
Dissertation

submitted to the

Combined Faculties for the Natural Sciences and for Mathematics

of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Diplom-Physiker Christian Vinzenz Guthier

born in Heppenheim, Germany

Oral examination: 11.11.2015





Development of a real-time inverse planning system

for radiation therapy based on compressed sensing

Referees: Prof. Dr. Jürgen Hesser

Prof. Dr. Peter Bachert





Entwicklung eines echtzeitfähigen Planungssystems für die Strahlentherapie
basierend auf Compressed Sensing

Ziel dieser Arbeit ist die Entwicklung eines auf Compressed Sensing (CS) basieren-
den inversen Planungssystems für die Strahlentherapie. Dieses wird am Beispiel der
Brachytherapie getestet, bei der eine schnelle Optimierung für eine intraoperative Pla-
nung essenziell ist.
Im Rahmen dieser Arbeit wird ein neuer Ansatz vorgestellt, der zum ersten Mal eine
intraoperative Echtzeitplanung ermöglicht. Hierfür wurde das inverse Problem in ein CS
äquivalentes Optimierungsproblem überführt. Dafür wurden spezifische Löser entwickelt
und in ein neues Planungssystem integriert. Durch die Verwendung biologischer Modelle
und klinisch relevanter dosimetrischer Kriterien können so realistischere Zielfunktionen
eingeführt werden.
Der CS basierte Ansatz ist etwa zwei Größenordnungen schneller als alle bisherigen
Methoden bei garantierter gleicher oder besserer Planqualität. Der mit dem CS ein-
hergehende Spärlichkeitsansatz erlaubt eine Reduzierung der verwendeten Nadeln um
bis zu 25%. Dies reduziert die Behandlungsdauer und das Risiko für Nebenwirkungen.
Zudem erleichtern die neuen Zielfunktionen den Planungsprozess.
Der neue CS basierende Ansatz und die entwickelten Löser können auf verschiedene
Modalitäten in der Strahlentherapie, z.B. Intensitätsmodulierte Strahlentherapie, ange-
wandt werden. Der Ansatz einer spärlichen Lösung ist ein neues und vielversprechendes
Paradigma für Planoptimierung in der Medizinischen Physik.

Development of a real-time inverse planning system for radiation therapy
based on compressed sensing

The aim of this work is to develop a compressed sensing (CS) based optimization for in-
verse treatment planning in radiation therapy. This approach is applied to the example
of brachytherapy where fast optimization is essential during intra-operative treatment
planning.
In this thesis, a novel approach is presented that allows real-time intra-operative plan-
ning for the first time. The standard inverse treatment problem is reformulated to
resemble a CS problem. Highly specific solvers are developed and incorporated into
a novel treatment planning system. By incorporating biological models and clinically
important dosimetric criteria, the objective functions become more realistic.
Being approximately two orders of magnitude faster than state-of-the-art methods, the
CS based approach is proven to return the same or better quality in plans. The inherit
sparsity approach in CS allows to decrease the amount of needles by up to 25% reducing
the intervention time and the probability of side effects. In addition, the new objective
functions further simplify the treatment planning.
The novel CS based strategy and solvers can also be applied to other modalities in radi-
ation therapy, e.g. intensity-modulated radiation therapy. The incorporation of sparse
solution is a novel and promising paradigm for optimization in medical physics.
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1 Introduction
Physics plays a major role in medicine. Starting in late 1890th, the discovery
of X-rays by Wilhelm Conrad Röntgen, radioactivity by Henry Becquerel [1],
and radium by Pierre and Marie Curie [2] laid the foundation of modern X-ray
diagnostic and radiation therapy.
At the beginning of the 20th century, Becquerel observed skin reactions while
carrying a tube with decigrams of radium chloride in his pocket which lead to the
first studies and medical experience shortly after [1]. Already one decade later, a
book on radium therapy was published by Wickham and Degrais [1].
Brachytherapy, an internal radiation therapy, was established in 1904 by the
"electrotherapist" Sinclar Tousey who placed a X-ray tube inside the rectum of
a patient to treat tuberculosis of the prostate [3]. Brachytherapy treatment of
the prostate carcinoma was first described in 1909, when two french urologists
positioned catheters containing radium inside the urethra. With the discovery of
artificial radioactivity in 1934 and the development of the first afterloader in 1962
[4], a remotely controlled unit which places radioactive sources inside the body,
the technological prerequisites of modern brachytherapy were laid.
Today, brachytherapy is well-established in the clinical routine as an interstitial
and intracavitary radiation therapy. The most common treatment sites are the
cervix, prostate and breast [5]. Depending on the dose rate, a distinction is drawn
between permanent low-dose-rate (LDR) and temporarily high-dose-rate (HDR)
brachytherapy.

Despite declining mortality rates [6], prostate carcinoma still accounts for more
than 258,000 deaths worldwide and is the second most common cancer in males
[7]. The majority of the prostate patient cases are diagnosed with a localized
disease that allow a local therapy [8]. From a total of 253,000 cases in the United
States in the year 2014 almost 30 % received brachytherapy [9, 10].
Other than brachytherapy, curative treatment options include the surgical removal
of the prostate gland or external beam radiation therapy [11]. A randomized com-
parison in clinical trials comparing the different treatment options has not been
completed yet. There is an ongoing German study (PREFERE) which addresses
this issue but it is not expected to be completed before 2030 [12]. Compara-
tive analyses indicate that modern brachytherapy is favorable in terms of both
prostate-specific antigen free survival and therapeutic side effects when compared
to surgery and external beam radiation therapy [13]. Side effects for brachyther-
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apy include rectal bleeding, urinary toxicity, and sexual dysfunction [14, 15].
Computer-based inverse treatment planning (ITP) tries to diminish side effects
while at the same time trying to cover the tumor-region with at least the pre-
scribed dose.

Over the last two decades different approaches for ITP have been proposed.
The first were gradient-based and allowed local optimization [16, 17]. These
simple approaches have been replaced by global stochastic optimization strategies
like simulated annealing (SA) [18, 19, 20] or genetic algorithm (GA) [21]. SA
and GA are general-purpose heuristics that are not tailored to the underlying
structure of the optimization problem and can be used for multiple applications
without modification of the programs code. However, it is often observed that
problem-specific heuristics outperform general purpose strategies [22].
Very recently, the ITP was reformulated as linear programming (LP) or mixed
integer linear programming (MILP) depending on the modality and optimization
goal [23, 24, 25, 26]. LP problems can efficiently be solved for example by using
the interior point or simplex methods in a few seconds [24].
Although for MILP the branch-and-bound method belong to the most efficient
strategies in finding the global optimum [27], it is considered to be inappropriate
for intra-operative ITP due to its long runtime. In 2014 Guthier and Hesser
showed that for small problem sizes the global solutions can be found in rea-
sonable time [28]. However, the solutions were found at much higher costs than
traditional SA or GA.
Commercially available ITP is based on two different strategies, inverse plan-
ning by simulated annealing (IPSA) and hybrid inverse planning and optimiza-
tion (HIPO) [29]. While the first can be used for LDR and HDR treatment
planning, the latter was specially designed for needle optimization in HDR ITP.
The optimization times range from a few seconds (IPSA) to several minutes
(HIPO). These optimization techniques are therefore not suitable for real-time
intra-operative planning.
In order to optimize a plan, the clinical criteria, i.e. the criteria that are used
for rating whether a plan is clinically acceptable or not, are mathematically
formulated as an objective function. The most commonly used is the so-called
dose based objective function (DBOF), a linear objective function that penalizes
dose values above and below dose thresholds [30]. The weightings to calculate
the penalty term according to the dose thresholds are summarized in a set of
parameters which have to be tailored to the patient’s anatomy. The fine-tuning
of the parameters is considered to be a non straightforward and time-consuming
trial-and-error approach [31, 29].
A general observation is that due to the "large" run-times and the need for steering
of the plan quality via abstract parameters most users prefer manual forward-
planning. Forward-planning is a drag-and-drop approach where the user receives
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a direct feedback of the changes. It is known that these plans deliver higher doses
to the OARs, the dose to the tumor region is less homogeneous [32], and planning
takes several minutes to hours.

The goal of this thesis is to develop new methods that are capable of real-
time planning to provide an intermediate feedback in the form of an optimized
plan to the user. In addition, the new strategy should be able to handle different
and more realistic objective functions. Together this has the potential to change
the treatment planning process and increases the quality of the intervention.

The novelty of this thesis is the reformulation of the ITP problem into a math-
ematical structure that is of Compressed Sensing (CS) type. CS is a method in
the field of image processing, which has recently received a lot of attention in
signal recovery and sampling problems. Especially greedy based optimizers are
considered to be among the fastest optimization strategies for CS problems [33].
A reformulation of the ITP problem into a problem which is structural similar
to the CS problem allows the use of these highly efficient solvers in ITP. The
research question is whether the same performance gains can also be observed
for ITP in brachytherapy as well. This would allow real-time adjustments of the
treatment plan during intervention.
A gain in performance would allow to integrate more complex models into new
objective functions which should be tested as well. The research question is
whether more realistic objective functions can be introduced that are of the same
mathematical structure as those of CS. Especially, the use of biological models
for describing the tumor control probability (TCP) and normal tissue compli-
cation probability (NTCP)s of organs at risk (OARs) is of interest [34] . Due
to its complexity, biological modelling is considered to be infeasible for ITP in
brachytherapy.

The thesis is structured as follows. The theory section explains the underly-
ing physical and biolgical mechanisms of radiation therapy and focuses on the
principles of brachytherapy and the used mathematical models. In addition, the
theory of CS and the used algorithms in this field are described briefly. After-
wards, the state-of-the-art of inverse treatment planning in brachytherapy and
recent developments are summarized.
In materials and methods, the reformulation of the ITP problem in brachyther-
apy into a CS inspired problem is presented. The derivation is divided into LDR
and HDR ITP with and without needle optimization. This is necessary since
each modality and problem has its own mathematical structure. Afterwards, the
novel CS inspired solvers are introduced. The introduction of the novel objective
functions follows. An explanation of the developed ITP system as well as the
parameters and settings used for the comparative tests are discussed in detail.
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The results chapter presents these different comparative tests. Here, the CS
inspired solvers are compared to the state-of-the-art methods with respect to
calculation time, returned objective function value, and the clinical performance
taking dosimetric criteria into account.
A discussion with respect to the benchmarking, limitations, and potential of the
novel CS inspired approach follows. The focus is directed to the applicability
regarding the different radiation therapy modalities, for example external beam
radiation therapy, intra-operative radiation therapy, and stereotactic surgery with
the gamma knife. A summary and outlook conclude this thesis.

Publications

In the course of this thesis two peer-reviewed journal article about the introduction
of the CS inspired solvers to LDR ITP and about the feasibility of biological mod-
els for ITP were published [35, 34]. A paper with the title "Combined stereotactic
biopsy and stepping-source interstitial irradiation of unresectable glioblastoma
multiforme", will be submitted shortly after handing in this thesis.
In addition, there are two conference posters comparing two different MILP op-
timizer for LDR ITP and addressing the use of CS inspired solvers in dosimetric
criteria based planning [28, 36]. Furthermore, I was an invited speaker at the
"9th ZEISS INTRABEAM System User Meeting 2015" were I presented the use
of the CS inspired solvers in the context of stereotactic intra-operative radiation
therapy.
An journal article about the introduction of the novel strategy for HDR treatment
planning is currently prepared.
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2 Theory
In this chapter, the basics of radiation therapy and the used techniques are pre-
sented. Starting with the physical interactions and the biological effects that occur
during treatment. A brief introduction to brachytherapy, its different modalities,
and potential treatment sites follows. The theory of CS and the underlying prin-
ciples finishes this chapter.

2.1 Basics of radiation therapy
In radiation therapy, the biological effects of radiation are used to treat cancer.
The aim is to apply a prescribed dose to the tumor while sparing healthy tissue
to reduce side effects. In brachytherapy, photon emitting sources are inserted into
the patients body. The electromagnetic spectrum of the sources range from low
energies of around 21 keV for Pd-103 to intermediate energies of 0.4MeV of Ir-192
[37, 38]. During each passage through matter, photons and electrons undergo
different physical interactions causing a biological response, that is discussed in
the following.

2.1.1 Interactions with matter
Due to the energy of the emitted photons in brachytherapy a substantial amount
is capable to pass thick layers of tissue. During this passage they interact with
the electron shell of atoms and some quanta can be absorbed or scattered. These
interactions can be divided into elastic and inelastic interactions.
The inelastic processes are the Photoelectric effect (PE), the Compton scattering
(CE), and Pair production (PP). The process of elastic scatter is hereby called
Thomson scattering (TH) and deflects only the photons. The inelastic processes,
in contrast, release secondary electrons which undergo multiple interactions and
ionize the tissue. However, due their low energy range and the related mean-free-
path-length, they are reabsorbed within a few millimeters in soft tissue [39].
The energy loss of the photon flux Ψ(r), either by scattering or absorption, is
described by the Beer-Lambert law:

Ψ(r) = Ψ0 exp(−µtotr) (2.1)
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2 Theory

Here, Ψ0 is the initial photon flux of the incoming X-rays, r the thickness of the
passed layer and µtot the total linear attenuation coefficient of the absorbing ma-
terial. The total linear attenuation coefficients is the sum of the linear attenuation
coefficients of the relevant processes:

µtot = µPE + µCE + µPP + µTH (2.2)

The total inear attenuation coefficient is proportional to the total cross section σ.
For the Thomson scattering, the total cross section shows the following relation
of the atomic number Z and the energy Eγ of incoming photons: σTH ∝ Z2

E2
γ
. Due

to the dependence on the energy, this effect can be neglected for energies above
100 keV .
In the Photoelectric effect, an incoming photon is completely absorbed. An
electron in the inner atomic shell leaves the atom with a kinetic energy of
Ekin = Eγ − EB. In this case, Eγ is the energy of the initial photon and EB
is the binding-energy of the electron. Energy and momentum can only be con-
served if the atom compensates the momentum of the emitted electron. Thus,
a Photoelectric effect with free electrons cannot be observed. The total cross
section shows the following relation: σPE ∝ Z3

E5
γ
[40]. This effect dominates the

interactions for photon energies below 30 keV in tissue [41].
The Compton scattering describes inelastic scatter from an initial photon to an
outer electron of the atomic shell. The electron leaves the atom with a kinetic
energy Ekin, the photon is scattered and its remaining energy is Eγ −Ekin −EB.
The total cross-section per unit solid angle and per electron is described by the
Klein-Nishina formula [42]. In contrast to the photoelectric effect, the Compton
effect is almost independent from the atomic number of the interacting mate-
rial. Especially for intermediate energies above 100 keV to high energies between
(2− 3)MeV , this is the predominant process [43].
Pair production describes the generation of an electron-positron pair by the in-
teraction of high-energetic photons with the electromagnetic field of an atomic
nucleus [44]. Due to energy conservation, this process can only occur for pho-
ton energies of Eγ > 1.022MeV . Due the low energies of the sources used in
brachytherapy pair production can be neglected.
Using Lambert-Beers law and assuming that the absorbed dose is proportional to
both, the change of photon flux Ψ(r) and to the mass energy absorption coefficient
µab
ρ
, the absorbed dose can be approximated according to [45]:

D(r) = Ψ(r)µab
ρ
Eγ (2.3)

This estimation is valid for photon energies less than 5MeV .
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2.1.2 Biological aspects
The aim of radiation therapy is to introduce biological effects that damage the
Deoxyribonucleic acid (DNA) and lead to mitotic or apoptotic death of the tu-
morcells [46]. The interactions of ionizing radiation with the biological target can
be divided into direct and indirect actions. The direct actions are interactions
that directly lead to ionization or excitation of the target molecules [46]. This is
in contrast to indirect actions, where radiation interacts with water molecules in-
side the cell and produces free radicals in the vicinity of the DNA. The generated
radicals can interact with the DNA and lead to chemical changes and the breaking
of bonds. It was estimated that over two thirds of the DNA damage induced by
X-ray radiation is caused by free radicals [46].
Both, indirect and direct actions yield a breaking of bonds in the double-stranded
DNA. It is differentiated between single-strand breaks and double-strand breaks.
Single-strand breaks are of little biological consequence since they can easily be
repaired by different mechanisms of the cell. Double strand-beaks, which are only
separated by a few base pairs, can break the DNA helix. They often undergo no
repair and in frequent cases double strand-beaks result in cell killing.
Cell survival is directly linked to the delivered dose. Therefore, the goal is to
deliver as much dose to the tumor as necessary to cause inactivation of the
metabolism (cell arrest) or the death (apoptosis) of the tumor-cells. At the same
time, the OARs should not be exposed to too much dose to ensure that the dif-
ferent repair mechanisms allow a recovery of the irradiated healthy tissue.
The effect of radiation is quantified using cell survival models. The most used
is the linear-quadratic model, where the survival fraction as a function of the
received dose D is given by

S = exp
(
−α ·D − β ·D2

)
, (2.4)

where α and β are model parameters for the single-track lethality and inter-track
quadratic interactions, respectively. These parameters are usually estimated using
in-vitro studies or retrospective studies based on clinical experience [47]. Due to
the simplicity of the linear-quadratic model it is commonly used to predict the
biological consequences of radiation therapy.

2.2 Brachytherapy
Starting 1904, brachytherapy (βραχυσ brachys, meaning "short-distance") has
evolved to one of the major treatment modalities in radiation therapy with various
applications [1]. In contrast to external radiation beam therapy, one or multiple
photon emitting sources are either placed next to or inside a clinical target. This is
commonly achieved using image-guided minimally invasive surgery where special
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(a) LDR seeds (b) HDR source (c) HDR afterloader 

(d) needles 

Figure 2.1: An overview of the used sources (a,b) [49, 50] the afterloader (c) [51]
and the needles used for insertion of the sources (d) [52].

applicators (hollow needles (fig. 2.1 d)) are used to position the sources.
Depending on the dose rate, different types of radioactive sources with a variety
of radionuclides are used. A table summarizing them can be found in appendix
tab.A.1.
While for continuous LDR brachytherapy, the radionuclide is encapsulated in
so-called seeds which remain in the tumor and allow a continuous irradiation
(fig. 2.1 (a)).
The sources used for HDR brachytherapy are attached to wires (fig. 2.1 (b)). So-
called afterloaders (fig. 2.1 (c)) are used to push the sources into the implanted
needles to allow fractionated treatment similar to the fractionation schemes in
external beam therapy. Between different fractions, the needles are either removed
or remain inside the patient [48].

Although brachytherapy can be used for many treatment sites, this thesis concen-
trates on prostate brachytherapy. However, all concepts that will be discussed in
the following are transferable to other sites such as cervix, breast, skin and many
others [5].

2.2.1 Brachytherapy for treatment for prostate cancer
For early stage prostate cancer, brachytherapy is favorable with respect to
prostate-specific antigen free survival and therapeutic side-effects when compared
to external beam radiation therapy or radical prostatectomy [53]. The latter is
a surgical removal of the prostate gland. Brachytherapy options are the one-day
procedure of LDR, the fractionated HDR brachytherapy as a monotherapy, or the

8



2 Theory

(a) (b)

transperineal 
template

transrectal 
ultrasound probe

transperineal 
template

transrectal 
ultrasound probe

needle

Figure 2.2: Images of the intervention showing the setup before (a) and during
needle insertion (b). The patient is placed in a lithotomy position.

combination with external beam radiation therapy as a so-called boost [54]. The
brachytherapy interventions, independent of the used dose-rate, are described in
the following.
During intervention the patient is placed in a lithotomy position (fig. 2.2). In order
to view the prostate gland and the surrounding tissue, a transrectal ultrasound is
used. This is a 3D ultrasound device that is inserted into the rectum. Potential
source positions are defined using a template. The template has a rectangular
grid-array of holes with a 5mm distance attached to the transrectal ultrasound.
It defines the needle trajectories and can be used as a guidance for needles.
The workflow of the brachytherapy intervention is as follows (fig. 2.3):

1. The patient enters the surgery room and undergoes (local) anesthesia.

2. The ultrasound device is inserted into the rectum and the OARs as well as
the planning target volume (PTV) are contoured.

3. Intra-operative treatment planning is performed.

4. The needles are inserted through the perineum using the transperineal tem-
plate and the transrectal ultrasound for guidance.

5. If a deviation between planned and actual trajectory is detected, the plan is
updated.

6. The source are inserted into the needle to deliver the treatment.

9
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Imaging Contouring Planning

Reconstruction Needle Insertion

Treatment

Delivery

Patient

in

Patient

out

Figure2.3:Thewokflowofbrachytherapyindependentfromtheusedmodality.

Theinjectionoftheradioactivesourcesisusuallyperformedautomaticallybya
roboticsystemsforsourceplacementsuchasthecommercialdevicesMicroSelec-
tron(HDR)ortheSeedSelectron(LDR),ElektaAB,Sweden.

2.2.2Treatmentplanning

ThegoalinITPistocoverthePTVwithaprescribeddoseandtosparetheOARs
aswellaspossible.Theapproachistoreformulatetheclinicalrequirementsinto
amathematicalmodelusingaso-calledobjectivefunctionsQ(x),whichareable
toscoreaplan.Theoptimizationproblemistodeterminethenumberofneedles,
dwell-positions,andconnecteddwell-times.Thetermdwell-positiondescribesthe
possiblepositionwherethesourcecanbeplaced.Inaddition,dwell-timeisthe
periodoftimethesourceremainsatacertaindwell-position.
ThegoalofITPistominimizetheobjectivefunctionwhichcanbewrittenasan
inverseproblem.FortheITPinbrachytherapytheproblemisgivenby:

x∗=argmin
x
Q(x) (2.5)

Thisinverseproblemcanbesolvedwithawidevarietyofdifferentoptimizersas
itwillbediscussedindetailinsec.3.2.
Tounderstandtheunderlyingconceptsindetail,astrictmathematicalformula-
tionisexplainedinthefollowing.Allintroducedvariablesandnotationsusedfor
ITPfortheremainderofthisthesisareintroducedhere.

Thefollowingtreatmentplanningexampleshowthecomplexityoftheprob-
lem:
Atypicalsetupcontainsatotalof40possibleneedletrajectoriesandapproxi-
matelyfivedifferentdwell-positionsperneedle.Thefinalplanshouldconsistof15
needlesand40seeds.Thisleadsto 40

15
=4·1010possibleneedleconfigurations

and 5·15
40
=3·1021possiblearrangementsoftheseeds.Intotalthisresultsin

approximately1.2·1032differentpossibilities.Fromthese,theconfigurationwith
thebestqualityhastobechosen.
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Mathematical model

In order to optimize a treatment plan, different organs and structures have to
be represented by dose points. Dose points can be generated by two different
approaches. Firstly, the points are randomly sampled within the volume of both,
the organs and structures given by certain sampling densities. Secondly, the points
can be generated using a regular grid with a certain sampling resolution inside the
volume and equidistant points at each of the contours of the organs and structures
in every 2D slice of the transrectal ultrasound image. For each of the organs or
structures ν ∈ {1, . . . , o}, where o represents their total number, the calculated
dose-points ρ(ν)

i ∈ R3 can be summarized in the set Λν =
{
ρ

(ν)
1 , . . . ,ρ(ν)

p

}
. The

set of all dose points P can be written as the union:

P =
⋃
i∈ν

Λi (2.6)

Exemplary, the dose points of the volume and the surface for the PTV of a rep-
resentative patient are shown in fig. 2.4.
The dwell-positions are a set of locations where the sources can be placed in the
body. Those positions are located inside the needles and are placed equidistantly
along the trajectory of the needle. Only the needles that hit the PTV and, at the
same time, do not penetrate the surrounding OARs are considered for planning.
They form the set of all available needles Π = {1, · · · , n}. Each needle tra-
jectory intersects with the surface of the PTV (including all margins) such that
the dwell-positions ξ ∈ R3 are within the interval [χsi ,χei ]. Finally the set of all
potential positions Γi per needle i is given by:

Γi =
{
ξ | ξ = ιχsi + (1− ι)χei : ι =

{
0, 1
pi − 1 , . . . ,

pi − 1
pi − 1

}}
, (2.7)

where pi is the total number of potential dwell-positions on the corresponding
needle. Thus, the set of all available dwell-positions is:

S =
⋃
i∈Π

Γi (2.8)

When introducing oblique or bended needles, the line equation eq. (2.7) has to be
replaced by an appropriate 3D parametrization of each of the needle paths.
For the later developed CS inspired optimization strategies, it is important to
know which dwell-position j belongs to a needle i. The index set containing this
information is given by:

Υi =
{
j | j = ι ·

(
1 +

n∑
l=1

pi

)
: ι = {0, . . . , pi − 1}

}
(2.9)
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(a) overview (b) volume dose-points (c) surface dose-points

Figure 2.4: Overview of the 3D setup of PTV, OARs and all available needles (a).
The prostate is shown in red urethra and rectum in yellow and needles
are visualized in gray. In addition, the randomly generated dose-points
of volume (b) and surface (c) of the PTV are shown.

Dose calculation

The dose calculation in brachytherapy is based on the recommendations of the
American Association of Physicists in Medicine Task Group No. 43 (TG-43) and
its updates [55, 56, 57]. This is a widely accepted protocol and currently the
worldwide standard for brachytherapy dosimetry. The protocol was developed
for LDR brachytherapy. But it is used as a virtual source model for almost all
interstitial and intravascular sources [58]. Schematic drawings for LDR and HDR
sources are shown in fig. 2.5 (a) and fig. 2.5 (b), respectively.
The TG-43 protocol is a look-up-table based approach, where the entries of the
tables are determined using Monte Carlo simulations or measurements in water
phantoms [58]. The dose-rate Ḋ(r, θ) for a cylindrical (2D) distribution around a
source can be calculated according to [57]:

Ḋ(r, θ) = Sk · Λ ·
GL(r, θ)
GL(r0, θ0) · gL(r) · F (r, θ) (2.10)

Where r is the distance between the source center and the point of interest.
In addition, θ is the polar angle between this point and the source long axis z
(fig. 2.5 (c)). The radius r0 denotes a reference distance of 1 cm and θ0 a reference
angle of π2 . The source strength Sk has the unit of U := µGy h−1 m2 and is usually
measured in free air using lithium fluoride thermoluminescent dosimeters [55]. Λ
defines the dose-rate constant in water in units of cGy h−1 U−1. It depends on the
used radionuclide and the source model. The geometric functions GL are used
to improve the accuracy of the dose calculation. From a physical point of view,
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(a) LDR: I-125

(b) HDR: Ir-192

(c) TG-43

D(r0, θ0)

θ
r0 = 1cm

z

x
r

D(r,θ)x

Figure 2.5: A schematic drawing of a I-125 seed for LDR (a) and a Ir-192 source
for HDR (b)[57, 59]. The coordinate system used for brachytherapy
dose-calculations used in the TG-43 protocol.

it corrects the obtained values by taking into account the spatial distribution of
radionuclides inside the capsule based on an approximate model of the source.
The radial dose function gL(r) considers the photon attenuation and scattering in
tissue. F (r, θ) is a form factor that corrects the computed according to measured
dose-distribution around the source. Causes of anisotropy are the distribution of
the radionuclides, self-absorption, and filtering [55, 56, 57].
Considering the introduced mathematical model presented in the previous sec-
tion, the dose contribution at a given dose-point ρi from a dwell-position ξj can
be calculated according to:

Dij = d(ρi, ξj) =
(∫ ttreat

0
Ḋ (r(ρi, ξi), θ(ρi, ξi)) dt

)
, (2.11)

where ttreat is the treatment time, r = r(ρi, ξi) is the Euclidean distance between
dose-point ρi and dwell-position ξi and θ = θ(ρi, ξi) is the angle between the
vector (ξi − ρi) and the source long axis z (fig. 2.5). Furthermore, D is the so-
called dose-rate dictionary. Eq. (2.11) is valid for LDR dose-caclulation. For HDR,
in good approximation, the air-kerma strength of the source dose not change,
because the half-live of the source is much larger than the treatment time. Thus,
the integral can be approximated by the mean of the dose-rate times the dwell-
time ti at dwell-position i. A visualization of the dose dictionary for a LDR source
is shown in fig. 2.6.
Defining xLDR/HDR to be an amplitude vector that labels if a certain dwell-position
is occupied or not and dν to be a dose vector for all available dose points of the
set Λν , the dose can be written as a matrix vector product:
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Figure 2.6: A visualization of the dose dictionary for a LDR source.

dν = Dν · x (2.12)
For LDR, xLDR = {0, 1}s is a binary vector where an occupied dwell position is
labeled with one and an unused is labeled with zero. In contrast to LDR, in HDR
xHDR is continuous and hence xHDR = {R+}s.

2.2.3 Objective Function for ITP
A perfect plan would be able to deliver the prescribed dose to the target volume
and to spare the surrounding OARs as good as possible. Ideally, the dose to
the OARs would be zero, however, this is physically not achievable. Hence, a
compromise between dose to the tumor and to the OARs has to be found, using
an appropriate objective function. A sub-class of the objective functions is the
DBOF that penalizes dose values below or above certain threshold [30].
A natural measure to quantify the deviation between the prescribed dose and the
achievable dose is the Euclidean distance. This concept is also addressed by the
DBOF that penalizes values above and below given dose bounds defined by the
user. The functions in vector notation are [30]:

f νL(x) = θ (tνL −Dν · x)T · (tνL −Dν · x) , (2.13)

f νU(x) = θ (Dν · x− tνU)T · (Dν · x− tνU) , (2.14)
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where θ(·) is the Heaviside step function, tνL is the lower and tνU is the upper dose
bound of the organ ν. Usually, upper and lower bound are only prescribed to the
PTV since it should be covered at least with the prescribed dose but at the same
time a certain dose should not be exceeded to avoid hot-spots. For OARs, solely
an upper bound is assigned, which is the maximally acceptable dose. A list with
prescribed doses for the different modalities and used radionuclides is summarized
in appendix tab.A.4.
The final objective function valueQ(x) is defined as a weighted sum of the different
functions over all organs ν:

Q(x) =
∑
ν

1
|Λν |
· (wνL · f νL + wνU · f νU) (2.15)

|Λν | is the total number of dose-points at organ ν and wL and wU are weighting
factor for penalizing under and over-dosage, respectively.
For needle optimization, the state of the art approaches is to penalize the number
of used needles using a weighting factor, usually referred as cost per needle [30]:

Q̃(x) = Q(x) + λN · N (x) (2.16)

where N (x) is a function that returns the used number of needles for a given
amplitude vector x and λN is the cost per needle, i.e. a Lagrange multiplier.

2.2.4 Plan evaluation
After optimization, each plan is rated according to different criteria and param-
eters. In general, users are encouraged to follow the definitions proposed by the
PROBATE group of the Groupe Européen de Curiethérapie (GEC) European So-
ciety for Radiotherapy & Oncology (ESTRO) and the AAPMs Task Group No. 137
[60, 10]. In additional to those, parameters such as conformal index (COIN),
equivalent uniform dose (EUD), TCP and NTCP based on biological models are
used [10, 61].

Dosimetric criteria

Dosimetric criteria for each of the organs can be extracted from the dose-volume
histogram (DVH) to rate a plan according to its clinical applicability. These
empirically found values which correspond with good dose conformity for the
PTV while, for the OARs, they correlate with an acceptable level of toxicity [60,
62, 10].
For example the used parameters for LDR are: For the prostate V 100 ≥ 95%
and V 150 ≤ 50%, for urehta D30 ≤ 120% and D10 ≤ 150%, and for the rectum
D0.1cc ≤ 150% and D2.0cc ≤ 150%.
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The V 100 criterion of the prostate measures the coverage of the target volume
with at least 100 % of the prescribed dose while D30 defines the dose received by
at least 30 % of the urethral volume. The dosimetric criteria for the rectum are
defined in absolute volumes in cc (1 cc = 1 cm3).
If all given criteria are fulfilled, the plan is considered as clinically acceptable.
A summary of the criteria for the different modalities can be found in appendix
tab.A.3.

Conformal index

COIN is based on the combination of DVH parameters in order to include anatom-
ical position relationships. It takes into account the coverage of PTV with the
prescribed dose as well as the irradiation of the surrounding normal tissue (T) in
the proximity of the PTV and is defined as [63]:

COIN = V 100PTV ·
V 100PTV · VPTV
V 100T · VT

, (2.17)

where V 100PTV and V 100T are the relative sub-volumes of irradiated tissue that
receive at least the prescribed dose with respective absolute volumes VPTV and
VT . The irradiated tissue includes the PTV and all OARs. In an ideal situation,
COIN equals one meaning that the PTV is covered with the prescribed dose and
that the surrounding tissue does not receive any dose.

Biological models

The biological consequences can be described by dose-repsonse curves. The more
dose the tumor receives, the higher is the probability of tumor control. A TCP
of 100% means relapse free survival. However, due to the dose escalation, normal
tissue complications arise as side-effects. Therefore, to find the ideal prescribed
dose to target the treatment plan should also be rated according to its biological
consequence.
In order to estimate TCP and NTCP, the biological effective dose (BED) for an
inhomogeneous dose distribution has to be calculated. The conversion from dose
to BED at a given dose point i from the set Λν is [64]:

BEDi = D(Teff ) ·RE(Teff )− ln 2 · Teff
α · TP

, (2.18)

where Teff is the efficient treatment time, TP the potential doubling time of the
tumor cells, α the model-parameter from the linear-quadratic model (eq. 2.4), and
RE(Teff ) the relative effectiveness given by:
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RE(Teff ) = 1 +
(
β

α

)
Ḋ0

(µ− λ) ·
1

1− exp(−λ · Teff )

·
{

1− exp(−2 · λ · Teff )−
2λ

µ+ λ
(1− exp(−(µ+ λ)Teff ))

}
(2.19)

Here, Ḋ0 defines the initial dose-rate, λ the decay constant of the radionuclide and
µ the time for sub-lethal damage repair [10]. The parameter β is the quadratic
parameter of the linear-quadratic model. The BED for an inhomogeneous dose-
distribution is defined as:

BED = − 1
α

ln
(∑

i

1
|Λν |

exp(−α ·BEDi)
)

(2.20)

This yields the final TCP for a total number of tumor cells N0:

TCP = exp (−N0 · exp(−α ·BED)) (2.21)

An additional parameter which can be used for rating of plans is the EUD. This is
the dose leading to the same amount of cell killing as an external beam radiation
therapy with a fraction size of d2 = 2Gy [10]. Using γt as the elapsed unit of
treatment time, EUD can be calculated as [10]:

EUD =
BED − ln 2 · γt

α·TP
1 + β

α
·D − γt ln 2

α·d2·Tp

(2.22)

In order to determine the biological reaction of the normal tissue, the equivalent
dose Deq,i has to be calculated for every single dose point i of the OAR. The
equivalent dose can be calculated using eq. (2.22) and replacing the BED with
eq. (2.18) instead of using eq. (2.20). The terms addressing the proliferation are
neglected.

For the urethra, the main complication is an unresolved grade-2 (or higher)
toxicity. This NTCP was empirically found to be linked to the dose that at least
covers 20% urethral volume (DU20). Using a logistic function, the probability is
calculated according to [65]:

NTCPU = 1
1 + exp(− [ζ + δ ·DU20]) , (2.23)

where ζ = −2.60 ± 0.50 and δ = (6.6 ± 1.6) · 10−3 Gy−1 are model parameters,
which are determined empirically [65].

17



2 Theory

In order to calculate the NTCP of the rectum, the following logistic function
describing severe late reactions is used [61]:

NTCPR =

1−
∏
i

1−
1 +

(
D50
Deq,i

)kν−sν
1
|Λν |


−sν

, (2.24)

where D50 is the dose that leads to late injuries in 50% of the cases. In addition,
kν und sν are parameters to describe the seriality of an organ [66]. Again, all pa-
rameters have to be empirically determined [67]. A table with the used parameters
can be found in appendix tab.A.6.

2.3 Compressed Sensing
CS is a method in the field of image processing, which recently received a lot of
interest in signal recovery and sampling problems [68].
In general, the conventional recovery and sampling approaches used in modern
communication and medical image devices are based on the Shannon theorem. It
states that in order to be able to sample or reconstruct a signal, the sampling rate
must at least twice the maximum frequency of the signal [68].

fSampling ≥ 2 ·max(fSignal) (2.25)

In contrast, the theory of CS asserts that, when expressed in a proper basis,
exact reconstruction can be achieved from far fewer samples or measurements.
Surprisingly, almost all natural signals can be described by a sparse representation
of base elements [68]. In CS, the basis elements are sometimes referred to as atoms.
A sparse signal g is characterized by a sparse linear combination of k elements
given by: g = ∑

k∈K fkak where K is a subset of N = {1, ·, n}, n as the dimension
of the problem, fk is the amplitude, and |K| � n.
The choice of the basis depends on the problem. One prominent example is
JPEG and JPEG2000 compression [69, 70]. JPEG uses a cosine dictionary and
JPEG2000 relies on a discrete wavelet dictionary. When both have the sane
factor of compression, JPEG2000 suffers from less artifacts compared to JPEG as
depicted in fig. 2.7. It can be often observed that compression factors of up to 100
can be used without a perceptual loss in quality.
Next to image reconstruction and denoising, CS has its well-established niche in
the field of medical physics, e.g. in magnetic resonance imaging reconstruction
and compressed sensing in computed-tomography reconstruction techniques [71,
72, 73, 74].
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(a) original (b) JPEG (c) JPEG 2000

Figure 2.7: Comparison of the orginal image against the compressed images using
JPEG (b) and JPEG2000 (c)

2.3.1 The compressed sensing problem
Many of the CS problems are linear and have the following mathematical structure:

f ∗ = arg min ‖f‖0 s.t. Af = g, (2.26)

whereA is a proper basis that allows a sparse representation f of a given measured
signal g. In addition [75],

‖f‖0 = lim
p→0
‖f‖pp = lim

p→0

m∑
k=1
|fk|0 = {i ∈ {0, . . . , n− 1} : f i 6= 0} (2.27)

is the l0-norm, that counts the number of nonzero elements in a vector f . This
semi-norm does not fulfill all axiomatic requirements of a norm. However, it
directly measures the sparsity of the solution.
Eq. (2.27) is a classical problem of combinational optimization and it is generally
hard to solve. For example, assuming a matrix A with m = 300 basis vectors and
a desired sparse solution with k = 40 elements, one way to find the global optimum
is to test all possible non-zero subsets of f . This leads to

(
300
40

)
= 9.8·1049 different

configurations. Each of the configurations form small linear sub-problems, which
have to be solved independently. Obviously, to calculate almost 1050 solutions
takes too long. The complexity of this strategy is exponential in m and it was
proven that the problem stated in eq. (2.26) is NP-hard [76, 77]. NP-hard means
that there is no algorithm of polynomial complexity known that solves this class
of problems.
The research question in the field of CS is whether the problem (eq. (2.26)) can
be efficiently approximated by some greedy methods and which approximations
lead to acceptable solutions [75].
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2.3.2 Algorithms
Instead of finding the global optimum, the aim of the optimizers is to find an
approximate solution near the global optimum. The requirements for such algo-
rithms are that they have to be fast and return solutions near the global optimum
[78]. At present, there are two major approaches, greedy pursuit algorithms such
as matching pursuit (MP) with its variants [77] and basis pursuit (BP) algorithms
[79]. The first are methods that iteratively optimize the problem using local up-
dates and the latter use a convex relaxation method for solving the problem.

Matching Pursuit

One of the simplest algorithms to solve the CS problem is MP [80]. MP is a purely
greedy algorithm with a straightforward approach to include the element from the
dictionary which correlates most with the residual during each iteration.
The algorithm starts with an initial residual r(0) that is equal to the signal g and an
initial solution f (0) = 0. During each iteration step j, the following sub-problem
is solved:

i∗k = arg max
i=1,...,m

∣∣∣〈r(j−1),ai
〉∣∣∣ , (2.28)

where ai is one element of A. The index i∗k defines the new residual r(j) and an
approximation of the solution f (j) that is given by [78]:

f (j) = f (j−1) +
〈
r(j−1),ai∗

k

〉
· ai∗

k
, (2.29)

and
r(j) = r(j−1) −

〈
r(j−1),ai∗

k

〉
· ai∗

k
. (2.30)

A step where an element is added to form a new solution is later referred to as ex-
pansion step. The iterations continue as long as a k-sparse solution is not reached
and/or the norm of the residual is above a certain error tolerance ε > ‖r(j)‖2

2.
For an orthonormal basis, the approximate solution leads to an optimal k-term
approximation [78]. For general dictionaries it was proven that the norm of the
residual converges towards zero [81].

Orthorgonal Matching Pursuit

An extension of the MP approach is orthogonal matching pursuit (OMP), which
adds a least-square minimization to each of the iteration steps [82]. This leads to
a significantly improved performance and robustness of the heuristic [75].
The initialization and the selection step during the iteration remain the same.
Introducing the so-called support vector υ(j) of iteration j that is an index-vector
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containing the indices of the selected elements of the dictionary υ(j) = {υ1, . . . , υj},
the following least-square sub-problem can be defined:

f ∗ = arg min
f
‖g −A∗f‖2

2 s.t. A∗ = {aυ1 , . . . ,aυj} (2.31)

During each iteration, eq. (2.29) and eq. (2.30) are replaced with the following
equations:

f (j) = f ∗, (2.32)

r(j) = g −A∗f (j), (2.33)
where f ∗ is the solution of eq. (2.31). The stopping criteria are the same for MP.
In contrast to MP, OMP has the advantage that an element of the dictionary
cannot be included twice because the residual is orthonormal to these elements
[78].
A simplification of OMP is the hard thresholding algorithm, which is one of
the simplest greedy algorithms in literature [75]. After an initial so-called back-
projection p = ATg, the set of k largest elements is taken to form the support
vector υ. Afterwards, the least-square sub-problem subject to the found support
is solved and the final solution is formed.

Basis Pursuit

BP follows the idea to replace the l0-norm by the l1-norm. This is a convex
relaxation of the problem where the number of terms is approximated by the
absolute sum of all coefficients. The relaxed optimization problem is hence given
by [79]:

x∗ = arg min
f
‖f‖1 s.t. Af = g (2.34)

This problem can be solved by LP such as interior-point or simplex methods.

Advanced Greedy Algorithms

The aforementioned algorithms are the most basic and simple techniques used in
CS. The greedy algorithms are among the fastest optimization algorithms in the
field of CS [33]. However, a general observation is that the quality of BP cannot
be achieved with MP or OMP.
Recent developments improve the existing greedy algorithms in oder to increase
their quality. Approaches that are able to guarantee reconstruction accuracies in
the same range as BP are subspace pursuit (SP) or compressive sampling matching
pursuit (CoSaMP) [83, 84].
SP and CoSaMP are based on the principles of the original OMP algorithm. The
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main idea is to add multiple elements, a so-called candidate set, to the solution at
each iteration step. Afterwards, the least-square optimization is performed. As
an additional step, a test is conducted to identify low-performing elements. Those
elements are defined in terms of the order statistics of the inner product. Finally,
the low-performing elements are discarded and their contribution to the solution is
removed. After this reduction, the iterations continue until the stopping criterion
is reached.
The only difference between CoSaMP and SP is the number of elements that are
added to form the candidate set. While SP adds u > 0 elements, CoSaMP adds
2u > 0 elements to the solution.

Further Approaches

With the introduction of BP, the class of l1-optimization problems has received
much of attention. Inspired by the greedy algorithms, several new algorithms have
been introduced to tackle the unconstrained formulation of the BP problem:

f ∗ = ‖f‖1 + λL ·
1
2 ‖g −Af‖

2
2 (2.35)

where λL is the so-called Lagrange multiplier. The problem can be solved effi-
ciently using iterative shrinkage algorithms. The optimization principles among
the different algorithms are similar and are explained on the example of stage-
wise orthogonal matching pursuit introduced by Donoho et al. [85]. In this case,
the expansion step is replaced by a back-projection of the residual r(j−1) at the
iteration j onto the matrix A:

p = ATr(j−1) (2.36)

From p, k dominant entries are chosen and added to the support υ(j) = {υ1, . . . , υk}.
Afterwards, the least-square problem:

f ∗ = arg min
f
‖g −A∗f‖2

2 s.t. A∗ = {aυ1 , . . . ,aυj} (2.37)

can be optimized using for example the conjugate gradient technique. With the
obtained solution, the residual is updated and the iterations continue until the
stopping criterion is fulfilled.
Another technique that can solve a broad class of l1-regularization problems is the
iterative Split Bregman method. It can be used to optimize the unconstrained
problems with the form of:

arg min
d,g

‖d‖1 +H(g) + λL
2 ‖g − Φ(f)‖2

2, (2.38)
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where H(·) and Φ(·) are convex functionals [74]. Usually, H(·) is assumed to be
the l2-norm. This problem can be solved using a Split Bregman iteration where
during each iteration the following two steps are performed:

(f (j), g(j)) = arg min
d,g

‖d‖1 +H(g) + λL
2 ‖g − Φ(f)− bj−1‖2

2 (2.39)

b(j) = b(j−1) +
(
Φ(f (j))− d(j)

)
(2.40)

This reduces the regularization problem to a sequence of Bregman updates [72].
However, for eq. (2.39), i.e. a combination of an l1 and l2-optimization prob-
lem, there are no efficient solvers available. One approach is to decouple the
l1-optimization from the l2-optimization problem. This de-coupling leads to two
independent problems:

f (j) = arg min
f

H(f) + λL
2 ‖g

(j−1) − Φ(f)− b(j−1)‖2
2 (2.41)

d(j) = arg min
d
|d|+ λL

2 ‖g − Φ(f (j−1))− b(j−1)‖2
2 (2.42)

Both problems can be solved independently using efficient techniques, like conju-
gate gradient methods and thresholding for the l2 and l1 optimization problem,
respectively. These iteration steps continue until the stopping criterion is reached.
The Split Bregman approach is an efficient algorithm which can be used for image
denoising and CS inspired problems in medical-physics [71, 72, 73, 74].
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3 State of the Art
Accurate treatment planning is essential for the success of brachytherapy treat-
ments. A variety of algorithms which accomplish this for the modalities LDR
and HDR brachytherapy have been developed. Some of them are used in clini-
cal routine. Furthermore, recent developments towards the usage of user-friendly
objective functions are presented.

3.1 Treatment planning problem
The objective of brachytherapy and radiation therapy in general is to deliver a
sufficiently high dose to the tumor and, at the same time, spare the surrounding
healthy tissue as well as possible.
Assuming a given set of all potential dwell-positions, the goal is to determine the
number of needles and their position as well as the used dwell-positions and con-
nected dwell-times in order to form a plan which meets all clinical constraints.
In order to rate a plan, a measure that quantifies the quality of a given dose distri-
bution with respect to the clinical criteria is used. Almost all recent publications
consider the DBOF [26, 20, 86, 24, 86, 87, 88, 31].
The inverse optimization algorithms used in brachytherapy ITP depend on the
selected objective function and the modality. Some of them are general and can
be used for both LDR and HDR treatment planning while some are specific for
one of these modalities. The following section provides an overview of the state-
of-the-art algorithms and objective functions.

3.2 Algorithms
The used algorithms for ITP in brachytherapy are presented in the following.
Additionally, one method which is not an inverse planning algorithm is graphical
optimization (GrO). It is a "forward-planning" method, which is widely used in
clinical routine as a stand-alone strategy or to manually update plans after ITP.

Graphical optimization

GrO is an interactive manual forward-planning method based on drag and drop
actions to generate the desired isodose lines within a single slice of the 3D transrec-
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tal ultrasound volume [89, 32]. This is achieved by either adjusting the dwell-times
manually or by "inverse planning" where the dwell-times are either decreased or
increased using a pre-defined fixed increment.
Changing the dose distribution in one slice changes the distribution in another
slice, which has to be adjusted as well. This leads to a sometimes time-consuming
trial-and-error method. Even for experienced users this can approach take up to
one hour [29]. No objective function or anatomical information is used. Benefits
are that the result of a drag-and-drop action is directly visible to the user and
that it can be applied for both, LDR and HDR treatment planning.

3.2.1 LDR
In LDR brachytherapy ITP, the optimizers have to identify the binary dwell-time
vector that optimizes the given objective function the most. This binary combi-
national problem is well-known to be intrinsically NP-hard [90]. The problem can
be tackled either with deterministic approaches [91] or stochastic approaches that
approximate the solution of the problem [90]. The different approaches used for
LDR ITP are presented in the order they were developed.

Gradient based optimization

The earliest optimizers for LDR ITP were based on gradient descent methods [16,
17], which require a starting point and then follow the gradients iteratively until
a local minimum is reached. The user has to provide an initial starting point and,
thus, these methods are called semi-automatic approaches.

Genetic algorithm

The GA is a stochastic optimization strategy that is used in LDR ITP since 1996
[21]. In contrast to the gradient approaches, GA can be used to optimize the
needle configuration as well.
The algorithm is a heuristic model that mimics the process of evolution. Based on
the survival-of-the-fittest-principle, starting from an initial population (different
solutions), the strongest individuals (best rated according to the used objective
function) are selected to parent offspring. Different genetic operations, such as
crossover and inversion [90] contribute forming the new generation, which repop-
ulates again. Due to this heuristic, the probability that the solution is trapped in
a local minimum is significantly reduced [90].

Simulated annealing

Another stochastic approach that mimics processes found in nature is SA [92].
The concept of SA annealing is based on the prinicples of statistical mechanics in
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condensed matter physics [92].
To find the ground state of a material, i.e. the state with the lowest internal
energy, experiments showed that cooling a liquid down to low temperatures is not
sufficient. The ground state can only be reached when letting the system cool
down slowly (annealing). Following this analogy, the SA is used to find a minimal
objective function value. The algorithm starts with an initial configuration and
iteratively changes this state according to a transition mechanism. This mecha-
nism changes the present configuration to a new one which is rated with respect to
its objective function value. Depending on the energy of the system, determined
by a so-called cooling schedule, the transition is either accepted or rejected. If an
appropriate cooling schedule is used, the algorithm is able to converge towards
the global optimum [93].
The principle of SA was introduced in for radiation therapy plan optimization
[93] and was adapted for LDR brachytherapy in 1996 by Pouliot et al. [18] and is
usually referred as IPSA. It allows for an efficient and rapid optimization of dose
distributions. One drawback of SA is that it requires a priori information such as
an estimation of the used amount of seeds and needles. This restricts the domain
of all potential seed positions which may yield sub-optimal solutions. The latest
development in LDR ITP was the implementation of an inference system which
allows the user to steer the SA search [94].

Mixed integer linear programming

Instead of using stochastic approaches such as SA and GA, another strategy is a
reformulation of the objectives into an integer linear programming (ILP) or MILP
problem.
To solve these problems, the branch-and-bound strategy is most widely used [95].
It starts with a relaxation of the problem without integer restriction that can be
solved using the simplex method or interior point methods. During branching,
one of the variables is picked and bound to form two constrained sub-problems.
All sub-problems have to be solved independently and hence a tree like structure
builds up. The branches are pruned when the sub-problem becomes infeasible
or its objective function value is greater than the best integer or mixed-integer
solution so far [95].
For LDR brachytherapy, different mixed integer programming problems were for-
mulated starting from simple impositions of dose constraints for the different or-
gans to the reformulation of the DBOF as MILP problem including needle opti-
mization [96, 87, 27, 97, 28]. An important aspect is that, if the MILP is solvable,
the branch-and-bound method is able to find the global optimum [91].
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Greedy heuristics

Other heuristics that are not related to the optimization of the DBOF are greedy
heuristics which optimize the ITP with a so-called adjoint function of the different
organs and structures. The used adjoint function is a ratio that ranks each dwell-
position according to its ability to irradiate the target while sparing OARs [23].
The ratio can be computed in advance and the optimization is performed using a
greedy heuristic that is based on the same strategy as MP algorithms used in CS.
While the discussed algorithm is not able to address needle optimization, a more
recent approach suggests a methodology which can be used to rate possible com-
binations of needles and, thus, allows needle optimization [25].

3.2.2 HDR
In contrast to LDR, the HDR solution vector is continuous and non-negative. This
problem can be tackled with a wide variety of optimization strategies, of which
the most commonly used ones are presented in the following.

Gradient based optimization

Deterministic gradient-based methods for quadratic objective functions for HDR
ITP were introduced by Milickovic et al. in 2002 [98]. They use a constraint
free gradient-based reformulation which provides the local optimum for convex
objective functions [99]. However, due to the Heaviside stepping function the used
objective function is not convex and local optima may occur. A global convergence
analysis with respect to the quadratic objective function used in HDR showed that
the obtained solutions are near the global optimum [100].
By comparing different optimizers, the Limited-memory Broyden–Fletcher–Gold-
farb–Shanno algorithm (L-BFGS) algorithm was found to be better than Broyden-
Fletcher-Goldfarb–Shanno algorithm (BFGS) with respect to optimization time
and quality [100]. The L-BFGS is today the standard optimizer for conjugate
gradient based methods in HDR ITP.

Simulated annealing

Based on their previous work for LDR brachytherapy ITP, Lessard and Pouliot
introduced a SA based optimization strategy for the HDR problem in 2001 [101,
102].
The principle is very similar to SA used in LDR brachytherapy. The difference
is the transition step from the previous to the new configuration. Rather than
activating or deactivating dwell-positions, the time is increased or decreased ran-
domly by a given time resolution.
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SA obtains an optimized dose distribution in a couple of seconds and allows an
automatic needle optimization.

Hybrid inverse treatment planning and optimization

The HIPO algorithm is an optimization strategy especially designed for HDR
treatment planning that was introduced by Karabis et al. in 2009 [20]. It sup-
ports inverse optimization of dwell-times including needle optimization [103].
HIPO unites the gradient-based dwell-time optimization with SA for needle opti-
mization [20]. The algorithm starts with an initial needle-configuration and tests
new configurations according to the objective function value of the dwell-time op-
timized sub-problem during the iteration. The sub-problem is optimized using
L-BFGS.
The convergence to the global optimum cannot be guaranteed, but comparative
tests showed that the retrieved solutions are near the global optimum [20].

Linear programming

LP problems can be solved with simplex or interior-point algorithms. The simplex
algorithm is a global deterministic optimization method. It solves the problem by
considering the (n + 1)-dimensional polytype, n is the number of free variables,
and moving along the edges towards new feasible solutions with better objective
function values. It stops when the global optimum is reached [104].
In 1989, Renner et al. introduced LP for HDR treatment planning. The idea was
to minimize the total treatment time while the generated plans should fulfill pre-
defined dose constraints on the target [105]. Almost two decades later, Alterovitz
et al. presented a reformulation of the DBOF into an LP problem [24]. It solves
the HDR ITP problem within several seconds.

3.2.3 Bottom-line algorithms
There is a variety of different algorithms available for brachytherapy treatment
planning. However, only IPSA and HIPO are the main available and are imple-
mented in commercially available treatment planning system (TPS)s, e.g. Oncen-
tra Prostate, Elekta AB, Sweden [29]. While IPSA is mainly used for optimizing
LDR treatment plans, HIPO is the method of choice for HDR treatment planning
including fast needle optimization. The optimization times vary from a few sec-
onds (ISPA) to several minutes (HIPO).
Although LP ITP can be performed within several seconds, it is not implemented
in a commercially available TPS. In contrast, the optimization times for MILP
vary between several hours and days and MILP is, thus, inappropriate for intra-
operative treatment planning. However, it was shown that clinically acceptable
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plans can be generated within few minutes if the optimizer is stopped manually
[26, 28]. The returned solution is the best possible solution found by the branch-
and-bound method at the time when the iteration is terminated.
All algorithms mentioned in this sections are commonly used to compare the so-
lution of newly developed algorithms against returned objective function value as
it is done in this thesis [20, 26].
Due to the runtime of IPSA and HIPO, a general observation is that interactive
planning strategies like GrO are preferred by the user. Considering the large num-
ber of possible solutions GrO plans are most likely to be far away from the global
optimum. Comparative studies showed that plans generated using IPSA or HIPO
provide target coverage similar to those obtained using GrO but with lower dose
to normal structures and better dose homogeneity [32].

3.3 Objective functions
Despite algorithmic developments, recent approaches try to improve the plan qual-
ity by introducing more realistic objective functions or to adapt existing methods
by slightly modifying the underlying heuristics. A summary of the developments
within the last four years is presented in the following.

3.3.1 Recent optimization strategies
The DBOF uses weights and thresholds to quantify the quality of a plan. If a
plan does not meet the dosimetric criteria, manual fine-tuning of the parameters
is necessary. Adapting weights and thresholds is not very intuitive and therefore
often avoided by the users. Siauw et al. introduced an MILP problem formulation
that is able to optimize the dosimetric criteria [31]. To accelerate calculation
time, Siauw et al. relaxed the initial problem to an LP problem and applied a
threshold to approximate the MILP solution afterwards. This strategy is called
IPIP and it is able to generate clinically acceptable plans in several seconds.
An extension of the model that includes skew needle optimization was published
in 2012 [106]. The idea was to perform needle optimization independent from
dwell-time optimization. The needle optimization was subject to the constraint
that all the dose-points should be within a certain range δ from the next adjacent
dwell-position. This forms a binary problem that has to be solved to determine
the needle configuration and which takes approximately four minutes [106]. After-
wards, the dwell-times are optimized using IPIP. With this concept, they proved
that it is possible to independently optimize needles from dwell-positions and that
the retrieved plans meet all dosimetric criteria.

It was observed that the ITP plans generated using the DBOF have a ten-
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Figure3.1:IllustrationoftheupperandlowerDVHtailoftheprostate.

dencytowardslessdwell-positionsandlongerdwell-timescomparedtomanually
generatedplans.Concernsregardingthosehot-spotsraised[107,108].Solutions
aretointroducevirtualnormaltissuearoundthecatheter[107]ortointroduce
restrictionsonthedwell-timeintermsofupperboundsforthedwell-times[108].
Recently,Holmetal.proposedamethodofapiecewiselinearobjectivefunction
thatisabletosignificantlyreducetheappearanceoflongdwell-times[109].

Anothermethodtryingtoincorporatedosimetriccriteriaisbasedonasurro-
gatefunctionutilizingthemeanvalueoftheupperandlowerDVHtails(fig.3.1)
[86].Theycanbemathematicallymodeledaslinearfunctionsbyassigningupper
thresholds.ThisleadstoanLPproblemwhichcanbeefficientlysolved.Holmet
al.reportedthatthisstrategyisabletogenerateplansthatareequivalenttothe
competingstrategiesbasedonDBOFminimization.Nevertheless,whendefining
thebounds,theproblemmaybeinfeasibleresultinginatedioustrial-and-error
process. Thetimetogenerateaplanusingthistechniqueisapproximatelyone
minute.

Towardsmorerealisticmodels,Giantsoudietal.proposedamethodbasedon
thegeneralizedEUDoptimization[110]. Theobjectivefunctionwasoptimized
usingthegradient-basedmethodsusedinHDRITP.WhencomparingtheDBOF
withthegeneralEUD-basedoptimizedplans,thelattershowaslightdecreasein
COINbutabettersparingoftheOARs.
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Recently, enhanced geometrical optimization (EGO) and interactive inverse plan-
ning was published by Dinkla et al. [111]. EGO is a slightly modified version of
GrO and is applied to create a dose distribution as homogeneously as possible.
The interactive inverse planning can be used to tailor the dose distribution to
the anatomy of the patient. This can be done by interactively changing the dose
thresholds on a complete ROI. The algorithm iteratively increases or decreases
the dwell-times in the vicinity until the new constraints are fulfilled. With this
strategy clinically acceptable plans are generated in approximately five minutes.

3.3.2 Bottom-line developments
There are only three research groups working in the field of brachytherapy ITP
worldwide and, thus, treatment planning in brachytherapy evolves slowly. Almost
all developments are exclusively designed for the HDR ITP problem. Since the
LDR ITP problem is more complex due to the binary dwell-times it is often ne-
glected for the sake of simplicity. The same accounts for the needle optimization
problem. Only the methodolgy proposed by Siauw et al. is able to optimize the
ITP problem including needle optimization with a runtime similar to HIPO and
IPSA [106].
All new developments are build on already used strategies and try to slightly
modify or combine those [20, 31, 111]. Most of the used strategies are general
heuristics and not tailored to the underlying structure of the ITP problem.
There is a tendency to develop more realistic models and objective functions to
directly optimize dosimetric criteria. NPIP and the DVH tail-based optimization
strategies are the only two methods which are able to address dosimetric criteria
directly. However, due to fairly simple heuristic and the constraints, the solution
might be suboptimal or infeasible compared to MILP solutions. NPIP and the
DVH tail-based approach can be reformulated into a LDR ITP optimization prob-
lem. Due to the long runtime compared with standard optimizers this has not
been investigated yet. Most likely this is due to the complexity of the problem.
Even with modern computers the optimization time exceeds several days.
With respect to more realistic objective functions, there is no biological optimiza-
tion method up to now. In brachytherapy, biological models are only used to
retrospectively evaluate plans with respect to TCP and NTCP [112, 10, 61].
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In the previous chapter, different state of the art optimizers for the ITP with
advantages and disadvantages were discussed in detail. The goal of ITP is to cover
the PTV with the prescribed dose and to spare the OARs as much as possible
by minimizing the dose objective function. The state-of-the-art optimizers are
general class solutions and not tailored to the underlying structure of the ITP
and are hence inefficient. However, the obtained solutions are close to the global
optimum.
Another optimization strategy which has not yet been considered, is to use sparse
reconstruction techniques from CS. Bypassing the problem by introducing sparse-
ness offers the usage of a novel class of optimizers that can be applied for this
problem type. These algorithms are problem specific optimizers that are consid-
erd to be among the fastest optimization strategies in CS.

Within the scope of ITP, the demand of sparsity yields treatment plans that
consist of a sparse representation of dwell-positions and needles. This approach
leads to two major benefits. Firstly, less needles reduce the risk of an infection.
Secondly, less needles and seeds reduces the overall time of the intervention.
Hence, both clinic and patients benefit from this approach. Introducing the
sparsity aspect leads to interesting research questions:

1. What are the properties of using sparsity constraints on the solution with
respect to the quality that is achieved?

2. What is the gain in performance using problem specific optimizers?

These questions should be answered in the following. Therefore, the feasibility of
the concept is analyzed using an initial retrospective test. Based on the obtained
results the ITP problem is reformulated to achieve a formulation that is struc-
turally similar to the CS problem. Since standard optimizers from CS cannot
be used for the CS ITP problem, a detailed explanation of the newly designed
CS inspired solvers follows. Then the TPS, that has been developed within the
scope of this thesis is introduced. A description of the retrospective study used to
compare the new optimizers with state of the art methods concludes this section.
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4.1 Introducing the demand of sparsity into the ITP
problem

The focus of the state-of-the-art optimization strategies for ITP is subjected to
minimizing different objective functions [20, 24, 26, 31, 86, 87]. As discussed in
sec. 3.2, this problem can be optimized using a variety of general class optimizers.
The concept of sparsity opens up the opportunity of using CS based inspired
solvers to tackle the ITP problem. However, it is not intuitively clear whether
this approach yields clinically acceptable plans with respect to underdosage and
overdosage of PTV and OARs.
Interestingly, the request for sparse solution was implicitly raised within the con-
text of IMRT treatment planning in order to reduce the number of beams. The
aim of the research was how many intensity-modulated beams should be used to
observe no practically relevant improvement of the treatment plan [113, 114, 115].

In brachytherapy planning, the question is how many dwell-positions have to
be selected in order to retrieve a clinically acceptable plan?

An intial test is performed to anaylze the number of used dwell-position with
respect to the total number of available dwell-positions of already applied plans.
The results are summarized in tab. 4.1.

Table 4.1: Initial sparsity test for LDR and HDR treatment plans. For ten differ-
ent patient cases (P1, . . . , P10), ’# used DP’ and ’# total DP’ labels
the number of dwell-positions which are used or available.

Modality P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
LDR
# used DP 40 58 34 50 35 48 39 42 37 36
# total DP 207 364 192 293 198 297 213 217 234 206
HDR
# used DP 54 93 47 58 54 62 59 68 66 53
# total DP 436 728 384 590 422 594 438 434 468 412

For LDR (17.5 ± 1.3, range: 15.8 to 19.4)% and HDR (12.6 ± 1.6, range: 9.8
to 15.7)% of the total number of dwell-positions are used to form the final plan.
Since this is much less than the number of available dwell-positions, it is assumed
that the concept of spare solution is applicable for brachytherapy ITP.
The request for sparsity in brachytherapy is a novel and interesting approach that
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leads to the inquiry, whether it is possible to re-write the state of the art opti-
mization problem as a formulation that incorporates the sparsity aspect. More
importantly, the new formulation should have the same mathematical structure
as those of CS type. This would allow the usage of the already mentioned highly
efficient solvers applied in the field of CS (sec. 3.2) in the field of ITP.

4.2 Reformulation of ITP as a CS problem
The results of the feasibility test showed that the clinically acceptable plans can be
represented using sparse combination of dwell-positions. This poses the question
how many dwell-positions should be activated in order to achieve a demanded
quality Q0 and yields the following optimization problem:

x∗ = arg min
x∈ΩLDR/HDR

‖x0‖0 s.t. Q(x) ≤ Q0, (P1)

where ΩLDR = {0, 1}s represents the domain of all potentials solutions for LDR
and ΩHDR = {R+}s the domain of all potentials solutions for HDR for a given
number of dwell-positions s. In addition, ‖x‖0 = {#i ∈ I|xi 6= 0} is the l0 semi-
norm which counts the number of nonzero elements of x as defined in eq. (2.27).
Since the difference between LDR and HDR optimization exists only in the do-
main of all potential solutions, the subscripts LDR and HDR are dropped in the
following section.
For ITP optimization, it has to be differentiated between optimizing a fixed needle
configuration, where all possible dwell-positions should be taken into account or
an optimization problem where the goal is to additionally optimize the number
of used needles. These are two optimization problems with different complexities
and thus the reformulation is split into an optimization problem with and one
without needle optimization.
In order to highlight the CS inspired optimization problems, those are labeled
with a ’P’.

4.2.1 Without needle optimization
The question arises, whether the ITP problem (2.5) can be reformulated, such
that it is of CS type (eq. (2.26)) .
In addition, the system matrix is also bound to fulfills the exact recovery condi-
tion (ERC)[78]. However, the latter is hard or even impossible to evaluate for a
given matrix1[75]. Therefore, the focus is to reformulate the ITP problem as an

1There are special designed matrices that fulfill the ERC but this is beyond the scope of this
thesis in computational medical physics.
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LP problem and empirically show that the returned solutions of the CS inspired
algorithms are near the global optimum.
Hence, the important step is to rewrite the standard ITP optimization problem
as an LP problem and transform it into the CS inspired problem equivalent to
eq. (2.26). In the following, a general reformulation for the LDR and the HDR
problem without needled optimization is presented.

Let us denote Dν ∈ {R+}m×n as a dose dictionary, where ν labels the or-
gans and structures. Each element of the dose matrix Dν

ij represents the dose
at a given dose point i introduced by a seed placed at a dwell-position j. The
dose Dν

ij is determined by eq. (2.11). For simplicity, we drop the organ index ν,
keeping in mind that at the end the DBOF value q is the sum of the results over
the different organs. Finally, for a given treatment plan, represented by a solution
vector x, the accumulated dose at all DPs d is determined by the linear equation:

Dx = d (4.1)

To rewrite the DBOF using matrix notation the penalty terms fL (eq. (2.13)) and
fU (eq. (2.14)) have to be rewritten as constraints of the LP. This can be done by
replacing the θ function with an inequality by introducing slack variable vectors
sL ≥ 0 and sU ≥ 0 given by:

−Dx− sL ≤ −tL, (4.2)

Dx− sU ≤ tU , (4.3)

where tL is the lower and tU is the upper dose threshold. If the given thresholds
cannot be reached, the deviation is compensated with the slack variable vectors to
fulfill the inequality. In contrast, if the constraints are reached the slack variables
are set to zero. Hence, eq. (4.2) and eq. (4.3) are a valid substitute for eq. (2.13)
and eq. (2.14), respectively.
In addition eq. (2.15) is replaced with a scalar product of a weighting vector
(wL,wU) where each element consists of the weighting factors wL and wU divided
by the number of dose points of the given dictionary times the slack variable vector
(sL, sU). The objective function value q is given by:

q = (wL,wU) · (sL, sU)T (4.4)
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Finally, the ITP optimization problem using matrix notation can be written as:

min((wL,wU) · (sL, sU)T ) s.t.

(
−D −I 0
D 0 −I

)
·

 xsL
sU

 ≤ (tL
tU

)
, (4.5)

x ∈ Ω
sL/U ∈ {R+}

where I ∈ Rm×m is a unit matrix, 0 ∈ Rm×m is a zero matrix, and Ω is the domain
of all potential solutions. The optimization problem can further be simplified
by defining D̃ = (−D,D), t̂ = (tL, tU), s = (sU , sL), w = (wU ,wL), and
Î ∈ R2m×2m to obtain:

min(wT · s) s.t.
(
D̂ −Î

)
·
(
x
s

)
≤ t̂ (4.6)

x ∈ Ω
s ≥ 0

This is the general reformulation of the ITP problem for LDR and HDR which
can be optimized using MILP and LP solvers, respectively.
Analog to the reformulation of optimization problem eq. (2.15) into form of P1, the
objective is to get a sparse representation while achieving a certain plan quality
Q0. Hence, wT ·s is replaced with the l0-semi-norm ‖x‖0 and an additional quality
constraint is added. The CS form is:

min(‖x‖0) s.t.
(
D̃ −Î

)
·
(
x
s

)
≤ t̃ (4.7)

x ∈ Ω
s ≥ 0

wT · s ≤ Q0

And in a compact form this reads as:

min(‖x‖0) s.t.

(
D̃ −Î
0 wT

)
·
(
x
s

)
≤
(
t̃
Q0

)
(4.8)

x ∈ Ω
s ≥ 0
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Using A =
(
D̃ −I
0 wT

)
, g =

(
D̃
Q0

)
and f =

(
x
s

)
, the problem in matrix notation

reads:

min ‖Wf‖0 s.t. Af ≤ g, (P2)

where W is a weighting matrix that fulills the equation
(
x
0

)
= Wf . This is the

standard compressed sensing problem well known from literature [75], where A is
the basis, f is a measured, and g is the signal.

Since the ITP problem can be cast as a linear problem, it is concluded that
it has the same mathematical structure as the CS problem and is henceforth
called the CS-ITP problem. This justifies the use of CS solvers for the ITP
problem without needle optimization.

4.2.2 Needle optimization
For needle optimization, the state-of-the-art approaches is to use the DBOF with
an additional cost per needle term (eq. (2.16)). Instead of penalizing N (x), the
problem can be cast as a constrained optimization problem, where an additional
needle constraint η, i.e. the number of maximally allowable needles, is added to
problem P1. This formulation leads to a problem that should also be structurally
similar to CS, i.e.:

x∗ = arg min
x∈Ω
‖x0‖0 s.t. Q(x) ≤ Q0 (4.9)

N (x) ≤ η

As demonstrated in the previous section, the DBOF constraint can be cast as an
LP problem and hence, the only remainder is to show that needle optimization
can also be rewritten as an LP problem. Thus, the goal is to rewrite the ITP
problem into an LP problem having the same form as eq. (2.26). Introducing two
additional constraints lead to the following:

Firstly, for a given needle configuration n ∈ {0, 1}n, where n is the total number
of needles, only dwell-positions at those needles should be considered for dwell-
time optimization. Whereby a used needle i is labeled with ni = 1 and ni = 0
otherwise. This constraint can be written as an inequality that reads as:

(
N −G

)
·
(
x
n

)
≤ 0, (4.10)
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where N ∈ {0, 1}n×s is a matrix defined as:

N ij =

1, ∀j ∈ Υi

0, otherwise
, (4.11)

and assigns each dwell-positions to a needle, Gn×n is a diagonal matrix where
the elements can be interpreted as maximally allowed accumulated number of
dwell-positions per needle for LDR and HDR, respectively. The threshold should
be chosen such that it does not influence the result. However, it can be used as
an additional constraint to reduce the number of dwell-positions per needle for
LDR, and does reduce the accumulated treatment time per channel for HDR. It
can be seen that for a given needle configuration n the inequality can only be
fulfilled if all elements of x which are not part of the given needle configuration
are set to zero.

The second constraint is that the used number of needles, i.e. the number of
elements of n which are non-zero, have to be equal to or less than a predefined
number η. This constraint is again written as an inequality:

(
0 1

)
·
(
x
n

)
≤ η, (4.12)

with 01×s being a zero matrix and 11×n being a all-ones matrix. Finally, the MILP
optimization problem reads as:

min(‖x‖0) s.t.


D̃ −Î 0
0 wT 0
N 0 −G
0 0 −1

 ·
xs
n

 ≤

t̃
Q0
0
η

 (4.13)

x ∈ Ω
s ≥ 0

n ∈ {0, 1}n (4.14)
(4.15)

Further simplification using Ã =


D̃ −Î 0
0 wT 0
N 0 −G
0 0 −1

, f̃ =

xs
n

, and g̃ =


t̃
Q0
0
η


yields a problem which is structurally similar to CS, i.e.:

min ‖Wf̃‖0 s.t. Ãf̃ ≤ g̃, (P3)
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where W is the weighting matrix as defined in the previous. Since the needle
optimization problem can be cast into a linear problem, it is again concluded that
the algorithms used for CS can also be applied to solve problem P3.

4.2.3 Relaxation of the ITP problem
As shown within the last two subsections the ITP optimization is structurally
equivalent to the problems well known in the field of CS. The focus was to intro-
duce a sparse optimization technique based on minimization of the l0-norm. Due
to the l0-norm the problem is NP-hard and thus difficult to solve (sec. 2.3.1).
Another popular strategy is to relax the problem by replacing the l0-norm with the
l1-norm. Under certain conditions the solutions retrieved using the l1-relaxation
is with a high probability equivalent to the l0-norm solution [116]. The problem
is found to be:

min ‖Wf̃‖1 s.t. Ãf̃ ≤ g̃ (P4)

Alternatively, the l1-regularization optimization problem reads as follows:

x∗ = arg min
x∈Ω
‖x‖1 + λQ · ‖Q(x)−Q0‖2

2 + λN · ‖N (x)− η‖2
2 (P5)

The l1-relaxation is a good approximation which allows the use of many LP opti-
mization tools or gradient based optimization techniques. However, those methods
are computationally more expensive than greedy algorithms.

4.3 Algorithms for ITP
In the last two sections the concept of sparsity was introduced and ITP problem
was reformulated into a problem that has the same mathematical structure as CS
problems. It is concluded that the algorithms well known in the field of CS can
therefore be used to solve the reformulated ITP problem.
The optimization problem itself can be divided into l0 and l1 optimization prob-
lems which can be tackled with a variety of efficient algorithms, depending on
their principle, as greedy algorithms and numerical algorithms. For the former,
examples are MP, OMP, weak matching pursuit (wMP), and a multitude of vari-
ants thereof [75]. For the latter, examples are interior-point-methods and simplex
methods [104].
Both share that the returned solutions of the CS problem are only approxima-
tions either due to the pursuit strategy or due to relaxation. These approximation
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lead to a huge decrease in optimization time. The golden rule for CS in practice is:

"If it is easy to find a nearly optimal solution, there is no reason to waste a
lot of time and resources to reach the ne plus ultra" [78].

Choosing between the different methods and finding appropriate optimizers
depend on the application. Important factors which have to be considered, are
the complexity of the problem and the required accuracy of the solution.
Within the context of the ITP problems, the domain of all potential solutions
defines the complexity of LDR and HDR problem. Thus, the problem of finding
an effective algorithm is divided into LDR and HDR treatment planning.
This raises the question whether standard CS optimization algorithms can be
used to optimize the ITP problem.
For both methods state-of-the-art optimizers cannot be used due to the restricted
domain of the ITP problem for LDR and HDR ITP. The standard algorithms
assume an unrestricted domain, i.e. x ∈ Rs, which leads to errors when trying to
solve the ITP problem. From experience it is known that using OMP to solve the
ITP inevitably leads to the selection of negative amplitudes when updating the
support and additional selection steps are therefore necessary. Apart from that
the standard algorithm may be inefficient. For example, in LDR treatment plan-
ning it is unnecessary to determine the pseudo-inverse to update the provisional
solution.
Hence, it is decided to develop algorithms for the ITP problem which are inspired
by the state of the art algorithms used to solve the CSP. The focus is to develop
fast and efficient solvers that are tailored to the underlying structure of the ITP
problem. In the following, different algorithms are proposed starting from low
complexity towards more sophisticated methods. The goal is to determine algo-
rithms that allow real-time ITP while achieving the same quality as the state of
the art methods.
For simplicity, the formulation as an unconstrained optimization problem us-
ing the functional representation of the DBOF is used, which was shown to be
equivalent to the matrix notation.

4.3.1 LDR treatment planning without needle optimization
For LDR treatment planning, all novel algorithms are presented in the follow-
ing, tarting with a simple thresholding algorithm towards more complex greedy
algorithms.
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Algorithm 1 LDR thresholding algorithm
Input:
Q(·), s, σ

Initialization:
x = 0

Iteration:
for i = 1 to s do
x̂ = x
x̂i = 1
qi = Q(x̂)

end for
x∗ = shrinkbinmin(q, γ(σ))

Output:
x = x∗, Q = Q(x)

Thresholding

Thresholding is one of the greedy algorithms that can be used for LDR ITP. The
idea is to choose the final dwell-position configuration solely using the first pro-
jection alone.
For the CS-ITP problem, the first projection q can be calculated using s indepen-
dent DBOF iterations, i.e. one per potential dwell-position. The i-th test is given
by:

qi = Q(x(i)) (4.16)
where qi as the resulting DBOF value. In addition, x(i) is a potential solution
vector given by x(i)

j = δij, j ∈ {1, . . . , s}, δij is the Kronecker delta, and s is the
number of potential dwell-positions.
The thresholding can be explicitly computed by using a binary shrinkage operator
which is defined as an element-wise operation:

shrinkbinmin(u, γ) = 1− max(|u| − γ, 0)
|u| − γ

, (4.17)

where u is the input, i.e. the result of a single projection qi, and γ is a threshold.
The subscript min labels that only elements smaller than the given thresholds
are nonzero and the superscript bin imposes a binary solution. For the ITP
problem the threshold depends on the number of desired dwell-positions σ and
on the range of all possible elements in q and is in the following referred to as γ(σ).

A pseudo code of the introduced algorithm is presented in alg. 1 and is henceforth
referred to as "LDR thresholding algorithm (LTA)". The proposed algorithm is
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Algorithm 2 LDR orthorgonal matching pursuit

Input:
Q(·), Q0, s

Initialization:
x(0) = 0, S(0), Ŝ = {1, . . . , s}, k = 0

Iteration:
do

k = k + 1
j∗ = arg minj∈Ŝ\S(k−1) Q(x(k−1) + e(j))
x(k) = x(k−1) + e(j∗)

S(k) = S(k−1) ∪ {j∗}
while Q0 ≤ Q(x(k)) & Q(x(k)) < Q(x(k−1))

Output:
x = x(k−1), Q = Q(x), S = S(k−1)

one of the simplest that can be used for ITP. The final shrinkage operation
requires only a few operations per elements and thus the optimization time is
determined by the time required to evaluate s independent DBOF values.
Note that the LTA assumes that the number of used dwell-positions σ is defined
as an input parameter. Alternatively, the number of used dwell-positions can be
increased until a certain quality of the DBOF is reached.

Matching pursuit inspired algorithm

Other alternatives to tackle the LDR ITP problem are more sophisticated greedy
algorithms. One type of algorithms which is extensively used in the field of image
processing, is matching pursuit and its variants.
The basic strategy of matching pursuit-based algorithms is to construct the solu-
tion iteratively, by selecting one dwell-position per iteration step. In the following,
this is called expansion step. The differences between variations of MP-inspired
strategies are essentially related to the selection of dwell-positions (e.g. wMP) or
to the updated process of the intermediate solution (e.g. OMP). The new dwell-
position at the k-th iteration is chosen such that it minimizes the quality function
Q(·) the most. The index of the new dwell-position is stored as element of the
so-called dwell-position support S. The support containing all potential dwell-
positions is given by Ŝ = {1, · · · , s}. To fit the LDR ITP problem an algorithm,
which is inspired by OMP, is implemented as follows:
Starting with an initially empty solution x(0) = 0 the set of active dwell-positions
is expanded forming an intermediate solution x(k) as well as the intermediate
support S(k) based on the solution x(k−1) of iteration k-1. The new dwell-position

43



4 Materials and Methods

j ∈ Ŝ\S(k−1) is chosen such that it minimizes the quality function according to:

j∗ = arg min
j∈Ŝ\S(k)

Q(x(k−1) + e(j)), (4.18)

whereby e(j) is defined as:

e(j); e
(j)
i =

1, i = j

0, otherwise
,∀i ∈ Ŝ\S(k) (4.19)

To avoid the selection of dwell-positions that are already part of the support S(k)

they are excluded from the search space of the expansion step and thus j ∈ Ŝ\S(k).
This guarantees a binary solution and is an important difference compared to the
strategies MP and wMP. Here, already selected elements can be chosen again to
further improve the objective function.
Finally, the expansion step leads to the complete update x(k) = x∗(k − 1) + e(j∗).
If no e(j∗) is found that decreases the objective function or the quality bound Q0
is reached, the iteration stops.

Since the algorithm is inspired by OMP it is called "LDR orthogonal match-
ing pursuit (LOMA)" and a description in pseudo code is given in alg. 2. When
compared to alg. 1, an improvement in accuracy is expected at the expense of
growing complexity. To obtain a σ sparse solution, where σ is the number of
used dwell-positions, a total of ∑l

i=0(s− i) = 1
2(2s− l)(l + 1) evaluations of the

objective function have to be completed.

LDR subspace pursuit algorithm

The main drawback of LOMA (alg. 2), the number of dwell-positions grows contin-
uously. This may yield suboptimal solutions with respect to sparsity and DBOF
value. In CS, methods as SP or CoSaMP are able to overcome these limitations.
Both methods are capable to identify erroneously chosen components and exclud-
ing their contribution from the solution found so far. Resulting in guaranteed
improvement in accuracy [84, 83].
Therefore, the ideas of the used mechanisms for the removal of on-support ele-
ments are tailored to the binary LDR ITP problem. The following strategy is
implemented.
The algorithm starts again with an empty support S(0) = ∅ and with an initial
solution x(0) = 0. During each iteration, the same expansions step as used in alg. 3
is performed to form an intermediate solution x(k) and intermediate support S(k).
In contrast to LOMA, a reduction step follows directly after the expansion. In this
reduction step, the one element r∗ from the previously chosen dwell-positions is
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Algorithm 3 LDR subspace pursuit algorithm
Input:
Q(·), Q0, s

Initialization:
x(0) = 0, S(0), Ŝ = {1, . . . , s}

Iteration:
do

k = k + 1
j∗ = arg minj∈Ŝ\S(k−1) Q(x(k−1) + e(j))
x(k) = x(k−1) + e(j∗), S(k) = S(k−1) ∪ {j∗}
r∗ = arg minr∈S(k−1) Q(x(k) − e(r))
if Q(x(k) − e(r∗)) ≤ Q(x(k−1)) then
x(k) = x(k−1) − e(r∗), S(k) = S(k−1)\ {r∗}

end if
while Q0 ≤ Q(x(k)) & Q(x(k)) < Q(x(k−1))

Output:
x = x(k−1), Q = Q(x), S = S(k−1)

removed that reduces the objective function the most and simultaneously guaran-
tees that after the removal the obtained objective function value is still less than
the previous one, i.e.:

r∗ = arg min
r∈Sk

Q(x(k) − e(r)) s.t. Q(x(k) − e(r)) ≤ Q(x(k−1)) (4.20)

If the reduction step does not improve the objective function value its result is
omitted. The iteration stops either if the quality bound Q0 is reached or the
objective function cannot be further reduced2.
A pseudo code of the introduced algorithm is presented as "LDR subspace pur-
suit (LSUP)" (alg. 3). To obtain a σ sparse solution at least
s+∑l

i=1{(s− i) + (i− 1)} = l(s− 1) + s evaluations of the objective function
have to be carried out.

4.3.2 LDR treatment planning including needle optimization
For needle optimization problem as stated in eq. (2.16) the previously discussed
algorithms can be used without any restrictions. However, due to the realization
of the greediness, i.e. inability to correct previous steps, the accuracy of LTA and
LOMA might not be sufficient.
The focus in the following is to develop efficient needle optimization algorithms.

2This algorithm was published under the acronym "MPIP" by Guthier et al. in 2015 [35].
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Algorithm 4 LDR split thresholding algorithm
Input:
Q(·), s, n, η

Initialization:
S(0) = {1, . . . , s}, S(f) = ∅

Iteration:
x∗ = arg minxQ(x)
q = Q(Cx∗)
u = sort(q)
for i = 1 to n do
S(f) = S(f) ∪Υui

end for
x∗ = arg minxQ(x|S(0)\S(f))

Output:
x = x∗, Q = Q(x)

The main principle is to decouple needle from dwell-position optimization for
needle optimization in LDR ITP.

Split thresholding for LDR needle optimization

As for the LDR ITP, the simplest algorithm to determine a final needle configu-
ration is thresholding.
The idea is to obtain an initial dwell-position configuration using one of the
discussed algorithms 1-3 and applying thresholding to find a final needle config-
uration. Afterwards, the obtained configuration is used and the final solution is
obtained via re-optimizing the dwell-position configuration with respect to the
new subset of dwell-positions.

The proposed algorithm is named "LDR split thresholding algorithm (LST)"
and its strategy is described in the following:
It starts with a full dwell-position support S(0) = {1, · · · , s}, meaning that all
possible dwell-position points are considered for optimization. An initial solution
x∗ is obtained by minimizing:

x∗ = arg min
x
Q(x) (4.21)

which can be optimized using alg. 1-3. Subsequently, the contribution qi of needle
i to the final objective function is evaluated according to:

qi = Q(Cx∗), (4.22)
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where C is a n× s matrix where the elements are given by:

Cij =

0, ∀j ∈ Υi

1, otherwise
(4.23)

As defined ine eq. (2.9),Υi is the index set of dwell-position points at needle i.
From this, the η largest elements, where η is defined as the maximum number of
needles, are selected with the help of a sorting algorithm referred as sort. The
result is assumed to be a set of indices describing the new arrangement. These
form the final needle support N (f). The dwell-position support that constrains
the optimization can be obtained with S(f) = ⋃

i∈N (f) Υi. Finally, the solution
can be obtained via:

x∗ = arg min
x∈ΩLDR

Q(x) s.t. xi =

0, ∀i ∈ S(0)\S(f)

1, oterhwise
(4.24)

For readability this problem (eq. (4.24)) is henceforth used as

x∗ = arg min
x
Q(x|S̃), (4.25)

whereby S̃ = S(0)\S(f) for the given problem. A pseudo code of this algorithm is
presented in alg. 4. Since in total only n additional evaluations of the objective
function are necessary, the runtime is comparable to that of LTA or LOMA algo-
rithms. In addition, similar to LTA the number of used needles η can be increased
until a certain quality is reached.

Splitting inspired subspace pursuit for needle optimization

Another way to tackle the needle optimization problem for LDR is a matching
pursuit inspired strategy incorporating the splitting idea for needle minimization.
Therefore, the proposed algorithm is based on alg. 3 and is extended to iteratively
minimize the objective function with respect to dwell-position - and, if necessary,
needle - configuration.
The algorithm starts with an empty dwell-position support S(0). Furthermore,
each element of the support can be related to a needle forming a needle support
N (0). At the beginning this support is again empty. During each iteration k,
the algorithm performs the following steps: Let x(k−1) , S(k−1), and N (k−1) be
the solution and support vectors at iteration k − 1. Similar to LSUP, during the
expansion and reduction step an intermediate solution x(k) = x(k−1) +e(j∗)−e(r∗)

is formed. In addition, the support is updated according to the indices j∗ and
r∗ where the given index is added or removed, respectively. Considering N (x),
a function that returns the indices of the used needles, an intermediate needle
support N (k) = N (x(k−1)) is obtained. If, however, the number of elements of
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Algorithm 5 LDR splitting inspired subspace pursuit algorithm
Input:
Q(·), N (·), Q0, s, η

Initialization:
x(0) = 0, S(0) = ∅, Ŝ = {1, . . . , s}, N (0) = ∅

Iteration:
do

k = k + 1
j∗ = arg minj∈Ŝ\S(k−1) Q(x(k−1) + e(j))
x(k) = x(k−1) + e(j∗), S(k) = S(k−1) ∪ {j∗}
r∗ = arg minS(k−1) Q(x(k) − e(r))
if Q(x(k) − e(r∗)) ≤ Q(x(k−1)) then
x(k) = x(k−1) − e(r∗), S(k) = S(k−1)\ {r∗}

end if
N (k) = N (x(k))
if ‖N (k)‖0>η then

c∗ = arg minQ(x|c)
S(k) = S(k)\c∗
for i in Υc∗ do
x

(k)
i = 0

end for
N (k) = N̂ (x(k))

end if
while Q0 ≤ Q(x(k)) & Q(x(k)) < Q(x(k−1))

Output:
x = x(k−1), Q = Q(x), S = S(k−1)

N (k) exceeds the maximum number of needles an additional reduction step is
performed. In this step the one element c∗ that reduces the objective function the
most is removed to from the given needle configuration S(k−1):

c∗ = arg min
c∈N

Q(x) s.t. xi =

xi, ∀i ∈ S(k)\c
0, otherwise

(4.26)

This leads to the final update of the needle support N (k) = N (k)\c∗ and dwell-
position support S(k) = S(k)\Υ∗c . For readability, eq. (4.26) is henceforth used
as:

c∗ = arg minQ(x|c) (4.27)
In addition, all elements i of the update x(k) which are not a part of the final
support are set to zero. The iteration continues until either the quality bound Q0
is reached or the objective function value cannot be further reduced.
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The presented algorithm is summarized using pseudo-code in alg. 5 and is referred
as "LDR splitting inspired subspace pursuit algorithm (LSPA)". The complexity
is almost the same as for LSUP plus the additional objective function evalua-
tions. For a single needle reduction step this adds η additional objective function
evaluations.

4.3.3 HDR treatment planning
The HDR ITP without needle optimization problem P2, i.e. problem with domain
Ω = {R+}, can be solved with standard non-negative CS solvers. Examples are
fast non-negative orthogonal matching pursuit and the reformulation as a BP
problem [79, 117]. In addition, the standard problem can be efficiently solved using
an LP algorithm. Thus, the CS inspired approach would not yield a beneficial
improvement with respect to calculation time.
However, there is no efficient solver for problem P3 and related problems. The
CS inspired approach could enable fast and efficient needle optimization. As
demonstrated in the previous section, the decoupling of needle and dwell-time
selection3 leads to techniques which are less complex than approaches like HIPO
or MILP.
Therefore, the goal of the following section is to introduce new optimizers that
allow fast needle optimization by combining the discussed approaches.

Thresholding

The first and easiest method for needle optimization is a thresholding approach. In
contrast to LDR treatment planning, the focus is on needle selection rather than
dwell-position selection. Hence, the thresholding is applied to the accumulated
dwell time per needle. Needles with a large contribution to the overall treatment
time have a high influence to the final plan quality and thus have to be chosen to
form the final needle configuration.
The algorithm first optimizes the standard HDR ITP problem with all needles
and dwell-position active. This forms an initial approximation
x(0) = arg minxQ(x). With this solution, the accumulated dwell-time x(acc)

i per
needle with index i can be calculated according to x(acc)

i = ∑
j∈Υi

xj. Afterwards,
the final needle configuration is determined using a shrinkage operator to select η
needles with the largest contribution to the treatment time given by:

shrinkmax(u, γ(η)) = u ·max(|u| − γ(η), 0)
|u| − γ(η) (4.28)

3Instead of optimizing a dwell-position configuration the dwell-times connected to dwell-
positions are optimized in HDR.
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Algorithm 6 HDR thresholding algorithm
Input:
Q(·), s, n, γ

Initialization:
S(0) = {1, . . . , s}

Iteration:
x∗ = arg minx(Q(x))
for i = 1 to n do
x

(acc)
i = ∑

j=Γi xj
end for
x(acc) = shrink(x(acc), γ)
S(f) = S(0)

for i = 1 to n do
if x(acc)

i == 0 then
Sf = Sf\ΥN (f)

i

end if
end for
x∗ = arg minxQ(x|S(0)\S(f))

Output:
x = x∗, Q = Q(x∗)

The shrinkage is an element-wise operation, where the threshold γ(η) depends
on the demanded sparsity of the needle configuration, i.e. maximum number of
needles η. Elements which are greater than zero are chosen to form the final
subset of needles represented by the needle support N (f). From this all possible
dwell-positions are selected according to S(f) = ⋃

i∈N f Υi. The final dwell-times
x(f) are obtained by solving the standard CS ITP (P4) with the constraint that
all elements of x that are not part of support S(f) equal zero.

A summary of the presented algorithm named "HDR thresholding algorithm
(HTA)" as pseudo code is presented in alg. 6. The proposed method has the
advantage that in order to get the final result only two BP-inspired problems have
to be solved. The complexity is determined by the complexity of the BP problem,
i.e. relaxation as an LP problem, which is proportional to the cube of the number
of free variables. Since only a small subset of all possible dwell-positions are
considered for optimization, the contribution of the second optimization step to
the overall execution time is in most cases negligible. A good estimate is that we
consider only 10% of all available dwell-positions.
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Needle Selection

Another approach is similar to alg. 5. Its principle is a greedy heuristic that decou-
ples needle from dwell-time optimization. However, for HDR ITP the dwell-times
have to be updated during each expansion step, which leads to a more complex
algorithm. To reduce the number of updates, more than one dwell-position is
included into the support to form the intermediate solution per iteration step.
Those elements are selected using a shrinkage operation. In contrast to thresh-
olding, the shrinkage operation is performed during each iteration and thus the
algorithm also resembles the iterative-shrinkage methods for l1-optimization prob-
lems. Therefore, the algorithm is a union of two commonly used techniques in CS.

In detail, the above mentioned approach is implemented as follows: The algo-
rithm starts with an empty support S(0) = ∅ and the initial solution is x(0) = 0.
During the expansion at iteration k − 1 an estimation of the amplitudes zj of all
dwell-positions j which are not part of the support S(k−1) has to be performed.
This is necessary because the contribution of single dwell-positions to the final
objective function value can only be calculated with a valid estimation. The
estimation is the projection of the contribution of a single dwell-position to the
residual, i.e. difference between actual and prescribed dose:

z = (DPTV )T · (tPTVL −DPTV x(k−1)), (4.29)
whereD is the dose dictionary and t is the vector representing the lower threshold
(i.e. prescribed dose). In addition, the superscript PTV labels that only the PTV
is considered for the intermediate amplitude estimation. Only the PTV is used in
order to reduce the complexity of this intermediate step. Now, new dwell-positions
are selected according to their objective function values Q(x(k−1) +e(j) ·zj). From
this the κ smallest elements j∗ are chosen to from the intermediate support S(k)

and the amplitudes are updated according to:

x(k) = arg min
x
Q(x|S\S(k)) (4.30)

Based on this solution, the needle support N (k) is updated. If the number of
used needles exceeds the number of maximally allowed needles, a reduction step
is performed. In this step, out of all needles inside support N (k) the needle that
has the largest contribution to the final objective function value is removed. For
a needle j, this leads to the following optimization problem:

x(k) = arg min
x
Q(x|S(k)\Υj

) (4.31)

This reduction step continues until the number of selected needles is equal to the
number of maximally allowable needles. The iteration stops if either the quality
bound is reached or the objective function cannot be reduced further.
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Algorithm 7 HDR splitting inspired subspace pursuit algorithm
Input:
Q(·), Q0, n, η, κ

Initialization:
x(0) = 0, S(0), Ŝ = {1, . . . , n}, N (0) = ∅, N̂ (0) = ∅

Iteration:
do

k = k + 1
z = (DPTV )T · (tPTVL −DPTV · x(k−1))
for j in Ŝ\S(k−1) do
qj = Q(x(k−1) + zj · e(j))

end for
q = shrinkbinmin(q, γ(η))
u = sort(q)
for j = 1 to κ do

S(k) = S(k) ⋃uj
end for
x(k) = arg minxQ(x|S(0)\S(k))
N (k) = N̂ (x(k))
while ‖N (k)‖0 > η do

for j in N (k) do
x′(j) = arg minxQ(x|S(k)\Υj

)
qj = Q(x′(j))

end for
j∗ = arg minj∈N (k) q

S(k) = S(k)\Υj∗

x(k) = x′(j)

N (k) = N̂ (x(k))
end while

while Q0 ≤ Q(x(k)) & Q(x(k)) < Q(x(k−1))
Output:
x = x(k−1), Q = Q(x), S = S(k−1)

A summary using pseudo code is presented as alg. 7. The algorithm is named
"HDR splitting iterative subspace pursuit algorithm (HSIS)". The complexity of
the algorithm is determined by the complexity of the LP problem. Hence, the
overall optimization time depends on the time needed to solve the different LP
sub-problems.
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4.3.4 Generalized algorithm for treatment planning
So far, all introduced algorithms are especially designed for either solving LDR or
HDR problems. In this section, a general algorithm is proposed that can be used
to solve both ITP needle optimization problems.

Split iterative shrinkage algorithm for needle optimization

The main idea is based on the reformulation of the ITP into a l1-regularization
optimization problem as discussed in sec. 4.2. Even though those problems are
usually difficult to solve, it has been shown that there are very efficient solvers for
CS problems.
Usually, when iteratively solving generalized constraint optimization problems
in the form of eq. (2.38) the Lagrange multiplier increases sequentially. But if
λk →∞, the problem arises that the condition number of the Hessian approaches
infinity. This makes it impractical for fast iterative methods. However, there are
techniques to overcome this issue by using sequences of unconstrained problems.
Algorithms to tackle this problem efficiently are iterative-shrinkage or based on
the split Bregman iteration scheme.
The idea of splitting is used to optimize the brachytherapy ITP problem. This
yields an iterative algorithm, which is implemented as follows:
In contrast to all algorithms mentioned before, the developed method starts with
all dwell-positions active and thus N (0) = I and S(0) = ⋃

i∈N(0) Υi. In addition,
an initial solution x(k) is obtained according to optimization problem P2.
During each iteration, a needle reduction step and an optimization of dwell-times
are executed consecutively. Let x(k−1) be the solution after iteration k − 1 with
related supports N (k−1) and S(k−1).
In the reduction step the needle that has the least influence to the overall treatment
time is erased. The accumulated dwell-times per needle j ∈ N (k−1) can be calcu-
lated as x(acc) = Nxk, whereN is defined according to eq. (4.11). The new needle
configuration is determined using a shrinkage operation x(acc) = shrink(x(acc), η),
where only η needles with largest accumulated dwell-times are kept and thus form
the intermediate supports N (k) and S(k). In addition, the parameter η depends
on the number of iteration and is therefore termed η(n − k). Subsequently, the
dwell-times are updated according to the sub-problems P2 for LDR and HDR.
Those decoupled problems can be solved using the presented algorithms for LDR
or the BP approach for HDR. In addition, an alternative approach for the HDR
sub-problem is discussed in the following section.
The iteration stops, if either the desired quality Q0 is achieved or the number of
needles inside the support N (k) is equal to the number of maximally allowable
needles.
The presented algorithm is referred as "split iterative shrinkage algorithm (SISA)"
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Algorithm 8 Split iterative shrinkage algorithm
Input:
Q(·), Q0, s, n, η

Initialization:
S(0) = {1, . . . , s}, N (0) = {1, . . . , n}, k = 0, l = n

Iteration:
x(0) = arg minx∈ΩQ(x)
do

k = k + 1
x(acc) = N · x(k)

x(acc) = shrink(x(acc), γ(n− k))
N (k) = N (k−1)

for i in N(k−1) do
if x(acc)

i == 0 then
S(k) = S(k)\ΥN (k)

i

N (k) = N (k)\i
end if

end for
x(k) = arg minx∈ΩHDR Q(x) s.t. xŜ\S(k) = 0

while n− k > η & Q0 ≤ Q(x(k))
Results:
x = x∗, Q = Q(x)

and summarized using pseudo code in alg. 8. Since the needle reduction step is of
low complexity, the optimization time is determined by the time needed to solve
the n− η sub-problems.

Acceleration using gradient techniques for HDR

Until now, the LP formulation of the objective function has been considered for
the optimization of dwell-times. However, by introducing a smooth approxima-
tion of the Heaviside step function θ the optimization problem (eq.(2.5)) can also
be tackled with various classic iterative optimization-algorithms, e.g. Steepest-
Descent or conjugate gradient methods.
A surrogate is the logistic function θ(y) = 0.5(1 + tanh(ς · y)). It leads to a
smooth surrogate of the stepping function, where ς represents the steepness of the
curve. Assuming that DBOF Q(x) only consists of the lower bound of the PTV,
(eq. (2.15)) can be rewritten as:

Q̃(x) = w · {1 + tanh [ς · (t−D·x)]}T · {t−D · x}, (4.32)
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where w is the weighting factor, D the dose dictionary, and t is a given thresh-
old, i.e. the prescribed dose. The advantage of this formulation is that Q̃(x)
is continuously differentiable. Assuming Q̂(x) = ‖x‖1 + λQ · ‖Q̃(x) − Q0‖2

2 the
l1-regularized optimization problem is found to be:

x∗ = arg min
x∈Ω

Q̂(x), (4.33)

where the gradient of the objective function is given by:

∇Q̂(x) = 1 + λQ · (Q̃(x)−Q0)
·
{
ς ·DT · sech(t−D · x)� sech(t−D · x)� (t−D · x)

+DT · [1 + tanh (ς · (t−D·x))]
}
, (4.34)

where � labels element-wise vector multiplication. Taking advantage of the gra-
dient, the problem can be efficiently solved using the Limited-memory L-BFGS
algorithm. This algorithm provides an extremely fast convergence rate and can
be used as a substitute of the more extensive interior-point algorithm.

4.3.5 Summary - treatment planning
Different optimizers to tackle LDR and HDR ITP problems have been introduced.
Starting from simple thresholding algorithms towards more sophisticated greedy
heuristics.
They offer improvements either in accuracy, complexity, or both. It is assumed
that all discussed strategies are faster than the state of the art methods. However,
due to greedy their nature, all algorithms return approximations, where the con-
vergence to a global optimum cannot be guaranteed. An overview of all developed
algorithms with the expected performance is presented in tab 4.2.
The question raises whether it can be proven that the algorithms perform reliably
for ITP. This will be answered by a series of comparative experiments.

4.4 New objective functions
Up to now, the ITP problem was solely subjected minimizing the DBOF. However,
recently more effort has been made to develop more practical objective functions.
For example, during intra-operative treatment planning the DBOF parameters
have to be tailored to the patients anatomy. These parameters are considered
to be not intuitive. Thus finding the right parameter set usually takes several
attempts. A time-consuming trial-and-error method to determine the right set is
not suitable for intraoperative planning.
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Table 4.2: Overview of the developed CS inspired algorithms. ’x’ marks the treat-
ment modality for which it can be used. ’(x)’ denotes that the algorithm
can be used, but is not specially designed for the given problem. The
expected efficiency and quality is rated with the number of ’+’.

Algorithm LDR HDR needle optimzation efficiency quality
LTA x +++ +
LOMA x (x) ++ ++
LSUP x (x) + +++
LST x x +++ +
LSPA x x + +++
HTA x x +++ +
HSIS x x ++ ++
SISA x x x + +++

As a consequence, the goal is either to have optimizers that are capable of real-
time planning (previous section), more realistic models or both, which allows a
more intuitive steering of the plan quality.

Even though the DBOF is the basis of the discussed reformulation, it is assumed
that all objective functions having the same structure can also be optimized with
the presented methods.
Since the contribution of organ ν to the total DBOF can be subdivided into the
weighted sum of the product of two independent functions fν(x) and gν(x), a
general formulation can be obtained:

Q(x) =
∑
ν

wν · θ(Dν · x− tν) · (Dν · x− tν) =
∑
ν

wν · fν(x) · gν(x) (4.35)

Where fν(x) is a function that evaluates whether a certain objective is fulfilled,
e.g. the stepping function or its surrogates. In addition, gν(x) is a measure of the
deviation between objective and achieved value. If necessary for the optimization,
the gradient is given by:

∇Q(x) =
∑
ν

wν · (f ′ν(x) · gν(x) + fν(x) · g′ν(x)) (4.36)

In the following, two different objective functions are introduced that have the
mentioned structure. Firstly, a function incorporating criteria based treatment
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planning and secondly, a biological model based objective function. To validate
those they are later compared against competitive methods.

4.4.1 Dosimetric criteria based objective function
A treatment plan is assumed to be clinically acceptable if certain dosimetric cri-
teria are fulfilled. The formulation of optimizing those leads to MILP problems
which are thought to be computationally expensive and hence not feasible for
treatment planning.
However, when considering the general formulation of the ITP an equivalent ob-
jective function can easily be derived. Assuming that an optimal plan meets all
planning criteria, this leads to the following penalty terms:

pκ1(x) = θ
(
Cκ1(x)− tκ1

C

)
·
(
tκ1
C − Cκ1(x)

)
, (4.37)

and

pκ2(x) = θ
(
tκ2
C − Cκ2(x)

)
·
(
tκ2
C − Cκ2(x)

)
, (4.38)

where C(x) is the value of the considered criterion given the solution x and tC are
thresholds for the dosimetric criteria. The different criteria are labeled κ1 and κ2
denoting the upper and lower bounds, respectively. Using the recommendations
of the AAPM κ1 = {V 150, UD10, UD30, RD0.1cc, RD02.0cc} for LDR and
κ1 = {V 150, UD0.1cc, UD02.0cc, RD0.1cc, RD02.0cc} for HDR. Whereas κ2
is equal to V 100 for both methods. In analogy to the DBOF, the contribution
of values C(x) that meet the criteria are suppressed using the Heaviside step
function. Finally, the criteria based objective function (CBOF) is a weighted sum
of the penalty terms:

QDB(x) =
∑
κ1
wκ1 · pκ1(x) + wκ2 · pκ2(x) (4.39)

This formulation is equivalent to the general formulation (eq. 4.35) and thus, it is
assumed that the CBOF can also be optimized using the novel optimizers.
When compared to existing methods, the combination between the developed
algorithms and the new objective function would for the first time allow dosimetric
criteria based treatment planning with needle optimization.

4.4.2 Biological model based treatment planning
The general aim of radiation therapy is a high TCP while at the same time reduc-
ing the NTCPs. Both are usually described using biological models that predict
the response of the tissue. The concept of taking biological consequences into
account for plan evaluation rather than only considering dosimetric criteria is well
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established [61, 118, 119, 120, 121].
However, due to the complexity of biological models, they are exclusively con-
sidered for evaluation purposes. Since with novel optimizers, a major increase in
speed is expected, biological based treatment planning may be in reach. There-
fore, the question raises whether biological treatment planning can be formulated
such that it has the same structure as eq. (4.35).
Assuming, for a given plan x the TCP and NTCP can be determined using the
function P(x). In addition, the objectives are to minimize the distance to a de-
sired TCP specified by tκ3

P and the distance to an acceptable NTCP defined by tκ4
P .

The superscript κ labels what organs are considered for TCP and for NTCP cal-
culations. For prostate brachytherapy, κ3 = PTV and κ4 = {urethra, rectum}.
This leads to two different constraint functionals, which are given by:

pκ3 = θ
(
tκ3
P − Pκ3(x)

)
·
(
tκ3
P − Pκ3x)

)
(4.40)

and

pκ4 = θ
(
Pκ4(x)− tκ4

P

)
·
(
Pκ4(x)− tκ4

P )
)
. (4.41)

Finally, the biological based objective function (BBOF), taking all constraints into
account, is the weighted sum of the individual penalty functions:

QBB(x) = wTCP · pTCP (x) +
∑
κ4
wκ4 · pκ4(x) (4.42)

Due to its construction the biological based ITP problem can be optimized with
the developed CS inspired solvers. Even though the BBOF is designed to cope
with biological responses and is thus expected to be more realistic, it should be
evaluated whether the gain in quality compensates an increased optimization time.

4.5 The treatment planning system
The novel ITP system is explained in detail in the following. Although the main
focus of the system is interstitial brachytherapy, it should be flexible enough to
be extended for different treatment modalities in future.

4.5.1 Details of the ITP
The ITP was implemented in Matlab R© R2013a (Matlab) [122] using an object
oriented programming concept. The system is designed to run on Mac OS X and
Windows.
To allow the communication with standard software used in clinical routine the
system provides a complete DICOM support. This includes import and export
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of treatment plans and image data obtained via computed tomography, magnetic
resonance imaging and ultrasound.
The user can choose between predefined optimization settings or adapt them ac-
cording to the particular needs. For different brachytherapy sources, an importer
is available that is able to handle the calibration data provided by the vendors.
For dose calculation, the code is based on AAPM’s TG-43 recommendations as
explained in sec. 2.2.2. The calculation accuracy in terms of the mean squared
error was found to be (0.9 ± 1.1) × 10−4 with a minimum of 5.3 × 10−6 and a
maximum of 3.5 × 10−3 when compared to the quality assurance files available
from the vendor.
Furthermore, the system provides complete pre- and post-processing of the data.
For all generated plans, isodose lines can be obtained or DVHs generated. In
addition, plans can be analyzed by calculating COIN, EUD, TCP, NTCPs, and
dosimetric criteria.
From initial DICOM files the volume of interests (VOIs), needles, and if available
source information are extracted and stored in particular classes VOIs, Needles
and Source. Given these classes the necessary pre-processing, i.e. generation
of dwell-positions and dose points, can be performed. Subsequently, the dose
dictionary can be calculated. Together with the parameters describing the used
objective function and/or biological models the dictionary initializes a class called
Organ. After optimization, the generated plan is stored as a structurer called Plan
and the necessary post-processing is performed.
Using this modular class structure with well-defined interfaces, the system is highly
adaptable and can easily be improved and extended in future. A flow diagram
of the class structure is presented in fig. 4.1. For example by interchanging the
dose-calculation engine of the source a Monte-Carlo based ITP is possible without
the need for modification of the remaining modules.
The ITP system can either be used script based (fig. 4.2), which allows to perform
automatic testing, or controlled using a GUI (fig. 4.3). The script-based example
shows a LDR treatment planning for one representative patient. As source, the
Amersham 6733 source description is used. The settings, e.g. sampling densities,
source strength, and DBOF parameters are retrieved from the DICOM file. After
optimization using LOMA as the optimizer, the generated plan is analyzed and
exported as a new plan.
All computations are performed on a 2013 MacBook Pro using an Intel R© CoreTM

i7-3829QM CPU with 2.7GHz and 8GB RAM. The operation system was OS X
10.8.4.

4.5.2 Implementation of the algorithms
For treatment planning, all novel solvers as well as the state of the art optimizers
previously described have been implemented. The implementations itself consist
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VOIS Needles Sources

Dictionaries

Organs

Optimizer

DICOM

Settings

DICOM

Plan

Preprocessing

Postprocessing

Figure4.1:Flowdiagramoftheclassstructure.Thediagramshowstheevolving
classstructurefromtheinputofaDICOMfiletotheoutputofthe
finalplanstoredagainusingtheDICOMformat.
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Figure4.2:Anexampleofthe Matlabscripttooptimizetheplanofonesingle
patientwithLOMA.

ofthreedifferentprogramminglevels: Matlab,Mex-file,andC++.
The Matlablevelisusedtotestthealgorithmsandtoanalyzethetimecom-
plexityofeachalgorithm.Afterwards,time-criticalstructuresareidentifiedand
re-implementedinC++.ThecommunicationbetweenC++andMatlabisreal-
izedusingMex-files.ThisenablestheuseofC++routine,asiftheyarebuilt-in
functionofMatlab.
ForC++,eitherexistingoptimizationlibrariesareusedoronesthatarespecially
designedforthealgorithmsareimplemented.
ForsolvingthedifferentLPs,aninterfaceforIBMILOGCPLEXOptimization
Studioisincorporated.CPLEXwaschosensinceitperformsbestwhencompared
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Figure4.3:ThegraphicaluserinterfaceofthenovelITP.Theexampleshowsthe
DVHs(upperleft),atransversalslice(upperright),aplanreport
(lowerleft)andanoverview(lowerright)foraplanobtainedwith
LOMA.

tootherlibrariessuchasGLPK,LPSOLVE,CLP,orGUROBI[123].ForLDR
ITP,thiswasalsoconfirmedbyGuthieret.alin2014[28].

Furthermore,tosolveunconstrainedoptimizationproblemstheALGLIB
(www.alglib.net,SergeyBochkanov)libraryisused.ALGLIBischosensincewhen
comparedtootherexistinglibraries,e.g.GNUScientificLibrary(GSL)itshows
abetterperformance.
Toadditionallygainperformance,theStreamingSIMDExtensions(SSE)instruc-
tionsetisused. Thisallowsthatthesameoperationisperformedonmultiple
dataandthusincreasesthefloating-pointoperationspercycle.SSEleadstoa
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Figure4.4:ThedifferentprogramminglevelsofthedevelopedITP.

theoreticalaccelerationoftheevaluationoftheobjectivefunction,foragivendose
distribution,byafactoroffour.
Tosummarize,forthefinalversionsoftheoptimizersIPSA,LTA,LOMA,LSUP,
LST,andLSPAhighlyefficientC++basedimplementationsincorporatingSSE
areused. TheunconstrainedsubproblemsduringtheiterationsofHIPOand
SISAaretackledwithLBFGSoptimizersprovidedbytheALGLIBlibrary.In
addition,thedifferentLPproblemsaresolvedwiththeCPLEXOptimization
Studio.Aschematicdrawingofthedifferentlayersispresentedinfig.4.4.
Whencomparingthere-implementedversionofIPSAandHIPOitbecameclear
thattheyaremoreefficientthantheimplementationsofthecommerciallyavail-
ableTPSOncentra,ElektaAB.Aninitialbenchmarkingshowedthatthere-
implementedversionsofIPSAandHIPOareafactorof(5.3±4.2,range2.1±13.6)
and(3.9±2.3,range2.0±8.8)faster.Simultaneously,nostatisticallysignificant
differenceinretrievedplanquality(p=0.36)isobserved.
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4.6 Patient study
To test the newly developed optimizers, the comparative studies are explained
in detail. All necessary parameters and settings which are used to carry out the
benchmarking, are presented. The retrospective studies for benchmarking are
introduced.

4.6.1 Patient data sets and optimization settings
For this study, ten patient cases where retrospectively examined. These are all
available patient cases at the University Medical Center of Mannheim. The pro-
static volume ranged from 43.0 cm3 to 77.0 cm3. A detailed description containing
the volume of the prostate gland V and source strength Sk is given in appendix
tab.A.2.

Contouring and dose prescription

For the PTV for LDR brachytherapy, the visible contour of the prostate plus a
margin of 3mm was used to define the clinical target volume [10]. The planning
target volume is equal to the CTV. Further margins do not need to be taken
into account since the 3mm margin already covers systematic errors, e.g. seed
displacement and seed migration and the presence of edema directly after the
intervention. The dosimetric criteria used are the recommendations of the AAPM
TG-143 and are summarized in tab.A.3.
The prescribed dose varies between 120Gy and 140Gy and was assigned by ex-
perienced radio-oncologists. In general, the recommendation on dose prescription
from AAPM TG-143 is 140Gy for 125I [10]. The used LDR seeds are the Amer-
sham EchoSeed 6733.
For HDR treatment planning, the CTV is defined as the prostate capsule without
any margins around its surface. This is in accordance with the recommendations
of the American Brachytherapy Society for HDR prostate therapy for tumor stages
T1c-T2. Again, the CTV is set as PTV. The dose prescription is assumed to be
10.5Gy per fraction, with a total number of three fractions for all patient cases.
Since the University Medical Center of Mannheim has no experience with HDR
brachytherapy, a set of parameters found in literature was used. In addition, those
parameters were discussed with colleagues from the Würzburg Medical Center
who have an expertise in HDR brachytherapy. For plan evaluation, the recom-
mendations from the GEC ESTRO where used [60]. A summary can be found in
tab.A.3. The HDR source is assumed to be the 192Ir-HDR Nucletron mHDR-v2
source commonly used with the MicroSelectron after-loader from Elekta AB,
Sweden. A summary of the prescribed doses, number of fractions, and source
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strength can be found in appendix tab.A.2.

Point sampling

For both modalities, the generation of dose-points is exactly. The VOIs are sam-
pled from a uniform grid with a spacing of 2.5mm. In addition, the contours are
sampled at a resolution of 2mm. With those assumptions, the number of dose
points is between 5286 and 7769.
In contrast to DBOF, DCOF and BBOF based ITP considers only the dose-points
inside the VOI for optimization. The dose points are generated using a random
sampling with sampling density of 50 cm−3 according to the uniformly dose-point
generation algorithm from Lahanas et al. [124]. This leads to a total number of
dose points ranging from 14, 367 to 23, 710.
For dwell-positions, the set of available needles is sampled with a resolution of
4.5mm for LDR and 2.5mm for HDR. An additional margin of 2.0mm is sub-
tracted from the surface in LDR in order to ensure that the seeds are inside the
prostate capsule. A margin of 5mm is added to the caudal end of the prostate in
HDR to account for the fact that dwell-points can also be located outside.

Objective functions

The DBOF based plans for LDR and HDR are optimized using the standard op-
timization parameters summarized in tab.A.5. Those are the de-facto standard
settings in clinical routine at the Mannheim University Medical center. They
are recommended by the vendor of the commercial planning system Oncentra
Prostate, Elekta AB, Sweden. This parameter set delivers applicable clinical plans
with respect to the planning criteria for almost all patient cases.
The cost per needle for IPSA, LOMA, and LSUP for LDR treatment planning was
set to λ > 7.5, which was determined in the following way: For each patient, plans
with λ ∈ [0, 20] and a step size of 0.5 were optimized using IPSA. The resulting
configuration was analyzed qualitatively as a function of λ. As an example the
DVHs and the number of used needles as a function of λ for one patient are exem-
plary presented in fig. 4.5. This shows that for λ = 7.5 the number of used needles
is almost constant. In addition, comparing the resulting DVHs between λ = 0
and λ = 7.5 only a slight deviation is visible, which is clinically not significant.
Thus, this seems to be a viable compromise between number of used needles and
plan quality.
For dosimetric criteria based optimization, the constraints are extracted from the
recommendations for the given dosimetric criteria for the different modalities [60,
10]. The weights for the new objective function are taken from recommendations
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Figure 4.5: Number of used needles as a function of the cost per needle penalty
λ for all patients (a). Resulting DVHs for the different cost per nee-
dles(b). The shadowed area shows the range of the DVHs for all pa-
tients. Exemplary the DVHs for patient 1 for λ = 0 and λ = 7.5 are
shown [35].

from HIPO. This was chosen as a reference since the used weighting for prostate,
urethra, and rectum provides a good compromise between tumor coverage and
sparing of OARs.
Furthermore, for biological based optimization, the desired TCP for LDR and
HDR is assigned to be 95% and 100%. These thresholds are obtained by analyz-
ing the estimated biological outcome of the initially applied plans as depicted in
fig. 4.6. Therefore, the TCP for LDR ITP is set to 95% to achieve a compromise
between tumor control and occurrence of side effects. In contrast, for HDR a
TCP of 100% seems applicable without sacrificing the OARs. The accompanying
weightings are set the same as for the dosimetric criteria based ITP.
For HIPO and IPSA the standard setup parameters for the optimizers are chosen.
Those are the standard settings in the University Medical Center Mannheim and
are provided by the vendor [30].
The quality tolerance Q0 specifies a targeted plan quality defined by the user,
where the smaller Q0 represents the better plan quality. A value of Q0 = 1× 10−3

is selected for optimization. If this quality cannot be reached, the optimizer returns
the solution closest to Q0.
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4.6.2ComparativeTests

EachpatientstudywasexportedfromOncentraProstate
TM
[30]asDICOMfile

andafterwardsre-importedintothenovelTPSasdescribedinsec.4.5.1. De-
pendingonthemethod,theoptimizationparametersaresetasdescribedinthe
previoussection.Thecomparativetestsareperformedasfollows:

LDRtreatmentplanning

AsaninitialbenchmarkoftheapplicabilityofCSinspiredoptimization,thediffer-
entalgorithmsforapredefinedneedleconfigurationforLDRtreatmentplanning
areapplied.Thesubsetofneedlesisdeterminedbyaexperiencedradiationoncol-
ogistoftheUniversityMedicalCenterMannheim.Defininganeedleconfiguration
priortotheoptimizationisoneofthestandardapproachesinintraoperativeITP.
Afteroptimization,theperformanceoftheCS-inspiredsolversLTA,LOMA,and
LSUPiscompared.Inaddition,theresultsareevaluatedagainstthestateofthe
artsolutionIPSAandthelowerboundprovidedbyMILP.Themainfocusison
thefinalDBOFvalue,optimizationtime,andthesparsityofthesolution.For
clinicalrating,EUDandCOINareconsidered.

LDRtreatmentplanningincludingneedleoptimization

Asanalternativeapproach,acomparativestudyofthealgorithmscapableof
LDRITPincludingneedleoptimizationisperformed. TheCSinspiredsolvers
LST,LSUP,andLSPAarecomparedagainstthestate-of-the-artmethods. As
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a reference, the plan generated with IPSA and the manually re-optimized and
applied plan (APP), are considered. MILP provides an estimation of the lower
bound of the solution. In general, MILP is able to provide the optimal solution,
but due to the complexity of the problem, this is hardly reachable in acceptable
time. Thus, it is decided to stop the MILP after a runtime of 12h.
The generated plans are rated according to their performance with respect to
calculation time, final DBOF value, sparsity of the seeds, and number of used
needles. For the latter, it is decided to use a maximum number of needles as used
for APP. This allows a fair comparison of the returned DBOF value. The plans
are further rated according to clinically relevant parameters such as dosimetric
criteria, COIN, and EUD.

HDR treatment planning

Since optimization of a given needle configuration can be optimized in less than
one second using L-BFGS, the focus of this comparison is on HDR ITP including
needle optimization.
This problem is usually being tackeled using the reformulation as an MILP or with
HIPO heuristic. Another possibility is to manually select a needle configuration
followed by an optimization of the dwell-times.
The retrieved plans are compared to those obtained via HTA, HSIS, and SISA. For
the benchmarking, DBOF value, the number of active dwell-positions, dosimetric
criteria, COIN, and EUD are taken into account.
For the CS-inspired solvers, HIPO and MILP, the number of maximally allowable
needles was set to the number defined by the physicians during manual needle
placement. This again ensures a fair rating of the plan quality.

Dosimetric treatment planning

For the dosimetric criteria-based planning, the reference for both treatment modal-
ities is again the applied plan APP .
For LDR, the results obtained using a reformulation into a BILP problem is used
as a reference. This based on the IPIP problem introduced by Siauw et al. [31]
with the additional constraint of a binary solution vector. Those are compared to
the results obtained using the best performing CS-inspired solver with and with-
out needle selection using the CBOF as objective function. The obtained plans
are labeled with LDR criteria based optimization LCB and LCB*.
For HDR, the dosimetric criteria-based MILP problem, i.e. eq. (2.5) and eq. (4.39),
and the heuristic IPIP [31] are used as a reference. For the CS-inspired approach,
two different solutions, with HDR criteria based optimization (HCB) and without
needle optimization (HCB*).
For comparison of the plans, the number of active dwell-positions, the optimiza-
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tion time, the dosimetric criteria, EUD, and COIN are considered.

Biological treatment planning

As a final comparative test, the biological based optimization using the BBOF is
analyzed. Since there is no existing optimization strategy available, only APP is
considered as a reference. For LDR and HDR the plans are refereed as LDR bio-
logical based optimization (LBio) and HDR biological based optimization (HBio),
respectively.
For LDR, optimization strategies for biological ITP are considered. LBIO labels
the plans where the same needle configuration as for APP is re-optimized using
the BBOF. LBIO* labels the plans where a sub-set with the same number of used
needles as for APP is retrieved out of all available needles.
Since for biological ITP, the gradients for the generalized HDR problem have to
be calculated numerically, the optimization of amplitudes is more complex than
for LDR. For HDR the two strategies with and without needle optimization are
labeled as HBIO* and HBIO.
The different methods are compared using optimization time, number of used ac-
tive dwell-positions, TCP, NTCP of the urethra (NTCPU), NTCP of the rectum
(NTCPR), COIN, and EUD are considered.

Statistical analysis and data representation

To test if the evaluated parameters differ statistically, a one-sided paired Wilcoxon
signed-rank test is used. This test can be used when the groups cannot be assumed
to be normally distributed. The different levels of significance are labeled with
*(p < 0, 5), ** (p < 0.01), and *** (p < 0.001).
For visualization, boxplots are used. In each box, the median is marked as the
central line. The edges of the box represent 25th and 75th percentiles and the
whiskers extend to the most extreme data points. In addition, outliers are plotted
separately.
If the MILP or BILP solution was not found within the pre-defined optimization
time the time is labeled as N/A*. In addition, if runtime information are not
available, i.e. the time used for intra-operative forward planning is usually not
recorded, it is labeled with N/A.
The ratio between the difference of the resulting objective function values and the
reference value QMILP (x) is employed as a measure of quality:

ε = Qi(x)−QMILP (x)
QMILP (x) , (4.43)

where the index i labels the used algorithm.
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5 Results
In this chapter, the benchmarking of the novel CS inspired solvers is presented
followed by the study regarding criteria based and biological model based treat-
ment planning. The comparative studies are performed according to the protocol
described in the previous chapter.

5.1 Comparative study of the optimizers
In order to test the practicability of the optimizers introduced in this work, their
performance is compared against state of the art algorithms. Benchmarking cri-
teria are the final objective function values, optimization time, and clinical rating
of the treatment plans. The tests are divided into three parts, LDR ITP with and
without needle optimization and HDR treatment planning with needle optimiza-
tion.

5.1.1 LDR treatment planning without needle optimization
In the following, the comparative study of the algorithms that can be used to solve
the LDR ITP problem without needle optimization is presented. As commonly
done in clinical intra-operative brachytherapy treatment planning, the needle con-
figuration is assigned by an experienced physician. The set of standard optimiza-
tion settings defined in tab.A.5 are applied for each patient case. To evaluate the
quality of the optimization, MILP is used as a reference as it provides a lower
bound of the solution. The objective function value of the solution Q(x), the
runtime t[s], the number of dwell-position #DP , EUD, and COIN are used for
comparison of the algorithms. For each parameter, mean value µ, standard de-
viation σ, minimum min, and maximum max are calculated from the set of all
patients. A summary of the results is presented in tab. 5.1.
For the quality measure stated in eq. (4.43) i = {LTA,LOMA,LSUP, SA} is
used and depicted in fig. 5.1. The results obtained with LSUP are closer to the
expected lower bound than the results obtained using SA. LSUP returns results
near the global optimum and small deviation (< 0.01) is an indication of the
robustness of the solver.
A similar situation can be observed when comparing LSUP and SA against MILP
with (p > 0.05) and (p > 0.05), respectively. In contrast, the results of LTA
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Table 5.1: Comparison of the different optimization algorithms for LDR without
needle optimization. Q(x) is the objective function value, t the opti-
mization time, #DP the number of used dwell-positions. For plan rat-
ing EUD and COIN are calculated. For each parameter mean value µ,
standard deviation σ, minimum min, and maximum max are given.
Underlined values are the best found values.

Algorithm Q(x) t [s] #DP EUD COIN
MILP (ref)
µ 151.23 409.80 40 59.79 0.59
σ 16.50 239.30 4 3.01 0.02
min 124.05 34.67 35 54.79 0.55
max 179.56 N/A* 50 65.41 0.63
LTA
µ 244.31 0.01 40 64.37 0.58
σ 87.39 0.00 4 5.52 0.02
min 168.14 0.00 35 54.96 0.54
max 413.92 0.01 50 72.62 0.62
LOMA
µ 183.60 0.02 38 56.94 0.59
σ 24.60 0.01 4 3.40 0.02
min 129.66 0.01 34 52.32 0.56
max 216.85 0.03 47 65.48 0.63
LSUP
µ 153.75 0.11 40 59.46 0.58
σ 16.84 0.10 4 3.02 0.02
min 124.35 0.03 35 54.75 0.55
max 182.60 0.32 49 65.47 0.63
SA
µ 163.95 4.78 40 58.83 0.58
σ 21.57 3.12 5 3.56 0.02
min 124.50 1.08 35 53.74 0.55
max 211.01 9.83 53 65.27 0.62

(p < 0.001) and LOMA (p < 0.01) with respect to obtained objective function
value are significantly worse.
For a total of six cases, the runtime of the MILP exceeds the maximum allowable
optimization time. Since MILP is not used in clinical routine, the reference for
benchmarking the performance of the novel algorithms is SA, a state of the art
method with a mean optimization time of (4.78 ± 3.12)s. The mean runtime
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ULOMA

Figure 5.1: Box-and-whisker plot of the ratio between the different strategies for
LDR without needle optimization. The reference function value is
obtained via MILP. The different levels of significance are labeled with
’∗ ∗ ∗’ (p < 0.001), ’∗∗’ (p < 0.01), and ’n.s’. (p > 0.05).

of LSUP was (0.11 ± 0.10)s and, thus, the new CS inspired solver is (104 ±
112, range: 8 to 329) times faster. In addition, LOMA (338 ± 311, range: 62 to
969) is faster than SA. For LTA a speed-up of (1181± 1.213, range: 154 to 3526)
is observed. In summary, the newly introduced optimizers have a significantly
(p < 0.001) reduced optimization time.
Considering the number of dwell-positions, the obtained results do not differ sig-
nificantly (p > 0.05) from the reference. However, comparing the number of used
dwell-positions using SA and LSUP show that the sparsity approach reduces the
number of dwell-positions in six out of ten cases. For the remaining cases, the
number of dwell-positions remains the same. Using COIN and EUD as a measure
for the quality of the treatment plan, the obtained results using LOMA, LSUP,
and SA showed statistically significant differences (p > 0.05 and p > 0.05).
When benchmarking the overall performance of the CS inspired solvers it is obvi-
ous that LSUP performs better than LTA and LOMA with respect to the objective
function value, but vice-versa for the optimization time.

5.1.2 LDR treatment planning including needle optimization
In order to assess the practical applicability of the proposed CS inspired algorithms
comparative tests including needle optimization are presented in the following.
The focus of this assessment is to compare objective function value, runtime,
number of used dwell-positions and needles, as well as the rating of plans using
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LSUP

Figure 5.2: Box-and-whisker plot of the ratio between the different strategies for
LDR including needle optimization. The reference function value is
obtained via MILP. The different levels of significance are labeled with
’∗∗’ (p < 0.01), and ’n.s.’ (p > 0.05).

AAPM criteria. As additional parameters for plan evaluation EUD and COIN are
presented.
Again MILP provides a lower bound of the objective function value and all al-
gorithms are compared against this solution. However, when comparing the per-
formance with respect to optimization time, IPSA is used as a reference because
it is the fastest state-of-the-art algorithm capable of LDR ITP including needle
optimization. The results are sumarized in tab. 5.2.
The comparison of the algorithms with respect to the resulting objective function
value is again based on eq. (4.43) with i = {APP, IPSA,LST, LSUP,LSPA}
and depicted in fig. 5.2. The resulting objective function value obtained via LSPA
does not show a significant difference (p > 0.05) when compared to MILP. The
same accounts for LSUP with (p > 0.05). In contrast, the results of the remaining
methods are significantly worse. In detail, the level of significance is p < 0.001 for
APP, p < 0.001 for IPSA, and p < 0.01 for LST.
Exemplarily, the resulting plans for the patients with the largest deviation in the
resulting objective function value for LSPA vs. IPSA and LSPA vs. MILP are
depicted in fig. 5.3. While for LSPA vs. IPSA it shows patient 2, it is patient 1 for
LSPA vs. MILP. The illustration shows the DVHs as well as the isodose curves of
the central transversal slice of the prostate.
The CS inspired solvers reduce the optimization time dramatically. The speed-
up for LTA, LSUP, LSPA compared to IPSA was (104 ± 50, range 28 to 213),
(169± 48, range 110 to 256), and (117± 106, range 17 to 312), respectively. The
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Figure 5.3: Comparison of the different optimization methods. DVHs and isodose
lines for the cases with the largest deviation in Q(x) for LSPA vs.
IPSA (a,c,e) and LSPA vs. MILP (b,d,f) are shown. The DVHs of
references IPSA and MILP are drawn as dashed lines. In addition, the
DVHs of LSPA are shown as solid-lines.

75



5 Results

Ta
bl
e
5.
2:

C
om

pa
ris

on
of

th
e
di
ffe

re
nt

op
tim

iz
at
io
n
al
go

rit
hm

s
fo
r
LD

R
in
cl
ud

in
g
ne

ed
le

op
tim

iz
at
io
n.

A
lg
or
ith

m
Q

(x
)

t
[s]

#
D
P

#
N

V
10

0
V
15

0
V
20

0
U
D
10

U
D
30

R
D
0.
1c
c

R
D
2.
0c
c

C
O
IN

EU
D

M
IL
P

(r
ef
)

µ
12

3.
6

N
/A

42
17

95
.3

54
.5

26
.4

12
5.
3

12
1.
5

99
.8

71
.4

0.
63

69
.8
8

σ
14

.9
N
/A

8
3

1.
6

2.
9

2.
4

1.
4

1.
5

8.
1

6.
8

0.
02

8.
96

m
in

10
9.
5

N
/A

34
13

91
.9

50
.5

23
.1

12
3.
5

11
9.
6

89
.2

58
.8

0.
58

54
.4
8

m
ax

16
2.
8

N
/A

58
24

97
.9

59
.8

31
.1

12
7.
5

12
4.
5

11
6.
7

83
.3

0.
67

86
.3
9

A
PP

(r
ef
)

µ
25

5.
2

N
/A

*
46

17
93

.5
61

.8
36

.4
13

1.
2

12
4.
9

10
6.
1

75
.9

0.
58

63
.3
0

σ
80

.5
N
/A

*
8

3
1.
4

3.
5

3.
0

3.
8

3.
9

14
.9

9.
1

0.
02

4.
56

m
in

16
6.
0

N
/A

*
37

13
90

.6
55

.7
31

.6
12

5.
5

11
7.
6

86
.3

61
.8

0.
53

57
.2
3

m
ax

41
5.
7

N
/A

*
62

25
95

.1
67

.9
40

.6
13

6.
3

13
0.
4

13
9.
2

93
.1

0.
61

70
.0
8

IP
SA

µ
22

4.
2

7.
18

44
.7

16
.5

92
.8

58
.0

32
.7

13
5.
3

12
5.
8

96
.9

68
.8

0.
58

62
.4
5

σ
40

.8
1.
81

8.
3

1.
9

1.
8

2.
4

1.
6

7.
5

3.
2

8.
3

6.
7

0.
02

6.
34

m
in

15
9.
5

3.
96

36
14

89
.8

54
.5

30
.3

12
7.
2

12
2.
0

80
.4

56
.2

0.
52

50
.8
1

m
ax

30
6.
4

10
.2
1

63
20

96
.2

62
.6

35
.6

14
8.
3

13
2.
2

10
8.
6

78
.6

0.
60

71
.7
6

LS
T

µ
17

2.
7

0.
26

41
.9

17
.1

93
.8

53
.0

26
.5

12
8.
7

12
2.
0

10
6.
5

72
.8

0.
61

66
.3
1

σ
47

.7
0.
12

7.
4

3.
3

1.
8

2.
5

2.
5

13
.1

8.
7

12
.6

7.
1

0.
03

8.
35

m
in

10
9.
4

0.
11

34
13

91
.4

49
.0

24
.0

11
9.
6

11
3.
7

87
.3

57
.8

0.
57

54
.1
3

m
ax

28
4.
5

0.
52

58
25

96
.5

57
.2

31
.4

16
5.
7

14
5.
1

12
3.
5

82
.4

0.
66

79
.6
8

LS
U
P

µ
13

4.
8

0.
14

41
.7

16
.3

94
.6

53
.5

25
.9

12
4.
6

11
9.
5

10
5.
4

72
.2

0.
62

68
.5
5

σ
16

.4
0.
05

7.
4

3.
0

1.
7

3.
1

2.
8

3.
2

3.
0

8.
8

7.
2

0.
03

9.
10

m
in

11
0.
9

0.
09

34
12

91
.7

49
.5

22
.4

11
8.
6

11
4.
7

93
.1

56
.9

0.
57

54
.5
2

m
ax

17
1.
1

0.
24

58
22

97
.6

60
.0

32
.1

13
0.
4

12
3.
5

11
7.
6

82
.4

0.
66

83
.8
7

LS
PA

µ
12

5.
9

0.
47

41
.6

17
.2

94
.9

53
.5

25
.0

12
5.
6

12
0.
3

10
5.
2

71
.6

0.
63

69
.2
9

σ
15

.0
0.
44

7.
9

3.
3

1.
8

2.
2

1.
5

3.
1

2.
9

12
.8

6.
7

0.
02

9.
42

m
in

10
5.
7

0.
08

33
13

91
.6

50
.6

22
.5

12
0.
6

11
6.
7

88
.2

58
.8

0.
58

53
.9
1

m
ax

16
3.
5

1.
50

58
25

97
.9

58
.6

27
.5

13
0.
4

12
6.
5

13
2.
4

82
.4

0.
66

86
.5
0

76



5 Results

time for APP is not available since the planning is a trial-and-error method and
not well documented. Usually the time varies from minutes up to one hour and
thus being several orders of magnitudes slower than ITP methods.
The number of dwell-positions increases significantly (p < 0.001) for APP and
IPSA while for the remaining algorithms they do not differ (p > 0.05) with re-
spect to the reference MILP. The number of needles remain the same due to design
of the comparative tests.
Using MILP or LSPA and rating the plans according to AAPMs dosimetric cri-
teria, seven out of ten patient cases are clinically acceptable at the first attempt.
LSUP, LST, and IPSA lead to plans that meet the criteria in five, three, and
two cases, respectively. The worst rating is shown by APP, which leads to only
one single acceptable plan. When considering EUD, the CS inspired solvers do
not differ significantly (p > 0.05) from the results obtained using MILP while for
standard optimization strategies APP and IPSA they do (p < 0.001). However,
for COIN, only LSUP and LSPA do not differ significantly (p > 0.05) from the
reference while for the remaining strategies COIN decreases (p < 0.05).
A comparison between the CS inspired solvers against each other is performed.
Here, LSUP and LSPA are almost equivalent for all measures. LSUP and LSPA
have small advantages either in speed or quality. When compared to LST, both
show a statistically significant (p < 0.05) improvement with respect to obtained
objective function values.

5.1.3 HDR treatment planning
To test the practicability of the CS inspired solvers for HDR ITP including needle
selection, the novel algorithms are compared against MILP, APP, and HIPO.
The MILP formulation including needle optimization allows to compare the plans
against an estimation of the lower bound of the solution. The resulting DVHs
are calculated and used to evaluate the planning criteria COIN, and EUD. The
obtained results are listed in tab. 5.3.
To compare the resulting objective function value of the CS algorithms against
the reference, eq. (4.43) with i = {APP,HIPO,HTA,HSIS, SISA} is used and
summarized in fig. 5.4. The results of the CS inspired solvers are near to the ex-
pected global optimum obtained with MILP. In some cases, the objective function
values are smaller than the estimated bound of MILP indicating that the MILP so-
lution represents a local optimum. Comparing SISA shows the best scoring where
the obtained objective function values are smaller than the estimated bound. In
contrast, APP does not show any improvement. The results obtained with APP,
HIPO, and HTA are significantly worse (p < 0.01) compared to those of MILP.
In contrast, the methods HSIS and SISA do not show a significant difference to
MILP (p > 0.05). The resulting DVHs of the plans showing the maximum differ-
ence in objective function value between SISA-MILP and SISA-HIPO are depicted
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5 Results

Figure 5.4: Box-and-whisker plot of the ratio between the different strategies for
HDR including needle optimization. The reference function value is
obtained via MILP. The different levels of significance are labeled with
’∗∗’ (p < 0.01), and ’n.s.’ (p > 0.05).

in fig. 5.5. No isodose lines are shown since the similar DVHs indicate a clinically
non-significant change in dose distribution.
For comparison of the optimization time, the introduced strategies are compared
to HIPO which is the fastest technique for needle optimization. MILP and APP
are several orders of magnitudes slower and are therefore neglected. The best
performance is reached in HTA being (350± 180, range: 100 to 637) times faster
than HIPO. For HSIS and SISA a speed up of (163 ± 90, range: 27 to 303) and
(56± 34, range: 12 to 132) was obtained, respectively.
The number of retrieved needles do not show any significant difference (p > 0.05).
However, for the number of active dwell-positions a significant increase is observed
for SISA (p < 0.001).
When evaluating the plans according to clinical acceptance, MILP, HSIS, and
SISA show an equivalent behavior where all plans were acceptable after the first
attempt. APP and HTA (acceptance rate 0.8) show a better performance than
HIPO where a re-optimization would have been necessary in three cases. For
EUD, the plans obtained with HIPO, HSIS, and SISA do not show a statistically
significant decrease (p > 0.05) compared to the reference MILP. However, for the
APP and HTA plans, this is observed (p < 0.001). Regarding COIN, a significant
decrease is observed for APP (p < 0.001), HTA (p < 0.01), and HSIS (p < 0.05).
Finally, when comparing the introduced CS inspired solvers against each other,
SISA is able to significantly reduce the obtained objective function value with
respect to HTA (p < 0.01) and HSIS (p < 0.01). However, the runtime of HTA
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5 Results

(a) SISA-MILP (b) SISA-HIPO

Figure 5.5: DVHs for PTV and OARs for the two cases with the largest deviation
from Q(x) for SISA-MILP (a) and SISA-HIPO (b). The DVHs of
references MILP and HIPO are shown as dashed lines. In addition,
the DVHs of SISA are labeled as solid-lines.

and HSIS is (3± 1) and (7± 1) times faster than SISA.

5.2 Study of new objective functions
In this section the newly introduced CBOF and BBOF (sec. 4.4) are evaluated.
The goal is to compare the performance of both objective functions against those
plans that have been clinically accepted for treatment. Finally, the question is an-
swered whether the introduced objective functions influence the expected clinical
outcome of the intervention and/or simplify the planning procedure.

5.2.1 Dosimetric criteria based objective function
In order to evaluate the practicability of the CBOF, the presentation of the results
are again subdivided into LDR and HDR treatment planning. For both methods
the plans are optimized with the CS inspired optimizer that shows the best com-
promise between objective function value and optimization time of the particular
treatment modality, i.e. LSPA (LDR) and SISA (HDR).

LDR

Results for the dosimetric criteria based treatment planning are presented in
tab. 5.4. For each plan, the runtime t, the number of used dwell-position #DP ,
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Figure 5.6: Box-and-whisker plots of the dosimetric criteria for the prostate (a)
and for the OARs (b) for the different optimization strategies for LDR.
The green dashed lines are the recommendations from the AAPM.

the different dosimetric criteria, as well as COIN and EUD are reported. For APP,
BILP, and LCB a fixed needle configuration is used. In contrast, for LCB* all
needles defined by the transperineal template that hit the PTV and miss OARs
are considered for optimization.
A detailed comparison of the different methods is shown in fig. 5.6. The best
performance with respect to dosimetric criteria is given by LCB*. Including needle
selection, the method leads to a significant increase in the V100 criteria (p < 0.01)
and simultaneously to a decrease in the V150 and D30 criteria (p < 0.05). The
remaining dosimetric critera do not show a statistically significant (p > 0.05)
improvement. In contrast, LCB only shows a significant decrease in V150 while
the remaining parameters are similar to the reference. An improvement of EUD
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5 Results

Figure 5.7: Comparison of the different optimization methods for LDR dosimetric
criteria based planning. DVHs and isodose lines for the cases with
the smallest (a,c,e) and largest (b,d,f) deviation in V 100 for APP vs.
LCB* are shown. The DVHs of reference APP are drawn as dashed
lines and the DVHs for LCB* as solid-lines.
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5 Results

and COIN is observed (p < 0.05). Both new methods, LCB and LCB* yield a
significant improvement of EUD and COIN (p < 0.01).
The resulting DVHs comparing APP and LCB* for Patient 3 and Patient 10
are presented in fig. 5.7. Those represent the plans with the smallest and largest
deviation of the V100 criteria. In addition, the isodose lines of the transversal
central slice are shown.
Using LCB*, seven out of ten patient cases are clinically acceptable at the first
attempt. In contrast, APP, BILP, and LCB lead to two plans that fulfill all
criteria.
The optimization times using the novel CS inspired solvers are less than 0.6s
whereas BILP takes several days. In addition, the sparsity strategy significantly
reduces the number of seeds (p < 0.01). In detail, LCB and LCB* save (6.9±4.0)%
and (7.6± 5.3)% seeds, respectively.

HDR

The results of the comparison of the different optimization strategies with CBOF
for HDR treatment planning is summarized in tab. 5.5. The applied plan and
the optimized plan with MILP are taken into account as a reference. Further-
more, the results are rated against the competing strategy IPIP. The focus in this
comparative study is optimization time, number of active dwell positions, COIN,
EUD, and dosimetric criteria. A detailed visualization of the latter is presented in
fig. 5.8. When compared against the estimation of the lower bound obtained via
MILP, the CS inspired algorithms and IPIP do not show a statistically significant
(p > 0.05) improvement of the V100, V150, and D0.1cc of the rectum. However,
the dosimetric criteria rating the delivered dose to the urethra is significantly im-
proved (p < 0.1). The EUD is equivalent for all optimization methods (p > 0.05)
while a significant improvement (p < 0.05) of COIN is observed for APP, HCB,
and HCB*.
Comparing APP against IPIP and the CS inspired algorithms, a similar perfor-
mance with respect to the dosimetric criteria is observed. Only for V150 and
the dosimetric of the rectum, MILP, IPIP, HCB, and HCB* show a significant
improvement (p < 0.01). In addition, EUD and COIN do show statistically sig-
nificant difference (p > 0.05).
When rating against IPIP, the CS inspired optimization strategies improve the
V100 and V150 (p < 0.05) criteria of the PTV. In addition, the remaining criteria
are equivalent to IPIP (p > 0.05). Allowing needle optimization, a further signif-
icant improvement of those is observed (p < 0.05). Again, the EUD (p > 0.05)
does not show a significant improvement while for the COIN (p < 0.05) it is ob-
served.
As an example, the DVHs together with the isodose lines for the central transver-
sal slice of the prostate for Patient 5 and Patient 7 are depicted in fig. 5.9. Patient
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Figure 5.8: Box-and-whisker plots of the dosimetric criteria for the prostate (a)
and for the OARs (b) for the different optimization strategies for HDR.
The green dashed lines are the recommendations from the AAPM.

5 is chosen since it represents the plan with the maximum deviation in the V100
criterium. The plan for Patient 7 exhibits the minimum deviation.
The runtime of MILP exceeds the maximum allowable time in all patient cases.
Hence, only the two CS inspired methods and IPIP can be compared. With re-
spect to IPIP, HCB improves the runtime by a factor of (1.9 ± 0.5, range: 1.0
to 2.7). For HCB*, the runtime was (2.2 ± 1.5)s, hence being (2.5 ± 1.0, range:
1.9 to 5.0) slower than IPIP. In addition, the plans obtained with HCB* show a
significant increase in number of active dwell positions (p < 0.001).
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Figure 5.9: Comparison of the different optimization methods for HDR dosimetric
criteria based planning. DVHs and isodose lines for the cases with
the smallest (a,c,e) and largest (b,d,f) deviation in V 100 for APP vs.
HCB* are shown. In addition, the DVHs of reference APP are drawn
as dashed lines and the DVHs for HCB* as solid-lines.
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Figure 5.10: Box-and-whisker plots of the TCP and NTCPs for biological based
optimization. The different levels of significance are labeled with
’∗ ∗ ∗’ (p < 0.001), ’∗∗’ (p < 0.01), and ’n.s’. (p > 0.05) and tests are
performed for APP-LBIO (lower) and APP-LBIO* (upper).

5.2.2 Biological model based objective function
A method which so far has not been evaluated for brachytherapy treatment plan-
ning is a biological model based approach. The results of this new method are
compared and evaluated against APP. The focus is the performance with respect
to the TCP and the NTCPs for urethra and rectum.

LDR

The results of this study are presented in tab. 5.6. The evaluated parameters
are optimization time, number of dwell-positions #DP, TCP and NTCPs, as well
as COIN and EUD. As a reference, the results are compared against APP. Two
different optimization strategies, LBIO and LBIO*, are presented for comparison.
LBIO represents the plan with the same needle configuration as APP. LBIO*
considers all needles which can potentially be used for implantation. A plan with
the same number of needles as APP is generated from this configuration.
A summary of the performance of the different strategies with respect to the ob-
tained biological parameters is presented in fig. 5.10. The CS inspired approaches
result in plans that significantly increase the obtained TCP (p < 0.01) and de-
crease the NTCP of the rectum (p < 0.01), while at the same time providing a
similar biological outcome for the urethra (p > 0.05). In addition, EUD and COIN
show a significant improvement (p < 0.05) with respect to APP. Interestingly, the
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Figure 5.11: Comparison of the different optimization methods for LDR biological
based planning. DVHs and isodose lines for the cases with the small-
est (a,c,e) and largest (b,d,f) deviation in TCP for APP vs. LBIO*
are shown. In addition, the DVHs of reference APP are drawn as
dashed lines and the DVHs for LBIO* as solid-lines.
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Table 5.6: Comparison of the different optimization algorithms for the LDR bio-
logical based optimization.

Algorithm Q(x) t [s] #DP TCP NTCPU NTCPR COIN EUD
APP (ref)
µ 2.8 N/A* 43.8 73.7 15.1 16.9 0.57 61.8
σ 2.6 N/A* 10.2 27.6 0.9 14.5 0.04 6.3
min 0.7 N/A* 24 0.1 14.1 0.8 0.47 47.4
max 9.8 N/A* 62 97.6 16.7 43.1 0.61 70.1
LBIO
µ 0.4 51.5 38.8 95.1 15.2 2.5 0.59 67.2
σ 0.0 18.9 5.5 0.1 1.3 1.6 0.03 0.1
min 0.3 10.5 25 95.0 13.1 0.5 0.53 67.1
max 0.4 73.2 49 95.3 18.2 6.3 0.62 67.4
LBIO*
µ 0.4 67.8 38.2 95.1 16.3 2.1 0.60 67.3
σ 0.1 30.2 5.1 0.1 1.9 1.4 0.03 0.1
min 0.3 14.7 25 95.0 13.3 0.5 0.55 67.2
max 0.5 109.8 47 95.4 20.3 4.4 0.65 67.5

CS inspired approach incorporating biological model based treatment planning
leads to robust plans which show a standard deviation of less than 0.01 for TCP
and EUD.
When comparing the number of seeds a significant decrease (p < 0.01) when us-
ing the CS inspired biological model based strategy is observed. For five patient
cases, a reduction of more than 10% is observed. The runtime including needle
optimization and using biological models is around one minute. This is the same
order of magnitude as state-of-the-art approaches show for conventional DBOF
optimization.
DVHs and isodose lines of the patients showing the largest (Patient 4) and small-
est (Patient 2) deviation of the TCP compared to APP are depicted in fig. 5.11.
For the plan with the smallest deviation (0.7%) the new CS inspired approach
saves a total of 15 (31.9%) seeds. For the plan with the largest deviation, the
CS approach yields a plan with a total TCP of 95.1% rather than 0.01% of the
reference. This is achieved with almost the same number of used seeds, which is
25 (LBIO*) and 24 (APP).

HDR

In order to test the practicability of the biological model based ITP for HDR,
the APP is compared against the solution of CS inspired methods optimizing
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Figure 5.12: Box-and-whisker plots of the TCP and NTCPs for biological based
optimization. The different levels of significance are labeled with
’∗ ∗ ∗’ (p < 0.001),’∗∗’ (p < 0.01), and ’n.s’. (p > 0.05). Tests are
performed for APP-HBIO (lower) and APP-HBIO* (upper).

the BBOF. HBIO labels the plan without and HBIO* with needle optimization.
The resulting runtime t, number of active dwell-positions #DP , the biological
parameters TCP and NTCPs, as well as COIN and EUD are presented in tab. 5.7.
In addition, the performance with respect to TCP and the NTCP of urethra and
rectum is depicted in fig. 5.12. For both methods, the TCP for rectum significantly
increases (p < 1× 10−3) while the NTCP decreases (p < 0.05). More precisely, an
increase of the TCP (1.3± 3.3, range: 0, 3 to 11.7)% is observed. This is however,
accompanied by an increase of the probability of urethral NTCP (p < 0.001) of
(1.7 ± 2.1, range: −0, 1 to 5.9)%. Furthermore, a significant increase (p < 0.01)
of COIN and EUD is recorded.
The resulting DVHs for APP and HBIO for Patient 1 and Patient 4 are depicted in
fig. 5.13. Furthermore, the corresponding isodose lines for the transversal central
slice of the prostate are shown. Those plans represent the largest and smallest
deviation of the resulting TCP.
A maximum runtime of 2005.0 s is observed which is longer than what is cur-
rently expected from state-of-the-art optimization strategies without biological
optimization. In addition, the new approach yields plans with a significant in-
crease in active dwell-positions (p < 0.05).
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Figure 5.13: Comparison of the different optimization methods for HDR biological
based planning. DVHs and isodose lines for the cases with the small-
est (a,c,e) and largest (b,d,f) deviation in TCP for APP vs. HBIO*
are shown. In addition, the DVHs of reference APP are drawn as
dashed lines and the DVHs for HBIO* as solid-lines.
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Table 5.7: Comparison of the different optimization algorithms for the HDR bio-
logical based optimization.

Algorithm Q(x) t [s] #DP TCP NTCPU NTCPR COIN EUD
APP (ref)
µ 3.7 0.9 57.9 98.0 10.2 0.1 0.77 73.3
σ 4.8 0.6 19.6 3.4 0.3 0.1 0.04 3.7
min 1.9 0.1 21 87.1 9.7 0.0 0.65 63.2
max 19.0 2.6 103 99.7 10.9 0.4 0.82 78.5
HBIO
µ 2.1 28.2 61.5 99.3 10.1 0.1 0.74 75.2
σ 0.2 13.2 20.4 0.1 0.4 0.3 0.05 0.6
min 1.8 5.3 27 99.1 9.4 0.0 0.64 74.0
max 2.6 47.8 107 99.5 11.2 1.1 0.80 76.2
HBIO*
µ 2.0 918.5 72.0 99.3 9.9 0.1 0.74 75.1
σ 0.2 622.0 20.8 0.1 0.4 0.2 0.04 0.4
min 1.8 106.5 39 99.2 9.3 0.0 0.68 74.6
max 2.4 2005.0 118 99.4 10.7 0.7 0.79 75.9
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The different comparative tests showed that the reformulation of the objective
function into a CS equivalent problem is a valid and successful approach. They
underlined the advantages of the new methods against the state-of-the-art ap-
proach with respect to quality and efficiency.
In the following, the reasons for the gain in performance and the limitations of
the demand for sparsity are discussed. A detailed discussion of the clinical rel-
evance and how the new strategies can shorten and simplify the intra-operative
planning procedure follows. Further options and application fields regarding the
use, advantages, and limitations of the CS inspired optimizers in radiation therapy
finishes this section.

6.1 CS inspired solvers in brachytherapy
As demonstrated, the developed optimizers based on greedy heuristics used in CS
are able to solve the different ITP problems in brachytherapy.

6.1.1 Performance of the CS inspired solvers
The new approaches lead to a significant acceleration of optimization time while
maintaining or even improving the quality in terms of the obtained objective func-
tion value. The idea of using CS inspired optimizers to tackle the different MILP
problems lead to an increase in performance by orders of magnitude. The speed-
up can be explained by the underlying heuristics of the optimizers and the efficient
high-performance CPU implementations.
The CS-inspired solvers outperform IPSA (LDR) and HIPO (HDR) due to a re-
duction in necessary objective function evaluations. The lower number of objective
function evaluations is known from the examples in CS where the corresponding
strategies belong to the fastest optimization methods [33]. In contrast to the CS
solvers, SA is known to require a lot of objective function evaluations in order to
reach the global optimum [125].
The comparative test showed that the demand for sparse solution with the addi-
tional quality constraint leads to solutions that are near the global optimum of the
state-of-the-art ITP problems. This was proven for the different brachytherapy
modalities and for different linear objective functions.
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6.1.2 Demand of sparsity
The key point of the new strategy is the demand of a sparse representation of
dwell-positions. Assuming sparsity, a CS inspired approach is beneficial when
compared to the general-purpose heuristic IPSA and HIPO or modern linear pro-
gramming techniques. As sparse solution have not been used in brachytherapy.
Hereby the question arises, whether they are clinically applicable.
Due to the discrete nature of seeds and the fact that only a small amount of
all potential seed positions forms the final solution, the concept of sparsity is a
valid approach for LDR brachytherapy. This was demonstrated in detail by the
obtained results of the different comparative tests.
In HDR therapy, concerns were raised about the applicability of sparse solutions
since fewer dwell-positions with longer dwell-times may introduce hot-spots and
yield unknown side-effects in their proximity [109]. Consequently, different meth-
ods have been introduced which aim the reduction of long dwell-times and thus
promote non-sparse solutions [107, 126]. In 2012, Holm et al. showed that the
decrease in dwell-positions is enforced by the linearity of the objective function.
Since the linear DBOF is used as a reference, long dwell-times were accepted and
the focus was directed to testing whether the sparsity approach can be applied
and whether the new methods lead to an improvement with respect to runtime
and objective function value.
Interestingly, the introduction of the new dosimetric and biological based objec-
tive functions optimized using sparse optimization techniques yields plans which
show a significant increase in the number of dwell-positions and a decrease in the
maximum dwell-time. At the same time, an increase in performance with respect
to runtime was observed when compared to the state-of-the-art techniques. Thus,
the CS inspired approach can in general be applied to solve the problem, although
the degree of sparsity is comparably low.

6.2 Clinical relevance and potentials of the new
approach

A detailed discussion with respect to the clinical relevance and potentials of the
newly developed solvers is subdivided into the performance for the LDR and HDR
ITP problem.

6.2.1 LDR treatment planning
Two different approaches were considered for LDR treatment planning: The opti-
mization on a well-defined subset of needles and concurrent optimization of needle
and seed configuration.
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LDR without needle optimization

As initial test, LDR treatment planning with a predefined needle selection was
performed. This strategy typcally involves the fine tuning of the seed positions
based on an initial needle configuration found automatically using SA or by an
experienced physician. Fine-tuning is a trial-and-error method to tailor the plan
to the anatomy of the patient. Due to the long calculation time of the state-of-
the-art optimizers, this step is usually performed using manual GrO1, although it
is well-known that inverse planning returns favorable plans [32, 127].
The novel strategies outperform the state-of-the-art methods by far. The solutions
are near the global optimum and can be obtained in less than 0.4ms. This allows
for the first time a real-time inverse optimization based fine-tuning.
The strategies LTA and LOMA perform worse than the state-of-the-art method
SA with respect to resulting plan quality for LDR ITP. In contrast, LSUP out-
performs SA regarding the returned objective function value. In addition, the
deviation from the estimated lower bound was less than 4%. SA shows a maxi-
mum deviation of 25% from MILP.
Assuming an appropriate cooling schedule and an unrestricted number of iter-
ations SA is theoretically able to return the global optimum [92]. However, in
clinical routine, a compromise between optimization time and plan quality has to
be made. Another disadvantage of SA is that the user has to provide an initial
estimation of the number of used seeds. This yields more seeds compared to the
CS inspired solvers in 60% of the cases. An initial estimation is not needed for
solvers LOMA an LSUP.
As a recommendation, LSUP should be chosen to optimize the LDR ITP problem
without needle optimization.

LDR including needle optimization

The second comparative test has carried out to determine the performance of the
CS inspired approach for LDR ITP including needle optimization.
Due to the computational complexity of the state-of-the-art methods treatment
planning including needle optimization is performed prior to fine-tuning, in litera-
ture sometimes referred as pre-planning. Since pre-planning restricts the domain
of all potential solutions this strategy is more likely to yield suboptimal plans with
respect to the final objective function value. This is validated by comparing the
performance of APP against the estimated lower bound obtained by MILP.
The CS inspired solvers outperform the state-of-the-art methods in quality and
optimization time. The obtained solutions using the problem-specific LSUP and
LSPA are near the global optimum and equivalent to MILP. The general-purpose
optimizers IPSA are theoretically able to return the global optimum, but they are

1An interactive real-time strategy is usually expected by the user.
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slow and the compromise between speed and quality limits the final outcome.
In addition, the solution obtained with the sparsity approach leads to a reduction
of seeds in all patient cases. This yields a reduction of the V150 and V200 criteria
of the prostate and of the received dose to the OARs. Interestingly, this reduction
has no negative influence on the V100 criterion, on the contrary, even an increase
was observed. A steeper gradient of the DVH of the PTV can be observed. In
addition, the high dose regime shows lower DVH values for all patient cases. This
is another indication that the CS inspired strategies yield more homogeneous dose
distributions with less hot-spots.
Less dose received by the OARs reduces the toxicity and, thus, a reduction in side
effects is expected. Hence, plans obtained using the CS inspired optimizers are
more likely to be clinically accepted.
When comparing the CS inspired solvers against each other, LSUP and LSPA
are recommended for optimization. Both provide a good compromise between
obtained plan quality and efficiency. With optimization times of less than 0.5 s
LSUP and LSPA are capable of real-time ITP. Since no restriction of the domain
is necessary, a decrease in the objective function of up to 20 % between the unre-
stricted and restricted domain of all potential solutions is observed. This is also
reflected by the increase in EUD and COIN. Therefore, the fine-tuning to tailor
the plans to the patients needs can be carried out using all available needles.
To conclude, LSUP and LSPA are the only algorithms which allow real-time treat-
ment planning including needle selection for LDR treatment planning.

6.2.2 HDR treatment planning
Since real-time planning for the HDR ITP is possible using the L-BGFS [20],
the focus was directed to the development of fast algorithms to tackle the needle
optimization problem. HTA, HSIS, and SISA perform fast and return plans that
are near the global optimum.
As expected, the CS inspired approaches show that an increased optimization
time leads to an improved quality. Out of the discussed algorithms, the only one
capable of real-time planning is HTA. For the remaining CS inspired algorithms,
the optimization time varies between 0.5 and 9.0 seconds. Compared to HIPO,
this is still a statistically significant decrease in optimization time. LSUP and
SISA are between 50 and 350 times faster than HIPO. SISA shows the longest
runtime of the novel optimizers. However, due to its heuristic, starting with the
complete domain of possible solutions and iteratively reducing the number of seeds,
the algorithm is able to return several plans in a single run. Hereby, each plan
contains the number of needles equal to the maximum needles minus the number
of iterations performed. To accelerate the ITP, a solution could be a more efficient
sampling of the dose points. This, however, requires further investigation and is
beyond the scope of this thesis.
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Figure 6.1: Objective function value as a function of used needles provided by SISA
(a). The relevant dosimetric criteria which limit the applicability of
the plan as a function of used needles (b). The remaining dosimetric
criteria are fulfilled.

In fig. 6.1, the resulting DBOF value as a function of used needles and the resulting
dosimetric criteria are depicted for a representative patient. For this patient, 15
needles represent a valid compromise between number of needles and dose received
by the urethra (D0.1cc) and the prostate (V150), which are the limiting factors
for this patient.

When comparing the solution of HTA, HSIS, and SISA against the state-of-the-
art optimizers HIPO, they return a qualitatively better solution in five, two, and
one of the patient cases, respectively. Thus, it is not guaranteed that the CS
inspired strategy performs better than the state-of-the-art method. In general,
HIPO would be able to return the global optimum. Since it is, however, based on
SA, a compromise between quality and runtime has to be made.
Due to the runtime of HIPO, the needle selection is either completely omitted
and done manually using GrO or once at the beginning of the intra-operative
planning using a single run of HIPO. After an initial subset of needles is chosen,
the plans are re-optimized on this restricted domain. However, the comparative
study (sec. 5.1.3) showed that this strategy yields an increase in the returned
objective function of up to (22 ± 10)%. This increase leads to a statistically
significant decrease in COIN and EUD and strengthens the observation that ITP
is favorable compared to GrO [29].
In terms of quality, the different CS inspired approaches for HDR ITP, SISA seems
favorable, although this method is not capable of real-time planning. It provides
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Figure 6.2: Dose response curves for LDR (a) and HDR (b). The TCP, NTCPs
and FM are shown for different prescribed doses.

a variety of plans from which the user can choose. This resembles the concept of
multiobjective treatment planning but with an immense gain in performance [98,
100].

6.2.3 Towards individualized brachytherapy
The CS inspired algorithms open up possibilities in term of individualized
brachytherapy. With state-of-the-art optimizers, the plans are already tailored
to the patient specific anatomy. However, due to the trial-and-error procedure,
intra-operative planning takes several minutes or, in the worst case, up to an hour.
The CS inspired solvers allow for real-time planning and, thus, the fine-tuning of
the plans becomes more interactive with immediate feedback to the user. The
user is able to directly see the influence of changing parameters, which allows a
better steering of the plan quality.
The number of used needles is usually determined by a physician and depends
heavily on his or her experience [127]. To guarantee a certain quality of the plan
independent of the user, an intra-operative pre-planning step can be considered.
Since the CS inspired solvers are able to calculate a variety of plans with variable
weightings and numbers of maximally allowable needles in parallel, different plans
can be pre-planned in less than one second.
An example to determine an individualized prescribed dose for LDR and HDR
planning is illustrated in fig. 6.2. The plan is evaluated according to its biological
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consequences (TCP and NTCPs) as a function of the prescribed dose. A plan can
be evaluated by the so-called figure of merit (FM) that quantifies to which extend
the TCP is maximized while maintaining a certain NTCP. The FM is given by
[128]:

FM = TCP ·
o∏

ν=1
(1−NTCPν), (6.1)

where ν is the organ index and o the number of OARs. The figure of merit has
a maximum at the ideal prescribed dose. With respect to plans shown in fig. 6.2,
an ideal dose prescription is obtained for LDR and HDR, which is approximately
115Gy and 9Gy, respectively. At constant TCP, less dose can be prescribed to the
PTV which simultaneously reduces the dose to the OARs and therefore NTCP.

6.2.4 Dosimetric criteria based objective function
Real-time capable optimizers allow for the introduction of more realistic objective
functions. One possibility is to directly optimize the dosimetric criteria, i.e. eval-
uate the DVHs during each iteration step. In general, a reformulation into MILP
is possible but due to the high calculation time not suitable for intra-operative
ITP. Nevertheless, this was used as a reference for the obtained plan quality for
LDR and HDR dosimetric based planning.
Incorporating the realistic CBOF yields a more intuitive planning. The abstract
thresholds and weightings for the DBOF are replaced by dosimetric criteria and
weightings. During initial tests, it was determined that for each VOI one weight-
ing factor is sufficient. This decreases the number of parameters for optimization
from 16 to 4. One parameter for each of the OARs (prostate, urethra, rectum)
and one for the PTV.

LDR

The CBOF based optimization using the standard set of weightings is able to
significantly reduce the obtained objective function value.
With optimization times about several milliseconds the new approach outper-
forms the reference BILP by far and is capable of real-time planning, while the
optimization time for BILP is expected to be several days or even up to weeks.

Rating the new technique against BILP by comparing the returned values obtained
for the criteria leads to plans that show small deviations in the V100 of the prostate
and a clinically relevant reduction in the V150. For urethra, the obtained results
for the criteria are similar with no clinically relevant difference.
A significant increase of the criteria of the rectum was observed for the method
without needle optimization (LCB). Allowing the complete domain of all solutions
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Figure 6.3: The final needle configuration for APP and LCB* (a) and the resulting
DVHs (b). The DVHs of references APP are shown as dashed lines
and the DVHs of LCB* are drawn as solid-lines. With LCB* a total
of two needles can be spared.

(LCB*), those criteria can significantly be decreased. This indicates the advantage
of ITP including needle optimization, in contrast to a fixed subset of needles.
When compared to APP, the DVHs of LCB and LCB* showed a steeper gradient
and less dose in the high dose regime for the PTV. This leads to less hot-spots
inside the prostate. In addition, the dose for the urethra is almost equivalent to
the dose of APP.
In order to get individualized patient plans, the maximum number of needles
should not be constrained during treatment planning. It is recommended that the
user defines a certain range of the number of used needles and performs a fine-
tuning according to the patients anatomy. Afterwards, a compromise between
the number of used needles and the obtained quality can be chosen. With this
strategy, unexperienced users are able to provide plans that fulfill all dosimetric
criteria. In nine cases a solution with less needles were found. To demonstrate
this potential such a representative case is shown in fig. 6.3.
Due to the heuristic of the CS inspired solvers for LDR ITP, many optimization
problems have to be solved to obtain the solutions for different numbers of needles.
Nevertheless, multi-threading on modern CPUs to calculate different plans in
parallel allows real-time planning.
To conclude, the CS inspired method can also be used to solve the more realistic
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CBOF in real-time. In addition, this method helps the user to generate and
fine-tune the treatment plan.

HDR

The CS inspired approaches HSIS and SISA can also be used for dosimetric crite-
ria based optimization. The returned objective function values are near the global
optimum obtained by MILP. IPIP, the only existing approach that is able to gen-
erate valid plans in reasonable time, is outperformed by far by the CS inspired
approaches. This can be explained by the fairly simple greediness and the relax-
ations used by the IPIP method [31].
Using the CS inspired solver to optimize the CBOF leads to plans that show a
small deviation in the V100 criterion. For the remaining criteria of the prostate,
no clinically relevant deviation was observed. The same accounts for the urethra,
with a small advantage of the CS inspired optimization strategy that yields to a
decrease of the dosimetric criteria. For the rectum, a deviation between the APP
and the CBOF plans was observed. This indicates that the dosimetric criteria are
not perfectly described by the DBOF, which also has been repeatedly discussed
in literature [31, 26].
When comparing the DVHs, a reduction of the delivered dose to OARs was ob-
served in all patient cases. In addition, a steeper gradient and less dose in the
high dose regime of the prostate was observed, reducing the risk of side effects.
The presented approach inherently avoids hot-spots without the need of additional
constraints. This is contrary to the state-of-the-art approaches [107, 126].
The combination of the CS inspired solvers with the ability to solve the dosimetric
criteria based problem leads to new possibilities in intra-operative treatment plan-
ning. Due to the underlying strategy SISA, the user can perform the fine-tuning
on different needle configurations simultaneously. After the ITP, the plan with the
best dosimetric outcome can be selected. Using less needles leads to a decrease
in side effects linked to the trauma caused by the injection of needles. Especially
erectile dysfunction is directly linked to this [129, 106].
With the discussed strategy, even an unexperienced user is able to generate treat-
ment plans that fulfill the dosimetric criteria. In all ten patient cases, the obtained
plans contained less needles than for APP. An example showing a plan where a
total of four needles (25%) was saved is shown in fig. 6.4. The planning time was
less than two minutes.
The CBOF based planning is an alternative which has the potential to replace the
current state-of-the-art planning procedures.
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6.2.5Biologicalbasedobjectivefunction

Biologicaltreatmentplanningisanimportantsteptowardsmorerealisticobjec-
tivefunctions. Uptonow,onlytheevaluationofbiologicalmodelsisusedfor
reportingor,inthecaseofretrospectivestudies,forcomparingdifferenttreatment
modalities[130,131,132,61].Sincetheevaluationoftheobjectivefunctionistoo
timeconsuming,biologicaloptimizationisnotpossibleusingthestate-of-the-art
optimizer.
ThenewclassofCSinspiredsolverscancopewithmorecomplexobjectivefunc-
tionsandallowsforthefirsttimebiologicaloptimizationforbrachytherapy.The
runtimevariesfromamaximumofoneminuteforLDRandHDRwithoutneedle
optimizationto15minutesforHDRincludingneedleoptimization.
Allcalculationsofbiologicalparametersareperformedusingthestandardset
(e.g.parametersfortheradiosensitivityoftissue)asrecommendedbytheAAPM,
whicharesummarizedintab.A.6.Itisimportanttonotethattheseareonly
recommendationsandshouldnotbetakenasthebiologicalparametersforthe
individualpatient[10].
Theexpectedbiologicaloutcome,basedontherecommendedparameters,isdis-
cussedinthefollowing.
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LDR

The biological treatment planning using the CS inspired optimizers generates plans
with a TCP of (95.0 ± 0.1)%. When compared to APP with a TCP of (73.7 ±
10.9)%, which is the equivalent to the values found in literature [10], the new
strategies improve the outcome of the treatment. At the same time the expected
complication probability of the rectum was reduced from 17% to only 2%. The
expected urethral complications do not show a clinically relevant difference. When
rating the plans using DVHs and dosimetric criteria may lead to wrong decisions.
For example, the plans showing the smallest deviation with respect to TCP show
the largest regarding the V100 criterion. The biologically optimized plan returned
a V100 of 84.1% and, thus, this criterion was not fulfilled and the plan would
have never been clinically accepted. However, when considering the EUD (APP:
67.7Gy and LBIO*: 67.2Gy ) both plans are equivalent with respect to TCP.
In addition, the biological optimized plans lead to a significant reduction of the
NTCP of the rectum. Despite the worse biological rating regarding TCP, the plan
was accepted for treatment.
The drawbacks of the discussed biological model is the assumption of a uniform
distribution of the tumor cells within the prostate. However, there is anatomic
variability in prostate cancer distribution within the gland [133]. Having the
possibility to identify those regions inside the prostate would allow a more accurate
calculation of the TCP. A solution might be to divide the prostate into sectors
and, afterwards, assign tumor cell densities. These densities can be obtained
using functional imaging such as magnetic resonance spectroscopy or single photon
emission computed tomography [10].
Treatment planning with BBOF is an approach which yields robust plans with
respect to TCP and NTCP. This was achieved without the need for adapting
the initial parameters. The optimization time of about one minute is acceptable
as long as a manual re-planning is not required. With more efficient biological
models and parallelization of the algorithm for example using multi-threading or
an efficient GPU implementation real-time ITP with clinically relevant biological
models is in reach.

HDR

For HDR, ITP with the BBOF returns plans with small deviations in TCP and
NTCP. When compared to APP, the differences are clinically not relevant in nine
patient cases. Only for one patient an increase in TCP by 12.1 % was observed.
The DVHs showed no clinically relevant differences for the PTV, rectum and ure-
thra.
A benefit of biological based treatment planning is, that the prescription of a plan
only contains the values for TCP, NTCPs, and a fractionation scheme. The dose
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delivered to the PTV is calculated automatically. When rating the plans accord-
ing to the biological parameters a re-optimization does not seem to be necessary.
This simplifies the planning procedure for an unexperienced user. Two different
plans for three and two fractions were obtained by an unexperienced user in less
than two minutes.
A runtime of the optimizer for a fixed needle configuration of about 30 seconds
is applicable for intra-operative ITP. The optimization time including needle se-
lection of several minutes is not acceptable. However, an efficient multi-threading
or a GPU implementation may yield optimization times not longer than a few
seconds.

6.3 Potential and limitations
The CS inspired approach yields plans which are equivalent or better than those
obtained with the state-of-the-art methods. In the following, the potential and
limitations to further improve brachytherapy treatments as well as the potential
with respect to radiation therapy are discussed.

6.3.1 Real-time guidance
Several benefits regarding the improvement of the intra-operative ITP using the
novel approach have been proposed already.
Next to optimization, a major limitation of brachytherapy is the unavoidable
inaccuracy in needle and seed placement in the prostate during insertion and
implantation. Needle movement and seed migration is a problem which has been
previously discussed in literature [48, 134, 135, 136]. This leads to partially severe
differences between intra-operatively planned and delivered dose distributions and
may cause degradation of the final outcome [137, 138, 139].
To overcome these limitations, the state-of-the-art approach is to identify the
trajectory of the needles via computed tomography or ultra sound images and
perform a re-planning after all needles have been injected. This is equivalent to
treatment planning with a restricted domain of the solutions and may yield sub-
optimal plans.
The proposed solution based on the new CS inspired optimization techniques
would allow to automatically identify a potential displacement and perform a real-
time re-planning during the insertion of the needle or during the implantation of
the seeds. As a feedback, the expected influence of the displacement and the
possible solution in terms of an update of dwell-positions and dwell-times can be
intermediately provided to the user.
The discussed interactive periodical re-planning ensures the best possible plan and
related outcome of the treatment.
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6.3.2 Dose calculation
The major limitation in ITP is the dose calculation itself. The developed ITP
system is based on the dose calculation recommended by AAPM’s TG-43 which
is currently the worldwide standard [58]. Even though this method is fast, it is
well-known that the dose can vary by as much as a factor of ten [1]. Especially
for the CS inspired approach with the tendency to select less dwell-positions this
may lead to severe changes in the clinical performance of the plan.
Deviations are based on the TG-43 approach, whereby the lookup-tables to calcu-
late the dose distribution are obtained using measurements of a single seed placed
inside a homogeneous water phantom. A valid dose estimation can only be ob-
tained for this particular setting.
To improve the ITP system, more reliable dose calculation methods considering
the influence of heterogeneities of tissue and the contribution of scatter-dose, i.e.
dose contributed by secondary photons, have to be incorporated. Another aspect
is the attenuation between the different seeds, in literature called interseed effect.
This may yield discrepancies of up to 18 % [140].
Heterogeneity correction can be applied using the 1D "effective path length" [141,
142] or more sophisticated analytical dose calculation algorithms [143, 144]. Those
methods are able to account for heterogeneities including the interseed effect but
are unable to describe the scatter-dose. Model-based approaches such as collapsed-
cone superposition, deterministic solutions of the linear Boltzmann transport
equation, or Monte Carlo simulations have to be used to simulate scattering [145,
146, 147].
For the developed ITP system the discussed strategies for more realistic models
can be implemented without any restrictions, since the dose dictionary can be
calculated prior to ITP. With modern GPU based Monte Carlo algorithms the
dictionary can be generated in a couple of seconds which is acceptable for intra-
operative planning. However, when considering the interseed effect the dictionary
has to be updated during each iteration step. Even with the mentioned GPU
based algorithms this adds too much time to the planning procedure and hence
further modifications are necessary.

6.3.3 Applications in radiotherapy
The reformulation into a CS inspired problem and the development of new algo-
rithms tailored to the structure of ITP yields real-time solvers for brachytherapy.
Together with more realistic objective functions, dose calculation engines, and
tracking devices this broadens the spectrum of brachytherapeutic approaches. In
future more difficult settings such as recurrences of rectal carcinoma, spinal metas-
tasis, head and neck tumors, and metastatic sites in patients with oligometastatic
diseases could be treated with brachytherapy [148, 149, 150, 151].
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Furthermore, it was shown empirically that as long as a certain sparsity of the
solution can be assumed and the structure of the objective function remains linear,
the novel solvers can be used to optimize different ITP objectives. The question
remains whether a sparse solution can be assumed for other radiation therapy
modalities and if these can be optimized using linear objective functions.

External beam Radiation Therapy

In external beam radiation therapy, intensity modulated radiation therapy is a
modality that is able to deliver complex shaped dose distributions to the tumor.
This is achieved by forming different intensity modulated beams and irradiating
the target with multiple beams from different directions.
While first approaches assumed a high number of coplanar beams [152, 153], re-
cent strategies promote sparse beam representations as a further increase in the
number of beams does not lead to a clinically relevant improvement. A maximum
number of ten intensity modulated beams was found to be sufficient [113, 114,
115].
For intensity modulated radiation therapy, there are varieties of different linear,
nonlinear, and quadratic objective functions that can be considered for optimiza-
tion. However, it was shown that a linear approximation of those leads to sat-
isfactory results [154, 155]. Thus, both criteria that allow the use of the newly
developed optimizers are fulfilled.
There are two different optimization strategies, direct aperture and beamlet-based
optimization [156, 157, 158, 159]. According to Kim et al., the latter yields an
optimization problem given by:

x∗ = arg min ‖W · x‖1 +
o∑

ν=1
λi‖D · x− t‖2

2, (6.2)

where x is the beamlet-intensity map, W is a difference matrix, λ is a Lagrange
multiplier, andD is the dose dictionary, t a dose threshold, and ν the organ index
with the total number of organs o [160].
Although eq. (6.2) can be optimized using standard CS optimizers, there is a need
for fast and robust solvers that address the specific issues of intensity modulated
radiation therapy [160].
When comparing the formulation of (6.2) with P5, the intensity modulated radi-
ation therapy problem is equivalent to the unconstrained HDR ITP problem. A
solution for the intensity modulated radiation therapy problem could be to decou-
ple the angle from the intensity-map optimization, which would enable the use of
the introduced greedy optimizers HSIS and SISA.
The CS inspired approach can be used for the different intensity modulated modal-
ities independent of the used particles, such as photon, proton [161], and electron
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[162]. The newer technique of volumetric-modulated arc therapy cannot be per-
formed using a sparsity approach. Instead of a step-and-shoot strategy (intensity
modulated therapy) the concept of volumetric-modulated arc therapy is a contin-
uous gantry movement [163] and, thus, a sparse angle representation of beamlets
is not given.
Another strategy is the combination of external beam radiation therapy with a
brachytherapy boost inside the PTV [164]. Up to now, the commercially avail-
able planning system Oncentra does not support a treatment planning for such a
combined therapy [30]. Using sparse reconstruction techniques for external beam
radiation therapy and brachytherapy, the developed planning system could over-
come this limitation.

Intra-operative radiation therapy

A new development at the University Medical Center Mannheim, which is not yet
in clinical practice, is intra-operative radiation therapy for unresectable glioblas-
toma. The strategy is an initial cytoreductive therapy following after a stereotactic
biopsy.
The used intra-operative radiation therapy system is the Intrabeam PRS 500
System (Carl Zeiss Meditec AG, Oberkochen, Germany) for interstitial and in-
tracavitary radiotherapy. It consists of a miniature low-energy X-ray generator
(30−50) kV with a 10 cm long and 0, 3 cm wide drift tube emitting nearly isotrop-
ically radiation (with dose rates of (1− 2)Gy/min) from its tip.
The intrabeam system is fixed onto a modified stereotactic system, which allows a
stepping motion of the source along a pre-defined trajectory. The treatment goal
is to deliver a sterilizing single dose of (25− 30)Gy to the tumor and to spare the
OARs as much as possible. This should be achieved with sparse representation
of dwell-positions, since the number of manual adjustments of the dwell-positions
should be maintained as small as possible to minimize the overall treatment time.
Hence, the optimization problem is equivalent to problem P3 and can be tackled
with SISA. The initial results (fig. 6.5) show a good coverage of the tumor and an
efficient sparing of the OARs.

Gamma knife stereotactic radio-surgery

The gamma knife stereotactic radio-surgery unit can be used for the treatment
of malformations of the head. It is used for trigeminal neuralgia, arteriovenous
malformations, benign tumors, and brain metastases [165].
The system, which is available at the University Medical Center Mannheim, is the
Leksell Gamma Knife Icon, Elekta AB, Sweden. The system consists of 192 60Co
sources that are divided into eight sectors. Each of the sectors can be controlled
independently using collimators with an aperture sizes of 4mm, 8mm, and 16mm
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Figure 6.5: Two plans for an intra-operative radiation therapy for an unresectable
glioblastoma. The conventional approach (a,c) with source placed in
the center of mass of the tumor. In addition, (b,d) shows the novel
approach using a stepping source. The DVHs are shown in (a,b) and
the isodose lines in (c,d). Due to the high dose of the brain stem only
the right plan is clinically acceptable.
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[165]. This allows a very precise focusing of the beams and an irradiation of small
lesions.
Treatment planning ranges from trial-and-error manual methods to inverse plan-
ning based on nonlinear programming, genetic algorithms, SA, LP and formu-
lations as MILP [166, 167]. Due to the large search space, a sparse solution is
promoted by manual restrictions of the domain of potential configurations.
Taking the demand of sparsity and a linear objective function into account, the
Gamma Knife ITP can be formulated as a problem which is equivalent to that of
CS. Thus, the developed optimizers can be used to tackle this problem, too.
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Brachytherapy has its well established niche in radiation therapy. Especially for
prostate carcinoma, diagnosed as a local disease, brachytherapy offers a 90 %
chance of relapse-free survival [168]. ITP tools strive to cover the tumor region
with at least the prescribed dose while minimizing dose to healthy tissue. How-
ever, the state-of-the-art optimizers for the ITP problem are often very slow and
abstract thresholds and weights of the used objective functions do not allow an
intuitive planning process [31, 29].
Thus, manual forward planning methods such as GrO, where the user gets an
feedback intermediately, are preferred in clinical routine. However, this trial-
and-error based procedure is known to produce plans which are worse than those
generated with ITP optimizers such as IPSA and HIPO.

Consequently, there was a strong need for new optimization strategies that
allow real-time planning, whereby the user can interactively tailor the plan to the
patient’s anatomy. In addition, more realistic objective functions would allow a
more intuitive steering of the planning procedure.
The state-of-the-art optimization strategies are based on general class solutions
which can be used for a variety of different optimization problems without modi-
fication. However, it is often observed that problem specific heuristics which are
tailored to the underlying structure can outperform the standard approaches by
far.

By analyzing the LDR and HDR ITP problem it was observed that only a
small number of all potential seed positions contribute to the final solution.
Mathematically speaking, the solution is sparse. Sparsity optimization is ad-
dressed by the theory of CS and can be tackled using different strategies. Among
these, the greedy inspired pursuit algorithms are in general considered to be one
of the fastest. The research question was whether it is possible to reformulate the
ITP problem into an optimization problem that is equivalent to that in CS and
whether this leads to a comparable gain in performance as observed in CS.
Therefore, the ITP problem using the state-of-the-art objective function was
reformulated to mathematically match CS type. This was done for the different
treatment modalities LDR and HDR, as well as for the ITP problems with and
without needle optimization.
However, the state-of-the-art CS solvers cannot be used to optimize ITP problems
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for two reasons. Firstly, there exist restrictions in the domain of all potentials
solutions, where the solution vector is binary for LDR and nonnegative for HDR.
Secondly, the ITP objective function cannot be handled by the state-of-the-art
implementations.
To overcome this limitations multiple solvers to tackle the different ITP proble-
mens in brachytherapy were developed. Each solver has its own advantage either
in quality or in runtime.
It is assumed that all objective functions that are of the same structure as the
DBOF can be used with the newly developed CS inspired algorithms as well.
Based on this assumption two more realistic and more intuitive objective function
addressing dosimetric and biological optimization have been developed.

To be able to compare the newly developed methods against each other and
against the state-of-the-art methods, a treatment planning system was developed.
The system includes a full DICOM interface and incorporates the different opti-
mizers such as IPSA, HIPO, and CPLEX. The dose-calculation is based on the
worldwide standard recommended by TG-43. The system can either be used
script-based to perform automated comparative tests on a large cohort of patient
data or with a GUI. The program has been implemented in Matlab using an
object oriented programming strategy and uses MEX files as an interface for
C++ subroutines.

The study showed that the developed CS inspired solvers by far outperform
the state-of-the-art methods in terms of returned objective function value and
runtime.
For LDR without needle optimization, the LSUP algorithm represents an excellent
compromise between runtime and quality. In detail, it is up to 330 times faster
than state-of-the-art strategies and, at the same time, provides solutions that
are equivalent to the estimated global optimum. Considering treatment planning
including needle optimization, the algorithms LSUP and LSPA performed com-
parable. Both showed advantages either in speed or in complexity. Since both
did not differ significantly from the estimated lower bound given by MILP, LSUP
which has a small advantage in runtime, and is hence recommended for the LDR
ITP. The optimization time lies between 0.03 s and 0.24 s and underlines the
capability of real time-planning for LDR brachytherapy.

For HDR, the returned solutions from the solvers HSIS and SISA do not dif-
fer significantly from the estimated lower bound obtained using MILP. Compared
to the state-of-the-art method HIPO, the CS inspired solvers HSIS and SISA were
up to 300 and 132 times faster, respectively. The optimization time is abot 1 s for
HSIS and 4 s for SISA, which makes both capable of intra-operative treatment
planning. Due to its underlying heuristic is SISA able to provide multiple plans
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with different numbers of used needles per single execution of the optimizer.
With respect to the state-of-the-art methods, the newly developed CS based
optimizers yield a significant improvement of the objective function value. The
returned values are near the global optimum for the different approaches. In
general IPSA and HIPO can return the global optimum too. However, in clinical
routine, a compromise between quality and optimization time is chosen, which
explains the observed difference.

The newly introduced dosimetric and biological based objective functions showed
the potential to improve the ITP procedure in future. For dosimetric based plan-
ning a more realistic objective function and the reduction from 16 to 4 parameters
lead to a more intuitive fine-tuning of the plans and thus simplifies the planning
procedure. With optimization times of less than 0.55 s for LDR and 5.7 s for HDR
including needle optimization, the new objective function outperforms the DBOF
in terms of runtime. The BBOF optimization leads to plans with a TCP for LDR
of 95.1 % and HDR of 99.3 %. Especially for LDR, this is a significant increase
in the TCP compared to the state-of-the-art methods. While the NTCPs are
almost the same for HDR, a significant decrease in the NTCP of the rectum was
observed for LDR. However, due to the calculation times of several seconds up to
minutes biological planning cannot be used for intra-operative ITP. Nevertheless,
ITP with clinically relevant dose models is in reach.

The CS based ITP is a promising approach. As expected, a huge gain in perfor-
mance was observed. The sparsity strategy allows real-time treatment planning.
The different comparative tests showed that LSuP and SISA have the potential
to become the gold standard in optimization strategies for LDR and HDR ITP in
the near future.
The new strategies simplify the planning procedure and allow interactive ITP.
Even unexperienced users are able to generate clinically acceptable plans within
less than two minutes. In addition, these plans reduce the number of used needles
which shortens the intervention time and decreases the risk of trauma induced
side-effects.

Another aspect of real-time planning is that automated intra-operative re-planning
is possible. Using high precision tracking devices, a potential misplacement of
needles and seeds could be detected and corrected by re-running the optimiza-
tion. However, this relies on high-precision tracking devices which have to be
implemented into the clinical routine. A first prototype was developed in parallel
to this thesis and will be presented in future.
Besides the benefits achieved in the planning process, there is still a need for
further improvement. The most critical point is the dose calculation based on
water-equivalent look-up tables which leads to a known deviation by a factor of
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up to ten. Since the sparsity approach gives plans that are proven to reduce seeds
and needles an accurate dose calculation is inevitable. A solution might be to use
more realistic dose models. Currently, these are computationally too expensive
and the system would loose the real-time capability. Thus, there is a strong need
for the development of fast and efficient dose calculation routines.
The novel ITP system in combination with the improvement in tracking devices
and more realistic dose calculation allow for more individualized brachytherapy
treatment with an increase in tumor control and a reduction of side-effects. In
addition, this might allow the treatment of the recurrences of rectal carcinoma,
spinal metastasis, head and neck tumors, and metastatic sites in patients with
oligometastatic disease.
In general, CS inspired solvers have the potential to be used for many different
radiation therapy modalities. This requires that a plan is formed using a sparse
representation of elements of the dose-dictionary and that the used objective
function can be reformulated or approximated using linear or partially linear
functions. When analyzing the different modalities, the concept can be applied
to intensity modulated radiation therapy, gamma knife stereotactic surgeries, and
intra-operative radiation therapy, as well as combinations thereof.

Summing up, sparse solution with optimization strategies inspired by CS is a
new paradigm in medical physics. It has the potential to speed-up and im-
prove the planning for the different radiation therapy modalities in future. Both,
patients and clinics will benefit from these novel approaches.
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Table A.1: The physical properties of radionuclides used in brachytherapy. The
data have been taken from the National Nuclear Data Center [169].
Electrons from β− decay are absorbed by the core of the capsule [59].

I-125 PD-103 Ir-192 Cs-137 Co-60
Half-life [d] 59.4 17.0 73.8 30.1 1924.9
Decay - - β−(95.1 %) β−(100 %) β−(100 %)

EC (100 %) EC (100 %) EC (4.9 %) - -
x-ray energy 28 21 350 613 1253
[keV ]
β− energy - - 181 188 87
[keV ]

Table A.2: Summary of the performed patient study. VProstate is the volume
of the, Sk is the referenced air kerma strength of the used sources
U = 1µGym2/h for the different modalities and DRx is the pre-
scribed dose.

Patient VProstate [cm3] LDR Sk [U ] DRx [Gy] HDR Sk [U ] DRx [Gy]
1 52.7 0.75 120 4.03×104 10.5
2 77.0 0.75 140 4.03×104 10.5
3 54.3 0.75 140 4.03×104 10.5
4 43.0 0.75 120 4.03×104 10.5
5 62.6 0.75 120 4.03×104 10.5
6 46.3 0.75 120 4.03×104 10.5
7 62.1 0.75 140 4.03×104 10.5
8 56.5 0.75 120 4.03×104 10.5
9 51.7 0.75 120 4.03×104 10.5
10 52.9 0.75 120 4.03×104 10.5
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Table A.3: Recommended dosimetric criteria for LDR and HDR interstitial
brachyhterapy [60, 10]. To distinguish between the dosimetric criteria
for urethra and rectum they are labeled with ’U’ and ’R’, respectively.

Modality Organ Criteria Constraint (%)
LDR Prostate V100 >95

V150 <50
Urethra UD10 <150

UD30 <130
Rectum RD0.1cc <150

RD2.1cc <100
HDR Prostate V100 >90

V150 <45
V200 <20

Urethra UD0.1cc <130
UD1.0cc <120

Rectum RD0.1cc <110
RD02.0cc <110

Table A.4: Prescribed dose (DRx) and fraction scheme for the different brachyther-
apy modalities and used radionuclides [60, 10].
Modality Radionuclide permanent fractions DRx[Gy]
LDR I-125 x - 145.0

PD-103 x - 125.0
CS-131 x - 131.0

HDR Ir-192/Co-60 - 3 10.5
Ir-192/Co-60 - 4 8.5-9.5
Ir-192/Co-60 - 6 4.0-6.0

Table A.5: Parameters of the DBOF for LDR and HDR treatment planning[29].
Modality Organ min Dose (%) Weight max Dose (%) Weight
LDR PTV (surface) 100 100 150 10

PTV (surface) 100 100 150 10
PTV (volume) 100 100 150 5

Urethra (surface) - - 67 5
Rectum (surface) - - 50 5

HDR PTV (volume) 100 100 200 10
Urethra (surface) - - 125 5
Rectum (surface) - - 83 5
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Table A.6: Biological parameters used to calculate TCP and NTCP according to
[10, 65, 66]. The complication probabilities of urethra and rectum are
labeled with NTCPU and NTCPR.

Probability Parameters
TCP α β µ Tp N0

0.15Gy−1 0.05Gy−2 42 d 0.27h 106

NTCPU δ γ
2.6± 0.5 (6.6± 1.6)mGy

NTCPR s k D50
0.75 10.24 80Gy
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