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“Everything should be made as simple as possible, but not one bit simpler.”

Albert Einstein



Zusammenfassung

Die Kontrolle der Austrittsarbeit von Oberflächen und Grenzflächen gehört zu

den wichtigsten Aspekten der modernen Oberflächenphysik und Nanotechnologie,

z.B. in Bezug zur organischen Elektronik und Photovoltaik. Das Ziel dieser Ar-

beit war es, neue Wege zu finden, um die Austrittsarbeit von Metalloberflächen

unter Verwendung von molekularer selbstorganisierender Filme zu steuern. Um

dies zu erreichen, wurden zwei Strategien angewandt. Die erste Strategie war

es, aliphatische und aromatische Moleküle zu verwenden, die einen eingebetteten

Dipol (Funktionalisierung innerhalb des Molekülgerüsts) enthalten. Die sogenan-

nten selbstorganisierten Monoschichten (SAMs) ermöglichen es, die Austrittsar-

beit des Substrats zu kontrollieren, unabhängig von der Art der Adsorption der

Moleküle, und, was am wichtigsten ist, ohne Modifikation der Grenzfläche. Im

Falle von aliphatischen Filmen verwendeten wir Alkanthiole mit einem eingebet-

teten Ester-Dipol, wobei die Länge des oberen und unteren Segments sowie der

Richtung des eingebetteten Dipols variiert werden kann. Im Fall von aromatischen

Systemen verwendeten wir auf Terphenyl basierende Moleküle mit einer einge-

betteten Pyrimidin-Funktionalisierung, wobei die Richtung des Dipols geändert

werden kann. Die elektronischen und strukturellen Eigenschaften dieser Mono-

lagen wurden unter Verwendung einer Reihe von komplementären Charakter-

isierungsmethoden analysiert (in Kombination mit quantenmechanischer Mod-

ellierung). Ergebnisse zeigen, dass solche Monoschichten, aus anwendungsspez-

ifischen Gesichtspunkten betrachtet, grundsätzlich sehr interessant sind, da es

sich gezeigt hat, dass die eingebetteten Dipole eine mögliche Diskontinuität in-

nerhalb der Monoschicht, und damit auch eine elektrostatische Verschiebung der

Bindungsenergien in den Bereichen ober- und unterhalb der Dipole relativ zueinan-

der verursachen. Besonders wichtig ist (in Zusammenhang mit der vorliegenden

Arbeit) die Tatsache, dass die Monolagen, welche eingebettete Funktionalisierun-

gen beinhalten, gut geeignet sind, um die Austrittsarbeit von Metalloberflächen

zu kontrollieren. In der zweiten Strategie verwendeten wir mit Azobenzol (AZO)

funktionalisierte Alkanthiole mit einer speziell entwickelten Architektur, welche die

Variation der Packungsdichte und eine zusätzliche Funktionalisierung ermöglicht.

Diese neuen SAMs wurden mithilfe spektroskopischer und mikroskopischer Tech-

niken untersucht. Photoisomerisierungsexperimente zeigten eine reproduzierbare



Änderung der Austrittsarbeit, welche in gewissem Maße durch die starke ster-

ische Hinderung eingeschränkt wurde. Um diesen Effekt zu verringern, wur-

den die Azobenzol-Moleküle mit kurzen Spacer-Molekülen verdünnt, was zu einer

Verbesserung der Schalter-Eigenschaften der Azobenzol-Moleküle führte.





Abstract

The control over the work function of surfaces and interfaces is one of the most

important issues of modern surface science and nanotechnology, e.g. in context

of organic electronics and photovoltaics. The goal of this work was to look for

new ways to control the work function of metal substrates by using molecular

self-assembly. Two different strategies were used. The first strategy was to use

aliphatic and aromatic molecules which contain an embedded dipolar group (mid-

chain functionalization). Such self-assembled monolayers (SAMs) allow for tuning

the substrate work function in a controlled manner, independent of the docking

chemistry and, most importantly, without modifying the SAM-ambient interface.

In the case of aliphatic films, we used alkanethiols functionalized with an embed-

ded ester dipole, with the length of both top and bottom segments as well as the

direction of the embedded dipole being varied. In the case of aromatic systems, we

used terphenyl based thiols functionalized with an embedded pyrimidine dipolar

group, with the direction of the dipole being varied. The electronic and struc-

tural properties of these embedded-dipole SAMs were thoroughly analyzed using

a number of complementary characterization techniques combined with quantum-

mechanical modeling. It is shown that such mid-chain-substituted monolayers

are highly interesting from both fundamental and application viewpoints, as the

dipolar groups are found to induce a potential discontinuity inside the monolayer,

electrostatically shifting the core-level energies in the regions above and below the

dipoles relative to one another. Particularly imptortant, in context of the present

work, is the fact that the mid-chain functionalized films are indeed well suited to

adjust the work function of metal substrates. This could be e.g. done by vary-

ing the orientation of the dipolar group but also by mixing the molecules with

differently oriented dipoles as was demonstrated in the present work. Within the

second strategy, we used photoresponsive systems, viz. azobenzene substituted

alkanethiols, having a specially designed architecture to control the packing den-

sity and carrying an additional dipolar tail group. These novel SAMs were studied

in detail by using spectroscopic and microscopic techniques. Performing photoiso-

merization experiments we obtained a reproducible, stimuli-responsive change in

the work function which was, however, limited to some extent due to the strong

steric hindrance effects. In order to reduce these effects, we diluted the azobenzene

molecules with short spacer molecules, which resulted in an improvement in the

photoswitching behavior.
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Chapter 1

Introduction

The control of physical and chemical properties of surfaces and interfaces is one

of the most important issues of modern surface science, physical chemistry, and

nanotechnology. Highly relevant systems in this context are self-assembled mono-

layers (SAMs), which are 2D polycrystalline films of semi-rigid molecules that are

chemically anchored to a substrate by a suitable head group [1, 2]. These systems

have attracted considerable interest for more than three decades [3]. They have

been used, e.g., for controlling wettability [4, 5], cell adhesion [6, 7], and for corro-

sion protection [8, 9]. They have also attracted considerable attention in the area

of organic electronics, where they are, in particular, used to modify gate dielectrics

in organic transistors to enhance their performance [10–12], to realize devices with

novel functionalities like memories [13] or sensors [14], or even to act as the active

layer of the device [15]. When bonded to electrodes, SAMs can be used to ma-

nipulate charge carrier injection barriers, to provide a better electronic coupling,

and/or to act as an intermediate layer for the growth of the active organic ma-

terial [16–23]. The key issues in this context are (i) the conductive properties of

the SAM itself, affecting the performance of the entire device, (ii) control of the

SAM-ambient interface, defining the nucleation and growth mode of the organic

semiconductor, and (iii) introduction of a specific dipole moment to manipulate

charge carrier injection barriers. So far, characteristics of the SAM-ambient in-

terface and adjustment of dipole moment were entangled since the common way

to manipulate the entire electrostatic parameters of SAMs is the selection of a

proper dipolar terminal tail group comprising the SAM-ambient interface [24, 25].

This strategy, however, also affects the nucleation chemistry, making optimization

of a particular system a highly difficult task. While a system has recently been

1



Introduction Chapter 1.

reported in which the mixing of two different, short molecules with almost oppos-

ing dipole moments led to layers with an adjustable dipole moment and unaltered

surface energy[22], a more general solution to this dilemma would be the incorpo-

ration of a suitable functional group into the backbone of the molecules forming

the SAM such that a layer with buried dipole moments can be realized. This leaves

open options for the independent optimization of the SAM-ambient interface, e.g.,

via suitable tail-group substitutions. Thus, the interfacial dipole and nucleation

chemistry can be tuned separately, making it highly interesting for applications,

e.g. when the SAM is used as intermediate, charge-injection promoting layer be-

tween a metal electrode and adjacent organic electronic material. In addition, one

avoids potentially reactive functional groups at the exterior of the SAM that could

be chemically modified during the growth of an organic film, which is clearly of

advantage for the stability of the entire system. Beyond these practically relevant

aspects, embedded groups can be used to introduce deliberately chosen chemical

and physical perturbations within the monolayer. The extent of these pertur-

bations can be precisely controlled by selectively choosing the functional dipolar

moieties and the positions and orientations in which they are introduced within

the chain. This opens up new and unique avenues for investigating fundamental

aspects of SAM electrostatics and for designing SAMs with desired properties.

Embedding functional groups into SAMs has been a widely used strategy for ob-

taining additional functionalities, such as preferred cleaving [26–28] or providing

(switchable) molecular dipole moments [29]. In addition, these groups also had

significant influence on the layer order, either by steric constraints [26, 27, 29] or

by formation of intermolecular hydrogen bonds [29].

Recently, as a first attempt to build a system with embedded dipoles, ester

groups, R-(C=O)-O-R, were introduced into the alkanethiolate molecules on gold

as a representative test case [30]. In this system as, shown in Figure 1.1, indeed

a variety of novel phenomena have been observed. From a fundamental point

of view, the most interesting observation was a strong electrostatic effect in the

X-ray photoelectron spectra. In the presence of embedded esters, the C 1s photo-

electron kinetic energies were found to be consistently shifted by 0.85 eV between

the chemically identical -(CH2)- alkyl segments above and below the ester moiety,

regardless of the relative lengths of the segments. This shift correlates well with

simple electrostatic estimates based on dipole moment of the ester groups at their

orientation in the SAMs. Significantly, this observation, along with few others [31–

34], contradicts the generally accepted assumption that the photoemission spectra

2



Chapter 1. Introduction

(a) Embedded ester alkanethiol (b) Ester dipole

Figure 1.1: Schematic drawing of (a) the mid-chain ester functionalized alka-
nethiol [having variations in bottom and top segments] and of (b) the ester

dipole [30].

of SAMs can be described entirely within the general concept of a chemical shift

[35].

As will be discussed in more detail below, this would indeed be the case for con-

ductive samples but not for relatively poorly conductive organic layers of upright

”standing” molecules that are in the focus of the present study. Further, it sug-

gests that the electronic levels and the electrostatic potential distribution within

a SAM can be controlled to a certain extent by the introduction of an embedded

dipole layer.

To prove a generality of this concept and also in view of the theoretical pre-

dictions [36], we designed and studied aromatic SAMs that contain an embed-

ded dipolar functional group. Note that aromatic monolayers are superior to

aliphatic ones in terms of electrical conductance [37–39], which makes them more

suitable intermediate layers in organic electronics and photovoltaics assemblies.

Also, these films are better suited as interfacial layers for the deposition of most

organic semiconductors, which generally contain aromatic functional units [40].

Here, we report a rational approach for adjusting the dipole moments without

3
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significantly altering the molecular structure or the interface chemistry. Start-

ing from terphenyl-4-methanethiol C6H5-C6H4-C6H4-CH2-SH (TP1), the mono-

layers of which on Au(111) are well-investigated [41–45], we substituted the cen-

tral phenylene ring by a 2,5-pyrimidine group, in the two possible orientations

(Figure 1.2). Since the pyrimidine group has a noticeable dipole moment (2.3 D)

[46, 47], this architecture allows for an arrangement of embedded dipoles pointing

either upwards or downwards with respect to the substrate, assuming an upright

molecular orientation. These SAM precursors are accordingly denoted as TP1-up

and TP1-down, as shown in Figure 1.2. Their respective SAMs were characterized

in detail by a number of complementary surface-analytical techniques, viz. X-

ray photoelectron spectroscopy (XPS), high-resolution XPS (HRXPS), ellipsome-

try, infrared reflection absorption spectroscopy (IRRAS), near-edge X-ray absorp-

tion fine structure (NEXAFS) spectroscopy, and scanning tunneling microscopy

(STM), to study the effect of embedded dipoles on the molecular organization and

to ensure film quality and, thus, the reliability of our conclusions regarding the

specific electrostatic effects of embedded dipoles. The latter effects were addressed

by dedicated experimental tools and theoretical simulations. Further in view of the

results for the TP1-up/down system, we have revisited the ester-based aliphatic

films (see Figure 1.1) extending the range of the SAM precursors, studying the

effect of the embedded ester on the work function, and combining the experimental

results with the theory.

In addition to the embedded dipole strategy, we tried to design molecular films

to control the work function dynamically, following an external stimulus. As such

systems azobenzene-functionalized alkanethiols were used, carrying dipolar func-

tional groups and having a variable length of the aliphatic linker between the thiol

anchor a photoresponsive moiety. This moiety is much more attractive in context

of stimuli-responsive systems and potential applications in molecular electronics -

as far as azobenzene-bearing molecules can be assembled on a solid substrate in a

suitable fashion, in view of its well-known photochromic behavior [48, 49] via light-

induced trans-cis conformational changes. Along these lines, a variety of azoben-

zene functionalized thiol SAMs were studied, including purely aromatic monolay-

ers based on biphenyl azobenzene [50–56], hybrid aliphatic-aromatic films [57–59]

as well as mixed SAMs comprized of azobenzene functionalized molecules and

short ”matrix” moieties [60–63]. The reason for the use of such mixed SAMs with

the functional molecules “diluted” by the matrix molecules is to release possible

steric hindrances imposed by the neighbor molecules in the densely packed films,
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HS

N N

HS

N N

HS

TP1 TP1-down TP1-up

Figure 1.2: A schematic drawing of the pyrimidine-substituted molecules and
major reference molecule along with their acronyms. The directions of the
dipole moment associated with the embedded pyrimidine group are shown (the
direction from the negative charge to the positive charge is considered as pos-
itive). The molecules are named accordingly. Individual rings will be named
as ambient-adjacent, central, and substrate-adjacent ones, assuming an upright

molecular geometry.

limiting the conformational transformations of the azobenzene units. Such steric

hindrances are believed to be the major constraint preventing the fabrication of

reliable, stimuli-responsive, azobenzene-based monolayers, along with the quench-

ing of the isomerization-active, excited state by interaction with the substrate or

excitonic coupling among the azobenzene chromophores, discussed also in this con-

text. However, it has been demonstrated that for certain azobenzene-based SAMs,

viz. for those with the rigid aromatic backbone biphenyl quite effective photoiso-

merization [50–55] is possible even for well-ordered and densely packed structure,

due to a cooperative character of the switching process occurring, presumably, in

a domino-like fashion [50–56]. Such strategy, relying on cooperative switching in

well ordered densely packed films rather than that of isolated azobenzene-bearing

molecules, implanted in an inert matrix, should be of course more efficient. The

question is of course whether the observed cooperative isomerization behavior is

a broad phenomenon for ordered molecular films or rather an exception, charac-

teristic of specific molecular arrangement in few selected cases only. In contrast

to the SAMs based on rigid, oligophenyl backbone with embedded azobenzene

moiety [50, 56], the structural order of monolayers, where this moiety is linked
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higher WF
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R = H, CH3, CF3, CN,
       F, Cl, Br,
       OCF3, COOMe

makes WF
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Figure 1.3: Azobenzene alkanethiols functional groups

to the thiol group via an aliphatic chain [58, 64] is usually much lower. In par-

ticular, this lack of the structural order is associated with much smaller changes

in the work function upon the isomerization of such SAMs [57] as compared to

those with the oligophenyl backbone [51]. Significantly - in context of the present

study, poor structural quality of the SAMs where aliphatic chain is used to link

azobenzene moiety to the substrate makes an impression that the odd-even effects

characteristic of the biphenyl and terphenyl substitutions and having, at a proper

n, positive effect on the film structure [45, 65–77] do not occur in azobenzene-

bearing alkanethiol (AT) monolayers. However, there are two important aspects

which question this seeming impression. First, in most cases addressed so far,

alkyl chain was linked to azobenzene moiety not directly, as in the previous stud-

ies with biphenyl or therphenyl substitution, but via either ether [57, 58, 60–63]

or the amide [59, 64] group which could distort the all-trans conformation, es-

sential for the odd-even effects. Therefore, in the present study, we eliminate the

above limitations and investigate the structure of SAMs where alkyl linker is short

enough and directly attached to the azobenzene moiety, viz. monolayers formed

from C6H4-N-N-C6H4-(CH2)n-SH (AZO-n)at n = 3 and 4 (see Figure 1.3). By per-

forming structural analysis and stability tests for these SAMs on the Au(111) and

the Ag(111) substrates we prove the applicability of the odd-even effect concept to

azobenzene-substituted monolayers, with a particular emphasis on the possibility

to form highly ordered molecular films.
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The work presented in this thesis was a part of large collaboration projects, involv-

ing several experimental and theoretical groups. Our part was a general design of

the system studied as well as X-ray spectroscopic and work function measurements

on these systems.

The presented results from atomic force microscopy (AFM), scanning tunneling

microscopy (STM), infrared reflection absorption spectroscopy (IRRAS), ellipsom-

etry measurements and theoretical calculations (and simulations) were provided

by our partner groups. Also the synthesis of the SAM precursors was performed

by our partners.
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Chapter 2

Theoretical Basics and

Background

2.1 Characterization methods

2.1.1 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) as surface analytical method provides

the detection of all chemical elements (except hydrogen) from a concentration of

about 1%. It also provides information on the chemical environment, bonding and

oxidation state of the elements [78, 79]. This method is of great importance for

determining the constitution of compounds in the outer surfaces of solids, e.g. to

identify the type and thickness of corrosion layers to investigate solid catalysts,

passivation phenomena, adsorption effects and processes in the surface treatment.

XPS is based on the photoelectric effect. Accordingly, an electron of a certain

binding energy Eb absorbs a photon of the energy Ep = hν and is emitted with

the kinteic energy Ek.

Ek = hν − Eb − ΦA (2.1)

The kinetic energy Ek which is measrued by the analyzer and is independent from

the work function of the sample (ΦS); φA is the work function of the analyzer

which is different from the work function of the sample. Due to the fact that the

analyzer is electrically connected to the sample itself, the common Fermi level EF

is the only suitable reference system for the binding energies. The binding energies
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Figure 2.1: Energetic scheme of photoelectron spectroscopy

of the core levels of interest are determined by comparing their position to the one

of Au 4f7/2, as well as their known binding energy of EAu
b = EAu − EF ≈ 84 eV

[67, 80, 81].

Eb = EAu
b + (EAu

k − Ek) (2.2)

Line shape The finite core hole level life times create a Lorentz shaped broaden-

ing of the XPS lines. Aditionally, a broadening is caused by low energy vibrational

excitations and the instrument function of light source and analyzer (this kind of

broadening can be fitted by using Gauß curves). Due to this XPS peaks are fitted

by using a Voigt profile (a combination of Gauß and Lorentz functions to reproduce

broadenings in XP spectra). The contribution of inelstically scattered electrons

can be expressed by using a Shirley background [82]. Binding energies are specific

for each element. The effects of initial and final state, e.g. chemical shifts due to

electronegative binding partners and the shielding of the core hole, depending on

the electronic environment respectively lead to variations of the binding energy of

an element of several eV. Once the power of the final states is known, the chem-

ical composition of the sample can be determined from the shift of the XP lines.

The determination of the chemical composition of the sample is called electron

spectroscopy for chemical analysis (ESCA).
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Shake-up energy loss In case of shake-up processes the valence electron re-

ceives only a part of the photon energy and it is excited to an unoccupied state.

The kinetic energy of the emitted electron and with this the transition energy be-

tween occupied and unoccupied is reduced. Shake-up effects cause characteristic

satellite peaks besides the main lines of the photoemission. The intensity of the

satellite peaks is defined by the overlap of the shake-up final state and the initial

state.

Intensity and quantification For a homogeneous sample the intensity which

is measured as a count rate for a certain peak in the spectrum is given by

Ii = Ni · σi · yi · λi · f · θ · A · T (2.3)

with

Ni: density of atoms [m3] of an element

σi: ionization cross-section

yi: photoelectron yield

λi: mean attenuation length of the photoelectrons [m]

f : X-ray flux density [photons/m2s]

θ: efficiency factor (depending on take-off angle)

A: area of X-ray beam spot [m2]

T : transmission

From equation 2.3 the atomic density Ni is given by

Ni =
Ii

σi · yi · λi · f · θ · A · T
=
Ii
Si

(2.4)

In equation 2.4 Si is the sensitivity factor. In case there are emission lines of two

elements in one spectrum following equation is valid

N1

N2

=
I1/S1

I2/S2

(2.5)

The concentration of an element x (cx) can then be written as

cx =
Nx∑
Ni

=
Ix/Sx∑
Ii/Si

(2.6)
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The use of atomic sensitivity factors usually provides results with a relative error

of about 10-20%.

Attenuation length and film thickness The attenuation length λ [83] is de-

fined as the average distance of an electron traveled between two inelastic collisions

[35]. It is derived using a model where elastic collicons can be neglected and with

this differs from the inelastic mean free path (IMFP) [84]. The attenuation length

of photoelectrons through a self-assembled monolayer of alkanethiols [85] is given

by

λ = k × Ep
k (2.7)

where k and p are empirically derived contants. For thiols on gold k was deter-

mined to be 0.3 and p was estimated to be 0.64 [86, 87].

To calculate the film thickness of a monolayer on a gold surface, either the intensity

ratio of the gold signal of clean gold substrate and sample IAu(4f)

I
Au(4f)
0

IAu(4f)

I
Au(4f)
0

= exp

(
− d

λ sinθ

)
(2.8)

or the intensity of carbon signal and the gold signal of the sample
IC(1s)

IAu(4f)

IC(1s)

IAu(4f)
=

NC

NAu

σC(1s)

σAu(4f)

TC(1s)

TAu(4f)

λC(1s)

λAu(4f)

1− exp
(
dC
λC

)
exp

(
dCS

λAu

) (2.9)

with

I: integrated peak area

N : density of atoms of an element

σ: ionization cross-section

T : transmission

λC : attenuation length of the C 1s photoelectrons through carbon layer

λAu: attenuation length of the Au 4f photoelectrons through thiolate layer

dC : thickness of the carbon layer

dCS: thickness of the thiolate layer

need to be taken into account. The attenuation length of the photoelectrons is

directly related to these ratios in the following way [88]: Using the attenuation of

12



Chapter 2. Theoretical Basics and Background

the Au 4f signal shown in equation 2.8 the film thickness can be calculated by

d = −λ sinθ ln

(
IAu(4f)

I
Au(4f)
0

)
(2.10)

In case of using the carbon to gold signal ratio (see equation 2.9) the film thickness

was calculated by a software developed in our research group (by Martin Schmid)

solving equation 2.9.

Using the intrument specific constant k, equation 2.9 can be written as

IC(1s)

IAu(4f)
= k

1− exp
(
dC
λC

)
exp

(
dCS

λAu

) (2.11)

with k =
NC

NAu

σC(1s)

σAu(4f)

TC(1s)

TAu(4f)

λC(1s)

λAu(4f)
as specific instrument constant.

2.1.2 Near-edge X-ray absorption fine-structure spectroscopy

In case of the absorption of an X-ray photon, a photoelectron can be emitted

(XPS) or it can be excited to unoccupied valence states when the photon ener-

gies are close to the ionization potential (IP) of a particular core level [89] (see

Figure 2.2). In the near-edge X-ray absorption spectroscopy (Near-Edge X-ray

Absorption Fine-Structure, NEXAFS) the absorption probability is measured as a

function of the energy and the polarization of the X-rays. Due to the excitations

of core electrons NEXAFS spectroscopy is element-specific. Furthermore, orbital

and absorption geometries can be studied via synchrotron irradiation with a high

degree of polarization and the use of the selection rules [89]. By using Fermi’s

golden rule, the transition probability Pim between the initial state |i〉 and the

intermediate state |m〉 can be described as

Pim =
2π

~
|〈m|V |i〉|2ρm(Ei + hν) (2.12)

Here V (t) = V e−iωt is the harmonic interference caused by the electric field of the

photon and ρm(E) is the density of states of the final state. By using the dipole

approximation, the absorption cross section can be described as

σx =
4π~2

m2
e

e2

~c
1

~ω
|〈m|e · p|i〉|2ρm(Ei + hν) (2.13)

13



Theoretical Basics and Background Chapter 2.

Figure 2.2: Scheme of the potential of an atom and a molecule consisting of
two atoms and their resulting NEXAFS spectra [89].

The absorption cross section is mainly influenced by the overlap of the unoccupied

orbital |m〉 and the core level |i〉 [89].

The absorption of X-ray quanta can be quantified by the decay of the excitation.

In case of elements with low atomic numbers (Z<10), 99% of all core levels decay

in terms of Auger effects [89]. These can be proved by showing the equalizing

current through the sample holder or by measuring the emitted Auger electrons

[90].

Resonance types and line shapes The electric potential of a diatomic molecule

is shown in a schematic drawing in Figure 2.2. It follows from the Coulomb inter-

action between atomic nucleus and electrons combined with exchange interaction

and a barrier of the angular momentum [89]. In spherical coordinates of the nu-

cleus system (center of gravity system) the angular momentum barrier can be

described as l(l+1)~2
2mr2

and splits the potential into a deep potential well near to the
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core and a (external) flat potential well.

The low-energy resonances correlate with the electronic dipole transition from the

core level into unoccupied molecular orbitals having, most frequently, a π∗ or σ∗

symmetry. The line shape of the molecular resonances is given by the spectral

energy distribution of the exciting synchrotron irradiation and the lifetime broad-

ening τres of the excited state. From the Heisenberg uncertainty principle the

lifetime broadening is composed of the lifetime τe of an excited electron in the

molecular potential and the lifetime τh of the core hole [91].

Γ ∼=
~
τres

=
~
τe

+
~
τh

(2.14)

The lifetime broadening τres (in Lorentz shape) of lightweight elements is about

0.1 eV. Additional broadenings may appear from vibrations caused by dipole ex-

citation and ionization. In heterogeneous samples the excitation energies of the

same element may be different due to chemical shifts. Aditionally the lines can be

broadened due to averaging over bigger k‖ areas, especially in case of dispersion

of the observed states [92].

In the region below the ionization potential (IP) there are the Rydberg states R∗.

The ones of highest energy expand to the external potential well. Due to the low

overlap with the core level the NEXAFS intensity is lower than the ones from

orbitals with a stronger bonding. Additionally the delocalized states R∗ have a

higher interaction with their environment and are highly suppressed (e.g. in case

of chemisorption of alkanes on metals) [93].

Above the ionization potential (IP) there are σ∗ shape resonances. The spectral

shape and the photon energy hν corresponding to these resonances is given by the

shape of the potential barrier. The potential barrier stabilizes the quasi-bound

states avoiding instantaneous decay in vacuum states. With increasing excitation

energy the tunnelling process becomes more effective and the lifetime broaden-

ing of the shape resonances increases. The asymmetry of the resonances comes

from the oscillation excitation during electric transmission. The periodic change

of the nuclear distances causes a periodic shift of the resonance energy. The in-

tensity distribution of the shape resonances describe the weighting of the nuclear

distances during the scattering process. Short distances cause a strong short-term

shift in the resonance energy. From the mean resonance energies, the average core

distances of diatomic and quasi-diatomic molecules can be derived with high ac-

curacy [89].
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Above the shape resonances there is a direct photoemission. Since there is always

a vacuum level that fulfills the selection rules, the absorption is independent from

the orientation of the direction of the electric field vector.

Angle dependence The intensity of the absorption resonance depends on the

orientation of the electric field vector of the synchrotron light with respect to the

molecular orbital of interest (see Figure 2.3). This intensity is proportional to the

square of the scalar product of the electric field vector ~E and the orbital vector ~O

shown in equation 2.15

I ∝ | ~E · ~O| (2.15)

The resonance absorption intensity is evaluated according to the theoretical ex-

pression (for a vector-type orbital) [89]

I(α, θ) = A

{
P × 1

3

[
1 +

1

2

(
3cos2(θ)− 1

) (
3cos2(α)− 1

)]
+ (1− P )

1

2
sin2(α)

}
(2.16)

with

A: constant

P: polarization factor of the X-rays

θ: incidence angle of the X-rays

α: average tilt angle of the molecular orbital

For π∗ orbitals, where the transition dipole moment (TDM) is perpendicular to

the plane of the respective phenyl ring, the tilt angle of the orbital α is directly

related to the tilt angle of the molecular backbone β in the following equation [94]

cos(α) = sin(β)cos(γ) (2.17)

where γ is the twist angle of the corresponding phenyl ring with respect to the

plane spanned by the surface normal and the molecular axis. At θ=0 the TDM

lies in this plane [94].

Linear dichroism The linear dichroism is a fingerprint of the orientation of the

molecular orbitals. The dependence of the intensity of the absorption resonance

on the orientation of the electric field vector of the X-rays with respect to the
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(a) Vectorial orbital (b) Planar orbital

Figure 2.3: (a) Coordinate system defining the geometry of a σ∗ or π∗ vector
orbital on the surface. The orientation of the orbital, i.e. of the vector ~O, is
characterized by a polar angle α and an azimuthal angle φ. The X-rays are
incident in the (x,z) orbit plane of the storage ring which contains the major
electric field vector component ~E‖. The X-ray incidence angle θ is changed by
rotating the crystal about the y-axis. The weaker component ~E⊥ lies in the
surface plane, along the y-axis. The z-axis is the surface normal. (b) same for a
π∗ or σ∗ plane. The plane is characterized by the polar (γ) and azimuthal (φ)

orientation of its normal ~N . The plane is tilted from the surface by γ. [89]

molecular orbital of interest. The linear dichroism can be conveniently monitored

by plotting the difference of the NEXAFS spectra aquired at 90◦ (normal angle)

and 20◦ (grazing angle) of X-ray incidence. For comparison, a spectrum aquired

at 55◦ (so-called magic angle) gives only information about the chemical identity

of the samples of interest due to the fact that a spectrum aquired at this angle is

not affected by any effects related to the molecular orientation [89]. Additionally

the angle of the molecular orbital of interest can be determined by using the ratio

I(θ)/I(20◦). In this work an angle of 90◦ was used in equation 2.17. Finally, the

tilt angle of a molecule can then be determined.

2.1.3 Kelvin Probe

To measure the work function of surfaces the Kelvin Probe (KP) was used. The

basic principle is to measure the contact potential difference (CPD) between two

metals brought close to each other (∼1mm). Due to the fact that these two metals

do not touch each other they form a capacitor [95]. One of these electrodes is then

the tip of the Kelvin Probe itself and the other one is the substrate/sample of

interest (Figure 2.4a). In case of electrical contact between the sample and the

tip, their Fermi levels are equalized due to the contact potential difference VCPD

generated by the electrical charging of the tip and the sample (Figure 2.4b). To
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Figure 2.4: Schematic diagram of Kelvin Probe physics. a) Two materials
1 and 2 with different work functions φ1 and φ2, corresponding to the energy
difference between the Fermi level ε and the vacuum level. b) When the two
materials are electrically contacted, electrons flow from 2 to 1 until the Fermi
levels are aligned, leading to a contact potential Vb. The charges present in
the two materials causes an electric field E. q: electron charge; CPD: contact
potential difference. c) The electric field is removed by applying an external

potential Vc which equals the contact potential. Adapted from [95].

nullify the electric field between sample and tip an external voltage Vb (backing

potential) is applied (Figure 2.4c) [95]. The work function of a sample can be

determined by the following equation (with the known work functiuon of the Kelvin

Probe)

φSample = φref − qVb (2.18)

Kelvin Probe work function measurements only provide relative work function

values compared to a reference (work function difference ∆φ). Absolute values

can be determined by using already known standard references like, i.e. clean gold

substrates.

The mechanical oscillation of the Kelvin Probe tip induces a periodical change in

the capacitance

CK = ε0εr
A

d(t)
(2.19)

assuming that the periodical tip-sample spacing is given by d(t) = d0 + d1sin(ωt)

the capacitance can be described by

CK(t) =
C0

1 + ε sin(ωt)
(2.20)

where C0 represents the mean capacity and ε is the modulation index
(
d1
d0

)
.

The change in capacitance generates a small alternating current

i(t) = VCω∆C cosω (2.21)
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where VC is the contact potential difference (CPD), ω the frequency and ∆C the

change in capacitance. To nullify the electric field and thus the current i(t), an

external voltage Vb = −VC is applied [95].

2.1.4 Ultraviolet photoelectron spectroscopy (UPS)

The ultraviolet photoelectron spectroscopy (UPS) is related to the X-ray photo-

electron spectroscopy (XPS). The main difference between UPS and XPS is the

energy of the excitation radiation. As light source a He lamps (hν =21.21eV) are

generally used in laboratories. Alternatively, synchrotron irradiation can be used

(it shows good stability and is tunable with a monochromator); the photon en-

ergy can be varied between approximately 10-100 eV (depending on the beamline

setup). At these low energies only the valence levels can be probed (valence band

spaectra). In case of solid interfaces, the energy distribution of the photoemitted

electrons may vary to small extents with the direction of the emission. This tech-

nique is sensitive to surfaces and does not provide informations about the bulk.

By using UPS the work function of metal surfaces can be determined. Thus, it is

necessary to know that the work function corresponds to the minimum amount of

energy needed to remove an electron from the metal (see Figure 2.5). The value of

(a) Metal (b) Semiconductor

Figure 2.5: Schematic energy diagram of a metal (a) and a semiconductor
(b). Adapted from ”Tutorial on Work Function” by Dr. Rudy Schlaf.

the work function of a certain metal (here: Au) can be determined by the differ-

ence between the photon energy (hν=21.21 eV) and the secondary cutoff Ecutoff
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Figure 2.6: UP spectrum of gold surface. Adapted from ”Tutorial on Work
Function” by Dr. Rudy Schlaf.

in the UP spectrum (see Figure 2.6)

ΦAu = hν − Ecutoff (2.22)

2.2 Self-assembled monolayers

Self-assembled monolayers (SAMs) are monomolecular films consisting of molecules

that are able to bind and order on a surface independently if they are in gas phase

or in solution. There are many publications, on these systems, which can not all

be reviewed in detail here [2, 96–99]. SAM constituents consist usually of three

essential parts:
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Figure 2.7: Schematic diagram of an ideal, single-crystalline SAM of alka-
nethiolates supported on a gold surface with a (111) texture. The anatomy and

characteristics of the SAM are highlighted. Adapted from [2].

• head (docking) group (binding to the substrate)

• spacer (molecular chain; connects head group with the functional group)

• functional (tail) group

like it is shown in Figure 2.7. Different molecular chains can be used as spacer.

The most common one is the alkane chain combined with a head group on top of

the molecule determining the surface properties of the SAMs. There are various

other spacers that are used for different substrates and different purposes. Being

used as so-called model system are the silane groups [100]. Another one used as

a model system is the thiol group, which can form very stable bonds on coinage

metal substrates like gold or silver. Thiol bonds have a certain lateral mobility,

which helps to get a regular molecular arrangement studied systematically for

alkanethiols [3]. On Au(111) substrates, they adopt a (
√

3 ×
√

3)R30◦ structure

with a possible superlattice termed c(4×2), corresponding to a ∼0.5 nm spacing

between the molecules and an area per molecule of 21.6 Å2 [101–106].

2.2.1 Odd-even effect

The so called odd-even effect causes periodic changes in the packing density and

the film thickness due to the number of methylene units in the aliphatic linker. A

higher packing density associated with smaller inclination of the SAM constituents

is observed for the films with an odd number of methylene units on Au subtrates

and an even number of methylene units on Ag substrates (see Figure 2.8) [107].
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Figure 2.8: Schemes showing the orientation of the terminal terphenyl rings
and the binding geometry of TPn monolayers on Au(111) (a) and Ag(111) (b).
(c) Effective film thickness of TPn/Au(111) and TPn/Ag(111) derived from the

ellipsometry data. Adapted from [107].
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2.3 Molecular dipole and work function

The molecular dipole is the key factor controlling the work function at interfaces.

One of the most important characteristics of surfaces and interfaces is the work

function. It is equal to the surface potential which is dependent on the value and

direction of the molecular dipole moment µ.

2.4 Photoisomerization

Photoisomerization is a conformational change induced by optical radiation. In

case of azobenzene molecules it is the conformation change from trans to cis con-

formation and vice versa (see Figure 2.9). This photochemical process is caused

N

N

N NUV

vis

trans cis

Figure 2.9: Azobenzene molecule

by irradiation with UV or visible light. Irradiating azobenzene molecules with UV

light leads to a conformation change from trans to cis ; irradiation with visible light

leads to a conformation change from cis to trans. Due to the fact that the trans

conformation is the thermodynamically more stable one, azobenzene molecules is

cis conformation perform a so called backisomerization from cis to trans after a

certain time (in the dark).

2.4.1 Work function change

The conformation change of the azobenzene molecules assembled on a solid surface

may cause a change of the molecular dipole, which can be directly monitored

measuring the work function. The molecular dipole of the azobenzene molecule in

trans conformation is almost zero, while it has a certain value in cis conformation.

Along these lines the work function of assembled azobenzene molecules in cis

conformation is higher than in trans conformation.
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N
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N
N
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N

trans cis

Au

lower WF

higher WF

UV

vis

Figure 2.10: Schematic drawing of H-azo isomerization and its influence on
the molecular dipole and the work function
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Materials and Methods

In this chapter the chemical compounds, materials and characterization techniques

are presented which were used in this work. Starting with the compounds, the

sample preparation, their characterization methods and additional performed ex-

periments are described in the following sections.

3.1 Compounds and Chemicals

In this section the compounds and partially their synthesis are presented. The

used compounds were all synthesized by our partner groups.

3.1.1 Embedded Ester

The compounds were synthesized by the group of Prof. Jean-François Morin from

the Univerité Laval (Québec City, Canada) and the group of Prof. David L. Allara

from the Pennsylvania State University (USA) using standard methods [30]. A

list of the molecules and ebbeviations for the SAMs is shown in table 3.1.

3.1.2 Embedded pyrmidine

The compounds were synthesized by Tarek Abu-Husein and Tobias Santowski from

the group of Prof. Andreas Terfort from the Frankfurt University [108]. While

25



Materials and Methods Chapter 3.

Compound Abbreviation

SH-(CH2)15-CH3 C16

SH-(CH2)10-COO-CH3 C10EC1

SH-(CH2)12-COO-CH3 C12EC1

SH-(CH2)10-COO-CH3 C15EC1

SH-(CH2)5-COO-(CH2)9-CH3 C5EC10

SH-(CH2)10-COO-(CH2)4-CH3 C10EC5

SH-(CH2)10-COO-(CH2)9-CH3 C10EC10

SH-(CH2)10-OOC-(CH2)9-CH3 C10E*C10

SH-(CH2)10-COO-(CH2)14-CH3 C10EC15

SH-(CH2)15-COO-(CH2)4-CH3 C15EC5

SH-(CH2)15-COO-(CH2)9-CH3 C15EC10

SH-(CH2)20-COO-(CH2)4-CH3 C20EC5

Table 3.1: Compounds used and abbreviations for their SAMs

the synthesis of TP1 has been described in the literature and was performed ac-

cordingly [42, 109], the procedure for the pyrimidine containing molecules, TP1-up

and TP1-down, had to be developed. The strategy to synthesize these molecules

is summarized in Figure 3.1. The Kumada coupling of the Grignard reagent

3, formed from 4 bromobenzyl(triisopropylsilyl)sulfide, with amino- or pyridine-

terminated bromophenyl-derivatives has been developed and optimized previously

[110]. The synthesis of the coupling partners, 5-bromo-2-phenylpyrimidine (1) and

2-chloro-5-phenylpyrimidine (2), via Suzuki coupling reactions has been described

in the literature [111, 112]. The resulting triisopropylsilyl (TIPS) protected com-

pounds 4 and 5 were deprotected protolytically using aqueous HCl in methanol.

The final TP1-up and TP1-down substances are air-stable as crystalline com-

pounds but become easily oxidized to the less soluble disulfides in solution. All

other chemicals, including 2-MPM, 1 dodecanethiol (DDT) and 1 hexadecanethiol

(HDT) were purchased from Sigma-Aldrich and used as received.

3.1.3 Azobenzenealkanethiols

H-azo-Cn (C6H4-N-N-C6H4-(CH2)n-SH, n = 3,4) compounds were synthesized by

Simone Krakert from the group of Prof. Andreas Terfort from the Frankfurt

University [28].
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MgBr

STIPS

Pd(dppf)Cl2
N N

STIPS

N N

SH

1. aq. HCl,
MeOH

2. Na3citrate
N N

Br

N N

Cl

N N

STIPS

N N

SH

or or

1 2 3 4 5 TP1-up TP1-down

or

Figure 3.1: Outline of the syntheses of the dipolar molecules, TP1-up and
TP1-down. [courtesy of Tarek Abu-Husein, Tobias Santowski and Prof. An-

dreas Terfort from the Frankfurt University]

3.2 Preparation of the SAMs

The gold substrates were, in most cases, purchased from Georg Albert PVD-

Beschichtungen and used as received. They were prepared by thermal evaporation

of 100-200 nm of gold (99.99% purity) onto polished single-crystal Si(100) wafers

(Silicon Sense) primed with a 5 nm adhesion layer of titanium or chromium. The

resulting substrates were polycrystalline, with predominant (111) orientation and

a grain or terrace size of 20-50 nm as observed by atomic force microscopy (AFM)

and scanning tunneling microscopy (STM). For the STM studies of the SAMs (see

below), 200 nm Au films on mica were purchased from Phasis (Geneva).

3.2.1 Embedded ester

The SAMs were prepared at room temperature. The freshly prepared gold sub-

strates (200 nm Au on 10 nm Cr on Si wafer) were characterized by ellipsometry

and placed in the appropriate thiol solution for ∼18-24 h. Upon removal, each

sample was thoroughly rinsed with acetone and ethanol (C2H6O) and then blown

dry under a stream of dry N2. All solutions were prepared with absolute anhy-

drous ethanol (Aldrich), and typical solution concentrations ranged from 0.01 to

1 mM depending on the amount of compound available.
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3.2.2 Embedded pyrmimidine

The SAMs were formed by immersion of the substrates into solutions of the SAM

precursors in tetrahydrofuran (C4H8O) (concentration range 10 - 1000 µM) under

nitrogen at ambient temperature for 24 h. After immersion, the samples were

carefully rinsed with pure solvent and blown dry with a stream of N2 or Ar. In

addition to the target TP1-up and TP1-down films, we also prepared reference

SAMs of TP1 and 2-MPM.

We also prepared alkanethiolate monolayers, viz. those of dodecanethiol (CH3-

(CH2)11-SH) and hexadecanethiol (CH3-(CH2)15-SH), as references for the mea-

surement of the effective thicknesses and packing densities, applying the standard

preparation procedure [2].

3.2.3 Embedded pyrimidine mixed films

The mixed SAMs were formed by immersion of the substrates into mixed solutions

of TP1-down and TP1-up in tetrahydrofuran (THF) with a concentration of about

0.1 mM for ∼24h at RT. The used mixing volume ratios were 50:50, 25:75, 75:25.

3.2.4 Azobenzenealkanethiols

The SAMs were formed by immersion of freshly prepared substrates into a 1 mM

solution of H-azo-Cn in absolute ethanol at room temperature for 24 h at either

room (21◦C) or elevated (60◦C) temperature, denoted as RT and ET below. After

immersion, the samples were carefully rinsed with pure ethanol, blown dry with

argon, and kept, in the case of the experiments at the synchrotron (see below), for

several days in argon-filled glass containers until the characterization. No evidence

for impurities or oxidative degradation products was found.

3.2.5 Azobenzenealkanethiols diluted with spacer molecules

We used a two-step procedure. First, SAMs of spacer molecules (octanethiol or

phenylthiol) were formed by immersion of the substrate into a 1mM ethanolic

solution of C8 or PT as a matrix (for 24 h at RT). After immersion, the samples

were carefully rinsed with ethanol and blown dry with argon. The mixed SAMs

28



Chapter 3. Materials and Methods

Figure 3.2: Schematic drawing of the praparation of azobenzene-substituted
alkanethiols (H-azo-C3/C4) diluted with a short spacer molecule on a Au(111)

substrate

HS

(a)

HS

(b)

Figure 3.3: Two types of short molecules used as a spacer for diluting
azobenzenealkanethiols on a Au substrate: (a) short alkanethiols (AT) and (b)

phenylthiol (PT)

were then formed by re-immersion of the above matrix film into 1 mM ethanolic

H-azo-Cn solution for certain times (1 h, 3 h, 6 h, 12 h) at RT. After re-immersion

the samples were carefully rinsed with ethanol and blown dry with argon, kept in

argon-filled glass containers until experiments.

3.3 Characterization of the SAMs

The target and reference SAMs were characterized by XPS, high resolution XPS

(HRXPS) and NEXAFS spectroscopy. All experiments were performed at room

temperature. The XPS, HRXPS, and NEXAFS spectroscopy measurements were

conducted under ultra-high vacuum (UHV) conditions at a base pressure better
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than 1.5×10−9 mbar. Special care was taken to minimize and avoid damage to

the samples induced by X-rays during the measurements [68, 113].

3.3.1 XPS and HRXPS

The XPS measurements were performed using a laboratory spectrometer equipped

with a Mg Kα X-ray source and an LHS11 analyzer. The spectra acquisition was

carried out in normal emission geometry with an energy resolution of ∼0.9 eV.

The X-ray source was operated at 260 W power and positioned ∼1 cm away from

the samples. The BE scale was referenced to the Au 4f7/2 peak at a BE of 84.0 eV

[114]. Since the quality of the XP spectra was inferior to the HRXPS data, they

only were used to determine the effective thickness and packing density in the TP1,

TP1-up and TP1-down monolayers. HRXPS measurements were conducted at the

bending magnet beamline D1011 of the MAX-IV synchrotron radiation facility in

Lund, Sweden, using a SCIENTA SES200 electron energy analyzer. The spectra

were recorded in the Au 4f, S 2p, C 1s, N 1s, and O 1s regions. The spectra

acquisition was performed in normal emission geometry and at PEs ranging from

350 to 580 eV. The BE scale of every spectrum was individually calibrated to the

Au 4f7/2 emission of the gold substrate at 84.0 eV [115]. The energy resolution

was better than 100 meV (mostly around 70 meV), which is noticeably smaller

than the full width at half maximum (fwhm) of the spectral features relevant in

this study. Both XP and HRXP spectra were fitted by symmetric Voigt functions

and either Shirley-type or linear backgrounds. To fit the S 2p3/2,1/2 doublet, we

used two peaks with the same fwhm, the standard [114] spin-orbit splitting of

∼1.18 eV (verified by fit), and a branching ratio of 2 (S 2p3/2/S 2p1/2). For all

samples, the same fit parameters were used for identical spectral regions for a

given photon energy. The effective film thicknesses were calculated by evaluating

the intensity ratios of the C 1s and Au 4f emissions [88], and using a DDT SAM –

a film of well-defined thickness (1.5 nm) [116] - as a reference system. A standard,

exponential attenuation of the photoemission signal was assumed; attenuation

lengths determined for a series of non-substituted alkanethiolate SAMs were used

[85]. Further, the packing densities were coarsely estimated from the intensity

ratios of the S 2p and Au 4f emissions, following the approach of refs [117] and

[118]. As reference systems of reproducible quality and with well-known packing

density (0.216 nm2/molecule; 4.63×1014 molecules/cm−2) [96, 119] DDT and HDT

SAMs on Au(111) were used.
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3.3.2 NEXAFS spectroscopy

NEXAFS spectroscopy experiments were performed at the same beamline as the

HRXPS measurements. The spectra were acquired at the carbon and nitrogen K-

edges in the partial electron yield acquisition mode with retarding voltages of −150

and −300 V, respectively. Linear-polarized synchrotron light with a polarization

factor of ∼95% was used. The energy resolution was better than 100 meV at the

C K-edge and ∼100 meV at the N K-edge. The incidence angle of the X-rays

was varied from 90◦ (E vector in surface plane) to 20◦ (E vector nearly parallel

to surface normal) in steps of 10 − 20◦ to monitor the orientational order in the

SAMs. This approach is based on the linear dichroism in X-ray absorption, i.e.

the dependence of the cross-section of the resonant photoexcitation process on the

orientation of the electric field vector of the synchrotron light with respect to the

molecular orbital of interest [89]. Raw NEXAFS spectra were normalized to the

incident photon flux determined from the spectrum of a clean, freshly sputtered

gold sample. Subsequently, they were reduced to the standard form by subtracting

a linear pre-edge background and by normalizing to the unity edge jump. The

energy scale was calibrated by means of the most intense π∗ resonance of highly

oriented pyrolytic graphite at 285.38 eV[120] in combination with the well-known

∆hν ∝ (hν)3/2 behavior of plane grating monochromators [121].

3.3.3 Determination of the work function

Two alternative methods were used. First, the WF was determined by measuring

the secondary electron cutoff of the UP spectra following a standard approach

[31]. The experiments were performed at the Max IV facility, using the same

beamline and experimental station as in the case of the HRXPS and NEXAFS

measurements. The photon energy was set to 50 eV. UPS was performed by

biasing the samples -25.6 V relative to ground so that the low energy portion

of the spectrum could be observed. The positions of the cutoff in the target

samples were referenced to those of HDT/Au and freshly sputtered gold. Second,

WF measurements were carried out using a UHV Kelvin Probe 2001 system (KP

technology Ltd., UK). The pressure in the UHV chamber was ∼ 10−10 mbar. The

positions of the cutoff in the target samples were referenced to those of HDT/Au

and freshly sputtered gold.
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3.4 Photoisomerization experiments

The photoisomerization experiments were performed under UHV conditions at

a pressure of ∼10−10mbar. After preparation of the samples they were loaded

into UHV chamber and then transfered into the preparation chamber where the

Kelvin Probe is installed. Before the irradiation experiments the work function of

the sample in the dark was measured in the following way: The tip of the Kelvin

Probe was moved close to the sample (∼1mm) and the distance to the sample

was adjusted with the Kelvin Probe software to obtain the required gradient (300)

to measure the work function. After measuring the work function of the pristine

SAM in the dark it was irradiated for ∼15min with UV light. For this a UV LED

lamp was used with a wavelength of 365nm and an intensity of ∼6.5 mW/cm2

on the sample. After ∼15min UV irradiation the work function was measured

like described before. During the measurement the UV light was kept irradiating

the sample due to the shadow appearing on the sample while approaching to the

surface.

The same procedure was performed for visible (blue) light irradiation where a blue

LED lamp with a wavelength of 440nm and an intensity of ∼3.0 mW/cm2 on the

sample was used.

This irradiation cycle (UV irradiation, WF measurement, vis. irradiation, WF

measurement) was performed several times to obtain, in ideal case, a clear and

significant work function variation due to the conformation change.

3.4.1 Photoisomerization of H-azo-Cn

Like shown in Figure 2.10, the azobenzene molecule changes its conformation

from trans to cis after UV light irradiation. After irradiation with visible light

the conformation is changing from cis to trans. The conformation also changes

from cis to trans after a certain time in the dark, following the thermodynamic

drive.
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Figure 3.4: Schematic drawing of H-azo-Cn diluted with AT, assembled on
Au substrate.
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Figure 3.5: Schematic drawing of H-azo-Cn diluted with PT, assembled on
Au substrate.
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Results and Discussion

4.1 Embedded dipoles in aliphatic self-assembled

monolayers

The mid-chain ester functionalized alkanethiols were characterized by infrared re-

flection absorption spectroscopy (IRRAS), atomic force microscopy (AFM), high

resolution X-ray photoelectron spectroscopy and work function measurements. In

the discussion we mainly focus on the characteristics in the HRXP spectra and

the work function compared with the theoretical calculations. The IR and AFM

measurements were performed by Orlando Cabarcos and Nichole Sullivan from the

group of Prof. David L. Allara from the Pennsylvania State University (USA).

4.1.1 Basic characterization

In our previous study, the orientation of the alkyl chain segments and the em-

bedded ester moiety in alkanethiolate SAMs were deduced from the best fits of

spectral simulations, based on classical electromagnetic theory, to experimental

IR data along with NEXAFS spectral analysis [30]. Both analyses agreed within

experimental error to give an overall average of alkyl chain tilt from the surface

normal of 31◦(±4◦) and a chain twist around the long axis of 60◦(±5◦). These val-

ues further are, within experimental error, identical to those reported previously

for the alkyl chains in standard alkanethiolate SAMs and in the terminal ester

SAM HS(CH2)15CO2CH3/Au{111} SAM (C15EC1 ester in our terminology). In
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the present study all the IR spectra of the embedded esters with the same stan-

dard ester group chain attachment of Au-S(CH2)mE(CH2)nCH3 (see Table 3.1)

have nearly identical patterns to those in the previous study. Applying the same

methods of analysis as used previously gives chain orientations within experimen-

tal error of the values above. Since the IR spectral pattern of the reversed ester

(C10E*C10), however, was slightly different than for the E SAMs the orientation

analysis for this SAM was done in more detail. The experimental spectra and best

fit simulations of are shown in Figure 4.1. The overall result is that the average

chain orientation of the reverse ester is tilted from the surface normal at 32◦(±4◦)

with a chain twist around the long axis of 120◦(±4◦). These values are within

the error ranges of the previously reported orientations for the set of embedded E

ester SAMs and establish that inverting the ester group attachment on the alkyl

chain has a negligible effect on the overall SAM orientation.

In order to definitively establish if there is a uniform arrangement of the reverse

Figure 4.1: IR spectra for the C10E*C10 reverse ester SAM: experimental
data and best-fit simulation. The best fit chain tilt and twist angles with es-
timated errors are shown in the graphs. The low frequency data (left) show
modes for both the alkyl chains and the ester group while the high frequency
data show the C-H stretch modes. The best fits represent global fits so not all
modes have equal errors as noted particularly for the C=O stretch near 1730
cm−1. [courtesy of Orlando Cabarcos, Nichole Sullivan and Prof. David L.

Allara from the Pennsylvania State University]

ester SAM on the substrate surface, lateral force AFM microscopy was done. The

result for the C10E*C10E SAM surface is shown in Figure 4.2 along with a compar-

ison for the standard ester C10EC10. Both images confirm an ordered arrangement

with the adsorbates in a hexagonal lattice with the expected ∼0.50 nm nearest

neighbor spacing which corresponds to a surface density of 4.60 molecules/nm−2.

These data show that the reverse ester SAM has a virtually identical arrangement
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Figure 4.2: Lateral force AFM topography images of the C10EC10 and
C10E*C10 SAMs with 2-D Fourier transforms shown in the insets. Both images
clearly show a hexagonal pattern which consists of the standard

√
3×
√

3, R30
pattern with lattice spacing of ∼0.50 nm. [courtesy of Orlando Cabarcos, Nic-
hole Sullivan and Prof. David L. Allara from the Pennsylvania State University]

on the Au{111} surface as the standard embedded ester SAM, which is expected

given the identical average chain orientation of the two types of SAMs.

4.1.2 Electrostatic effects

4.1.2.1 Photoemission

Binding energy shift The most important issue of our XPS analysis is the

so-called peak splitting of the backbone in the C 1s spectra. This effect appears

due to the embedded ester dipole, which exhibits a strong electrostatic effect which

leads to this bind energy (BE) shift (∼0.85 eV between bottom and top segment).

In Figure 4.4 the different components of the molecule (in this case C10EC10

shown also in Figure 4.3) are highlighted. Each of them lead to certain peaks in

the C 1s spectrum as illustrated. The main peak (backbone) in this spectrum has

a significant sholder. The reason for this is obviously a second peak as desribed

before, which is caused by the embedded ester dipole. Usually alkanethiols show

just one photoemission peak (from the backbone). But here we obtain a so-

called binding energy shift between the two main components, the top segment

(at ∼284.6 eV) and bottom segment (∼285.5 eV). The peak of the top segment is

more intense due to the fact that it is located in the upper part of the monolayer

(even if both segments have same length). Additionally the peaks of the ether

carbon (at ∼286.8 eV) and the carbonyl carbon (at ∼289 eV) are visible. There
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Figure 4.3: Assignment of C 1s features in the representative C10C10 ester
SAM spectrum. All binding energies are referenced to the observed Au 4f7/2

peak set at 84.0 eV in the SAM spectrum. [30]

Peak Position(eV) Area FWHM(eV) GL(%)
1          284.564            63.163    0.951         42
2          285.465          212.117   0.951         42
3          286.868            18.672   0.951         42
4          289.037            15.176    0.953        42
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Figure 4.4: HRXPS peak fit components due to peak splitting

should also be a feature of the α carbons (at ∼285.5 eV) like shown in Figure 4.3;

one of them is located at the sulfur atom another one next to the carbonyl carbon.

But due to the fact that the peak of the top segment has same binding energy

position, the corresponding peak is not visible. The information is important for a

special type of the embedded ester systems which were anaylzed. In the following

sections, the different types of embedded ester systems are compared to each other,
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Figure 4.5: C 1s HRXP spectra of mid-chain ester funbctionalized alkanethiols
of varied bottom segment and fixed top segment (5 methylene groups).

on one hand with fixed length of the top or bottom segment and, on the other

hand, with inversed ester dipole.

Variation of the bottom segment In the first example as shown in Figure

4.5 we compared the systems having a fixed length of the top segment of five

methylene groups. Here, a clear increase in the intensity of the bottom segment

feature is visible upon the increase in its length, as can be expected in view of

the molecular architecture. The second example shows the comparison between

the systems having a fixed length of the top segment of 10 methylene groups

(see Figure 4.6). Here, we also see the increase of the intensity of the bottom

segment feature with increasing length of this segment, similar to the CXEC5

case. Another example, presented in Figure 4.7, shows the comparison between

systems having one methyl group in the top segment (ether carbon). In this case,

we can not really define the ether carbon as the top segment because the ether

carbon peak has a different position compared to the top segment feature in all the

other systems. The feature visible here (at ∼285.5 eV) comes from the α carbon

atoms. As described before, their peak position is the same like the top segment

in case of CXEC5 and CXEC10 (like shown in Figure 4.3).
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Figure 4.6: C 1s HRXP spectra of mid-chain ester functionalized alkanethiols
of varied bottom segment and fixed top segment (10 methylene groups).
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Figure 4.7: C 1s HRXP spectra of mid-chain ester functionalized alkanethiols
of varied bottom segment and fixed top segment (ether carbon).
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Figure 4.8: C 1s HRXP spectra of mid-chain ester functionalized alkanethiols
of varied top segment

Variation of the top segment One of two representative examples of the

embedded ester systems having a variation in the length of the top segment is

shown in Figure 4.8. It has a bottom segment consisting of 10 methylene units

and a top segment of variable length. The relations between the peaks related to

the top and bottom segment look reasonable. With increasing length of the top

segment, the inensity of the respective feature increases significantly. On the other

hand, the intensity of the feature related to the bottom segment decreases with

increasing length of the top segment, as can be expected. The second example

regarding the length of the top segment is the system having a bottom segment

of a fixed length of 15 methylene units (see Figure 4.9). Looking at the behavior

of both peak components (related to the top and bottom segment) it is again

obvious that the peak intensity associated with the top segment is increasing with

its length whereas the peak intensity related to the bottom segment decreases with

increasing length of the top segment because of the stronger attenuation of the

respective signal.

Inversion of the dipole direction Here, we compare two systems having

same length of both top and bottom segments but an embedded dipole of two

different (opposite) directions. In the C 1s spectrum of C10EC10 all chracteristic
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Figure 4.9: C 1s HRXP spectra of mid-chain ester functionalized alkanethiols
of varied top segment

peak components are clearly visible. In case of the system with the reversed dipole

(C10EC10 reverse) the effect of peak splitting is not clearly visible. Instead we

see one main peak of the backbone shifted to lower binding energies compared to

our C16 reference (-0.4 eV) (see Figure 4.10). The main C 1s backbone peak of

C10EC10 is shifted to higher binding energies of about +0.57 eV compared to our

C16 reference.
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Figure 4.10: C 1s HRXP spectra of C10EC10, C10EC10 reverse ester and
C16 reference.

4.1.2.2 Work function

An important advantage of the embedded dipole system is the possibility to vary

the work function at the persistant chemistry at the SAM-ambient interface. It

is essential when SAMs are used as intermediate layers to adjust the injection

barrier between an electrode and organic semiconductor. The work function of

each embedded ester system studied was measured by both methods. The results

presented in Figure 4.11 show that there is a good agreement between the work

function measured by UPS and Kelvin Probe. Overall there is a variation of the

work function from +0.6 eV to -0.62 eV if we compare all measured systems. Fo-

cussing on the dipole direction inversion, i.e. comparing C10EC10 with C10EC10

reverse ester, we obtain a work function inversion, which is reasonable. The simple

n-alkanethiolate adsorbates follow a linear trend of ∆φ with number of C atoms,

as observed in Figure 4.11, with a slope of -17.5 meV/C. Given the definitively

established SAM structures and the well characterized and constant ester group

dipole moment magnitude and direction, the variables to consider for explaining

the ∆φ/∆n effects are quite limited. The primary possibility involves polarizabil-

ity and screening effects of the alkyl chains [122]. Alkyl chains have a dielectric

constant ε=2.26 [18] and will respond to the presence of an applied bias to by
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Figure 4.11: Graphical summary of work function data. In both panels the
values of φ are given in terms of ∆φ, defined as the difference between the φ value
of each SAM of a given total chain C atom number and φ of the corresponding
unsubstituted alkanethiolate SAM. Thus for SAMs with values along ∆φ = 0
there is no shift relative to the alkanethiolate CAM while values with ∆φ < 0
correspond to SAMs with lower work functions than the alkanethiolate SAMs.
The black circle points represent unsubstituted alkanethiolate SAMs and the
other data points are labelled with the specific ester functionalized SAM. Left
panel: the major set of data which was obtained by PES measurements at two
different photon energies (see text for details). The slopes of the two main linear
correlations are shown by arrows. Right panel: the smaller set of data obtained
from surface potential AFM measurements. The KP-AFM data in the right
panel were obtained by Orlando Cabarcos, Nichole Sullivan and Prof. David L.

Allara from the Pennsylvania State University.

creating induced dipoles to screen the electric field from the ester moieties. We

can view this as an effect in the z-direction (perpendicular to the surface). In the

xy-direction the charge distribution also will be affected by interactions between

neighboring molecules over some distance, an in-plane depolarization effect. Both

of these effects, in principle, can give rise to chain length dependencies and thus

need to be considered. We also can consider variations in the electrical character

of the Au-S interface regions as a function of the SAM structure, but for purposes

of this simple analysis we assume the interface dipole remains constant throughout

the series of alkanethiolate SAM.

4.1.3 Theoretical calculations

In order to analyze and better understand the experimental results, as occuring in

the photoemission spectra, calculations were performed, on the one hand, the C

1s core level energies, to compare the binding energy shift and, on the other hand,
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the electrostatic potential, to compare the work function values. The calculations

were performed by Iris Hehn from the group of Prof. Egbert Zojer from the Graz

University of Technology (Austria).

4.1.3.1 C 1s core level energies

In general the binding energy shift in the C 1s HRXP spectra could be reproduced

well by the calculations of the C 1s core level energies as far as electrostatic effects

are considered. Allover it can be said that the calculations mostly confirm the

experimental results, except C10E*C10 reverse ester. Due to the fact that it is

not clear why there is no binding energy shift in case of C10E*C10 reverse ester,

we put our focus on this system. From the C 1s core level calculations a binding

energy shift of ∼0.7eV was found between the bottom and top segments (from

HRXPS it was hardly perceptible).

Figure 4.12: C 1s core level energies of C10EC10 and C10EC10 reverse rela-
tive to the Fermi energy of a full coverage C10EC10 SAM and a full coverage
C10EC10 reverse SAM. [courtesy of Iris Hehn and Prof. Egbert Zojer from the

Graz University of Technology]

4.1.3.2 Electrostatic potential

The calculation of the electrostatic potential could partially confirm experimental

results regarding the work function. But the behavior is not fully systematic. The

so-called odd-even effect with respect to the length of the bottom segment could

be observed; this may be a possible explanation for the non-systematic behavior.
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Focussing on C10E*C10 reverse ester we see a good correlation with the work

function measurements.
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Figure 4.13: Electrostatic potential of 3 different systems. A C10EC10 SAM
(red), a C10revEC10 SAM with reverse ester dipole (blue) and a C16 reference
SAM without ester group (black). All 3 SAMs are densely packed on a Au(111)
surface. The first 5 distinct peaks show the 5 layers of gold substrate, the
smaller peaks after that represent the SAM. The top of the SAM is reached at
a z-axis position of about 25 Å above the top gold layer. [courtesy of Iris Hehn

and Prof. Egbert Zojer from the Graz University of Technology]

4.1.3.3 Comparison to the experimental results

There is a good agreement between the calculated work function and the work

function measured by Kelvin Probe (and UPS). The values are not identical, but

they show the correct trend. Also, the calculated XPS shift (Ctop-C16) is mostly in

good correlation with the XPS shift determined from experimental results; there

is one exception as already discussed two sections before. The inversed dipole in

C10E*C10 (rev.) shows almost no XPS shift in the experimental results.
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Simulation Experiment

System ∆Φ Ctop-Cbot ∆Φ Ctop-Cbot

[eV] [eV] [eV] [eV]

screened hν = 350 eV

C16 0.00 0.01 - -

C10EC5 -0.6 -0.86 -0.16 -0.84

C10EC10 -0.51 -0.85 -0.44 -1.02

C10E*C10 rev. 1.02 0.7 0.64 0.00

Table 4.1: Work function and binding energy shift determined by simulation
and experiment compared with each other.

4.2 Embedded dipoles in aromatic self-assembled

monolayers

4.2.1 Basic characterization

4.2.1.1 XPS and HRXPS

Au 4f7/2, S 2p, and N 1s HRXP spectra of the TP1-down and TP1-up SAMs are

presented in Figure 4.14, along with the data for the reference TP1 monolayer.

The S 2p spectra of all three SAMs in Figure 4.14b exhibit a sole S 2p3/2,1/2 doublet

at a binding energy (BE) position of ∼162.0 eV (S 2p3/2). This value corresponds

to thiolate species bound to noble metal surfaces [113, 123, 124], which means

that, within the sensitivity of the measurements, all molecules in the studied films

are bound to the substrate via a thiolate-gold bond, as is expected for well-defined

SAMs. No traces of other sulfur derived species such as atomic sulfur, disulfides,

unbound thiols or sulfonates were observed. The TP1-down and TP1-up SAMs

exhibit similar intensities of the S 2p signal, along with similar intensities of the

Au 4f7/2 emission (Figure 4.14a), which suggest similar packing densities in these

two monolayers. These densities appear, however, slightly lower than that in the

TP1 SAM, as follows from the comparison of the Au 4f7/2 intensities in Figure

4.14a. This qualitative conclusion is supported by a numerical evaluation of the

XPS and HRXPS data (see section 3 for details), resulting in the values of effective

thicknesses and packing densities compiled in Table 4.2. Note that the values for

the reference TP1 monolayer agree well with literature data [44, 45]. Note also
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Figure 4.14: Au4f7/2 (a), S 2p (b), and N 1s (c) HRXP spectra of the TP1,
TP1-down and TP1-up SAMs. The spectra were acquired at photon energies
of 350 eV (Au 4f7/2 and S 2p) and 580 eV (N 1s). The S 2p spectra are fitted

by a single S 2p3/2,1/2 doublet, characteristic of the thiolate.

that the effective thicknesses calculated from XPS agree with the ellipsometry data

of our partners (Martin Kind from the group of Prof. Andreas Terfort from the

Frankfurt University).

The N 1s HRXP spectra of the TP1-down and TP1-up SAMs in Figure 4.14c

exhibit a single and sharp N 1s emission, in contrast to the expected, nitrogen-free

”baseline” for the reference TP1 monolayer. This emission can be unequivocally

assigned to the nitrogen atoms in the pyrimidine rings. The presence of the single

and sharp peak suggests, in accordance with the S 2p data, a homogeneous and

well-defined character of the target monolayers. Note that there is a small shift

between the exact BE positions of the N 1s emissions for the TP1-down and TP1-

up monolayers (397.5 and 397.7 eV, respectively). The C 1s HRXP spectra of

the TP1-down and TP1-up films are characteristic of well-defined SAMs. These

spectra are, however, strongly affected by electrostatic effects. Thus, they will be

described in detail below, when discussing the electronic properties of the SAMs.
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Monolayer Effective thickness Packing density

from XPS/HRXPS [nm] [molecules/cm2]

TP1 1.78±0.04 4.6×1014

TP1-down 1.75±0.05 4.3×1014

TP1-up 1.74±0.05 4.2×1014

Table 4.2: XPS/HRXPS derived effective thickness of the TP1-down, TP1-up,
and TP1 SAMs, along with the XPS/HRXPS derived packing density in these
monolayers. The error bars of the packing density can be estimated at ±5%.

4.2.1.2 NEXAFS spectroscopy

The carbon and nitrogen K-edge NEXAFS spectra of the TP1, TP1-down and

TP1-up SAMs are presented in Figure 4.15. Panels (a) and (c) compile the spec-

tra acquired at an X-ray incidence angle of 55◦ while panels (b) and (d) represent

the difference between the spectra acquired at X-ray incident angles of 90◦ and

20◦. Note that 55◦ is the so-called ”magic angle”; at this particular adjustment,

the spectrum is not influenced by any effects related to molecular orientation and

is, therefore, exclusively representative of the chemical composition of the samples

[89]. In contrast, the difference of the spectra acquired at normal (90◦) and grazing

(20◦) incidence of X-rays is a fingerprint of the linear dichroism and, thus, allows

conclusions regarding the orientational order and molecular orientation in the sys-

tems. The 55◦ C K-edge spectrum of the reference TP1 monolayer in Figure 4.15a

exhibits typical absorption signature of oligophenyls, in good agreement with lit-

erature data [44]. The spectrum is dominated by the intense π∗1 resonance of the

phenyl rings (1) at 284.95 eV, accompanied by the respective π∗2 peak (3) at ∼288.8

eV and several σ∗ resonances (4-6) at higher excitation energies [89, 125–127]. In

addition, there are the R∗/C-S∗ resonance (2) at ∼287.0 eV [44, 127] and a weak

R∗ feature at ∼287.8 eV (between 2 and 3). Apart from certain intensity differ-

ences, the spectra of the TP1-down and TP1-up SAMs exhibit similar resonance

patterns (2-6) at high photon energies (PEs) as the TP1 monolayer. At the same

time, the dominant π∗1 resonance splits in three lines at PEs of 284.85/285.0 eV (1a

for TP1-down/TP1-up), 285.3 eV (1b) and 286.0 eV (1c), which is more obvious

for TP1-down/Au. This splitting is associated with the effect of the embedded

pyrimidine moiety. Indeed, a NEXAFS spectrum of the pyrimidine molecule is

dominated by a split π∗1 resonance at PEs of 285.32 and 285.86 eV related to the
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Figure 4.15: C (a,b) and N (c,d) K-edge NEXAFS spectra of the TP1, TP1-
down and TP1-up SAMs acquired at an X-ray incident angle of 55◦ (a,c), along
with the respective difference between the spectra collected under the normal
(90◦) and grazing (20◦) incidence geometry (b,d). Individual absorption res-
onances are marked by numbers (see text for the assignments). The derived
average tilt angles of the π∗ orbitals of the phenyl rings (C K-edge) and embed-
ded pyrimidine moiety (N K-edge) are given at the respective resonances. The

horizontal dashed lines in panels b and d correspond to zero.

transitions from the non-equivalent carbon sites to the lowest unoccupied, anti-

bonding, molecular orbital [128, 129]. A superposition of these features with the

distinct π∗1 resonance of the phenyl rings can indeed result in the π∗ resonances with

the complex shapes observed for the TP1-down and TP1-up monolayers. The dif-

ferent relative intensities of the individual contributions within the joint π∗feature

for TP1-down/Au and TP1-up/Au can be explained tentatively by the different

orientations of the pyrimidine moiety with respect to the substrate. According to

literature data [129], a substituent at either the 2 or the 5 position of pyrimidine

results in different branching of the individual π∗ resonances. The attachment to
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the substrate, even mediated by a phenyl ring and a thiolate group can provide a

similar effect as a substitution at a particular site. Moreover, the highly localized

core levels and the more delocalized frontier orbitals are affected to a different

degree by the electrostatically-induced shifts that depend on the orientation of

the pyrimidine groups (see below), which can also cause deviations between the

NEXAFS spectra of TP1-up and TP1-down. The N K-edge 55◦ NEXAFS spectra

of the TP1-down and TP1-up SAMs in Figure 4.15c are exclusively representative

of the embedded pyrimidine moiety. They are dominated by a strong π∗ reso-

nance at 398.6 eV, accompanied by several weaker features. These spectra agree

well with the spectrum of pyrimidine in the gas phase [129]. The assignments of

the individual resonances can be found in reference [129]. Both C and N K-edge

NEXAFS spectra of the TP1-down and TP1-up SAMs exhibit a pronounced linear

dichroism, as seen in Figures 4.15b and 4.15d. This indicates a high orientational

order in these films. Considering that the intensity of the π∗ resonances is larger

at normal than at grazing incidence (positive peaks in the difference spectra) and

that the TDMs of these resonances are directed perpendicular to the phenyl and

pyrimidine rings, an upright orientation of the molecular backbones in the target

films can be concluded, in agreement with the XPS/HRXPS, ellipsometry, and

IR data. This is supported by the numerical evaluation of the entire set of the

NEXAFS spectra within the standard theoretical framework [89]. A similar pro-

cedure as for analogous aromatic SAMs was used to evaluate the dependencies of

the intensity of the most prominent π∗ resonances at the C and N K-edges on the

incidence angle of the X-rays, fitting them to the theoretical curves for a vector-

like orbital [127, 130]. The only fitting parameter was the average tilt angle of the

respective molecular orbitals, α. The derived values of this parameter for the π∗

resonances of the entire molecular backbone at the C K-edge and the π∗ resonance

of the pyrimidine moiety at the N K-edge are given in Figures 4.15b and 4.15d,

at the respective absorption resonances. Significantly, the average tilt angles de-

rived from the C and N K-edge data for both TP1-down and TP1-up SAMs are

almost identical, suggesting a planar or close-to-planar molecular conformation

of the aromatic backbones. Finally, based on the α values and a reasonable as-

sumption for the twist angle, γ (32◦)[131], the tilt angles of the entire molecular

backbones in the target and reference SAMs, β, were calculated using the standard

formula, cosα = sinβ × cosγ[94]. They are 17◦, 18◦, and 18◦ for TP1-down/Au,

TP1-up/Au, and TP1/Au, respectively; the error bars can be estimated at ±3◦.
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4.2.1.3 Additional characterization

In addition to our spectroscopic characterization, the TP1, TP1-up and TP1-down

SAMs were characterized by complementary infrared spectroscopy and scanning

tunneling microscopy measurements [108]. The corresponding measurements were

performed by Martin Kind (IR) and Adrian Wiesner (STM) from the group of

Prof. Andreas Terfort from the Frankfurt University. From the IR spectroscopy

measurements of the TP1-down and TP1-up monolayers the tilt angles of 12◦ and

18◦ and twist angles of 28◦ and 37◦, respectively, could be determinded, though

with relatively large error bars (±5◦) due to low intensities of the ⊥ and oop bands.

This problem was exacerbated for the TP1 SAM to the extent that the values of

twist angle β and tilt angle γ could not be derived. Note also that this discussion

and the evaluation of tilt and twist angles assumes that the three aromatic rings

are coplanar. This assumption is based on the fact that the dihedral rotation

typical of biphenyls and terphenyls in the molecular state (∼ 40◦) [132, 133] is

strongly reduced or even eliminated completely in densely packed 2D assemblies

due to intermolecular interactions [131, 134–136], as supported by the literature

data [137, 138] and corroborated, in this case, by the NEXAFS results discussed

before.

From the STM measurements the molecules in the TP1 SAMs were found to adopt

a commensurate (2
√

3×
√

3)R30◦ arrangement on the Au(111) terraces with the

presence of etch pits of ∼0.24 nm depth, corresponding to a local absence of a

gold monolayer. The films formed by the TP1-up molecules look very similar to

TP1/Au at first sight. In particular, many monoatomic etch pits can be found.

However, these etch pits are on average smaller and more numerous than for

TP1/Au, limiting the size of the ordered domains to 10 nm. Nevertheless, molec-

ular resolution could be attained, revealing an approximately hexagonal pattern.

In the case of the TP1-down structure the etch pit appearance is similar to TP1-

up/Au, again limiting the size of the crystalline areas. While the dimensions of the

unit cell are basically the same as for TP1/Au and TP1-up/Au, the arrangement

of the molecules looks somewhat different. This arrangement can be derived from

the TP1-up structure by moving every other row one binding site along the <11-

2> direction (by 0.12 nm, from a formally hcp to a fcc site or vice versa). This

results in an almost square placement of the adsorbates, which, however can again

be described as a centered (2
√

3×
√

3)R30◦ structure, due to the formal nonequiv-

alence of the adsorption sites. In any case, the packing density in the TP1-down
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case as well as the surface unit cell are basically the same as for TP1/Au and

TP1-up/Au, in agreement with the spectroscopic data presented above.

4.2.2 Electrostatic effects

4.2.2.1 Photoemission

The C 1s HRXP spectra of the TP1-down and TP1-up SAMs are presented in

Figure 4.16, along with the data for the reference TP1 monolayer. The spectra

are tentatively decomposed into several individual peaks. The curves for a PE of

350 eV can be directly compared. In accordance with literature data [44, 139], the

spectrum of TP1/Au shows a strong and sharp emission at ∼284.25 eV accompa-

nied by a weak shoulder at ∼284.95 eV assigned to the terphenyl backbone and

shake-up processes in the aromatic matrix, respectively [139]. The major emission

contains contributions from all carbon atoms along the molecular chain, merging

in a single sharp line [113], but its BE position is mostly representative of the

ambient-adjacent phenyl ring since the photoemission signals from the central and

substrate-adjacent rings are strongly attenuated at the given kinetic energy (∼60

eV at a PE of 350 eV) [35, 140]. In contrast, the spectra of the TP1-down and

TP1-up SAMs exhibit much more complex patterns that cannot be explained by

the presence of the pyrimidine ring within the standard concept of a chemical

shift. Indeed, according to the reference measurements on 2-mercaptopyrimidine

(2-MPM/Au, a single ”pyrimidine-up” unit bearing a thiol; see the Supporting

Information, Figures S6 and S7) which, in terms of the branching, agree with the

literature data for pyrimidine in the gas phase [128], the spectrum of the pyrimidine

moiety comprises two emissions at BEs of 285.0 and 286.4 eV having an intensity

relation of 3:1. In the case of TP1-down/Au and TP1-up/Au, the respective emis-

sions can appear at somewhat different binding energies but, most importantly,

should be weak compared to the contribution from the ambient-adjacent phenyl

ring. The latter is naturally associated with the prevalent peak (shaded in blue)

in the 350 eV spectra of the TP1-down and TP1-up SAMs with a BE of 283.83 eV

and 284.90 eV, respectively. This association, however, means that the emission

of the ambient-adjacent ring shifts by −0.42 eV for TP1-down/Au and +0.65 eV

for TP1-up/Au compared to TP1/Au. The origin of this shift cannot be chemical

but only electrostatic since the only difference between the TP1-down and TP1-up
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molecules is the direction of the polar pyrimidine moiety. Note that a weak elec-

tron withdrawing effect, associated with the adjacent nitrogen atoms in the case

of the TP1-down SAM, cannot produce a BE shift of such a magnitude over the

entire ambient-adjacent ring. As far as the signals originating from carbon atoms
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Figure 4.16: C 1s HRXP spectra of the TP1, TP1-down and TP1-up SAMs
acquired at photon energies of 350 eV and 580 eV (top spectrum; for TP1-
up/Au only). The spectra are tentatively decomposed in several individual
components (see text for details). The components predominantly associated
with the ambient-adjacent and substrate-adjacent phenyl rings are marked by
blue and red colors, respectively. The components associated with the pyrimi-
dine ring are drawn by thin solid lines, as far as they do not overlap completely

with the other features. The vertical dashed lines are guides for the eyes.
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residing in the other rings are concerned, features at higher binding energies are

tentatively associated with the pyrimidine and shake-up processes (vide supra).

The low BE peak at 283.85 eV that is clearly resolved in the TP1-up spectrum is

associated with the substrate-adjacent ring. Screening of the photoemission hole

by the electrons in the metal substrate is particularly strong and relevant for the

energetic position of that peak [113] resulting in a shift to lower binding energies.

Conversely, the position of that peak is not subject to electrostatic shifts caused by

the pyrimidines, as these reside at larger distances from the substrate (see below

for a detailed discussion). This observation explains, why the 283.85 eV peak is

best resolved in the TP1-up case, where the screening induced shift of the peak

associated with the substrate-adjacent ring and the electrostatic shifts affecting

the BE position of the dominant feature associated with the ambient-adjacent ring

go in opposite directions. In the TP1-down case, where both shifts go in the same

direction, those two features overlap. The assignment that the lowest-binding en-

ergy peak originates from the carbon atoms “buried” in the monolayer is in fact

supported by the spectrum shown in the top panel of Figure 4.16. There, the in-

tensity of the lowest BE emission is shown to increase significantly upon increasing

the kinetic energy of the photoelectrons (PE = 580 eV) due to a weaker attenua-

tion of the respective signal [140].

4.2.2.2 Work function

Work function (WF) values for TP1/Au, TP1-down/Au, and TP1-up/Au with

respect to the WF of freshly sputtered gold, measured with a Kelvin probe and

derived from the secondary electron cutoffs of the ultraviolet photoemission spec-

tra, are presented in Figure 4.17 and compiled in Table 4.3, together with the

theoretical values obtained from the DFT calculations (vide infra). The experi-

mentally observed WF change upon the assembly of the TP1 monolayer compared

to clean Au(111) correlates well with the literature value for the analogous molec-

ular films, viz. −(0.8-1.0) eV [141]. Most significantly, compared to the WF of

TP1/Au, TP1-down/Au and TP1-up/Au exhibit changes of +0.55 and −0.43 eV

according to the Kelvin probe, and +0.58 and −0.41 eV, according to the ultra-

violet photoemission spectroscopy (UPS). This clearly manifests the electrostatic

effect of the embedded dipoles.
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Figure 4.17: Work function values for TP1/Au, TP1-down/Au, and TP1-
up/Au measured with a Kelvin probe (a) and as the cutoff of the UP spectra (b).
The values are references to the WF of freshly sputtered gold. The difference
between the values for TP1-down/Au and TP1-up/Au is highlighted by blue

arrows and precisely marked.

Monolayer Kelvin Probe [eV] UPS cutoff [eV] DFT [eV]
TP1 -0.98 -0.97 1.30

TP1-down -0.43 (+0.55) -0.39 (+0.58) -0.54 (+0.76)
TP1-up -1.41 (-0.43) -1.38 (-0.41) -1.99 (-0.69)

Table 4.3: Experimental (Kelvin probe and secondary electron cutoff in UPS)
and calculated (DFT) WF changes induced by the TP1, TP1-down, and TP1-
up SAMs, with respect to the WF of pristine gold. The WF shifts with respect
to TP1/Au are presented in parentheses. The DFT values were calculated by
David A. Egger and Prof. Egbert Zojer from the Graz University of Technology.

4.2.2.3 Band-Structure-Calculations

This work was performed by David A. Egger from the group of Prof. Egbert Zojer

from the Graz University of Technology (Austria) [108].

The main impact of the pyrimidine rings on the electronic structure of the SAM-

substrate interface can be seen in Figure 8a, where the calculated plane-averaged

electrostatic energies of TP1, TP1-up, and TP1-down SAMs on Au(111) are

shown. For the substrate-adjacent phenyl ring the electrostatic energies in the

three systems coincide, while the electronic landscape experienced by the ambient-

adjacent ring is shifted considerably in the TP1-up and TP1-down SAMs due to

the aligned pyrimidine dipoles. This has two consequences of direct relevance for

the properties discussed here: First, the vacuum level above the SAM is shifted
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significantly, with SAM-induced WF shifts (∆WF) of −1.30 eV for the TP1 SAM,

−0.54 eV for the TP1-down SAM, and −1.99 eV for the TP1-up SAMs, respec-

tively. These values, summarized in Table 3, are in good semi-quantitative agree-

ment with the experimental results. More importantly, from the electrostatic

energies shown in Figure 8a, one can understand why embedding the dipole in the

TP1-down fashion leads to an increase of the WF compared to TP1 (the reference

system containing no pyrimidine unit), while inserting it in the TP1-up orientation

yields a more pronounced WF decrease. Quantitatively, the effect of reversing the

orientation of the embedded pyrimidine dipole results in a WF difference between

the TP1-down and TP1-up layers amounting to ∆WFcalc=1.45 eV. This shift is

somewhat larger than the one measured in the UPS experiments (∆WFUPS=0.99

eV) and Kelvin probe measurements (∆WFKP=0.98 eV). Possible reasons for this

deviation are discussed in the next section. The second immediate consequence of

the shift in the electrostatic energy induced by the pyrimidine dipoles is a change

in the energies of the core-levels along the backbone of the SAM constituents. The

calculated energies of the C 1s states in the aromatic system relative to that of the

carbon atom in the methylene linker are shown in Figure 8b. One sees that the

energies of the core levels are shifted between the substrate-adjacent and ambient-

adjacent rings in accordance with the shift in the potential energy shown in Figure

4.18a. The core-levels of the carbon atoms bound to nitrogens are shifted to larger

binding energies, which is a consequence of the changed bonding situation of those

atoms (cf. data points in Figure 4.18b highlighted by rectangles). Consequently,

these shifts can be regarded as standard “chemical shifts” while the energy differ-

ences between the carbon atoms comprising the ambient-adjacent and substrate-

adjacent phenyl rings must be regarded as “electrostatic shifts”. For a quantitative

comparison of the calculated core-level energies to the binding energies measured

by HRXPS, in general, screening effects associated with the core-hole produced in

the photoionization process also need to be considered. For signals arising from

the ambient-adjacent ring, these effects are, however, comparably small keeping

in mind the highly non-linear dependence of screening on the distance from the

metal surface. A first estimate of the energy correction can be obtained by means

of a classical image potential [142], using an image plane position that is located

at 0.09 nm above the top row of the gold atoms [143]. This yields only compa-

rably small and, most importantly, very similar screening-induced shifts of 0.30

eV for the lowest and 0.24 eV for the topmost C atom of the ambient-adjacent

ring of the TP1 system (these numbers change to 0.10 V and 0.08 eV when using
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Figure 4.18: (a) Calculated plane-averaged electrostatic energy of an elec-
tron across TP1/Au (cyan solid line), TP1-up/Au (blue dotted line), and TP1-
down/Au (orange dashed line). The origin of the x-axis is set to the topmost
metal layer while the energy scale is aligned to the Fermi energy of the substrate
(see dashed horizontal line). Thick, color-coded, horizontal lines serve to illus-
trate the difference in electrostatic energy below and above the pyrimidine ring.
(b) Calculated C 1s core-level energies of TP1/Au (cyan circles), TP1-up (blue
diamonds), and TP1-down/Au (orange triangles). The origin of the x-axis is set
to the top metal layer while the energy scale is aligned to the C 1s energy of the
first carbon atom in each system. Framed data points correspond to the car-
bon atoms bound to nitrogen, and the vertical arrows indicate the difference in
the core-level energies corresponding to the ambient-adjacent phenyl ring of the
TP1-up and TP1-down SAMs. [courtesy of David A. Egger and Prof. Egbert

Zojer from the Graz University of Technology]

58



Chapter 4. Results and Discussion

a scalar dielectric constant of 3 for the SAM instead of only using the vacuum

permittivity). Moreover, it needs to be kept in mind that these shifts do not af-

fect a comparison of the features of the various SAMs that arise from C atoms

at equivalent distances to the substrate. Thus, a comparison of the relative core-

level shifts in the ambient-adjacent ring to the measured shifts of the dominant

HRXPS feature appears sensible. The calculated upward-shifts of the core-levels

by +0.74 (+0.62) eV for TP1-down/Au (resulting in a reduction of the C 1s bind-

ing energies) and the downward shift by −0.73 (−0.71) eV in the TP1-up/Au case

(effectively increasing the C 1s binding energies) are in good agreement with the

experimental data. Note that the shifts quoted here are obtained by averaging

over the core-level energies of the C atoms in the ambient-adjacent ring, while the

values in parentheses are obtained, when just considering the topmost C atom of

this ring. In passing we note that as far as the intra-molecular structure within

the SAMs is concerned, no major differences between TP1 and TP1-up and also

TP1-down are observed: In particular the inter-ring twist-angles are essentially

the same in all systems and between all rings. I.e., they vary between 12◦ and 6◦

with the largest values occurring in systems, where ortho-hydrogens cause some

repulsion. This overall close-to-planar structure is a consequence of the significant

intermolecular interactions in the densely packed layers. For example, biphenyl

(as an example for oligophenylenes) displays an inter-ring twist angle of 42◦ in

the gas phase [133], while experimental data on terphenyl in the crystalline state

indicate an interring twist of only 12◦ [134], fully consistent with band-structure

calculations [144]. The dominant role of intermolecular interactions for the twist

angles in the SAMs considered here is supported by simulations of isolated TP1-

up and TP1-down molecules, for which we find that the steric repulsion between

ortho-hydrogens results in an inter-ring twist of 36◦-37◦ between the respective

rings. Conversely, parts of the molecules where the N-atoms of the pyrimidines

are engaged in H-bonds with opposing ortho-hydrogens, are planar.

4.2.3 Mixed films

In order to further tune the work function on metal surfaces, we prepared mixed

films of certain ratios of TP1-up and TP1-down. As visible in Figure 4.19 the

work function of the mixed films can be tuned in a more precise way by choosing a

certain ratio. Depending on the mixing ratio the work function is changing. With

an increasing amount of TP1-down the work function is increasing. The increase
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Figure 4.19: Work function of TP1-up/down mixed films

shown in Figure 4.19 is, however, not linear (only to some extent). Work function

measurements were performed twice, to verify the results. The measured HRXP

spectra of the mixed films are shown in Figure 4.20a. In Figure 4.20b calculated

spectra of the mixed films, based on the 100% TP1-up/down spectra, are shown,

as they theoretically should be expected. But the measured photoemission spectra

(Figure 4.20a) are completely different from the expected, calculated ones (Figure

4.20b). The measured spectra give us the information that the existing homoge-

neous electric field in the SAM-ambient interface is changing with the increasing

amount of TP1-down like shown in Figure 4.20a and thus there is a shift in binding

energy of each film to lower binding energies, visible in the C 1s HRXP spectra.

4.2.4 Discussion

As stated in the introduction, the major goal of this study was to realize a model

SAM-mediated interface that permits control of the work function while retaining

the surface chemistry and basic structural motif of the SAM-forming compounds.

It was particularly important to deal with aromatic monolayers since they possess
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Figure 4.20: HRXP spectra of the TP1-up/down mixed films. In (a) the mea-
sured photoemission spectra are plotted for each mixing ratio; in (b) calculated

spectra of the mixed films based on the measured TP1-up/down references

superior transport properties and provide a good match to organic semiconduc-

tors. As shown above, such monolayers can be successfully formed in a well-defined

fashion. Significantly, the results of the complementary experimental techniques

agree well with each other providing a consistent and detailed description of the

systems studied. According to the HRXPS data (Figure 4.14 and Table 4.2),

all molecules in the TP1-down and TP1-up SAMs are bound to the substrate

via the thiolate anchor. The monolayers are densely packed and exhibit effective

thicknesses close to the molecular length of the respective precursors (∼1.5 nm),

with addition of the S-Au bond length (0.24 nm) [145, 146]. This suggests an

almost upright orientation for the TP1-down and TP1-up molecules in their re-

spective SAMs, similar to TP1/Au [45, 46]. Indeed, both IRRAS and NEXAFS

data confirm that orientation. In particular, the analysis of the IR data yields

tilt angles of 12◦ and 18◦ and twist angles of 28◦ and 37◦ for the TP1-down and

TP1-up monolayers, respectively. In agreement, the evaluation of the NEXAFS

data (Figure 4.15) results in an average tilt angle of 17◦-18◦ for both TP1-down

and TP1-up SAMs, making a reasonable assumption regarding the value of the

twist angle, viz. 32◦, which is characteristic of bulk terphenyl [131] and close to

the average of the IR derived angles. Significantly, the tilt angles derived from
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the spectra representative of the phenyl and pyrimidine rings (C and N K-edges,

respectively) practically coincide (Figure 4.15), which suggests a planar or close-

to-planar molecular conformation in both TP1-down and TP1-up monolayers, as

expected for densely packed aromatic SAMs[137]. The calculated tilt angles of

13◦ (TP1-up) and 12◦ (TP1-down) also agree well to the experimental ones. In

the context of this manuscript it is important that these tilt angles are practically

identical to that of the reference TP1 monolayer because it implies that the in-

clusion of a pyrimidine moiety into the terphenyl backbone does not significantly

change the molecular orientation in the respective SAMs. The consequences of the

dense packing triggered by van der Waals and electrostatic interactions between

the molecular backbones are obviously stronger than the dipole-dipole repulsions

favoring a significant tilt[147, 148]. Certain differences in the details of the lateral

packing between the TP1-down and TP1-up SAMs do, however, occur as can be

seen in the STM data. At the same time, the acquired data confirm high quality

and dense molecular packing in the TP1-down and TP1-up monolayers. The SAMs

are shown to exhibit ordered molecular lattices on the Au(111) surface that are

close to the (2
√

3×
√

3)R30◦ “parent” structure of the TP1 monolayer[41–43, 45].

This results for all three SAMs in packing densities of ∼4.6×1014 molecules/cm−2,

corresponding to 0.216 nm2 per molecule. For the TP1 SAMs, these STM de-

rived packing densities are fully consistent with the insight gained from the XP-

S/HRXPS and ellipsometry data (Table 4.2). In the latter two experiments, a

slightly reduced packing density is, however, observed for the TP1-up and TP1-

down SAMs compared to the reference TP1 monolayer. In conjunction with the

STM data, we attribute this to the high number of etch pits seen for the TP1-

up and TP1-down SAMs, giving rise to a larger amount of domain boundaries

that are potentially packed less densely. This directly affects the packing density

values obtained in the XPS/HRXPS and ellipsometry experiments, which aver-

age over macroscopic sample areas. In contrast, STM typically focuses on the

properties within highly ordered domains for quantitative evaluation. The above

analysis qualifies the TP1-up and TP1-down SAMs along with the reference TP1

monolayer as well defined model systems to study the electrostatic effects of the

embedded dipole in aromatic monolayer films. The most important electrostatic

effect, defined as a major goal of the present study and observed here for the first

time, is a WF variation induced by the embedded dipole that can be varied by

changing the orientation of the pyrimidine ring. As listed in Table 4.3, the TP1-

up and TP1-down SAMs yield WF changes of +0.55 (+0.58) and −43 (−0.41)
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eV with respect to the non-polar TP1 monolayer, as determined by the Kelvin

probe (UPS cutoff) measurements. The directions of the WF changes correlate

perfectly with the orientations of the dipole moment of the embedded pyrimidine

moiety, which is one more evidence that this moiety is the cause of the observed

changes. This is also fully confirmed by the DFT calculations (Figure 4.18a and

Table 4.3). These simulations intrinsically consider an optimized tilt angle of the

molecular dipoles as well as depolarization effects originating from the polarization

of the molecular electron cloud due to the combined electrical fields of the sur-

rounding dipoles. The latter effect has been shown to severely limit the achievable

WF changes when assembling dipoles in parallel arrays [149–151]. For example,

Wang et al. [152] have estimated the depolarization-induced reduction of ∆WF

in -NH2 tail group substituted oligophenylene SAMs to amount to a factor of ca.

3.5. In the present case, where a polarizable medium is located below and above

the embedded dipoles, this effect could even be larger. Nevertheless, simulations

predict sizable WF shifts of +0.76 and -69 eV for the TP1-down and TP1-up

films, respectively. These values are somewhat larger than the experimental val-

ues in spite of similar tilt angles and packing densities. We attribute that, on the

one hand, to the fact that the boundaries between the monocrystalline domains

and other film imperfections caused, e.g., by etch pits cannot be accounted for in

the simulations (cf., above discussion of reduced packing density of the TP1-up

and TP1-down films). That this is related to the too large calculated WF shifts

is supported by the observation that especially for the TP1-up SAM, where the

dipoles due to the thiolate docking group and the pyrimidine point in the same

direction, the absolute magnitude of ∆WF is overestimated most severely (cf.,

Table 4.3). On the other hand, certain methodological shortcomings cannot be

excluded bearing in mind that (semi)local functionals are known to yield a less

than perfect description of molecular dipole moments and polarizabilities (for a

recent benchmarking study for organic molecules see reference [153]). Another

electrostatic effect of the embedded dipole is the shifts in the BE position of the

C 1s emission associated with the ambient-adjacent phenyl ring in the molecular

backbone (Figure 4.16). As mentioned in the introductory section, a similar ef-

fect has been observed for alkanethiolate SAMs with a mid-chain embedded ester

group (upward dipole direction only)[30]. This, in fact, underlines the generality

of this phenomenon and its independence of the backbone character. The values

of BE shifts are -0.42 eV and +0.65 eV for the TP1-down and TP1-up SAMs

compared to the reference TP1 film, while the calculated BE shifts amount to
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-0.74 eV and +0.73 eV, when averaging over all C atoms in the ambient-adjacent

ring, and -0.62 and +0.71 eV, when considering only the topmost C atom (cf.,

Figure 4.18b; note that a downward shift of the energy of a core level results in

an increase of the binding energy and vice versa). Again, the direction of the

shift correlates perfectly with the direction of the embedded dipole. As mentioned

above, the occurrence of this shift (along with the electrostatic effects observed in

XP spectra of several different SAM systems) [31–34] cannot be explained solely

on the basis of chemical shifts, where the only origin for differences in the binding

energies is assumed to lie in the local chemical environment of an atom. This

applies perfectly to conductive samples connected electrically to the spectrometer,

where no electric fields (and, thus, local potential energy gradients) can occur. In

dielectric samples, the situation is fundamentally different: There, for example,

aligned dipole layers can induce a shift of the electrostatic energy between differ-

ent regions of the sample as illustrated in Figure 4.18a. This change in the local

energy results in a concomitant local shift of the positions of the core levels (see

Figure 4.18b). Accordingly, a decrease in the electrostatic energy results in a shift

of the photoemission line to higher binding energies, with the opposite being true

for an increase in the electrostatic energy. This is exactly what we observe in the

C 1s HRXP spectra of the TP1-down and TP1-up SAMs in Figure 4.16. In that

sense, XPS core levels act as an efficient probe of the local electrostatic environ-

ments for a particular chemical species. The electrostatic shifts are superimposed

with “traditional” chemical shift associated in our case with the nitrogen atoms

of the pyrimidine ring. Interestingly, in the present case, the shift in the photoe-

mission peaks associated with the ambient-adjacent ring correlates well with the

WF changes induced by the pyrimidine-containing SAMs (compared to the TP1

SAM as a reference). In view of the model described above, this observation can

be rationalized by the fact that both the shifts in the photoemission peaks as well

as the respective relative WF changes are caused by the parallel arrangement of

the pyrimidine dipoles and the resulting modification of the potential-energy land-

scape. That this works out so smoothly is related to two additional effects that

have not been mentioned so far: First, these potential energy shifts occur quite

abruptly, which is an electrostatic peculiarity: Natan et al. [122] have shown that

the decay length of the electric field caused by an arrangement of point dipoles

is nearly an order of magnitude shorter than the inter-dipole distance. Secondly,

the charge transfer between the substrate and the core hole is a comparably slow

process on the timescale of the photoemission both in aliphatic [154] and aromatic

64



Chapter 4. Results and Discussion

[155] SAMs. Especially, when considering photoionization of the carbon atoms in

the ambient-adjacent ring it is reasonable to assume that the filling of the core-

hole will happen at even longer timescales. Thus, the primary source of screening

is polarization of the conducting substrate (see above). Metal-to-molecule charge

transfer processes are not expected to affect the measured XPS binding energies.

Consequently, the electrostatic shift of the energetic positions of the C 1s orbitals,

that can be inferred from the calculated potential energy distributions, directly

maps onto shifts of the measured binding energies.

4.3 Azobenzene-Substituted Alkanethiolate Self-

Assembled Monolayers

4.3.1 High-Resolution X-ray Photoelectron Spectroscopy

S 2p, C 1s, and N 1s HRXP spectra of H-azo-C3/Au and H-azo-C4/Au are pre-

sented in Figure 4.21. The S 2p spectra in Figure 4a exhibit a single S 2p3/2,1/2

doublet at 162.0 eV (S 2p3/2) commonly assigned to the thiolate moieties [113, 123],

with no traces of atomic sulfur, disulfide, unbound thiol, or oxidative species. This

means that all the molecules in the H-azo-Cn films are attached to the substrate

over the thiolate anchor, corresponding to the typical SAM architecture. The C

1s spectra of H-azo-Cn/Au in Figure 4.21b exhibit a single, slightly asymmetric

emission at a BE of 284.1-284.2 eV, with no trace of contamination such as CO or

COOH. The emission stems predominantly from the azobenzene moiety since the

signal from the short aliphatic linker is strongly attenuated at the given photon

energy [35]. The asymmetry of the C 1s emission is most likely related to the

electronegativity of nitrogen affecting the adjacent carbon atoms, which results

in the appearance of a shoulder at the high BE side of the main peak [156]. A

superposition of the main peak and the shoulder results then in an appearance

of the joint asymmetric peak. The N 1s spectra of H-azo-Cn/Au in Figure 4.21c

exhibit a single, symmetric emission at a BE of 399.3-399.4 eV, assigned to the

nitrogen atoms of the azobenzene moiety [59, 156]. The intensities of both C 1s

and N 1s signals for H-azo-C3/Au are somewhat higher than the respective in-

tensities for H-azo-C4/Au, which suggest, in agreement with the STM data (see

previous Section), higher packing density for the former monolayer. Accordingly, a
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Figure 4.21: S 2p (a), C 1s (b), and N 1s (c) HRXP spectra of H-azo-C3/Au
and H-azo-C4/Au. The photon energies are given in the panels.

fingerprint of the packing density - effective thickness - was found to be ∼15.0 and

∼13.0 Å for H-azo-C3/Au and H-azo-C4/Au, respectively, with the former value

being noticeably higher than the latter in spite of the shorter molecular length of

H-azo-C3 (14.6 Å) compared to H-azo-C4 (15.8 Å). On the basis of the above val-

ues, the difference in the packing density between H-azo-C3/Au and H-azo-C4/Au

could be estimated at ca. 14-15%, in excellent agreement with the STM-derived

value (∼14.2%). Note that, apart from the packing density difference, the effec-

tive thickness values for H-azo-C3/Au and H-azo-C4/Au are more or less close to

the respective molecular lengths plus the length of S-Au bond (2.4 Å) [145, 146],

assuming an upright molecular orientation in both monolayers. The difference be-

tween the thickness and molecular length is larger for H-azo-C4/Au as compared

to H-azo-C3/Au suggesting a larger molecular inclination.

4.3.2 NEXAFS Spectroscopy

C and N K-edge NEXAFS spectra of the H-azo-Cn films on Au(111) are pre-

sented in Figures 4.22 and 4.23, respectively. In Figures 4.22a and 4.23a, the

spectra acquired at the so-called magic angle of X-ray incidence (55◦) are shown;

these spectra are not affected by any effects related to molecular orientation and

are, therefore, exclusively representative of the chemical composition of the in-

vestigated samples [89]. In Figures 4.22b and 4.23b, the difference between the

spectra collected at X-ray incidence angles of 90◦ and 20◦ is shown for both H-azo-

C3/Au and H-azo-C4/Au; such difference curves are a convenient way to monitor
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Figure 4.22: C K-edge NEXAFS spectra of H-azo-C3/Au and H-azo-C4/Au
acquired at an X-ray incident angle of 55◦ (a), along with the respective dif-
ference between the spectra collected under the normal (90◦) and grazing (20◦)
incidence geometry (b). Individual resonances are marked by numbers (see text

for assignments). The horizontal dashed lines in (b) correspond to zero.

molecular orientation in molecular films, relying on the linear dichroism effects in

X-ray absorption experiments (see Section 3) [89].

The 55◦ C K-edge spectra of the H-azo-Cn films in Figure 4.22a exhibit an

absorption edge related to the excitation of the C 1s electrons into the continuum

states and the characteristic absorption resonances. The spectra are dominated by

the pronounced, asymmetric π∗ resonance of the azobenzene moiety at ∼285.15 eV

(1). Such an asymmetry is typical for azobenzene [59, 156–158] and is related to a

superposition of the C1s to LUMO, LUMO+1, and LUMO+2 transitions merged

in the joint resonance [158, 159]. This feature is accompanied by a Rydberg reso-

nance (R∗) near 287.0 eV (2) [59, 156], a further π∗-like resonance of azobenzene

at ∼289.0 eV (3; C1s→LUMO+4) [158], as well as several broad σ∗ resonances at

higher photon energies (4-6). Note that the resonance at 287.0 eV (2) can be alter-

natively described as a π∗ feature and assigned to the C1s →LUMO+3 transition

[158]. Note also that the resonances associated with the aliphatic linkers are hardly

perceptible in the C K-edge spectra because of the short length of this unit and

the attenuation of the respective signal by the azobenzene moiety. Characteristic

absorption features of the azobenzene moiety were also observed at the N K-edge.

The spectra of the H-azo-Cn films in Figure 4.23a are dominated by a strong π∗
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Figure 4.23: N K-edge NEXAFS spectra of H-azo-C3/Au and H-azo-C4/Au
acquired at an X-ray incident angle of 55◦ (a), along with the respective dif-
ference between the spectra collected under the normal (90◦) and grazing (20◦)
incidence geometry (b). Individual resonances are marked by numbers (see text

for assignments). The horizontal dashed lines in (b) correspond to zero.

resonance at eV ∼398.3 eV (1) associated with the N1s→LUMO transition [158].

This feature is accompanied by several weaker π∗ resonances at ∼400.9 eV (2) and

402.3 eV (3) corresponding to the N1s →LUMO+3 (2) and N1s →LUMO+4 (3)

transitions [158] as well as by several broad σ∗ resonances at higher photon ener-

gies (4-6). In contrast, the N1s→LUMO+2 and N1s→LUMO+3 features are not

observed at the N K-edge, which suggests that the respective orbitals are located

mainly at the phenyl rings and not at the azo-bridge [159]. Both C and N K-edge

NEXAFS spectra of the H-azo-Cn films exhibit pronounced linear dichroism as ev-

idenced by the characteristic peaks at the positions of the absorption resonances

in Figures 4.22a and 4.23a. This is a clear signature of orientational order. In

addition, the positive sign of the observed difference peaks for the π∗ resonances

implies an upright orientation of the molecular constituents in the monolayers in

view of the fact that the π∗ orbitals are directed perpendicular to the molecular

backbone. Opposite situation, with a negative sign of the difference peaks, occurs

for the σ∗ orbitals, directed along the molecular backbone, supporting the state-

ment about upright molecular orientation, in good agreement with the HRXPS

and XPS data (see previous section). Along with the above qualitative consider-

ations, a quantitative analysis of the entire set of the C and N-K-edge NEXAFS
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Figure 4.24: A schematic drawing of the orientation of the H-azo-C3 molecules
in the trans conformation, representative also of H-azo-C4/Au. The phenyl
rings and N=N bridge are considered to be coplanar, so that the π∗ orbitals
of the bridge (blue) are parallel to the π∗ph orbitals of the rings (black). The
backbone tilt angle β and twist angle γ describe the molecular orientation. The
π∗ orbitals are perpendicular to the molecular plane; the respective transition
dipole moment TDMπ is shown as a violet arrow; its orientation is given by the
angle α. At γ= 0, TDMπ lies in the plane spanned by the z-axis and the axis
of the azobenzene unit (red arrow). The angles are related by the equation,

cosα = sinβ × cosγ [69]

.
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System Molecular Effective Tilt π∗1 Tilt π∗ Molecular
footprint (Å) thickness (Å) phenyl (◦) N=N (◦) tilt (◦)

H-azo-C3/Au 25.9 15.0 70.5 75.7 20.0
H-azo-C4/Au 28.6 13.0 57.0 60.0 37.0
H-azo-C3/Ag - 12.9 63.5 64.5 31.0
H-azo-C4/Ag - 15.5 70.5 70.5 23.0

Table 4.4: Overview of the parameters for H-azo-Cn/Au and H-azo-Cn/Ag.
Molecular lengths of H-azo-C3 and H-azo-C4/Au are 14.6 and 15.8Å, respec-

tively. The error of the angle values is ±3◦.

spectra of the H-azo-Cn films acquired at different angles of X-ray incidence was

performed. For this analysis we used the most prominent π∗1 resonances at both

edges and standard theoretical framework for vector-type orbitals [89, 130]. The

derived average tilt angles of the π∗ orbitals representative mostly of the phenyl

rings (from the C K-edge data) and exclusively of the N=N bridge (from the N K-

edge data) are compiled in Table 4.4, together with some STM and XPS/HRXPS

results. There are two important findings related to the angle values. First, the

average tilt angle of the ring orbitals is close to that of the N=N bridge for both

H-azo-C3/Au and H-azo-C4/Au assuming a close-to-planar, trans conformation

for the majority of the molecules in the respective monolayers. Second, the tilt

angles for the π∗ orbitals of H-azo-C3/Au are noticeably larger than those for

H-azo-C4/Au, suggesting a smaller molecular inclination in the former case - in

full agreement with the XPS/HRXPS data. The tilt angles for the π∗ orbitals can

be used to calculate the average tilt angles of the molecular backbones as far as

so called twist angle γ [69, 94], describing the rotation of the backbone along the

molecular axis in relation to the tilt direction, is known; see Figure 4.24 where a

schematic drawing of the H-azo-C3 molecule is given, representative also of H-azo-

C4. The twist angle can only be measured directly or derived indirectly in selected

cases [94, 118, 158, 160] but can be reasonably assumed to be close to that derived

for similar azobenzene-substituted monolayers, viz. ∼32◦ [158]. Surprisingly, this

value coincides practically with the analogous value for the bulk biphenyl (32◦)

[161]. The average tilt angles of the azobenzene backbones in H-azo-Cn films on

Au(111) calculated within the above assumption regarding the molecular twist

are compiled in Table 4.4. Accordingly, the molecular inclination in H-azo-C3/Au

(∼20◦) is noticeably smaller than that in H-azo-C4/Au (37◦), in full agreement

with the smaller molecular footprint and larger effective thickness (see Table 4.4).
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4.3.3 Scanning tunneling microscopy

In addition to our spectroscopic experiments, complementary STM measurements

were performed for the SAMs on Au(111) by Dominika Gnatek from the group

of Dr. Piotr Cyganic from the Jagiellonian University (Krakow, Poland) [162].

The H-azo-C3 was found to adopt a 2D ordered incommensurate oblique (2
√

3×
1.14
√

3)R30◦ lattice with a packing density of ∼24.6 Å2/molecule. The H-azo-C4

formed a 2D ordered incommensurate oblique (2
√

3 × 1.3
√

3)R30◦ lattice with a

packing density of ∼28.1 Å2/molecule.

4.3.4 SAMs on Ag(111)

Analogous spectroscopic experiments were also performed for H-azo-C3/Ag and

H-azo-C4/Ag. The XPS/HRXPS and NEXAFS spectra of the films on Ag were

very similar to the analogous spectra for the monolayers on Au (Figures 4.21-4.23),

apart from the intensity relations (XPS/HRXPS) and linear dichroism behavior

(NEXAFS spectroscopy). The most important (in context of the present study)

spectroscopic data for H-azo-C3/Ag and H-azo-C4/Ag are compiled in Figure

4.25. As seen in Figure 4.25a, where the C 1s HRXP spectra are presented, the

intensity of the C 1s signal is noticeably higher for H-azo-C4/Ag compared to

H-azo-C3/Ag. The derived effective thicknesses, compiled in Table 4.4, are 15.5

and 12.9Å, respectively. The difference between these values is too large to be

explained by the presence of the additional methylene group in the alkyl linker of

H-azo-C4/Ag compared to H-azo-C3/Ag. Consequently, the XPS/HRXPS data

suggests a higher packing density in the former case than in the latter, which is

inverse behavior compared to the films on the Au(111) substrate (see Table 4.4).

The difference NEXAFS spectra, at both C and N K-edge, in Figures 4.25a and

4.25b, respectively, exhibit a similar, inverse behavior compared to the films on

the Au(111) substrate (see Figure 4.22b and 4.23b). Indeed, the amplitude of

the difference peaks at the positions of the characteristic absorption resonances is

higher for H-azo-C4/Ag compared to H-azo-C3/Ag, suggesting smaller molecular

inclination in the former case. The derived angles of the π∗1 orbitals are compiled in

Table 4.4. Similar to the Au(111) case, the C-edge and N-K-edge derived values

are close to each other for the both monolayers studied, suggesting a close-to-

planar, trans conformation for the majority of the SAM constituents on Ag(111)

as well. At the same time, in contrast to the films on Au(111), the tilt angle of the
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Figure 4.25: C 1s HRXP spectra (a) as well as the difference between the C
K-edge (b) and N K-edge (c) NEXAFS spectra collected under the normal (90◦)

and grazing (20◦) incidence geometry for H-azo-C3/Ag and H-azo-C4/Ag.

π∗1 orbitals in H-azo-C4/Ag is larger than in H-azo-C3/Ag, implying, in view of

the orientation of these orbitals, a smaller molecular inclination in the former case.

Accordingly, the average molecular tilt angles in H-azo-C3/Ag and H-azo-C4/Ag

were estimated at 31◦ and 23◦, respectively (see Table 4.4), exhibiting inverse

behavior with respect to the parity of the aliphatic linker as compared to the films

on Au(111).

4.4 Photoisomerization

4.4.1 H-azo-C3/C4

The photoisomerization experiments with the monolayers of the unsubstituted

systems, H-azo-C3/C4, were performed as already described in Section 3. In the

diagram shown in Figure 4.26 a change in the work function due to the confor-

mation change caused by UV/vis irradiation is clearly visible, which means that

the monolayers of the azobenzene functionalized alkanethiols show photorespon-

sive properties (as expected). The value of the work function change itself is

about ∼30-40 meV in case of H-azo-C3 and ∼20 meV in the case of H-azo-C4.

In comparison to the studies of Tamada et al.[163, 164] and Samori et al. [20],

representing a benchmark in the given field (∼100meV), the work function change

is somewhat lower. The reason for the low work function variation is most likely

the strong steric hindrance effects due to the high packing density of the molecules
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on the gold substrate. Regretfully, also the variation of the packing density due

to different lengths of the aliphatic linker (odd-even effect) causes almost no dif-

ference.

Apart from these results there is an interesting point to stress: the work func-

tion does not change upon first UV exposure. Theoretically, the work function of

the pristine SAM should be lower due to trans conformation (thermodynamically

more stable conformation) than the one after UV irradiation due to higher molec-

ular dipole moment in z-direction in cis conformation. This implicates that the

work function change is presumably mediated by cis conformers presented in the

trans matrix which means that there is a certain amount of azobenzene molecules

already in cis conformation.

4.4.2 H-azo-C3/C4 diluted with the spacer molecules

In order to reduce the strong steric hindrance effects the azobenzene molecules were

diluted with the spacer molecules resulting in mixed SAMs as described in Chap-

ter 3. In the following subsections the results for two different spacer molecules

are presented (AT and PT). Theoretically the work function change/switching be-

haviour should generally be improved due to the created ”free” space between the

azobenzene molecules by dilution with the spacer molecules.

4.4.2.1 Short alkanethiols

In the case of alkanethiols we expected to obtain a significant improvement in con-

formation change of the azobenzene molecules. As already described in Chapter

3, octanethiol (C8) was used as a matrix. The results of the photoisomerization

experiments are shown in Figure 4.27. Here, the work function changes of the

samples re-immersed into H-azo-Cn (n=3,4) thiol solution for 6h and 12h, respec-

tively, are illustrated. The values of the work function changes are almost the

same (∼10-20 meV) for H-azo-C3 and H-azo-C4 respectively. Thus the odd-even

effect does not affect the work function change (for the diluted H-azo-Cn SAMs

as well). Compared to the pure H-azo-Cn SAMs the work function of the diluted

films changes upon first UV exposure to higher values (see Figure 4.27), as theoret-

ically expected. This implicates that the azobenzene molecules are predominantly

in trans conformation before the first UV exposure and that the spacer molecules
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Figure 4.26: H-azo-Cn isomerization principle (a) and WF change from pho-
toisomerization experiments

successfully create additional ”free” space between the azobenzene molecules in

order to obtain a reliable switching process.

4.4.2.2 Phenylthiol

Alternatively phenylthiol (PT) was used as the spacer molecule to obtain an im-

provement in switching behaviour of the azobenzene moelcules. In Figure 4.28

the results of the respective photoisomerization experiments are presented. The

work function change in this case is about ∼30-40 meV for H-azo-C3 and H-azo-

C4 respectively. Again, like shown for alkanethiols as spacer molecule, the work
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Figure 4.27: Azobenze alkanethiols in C8 matrix work function change

function of the pristine SAM is lower than that after first UV irradiation. This

again implicates that the azobenzene molecules are predominantly in the trans

conformation before the first UV exposure. Also an improvement in the photo-

switchable properties was obtained, even more significant than using AT as the

spacer molecule.

4.4.2.3 WF change vs. concentration

In order to compare the results of the photoisomerization experiments with dif-

ferent spacer molecules, the work function changes are plotted versus the concen-

tration of the azobenzene molecules on the gold substrate compared to the 100%

reference sample (see Figure 4.29). In both cases, H-azo-C3 and H-azo-C4, the

most significant work function changes were obtained by using the phenylthiol
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Figure 4.28: Azobenze alkanethiols in PT matrix work function change

(PT) matrix. The concentration of the azobenzene molecules for the most effi-

cient WF changes of about ∼40-45 eV was ∼50-60% in the case of H-azo-C3 and

∼70-80% in the case of H-azo-C4.

4.4.3 CH3-azo-C3/C4

In order to potentially improve the work function change, substituted systems

having a higher molercular dipole moment upon the isomerization were used. The

same photoisomerization experiments were performed using the analogous azoben-

zene molecule functionalized with the -CH3 tail group (see Figure 4.30).
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Figure 4.31: CH3-azo-Cn in PT matrix

4.4.4 CH3-azo-C3/C4 diluted with spacer molecules

The mixed SAMs were prepared in the same way like those with the unsubsti-

tuted azobenzene molecules. The results of the respective photoisomerization ex-

periments using the phenylthiol matrix are shown in Figure 4.31. The value of

the work function change for both CH3-azo-C3 and CH3-azo-C4 is approximately

∼20-30 meV, which is no significant improvement compared to the unsubstituted

systems.
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Figure 4.32: Work function vs. concentration of CH3-azo-Cn

4.4.4.1 WF change vs. concentration

To compare the results of the performed experiments with the CH3-azo-C3/C4

films we plotted the WF change versus the concentration of the azobenzene molecules

in the mixed monolayers, like we did for the unsubstituted systems (see Figure

4.32).

Compared to the WF change of the 100% reference sample, again, the phenylthiol

matrix looks more suitable compared to the alkanethiol one, similar to the case of

the unsubstituted systems.

79



Results and Discussion Chapter 4.

4.4.5 Discussion

In general the photoisomerization experiments show promising results. In com-

parison to a study from the group of Samori et al. [51] our obtained work function

changes of about ∼10-50 meV is not that far away from their work function change

of ∼70-125 meV. In their study, they used biphenyl AZO SAMs of highly ordered

and tightly packed structure with ab isomerization yield of almost 100% [50]. Due

to the fact that we have no information of the isomerization yield of our systems,

it is possible to achieve a higher work function change than this benchmark value

(∼70-125 meV).
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Conclusions

The goal of this work was to look for new ways to control the work function of

metal substrates by using molecular self-assembly. Two different strategies were

carried out. The first strategy was to use aliphatic and aromatic molecules which

contain an embedded dipolar group (mid-chain functionalization). Within the

second strategy, we used photoresponsive systems, viz. azobenzene substituted

alkanethiols, having a specially designed architecture to control the packing den-

sity and carrying an additional dipolar tail group.

For the molecules with an embedded dipolar element, the dipole control and the

chemistry at the SAM-ambient interface are decoupled. As the first relevant sys-

tem, we studied a series of aliphatic SAMs on Au(111) prepared from mid-chain

ester functionalized thiols, HS-(CH2)mCO2(CH2)n−1CH3 (CmECn) with different

combinations of m and n as well as with different dipolar group orientations.

The electronic properties of these systems were analyzied by high resolution X-ray

photoelectron spectroscopy (HRXPS), near edge X-ray absorption fine structure

(NEXAFS) spectroscopy, work function measurements and theoretical simulations

with supporting characterization by infrared spectroscopy and atomic force mi-

croscopy (AFM). From a fundamental point of view, the most interesting obser-

vation was a strong electrostatic effect in the X-ray photoelectron spectra. In the

presence of embedded esters, the C 1s photoelectron kinetic energies were found to

be consistently shifted by 0.85 eV between the chemically identical -(CH2)- alkyl

segments above and below the ester moiety, regardless of the relative lengths of

the segments. This shift correlates well with simple electrostatic estimates based

on dipole moment of the ester groups at their orientation in the SAMs. Signifi-

cantly, this observation, along with few others [31–34], contradicts the generally
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accepted assumption that the photoemission spectra of SAMs can be described

entirely within the general concept of a chemical shift [35].

As the second relevant system within the embedded dipole strategy, we studied a

set of aromatic, terphenyl based SAMs, carrying an embedded pyrimidine dipo-

lar group, with the orientation of the dipole being varied. Using a variety of

complementary experimental characterization techniques, supported by DFT cal-

culations, we investigated in detail a model system of self-assembled monolayers

on gold comprising aromatic thiolates with embedded dipoles. The dipoles were

introduced into the SAM precursor molecules, TP1 (terphenyl-4-methanethiol),

by substituting the central phenyl ring by a 2,5-pyrimidine moiety. Altering the

orientation of the pyrimidine moiety allows the realization of monolayers in which

the dipole moments either point away from (TP1-up/Au) or towards the substrate

(TP1-down/Au). The results of the spectroscopic and microscopic techniques im-

ply that the molecular orientation and the structure of the substituted films closely

resemble those of the non-polar benchmark system, TP1/Au. Characterization of

the electronic properties of these reveals that the embedded dipoles significantly

shift the substrate work function in a systematic manner: a dipole moment point-

ing towards the Au substrate increases the WF, while a dipole moment pointing

away decreases the WF compared to the TP1/Au benchmark system. The acces-

sible WF range spans ∼1 V, while, at the same time, maintaining the chemical

identity and structural properties of the SAM-ambient interface. This implies

that the strategy of embedded dipoles in interfacial, monomolecular layers indeed

opens up the possibility to decouple control over charge-injection from control over

the nucleation and growth of organic semiconductor layers. Thus, such films have

high potential in organic electronics, where they can be used for the interface engi-

neering. Also in molecular electronics they allow the study of electrostatic effects

independently from the (top) contact properties. Specific electrostatic proper-

ties of such systems go beyond work function control, leading, in particular, to

interesting effects in photoemission, calling into question the commonly applied

concept that chemical shifts are the only cause for certain values of the core-

level binding energies. Finally, the observation that dipole-induced electrostatic

shifts within monolayers can be realized and efficiently characterized experimen-

tally raises the question, whether also considerably more complex, electrostatically

designed structures will become available as “real-world” systems already in the

near future. Such structures can comprise, for example, monolayer quantum-wells
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and quantum-cascades realized by a deliberate combination of dipolar and semi-

conducting elements within one molecule, as suggested recently on the basis of

quantum-mechanical simulations [165].

In order to control the work function in a more precise way, mixed films consisting

of molecules carrying embedded dipoles with the opposite orientations were used.

These films provide a fine tuning of the work function between the ultimate values,

associated with a particular dipole orientation.

Further within the second strategy to tune the work function on metals, we created

stimuli-responsive interfaces by designing novel azobenzene-based monolayers car-

rying dipolar groups. We started with the characterization of the unsubstituted

films as a basic system. We have performed detail structural analysis of proto-

typical SAMs containing azobenzene moiety linked to the thiol head group via

aliphatic spacer in the form C6H4-N-N-C6H4-(CH2)n-SH at n = 3 and 4). Our

data show that depending on either odd or even number of the methylene units

in this spacer, two different structures can be formed. For the Au(111) substrate,

higher surface packing density and lower inclination of the azobenzene moiety to-

wards surface normal is achieved for the odd-numbered system. In case of the

Ag(111) substrate, this relation is reversed and higher packing density and lower

inclination of the molecular axis is achieved for the even-numbered system. This

structural odd-even effect is fully correlated with the odd-even effect in the sta-

bility of the film probed by the exchange and ion desorption experiments. Higher

stability of the odd-numbered film on the Au(111) substrate and even-numbered

film on the Ag(111) substrate is a consequence of higher stability of the molecule-

substrate bonding, higher surface coverage, and most probably, lower surface stress

value. The odd-even effect in the film stability is much less pronounced for the

Ag(111) substrate as compared to the Au(111) substrate what could be explained

by lower corrugation of the S-Ag(111) binding energy hypersurface as compared to

the S-Au(111). The odd-even structure and stability modification of azobenzene

terminated SAMs may have potential importance for their applications in molecu-

lar electronics and interfacial engineering. Light-induced work function variations

of about 20-40 meV were obtained, limited, presumably, by strong seric hindrance

effects. By dilution of the azobenzene molecules with short spacer molecules, the

photoswitchable properties could be improved to some extent.

In addition, experiments with substituted systems were performed, in order to

improve the photoswitchable response due to the additional dipolar tail group
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(i.e.-CH3). The irradiation-induced work function variation was found to be ap-

proximately 20-30 meV after the dilution with spacer molecules.

The obtained results regarding the photoisomerization are quite promising and

show a certain potential to further improvements, further experiments will be per-

formed using different dipolar tail groups and specially designed spacer molecules

in order to improve the photoswitchable properties.
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Additional Data

A.1 Reference HRXPS data for 2-MPM

N N

2-MPM

SH

Figure A.1: A schematic drawing of the reference molecule along with its
acronym. The directions of the dipole moment associated with the embedded

pyrimidine group are shown. The molecules are named accordingly.
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Figure A.2: C 1s (a) and N 1s (b) HRXP spectra of the 2-MPM SAM acquired
at a photon energy of 580 eV. The C 1s spectrum is tentatively decomposed in
several individual components. The emission at 289 eV is presumably related

to contamination (COO-).[Cebula2013]
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Experimental Setups

B.1 Kelvin Probe

Figure B.1: Picture of the UHV Kelvin Probe

(a) top view (b) side view

Figure B.2: Pictures of the UHV Kelvin Probe setup from top view (a) and
from side view (b).
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Figure B.3: Schematic drawing of the basic principles of the Kelvin Probe
work function measurements.
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B.2 LED irradiation setup

Figure B.4: Picture of the LED setup which provides switching between two
LED lamps (without any daylight irradiation during the change of the LED
lamp). It is designed to be mounted on a UV window of a UHV chamber for

UV/vis irradiation experiments.

(a) UV LED (b) blue LED

Figure B.5: Pictures of the UV LED (365 nm) (a) and the blue LED (440
nm) (b).
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