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Kurzfassung

In dieser Arbeit untersuchen wir den Einfluss von mesonischen und baryonischen Fluktuatio-
nen auf das Phasendiagramm vom Quarkmaterie mit zwei Flavorn. Durch das Betrachten
des Hadronisierungsprozesses und der damit verbundenen Techniken, werden wir effektive
Niederenergiemodelle herleiten, in denen die Gluonen ausintergriert sind. Um unsere Mod-
ellrechnungen bei endlichem chemischen Potential mit Gitterrechnungen vergleichen zu kön-
nen, erproben wir eine QCD-ähnliche Theorie mit zwei Farben, worin das Vorzeichenproblem
nicht vorhanden ist. Zu diesem Zweck führen wir ein Quark-Meson-Diquark Modell ein, wo
die bosnischen Diquarks die Rolle der farblosen, baryonischen Freiheitsgrade spielen und mit
den Mesonen konkurrieren. Um Zugang zum Phasendiagramm zu erlangen und die Phasen
der chiralen und Diquark-Kondensation zu bestimmen, bedienen wir uns der Funktionalen
Renormierungsgruppe, welche uns ein systematisches, nichtperturbatives Trunkierungsschema
ermöglicht. Interessante Phänomene, die aus der Festkörperphysik bekannt sind, treten auf,
wie der BEC-BSC Übergang und eine Phase der bezirksweisen Kondensation. Zusätzlich zur
Skalenabhängigkeit des effektiven Potentials erkunden wir die Wirkung von laufenden Wellen-
funktionsrenormierungen und Yukawa Kopplungen der Quarks und Boson Felder. Während-
dessen werden wir die Silver Blaze Eigenschaft und ihre Realisierung innerhalb eines funk-
tionalen Zugangs diskutieren.
Parallel dazu werden wir ein Quark-Meson-Diquark-Baryon Modell für die physikalische QCD
formulieren, als eine effektive Niederenergietheorie für baroynische Materie bei großen Dichten,
und die Relevanz der Diquark- und Baryon-Freiheitsgrade diskutieren. Im diesen Sinne werden
wir ein Phasendiagramm für die QCD durch funktionale Methoden berechnen, einschließlich
einer farbsupraleitenden Phase.

Abstract

In this work we study the influence of mesonic and baryonic fluctuations on the phase dia-
gram of quark matter with two flavors. By examining the hadronization process and related
techniques, we will derive effective low-energy models, where the gluons are integrated out.
To be able to compare our model calculations with lattice results at finite chemical potential,
we investigate a QCD-like theory with two colors, where the sign-problem is absent. To this
end we introduce a quark-meson-diquark model, where the bosonic diquarks play the role of
colorless, baryonic degrees of freedom competing with the mesons. To access the phase dia-
gram and determine the phases of chiral and diquark condensation, we employ a functional
renormalization group approach allowing for a systematic non-perturbative truncation scheme.
Interesting phenomena arise that are known from condensed matter physics, as the BEC-BSC
crossover and a phase of condensation within domains. We explore the impact of running wave
function renormalizations and Yukawa couplings for the quarks and the boson fields on top of
the scale dependence of the effective potential. In the course of this we will discuss the Silver
Blaze property and its realization within a functional approach.
In parallel, we will formulate a quark-meson-diquark-baryon model for physical QCD as a low-
energy effective theory for baryonic matter at high density, and discuss the relevance of the
diquark and baryon degrees of freedom. In this sense, we will compute a phase diagram for
QCD from functional methods, including a color superconducting phase.
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Chapter 1
Introduction

The Standard Model of particle physics is in principle able to explain much of the physical world
and various phenomena therein, in terms of quantum field theories. It describes the attributes of
fundamental matter, called leptons and quarks which are fermions, and their interaction by the
exchange of gauge bosons. In addition, a scalar boson was introduced for the generation of the
masses without violating a fundamental principle, the gauge symmetry. This is called the Higgs
mechanism and was proven recently by the discovery of the Higgs particle at the LHC. The fun-
damental forces are: The weak interaction, responsible for the radioactive beta decay processes,
the strong interaction, responsible for the nuclear binding, and the well known electromagnetic
interaction. Of course there are many important open question, like the generation of neutrino
masses, the theoretical description of quantum gravity, the nature of the dark energy and dark
matter, which seems to make up most of the universe, and the unification of all forces at high
energies with the possibility of an even more elementary nature of the fundamental objects.
The earliest attempt to explain nuclear interaction was made in 1934 by Yukawa [1], saying that
the force between the protons and neutrons is mediated trough massive bosons, which he named
mesons. The famous Yukawa potential has the diverging properties of a Coulomb potential at
short range, and an exponential damping factor in terms of the meson mass, for the suppression of
long-range interactions. The theory was later approved by the discovery of the pions. Soon after
in 1950s, the discovery of numerous particles had begun. If the decay products contained a proton
or a neutron, the a particle was classified as a baryon, otherwise it was grouped to the mesons.
The “particle zoo” started to become vast, but Gell-Mann and Ne’eman [2–4] noticed that groups
of particles were related to each other in a way that matched the representation of SU(3), by the
Eightfold Way, and thereby predicted the existence of the Ω− baryon. Then in 1964 it was Zweig
[5, 6] and Gell-Mann [7] who proposed the quark-model with the up, down and strange quark as
the flavors in the fundamental representation of SU(3). The model suggested that a baryon is
a combination of three quarks (or antiquarks), while the mesons are quark-antiquark pairs. A
heavier strange quark was the explanation for the mass difference of the bound states. With
the discovery of the ∆++ baryon came the next puzzle: This particle was readily interpreted
as a bound state of three up quarks with zero orbital angular momentum and all three spins
parallel. Seemingly a contradiction to Pauli’s exclusion principle, stating that one quantum state
can only be assumed by a single fermion. To reconcile this principle with the baryon spectrum,
Han, Nambu [8] and Greenberg [9] proposed that quarks carry an additional quantum number
called color. The simplest way was to assign quarks to the fundamental representation of a new,
internal SU(3) symmetry. Meanwhile Yang and Mills extended the concept of gauge theory to
non-Abelian groups [10]. Since the color symmetry had no other obvious role, it was natural for
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Chapter 1: Introduction

Gell-Mann, Fritzsch and Leutwyler in 1972 [11] to identify the symmetry with a gauge group, in
analogy to quantum electrodynamics. This resulted in the model for the strong interactions as it
still is today, namely as system of quarks with various flavors coupled to an SU(3) gauge theory,
whose excitations are called gluons. The theory is known as Quantum Chromodynamics (QCD).
Around the same time, deep inelastic scatting experiments at SLAC and MIT [12] confirmed
the existence of point-like constituents in the protons, and later the three-jet events at DESY
posed the evidence for the gluons [13]. In further experiments the heavy flavors charm (SLAC and
BNL), bottom and top (both at Fermilab) were discovered. All theory parameters are summarized
in Tab. 1.1, where αs represents the interaction strength or coupling constant of the theory.

i

Flavor up down strange charm bottom top

Mass
[MeV] 2.5+.6

−.8 5.0+.7
−.9 100+30

−20 1250+50
−110 4190+180

−60 172.9+.6
−.8 · 103

αs Nc

0.1184± 0.0007 3A
A

Table 1.1: Quark masses [14], world average of the strong coupling constant [15] and the number of colors.
These microscopic parameters in principle determine the entire world of QCD.

Naturally, the question arose that why quarks or colored object are never directly observed in
an isolated form. When Callan and Symanzik formulated the renormalization group equations
(RGE) [16, 17], which govern the dependence of the theory parameters on the energy scales, it was
possible for Gross, Politzer and Wilczek in 1973 [18, 19] to find that non-Abelian gauge theories
exhibit asymptotic freedom. In this sense, the values given in the above table are only valid at
the microscopic scale. The RGE of the strong coupling constant is negative, entailing that the
coupling goes asymptotically to zero at high energies, where then the particles become free of
interaction. This allows for a perturbative expansion of the theory in the coupling parameter.
The predictions made in this way, are in a satisfying agreement with experiments. Of course there
is the opposite limit of small energies, or equivalently large distances, where coupling runs into
a Landau pole. The diverging behavior signals the breakdown of perturbation theory, happening
at a scale of ΛQCD ' 200 MeV, that is identified as the infrared (IR) cutoff of classical QCD. The
absence of color charges objects in nature, known as confinement, is explained by the increasing
coupling at large distances. The energy that is needed to separate colored objects from each
other at some point exceeds the threshold for the creation of particles in the middle, which
then pair with the initial objects back into color neutral states. The behavior of the coupling
is rooted in the non-Abelian nature of the gauge theory, where the gauge field are subject to
self-interactions. Hence it is believed that confinement is triggered purely by the gluon dynamics,
though a rigorous mathematical proof has yet to be delivered.
Due to confinement the first feeling for the quark masses can only be obtained by dividing the
mass of a hadron (bound states in QCD) by the number of its constituents. But then one finds
a discrepancy between mesons and baryons. The former are far too light to have agreeable
constituent masses. The correct understanding requires an approach to contain a well-defined
limit of massless quarks in the high energy regime. Then the QCD action possesses a global flavor
symmetry known as chiral symmetry, that can break spontaneously in the ground state through
quantum fluctuations. Along with that, according to Goldstone’s theorem [20], massless bosons
must occur. When there is an initial, small explicit breaking, the Goldstone bosons have small
but nonvanishing masses. The masses that are given in the table are the current masses, which
are obtained from the Higgs mechanisms [21–23] at the electroweak scale ∼ 246 MeV. However,
the nucleons, which are made of three up and down quarks, have a mass of about 1 GeV. This
is understood as the dynamical breaking of chiral symmetry in addition to the explicit breaking
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Figure 1.1: Sketch of the phase diagram of QCD [24]. For reviews see [25–29].

by the current masses, and the pions occur as the associated pseudo Goldstone bosons with a
mass of ∼ 140 MeV. At the most fundamental level all particles are massless. What we call
mass is actually the energy of the cloud of quantum fluctuations around the particle interacting
with it. For the light quarks, most of the cloud is generated from QCD, whereas for the heavy
quark the electroweak interaction is most responsible. The relevant scale is again ΛQCD where
the interaction becomes strong, and the quarks that have a substantially lower mass than this
scale can be considered as approximately massless. When all fluctuations are included, QCD
adds about 300− 500 MeV to the values in the table, and they are the constituent quark masses.
Thus, most of the mass of all chemical elements in the periodic table is owed to the dynamical
chiral symmetry breaking. Note that neither the current nor the constituent masses can be
measured exactly, but are rather resulting from model or lattice calculation.
The low energy regime with its non-perturbative phenomena, among which confinement and
chiral symmetry breaking are the most prominent, is even hitherto not entirely understood, and
this is what makes QCD so fascinating as research topic even today. The two limits of asymptotic
freedom and hadronic physics imply a drastic change of the degrees of freedom. While at high
energies, there are weakly interacting light quarks and gluons, at low energies they exist as heavy
constituents of color neutral objects, interacting via the exchange of light mesons. It is natural to
expect a phase transition somewhere in between the two limits. It is believed that the chiral and
the confinement-deconfinement transition are related to each other, but no analytical description
for some dynamical link is available yet.
At finite temperature and density we have additional scales in the system. Since the temperature
gives rise to a kinetic energy for the particles, it somewhat mimics the physics at high energies. At
nonzero densities fermionic sates are occupied and therefore quantum fluctuations are suppressed.
Thus it is concluded that phase transitions should occur in both these directions. The arguments
can be put into a map of the conjectured phase diagram as given in Fig. 1.1. It is an active area
of research and a great challenge to understand the nature and properties of the phases and the
mechanism behind the transitions, from both the experimental and theoretical side. Indicated
are the hadron gas in the low temperature, low density regime, the quark-gluon-plasma (QGP)
at high temperatures, and the color superconductivity at high densities. The precise structure
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Chapter 1: Introduction

is far from being known. However, along the T -axis at vanishing densities, convincing evidence
has been collected from experimental and theoretical endeavor, that both aforementioned phase
transitions exist and approximately coincide [30, 31]. At intermediate densities it was proposed
that a new, so-called quarkyonic phase may exist, which is confining but chirally symmetric [32–
34]. Such a phase is realized in the limit of many colors. The QGP is gas of free quarks and gluons
in the infinite temperature limit [35–37], while in the vicinity of the phase transition experiments
hint that it behaves like a strongly coupled liquid [38–40]. A finite density is implemented
by a chemical potential µ, which actually parametrizes the imbalance between particles and
antiparticles. It is believed that the early universe underwent the QCD phase transition from
the QGP phase to the hadronic phase by cooling down at about Tc ≈ 160 MeV≈ 1012 K, at
small chemical potentials. This happened within 10−6 seconds after the big bang.
Evidently, creating the extreme environment for the experimental study of the QCD phases
requires enormous efforts. Nowadays it is realized in ultra-relativistic heavy-ion collisions at
RHIC and LHC for small chemical potentials, and in the future FAIR and NICA will investigate
the high density regime. When two ions collide with tremendous energies a fireball is created,
where for very short lifetime the QGP phase can occur. Such a system can be described by viscous
or ideal hydrodynamics, depending on the thermal equilibration [41–45]. For the very early, non-
equilibrium stages the so-called Color Glass Condensate framework has been developed [46–51].
The next stage is reached when it has cooled down to the hadronic phase. But the particle content
is not fixed until the chemical freeze-out, which represents a lower bound for the hadronisation
temperature. The final stage is reached when elastic scatterings have ceased at the thermal
freeze-out and the momentum distribution is fixed. All information of the fireball have to be
reconstructed from this point backwards [52].
Within the hadronic phase lies the liquid-gas phase transition of nuclear matter. At vanishing
temperatures it is characterized by a simple onset of the density when the baryon chemical
potential is close to the nucleon mass. Aside from the point in the vacuum, this is the only
other point in the phase diagram that is empirically certain. At fintie temperature there is a
gas of baryons, which turns into a liquid of self-bound baryons by increasing the density. The
transition is first order and turns into a crossover above T ≈ 15 MeV. The nuclear liquid-gas
phase transition is also of particular interest in the context of supernovae evolution [53–55].
The order of phase transition between the hadronic and QGP phase is of course a natural
question. The Columbia plot in Fig. 1.2 summarizes the possibilities at vanishing density,
dependent on the quark masses. When they are small or vanishing in the chiral limit, then by
cooling down system the quark fluctuations set in very suddenly, entailing a first order chiral
phase transition [56]. If quarks are heavy, the transition is rendered to a smooth crossover. In
between is a critical line for the second order transition, which extends to the limit of a heavy
strange quark and massless up and down quarks. The confinement-deconfinement transition is
first order if all quarks sufficiently heavy [57], and turns into crossover when they are lighter,
again with a critical line in between. The physical point lies in the crossover region for both
transitions. The heavy quarks are irrelevant, because when the non-perturbative effects come
into play at ΛQCD they are already decoupled. Most of the model calculations show that the
phase boundary bends down towards increasing chemical potential along with a steeper becoming
crossover. This is rooted in the fact that a finite density suppresses quark fluctuations until the
states in momentum space become free at lower temperatures, and since the quarks are still
light, intense fluctuations come very suddenly, that at some point the phase transition may
become first order. The exact location of the corresponding critical endpoint, if it exists, is of
great interest also from the experimental point of view, as the enhanced fluctuations should yield
distinct signals [58, 59].
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Figure 1.2: The Columbia plot [60].

Cooper pairing in cold, dense quark matter has been mentioned first in 1975 [61] and then
further established in [62–64]. It was not until the 1990’s when the relevance of this idea got
more attention. In certain diquark channels one-gluon exchange entails an attractive interaction.
If the quark density is sufficiently high and the temperature sufficiently low, it necessitates a
bound state formation in those channels, which then by virtue of their bosonic nature form a
condensate. We can rely on the knowledge from condensed matter physics and also the Higgs
mechanism, to deduce that such a state of matter should exhibit a mass gap for some color
states of the gluons, by which the interaction is suppressed, and thus the flow of matter is
frictionless. Therefore is phenomenon is called color superconductivity (CSC). It unlikely that
the temperatures can be small enough in heavy-ion collisions to detect such a state, however
in compact stellar objects like neutron stars it might be realized. Their composition and their
life cycles crucially depend on the thermodynamic properties and the equation of state of the
strongly interacting matter in this region of the phase diagram [65]. At asymptotic densities,
i.e. for µ� ΛQCD weak-coupling methods can be successful in analyzing the ground state of the
CSC phase [62, 64]. In this limit the strange quark can be considered as degenerate with the
lightest quarks, and the ground state is characterized by evenly pairings of combinations with
all three quarks flavors. For reviews see [66–71].
The phase structure in the region of intermediate chemical potentials is far from being settled.
A two-flavor color superconductor [72–76], spatially inhomogeneous chiral [77–79] or diquark
[80–82] condensates leading to crystalline phases, or the quark-hadron continuity between a
baryonic superfluid and superconducting quark matter [83, 84], with the disappearance of the
phase boundary [66] or new critical endpoints [70, 85], are some of the conjectured scenarios.
The rising coupling constant and the consequential non-perturbative nature of QCD make an
exact solution impossible. The closest and most advanced method for calculations from first
principles is Lattice QCD [86–90]. One has to discretize spacetime within a finite volume and
solve the path integral by performing numerical Monte-Carlo simulations on each lattice site.
This is possible as the path integral has a statistical interpretation in the Euclidean formulation.
The artifacts from the finite size and lattice spacing require a proper extrapolation to the contin-
uum limit. In addition, the implementation of fermions with their anticommuting nature results
in difficulties, especially when their are light [91, 92]. The greatest complication is posed by the
notorious sign problem [93, 94]. The fermionic determinant takes a complex value at finite µ,
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Chapter 1: Introduction

where then the statistical interpretation does not hold, leading to a breakdown of the Monte-
Carlo sampling technique. In regions of µ < πT the sign problem is circumvented by reweighting
techniques [95–98], Taylor expansions [99–102], or extrapolations from imaginary chemical po-
tential [103–105]. For further reviews regarding the sign problem see Refs. [106–108]. However,
profound information for zero density regime has been obtained from lattice simulations. A steep
rise in the pressure and energy density signaling a phase transition was already found in the early
stages [23, 109]. Today it is well-established that there is a crossover at Tc ≈ 155 MeV [110–117].
Also, the mass spectrum of the light hadrons was computed successfully [118].
Recently, the stability of the numerical simulation with the stochastic quantization or the Com-
plex Langevin Equation has been significantly improved [119], which could supersede the Monte-
Carlo algorithm in a high-density region where the sign problem is severe. The convergence is well
investigated [120] and tested in lower-dimensional models [121, 122] but it is not yet understood
why the applicability of this method to real-time problems is limited [123–125]. There are also
new developments by means of the mathematical technique in Picard-Lefschetz theory [126, 127],
which is still developing but has been successful for several test cases.
Before the establishment of QCD, phenomenological models were already developed. Most promi-
nently are the linear sigma model [128] and and the Nambu-Jona Lasinio model (NJL) [129–131].
Both are based on the chiral symmetry principle, and with ability to the describe its breaking,
these models still represent the ground work for today’s effective low energy description of QCD.
The former is a purely bosonic model of pions and the sigma field, which plays the role of radial
mode in the symmetry breaking pattern. At that time the existence of the sigma was prediction,
and today it is still not entirely settled which of the observed scalar mesons it should be. The
NJL is a purely fermionic model, where it was suggested that the nucleon mass arises through
fermionic self-interactions by the same mechanism as the appearance of the energy gap in the
theory of superconductivity. Another widely used model is chiral perturbation theory [132–134],
for which important ingredients were the low energy theorems of the Goldberger-Treiman [135],
the PCAC relation [128, 136], the current algebra and the GMOR relation [137]. It allows for
a systematic investigation of the low energy structure in terms of a perturbative expansion in
the pion momenta and mass. For reviews see [138, 139]. Naturally a pure bosonic model fails to
describe the the system outside of the hadronic regime. When the bosonization techniques were
introduced [140, 141], it soon became possible to connect fermionic and bosonic model with each
other and utilize the advantages of both descriptions [142–147].
Typically, effective models are solved within themean-field approximation where fermionic fluctu-
ation are integrated out. However, functional methods are continuously getting more attention.
Very renowned are Dyson-Schwinger equations [148, 149] and the Functional Renormalization
Group (FRG) [150, 151]. They aim to solve the theory by solving its correlations functions, all
that are allowed by the symmetry of the underlying theory. The correlations functions are given
in the form of an infinite set of coupled, exact differential or integral equations, taking into ac-
count all kinds of fluctuations, which inevitably has to be truncated to a finite set for a practical
use. It should be noted that such scheme does not pose a perturbative expansion, as a suitable
truncation is still able to capture the important non-perturbative aspects of system. However, a
good physical insight to the problem is required for an adequate choice of that approximation,
as there is no measure of the quality of the calculation. Nevertheless, a convergence of the re-
sults within a systematic improvement of the approximation and the agreement with well-known
limiting cases should bestow some certainty. In contrast to Lattice QCD there is no conceptual
problem in continuum methods, in particular at finite density. Moreover, the physical mechanism
that are at work become visible. Hence, both approaches should be viewed as complementary
to each other. At the moment it is actually the best strategy to collect various pieces of insights
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from different approaches to construct the most presumable picture of the QCD phase diagram.
Mean field approaches [152–160] and Dyson-Schwinger equations [161–169] have provided valu-
able knowledge about non-perturbative aspects of QCD. In this work we will employ the FRG. It
was put forward by Wetterich in 1993 [150] and describes the evolution of a microscopic theory
to the macroscopic regime, by successively integrating out quantum and thermal fluctuations in
thin momentum shells. With this machinery it possible to investigate the dynamical change of
degrees of freedom in different energy scales. The FRG was successfully employed for the chiral
phase transition not only in low energy effective models for QCD, like the quark-meson (QM)
models [170–180] but also, with the help of modern bosonization techniques [181–184], recently
it became possible to establish a dynamical connection of the high energy quark-gluon sector
with the low energy hadronic sector [185, 186]. The formation and dissociation of bound sates
can now be described with correlation functions emerging directly from QCD, without having
a disturbingly large parameter dependence. However, it has turned out that very sophisticated
truncations are essential for an accurate description of the non-perturbative phenomena. Fur-
thermore, the confinement mechanism can be incorporated by additionally including the order
parameter of the gauge sector, the Polyakov loop. The corresponding PQM and models have
been studied in [187–195]. The pure Yang-Mills part was investigated in [196, 197].
An instructive way to approach the full problem and to shed light on particular aspects, is
the investigation of deformations of QCD [198]. Generally, this can be achieved by changing
e.g. mass parameters, symmetries or the field content. In this work, we will choose the latter
two possibilities and study a theory similar to real QCD, however with two colors, and two
quark flavors. An appealing feature within this version of QCD is that, apart from the chirally
broken mesonic phase, it allows for the formation and (Bose-Einstein-) condensation of colorless
diquarks, i.e. a bosonic baryon state. This results in a rich phase diagram with two dynamically
competing order parameters. Since the diquarks are colorless, its condensation does not give rise
to color superconductivity, but rather to a baryon superfluid.
Two-color QCD (QC2D) has attracted strong interest recently and has been studied within mean
field theory and the chiral Lagrangian approach [199–207], random matrix models [208, 209] and
within the Nambu-Jona-Lasinio model [73, 210–219]. For an even number of quark flavors the
SU(2) gauge group provides a positive path integral measure and thus avoids the occurrence
of a fermion-sign problem. This facilitates the investigation of the QC2D phase diagram by
lattice simulations [220–232]. In this work we employ an FRG approach to an effective quark-
meson-diquark (QMD) model to study the phase diagram of QC2D. A comprehensible FRG
phase diagram for finite temperature and density has previously been established by Strodthoff
et al. in Refs. [233, 234] by a solution of the FRG evolution equation for the effective potential,
which naturally includes the effect of competing fluctuations of the mesonic and baryonic diquark
fields. The present work systematically extends the truncation scheme in Ref. [233] by taking
into account the scale dependence of the wave function renormalizations and of the Yukawa
couplings between the quarks and the order parameter fields. Additional quantitative effects can
be accessed systematically by extensions of the truncation scheme within the FRG as has been
shown in the non-relativistic analogue of QC2D, namely the BCS-BEC crossover [235–239]. Here,
we can monitor the quantitative corrections that are induced by the additional scale dependent
quantities and study their impact on the phase diagram. Due to an alternative expansion scheme
for the effective potential we gain direct access to the phenomenon of pre-condensation, a regime
in the phase diagram where order occurs at intermediate scales but no order is found when all
fluctuations are integrated out. In this way, we establish a refined picture of the FRG phase
diagram for QC2D.
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Chapter 1: Introduction

In parallel we will construct an effective low energy model for QCD including diquarks and
baryons. If the baryon chemical potential is much higher than the temperature, we are still far
from any first-principle calculation. It would be thus an urgent task at the present to build a
phenomenological model at work. Actually, we would stress that such model studies had played
a guiding role in a regime T � µ in early days when the Lattice QCD results were premature. It
should be a natural anticipation that, in the same way as the high-T study, some models should
guide us to a correct intuition of the dense state of QCD matter. Previous works can be found
in Refs. [240–249].
As a matter of fact, the theoretical approach based on the chiral effective theory [249–252]
should be a valid description as long as the system is not far from cold nuclear matter. Once the
deconfinement happens, we can then investigate the properties of matter entirely out of quarks
using the chiral quark models at moderate density and the perturbative QCD calculations [253]
at asymptotically high densities. It is a big question how these two descriptions of dense matter
in terms of baryons and quarks could be (possibly smoothly [254]) connected in an intermediate
density region. In other words, there is no clear picture of quark deconfinement induced by large
density effects, while it is a well-studied phenomenon along the temperature axis in Lattice QCD
and effective models.
A key ingredient to shed light on a modern picture of deconfinement at high density is, in our
belief, the diquark correlation, see Ref. [255] for a comprehensive review. In fact, it is a widely
accepted knowledge to introduce a “constituent diquark” to solve a three-body bound state
problem, i.e., the Faddeev equation, to make a baryon with constituent quarks [256–258]. The
diquark in this formulation is, however, not necessarily a physical object and there are a number
of theoretical attempts to seek for a strong and localized correlation of diquarks in hadrons.
One of the most well-known examples that suggest the diquark correlation is the inverted mass
ordering in the scalar nonet channel [259, 260] and this idea is also supported by the instanton-
induced interactions [261], see Ref. [262] for a recent lattice study. It is also said that the exotic
XYZ mesons might have a significant overlap with the diquark–anti-diquark state together with
the meson molecule, see Ref. [263] for an overview. Evidence for diquark in Lattice QCD can be
found in Ref. [264].
There are already some attempts to build an effective model in terms of mesons, quarks, and
diquarks. In a conventional model setups as in Ref. [265] for example, it is common to accommo-
date diquarks as explicit degrees of freedom and generate baryons as bound states of quarks and
diquarks. (See also a recent attempt [266] in which diquark dissociation or the Mott transition
has been taken into account.) Obviously, however, diquarks should be dynamically generated
excitations and we must cope with microscopic structures of diquarks. We will formulate these
processes of the formation and the dissociation of diquarks by means of the FRG equations. One
could in principle solve the bound state problem by constructing the propagator in the diquark
channel and locate the pole position in the complex energy plane as done in Ref. [267].
In this work we will give a theoretical foundation. In the numerical calculation, we will limit
ourselves to the simplified the QMD-model and study chiral symmetry breaking and two-flavor
superconductivity, not including baryons yet. As we will explicitly see later, this simple frame-
work is already involving and needs much technical developments beyond the similar one in
two-color QCD [233]. For instance, as in the FRG framework bosonic fluctuations are included
in the first place, we must take the Meissner effect into account by removing the Goldstone modes
from the system in color superconducting phase. We would leave a more complete description
in terms of baryons as well as quarks, mesons, and diquarks for future works.
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Outline of the thesis

This thesis is organized as follows. In the next chapter we will start with the introduction of the
QCD action with the field content and gauge symmetry. We will give some brief remarks on the
quantization procedure and take a closer look on asymptotic freedom. In the subsequent section
we will discuss the underlying symmetries in detail, as well as the breaking patterns and order
parameters in QCD. Starting with the center symmetry and confinement, we will go over to the
flavor symmetries and the chiral phase transition, through to the diquark condensation within
color superconductivity. In the latter we will lay special emphasis on the tensor structure of the
diquark in a two-flavor superconductor and in the color-flavor locked phase. The final part of this
section will discuss the extended flavor symmetries of two-color QCD and the various breaking
patterns. The next section will be about the low-energy degrees of freedom. We will begin with
generation of four-fermion interaction from quark-gluon dynamics and the bosonization thereof.
Some remarks will be given on the advanced rebosonizaton techniques, before we turn to an
analog baryonization. Based on the symmetries we will then construct an effective four-fermion
model for two-color QCD and obtain the bosonized version of it. Thereafter we will generalize
this model for QCD and add the baryonic degrees of freedom. At the end of this chapter we will
explain, how phase transitions can be computed with an effective potential, and write down an
ansatz for it in the form of a 1d as well as a 2d Taylor expansion in the mesonic and diquark
fields.
In Chap. 3 we will derive the renormalization group equations for our models. It will be somewhat
more technical but also some important physical insights will be given. In the beginning we will
give brief introduction of the FRG method with some solution strategies. Then we will derive the
propagators that we need for the FRG equations and also discuss the corresponding mass gaps.
A numerical result for the mass spectrum will also be shown. As an interlude we will discuss the
Silver Blaze property, which is the trivial µ-dependence of the system at vanishing temperature
below the first onset, and its realization with the FRG framework. Thereupon we will write down
the FRG equation for the effective potential and discuss it in great detail. Particular emphasis
will be laid the thermodynamic properties as well as the influence of a baryonic background field.
We will be able to anticipate the phase structure by analyzing various limiting cases. Then, after
deriving the vertices, we will finally compute the flow of the two-point function, which includes
the wave function renormalizations and Yukawa couplings. Their numerical results will be shown
as well.
In Chap. 4 the main numerical results of this thesis will be presented, i.e the chiral and diquark
condensation. After discussing the relevance of boundary conditions we will first discuss the pre-
condensation effect and then show the condensates for our two-color QCD computation and the
corresponding map of the phase diagram. We will compare different methods and truncations,
in particular with the grid method (as opposed to the Taylor expansion), the linear sigma model
as well as lattice computations. In the next section we will look deeper into the effects of our
truncation. This includes different orders in the Taylor expansion, the effects of running two-point
function and cutoff effects. Here we will also see qualitative differences for different boundary
conditions. Finally, we will present our phase diagram for physical QCD with the chirally broken
and color superconducting phases. A summary is presented in Chap. 5 and technical details are
given in the appendix.
The two-color QCD related part of this work is intended to be publish in Ref. [268]. The physical
QCD related part of this work is intended to be publish in Ref. [269].
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Chapter 2
From Quarks and Gluons to Mesons, Diquarks and
Baryons

In this chapter we will begin with a brief introduction of the theory of Quantum Chromodynamics
with its properties for different energy regimes. We will state the symmetries of the theory
and breaking patterns, and the associated phase transitions. Moreover, the symmetries of the
underlying theory are an important ingredient the for effective low energy models. We will
constructs models in order to study the behavior of low energy modes in the form of the lightest
mesons and baryons of the theory for physical QCD with three colors as well as for two-color QCD.
The latter possesses an extended flavor symmetry which roots in the pseudo reality of the color
group generators, and the consequential antiunitarity of the Dirac operator. In consequence there
is an extended symmetry in the hadron spectrum linking the mesons and baryons at vanishing
chemical potentials [199]. Naturally, in QC2D the baryons of the theory have the form of color
neutral diquarks, which are bosonic states. Hence, the study of QC2D allows us to play with
baryonic degrees of freedom as well as Bose-Einstein condensation in a rather simple manner.
Moreover, due to the antiunitarity of the Dirac operator, QC2D is free of the sign problem, in
contrast to physical QCD, allowing lattice simulations at non-vanishing chemical potentials, and
therefore a direct comparison of different methods with lattice simulations throughout the phase
diagram.
Diquarks will also be considered for the effective description of physical QCD at large chemical
potentials. It is assumed that diquarks are intermediate states for the formation of baryons,
which consist of three quarks. Also, we will study the condensation of diquarks, which breaks
the gauge symmetry and leads to a color superconducting phase. Of course, chiral symmetry
breaking and the dynamical generating of the quark mass will be a central theme as well.

2.1 Classical QCD

Field contents QCD is the theory describing the interactions between quarks and gluons
[11]. It is based on the coupling of spin-1/2 fermionic particles (quarks), described by the Dirac
equation, to a Yang-Mills theory [10] of massless vector bosons (gluons). The latter is based
on the non-Abelian gauge symmetry, which is the invariance under local transformations of the
SU(Nc) group, Nc being the number of colors. The coupling is made by demanding that the Dirac
equation is also invariant under local gauge transformations of the quark fields, which is realized
by promoting the derivative operator to a covariant derivative. The quark fields transform in
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Chapter 2: From Quarks and Gluons to Mesons, Diquarks and Baryons

the fundamental representation and the gauge fields in the adjoint representation of the gauge
group. The Nc colors are quantum numbers of quarks. Furthermore quarks come in different
flavors, which simply means that there are quarks with different masses, the number of which
is Nf . Hence, the quark fields from Nf fundamental representations of SU(Nc) on a Cartesian
product of Dirac spinors. Thus, the classical QCD action reads in Euclidean spacetime

S [A, q, q̄] =

∫
d4x

{
1

4
F aµνF

a
µν + q̄

(
i /D + iM

)
q

}
, (2.1)

where the mass matrix M = diag(mu,md,ms,mc,mb,mt) contains the current masses of the
Nf = 6 different flavors, generated by the Higgs mechanism, given in Tab. 1.1. The field
strength tensor and the covariant derivative with the gauge coupling g are given by

Fµν =
i

g

[
Dµ, Dν

]
= ∂µAν − ∂νAµ − ig[Aµ, Aν ] , (2.2)

/D = γµDµ = γµ
(
∂µ + igAµ

)
, (2.3)

where Aµ = Aaµt
a are the gauge fields with the N2

c − 1 group generators ta, which satisfy the

Lie algebra
[
ta, tb

]
= ifabctc, where fabc are the structure constants. For Nc = 2 the generators

are given by the Pauli matrices and we have 3 color degrees of freedom in the gauge fields; for
Nc = 3 the generators are the Gell-Mann matrices with 8 color degrees of freedom. The structure
constants and matrices can be found for instance in [270]. The γµ are the Dirac matrices given in
App. A.4. The greek letters, e.g. µ = 1, . . . , 4, represent Lorentz indices in Euclidean spacetime.
The gauge transformations, under which the above action is invariant, are defined as

ψ(x)→ U(x)ψ(x) , Aµ(x)→ U(x)

(
Aµ(x)− i

g
∂µ

)
U †(x) , (2.4)

where U(x) = e−iα
a(x)ta are the elements of the local SU(Nc) group. The basic processes

associated with the classical QCD action are depicted in Fig. 2.1. Note that the pure gauge
interactions only appear in non-Abelian gauge theories, where the gauge fields carry charge.

Figure 2.1: These are the building blocks for describing interaction processes in the from of Feynman diagrams
derived from the classical QCD action (2.1). The curls represent gluons, the straight lines represent quarks, where
the arrow marks the direction of the baryon charge flow. The horizontal lines represent propagators, and the rest
represent interactions, also referred to as n-point-, correlation- or vertex functions. Note that after quantization
there are additional building blocks, namely the ghost propagator and a ghost-antighost-gluon vertex.

Remarks on the quantization of gauge fields Since in our model calculations we will
consider the gluons to be irrelevant, will not go into details of the quantization of the gauge
fields. However, let us briefly outline some of the important concepts.
The quantization of the gauge fields is not straightforward, and it is best done in the path
integral formalism [270]. The integration measure respects all possible field configurations, of

20



2.1 Classical QCD

which infinitely many are physically equivalent due to the gauge symmetry. To fix this problem,
one isolates the part of the functional integral which counts each physical configuration only once
by means of the Faddeev-Popov trick [271], which amounts to imposing a gauge fixing condition
G(A). Applying this method in non-Abelian gauge theories leads to additional degrees of freedom
in the theory, the Faddeev-Popov ghosts, which are no physical asymptotic particle states but
rather a mathematical tool, in fact, canceling the effects of unphysical timelike and longitudinal
polarization states of the gauge bosons. Moreover, a free gauge fixing parameter is introduced,
of which the observables must be independent.
With the introduction of the ghost fields the Faddeev-Popov action exhibits the so-called BRST
symmetry [272, 273]. It is a global symmetry of the gauge fixed action, which is well-defined
on the perturbative level only. The BRST transformation has an anticommuting nature. The
transformation operator distributes the eigenstates of the theory into subspaces with the physical
asymptotic states and the unphysical states mentioned above [274].
Finally we, mention that Faddeev-Popov gauge fixing still leaves a redundancy, which is called
the Gribov ambiguity [275]. A way to resolve this problem is perform the functional integral over
a single region, the Gribov horizon.

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1
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e+e–  Annihilation

Deep Inelastic Scattering

July 2009

Figure 2.2: Theoretical predictions and experimental measurements of the strong coupling constant αs as a
function of the energy scale Q [15].

Asymptotic Freedom Asymptotic freedom is a general feature of non-abelian gauge theories
and crucial for most of the important phenomena in QCD. It states that the interaction becomes
weak for large momentum transfers or between small length scales, and therefore it allows per-
turbative calculations. Coming from the perturbative regime, one solves the Callan-Symanzik
equation [16–18] for coupling parameter and obtains its dependence from the momentum scale
Q. Therefore it also called the running coupling. With αs = g2

4π one finds in leading order

αs (Q) =
2π(

11
3 Nc − 2

3Nf

)
log
(
Q
Λ

) , (2.5)

where Λ is the intrinsic energy scale, below which a perturbative expansion in αs of interaction
processes breaks down. For QCD, experimental measurements yield ΛQCD = 200 MeV. The
divergence of Eq. (2.5) at this scale, also known as Landau pole, is not a physical pole, but
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Chapter 2: From Quarks and Gluons to Mesons, Diquarks and Baryons

rather it signals that non-perturbative methods must be applied for the low energy regime, and
in particular for the description of bound states or critical phenomena like phase transitions, as
was done in e.g. Refs. [185, 186]. Fig. 2.2 shows theoretical predictions beyond leading order
and experimental measurements of the strong coupling parameter. At large energies the coupling
parameter goes asymptotically to zero, which is also an implication of Eq. (2.5).
Note that in Eq. (2.5) the effects from the fermions (∝ Nf ) are opposite to the effects from the
gauge fields (∝ Nc). Whether a theory exhibits asymptotic freedom, depends on the relative
number of these degrees of freedom. In quantum electrodynamics (QED) the scale-dependence
of the coupling parameter is the other way around, because it is an Abelian gauge theory with
uncharged gauge fields. The vacuum in QED acquires a dielectric property due to the virtual
electron positron creation, causing the effective electric charge to decrease at large distances.
The fermions in QCD produce a similar effect, but it is overcompensated by the gluons, which
also produce dipoles in the vacuum but in the opposite direction. Therefore the effective color
charge increases at large distances.
The consequences of the rising coupling are related to the breaking of symmetries, which will be
discussed in the following.

2.2 Symmetries and Related Phase Transitions

In this section we explore the symmetries of the QCD action (2.1) and the various ways to
break them. Symmetries are typically broken in the ground state, which depends on the external
circumstances of the system, in particular on temperature T and density, parametrized by the
chemical potential µ. As we have shown in the introduction, one can draw diagram in the T -µ
plane, where in different regions different symmetries are broken. Important physical properties
of the system are associated with the breaking of a symmetry, like the confinement of colored
objects, the dynamical generation of the constituent quark mass or color superconductivity.
We will discuss each of these phenomena and introduce the corresponding order parameters.
Although the confinement-deconfinement phase transition will not be computed in this work,
it is important concept upon which the model construction in the next section is based. The
somewhat different symmetries and breaking patterns of two-color QCD will be discussed at the
end of this section. We remark that all informations given in section are well-known.

2.2.1 Center Symmetry and Confinement

Physical picture Confinement is the phenomenon that color charged objects cannot be iso-
lated, in particular the single particle excitations of the QCD action (2.1) cannot be directly
observed. The quarks are held together by the gluons in color neutral states, composed of a
quark-antiquark pair (meson) or of three quarks (baryon). These collective excitations must be
incorporated in a low energy description of QCD. The phenomenon is of course related to the
increasing coupling strength at large distances as discussed in the previous section. The common
picture is shown in Fig. 2.3(b): If for instance a quark-antiquark pair is pulled apart, the poten-
tial energy rises linearly until it surpasses the threshold to create another quark-antiquark pair
in the middle, each of which binds together with one of the initial particles, such that we have
again colorless mesons. For infinite quark masses the threshold can never be reached, thus it
would require an infinite amount of energy to separate the pair. Fig. 2.3(a) shows the potential
energy of a static quark-antiquark pair with infinite masses. The potential can be translated into
a color-electric field in the from of a narrow flux tube or a string between the charges as shown in
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2.2 Symmetries and Related Phase Transitions

integration of the force-3 loops

bosonic string

(a) Static quark potential [276] (b) String breaking of a ūd pair

Figure 2.3: In (a) we see the static quark potential from pure SU(3)c Yang-Mills theory on the lattice with an
extrapolation to the continuum limit. Perturbative predictions are shown as well, which are in good agreement
for small distances. In (b) the string breaking meachanism for finite quark masses is depicted. Figure taken
from [277].

in the upper two of Fig. 2.3(b). At high temperatures the quarks are expected to be deconfined,
since a sufficiently high thermal energy does not allow the quarks to be held together.

The Polyakov loop There are many signals for confinement [278]. One that is often used is
the Polyakov loop [279–281], whose expectation value is related to the free energy Fq of a static
test quark [109, 282, 283]. In order to see the relation, we will make a rather heuristic argument:
If the quarks are infinitely heavy we can neglect the quark dynamics in the action (2.1) and
only consider the interaction term. As we will see in the next subsection, jµ = iq̄γµq is the
quark number current, which is given by jµ(~x) = δ4,µδ (~x− ~y) for a single infinitely heavy test
quark situated at the position ~y. Now we say that the interaction term is gq̄γµAµq ∼ gjµAµ,
and then we evaluate the delta function, which leaves only the Euclidean time integral over the
timelike component of the gauge field which is the color-electric potential. Hence, with some
more modifications, the partition function of system of gluons in the presence of a static test
quark is reads

ZQ =

∫
DAL(~x) e−S[A] with L(~x) = P tr eg

∫ β
0 dx4A4(x) , (2.6)

where the latter is the Polyakov loop with the path ordering operator P and S[A] is the pure
gluon action. The Polyakov loop is a special case of the Wilson line which connects operators
in different spacetime point in a gauge invariant way. At finite temperature T the time axis
is compactified on a torus with the circumference β = 1/T , around which bosonic field obey
periodic boundary conditions whereas fermionic fields obey anti-periodic boundary conditions
[284, 285]. The partition function in Euclidean space is related to the free energy as Z = e−βF .
If we divide ZQ by partition function Z of the pure gauge theory, we obtain the free energy of
the test quark alone, and wee see that it relates to expectation value of Polyakov loop as
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Chapter 2: From Quarks and Gluons to Mesons, Diquarks and Baryons

e−βFq =
ZQ
Z

= 〈L(~x)〉 . (2.7)

If we are in the confined phase, the energy required to separate a quark-antiquark pair by an
infinite distance diverges, which entails a divergence of Fq and thus a vanishing Polyakov loop.
In the deconfined phase on the other hand, only a finite amount of energy is needed for the
separation, and then the Polyakov loop is non-vanishing. From the definition of the Polyakov
loop (2.6) we can already predict the limiting cases: In the infinite temperature limit β = 0
the exponent vanishes, from which we can predict a finite expectation value. Whereas in the
zero temperature limit the time integration has no boundary and the exponent goes to negative
infinity yielding a vanishing Polyakov loop. In fact there is a critical temperature Tc where a
phase transition occurs. In summary we have

Confined phase: T < Tc , Fq →∞ ⇒ 〈L(~x)〉 = 0 ,

Deconfined phase: T > Tc , Fq <∞ ⇒ 〈L(~x)〉 6= 0 . (2.8)

The full information is contained in the effective potential U(〈L(~x)〉), minimizing it yields the
ground state value of the Polyakov loop. Since the quarks can be infinitely heavy, confinement
is driven purely by the gauge sector, as we have indicated in the previous section.

Center Symmetry The fact that there is a proper phase transition is actually a consequence
of a related symmetry that holds on the classical level, but can be broken spontaneously in
the ground state, namely the center symmetry [286]. The gauge transformations (2.4) must
maintain the specific boundary conditions of the fields at finite temperature, which is easily done
if the elements of the gauge group U(x) satisfy periodic boundary conditions. However, for a
pure gauge theory the necessary condition is more relaxed, namely that the transformations are
periodic only up to a constant twist matrix like

U(~x, x4 + β) = zU(~x, x4) , (2.9)

where z are the elements of the center ZNc of the gauge group SU(Nc) [287, 288]. They are
essentially given by the Nc roots of 1 in color space

z = e2πi n
Nc 1Nc with n = 0, . . . , Nc , (2.10)

and they commute with all group elements. The center symmetry is an additional global sym-
metry of the pure gauge theory and it can be broken spontaneously in ground state by a non-
vanishing Polyakov Loop, as L → zL. Hence, the Polyakov Loop is true order parameter, and
the broken center symmetry signals deconfinement. On the other hand, if there are dynamical
quarks in the system, center symmetry is explicitly broken, as the antiperiodic boundary condi-
tions are jeopardized under center transformations. Therefore the phase transition turns into a
crossover. Since ZNc is discrete symmetry there are no Goldstone bosons associated.

2.2.2 Flavor Symmetries and the Chiral Phase Transition

Flavor & chirality First of all, the QCD action (2.1) as it stands, with independent masses
for each flavor, is invariant under simple U(1) phase rotations of the quark fields for each flavor.
Therefore, each flavor is a conserved charge of the theory. Now, if all masses were equal, there
is nothing singling out a flavor, hence we could define a unitary transformation of the complete
quark field, which rotates the flavors into each other. In this case only the sum of all flavors is
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2.2 Symmetries and Related Phase Transitions

conserved. Going one step further and saying that all masses are vanishing, we can separate the
parts with different Weyl components of the Dirac spinor in the Lagrangian, which are defined
via the projection operators (App. A.4) as

qL,R = PL,Rq , q̄R,L = q̄PL,R = q†R,L .

The handedness, also referred to as helicity of a particle, defines the orientation of its spin relative
to the momentum: If the spin is parallel to the momentum, the particle is called right-handed
(R), if it is anti-parallel we call it left-handed (L). However, the helicity depends on the frame
of reference, unless the particle is massless, in which case helicity is the same as chirality. A
transformation between the two helicities of a field is called parity, and the invariance under
such a transformation is called chiral symmetry.

Chiral symmetry In QCD with degenerate flavors chiral symmetry is part of an extended
symmetry, which includes the ones mentioned above. In the massless limit, neglecting the pure
gluon part, only the quark kinetic term remains in the Lagrangian

Lq,kin = q̄iγµDµq = q†LiσµDµqL + q†Riσ
†
µDµqR ,

where σµ =
(
iσj ,1

)
with the Pauli matrices. This Lagrangian is invariant under indepen-

dent unitary transformations of the left- and right-handed spinors in flavor space, i.e. under
U(Nf )L × U(Nf )R. It means that, if for instance the left-handed flavors are transformed into
each other the right-handed ones must not follow the transformation, which leads to the separate
conservation of each helicity. It is useful to separate the U(1) part in order to gain more insight,
moreover the symmetry group can be defined in terms of vector- and axial transformations:

SU(Nf )L × SU(Nf )R × U(1)L × U(1)R = SU(Nf )V × SU(Nf )A × U(1)V × U(1)A .

The vector transformations correspond to UR = UL, with UL,R ∈ U(Nf )L,R, hence, U(Nf )V =
U(Nf )L+R is the diagonal subgroup of U(Nf )L × U(Nf )R. The axial transformations account for
the difference. The U(1)V can also be interpreted as the baryon number symmetry U(1)B. Each
quark carries baryon charge, the total of which is conserved. Let us write down the symmetry
transformations

SU(Nf )V : q → eiα
V
a τaq , U(1)V : q → eiθ

V
q ,

SU(Nf )A : q → eiγ5αAa τaq , U(1)A : q → eiγ5θAq , (2.11)

where τi are the generators of SU(Nf ). The associated conserved currents read

jµ,a = iq̄γµτaq , jµ = iq̄γµq ,

j5
µ,a = iq̄γµγ5τaq , j5

µ = iq̄γµγ5q .

Note that the conserved charge
∫
d3xj4 is the quark number. The U(1)A symmetry only holds

on the classical level, it breaks due to quantum fluctuations of the gauge fields. This effect is
called axial anomaly and will not be further discussed in this work, for a related FRG studies we
refer to [289]. A breaking of U(1)A does not mean that chiral symmetry broken, but rather the
SU(Nf )A is the actual chiral part of the symmetry. An ordinary Dirac-mass term couples left-
and right-handed spinors q̄q = q†LqR + q†RqL and breaks U(Nf )A explicitly. We remark here that
a chemical potential term does not break chiral symmetry.
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In reality the masses of the different flavors are neither vanishing nor equal. However, QCD has
the intrinsic scale ΛQCD, which defines a lower cutoff for the quark-gluon picture. The masses
which are well below this scale can be treated as small perturbations of the chiral symmetry,
they must not even be equal. Therefore, typically one considers a model where u, d and s
quarks, or at least the both former ones, are treated as degenerate (massless) degrees of freedom.
Nevertheless, the invariance under U(1)B still holds for the combination of all flavors, while each
of the heavy flavors are conserved separately. In this work we will implement u and d quark
fluctuations with a small and explicit degenerate mass parameter. Hence we have Nf = 2 flavors
with an approximate U(2)A, and exact SU(2)V × U(1)B symmetry. The generators τi are then
given by the Pauli matrices.

Flavor up down strange charm bottom top

Constituent mass [MeV] 336 340 486 1550 4730 177 · 103

Table 2.1: Constituent masses for all flavors taken from [290]. Note that their exact values are model dependent.
If we compare to the current masses in Tab. 1.1, we see that the constituent masses of the light quarks is mainly
generated by the chiral phase transition.

Dynamical chiral symmetry breaking Now the question is, what happens below ΛQCD, or
more precisely, in the QCD vacuum. If the quarks have negligible masses, the vacuum is filled
with spontaneous quark-antiquark pair productions. Since the energy cost for such a process is
small, we expect that the vacuum contains a whole condensate. Angular momentum conservation
forces the pairs to be of opposite helicity, hence the condensate must be of the form

〈q̄q〉 = 〈0|q†LqR + q†RqL|0〉 . (2.12)

This is the order parameter of the chiral phase transition. All quarks acquire an effective sup-
plement to their masses from this condensate, even though it mainly consist of the light flavors.
When quarks travels trough the vacuum, it strongly interacts with condensate via gluon ex-
change, slowing it down and effectively making it “heavy”. It is a dynamical effect which breaks
the chiral symmetry U(Nf )A spontaneously, via a second order phase transition towards the low
energy regime for the case two massless quarks flavors [56]. For finite quark masses one observes
in lattice calculations that the sharp phase transition turns into a smooth crossover. At high
temperatures the ground state is filled with thermally excited fermions blocking quantum fluc-
tuations by the Pauli exclusion principle. Moreover, the temperature sets an energy scale for
the system, hence the interaction is weak at high temperatures, and chiral symmetry is restored.
Similar is the situation at large chemical potentials.
Lattice simulations indicate that along the temperature axis the confinement and chiral phase
transition coincide [291], though there is no analytic description of the linking of these two
mechanisms. Nevertheless, the dynamically generated effective mass is referred to as constituent
quark mass, since these quarks mainly appear as constituents of hadronic bound states. Each
flavor receives additional 300-500 MeV to their current masses from the condensate except for
the top quark, which receives 5 GeV, see Tab. 2.1. Of course for the light quarks, and also
the corresponding hadrons (in particular nucleons), this makes up a very large fraction of their

26



2.2 Symmetries and Related Phase Transitions

masses. Note that SU(Nf )V is also known as isospin symmetry linking not only u with d quarks
but also pions (isospin triplet) as well as protons with neutrons.
The fact that chiral symmetry can be broken dynamically and the quarks can acquire a much
larger effective mass, must be incorporated into an effective low energy description of QCD. How
this is done, will be explained in Sec. 2.3.1. Let us mention here that it involves bosonic bound
states, of which N2

f − 1 play the role of the massless Goldstone bosons [20], for Nf = 2 they
are the aforementioned pions. For the case of an approximate chiral symmetry with small quark
current masses, the pions are only pseudo-Goldstone bosons with mπ ∼140 MeV, which is still
small compared to remaining hadronic states. In the IR regime QCD can be reformulated in
terms of pion degrees of freedom known as chiral perturbation theory [138, 139, 292–294]. In this
work however, we want to study the breaking of symmetries for which quark degrees of freedom
are crucial.

2.2.3 Color Superconductivity

There are various possibilities for the realization of color superconductivity in QCD [66–71].
The most prominent ones are the two-flavor color superconductivity (2SC) and the color-flavor
locking (CFL). The former will be studied explicitly in this work, while the latter will only be
mentioned in this subsection for completeness and as a motivation for future improvements of
this work.

The Cooper Theorem A system of fermions with an arbitrary weak, attractive interaction,
experiences the Cooper instability [295] below a critical temperature. This can be better under-
stood in the T = 0 limit, starting with non-interacting particles: Fermi-Dirac statistics dictate
that all energy states are occupied up to the Fermi sphere given by the momentum kF = µ2−m2,
where µ is the chemical potential and m the mass of the fermions. Now if the attractive inter-
action is turned on, the Fermi sphere becomes unstable, because the attractive force entails the
formation of bound states, the Cooper pairs, which are energetically favorable regardless of the
weakness of the force, since the mass of the bound state is definitely smaller that than masses
of two single fermions, due to the negative binding energy. These states are bosonic and hence
they obey Bose-Einstein statistics, which in turn dictate that all bosons are in the ground state
in the form of a condensate. By the same interaction a fermionic excitation is now coupled to
that condensate, which is therefore an energy gap for the excitation, and so the instability is
cured. This is the essence of the Bardeen-Cooper-Schiefer theory [296, 297], originally developed
for metallic superconductors.
Even though electrons repel each other on the fundamental level, in a metallic superconductor
the attractive forces are mediated by phonon exchange as the photons are screened. Due to the
excitation gap, scattering states are blocked, therefore the electrical resistance is exactly zero.
Furthermore external magnetic fields are expelled from the superconductor by a current induced
by Faraday’s law. This is called the Meissner effect. On the elementary level the Meissner
effect is analog to the Higgs meachnism [21–23]: The condensate breaks the electromagnetic
gauge symmetry U(1)E and the resulting Goldstone boson is absorbed by the photon, which
thereby aquires a mass gap. In QCD already the elementary interactions are attractive in certain
channels. Therefore it was suggested not lang after the discovery of asymptotic freedom, that
QCD goes into a state of color super-conductivity at high densities [61], where pairs of quarks
condense into a diquark condensate, breaking the color symmetry.
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antisymmetric symmetric

Cγ5, C, Cγµγ5 Cγµ, Cσµν
Dirac

(S) (P) (V) (A) (T)

τ2 1, τ1, τ3︸ ︷︷ ︸SU(2)
singlet triplet

λ2, λ5, λ7︸ ︷︷ ︸ 1, λ1, λ3, λ4, λ6, λ8︸ ︷︷ ︸SU(3)
antitriplet sextet

Table 2.2: Dirac operators and generators of U(2) and U(3), and their symmetries under transposition [68]. In
this table τi denote Pauli matrices, and λi denote Gell-Mann matrices. C = γ4γ2 is thecharge conjugation matrix.

Diquark structure The idea of the diquark can be traced back to a classic paper by Gell-
Mann [7] and the word “diquark” can be found already in a paper in 1966 [298]. It is a long-
standing problem how to characterize diquark degrees of freedom in baryons or in baryonic
(nuclear) matter. Because diquarks are colored, we cannot give any gauge invariant definition of
diquarks. On the formal level, in any case, whenever there are two quarks, such a system may
well be regarded as a diquark. Such a formal argument is inadequate to tell us whether it would
behave as a collective mode or not.
Because quarks belong to the color triplet, a system with two quarks can be decomposed to a
color anti-triplet and a sextet (3⊗ 3 = 3̄a⊕ 6s). One gluon exchange suggests an attractive (and
repulsive) force in the triple (and sextet, respectively) channel, so that we can discard the sextet
pairing. In addition, it is only the 3̄a which can be coupled to a quark in order to give a colorless
baryon. Turning to flavor structures, for Nf = 2 one has 2⊗2 = 1a⊕3s and for Nf = 3, assuming
we treat all flavors symmetrically, 3 ⊗ 3 = 3̄a ⊕ 6s. For a given color and flavor representation,
the symmetry properties of the spin part is now fixed by the Pauli principle. For a color triplet
and flavor triplet, for instance, color and flavor indices are anti-symmetric under exchanging two
quarks, and so the spin-orbit part of the diquark wave-function must be anti-symmetric to satisfy
the Fermi statistics. Therefore, the spin should be anti-symmetric in the singlet channel, and
the allowed quantum numbers are e.g. JP = 0+. The symmetry properties of various operators
under transposition are given in Tab. 2.2 .
It is an instanton-induced interaction that favors positive-parity diquarks rather than negative-
parity ones. Moreover, it is straightforward to confirm by Fierz transformations [68] that the
color-spin and flavor-spin interaction would stabilize the 0+ diquark more. Thus, the scalar
diquark with 0+ should be the most prominent, and the axial-vector diquark with 1+ should be
the next. It is important to distinguish the diquarks for the phenomenological applications; for
example in Ref. [299] the spectrum of high-spin hadrons are nicely parametrized with the scalar
and the axial-vector diquarks.
These diquarks play an essential role in QCD matter at asymptotically high density where color
superconductivity should be an inevitable consequence from the attractive interaction in the
color triplet channel [72, 73]. Among various pairing patterns [300, 301], the 2SC phase and the
CFL phase, which are both characterized by condensation of the scalar diquarks, have special
importance on the phase diagram of high-density matter. For one-flavor color superconductivity,
the flavor sector is symmetric and so only the axial-vector diquark is possible. Then, the rota-
tional symmetry is broken by condensation of axial-vector diquark, leading to a spin-one color
superconductivity [302].
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Two-flavor color superconductors For the case of an infinitely large strange quark mass,
flavor symmetry is given by the SU(2) group. As explained in the previous paragraph, we have
a scalar color-antitriplet, flavor-singlet diquark condensate in the 2SC phase, which is given by

〈∆a〉 = 〈qTCγ5τ2λaq〉 . (2.13)

The three condensates with a = 2, 5, 7 form a vector in color space. Without loss of generality
we can rotate this vector with a global SU(3)c transformation to the a = 2 direction, such that
the condensate reads ∆ ≡ 〈qTCγ5τ2λ2q〉. In this choice we have a condensate in the ground
state given by a totally antisymmetric collective state of red u and green d quarks, like ∼ 〈urdg〉.
The blue quark is not a part of it, hence the color symmetry is broken: SU(3)c → SU(2)c.
The number of broken generators is 8− 5 = 3, which is equally the number of gluons acquiring
a mass through the Higgs-mechanism. The would-be Goldstone boson are eaten by the gauge
fields, which actually corresponds to choosing a certain gauge. The corresponding Meissner and
Debye masses have been computed in e.g. Ref. [303, 304] with various approaches. Note that if
the Goldstone bosons are coupled to a chemical potential, not all of them are massless according
to the Nielsen-Chadha theorem [305–312]. In the next chapter we will find only three massless
modes and two modes with masses proportional to the chemical potential.
The condensate (2.13) is invariant under SU(2)V × SU(2)A, thus it leaves chiral symmetry
unbroken. Although the condensate carries electric as well as baryonic charge, it neither breaks
U(1)E nor U(1)B, but rather, they survive as modified symmetries that contain additionally a
simultaneous color rotation. We denote the modified symmetries as U(1)B+c and U(1)E+c. For
instance, for the electromagnetic case, this can be seen as follows

q → eiαQEq ⇒ ∆→ eiα/3∆ and q → eiα
′λ8q ⇒ ∆→ ei2α

′/
√

3∆ (2.14)

where QE = diagf
(

2
3 ,−1

3

)
is the electromagnetic charge operator in flavor space and λ8 =

1√
3
diagc (1, 1,−2), where the first and second entries belong to the red and green color respec-

tively. Now we can define the linear combination Q̃E = QE − 1
2
√

3
λ8 under which ∆ is neutral.

Instead of a massive photon, this leads to rotated one, as a mixture of the original photon and
the eighth gluon, whereas the orthogonal state becomes massive. This phenomenon is analo-
gous to the mixing of gauge bosons in eletroweak theory, which gives rise to a massive Z-boson
and a massless photon. Similar as the electric charge, the modified baryon charge is given by
Q̃B = QB − 1√

3
λ8, with QB = diagf

(
1
3 ,

1
3

)
. In summary, the breaking pattern reads

SU(3)c × SU(2)A × SU(2)V × U(1)B︸ ︷︷ ︸
⊃U(1)E

→ SU(2)c × SU(2)A × SU(2)V × U(1)B+c︸ ︷︷ ︸
⊃U(1)E+c

.

The global electromagnetic symmetry happens to be a subgroup of SU(2)V × U(1)B, as the
electric charge operator in flavor space can be written as a linear combination of the isospin
and baryon charge operators. No global symmetries are broken and consequently there are no
associated Goldstone bosons. Since the electromagnetic symmetry essentially remains intact the
2SC phase is not an electromagnetic superconductor but an insulator. Moreover, as baryon
symmetry is not really broken as well, it is not a superfluid. In Fig. 2.4 the phase structure of
QCD for two flavors, including the superconducting phase, is shown.
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(a) Two-flavor QCD phases in the chiral limit (b) Two-flavor QCD phases for mu,d 6= 0

Figure 2.4: In (a) we see the phase diagram for two massless quarks, while in (b) the quark current masses are
nonzero. At small µ the transition between the QGP and the hadronic phase is second order in the former figure,
and a smooth crossover in the latter. These transitions end in the tricritical endpoint in (a) and critical one in
(b) and then become first order. At larger µ and small T is the 2SC regime which has an interface to the hadronic
phase along the horizontal axis, if the diquark mass is smaller than twice the quark mass. The structure of the
2SC phase is similar in both diagrams. The transition to nuclear matter will be discussed in Sec. 2.4 (here µ is
actually µB). Figures taken from [66].

Color-flavor locking If we assume three degenerate quark flavors, i.e. ms = mu,d, we have
an SU(3) symmetry in flavor and in color space. Then the diquark condensate can be regarded
as a matrix:

〈∆i,a〉 = 〈qTCγ5λiλaq〉 , (2.15)

where i, a = 2, 5, 7, are the indices of the Gell-Mann matrices, now also in flavor space. A
Ginzburg-Landau analysis [313, 314] shows that there are two possible non-trivial ground states
in such a theory. The first is again a 2SC phase with the condensate 〈∆2,2〉 6= 0 and all other
components are vanishing. Such a condensate reduces the three-flavor symmetry down to two
flavors, SU(3)V → SU(2)V , hence it has the same properties as discussed above. At higher
densities the ground state takes the form of a unit matrix:

∆ = 〈∆2,2〉 = 〈∆5,5〉 = 〈∆7,7〉 6= 0 . (2.16)

The off-diagonals are vanishing. Each of these condensates break a different SU(2) subgroups
of the flavor and color symmetries, therefore both are broken completely. However, it can be
checked that

∆2,2 + ∆5,5 + ∆7,7 is invariant under q → eiαa(τa−λTa )q , (2.17)

i.e. simultaneous color and flavor rotations , therefore this is called the color-flavor locked phase
[315]. The locking is similar to chiral symmetry breaking, where the residual symmetry locks
left- and right-handed rotations. Moreover, in ultracold atoms similar pairing and symmetry
properties exist in liquid 3He where the orbital angular momentum of the pair is locked to the
spin.
As before we can define a modified electromagnetic charge Q̃E = QE − 1

2λ3 − 1
2
√

3
λ8, now with

QE = diagf
(

2
3 ,−1

3 ,−1
3

)
and λ3 = diagc (1,−1, 0), under which all diquark pairs in (2.15) are

neutral. On the other hand, we cannot find a modified baryon charge which leaves the ground
state unchanged, therefore the CFL phase is a superfluid. We assume that at very high densities
the non-superconducting state does not exhibit an axial anomaly, then, for massless quarks, the
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(a) QCD phase diagram for three flavors (b) QCD phases for three degenerate flavors

Figure 2.5: In (a) we have the three-flavor QCD phase diagram for quark masses comparable to the ones in
nature. The additional strange quark dynamics sharpen the chiral phase transition and shift the critical endpoint
to smaller µ in comparison to the two-flavor case. Cold and dense matter is at first in the 2SC phase where u and
d quarks form Cooper pairs. When it is even more cold and dense it is in the CFL phase where all three colors
and flavors are involved in the pairings. The transition between the 2SC and CFL phases is first order [66]. In (b)
we see the phase diagram for three degenerate, light (or massless) quarks. Chiral symmetry is broken below the
solid line, which marks the first order transition. Since the strange quark is light, the critical endpoint is shifted
away. Below the dashed line we have a superfluid with dibaryon or diquark paring. Due to the quark-hadron
continuity there is no transition between the two kinds of paring, nevertheless the magnitude of the condensate
increases qualitatively in the CFL phase [66]. It is not clear whether in nature the phase diagram looks more like
(a) or more like (b). Figures taken from [66]

symmetry breaking pattern in the CFL phase reads

SU(3)c × SU(3)V︸ ︷︷ ︸
⊃U(1)E

×SU(3)A × U(1)B × U(1)A → SU(3)c+V︸ ︷︷ ︸
⊃U(1)E+c

. (2.18)

Here the initial global electromagnetic symmetry is a subgroup of the diagonal flavor symmetry.
In the CFL phase seven gluons and one gluon-photon mixture acquire a finite Meissner mass by
the Higgs mechanism, while another gluon-photon mixture remains massless. Furthermore, there
are ten Goldstone bosons, eight from the breaking of SU(3)A and one each from the breaking of
U(1)B and U(1)A.
Of course in reality the quarks have non-vanishing masses and the strange quark mass is much
larger. The QCD phase diagram for this case is depicted in Fig. 2.5(a). The axial symmetries
are already broken on the classical level and the flavor symmetry is the isospin SU(2)V . Thus
the residual group in the CFL phase is SU(2)c+V . The condensates containing strange quarks,
〈∆5,5〉 and 〈∆7,7〉 are expected to be smaller than 〈∆2,2〉, because of the larger mass.

Quark-Hadron Continuity Interestingly, the rotated electromagnetic charges of the quarks
Q̃E in the CFL phase are integers in units of rotated electron charge, just like in a confining
theory. Furthermore, since chiral and baryon number symmetries are broken, the CFL phase for
three degenerate flavors has exactly the same symmetries as the dibaryon pairing phase called
hypernuclear matter [83]. There are good reasons to believe that neutron superfluidity and proton
superconductivity occurs in nuclear matter of QCD [316]. It turns out that the quarks, gluons
and Goldstone bosons in the CFL phase have a one-to-one correspondence to the baryons, vector
mesons and Goldstone bosons in hypernuclear matter [75, 83, 85]. For instance, the quarks in
the CFL phase are immersed in a diquark condensate, and so a one-quark excitation can pick up
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two quarks from the condensate at will, hence it can continuously go over to “be” a baryon. The
massive gauge bosons carrying the forces between the quarks correspond to the vector bosons
carrying the forces between the baryons. Similarly the spectrum of all physical excitations are
continuously connected [66]. Therefore one is led to believe that both phases are in principle
indistinguishable, so that there is no sharp phase boundary. This is called the Quark-Hadron
Continuity. Accordingly the phase diagram looks like Fig. 2.5(b).
In the spirit of the Quark-Hadron Continuity we cannot exclude a diquark mixture even in
ordinary nuclear matter, hence, the hunt for a trace of diquarks in nuclear matter should acquire
reality, and the theoretical formulation in this present work should be one important piece of
building block toward full theoretical understanding.

2.2.4 Extended Flavor Symmetries for Nc = 2

As mentioned before, two-color QCD has a distinct feature compared to the physical case, namely
its enlarged flavor symmetry, which is important to understand. It is a direct consequence
of pseudo-reality of the SU(2)c generators in the fundamental representation, which are the
Pauli matrices. As a consequence, diquarks, which are incidentally the baryons of the theory,
are included in natural way. We will see how the symmetry manifest itself in the classical
Lagrangian and how it can be broken by different additional operators or by a nontrivial ground
state [199, 200]. Naturally the breaking of symmetries is accompanied by the occurrence of the
appropriate number of (pseudo-) Goldstone bosons, which we will quantify.

Kinetic term In order to find the symmetry group of the kinetic term of the quarks, we
consider the properties SU(2)c generators. A representation is pseudoreal if there is a transfor-
mation that converts the generators into the negative of its complex conjugate. Hence, by the
same transformation we can undo a charge conjugation of the gauge fields. It is easy to see that
for the Pauli matrices such a transformation can be performed:

− t∗a = −tTa = t2tat2 . (2.19)

Let us define a conjugate field as q̃R = σ2t2q
∗
R. As mentioned before, by the second Pauli matrix

charge conjugation is undone, therfore q̃R transforms like qL under Lorentz- as well as gauge
transformations. Now let us write the second part of chiral Lagrangian (2.11) in terms of q̃R, by
transposing the expression and then inserting unities in terms of Pauli matrices

(
q†Riσ

†
µDµqR

)T
= −q̃†Ri

(
σ2σ

∗
µσ2

)(
t2D

T
µ t2

)
q̃R = q̃†RiσµDµq̃R .

In the first step the minus sign arises from interchanging the anticommuting fields. The derivative
term in the Dirac operator is antisymmetric, which can be shown by partial integration, while
the gauge interaction term transforms as (2.19), because it is proportional to the generators.
Furthermore σ2σ

∗
µσ2 = (−iσ2σ

∗
jσ2 ,1) = σµ, where again the pseudo-reality of the Pauli matrices

was used. Now, since both terms of the Lagrangian contain the same matrix in between the fields,
we can write all in a single term with an enlarged spinor

Lq,kin = Ψ†iσµDµΨ , Ψ =

(
qL
q̃R

)
. (2.20)
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Since both of the component of this spinor contain Nf flavors component and there is a trivial
structure in the 2Nf -dimensional flavor space, we now see a manifest U(2Nf ) flavour symmetry,
also known as Pauli-Gürsey symmetry [317, 318], conneting quarks with antiquarks. This unitary
group can be decomposed into SU(2Nf ) × U(1)A, where we intentionally separated the axial
group, as it breaks on the quantum level. The baryon number symmetry U(1)B is a subgroup
of SU(2Nf ).

Quark mass As we have seen in the previous section, a Dirac-mass term for the quarks explic-
itly breaks the chiral symmetry of the classical Lagrangian, or it can break spontaneously in the
ground state by the occurrence of a condensate. Since in two-color QCD the original symmetry
is extended, we should write the mass term in terms of the extended spinor in order to see what
symmetry is left

q̄q = q†Lσ2t2q̃
∗
R + q̃TRσ2t2qL =

1

2
ΨTσ2t2

(
0 −1Nf
1Nf 0

)
Ψ + h.c. (2.21)

The matrix has as a dimension of 2Nf × 2Nf in flavor space. The symmetry group which
leaves this expression invariant is called the symplectic group Sp(2Nf ). In fact, Eq. (2.21)
corresponds to the very definition of the elements of this group, namely the matrices A ∈ C2n×2n

with ATΣ1A = Σ1, where Σ1 is the matrix in (2.21) with n = Nf . The number of the arising
(pseudo-) Goldstone bosons is given by the dimension of the coset SU(2Nf )/Sp(2Nf ), which is
Nf (2Nf − 1)− 1.

Baryon chemical potential Next we shall consider a finite baryon chemical potential. As
we indicated in Sec. 2.2.2, the quark number is given by the conserved charge associated with
baryon number symmetry. A chemical potential is introduced into the action as a Lagrange
multiplier along with the quark number [199]. Therefore in the Lagrangian it has the form

q̄γ4q = q†LqL + q†RqR = q†LqL − q̃†Rq̃R = Ψ†

(
1Nf 0

0 −1Nf

)
Ψ . (2.22)

The physical meaning of the signs is that they are simply the baryon charges of quark and
antiquark. This matrix can be used as the generator of U(1)B transformations. From the
block diagonal structure it is obvious that the residual symmetry is given by independent
rotations of left- and right-handed components, thus the flavor symmetry of physical QCD
SU(Nf )V × SU(Nf )A × U(1)B, where the axial phase rotations are left out. If there is a quark
mass in addition, all axial symmetries are broken.
Let us mention here that the Dirac operator for two-color QCD with finite quark mass and finite
chemical potential, which we denote as D = /D+m+µ, is antiunitary, meaning that there exists
a transformation which yields the complex conjugate of the Dirac operator:

γ5Ct2Dγ5Ct2 = D∗ , (2.23)

where C is the charge conjugation operator. Now, if q is an eigenvector of the Dirac operator with
the eigen value λ the above relation implies Dq̃ = λ∗q̃, with q̃ = γ5Ct2q. Thus, all eigenvectors
appear in pairs and the determinant detD is real. This is the reason why there is no sign problem
in lattice calculation for two-color QCD.
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Diquark condensate Below a critical temperature Tc we expect a Cooper pairing of the
quarks into color neutral bosonic states, and also the Bose-Einstein condensation of these states.
In Ref. [199] it is shown that mesonic and diquark-type correlators in two-color QCD are equal at
vanishing chemical potential, which is of course directly related to the enlarged flavor symmetry,
which allows to rotate quarks into antiquarks. It follows that if there is a condensation, it can
be that of a meson or diquark. At µ 6= 0 on the other hand the inequalities of the correlators
show that a diquark-type excitation is the lightest one, so the condensation must be that of the
diquark. In fact, this is easy to understand, if we start at µ = 0, the masses must be equal due
to the degenereacy, while at finite µ the mass of the diquark is immediately reduced, which we
will see in our effective model in the next section.
In order to find the residual symmetry in the presence of a diquark condensate, we make a
rather heuristic argument, showing it for Nf = 2 and then generalizing for arbitrary flavors. A
scalar singlet diquark correlator must be antisymmetric in all spaces in which the spinor lives,
so simplest choice is

qTγ5Ct2τ2q + h.c = ΨT iσ2t2τ212Ψ + h.c =

(
ΨT
u

ΨT
d

)
iσ2t2

(
0 −i12

i12 0

)(
Ψu

Ψd

)
+ h.c

where τ2 is an antisymmetric matrix in the Nf = 2 dimensional flavor space, given by the second
Pauli matrix. The unit matrix 12 acts in the space corresponding to the two components of Ψ
as defined in (2.20). By explicitly resolving the flavor structure in the last step we see that this
expression is invariant under Sp(2Nf ), similar to the mass term (2.21), giving rise to the same
number of Goldstone bosons. This is of course not a coincidence, but it is connected to the fact
that the diquark and mesonic states are degenerate in two-color QCD.
Note that here the diquark condensate does not break color symmetry as it is a color singlet,
hence there is no color superconductivity in QC2D. However, if QC2D would exist in a world
with electromagnetic interactions, the diquark condensate would give rise to an electromagnetic
superconductor, as its electric charge is nonzero. Since the diquark condensate breaks U(1)B
which was a subgroup of SU(2Nf ), QC2D at high densities is baryon number superfluid.

Symmetry breaking patterns Until now we have seen how each operator breaks the enlarged
flavor symmetry of two-color QCD. Now let us find the residual symmetries if multiple operators
are present in the system. In Fig. 2.6 a summary is shown for Nf = 2.
In the presence of a finite chemical potential the symmetry group, which we found for Eq.
(2.22), is broken down to Sp(Nf )V × Sp(Nf )A by the diquark condensate with Nf (Nf − 1)− 1
Goldstone bosons. The other N2

f are pseudo-Goldstone bosons, which must have the limit of
vanishing masses for µ → 0. For Nf = 2 we have Sp(2) ' SU(2), so only U(1)B is broken
spontaneously with a single true Goldstone boson, which is given by diquark phase rotations,
and 4 pseudo-Goldstone boson, which are the mesons.
If we start with a small explicit quark mass parameter in our theory, the approximate SU(2Nf )
breaks down to Sp(2Nf ) by a chiral crossover, similar as in the physical QCD case, described in
Sec. 2.2.2. The associated Nf (2Nf − 1)− 1 pseudo-Goldstone bosons include the diquarks. For
additionally µ 6= 0 the starting symmetry is SU(Nf )V × SU(Nf )A × U(1)B of which the axial
part holds only approximately and is broken by the chiral condensate, with the usual N2

f − 1
pseudo-Goldstone bosons. An additional diquark condensate leaves only Sp(Nf )V unbroken,
and gives rise to Nf (Nf−1)

2 true Goldstone bosons. As we have mentioned in Sec. 2.2.2, chiral
symmetry is expected to be restored in the limit µ→∞, which still holds in QC2D.
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2.2 Symmetries and Related Phase Transitions

SU(4)

?

µ

SU(2)V × SU(2)A × U(1)B

?

〈qq〉

SU(2)V × SU(2)A

-
mq

Sp(4) - no SSB for µ = 0

?

µ

SU(2)V × U(1)B-
mq

?

〈qq〉

SU(2)V-
mq

Figure 2.6: Different ways of breaking the enlarged flavor symmetry of QC2D for Nf = 2; only the exact
symmetries are shown here. The red arrows mark the way we are going to implement in this work. The 〈qq〉
denotes the diquark condensate. It is not shown that for mq = µ = 0 a condensate can break SU(4) → Sp(4)
spontaneously. In the case of a finite explicit quark mass mq, the diquarks acquire a small mass from the chiral
crossover, similar as the pions. This mass must be reduced to zero by the chemical potential in order for U(1)B
to break spontaneously.

Onset of diquark condensation The onset of the diquark condensation at T = 0 is related
to the quark current mass, as it is shown in Fig. 2.7, but more directly it is related to the pion
mass. For a finite mq, the pions and the diquarks have finite and degenerate masses at µ = 0
in QC2D, due to the extended symmetry. This entails that, at T = 0 the onset of diquark
condensation must be at µqq = mπ, as a consequence of the Silver Blaze property, see Sec. 3.3.3.
Furthermore, we know from the GMOR relation [137] that mq scales quadratically with the pion
mass, therefore the onset marked by the continuous line in the T = 0 plane is a parabola. In
the chiral limit the pion mass is vanishing, therefore the onset is already at vanishing chemical
potential. The thick line on the T -axis is a first-order transition in the µB = 0 plane which
presumably ends in a critical point [233]. Apart from that, the diquark condensation occurs via
a second order phase transition as we will see later.

Figure 2.7: Schematic phase diagram for two-color QCD in the parameter space of temperature, baryon (=
diquark) chemical potential and quark mass. Below the dashed lines are the regimes with diquark condensation.
Figure taken from [233].
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Chapter 2: From Quarks and Gluons to Mesons, Diquarks and Baryons

2.3 Low Energy Degrees of Freedom

In this section we will derive the low energy models, which effectively describe the isospin sym-
metric Nf = 2 quark matter, and where the gluons are integrated out. The change of the degrees
of freedom from quarks and gluons at high energies to hadrons at low energies is well understood
within the framework of the functional renormalization group (FRG) that we will introduce in
the next chapter in more detail. Here, all we need to know is that the energy-scale dependence
of the theory parameters, like couplings and masses, is given by the renormalization group equa-
tions (or flow equations, also β-functions), and that all informations of the system at a certain
energy k are in principle encoded in the effective action Γk, not only for the elementary processes,
but also for effective interactions and collective excitations. For our approach, we must deduce
the explicit form Γk such that it correctly embodies the underlying physics and that it properly
describes the phenomena we are interested in.

2.3.1 Hadronization

We have seen in Sec.2.2.1 that quarks and gluons in QCD are subject to the confinement mecha-
nism, if one looks at the macroscopic length scales of the system. Therefore the effective degrees
of freedom at low energies are bound states like mesons and baryons. If one traces the evolution
of the system from UV to the IR, dynamically taking into account all important effects, one sees
a smooth transition between the quark-gluon phase and the hadronic phase. In the following
we would like to sketch how this is done, without going into all details. The diagrams shown
in this subsection are only for the motivation of the effective models and will not be computed
explicitly.

Four-fermi interactions At large energy scales k � ΛQCD the effective action is well-
described by the quantized and renormalised, classical action of QCD

Γk�ΛQCD =

∫

x

{
1

4
F aµνF

a
µν + q̄

(
i /D + imq

)
q + c̄ ∂µDµc+

1

2ξ
(∂µA

a
µ)2

}
, (2.24)

where, in addition to (2.1), c is the ghost field and ξ is the gauge fixing parameter. Now the
first major thing that happens by going to lower scales, is that effective four-fermi interactions
∼ q̄q̄qq are generated by a two-gluon exchange in the form of a box diagram, as it is depicted
in Fig. 2.8. A lower energy scale means a larger length scale, so that we cannot resolve the
structure of the box diagram, which therefore looks to us like a point-like four-fermi interaction.
Hence a four-fermi operator must be added to the effective action Γk.

⇒
λq

g g

gg

Figure 2.8: Box diagram generating an effective four-fermi coupling λq ∝ α2
s = g4

16π2 . The FRG relates these
two diagrams by an exact equation, and once additional operators are generated, the corresponding four-fermi
process with a one-loop are added to the equation, see Fig. 2.9.
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2.3 Low Energy Degrees of Freedom

=∂t ∂̃t +∂̃t +∂̃t

+∂̃t +∂̃t +rebos. terms

Figure 2.9: Schematic representation for the FRG equation for the four-fermi coupling without bosonization
(permutations, signs and diagram multiplicities not shown). Here t = ln k is the “RG time”, and ∂̃t is a formal
derivative operator, which will be specified in Sec. 3.6. All we need to know here is that this is a one-loop exact
equation, which yields the scale dependence of the four-fermi coupling.

At low energies pure four-fermi models are famous under the name of Nambu-Jona-Lasinio models
(NJL) [68, 129–131]. The NJL model assumes that gauge degrees of freedom are integrated out
and substitutes quark interactions via gauge fields by a point like four-fermion interaction. The
model parameter are tuned such that the known limiting cases agree with nature. However,
recently the scale-dependence of four-fermi couplings have been solved with the FRG by explicitly
integrating out the quark-gluon dynamics starting from the perturbative ultraviolet regime of
QCD [185, 186]. The corresponding equation is exemplary shown in Fig. 2.9. In this case, the
only input parameters are the gauge coupling and the quark current masses at an ultraviolet
scale of k ≈ 20 GeV.
A peak in the four-fermi coupling means that quark fluctuations are strong, which entails that
a lot of quark-antiquark pairs are produced from the vacuum forming a condensate and thus
breaking chiral symmetry. The mechanism can be well understood in the present picture: Con-
sider the flow equation for the four-fermi coupling depicted in Fig. 2.9. The gluon box diagram
dominates for large momenta as it scales parametrically with g4 � 1, and hence λq scales with g4

as well. The back-coupling of the four-fermi vertex leads to the mixed diagrams suppressed with
' g6, and fermionic self-interaction diagrams going with ' g8. This suppression is overcome
in the non-perturbative regime, where the running coupling grows large. This finally leads to a
dominance of the self-interaction diagrams and eventually to a four-fermi resonance. The appear-
ance of a divergent four-fermi coupling can be better understood by looking at the β-function
of the dimensionless coupling λ̂q = λq/k

2 [319]. Then one has contributions with opposite signs,
such that the β-function can be vanishing and λ̂q remains finite, if the initial value is small.
However there is a critical coupling gcr. If g > gcr then the β-function is always negative and λ̂q
encounters a pole irrespective of its initial value, see Fig. 2.10.

λ̂q

∂tλ̂q g = 0

g & 0

g > gcr

T > 0, g = 0

Figure 2.10: Sketch of the β-functions of the dimensionless four-fermi coupling [320]. The red dots are attractive
IR fixed points, the violet dots in the UV are repulsive. At finite temperature fermions obtain a thermal mass
gap, which entails that the UV fixed point goes further away and eventually prevents the breaking of chiral
symmetry.
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Chapter 2: From Quarks and Gluons to Mesons, Diquarks and Baryons

Partial Bosonization To trace the evolution of the system beyond the chiral symmetry break-
ing scale into the broken phase, it is convenient to introduce effective composite operators to
capture the resonant structures in the four-fermi interactions. Although the composite opera-
tors carry the same quantum numbers as mesonic operators they should not be identified with
the former but rather be understood as book-keeping devices. They are added to the effective
action, but only become relevant below the hadronization scale k ≈ 700 MeV. The bosonization
procedure relies on the fact that in the path integral a four-fermi operator can be rewritten in
terms of bosonic operators. It is formally done by introducing auxiliary fields with the Hubbard-
Stratonovich transformation [321, 322]. For instance, for the scalar four-fermi channel it reads

e
∫
d4x

λq
2

(q̄q)2
= N1

∫
Dσ e

∫
d4x

(
ihφσq̄q+

1
2
m2
φσ

2
)
, (2.25)

where N1 is a normalization factor. The exponent on the left-hand side is the scalar four-fermi
interaction term of the action, and the exponent on the right-hand side is the bosonized version.
Eq. (2.25) is simply proven by completing the square or using the equations of motion for σ with
the bosonized actionyielding

δS[q̄, q, σ]

δσ
= 0 ⇒ σ = − ihφ

m2
φ

q̄q . (2.26)

The parameters m2
φ and hφ are arbitrary parameters at our disposal, they will be adjusted to

the boundary conditions, the index will be clear in the next subsection. However, the identity
λq = h2

φ/m
2
φ is required for the transformation, where we see that a diverging four-fermi is

equivalent to vanishing mass of the auxiliary field. This is exactly what we expect at a phase
transition: A vanishing mass amounts an infinite correlation length. Whereas a small λq implies
a large boson mass, and hence the decoupling of the bosons. In general, λq has a non-trivial
momentum dependence. Having in mind a bosonic energy dispersion, we generalize the identity
to

λq(p
2) =

h2
φ

Zφ(p2)(p2 +m2
φ)

(2.27)

which leads to a kinetic term for the auxiliary field along with a wave function renormalization
Zφ. Eq. (2.27) is defined such that p2

0 = m2 is the pole, if we make an analytic continuation from
the Euclidean space back to Minkowski space. In the next chapter we will see that a running
wave function renormalization is important for the rapid decoupling of the bosons towards the
UV, which can also be interpreted as the dissociation of the bound states.
The Hubbard-Stratonovich transformation substitutes four-fermi interaction by Yukawa-type
interaction with intermediate bosons. The fact that both descriptions are equivalent, is illustrated
in Fig. 2.11: A large λq implies a high possibility of successive four-fermi interactions to take
place, such that it can be regarded as an intermediate bound state, whereas a heavy intermediate
bound state cannot travel far in space, rendering the interaction four-fermi like. Thus we add
the composite degrees of freedom to the effective action, which serve as a book-keeping device
for the inter-quark forces above the symmetry breaking scale, and for the bound states around
and below the symmetry breaking scale.
Since the structure of the scalar auxiliary field is σ ∼ q̄q, the expectation value 〈σ〉, which
has the form of the chiral condensate (2.12), serves conveniently as the order parameter for
chiral symmetry breaking. If the order parameter is nonzero in the ground state, we obtain an
explicit quark mass term in our action with the mass mq = h〈σ〉. We see that bosonization is a
comfortable tool to study chiral symmetry breaking. Moreover, we are free to choose any specific
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2.3 Low Energy Degrees of Freedom

λq→∞
=⇒...

(a) Large four-fermion coupling limit

m→∞
=⇒

(b) Large boson mass limit

Figure 2.11: Illustration of the limiting cases for λq and the boson mass m. They are related to the mass of the
bound states through (2.27). Here the double lines emphasize the composite nature of the intermediate state.

channel of four-fermi interactions that we want to bosonize, therefore we will also consider a
diquark channel where the intermediate state is of the form qq, that can experience Bose-Einstein
condensation. In the next subsections we will introduce all the necessary four-fermi interactions
for our models, such that the important phenomena can be captured and the symmetries of the
underlying theory are respected; then we apply the Hubbard-Stratonovich transformation on all
channels.

Rebosonization Once we have bosonized the four-fermi interaction at some scale k and added
the bosonic degrees of freedom to the effective action, the four-fermi interaction is regenerated
by the gluon box diagram in Fig. 2.9, even if λq was exactly replaced by Eq.(2.27). Moreover,
we have similar box diagrams in addition with the newly introduced bosonic degrees of freedom,
but these have only a minor quantitative effect since either bosonic or the quark excitations
are gapped [185]. It is necessary to bosonize the four-fermi interaction at every RG-scale k. In
the framework of the FRG this procedure goes under the name of rebosonization or dynamical
hadronisation [181, 183–185]. It is done by introducing a scale-dependent composite field, like
σk = akq̄q for the simplest case. Such an ansatz leads to addtional terms in the FRG equations,
in particular we get terms in the flow of the four-fermi and Yukawa couplings:

∂tλq → ∂tλq + h∂tak , ∂th→ ∂th− Z (p2 +m2)∂tak , (2.28)

where t = ln k. Now, the ak is an auxiliary function at our disposal, and we choose it such that
flow of λq vanishes at all scales:

∂tλq = 0 ⇔ ∂tak = −∂tλq
h

. (2.29)

This way, all information of four-quark correlation is stored in ak, which in turn is fed to the flow
of the Yukawa coupling. Thus, h encodes the four-quark correlations in the quark-gluon phase
and the boson-constituent-quark correlations in the hadronic phase, with a dynamical transition
between these regimes.
Interestingly, with such an approach within the FRG, it is indeed found that the low energy
physics of in terms of bound states can be predicted by the input parameters of QCD, the gauge
coupling and the quark current masses, if one starts in the perturbative regime. The low energy
parameters are not needed to be fine-tuned at the initial UV scale as long as the scale is high
enough. For instance, if initiating the flow between 90 GeV and about 5 GeV with a vanishing
Yukawa coupling, one is always attracted to the same trajectory in the IR, which is rather flat
below 1 GeV [179, 186, 323]. The initial condition of the Yukawa coupling plays no role. Similarly
the initial meson mass simply must be high enough, so that the meson is decoupled in the UV.
The most prominent channel for four-fermi interactions is the scalar-pseudoscalar one, which
we will introduce in the coming subsection. In Ref. [186] ten different four-fermi channels of a
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Chapter 2: From Quarks and Gluons to Mesons, Diquarks and Baryons

Fierz-complete basis were analyzed. It turns out that all channels diverge in the purely fermionic
theory at the hadronization scale, unless the scalar-meson channel is rebosonized. Then the
remaining channels show only small resonances. This analysis confirmed the heuristic picture of
scalar-pseudoscalar channel being the driving channel in the four-fermi system, whereas all other
channels are only triggered by this channel.

⇒

(a) Generating of six-fermi interactions

⇒

(b) Generating of (∆∗q̄)(∆q) - interactions

Figure 2.12: Effective baryon correlations. In (a) it is schematically depicted, how q̄q̄q̄qqq - correlations can be
generated from elementary quark-gluon interactions. In (b) a baryonic correlation is generated from 2-quark-2-
diquark interaction, which might be the more realistic process.

Baryonization Like the generation of effective four-fermi interactions in Fig. 2.8, also effective
six-fermi couplings can be generated from fundamental quark-gluon dynamics, see Fig. 2.12(a).
Then we can also perform a transformation like (2.25) of the six-fermi term and introduce the
auxiliary field B ∼ qqq, with the quantum numbers of a nucleon. However, presumably it is
rather less likely that three quark meet at one point in phase space, therefore we rather expect
that the first step of the baryon formation is an intermediate, color-antitriplet diquark state,
which then combines with the third, color-triplet quark to form a color-singlet in the from of
a baryon, as shown in Fig. 2.13(a). As we have indicated above, we will bosonize the the
diquark channel of four-fermi interaction, and thereby obtain a Yukawa type interactions for the
diquarks. From this point we can go on and construct the box diagram in Fig. 2.12(b). leading
to an effective (∆∗q̄)(∆q) - interaction, which we can baryonize. Here, we already would like to
choose the tensor structure such that chiral symmetry is respected

exp

∫
d4x λµ∆∗a∆bq̄aγµq

b = N2

∫
DBDB̄ exp

∫
d4x

[
ihqdB

(
B̄∆aqa + q̄a∆∗aB

)
+ B̄PµγµB

]
.

(2.30)
The diquark fields are flavor singlets and thus invariant. Naturally, the Lorentz vector q̄aγµqb

is invariant under chiral transformations as well. The λµ is at first an arbitrary vectorial func-
tion, which is needed to have a Lorentz scalar, and also contains the coupling strength of the
interaction. The equation of motion for the baryon fields yield

B = −ihqdB∆a /P
−1
qa and B̄ = −ihqdB q̄a /P−1

∆∗a , (2.31)

which requires /λ =
h2
qdB

2
/P
−1 for Eq. (2.30) to hold. With this chiral ansatz the B and B̄

respectively transform like q̄† and q† under the chiral transformations (2.11). In particular for the
axial groups this transformation property is important. Furthermore /PB, naturally transforms
like a q, and so, all terms on the right-hand side of (2.30) are manifestly chiral invariant. This is
in contrast to the conventional baryonization, where a simple scalar structure (/λ→ λ1) is taken
[246, 248], and chiral symmetry in the baryon sector is disregarded. For the baryonic two-point
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2.3 Low Energy Degrees of Freedom

term we assume a general structure in momentum space of the form

Pµ = Z̄B(p2)pµ . (2.32)

Thus, the box diagram in Fig. 2.12(b) leads to a quark-diquark-baryon interaction and a prop-
agating baryon mode. As for the bosons, the wave function renormalisation for the baryons Z̄B
is important for the decoupling or dissociation in the UV. There will be more details on that
matter later.
Aside from that, we need a finite rest mass for the baryons. Since they are made of the quarks
which themselves interact via the Yukawa term in (2.25), we assume that constituent quarks
within different baryons still do the same. Thereby, an effective Yukawa type interaction for
baryons with mesons is generated. In the FRG framework the generating takes place via a tri-
angle diagram with the quark-diquark baryon interactions, introduced by Eq. (2.30), and the
quark-meson interactions from Eq. (2.25). The diagrams are shown in Fig. 2.13(b). On micro-
scopic scales this corresponds to an eight-fermi correlation, however the stepwise hadronization
procedure is more intuitively accessible. Then, if chiral symmetry is broken, an effective baryon
mass term is created with mB = hB〈σ〉. The mass is composed of the triple of the constituent
quark mass reduced by the binding energy, thus hB . 3hφ.
Again, as for the bosons, we can perform a rebaryonization procedure by introducing a scale
dependence in the baryon field as Bk = bk∆

a/pqa, and then remove the regenerated (∆∗q̄)(∆q) -
interaction by feeding the box diagram in Fig. 2.12(b) directly into the flow of hqdB.

(a) Formation of a baryon

⇒

(b) Generating of baryon-meson interactions

Figure 2.13: It is assumed that a baryon is constructed by the joining of a diquark with quark as shown in (a).
A quark state inside a baryon still can emit a meson, thus an effective Yukawa type baryon-meson interaction
is generated (b).

2.3.2 The Quark-Meson-Diquark Model for QC2D

In this subsection we want to construct an effective low energy model for two-color QCD. Our
low-energy model for physical QCD will be based on this. Essentially what we are going to
do here, is to find a minimal four-fermi model which respects all symmetries of the underlying
microscopic theory, in particular the exteded flavor symmetry. Then we will bosonize it as shown
above. Since the diquarks are the baryons of the theory in QC2D, we do not consider any higher
order correlations.
Following the argument in Ref. [215], we make use of the local group isomorphism SU(4) '
SO(6) and define the operator ΨTσ2t2~ΣΨ, with the fermionic field as defined in (2.20), and a
suitable basis of 4 × 4 antisymmetric matrices, ~Σ = {Σi}6i=1. The basis matrices are unitary
and satisfy the orthogonality condition ΣiΣ

†
j + ΣjΣ

†
i = 2δij . They can be chosen to carry the

quantum numbers of the four mesons and two diquarks, see [206] for an explicit form of these
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matrices. It can be verified with the transformation properties of Ψ and ~Σ under SU(4), that
the above defined operator transforms as a complex vector of SO(6). We can construct SO(6)
invariants simply by taking scalar products with itself or its complex conjugate, and thereby
obtain the four-fermi interaction

1

2

∣∣ΨTσ2t2~ΣΨ
∣∣2 +

1

4

[
(ΨTσ2t2~ΣΨ)2 + h.c

]

= (q̄q)2 + (q̄iγ5~τq)
2 +

(
q̄iγ5τ2t2Cq̄

T
)(
qTCiγ5τ2t2q

)
. (2.33)

The hermitian conjugate must be added in order to have real-valued action. Note that while
the first term in the upper line is invariant under U(1)A, the second one breaks it. This is fine
since it is broken by the quantum anomaly anyway. Inserting explicit expressions for the Σi

matrices yields the second line with the original Dirac spinors. Now it has become obvious that
the channels of interaction we have are the scalar, pseudoscalar and diquark channels. This is es-
sentially the minimal two-flavor NJL model, supplemented with a diquark term. If the symmetry
between the mesons and diquarks is broken, the respective channels have independent coupling
parameters. If the system has chiral symmetry, then the scalar and pseudoscalar channels keep a
common coupling parameter. Note that instead of adding the first and the second term in (2.33)
one can subtract them, which leads to the parity partners of the channels we have here. This
has been employed in Ref. [215] with a mean-field approach.
If chiral symmetry is broken, according to the Vafa-Witten theorem [324] the scalar condensate
must be preferred over the pseudoscalar one, as the ground state does not violate parity con-
servation. In addition, we want to have a small quark current mass in our model. An explicit
Dirac mass term can be included in the Hubbard-Stratonovic transformation (2.25) by shifting
q̄q → q̄q + i

mq
λq

on both sides of the equation (the constant term is irrelevant). This entails a
source term for the scalar field −cσ, with

c =
m2
φmq

h
. (2.34)

The source term leads to small but non-vanishing expectation value for 〈σ〉, and when quantum
fluctuations are integrated out, the condensate can grow much larger. Let us now write down
the low energy operators for two-color QCD into an effective action, which we call the quark-
meson-diquark (QMD) model, with Φ =

(
~π, σ,∆,∆∗, ψ, ψ̄

)

ΓQMD [Φ] =

∫
d4x

{
Zq q̄

[
i/∂ + iγ4µ+

√
Zφihφ (σ + iγ5~τ · ~π)

]
q

+ Zq

√
Z∆

2
h∆

[
∆∗qTCτ2εγ5q −∆q̄γ5ετ2Cq̄

T
]

+ Z∆

[
(∂ν − δν4µ) ∆∗

] [
(∂ν + δν4µ) ∆

]
(2.35)

+
Zφ
2

[(
∂µ~π

)2
+
(
∂µσ

)2]
+ V (φ2, |∆|2)−

√
Zφcσ

}
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Essentially, it is well known quark-meson model augmented by the diquark terms. In the first
line we have the kinetic term for the quarks and the quark-meson interactions. φ = (~π, σ)
gathers the meson fields and transforms like a vector under chiral symmetry transformations
as SU(2)V × SU(2)A ' SO(4). In the second line are the quark-diquark interactions. The
interaction terms are obtained from bosonizing all four-fermi terms in Eq. (2.33) with similar
Hubbard-Stratonovic transformations as in (2.25). However, we have rescaled the diquark fields
∆ →

√
2∆ in order to have the standard convention for a complex scalar field. Also, we have

substituted the color matrix by an anti symmetric tensor t2 = −iε. In the third and forth line we
have the kinetic terms for the bosons. As we have discussed in the previous section a momentum
dependent four-fermi coupling like (2.27) entails kinetic terms for the bosonized fields. The wave
function renormalization is introduced for all fields, including the quarks, as a rescaling factor
Φi →

√
ZΦi

Φi, with no explicit momentum dependence as an approximation. Equivalently,
one can parametrize the nontrivial scale dependence of the kinetic terms by the Z’s, and then
redefine all the parameters with the appropriate powers of the Z’s. It is clear that if SU(4)f is
not violated, then it must be Zφ = Z∆ as well as hφ = h∆.
Furthermore, we have included a baryon chemical potential µ, which is done by means of standard
methods [284, 285]. Essentially it is incorporated by a constant shift cΦi

µ in the time derivative,
where cΦi

is the baryon charge of the field Φi. Naturally, the diquark transforms under U(1)B
like ∼ qq and therefore has twice the baryon charge of a quark. At finite temperature the time
axis is compactified on a torus with circumference β = 1/T . Lorentz invariance, which is simply
O(4) in Euclidean spacetime, is broken down to O(3) at finite temperature and density.
In order to study spontaneous symmetry breaking, it is necessary to incorporate an effective
potential V , which includes the bosonic mass terms arising from the Hubbard-Stratonovic trans-
formations, and at least a quartic interaction term guaranteeing that it is bounded from below.
Also, by involving higher bosonic interactions, it acts as a substitute for possible higher quark
interaction. We will focus on the effective potential Sec 2.5. Finally we have the source terms,
explicitly breaking chiral symmetry. If we consider only a single degenerate mass term in V and
solve the equations of motions for all bosonic fields, we can verify that the interactions terms in
(2.35) originate from the four-fermi interactions (2.33) with coupling (2.27).
We consider this model to be valid up to the cutoff scale Λ ≈ 1 GeV, below which we assume the
gauge degrees of freedom from the high UV action (2.24) to be integrated out, therefore they are
no more included in Γ [Φ]. With suitable boundary conditions, we expect in the vacuum that
this effective action evolves such that at k ≈ Λ the quark fluctuations with their light masses are
the dominating processes, while around k = 700 - 500 MeV the bosonic dynamics are expected
to take over smoothly, which then remain active down to the mass scale of the lowest excitation,
that is mπ ≈ 140 MeV.

2.3.3 The Quark-Meson-Diquark-Baryon Model for QCD

For physical QCD with three colors we can start with ΓQMD and promote the diquark to a color
antitriplet of the form (2.13). Accordingly we must replace the antisymmetric Pauli matrix
in color space t2 by the three antisymmetric Gell-Mann matrices λ2, λ5, λ7. This amounts to
having a totally antisymmetric Levi-Civita-tensor (εa)bc = εabc, where the letters represent the
three color indices {r, g, b} = {1, 2, 3}. Hence we replace essentially ∆ → ∆a and ε → εa, with
an implied contraction of the indices. Furthermore, we add the baryonic degrees of freedom as
discussed at the end of Sec. 2.3.1 and then we obtain a quark-meson-diquark-baryon (QMDB)
model for QCD, with Φ =

(
~π, σ,∆,∆∗, ψ, ψ̄, B̄, B

)
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ΓQMDB [Φ] =

∫
d4x

{
Zq q̄

[
i/∂ + iµγ4 +

√
Zφihφ (σ + iγ5~τ · ~π)

]
q

+ Zq

√
Z∆

2
h∆

[
∆∗aqTCτ2ε

aγ5q −∆aq̄γ5ε
aτ2Cq̄

T
]

+ Z∆

[
(∂ν − δν4µ) ∆∗a

] [
(∂ν + δν4µ) ∆a

]

+
Zφ
2

[(
∂µ~π

)2
+
(
∂µσ

)2]
+ V (φ2, |∆|2)−

√
Zφcσ (2.36)

+
√
ZqZ∆ZBihqdB

(
B̄∆aqa + q̄a∆∗aB

)

+ ZBB̄
[
zB(i/∂ + iγ4µB) +

√
ZφihB (σ + iγ5~τ · ~π)

]
B

}
.

Except for the color structure in the diquark sector, the first four lines are the same as in Eq.
(2.35). The fifth line contains the quark-diquark-baryon interactions, with the rescaled fields.
And finally, the last line contains the kinetic term for the baryon with µB = 3µ and the baryon-
meson interaction. since it is essentially a quark inside the baryon that interacts with the meson,
the structure is same as for the quark-meson interaction.
As the chiral condensate is melted at high energies, the baryon would become massless. On the
other hand a Dirac mass term would break chiral symmetry explicitly. Therefore we introduce
a UV - mass gap mUV

B , which is supposed to take care of the decoupling of the baryons at
high energies. Hence, we make the following ansatz for the nontrivial momentum dependence
introduced in Eq. (2.32),

Z̄B(p̃2) = ZB zB(p̃2) with zB(p̃2) =

(
1 +

mUV
B

|p̃µ|

)
, (2.37)

where p̃µ = (~p, p4 + iµB). The chemical potential must be included to satisfy the Silver Blaze
property, see Sec. 3.3. Also, Lotrenz invariance in the vacuum is respected. The ZB without the
argument is momentum independent. We are free to rescale all coupling parameters associated
with baryons, such that it corresponds to B → √ZBB. In terms of the renormalization group
scale k, the UV-mass gap should have the following properties in the vacuum

for k → 0: mUV
B → 0 , (2.38)

for k → Λ: mUV
B � k . (2.39)

Below the chiral symmetry breaking scale kχ ≈ 500 MeV the baryon acquires the known mass
by the chiral condensate of mB ' 939 MeV, which is much too high to have dynamical impact
on the system. With increasing energy scales the excitation gap for all bound states should only
grow larger because they dissociate. For the baryons this is ensured by (2.39). Nevertheless,
at higher chemical potentials some impact of the baryons can be expected, especially around
the critical endpoint. However at T = 0 below the onset of the baryon density there cannot be
an influence from the baryons on mesonic quantities like the chiral condensate, because of the
Silver Blaze property. Above the onset baryonic fluctuations are blocked by the Pauli exclusion
principle, as the states are occupied at finite densities. Similar is the case for the diquarks: Their
mass is believed to be around twice the quark mass m∆ ≈ 600 MeV after chiral symmetry is
broken, otherwise they are much heavier/dissociated. Of course, the diquark condensate will
have a significant impact on the phase diagram at high chemical potentials.
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The liquid-gas phase transition of nuclear matter

Our baryon fields introduced in the previous section actually represent the nucleons, i.e. the
constituents of atomic nuclei. It can be inferred from the systematics of atomic nuclei, that
the binding energy keeping multiple baryons joined, is about 16 MeV, and the baryon density
is n0 = 0.17fm−3 [325], where electromagnetism is neglected. Now, consider the following
situation: At sufficiently low, but finite temperature, we have thermally excited baryons in a
gaseous state. If the system is compressed, at some point the baryon start joining into droplets.
The density of each droplet is n0, however on spatial average we have nB < n0. Eventually the
entire volume is filled with droplets and the system goes into a liquid state. Right at the phase
transition which is first-order, is the coexisting state. At large temperatures the gas cannot be
distinguished from the liquid, so the first-order transition terminates in a critical endpoint, which
is around T = 15 MeV. At T = 0 a finite density can only be achieved, if the chemical potential is
not smaller than the minimal energy per baryon. Hence, the transition is at µB = mB − 16 MeV
(cf. Fig. 2.4 (a)), which corresponds to a quark chemical potential of µ = 308 MeV. The liquid-
gas transition can be computed with phenomenological models for the nuclear interaction, for
instance, the Walecka model [241].
The question is where we can expect other degrees of freedom of quarks and diquarks. There are
three possibilities in order.

Conventional scenario – quark onset followed by diquarks

A quasi-particle picture gives us an intuition for the onset behavior. If there are any new
degrees of freedom in matter coupled to the baryon density, it would appear when the baryon
chemical potential exceeds the corresponding mass threshold. If density-induced deconfinement
is a smooth phenomenon just like as observed along the temperature axis, confinement would be
gradually lost in nuclear matter. Then, the quark onset is located at the (in-medium) constituent
quark mass. In the same way, as soon as µB gets greater than the (in-medium) constituent
diquark mass, the system should accommodate the diquark degrees of freedom. We should note
that the diquarks immediately form a condensate because they are bosons, leading to a color
superconducting state.
This is actually a conventional scenario. To summarize what is described above, let us introduce
some notations; the baryon binding energy is denoted by ∆B (not to be confused with the nuclear
binding energy mentioned above), the diquark mass difference by ∆d. Then, the baryon mass is
mB = 3mq −∆B and the diquark mass is m∆ = 2mq −∆d, where ∆B > 0 and ∆d < 0. Then,
we have an ordering pattern as mB/3 < mq < m∆/2.
It is important to note that in this conventional picture m∆ > 2mq by negative ∆d and thus
the diquark is not a bound state of two quarks. In fact, in a color superconductor, the diquark
correlation is seen in not the configuration space but the momentum space only. In the BCS
wave-function, two particles having momenta +~p and −~p are paired, but such Cooper pairs are
not necessarily quasi-particles. This is why m∆ > 2mq in the weak-coupling BCS picture.
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BEC-BCS crossover scenario – diquark onset followed by quarks

The BCS picture is possibly changed in the strong-coupling regime. In the strongly correlated
systems such as the unitary limit of cold atoms, it is known that the BEC-BCS crossover takes
place associated with the formation of bosonic molecular states [326]. It was Leggett [327] who
first claimed that superconductivity is nothing but a BEC or superfluid of the Cooper pair. If
the attractive force is strong enough, the Cooper pair may be a molecular bound state, and then
the chemical potential would turn negative changing its character from a fermionic to a bosonic
one [328].
In this case the diquark could be a bound state of two quarks, and then ∆d > 0, so that we have
an ordering pattern as mB/3 < m∆/2 < mq. This means that we have color superconductivity
before the onset of quarks. Such a picture is quite consistent with what is expected from the
Quark-Hadron Continuity

Quarkyonic scenario – continuous activation

The last and the newest scenario is the picture based on the large-Nc approximation for QCD
matter. There may be no particular onset behavior of quarks and diquarks but these degrees
of freedom may be gradually developing as the baryon density grows up. In other words, in
some sense, nuclear matter is already a sort of quark matter. This is a picture consistent with
quarkyonic matter recognized in the large-Nc limit [32]. The baryons interact as strongly as
∼ O(Nc) enhanced by a combinatorial factor due to quark exchanges, while mesons become free
particles when the color number Nc is infinitely large. Thus, interestingly, baryon interactions
lead to the same Nc counting as quark matter and so quark degrees of freedom should be already
there in a form of baryon interactions.
The duality between nuclear matter and quark matter may sound a radical interpretation of the
large-Nc observation, but we would emphasize that such a quarkyonic picture is very natural.
The baryon interaction is mediated by mesons which are objects of a quark and an anti-quark.
So, by the interaction, quarks can hop from one baryon to the other, and this is nothing but our
intuitive understanding of deconfinement. The traditional picture in nuclear physics is composed
of baryons with meson exchanges, which may well be regarded as partial deconfinement by quark
exchanges.
In summary of this section, we would draw the attention to the fact that the onsets of quarks and
diquarks are significantly influenced by these different scenarios as discussed above. Although
these scenarios are widely prevailing ones, to the best of our knowledge, the crucial difference
in the onset properties has been overlooked. For the moment we have no experimental data nor
QCD-based calculation in order to let any one of the three scenarios be more likely than others.
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As we have seen, by the Hubbard-Stratonovich transformation we have terms quadratic in bosonic
fields in our action from the four-fermi interactions, which are generated by the box diagrams
of quark-gluon interactions. Certainly, one can think of many more, higher order interaction
processes, all in terms of quark-gluon interactions, where the external legs correspond to single
quarks or to collective excitations. The former can be described effectively by n-fermi and the
latter by n-boson interactions. Of course mixed n-fermi-m-boson interactions are possible as
well. In general the interactions are momentum dependent. This is why (non-) linear sigma
models or chiral perturbation theories are often applied to describe low energy QCD.
Regarding higher order interactions, we will only consider pure bosonic ones in a momentum
independent scheme in this work. This leads us to the effective potential which primarily contains
all non-derivative terms of the action, thereby it assumes the important role of describing phase
transitions and symmetry breaking.

2.5.1 The Ground State and Symmetry Breaking

We know from the analogy of quantum field theories with statistical mechanics, that the minimum
of the effective action is the ground state of the system [270]. For a translation-invariant ground
state we will find solutions in which the fields are given by constants in spacetime (or momentum).
Therefore, the stationary condition of Γ reduces to one for the effective potential U

δΓ[Φ]

δΦi(x)
= 0 ⇒ ∂U(Φ)

∂Φi
= 0 (2.40)

where Φ is any multi-component field. The functional derivative reduces to a partial derivative
and the spacetime integration yielding the euclidian volume V old drops out. The effective action
contains averaged field Φ = 〈φquantum〉, and there cannot be a nonzero ground state value of
fermionic fields due to their anti-commuting nature. Unless there are source terms of the form
η̄ψ in the exponential of the path integral, we have 〈ψ〉 = 0 since ψe−S is odd in grassmannian
fields when the exponential is expanded. Therefore, conventionally the terms containing fermionic
fields are not defined as part of the effective potential.
Here we see again the advantage of performing the Hubbard-Stratonovich transformation: In
a purely fermionic theory Eq.(2.40) would always have a trivial solution, so the only way to
recognize a phase transition, would be to look whether the fermionic interactions are diverging
or develop a peak. However, with the introduction of collective excitations in terms of bosonic
fields, we have convenient order parameters at hand.
Naturally the shape of the effective potential depends on the system parameters like temperature,
chemical potential, and interaction strength. For parameter regions where the minimum is at
nonzero fields, we can expand our theory about the minimum with Φ = Φ0+δΦ, where Φ0 simply
acts as a numerical parameter, that is not transformed under the symmetry groups, therefore
the theory the is no more invariant thereunder. We say that the symmetry is spontaneously
broken down to a subgroup. The system chooses spontaneously in which direction to break the
symmetry, just like a ball over the tip of a mexican hat chooses spontaneously, where to roll
down. Nevertheless, all choices are equivalent since we can rotate the hat before the ball rolls
down, and it still looks the same. Thus, we are in principle free to choose the boson fields that are
supposed to be the order parameters, while the other bosons associated to the broken symmetry
become the massless Goldstone modes.

47



Chapter 2: From Quarks and Gluons to Mesons, Diquarks and Baryons

c2

c4

Critical Line

Symmetric

  Phase
Broken

Phase

Fixed

 Point

^

^

(a) Taken from [71].

B

T

μ

(b) Taken from [70] and modified.

Figure 2.14: Illustration of the shape of the effective potential for different phase transitions.

The transition between the symmetric to the broken regimes is called a phase transition, and
the point in the parameter space where it happens, defines the critical parameters. Typically
one considers a 1st order phase transition, where the order parameter jumps to a nonzero value,
and 2nd order transitions, where it continuously goes away from zero. For the latter case we can
distinguish the phases by the following conditions, with the curvature of potential given by the
Hessian matrix H(U) = ∂Φi∂ΦjU ,

symmetric phase: Φ0 = 0 , detH(U(Φ0)) 6= 0 ,

phase transition: Φ0 = 0 , detH(U(Φ0)) = 0 ,

broken phase: Φ0 6= 0 , detH(U(Φ0)) = 0 .

Φ0 is also referred to as the condensate. At the phase transition the curvature is vanishing, as
the minimum in the center is turning into maximum, see Fig. 2.14(a). At a first order transition
detH(U(Φ0)) = 0 does not hold, as the initial minimum remains as a local one, see Fig. 2.14(b).
Since the Hessian matrix essentially contains the so-called curvature masses of the particles,
we see that if the mass of at least one field is vanishing, the symmetry is broken, and that
field corresponds to the Goldstone mode. If dim Φ = 1 then we have a double-well potential in
the broken phase, as in Fig. 2.14(a), with no flat direction and thus no massless modes, also
detH(U(Φ0))→ U ′′(Φ0) 6= 0.
Even if the order parameter does never vanish, there are various ways to define a phase boundary.
For a transitions along the temperature axis the common definitions are given by

Inflection point :
∂2

∂T 2
Φ0

∣∣∣
Tc

= 0 , (2.41)

Half value : Φ0(Tc) =
Φ0(T = 0)

2
, (2.42)

Susceptibility :
∂

∂T
χΦ0

∣∣∣
Tc

= 0 . (2.43)

Typically we have the situation that if we are far enough from the phase boundary given by
Tc, on one side the symmetry is significantly broken, while on the other side it is approximately
restored. The transition can be a smooth crossover or a jump between two different nonzero
values. This is the case when there is a source term like −ciΦi breaking the symmetry explicitly
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and by which Eq. (2.40) can never be satisfied by vanishing fields. In Ref. [179] it was shown
that in the presence of a source term the susceptibility of the order parameter is given by the
derivative with respect to the source parameter, which in turn is equal to the inverse mass squared
of the mode that carries the condensate, i.e.

χΦ0
=
∂Φ0

∂c
=

1

m2
Φ0

. (2.44)

In Fig. 2.14(a) is a schematic picture of the RG flow in the space of dimensionless system param-
eters {ĉi} for a second order phase transition. Depending on the initial conditions, the system
stays in the symmetric phase, or it goes into the broken phase, where the system spontaneously
chooses one of the wells for the ground state in the so called double-well potential. In between is
a critical line (or surface in more dimensions), where the system runs into a Wilson-Fischer fixed
point [329] right at the phase transition. The three-dimensional extension of the double-well
potential has rotational symmetry like a Mexican hat. Then the tangential direction in the well
is flat and corresponds to the massless mode. In Fig. 2.14(b) we see the potential shapes for
different transitions: In a crossover (left) the minimum goes continuously from smaller to larger
values. At the critical point (middle), if it is approached from the crossover region, the potential
develops two local minima on both sides of the initial minimum. At a first order transition
(right) the global minimum jumps between the two minima. For a basic introduction to critical
phenomena see e.g. [330].

2.5.2 Ansatz for the Effective Potential

We will study the chiral and BEC phase transitions in QCD and QC2D with a 1d and 2d Taylor
expansions of the effective potential about the minimum. An expansion about the minimum is
expected to be stable [331]. The quality of such an expansion of the order-parameter potential
has been studied quantitatively in Ref. [332] at vanishing temperature, and for the proper-time
RG at finite temperature in Ref. [175]. A 3d-Taylor expansions was investigated in [333]. As we
have just discussed, we write the momentum independent, pure bosonic terms of the effective
action into the effective potential

U(ρφ, ρ∆, σ) = V (ρφ, ρ∆)− 4µ2ρ∆ − c
√
Zφσ (2.45)

where

ρφ =
Zφ
2

(~π2 + σ2) , ρ∆ = Z∆∆∗∆ =
Z∆

2
(∆2

1 + ∆2
2) (2.46)

are the invariants of the chiral and baryon number symmetry respectively, and ρ∆ is given in the
complex as well as the real representation of the diquarks, which relate to each other by

∆ =
1√
2

(∆1 + i∆2) , ∆∗ =
1√
2

(∆1 − i∆2) . (2.47)

The the explicit quark current mass in the form the source term for σ gives rise to a smooth chiral
crossover at small densities, whereas a rising chemical potential will lead to a second order phase
transition to the BEC phase. As the diquark spontaneously assumes a non-vanishing ground
state value, we can always rotate in the complex plane, and choose ∆1 to carry the condensate.
For two-color QCD we have two diquark degrees of freedom as shown above. Moreover we have
the extended flavor symmetry SU(4) ' SO(6) at µ = 0 where the effective potential must be a
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function of the SO(6) invariant ρ = ρφ + ρ∆ with Zφ = Z∆, aside from the linear source term
which simply shifts the minimum; hence V (ρφ, ρ∆) = V (ρ). In this work we are going to study
such an ansatz with Zφ 6= Z∆ at finite chemical potentials as an approximation. Higher order
bosonic interactions will be introduced by making a Taylor expansion of V about the minimum
ρ = κ of U . This will be compared to a two-dimensional expansion in the invariants ρφ and ρ∆.
In physical QCD the diquark is a color anti-triplet, therefore it is implied that the diquark fields
in Eqs. (2.46) and (2.47) carry color indices as ∆a with a = r, g, b, which are summed over in
the former equation. Then ρ∆ is also the bosonic invariant with respect to SU(3)c symmetry.
As the symmetry is spontaneously broken, we can make SU(3)c and U(1)B rotations such that
real part of the blue diquark ∆b

1 carries the condensate. Even if there is no symmetry relating
mesons to diquarks, we may use a one-dimensional Taylor expansion in ρ = ρφ + γρ∆ as an
approximation, which comprises a constant ratio between the mesonic and diquark sector in the
effective potential. The ratio should be given by the mass parameters as γ = m2

∆/m
2
φ. Note that

this is not well suited for chiral limit calculations with c = 0, since a spontaneous breaking of
chiral symmetry gives rise to Goldstone bosons with m2

φ = 0 leading to either an infinite ratio
γ → ∞ or to additional Goldstone bosons in the form of diquarks. Hence, we may infer that
even for c 6= 0, a 1d-expansion may not be as good as in two-color QCD.
As we mentioned before, we are free to choose the order parameter among the fields associated
to a broken symmetry. However, since we have a source term for the σ-field it must be the order
parameter of the chiral phase transition. For the diquarks we choose ∆1, where the superscript b,
denoting blue color in the QCD case, will suppressed in the remainder of this section. All other
fields are vanishing, so for the stationary solution of U we solve the following two equations, with
~ρ = (ρφ, ρ∆) and ~κ = (κφ, κ∆),

∂U

∂σ

∣∣∣∣
~ρ=~κ

=
√

2Zφκφ

(
∂V

∂ρφ

∣∣∣∣
~ρ=~κ

− c√
2κφ

)
!

= 0 , (2.48)

∂U

∂∆1

∣∣∣∣
~ρ=~κ

=
√

2Z∆κ∆

(
∂V

∂ρ∆

∣∣∣∣
~ρ=~κ

− 4µ2

)
!

= 0 , (2.49)

where the chain rule was applied. These equations have to be solved for κφ and κ∆, which are
defined to be the minimum of U . In the following we introduce the different Taylor expansions
for V and find the specific solutions for the above equations. For convenience we are going to
make different parameterizations of the effective potential in the different phases. The regime,
where we have no diquark condensate, we will refer to as normal phase, and the regime with
κ∆ 6= 0 we refer to as BEC phase.

One-dimensional Taylor expansion

In the normal phase we highlight the mass term in the effective potential by writing

Vnor(ρ) = m2ρ+
N∑

n=2

λn
n!

(ρ− κ)n where ρ = ρφ + γρ∆ , κ = κφ + γκ∆ . (2.50)

Of course γ = 1 for QC2D. Compared to the Taylor formula an irrelevant constant was dropped,
which is not necessary for the determination of the ground state. With this ansatz the derivative
terms in Eqs. (2.48)-(2.49) reduce to V ′nor(κ) = m2 and the solution is given by
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κφ =
1

2

(
c

m2

)2

, κ∆ = 0 . (2.51)

It is clear to see, that if there was no quark current mass, i.e. c = 0, there would be no chiral
condensate unless the mass is zero. For finite c we see that a decrease of the scalar mass parameter
leads to an increase of the chiral symmetry breaking accompanied by the occurrence of pseudo
Goldstone modes with small masses, rather than massless states. Let us to check the conditions
for a minimum. The determinant of the Hessian matrix needs to be larger than zero

det

(
∂2U

∂ϕi∂ϕj

)∣∣∣∣
ρ=κ

=
(
m2
)Nφ (

γm2 − 4µ2
)N∆

> 0 (2.52)

where ϕi represents all fields contained in the effective potential, and Nφ, N∆ are the number of
meson and diquark fields respectively. This is an important result: As long as γm2 > 4µ2 we are
in the normal regime, while at γm2 = 4µ2 the diquark curvature mass vanishes, which indicates
a second order phase transition and spontaneous symmetry breaking.
Since m is actually the mass of the pions, for two-color QCD the onset of diquark condensation
is exactly when the quark chemical potential reaches half of the pion mass, which by the Silver
Blaze property is independent of the chemical potential at T = 0, see Sec. 3.3. Hence, if
the property is not violated in any way, we can say that in our 1d-Taylor expansion ansatz
µc = mπ/2 holds, fulfilling a well known feature of QC2D, as it was also discussed in Sec. 2.2.4.
In the chiral limit spontaneous symmetry breaking is expected below some critical temperature
Tc yielding m = 0. In this case we can infer from Eq. (2.52) that, at µ = 0 the condensate has
degeneracy of Nφ+N∆ = 6 corresponding to the SO(6) symmetry of QC2D. Now, turning on the
chemical potential must entail a rising critical temperature, i.e. ∂

∂µTc > 0, since m must not be
vanishing anymore for the Eq. (2.52) to vanish. Moreover, the diquark is the lightest excitation
therefore it must be the one that condenses with a reduced degeneracy of N∆ = 2 corresponding
to U(1) ' O(2).
For the BEC phase we reparametrize the potential by renamingm2 = λ2(κ−v), thus we exchange
m in favor of v. We add another irrelevant constant so that we can write

Vbec(ρ) =
λ2

2
(ρ− v)2 +

N∑

n=3

λn
n!

(ρ− κ)n . (2.53)

In this parametrization we have V ′bec(κ) = λ2(κ− v), and Eqs. (2.48)-(2.49) yield the following
system of linear equations and the solution

κφ + γκ∆ − v =
c

λ2
√

2κφ
, κφ =

1

2

(
γc

4µ2

)2

,

κφ + γκ∆ − v =
4µ2

γλ2
, γκ∆ = v +

4µ2

γλ2
− 1

2

(
γc

4µ2

)2

. (2.54)

It is obvious that we cannot put v = κ as usual, in the presence of explicit symmetry breaking
terms, because in that case V ′(κ) = 0 leading to c = µ = 0. From the structure of the ground
state values, it can already be seen that we are able to reproduce the known behavior of the
condensates in QC2D. For instance the chiral condensate σ0 =

√
2κφ is proportional to µ−2.

For the diquark condensate ∆0 =
√

2κ∆ it becomes more clear if we look at the minimum for
γm2 < 4µ2 in the normal parametrization (2.50). There it is given by
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γκ∆ =
4µ2 − γm2

γλ2
+

1

2

(
c

m2

)2

1−

(
γm2

4µ2

)2

 , (2.55)

while κφ stays the same. The first term is the typical minimum in a double well potential for
single condensate. A rising chemical potential entails that more particles are put into the system,
which immediately condense. The second term is the difference of the chiral condensate with
respect to its value in the normal phase. Due to the simplified mixing of mesons and diquarks
within the 1d potential this difference is added to the diquark. Because there is no melting if
temperature effects are not taken into account, the missing condensate has to go somewhere.
Hence with rising µ the ground state rotates from the mesonic direction to the diquark direction.
Moreover Eqs. (2.54) imply V ′bec(κ) = 4µ2 and as we will see this is mass squared of the pions.
All these results agree with predictions from leading order chiral perturbation theory [199], which
justifies our 1d-ansatz. With the inclusion of fluctuations within the FRG framework we can
include effects which go beyond this simple behavior. Above all, we can go to finite temperatures
straightforwardly.

Two-dimensional Taylor expansion

In the 2d expansion we have independent mass terms and couplings as well as mixed couplings
for the two different sectors,

V (ρφ, ρ∆) = m2
φρφ +m2

∆ρ∆ +
∑

n,m=2
n+m<N

λn,m
n!m!

(ρφ − κφ)n(ρ∆ − κ∆)m . (2.56)

Now we again have to solve Eqs. (2.48)-(2.49) with this ansatz. The chiral condensate is always
given by the same expression in all phases which is basically the same as (2.51)

κφ =
1

2

(
c

m2
φ

)2

. (2.57)

In the diquark sector we either have the trivial solution or the parenthesis in (2.49) vanishes
when the diquark mass parameter equals twice the chemical potential in the BEC phase. There
the mass parameter is kept fixed and thereby is always canceled by the chemical potential, while
the condensate takes its place in the parameter space. In summary we have

Normal regime: κ∆ = 0 ,

BEC regime: κ∆ 6= 0 , m∆ = 2µ . (2.58)

With the more general 2d ansatz the behavior cannot be predicted as in the 1d case. Nevertheless
we expect qualitatively the same behavior, as it was seen in [233]. However, there is a problem
regarding the Silver Blaze property which will be discussed in the next chapter.
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Chapter 3
Renormalization Group Equations at Finite
Temperature and Density

In order to investigate a quantum field theory (QFT) and to compute observable quantities,
fluctuations have to be taken into account. For weakly interacting theories, or more generally,
weakly interacting regimes of QFTs, observable quantities can be computed directly from the
Hamiltonian of the theory within a perturbative expansion in orders of the interaction parameters
[270]. Each contribution corresponds to an interaction process described by a Feynman diagram.
However, there is the problem with higher order contributions in the form of loop diagrams in
such a scheme, namely the corresponding integrals are diverging. The solution of this problem
lead to the concept of Renormalization where one distinguishes between bare quantities, which
are the parameters written in the microscopic theory, and renormalized (also referred to as full
or dressed) quantities, which are the physical and measurable ones. At the perturbative level one
expresses the bare parameters of the theory in terms of the physical ones minus counter terms
which absorb the divergent contributions, while the physical parameters have to be matched with
physical observables.
Naturally in a strongly interacting theory a perturbative expansion does not converge. In this
case, a way to exactly solve a theory is to discretize it on a lattice and perform numerical
simulations. The smaller the lattice spacing is, the closer are the simulations to continuum
physics. However lattice computations are numerically expensive and for QCD at finite chemical
potential they suffer from the sign problem. Therefore functional methods like Dyson-Schwinger
Equations [148, 149] the Renormalization Group are employed in order to study non-perturbative
aspects of QFTs. In contrast to a perturbative expansion in the interaction parameters, functional
methods are typically based on an expansion of the theory in correlation functions, which are
allowed by the symmetry of the underlying theory. The behavior of these functions is governed
by equations which are provided by the method.
In the following we will give a brief introduction of the Functional Renormalization Group (FRG)
put forward by Wetterich in ’93 [150]. This method has been proven to be quite successful
not only in quantum field theories but also in statistical physics [334]. Afterwards we will
derive the necessary tools in order to obtain the specific equations for our model from the
FRG, and then discuss them in detail. Different aspects and effects of finite temperatures and
chemical potentials will be addressed, in particular the so called Silver Blaze property.We will
show numerical results for of the T and µ dependence of different parameters of our system,
obtained from the renormalization group equations with our best approximation, which we denote
as 2d Taylor’, see Tab. 4.1.
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Chapter 3: Renormalization Group Equations at Finite Temperature and Density

3.1 The Functional Renormalization Group

We will neither introduce the functional formalism here, nor will we derive the FRG equation,
but rather will only state the relevant information. For introduction of the functional formalism
see [270]. For reviews and introductions regarding the FRG framework see [183, 335–343].

3.1.1 The Concept

The idea behind the Renormalization Group roots back to Kadanoff’s block spin transformation
[344]: Consider a two-dimensional lattice with a spin on each lattice site, which can either have
upwards or downwards direction. We are not interested in the orientation of each spin but
rather in the collective, macroscopic behavior of the system. To this end we divide the lattice
into smaller subsystems and average over the elements in each subsystem. The average values
are the relevant information at a larger scale, and they constitute a new system with a reduces
number of degrees of freedom. This procedure can be viewed as a coarse-graining, which can be
repeated until the average behavior of the complete system is known. If the spins interact with
each other, it is necessary to perform the averaging in successive steps. Naturally the nearest
neighbors interact the strongest, hence it is wise to average in subsystems, which do not contain
more than the nearest neighbors of one element. This way the effects of the interaction can
be taken into account properly. After averaging once the subsystems are the new elements of
the system which interact with each other, hence the interaction length has increased and the
strength changes as well. However we can rescale the interaction length in units of the new
lattice spacing, such that it coincides with the original interaction length, and then we know
how the interaction strength has changed under a change of the scale. This is the essence of the
Renormalization Group, namely to see how the system parameters behave if one looks at the
system at a larger scale, where the details within the scale are washed out.
This idea of coarse-graining the system successively, was extended by Wilson [345] and Wegner
[346] to the continuum. If a QFT is known at some initial scale and one is interested in how
the theory looks at a larger length scale, in order to predict observable quantities, one inte-
grates out quantum fluctuations that have the range of the initial scale (corresponding to the
nearest neighbor interaction in the spin system). This procedure is iterated until one arrives at
macroscopic length scales, and the microscopic degrees of freedom thereby reduced. Note that
in QFTs the interactions are typically local, meaning that they are point-like. Thus, after an
iteration step higher order interaction processes within the initial scale are averaged over, and
the result is interpreted as the new point-like interaction by rescaling system, similar as in the
block spin transformation. Thereby even new types of interactions can be generated, in fact, all
types of processes and collective excitations which are allowed by the symmetries of the initial
theory, are generated by the renormalization procedure, which is the fact that we have used in
our model construction in the previous chapter. Of course, in practice one takes only a finite
number correlations into account, which are considered to be the relevant ones.
Typically the computations are done in momentum space where the coarse-graining procedure
corresponds to starting with a theory at some high momentum scale and integrating out fluctu-
ations in thin momentum shells iteratively down to a desired low momentum scale. Based on
this idea one can deduce the famous Callan-Symanzik equation [16, 17], which govern the scale
dependence of the parameters and physical observables of a theory. In fact, the FRG equation
is a variant of the functional form of the Callan-Symanzik equation.
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3.1 The Functional Renormalization Group

The central object of the FRG framework is the scale dependent effective average action Γk,
where k is the momentum scale, above which fluctuations are integrated out, therefore it also
referred to the IR cutoff, as it suppress low momentum modes. The scale-dependence is governed
by an exact integro-differential equation known as the flow equation or Wetterich equation, the
solution to which interpolates between the classical bare action S of a theory given at a UV
cutoff scale Λ and the quantum effective action Γ in the IR, where all fluctuations are integrated
out:

Γk=Λ = S , (3.1)
Γk=0 = Γ . (3.2)

Thus we conveniently obtain the generating functional of one-particle-irreducible correlation
functions allowing to access the macroscopic or thermodynamic properties of the system under
consideration. Indeed not only quantum fluctuations are integrated out, but also statistical
fluctuations are taken into account in a finite temperature and chemical potential framework of
the FRG. Actually, the right-hand side of (3.1) must not be a bare action, but rather it can be
any action which describes a system well at the scale Λ which can be obtained by any means,
experimentally or theoretically. In any case, the correlation functions obtained from Γk contain
always the fully dressed and renormalized parameters for momenta p & k, by construction. Most
importantly, we are interested in the ground state of the system, which is given by the minimum
of Eq. (3.2) as discussed in Sec. 2.5.1.

3.1.2 The Flow Equation

In oder to define a theory where fluctuations are integrated out between Λ and k, we start
by defining a scale dependent generating functional of disconnected correlation functions in
Euclidean space-time, with an additional term in the exponent that is supposed to suppress the
contribution of the modes with momenta p . k:

Zk[J ] = eWk[J ] =

∫

Λ
Dφ e−S[φ]−∆Sk[φ]+JT ·φ , (3.3)

where Wk[J ] is the scale-dependent Schwinger functional, generator of the connected correlation
functions. The scalar product sums up all discrete and continuous indices of the field φ and
the source J . Discrete indices are for field species and substructures, continuous indices are for
position or momentum coordinates. ∆Sk[ϕ] is the regulator term which is usually quadratic in
fields, although in principle higher orders are possible as well [183],

∆Sk[φ] =
1

2
φT ·Rk · φ . (3.4)

It is meant to act as an IR cutoff by giving an effective mass of the order k for the propagator
to the modes with p . k, and and no mass to modes with p & k. Note that the vertices are
not explicitly modified. For the average action to behave in the way we explained above, the
regulator has to meet the following requirements
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Figure 3.1: Example of a typical regulator function and its scale derivative taken from [342]. The regulator
suppresses modes with p . k, while its derivative ensures Wilson’s idea of integrating out fluctuations within a
momentum shell around p ' k.

• The propagator should remain finite in the IR, a divergences must be avoided for a massless
mode, hence

lim
p/k→0

Rk(p) > 0 .

• If the cutoff is vanishing, we should recover the full quantum theory, Zk→0[J ] = Z[J ],
therefore

lim
p/k→∞

Rk(p) = 0 .

• If the IR cutoff approaches the UV cutoff of the theory, k → Λ, no modes should be
integrated out and the theory should remain unchanged in the UV, which is realized by

lim
k→Λ

Rk(p)→∞ .

The choice of the regulator is only restricted by the requirements formulated above, aside from
which it is arbitrary. A sketch of a typical regulator that satisfies these three requirements is
shown in Fig. 3.1, with the definition of the RG-time

t = ln(k/Λ) ⇒ ∂t = k
∂

∂k
. (3.5)

Now we turn to the main object, the effective average action. It is defined via a modified Legendre
transformation of the scale dependent Schwinger functional

Γk[Φ] = sup
J

(
JT · Φ−Wk[J ]

)
−∆Sk[Φ] , (3.6)

where
Φ =

δWk[J ]

δJ
= 〈φ〉J (3.7)

is the expectation value of the quantum field φ at finite source J defined by a functional deriva-
tive. It is also called the classical field, since it is a weighted average over all possible fluctuations,
furthermore it is the variable conjugate to the source. At k = 0 the regulator vanishes and Eq.
(3.6) approaches the quantum effective action Γ which governs the dynamic of the expectation
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value Φ, while the minimum of Γ for vanishing sources defines the ground state of the fully
quantized system. Moreover, for a given Φ, there is one J ≡ Jsup = J [Φ] for which J ·Φ−W [J ]
approaches its supremum, guaranteeing that Γ[Φ] is convex.

Now let us write down the flow equation:

∂tΓk[Φ] =
1

2
STr

(
Gk[Φ]∂tRk

)
with Gk[Φ] =

Γ
(2)
k 1Γ

(2)
k

Γ
(2)
k [Φ] +Rk

. (3.8)

The supertrace operation STr is a trace over all continuous and discrete field indices and involves
minus signs for Grassmann valued fields like fermions. The regularized propagator Gk is given
by the inverse of the two-point function added by the regulator. It is a full propagator containing
all possible self interaction processes with momenta above the scale k and it is suppressed (or
gapped) by the regulator for momenta smaller than k. The two-point function is given by the
second functional derivative of the effective action which will be shown in Sec. 3.2. See Fig. 3.2
for the diagrammatic form of the flow equation.

∂tΓk[Φ] =
1

2

Figure 3.2: Pictorial representation of the exact flow equation. The dotted line represents the complete propa-
gator in field space. The cross denotes cutoff insertions ∂tRk, the dark circle indicates the fact this is a “dressed”
propagator as opposed to a bare one (for simplicity it will be not always shown). The STr operation is implied
by the loop structure.

The flow equation is a nonlinear integro-differential equation which relates the change of the
effective average action with respect to an infinitesimal change of the RG-scale k to quantum
fluctuations in the form of a one-loop process. It is an exact equation and the one-loop struc-
ture is a consequence of the regulator term ∆Sk being quadratic in the fields. Since ∂tRk is
peaked around k and vanishes for large momenta, and Gk is suppressed at low momenta, only
a momentum shell around k is picked out in the loop-integration. Hence, both the IR and UV
regularizations are guaranteed by the properties of the quantities inside the supertrace.

3.1.3 Solution Methods

Starting with an initial action at the UV scale Λ an RG-step is performed by adding −∂tΓΛ∆k to
Γk which defines the effective action at the lowered scale, ΓΛ−∆k. Then the subsequent RG-step
must be performed with propagator at the lowered scale GΛ−∆k which is derived from ΓΛ−∆k.
This procedure is repeated until fluctuations from all scales have been included, yielding the full
quantum effective action. Since the field Φ enters the flow equation as a variable, in principle
one must solve the flow equation for all field configurations, however this is numerically highly
expensive. Therefore one must resort to approximation schemes mostly involving an expansion
of Γk in terms of a suitable basis.
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Vertex expansion A very general scheme is vertex expansion [151]

Γk[Φ] =
∞∑

n=0

1

n!

∫

x1...xn

Γ
(n)
k (x1, . . . , xn)

(
Φ(x1)− Φ0(x1)

)
. . .
(
Φ(xn)− Φ0(xn)

)
, (3.9)

where Γ
(n)
k for n = 2 is the full two-point function and for n > 2 the correspond the one-particle

irreducible vertex function, Φ0 is a background field. If Φ is a multicomponent field the n-
point functions have a tensor structure which is suppressed here. This ansatz turns Eq. (3.8)
into a tower of infinitely many coupled differential equations for the expansion coefficients, or
equivalently the associated coupling parameters. A suitable expansion scheme should include
the relevant degrees of freedom of a given problem at all considered scales and respect the
symmetries of the system. Reducing the expansion to a treatable and finite subset of running
couplings defines a truncation. It is an important property of the FRG method footing on the
exact flow equation that the success of a chosen truncation does not necessarily rely on the
existence of a small expansion parameter. It only requires that the neglected operators do not
couple too strongly into the flow of the included operators. The quality of a truncation can be
tested, by the convergence for systematical extensions of a given truncation scheme, by a study
of its regulator dependence (Fig. 3.3) and, of course, by comparison to well-known limiting cases
as well as complementary methods.

Derivative expansion Another often used truncation scheme is the derivative expansion [151]
in the sector of the scalar fields

Γk[Φ] =

∫

x

{
Uk(Φ) +

1

2
Zk
(
∂µΦ

)2
+O

(
∂4
)}

. (3.10)

In lowest order it is also called local potential approximation (LPA), where only a scale-dependence
of the effective potential Uk is considered. It the next step (LPA’) the scale-dependence of the
wave function renormalization Zk is solved. Very accurate critical exponents have computed in in
such schemes [347–349]. Further improvement of the truncation include a field-dependent wave
function renormalization and higher derivative terms. For the fermionic case a similar scheme is
applicable, as well as for mixed correlation functions. Our truncations from the previous chapter
correspond to LPA’ with additional fermionic degrees of freedom and three-point functions cou-
pling the different sectors. The Taylor expansion of the effective potential actually can be seen
as a vertex expansion as well.

Parameter fixing Our work is about low-energy effective models for a theory, which in the
classical regime is described by quark-gluon interactions (and ghosts). The initial parameters are
the strong coupling constant and the quark current masses, which are known. Since our model
ansatz described in the previous section does not contain gluonic degrees of freedom, the question
arises how to make the connection to the classical action. We will start the for flow our model
at an energy scale far lower than the classical regime of QCD, and there are two possibilities
to fix the initial conditions [180]. Firstly, one can solve the QCD-flows in suitable truncation
down to the low-energy scale and derive the initial conditions for the model, which corresponds
to fixing the microphysics. If QCD-flows are not available, one considers the truncation with
the highest number of running couplings in the low-energy model as the one which is closest
to the full QCD-flow. Then, by stepwise reducing the number of running couplings, one can
test the quality of a truncation. If the resulting differences in Γk=0 are relatively small in the
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Γ0 = Γ

g1 g2

g3

{gi}

ΓΛ = S

R
(1)
k R

(2)
k R

(3)
k

Figure 3.3: Sketch of the RG flow of the effective action in theory space, which is spanned by an infinite number
of running couplings representing the infinite correlation functions of the effective action for a non-truncated
system. The trajectory connects the classical bare action of a theory with its full quantum effective action.
Different regulator choices R(i)

k lead to different trajectories with the same endpoints, in principle. In a truncated
system a small regulator dependence of Γ0 indicates the good quality of the truncation. For the optimization of
the regularization scheme see [183, 350–352]. Figure taken from [239].

first few steps, the quality of the truncation can considered to be reliable. On the other hand,
if a systematical reduction of the truncation is not done in some specific sector, nothing can
be said about the quality of the truncation. If the effects of taking that sector into account
are large, it only means that they are important at least. The second possibility is to tune the
model parameters such that the known low-energy QCD observables are reproduced within a
truncation. Typically this corresponds to fixing the vacuum physics to known mass spectra and
decay constants. Of course, if there was no approximation in the low-energy model, the initial
conditions from both possibilities coincide.

Many body effects In order to explore the temperature and density effects we are going to
solve the flow for a range of the temperature and chemical potential with unchanged UV initial
conditions [353]. In this case it is important that the initial conditions are not influenced by
many body effects, which can be achieved by starting the flow at a microscopic UV scale Λ that
is well above the scale where many body effects come into play, see Fig. 3.4. This way it can
be ensured that the temperature and density physics are independent of the UV cutoff, which
is necessary to have reliable predictive power. In Fig. 3.4 the initial conditions are fixed in the
vacuum therefore the direction of the trajectory is “upwards”. In fact the flow equations can
be solved in this direction, if the number of IR conditions agrees with the number of tunable
parameters, and if there is no fixed point on the way, where the system loses its memory. On the
other hand, if there are more parameters than IR conditions, the UV initial values are not unique.
Different sets of values can reproduce the same values for the low-energy constants but lead to
different predictions in the finite temperature and chemical potential regime. The differences
should be quantified.
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Figure 3.4: Vacuum flow and flow at finite temperature in theory space (The operators Oi can be associated
with the couplings gi). For computations at finite temperature the UV cutoff Λ must be much larger than the T ,
such that the physical results are independent of the UV cutoff. Many body effects come into play at k ≈ 2πT .
Figure taken from [196].

3.2 Propagators and Masses

In order to compute flow equations we first need to find the propagator. Generally, the complete
propagator of a theory is given by the inverse curvature matrix of the effective action. Within
the FRG framework we find a modified definition for the dressed propagator, where a regulator is
added suppressing low momentum modes. At broken Lorentz symmetry a regulator only cutting
of the three-momentum and not the frequencies, is a good choice. We are going to solve the flow
at the ground state values of the field, hence for the derivation of the flow equations we will use
an expansion point which constant in position or momentum space.
Now let us derive the full propagator for general theory, which we will then specify to contain
bosonic and fermionic degrees of freedom, before stating the various definitions of the masses,
which are extracted from the propagator. Afterwards the specific propagators and masses for
our models will be computed. Henceforth we will suppress the index k for the scale dependent
quantities for simplicity. Apart from the discussion of the masses, this section is rather technical.

General derivation

Here, we will show a general procedure to find the dressed propagator and from now on and
throughout this chapter we are going to use the shorthand notations defined in App. A.3. We
mention here that a momentum integration implies a summation over Matsubara frequencies,
which will be defined later. In order to find the momentum representation of the curvature
matrix/two-point function Γ(2)[Φ0] at some constant expansion point, we are going to expand
the action to second order in the fields and then apply a Fourier transformation. With a general
multicomponent field given by the vector Φ, the two-point function in position space is given by
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Γ(2)(x, y) =

−→
δ

δΦT (x)
Γ[Φ]

←−
δ

δΦ(y)

∣∣∣∣
Φ0

= Γ̂(2)
(
i
←−
∂x, i
−→
∂y

)
δ(x− y) , (3.11)

where Φ0 is expansion point, which can be chosen to be the minimum of the effective action,
i.e. the ground state. The spacetime dependences in Eq. (3.11) essentially lies in a Dirac delta
function, since all fields are set to the expansion point given by constants in spacetime. In the
leading order derivative expansion, other than that there are only spacetime-derivative operators
acting on the fields to the left and to the right of Γ̂(2), indicated by the arrows over operators. Of
course the action is usually written in a way, where all derivatives act on fields to right-hand side,
however, when a field derivative with respect to ΦT in Eq. (3.11) acts in a matrix representation,
the expression has to be transposed, which changes the direction of the derivative. Let us write
down the second order term of the Taylor expansion of the effective action

1

2

∫

x,y

(
Φ(x)− Φ0

)T
Γ(2)(x, y)

(
Φ(y)− Φ0

)
. (3.12)

Naturally, when we want to find the two-point function, the lower order terms vanish by differ-
entiation while the higher ones vanish by setting Φ to the expansion point Φ0. Now we perform
a Fourier transformation of the fields

Φ(x) =

∫

p
e−ipxΦ(p) . (3.13)

Keep in mind, that Φ also contains all antiparticle fields like the complex conjugates. It follows
from Eq. (3.13) that after Fourier transformation the antiparticle fields are not exactly the
complex conjugates anymore, however, if Φi(x) = Φ∗j (x) the relation Φi(−p) = [Φj(p)]

∗ holds,
which can easily be checked by complex conjugating the corresponding components of Eq. (3.13).
Such a relation might seem tedious, however, the Fourier transform must be defined in this way,
so that Φ keeps being a vector with independent components. Moreover, it is important to
designate the representation in field space before performing the Fourier transformation for the
same reason. Plugging Eqs. (3.11) and (3.13) into Eq. (3.12), neglecting the constant terms,
which will drop out later, yields

1

2

∫

x,y

∫

p,q
ΦT (q)e−iqx Γ̂(2)

(
i
←−
∂x, i
−→
∂y

)
δ(x− y)Φ(p)e−ipy

=
1

2

∫

p,q
ΦT (q)Γ̂(2)(q, p)Φ(p)

∫

x
e−i(p+q)x

︸ ︷︷ ︸
δ(p+q)

=
1

2

∫

p
ΦT (−p)Γ̂(2)(−p, p)Φ(p) . (3.14)

In general, the two-point function contains real entries, as well as complex entries. Real entries
are multiplied by pairs of fields which satisfy the relation mentioned below Eq. (3.13), or a
combination of them appears such that their sum in Eq. (3.14) is real-valued. Complex entries
typically become real by virtue of the integration. Now, the momentum representation of Γ(2) can
be obtained by taking the second derivative of Eq. (3.14) with respect to the fields in momentum
space
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Γ(2)(−p, q) =

−→
δ

δΦT (−p)

(
1

2

∫

p′
ΦT (−p′)Γ̂(2)(−p′, p′)Φ(p′)

) ←−
δ

δΦ(q)

=

[∫

p′
δ(p− p′)Γ̂(2)(−p′, p′)Φ(p′)

] ←−
δ

δΦ(q)

= Γ̂(2)(−p, p)δ(p− q) (3.15)

The product rule yields twice the same result, since transposing in the expression the parenthesis
in the upper line should not change it, as it is a scalar expression. We conclude that we can
find the two-point function Γ(2) in momentum space at some expansion point in field space
by replacing spacetime derivatives by four-momenta with the appropriate signs according to
Γ̂(2)

(
i
←−
∂x, i
−→
∂y
)
→ Γ̂(2)(−p, p), then we rename Γ(2)(p) ≡ Γ̂(2)(−p, p) for convenience. Throughout

this chapter, the a dependence on n−1 momenta of an n-point function denotes that the functions
are evaluated at the expansion point Φ0 and that the delta functions are excluded. Let us define
a sign changing function for interchanging fermionic fields

(−1)ij =

{
1 for i and j fermionic ,
−1 otherwise . (3.16)

With this definition, the off-diagonal elements of the curvature matrix obey the relation

−→
δ

δΦi(−p)
Γ

←−
δ

δΦj(q)
= (−1)ij

−→
δ

δΦj(−p)
Γ

←−
δ

δΦi(q)

∣∣∣∣∣
p↔−q

= (−1)ijΓ
(2)
ji (p)δ(p− q)|p↔−q= (−1)ijΓ

(2)
ji (−q)δ(−q + p) ,

hence

Γij(p) = (−1)ijΓji(−p) . (3.17)

An n-point function has n indices in the matrix representation, so the superscript denoting the
order of the derivative can be omitted in a representation with matrix indices. The indices denote
the fields with respect to which the derivatives were taken as well as the side from which they
act. In Eq. (3.17) we can set the argument −q = −p due to the Dirac delta function. For this
relation to hold, diagonal terms must be functions of p2

4 and ~p2, since only the space-like O(3)
symmetry is always preserved. A similar relation holds for the regulator term, and thereby for
the propagator as well. The regulator is R is typically given in the momentum representation,
where it has the same structure as the kinetic part of the two-point function. So we can write
the propagator from Eq. (3.8) in momentum space at some expansion point as

G(p,−q) = G(p)δ(p− q) =
(

Γ(2)(p) +R(p)
)−1

δ(p− q) . (3.18)

We emphasize that this form of G is only valid for constant fields.
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Bosonic and fermionic components, regulator choice

For our work we write the components of the field and the expansion point as

Φ =




ϕ
Ψ

Ψ̄T


 , Φ0 =




ϕ0

0
0


 ,

where bosonic species are summarized in ϕ, while the anti-/fermionic species are summarized in
Ψ̄ and Ψ. The reason for setting Ψ = Ψ̄ = 0 for the expansion point is that we want it to be
close to or right at the ground state. For the matrix elements we find

Γ(2)(p) =




Γϕϕ 0 0
0 0 ΓΨΨ̄

0 ΓΨ̄Ψ 0


 , R(p) =




Rϕ 0 0
0 0 RΨΨ̄

0 RΨ̄Ψ 0


 . (3.19)

Apart from the choice of the expansion point, we made the assumption that there cannot be
terms proportional to ϕΨ or ϕΨ̄ (or with higher orders in ϕ), and find a block diagonal structure
with a block for each sector. Note that the fermionic sector is purely off-diagonal, again due to
the choice of Φ0. Each component of Γ(2) is to be evaluated with the formula (3.11). Since the
kinetic terms are quadratic in fields and without mixing of species, R always has this form. As
we allow for a running of the wave function renormalization, the scale derivative of the regulator
has two terms

∂tR ∼ ∂t(ZΦirΦi) = ZΦi∂trΦi + rΦi∂tZΦi = ZΦi(ṙΦi − ηΦirΦi) , (3.20)

where we have defined the anomalous dimensions for the respective fields as

ηΦi = −Z−1
Φi
∂tZΦi = −∂t lnZΦi . (3.21)

There is one anomalous dimension for each particle species. More detail are presented in Sec.
3.6. The propagator reads in components

G(p) =




(Γϕϕ +Rϕ)−1 0 0
0 0 (ΓΨ̄Ψ +RΨ̄Ψ)−1

0 (ΓΨΨ̄ +RΨΨ̄)−1 0


 =




Gϕ 0 0
0 0 GΨΨ̄

0 GΨ̄Ψ 0


(3.22)

Note that the indices of off-diagonal components are interchanged because of the inversion. In the
following subsections we will treat bosonic and fermionic propagators individually. The addition
of R essentially amounts to having regularized momenta, which for the case of a 3d regulator
read

~pr =

{
~p
√

1 + rB(~p2/k2) for bosons,
~p (1 + rF (~p2/k2)) for fermions.

(3.23)

Obviously a 3d regulator breaks Lorentz invariance at T = 0. However, physical quantities are
measured in the ground state at k = 0, where the regulator is vanishing. Although the frequency
modes are not regularized, we will not have any divergent loop integrations. In this work, we
employ the optimized regulator shape functions, which is well-suited for finite temperatures
[351, 353]
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rB(x) =

(
1

x
− 1

)
Θ(1− x) , (3.24)

rF (x) =

(
1√
x
− 1

)
Θ(1− x) , (3.25)

where Θ(1 − x) denotes the Heaviside step function. The bosonic propagator is a Galilean
invariant quantity at finite temperatures, hence the kinetic terms will turn into

~p2
r = ~p2 + (k2 − ~p2)Θ(k2 − ~p2) = ~p2Θ(~p2 − k2) + k2Θ(k2 − ~p2)

and our propagator divides into two parts

Gϕ

(
~p2
r

)
= Gϕ(~p2)Θ(~p2 − k2) +Gϕ(k2)Θ(k2 − ~p2) .

We see that for ~p2 < k2 there is no momentum dependence in the propagator other than in the
step function. Also, the scale k2 screens these modes in a mass-like fashion. This will trivialize
the integration in the flow equation (3.8), as the regulator insertion ∂tR acting as a UV cutoff,
involves another step function of the form Θ(k2− ~p2). The fermionic propagator can be split up
similarly, however both parts are still explicitly momentum dependent due to the Dirac structure

/~pr = /~p+

(
/~p

|~p|k − /~p
)

Θ(k2 − ~p2) = /~pΘ(~p2 − k2) +
/~p

|~p|kΘ(k2 − ~p2),

hence

GΨΨ̄

(
/~pr
)

= GΨΨ̄(/~p)Θ(~p2 − k2) +GΨΨ̄

(
/~p

|~p|k
)

Θ(k2 − ~p2) . (3.26)

Again, the regulator screens the modes for ~p2 < k2. Since all flow equations are projected in
a way, where all momentum structures are contracted ensuring Galilean invariance, the explicit
momentum dependence will always drop out in the second term, while the first term will be
vanishing again due to the ∂tR in the flow equation.

Curvature-, pole- and screening masses

As the name suggests, the curvature masses are defined by the curvature of the effective action
in the ground state and with vanishing momenta. In general the curvature masses are given by
a mass matrix M , which is given by the two-point function without the delta function.

M = Γ(2)(~p = 0, p4 = 0) . (3.27)

This matrix is in general non-diagonal, even within the blocks of the propagators in Eq. (3.22),
in particular if there is a mixing of fields due to finite background fields. Moreover it depends
on the representation, hence it is not a physical observable. Nevertheless the curvature masses
can give us a feeling for the excitation gaps of the fields.
For the pole masses we have to go to Minkowski space, where we know that for a non-interacting
field, the denominator of the propagator has the form pµp

µ−m2, where the momentum squared is
the off-shell energy of the propagating mode. If the off-shell energy coincides with the mass-shell
the propagator diverges, as the virtual mode is then identical to the physical mode. In reality,
the diverging behavior is turned into a broad resonance, which can be detected in experiments.
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Thereby the mass and the decay constant of a particle can be found. Hence the pole mass is the
true physical mass gap of the excitation.
Thus, in order to find the pole mass in our theory, we have to look for divergences in the fully
dressed propagator where fluctuations are integrated out. The poles are given by the roots of
the determinant of the inverse non-regularized propagator, i.e. the two point function. At finite
temperature/chemical potential where Lorentz invariance is broken, the propagator can generally
have a nontrivial and separate dependence on ~p and p4, therefore we can define two kinds of
masses either at vanishing momentum or vanishing frequencies, the latter is called screening
mass [180]. We make an analytic continuation of the non-vanishing components, which yields
the same solution as by going to Minkowski space, leading to

det Γ(2)(~p2 = 0, p4 = impol) = 0 , (3.28)

det Γ(2)(~p2 = −mscr, p4 = 0) = 0 . (3.29)

The quantitative difference of all three kinds of masses has been studied in Ref. [180] for a
quark-meson model in a fully momentum dependent scheme.

3.2.1 Bosons

Expansion points Fist we will derive the boson propagator and discuss the masses for the
QMD-model of two-color QCD and the we will generalize it for the QMDB-model straightfor-
wardly. We define the six-component boson field and its expansion point for the real and for the
complex representation, where we leave the ρ’s as variables

ϕ =




~π
σ

∆1

∆2


 , ϕ0 =




~0√
2ρφ/Zφ√
2ρ∆/Z∆

0


 and ϕ̄ =




~π
σ
∆
∆∗


 , ϕ̄0 =




~0√
2ρφ/Zφ√
ρ∆/Z∆√
ρ∆/Z∆


 . (3.30)

The flow equation preserves the symmetries of the action, hence we can always rotate to any other
choice of ϕ0 and ϕ̄0 with the corresponding symmetry group, which, at finite chemical potential,
is O(4)×O(2) for the real representation and O(4)×U(1) for the complex representation. Indeed,
we will see that the flow equations will be functions of the ρ’s without any isolated square roots.
Since the observable condensate is defined as 〈|∆|〉, which is always real, we can choose it to be
in the real part of the diquark field, and our expansion point accordingly. Consequently there is
a ρ∆ in both diquark fields in the complex representation . The role of the Goldstone mode is
then played by phase of the field. The expansion about the minimum then reads

∆(x) =
[
〈|∆|〉+ f(x)

]
e
i
θ(x)
〈|∆|〉 = 〈|∆|〉+ f(x) + iθ(x) + . . . , (3.31)

where f and θ are real degrees of freedom, which essentially leads back again to real represen-
tation. However, since the propagator is diagonal in the complex representation in the normal
phase, and moreover, the computation of fermionic self-energy type diagrams is more convenient
as well, we will keep all in both representations.
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Curvature masses The curvature matrix of the potential around the expansion point ϕ0 and
ϕ̄0 gives us the mass part of the of the inverse boson propagator

Mϕ =
∂2U(ρφ, ρ∆)

∂ϕi∂ϕj

∣∣∣∣
ϕ0

=
∂

∂ϕi

(
∂ρl
∂ϕj

∂U

∂ρl

)∣∣∣∣
ϕ0

=
∂2ρl

∂ϕj∂ϕi

∂U

∂ρl
+
∂ρn
∂ϕj

∂ρl
∂ϕi

∂2U

∂ρn∂ρl

∣∣∣∣
ϕ0

(3.32)

=




ZφVφ 13×3 0 0 0

0 Zφ
(
Vφ + 2ρφVφφ

)
2Vφ∆

√
ZφZ∆ρφρ∆ 0

0 2Vφ∆

√
ZφZ∆ρφρ∆ Z∆

(
V∆ + 2ρ∆V∆∆ − 4µ2

)
0

0 0 0 Z∆

(
V∆ − 4µ2

)


 ,

and similarly

Mϕ̄ =




ZφVφ 13×3 0 0 0

0 Zφ
(
Vφ + 2ρφVφφ

)
Vφ∆

√
2ZφZ∆ρφρ∆ Vφ∆

√
2ZφZ∆ρφρ∆

0 Vφ∆

√
2ZφZ∆ρφρ∆ Z∆ρ∆V∆∆ Z∆

(
V∆ + ρ∆V∆∆ − 4µ2

)

0 Vφ∆

√
2ZφZ∆ρφρ∆ Z∆

(
V∆ + ρ∆ − 4µ2

)
Z∆ρ∆V∆∆


 .

The indices φ and ∆ of V denote derivatives with respect to ρφ and ρ∆. Actually, one has to take
functional derivatives of the potential term in the effective action, which leads to the same result,
only with an overall Dirac delta function. To see this, we consider the functional derivative of the
effective potential δU(x)

δϕ(y) = ∂U
∂ϕ δ(x−y). Hence, the first derivative trivializes the overall integral of

the effective action, and the second one gives the above mentioned overall delta function. Since
the flow equation is evaluated at constant fields, all implicit spacetime dependences are gone, so
going to Fourier space will simply transform the delta function to one in momentum space.
Let us take a look at the masses by evaluating Mϕ at the vacuum expectation values for the
fields. In the normal phase it becomes diagonal with the elements

m2
π = m2

φ ,

m2
σ = m2

φ + 2κφλ2,0 , (3.33)

m2
∆,cur = m2

∆ − 4µ2 .

These are all curvature masses of course, however, for the mesons they are identical to the
pole masses in a momentum independent approximation. The curvature mass of the diquarks
coincides in both representations and is equal for both real and imaginary excitations, as well
as for particle and antiparticle excitations. The pions acquire a mass different from the sigma,
if chiral symmetry is explicitly broken. In the chiral limit both masses coincide, unless chiral
symmetry is broken spontaneously. Then the pions would be massless and the mass of the sigma
would be proportional to the condensate. In the case of a 1d-potential where mφ = m∆, it can be
seen that the diquark mass is reduced by the chemical potential compared to the pion mass, with
the consequence that if there is an occurrence of a condensate caused by spontaneous symmetry
breaking at non-zero chemical potential, it has to be that of the diquark, since it is manifestly the
lightest excitation. In any case, according to the Silver Blaze property the mesonic masses must
not be affected by the chemical potential below µc, therefore the diquark is bound to condense
if µ is large enough. In the BEC-regime the mass-matrix Mϕ becomes non-diagonal in the σ,∆-
sector due to the mixing of the condensates in (3.32), therefore we should rather look at the
poles of the propagator. Nevertheless we can already see at this point that the curvature mass of
the imaginary diquark is vanishing m∆2,cur = 0, which can be considered as the true Goldstone
mode of the breaking of the O(2) symmetry.
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Kinetic part For the kinetic part of the regularized propagator we first define the bosonic
regulators in momentum space,

Rϕ = ~p2 rB(~p2/k2)

(
Zφ1φ 0

0 Z∆1∆

)
, Rϕ̄ = ~p2 rB(~p2/k2)

(
Zφ1φ 0

0 Z∆σ
1
∆

)
,

where 1φ/∆ are unit matrices in meson/diquark space, whereas σ1
∆ contains ones in off-diagonals

and zeros otherwise, like the Pauli matrix. In order to imply these regulators we use the regular-
ized momentum ~pr as defined in the previous section. Now let us perform a Fourier transformation
of the kinetic part of the diquark action for both representations

Γ [∆] |kin =

∫

x
Z∆

[
(∂µ∆∗)(∂µ∆) + 2µ

(
∆∂τ∆∗ −∆∗∂τ∆

)]

=

∫

p
Z∆

[(
~p2 + p2

4 + 4iµp4

)
∆∗(−p)∆(p)

]

=

∫

x
Z∆

[
(∂µ∆1)2 + (∂µ∆2)2

2
+ 2iµ

(
∆2

∂∆1

∂τ
−∆1

∂∆2

∂τ

)]

=

∫

p
Z∆

[
~p2 + p2

4

2

{
∆1(−p)∆1(p) + ∆2(−p)∆2(p)

}
+ 4µp4∆2(−p)∆1(p)

]
. (3.34)

The third line is meant to be resulting from the first one using Eq. (2.47). It is important
to perform the Fourier transformation after the representation has been specified in order to
introduce them as independent degrees of freedom. For the second line to be real-valued it
must be ∆∗(−p) = [∆(p)]∗, cf. Eq. (3.13) and the paragraph below. The chemical potential
term becomes real after integration, since the integral over negative regime of p4 is the complex
conjugate to the integral over the positive regime. In both representations the mixing terms
proportional to the chemical potential can be summarized by substituting the integration variable
p→ −p. Similarly the kinetic part of the mesonic action reads

Γ [φ] |kin =

∫

p

Zφ
2

(
~p2 + p2

4

)
φ(−p)φ(p) . (3.35)

Then the kinetic part of the boson propagator is given by

Pϕ =




Zφ
(
~p2
r + p2

4

)
1φ 0 0

0 Z∆

(
~p2
r + p2

4

)
−4Z∆µp4

0 4Z∆µp4 Z∆

(
~p2
r + p2

4

)


 ∼=

−→
δ

δϕT (−p)Γ[ϕ]

←−
δ

δϕ(q)

∣∣∣∣∣ϕ0
kin

+Rϕ

Pϕ̄ =




Zφ
(
~p2
r + p2

4

)
1φ 0 0

0 0 Z∆

(
~p2
r + p2

4 − 4µp4

)

0 Z∆

(
~p2
r + p2

4 + 4µp4

)
0




In the upper line we have indicated the way it is derived, the tilde denotes that that a delta
function was dropped. The derivative from the left-hand side determines the row index, while
the right-hand side derivative determines the column index. The opposite signs in front of the
time-like momentum can be understood from Eq. (3.17). The diagonal terms are doubled,
since the derivative hits both fields, even if they have different arguments. We need to invert
G−1
ϕ = Pϕ +Mϕ to find the propagator, which has the property
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Gϕ(p) = GTϕ(−p) and similarly Gϕ̄(p) = GTϕ̄(−p) . (3.36)

The explicit components ofGϕ andGϕ̄ can be found in App. B.1. The fact that some components
of the propagator are proportional to the fields (which are in fact background fields) times the
second derivative of the effective action, which in the grounds state is a four-point coupling, leads
to the interpretation that in Feynman diagrams the propagators are connected to the background
field via a four-point vertex. This illustrated in Fig. 3.5.

G+
∆ =

G+
σ∆

=

G|∆| =

Gπ =

Gσ =

Figure 3.5: Diagrammatic representation of bosonic propagators in the ground state, shown for the complex
representation. The sign in the superscript relates to the direction of the arrow, which indicates the flow of the
charge. We have propagators representing a mixing of fields via the interaction with the background. The net
flow of charge in G|∆| from the left to the right of the diagram is vanishing. Since Gσ and G±∆ receive contributions
from the background as well, they can be split up into a disconnected and a connected part with the background.
Nevertheless they always go together in flow equations, so we represent both parts with one line.

Finite temperature At finite temperature the time dimension is compactified on a torus with
the circumference 1/T by making an analogy between statistical mechanics and quantum field
theories in a Euclidean formulation [284, 285]. In this framework bosonic field have to satisfy
periodic boundary conditions, with the consequence that the Tr operator implies a summation
over the bosonic Matsubara frequencies

p4 → ωn = 2nπT , n ∈ Z . (3.37)

The temperature enters the bosonic propagator in a mass-like fashion. It follows that if the
temperature is much larger than the energy scale, the propagator decouples from the system.
In general Gϕ ∝ T−2 for T � Eϕi , where we are comparing to the bosonic dispersions. Only
the zero mode of the Matsubara frequencies survives this limit, and is the only contribution
left. All nonzero modes are gapped by the temperature. This mechanism effectively reduces the
dimension of our bosonic system from 4d to 3d, as the p4 integration breaks down and the only
mode in the system has p4 = 0.
Since the boson propagator is quite awkward due to the off diagonal terms, it is not wise to
compute analytic expressions for p4-summation, if we employ a 3d optimized regulator function.
If only a finite number of Matsubara frequencies is taken, the convergence must be checked at
low temperatures. At T = 0 it is recommended to incorporate an numerical integration with
respect to p4 in the solver. However, it simplifies considerably for ρ∆ → 0, which we can do in
the normal phase if we assume unique coupling parameters for the mesonic and diquark sector
in the effective potential as in (2.50), see Sec. 3.4.3.
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Pole masses Now let us consider the pole masses. They are defined by the solution of
detG−1

ϕ (~p = 0, p4 = im) = 0 for m, where the propagator diverges. The pole masses are
unique, and therefore equal in both representation, which is easy to see with the properties of
the determinant and the unitarity of transformations between representations:

detG−1
ϕ̄ = detU †G−1

ϕ U = | detU |2 detG−1
ϕ = detG−1

ϕ . (3.38)

As we have mentioned above, the curvature masses of the mesons in Eq. (3.33) are identical to
the pole masses in the normal phase. For the diquarks we find m∆,pol,± = m∆± 2µ. In the BEC
phase we have the condition that m∆ = 2µ, see (2.58). Thus we find the following pole masses

mπ = mφ ,

mσ̃ =
√
m2

1 −m2
2 ,

m∆̃1
=
√
m2

1 +m2
2 ,

m∆2 = 0 , (3.39)

with

m2
1 =

m2
σ,nor

2
+ 8µ2 + κ∆λ0,2 ,

m2
2 =

√
m4

1 − 2κ∆

(
m2
σ,norλ0,2 − 2κφλ2

1,1

)
− 16m2

σ,norµ
2 ,

where mσ,nor is the expression for the sigma mass in the normal phase, given in Eq. (3.33). As
indicated the mass eigenstates are different than in the normal phase due to the off-diagonal
terms in the propagator. The sigma and one of the diquark states are mixtures of the original
states. If the mixing term vanishes (λ1,1 = 0 or κφ = 0) then the sigma state is the same as in
the normal phase, while m2

∆1
= 4µ2 + 2κ∆λ0,2. The ∆2 is immediately identified with Goldstone

mode associated with the breaking of U(1)B. In the case of a 1d-potential where mφ = m∆,
we have V ′bec = 4µ2 and hence a pion mass proportional to the chemical potential, mπ = 2µ.
This result coincides with leading order chiral perturbation theory [199, 200], and is also in
agreement with fact that the pions are pseudo-Goldstone modes associated with the breaking of
the enlarged flavor symmetry by a finite chemical potential, as discussed in Sec. 2.2.4. Therefore
we can expect that mφ in the 2d-potential ansatz is also proportional to µ in the BEC phase.
Within our best truncation we find a proportionality as mπ ≈ 2.52µ. The difference mainly
comes about from the running wave function renormalization.
In Fig. 3.6 we see the temperature and chemical potential dependence of the masses. At µ = 0
the pion and diquark are degenerate. At large temperatures, where chiral symmetry is restored,
they join with the sigma mass and all bound states decouple from the system. As the temperature
sets a scale in the system, the behavior is very similar as the RG-scale dependence. Along the µ-
axis we first see the split of particles and antiparticles. At µ = mπ

2 the diquark starts condensing
and the behavior of the masses changes accordingly. Due to the coupling to a chemical potential
the radial mode does not vanish at the phase transition. At large µ chiral symmetry is restoring
and mσ̃ → mφ, then the sigma is of course degenerate with the pions. Note the mixing terms
between the sigma and diquark are crucial for the connection of mass states between the phases
as we have it here. In a simple linear sigma model [233] or NJL analysis [212] the mass of the
sigma continues as m∆̃1

in the BEC phase, while the diquark becomes the mσ̃ .
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Figure 3.6: Mass spectrum of two-color QCD with the 2d Taylor’ truncation, c.f Tab. 4.1. The chiral crossover
and the phase transition to the BEC phase are clearly visible from the behavior of the masses. In (a) the quark
mass goes from being small to being large with decreasing temperature, while the pions and diquarks become
the pseudo-Goldstone modes splitting up from the sigma. Note in particular the minimum of the sigma mass in
the middle of the crossover, which justifies the definition of the phase boundary (2.43). In (b) we have a phase
transition at µ = mπ

2
. Note also here that there is a minimum in the sigma mass. Even though chiral symmetry is

restored at asymptotic µ, the quarks do not become massless because they are coupled to the diquark condensate.

Extension for the QMDB-model In the QMDB-model the diquark is a color anti-triplet
therefore the boson field contains a anti-/diquark pair for each color. In the complex represen-
tation it is given by

ϕ̄ =
(
~π, σ,∆b,∆∗b,∆r,∆∗r,∆g,∆∗g

)T
, (3.40)

ϕ̄0 =
(
ϕ̄0,QC2D

, 0, 0, 0, 0
)T
. (3.41)

The blue diquark basically plays the same role as the diquark in two-color QCD, namely it
forms a condensate. This is again an arbitrary choice. Any other choice can be rotated back
to this one by performing an SU(3)C transformation on the diquark color anti-triplet and a
U(1)B transformation between particles and antiparticles. These transformations leave the flow
invariant, since flow equations preserve the symmetries of the theory. It follows for the boson
propagator that it is given by a part which is equal to the one in QC2D and the enhancement
for the red and green diquarks

Gϕ̄ =




Gϕ̄,QC2D
0 0

0 G∆r 0
0 0 G∆g


 . (3.42)

Since we choose the diquark background field to be blue, the red and green parts are not involved
in any mixing and therefore trivial

G∆r = G∆g =
1

Z∆

(
0 ~p2

r + (p4 − 2µ)2 + V∆

~p2
r + (p4 + 2µ)2 + V∆ 0

)−1

. (3.43)

The above discussion of the masses in the normal phase applies here accordingly.
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2SC phase As we have discussed in Sec. 2.2.3 the Goldstone modes associated with the
breaking of color symmetry are absorbed by the gluons via a gauge transformation. For us
this means that we simply have to get rid of them. Hence we apply a rotation not only in for
the ground state but also for the excitations. Five modes corresponding to the red and green
anti-/diquarks and one imaginary part of the blue diquark are gauged away. Note however that
the masses of the red and green antidiquarks are not vanishing but rather given by 4µ, they are
the type II Goldstone modes according to the Nielsen-Chadha theorem [305] for broken Lorentz
symmetry. After the rotation has been carried out, our boson fields are given by

ϕ =
(
~π, σ,∆b

1

)T
, (3.44)

ϕ0 =
(
~0,
√

2ρφ/Zφ,
√

2ρ∆/Z∆

)T
. (3.45)

We could have just as well put zeros for the left out fields. For the QMDB-model in the normal
phase we will only use the complex representation, while in the color superconducting phase we
use the real representation. The propagator reduces to

Gϕ =


Zφ

(
~p2r + p24 + Vφ

)
13×3 0 0

0 Zφ

(
~p2r + p24 + Vφ + 2ρφVφφ

)
2Vφ∆

√
ZφZ∆ρφρ∆

0 2Vφ∆

√
ZφZ∆ρφρ∆ Z∆

(
~p2r + p24 + V∆ + 2ρ∆V∆∆ − 4µ2

)

−1

(3.46)

The inverted matrix can be found in App. B.1. The mass eigenstates it could be reckoned that
on could still take Eqs. (3.39) and drop the Goldstone mode m∆2

as well as the µ-terms arising
from the mixing with ∆2. This is almost true, except that the composition of the radial modes
is opposite, in the sense that the sign are interchanged:

mπ = mφ , mσ̃ =
√
m2

1 +m2
2 , m∆̃1

=
√
m2

1 −m2
2 , (3.47)

now with

m2
1 =

m2
σ,nor

2
+ κ∆λ0,2 ,

m2
2 =

√
m4

1 − 2κ∆

(
m2
σ,norλ0,2 − 2κφλ2

1,1

)
.

Indeed, it has turned out that this is the correct interpretation of the modes with the proper
limiting cases, as it can be seen in Fig. 3.7. Again, we have the restoration of chiral symmetry at
large temperatures and chemical potentials, where the sigma and pions become degenerate, while
in the broken phase they are split up. Although the diquark sector is not directly associated with
the chiral symmetry breaking at µ = 0, it receives quantitative corrections due to the change
of the dynamics in the remaining sectors. At T = 0 we have a violation of the Silver Blaze
property, which will be discussed later. In consequence the diquark mass parameter does not
remain constant and thus m∆,± is not axisymmetric. When the diquark condensation sets in, the
Goldstone modes are removed, two of which would have had a finite mass of 4µ and would have
been connected with the upper dashed curve. Instead we only have a radial mode, which behaves
in typical way for a second order phase transition, as its mass vanishes at the phase transition.
the sigma mass has a nontrivial behavior immediately after the phase transition, which is coming
from the coupling λ2,0.
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Figure 3.7: Mass spectrum of QCD with the initial conditions from Tab. 4.2.

3.2.2 Fermions

Nambu-Gorkov formalism In a theory with diquarks it is convenient to apply the Nambu-
Gorkov formalism, where the quark fields are represented by the bispinors in color space

Ψ =

(
qr

τ2Cq̄
T
g

)
, Ψ̄ =

(
q̄r

qTg Cτ2

)
, (3.48)

where the indices r and g denote the color components of the quark spinor. In the convention we
apply here, the Nambu-Gorkov space constitutes a color-anticolor space. We rewrite the quark
part of the effective action as

Γquark =

∫

x
Ψ̄(x)S(i∂)Ψ(x) (3.49)

with

S(i∂) = Zq

(
i/∂ + iγ4µ+ i

√
Zφhφ (σ + iγ5~τ · ~π) −√2Z∆h∆∆γ5

−√2Z∆h∆∆∗γ5 i/∂ − iγ4µ+ i
√
Zφhφ (σ − iγ5~τ · ~π)

)
(3.50)

In App. B.2 it is shown that Eq. (3.49) agrees with the quark part of the QMD action (2.35).
Note that S is technically neither two-point function, as it contains only one set of spacetime
coordinates (in the arguments of the fields, which is omitted), nor does it correspond to the
fermionic part in Eq. (3.19) in a direct way, since S contains fluctuating fields. The cutoff
function for fermions has to meet the requirement of being consistent with chiral symmetries,
hence it must have the same Lorentz structure as the kinetic term. The 3d fermionic regulator
in the Nambu-Gorkov formalism reads

RΨ̄Ψ(~p) = Zq

(
/~p rF (~p2/k2) 0

0 /~p rF (~p2/k2)

)
. (3.51)
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Gqq̄ = + Gqq =

Figure 3.8: Diagrammatic representation of the quark propagators. Due to the substructure in Dirac space, only
one of these contributions will be projected out in each part of the flow equations.

The propagator Going to momentum space, the spacetime derivative ∂ in Eq. (3.50) will
simply be replaced by the four-momentum −ip′ coming from Ψ(x) =

∫
p′ e
−ip′xΨ(p′) following

that S(i∂)→ S(p′). For simplicity one can already set the bosonic fields to the expansion points,
such that they can be treated as constants. Then, taking the functional derivative with respect
to Ψ̄(−p) from the left and with respect to Ψ(q) from the right as in Eq. (3.15), dropping the
delta function and adding the regulator RΨ̄Ψ, in fact simply following the prescription described
in the beginning of Sec. 3.2, defines our inverse fermion propagator:

G−1
ΨΨ̄

(p) = Zq

(
/~pr + γ4(p4 + iµ) + iσ̂ −∆̂γ5

−∆̂γ5 /~pr + γ4(p4 − iµ) + iσ̂

)
≡ Zq




[
G+

0

]−1
∆0

∆0

[
G−0

]−1




= −
[
G−1

Ψ̄Ψ
(−p)

]T
. (3.52)

The second line can again be understood from Eq. (3.17), and considering that the fermionic part
in the full propagator (3.22) is entirely off-diagonal. Since inverting and transposing a matrix are
commuting operations, the above relation holds for the propagator as well, GΨΨ̄(p) = GT

Ψ̄Ψ
(−p).

Naturally, a similar relation holds for the regulator. For reasons of clarity we have defined

∆̂ =
√

2Z∆h∆∆ =
√
Z∆h∆∆1 , σ̂ =

√
Zφhφσ . (3.53)

These are the gaps of fermionic excitations. σ and ∆ (∆1) correspond to the components of the
expansion point ϕ̄0 (ϕ0) in Eq. (3.30) and later to the condensates. A finite diquark condensate
introduces a mixing of red and green colored quarks. Moreover, like in the bosonic case, the
propagator is connected to these background fields. As it is shown in Fig. 3.8, the diagonal
entries can be split into a disconnected part and a part connected to the mesonic background
field, while the off-diagonal components are entirely proportional to the diquark fields. Although
the propagator has linear terms in the bosonic fields, the flow equations will be functions of
their squares, such that they can be rewritten in terms of the invariant ρ’s. The definition of
the regularized momentum ~pr is given in Eq. (3.23). Note that if there is no tensor structure
regarding a particular space (colour/flavour/spinor space), an identity matrix with respect to
that specific space is implied. We choose the diquark condensate to be on the real axis, so we
can suppress complex conjugations.
The explicit expression of the fermion propagator can be found in App. B.2. Evidently it is quite
awkward if off-diagonal terms are non-zero, which is the case in the BEC phase. It reduces to a
much handier form for ∆ = 0 as well as for µ = 0. For ∆ = 0 the propagator simply becomes
block diagonal with G±0 for the blocks, which is given by

G±0 =
1

/~pr + iσ̂ + γ4(p4 ± iµ)
=
/~pr − iσ̂ + γ4(p4 ± iµ)

~p2
r + σ̂2 + (p4 ± iµ)2

. (3.54)
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Finite temperature Let us make some remarks regarding finite temperature calculations.
If a loop contains purely fermionic propagators, the Tr operator implies antiperiodic boundary
conditions for the fermions [284, 285], hence a summation over fermionic Matsubara frequencies

p4 → νn = (2n+ 1)πT , n ∈ Z . (3.55)

On the other hand, if a diagram has external fermionic legs, the external momentum has the above
Matsubara frequency for the time-like component, which can be carried on by any propagator,
that is connected to the vertex. Typically, in such a case, the leg is connected to a fermionic
and bosonic propagator. The loop momentum is unique for both types of propagators, but the
fermionic shift of the Matsubara frequency is externally introduced. If the external fermionic
Matsubara frequency is then carried on by a boson, we can simply shift the integration variable
such that the fermion takes it over. This can always be achieved, hence, we employ the convention
in this work, that the functions occurring from the fermionic propagator defined in App. B.2
always carry Eq. (3.55) for the time-like component of the momentum. Similar to the bosonic
case, higher modes decouple from the system with increasing temperature. However, the lowest
mode is nonzero and still proportional to the temperature, hence in the T → ∞ limit fermions
decouple completely from the system, instead of only being dimensionally reduced.

Pole masses The pole masses for quarks and antiquarks plotted in Fig. 3.6 are given by

mq,± =

√
(σ̂ ± µ)2 + ∆̂2 . (3.56)

They rise from their current mass value to their constituent mass value towards low temperatures
or low energy scales. When chiral symmetry is restored at large µ the above expression goes to√
µ2 + ∆̂2. However, by looking at the energy dispersions in Sec. 3.4.1 we will see that this is

not the minimal energy of quark excitations. In the BSC limit at large chemical potentials ∆̂2 is
the only gap that has to be overcome for thermal quark excitations. The quantum fluctuations
are in a different situation, which will be discussed in the same section.

Extension for the QMDB-model In the QMDB-model the we choose the same Nambu-
Gorkov representation as above, extended by the blue quark and the baryon fields

Ψ =




qr
τ2Cq̄

T
g

qb
B


 , Ψ̄ =




q̄r
qTg Cτ2

q̄b
B̄


 . (3.57)

With this definition all fermionic parts of the action can be rewritten as

Γfermion =

∫

x

(
Ψ̄SΨ +

1

2
∆∗gΨTΣΨ− 1

2
∆gΨ̄ΣΨ̄T

)
(3.58)

with

S =

(
Srg ∆r∗ΞT

∆rΞ SbB

)
, Σ = τ2C

(
0 −Ξ̄
Ξ̄ 0

)
, (3.59)
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where we split between the rg-space and the bB-space. Naturally Σ is antisymmetric, as it is
situated between two (anti-)particle spinors. There is factor of 1/2 since all terms emerge twice.
Ξ and Ξ̄, which are given in App. B.2, contain quark-diquark and qdb-couplings. In the BEC
phase where the Goldstone modes are gauged away, Only the first term in (3.58) survives with a
block diagonal S. The upper right is Srg = SQC2D

(∆ = ∆b), which is essentially the same as in
the QMD-model given by Eq. (3.50), with colorless diquark field replaced by the blue diquark,
i.e. the one that condenses. The bB-part is given by

SbB =




Zqi
[
/∂ + γ4µ+

√
Zφhφ (σ + iγ5~τ · ~π)

] √
ZBZ∆ZqihqdB∆∗b

√
ZBZ∆ZqihqdB∆b ZBi

[
zB(/∂ + γ4µB) +

√
ZφhB (σ + iγ5~τ · ~π)

]


 .mB

~̂/∂

Note that the convention of the Nambu-Gorkov spinors we are applying here, has the advantage
that there is no double counting like in the usual convention. On the other hand, we have
disadvantage that we cannot write all terms of the action in one matrix sandwiched by a spinor
and anti-spinor, but rather we must write additional terms as we have done in Eq. (3.58), which
are important in order to obtain all vertices in this representation.

Extended components of the propagator At the expansion point where ∆r = ∆g = 0, we
get a rather simple and block diagonal form for the propagator

GΨΨ̄ =

(
Grg 0
0 GbB

)
, (3.60)

where the rg-part naturally conincides with two-color QCD case, Grg = GΨΨ̄,QC2D
. Now we

see the advantage of our choice of the Nambu-Gorkov representation. If we simply doubled the
fermion space, we would have obtained a much more complicated substructure in color space. The
fermionic regulator (3.51) must simply be extended with two additional dimensions in Nambu-
Gorkov space, where the baryonic wave function renormalization must be placed in lower right.
We do not take the exact form of the kinetic term for the baryonic regulator, but rather we leave
out the zB for reasons which will become clear below. Furthermore, since we have a 3d-regulator,
in order to avoid nontrivial momentum integrations, we replace in momentum space

zB(p̃2)p̃µ →
(
zB(~p2)~p, p4 + iµB

)
(3.61)

The left hand side was introduced in Eq. (2.37). Obviously this breaks Lorentz invariance, but
make this approximation for the sake of simplicity nonetheless. Besides, according to Eq. (2.38)
the UV-mass gap is supposed to vanish in the ground state of the vacuum, which means zB = 1
and the restoration of Lorentz invariance, at least for this case. At finite temperature and density
Lorentz symmetry is broken anyway. Thus, the bB-part of the propagator is given by

GbB(p) =


 Zq

[
/~pr + γ4(p4 + iµ) + iσ̂

] √
ZBZqi∆̂B√

ZBZqi∆̂B ZB

[
/~pr,B + γ4(p4 + iµB) + iσ̂B

]


−1

, (3.62)

with
σ̂B =

√
ZφhBσ , ∆̂B =

√
Z∆hqdB∆ , ~pr,B = ~p(zB + rF ) . (3.63)
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GBb̄ =GBB̄ = +

Figure 3.9: Diagrammatic representation of the baryon propagators. Schematically, Gbb̄ has the same structure
as Gqq̄ in Fig. 3.8, however it is given by a different function, see App. B.2.

This way we find for ~p2 < k2 that ~pr,B = zB(k2) ~p
|~p|k. If the kinetic term was zB(~p2)~pr, we could

obviously not split the propagator as in Eq. (3.26), which would lead to a nontrivial momentum
integration in flow equations. Similar is the case without the replacement (3.61). The explicit
expression of this propagator can be found in App. B.2. Note that the blue quark as well as the
baryon fields have a degeneracy in flavor space, and therefore there is a trivial structure in the
propagator with respect to that space. Due to the quark-diquark-baryon interaction we have a
mixing of the blue quark with the baryon field leading to a gap. This gap may have perceivable
impact on the dynamics in the 2SC phase as compared to models where baryon fields B are
neglected and the blue quark is almost gapless, since chiral symmetry is expected to be restored
at large chemical potentials. In Fig. 3.9 we see the diagrammatic representation of the baryon
propagators. For ∆ = 0 all three quarks are degenerate and we have simple and independent
propagators like in Eq. (3.54). The baryon field has a similar one where σ̂ → σ̂B. The expressions
for the pole masses in the BEC phase is rather lengthy; in the normal phase the baryon mass is
given by

mB,± =

√
σ̂2
B + (mUV

B )2 ± µB (3.64)

3.3 The Silver Blaze Property

Before we turn to the the computation of specific flow equations for our model, let us discuss
an important feature of finite density field theories known as the Silver Blaze property. It was
first derived in [354, 354] for QCD in the presence of a finite baryon/isospin chemical potential,
where it was shown that the partition function is independent of respective chemical potential
at vanishing temperatures up to a critical µc, which is given by the lowest excitation sensitive to
the chemical potential. In Ref. [355] the property is shown for the effective action of a complex
scalar theory and the corresponding vertex functions. Following this example we will recapitulate
the property for the case of arbitrary fields and then consider its implications on our FRG study.

3.3.1 Derivation of the Property

In the presence of a baryon chemical potential, the property is a direct consequence of the baryon
number symmetry UB(1), which can be promoted to a local gauge symmetry in the Euclidean
formulation as

Φ→ eiα(τ)QΦ , µ→ µ− i∂τα(τ) , (3.65)

where Φ is a general multicomponent field and Q is the charge operator. For the case of two
color QCD these are given by Φ = (φ,∆,∆∗, q, q̄) and Q = diag(0, 2,−2, 1,−2). Hence the
transformations (3.65) leave of effective action (2.35) invariant. At finite temperature periodic
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boundary conditions for boson and antiperiodic ones fermions must be retained, therefore the
gauge function must be turned into a matrix with bosonic and fermionic parts containing the
respective Matsubara frequencies α(τ)→ ατ = diag(ωnτ 1B, νnτ 1F ), and the chemical potential
turns into a matrix as well µ→ µ diag(1B,1F ), such that the symmetry under (3.65) holds true.
The frequencies are defined in Sec. 3.2. Adapting the notation of Ref. [355] we now denote
the chemical potential dependence of the effective action as an index in order to illustrate the
invariance of the effective action by the identity

Γµ[Φ] = Γµ−iα[eiατQΦ] . (3.66)

For simplicity and in order to respect the finite temperature case, we employed a linear gauge
function. Now, let us generalize this for vertex functions by taking an arbitrary number functional
derivatives of the above equation and evaluating at an expansion point Φ0 were are all charged
fields are vanishing

δnΓµ
δΦi1(x1) . . . δΦin(xn)

∣∣∣∣
Φ0

=
δnΓµ−iα

δΦi1(x1) . . . δΦin(xn)

∣∣∣∣
Φ0

eiα(ci1τ1+...+cinτn) , (3.67)

where cin is the charge of the field Φin . Note that since all charged fields are set to zero there
are no remaining exponentials of the gauge function in the vertex function. Now, if the effective
action is analytic for µ < µc, we can make a unique analytic continuation from iα to z for
µ− z < µc only at T = 0, while the continuation from iωn or iνn is not unique. Then by setting
z = µ in Eq. (3.67) we find

Γi1...inµ (x1, . . . , xn) = Γi1...in0 (x1, . . . , xn)eµ(ci1τ1+...+cinτn) (3.68)

where the superscripts represent the derivatives in the previous equation. This has the remarkable
implication that the µ-dependence of the vertex functions is trivially given by appropriate phase
multiplications. Consequently in momentum space we have the following relation

Γi1...inµ (p1, . . . , pn) = Γi1...in0

(
(~p1, p1,4 + ici1µ), . . . , (~pn, pn,4 + icinµ)

)
. (3.69)

The second index of the momentum is a Lorentz index. We conclude that the vertex functions
in momentum space for vanishing baryonic fields at T = 0 and µ < µc can be obtained from the
ones at µ = 0 by shifting the frequency modes like p4 → p4 + iciµ with the respective charges. Of
course this holds trivially for the kinetic term in the two-point function, however generically all
parameters in the effective action are momentum dependent, we will discuss this in the context
of the FRG. Naturally the above relation is valid for the zeroth derivative as well

Γµ[Φ0] = Γ0[Φ0] , Φ0 =
(
Φ0,neutral,Φ0,charged = 0

)
(3.70)

meaning that the quantum effective action of the sector which is not charged with respect to
the chemical potential, is constant below µc. This holds by default for all their pure vertex
functions as well. We emphasize that Eq. (3.69) is only valid for the expansion point Φ0, as
defined here, since it was a necessary condition for the derivation. We remark that, although
the vertex functions in Eq. (3.69) become manifestly complex at finite µ, the effective action is
remains real-valued by virtue of the p4-integration, even if the couplings do not.
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3.3.2 Silver Blaze & FRG

Let us consider the previous results in the context of an FRG framework. At first glance it
might seem contradicting that the baryonic sector changes with the chemical potential, while
the mesonic one does not, since they are coupled to each other. Naturally baryonic loops in
the flow equation contribute to the flow in the meson sector, however the contour in of the
p4-integration can be deformed to iciµ + R as long as the integrand is analytic, such that the
chemical potential drops out, provided that the momentum structure of the baryonic propagators
is correctly resolved. Hence Eq. (3.70) is not violated by the flow equation. This can be proven
for the n-point functions as well, by differentiating both sides of Eq. (3.69) with respect to the
RG-scale and plugging in the respective flow equations. The flow of an n-point function can be
found by differentiating the right-hand side of Eq. (3.8) with respect to fields corresponding to
the superscripts in Eq. (3.69). We will show it for the example of the two-point function. For
the proof we are going to adapt the notation p̃j = (~pj , p4,j + icijµ) for external momenta and
q̃a = (~qa, q4,a + icaµ) for the loop momenta. The right-hand side is given by

∂kΓ
i1i2
0 (p̃1, p̃2) =

1

2

∫

qa...qd

Gab0 (qa, qb)Γ
b i1i2c
0 (qb, p̃1, p̃2, qc)G

cd
0 (qc, qd)∂kR

da(qd, qa) (3.71)

where a=̂Φa(qa) and so on in the superscripts represent the components in field space which
are summer over. The trace operation is made explicit in all discrete and continuous indices.
For simplicity we are just pointing out a tadpole diagram, however the arguments can be ap-
plied to any diagram emerging from the flow equation of any n-point function. Note that the
regularized propagator G = (Γ(2) + R)−1 has the Silver Blaze property only if regulator obeys
Rabµ (qa, qb) = Rab0 (q̃a, q̃b) like Eq. (3.69). Of course a 3d-regulator is independent of the frequen-
cies and so this relation holds by default. The left-hand side yields

∂kΓ
i1i2
µ (p1, p2)

∣∣∣ Φ0
T=0
µ<µc

=
1

2

∫

qa...qd

Gabµ (qa, qb)Γ
b i1i2c
µ (qb, p1, p2, qc)G

cd
µ (qc, qd)∂kR

da
µ (qd, qa)

=
1

2

∫

qa...qd

Gab0 (q̃a, q̃b)Γ
b i1i2c
0 (q̃b, p̃1, p̃2, q̃c)G

cd
0 (q̃c, q̃d)∂kR

da
0 (q̃d, q̃a) (3.72)

where we assumed that Eq. (3.69) holds at the initial RG-scale. The validity of this equation is
denoted on the left-hand side. Now we can shift all loop-momenta like q̃i → qi, provided that the
integrands are anlytic, and then it is identical to Eq. (3.71). In an ideal situation one starts at
some UV scale where the effective action is given by the classical one Γk=Λ = S, for instance the
QCD action, where typically the momentum dependence is only in the kinetic terms in trivial
way. Hence Eq. (3.69) holds trivially as well. Thus, we see that solving the scale dependence of
an n-point function (including n = 0) with FRG does not jeopardize the Silver Blaze property,
if it holds at the initial RG-scale, as the flow of both sides of Eq. (3.69) is identical. This
remarkable feature is owed to the one-loop structure of the flow equation, because therefore we
can easily shift the loop momentum. A vacuum polarization diagram is depicted in Fig. 3.10
illustrating the Silver Blaze property for FRG equations.
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p̃ p̃

q̃

p̃ + q̃

=
p̃ p̃

p̃ + q

q

∣∣∣∣∣ Φ0
T=0
µ<µc

Figure 3.10: Vacuum polarization of the diquark illustrating the Silver Blaze property. The left-hand side is the
analog of Eq. (3.72) and the right-hand side the analog of Eq. (3.71). Here we have made use of momentum
conservation at vertices. The tilde denotes the µ-enhanced momentum as defined in the main text, there is
no other µ. Obviously the “internal” chemical potential can be shifted away, provided there is no pole in the
propagator. Of course it is only possible at T = 0 and a non-baryonic background. It entails that the flow at
finite chemical potential is given by the flow at µ=0 and shifted external momentum p → p̃. This is valid for
every RG-step hence Eq. (3.69) holds for all scales.

However, resolving the momentum dependence within the FRG framework requires high numer-
ical effort. The only other consistent way would be to impose a vanishing nontrivial momentum
dependence on the propagator, thus only having a trivial kinetic term. In order to keep it that
way, one would not be allowed to compute the RG-flow of the propagator at vanishing momenta
and couple it back to the system, because the µ dependence in its flow, coming from the (triv-
ial) kinetic terms of the contributing propagators, cannot be made to disappear by deforming
the contour, since the net baryon number must be nonzero inside the loop. Thus it would be
interpreted as a genuine dependence on µ, rather than a simple shift of the momentum. Clearly,
according to Eq. (3.69), there cannot be a µ dependence below µc if it is assumed that there
is no momentum dependence. We emphasize here again that in order to compute the flow of
a propagator, the momentum dependence must be correctly resolved for maintaining the Silver
Blaze property in a consistent way. On the other hand, if it is indeed observed that the flow of
a baryonic propagator is not much affected by a finite chemical potential below µc, one might
conclude that there is only a mild momentum dependence. In such a case it might be fruitful
to consider the flow of a baryonic propagator in a momentum independent scheme and take a
small loss of the Silver Blaze property. Then again, even if the violation is large, it is crucial
where the effects of µ manifest themselves. If they emerge around or after the critical scale their
back coupling to the system might not be large, such that the interesting observables remain less
affected.
Note that if one considers an effective potential for complex scalars, like diquarks, in a mo-
mentum independent scheme, and observes that the effective potential strongly differs between
µ = 0 and µc as in [233], it signals that there is a significant momentum dependence in the
diquark propagator (since it depends on the curvature of the potential), which should not be
disregarded, due to the reasons mentioned above. In particular it is important to improve the
scheme, since µc depends on the effective potential. On the other hand, it was observed in [180]
that incorporating a running wave function renormalization without momentum dependence is
in remarkable agreement with the fully momentum dependent scheme at µ = 0. Hence we are
tempted to conclude that we might be able to capture the correct physics by the inclusion of
running wave function renormalizations.
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3.3.3 Pole Mass & µc

Now, let us recapitulate the critical chemical potential in the light of the Silver Blaze property.
It is obtained by the non-analyticity of the effective action, which is given by the pole of the
lowest excitation. Consider the two-point function of a complex scalar field where all nontrivial
a momentum dependences are stored in the mass function

Γ∆∗∆
0 (q, p) =

[
p2 +m2(p2)

]
δ(q + p) . (3.73)

Due to Lorentz invariance the argument of the mass function must be momentum squared. Now
applying the formula (3.69) naturally leads to

Γ∆∗∆
µ (q, p) =

[
~p2 + (p4 + 2iµ)2 +m2(~p2 + (p4 + 2iµ)2)

]
δ(q + p) . (3.74)

We assumed baryon charge of 2 for the diquark In the delta function the chemical potential is
canceled due to the opposite charges. The pole of the propagator is given by the solution of the
implicit equation

Γ∆∗∆
µ (~p = 0, p4 = impol,µ) = 0 ⇐⇒ mpol,µ = m

(
−(mpol,µ + 2µ)2

)
− 2µ . (3.75)

The delta function was dropped. The non-analyticity is at vanishing pole mass, from which can
deduce the critical chemical potential. By looking at the pole mass at vanishing µ, one sees
that mpol,0 satisfies the same equation, which leads to the identification of the critical chemical
potential with pole mass in the vacuum. Let us write down the corresponding equations:

mpol,µc = 0 =⇒ µc =
m(−4µ2

c)

2
, (3.76)

mpol,0 = m(−m2
pol,0) =⇒ µc =

mpol,0

2
. (3.77)

We conclude that the critical chemical potential, after which the Silver Blaze property holds no
more and a nontrivial µ-dependence is exhibited, is given by the pole mass at µ = 0 divided
by the charge. Thus if the correct momentum structure of the two-point function is known,
µc can be predicted by analytic continuation, or of course by the experimentally known values
of the physical masses in the vacuum. The consequence for two-color QCD is that µ = mπ/2,
as mentioned in Sec. 2.2.4. A similar computation for fermions leads to the same conclusion.
However, there one has to look directly for the pole of the propagator rather than for the zero of
the two-point function, since it is non-diagonal. Note that the curvature mass vanishes as well
at µc

m2
cur,µ = Γ∆∗∆

µ (p = 0) = m2
(
−4µ2

)
− 4µ2 =⇒ m2

cur,µc = 0 (3.78)

which follows from Eq. (3.76). The vanishing curvature mass entails a phase transition as
discussed in Sec. 2.5. Above µc the minimum of the effective potential moves away from the
origin giving rise to a Bose-Einstein condensate and a finite density.
In the fermionic case a density onset can definitely be expected at a µc due to the Fermi-Dirac
distribution, if they do not form Cooper pairs. Other order parameters which depend on fermionic
fluctuations, for instance the chiral condensate, will be influenced by the fact that fermionic states
are occupied at finite density, which thereby are not available for quantum fluctuations due to
the Pauli principle. However, this effect does not necessarily manifest itself at µc. The crucial
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∣∣∣∣∣ Φ0
T=0
k<kF

= 0

Figure 3.11: Fermionic loop diagram with an arbitrary number of external legs corresponding to fields neutral
in the charge associated with the chemical potential. The total charge of such a digram must be vanishing and
therefore the of number particles in the loop is equal to the number of antiparticles. Since the particle states
below kF are occupied, a fluctuating pair cannot be produced. Of course kF > 0 only if µ > µc,density. We
will see this effect explicitly in the FRG equation of the effective potential in the next section. However, this
identity is generally true for a neutral background flied Φ0 as in (3.70).

point is whether the occupied states are below or above the energy scale at which the fermionic
fluctuations have been integrated out. In an RG framework for instance, if µc �

√
k2
χ +m2

q,kχ
,

then the unavailable states are massive ones, not contributing to quantum fluctuations anyway,
so there will be no effect on the chiral order parameter. Only if the Fermi energy is close to
the chiral symmetry breaking scale, more generally if kF =

√
µ2 −m2

q,kF
& kχ, there will be an

observable effect due to Fig. 3.11 and therefore µc,chiral > µc,density. For heavy fermions like the
baryons this means that they cannot influence the chiral condensate at T = 0 whatsoever. If
they are heavy in the vacuum they remain suppressed below their density onset. And then they
are even more suppressed because of Fig. 3.11.

3.4 Flow of the Effective Potential

The RG flow of the effective potential receives contributions from scalar and the fermionic degrees
of freedom. We start by evaluating the flow equation (3.8) for constant fields, as we want to
minimize the effective action. Naturally the kinetic parts of the effective action drop out. At
the constant expansion point Φ0 = (ϕ0, 0), where ϕ0 is given in Eq.(3.30) and Ψ = Ψ̄ = 0, since
we want it to be close to or right at the ground state, only the effective potential remains on
the left-hand side of the flow equation. Note that the ρ’s are still variables in field space at this
point, but constant in position/momentum space. We are free to choose any numerical value
for the ρ’s at which we want to evaluate the flow. Ideally one should cover a sufficiently wide
range of values, as it has been done in [176, 233]. However we are making a Taylor expansion
of the effective potential and we are only interested in minimum, therefore we evaluate the flow
at a comoving (running) minimum in this work and check the convergence of the expansion. In
contrast in [179] the flow of a quark-meson model is evaluated at non-running points close to the
minimum, which leads to a different convergence behavior of the Taylor, which will be discussed
in the next chapter. The flow equation yields

∂tΓ[Φ0] = ∂t

∫
U(ρφ, ρ∆) = V old ∂tU(ρφ, ρ∆)

=
1

2
str
∫

p,q
G(p,−q)∂tR(−q, p) =

1

2
str
∫

p
G(p)∂tR(p) δ(0)︸︷︷︸

V old

.
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Thus the flow equation of the effective potential reads

∂tU(ρφ, ρ∆) = tr
∫

p

(
1

2
GϕṘϕ −GΨΨ̄ṘΨ̄Ψ

)
. (3.79)

It is easy to see that the second fermionic part GΨ̄ΨṘΨΨ̄ yields the same contribution as first
one, with Eq. (3.52) and by substituting the integration variable q → −q and transposing the
expression, which leaves the trace invariant. Hence we can take twice of the contribution from
GΨΨ̄. The diagrammatic form of Eq. (3.79) is given in Fig. 3.12. If the bosonic fluctuations are
neglected by setting tr

∫
pGϕṘϕ = 0, one obtains the standard mean-field theory results for the

thermodynamic potential. The remaining quark contribution can then be easily integrated [212].
We will now compute more explicit expressions of the above flow equation for the QMD-model
and make a detailed and general analysis of the contributions. Then we will add the additional
contributions in QMDB-model.

∂tU = 1
2

−

Figure 3.12: RG flow of the effective potential. Here, the dashed line represents the all bosonic propagators,
the continuous line represent the fermionic ones. The blobs denote the fact that we have full propagators, the
crosses denote the regulator insertion. The fermionic contribution is doubled since particle and antiparticle
contributions coincide. The minus sign is due to the anticommuting nature of fermions.

3.4.1 Flow Equation for the QMD-Model and a General Discussion

Bosonic contribution Let us first turn to the calculation of the bosonic part. The bosonic
contribution to the flow of the effective potential is given by

1

2
tr
∫

p
GϕṘϕ =

1

2

∫

p

[
3Gπ(~p2

r)Ṙφ(~p
2) +Gσ(~p2

r)Ṙφ(~p
2) + 2G+

∆(~p2
r)Ṙ∆(~p2)

]

=
k5T

6π2

∑

n∈Z

{(
1− ηφ

5

)[
3Gπ(k2) +Gσ(k2)

]
+ 2

(
1− η∆

5

)
G+

∆(k2)

}
. (3.80)

The integrals were computed by the use of the formula (C.41).The bosonic contribution contains
three degenerate pion, one sigma and two degenerate diquark loops. The propagators can be
found in App. B.1 and the scale derivatives of the regulators here are defined as Ṙφ/∆(~p2) =
~p2[ṙB(~p2/k2)− ηφ/∆rB(~p2/k2)], and the Z’s cancel out.The anomalous dimensions stem from Eq.
(3.20). The diquark contributions stem from off-diagonal entries of the propagator and can be
summarized due to Eq. (3.36) by substituting the integration variable p → −p, thus the factor
of 2. A closed loop without any legs has the interpretation of spontaneous pair production
and annihilation of particles. Such a process is given by a propagator which goes back to its
starting point. A charged particle propagating back to itself is equivalent to a pair production
and annihilation, since time reversal changes the charge of the particle, which is reflected by
the fact that G+

∆(−p4) = G−∆(p4). For fermions we have a similar situation. The momentum
integration sums up all these processes with all possible momenta, while the regulator puts a
constraint on the them, as discussed in Sec. 3.1.2.
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Fermionic contribution The fermionic part is given by

tr
∫

p
GΨΨ̄ṘΨ̄Ψ = tr

∫

p

(
G+ +G−

)
/~p(ṙF − ηqrF )

= 4NcNf

∫

p
~prA+(~p2

r) · ~p(ṙF − ηqrF )

= 4NcNf
k5T

6π2

(
1− ηq

4

)∑

n∈Z
A+(k2) , (3.81)

where the formula (C.42) was employed. The contribution of the lower right part G− of the
fermion propagator in Nambu-Gorkov space, which is given in App. B.2, can be shown to
coincide with the contribution from G+ by substituting the integration variable p4 → −p4,
which leaves the integration invariant. Since Nambu-Gorkov space is equivalent to color space
in our convention, summarizing yields the factor Nc. In flavor space the propagator has a trivial
structure, hence the factor Nf , while in Dirac space only the kinetic term survives due to the
tracing properties of the Dirac matrices, where the factor of 4 originates from as well (see App.
A.4), accounting for spin up/down and anti-/particle degrees of freedom.

Analytic expressions We see that only the modes where the loop momentum is around the
scale, or, in the case of the optimized regulator function, right at ~p2 = k2, define the change
of the effective potential with respect to the scale, as expected. The frequency components
of the momentum p4 are summed over the respective matsubara frequencies (3.37) and (3.55),
which are included in the definition of the propagators in App. B. The analytic expressions of
the summation can be found with the residue theorem, but are quite tedious in the sigma and
diquark sector due to the mixing structure. Therefore, let us write down the summed expression
of the flow of the effective potential in a general from 1

∂tU =
k5

6π2





6∑

i=1

(
1− ηϕi

5

)
1

Êϕi

[
1

2
+ nB

(
Eϕi
)]
− 2NcNf

(
1− ηq

4

)∑

±

1

Ê±q

[
1

2
− nF

(
E±q

)]




(3.82)

where nB and nF are the Bose-Einstein and Fermi-Dirac distributions functions, given by

nB(E) =
1

eE/T − 1
, nF (E) =

1

eE/T + 1
.

The Bose-Einstein function is not defined for negative energies. In any case, this is avoided
by the occurrence of a condensate. The inverse coefficients Êϕi(Mϕ, k, µ) are in general func-
tions of the curvature of the effective potential (3.32), the RG-scale and the chemical poten-
tial. The arguments Eϕi(Mϕ, k, µ) of the distribution functions are given by the roots of the
denominators of the propagators in Eq. (3.80), more generally by the roots of the equation
detG−1

ϕ (~p2
r = k2, ω2

n = ω2) = 0, which is a polynomial in ω2 of the order dim (ϕ), so in our case
there are six solutions. Three of the solution are for the pions. The pion and quark energies are
given by

1Note that the bosonic part in Eq. (3.82) is not strictly equal to Eq. (3.80), since in order to write the anomalous
dimensions as pre-factors as in (3.82), they must correspond to the diagonal mass eigenstates, which is not
the case in (3.80) if there is a mixing of different sectors. Anyway, we are going to implement (3.80) in our
numerics, while (3.82) is shown for the sake of discussion.
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Êπ = Eπ =
√
k2 + Vφ ,

Ê±q =

√
k2 + 2hφρφ + 2h∆ρ̂

±
∆ , E±q =

√(
εq ± µ

)2
+ 2h∆ρ∆ , (3.83)

ρ̂±∆ = ρ∆

ε2q
(εq ± µ)2

, εq =
√
k2 + 2hφρφ .

The implications of the quark energies will be discussed below. For two-color QCD at µ = 0 the
effective potential respects the SO(6) symmetry which must be respected by the flow equation
as well, therefore Eq. (3.82) must be a function of SO(6) invariant ρφ + ρ∆, which easy to see
in quark energies. Also the remaining bosonic energies are functions of the invariant. Note that
the factors for particle antiparticle degeneracies have turned into distinguishable contributions
for finite µ after summation. Let us discuss some general features of the above flow equation.
This discussion will not be specific to QC2D, but also applies to physical QCD as well.

Symmetry breaking & anomalous dimensions First of all, note that due to the opposite
sign in the middle, there is a competing effect between fermions and bosons. In the UV we start
with symmetric potential, where the minimum is around the origin. Since the fields ρφ and ρ∆ act
as excitation gaps of the fermions, for small values fermionic contributions are strong. Whereas
the bosonic gaps are given by the curvature of U , which is nonzero around the minimum. The
magnitudes of the gaps relative to the scale is the crucial quantity. By solving the flow down to
the IR, the fermions drive the minimum up and flatten the region more than the outer regions,
eventually leading to shift of the minimum to larger fields and breaking the symmetry. On the
other hand the flattening reduces the bosonic gaps, in particular for the (pseudo-) Goldstone
modes, leading to a counter reaction, until the RG scale is smaller than all gaps in the system,
where then the flow freezes out. The interplay of these two effects determines the critical physics.
As can we see, a positive anomalous dimensions reduce the contribution of the respective fields.
More details on their behavior can be found in Sec. 3.6. According to our definition of the ρ’s
in Eq. (2.46), they depend on the scale k via the wave function renormalizations, therefore the
left-hand side of the flow equation can be split up as follows

∂tU(ρφ, ρ∆) = (∂tU)ρ + ∂tρφ
∂U

∂ρφ
+ ∂tρ∆

∂U

∂ρ∆

. (3.84)

The source term will be dealt with in Sec. 3.4.3. Now we solve this for the flow of the effective
potential for constant ρ’s and find with the definitions of U (2.45) and the η’s (3.21)

(∂tU)ρ = ∂tU |loops+ηφρφVφ + η∆ρ∆

(
V∆ − 4µ2

)
(3.85)

where the loops are given by the right-hand side of Eq. (3.82). As before the index of V
represents the derivatives, which are shown in Eq. (3.84). For positive anomalous dimensions
the additional terms lead to the the following effect: Since the first derivative of U with respect
to the ρ’s corresponds to the curvature mass of the (pseudo-) Goldstone modes, at the minimum
these additional contributions are always vanishing (small for pseudo Goldstone modes) either
by the condensate or by the mass. With increasing ρ’s we have increasing positive contributions
driving the potential down towards the IR, more in the outer regions. This entails a flattening of
the potential and a faster symmetry breaking. In order to avoid overly breaking the symmetry,
a larger curvature must be chosen in the UV, from which we can infer that the bosons decouple
much stronger in the UV, by the inclusion of anomalous dimensions.

84



3.4 Flow of the Effective Potential

Thermal contributions There is an obvious split between quantum and thermal contribu-
tions. The latter are given by thermal distribution functions, representing the mean occupation
numbers for a particular energy state E at temperature T . We can refer to the arguments of
distribution functions as thermal energy dispersion, while the inverse of the coefficients (denoted
with the hats) can be referred to as quantum energy dispersions. The reason for a possible dis-
crepancy is that thermal and quantum fluctuations are different processes, however, influencing
each other. It will become more clear below. Consider the limiting cases

nB
E/T→∞−−−−−→ 0 , nF

E/T→∞−−−−−→ 0 ,

nB
E/T→0−−−−−→ T

E
− 1

2
, nF

E/T→0−−−−−−→ 1

2
− E

4T
. (3.86)

Due to the Pauli exclusion principle the occupation number for fermions cannot be larger than
one. As a matter of course, the different thermal statistics can be rooted back to the commuting
and anti commuting nature of the respective fields. However, as we see in Eq. (3.82), the
differences are not limited to the distributions functions, but also the signs of the thermal parts
are opposite. Again, this can be traced back to the anticommutativity, but it can also be
understood by the Pauli principle in a less abstract way. Before turning to that matter, first
note that naturally thermal contributions vanish at T = 0 and we are left only with the quantum
fluctuations. Now, increasing the temperature entails that the system is coupled to a heat bath
from which energy is drawn and particle-antiparticle pairs are created in different energy states
according to the respective distributions functions. For the fermions this implies that quantum
energy states with the same mode k are no more available for the renormalization group flow,
due to the exclusion principle, therefore the thermal part must be subtracted from the flow.
In consequence there is no fermionic contribution in the high temperature limit, which was
already anticipated from the fermionic Matsubara frequencies. For bosons on the other hand,
there is of course no exclusion, but rather the RG-flow takes advantage of the heat bath, such
that fluctuations with high energy modes become easier to induce with increasing temperature.
This is the manifestation of the only surviving zero mode of bosonic Matsubara frequencies, the
contribution of which rises linear with a factor of T from the measure. In summary Eq. (3.82)
takes the form

∂tU
∣∣
E�T =

k5

6π2




∑

i

(
1− ηϕi

5

)
1

Êϕi

T

Eϕi
− 2NcNf

(
1− ηq

4

)∑

±

1

Ê±q

E±q
4T



 (3.87)

in the high temperature limit, where (3.86) was applied. As discussed, fermionic fluctuations
decrease with the temperature while bosonic ones increase. Then again, if there was no fermionic
flow, bosons retain their high masses, which they had in the UV, hence at large temperatures
the effects are small overall, and the system stays in the symmetric regime.

Non-baryonic background & Silver Blaze Next, we shall study the impact of the chemical
potential. To that end, we consider the ρ∆ → 0 limit, where the all energy dispersions become
rather trivial

Êσ →
√
k2 + Vφ + 2ρφVφφ , Eσ → Êσ ,

Ê∆ →
√
k2 + V∆ , E±∆ → Ê∆ ± 2µ ,

Êq → eq , E±q → eq ± µ .
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For the pions it stays the same. In this limit our flow equation has the familiar looking form of a
quark-meson model [176] augmented by the diquark contribution, which is given by the general-
ized flow equation for a complex scalar for vanishing values of the field. The chemical potential,
which parametrizes the imbalance of baryonic particles and antiparticles, now only appears in
the thermal distribution functions for fermions and diquarks. At vanishing temperature and
E−∆ , E

−
q > 0 the distribution functions vanish, and so does the imbalance. Hence, it would seem

that there is no effect of the chemical potential whatsoever at T = 0, but this not exactly true.
Although the effective potential itself does not have a direct impact from the chemical potential
at ρ∆ = 0, its curvature does indeed. Since the flow is affected by a finite µ at ρ∆ 6= 0 even in the
vicinity of the origin, the curvature necessarily changes, as it can be seen directly from the quark
energy dispersions in (3.83). Thus, there is an indirect effect on U , and even more from running
anomalous dimensions and Yukawa couplings. This is a violation of the Silver Blaze property,
according to which non-baryonic quantities, i.e. the meson sector in U , should not change below
a threshold, though the violation in this sector is very small as it can be seen in [233]. On the
other hand, if we assume an effective potential of the form U = V (ρφ +γρ∆)− cσ− 4µ2ρ∆ where
there is a constant ratio between the meson and diquark sector, we can solve the flow equations
for ρ∆ = 0, and avoid the violation. Furthermore, in a model with real and complex scalar fields
in a momentum independent scheme, this is the only way to have an approximation where the
curvature mass is by default identical to the pole mass at µ = 0, and where µc then coincides
with this pole mass as well. Hence the onset condition (3.77) is definitely satisfied, provided
that there is no running of any other baryonic quantity like Yukawa couplings and anomalous
dimensions. For two-color QCD we have the SO(6) symmetry at µ = 0, hence γ = 1 might
be a good approximation, whereas for physical QCD such a scheme would be rather crude. Of
course a momentum resolution of all coupling parameters would ensure the Silver Blaze property
altogether.

Interplay of temperature and chemical potential At finite temperature the chemical
potential gives rise to an imbalance between thermal particle and antiparticle excitations. It is
clear why we referred to the coefficients as quantum energy dispersion, namely because in the
presence of a finite µ only the thermal occupation numbers change, while the energy of the modes
contributing to the flow remain unchanged (for ρ∆ = 0). The occupation increases for particles
and decreases for antiparticles with µ, while the total number increases for both particle types.
The consequence for fermions is again that there are less available states for the RG-flow, while
for the bosons there are more. This is the origin of the decreasing of the critical temperature Tc
with µ in QCD. In order to emphasize this we write

∂

∂µ
[n(E−) + n(E+)] > 0 =⇒ ∂Tc(µ < µc)

∂µ
< 0 . (3.88)

The inequality for the distribution functions is valid for fermions as well as for bosons. The
reason why it is only valid below the critical chemical potential will be discussed below. Next
we shall consider the case E−q < 0 still at vanishing diquark fields. It implies that the chemical
potential is higher than the fermion mass and for T = 0 all states with k2 < k2

F = µ2 −m2
q up

to the Fermi surface are occupied by external quarks. In terms of the distribution function we
have nF (E−q < 0, T = 0) = 1. This distribution function instantly cancels both the quark and
antiquark part of the flow for k < kF , eventually preventing chiral symmetry breaking at some
critical chemical potential µc. It can be understood by considering that both quarks and anti
quarks are needed for quantum fluctuations contributing to the mesonic effective potential, if
one of them is not available the other cannot contribute either. In the flow equation (3.82) this
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is reflected by a step function

∂tU
∣∣∣ρ∆=0
T=0

=
k5

12π2





(
1− ηφ

5

)[
1

Êπ
+

1

Êσ

]
+

(
1− η∆

5

)
2

Ê∆

− 4NcNf

(
1− ηq

4

)
1

εq
Θ
(
εq − µ

)




(3.89)

Increasing the temperature leads to excitations of particles which are close to the Fermi surface,
washing out the step function in the Fermi distribution and giving the opportunity for fermions
to break chiral symmetry, until at higher temperature thermal pair production prevents it again.
Indeed there is a minimum of nF (E−q )+nF (E+

q ) in the temperature direction around which chiral
symmetry is restored for a small range µc(Tc = 0) < µ < µc,max(Tc) and we get a back bending
of the phase boundary, as it can be seen in [176], hence the constraint in Eq. (3.88). Note
that in the phase diagram of two-color QCD this effect cannot be observed, as the Bose-Einstein
condensation phase overspreads the region where the bending would occur.

Baryonic background & BEC-BSC crossover Finally we analyze the quark contributions
for ρ∆ 6= 0. Here we have an additional gap in the quark energies suppressing quark excitations.
First note that now E−q > 0 for all µ, thus there cannot be a finite density of quarks at T = 0.
Since ρ∆ 6= 0 implies that the condition for fermions condensing into Cooper pairs are met, every
two fermions that are added to the system immediately go into condensation. Furthermore,
for mq < µ (where mq =

√
2hφρφ) the minimum of E−q arises at a nonzero momentum scale

k2
min = k2

F = µ2 − m2
q (blue lines in Fig. 3.13) meaning that the lowest energy state is given

by a BCS-like Cooper pair with finite (and opposite) momenta of the constituents, hence a long
range bound state. The momentum of the minimum increases steadily with µ, until at some
point the interparticle distance starts falling below the range of the bound states, such that they
are overlapping, this is the BCS-limit. Thus mq = µ can be used as a rule of thumb for the
BEC-BCS crossover [219].

Eq
-

`

Eq
-

k

kF>0−−−→

Eq
-

Eq
-

`

kF

Figure 3.13: On the left-hand side we see the behavior of the quantum and thermal energy dispersions for the
case kF < 0. They are both monotonically rising functions with k. On the right-hand side we have the case
kF > 0. The thermal dispersion develops a minimum at the Fermi surface, whereas the quantum dispersion
diverges. The former effect is related to BSC pairing, while the latter is related to Pauli blocking. See main
text for the explanation.
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Modified gap & Silver Blaze In Eq. (3.83) we see a modified gap in the quantum energy
dispersion, which depends on the ratio of the normal energy of the quarks and the µ-reduced one.
Since we are now computing the flow in the presence of a baryonic background, the quantum
energy dispersion is no more independent of the chemical potential. Below µc the diquark
sector of the effective action should change trivially with µ according to Eq. (3.69) for ρ∆ = 0,
which represents the minimum. In a momentum dependent scheme this would automatically be
yielding from the flow as was exemplary shown in Eq. (3.72). In our case however, the effective
potential around the minimum is directly affected by µ, which entails that the curvature and
higher derivatives right at the minimum are affected as well. Thereby a genuine µ dependence of
the n-point functions is generated, since our scheme is momentum independent, thus violating
the Silver Blaze property. This is a concrete example of the problem we mentioned in Sec 3.3.
Obviously the modified gap is raised for quarks and lowered for antiquarks, due to the baryonic
background. In fact this is another remarkable manifestation of the Pauli exclusion principle.
Consider the case mq < µ, where we have shown, that the minimum of the thermal energy
dispersion E−q,min lies at the Fermi surface. On the other hand, the denominator of the modified
gap vanishes at kF leading to a diverging gap and thus

Ê−q
k→kF−−−−→∞ , (3.90)

see the red lines in Fig. 3.13. This is connected to the fact that the diquark field in the
background are Cooper pairs of fermions at the Fermi surface. Therefore quantum fluctuations
with the same mode kF are blocked. This is the Pauli principle at work! Even without the
Fermi distribution function. At large scales, or more generally either for εq →∞ or µ→ 0, the
modified gap goes back to the normal one ρ̂±∆ → ρ∆. All cases are smoothly connected to each
other. For vanishing chemical potential the SO(6) symmetry of two color QCD is restored since
the Yukawa couplings must coincide as well. The fact that antiparticle quantum fluctuations are
favored is in contrast to the thermal excitations, where particles are favored. The reason is that
the chemical potential has a different role there. It is just a way of telling the system that there
are more thermally excited particles than antiparticles.

3.4.2 Extension for QMDB-Model

For the QMDB-model we must add the contributions from the red and green diquarks as well as
the blue quark and the baryons. The additional diquark parts are trivial, while the additional
fermionic parts we display without performing the summation over the Matsubara frequencies,
since the energy dispersions do not have an overseeable form, but of course it would yield a
similar fermionic form like in (3.82) with Fermi-Dirac distribution. We skip the derivation,
which is analog to the beginning of Sec. 3.4.1 and write the result as

∂tU = ∂tU |QC2D
+
k5

6π2



2

(
1− η∆

5

)∑

±

1

Ê∆,0

[
1

2
+ nB

(
Ê∆,0 ± 2µ

)]

−4NfT
∑

n∈Z

[(
1− ηq

4

)
Ab(k

2) +

(
1− ηB

4

)
AB(k2)

]
 (3.91)

where Ê∆,0 =
√
k2 + V∆ is the diquark energy without a background field. The additional

fermionic functions are given in App. B.2. Note that the QC2D-part is meant literally in the
sense thatNc = 2, since the blue quark has a separate contribution. For the baryonic contribution
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to behave in a physical way, it must decouple from the system at large RG-scale and temperature.
Around the critical endpoint of QCD presumably there will some effects of the baryons. In the
2SC phase the five Goldstone modes are gauged away, only the real mode of the blue diquark is
left. We can obtain the corresponding flow equations simply by replacing diquark contribution
in QC2D by half of the contribution from the real mode:

∂tU = ∂tU
∣∣∣QC2D

2G−∆→G∆1

− k5

6π2
4NfT

∑

n∈Z

[(
1− ηq

4

)
Ab(k

2) +

(
1− ηB

4

)
AB(k2)

]
. (3.92)

3.4.3 Flow of the Bosonic Parameters

Source term First we want to show that the flow equation does not conduce to a running of
linear source terms, such as the explicit chiral symmetry breaking. The right-hand side of (3.82)
is a function of integer powers of the ρ’s, hence we have the following discrete symmetry, which
implies that there cannot be a linear term on the left-hand side

U̇(−σ) = U̇(σ) ⇔ ∂U̇

∂σ

∣∣∣
σ=0

= 0 . (3.93)

By looking at the ansatz of U in (2.45) it follows immediately that

∂

∂t

(
c
√
Zφ

)
= 0 ⇔ ∂tc =

ηφ
2
c . (3.94)

Note that this could have been followed from Eq. (3.85) just as well, by assuming that the
effective potential is also a function of the renormalized field σ̄ =

√
Zφσ like U(ρφ, ρ∆, σ̄), then

we would have the additional term ηφ
2 cσ̄ on the right-hand side. Now, comparing coefficients

would finally lead to (3.94). Remarkably the source term does only shift the expectation value of
the condensates to non-zero values, but does not affect the RG-flow of integrating out quantum
fluctuations at all. This is related to the fact that the propagators which contain the curvature
are independent of the linear term

∂Mϕ

∂c
= 0 ⇒ ∂U̇

∂c
= 0 . (3.95)

However, as we will just discuss, we are going to compute the flow only at the minimum ρφ = κφ,
therefore the source parameter c enters the flow equation via the minimum, but keep in mind
that this is nothing but our choice for the expansion point.

Masses, couplings and condensates In the previous discussion we were emphasizing that
the curvature/flatness around the minimum changes with the flow, and therefore it is crucial
to solve the flow for a sufficient range around the minimum, like it was done in [233]. But
we are going to exercise a different approach: Since all we need for the propagators in the
flow equation is the curvature at the minimum, we can directly compute its flow by taking
ρ-derivatives of Eq. (3.85). Thereby we obtain flow equations which contain higher derivatives
of the effective potential corresponding to four-point couplings emerging from the bosonic energy
dispersions. This flow equation resembles the one of a two-point function. Now, in order to be
more quantitatively accurate, we take ρ-derivatives of (3.85) to the next order, such that we
obtain the flow of those four-point couplings, which is then given by even higher derivatives.
Of course we also have fermion loop contributions, as the fermion energies also depends on the
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ρ’s, where a derivative yields the corresponding Yukawa coupling as a vertex parameter. This
iterative method can be done up to arbitrary order until the physical observables, which we are
interested in, converge. This is why we made the Taylor expansion ansatz in Eqs. (2.50) and
(2.56). Essentially, we are going to solve the flow of the Taylor coefficients up to the order of
the expansion, while all higher coefficients are simply set to zero. Effectively this constitutes a
vertex expansion approach of the effective action. The convergence of such a scheme has been
tested in Refs. [175, 331]. Note, that if the symmetry is broken, we have a non-zero minimum,
which depends on the curvature, therefore, instead of solving the flow of the curvature, we solve
it directly for the minimum κ, this is why we make the reparametrizations (2.53) and (2.58). Let
us write down the ρ-derivatives of Eq. (3.85) for the two-dimensional Taylor expansion ansatz

λ̇n,m = λn+1,m κ̇φ + λn,m+1 κ̇∆ +
∂n

∂ρnφ

∂m

∂ρm∆
U̇

∣∣∣∣loops
~ρ=~κ

+ηφ
(
nλn,m + λn+1,m κφ

)
+ η∆

(
mλn,m − 4µ2δn0δm1 + λn,m+1 κ∆

)
. (3.96)

The lowest coefficients represent the mass parameters. In the UV we typically start with small
bosonic couplings and large bosonic masses. Hence initially the flow of the couplings is dominated
by the fermion loops, while the flow of the masses have self-enhanced contributions from the
anomalous dimension terms in the lower line driving them down, as discussed below Eq. (3.85).
Since every ρ-derivative of Eq. (3.82) yields an additional minus sign it is expected that the
Taylor coefficients will have altering signs. In Fig. 3.14 the flow of the couplings for T = 0
at µ = 0 and short before µc is plotted for two-color QCD. We see for instance that the λ3,0

starts off being negative, but around the scale of the chiral phase transition it changes the sign,
because the dynamics change from the fermionic sector to the bosonic one. λ4,0 changes the sign
a few times before being negative, whereas λ5,0 is again positive. Note that the mesonic mass
parameter is connected to the expansion point via Eq. (2.57), therefore its flow is simply given
by

λ̇1,0 =
ċ√
2κφ
− cκ̇φ(

2κφ
)3 . (3.97)

This is how Eq. (3.94) enters the system. Now, plugging (3.94) and (3.97) into (3.96) into for
the case (n,m) = (1, 0) we can solve for the scale derivative of κφ and plug it into the other
equations. Furthermore, we have the following cases for the different phases

Normal regime: κ̇∆ = κ∆ = 0 ,

BEC regime: λ̇0,1 = 0 , λ0,1 = (2µ)2 . (3.98)

The latter equation actually holds at the critical scale kc, after which our potential is reparametrized
as discussed in Sec. 2.5.2. Hence for (n,m) = (0, 1) we have the scale derivative of κ∆, which
also can be plugged into the other equations. The expressions for the anomalous dimensions can
be plugged in as well. This way we always have a diagonal set of coupled partial differential
equations in the sense that there is only one scale derivative per equation for each parameter.
This set of equations along with the flow of Yukawa couplings, also given in App. C, will be
solved simultaneously for different values of the temperature and chemical potential, by which
we can draw a phase diagram.
As mentioned before, in the diquark sector, i.e. for the indexm 6= 0, there will be a µ-dependence
below µc at vanishing temperature, despite the fact that we do not consider momentum depen-
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Figure 3.14: Flow of the 2d Taylor coefficients of the effective potential for two-color QCD. The initial conditions
are given in Tab 4.1 (2d Taylor’). The red lines represent the vacuum flow, i.e. at T = µ = 0, the other lines
are at µ = 0.4mπ. The initial conditions in the UV are the same. Because in the vacuum we have the SO(4)
symmetry between meson and diquarks, all coefficients of a certain order are given by the red line. Since we
assume a vanishing momentum dependence, the flow should remain unchanged below µc = mπ/2, but this not
the case.

dences, hence the Silver Blaze property is violated. In Fig. 3.14 we see the extent of the violation.
We see a steadily rising violation for rising coefficient. The higher the order of the diquark fields
(second index) the sooner the flow starts to separate from the vacuum flow and the higher is the
violation. It even couples back to the pure mesonic couplings. It is interesting that λ2,0 starts
to deviate from the vacuum flow at around k ≈ 2µ. Nevertheless, even tough the higher order
terms have a large deviation, they do not couple back very strongly to the physically important
quantities: m∆ =

√
λ0,1 has only a deviation of about 5 MeV, this may very well be the difference

of pole and screening mass.
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1d Taylor expansion For the one-dimensional Taylor expansion of the effective potential
(2.50) we have always λn,m = λn,0, so all equations with index m > 0 in (3.96) can be dropped
out of the set. In the BEC phase we have λ̇1,0 = 0 and λ1,0 = 2µ in addition to (3.98),
since the mesonic parameters equally represent the diquark ones. In this case the grey lines
should coincide with the red lines in Fig. 3.14, except of the violation that is introduced by
the anomalous dimensions of baryonic quantities and running Yukawa couplings, which is only
minor as we will see in Sec. 3.6. Eq. (3.97) now directly represents the flow of κφ for the BEC
phase (as λ̇1,0 = 0), which is vanishing if ηφ = 0, because then c does not flow. So in that case
the chiral condensate in the BEC phase is trivially given by Eq. (2.51) simply going like 1/µ4,
without any direct influence from the FRG.
Furthermore, in the BEC phase the equation for (n,m) = (1, 0) will be replaced by the one with
(n,m) = (0, 1), which gives us the flow of κ∆. However, in order to have the onset of the diquark
condensation for T = 0 at µc = mπ

2 without violating the Silver Blaze property, the ρ∆-derivative
of the loop contribution in (3.96) must be replaced by a ρφ-derivative. The reason is that during
the vacuum flow mπ,vac =

√
λ1,0 has a minimum mπ,vac,kmin , where it falls below mπ,vac,k=0.

This is due to the interplay of fermionic and bosonic fluctuations. Now, if 2µ > mπ,vac,kmin the
system has to go into the BEC phase, where we have mπ = 2µ and a finite diquark condensate.
Then if 2µ < mπ,vac,k=0 the system goes back to the normal phase, which is quite remarkable.
The phenomenon is called pre-condensation and will be discussed in the next chapter again for
finte temperatures. We have checked that only if the flow of the diquark condensate is projected
via a ρφ-derivative, the points where κ∆ = 0 are exactly where 2µ = mπ,vac as shown in Fig.
3.15(a) for LPA. After the system goes back to the normal phase mπ goes exactly to its vacuum
value. This is only possible when the way of projection is the same in both phases. For LPA’,
shown in Fig.3.15(b), we have a slight deviation due to the violation from the baryonic quantities
mentioned above.
Actually, in LPA we only have the upper line of Eq. (3.96), and for the 1d Taylor expansion
the coefficients of the condensates is simply λ2,0 whether we project via (n,m) = (1, 0) or (0, 1).
However we cannot simply use (1,0) for LPA’ because the second line would be different. We
have seen that this leads to a decreasing diquark condensate at very large chemical potentials,
which is rather unphysical. In conclusion the flow of the diquark condensate is given by the
equation

0 = λ2,0

(
κ̇φ + κ̇∆ + ηφκφ + η∆κ∆

)
+

∂

∂ρφ
U̇

∣∣∣∣loops
~ρ=~κ

, (3.99)

By comparing the two figures in 3.15 we also see the impact of the anomalous dimension ηπ = ηφ.
The Eqs. (3.96)-(3.97) can be solved for the flow of the pion mass, then we have a term ηπmπ

and the loop contributions. In Fig. 3.15(b) we see that the former part dominates the flow at
small scales and still yields significant contributions at larger scales. Therefore it is important
to take the anomalous dimensions into account, more details can be found in Sec. 3.6.1.
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Figure 3.15: Flow of the pion mass and diquark condensate for T = 0 at µ = 0 (vac) and µ = 0.4mπ with the
different truncations. In the BEC phase the poin mass is given by mπ = 2µ which is the flat part of the dotted
line. The behavior shows that the flow in the LPA below µc is essentially identical (almost identical in LPA’) to
the vacuum flow even if there is an intermediate diquark condensate. This only works if the loop contributions
to the flow of the diquark condensate is projected out the same way as the flow of the pion mass. In order to
put it in the figure we have scaled the diquark condensate and added 2µ. In (b) also the contribution from the
anomalous dimension is shown. Note the different scales on the axes.

3.5 Vertices

In order to improve our truncation beyond the local potential approximation, we need to compute
Feynman diagrams. Therefore, apart from the propagators, we need vertices as well. Unlike in
perturbation theory, we have full vertices and full propagators instead of classical ones, which
are determined by differentiating the quantum effective action. In principle all possible higher
vertices are generated, which may not be present in the classical action, but preserve its symmetry.
We are incorporating them in the bosonic potential up to a certain order by the Taylor expansion,
corresponding to a vertex expansion. Moreover, one should introduce momentum as well as
field-dependences of the vertices in order to improve the truncation. However, in this work
we shall restrict ourselves to a scale dependence of the Yukawa couplings and wave function
renormalizations for simplicity, while the running of the bosonic couplings is incorporated in
the running of the effective potential. This has been successfully employed in studies of the
quark-meson model in Refs. [171, 173, 178].
The flow of the Yukawa couplings and wave function renormalizations can be extracted from the
flow of the two-point function, for which in general the three-point- as well four-point vertices
are needed. However, we keep the four-fermi interaction bosonized, and the tadpole diagram in
the bosonic anomalous dimensions drops out by the momentum derivative for the projection on
the wave function renormalizations, since the external momentum does not go into the loop if
the four-boson coupling is momentum independent. Thus we only need the three-point vertices.
This section is more technical.
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3.5.1 Three-Boson Vertex

A three-point function can be seen as a tensor with three indices in field space. We have a
three-boson vertex which is proportional to powers of the expansion point. Since the structure
of the expansion points (3.30) and (3.41) is very similar in both models, we have the same
three-boson vertex for the QMD-model and the QMDB-model in the normal phase. The only
difference is that the number of fields is extended in the QMDB-model and therefore the indices
can have different maximum numbers dim(ϕ). We will only apply the three-boson vertex in the
real representation of the diquark fields. For this calculation it is more convenient to carry it out
in position space and do the Fourier transformation at the end. We essentially differentiate Eq.
(3.32) without having the delta functions dropped

δ3Γ

δϕk(z)δϕj(y)δϕi(x)

=

(
∂2ρl

∂ϕj∂ϕi

∂ρn
∂ϕk

δ(z − x) +
∂2ρn
∂ϕk∂ϕj

∂ρl
∂ϕi

δ(z − y) +
∂ρn
∂ϕj

∂2ρl
∂ϕk∂ϕi

δ(z − x)

)
∂2U

∂ρn∂ρl
δ(y − x)

+
∂ρm
∂ϕk

∂ρn
∂ϕj

∂ρl
∂ϕi

∂3U

∂ρm∂ρn∂ρl
δ(z − x)δ(y − x).

Now we use that δ(z − y)δ(y − x) = δ(z − x)δ(y − x) and evaluate the vertex at the expansion
point

δ3Γ

δϕk(z)δϕj(y)δϕi(x)

∣∣∣∣
ϕ0

=

[ (
Zφσδk4 + Z∆∆δk5

) (
Zφσδi4 + Z∆∆δi5

) (
Zφσδj4 + Z∆∆δj5

)
Vijk

+Zjδji
(
ZφσVφjδk4 + Z∆∆Vj∆δk5

)
+ Zkδkj

(
ZφσVφkδi4 + Z∆Vk∆∆δi5

)

+Ziδik
(
ZφσVφiδj4 + Z∆∆Vi∆δj5

) ]
δ(z − x)δ(y − x)

≡ Γϕkϕjϕiδ(z − x)δ(y − x) . (3.100)

Note that the fist line corresponds to the last line in the previous equation. Apart from the
Kronecker delta, we apply the convention that the index is set to φ if it corresponds to a mesonic
field, and to ∆ if it corresponds to diquark field in ϕ. Accordingly Vijk, where the indices denote
ρ-derivatives, can either have three derivatives with respect to one species or two with respect to
one and one with respect to the other. However, in this work this particular part of the vertex
will not arise anywhere else. Now it is apparent that extending the model with red and green
diquarks only extends the maximum range of the indices and nothing more. The momentum
representation of this vertex can be found straightforwardly. With the relation between the field
and its Fourier transform δϕi(x)

δϕj(p)
= eipxδij , we find

δ3Γ

δϕk(p)δϕj(p′)δϕi(q)
=

∫

x,y,z
ei(px+p′y+qz) δ3Γ

δϕk(z)δϕj(y)δϕi(x)

= Γϕkϕjϕi

∫

x
ei(p+p

′+q)x

= Γϕkϕjϕiδ(p+ p′ + q) . (3.101)
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Figure 3.16: These are the three boson vertices that we are going to need. The cross denotes the mesonic and
diquark background fields. The diquark line does not have an arrow since in the real representation, as they
represent a superposition of both charges.

So essentially only the delta functions were transformed. We see that we can only have a three-
boson vertex at finite background fields or condensates, where at least one radial mode must
be involved in the interaction. Effectively such a process corresponds to four-point (six-point)
interaction, where the forth (fifth and sixth) particle is connected to the background as it is
pictorially shown in Fig. 3.16.

3.5.2 Three-Point Vertices with Fermions

Before we compute the three-point vertices of the fermions, we apply the Fourier transformation
(3.13) to a three-point interaction term in the effective action

∫

x
Φi(x)Φj(x)Φk(x) =

∫

p,p′,q
Φi(p)Φj(p

′)Φk(q)

∫

x
e−i(p+p

′+q)x

=

∫

p,p′,q
Φi(p)Φj(p

′)Φk(q)δ(p+ p′ + q)

The three-point vertices involving fermions that we have in the QMD-model, are the ones with
the Yukawa coupling, which induce interactions between fermions and mesons or diquarks. Dif-
ferentiating the effective action with respect Ψ̄(p) and Ψ(p′) yields the two-point function of
which only the interaction terms are

−→
δ

δΨ̄(p)
Γ

←−
δ

δΨ(p′)

∣∣∣∣∣
int

=

∫

q
δ(p+ q + p′)Zq

(
i
√
Zφhφ(σ + iγ5~τ · ~π) −√2Z∆h∆∆γ5

−√2Z∆h∆∆∗γ5 i
√
Zφhφ(σ − iγ5~τ · ~π)

)
(q)

(3.102)

The argument to the right of in the matrix indicates that all fields carry the momentum q. Now,
differentiating with respect to any bosonic field with the argument q′ leaves the corresponding
coupling with a tensor structure and a delta function δ(p+ q′ + p′) ensuring momentum conser-
vation at the vertices. It is irrelevant from which side we let the bosonic derivative act, we will
just put the index in between the fermionic ones. The vertices read (delta functions are omitted)
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ΓΨ̄σΨ =
√
ZφZqihφ 1 ΓΨ̄πiΨ

=
√
ZφZqhφ

(
−γ5τi 0

0 γ5τi

)

ΓΨ̄∆Ψ =
√

2Z∆Zqh∆

(
0 −γ5

0 0

)
ΓΨ̄∆1Ψ =

√
Z∆Zqh∆

(
0 −γ5

−γ5 0

)
(3.103)

ΓΨ̄∆∗Ψ =
√

2Z∆Zqh∆

(
0 0
−γ5 0

)
ΓΨ̄∆2Ψ =

√
Z∆Zqh∆

(
0 −iγ5

iγ5 0

)

The unit matrix 1 = 1c × 1f × 1D is composed of a tensor product of unit matrices in color,
flavor and Dirac space. If there is no tensor structure regarding a particular space, an identity
matrix is implied. In the upper line the mesonic vertices are displayed. In the lower left column
we see the diquark vertices in the complex representation, while in the right column we see them
in the real representation. The factor in the front naturally differs by a

√
2 due to Eq.(2.47),

which is compensated by the extra nonzero component in real representation. The fact that
mesonic vertices are diagonal in contrast to the diquark vertices, simply reflects the fact that the
mesons couples to pairs of quark-antiquark field, while in the quark-diquark interaction there is
a directional flow of net baryon number, see Fig. 3.17. Furthermore we can see that a small
wave function renormalization leads to a small vertex amplitude, which is quite natural since the
corresponding field must be decoupling from the system. These vertices are embedded in the
QMDB-model as well, which are shown explicitly in App. B.2. The pictorial representation of
the baryon vertices is shown in Fig. 3.17.
Note that if the fermionic indices are the other way around, a minus sign appears, more generally
ΓΨ̄ϕiΨ

= −ΓT
ΨϕiΨ̄

. This is accounted for by transposing the term in the effective action by which
a fermionic interchange takes place, before taking the derivative.

Figure 3.17: In the upper line we have the Yukawa interactions with sigma, pion and diquark fields and in the
lower line we see the baryon vertices. The baryon-meson interactions is analog to the quark-meson one. On the
right we see the quark-diquark-baryon vertex. Here all lines correspond to the original representation of the
fields as they were written in the action (2.35) and (2.36). Note the different arrows indicating the flow of the
baryon number.
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3.6 Flow of the Two-Point Function

Let us derive a general equation for the flow of a two-point function, starting with

∂tΓ[Φ] =
1

2
STr

1

Γ(2)[Φ] +R
∂tR =

1

2
STr ∂̃t ln

(
Γ(2)[Φ] +R

)
, (3.104)

where Φ is a general multicomponent field, as introduced in the beginning of this chapter. We
use the formal scale derivative ∂̃t which only acts on R, and rewrite the one-loop form of the
flow equation as

∂̃t ln
(

Γ(2)[Φ] +R
)

= ∂̃t ln
(

Γ(2)[Φ0] +R+ ∆Γ(2)[Φ− Φ0]
)

= ∂̃t ln
(

Γ(2)[Φ0] +R
)

+ ∂̃t ln

[
1 +

(
Γ(2)[Φ0] +R

)−1
∆Γ(2)[Φ− Φ0]

]
,

where G−1 = Γ(2)[Φ0] + R is independent of the fluctuating fields, so the first term does not
survive any projection. For the second part we use ln(1+x) = x− 1

2x
2 +O(x3). Only the second

order term survives the projection to the flow of a two-point function

−→
δ

δΦi(−p)
∂tΓ[Φ]

←−
δ

δΦj(p′)
=

1

2

−→
δ

δΦi(−p)
−1

2
STr

[
∂̃t

(
G∆Γ(2)

)2
] ←−

δ

δΦj(p′)
. (3.105)

We can already set p′ to zero, p will be set to zero after differentiation for the case of obtaining the
flow of the kinetic term. For the derivative of ∆Γ(2) we now introduce the notation Γ

(3)
Φi

=̂ΓΦnΦiΦm
,

which has the dimensions of a matrix. The middle index, which will not be summed over, denotes
the external derivative. After differentiation we find two different terms, where the external fields
are interchanged with a possible minus sign for the case of fermionic derivatives, defined in Eq.
(3.16)

Γ̇ΦiΦj (−p, p′)
∣∣∣
Φ=Φ0

= −1

4
∂̃t str

∫

q,s,t,v

[
G(q,−s)Γ(3)

Φi
(−s,−p, t)G(t,−v)Γ

(3)
Φj

(−v, p′, q)

+(−1)ijG(q,−s)Γ(3)
Φj

(−s, p′, t)G(t,−v)Γ
(3)
Φi

(−v,−p, q)
]∣∣∣

Φ=Φ0

.

The derivative operator always passes trough twice the same index, except for the first one on
the leftmost or rightmost side. The possible minus signs emerging from those cancel each other,
if both derivatives are fermionic or bosonic, which is usually the case. So the only possible minus
sign is in the lower line where the derivatives pass each other. We have omitted the four-point
interactions, since they will not contribute to the flows of Yukawa couplings and wave function
renormalizations. A momentum-independent four-point coupling drops out after differentiation
with respect to the momentum. Solving the momentum structure for momentum-independent
couplings yields

Γ̇ΦiΦj (p)δ(p− p′)

= −1

4
∂̃t str

∫

q,s,t,v

[
G(q)δ(q − s)Γ(3)

Φi
δ(−s− p+ t)G(t)δ(t− v)Γ

(3)
Φj
δ(−v + p′ + q)

+(−1)ijG(q)δ(q − s)Γ(3)
Φj
δ(−s+ p′ + t)G(t)δ(t− v)Γ

(3)
Φi
δ(−v − p+ q)

]

= −1

4
∂̃t str

∫

q
G(q)

[
Γ

(3)
Φi
G(q + p)Γ

(3)
Φj

+ (−1)ijΓ
(3)
Φj
G(q − p)Γ(3)

Φi

]
δ(p− p′) .̇̃ (3.106)
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Here the vertex functions are evaluated at the expansion point Φ0 and the delta functions are
excluded, as denoted by the missing arguments. The str operator acts in all spaces except
for momentum space. By choosing specific fields, the left-hand side is projected on the scale
derivative of the corresponding inverse propagator, while the right hand side represent its β-
function. In particular we will apply momentum derivations on the above equation in order to
project on the kinetic part and obtain the flow of wave function renormalizations. Furthermore
we will use it for obtaining the flow Yukawa couplings, since they appear in the gaps of the
fermion propagator. More details will be delivered in the following subsections.
Considering the momentum dependence n-point functions requires high numerical effort, this
will not be a subject of this work. For the mesonic two-point function it has been done in
[180] for finite temperature, where it was shown that that there is only a mild momentum
dependence. For the fermionic two-point and four-point functions it was done in [186], where
the RG flow in the vacuum starting from classical QCD was studied without tuning low energy
parameters. Furthermore in [179] the effects of a scale and field dependent Yukawa coupling in a
low energy quark-meson model for finite temperature and chemical potential were tested, where
some quantitative effects were observed. In [185] the same was studied for the vacuum staring
from classical QCD. Here, we are going to allow for a simple scale dependence of the two-point
functions by running wave function renormalization and running Yukawa coupling without any
further dependencies. For the diquark and baryon sector it has not been done before.
In the QMDB-model in the presence of a diquark background field the color symmetry is bro-
ken, therefore in principle we must distinguish between the red-green sector and blue sector of
quarks and diquarks, meaning that we must introduce separate coupling constants and anoma-
lous dimensions. However we are going to neglect the discrepancy in this work for simplicity and
compute only the flow of the red-green parameters and associate them to all colors.
In the following we will turn to the anomalous dimensions. There are two conventional ways of
introducing the wave function renormalizations in an RG framework: Either as a non trivial run-
ning of the kinetic term or as field strength renormalization of the fluctuating fields. Employing
the former way implies that a small wave function renormalizations entails an non-propagating
mode. Therefore a decrease of Z with rising k leads to reduction of the flow by the anomalous
dimensions as it can be seen in Eq. (3.82). Employing the latter way leads to the interpretation
that if the renormalized quantum fields are small, the quantum fluctuations of the associated
particles must be small as well. The consequence for Eq. (3.82) is the same. Moreover the vertex
functions are reduced as it can be seen in Sec. 3.5. Hence, both descriptions are equivalent which
also can be shown by a rescaling of the parameters. The anomalous dimensions do not appear
in the thermal distribution functions, since ordinary thermal excitations are not directly affected
by the field renormalization. At finite temperature Lorentz symmetry is broken, therefore the
time-like part of the kinetic term should be renormalized independently by a wave function renor-
malization conventionally denoted as Z‖, indicating that it is parallel to the heat bath. However,
in the UV and more specifically at T/k < 1, the flow is only weakly affected by the heat bath.
On the other hand for T/k � 1 all nonzero Matsubara modes decouple from the system. Hence
only in the critical regime Z‖ could have a measurable impact, which we are going to neglect
here by setting Z‖ = Z. We mention that in general the anomalous dimensions depend on each
other and therefore they constitute a system of linear equations, which should be solved before
plugging them into the flow equations. Furthermore, we remark that in our approach the flow
of bosonic masses do not need to be computed via the two-point function, since they are part of
the effective potential, which has its own flow equation.
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3.6.1 Bosonic Anomalous Dimensions

Before turning to the actual flow equation that we will compute, we would like to make some
general remarks. The wave function renormalization are in general momentum dependent func-
tions like for the diquark Z∆(~p2 + (p4− iµ∆)2) at T = 0, where µ∆ is diquark chemical potential.
Then the projection onto kinetic term looks the following way

∂

∂~p2
Ż∆

(
~p2 + (p4 − iµ∆)2

) (
~p2 + (p4 − iµ∆)2

) ∣∣∣
p=0

= Ż∆(−µ2
∆)− Ż ′∆(−µ2

∆) µ2
∆ ,

where we assumed that the field derivatives with respect to ∆ and ∆∗ were already taken. For
a nonzero baryon charge we obtain a trivial dependence on the chemical potential on the left-
hand side of the flow equation by projecting it onto a vanishing momentum. Even if we do not
write a momentum dependence in Z∆ the right-hand side of the flow equation will yield the
corresponding contributions nonetheless. In order to avoid the flow of Z ′∆ it is important to go
into the real representation of the diquark field, where µ only couples off-diagonally to ∆1 and
∆2 as it can be seen in Eq. (3.34). Thus, taking two derivatives with respect to one of these
fields will drop the chemical potential term.
There is a similar problem at finite values of the field as was shown in [179]. In general there must
be a field dependence in the wave function renormalizations generated by the RG-flow. Consider
the mesonic case: Although the mesons are O(4) symmetric a non-symmetric expansion points
leads to different projections

∂2

∂π2
i

Żφ(φ
2)

2
(φ2 − φ2

0)
∣∣∣
φ2=φ2

0

= Żφ(φ
2
0)

∂2

∂σ

Żφ(φ
2)

2
(φ2 − φ2

0)
∣∣∣
φ2=φ2

0

= Żφ(φ
2
0) + 4φ2

0Ż
′
φ(φ

2
0) (3.107)

where the momentum derivative was already taken. Here the index i is not summed over. We
have added an irrelevant term with the constant expansion point φ0 = (~0, σ). Thus, we obtain
again additional contributions to the right-hand side of flow by projecting onto the radial mode,
even if we do not consider a field dependence in the wave function renormalization. The flow of
such additional term has been studied in [180]. In order to avoid the flow of Z ′φ we must employ
a projection by the Goldstone mode. For the diquarks the imaginary part ∆2 is the Goldstone
mode.

From Eq. (3.34) and (3.35) we see that we can make a projection onto the bosonic anomalous
dimensions by taking a derivative of the corresponding part in Eq. (3.106) with respect to the
space-like momentum, as Lorentz symmetry is broken at finite temperature, in the following way

ηϕi = − 1

Zϕi

∂

∂~p2
Γ̇ϕiϕi

∣∣∣
p=0

=
1

4Zϕi

∂

∂~p2
∂̃t str

∫

q
G(q)Γ(3)

ϕi

[
G(q + p) +G(q − p)

]
Γ(3)
ϕi

∣∣∣
p=0

=
1

2Zϕi
∂̃t

∂

∂~p2
str
∫

q
G(q)Γ(3)

ϕi G(q + p)Γ(3)
ϕi

∣∣∣
p=0

, (3.108)

where the definition in Eq. (3.21) was used. In the second term of the second line we have
shifted the momentum integration variable q → q + p and used the cyclic property of the trace,
however this has to be done carefully, as we are dealing with a supertrace, which gives a minus
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ηφ =
1

Zφ
∂̃t

∂

∂~p2


 + +

−tr




+ +


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Figure 3.18: Diagrammatic equation for the mesonic anomalous dimension after dissolving the str. In the upper
line we see the bosonic contributions, and in lower line the fermionic ones. Although they have a negative sign,
the contribution is not necessarily negative due to the complex valued and tensor structured quark vertices
(3.103). The external momentum p in each loop runs through one of the propagators; which one is irrelevant
since the integration variable can be shifted, hence the cancellation of the factor 2 in (3.108). The scale- and
momentum derivatives lead to more propagators inside the loop as well as a regulator insertion cutting off the
loop integration. At high energies the background fields are typically small or vanishing, so all diagrams with
crosses do not contribute, which leaves only one fermion loop. The diagrams with the diquark background fields
naturally contribute only in the BEC phase.

sign if the indices, which are summed over by the trace, are fermionic. A cyclic permutation
can move the outer fermionic indices away and then have bosonic ones instead. However, for
the bosonic anomalous dimension, we do not have any diagrams, where fermionic and bosonic
propagators are mixed, therefore, if fermionic indices are moved away, they will only be replaced
by other fermionic ones, so the minus sign will still be there. This equations will be solved
for the Goldstone modes ϕ1 = π1 and ϕ6 = ∆2. The explicit computation can be found in
App. C.1. Interestingly, if we set the external time-like component of the momentum to the
imaginary chemical potential p4 = iµ for ρ∆ = 0 at vanishing temperature und below µc for the
diquark anomalous dimension we obtain η∆ = ηφ for two color QCD. This way, we can ensure
the Silver Blaze property For µ = 0 they must coincide anyway due the SO(6) symmetry, even
at nonvanishing temperature.
The bosonic anomalous dimension receive contributions from a fermion loop and a bosons loop,
which is exemplary shown in Fig. 3.18. Since the bosonic three-point vertex is proportional to the
condensates, there are only contributions in the broken phases. As chiral symmetry is explicitly
broken, there is always a finite contribution, which is small at large scales and temperatures,
due to the decoupling of bosons. In the UV we typically start with small bosonic wave function
renormalizations. Here the fermion loop is the main and a powerful drive for its flow. They rise
up until the critical scale, which leads to nonzero values of the anomalous dimensions reducing
the bosonic contribution in Eq. (3.82), and enhancing the symmetry breaking. This in turn
means that the curvature of U flattens out faster and bosonic contribution become stronger.
Altogether the flow around the critical region becomes more turbulent. However, in total the
fermionic contribution is larger, since the bosons set in only around the critical scale. In order
to avoid that the fermions overly flatten the effective potential, its curvature has to be chosen
larger in the UV. This leads us to the inference that the bosons decouple much stronger in the
UV, by the inclusion of anomalous dimensions, which was also concluded from Eq. (3.85).
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Figure 3.19: The dimensionless parameters in our truncation for two-color QCD with the 2d Taylor’ truncation,
c.f Tab. 4.1, for µ = 0 (a) and T = 0 (b). The wave function renormalizations are normalized to their initial
values in the UV. The explanations of each parameter can be found in the respective subsections.

In Fig 3.19 the temperature/chemical potential dependence of the wave function renormalizations
are shown. As fermionic fluctuations are suppressed at high temperatures, the wave function
renormalizations stay small and the effects of the anomalous dimensions are suppressed as well.
At large chemical potentials only the mesonic one becomes smaller. Regarding the Silver Blaze
property, we see visible effects of the chemical potential for the diquark anomalous dimension
below µc = mπ/2. Since it is a baryonic quantity, µ cannot be shifted away in the integral as
opposed to the mesonic case. We see in the figure that Z∆ has the strongest µ dependence, which
is due to the fact that it runs with a pure quark loop. However, we have seen in the flow of
the mass parameter for the 1d Taylor expansion in Fig. 3.15(b) that there is only a minor back
coupling to effective potential.

3.6.2 Fermionic Anomalous Dimensions

Quarks

From Eq. (3.50) it is easy to see that the kinetic part of the Γquark in momentum space is
given by

∫ ′
p ZqΨ̄(−p′)/p′Ψ(p′), so we can project the flow equation onto the quark wave function

renormalization by taking derivatives of the flow equation with respect to the quark fields Ψ̄(−q)
and Ψ(p) and with respect to the absolute value of the momentum, after multiplying a unit
vector in the momentum direction. Then contracting all fermionic indices with a ~γ, in order to
avoid a zero from the trace, leads to the following equation for the QMD-model:

4NfNc∂tZq = < ∂

∂|~p|tr
(
/̂~p Γ̇Ψ̄Ψ

) ∣∣∣
p=pmin

, (3.109)

where the fermionic part of Eq. (3.106) was taken and ~̂p = ~p
|~p| . Here the trace acts in all

fermionic subspaces, i.e. color-space, spinor-space and flavor space, thus the factors Nc and Nf

on the left-hand side. The numerical factor originates from the spinor space
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∂

∂|~p|tr /̂~p/~p =
∂

∂|~p|
pipj
|~p| tr γiγj =

∂

∂|~p|
pipj
|~p| 4δij = 4

∂

∂|~p| |~p| = 4 , (3.110)

where the index i represents the space-like components i = 1, 2, 3 and is summed over. The
time-like component is left out, since at finite temperature Lorentz symmetry is broken. The
external momentum in Eq. (3.109) is set to the minimum value. If the external legs of a
diagram are fermionic, the minimal incoming momentum is pmin = (πT,~0) at finite temperature,
where the time-like component is given by the lowest fermionic Matsubara frequency. Here
the contributing fluctuations are given by a self energy type loop diagram with a bosonic and
a fermionic propagator, hence, momentum conservation at the vertex implies that one of the
propagators carries on a fermionic Matsubara frequency, depending on which one carries the
external momentum. However, by shifting the loop integration of the frequencies by πT , we
can always achieve that the fermionic propagator carries on the fermionic Matsubara frequency,
which is more convenient.
Similar to the bosonic case, considering the momentum dependence of the wave function renor-
malization as Zq(~p2, (p4 − iµ)2) leads to an additional term on left-hand side ∝ Ż ′q~p

2 at finite
external momentum, whereas at pmin a dependence in Eq. (3.109) remains as Zq((πT − iµ)2).
Here we see that the fermionic wave function renormalization, and generally the fermionic n-point
functions, become manifestly complex at finite temperatures. This is expected by an extrapola-
tion of the Silver Blaze property, where at T = 0 we have the same problem for finite external p4.
Although we do not consider a momentum dependence, the complex parts are generated by the
RG-flow nevertheless, therefore it is important to project out the real part of the flow equation
in our scheme, in order to keep the action real valued. If indeed one would solve the momentum
structure, the action becomes real valued by virtue of the p4-integration, even if the couplings
are not, similar to the kinetic term. Plugging in the corresponding part of Eq. (3.106) into Eq.
(3.109) the quark anomalous dimension is given by

ηq =
1

16NfNcZq
< ∂̃t

∂

∂|~p| ~̂p · ~γαβ str
∫

q
G(q)

[
Γ

(3)

Ψ̄β
G(q + p)Γ

(3)
Ψα
− Γ

(3)
Ψα
G(q − p)Γ(3)

Ψ̄β

] ∣∣∣
p=pmin

(3.111)

where again the definition (3.21) was applied. The minus sign in the middle is due to the
interchange of the external fermionic derivatives. After the supertrace is dissolved, we obtain a
matrix in fermion space, due to the external derivatives, which then is contracted with ~γ. The
notation is a bit sloppy, since α and β represent all fermionic subspaces, where it is implied
that ~γ has a trivial structure in color and flavor space. We cannot summarize the two terms
under the integral as for the bosonic case, since we have mixed loops with bosonic and fermionic
propagators, and therefore shifting the terms might jeopardize the minus sign of the supertrace.
However, after it is dissolved, the terms can be summarized, which is shown in App. C.2 as well
as the rest of the computation. It is done in complex representation of the diquark field, for this
way mixing terms can be avoided.
As we see in Fig. 3.19 the quark anomalous dimension stays small because its flow is suppressed
either by boson masses in the symmetric regime or by the quark mass in the broken regime.
Hence only at the critical regime we have some measurable contributions. Therefore we do not
see a large violation of the Silver Blaze property either. At large T and µ the meson anomalous
dimension is smaller. The flow of Zq is reduced by ηφ (see. Eq.(C.11)), which stays small at
large T and µ. Thus, even if the mesons are heavier there is still a running of Zq and therefore
it stays rather flat. Only at the critical temperature, where all masses are more or less light, a
slight peak can be seen.
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ηq =
1

4NfNcZq
< ∂̃t

∂

∂|~p|tr /̂~p
(

3 + +

)∣∣∣∣∣
p=pmin

Figure 3.20: Diagrammatic equation for the quark anomalous dimension, after dissolving the str. A trace
operation in the fermionic space is left, after which the factors of degeneracy cancel out. Moreover, we have a
multiplicity of 4 since the external legs can be interchanged and the external momentum can be carried either by
the quark or by the boson. Note that only the part of the quark propagator disconnected from the background
is projected out, which is ∝ /~qr or ∝ (/~q±/~p)r. Due to a missing factor of 2, the degeneracy of pions and diquarks
in QC2D may not be apparent. The factor is included in the definition of the complex diquark vertices (3.103).

Baryons

It is important to incorporate a running wave function renormalization for the baryons in the
QMDB-model in order to have the correct decoupling behavior towards the UV. This will be more
clear in the next subsection when we look at the baryon mass. The flow equation is projected out
similar to Eq. (3.109) with an additional projection operator extracting the baryonic component
in Nambu-Gorkov space

4Nf∂tZB = < ∂

∂|~p|tr
(
/̂~pP̂BΓ̇Ψ̄Ψ

) ∣∣∣
p=pmin

with P̂B =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 . (3.112)

Naturally there is no color factor for the baryons. The previous discussion applies here in the
same way. In Fig. (3.21) we see the contributions to the corresponding anomalous dimension
in diagrammatic form, the explicit equation is given in App. C.2. Since the at least one of the
propagators in the loop, always has a large mass gap, our numerical computation did not show
a substantial running of ZB.

ηB =
1

4NfZB
< ∂̃t

∂

∂|~p|tr /̂~p
(

3 + +Nc

)∣∣∣∣∣∣
p=pmin

Figure 3.21: Diagrammatic equation for the baryon anomalous dimension in the normal phase, which is anal-
ogous to Fig. 3.20. Here, the trace acts in the baryonic subspace. The quark-diquark contribution has a
degeneracy of Nc counting each color.
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3.6.3 Baryon UV Mass Gap

Here we are going to see how the baryons of QCD decouple at high energies. We need to
compute the flow equation for the UV-mass gap parameter. The projection is done similar as
for the baryonic wave function renormalization only without the momentum derivative

4Nf∂t
(
ZBm

UV
B

)
= < tr

(
/̂~pP̂BΓ̇Ψ̄Ψ

) ∣∣∣
p=pmin

(3.113)

The factor in the front is the same as before, however it originates from a different way:
tr/̂~p/̂~p =

pipj
~p2 4δij = 4. On the left-hand side the scale derivative also acts on the wave function

renormalization, therefore we obtain two terms by the product rule. Then dividing the equations
by ZB and solving for the flow of the mass gap yields

∂tm
UV
B = ηBm

UV
B +

1

4NfZB
< tr

(
/̂~pP̂BΓ̇Ψ̄Ψ

) ∣∣∣
p=pmin

. (3.114)

We have a trivial running of the mass gap with the anomalous dimension, which is very important.
If we had a strong running of ZB implying a large ηB, the first term would be the strongly
dominating one, especially because it is self-enhancing, whereas the diagrams are subleading, see
Fig 3.22. In fact the loop contributions are negative and should just give a very little inhibition
to the flow. The leading term should be responsible for the rise of mass gap towards the UV and
thus for the decoupling of the baryons. Then, if the baryons are heavy the loop diagrams cease
to contribute, however as long as ηB is finite the self-enhancement stands. Anyway, our model is
valid only up the cutoff Λ ≈ 1 GeV, above which gluon dynamics must be included. The explicit
flow equation can be found in App. C.3. However, unfortunately ηB always remains small, as
we have indicated above, so if mUV

B is large in the UV it remains large. Thus the baryons cannot
be included in our FRG framework yet.

∂tm
UV
B = ηBm

UV
B +

1

4NfZB
< ∂̃t tr /̂~p

(
3 + +Nc

)∣∣∣∣∣∣
p=pmin

Figure 3.22: Diagrammatic equation for the baryon UV - mass gap in the normal phase, which is analogous to
Fig. 3.21. The trivial running with the anomalous dimension should be the dominating contribution and leads
to a strong rise of mUV

B towards the UV.

3.6.4 Yukawa Couplings

Although the Yukawa couplings are associated with three-point interactions, we can compute
their flows from self-energy type diagrams. This is also connected to the fact that the Yukawa
couplings are part of the gaps in the quark propagator. To that end, we must consider the
expansion point ϕ0 as a variable such that ∂tϕ0 = 0, and set it to the running minimum after
the projection procedure, similar as for the flow of the bosonic couplings in Sec. 3.4.3. From Eq.
(3.102) we can see how to obtain the projection onto the Yukawa couplings
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4NfNciσ ∂t

(
Zq
√
Zφhφ

)
= = tr

(
Γ̇Ψ̄Ψ

) ∣∣∣
p=pmin

, (3.115)

4NfNc∆ ∂t

(
Zq
√

2Z∆h∆

)
= < tr

(
P̂∆Γ̇Ψ̄Ψ

) ∣∣∣
p=pmin

with P̂∆ =

(
0 −γ5

−γ5 0

)
.

(3.116)

If the bosonic fields would have been set to the running minimum, we could not have pulled
them out of the scale derivative. In fact they will cancel on both sides of the equation. It
can be checked that these definitions are equivalent to the conventional projection via the third
derivatives. The left-hand side of Eq. (3.115) is purely imaginary, therefore we have to take the
imaginary part of the flow on the right-hand side, as we want to keep the parameters real. Now
we divide the above equations by the wave function renormalizations and solve for the flow of
the coupling

∂thφ =

(
ηq +

ηφ
2

)
hφ +

1

4NfNc

1

Zq
√
Zφiσ

= tr
(

Γ̇Ψ̄Ψ

) ∣∣∣
p=pmin

, (3.117)

∂th∆ =

(
ηq +

η∆

2

)
h∆ +

1

4NfNc

1

Zq
√

2Z∆∆
< tr

(
P̂∆Γ̇Ψ̄Ψ

) ∣∣∣
p=pmin

(3.118)

The matrix inside the trace is essentially given by the same supertrace as in Eq. (3.111).
Now a specific expansion point can be choosen for ϕ0; we will choose the running minimum
(ρφ, ρ∆) = (κφ, κ∆), where the relation between the ρ’s and the ϕ0 is given in (3.30). Similar
to the quark anomalous dimension the loop diagrams are always gapped either by the fermion
mass or the boson mass, however the Yukawa couplings receive the dominating contributions
from the anomalous dimension, in particular the bosonic ones. Hence we expect that Yukawa
couplings to decrease in IR, even tough the diagrammatic contributions to the flow is negative,
as it can be seen in App. C.4. Around the critical scale, where all masses are light, there will be
a competition of both contributions. For two-color QCD at µ = 0 both Yukawa couplings must
coincide at all scales, which is indeed the case and can be seen in the corresponding limits of the
flow equations in App. C.4.
Let us make a remark about the flow of the baryon number in Feynman diagrams, see Fig (3.23),
as it is a good way to test the correctness of the derivation. In the diagrams corresponding to
the flow of the mesonic Yukawa coupling, as well as the quark anomalous dimension, there is
an external baryon number flow, which essentially flows in one direction. In the diagrams with
the mesonic self energy contribution the baryon number inside the loop is carried by the quark
propagator in the direction with coincides with the external one. On the other hand, in the
diagrams with the diquark self energy contribution the quark and diquark propagators carry
baryon numbers in opposite directions, where the diquark carries it along the the external flow,
since its baryon number is twice the one of the quarks. Hence the net baryon flow is conserved.
This is reflected in the flow equations explicitly by the fact that (anti-) quark propagator is only
paired with (anti-) diquark propagator. The reason why they both correspond to (anti-) particle
propagators is that in the loop diagram they propagate in opposite directions, hence at a vertex
one must be counted as incoming, while other one as outgoing. Accordingly the flow of the
baryon number must be counted oppositely.
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Figure 3.23: These are the processes contributing to the Yukawa couplings in somewhat sloppy notation; the
different signs actually manifest themselves after the trace operation (which is dropped) is carried out. Note that
only the parts of the quark propagator connected to the background fields are projected out, which essentially
means that the diagrams are proportional to σ and/or ∆, which (partly) cancel out. Hence the diagrams with
a single connection to the background do not vanish in the absence of the backgrounds; in fact they have a
resemblance to the typical triangle diagrams for three-point functions. Actually, the only vanishing diagram is
the one with three connections to the diquark background, since we have finite σ in all phases.

In the flow of the diquark Yukawa coupling there is no contribution with the main diquark
propagator G±∆ , only the ones proportional to the background field (G|∆| and Gσ∆) contribute.
In order to understand why, it is better to think in terms of diagrams in the original definitions
of the quark field q. If we had a ∆∆∗-like propagator in Fig. 3.23, one vertex must have been
a q∆q-interaction and the other a q̄∆q̄ one. On the other hand, the external legs of diagrams
contributing to ḣ∆ correspond to either both q or both q̄ fields, hence such a diagram is not
possible.
This is also consistent with the flow of the baryon number in the diagrams. The baryon number
flows in (or out) from both sides of the diagram, then it flows out to (in from) the diquark
background field, which either is connected to the quark propagator or the boson propagator. Of
course, the background field is canceled out in the equation, thus for most terms it is irrelevant
whether there is background or not. The diquark contribution is entered via the mixing terms
in Gϕ, therefore it is important to refrain from setting the fields to zero before the derivation is
complete, even if the condensates are vanishing.
The Yukawa couplings as functions of temperature and chemical potential are shown in Fig. 3.19.
The temperature dependence is similar as the scale dependence. At large T they do not run much
because the bosons are decoupled and ηφ stays small as well. So the Yukawa couplings stay close
to their initial values, whereas for small temperatures they run down as we have discussed above.
The violation of the Silver Blaze property is negligible for both Yukawa couplings. Thers is only
a slight growth of h∆ because there is more baryon number in the diagrams. After µc additional
diagrams contribute with opposite signs and thus we see a rather non-trivial behavior of h∆.
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Chapter 4
Chiral & Diquark Condensation

In this chapter we will show the main numerical results of this thesis. The phase diagram of
strongly interacting quark matter is determined by the breaking of symmetries through finite
expectation values of certain correlations. If a symmetry is broken, it usually entails a signif-
icant change of the dynamics of the system. As throughout this thesis we will focus on chiral
& diquark condensation. A chiral condensate leads to large constituent quark mass, while di-
quark condensate implies baryon superfluidity in two-color QCD or color superconductivity in
QCD. With the inclusion of fluctuations by the renormalization group equations derived in the
previous chapter, we hope to obtain a higher quantitative accuracy and a better understanding
of the physical mechanisms behind. As we have already mentioned, we are able to see a pre-
condensation phase, which was never observed in the context of quark matter. We will shed
more light on this matter, after discussing the boundary conditions first. Then we will look at
the condensates for two-color QCD, which we obtain by solving the FRG equations for a certain
range of the temperature and chemical potential, allowing us to map a phase diagram. We will
show results for different truncation and compare to previous results in the literature, before
going a bit deeper into the effects of different truncations and also boundary conditions. Finally
we will show our result for the phase diagram of QCD including the 2SC phase. The baryons are
not included at this point. In this chapter the condensates, given by the minimum of the effective
potential, are denoted as 〈σ〉 =

√
2κφ and 〈∆〉 =

√
2κ∆. Note that compared to the bosonic

fields as defined before, a factor of the corresponding
√
Z is involved in each of these definitions.

They are the renormalized order parameters and the actual, physical minimum values.

4.1 Boundary Conditions

In Tab. 4.1 the initial conditions are displayed for our different truncations. The one with
highest number of running parameters is denoted as 2d Taylor’ with three running wave function
renormalizations Zφ, Z∆, Zq, and two running Yukawa couplings hφ, h∆. In 1d Taylor’ we
take only the running of the meson Yukawa coupling and set h∆ = hφ, and similarly all Taylor
coefficients of a certain order are given by the pure mesonic one. However, the wave function
renormalizations of mesons and diquarks are independent. The Taylor expansion is always to
the order of N = 5 in the ρ′s. In the UV we always start with an SO(6) symmetric potential,
where the Taylor expansion is effectively 1d.
The initial conditions for the first three cases in the table are tuned such that when all fluctuations
are integrated out, we obtain an

√
Nc-scaled pion decay constant of fπ ' 76 MeV in vacuum
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Λ [MeV] 〈σ〉Λ [MeV] mφ,Λ [MeV] λ2,0,Λ hφ,Λ mπ [MeV] 2µc [MeV]
2d Taylor’ 900 2.28 1135 89.0 6.43 143 138
1d Taylor’ 900 2.28 1090 89.0 6.30 139 139
2d Taylor 900 4.50 650 7.0 4.80 158 139
2d T. [233] 900 39.94 247 76.3 4.80 180 143
fπ = 93 MeV 900 7.55 566 45.8 4.14 138 132

Lattice 1300 72.30 1402 510 4,175 957 700

Table 4.1: Initial conditions for the UV action Γk=Λ, resulting pion masses mπ in the vacuum and the corre-
sponding critical chemical potential for the onset of diquark condensation at T = 0. The prime denotes that
running Yukawa couplings and wave function renormalizations are included. In the forth row are the initial con-
ditions used in Ref. [233], where an LPA was solved on a 2d grid, yielding the full effective potential instead of
only around the minimum. The resulting mπ and 2µc are shown for our 2d Taylor method, and are close to what
was found in the reference.

instead of the usual fπ ' 93 MeV, which is identified with the chiral condensate. Further
conditions are that the quark mass comes out as mq ' 360 MeV in the vacuum, and the onset
of the diquark condensation should be at 2µc ' 138 MeV.
At µ = 0 1d and 2d Taylor’ should of course be equivalent. However since in 2d the diquark
mass parameter does not stay constant below µc, we have to modify the initial conditions, if
we want to have the onset at the physical pion mass. Small modifications of the initial mass
parameter and the Yukawa couplings are sufficient, and yield a deviation of about 5 MeV between
the vacuum mass mπ = m∆,µ=0 and the onset mass m∆,µc = 2µc. This can be considered as an
estimated difference of the curvature and pole mass of the diquark. Even though, technically,
both masses are given by the same expression in our truncation, we know from Ref. [180] that by
the inclusion of the wave function renormalizations (LPA’) the resulting mass is very close to the
pole mass in a fully momentum dependent scheme. As we see in the third and forth row of the
table, the deviation of mπ and 2µc is much larger in a simple LPA. Note that the 1d truncation
that vacuum and onset masses agree by default.
The choice of the initial conditions in [233] is rather unfavorable as they see a deviation of about
40 MeV with an LPA solved on a 2d grid for ρφ and ρ∆. When we solve the LPA with a 2d
Taylor ansatz on the comoving minimum we obtain a similar result. However we have found a
completely different set of initial values, given in the third row, which yield the same fπ and mq

in the vacuum and also a reduced deviation of about 20 MeV between the vacuum and onset
masses. Also note that the mφ,Λ in LPA’ is about twice as large as in LPA, which entails a much
faster decoupling of the bound states towards the UV.
The set in the fifth row yields fπ ' 93 MeV and mq ' 340 MeV in the vacuum. It is interesting
that within the same truncation all initial values have to be chosen with a difference of 100%, if
in the IR we only want a difference of about 25%. Also the convergence behavior of the Taylor
expansion is slightly different as we will see later. Thus, we conclude that the choice of initial
conditions is crucial for the behavior of the system throughout the phase diagram. In some
regions there might no visible effect, but in others there usually is.
For our ultimate goal, the confirmation of our understanding of the underlying physical mecha-
nisms by comparing the FRG method to results from first principle QC2D by lattice simulations,
we will compute a tentative phase diagram with large masses, because that is what is possible
on the lattice at this point. The corresponding initial conditions are given in the final row. Since
the flow of baryonic quantities is much stronger affected at large chemical potential, we have
much larger difference between vacuum and onset mass.
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Figure 4.1: Flow of the diquark pole mass and condensate, and the chiral condensate for µ = 100 MeV and
different temperatures with the 2d Taylor’ truncation. By lowering the temperature the pole mass decreases, and
while it is below zero we have intermediate condensation of the diquark. For even smaller temperatures we have
a rise of the condensate in the IR. Similarly the chiral condensate increases with decreasing temperature, while
the flow is rather flat in the BEC phase.

The pre-condensation effect was already found in our previous work [356] which is unpublished.
Here we show the corresponding plots with the improved approximation of the current work and
state the explanation for completeness.
As we know, quark fluctuations drive the curvature of the effective potential (or the curvature
masses) down. The chiral condensate (2.57) is proportional to the inverse of the meson mass
and therefore it rises smoothly. The diquark sector however, experiences a second order phase
transition when the pole mass vanishes at some critical scale kcr,1. Below that scale the diquark
condensate starts rising and is driven up by the quark fluctuations at first, but then it goes back
down to zero at some kcr,2. The reason is that when the flow starts to feel the temperature at
k ≈ 2πT fermionic fluctuations are suppressed, whereas the bosonic fluctuations are enhanced,
as discussed in Sec. 3.4.1. The bosons drive the condensate down to zero, and below kcr,2 the
diquark mass starts increasing again, as shown by the dash-dotted line in Fig. 4.1(a). If the
temperature is lowered the interplay of fermionic and bosonic fluctuations changes, such that the
condensate persist for a longer range during the flow (dotted line), until a critical temperature
is deceeded, where we find a stable diquark condensate at k = 0 (dashed line). In Sec. 3.4.3
we have already seen a similar effect along the µ-direction. Essentially the BEC phase is only
maintained if m∆ − 2µ is below zero in the IR.
The corresponding flows of the chiral condensate is shown in Fig. 4.1(b). The solid line is purely
in the normal phase and there the flow is smooth. Whereas at the onset of the BEC phase there
is a kink. While the system stays there, the flow is rather flat. This is because the condensate
goes mainly into the diquark instead of the meson. Also the fact that the pion mass is simply
proportional to the chemical potential, as we have seen in Sec. 3.2.1, is in accord with the
somewhat flat behavior of the condensate.
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Δ
T T

Figure 4.2: Illustration of the pre-condensation effect. Getting close to the Tc leads to local domains of conden-
sation (left and middle figure). Below Tc the whole volume is filled with a condensate.

We can also interpret this effect more visually in position space; this is illustrated in Fig. 4.2.
The fact that we have a finite condensate only at intermediate momentum scales, is translated
to having small domains of condensation, but with a vanishing average in the whole volume. By
reducing the temperature these domains become larger and eventually a single condensate fills
out the entire space. This is quite analogous to the magnetic domains in ferromagnetism. If the
temperature comes close to the critical value, domains with a finite magnetization are formed
but they have different orientations and the average magnetization is zero. Below the critical
temperature all magnetic moments are oriented in the same direction. The pre-condensation is
in fact a generic effect in second order phase transitions and was also observed in the in ultra
cold atoms [239].

4.3 The QC2D Phase Diagram

In Fig. 4.3 we show the main result of this thesis, namely the phase diagram of two-color QCD
with our best truncation. The condensates define the different phases of the system. In the
UV we always start with same initial condition, namely a small chiral order parameter and in
the normal phase. At small temperatures and small chemical potentials we have large quark
fluctuations, by which chiral symmetry is broken and the quarks obtain their constituent mass
from the chiral condensate. With increasing temperature we go trough a smooth crossover to the
approximate chirally symmetric regime, because the quark fluctuations are thermally suppressed.
In addition, the bosons in the system wash out some of the quark fluctuations and thereby flatten
the crossover.
Along the µ-axis we have the onset of diquark condensation at µ = mπ/2 via a second order phase
transition breaking the baryon number symmetry. If the diquark chemical potential µ∆ = 2µ is
larger than their excitation gap, i.e. the mass, it means that system is populated with diquarks.
The smaller the temperature, the more of them are in the ground state forming the condensate.
At larger temperature the condensate is melted because the diquarks are thermally excited.
By taking into account fluctuations with the FRG, the running of the diquark mass receives
quantitative corrections, which has an important impact on the condensate.
Furthermore the diquark condensate triggers the decay of the chiral condensate. Because the
fermions immediately form into bosonic bound states, they cannot contribute to the chiral con-
densate any more. Due to the small mass of the baryonic bound states compared to in physical
QCD, the chiral condensate start decaying smoothly at much smaller chemical potentials. There
is no trace of a critical endpoint. Note that obviously there is no inflection point for the chiral
condensate along the µ-axis since ∂2

∂µ2 〈σ〉 < 0 except at the BEC phase boundary. However at
T = 0 the value of the chiral condensate at the BEC phase boundary coincides with the value
in vacuum, therefore the inflection point is inappropriate for the chiral phase boundary. It is re-
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Figure 4.3: Results for two-color QCD with the 2d Taylor’ truncation. The red line marking the chiral phase
boundary has been computed with by the maximum in chiral susceptibility (2.43). Close to the blue line it is
interpolated. The shaded area over the superfluid phase marks the precondensation phase. The black line of the
BEC-BSC crossover is where hφ〈σ〉 = µ.

markable that the chiral susceptibility is shows a maximum where the condensate has somewhat
decayed, even though there is no inflection point. Then again it is of course expected that sigma
mass has a minimum between the chirally broken and symmetric regime. We should mention
also the at the BEC phase boundary we saw a slight local maximum in the chiral susceptibility,
which can also be regarded as an indication for the phase transition.
Since the diquarks are color neutral QC2D is not a color superconductor, but a baryon superfluid.
Furthermore, as we have discussed in Sec. 3.4.1, the minimum of the quark energy dispersion
appears at nonzero momenta, if the chemical potential exceeds the mass generated by the chiral
condensate. Hence, the quarks are no more closely bound in molecules, but rather there is a
long-range BCS pairing of quarks with opposite momenta on the Fermi surface. The BSC state is
also characterized by overlapping bound stated. Then this change of behavior is not unexpected,
because if the density is increased, at some point the Cooper pairs start overlapping. Note
that the BEC-BCS crossover is not a sharp transition, since a finite Fermi surface does not
immediately imply BCS pairing, but this is rather a limiting case.
In Fig. 4.4 we show a very tentative phase diagram from the lattice with large masses and our
corresponding result. The pion mass is mπ = 700 MeV, as it can be read off from the onset of the
diquark condensation. We have tuned our initial conditions to yield the same onset. The quark
mass in our calculation is in the vacuum is mq ' 380 MeV, about half of the pion mass plus the
binding energy. At large temperatures it settles to a value of mq,T→∞ ' 241 MeV. The crossover
line was computed via the inflection point. Remarkably, the blue line agrees with one of the
points from the lattice, and the hadronic transition at µ = 0 are close at well. Due to the early
transition to the superfluid phase and the related impact on the chiral condensate, the chiral
and confinement-deconfinement phase transitions cannot be together at large chemical potential.
In a PNJL-model calculation [214] it was found that the phase boundary to QGP phase is a
horizontal line along the chiral and superfluid phase boundaries, while in a PQMD-model within
the FRG framework [234] it is seen that it bends down into the superfluid phase, which agrees
more with the lattice calculations in Fig. 4.4.
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Chapter 4: Chiral & Diquark Condensation

Figure 4.4: Phase diagram of QC2D from lattice simulations [357]. The dotted line marks the crossover of the
Polyakov loop, giving the boundary for the confined and deconfined phases. The shaded area is the width of the
crossover. The thick lines are from our 2d Taylor’ truncation with large masses, cf. Tab. 4.1.

In Fig. 4.5(a) we see the µ-dependence of the condensates at vanishing temperature, normalized
over the vacuum value of the chiral condensate. The µ axis is scaled over the individual pion
masses from each calculation. All FRG results are within the LPA and have been computed with
the initial conditions from Ref. [233]. Except for the black curves, where the alternative set of
initial conditions, with a lower difference of the vacuum and onset masses, were employed. The
linear sigma model in fact corresponds to the minimum of our 1d Taylor ansatz (2.54)-(2.55)
without the incorporation of fluctuations. In dimensionless form the condensates are [233]

〈σ〉
〈σ〉0

=

{
1 for µ < µc
1
x2 for µ > µc

, x =
µ

µc

〈∆〉
〈σ〉0

=





0 for µ < µc√
1− 1

x4 + 2x
2−1
y2−1

for µ > µc
, y =

mσ

mπ
(4.1)

The masses are for the vacuum, and of course µc = mπ/2. The more simpler chiral perturbation
theory [200] neglects the effects of the sigma mass, meaning that y →∞. Then chiral condensate
simply rotates into the diquark condensate towards large chemical potentials and the lower
equation is always smaller than one. In the LPA the normalized chiral condensate in our 1d
truncation exactly coincides with the upper equation, as there is no running of c. For the
diquark condensate a difference can come about, if the bosonic mass parameter and the four-
point coupling run differently in the BEC phase than in the vacuum. As long as the system is
in the normal phase above the critical scale kc the flow is identical to the vacuum flow because
of the Silver Blaze property. And even in the superfluid phase we have seen in Fig. 3.15 that
the flow is still in a way identical, at least in the pre-condensation phase for T = 0. Therefore
we can expect that the behavior of the condensates with our 1d Taylor truncation should be
very close to the trivial behavior predicted by the linear sigma model. Surprisingly, even the
2d truncations, solved on a grid or with a Taylor expansion, are very close to Eqs. (4.1), where
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Figure 4.5: In (a) we have the condensates at vanishing temperature with the initial conditions of Ref. [233]
and different solving methods. Except for the black lines, which are with the alternative set of initial conditions
given in third row of Tab. 4.1. For each curve the µ-axis is scaled over its individual mons, which is identified
with pion pole mass. In (b) are the phase boundaries from the grid method [233] and Taylor method with the
same initial conditions.

the pion mass mπ = 138 MeV and the sigma mass mσ = 550 MeV were used. The latter was
obtained in the vacuum from the Taylor method.
Note that with the 2d truncations the chiral condensate has a very slight slope below the onset
because of the violation of the Silver Blaze property. On the other hand it is surprising that in
the superfluid phase the 1d Taylor truncation is almost identical with the 2d one on the scaled
µ-axis, although the onset mass in 1d is the same as the vacuum mass by default, and therefore
about 40 MeV larger than in 2d. Interestingly, the µ−2 behavior of the chiral condensate is
maintained in the 2d truncations, even though it is not built in. Also we should mention that
with the Taylor method we can start the flow in the normal phase only as long as µ < mφ,Λ/2.
Since the initial mass in [233] is very small, we had to initiate the flow in the superfluid phase
at large chemical potentials, where the initial value of the diquark condensate is given by Eq.
(2.55). However this does not seem to disturb the flow too much, which again reflects the validity
of the linear sigma model, if the flow of the two-point function is not taken into account. On
the other hand, if we look at the results with the completely different initial conditions (black
lines), with the similar vacuum parameters but less difference of vacuum and and onset mass, we
see that due to the increased amount of fluctuations the curve goes away from the linear sigma
model.
In Fig. 4.5(b) we have a comparison of phase diagrams from the Taylor and grid methods.
The absolute value of the superfluid onset is shifted about 5 MeV and so are the corresponding
lines in the superfluid phase. Furthermore the qualitative behavior is somewhat different towards
larger temperatures. The back-bending of the chiral phase boundary appears in all our 2d Taylor
results, and seems unnatural, if defined by the half value. Then again, the maximum of the chiral
susceptibility in Fig. 4.3 was interpolated in this region. The chiral phase transition at small
chemical potentials is shifted about 10 MeV. The reason is that the convergence of the Taylor
expansion is not quite satisfactory, as we will see in the next section.
In Fig. 4.6(a) the condensates at vanishing temperature for various methods are shown together
with our best truncations in 1d and 2d. The linear sigma model is not shown again, but we
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Figure 4.6: Here we have again results from various truncations and methods. The data from the other methods
with low energy models is taken from [233], where the NJL calculation is based on [212], and the linear sigma
model on [215]. The lattice data from [222]. The chiral phase boundaries are computed via the half value. The
red shaded area denotes the region where the effective models are invalid.

can orientate ourselves with grid result. All methods show a general qualitative agreement with
lattice results from first principles. By the inclusion of more fluctuations trough running wave
function renormalizations and Yukawa couplings we see a stronger deviation from the linear sigma
model. The diquark condensate from NJL agrees well with lattice, because bosonic fluctuations
have been neglected, and on the lattice the bosons are heavy. As we see from Eq. (4.1), a lighter
sigma mass entails greater slope of the diquark condensate. Our 1d Taylor’ result agrees with
that as well, because the anomalous dimensions entail a faster decoupling of the bosons. The
chiral condensate has received some corrections. Since Zφ reduces with µ as shown in Fig. 3.19,
the source parameter c has to compensate for that, as we have discussed in Sec. 3.4.3, hence the
chiral condensate (2.54) has to increase, which it does slightly. The corresponding equation is
given below. For the 2d Taylor’ the behavior is opposite. If we separate the effects of the wave
function renormalisation from the meson mass parameter and say that it then behaves like in
the linear sigma model Zφm2

φ ∼ 4µ2 and further use that
√
Zφc = c0 is constant, then we find

with Eq. (2.57) that

2d Taylor’:
〈σ〉
〈σ〉0

∼
√
Zφ(µ)

Zφ(0)

µ2
c

µ2
,

1d Taylor’:
〈σ〉
〈σ〉0

=

√
Zφ(0)

Zφ(µ)

µ2
c

µ2
, (4.2)

For the 1d case this result is exact. Thus we see that in the 2d case the chiral condensate is
lower than the curve from the linear sigma model, in contrast to the 1d case. Interestingly, the
2d Taylor’ truncation is the only one, which exhibit this behavior and thereby is closest to the
lattice data. The approximate difference of the chiral condensate between 1d and 2d seem to
be added to the diquark condensate. Other than that the shape of the curve is the same. Thus
we may conclude that for an accurate description of two-color QCD with effective methods, a
two-dimensional ansatz for the effective potential is as mandatory as a the running wave function
renormalizations.
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4.4 Truncation Effects

Finally, in Fig. 4.6(b) we have the corresponding phase diagrams, where the chiral crossover
is again defined by the half value. The NJL result has has the highest critical temperature for
both, the chiral crossover and the superfluid phase transitions, because there are no symmetry-
preserving bosons at large T . The LPA with the FRG makes the first step of lowering the phase
boundaries, by the inclusion of bosonic fluctuations. Then with LPA’ there is another, rather
large step further lowering the boundaries. This is because with the anomalous dimensions the
initial boson masses in the UV have to be chosen larger, as we discussed in Sec. 3.6.1. But
this implies also a smaller chiral condensate in the UV, as they are both connected via Eq.
(2.57). In consequence, if the temperature is not small enough, there are not enough quark
fluctuations to drive the chiral condensate up to its vacuum value, even though the quarks are
lighter. The 1d and 2d truncations are in remarkable agreement in the normal phase, and also the
superfluid phase boundary has only minor deviations at small chemical potential. The differences
of the chiral crossover lines within the superfluid phase is explained by the extrapolation of Eq.
(4.2). Let us mention that there is also phase digram from mean-field calculations in Ref. [233],
which close to the NJL result, however, there is an artifact in the form of a critical endpoint of
the superfluid phase boundary at larger chemical potential, after which the second order phase
transition turns first order. The red shaded area marks the region where

∣∣∣∣∣
Γ̇Λ,T,µ − Γ̇Λ,0,0

Γ̇Λ,0,0

∣∣∣∣∣ > 0.1 . (4.3)

This is the flow of the effective action in-medium and at the initial UV scale Λ, subtracted by the
vacuum flow, and then normalized to the vacuum flow. For constant fields the volume cancels
out and the we can plug in the flow of the effecive potential. If this quantity is large, it means
that the microscopic action is influenced by in-medium effects, or from a different point of view,
the in-medium flow is affected by the cutoff Λ. The cutoff should be large enough, such that the
results are independent of it, we will look on this matter more closer in the next section. On the
other hand, the initial scale should not be larger as the validaty of the model. For our effective
low enery models we must remain below the scale were gluon degrees of freedem are relevant. So
we have a constraint for Λ from both sides. Since our 2d Taylor’ truncation takes into account
more fluctuations than any other approach up to date, we evaluated (4.3) the corresponding
initial conditions and marked the regime were initial flow deviates more than 10% from the
vacuum. Altogether we can say that considering effects beyond pure fermionic fluctuations or
LPA is quite important.

4.4 Truncation Effects

In this section, we would like to study to some extent the reliability of our truncation. We
start with the convergence behavior of our Taylor expansion. In Fig. 4.7(a) we have the chiral
condensate as a function of the temperature for different orders N of the Taylor expansion. At
vanishing chemical potential the 1d expansion (2.50) is sufficient for this analysis. All curves are
computed with the same UV initial conditions, given in Tab. 4.1, which were tuned such that
we obtain the “physical” parameters in the IR for N = 5, with fπ = 76 MeV. The expansion does
not converge for the orders we have computed. Up to the fifth order the curves do not differ from
each other too much. For the sixth order we had to make some adjustments of the numerical
precision in solver in order to make it work. The case N = 4 did not work with the initial
conditions. This signals some unstable behavior of the truncation. The crossover temperature
has been computed with all three definitions introduced in Sec. 2.5.1, which seem be somewhat
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Figure 4.7: Chiral condensate and transition temperatures at µ = 0 for different truncations and parameters. A
running Yukawa coupling and wave function renormalizations are always included.

agreeing in the current figure. However as a function of the order N the critical temperature
does not converge. Therefore the average T̄c from all three definitions and and from all orders,
together with its margin of error, should give a feeling for the error of our phase boundaries.
The lack of convergence is the reason for the insufficient agreement with the grid method in Fig.
4.6(b).
Interestingly, we have observed that different initial conditions change the convergence behavior
of the Taylor expansion. In Fig. 4.7(b) we are showing the results for the fifth set of initial
conditions in Tab. 4.1, which yields fπ = 93 MeV in the vacuum with N = 5. All cases were able
to be computed without trouble, howeverN = 4 still seems to be an outlier at small temperatures.
Other than that, the expansion seems to be converging quite sufficiently with higher orders, even
if at very small temperatures it could be better. In particular a converging behavior for the
crossover temperature develops at higher orders. On the other hand the inflection point is a bit
apart from the other definitions. Thereby the somewhat large error margin of T̄c is caused, and
not because of a poor convergence. Note that since the condensate is larger in the vacuum, a
higher temperature is required in order to melt it.
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Figure 4.8: Chiral condensate and transition temperatures at µ = 0 for different truncations and parameters.
The Taylor expansion is to the order N = 5.

In the Ref. [179] a Taylor expansion for the effective potential with a fixed expansion point, rather
than a comoving minimum, was employed for a quark-meson model. There, a rapid convergence
of the expansion was observed for all temperature regions. A notable difference between both
methods is that with the comoving minimum all truncations coincide at the high temperature
limit, while with the fixed expansion point the N = 2 case goes apart at large temperatures.
In Fig. 4.7(c) we have studied the cutoff dependence. For this study we used the initial conditions
in the second row of Tab. 4.1 and solved the flow equations down or up each of the Λ’s in the
vacuum. Then each time we used this as the starting point for the finite temperature calculations.
However, we always started with a quartic potential in the UV, meaning that the higher order
coupling are set to zero at every Λ. This is why we see small deviations at T = 0, which can be
regarded as subsidiary probe for the convergence of the Taylor expansion. In any case, we clearly
see rising deviations at large temperatures with the lowering of the cutoff. As we indicated before,
if the microscopic action feels the in-medium effects, it is not really microscopic. In particular
the crossover temperature should be independent of the cutoff. In the inset we observe that for
cutoffs Λ > 800 MeV it starts to converge. Also note that for small cutoffs the maximum of the
chiral susceptibility is rather far from the other definitions of the crossover.
Finally we will investigate the truncation effects coming from the flow of the two-point function,
again for the two sets of initial condition as before. We simply lower the truncation by switching
of the corresponding loop contribution. This means that in LPA’ the Yukawa coupling still runs
with the positive contributions from the anomalous dimensions. In Fig. 4.8(a) we have case
with the smaller pion decay constant. We have already mentioned the effects of the anomalous
dimensions in the previous section. The difference here is that truncations are not individually
tuned, nonetheless the effect is basically the same. Without the anomalous dimension the strong
running of the meson mass and thereby also of the chiral condensate, which scales with its inverse,
is simply weakened. In the LPA+h the Yukawa increases towards the IR instead decreasing,
because the pure diagrammatic contributions are negative. Then it is self-enhanced and it grows
over one order of magnitude. In order avoid an instability, we had to reduce the initial value to
hφ,Λ = 5.9. In the high and low temperature limit this truncation seems to agree with the LPA,
because in the former case the Yukawa coupling does not flow, as the fermions are thermally
blocked, whereas in the latter case it seems that it plays more the role of contributing to the
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Chapter 4: Chiral & Diquark Condensation

fermionic gap hφ〈σ〉 than being a large coupling. At intermediate temperatures probably the
exact opposite of this behavior is going on, leading to a bump. We should compare the full
truncation to LPA’. The additional diagrammatic contributions to the Yukawa coupling slow
down its running, entailing larger fermionic fluctuations at small and intermediate temperatures,
and thereby a larger chiral condensate.
In Fig 4.8(b) we see that the effects are not that drastic. Generally, there are less fluctuations
with the larger pion decay constant, and hence less truncation effects. The initial value of the
chiral condensate is larger and correspondingly the meson mass is smaller, and also the Yukawa
coupling is smaller. In consequence the dynamics are more balanced between fermions and
bosons. In particular the nontrivial behavior of the LPA+h is not apparent. The effects of the
different truncations seem to add up linearly. However both cases have in common that in the
LPA+h the crossover temperature is increased, whereas in the LPA’ it is decreased. Both effects
cancel each other in the full truncation.

4.5 The QCD Phase Diagram

(a) Condensates
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(b) The Phase diagram

Figure 4.9: Chiral and diquark condensates and the corresponding phase diagram with the QMD-model for
QCD. The shaded area again marks the pre-condensation phase.

Lastly, we turn to our results for physical QCD. The baryons are not included at this point. In
Tab 4.2 we show the initial conditions. We have applied the 2d Taylor expansion to the order
N = 2 with an LPA’ , but kept the Yukawa coupling constant, because for the low energy regime
of QCD it was shown in Refs. [185, 186], that it is nearly constant. We see in the table that the
violation of the Silver Blaze property is amplified because the onset is at much larger chemical
potential, similar as in the case of large masses in QC2D. The initial conditions are chosen such
that the onset of diquark condensation is below the quark mass. In Fig. 4.9 the condensates
and the map of on the phase diagram is shown. We have a smooth crossover at about 145 MeV
for vanishing density, computed via the inflection point. Entering the 2SC implies a change
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of dynamics, actually triggering the restoration of chiral symmetry. This is analogous to the
QC2D case with the difference that the condensates behave much more steeply. Because the
chemical potential is much closer to the quark mass the system is more dynamical. However,
the chiral phase transition is not first order as there is no jump, which may be an artifact of the
truncation. The wiggling behavior of the diquark condensate may also be some unphysical result
of our approximation. Since it is also observed in the sigma mass in Fig. 3.7, it must be related
to the four-boson coupling. The fact that the diquark condensate rises nearly horizontally at
the phase transition even at larger temperatures, is caused by the removing of the Goldstone
modes, which thereby cannot counteract to the strong quark fluctuations. Interestingly, the phase
boundary of the 2SC phase first bends to the left with increasing temperature, implying that
the system favors the chiral condensation at small temperatures, whereas at larger temperatures
the diquark condensate is favored before going into the symmetric phase. Also note that we can
again see a pre-condensation phase, which is new in the context of color superconductivity.

Λ 〈σ〉Λ mφ,Λ γ λ2,0,Λ hφ,Λ h∆,Λ m∆ 2µc

800 MeV 5.9 MeV 680 MeV 0.65 90.0 3.6 2.6 729 MeV 590 MeV

Table 4.2: Initial conditions for the UV action Γk=Λ, resulting diquark mπ in the vacuum and the corresponding
critical chemical potential for the onset of diquark condensation at T = 0. There is a difference of about 20 %.
The UV potential has the 1d from (2.50), where the diquark sector is distinguished by the factor γ.
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Summary, Conclusions & Outlook

For the aim of understanding the high density regime of QCD, we have mainly dedicated this
work to the study of a QCD-like thoery that is feasible on the lattice. The absence of the
fermionic sign problem in the a fictions theory of QCD with two colors instead of three, has
drawn the interest of the lattice community for over a decade. It is very important to test other
approaches, which are not from first principles, against lattice results, in order to gain assurance
for the validly of the methods, the framework and the models that are applied. Furthermore,
both approaches should be seen as complementary, in the sense the physical insights gained from
one should be a benefit for the other.
In this work we have applied the framework of the functional renormalization group on an
effective, low-energy model for two-color QCD. We have considered the gluon degrees of freedom
to be integrated out, and used a description of the theory in terms of quarks and bound states.
We have motivated the incorporation of the bound states though a hadronization procedure,
where first an effective four-fermi interaction is generated from the quark-gluon dynamics, which
is then bosonized by mean of standard methods. By examining the underlying symmetries of the
microscopic model we have constructed an effective action, with quarks mesons and diquarks,
that satisfies those symmetries and also incorporates the various breaking patterns. Due to the
properties of the gauge group generators in two-color QCD the flavor symmetry is extended, such
that at vanishing chemical potential the diquarks are degenerate with the pions. Moreover, the
diquarks are color neutral and therefore the baryons of the theory. Thus we have a playground
at hand to study baryonic degrees of freedom in a simplified bosonic description as well as a
relativistic BEC-BSC crossover. Because the diquarks must be light in order to satisfy the
extended symmetry, an early onset of diquark condensation in the direction of the chemical
potential was expected. Moreover previous investigations had already shown that the chiral
condensate, which is dominating at small chemical potential, rotates into the diquark after the
onset.
The FRG method allows to interpolate between the microscopic a and the macroscopic regime
of the theory, by integrating out all thermal and quantum fluctuations. All correlations are
generated that are allowed by the underlying symmetry, but in practice the system must be
truncated. Our microscopic starting point was an effective theory at scale of 900 MeV where
the quarks are almost massless and interact through boson exchange in a point-like manner, as
the bosons are very heavy at this point. Those interactions lead to the dynamical breaking of
symmetries and the associated emergence of light bosons, which all can be described by a scale
dependent effective potential. This we have incorporated in the form of a Taylor expansion in the
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invariants of the theory, where the order of the expansion relates to the order of the inter-bosonic
interactions that are allowed by the approximation. By the examining the flow equation of the
effective potential, we were able to anticipate the interplay of bosonic and fermionic degrees of
freedom for different temperatures and chemical potentials. The ground state of the system is
determined by the minimum of the effective potential, i.e. the condensates. We have seen that
the chiral condensate goes though a crossover towards large temperatures, where chiral symmetry
is restored. The diquark condensate sets in via a second order phase transition, when its pole
mass is vanishing at large chemical potentials and small temperatures. By tracing the scale
dependence of the diquark condensate, we have observed that before the onset there is a phase
of pre-condensation, which is interpreted as having local domains with finite condensates, but a
vanishing average over the whole volume. This happens because the temperature effects come
into play at a scale where the symmetry is already broken, leading then to its restoration.
We have considered a 1d Taylor expansion of the effective potential in the O(6) invariant contain-
ing mesons and diquarks and added the explicit symmetry breaking terms, where some properties
of the simple linear sigma model approach are already built in. Concurrently, we have studied
a 2d expansion in the O(4) (mesons) and O(2) (diquarks) invariants, as the two sectors should
be independent at finite chemical potential. It was seen that at vanishing temperature the con-
densates from the LPA truncation behave like in the simple linear sigma model, regardless of
whether it is solved on a 2d grid or with 1d/2d Taylor expansion. Even all other methods and
approximations, including the lattice, show agreeing qualitative behavior and small numerical
deviations of about 10 % on scaled axes. But this is not too much surprising, as the minimum
more or less moves away from the origin with µ and in addition to the rotation from the chiral
to the diquark direction, as predicted from the linear sigma model. However, it should be men-
tioned that our full truncation is the only one which exhibits the slight decrease of the chiral
condensate in the superfluid phase, and thus is closest to the lattice result.
The phase boundaries in the map of the phase diagram from the grid and the Taylor meth-
ods deviate about 10 MeV as the convergence of the expansion is insufficient. With our full
truncation, including running Yukawa couplings and wave function renormalizations, we have
observed significant corrections of the phase boundaries at large temperatures of about 25 %.
The main reason is that the running wave function renormalizations entail a faster decoupling
of the bound states towards the UV, which goes along with a smaller condensate, and thus a
need of more coldness of the system for the condensates to rise. The full 1d and 2d truncations
only have minor deviations from each other, except for the chiral crossover at large µ, where it
is understandable form the different expressions of the minimum. Since our approximation is
to date the most sophisticated, we used the initial conditions to see where cutoff effects come
into play in the high temperature region, and thereby invalidated the other effective models. A
higher cutoff could resolve this problem, but then gluon dynamics must be taken into account.
In any case, we can conclude that solving the nontrivial scale dependence of the propagators
is an important ingredient in order to obtain quantitative accuracy. A study of the truncation
effects has revealed a dependence from the boundary conditions, in the sense that a larger value
of fπ implies less fluctuation in the system and thereby less effects the systematic improvement
of the truncation.
The Silver Blaze property was an essential issue of this work. After recapitulating the property
for the effective action and n-point functions, we have seen that at vanishing temperature it
amounts to a simple shift of the frequencies by the chemical potential with the appropriate
charges. We have shown that if this property holds true at the initial scale, it is preserved by the
flow equation, owing to its one-loop structure. However, this requires a full momentum resolution
of all quantities, which are directly sensitive to the chemical potential. If this is not done, the
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µ-dependence is interpreted as a genuine one instead of the simple shift, which is thus unphysical.
The diquark sector is much affected by that problem, if its parameters are not identified with the
meson sector like in our 1d approximation. Nevertheless, we have seen that the running wave
function renormalization somewhat reduces the discrepancy in the two-color case, while for large
diquark masses with a late onset, the discrepancy is amplified. Something that should be tried
in the near future, is to keep the µ-dependence in the thermal distribution functions, and to
remove all others. This may pose a self-consistent approximation, in the sense that momentum
dependence is kept away. However, ultimately a momentum resolution should be sought for.
The next natural step to improve our result is to incorporate a phenomenological Polyakov-
loop potential to study confinement in two-color QCD, as it was done in [234] with an LPA.
Then, following the example of Refs. [185, 186], a dynamical connection of the quark-gluon
regime with low-energy effective regime should be established with a dynamical hadronization
technique, including running gauge couplings. The effects of a moderate heavy strange mass,
would be another interesting matter to study. Coincidentally, on the level of effective theories
one can map two-color QCD at finite baryon chemical potential to physical QCD at finite isospin
chemical potential [358], where the charged pions play the role of the diquarks. Hence, our
truncation should be applied there as well. Also in this case the sign problem is absent [359–
361].
The second project in this work was the formulation of an effective theory for QCD at high
baryonic densities. We have argued that the diquark is an important ingredient for this matter.
Not only can it be an intermediate state in the formation process of the baryon, but also the
constituents of the baryons can have diquark type correlations. In addition the condensation
of the diquark has significant impact on the phase diagram of QCD. In the scenario where the
diquark is lighter than twice the quark mass, the onset of the color superconducting phase is
before the chiral symmetry restoration. The consequential change of dynamics then triggers the
restoration chiral symmetry, similar as in two-color QCD.
We were able to generalize the quark-meson-quark model for two-color QCD for the physical
case, and applied the FRG machinery in order to study the two-flavor color superconductivity.
With the explicit inclusion of bosonic fluctuations we took account of the Meissner effect by
removing the Goldstone modes in the broken phase. In consequence we have seen a very steep
rise of the diquark condensate at the phase transition.
Furthermore, we have added baryonic degrees of freedom to the model, by considering a bary-
onization procedure in a chirally symmetric way. We have argued that baryonic fluctuations are
suppressed at small chemical potentials due to the heavy mass, and when the system is popu-
lated with fermions at finite baryon density, fluctuations contributing to the mesonic sector in
the effective potential are simply cutoff below the Fermi surface, thus no effect on the chiral
condensate should be visible at vanishing temperature. This argument may be extrapolated to
finite temperatures.
The dissociation of the baryons at high energies in a simple FRG framework with the effective
model remains unsettled. It is not straightforwardly built-in as for boson, where fermionic
fluctuations push up the mass gap towards the UV, by which the bosons decouple from the
system. Here, too, future improvement should include a momentum resolution as well as the
connection to QCD, which may help to establish a dynamical baryonization procedure ensuring
the decoupling in the UV. Moreover, including the strange quark leads to many different scenarios
at intermediate chemical potentials. Together with the baryons the possibility of the Quark-
Hadron Continuity should be explored.
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Appendix A
Conventions and Notations

A.1 Units

We use natural units throughout this work

kB = c = ~ = 1 .

As a consequence of this convention, the SI units are related to the energy unit as follows:

Unit Metric value Derivation
1 eV of length 1.97× 10−7 m = (1eV−1)~c
1 eV of time 1.78× 10−36 s = (1eV−1)c2

1 eV of mass 6.58× 10−16 kg = (1eV−1)~
1 eV of temperature 1.16× 10−4 K = (1eV)/kB

A.2 Euclidean Space-Time

In Euclidean space-time the metric tensor is given by the Kronecker-Delta

gEµν = δµν , (A.1)

Where µ, ν = 1, ..., 4. This convention corresponds to the analytic continuation

t→ −iτ . (A.2)

Hence a four-vector Euclidean space-time is defined as
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xEµ = (~x, x4 = −it) . (A.3)

If we use Latin indices in this context, it denotes only the spatial components from 1 to 3. A
general dot product changes the sign

aµbµ = −aEµ bEµ . (A.4)

The same holds for the d’Alembertian operator ∂µ∂µ = −∂Eµ ∂Eµ but not for

xµ∂µ = xEµ ∂
E
µ . (A.5)

Slashed quantities change as follows

/∂ = i/∂
E

/p = −i/pE . (A.6)

For Conventions regarding the Dirac matrices we refer to App. A.4. After analytic continuation
a time integral turns into

∫ ∞

∞
dt f(t) =

∫ ∞

∞
d (−iτ) f(−iτ) = −i

∫ ∞

∞
dτ f(−iτ) (A.7)

and correspondingly for momentum space. The delta function transforms similarly

δ(4)(x) =

∫
d4p

(2π)4
eipx = −i

∫
d4pE

(2π)4
e−ip

ExE = −iδ(4)(xE) . (A.8)

A.3 Abbreviations

Four-vectors we write as p ≡ pµ = (~p, p4)T , where p4 is the respective Matsubara frequency.

For integrals and delta functions we use the following abbreviations at finite temperatures:

∫

x
≡
∫ 1/T

0
dτ

∫
d3x ,

∫

p
≡ T

∑

n∈Z

∫
d3p

(2π)3
, δ(x) ≡ δ(4)(x) , δ(p− q) ≡ (2π)3δ(3)(p)δn,m

where n,m are the modes of the Matsubara frequencies for p, q. If there are many variables in
index of an integral, an integration with respect to all these variable is implied.

Furthermore we mention that repeated indices are always summed over, unless it is mentioned
otherwise.

128



A.4 Dirac Algebra

Within text we use the following abbreviations:

RG Renormalization Group
RGE Renormalization Group Equation
FRG Functional Renormalization Group
IR Infrared
UV Ultraviolet
QCD Quantum Chromodynamics
QC2D Two Colour QCD
QMD Quark-Meson-Diquark
QMDB Quark-Meson-Diquark-Baryon
2SC Two-Flavor Color Superconductivity
CFL Color-Flavor Locking
BEC Bose-Einstein Condensation
BCS Bardeen-Cooper-Schrieffer
NJL Nambu Jona-Lasinio

A.4 Dirac Algebra

The Dirac algebra in Euclidean space-time is defined through

{
γµ, γν

}
= γµγν + γνγµ = 2δµν14×4 ,

(
γµ
)†

= γµ ,

γ5 = γ1γ2γ3γ4 ,{
γµ, γ5

}
= 0 . (A.9)

The chiral representation of the γ-matrices is given by

γi =

(
0 −iσi
iσi 0

)
, γ4 =

(
0 1

1 0

)
, γ5 =

(
1 0
0 −1

)
, (A.10)

where the σi’s are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.11)

and 1 is a 2× 2 unit matrix.
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The Pauli matrices satisfy the relation

{σa, σb} = 2δab . (A.12)

In order to extract the Weyl spinors from a general spinor, we can use the projection operators

PL,R =
1

2
(1± γ5) . (A.13)

Furthermore we define the charge conjugation operator

C = γ4γ2 (A.14)

with the properties

C−1 = C† = CT = −C , CγµC = γTµ , {C, γ5} = 0 . (A.15)

The following identities are useful for the computation of flow equations functions

tr γµγν = 4δµν ,

tr γµ...γν = 0 , for odd # of γ’s ,
tr γ5 = 0 ,

tr γµγ5 = 0 ,

tr /p/q = p · q ,
(A.16)
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Appendix B
Propagators

The propagator is defined by Eq. (3.18). It is found by taking two functional derivatives of the
effective action (2.35) or (2.36) with respect to the fields, adding the regulator and then evaluating
at the expansion point, before taking the inverse. For convenience we omit the delta function.
Employing a 3d-optimized regulator does nothing but regularizing the space-like momentum like
~p → ~pr, with Eq. (3.23). Therefore we will omit the regulator terms in this section, while for
the flow equations the momenta can simply be replaced by the regularized ones. The timelike
component of the momentum p4 will be replaced by the respective Matsubara frequencies. The
propagator for the QMD-model and the QMDB-model will be covered, as well as the fermionic
vertices for the QMDB-model.

B.1 Boson Propagators

Here we will explicitly display the boson Propagator introduced in Sec. 3.2.1. We will show it for
the real as well as the complex representation of the diquark fields. Due to nonzero off-diagonal
mixing terms at finite mesonic and diquark fields it is rather tedious.

QMD-model of QC2D

In the real representation the boson propagator is given by

Gϕ =




ZφKπ 13×3 0 0 0

0 ZφKσ 2Vφ∆

√
ZφZ∆ρφρ∆ 0

0 2Vφ∆

√
ZφZ∆ρφρ∆ Z∆K∆1

−4Z∆µωn
0 0 4Z∆µωn Z∆K∆2




−1

=




Gπ
Zφ
13×3 0 0 0

0 Gσ
Zφ

− Gσ∆1√
ZφZ∆

− Gσ∆2√
ZφZ∆

0 − Gσ∆1√
ZφZ∆

G∆1
Z∆

G∆1∆2
Z∆

0
Gσ∆2√
ZφZ∆

−G∆1∆2
Z∆

G∆2
Z∆



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with

Gπ = K−1
π Kπ(~p2) = ~p2 + ω2

n + Vφ

Gσ =
(
K∆1

K∆2
+ 16µ2ω2

n

)
/J Kσ(~p2) = ~p2 + ω2

n + Vφ + 2ρφVφφ

G∆1
= K∆2

Kσ/J K∆1
(~p2) = ~p2 + ω2

n + V∆ + 2ρ∆V∆∆ − 4µ2

G∆2
=
(
K∆1

Kσ − 4ρφρ∆V
2
φ∆

)
/J K∆2

(~p2) = ~p2 + ω2
n + V∆ − 4µ2

Gσ∆1
= 2Vφ∆

√
ρφρ∆K∆2

/J

Gσ∆2
= 8Vφ∆

√
ρφρ∆µωn/J

G∆1∆2
= 4µωnKσ/J

where

J(~p2) = Kσ

(
K∆1

K∆2
+ 16µ2ω2

n

)
− 4ρφρ∆V

2
φ∆K∆2

is the determinant of the σ∆-part of Gϕ without the Z’s. In the left column the momentum
dependencies were omitted. For the derivation of flow equations we will need derivatives of each
entries of the propagators with respect to the K’s

0 =
∂

∂Kϕl

Gϕ,ij

(
G−1
ϕ

)
jk

=
∂Gϕ,ij
∂Kϕl

(
G−1
ϕ

)
jk

+Gϕ,ij

∂
(
G−1
ϕ

)
jk

∂Kϕl︸ ︷︷ ︸
δjlδlk

⇒ ∂Gϕ,ij
∂Kϕl

= −Gϕ,ilGϕ,lj . (B.1)

Note that the equal indices do not imply a sum here. Using this relations, one can express
momentum derivatives conveniently in terms of the propagators

∂Gϕ,ij
∂~p2

=
∑

l

∂Gϕ,ij
∂Kϕl

= −
∑

l

Gϕ,ilGϕ,lj . (B.2)

In the complex representation we have

Gϕ̄ =




ZφKπ 13×3 0 0 0

0 ZφKσ Vφ∆

√
2ZφZ∆ρφρ∆ Vφ∆

√
2ZφZ∆ρφρ∆

0 Vφ∆

√
2ZφZ∆ρφρ∆ Z∆ρ∆V∆∆ Z∆

(
K−∆ + ρ∆V∆∆

)

0 Vφ∆

√
2ZφZ∆ρφρ∆ Z∆

(
K+

∆ + ρ∆V∆∆

)
Z∆ρ∆V∆∆




−1

=




Gπ
Zφ
13×3 0 0 0

0 Gσ
Zφ

G−σ∆√
ZφZ∆

G+
σ∆√
ZφZ∆

0
G+
σ∆√
ZφZ∆

G|∆|
Z∆

G+
∆

Z∆

0
G−σ∆√
ZφZ∆

G−∆
Z∆

G|∆|
Z∆



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with

K±∆ = ~p2 + (ωn ± 2iµ)2 + V∆

G±∆ =
[
(K∓∆ + ρ∆V∆∆)Kσ − 2ρφρ∆V

2
φ∆

]
/J

G|∆| =
(

2ρφV
2
φ∆ − V∆∆Kσ

)
ρ∆/J

G±σ∆ = −
√

2ρφρ∆ Vφ∆K
∓
∆ /J

Gσ =
[
K+

∆K
−
∆ + ρ∆V∆∆(K+

∆ +K−∆ )
]
/J

J = Kσ

[
K+

∆K
−
∆ + ρ∆V∆∆(K+

∆ +K−∆ )
]
− 2ρφρ∆V

2
φ∆

(
K+

∆ +K−∆

)
(B.3)

These functions have the following properties, here we explicitly show the ωn-dependence

K±∆ (−ωn) = K∓∆ (ωn), G±∆(−ωn) = G∓∆(ωn), G±σ∆(−ωn) = G∓σ∆(ωn), (B.4)

also
(
K±∆

)∗
= K∓∆ ,

(
G±∆

)∗
= G∓∆ ,

(
G±σ∆

)∗
= G∓σ∆. (B.5)

Since the transformation between representations affects only the diquark space, Gσ does not
really change. The determinant does not change as well, due to Eq. (3.38). For derivation of
flow equations we will require the following derivatives, which were derived similar to Eq. (B.1)

∂Gσ
∂Kσ

= −G2
σ

∂G±σ∆

∂Kσ
= −GσG±σ∆

∂G|∆|
∂Kσ

= −G+
σ∆G

−
σ∆

∂G±∆
∂K±∆

= −
(
G±∆

)2 ∂G±σ∆

∂K±∆
= −G±σ∆G

±
∆

∂G|∆|

∂K±∆
= −G±∆G|∆|

∂G±∆
∂K∓∆

= −G2
|∆|

∂G±σ∆

∂K∓∆
= −G∓σ∆G|∆|

∂G±∆
∂Kσ

=
∂Gσ

∂K±∆
= −

(
G±σ∆

)2
(B.6)

For ρ∆ = 0 the boson propagator is given by the simple from

Gϕ̄ =




1
ZφKπ

13×3 0 0 0

0 1
ZφKσ

0 0

0 0 0 1
Z∆K

+
∆

0 0 1
Z∆K

−
∆

0



. (B.7)

Furthermore we have

G∆2
→ K∆2

K+
∆K

−
∆

=
K+

∆ +K−∆
2K+

∆K
−
∆

=
1

2K+
∆

+
1

2K−∆
. (B.8)

The same holds for G∆1
.
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QMDB-model of QCD

The extended parts in the propagator in the normal phase (3.42) of the QMDB-model are given
by

G∆r = G∆g =




0 1
Z∆K

+
∆

1
Z∆K

−
∆

0


 . (B.9)

For the BEC phase, the inverse of the matrix in Eq. (3.46) is given by

Gϕ =




Gπ
Zφ
13×3 0 0

0 Gσ
Zφ

− Gσ∆1√
ZφZ∆

0 − Gσ∆1√
ZφZ∆

G∆1
Z∆




with

Gσ = K∆1
/J

G∆1
= Kσ/J

Gσ∆1
= 2Vφ∆

√
ρφρ∆/J

J = KσK∆1
− 4ρφρ∆V

2
φ∆

Most of the flow equations have a G±∆ before the formal derivative ∂̃t is carried out. The relation
between real and the complex representation is

G±∆ =
1

2

(
G∆1

+G∆2

)
∓ iG∆1∆2

⇒ G±∆ →
1

2
G∆1

. (B.10)

Since in the BEC G∆2
= G∆1∆2

= 0, we can make this replacement. We emphasize that the
replacement should be done before ∂̃t is carried out.

B.2 The Nambu-Gorkov Propagator

Here all necessary informations and computations regarding the Nambu-Gorkov representation
of fermionic fields will be given, and the propagators for the respective models will be derived.
Additionally, the fermionic vertices for the QMDB-model will be shown.

QMD-model of QC2D

First let us prove Eq. (3.49). After performing the matrix multiplication there are four terms:
Two with pure color components and two with mixed ones. The pure red part already has the
form of the quark part in the action (2.35). The pure green part can be rewritten to same form
as well

Γquark|g =

∫

x
Zqq

T
g Cτ2

[
i/∂ − iγ4µ+ ihφ

√
Zφ (σ − iγ5~τ · ~π)

]
τ2Cq̄

T
g

=

∫

x
Zqq

T
g

[
i/∂
T − iγT4 µ+ ihφ

√
ZφC

2
(
σ + iγ5~τ

T · ~π
)]
q̄Tg

=

∫

x
Zq q̄g

[
i/∂ + iγ4µ+ ihφ

√
Zφ (σ + iγ5~τ · ~π)

]
qg. (B.11)
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We have used the properties of the Dirac algebra and Pauli matrices from App. A.4 . It is easy
to see that τ2~ττ2 = −~τT . In the last step we have transposed the whole expression which gives
a minus sign from fermionic interchange and another one in the derivative term, due to partial
integration. Now we turn to the off-diagonal terms

Γquark|h∆
= −

∫

x
Zq
√

2Z∆h∆

[
∆q̄rγ5τ2Cq̄

T
g + ∆∗qTg Cτ2γ5qr

]

= −
∫

x
Zq
√

2Z∆h∆

1

2

[
∆∗
(
qTg Cγ5τ2qr − qTr γ5C

T τT2 qg

)

+∆
(
q̄rτ2γ5Cq̄

T
g − q̄gτT2 CTγ5q̄

T
r

)]

=

∫

x
Zq

√
Z∆

2
h∆

[
∆∗
(
qTr Cγ5τ2qg − qTg Cγ5τ2qr

)
−∆

(
q̄rτ2γ5Cq̄

T
g − q̄gτ2γ5Cq̄

T
r

)]

=

∫

x
Zq

√
Z∆

2
ih∆

[
∆∗qTCτ2εγ5q −∆q̄γ5ετ2Cq̄

T
]

(B.12)

In the first step we have added the transposed of the expression and divided all by 2, while in the
last step we have summarized the color structure with e.g. qT = (qTr , q

T
g ) and the antisymmetric

tensor in color space ε.

Now we invert Eq. (3.52) to find the Nambu-Gorkov Propagator, see [362]

GΨΨ̄ =
1

Zq

1


[
G+

0

]−1
∆0

∆0

[
G−0

]−1




=
1

Zq

(
G+ ∆−

∆+ G−

)
,

where

G± =
1

[
G±0

]−1
−∆0G

∓
0 ∆0

=
(
/~p− iσ̂

)
A± + γ4B± (B.13)

and

∆± = −G∓0 ∆0G
± = γ5

[
∆̂A± iF (/~p+ iσ̂)γ4

]
. (B.14)

The momentum dependencies were omitted here. With

ν± ≡ νn ± iµ (B.15)
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Chapter B: Propagators

we define the functions as

A = a(~p2)D(~p2), a(~p2) = ~p2 + ν+ν− + σ̂2 + ∆̂2 ,

A± = a±(~p2)D(~p2), a±(~p2) = K∓q (~p2) + ∆̂2 ,

B± = b±(~p2)D(~p2), b±(~p2) = ν±K
∓
q (~p2) + ν∓∆̂2,

F = fD(~p2), f = 2∆̂µ ,

and

K±q (~p2) = ~p2 + ν2
± + σ̂2 , D(~p2) =

1

a+a− + f2
. (B.16)

These functions have the following properties, here we explicitly show the νn-dependence and
omit the ~p2-dependence

A(−νn) = A(νn), A±(−νn) = A∓(νn), B±(−νn) = −B∓(νn), F (−νn) = F (νn), (B.17)

also

A∗ = A, A∗± = A∓, B∗± = B∓, F ∗ = F (B.18)

For the derivation of flow equations, the following derivatives will be required

a′ = a′± = K∓q
′
= 1 , b′± = ν± , (D−1)′ = a+ + a− (B.19)

hence

A′± = F 2 −A2
± , A′ = D −A(A+ +A−) ,

B′± = ν±D −B±(A+ +A−) , F ′ = −F (A+ +A−) (B.20)

where primes denote a derivation with respect to the argument of these functions, which is ~p2, as
defined above. In the ∆ → 0 limit the off-diagonal parts of GΨΨ̄ vanish and the diagonal parts
are given by

G±0 =
1

/~p+ iσ̂ + γ4ν±
=
/~p− iσ̂ + γ4ν±

K±q
, (B.21)

hence

A± →
1

K±q
, B± →

ν±

K±q
. (B.22)

The elements of the inverse Nambu-Gorkov propagator can be read off from Eq. (3.52). For the
derivation of Eq. (B.13), we define p± = (~p, ν±)T and show it for the plus sign
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B.2 The Nambu-Gorkov Propagator

G+ =
1

/p+
+ iσ̂ − ∆̂2γ5

/p−−iσ̂
K−q

γ5

=
/p+

+ ∆̂2

K−q
/p− − iσ̂

(
1 + ∆̂2

K−q

)

(
/p+

+ ∆̂2

K−q
/p−

)2

+ σ̂2

(
1 + ∆̂2

K−q

)2

=
K−q /p+

+ ∆̂2/p− − iσ̂
(
K−q + ∆̂2

)

K−q
(
p2

+ + σ̂2
)

+ ∆̂4

K−q

(
p2
− + σ̂2

)
+ ∆̂2

(
{p+, p−}+ 2σ̂2

)

=

(
/~p− iσ̂

) (
K−q + ∆̂2

)
+ γ4

(
ν+K

−
q + ν−∆̂2

)

K−q K
+
q + ∆̂4 + 2∆̂2

(
~p2 + ν+ν− + σ̂2

)

=

(
/~p− iσ̂

)
a+ + γ4b+

K−q K
+
q + ∆̂4 + ∆̂2

(
K−q +K+

q + 4µ2
) . (B.23)

Keep in mind, that swapping γ5 with /p− yields a minus sign. Furthermore

{
/̃p−, /̃p+

}
= pµ−p

ν
+

{
γµ, γν

}
= 2pµ−p

ν
+δµν = 2~p2 + 2ν+ν−.

In the last step we used that ν2
+ + ν2

− = 2ν2
n − 2µ2 and ν+ν− = ν2

n + µ2. We see that the
denominator agrees with Eq. (B.16), as

K−q K
+
q + ∆̂4 + ∆̂2

(
K−q +K+

q + 4µ2
)

= a+a− + c2 .

The derivation of Eq. (B.14) will be shown here

∆± = −/~p− iσ̂ + γ4ν±

K∓q
(−∆̂γ5)

[(
/~p− iσ̂

)
A± + γ4B±

]

= ∆̂γ5
/~p+ iσ̂ + γ4ν±

K∓q

[(
/~p− iσ̂

)
A± + γ4B±

]

=
∆̂γ5

K∓q

[(
~p2 + σ̂2

)
A± + ν∓B± +

(
/~p+ iσ̂

)
γ4 (B± − ν∓A±)

]

=
∆̂γ5

K∓q D

[(
~p2 + σ̂2

)(
K∓q + ∆̂2

)
+ ν∓ν±K

∓
q (~p2) + ν2

∓∆̂2

+
(
/~p+ iσ̂

)
γ4

(
ν±K

∓
q + ν∓∆̂2 − ν∓K∓q (~p2)− ν∓∆̂2

)]

=
∆̂γ5

K∓q D

[
K∓q

(
~p2 + σ̂2 + ν∓ν±

)
+ ∆̂2

(
~p2 + σ̂2 + ν2

∓

)
±
(
/~p+ iσ̂

)
γ4K

∓
q (ν+ − ν−)

]

=
∆̂γ5

D

[
a± 2iµ

(
/~p+ iσ̂

)
γ4

]
.
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QMDB-model of QCD

The off-diagonals in Eq. (3.59) are given by

Ξ =
√
ZqZ∆

(
0

√
2Zqh∆γ5√

ZBihqdB 0

)
, Ξ̄ =

√
ZqZ∆

( √
2Zqh∆γ5 0

0
√
ZBihqdB

)
.

Let us briefly discuss the terms in order see that we have constructed them correctly. Naturally
Σ is For the case of the qdb-interaction in Σ the matrices in the subspaces cancel with the ones
from the g-component of Ψ (Ψ̄) yielding a minus sign due to C2 = −1, which, for the term
emerging from the lower left part of Σ in the middle term of (3.58), is canceled by bringing
the fermionic fields to the same order as in (2.36). In the upper right of Σ the minus cancels
trivially. For the last term the argument goes oppositely (regarding lower right and upper left),
since the fields must be opposite order, therefore there is minus sign in the front. It is easy to
see that the first term in Eq. (3.58) coincides with the corresponding part in Eq. (2.36). For the
kinetic parts and the qdb-interaction it is rather trivial, while for the quark-diquark interaction
the minus signs according to the antisymmetric tensor have to be considered. Let us write it
down for completeness

Γfermion|h∆
=

∫

x
Zq
√

2Z∆h∆

(
∆∗rqTg Cτ2γ5qb + ∆r q̄bγ5τ2Cq̄

T
g + ∆∗gqTb Cτ2γ5qr −∆g q̄bγ5τ2Cq̄

T
r

−∆∗bqTg Cτ2γ5qr −∆bq̄rγ5τ2Cq̄
T
g

)
. (B.24)

This is how it emerges from Eq. (3.58). We have summarized terms with similar color structure
by transposing. We see that every symmetric order of the color indices have a positive sign for
∆∗-terms and a negative sign for the ∆-terms, and vise versa for the antisymmetric orders, just
how it is supposed to be according to Eq. (2.36). Now all terms can be duplicated like in Eq.
(B.12), then it we have the same form as in (2.36).

The bB-propagator is given by

GbB =




Gb
Zq

∆bB√
ZBZq

∆Bb√
ZBZq

GB
ZB


 . (B.25)

The diagonal parts of the this propagator read

Gb = /~pAb − iHb + γ4Bb , (B.26)
GB = /~pAB − iHB + γ4BB (B.27)

with

Ab =
[
KB + zB∆̂2

B

]
L , Hb =

(
σ̂KB + σ̂B∆̂2

B

)
L ,

AB =
[
zBK

+
q + ∆̂2

B

]
L , HB =

(
σ̂BK

+
q + σ̂∆̂2

B

)
L ,

KB = z2
B~p

2 + ν2
B + σ̂2

B , Bb =
(
ν+KB + νB∆̂2

B

)
L ,

L =
1

K+
q KB + ∆̂4

B + 2∆̂2
B

[
|~p|(zB|~p|) + ν+νB + σ̂σ̂B

] , BB =
(
νBK

+
q + ν+∆̂2

B

)
L ,
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B.2 The Nambu-Gorkov Propagator

where νB = νn+iµB. The derivation is very similar to the one for G+ in (B.23) with the difference
that p− → (zB~p, νB)T and that there is a hB in one of the σ̂. It is clear that within flow equations,
zB always comes together with momentum. Therefore, in the regularized propagator we can make
the replacement

zB(~p2)|~p| = |~p|+mUV
B → |~pr|+mUV

B = zB(~p2
r)|~pr| , (B.28)

where the |~p| before the arrow belongs to the trivial momentum dependence of the propagator,
which is regularized as usual. So the general way A(~p2)→ A(~p2

r) is still correct.
We will need derivatives with respect to the blue quark momentum ~pb and the baryon momentum
~pB respectively. Although we have not denoted them distinctively, we can distinguish them simply
by the fact that the baryon momentum always comes as zB|~p|. Therefore we can regard the above
functions as f(|~p|, zB|~p|) and apply the somewhat sloppy convention

∂

∂~p2
b

f(|~p|, zB|~p|) ≡
1

2|~p|f
(1,0)(|~p|, zB|~p|) , (B.29)

∂

∂~p2
B

f(|~p|, zB|~p|) ≡
1

2|~p|f
(0,1)(|~p|, zB|~p|) , (B.30)

where the exponents (1, 0) and (0, 1) denote derivatives with respect to the first and the second
argument of the function f respectively. We have used that ∂

∂|~p|zB|~p| = 1. With these rules we
find

∂Kb

∂~p2
b

= 1 ,
∂L−1

∂~p2
b

= KB + zB∆̂2
B =

Ab

L
,

∂KB

∂~p2
B

= zB ,
∂L−1

∂~p2
B

= zBK
+
q + ∆̂2

B =
AB

L
.

Essentially we will have the above derivative operators acting on |~p|Ab/B. In order to correctly
distinguish ~pb and ~pB, we multiply |~p| with each term of the numerator of Ab/B, since it is origi-
nally there in the propagators (B.26)-(B.27). Then we have functions of the type f(|~p|, |~p|+mB)
and we can apply the rules (B.29)-(B.30):

∂

∂~p2
b

|~p|Ab = |~p|
(
KBL

2~p2
−A2

b

)
,

∂

∂~p2
B

|~p|AB = |~p|
(
K+
q L

2~p2
−A2

B

)
, (B.31)

∂

∂~p2
B

|~p|Ab =
∂

∂~p2
b

|~p|AB = |~p|



[
zB +

∆̂2
B

2~p2

]
L−ABAb


 .

In the ∆→ 0 limit the off-diagonal parts of the propagator (B.25) vanish and

Gb → G+
0 , GB →

zB/~p− iσB + γ4νB
KB

. (B.32)

Hence, the functions turn into

L→ 1

K+
q KB

, Ab →
1

K+
q
, AB →

zB
KB

. (B.33)
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The fermionic vertices are given by

ΓΨ̄σΨ =
√
ZφZqihφ 1 , ΓΨ̄πiΨ

= −
√
ZφZqhφγ5τi

(
σ3 0
0 1

)
,

ΓΨ̄∆rΨ =

(
0 0
Ξ 0

)
, ΓΨ̄∆bΨ =

√
ZqZ∆

(
−
√

2Zqh∆γ5s
T 0

0
√
ZBihqdBs

)
,

ΓΨ̄∆∗rΨ =

(
0 ΞT

0 0

)
, ΓΨ̄∆∗bΨ =

√
ZqZ∆

(
−
√

2Zqh∆γ5s 0
0

√
ZBihqdBs

T

)
,

ΓΨ∆∗gΨ = τ2C

(
0 −Ξ̄
Ξ̄ 0

)
,

ΓΨ̄∆gΨ̄ = τ2C

(
0 Ξ̄
−Ξ̄ 0

)
(B.34)

where s =
(

0 0
1 0

)
and σ3 is a the third Pauli matrix in Nambu-Gorkov space. Note that the

σ, πi,∆
b vertices in the rg-part coincide with the vertices (3.102) of QC2D. Furthermore, ΓΨϕiΨ =

−ΓTΨϕiΨ and similarly ΓΨ̄ϕiΨ̄
= −ΓT

Ψ̄ϕiΨ̄
.
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Appendix C
Flow Equations

In order to keep the equations overseeable we will write the entries of the boson propagator Gϕ
as functions of the four momentum q (or q ± p) instead of the regularized momentum squared
~p2
r . In final equations the bosonic propagators and the functions from the fermionic propagator

will be displayed without arguments, which is always meant in the way that all functions of ~p2,
which are defined in App. B, are evaluated at k2.

C.1 Bosonic Anomalous Dimension

Boson Loop

The boson loop contribution to the bosonic anomalous dimensions is given by

ηϕi
∣∣
ϕ

=
1

2Zϕi
∂̃t

∂

∂~p2
tr
∫

q
Gϕ(q)ΓϕϕiϕGϕ(q + p)Γϕϕiϕ

∣∣∣
p=0

. (C.1)

For the mesonic anomalous we basically need two kinds of vertices Γπ1π1σ = ZφVφφ
√

2Zφρφ and
Γπ1π1∆1

= ZφVφ∆

√
2Z∆ρ∆ with permutations of their left and right indices. All other entries of

pionic three-point function in the bosonic sector are vanishing, cf. Eq. (3.100). We do not have
to take real part of the flow, as its baryon charge is zero, and therefore the loop must be real
valued. So, the boson loop for mesonic anomalous is given by

ηφ
∣∣
ϕ

=
1

Zφ
∂̃t

∂

∂~p2

∫

q

[
Gπ(q)

Zφ
Γπ1π1∆1

G∆1
(q + p)

Z∆

Γ∆1π1π1 +
Gπ(q)

Zφ
Γπ1π1σ

Gσ(q + p)

Zφ
Γσπ1π1

− 2
Gπ(q)

Zφ
Γπ1π1σ

Gσ∆1
(q + p)√
ZφZ∆

Γ∆1π1π1

]∣∣∣∣
p=0

(C.2)

= 2∂̃t
∂

∂~p2

∫

q
Gπ(q)

[
ρφV

2
φφGσ(q + p) + ρ∆V

2
φ∆G∆1

(q + p)− 2
√
ρφρ∆ VφφVφ∆Gσ∆1

(q + p)
]∣∣
p=0

,

with the definitions from App. B.1. It is easy to see that all Z’s cancel out when the vertices
are inserted. The indices of the propagator matrix are displayed in a sloppy notation, however,
a propagator in between two vertices carries the last index of the left vertex and the first index
of the right vertex. So the leftmost and rightmost indices of the vertices indicate the way the
matrices were multiplied/traced. There were similar terms where the external momentum p is
carried by the pion propagator, which yield the same result as the ones displayed above, after
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Chapter C: Flow Equations

shifting the integration variable q → (q − p) and then p → −p, which leaves the derivative and
and the point of the evaluation p = 0 trivially invariant. hence the cancellation of the factor 1

2 in
the first step. There is a factor of 2 in the last term, as there was another term where the indices
σ ↔ ∆1 are interchanged, which gives the same contribution. The minus sign can be found in
the definition of the propagator Gϕ. The integrals have the form of Eq. (C.43), thus, with Eq.
(C.49) and (B.2) we find for the boson loop in the mesonic anomalous dimension

ηφ
∣∣
ϕ

= 2I(1)
ηB

[
Gπ, ρφV

2
φφGσ + ρ∆V

2
φ∆G∆1

− 2
√
ρφρ∆ VφφVφ∆Gσ∆1

]

=
2

3π2
k5T

∑

n

Gπ
2
[
ρφV

2
φφ

(
G2
σ +G2

σ∆1
−G2

σ∆2

)
+ ρ∆V

2
φ∆

(
G2

∆1
+G2

σ∆1
−G2

∆1∆2

)

− 2
√
ρφρ∆ VφφVφ∆

(
GσGσ∆1

+Gσ∆1
G∆1
−Gσ∆2

G∆1∆2

) ]

In the ∆ → 0 limit the contribution reduces to the term with the sigma propagators, which in
turn reduces to its simplest version

ηφ(∆ = 0)
∣∣
ϕ

= 2ρφV
2
φφI

(1)
ηB

[
1

Kπ
,

1

Kσ

]
=

2

3π2
ρφV

2
φφk

5T
∑

n

1

K2
πK

2
σ

. (C.3)

All functions in previous two equations are evaluated at k2.

Similarly, we find for the diquark anomalous dimension, with the vertices Γ∆2∆2σ = Z∆Vφ∆

√
2Zφρφ

and Γ∆2∆2∆1
= Z∆V∆∆

√
2Z∆ρ∆

η∆

∣∣
ϕ

=
1

Z∆

∂̃t
∂

∂~p2

∫

q

[
G∆1

(q)

Z∆

Γ∆1∆2∆2

G∆2
(q + p)

Z∆

Γ∆2∆2∆1
+
Gσ(q)

Zφ
Γσ∆2∆2

G∆2
(q + p)

Z∆

Γ∆2∆2σ

+
G∆1∆2

(q)

Z∆

Γ∆2∆2∆1

G∆1∆2
(q + p)

Z∆

Γ∆2∆2∆1
+
Gσ∆2

(q)√
ZφZ∆

Γ∆2∆2σ
Gσ∆2

(q + p)√
ZφZ∆

Γ∆2∆2σ

− 2
Gσ∆1

(q)√
ZφZ∆

Γ∆1∆2∆2

G∆2
(q + p)

Z∆

Γ∆2∆2σ − 2
Gσ∆2

(q)√
ZφZ∆

Γ∆2∆2∆1

G∆1∆2
(q + p)

Z∆

Γ∆2∆2σ

]∣∣∣∣
p=0

= 2 ∂̃t
∂

∂~p2

∫

q

{
ρ∆V

2
∆∆

[
G∆1

(q)G∆2
(q + p) +G∆1∆2

(q)G∆1∆2
(q + p)

]

+ ρφV
2
φ∆

[
Gσ(q)G∆2

(q + p) +Gσ∆2
(q)Gσ∆2

(q + p)
]

(C.4)

− 2
√
ρφρ∆ V∆∆Vφ∆

[
Gσ∆1

(q)G∆2
(q + p) +Gσ∆2

(q)G∆1∆2
(q + p)

] }∣∣∣
p=0

Again, all contributions appeared twice and can be summarized, which partly can be shown by
substituting momentum variables as above and partly by switching indices. Let us discuss the
terms in the first equation. In the upper line we have contributions from diagonal elements of
the propagator, which also occur in the opposite order. Corresponding to the second line, terms
occur where the indices for each matrix element are interchanged, which yields the same result
with a (−1)2 from the definition of Gϕ. In the last line, the minus is again from the definition of
the propagator, the factor of 2 is because of the contributions occur four times, where either the
order of the propagators is interchanged or the indices of each matrix element are interchanged
and the elements are rearranged. Interchanging indices in the last term gives again a (−1)2. The

142



C.1 Bosonic Anomalous Dimension

integration of the boson loop in the diquark anomalous dimension is then given by

η∆

∣∣
ϕ

= 2I(1)
ηB

[
G∆2

, ρ∆V
2

∆∆G∆1
+ ρφV

2
φ∆Gσ − 2

√
ρφρ∆ V∆∆Vφ∆Gσ∆1

]
+ 2ρφV

2
φ∆I

(1)
ηB

[
Gσ∆2

, Gσ∆2

]

+ 2ρ∆V
2

∆∆I
(1)
ηB

[
G∆1∆2

, G∆1∆2

]
− 4
√
ρφρ∆ V∆∆Vφ∆I

(1)
ηB

[
Gσ∆2

, G∆1∆2

]

=
2

3π2
k5T

∑

n

{
G∆2

[
ρ∆V

2
∆∆

(
G2

∆1
+G2

σ∆1
−G2

∆1∆2

)
+ ρφV

2
φ∆

(
G2
σ +G2

σ∆1
−G2

σ∆2

)

− 2
√
ρφρ∆ V∆∆Vφ∆

(
GσGσ∆1

+Gσ∆1
G∆1
−Gσ∆2

G∆1∆2

) ]

+
[√

2ρφVφ∆

(
GσGσ∆2

+Gσ∆1
G∆1∆2

+Gσ∆2
G∆2

)

−
√

2ρ∆V∆∆

(
Gσ∆1Gσ∆2

+G∆1
G∆1∆2

+G∆1∆2
G∆2

) ]2
}

Note that although there are square roots of the ρ’s, the square roots will disappear once the
definitions of the propagators are inserted from App. B.1, this also reflects the fact that all flow
equations must be given in terms of invariants. In the ∆→ 0 limit the coefficient again reduces
to the term with the sigma propagator, while G∆2

reduces to Eq. (B.8), hence

η∆(∆ = 0)
∣∣
ϕ

= 2ρφV
2
φ∆I

(1)
ηB

[
1

Kσ
,

1

2K+
∆

+
1

2K−∆

]
= 2ρφV

2
φ∆I

(1)
ηB

[
1

Kσ
,

1

K+
∆

]

=
2

3π2
ρφV

2
φ∆k

5T
∑

n

1

K2
σ(K+

∆ )2
. (C.5)

We have used the fact that the Matsubara summation yields the same result for the K−∆ part as
for the K+

∆ part. Again, all functions are evaluated at k2. At µ = 0 Eq. (C.3) and (C.5) coincide
because diquarks and pions are degenerate in two-color QCD and they have the same couplings
in the effective potential.

Fermion Loop

As indicated in Eq. (3.108), the quark loop in the bosonic anomalous dimension comes with an
overall minus sign, due to the str, so it is given by

ηϕi |Ψ = − 1

2Zϕi
∂̃t

∂

∂~p2
tr
∫

q
GΨΨ̄(q)ΓΨ̄ϕiΨ

GΨΨ̄(q + p)ΓΨ̄ϕiΨ
+GΨ̄Ψ(q)ΓΨϕiΨ̄

GΨ̄Ψ(q + p)ΓΨϕiΨ̄

∣∣∣
p=0

= − 1

Zϕi
∂̃t

∂

∂~p2
tr
∫

q
GΨΨ̄(q)ΓΨ̄ϕiΨ

GΨΨ̄(q + p)ΓΨ̄ϕiΨ

∣∣∣
p=0

. (C.6)

We can summarize the two expressions in the upper line, as we can write the second term as

(−1)4tr
∫

q
GTΨΨ̄(−q)ΓTΨ̄ϕiΨ GTΨΨ̄(−(q + p))ΓTΨ̄ϕiΨ = tr

∫

q
ΓΨ̄ϕiΨ

GΨΨ̄(−(q + p))ΓΨ̄ϕiΨ
GΨΨ̄(−q).

The minus signs are from interchanging fermionic indices and in the next step we have transposed
the hole expression. Now one can use the cyclic property of the trace and shift the integration
variable q → −q − p to see that it is exactly the same expression as the fist term in fermionic
contribution is obtained.
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Now we perform the matrix multiplication of the propagator with the vertex of each boson

GΨΨ̄ΓΨ̄π1Ψ =
1

Zq

(
G+ ∆−

∆+ G−

)
√
ZφZqhφ

(
−γ5τ1 0

0 γ5τ1

)
=
√
Zφhφ

(
−G+γ5τ1 ∆−γ5τ1

−∆+γ5τ1 G−γ5τ1

)
,

GΨΨ̄ΓΨ̄∆2Ψ =
1

Zq

(
G+ ∆−

∆+ G−

)
√
Z∆Zqh∆

(
0 −iγ5

iγ5 0

)
=
√
Z∆h∆

(
i∆−γ5 −iG+γ5

iG−γ5 −i∆+γ5

)
.

Thus
∫

q
tr
[
GΨΨ̄(q)ΓΨ̄π1Ψ GΨΨ̄(q + p)ΓΨ̄π1Ψ

]

= Zφh
2
φ

∫

q
tr
[
G+(q)γ5G

+(q + p)γ5 −∆−(q)γ5∆+(q + p)γ5

+G−(q)γ5G
−(q + p)γ5 −∆+(q)γ5∆−(q + p)γ5

]

= Zφh
2
φNc

∫

q
tr
[
G+(q)γ5G

+(q + p)γ5 −∆+(q)γ5∆−(q + p)γ5

]
.

Similarly
∫

q
tr
[
GΨΨ̄(q)ΓΨ̄∆2Ψ GΨΨ̄(q + p)ΓΨ̄∆2Ψ

]

= Z∆h
2
∆i

2

∫

q
tr
[
∆−(q)γ5∆−(q + p)γ5 −G+(q)γ5G

−(q + p)γ5

+ ∆+(q)γ5∆+(q + p)γ5 −G−(q)γ5G
+(q + p)γ5

]

= Z∆h
2
∆Nc

∫

q
tr
[
G−(q)γ5G

+(q + p)γ5 −∆+(q)γ5∆+(q + p)γ5

]
.

The matrices in flavor space commute with the propagator, as it has a trivial structure in flavor
space. After swapping the flavor matrices they result in a unit matrix, since they are squared,
therefore they were omitted. In the last step for each case we have already assumed, that tracing
over the Dirac space will yield only terms with same kinds coefficients defined in App. B.2, due
to the tracing properties of the Dirac algebra, which are shown in App. A.4. For the G± terms,
assuming that p4 = 0 we shift the q4-integration like q4 → −q4 and make use of the properties in
Eqs. (B.17) in order to make this step. It will become clearer, once it is written down below. The
color factor Nc stems from the fact that the Nambu-Gorkov space in our convention is equivalent
to color space.
It is apparent now, that the fermion-loop contribution to the mesonic and diquark anomalous
dimension are quite similar, except for the signs in front of the chemical potential. After tracing
we find with the definitions in App. B.2

η φ
∆

∣∣
Ψ

= −4NcNfh
2
φ
∆

∂̃t
∂

∂~p2

∫

q

{
A±(~qr)A+((~q + ~p)r)

[
−~qr · (~q + ~p)r + i2σ̂2

]
−B±(~qr)B+((~q + ~p)r)

− ∆̂2A(~qr)A((~q + ~p)r)∓ i2F (~qr)F ((~q + ~p)r)
[
−~qr · (~q + ~p)r + i2σ̂2

]}∣∣∣
p=0
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C.1 Bosonic Anomalous Dimension

= 4NcNfh
2
φ
∆

∂̃t
∂

∂~p2

∫

q

{
A±(~qr)A+((~q + ~p)r)

[
~qr · (~q + ~p)r + σ̂2

]
+B±(~qr)B+((~q + ~p)r)

+ ∆̂2A(~qr)A((~q + ~p)r)∓ F (~qr)F ((~q + ~p)r)
[
~qr · (~q + ~p)r + σ̂2

]}∣∣∣
p=0

. (C.7)

The argument of the functions is the regularized momentum as defined in Sec. 3.2.2. The upper
index represents the mesonic anomalous dimension and the lower one represents the diquark one.
The upper line in the integral represents the first term (diagonal contribution) of the previous
two equations and the lower line represents the second term (off-diagonal contribution). The
upper sign in lower line, also representing ηφ, stems from the relative one in ∆±. In the diagonal
contribution we receive a minus sign from swapping γ5 with the γi’s, hence the relative minus
sign with respect to the mass term. In the off-diagonal contribution the γ5’s from each vertex
cancels with the ones in the off-diagonal parts of the propagator. Then it is left to swap one of
the γ4 with the space-like γi’s which gives again relative minus sign with respect to the mass
term. Note that the flow equations preserve the symmetries of the action. Hence, as the boson
fields only appear as squared, they can be rewritten in terms of the invariant ρ’s.
Now we write the above expression in terms of the loop integrals defined in App. C.5. The
integrals have the form of Eq. (C.43) and (C.50), hence, with Eq. (C.49) and (C.60)

η φ
∆

∣∣
Ψ

= 4NcNfh
2
φ
∆

{
I(2)
ηB

[
A±, A+, σ̂

2
]

+ I(1)
ηB

[B±, B+] + ∆̂2I(1)
ηB

[A,A]∓ I(2)
ηB

[
F, F, σ̂2

]}

The fermion loop the mesonic anomalous dimension is given by

ηφ
∣∣
Ψ

=
4

3π2
NcNfh

2
φk

3T
∑

n

{
k2
(
k2 + σ̂2

)(
A′2+ − F ′2

)
+
A′+
4

+B′2+ + ∆̂2A′2

+
(
1− ηq

)
[
A′+
2
− k2

(
A+A

′
+ − FF ′

)
]


and for diquarks we have

η∆

∣∣
Ψ

=
4

3π2
NcNfh

2
∆k

3T
∑

n

{
k2
(
k2 + σ̂2

)(
A′+A

′
− + F ′2

)
− D

4
+B′+B

′
− + ∆̂2A′2

+
(
1− ηq

)
D

(
k2A+ −

1

2

)}
.

The derivatives are given in Eq. (B.20). All functions are evaluated at k2 after the integration.
In the limit of ∆→ 0 we use Eqs.(B.22), which leads to

η φ
∆

(∆ = 0)
∣∣
Ψ

= 4NcNfh
2
φ
∆



I

(2)
ηB

[
1

K±q
,

1

K+
q
, σ̂2

]
+ I(1)

ηB

[
ν±

K±q
,
ν+

K+
q

]


= 4NcNfh
2
φ
∆

I(2)
ηB

[
1

K±q
,

1

K+
q
, σ̂2 + ν±ν+

]
.
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Hence, for the mesonic case

ηφ(∆ = 0)
∣∣
Ψ

=
4

3π2
NcNfh

2
φk

3T
∑

n

1
(
K+
q

)2

[
k2

K+
q
− 1

4
+
(
1− ηq

)
(
k2

K+
q
− 1

2

)]
.

And for the diquarks

η∆(∆ = 0)
∣∣
Ψ

=
4

3π2
NcNfh

2
∆k

3T
∑

n

1

K−q K
+
q

[
k2
(
k2 + σ̂2 + ν−ν+

)

K−q K
+
q

− 1

4
+
(
1− ηq

)
(
k2

K+
q
− 1

2

)]
.

It is easy to see that at µ = 0 the previous two results coincide, since the Yukawa couplings
coincide due to the SU(Nf ) symmetry in two-color QCD.

C.2 Fermionic Anomalous Dimension

Quarks

We will do the computation in the complex representation of the diquark fields, since it is clearer
this way, however it is arbitrary, for we can insert a unit matrix between bosonic indices of the
form 1 = U †U , which transforms ϕ→ ϕ̄, or vise versa. First we take a look at the supertrace in
Eq. (3.111) after shifting the momentum integration in the second term to q → q + p

str
∫

q

{
G(q)Γ

(3)

Ψ̄β
G(q + p)Γ

(3)
Ψα
−G(q + p)Γ

(3)
Ψα
G(q)Γ̃

(3)

Ψ̄β

}

= tr
∫

q

[
Gϕ̄(q)Γϕ̄Ψ̄βΨGΨΨ̄(q + p)ΓΨ̄Ψαϕ̄ −Gϕ̄(q + p)Γϕ̄ΨαΨ̄GΨ̄Ψ(q)ΓΨΨ̄βϕ̄

]

−tr
∫

q

[
GΨ̄Ψ(q)ΓΨΨ̄βϕ̄

Gϕ̄(q + p)Γϕ̄ΨαΨ̄ −GΨΨ̄(q + p)ΓΨ̄Ψαϕ̄Gϕ̄(q)Γϕ̄Ψ̄βΨ

]

= 2 tr
∫

q

[
Gϕ̄(q − p)Γϕ̄Ψ̄βΨGΨΨ̄(q)ΓΨ̄Ψαϕ̄ −Gϕ̄(q + p)Γϕ̄ΨαΨ̄GΨ̄Ψ(q)ΓΨΨ̄βϕ̄

]
(C.8)

= 4 tr
∫

q
Gϕ̄(q − p)Γϕ̄Ψ̄βΨGΨΨ̄(q)ΓΨ̄Ψαϕ̄ (C.9)

In the first step the minus sign in the lower line is due to the str and the ones in the second terms
are due to interchange of the fermionic derivatives. In the first term of Eq. (C.8) we have again
shifted the integrals to q → q−p. Note that we can only reorder the terms after the str has been
dissolved into separate traces. Furthermore, note that all quantities still have the dimensions of
a matrix. In particular the vertex can be viewed as a matrix, which is contracted with others,
and the third index is unspecified. To show that both expressions yield the same contribution,
we contract the external indices of Eq. (C.8) with the ~γ from Eq. (3.111), which can be written
as a trace. Then, displaying only the fermionic part from the second term, we find

tr
[
~γT ΓΨϕ̄jΨ̄

GΨ̄Ψ(q)ΓΨϕ̄iΨ̄

]
= (−1)3tr

[
~γT ΓTΨ̄ϕ̄jΨG

T
ΨΨ̄(−q)ΓTΨ̄ϕ̄iΨ

]T

= −tr
[
ΓΨ̄ϕ̄iΨ

GΨΨ̄(−q)ΓΨ̄ϕ̄jΨ
~γ
]
.
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There is no harm in switching a bosonic index with a fermionic one; we did it to denote the
external index in this particular expression. Then we switched the fermionic indices, which
yields the transposed of the respective matrices with a minus sign for each, and, for the case
of the propagator, a change of sign in the argument according to Eq. (3.52). Since the whole
expression is a scalar quantity, we can transpose it to find that it is almost what we would get
from the first term in Eq. (C.8) contracted with ~γ. Note that the external bosonic indices were
switched in the process, however using the property of the bosonic propagator in Eq. (3.36), we
can switch them back by renaming them, with the result that the argument of Gϕ̄ switches the
sign to −q − p. Finally, switching the sign of the integration variable like q → −q, we see that
both terms are identical. Now we shift q4 → q4 + p4 and define qT = (~q, q4 + πT ), such that the
fermion propagator carries the fermionic Matusbara frequency. Thus, plugging Eq. (C.9) into
Eq. (3.111), and rearranging the terms we find

ηq =
1

4NfNcZq
< ∂̃t

∂

∂|~p| ~̂p ·
∫

q
tr
[
GΨΨ̄(qT )ΓΨ̄ϕ̄iΨ

~γ ΓΨ̄ϕ̄jΨ

]
Gϕ̄,ij(q − p)

∣∣
p=0

= − 1

4NfNcZq
< ∂̃t

∂

∂|~p| ~̂p ·
∫

q
tr~γ
[
Z2
qZφh

2
φ

G+(qT ) +G−(qT )

Zq

3Gπ(q − p) +Gσ(q − p)
Zφ

+2Z2
qZ∆h

2
∆

G+(qT )G+
∆(q − p) +G−(qT )G−∆(q − p)

ZqZ∆

]∣∣∣∣
p=0

= − 1

4Nf
< ∂̃t

∂

∂|~p| ~̂p ·
∫

q
tr
[
~γ G+(qT )

]{
h2
φ

[
3Gπ(q − p) +Gσ(q − p)

]
+ 2h2

∆G
+
∆(q − p)

} ∣∣
p=0

= −< ∂̃t
∂

∂|~p| ~̂p ·
∫

q
~qrA+(~q2

r )
{
h2
φ

[
3Gπ(q − p) +Gσ(q − p)

]
+ 2h2

∆G
+
∆(q − p)

} ∣∣
p=0

(C.10)

Let us explain what we did here. First of all, ~γ can be swapped with one of the vertices, which
gives the minus sign except for the σ vertex. Then the two vertices can be multiplied with each
other for each case, see Eqs. (3.103). The meson vertices are block diagonal and simply yield
a unit matrix in fermionic space when they are squared, with the minus sign for the σ case.
From the diquark contributions we have combination ΓΨ̄∆ΨΓΨ̄∆∗Ψ (and ΓΨ̄∆∗ΨΓΨ̄∆Ψ), which
yields a unit matrix in the upper left (lower right) corner and in Nambu-Gorkov space, and zeros
otherwise. It can be checked, that combinations with equal vertices for the diquarks vanish.
Terms for the mixing of σ and ∆ yield off-diagonals of the quark propagator, that are ∝ γ5 and
vanish after tracing. The factor of 2 in front of the diquark term originates from the diquark
vertices in the complex representation from (3.103). The external momentum can be set to zero
instead of pmin, since p4 = πT is absorbed in the definition of the fermionic propagator. As we
mentioned below Eq. (3.55) fermionic functions like A+ by convention always carry fermionic
Matsubara frequencies. For the third step, make use of the properties in Eqs. (B.5) and (B.18)
and the fact that the real part of the expression is taken. Therefore, since the counterparts of
the contributions represent the complex conjugated terms, after the trace is carried out, we can
summarize the terms in Nambu-Gorkov space which is effectively the color space. Note that here
we can not shift the q4 integration like for the bosonic anomalous dimension, because we would
have to do q4 → −q4 − 2p4, since the lowest Matsubara frequency is not part of the integral.
However, doing such a substitution would shift the momentum in the bosonic propagator as well,
such that it cannot be summarized. Carrying out the final trace with tr γiγj = 4δij , and tracing
over the trivial structure in flavor space, we obtain the last line. This integral has the from of
Eq. (C.61), hence we apply Eq. (C.64) and find with Eqs. (B.6)
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ηq = h2
φ < IηF

[
|~qr|A+, 3Gπ +Gσ

]
+ 2h2

∆ < IηF
[
|~qr|A+, G

+
∆

]

=
k5T

3π2
<
∑

n

A+

{(
1− ηφ

4

)[
h2
φ

{
3G2

π +G2
σ

}
+ 2h2

∆

(
G+
σ∆

)2
]

+

(
1− η∆

4

)[
2h2

∆

{(
G+

∆

)2
+G2

|∆|

}
+ h2

φ

{(
G+
σ∆

)2
+
(
G−σ∆

)2
}]}

.

The mesonic and diquark contribution cannot be written into one integral representation due
to the different anomalous dimensions. In the ∆ → 0 limit the upper line essentially stays the
same, while the explicit expression is given by

ηq(∆ = 0) =
k5T

3π2
<
∑

n

1

K+
q





(
1− ηφ

4

)
h2
φ

[
3

K2
π

+
1

K2
σ

]
+

(
1− η∆

4

)
h2

∆

2
(
K+

∆

)2





. (C.11)

See (B.7) and (B.22) for ∆→ 0 limits of the propagators. In the BEC phase of the QMDB-model
we use (B.10) in order to get rid of the Goldstone modes, and find

ηq = h2
φ < IηF

[
|~qr|A+, 3Gπ +Gσ

]
+ h2

∆ < IηF
[
|~qr|A+, G∆1

]

=
k5T

3π2
<
∑

n

A+

{(
1− ηφ

4

)[
h2
φ

{
3G2

π +G2
σ

}
+ h2

∆G
2
σ∆1

]
+

(
1− η∆

4

)[
h2

∆G
2
∆1

+ h2
φG

2
σ∆1

]}
.

All functions are evaluated at k2.

Baryons

Now we turn to the baryonic anomalous dimension of the QMDB-model. Similar to Eq. (C.9)
we find

str
∫

q

{
G(q)Γ

(3)

Ψ̄β
G(q + p)Γ

(3)
Ψα
−G(q + p)Γ

(3)
Ψα
G(q)Γ

(3)

Ψ̄β

}

= 4 tr
∫

q
Gϕ̄(q − p)Γϕ̄Ψ̄βΨGΨΨ̄(q)ΓΨ̄Ψαϕ̄ + 4 tr

∫

q
Gϕ̄(q − p)Γϕ̄Ψ̄βΨ̄GΨ̄Ψ(q)ΓΨΨαϕ̄ . (C.12)

It is completely analogous to show that the four terms with the additional types of vertices are
all the same. Let us first perform the matrix multiplications of the diquark vertices given in
App. B.2 with the projection operator P̂B in Nambu-Gorkov space. It can be checked that

ΓΨ̄∆r∗Ψ~γP̂BΓΨ̄∆rΨ~γ = −ZqZ∆ZBh
2
qdB~γ diag(1, 0, 0, 0) ,

ΓΨ∆g∗Ψ~γP̂BΓΨ̄∆gΨ̄~γ = −ZqZ∆ZBh
2
qdB~γ

Tdiag(0, 1, 0, 0) ,

ΓΨ̄∆b∗Ψ~γP̂BΓΨ̄∆bΨ~γ = −ZqZ∆ZBh
2
qdB~γ diag(0, 0, 1, 0) .

Naturally, the diagonal matrices project out the quark propagator with the same color as the
diquark. All other combination of diquark vertices with this projection operator are vanishing,
in particular the ones with the reverse order of the vertices in the above expressions, since in Eq.
(C.10) all contributions are summarized to the ones where the baryon flow goes in one direction.
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Note that the green contribution stems from the second term of Eq. (C.12), where the charge
conjugation operators in the vertices transpose the Dirac matrices. The green quark part in the
fermion propagator corresponds to an antiquark propagator therefore its contribution is entered
via the antifermion propagator with reversed indices. Now we can write down the anomalous
dimension similar to Eq. (C.10), but first let us take a closer look at the fermionic part of green
contribution

Zqtr
[
GΨ̄Ψ(qT )γTdiag(0, 1, 0, 0)

]
= tr

[
−
(
G−(−qT )

)T
~γT
]

= −(−~qr)A−
(
~q2
r ,−νn

)
= ~qrA+

(
~q2
r , νn

)

where Eq. (3.52) and (B.17) were used. Now it is clear that the green contribution will be
identical to the red one. The baryonic anomalous dimension is given by

ηB =
1

4NfZB
< ∂̃t

∂

∂|~p|

× ~̂p ·
∫

q
tr
[
GΨΨ̄(qT )ΓΨ̄ϕ̄iΨ

~γP̂BΓΨ̄ϕ̄jΨ
+GΨ̄Ψ(qT )ΓΨϕ̄iΨ~γP̂BΓΨ̄ϕ̄jΨ̄

]
Gϕ̄,ij(q − p)

∣∣
p=0

= −< ∂̃t
∂

∂|~p| ~̂p ·
∫

q
~qr

×



ABh

2
B

[
3Gπ(q − p) +Gσ(q − p)

]
+ h2

qdB

[
AbG

−
∆(q − p) +

2A+

K−∆ (q − p)

]


∣∣∣∣
p=0

. (C.13)

The mesonic contributions are analogous to (C.10), here P̂B projects out only the baryon prop-
agator. This integral has the from of Eq. (C.61), hence we apply Eq. (C.64) and find with Eqs.
(B.6)

ηB = h2
B < IηF

[
|~qr|AB, 3Gπ +Gσ

]
+ h2

qdB < IηF
[
|~qr|Ab, G−∆

]
+ 2h2

qdB < IηF
[
|~qr|A+,

(
K−∆

)−1
]

=
k5T

3π2
<
∑

n

{(
1− ηφ

4

)[
h2
BAB

{
3G2

π +G2
σ

}
+ h2

qdBAb

(
G−σ∆

)2
]

(C.14)

+

(
1− η∆

4

)
h2

qdB

{
Ab

[(
G−∆

)2
+G2

|∆|

]
+ 2A+

(
K−∆

)−2
}

+ h2
BAB

{(
G+
σ∆

)2
+
(
G−σ∆

)2
}

}
.

In the ∆→ 0 limit we have

ηB(∆ = 0) =
k5T

3π2
<
∑

n





(
1− ηφ

4

)
h2
B

zB
KB

[
3

K2
π

+
1

K2
σ

]
+

(
1− η∆

4

)
h2
qdB

3

K+
q

(
K−∆

)2





.
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The limiting cases of the blue and baryon propagators can be found in (B.33). Without the
Goldstone modes we find for the BEC phase with Eq. (B.10)

ηB = h2
B < IηF

[
|~qr|AB, 3Gπ +Gσ

]
+
h2
qdB

2
< IηF

[
|~qr|Ab, G∆1

]

=
k5T

3π2
<
∑

n

{(
1− ηφ

4

)[
h2
BAB

{
3G2

π +G2
σ

}
+
h2
qdB

2
AbG

2
σ∆1

]
(C.15)

+

(
1− η∆

4

)[
h2
qdB

2
AbG

2
∆1

+ h2
BABG

2
σ∆1

]}
.

C.3 Baryon UV Mass Gap

Since the projection onto the flow of the baryon mass (3.114) is quite the same as for the baryonic
anomalous dimension (3.112), except for the missing momentum derivative and the minus sign,
we can essentially start with a slightly modified Eq. (C.13)

∂tm
UV
B

∣∣
◦ = < ∂̃t ~̂p ·

∫

q
~qr

{
ABh

2
B [3Gπ +Gσ] + h2

qdB

[
AbG

−
∆ +A+

2

K−∆

]}

= −<
{
h2
BImB

[
|~qr|AB, 3Gπ +Gσ

]
+ h2

qdBImB

[
|~qr|Ab, G−∆

]
+ 2h2

qdBImB

[
|~qr|A+,

(
K−∆

)−1
]}

.

The circle on the left-hand side denotes that we are looking at the (loop-) diagrammatic part of
the flow. This integral has the from of Eq. (C.65), hence we apply Eq. (C.67) and find with
Eqs. (B.6) and (B.31)

∂tm
UV
B

∣∣
◦ = −k

6T

6π2
<
∑

n

{(
1− ηφ

5

)[
h2
BAB

(
3G2

π +G2
σ

)
+ h2

qdBAb

(
G−σ∆

)2
]

+

(
1− η∆

5

)
h2

qdB

{
Ab

[(
G−∆

)2
+G2

|∆|

]
+ 2A+

(
K−∆

)−2
}

+ h2
BAB

{(
G+
σ∆

)2
+
(
G−σ∆

)2
}


+

(
1− ηB

4

)

h2

B

(
A2
B −

K+
q L

2k2

)
(3Gπ +Gσ) + h2

qdB


ABAb −

[
zB +

∆̂2
B

2k2

]
L


G−∆




+

(
1− ηq

4

)

h2

qdB

(
A2
b −

KBL

2k2

)
G−∆ + h2

B


ABAb −

[
zB +

∆̂2
B

2k2

]
L


 (3Gπ +Gσ)

+2h2
qdB

(
A2

+ − F 2 − A+

2k2

)(
K−∆

)−1
]}

.
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The first two lines are essentially the same as the flow equation of ηB in Eq. (C.14) except for
some different numbers. In the ∆→ 0 limit we find

∂tm
UV
B (∆ = 0)

∣∣
◦ = −k

6T

6π2
<
∑

n





(
1− ηφ

5

)
h2
B

zB
KB

[
3

K2
π

+
1

K2
σ

]
+

(
1− η∆

5

)
h2
qdB

3

K+
q

(
K−∆

)2

+

(
1− ηB

4

)
h2
B

1

KB

[
z2
B

KB

− 1

2k2

][
3

Kπ
+

1

Kσ

]

+

(
1− ηq

4

)
h2
qdB

1

K+
q

[
1

K+
q
− 1

2k2

]
3

K−∆



 . (C.16)

The limiting cases of the respective functions are given in Eqs. (B.7), (B.22) and (B.33). It is
easy to see that the mixed contributions with the blue quark and the baryon propagator vanish.
By getting rid of the Goldstone modes with Eq. (B.10) we find for the BEC phase

∂tm
UV
B

∣∣
◦ = −k

6T

6π2
<
∑

n

{(
1− ηφ

5

)[
h2
BAB

(
3G2

π +G2
σ

)
+
h2
qdB

2
AbG

2
σ∆1

]

+

(
1− η∆

5

)[
h2
qdB

2
AbG

2
∆1

+ h2
BABG

2
σ∆1

]

+

(
1− ηB

4

)

h2

B

(
A2
B −

K+
q L

2k2

)
(3Gπ +Gσ) +

h2
qdB

2


ABAb −

[
zB +

∆̂2
B

2k2

]
L


G∆1




+

(
1− ηq

4

)


h2
qdB

2

(
A2
b −

KBL

2k2

)
G∆1

+ h2
B


ABAb −

[
zB +

∆̂2
B

2k2

]
L


 (3Gπ +Gσ)



}
.

C.4 Yukawa Couplings

Meson Yukawa coupling

Since the flow matrix in Eqs. (3.117)-(3.118) is the same as in (3.111) with a minus sign, we can
use Eq. (C.9) and write the diagrammatic parts of flows of the Yukawa couplings similar to Eq.
(C.10) and with the definitions from Eqs. (3.53)

∂thφ
∣∣
◦ = − 1

4NfNc

hφ
Zqiσ̂

= ∂̃t
∫

q
tr
[
GΨΨ̄(qT )ΓΨ̄ϕ̄iΨ

ΓΨ̄ϕ̄jΨ

]
Gϕ̄,ij(q)

= hφ< ∂̃t
∫

q
A+(~q2

r )
{
h2
φ

[
3Gπ(q)−Gσ(q)

]
+ 2h2

∆G
+
∆(q)

}
. (C.17)

As before, the circle on the left-hand side denotes that we are looking at the (loop-) diagrammatic
part of the flow. The steps are similar to the ones in Eq. (C.10). The difference is the missing
Dirac matrices, hence the minus sign does not come from any swapping but rather from the trace
of G+, where also the cancellation of iσ̂ originates from. Therefore, in this case the sign of the
sigma contribution does not match the others. Since we pulled out a factor i from the integral,
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in order to cancel it, the projection must be switched to the real part. We can set p = 0 from
the beginning as there is no derivative. It might be confusing that A+ is paired with neutral
particles as well as with a charged one. This can be understood by recalling, that by turning
around the direction of the momentum, particles are turned into antiparticles. This amounts to
swapping the external legs of the diagram, by which the net baryon charge and the direction of
the flow coincide for all contributions. The integrals have the form of Eq. (C.68); we apply the
formula (C.70) and find

∂thφ
∣∣
◦ = −hφ<

{
h2
φIh
[
A+, 3Gπ(q)−Gσ(q)

]
+ 2h2

∆Ih

[
A+, G

+
∆

]}

= −k
5T

3π2
hφ<

∑

n

[(
1− ηq

4

)(
A2

+ − F 2
) [
h2
φ (3Gπ −Gσ) + 2h2

∆G
+
∆

]

+A+

{(
1− ηφ

5

)[
h2
φ

{
3G2

π −G2
σ

}
+ 2h2

∆

(
G+
σ∆

)2
]

+

(
1− η∆

5

)[
2h2

∆

{(
G+

∆

)2
+G2

|∆|

}
− h2

φ

{(
G+
σ∆

)2
+
(
G−σ∆

)2
}]}]

After the formal scale derivative ∂̃t is carried out, the diagrams are somewhat changed. In
particular it should be noted that propagators, which are proportional to condensate ∆, carry
the baryon charge in/out to/from the condensate. Let us be more precise regarding the last
two terms for example: The baryon charge enters the digram from one side of the regulator,
passes trough the regulator and leaves the diagram from the other side. This can happen in both
direction, therefore we have contributions from both charges. In the ∆→ 0 limit all propagators
a given by their simplest from, hence

∂thφ(∆ = 0)
∣∣
◦ = −k

5T

3π2
hφ<

∑

n

1

K+
q

{(
1− ηq

4

)
1

K+
q

[
h2
φ

(
3

Kπ
− 1

Kσ

)
+ h2

∆

2

K+
∆

]

+

(
1− ηφ

5

)
h2
φ

(
3

K2
π

− 1

K2
σ

)
+

(
1− η∆

5

)
h2

∆

2
(
K+

∆

)2

}
(C.18)

.

Diquark Yukawa coupling

For the flow of the diquark Yukawa coupling we have the projection operator P̂∆ which takes
the place of the Dirac matrix. Let us first perform the matrix multiplications for the vertices in
Nambu-Gorkov space

ΓΨ̄σΨP̂∆ΓΨ̄σΨ = ΓΨ̄πiΨ
P̂∆ΓΨ̄πiΨ

= Z2
qZφh

2
φγ5

(
0 1
1 0

)

ΓΨ̄∆ΨP̂∆ΓΨ̄∆Ψ =
(

ΓΨ̄∆∗ΨP̂∆ΓΨ̄∆∗Ψ

)T
= 2Z2

qZ∆h
2
∆γ5

(
0 −1
0 0

)

(C.19)
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ΓΨ̄∆∗ΨP̂∆ΓΨ̄σΨ = ΓΨ̄σΨP̂∆ΓΨ̄∆Ψ = Z2
q

√
2ZφZ∆ihφh∆

(
0 0
0 −1

)

ΓΨ̄σΨP̂∆ΓΨ̄∆∗Ψ = ΓΨ̄∆ΨP̂∆ΓΨ̄σΨ = Z2
q

√
2ZφZ∆ihφh∆

(
−1 0
0 0

)

ΓΨ̄∆ΨP̂∆ΓΨ̄∆∗Ψ = ΓΨ̄∆∗ΨP̂∆ΓΨ̄∆Ψ = 0 .

The upper two matrices give rise to off-diagonal contributions from the fermion propagator, while
the lower ones lead to diagonal contributions. It is easy to see that the Z’s will cancel out once
these vertices are multiplied with the propagators. The diagrammatic part is given by

∂th∆

∣∣
◦ =− 1

4NfNc

h∆

Zq∆̂
< ∂̃t

∫

q
tr
[
GΨΨ̄(q)ΓΨ̄ϕ̄iΨ

P̂ΓΨ̄ϕ̄jΨ

]
Gϕ̄,ij(q)

=− 1

4NfNc

h∆

∆̂
< ∂̃t

∫

q
tr
[
h2
φγ5

{
∆+(qT ) + ∆−(qT )

}{
3Gπ(q) +Gσ(q)

}

− 2h2
∆γ5

{
∆+(qT ) + ∆−(qT )

}
G|∆|(q)− 2

√
2ihφh∆

{
G+(qT )G+

σ∆(q) +G−(qT )G−σ∆(q)
}]

=h∆< ∂̃t
∫

q

[
A(~q2

r )
{
h2
φ

[
3Gπ(q) +Gσ(q)

]
− 2h2

∆G|∆|(q)
}
−
√

8hφh∆

σ̂

∆̂
A+(~q2

r )G
+
σ∆(q)

]
.

The reasonings for summarizing the terms is again similar to Eq. (C.10). Let us remark that
all loops have zero baryon number, rightly, as was explained above. Note that A represents
mixture of quarks and antiquark which are connected to the external diquark condensate, which
is canceled out, and similar is the case for G|∆| regarding diquarks, where it is not canceled out.
In the last term the baryon number flows through the quark propagator and connects to the
condensate via the boson propagator, where diquark condensate is canceled out. In any case, the
flow equations preserve the symmetries of the action, therefore the bosonic fields only appear as
squared and can be rewritten in terms of the invariant ρ’s, as we mentioned before. We mention
here again, that fermionic functions like A and A+ are defined such that they contain fermionic
Matsubara frequencies. The integrals have again the form of Eq. (C.68); we apply the formula
(C.70) and find

∂th∆

∣∣
◦ = −h∆<

{
h2
φIh
[
A, 3Gπ(q) +Gσ(q)

]
− 2h2

∆Ih

[
A,G|∆|

]
−
√

8hφh∆

σ̂

∆̂
Ih

[
A+, G

+
σ∆

]}

= −k
5T

3π2
h∆<

∑

n

[(
1− ηq

4

){[
A (A+ +A−)−D

] [
h2
φ (3Gπ +Gσ)− 2h2

∆G|∆|

]

−
√

8hφh∆

σ̂

∆̂
(A2

+ − F 2)G+
σ∆

}

+

(
1− ηφ

5

){
A

[
h2
φ

(
3G2

π +G2
σ

)
− 2h2

∆G
+
σ∆G

−
σ∆

]
−
√

8A+hφh∆

σ̂

∆̂
GσG

+
σ∆

}

+

(
1− η∆

5

){
A

[
h2
φ

((
G+
σ∆

)2
+
(
G−σ∆

)2
)
− 2h2

∆G|∆|

(
G+

∆ +G−∆

)]

−
√

8A+hφh∆

σ̂

∆̂

(
G+
σ∆G

+
∆ +G−σ∆G|∆|

)}]
.
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In the limit ∆→ 0 the flow equation does not resemble the one for the meson Yukawa coupling,
this is related to the fact that it must be derived for a non-vanishing diquark field, which is
partly canceled out

∂th∆(∆ = 0)
∣∣
◦

= −k
5T

3π2
h∆h

2
φ<
∑

n

1

K+
q

[(
1− ηq

4

)




1

K−q


a
(

1

K+
q

+
1

K−q

)
− 1



(

3

Kπ
+

1

Kσ

)
+

4

K+
q

ρφVφ∆

KσK
+
∆





+

(
1− ηφ

5

){
a

K−q

(
3

K2
π

+
1

K2
σ

)
+

4ρφVφ∆

K2
σK

+
∆

}
+

(
1− η∆

5

)
4ρφVφ∆

Kσ

(
K+

∆

)2

]
,

where a = k2 + σ̂2 + ν−ν+, as in App. B.2 without the diquark term. However, for two-color
QCD the extended flavor symmetry SU(2Nf ) must be recovered in the µ→ 0 limit, hence both
flow equations must coincide, which is indeed the case. Considering that in this case the effective
potential V reduces to a function of one variable ρφ + ρ∆, hence K±∆ → Kπ, as well as η∆ → ηφ
and h∆ → hφ. Then we see that

1

Kσ
+

4ρφV
′′

KσKπ
=

2

Kπ
− 1

Kσ
,

1

K2
σ

+
4ρφV

′′

K2
σKπ

+
4ρφV

′′

KσK2
π

=
2

K2
π

− 1

K2
σ

, (C.20)

which can easily be checked. Moreover K±q → Kq and a → Kq, where the missing ± indicates
the vanishing chemical potential. Finally we can writ

∂th∆(∆ = 0, µ = 0)
∣∣
◦

= −k
5T

3π2
h3
φ<
∑

n

1

Kq

[(
1− ηq

4

)
1

Kq

(
5

Kπ
− 1

Kσ

)
+

(
1− ηφ

5

)(
5

K2
π

− 1

K2
σ

)]
,

which coincides with Eq. (C.18) if the same limiting cases are applied. We mention here again
that all functions are evaluated at k2 after integration.

C.5 Loop Integrals

Before turning to the Integrals let us make some preparations. We will substitute the momentum
integration variable for x = ~q2/k2. Then the momentum integration will turn into

∫

q
~q2nym = T

∑

n∈Z

∫
d3q

(2π)3
~q2nym

=
1

(2π)3
T
∑

n∈Z

∫ ∞

0
dq q2n+2

∫ 2π

0
dφ

∫ 1

−1
dy ym

=
1

(2π)2

2

m+ 1
k2n+3T

∑

n∈Z

∫ ∞

0

dx

2x
1
2

xn+1

=
1

4π2

1

m+ 1
k2n+3T

∑

n∈Z

∫ ∞

0
dxxn+ 1

2 . (C.21)
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Typically the only effective x-dependence within the integrand will in a Heaviside-function as
∫ ∞

0
dxxn+ 1

2 Θ(1− x) =
2

3 + 2n
for n > −3

2
(C.22)

In this work we will only employ the optimized regulator functions

rB(x) =

(
1

x
− 1

)
Θ(1− x) for bosons,

rF (x) =

(
1√
x
− 1

)
Θ(1− x) for fermions.

If the regulator appears in higher orders, there is no harm in setting the order of the Heaviside
function to one, as the only way it could make difference is if there is a Dirac delta function in
the integral, however, the regulator vanishes then. The derivatives are given by

∂

∂x
rB(x) = − 1

x2
Θ(1− x)−

(
1

x
− 1

)
δ(1− x) = − 1

x2
Θ(1− x), (C.23)

∂

∂x
rF (x) = − 1

2
√
x3

Θ(1− x)−
(

1√
x
− 1

)
δ(1− x) = − 1

2
√
x3

Θ(1− x). (C.24)

The terms containing Dirac delta functions drop out upon integration. Even if a derivative is
applied we have

∫
dxf(x)

∂

∂x

(
1

xα
− 1

)
δ(1− x) =

∫
dx

[
∂

∂x
f(x)

](
1

xα
− 1

)
δ(1− x) = 0 (C.25)

Furthermore any integrals containing a Dirac delta and Heaviside functions are evaluated to
∫
dx f(x)(Θ(x))nδ(x) =

∫
dx f(x)(Θ(x))n

dΘ(x)

dx
=

∫
dx f(x)

1

n+ 1

d

dx
(Θ(x))n+1

= −
∫
dx

(
d

dx
f(x)

)
1

n+ 1
(Θ(x))n+1 = −

∫
dx

(
d

dx
f(x)

)
1

n+ 1
(Θ(x))

=

∫
dx f(x)

1

n+ 1

dΘ(x)

dx
=

∫
dx f(x)

1

n+ 1
δ(x)

=
1

n+ 1
f(0) (C.26)

In the second step of the second line, we can safely set the exponent of the Heaviside function to
1, since there is no delta function present. So any function, which is within an integral in such a
way, is still evaluated at the zero of argument of the delta function, therefore the part with the
delta function in Eqs. (C.23) and (C.24) always vanishes.

Now we define the regularized dimensionless momentum functions

PB(x) = x(1 + rB(x)) = xΘ(x− 1) + Θ(1− x)

PF (x) = x(1 + rF (x))2 = x

(
Θ(x− 1) +

1√
x

Θ(1− x)

)2

Both have the simple property PB/F (x < 1) = 1. If we are looking at a purely bosonic or purely
fermionic integral, we will omit the index. If we make a substitution according to Eq. (C.21),
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we will redefine the functions in the integral like

G(P ) = G(k2P ) = G(~q2
r ) . (C.27)

where the ~qr denotes the regularized momentum. Substituting back, we have to put a factor of
k2 for the case of primed quantities, which denotes a derivative, as

G′(P ) =
∂G(P )

∂P
=
∂G(k2P )

∂P
= k2G′(k2P ) , (C.28)

Carrying out the integration, we will often refer to the following properties

rB/F (x = 1) = 0 , PB/F (x ≤ 1) = 1 , 1 + rF (x ≤ 1) = x−
1
2 . (C.29)

The derivatives the regularized dimensionless momentum functions of are given by

∂

∂x
PB(x) = 1 + rB + x

∂rB
∂x

=

(
1

x
− 1

)
Θ(1− x)− 1

x2
Θ(1− x) = 1−Θ(1− x)

= Θ(x− 1) , (C.30)

∂

∂x
PF (x) = (1 + rF )2 + 2x(1 + rF )

∂rF
∂x

= (1 + rF )

[
1 +

(
1√
x
− 1

)
Θ(1− x)− 1√

x
Θ(1− x)

]

= (1 + rF )Θ(x− 1) (C.31)

Furthermore we will need

∂

∂rB
PB = x, (C.32)

∂

∂rF
PF = 2x(1 + rF ) = 2x

(
Θ(x− 1) +

1√
x

Θ(1− x)

)
. (C.33)

The formal scale derivative acts only on the regulators, which must yield Eq. (3.20). Since the
Z’s are typically canceled out we must define it as

∂̃trB =
k

ZB

∂

∂k
ZB rB

(
~q2

k2

)
=

[
2

x
− ηB

(
1

x
− 1

)]
Θ(1− x), (C.34)

∂̃trF =
k

ZF

∂

∂k
ZF rF

(
~q2

k2

)
=

[
1√
x
− ηF

(
1√
x
− 1

)]
Θ(1− x). (C.35)

It is important to take into account the wave function renormalizations of all species. For
instance, if the formal derivative acts on propagator which is involved in a mixing with different
species, we must let it act on all kinetic parts separately. We will encounter derivations of
functions H(PB/F ) of the form

∂̃tH(PB) = H′∂PB
∂rB

∂̃trB = H′
(
2− ηB(1− x)

)
Θ(1− x) , (C.36)

∂̃tH(PF ) = H′∂PF
∂rF

∂̃trF = 2H′(1 + rF )
[√
x− ηF (

√
x− x)

]
Θ(1− x) , (C.37)
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as well as

∂

∂x
∂̃tH(PB/F ) =

∂

∂x
H′∂PB/F

∂rB/F
∂̃trB/F = H′ ∂

∂x

(
∂PB/F
∂rB/F

∂̃trB/F

)
+H′′∂PB/F

∂x

∂PB/F
∂rB/F

∂̃trB/F .(C.38)

The argument of H is omitted after the fist step. The second term will vanish upon integration,
as the x-derivative of the momentum functions contains the opposite Heaviside function as scale
derivative of the regulator, cf. Eqs. (C.30) - (C.35) . For the bosonic case we find

∂

∂x
∂̃tH(PB) = H′ ∂

∂x

(
2− ηB(1− x)

)
Θ(1− x)

= H′
[
ηBΘ(1− x)−

(
2− ηB(1− x)

)
δ(1− x)

]

= H′
[
ηBΘ(1− x)− 2δ(1− x)

]
, (C.39)

and for the fermionic one

∂

∂x
∂̃tH(PF ) = 2H′ ∂

∂x
(1 + rF )

[√
x− ηF (

√
x− x)

]
Θ(1− x)

= 2H′
{
− 1

2
√
x3

Θ(1− x)
[√
x− ηF (

√
x− x)

]
Θ(1− x)

+

(
Θ(x− 1) +

1√
x

Θ(1− x)

)[
1

2
√
x
− ηF

(
1

2
√
x
− 1

)]
Θ(1− x)

−
[√
x− ηF (

√
x− x)

]
δ(1− x)

}

= H′
[
x−

1
2 ηFΘ(1− x)− 2δ(1− x)

]
, (C.40)

where Eq. (C.24) was used. Again we have used that some terms vanish upon integration, in
particular, that xα = 1 for any α in the Dirac delta term, and we have assumed that no more
delta functions will be multiplied with the above expressions.

Effective potential

Since in this section all integrals are purely bosonic/fermionic, we will drop the corresponding
index. First let us consider bosonic contributions like

IBU [G] =

∫

q
G(~q2

r )ṘB =

∫

q
~q2G(~q2

r )∂̃trB

=
k5T

4π2

∑

n

∫ ∞

0
dxx

3
2G(k2P )

[
2

x
− ηB

(
1

x
− 1

)]
Θ(1− x)

=
k5T

3π2

(
1− ηB

5

)∑

n

G(k2) (C.41)

ṘB is basically given by Eq. (3.20) multiplied with the momentum squared, therefore it can be
written in terms of Eq. (C.34). Next we have applied Eq. (C.21). Finally, in order to carry out
the integral, we used Eqs. (C.29). The integration of fermionic contributions is done analogously,
with functions of the form H(~q2

r ) = |~qr|A(~q2
r ), where A represents the fermionic functions from
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App. B.2,

IFU [H] =

∫

q
|~q|H(~q2

r )∂̃trF

=
k4T

4π2

∑

n

∫ ∞

0
dxxH(k2P )

[
1√
x
− ηF

(
1√
x
− 1

)]
Θ(1− x)

=
k4T

6π2

(
1− ηF

4

)∑

n

H(k2) (C.42)

Note that we have already inserted the last relation from (C.29) in the first step.

Bosonic anomalous dimensions

In this section all integrals are purely bosonic/fermionic, so again we will drop the corresponding
index. In the bosonic anomalous dimension we have integrals, for the fermion as well as boson
loop, of the form

I(1)
ηB

[G,H] = ∂̃t
∂

∂~p2

∫

q
G(~q2

r )H((~q + ~p)2
r)
∣∣∣
p=0

. (C.43)

Let us perform a Taylor expansion of H about ~p = 0

H((~q + ~p)2
r) = H(~q2

r ) + pi
∂H(~q2

r )

∂qi
+

1

2
pipj

∂2H(~q2
r )

∂qi∂qj
+O(~p3) . (C.44)

The expansion can be written this way, as H is effectively a function of ~q+~p, even if the argument
is written differently. Plugging this into Eq. (C.43), the first term drops out by differentiation,
the O(~p3) terms vanish after setting p = 0 and we find

I(1)
ηB

[G,H] = ∂̃t
∂

∂~p2

∫

q
G(~q2

r )

[
pi
∂H(~q2

r )

∂qi
+

1

2
pipj

∂2H(~q2
r )

∂qi∂qj

]

= ∂̃t
∂

∂~p2

∫

q

[
2piqiG(~q2

r )
∂H(~q2

r )

∂~q2
− 1

2
pipj

∂G(~q2
r )

∂qi

∂H(~q2
r )

∂qj

]

= −2∂̃t

∫

q

∂

∂~p2
pipjqiqj

∂G(~q2
r )

∂~q2

∂H(~q2
r )

∂~q2

= −2∂̃t

∫

q
~q2y2∂G(~q2

r )

∂~q2

∂H(~q2
r )

∂~q2
. (C.45)

In the second and the third step we have used

∂

∂qi
=
∂~q2

∂qi

∂

∂~q2
= 2qi

∂

∂~q2
, (C.46)

and in the last one

∂

∂~p2
pipjqiqj =

∂

∂~p2
(~p · ~q)2 =

∂

∂~p2
~p2~q2y2 = ~q2y2 , (C.47)
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where y = cos θ and θ = ^(~p, ~q). The first term in second line vanishes upon integration, as
the integrand ist odd. Now we substitute the momentum integration variable according to Eq.
(C.21) and redefine the functions with dimensionless arguments like in Eq. (C.27)

I(1)
ηB

[G,H] = −2
1

4π2

1

3
k5T

∑

n

∂̃t

∫ ∞

0
dx x

3
2
∂G(P )

k2∂x

∂H(P )

k2∂x

= − 1

3π2
kT
∑

n

∫ ∞

0
dx x

3
2P ′(x)G′(P )

∂

∂x
∂̃tH(P ) . (C.48)

P = P (x) represents the fermionic or bosonic momentum function. We will see that the contri-
butions from both terms of chain rule will be the same, therefore we have simply doubled one
of the contributions. Looking at Eqs. (C.30)-(C.31) and (C.39)-(C.40), we can see that only the
term with the delta function will survive, which still looks same for bosons and fermions

I(1)
ηB

[G,H] =
kT

3π2

∑

n

2

∫ ∞

0
dx x

3
2 Θ(x− 1)G′(P )H′(P )δ(1− x)

=
k5T

3π2

∑

n

G′(k2)H ′(k2). (C.49)

We have used that P (1) = 1 and we get a factor 1/2 from integrating over the product of delta
and Heaviside functions according to Eq. (C.26), where technically we need to replace first
Θ(x− 1) = 1−Θ(1− x). The additional factor of k4 is due to Eq. (C.28).

Next we shall consider fermionic contributions of the form

I(3)
ηB

[G,H] = ∂̃t
∂

∂~p2

∫

q
G(~q2

r )H((~q + ~p)2
r) ~qr · (~q + ~p)r

∣∣∣
p=0

= −1

2
∂̃t

∫

q

∂

∂~p2
pipj

[
∂

∂qi
G(~q2

r )~qr

]
·
[
∂

∂qj
H(~q2

r )~qr

]
. (C.50)

We performed a Taylor expansion for a vector function similar to Eq. (C.44) and did the same
steps up to the second line in Eq. (C.45), where we dropped the term with the odd integrand. For
the next step we look at the following types of Integrals with Vl(q) = qlv(q) and Wl(q) = qlw(q)

d

d~p2
pipj

∫

q
∂iVl(q)∂jWl(q) =

d

d~p2
pipj

∫

q
(δil v + ql ∂iv)

(
δjl w + ql ∂jw

)

=
d

d~p2
pipj

∫

q

(
δij vw + qi v ∂jw + qj w ∂iv + ~q2∂iv∂jw

)

=
d

d~p2
pipj

∫

q

(
δij vw + qi ∂jvw + ~q2∂iv∂jw

)

=
d

d~p2
pipj

∫

q

(
δij vw − δij vw + ~q24qiqj

∂v

∂~q2

∂w

∂~q2

)

= 4

∫

q
~q4y2 ∂v

∂~q2

∂w

∂~q2
. (C.51)

For the third step we have renamed the indices and in the one after that we have used Eqs.
(C.46)-(C.47). Now we rewrite the integral in terms of dimensionless arguments, according to
Eq. (C.21)
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I(3)
ηB

[G,H] = −2∂̃t

∫

q
~q4y2

[
∂

∂~q2
(1 + r)G

] [
∂

∂~q2
(1 + r)H

]

= −2
1

4π2

1

3
k7T

∑

n

∂̃t

∫ ∞

0
dx x

5
2

[
∂

k2∂x
(1 + r)G(P )

] [
∂

k2∂x
(1 + r)H(P )

]

= − 1

6π2
k3T

∑

n

∫ ∞

0
dx x

5
2

{[
∂

∂x
∂̃t(1 + r)G(P )

] [
∂

∂x
(1 + r)H(P )

]
+

[
∂

∂x
(1 + r)G(P )

] [
∂

∂x
∂̃t(1 + r)H(P )

]}
.(C.52)

Let us take a look at the expression in the first parenthesis of the second term

∂

∂x
(1 + r)G(P ) = (1 + r)G′∂P

∂x
+
∂r

∂x
G = (1 + r)2Θ(x− 1)G′ − 1

2
√
x3

Θ(1− x)G . (C.53)

For the next step we will need

∂

∂x
∂̃trF =

[
− 1

2
√
x3

+ ηF
1

2
√
x3

]
Θ(1− x)−

[
1√
x
− ηF

(
1√
x
− 1

)]
δ(1− x)

= − 1

2
√
x3

(1− ηF ) Θ(1− x)− δ(1− x). (C.54)

Now we consider the second parenthesis using Eqs. (C.24), (C.33), (C.35), (C.37), (C.40) and
(C.54)

∂

∂x
∂̃t(1 + r)H(P ) =

∂

∂x

[
(∂̃tr)H+ (1 + r)∂̃tH

]

=

(
∂
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∂̃tr
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∂

∂x
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∂r
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∂
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=−
[

1− η
2
√
x3

Θ(1− x) + δ(1− x)

]
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[
1√
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. (C.55)

The term containing P ′ vanishes upon integration due to opposite Heaviside functions, see Eq.
(C.31). We have set higher orders of Heaviside functions to the order of one, since no delta
function will be multiplied with this expression. Integrating the product of the previous two
results assuming the properties in Eqs. (C.29) and that xα = 1 for any α in the terms containing
a Dirac delta function, yields
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∫ ∞

0
dx x

5
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. (C.56)

From the x integration we get a factor 1/2 in the first term by the integration formula in
Eq. (C.26) and in second term a factor 2 by ordinary integration. The G′ term in the 1 − η
contribution vanishes due to opposite Heaviside functions. All functions are evaluated at P = 1.
Let us expand the first term

(
2G′ − G

) (
H+ 2H′

)
= 4G′H′ − 2GH′ + 2G′H− GH . (C.57)

From the first term in Eq. (C.52) we will get the same expression but with interchanged functions
G ↔ H, therefore the two terms in the middle will be canceled. In general, these functions can
be of different particle species, thus we must consider different anomalous dimensions ηH and ηG
in the loop. The integral is then given by

I(3)
ηB

[G,H] =
k3T

3π2

∑

n

[
k4G′H ′ − GH

4
− 1− ηH

2
G

(
H

2
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)
− 1− ηG

2
H

(
G

2
+ k2G′

)]
.(C.58)

Here we have turned back to the original functions, which are all evaluated at k2. Again, every
primed quantity has to be substituted with the original function primed and scaled with k2. If
the particle species are the same, we know that the coefficient functions G and H only differ
potentially by a sign in front of the chemical potential, cf. Eqs. (B.17) and (C.7). Then we can
use following steps, explicitly denoting the q4 dependence,

∫
dq4H(q4)G′(q4) =

∫
dq4H(−q4)G′(−q4) = (±)2

∫
dq4G(q4)H ′(q4) (C.59)

and add another term which usually appears in integrals. Defining
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= I(3)
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4
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2
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.(C.60)

The m2 term adds to the first one in Eq. (C.58).
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Fermionic anomalous dimensions

In the fermionic anomalous dimension we have mixed integrals, of the form

IηF [GF , HB] = −∂̃t
∂

∂|~p| ~̂p ·
∫

q
~̂q GF (~q2

r )HB((~q − ~p)2
r)
∣∣∣
p=0

(C.61)

The scalar product of the unit vectors is simply ~̂p · ~̂q = cos θ = y. The momentum derivative acts
only on the bosonic function, of which we performed a Taylor expansion about ~p = 0 similar to
Eq. (C.44)

∂

∂|~p| HB((~q − ~p)2
r)
∣∣∣
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∂
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[
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= −2y|~q| ∂
∂~q2

HB(~q2
r ) ,

where we have used Eq. (C.46). Here only the linear term survives. In the last step we used
∂
∂~p ~p = 1 and Eq. (C.46). After plugging this back in, we substituted the momentum integration
according to Eq. (C.21) with n = 1

2 , m = 2), and (C.27)
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]

In the last line Eq. (C.30) was used. The scale derivative in the second term is proportional to
the opposite Heaviside function from Eq. (C.35):

∂̃tG(PF ) = G′∂PF
∂rF

∂̃trF ∝ Θ(1− x) . (C.62)

There are no delta functions in the second term, so it vanishes. In the first term we plug in Eq.
(C.39), immediately factoring out −2, and carry out the integral assuming the properties in Eqs.
(C.29)

IηF [GF , HB] = −k
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3π2
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∫ ∞

0
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GF (k2)H ′B(k2) (C.63)

We turned back to the original functions, with a factor k2 due to Eq. (C.28). We must consider
functions HB(~q2

r1 , . . . , ~q
2
rN

), which represent mixtures of different bosonic species. Typically the
momentum in such functions appears in energy functions like Kϕi = ~q2

ri + . . ., in which case Eq.
(C.63) can be generalized straightforwardly
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∑

n
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4
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. (C.64)
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Baryon UV mass gap

In the flow of the baryon UV mass gap we have mixed integrals, of the form
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In the first line we used the formula (C.21) with n = 0 and m = 1. In the forth line we used
Eq. (C.35)-(C.37) and factored out the common terms. Finally we carry out the integration
with (C.29) turn back to the original functions, with a factor k2 due to Eq. (C.28). We must
consider functions GF (~q2

r1 , . . . , ~q
2
rN

) and HB(~q2
r1 , . . . , ~q

2
rN

), which represent mixtures of different
particle species. The bosonic part is as above,
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Yukawa coupling

In the flow of Yukawa couplings we have mixed integrals, of the form

Ih[GF , HB] = −∂̃t
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This was now a straight forward computation for us. We inserted Eqs. (C.36)-(C.37), carried out
the integral assuming the properties in Eqs. (C.29), and turned back to the original functions,
with a factor k2 due to Eq. (C.28). Again we have to consider different species of bosons similar
to Eq. (C.64)

Ih [GF , HB] = −k
5T

3π2

∑

n
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4
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