Nelson, 2014; Missana, Grigutsch, et al., 2014). Mean amplitude ERP effects for 

these regions and time windows were assessed in repeated measures ANOVAs with the 

within-subject factors emotion (happy versus fear), orientation (upright versus inverted), and 

hemisphere (left versus right). As prior work indicates that emotion-sensitive ERP response 
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were lateralized to the right hemisphere and specific to the upright orientation (Missana et al., 

2015), in addition to the repeated measures ANOVAs, we conducted paired samples t-Tests to 

evaluate the orientation specificity and lateralization of the ERP responses.  

5.3 Results 

 N290. Our analysis revealed a significant main effect of emotion at occipital 

electrodes from 250 to 350 ms, F(1, 14) = 7.02, p = 0.019, η² = 0.334, where fearful body 

expressions (M = -1.58 μV, SE= 2.59) elicited a more negative N290 than happy body 

expressions (M = 6.14 μV, SE = 3.34). Further analysis showed that this effect of emotion was 

driven by differences in the upright orientation, as upright fearful body expressions (M = -

2.23 μV, SE = 3.04) elicited ERPs that were significantly more negative in their mean 

amplitude than ERPs elicited by upright happy body expressions (M = 6.42 μV, SE = 3.42) 

during this time window, t [14] = 2.22, p = 0.043 (uncorrected) (see Figure 5.1B and Table 

5.1), whereas no significant differences between emotions were observed for this component 

when the stimuli were inverted, t [14] = 1.39, p = 0.196. Note that our analysis showed no 

significant interaction between the factors emotion, orientation and hemisphere, F(1, 14) = 

2.49, p = 0.137, η² = 0.151. 

 Nc. Our analysis revealed a significant main effect of emotion at frontal and central 

electrodes from 700 to 800 ms, F(1, 14) = 5.03, p = 0.042, η² = 0.264, where fearful body 

expressions (M= -8.12 μV, SE= 2.15) elicited a more negative Nc than happy body 

expressions (M = -1.56 μV, SE = 1.79). Further analysis showed that this effect of emotion on 

the Nc was driven by differences over the right hemisphere for the upright orientation. 

Specifically, at the right-hemisphere fronto-central electrodes ERPs to upright fearful body 

expressions were significantly more negative in their mean amplitude (M = -9.19 μV, SE = 

2.64) than ERPs elicited by upright happy expressions (M = -0.14 μV, SE = 2.78), t [14] = 
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2.79, p = 0.014 (uncorrected) (see Figure 5.1B and Table 5.1), whereas no significant 

differences were observed at the right-hemisphere fronto-central electrodes when the stimuli 

were inverted, t [14] = 1.53, p = 0.147, or at the left-hemisphere fronto-central electrodes 

when the stimuli were presented upright, t [14] = 1.52, p = 0.150 or inverted, t [14] = 1.43, p 

= 0.174. Note that our analysis showed no significant interaction between the factors emotion, 

orientation and hemisphere, F(1, 14) = 0.389, p = 0.543, η² = 0.027. 

 Note that reported p-values for pairwise-comparisons are uncorrected. The p-value for 

the Nc survives a Bonferroni correction but for the N290 the p-value does not survive a 

Bonferroni correction threshold at p < 0.025. 
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Figure 5.1. Examples of the stimuli and ERPs. A) These are examples of the static full-light body 

expression stimuli (upright) used in the study. B) This shows the event-related brain potentials (ERPs) 

at fronto-central and occipital electrodes time-locked to the stimulus onset in 8-month-old infants 

elicited by fearful upright (red) and happy upright (blue) static full-light body expressions. The time 

windows during which significant differences between fearful and happy body expressions were 

observed are marked in grey. Note that negativity is plotted upward. 
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Table 5.1. Means (SD) of ERPs in microvolt. This table shows the means (standard deviations) of 

ERPs in microvolt for happy upright, fearful upright, happy inverted, and fearful inverted body 

expressions at occipital and frontal and central electrodes. 

 

 

5.4 Discussion 

The current study examined how infants process emotional information from body 

postures by investigating the neural correlates of discriminating between fearful and happy 

body expressions. Our results revealed two emotion-sensitive ERP responses (N290 and Nc) 

distinct in timing and topography. Namely, we found that 8-month-old infants discriminated 

between emotions as reflected in ERP differences for (a) the N290 at occipital electrodes 

during an early time window (250-350 ms), and (b) the Nc at frontal and central electrodes 

during a late time window (700-800 ms).  

More specifically, the pattern of ERP findings indicates that this ability relies on early 

visual processes (N290, Kobiella et al., 2008) as revealed by the ERP difference observed at 

occipital electrodes and later attentional processes (Nc, Nelson & de Haan, 1996; Peltola et al., 

2009) as indexed by the ERP difference observed at frontal and central electrodes. The early 

ERP effect on the N290, with an enhanced N290 elicited by fearful body expressions when 
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compared to happy body expressions, is in line with prior work showing that the N290 varies 

as a function of emotional facial expressions (Kobiella et al., 2008). This suggests that 

emotional information affects early visual (posterior) processing likely related to the structural 

encoding of both bodies and faces (Gliga & Dehaene-Lambertz, 2005; Halit, Csibra, Volein, 

& Johnson, 2004). Critically, the early occipital ERP effect appears to be specific to the 

discrimination processes elicited by static emotional body expressions, because it was only 

observed in the current study but not in prior ERP work using emotional PLDs (Missana et al., 

2015). This might have to do with the fact that in the current study the ERP response was 

measured in response to discrete emotional body postures (taken at the apex of the expression) 

enabling fast detection of differences in expression, while for the dynamic stimuli changes in 

body posture unfold more slowly over time and might thus be harder to detect for the infants. 

The later ERP effect on the Nc, with an enhanced Nc elicited by fearful body expressions 

when compared to happy body expressions, is in general agreement with prior work showing 

a similar effect on the Nc in response to fearful and happy facial expressions (Nelson & de 

Haan, 1996; Peltola et al., 2009). Interestingly, the enhanced Nc response to fearful 

expressions in infants is similar to a fronto-central response observed in prior work with 

adults (Stekelenburg & de Gelder, 2004), suggesting that both infants and adults possess 

neural processes associated with increased allocation of attention to fearful bodies. This 

speaks to the importance of fear signals in directing attention (Vuilleumier, 2005). The results 

indicate that by the age of 8-months the infant brain distinguishes between bodily expressions 

of emotion, even in static displays, which is consistent with previous research showing similar 

results in topography in adults’ brains. However, further research is required to directly 

compare and contrast the timing and topography of these responses (and ultimately, of the 

underlying neural processing) across infants and adults. 
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With respect to this finding concerning the Nc response it is important to note that the 

ERP difference observed for body expressions occurred somewhat later than the ERP 

difference commonly reported for facial expressions, suggesting that it might take infants 

longer to extract emotional information from bodies than from faces. Why this might be the 

case should be examined in future work that directly compares emotion processing from faces 

and bodies. Irrespective of these timing differences, the current data on body expression 

processing and prior work on facial expressions processing suggest that the detection of 

emotional information affects later anterior processing related to differential attention 

allocation to bodies and faces. Furthermore, this finding indicates that fearful expressions 

regardless of whether they are presented in the face or through body posture evoke a greater 

allocation of attention as indexed by the Nc. That the perception of signals of fear in others 

would result in such an effect possibly serves a critical adaptive function because it may allow 

infants from early in life to pay attention and learn from others in dangerous and threatening 

situations. 

 It is important to mention that, although not obtaining an interaction between 

orientation (upright, inverted) and emotion (fearful, happy), detailed analyses of the N290 and 

the Nc revealed that ERPs differed between emotions, specifically in the upright condition. 

This suggests that emotion effects were mainly driven by body posture seen in an upright 

orientation. This is similar to what is known from behavioral and ERP studies with adults 

(Atkinson et al., 2007; Stekelenburg & de Gelder, 2004) and infants (Missana et al., 2015; 

Zieber et al., 2014b) regarding emotional perception from body expressions. Critically, the 

disruption of emotion discrimination by body inversion can be seen as evidence for configural 

processing of body posture. That is, rather than relying on individual features of the body that 

are also present in the inverted stimulus, 8-month-olds require to see the familiar 

configuration of body features in order for the emotion discrimination process to take place. 
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In this context, it is important to emphasize that this is one of the first infant ERP studies that 

investigated the effects of stimulus inversion on visual emotion processing (see Missana et al., 

2015, for the only other ERP study that used this kind of manipulation). Clearly, more work is 

needed to further specify the exact nature of orientation effects on visual emotion processing. 

However, it should be noted that using inverted stimuli as control stimuli yields an advantage 

over studies that used a neutral condition or no control condition because the low level visual 

information is kept identical across orientations, whereas neutral conditions generally differ 

with respect to low level visual features from the emotional conditions. Thus, the use of 

inverted stimuli can be seen as a strength of the current study. 

Moreover, although we did not obtain an interaction between the factors hemisphere 

(left, right) and emotion (fearful, happy), we observed that for the Nc ERPs differed between 

fearful and happy body expressions only over the right hemisphere. This is similar to what has 

been shown in prior work using dynamic body expressions (Missana et al., 2015), indicating 

that similar lateralization of the brain response can be observed for dynamic and static stimuli. 

In line with prior adult work (Grèzes et al., 2007; Heberlein et al., 2004; Heberlein & Saxe, 

2005), this may suggest that the right hemisphere begins to play an important role in 

emotional body expression processing from early in ontogeny. Taken together, these results 

provide corroborating evidence for the laterality and orientation specificity of the brain 

processes employed by infants at the age of 8 months when perceiving emotional body 

expressions. 

However, it should also be noted that the timing and the topography of the emotion-

sensitive ERP effects varied between prior work using dynamic stimuli (Missana et al., 2015) 

and the current study. These dissimilarities provide insights into how the processing of 

dynamic and static body expressions differs. As discussed above, the N290 effect appears to 

be unique to static presentation of emotional bodies. Furthermore, the current data showed a 
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modulation for the Nc at frontal and central electrodes, whereas prior work using dynamic 

stimuli elicited later effects on the Pc at temporal and parietal electrodes. This suggests brain 

processes distinct in timing and region are engaged when discriminating between emotional 

body expressions on the basis of motion cues (Missana et al., 2015) and posture cues (current 

study). Importantly, that dynamic and static presentation of emotional expressions evokes 

distinct processes in the human brain has been repeatedly shown in adults (Kessler, Doyen-

Waldecker, Hofer, Traue, & Abler, 2011; Sato, Kochiyama, Yoshikawa, Naito, & Matsumura, 

2004), suggesting that it is of critical importance to study the emergence of these differences 

in development. This is a topic that has been greatly neglected as far as the neuroscience of 

emotion perception in infancy is concerned. Clearly, future work is needed that directly 

compares emotion processing from static and dynamic body cues within the same infants in 

order to better describe and understand the nature of these differences. 

As mentioned in the methods section, we took several precautionary measures to 

control that the parents did not influence infants’ responses to the stimuli. We asked the 

parents not to attend to the screen, not to talk or interact with their infant during the course of 

the experiment. We further video-recorded the sessions so that trials during which the parent 

interfered with the procedure could be excluded from the analysis. Despite of all of these 

measures taken, we still cannot completely rule out the possibility that parents unintentionally 

cued the infants. This limitation applies to all infant studies in which the infants sit on their 

parents’ lap and might be addressed in future studies by placing the infant in a seat that 

prevents direct contact between the infant and the parent (e.g., Fairhurst, Löken, & 

Grossmann, 2014).  

In summary, the current findings have informed three main aspects of our 

understanding of how emotional body expressions are processed. First, as far as the 

developmental perspective is concerned, we have seen that 8-month-old infants detect 
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emotional information from body postures, providing evidence that at this age they sensitively 

respond to emotional information from bodies. This sensitivity to emotional body expressions 

is manifested at a time in development when a similar sensitivity to facial and vocal emotional 

cues has developed (Grossmann, 2013a; Peltola et al., 2009). In conjunction with prior work, 

these findings thus provide evidence for accounts that conceive of emotion perception as a 

unified ability that is reflected across various processing channels (face, voice and body). 

Second, with respect to the neurodynamics of body expression processing, we have seen that 

emotional body posture discrimination is reflected in early perceptual (visual) and later 

attentional neural processes, suggesting that emotion discrimination is multifaceted and relies 

on perceptual processes that occur before differential attention is allocated to emotional 

stimuli. Third, at the hemispheric level, we have provided evidence that emotion 

discrimination from body expressions elicits brain responses (Nc) that are more prominent in 

the right hemisphere. In agreement with prior work (Grèzes et al., 2007; Heberlein et al., 2004; 

Heberlein & Saxe, 2005), this suggests that the right hemisphere begins to play an important 

role in emotional body expression processing from early in ontogeny. All in all, the current 

data has shed new light on emotional body expression processing in infancy thereby critically 

extending and informing accounts of emotion understanding. 
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Sensitive responding to others’ emotional body expressions is an essential social skill 

in humans. Using event-related brain potentials (ERPs), it has recently been shown that the 

ability to discriminate between emotional body expressions develops between 4 and 8 months 

of age. However, it is not clear whether the perception of emotional body expressions in 

others evokes sensitive brain responses linked to motivational processes in infants. We 

therefore examined frontal EEG alpha asymmetry in response to dynamic happy and fearful 

body expressions presented to 4- and 8-month-old infants in two orientations (upright and 

inverted). Our results revealed that only 8-month-olds but not 4-month-olds showed 

significant differences in their frontal asymmetry responses between emotional expressions 

when presented in an upright orientation. Specifically, 8-month-old infants showed a greater 

lateralization to the left hemisphere in response to happy expression, indexing a greater 

tendency to approach, whereas they showed a greater lateralization to the right hemisphere in 

response to fearful expressions, indexing a greater tendency to withdraw. These findings 
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provide further support for the notion that infants’ perception of emotion undergoes a 

developmental tuning during this period in development. Critically, the results suggest that 

the infant brain becomes sensitive to the motivational significance conveyed by the emotional 

body expressions. 

Keywords: emotion, infants, body expressions, frontal cortex, development 

 

6.1 Introduction 

Understanding others’ emotional expressions is a vital skill that helps us predict others’ 

actions and guide our own behavior during social interactions (Frith, 2009). Emotional 

communication is inherently multidimensional and multisensory in nature as emotional 

information can be gleaned from various sources such as the face, the voice, and the body 

posture and motion of a person (Heberlein & Atkinson, 2009). The bulk of research 

investigating emotion expression perception has focused on facial and vocal expressions 

(Belin et al., 2012). Much less work has been dedicated to understanding the perception of 

emotional body expressions, even though body expressions may be the most evolutionarily 

preserved and immediate means of conveying emotional information (de Gelder, 2006). The 

work on emotional body expressions has revealed that adults are readily able to detect and 

recognize various emotions from body expressions (Atkinson, 2013; de Gelder, 2009). This 

ability to recognize emotions from body expressions relies on specific brain processes 

localized principally in the right hemisphere, including superior temporal, somatosensory, and 

premotor cortices (Atkinson, 2013; de Gelder, 2006; Grèzes et al., 2007; Heberlein et al., 

2004; Heberlein & Saxe, 2005). 

From a developmental perspective it has been shown that already during the first year of 

life infants’ brains become sensitive to various facial and vocal expressions (for review, see 
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Grossmann, 2013a). Despite the progress that has been made in understanding the ontogeny 

of emotion perception from face and voice by studying its neural correlates using event-

related brain potentials (ERPs), how the ability to perceive and respond to others’ emotional 

body expressions develops during infancy has only recently been investigated. Namely, 

Missana and colleagues (2015) examined ERPs in response to dynamic happy and fearful 

body expressions in 4- and 8-month-old infants using point-light displays (PLDs) (Atkinson et 

al., 2012) presented in an upright and inverted orientation. The ERP results of this study 

revealed that 8-month-olds but not 4-month-olds showed an emotion-sensitive responding as 

reflected in an increased positive component (Pc) from 700 to 1100 ms to happy relative to 

fearful expressions when presented in an upright orientation (Missana et al., 2015). The Pc is 

taken to reflect recognition memory processes and a greater (more positive) Pc indexes the 

recognition of an item or event (Grossmann et al., 2006; Nelson & de Haan, 1996; Nelson et 

al., 1998; Webb et al., 2005). The ERP results from this study therefore suggest that (a) the 

infant brain becomes tuned to emotional body expressions between 4 and 8 months of age and 

(b) that at 8 months of age infants recognize positive body expressions. This is in line with 

work demonstrating that infants’ perception of facial and vocal expressions of emotion 

undergoes similar developmental tuning during this period (Grossmann et al., 2005; Peltola et 

al., 2009). 

Critically, the developmental emergence of infants’ ability to detect fear in others and 

discriminate it from happy expressions occurs at a time in development when infants begin to 

express fear themselves (Campos, Kermoian, & Zumbahlen, 1992). For example, it has been 

shown that at 8 months of age, but not at 4 months of age, infants show increased anxiety 

towards strangers (Braungart-Rieker, Hill-Soderlund, & Karrass, 2010). This developmental 

change in infants’ emotional responding has been linked to a sensitive period in infants’ 

socio-emotional development related to the onset of independent locomotion (Campos et al., 
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2000) and maturation of the amygdala and connected brain structures (see Tottenham, 2012, 

for a discussion). The occurrence of such developmental changes in early socio-emotional 

development related to fear responding has been extensively studied in other altricial species 

such as rodents (Moriceau, Roth, & Sullivan, 2010) and monkeys (Bauman & Amaral, 2008). 

This pattern is thought to serve important adaptive functions with respect to bonding with the 

caregiver during the earliest stages of postnatal development by increasing approach through 

the reduction of fear (Tottenham, 2012). This may therefore be seen as a highly preserved 

developmental mechanism in altricial species. Although infants’ expression and perception of 

fear in comparison to happiness has been assigned such a critical role in early socio-emotional 

development, to date it is not known whether and when the perception of body expressions in 

others evokes sensitive responses linked to motivational brain processes in infants. 

In prior work it has been shown that the frontal cortex plays a mediating role in processing, 

experiencing, and regulating emotions (Davidson, 1992; Davidson et al., 1990; Fox, 1991). 

Specifically, previous studies in adults and infants measuring asymmetrical frontal brain 

activity in the alpha frequency band suggest that the lateralization of cortical activity 

measured at frontal electrode sites is associated with different motivational tendencies and can 

be seen as an index of approach or withdrawal motivations (Davidson, 1984; Davidson & Fox, 

1982; Harmon-Jones, 2003). In particular, it has been shown that the motivation to approach 

is associated with relatively greater left frontal cortical activity, whereas relatively greater 

right frontal cortical activity is associated with the motivation to withdraw (Buss et al., 2003; 

Coan et al., 2001; Davidson, 1984, 1992; Davidson & Fox, 1982; Harmon-Jones, 2003). More 

specifically, work with adults suggests that fear is considered to elicit withdrawal-related 

behavioral tendencies and that this is typically associated with greater right frontal activation 

(Coan & Allen, 2003; Coan et al., 2001; Tomarken, Davidson, & Henriques, 1990). 



STUDY 4  103 

 

Frontal EEG alpha asymmetry has also been examined in early development. For example, 

in a study by Davidson and Fox (1982) frontal EEG alpha asymmetry was examined in 10-

month-old infants who were presented with happy and sad facial expressions. In line with the 

notion that the perception of emotional expressions results in different motivational 

tendencies in the perceiver, in this study, happy facial expressions elicited greater relative left 

frontal activation than sad facial expressions that elicited greater relative right frontal 

activation (Davidson & Fox, 1982). Moreover, in infants it has been shown that the 

experience of particular emotional states is associated with systematic differences in frontal 

EEG alpha asymmetry. Specifically, expressing withdrawal-related behaviors in 6-month-old 

infants was associated with greater relative right frontal EEG asymmetry (Buss et al., 2003), 

while exhibiting approach-related behaviors (smiling) resulted in greater relative left frontal 

EEG asymmetry in 10-month-old infants (Fox & Davidson, 1988). This indicates that the 

perception of emotions in others and the experience of emotional states are reflected in 

systematic changes in frontal EEG alpha asymmetry in infants. 

 The aim of the current study was to extend previous ERP findings (Missana et al., 

2015) regarding infants’ emerging sensitivity to emotional body expressions by investigating 

the effects of perceiving dynamic fearful and happy body expressions on frontal EEG alpha 

asymmetry patterns in 4- and 8-month-old infants. Based on the prior work reviewed above, 

we had three main predictions. First, we predicted that 8-month-old infants, but not 4-month-

old infants, show differential responding to emotional body expressions (developmental 

hypothesis). Second, we predicted that 8-month-old infants’ frontal EEG alpha asymmetry 

patterns only differ when the emotional body expressions are presented in an upright 

orientation (orientation specificity hypothesis). Third, in terms of the asymmetry patterns, we 

predicted that 8-month-olds show (a) greater right frontal EEG asymmetry to fearful 
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expressions, indexing a tendency to withdraw, and (b) greater left frontal EEG asymmetry to 

happy expressions, indexing a tendency to approach (emotion sensitivity hypothesis). 

6.2 Materials and Methods 

Participants. The experiment was based on EEG data collected from a previous study with 4- 

and 8-month-old infants (Missana et al., 2015). The sample consisted of 20 4-month-old 

infants aged between 123 and 137 days (10 females, Median age = 129 days, Range = 14 days) 

and 20 8-month-old infants between 230 and 259 days (9 females, Median age = 251, Range 

= 29 days). An additional 15 4-month old infants aged between 122 and 138 days (8 females, 

Median age = 133 days, Range = 16 days) and 20 8-month-old infants aged between 230 and 

259 days (10 females, Median age = 251 days, Range = 29 days) were tested but were 

excluded from the final sample due to fussiness (n = 5) or too many artifacts (n = 30). Infants 

excluded from the final analysis did not systematically differ in gender, age, or maternal 

education from the included infants. Note that an attrition rate at this level is within the 

normal range for an infant ERP study (DeBoer et al., 2005). The infants were born full-term 

(between 37 and 41 weeks) and had a normal birth weight (> 2500 g). All infants came from a 

middle-class background in a medium-sized German city. Maternal education was assessed 

by obtaining information regarding the mother’s final school degree. Maternal education was 

scored by using a ranking from 1 (lowest possible school degree in Germany) to 3 (highest 

possible school degree in Germany). For our sample the mean for maternal education was 

2.67 (SD = .56). 

All parents gave written informed consent prior to the study and were paid for their 

children’s participation. The children were given a toy after the session. 

Stimuli. The stimulus material consisted of 2-s clips of point-light body movements 

displaying eight different fearful and eight different happy expressions (from Atkinson et al., 
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2012), which were presented upright and inverted (see Figure 6.1). Stimulus motion was 

equated across the two emotion categories by selecting 8 expressions from the original set of 

10 for each emotion, such that the differences in the means of 3 similar measures of stimulus 

motion were as small as possible.  

 

 

Figure 6.1. An example of the PLD stimuli.This figure provides an example of the PLD stimuli. The 

figure shows two still frames taken at the maximum of the emotional expression. Reprinted from 

“Tuning the developing brain to emotional body expressions” by Missana et al.,, 2014, Developmental 

Science. Reprinted with permission. 

 

Procedure. The infants were seated on their parent’s lap in a dimly lit, sound-

attenuated and electrically shielded room during testing. In order to rule out the possibility 

that the parents influence the infants’ responses to the stimuli, we asked the parents not to talk 

to or interact with their infant during the course of the experiment. Furthermore, we instructed 

the parents to look at the infant but not at the screen and the sessions were video-recorded so 

that trials during which the parent interacted with the infant could be excluded from the 

analysis. The stimuli were presented in the center of the screen on a black background, using 

a 70-Hz, 17-inch computer screen at a distance of 70 cm. In order to attract the infants’ 

attention to the screen, each point-light body expression clip was preceded by an alerting 
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sound and a fixation cross (1000 ms), followed by a black screen (400 ms), followed by the 

stimuli (2000 ms). During the inter-trial interval, infants were presented with an abstract 

screensaver for the purpose of keeping infants’ attention. The stimuli were presented in a 

randomized order with the exception that no two stimuli with the same emotion and 

orientation combination were presented consecutively. The sessions were video-recorded to 

control for infants’ attention to the screen. The EEG session ended when the infant became 

fussy or inattentive. 

EEG measurement. The EEG was recorded from 27 Ag/AgCl electrodes attached to an 

elastic cap (EasyCap GmbH, Herrsching, Germany) using the 10-20 system of electrode 

placement. The data were online referenced to the CZ electrode and offline re-referenced to 

the algebraic mean of the left and right mastoid electrode. The horizontal electrooculogram 

(EOG) was recorded from two electrodes (F9, F10), which are part of the cap located at the 

outer canthi of both eyes. The vertical EOG was recorded from an electrode on the 

supraorbital ridge (Fp2), which is part of the cap and an additional single electrode on the 

infraorbital ridge of the right eye. The EEG was amplified using a Porti-32/M-REFA 

amplifier (Twente Medical Systems International, EJ Oldenzaal, Netherlands) and digitized at 

a rate of 500 Hz. Electrode impedances were kept between 5 and 20 kΩ.  

EEG measures of asymmetrical activation. Frequency analysis of the EEG data was 

performed using the FieldTrip software (http://fieldtrip.fcdonders.nl/; Oostenveld et al., 2011) 

in combination with custom-made MATLAB scripts. The raw EEG data were high-pass 

filtered with a cut-off frequency of 3 Hz in order to reduce slow drifts and removing DC 

components. The recordings were segmented into epochs of 4000 ms duration, lasting from 

1000 ms prior stimulus onset until 1000 ms post video offset. Epochs were visually inspected 

and excluded from further analyses if they were contaminated by large non-stereotyped 

artifacts (e.g., gross muscle activity or movement artifacts). Remaining stereotyped artifacts 
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(originating e.g., from eye blinks or eye movements, tonic muscle activity, or pulse artifacts) 

were corrected using a signal processing procedure (Jung et al., 2000) based on Independent 

Component Analysis (ICA). The segmented EEG data were decomposed into 24 independent 

components (ICs) by application of the symmetric FastICA algorithm. ICs representing 

physiological or electrode artifacts were identified by visual inspection of the components’ 

scalp topographies, frequency spectra, and single-trial time courses. They were removed from 

the data before back projection to the electrode space. For the analysis of event-related 

oscillations, time-frequency representations of artifact-cleaned single trials were computed 

using Morlet wavelets with a width of 5 cycles. The mean alpha power during the processing 

of point-light body expressions was estimated by averaging the squared magnitude of the 

complex wavelet transform coefficients across trials (separately for happy upright, happy 

inverted, fearful upright, and fearful inverted body expressions), over time points and 

frequency bins. Power values were obtained in the alpha frequency band from 4 to 8 Hz 

where the majority of power was localized. It has been shown that the alpha frequency range 

changes with development and is generally lower in infants and children than in adults 

(Marshall, Bar-Haim, & Fox, 2002; Stroganova et al., 1999). Prior work shows that peaks of 

alpha power were observed in the frequency range of 6–9 Hz in infants, suggesting that this 

range is most suitable for studying alpha power in infancy (Bell & Fox, 1994; Marshall et al., 

2002). Because even lower frequency ranges were used in other work with infants (Fox & 

Davidson, 1987, 1988; Henderson, Fox, & Rubin, 2001), we decided to visually inspect our 

data to determine the appropriate frequency range. This visual inspection of the data revealed 

that in our infant groups the maximum power was found in the range of 4 to 8 Hz and we 

therefore focused our analysis on this range. Mean alpha power values were log-transformed 

using the natural logarithm function (ln) to normalize their distribution. EEG alpha power 

asymmetry scores were calculated for mid-frontal (F3, F4) electrodes during a time window 
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of 700 to 1100 ms post stimulus onset. The selection of electrodes for our analysis was based 

on prior infant and children studies that examined frontal EEG asymmetry responses 

(Davidson & Fox, 1982; Fox & Davidson, 1988; Missana, Grigutsch, et al., 2014; Pickens, 

Field, & Nawrocki, 2001). We chose the time window for our analysis based on prior work 

using ERPs (Missana et al., 2015). For this purpose, it is important to keep in mind that we 

used dynamic stimuli that changed from a neutral display (the actor standing in a neutral 

position) to the expression of the respective emotion. In this dynamic context the emotional 

expression unfolds over time and the detection of differences between emotions does not 

occur before 700 ms, as demonstrated in previous work using ERPs (Missana et al., 2015). 

Our time window for the frontal EEG alpha asymmetry analysis therefore only started at 700 

ms after movement onset. The time window chosen is shorter than in prior studies, but still 

long enough to fully capture oscillations within the frequency range of interest for our 

analysis (4–8 Hz). Specifically, at 6 Hz, a time window of 400 ms, as used in the current 

analysis, is more than twice as long as a cycle of the alpha oscillation which is at T= 167 ms 

(calculation based on the formula T = 1/f). The scores were obtained by subtracting left log-

transformed alpha power values from the corresponding right log-transformed values (ln(right) 

– ln(left)). It has been shown that increases in alpha power are associated with decreased 

cerebral activation and vice versa (Goldman et al., 2002; Laufs et al., 2003). The asymmetry 

score reflects the power in one hemisphere relative to the power in the opposite hemisphere. 

Higher scores on this metric suggest relatively greater left activity (Davidson, 1988). 

For the group of 4-month-old infants the mean number of trials seen per condition was 

17.81. The mean number of trials included in the EEG alpha asymmetry analysis was 12.65 

for the fearful upright condition, 12.60 for happy upright, 12.60 for fearful inverted, and 12.35 

for the happy inverted condition. For the group of 8-month-olds the mean number of trials 

seen per condition was 19.98. The mean number of trials included in the EEG alpha 
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asymmetry analysis was 14.50 for the fearful upright condition, 15.00 for the happy upright 

condition, 14.60 for fearful inverted, and 14.75 for the happy inverted condition. The number 

of trials used for final analyses did not differ by condition or age, all F’s < .263. 

For statistical analysis, differences between mean EEG alpha asymmetry scores across 

experimental conditions were assessed by an omnibus repeated measures ANOVA with 

emotion (happy versus fearful) and orientation (upright versus inverted) as within-subjects 

factors and age (4 months versus 8 months) as between-subjects factor. As in prior work 

(Davidson & Fox, 1982), to ascertain that effects are specific to frontal electrodes, asymmetry 

scores were also computed for central electrodes (C3, C4) and parietal electrodes (P3, P4) for 

comparison reasons. 

6.3 Results 

Our analysis revealed a significant three-way interaction between the factors emotion, 

orientation, and age, F (1,38) = 7.125, p = 0.011, partial η
2
 = 0.158. Given that the factor age 

interacts with the experimental manipulation, further analyses were conducted for the two age 

groups separately in order to resolve this three-way interaction. Specifically, in agreement 

with our predictions (developmental hypothesis), we found that for the group of 8-month-old 

infants there was a significant interaction between the factors emotion and orientation (F 

[1,19] = 5.735, p = 0.027, partial η
2
 = 0.232), while no such interaction was observed in the 

group of 4-month-old infants. An additional analysis for a longer time window of 700 to 2000 

ms revealed no significant interaction between the factors emotion, orientation, and age, F 

(1,38) = 1.031, p = 0.316, suggesting that the effect is limited to the time window examined 

above (see Figure 6.2 for time-frequency plots of the EEG data from the 8- and 4-month-old 

infants, respectively). In addition, we controlled for effects of maternal education by 

conducting a repeated measures ANOVA with the same factors (emotion, orientation, and age) 
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as specified above and including maternal education as a covariate. This analysis revealed no 

main effects of maternal education or interactions with maternal education. Moreover, the 

emotion x orientation x age interaction remained significant when controlling for maternal 

education, F (1,30) = 4.804, p = 0.036.  
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Figure 6.2. Figure of power changes. This figure shows the power changes relative to baseline for 2 

s after stimulus onset and in the frequency range of 2 to 10 Hz in A) 8-month-old infants and B) 4-

month-old infants. Each plot depicts the difference power at F4 and F3 electrode sites for happy and 

fearful upright body expressions. The rectangles represent the analyzed time window and frequency 

range. 

 

Further analysis using paired-sample t-tests revealed a significant difference between 

the frontal EEG alpha asymmetry scores in 8-month-old infants in response to fearful 

expressions compared to happy expression in the upright orientation, t (19) = 3.249, p = 0.004. 
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Critically, in line with our predictions (orientation specificity hypothesis), this effect was 

specific to the upright orientation as no significant differences in the EEG alpha asymmetry 

scores were found between the response to inverted fearful expressions and happy body 

expressions in the inverted orientation, t (19) = - 0.348, p = 0.732. 

As shown in Figure 6.3, fearful body expressions presented in an upright orientation 

were found to result in negative frontal EEG alpha asymmetry scores (M = - 0.087, SD = 

0.19), reflecting greater relative right frontal activation indicative of a motivational tendency 

to withdraw from fearful body expressions. Additionally, as shown in Figure 6.3, happy 

expressions presented in an upright orientation were found to result in greater (positive) EEG 

alpha asymmetry scores (M = 0.008, SD = 0.20), reflecting greater relative left frontal 

activation indicative of a motivational tendency to approach happy body expressions. The 

pattern of results concerning the asymmetry responses evoked by fearful and happy 

expressions confirms our emotion sensitivity hypothesis. Note, however, that while the EEG 

alpha asymmetry score in response to upright happy expressions is positive, the value is very 

close to zero, implying that the asymmetry across hemispheres is rather small, speaking for a 

virtually symmetrical activation during this condition (see Table 6.1).  
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Figure 6.3. Frontal EEG alpha asymmetry scores. This figure shows 4- and 8-month-old infants’ 

frontal EEG alpha asymmetry scores (log transformed) in response to fearful and happy upright (A) 

and inverted (B) presented body expressions. ** p < = .01  

 

Table 6.1. Frontal EEG asymmetry scores (log-transformed). This table shows frontal EEG alpha 

asymmetry scores for 4- and 8-month-old infants in response to happy upright, happy inverted, fearful 

upright, and fearful inverted presented body expressions. 

 

 

In additional analyses, t-tests were performed to test whether asymmetry scores 

differed from zero within the conditions. For both age groups no significant differences were 

found, all p-values > .019 (p-value threshold adjusted for multiple comparisons using 

Bonferroni correction) (Supplementary Table 6.4). 

We conducted an additional analysis in which we compared the frontal EEG 

asymmetry scores across the two age groups separately for happy and fearful expressions 

(upright orientation). This was done in order to find out whether the developmental difference 

across ages reported above is due to a change in the way in which 8-month-old infants 

respond to a specific emotion. Critically, this analysis revealed that EEG alpha asymmetry 



114  STUDY 4 
 

 

scores only differed across ages for the happy expression, t (19) = -2.367, p = 0.029 but not 

for the fearful expression, t (19) = 0.189, p = 0.852. Specifically, for the happy expressions, in 

the group of the 4-month-olds, we observed a negative EEG alpha asymmetry score (M = -

0.1148, SD = 0.20), indexing right frontal activation, whereas, in the group of the 8-month-

olds, we observed a positive EEG alpha asymmetry score (M = 0.008, SD = 0.20) indexing 

left (or symmetrical) frontal activation.  

Importantly, no effects were found at central electrodes, F (1,38) = 0.396, p = 0.533 

and at parietal electrodes, F (1,38) = 1.218, p = 0.277. This is indicative of the specific 

involvement of the frontal region compared to central and parietal regions (Davidson & Fox, 

1982). 

Non-parametric tests (chi-square and binomial sign tests) were conducted to further 

examine potential differences in the number of infants showing particular frontal EEG 

asymmetry responses during the experimental conditions. Specifically, this analysis revealed 

a significant difference in the lateralization patterns (left versus right) when comparing 

between ages (4 versus 8 months) for upright happy expressions, χ² (1, N = 40) = 4.912, p 

= .027, but not for upright fearful expressions, χ² (1, N = 40) = .921, p = .337 (see Table 6.2). 

This corroborates the results obtained from our parametric analysis presented above by 

showing that only for the happy condition significantly more 8-month-old infants exhibited a 

lateralization to the left hemisphere in their frontal EEG asymmetry response. 
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Table 6.2. Frontal EEG alpha asymmetry patterns. This table shows the differences in frontal EEG 

alpha asymmetry patterns (left versus right) when comparing between ages (4 versus 8 months) for 

upright presented bodies (χ² -values and p-values). 

 

 

In addition, only for the group of the 8-month-old infants we found a marginally 

significant difference in the lateralization patterns (left versus right) when comparing between 

emotions (happy versus fearful), χ² (1, N = 20) = 3.6, p = .058 (see Table 6.3). No such 

difference in the lateralization patterns across emotions was observed in the group of 4-

month-old infants, χ² (1, N = 20) = 1.667, p = .197 (see Table 6.3). This corroborates the 

results obtained from our parametric analysis presented above by showing that differences in 

lateralization patterns across emotions were found only for the 8-month-old infants.  

 

Table 6.3. Differences in frontal EEG alpha asymmetry patterns. This table shows the differences 

in frontal EEG alpha asymmetry patterns (left versus right) when comparing between emotions (happy 

versus fearful) for upright presented bodies (χ² -values and p-values). 
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Moreover, our data show that 17 out of 20 8-month-old infants (85%) exhibited higher 

asymmetry scores to happy upright bodies indicative of a relative shift of frontal asymmetry 

patterns from right to left in response to happy body expressions, and a binomial sign test 

revealed that this is a significant difference in terms of the lateralization patterns, p = .003. 

Similar to the prior analysis, for the group of 4-month-old infants no such difference was 

obtained, p = .503, because only 8 out of 20 4-month-old infants (40%) showed higher 

asymmetry scores to happy upright bodies. 

6.4 Discussion 

The current study investigated the early development of the neural sensitivity to 

emotional body expressions by measuring frontal EEG alpha asymmetry patterns in response 

to dynamic fearful and happy body expressions in 4- and 8-month-old infants. Our results 

revealed that 8-month-old infants, but not 4-month-old infants, showed differences in their 

frontal EEG alpha asymmetry patterns distinguishing between fearful and happy body 

expressions. This finding is in line with prior ERP work showing that over the course of the 

first year of life the human brain becomes tuned to emotional body expressions (Missana et al., 

2015). More generally, the ontogenetic emergence of the neural sensitivity to emotional body 

expressions, evident in our results, occurs at a time in development when facial and vocal 

emotion processing capacities undergo similar change (Grossmann et al., 2010; Peltola et al., 

2009). The current findings therefore provide further evidence for accounts that regard 

emotion perception as a unified ability that develops in concert across various processing 

channels (face, voice, and body) (Heberlein & Atkinson, 2009). 

In the current study we used PLD stimuli that provided little static form information 

but contain the essential motion cues that allow adult observers to recognize emotions from 

body motion (Atkinson et al., 2004; Atkinson et al., 2007) and showed that 8-month-old 
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infants can distinguish between emotions on the basis of these motion cues by using frontal 

EEG alpha asymmetry measures. This finding critically extends prior work that has 

investigated infants’ perception of biological motion from PLDs (Bertenthal, 1993; Hirai & 

Hiraki, 2005; Reid et al., 2006) by demonstrating that infants are not only sensitive to 

biological motion but can also extract specific information concerning the emotional state of 

the biological agent.  

Furthermore, in line with our prediction that 8-month-old infants’ frontal EEG alpha 

asymmetry patterns only differ when the emotional body expressions are presented in an 

upright orientation (orientation specificity hypothesis), we found that inversion of the body 

motion disrupts the discrimination between emotions, suggesting that 8-month-old infants 

require upright body motion to successfully extract emotional information. This is similar to 

what is already known from adults (Atkinson et al., 2007; Atkinson et al., 2012) and it is also 

in agreement with work showing inversion effects for the perception of faces in the first year 

of life (de Haan et al., 2002). The disruption of emotion discrimination by body inversion can 

be seen as evidence for the developmental emergence of configural processing of body 

motion. Namely, rather than relying on individual features of the body that are also present in 

the inverted stimulus, 8-month-olds need to see the configuration of body features in order for 

the discrimination process to take place.  

The frontal EEG alpha asymmetry differences between fearful and happy stimulus 

conditions are unlikely to be the result of differences in low-level motion properties between 

the two stimulus sets. This is because, firstly, we controlled for the amount of dot motion 

across the happy and fearful expressions and, secondly, the frontal EEG alpha asymmetry 

differences between emotions were not observed for the inverted stimuli, in which the 

available dynamic information is identical to that available in the upright stimuli. Thus, 8-
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month-olds are likely to be using higher-level motion cues to discriminate between the 

emotions (see Atkinson et al., 2007). 

The frontal EEG alpha asymmetry patterns in response to the individual emotions 

observed in the current study confirmed our prediction regarding infants’ emerging emotion 

sensitivity. Specifically, we found that 8-month-olds show greater relative right frontal EEG 

asymmetry to fearful expressions, indexing a tendency to withdraw, and greater relative left 

frontal EEG asymmetry to happy expressions, indexing a tendency to approach. These results 

are in line with previous findings indicating that (a) the perception and experience of happy 

expressions elicited greater relative left frontal activation associated with approach tendencies 

(Davidson & Fox, 1982; Fox & Davidson, 1988) and (b) the perception and experience of fear 

is related to withdrawal-related motivational tendencies and is associated with greater right 

frontal activation (Buss et al., 2003; Coan & Allen, 2003; Coan et al., 2001; Tomarken et al., 

1990). Our findings support the general notion that the frontal cortex plays a role in 

processing emotional information and that this can already be traced in infancy (Fox, 1991; 

Grossmann, 2013b). More specifically, extending prior work with 10-month-old infants based 

on using facial expressions of emotion (Davidson & Fox, 1982), this finding provides 

evidence for specific changes in the motivational tendencies that are associated with 

perceiving emotional body cues. This suggests that perceiving others’ emotional expressions 

engenders basic motivational processes in 8-month-old infants. Having such brain processes 

in place early in development might serve as a vital basis for guiding social behavior in terms 

of informing decisions as to whom (or what) to approach or avoid (Hamlin, Wynn, & Bloom, 

2007). Clearly, future work with infants is needed to examine a possible link between the 

neural responses, similar to those measured in the current study, and overt social behavior. 

With respect to infants’ emerging neural sensitivity to emotional body expressions, it 

is also important to discuss that our results revealed that frontal EEG alpha asymmetry scores 
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only differed across ages in response to the happy expressions but not in response to the 

fearful expressions. This suggests that the developmental change that takes places between 4 

and 8 months mainly affects the processing of happy body expressions. The finding that 

developmental changes occur for processing happy body expressions stands in contrast to 

prior ERP work on infant facial expression processing, showing developmental changes with 

respect to processing fearful expressions (e.g., Peltola et al., 2009). This might point to 

potential differences in infants’ perception of emotion from bodies and faces but is more 

likely to be explained by differences in using dynamic when compared to static expressions. 

This is because recent work with 8-month-old infants shows that using static body postures 

results in similar ERP responses (enhanced Nc) to fearful bodies as seen for fearful faces 

(Missana, Rajhans, et al., 2014). This discrepancy between dynamic and static displays of 

body expressions might have something to do with the fact that the dynamic stimuli used in 

the current study to portray happiness are perceived as ‘infant-directed action’ or as 

‘motionese’ by the infants. Specifically, parents have been shown to modify their bodily 

movements in a variety of ways when interacting with infants (Brand, Baldwin, & Ashburn, 

2002) and infants display strong preferences for ‘motionese’ when compared to adult-directed 

movements (Brand & Shallcross, 2008). Critically, for the current study ‘motionese’ is 

characterized by exaggerated positive affect in body movement similar to the happy body 

movement portrayed in our point-light displays. Therefore, it is possible that infants’ 

responses to happy body expressions are related to their preference for ‘motionese’. 

Regardless of this issue, our finding is in line with previous work on emotional body 

expression processing using ERPs (Missana et al., 2015). Specifically, prior work reported 

that infant ERP responses (in particular the Positive Component) changed in its amplitude 

between 4 and 8 months of age in response to happy expressions (more positive in older 

infants), indexing the recognition of positive expressions. Note that these EEG measures have 



120  STUDY 4 
 

 

been shown to tap into distinct processes that differ in their functional relevance (Missana, 

Grigutsch, et al., 2014): as the ERP measure (Pc) is a neural correlate of recognition memory 

(Grossmann et al., 2006; Nelson et al., 1998) while the frontal EEG alpha asymmetry measure 

is a neural correlate of motivational tendencies (Davidson, 1984; Davidson & Fox, 1982; 

Harmon-Jones, 2003). We therefore propose that the current findings in conjunction with the 

prior ERP work (Missana et al., 2015) are best interpreted as supporting the notion of a 

developmental transition in infants’ emotion perception from body motion cues characterized 

by changes in recognition memory and motivational brain processes. These changes are likely 

to represent highly interdependent processes, as recognition of an emotion is required for 

motivational responses to occur.  

Indeed, our analysis also revealed that the observed effects were limited to a time 

window of 700 to 1100 ms after movement onset. This is the same time window during which 

8-month-old infants’ ERP responses differed between fearful and happy dynamic body 

expressions (Missana et al., 2015). In this context, it is important to mention that while the 

frontal EEG alpha asymmetry effects were observed at frontal electrodes, the ERP differences 

in prior work were seen at temporal and parietal electrodes. The differential topography of 

effects suggests that the discrimination (as indexed by ERPs) and motivational evaluation of 

body expressions (as indexed by frontal asymmetry) occur at similar points in time, but rely 

on spatially distinct brain processes. The fact that frontal EEG alpha asymmetry patterns and 

ERP responses tap into distinct brain processes is in line with recent work using dynamic 

emotional facial expressions in 8-month-old-infants (see Missana, Grigutsch, et al., 2014). 

Nonetheless, in future studies, in order to better understand the nature of the brain processes 

elicited by viewing emotional expressions, it will be important to further investigate how ERP 

and frontal EEG alpha asymmetry effects interrelate and contribute to the perception of 
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emotion. This points to a general need in understanding infants’ perception of emotion as a 

complex emerging ability reflected in various psychologically relevant brain processes. 

Finally, it is important to discuss the limitations of the current study by suggesting 

ways of how to address remaining issues in future studies. First, the current paradigm should 

be extended to other ages (beyond infancy) in order to further investigate the developmental 

trajectory of the perception of emotional body expressions. In particular, prior work has 

shown that there are considerable differences between 8-month-old infants and adults in their 

frontal EEG alpha asymmetry patterns observed in response to emotional facial expressions 

(Missana, Grigutsch, et al., 2014). This indicates that older infants’ responses are not yet 

adult-like but development occurs beyond infancy with respect to the motivational processes 

evoked by viewing facial expression and this may generalize to viewing body expressions. 

Second, future work with infants is needed to assess whether there is a link between the neural 

responses, similar to those measured in the current study, and approach and withdrawal 

behaviors in response to emotional body expressions. Specifically, one possibility is to 

combine EEG measurements with behavioral preference tests as used in prior work with 

infants (Hamlin et al., 2007) to test whether, during the viewing of the expression, frontal 

EEG asymmetry patterns of a person are associated with approach of or withdrawal from that 

person during a preference test. Third, in order to better understand the developmental process 

that underpins emotion perception from body cues, future work is needed to systematically 

examine what factors contribute to individual differences in emotional body expression 

processing in infancy. In the current study we controlled for effects of maternal education. 

However, prior work with 8-month-old infants shows that other maternal variables such as 

maternal empathic concern and duration of exclusive breastfeeding, as well as infant 

temperament, are associated with marked differences in infants’ ERP responses to static 

emotional body postures (Krol, Rajhans, Missana, & Grossmann, 2015; Rajhans, Missana, 
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Krol, & Grossmann, under review). It is thus important to examine whether these factors are 

also linked to individual differences in frontal EEG alpha asymmetry.  

In summary, the current findings have shed new light on the developmental, 

perceptual, and neural processes that underpin the sensitivity to emotional body expressions 

thereby critically extending and informing accounts of emotion processing. In particular, our 

results demonstrate that during the first year of life the human brain becomes sensitive to the 

motivational significance conveyed by emotional body expressions 
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6.5 Supporting Information 

 

Table 6.4. Table for t-values and p-values for t-tests for asymmetry scores. This table shows t-

values and p-values for t-tests against zero for 4- and 8-month-old infants’ frontal EEG alpha 

asymmetry scores in response to happy upright, happy inverted, fearful upright and fearful inverted 

presented body expressions. 
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7  Discussion and Outlook 

7.1 Summary of Empirical Studies 

The aim of the current thesis was to investigate the development of emotion perception 

in the first year of life. In particular, the focus was on the examination of the neural correlates 

of infants’ perception of others’ emotional facial and body expressions. For this purpose, four 

EEG studies were conducted with 4- and 8-month-old infants. The experimental paradigm 

was comparable for all four studies in that participants were presented with video clips or 

static displays showing emotional expressions. In Study 1 infants’ processing of dynamic 

emotional facial expressions was assessed and compared to the processing in adults; in Study 

2 infants’ processing of emotional dynamic body expressions was examined; in Study 3 

infants’ processing of emotional static body postures was assessed; and in Study 4 it was 

examined whether the perception of emotional body expressions elicits distinct brain 

responses that are associated with motivational processes.  

The results from Study 1 revealed that the neural responses elicited by pain and anger 

facial expressions differ substantially between infants and adults. The adult ERP data showed 

that facial expressions elicited an enhanced EPN (250 - 350 ms) at occipital electrodes that 

peaked earlier in response to anger faces as compared to pain faces. This difference at early 

processing stages was not evident in the infant group. Further analysis indicated a difference 

between the processing of pain and anger facial expressions for the LPP (400 - 500 ms) at 

frontal and central electrodes in adults. Specifically, the LPP was more pronounced (larger 

positive amplitude) in response to pain facial expressions. In contrast, the ERP responses in 

infants revealed a larger Nc (500 - 600 ms) to angry faces at frontal and central electrodes. 

Furthermore, infants and adults showed opposite patterns in their frontal EEG alpha 

asymmetry responses to pain and anger facial expressions. Specifically, in adults, anger facial 
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expressions were associated with greater relative left frontal activation, whereas pain facial 

expressions were associated with greater relative right frontal activation. In contrast, the 

results of the infant group showed that pain facial expressions were associated with greater 

relative left frontal activation, whereas anger facial expressions were associated with greater 

relative right frontal activation. 

The results from Study 2 revealed that 8-month-old infants, but not 4-month-old 

infants, responded sensitively to the orientation and the emotion of body expressions. 

Specifically, 8-month-old infants showed an early orientation-sensitive Pb (200 - 400 ms) at 

frontal and central electrodes, such that upright emotional body expressions elicited a smaller 

Pb than inverted expressions. The ERP results further showed a later emotion-sensitive Pc 

(700 - 1100 ms) at temporal and parietal electrodes over the right hemisphere. Happy body 

expressions elicited larger (more positive) amplitudes when compared to fearful body 

expressions. These differences between the processing of emotional body expressions were 

found only when the bodies were presented upright. 

The results from Study 3 showed that infants discriminated not only between dynamic 

emotional body expressions, but also between static emotional body postures. Fearful body 

postures elicited a larger N290 (250 – 350 ms) at occipital electrodes when compared to 

happy body postures. Moreover, fearful body postures elicited a larger Nc (700 – 800 ms) at 

right frontal and central electrodes when compared to happy body postures. These findings 

were specific to the upright orientation of the body postures as no differences between the 

processing of emotions were found when the bodies were presented inverted. 

The results from Study 4 revealed that 8-month-old, but not 4-month-old, infants 

showed differences in their frontal EEG alpha asymmetry in response to fearful and happy 

dynamic body expressions. In 8-month-old infants, happy body expressions elicited a greater 

lateralization to the left hemisphere, whereas fearful expressions elicited a greater 



DISCUSSION AND OUTLOOK  129 

 

lateralization to the right hemisphere. These differences were only found when the body 

expressions were presented upright. 

In summary, the findings of this thesis demonstrate that infant sensitivity to others’ 

emotional signals, conveyed through face and body, develops during the first year of life. In 

particular, the current set of studies demonstrates that emotion perception is a complex 

process that involves the development of early sensory processes (N290) and later attentional 

(Pb and Nc), mnemonic (Pc), and motivational processes (frontal EEG alpha asymmetry) in 

the human brain. The current thesis shows that all of these processes undergo development 

during infancy and beyond. The following sections will discuss the developmental and neural 

aspects of infants’ emerging emotion processing skills in turn. 

 

7.2 Developmental Considerations 

The results presented in Study 1 demonstrate that adults’ and infants’ processing of 

pain and anger faces greatly differs. This suggests that, beyond infancy, major changes take 

place in the way in which the human brain responds to facial emotional information. Adults 

showed an enhanced processing of pain facial expressions indicating increased evaluation 

processes in response to others’ expressions of pain (Fan & Han, 2008; Reicherts et al., 2012), 

whereas infants showed an enhanced processing of anger faces suggesting increased attention 

allocation in response to anger expressions (Grossmann et al., 2007). These differences 

between the processing of pain and anger facial expressions in adults and infants presumably 

reflect developmental changes in the perception of these expressions that occur sometime 

after 8 months of age. While our data show that infants at the age of 8 months are clearly able 

to discriminate between pain and anger from faces, it is possible that they are not yet able to 

empathically respond to the social signal value of pain facial expressions as indexing another 
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person’s distress. There is some evidence that infants show behavioral responses to distress 

vocalization (crying) and pain (distress) simulations that include vocal expressions, 

suggesting that feelings of empathic concern emerge in the first year of life (Geangu et al., 

2010; Goubert, Vervoort, et al., 2009). However, our results indicate that 8-month-old infants 

might not be able to experience empathic concern for others solely on the basis of facial signs 

of distress (pain). With respect to the bulk of behavioral work, it is not until the second year 

of life that infants begin to show reliable and overt signs of empathic responding to others in 

distress (see Eisenberg, Fabes, et al., 2006). In these studies, children between the ages of 13 

to 25 months start to exhibit empathy-related responding for others in pain in the form of 

helping, comforting, and sharing in order to alleviate others’ distress (Eisenberg, 2000; 

Eisenberg, Fabes, et al., 2006; Zahn-Waxler et al., 1992). During this time in development, 

infants also start to differentiate between self and other and begin to take over others’ 

affective perspectives (Eisenberg, 1991; Hoffmann, 1984). The developmental emergence of 

these skills has been argued to help children become more sensitive to others’ needs and to 

respond empathically to distressed others (Eisenberg, Spinrad, & Sadovsky, 2006; Vaish, 

Carpenter, & Tomasello, 2009). It is thus possible that the 8-month-old infants tested in our 

study still lack these more sophisticated skills in interpreting and responding to facial signs of 

distress in others. In support of this notion of a still developing ability to interpret facial signs 

of distress, there are also considerable differences in the frontal EEG asymmetry responses 

reflecting motivational tendencies (approach of pain in infants, withdrawal from pain in 

adults). Presumably, 8-month-old infants’ own experience of pain and with observing facial 

expressions of pain in others is still relatively rare. Therefore, to find neural signs of approach 

to pain might reflect infants’ naivety with that particular expression and further indicate 

infants’ tendency to explore a novel expression in order to gather more information.  
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Although infants at 8 months of age might not be sensitive to facial signs of pain, the 

ability to discriminate facial expressions of pain from other emotional facial expressions is an 

important first step for the further development of empathy-related responding. To further 

extend our understanding of young infants’ development of empathy for pain future studies 

should include older age groups that have been shown to be behaviorally sensitive to pain in 

others (i.e., infants in the second year of life). Moreover, other facial expressions associated 

with eliciting empathy-related responses such as sadness should be included in order to 

examine to what extent these processes are specific to pain or elicited by empathic concern 

more generally. For example, in a study by Bandstra and colleagues (2011) with 18- to 36-

month-old infants more distress and prosocial behaviors to adults’ expressions of sadness was 

found when compared to adults’ expressions of pain. Critically, age differences were only 

observed in response to pain expressions with older infants showing more empathic concern 

than the younger infants (Bandstra et al., 2011). In line with the argument, this suggests that a 

more prolonged developmental trajectory is seen when infant responses to pain are examined. 

It is thus possible that these behavioral patterns are also reflected in the underlying brain 

processes. In addition, future studies should investigate possible associations of infants’ 

processing of pain faces in the first year of life with empathic responding in the second year 

of life in order to assess whether individual differences in responding to others’ emotion 

emerge early and are stable across development. 

In Studies 2, 3 and 4 the findings demonstrated that orientation-sensitive and emotion-

sensitive brain processes develop between 4 and 8 months of age indicating that the human 

brain becomes tuned to emotional body expressions during that time of development. There 

are several aspects that might contribute to the development of the ability to discriminate 

between happy and fearful expressions. Previous studies have shown that infants around 7 

months of age show increased neural sensitivity and attention towards facial signals of fear 
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when compared to facial signals of happiness (Nelson & de Haan, 1996; Peltola et al., 2009). 

This points to the development of fear (or negativity) bias in the second half of the first year 

(Vaish et al., 2008). This heightened sensitivity to fearful expressions occurs during a time 

when infants begin to express fear themselves (Campos et al., 1992) and start to show 

increased anxiety towards strangers (Braungart-Rieker et al., 2010). These developmental 

changes in infants’ emotional expression and responding have been linked to the onset of 

infants’ independent locomotion, which leads to increased exploration and engagement with 

the environment (Campos et al., 2000; Campos et al., 1992). Moreover, towards the end of the 

first year infants also begin to rely on the cues provided by adults, and especially their 

caregivers, in order to determine which objects or situations to approach and avoid (social 

referencing; Campos, Barrett, Lamb, Goldsmith, & Stenberg, 1983; Campos & Stenberg, 

1981; Sorce, Emde, Campos, & Klinnert, 1985). 

Although the present studies provide initial evidence for the development of infants’ 

ability to sensitively process emotional body expressions, much more work is needed to 

extend these findings. For example, as shown in Study 1, older infants are able to distinguish 

between different negative facial expressions (anger and pain) in spite of their overall 

perceptual similarities. With respect to body expressions such evidence for infants’ ability to 

distinguish between different negative emotions is lacking. Furthermore it is not known 

whether infants are able to form categories of specific body expressions (e.g., happiness), and 

whether they are sensitive to varying intensities of these expressions. This ability has already 

been demonstrated for facial expressions (Kestenbaum & Nelson, 1990; Kotsoni et al., 2001; 

Nelson et al., 1979). Therefore, in future studies, these aspects of infants’ responding to 

emotional expressions need to be scrutinized to achieve a better understanding of their skill 

set. 
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So far, the present findings were mainly discussed in light of general developmental 

differences. However, adults individuals have been shown to greatly vary in their responses to 

emotional stimuli, pointing to stable individual differences in emotion perception (Hamann & 

Canli, 2004). Importantly, individual differences in infants’ responding to emotional 

information are much less studied and understood. Our results clearly show that infants differ 

in the way in which they perceive emotions. In Study 1 we found that individual differences in 

infant temperament were associated with the neural responses to angry facial expressions. 

More specifically, infants’ ERP responses to angry facial expressions were correlated with 

parent-rated emotional self-regulation, with those infants scoring higher on self-regulation 

showing attenuated ERP responses to anger. This shows that infants who are better at self-

regulation are also more effective in coping with viewing signals of aggression in others 

(anger). This is in line with work demonstrating that infants develop strategies to regulate 

their arousal and cope with emotions within the first year of life by for example non-nutritive 

sucking during distressing events or gaze aversion when a stranger is approaching (Campos, 

1989; Kopp, 1989; Sroufe, 1977). With respect to the current findings, it is thus likely that 

infants’ capacity to regulate their own emotions has an influence on how they process and 

evaluate emotional expressions in others. Clearly, more work is needed that tracks these 

individual differences across development in a larger sample of infants in order to understand 

whether these are stable individual differences that impact emotional experiences beyond 

infancy. 

With regard to infants’ developing perceptual abilities, Studies 2, 3 and 4 demonstrated 

that 8-month-old infants were sensitive to the orientation of emotional body expressions and 

discriminated between emotional body expressions only when the bodies were presented in an 

upright orientation. This suggests that rather than relying on individual features of the body, 

which are also present in inverted displays, the configuration of the body features is critical 
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for the discrimination process to take place. This orientation sensitivity was not evident in the 

younger age group, which indicates that perceptual abilities change between 4 and 8 months 

of age. These findings are in line with results from a behavioral study showing that 6.5-

month-old infants are able to discriminate emotional body expressions only when the bodies 

are presented in an upright version (Zieber et al., 2014b). An earlier study by Zieber and 

colleagues (2010) demonstrated that 9-month-old infants, but not 5-month-old infants, have a 

preference for intact bodies when compared to proportion-distorted bodies. Important for the 

current context, infants showed a preference for intact bodies only when presented upright 

(Zieber et al., 2010). This suggests that the older infants not only have knowledge about the 

proportion of the human body, but this ability relies on viewing the body in its canonical 

orientation. Together, these results indicate that infants become sensitive to orientation-

specific information about the human body in the second half of the first year. This 

developmental course of infants’ perception of emotional body expressions might be 

experience-driven as they naturally observe upright bodies. One possibility is that infants’ 

developing sensitivity to upright bodies is related to their own ability to sit upright and crawl. 

Specifically, with increasing posture development and the onset of crawling, infants’ visual 

perspective on their social world changes and they might have more opportunity to view 

upright movements of others (Zieber et al., 2010). 

In the current studies infants’ perception of emotion was investigated either from faces 

or from bodies. The findings suggest that infants are not only able to discriminate between 

various facial expressions, but can also discriminate between emotions conveyed through 

body motion and body postures. However, in daily life emotions are not presented in isolation, 

meaning that facial and body expressions usually provide corresponding and complimentary 

information. It has been argued that body expressions represent the most immediate means of 

communicating emotions and provide strong contextual cues when viewing facial expressions 
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in real-life social interactions (de Gelder et al., 2006). For example, in research with adults, it 

has been shown that the perception of emotional facial expressions is strongly influenced by 

emotional body expressions (Aviezer et al., 2012; Meeren, van Heijnsbergen, & de Gelder, 

2005) and that the recognition of emotional facial expressions is impaired when the face and 

body convey conflicting information (Meeren et al., 2005). From a developmental perspective, 

it is known that 7-month-old infants are able to match emotional information across face and 

voice (Grossmann et al., 2005; Vogel, Monesson, & Scott, 2012) and body and voice (Zieber, 

Kangas, Hock, & Bhatt, 2014a). However, it is not known whether infants are able to 

integrate emotional facial and body expressions and which neural processes are involved. In a 

new ERP study with 8-month-old infants, we investigated (Rajhans, Jessen, Missana, & 

Grossmann, under review) whether the perception of emotional body expressions impacts the 

processing of emotional facial expressions by elucidating the neural correlates involved in the 

detection and integration of emotional information across face and body. In this study, we 

employed a priming paradigm in which infants were presented with static emotional body 

postures (fearful and happy) that were followed by either a matching (congruent) or a 

mismatching (incongruent) static facial expression. Our results show that the integration 

across body and face was reflected in brain signatures related to attentional (Nc) and to 

recognition memory (Pc) processes. More specifically, this study demonstrated that 8-month-

old infants are able to match facial expressions to the corresponding body expressions, and 

that priming with incongruent body expressions impaired the detection of emotional facial 

expressions (Rajhans, Jessen, et al., under review). However, this is only the first study that 

investigated the neural correlates involved in the perception of emotions across face and body. 

Therefore, much more work is needed to fully understand infants’ ability to match emotions 

from different sources (face, body, and voice). For example, important and interesting aspects 

would be to examine whether infants are able to match emotional body expressions with 



136  DISCUSSION AND OUTLOOK 
 

 

corresponding vocal expressions, and if so, what underlying brain processes are involved. 

Findings from face and voice matching studies suggest that infants are able to integrate facial 

and vocal expressions of the same emotion around the age of 7 months (Grossmann et al., 

2006; Soken & Pick, 1992; Walker-Andrews, 1986). To the best of our knowledge, there are 

only two behavioral studies that investigated infants’ integration of emotional body and vocal 

expressions (Zieber et al., 2014a, 2014b). However, the neural correlates of these processes 

remain to be studied.  

Another aspect for discussion is the fact that the studies of this thesis focused on infant 

emotion processing by using cross-sectional samples. In cross-sectional studies only one 

group of individuals is observed (e.g., two age groups with different individuals in each 

group). This significantly limits the conclusions that can be drawn with respect to the actual 

processes that account for any given developmental trajectory (change). The study of the 

developmental trajectory would greatly benefit from a longitudinal approach in which the 

same group of infants is followed and their brain responses to emotion are measured over a 

specific time period during infancy. Currently, work is underway in our laboratory to examine 

the development of emotion perception during infancy longitudinally. In this large-scale study, 

101 infants are followed from 4 months of age to 18 months of age. Different methods such as 

EEG/ERP, fNIRS, and behavioral measures are combined to shed light on infants’ emerging 

emotion processing abilities. Another main aspect of this longitudinal study is to investigate 

what factors contribute to individual differences in infants’ emotion perception by using 

genetic markers and parental questionnaires. We hope that this approach will broaden our 

understanding of the progression of the developmental processes at play in the early 

emergence of emotion perception (1
st
 year) and later prosocial and empathic behaviors (2

nd
 

year). 
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Another important issue for discussion is that the focus of this thesis was on typically 

developing infants. However, in future research, it will be important to examine the 

processing of emotional signals in atypically developing infants, such as infants with an 

increased risk for developing autism spectrum disorders, infants with developmental delays, 

as well as in infants of depressed mothers. For example, children with autism show socially 

impaired behaviors, such as difficulties in understanding others’ emotional and mental states 

and have profound difficulties in forming social relationships (Baron-Cohen, 1991; Baron-

Cohen, Leslie, & Frith, 1985). More specifically, children with autism show impairments in 

their ability to detect and recognize emotional expressions from faces and voices (Bal et al., 

2010; Capps, Yirmiya, & Sigman, 1992; Hobson, Ouston, & Lee, 1988). Critically, being able 

to detect and recognize emotions in others is seen as an important adaptive ability because it 

allows one to predict others’ behavior and helps to regulate and adjust one’s own behavior in 

social contexts (Izard, 1977; Izard et al., 2001). It is thus vital to identify early markers 

(differences) that help us to distinguish between typical and atypical responding to emotional 

information displayed by others. Brain measures might provide a sensitive tool that could be 

used to improve the early diagnosis of social impairments and may also help design early 

interventions by providing a more mechanistic understanding of what goes awry in 

neurodevelopmental disorders such as autism.  

7.3 Brain Processes 

In this section, I would like to focus the discussion on the specific brain processes 

revealed to be sensitive to emotional information in infancy. Generally one can distinguish 

between early (with respect to the time post-stimulus onset) perceptual brain processes and 

later brain processes related to attention and memory. With respect to early perceptual 

processing in the current studies, effects at the N290 (visual ERP component) were only 
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found when infants were presented with static body postures. Specifically, a larger negativity 

at occipital sites was observed in response to static fearful body postures when compared to 

happy body postures. An enhanced negativity (N290) to fearful bodies might indicate a 

greater sensitivity to fearful body expressions during sensory processing in the visual cortices. 

However, this early sensory component was not observable when infants were presented with 

dynamic facial and body expressions. One possibility to explain this discrepancy is that when 

presenting static displays the emotion is presented immediately at its peak of expression, 

whereas in a dynamic context the emotional expression only unfolds over time. Therefore, in 

static displays the emotional expressions might be detected and processed faster than in 

dynamic displays. On the other hand, the absence of an emotional modulation of the N290 in 

8-month-old infants is in line with previous work on the processing of emotional facial 

expressions, which demonstrated an enhanced N290 over occipital electrodes to specific 

facial expressions at 12 months of age (Grossmann et al., 2007). It might therefore be possible 

that older infants (above the age of 8 months) would show a modulation of the N290/ N170 in 

response to dynamic emotional expressions as well. Future work with older age groups is 

needed to clarify this issue. 

Apart from sensory-specific ERP effects, the current studies also revealed ERP effects 

that were unrelated to the sensory processing but are associated with attention allocation (Nc) 

and recognition memory (Pc) (Nelson, 1996; Reynolds & Richards, 2005). In 8-month-old 

infants, dynamic facial expressions of anger elicited an Nc component that was larger when 

compared to dynamic pain facial expressions (Study 1). In response to dynamic emotional 

body expressions no differences for the Nc were observed. However, when body expressions 

were presented as static upright displays, fearful body expressions elicited a larger Nc 

compared to happy body expressions. The finding of an enhanced Nc in response to fearful 

body expressions is in line with prior work showing that fearful facial expressions elicited a 
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larger Nc component than happy faces (Nelson & de Haan, 1996; Peltola et al., 2009). 

Therefore, although the timing of the Nc is slightly different in response to facial compared to 

bodily expressed emotions, our data suggest that the detection of emotional signals affects 

later processing stages that are related to the allocation of attention. Furthermore, upright 

dynamic body expressions elicited an emotion-sensitive Pc at right temporal and posterior 

electrodes in 8-month-old infants that was larger in response to happy body expressions than 

to fearful body expressions. In prior work, an enhanced Pc indexed the recognition of a 

stimulus from memory (Grossmann et al., 2006; Nelson et al., 1998). This suggests that 8-

month-old infants recognize familiar happy expressions from the body movement. 

With respect to the topography of the observed ERP components facial expressions 

elicited more widely distributed ERP components at frontal and central electrodes (Study 1). 

This is in line with research showing that infants’ ERP responses to emotional facial 

expressions are distributed over frontal and central electrode sites during later processing 

stages (Grossmann et al., 2007; Kobiella et al., 2008; Peltola et al., 2009). In Studies 2 and 3, 

ERP effects in response to emotional body expressions were lateralized to the right 

hemisphere as no differences between emotions were found in the left hemisphere. These 

findings are in line with prior adult research, demonstrating that the recognition of emotional 

body expressions relies on brain processes that are strongly lateralized to the right hemisphere 

(Grèzes et al., 2007; Heberlein et al., 2004; Heberlein & Saxe, 2005). Therefore, the current 

findings suggest that the right hemisphere might begin to play an important role during 

emotional body processing from early on in infancy. However, it should be pointed out that 

while the EEG offers a high temporal resolution of brain activity, it only provides little 

information on the spatial localization in the brain. Therefore, in future studies, it would be 

useful to further clarify the cortical sources that generated the ERP effects during the 

perception of emotional body expressions (i.e., the Pc). One possibility for source localization 
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would be dipole modeling using high-density (64 or 128-channel) EEG systems (Hämäläinen, 

Ortiz-Mantilla, & Benasich, 2011; Reynolds & Richards, 2009). Another option would be to 

use fNIRS, which allows the measurement of activation in precise brain locations. This would 

help to gain more insights into the nature of the processes that underlie infants’ sensitive 

responding to body expressions (Lloyd-Fox et al., 2010). 

The findings from frontal EEG alpha asymmetry suggest that the perception of 

emotional facial and body expressions also triggered motivational processes in infants. The 

results indicate developmental differences in asymmetrical frontal brain activity between 

adults and 8-month-old infants during the processing of emotional faces and between 8- and 

4-month-old infants during the processing of emotional body expressions. The observed 

differences in frontal EEG asymmetry patterns generally support the age differences found in 

the current ERP data, pointing to overall developmental changes in the perceptual, attentional 

and motivational processes. More generally, the results of frontal EEG asymmetry are in line 

with prior work demonstrating that the perception and experience of specific emotional states 

is associated with differences in frontal EEG alpha asymmetry (Buss et al., 2003; Davidson, 

1992; Davidson & Fox, 1982; Harmon-Jones, 2003). However, as a limitation, it should be 

mentioned we did not investigate whether frontal EEG asymmetry responses are associated 

with infants’ overt behavioral reactions, such as approach tendencies in response to someone 

expressing happiness or withdrawal tendencies when viewing someone expressing fear. In 

order to better understand the relation between frontal EEG asymmetry and behaviorally 

expressed motivational tendencies, future research should include behavioral measures to 

directly link frontal EEG asymmetry responses to motivational tendencies that arise when 

viewing emotional expressions. One possibility for combining frontal EEG asymmetry with 

behavioral outcomes in infants could be the usage of simple preference tasks or choice 

paradigms that indicate infants preference by their reaching behavior (Hamlin, Hallinan, & 
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Woodward, 2008; Hamlin et al., 2007). Furthermore, in the current thesis, frontal EEG alpha 

asymmetry was examined while infants were viewing emotional facial and body expressions. 

However, in our daily life we do not only perceive emotions through specific facial and body 

expressions but also through the voice. Therefore, future work should extend the present 

findings on frontal EEG asymmetry to the perception of emotional vocal expressions.  

The current studies suggest that different brain processing stages (perceptual, attentional, 

mnemonic, and motivational) are involved in the perception of emotions from faces and 

bodies, however more research is needed to further clarify the relationship between the 

various processes and their role in early development. For example: What is the exact 

relationship between the brain processes identified? What role do experiential and genetic 

variables play in the development of these processes? How do these processes develop 

beyond infancy and how do they relate to measurable behavioral outcomes? The findings 

presented in the current thesis provide a rich foundation for which future work can precisely 

address these questions. 

7.4 Conclusion Remarks 

The aim of the current thesis was to investigate the electrophysiological bases of infants’ 

processing of others’ emotional facial and body expressions. Within the first year of life 

infants are already able to discriminate facial expressions of pain from anger, another negative 

facial expression. By 8 months of age, infants can discriminate emotions from dynamic body 

expressions as well as static body postures, even in the absence of any facial or vocal 

information. In addition, 8-month-old infants are sensitive to the orientation of a body, as they 

only discriminate between emotions presented in an upright orientation. Furthermore, frontal 

EEG alpha asymmetry results suggest that emotional facial and body expressions evoke 

distinct brain responses that are linked to the motivational brain systems. By using multiple 
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measurements (EEG/ERP, frontal EEG alpha asymmetry and questionnaires) this work 

provides insights into how the human brain processes emotional information from faces and 

bodies early in development. It is my hope that this thesis stimulates future work to extend the 

current findings on all levels alluded to in the discussion.  
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