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Summary 

The human papillomavirus (HPV) belongs to the family of Papillomaviridae with more than 200 

members, including HPVs but also papillomaviruses (PV) infecting for example cattle or rodents. Due 

to the causative association of HPV infection with the development of cervical cancer intensive 

investigation on HPV has been conducted over the last decades. Therefore, many aspects on the viral 

structure, infection as well as the transforming properties especially of the high risk HPV types have 

already been deciphered. In the course of these investigations, the HPV minor capsid protein L2 has 

been identified as an important player in the establishment of viral infection. Even though, the 

protein is dispensable for capsid formation, it has been demonstrated to have several functions 

crucial for e.g. DNA encapsidation, viral entry and the delivery of the viral genome to the host cell 

nucleus. However, the exact function of L2 during some of these processes is still unknown and 

under continuous investigation. In this context, many functional domains of the L2 protein have been 

identified especially in the highly conserved N-terminus of the protein however the function of the 

remaining parts is still unrevealed. Regarding the importance of the L2 protein for viral infection 

further investigation on potential functions still represents a promising field of research. 

The objective of this thesis was the identification of novel cellular interaction partners of L2. To this 

end, three independent experimental approaches were established, allowing the co-purification of 

interacting proteins. A) Tandem affinity purification (TAP) a two-step purification method based on 

the overexpression of HPV16 L2 as fusion protein with the TAP tag. B) Immunoprecipitation (IP) of 

HPV16 L2 from pseudovirus (PsV) infected cells, mimicking the natural infection pathway of HPV16. 

C) Peptide pull down of cellular proteins using immobilized HPV16 L2 epitopes which are targets for 

neutralizing antibodies. For identification of the co-purified interaction candidates the samples 

derived from the different experimental approaches were analyzed by mass spectrometry (MS). 

Based on the results, the insulin receptor substrate 4 (IRS4), the 14-3-3 zeta/delta (YWHAZ), the 

exportin-2 (CSE1L) as well as the calpain 2 (CAPN2) and the cullin-associated and neddylation-

dissociated 1 (CAND1) proteins were selected as most promising candidates for functional studies. 

These five proteins were validated as L2 binding partners by Co-IP and immunofluorescence (IF) after 

overexpression. An inhibitory effect on HPV16 L2 PsV transduction of the downregulation of protein 

expression was demonstrated for IRS4, YWHAZ and CSE1L. In contrast, knockdown of CAPN2 and 

CAND1 had neither inhibitory nor enhancing influence on PsV transduction. While the obtained data 

suggests a role of IRS4, YWHAZ and CSE1L during the infection process of HPV16, interaction with 

CAPN2 and CAND1, respectively is supposed to be important in a different step of the viral life cycle. 
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Zusammenfassung 

Der Humane Papillomvirus (HPV) gehört zur Familie der Papillomaviridae, die mehr als 200 

verschiedene Typen umfasst. Darunter befinden sich neben den HPV unter anderem auch 

Papillomviren (PV), die Rinder oder Nagetiere infizieren. Auf Grund der Assoziation zwischen HPV 

Infektion und der Entstehung von Zervixkarzinomen fand in den letzten Jahrzehnten eine intensive 

HPV Forschung statt. Viele Aspekte, wie die Struktur, der Infektionsvorgang und der Mechanismus 

der Zelltransformation durch HPV wurden dadurch aufgedeckt. In diesem Zusammenhang wurde 

auch gezeigt, dass das L2 Strukturprotein wichtige Funktionen bei verschiedenen Schritten des 

viralen Lebenszyklus erfüllt. Obwohl das L2 Protein für den Aufbau des Kapsids nicht essentiell ist, 

wurde eine wichtige Funktion bei der Verpackung des viralen Genoms, dem Eintritt in die Zelle, sowie 

dem Transport durch die Zelle nachgewiesen. Die Mechansimen wurden jedoch noch nicht im Detail 

erforscht. Es konnten aber schon diverse funktionelle Domänen des L2 Proteins identifiziert werden, 

speziell solche, die sich im konservierten Amino-Terminus befinden. 

Das Ziel der vorliegenden Arbeit war es daher neue, zelluläre Interaktionspartner von L2 zu 

identifizieren, um dadurch weiteren Einblick in die Funktionen des Proteins zu gewinnen. Um dieses 

Ziel zu erreichen, wurden drei unabhängige Methoden etabliert. A) Die Tandem Affinitäts Reinigung 

(TAP), welche auf der Expression des HPV16 L2 als Fusionsprotein mit dem TAP-Tag basiert. B) Co-

Immunopräzipitation von L2 aus Pseudovirus-infizierten Zellen, welche den natürlichen 

Infektionsverlauf von HPV nachahmt. C) Peptid-Pull-Down, bei dem HPV16 L2 Epitope immobilisiert 

wurden um interagierende, zelluläre Protein zu isolieren. Um die gereinigten Proteine zu 

identifizieren wurden die verschiedenen Proben im Massenspektrometer (MS) analysiert. Als 

vielversprechende Kandidaten wurden Insulin Rezeptor Substrat 4 (IRS4), 14-3-3 zeta/delta, Exportin-

2 (CSE1L), sowie Calpain 2 (CAPN2) und Cullin-assoziierte und Neddylations-dissoziierte 1 (CAND1) 

ausgewählt. Eine Interaktion dieser fünf Proteine mit L2 konnte durch Co-IP und Immunfluoreszenz 

Analysen validiert werden. Des Weiteren konnte ein inhibierender Einfluss auf die Transduktion 

durch PsV nach Herunterregulierung der Proteinexpression für die Interaktionspartner IRS4, YWHAZ 

und CSE1L festgestellt werden. Für CAPN2, sowie CAND1 konnte weder eine Inhibierung noch eine 

Verstärkung der Transduktionseffizienz von PsV beobachtet werden. Auf Grund der vorliegenden 

Daten wird daher vermutet, das IRS4, YWHAZ und CSE1L womöglich eine Rolle während des 

Infektionsprozesses spielen, während CAPN2, sowie CAND1 möglicherweise eine andere, noch 

unbekannte Funktion im HPV Lebenszyklus spielen.     
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1. Introduction 

1.1. Human Papillomavirus (HPV) 

The human papillomavirus (HPV) belong to the taxonomic family of Papillomaviridae and represents 

a group of non-enveloped dsDNA viruses with a genome size of ~8kb. The Papillomaviridae are highly 

diverse, occurring in most mammals and birds. Among the family of Papillomaviridae, more than 200 

human PV (HPV) types have been isolated and characterized so far and been divided in different 

genera.  

 

Figure 1Phylogenetic tree of 200 PV types. Classification of 200 papillomaviruses based on the homology of the L1 protein. 
The species of Betapapillomaviruses are indicated by the outer semi circles. Human papillomaviruses (HPV), alpha, beta, 
gamma, mu and nu are highlighted with red boxes. The remaining genera (pi, omicron, xi, lambda, kappa, lota, theta, eta, 
zeta, epsilon and delta) comprise the animal PVs are not specifically indicated. PVs are defined with the corresponding 
number at the associated branches [1]. 
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HPVs of the alpha genus are known to infect mucosal but also cutaneous epithelial cells of the genital 

and upper respiratory tract as well as the skin. Within the alpha genus, low risk types, e.g. HPV6 and 

HPV11, can cause benign genital warts, whereas the high risk types (e.g. HPV16 and HPV18) are 

causatively associated to cervical cancer [2-4]. HPVs of the β-genus are exclusively infecting the 

cutaneous epithelial and are suggested to play a role in the formation of Non-Melanoma Skin Cancer 

(NMSC). The remaining genera (gamma, mu and nu) have been associated to the development of 

cutaneous papillomas and warts [5]. Until now, 17 different high risk types have been described in 

the alpha genus of HPV, namely HPV 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 59, 66, 68, 73 and 

82. Within these high risk HPVs, HPV16 and HPV18 have the highest, transformation potential 

causing 50% and 20% of cervical cancer cases, respectively [6, 7]. Cervical cancer is a major burden 

worldwide and represents the fourth most frequent cancer in women 

(http://globocan.iarc.fr/old/FactSheets/ cancers/cervix-new.asp). During their life time most sexually 

active women get infected with mucosal HPV types, though most of the infections stay asymptomatic 

and can be cleared by the immune system. Only in a minority of infected women, the infection will 

progress to low and/or high grade cervical interepithelial neoplasia (CIN). However, even high grade 

CIN lesion can still regress and infection can be cleared whereas only a few will further progress to 

cervical carcinoma [8].  

The HPV genome contains 8 open reading frames (ORFs), encoding for three regulatory proteins (E1, 

E2 and E4), two structural proteins (L1 and L2) and three oncoproteins (E5, E6 and E7), which are 

regulated by the long control region (LCR), located between the ORFs L1 and E6 [9].  

 

Figure 2 Organization of the HPV16 genome. HPV16 has a genome size of about 8kb and contains 8 open reading frames 
(ORF). It encodes for three regulatory proteins, E1 and E2 controlling for example transcription of viral genes and genome 
amplification and three structural proteins L1, L2 and E4. L1 and L2 are essential for capsid assembly and encapsidation of 
the viral genome. Moreover, the genome contains three oncoproteins, E5, E6 and E7 which play a major role during viral 
infection and cancer progression of the infected cells. Figure adopted from [10].  
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HPV-driven cervical cancer is characterized by a high expression level of the oncoproteins E6 and E7 

as well as integration of the episomal HPV genome into the host genome [11]. It has been 

demonstrated that E6 and E7 play a major role in the development of HPV associated cancer, since 

they are directly involved in the transformation process. The E6 protein targets p53, a transcription 

factor regulating cell cycle arrest and apoptosis, for proteasomal degradation [12, 13]. And E7 

regulates cell cycle division by binding to hypo-phosphorylated pRB [14, 15]. Binding of E7 with pRB 

disrupts pRB-E2F interaction, leading the infected cells to progression into S-phase[16] . Therefore, 

high expression levels of E6 and E7 increase the chance for infected cells to progress to CIN and 

cervical cancer [17, 18].   
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1.2. The HPV Capsid 

The viral DNA is encased by a non-enveloped icosahedral capsid of about 50-60nm, composed of 72 

capsomers of five L1 molecules each. In general, the capsid is formed by the major capsid protein L1 

while the minor capsid protein L2 is finally incorporated into the L1 capsid structure. It has been 

demonstrated that L1, in absence of L2, is able to spontaneously self-assemble and form virus-like 

particles (VLPs) with similar morphology to native virions [4, 19]. The virus-like particles are produced 

either by expressing L1 alone or together with L2. In both systems the capsids possess the correct 

size (~55nm) and density in the gradient, comparable to native virions [19].  

HPV capsid structure and localization of the L2 molecules 

Stabilization of the viral capsid is achieved by maturation of the previously immature and still flexible 

virion. In the mature capsid state, the L1 molecules are cross-linked by disulfide bonds between 

neighboring L1 molecules [20]. The bonds have been demonstrated to be essential for the 

stabilization of the viral capsid [21]. The L1 pentamers form a knobby exterior surface and the N- and 

C-termini of L1 form the floor between the knobs. Furthermore it has been demonstrated that 

flexible C-terminal arms play a major role in the formation of the disulfide bonds between 

neighboring pentamers. In the mature capsid, each L1 molecule participates either in disulfide-linked 

dimers or ring-shaped trimers [22, 23]. For capsid assembly of L1/L2 capsids, L2 translocates into the 

nucleus, mainly into the PML bodies, before L1 pentamers are recruited, initiating the assembly of 

the viral capsid [24]. It was postulated that co-expression of L1 and L2 leads to 10-100fold higher 

capsid yields compared to L1 only expression, leading to the suggestion that L2 might also be 

involved in capsid stabilization [19]. Further analysis of L2 within the viral capsid revealed a diversity 

of different PsV preparations to have more than the previously suggested 12 L2 molecules [25, 26]. 

Buck et al. (2008) could show an average of 36 L2 molecules incorporated into PsV capsids and 

revealed up to 72 L2 binding sites within the L1 pentameric capsid structure. Furthermore Cryo-EM 

analyses (Figure 3) could demonstrate that L2 is mainly located around the base of the capsomer 

lumen in close apposition of neighboring L2 molecules. The predicted contact between neighboring 

L2 molecules was further shown to be specific in the assembled capsids [27].  The interaction of the 

L2 protein with the L1 capsomers is suggested to be found in the central cavity of the L1 pentamers 

and non-covalent [28]. The analysis of potential interaction domains of HPV11 L2 revealed a single 

domain within amino acid 396 and 439 to participate in L1 interaction. In the corresponding domain, 

conserved proline residues have been identified which were found to be conserved in a variety of 

HPV types. This hydrophobic stretch seems to play a major role in anchoring the L2 protein in the 

capsid [24].  
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Figure 3 Computerized reconstruction of a HPV16 L1+L2 capsid. Reconstruction of the capsids was generated based on 
results from the Cryo-EM analysis after capsid preparation in 293TT cells and maturation overnight. A Exterior surface of 
the L1+L2 capsid with the knobby structure formed by the L1 pentamers. B View of the interior capsid. C Interior view of the 
capsid, showing the L2 densities in red detected in the Cryo-EM. Figure adopted from [27]. 

The L2 protein is known to be mainly hidden within the viral capsid although the precise localization 

within the capsid is still unknown. However, several groups could identify different regions to be 

accessible when L2 is incorporated into the L1 capsid. For example, the region between amino acid 1-

120 of HPV16 seems to be available for binding [29-31]. A recently proposed model of PV infection 

suggests several conformational changes within the viral capsid during the entry process. Some L2 

regions might get accessible upon a distinct conformational change, which alters the availability of L2 

on the surface of the capsid. Gambhira et al. described an epitope at amino acid 17-36 which has 

been demonstrated to get available for antibody binding after binding to the ECM, followed by furin 

cleavage of the very N-terminal part of L2 [26, 32, 33]. Whereas, Richards et al. as well as Yang et al. 

described two epitopes (aa 100-120 and aa 13-31) to be constitutively exposed on the surface of PV 

capsids [31, 34]. 

Prophylactic HPV vaccines based on the structural proteins L1 and L2 

To date, there are two HPV vaccines available on the market and both are L1 VLP-based vaccines to 

prevent HPV infection with the most prominent high risk types, HPV16 and HPV18. While 

Cervarix®(GlaxoSmithKline) is a bivalent vaccine, composed of HPV16 L1 and HPV18 L1 VLPs, 

Gardasil® (Merck) is a quadrivalent vaccine and covers protection against two additional HPV types 

(HPV6 and HPV11). Though L1-based vaccines induce high titers of neutralizing antibodies, the 

protection is limited strictly to the distinct types included in the formulation of the vaccine [35]. In 

order to generate a second generation vaccine, several HPV L2 peptides have been demonstrated to 
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induce cross-protection against a high number of HPV types [30, 36-39]. Especially highly conserved 

N-terminal L2 epitopes represent the targets for neutralizing and cross-neutralizing antibodies [30]. 

However, the mechanism of neutralization and the function of these epitopes for viral infection have 

not been revealed so far. Their ability to elicit (cross-) neutralizing antibody responses might be an 

evidence for an essential role in during the infection process. Binding of neutralizing antibodies to 

these epitopes is suggested to inhibit a crucial function which might be crucial e.g. for the interaction 

with a specific cellular interaction partner. 
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1.3. Minor Capsid Protein L2 

L2 has been described to have important functions in several processes of DNA encapsidation and 

viral infection. The L2 protein is highly conserved between different papillomavirus types and is 

known to fulfill comparable functions in the PVs. Even though the protein is under 500 amino acids 

and therefore should have a molecular size of around 55 kDa in SDS-PAGE, it has been observed that 

the protein runs at a molecular weight of 64-78 kDa. This phenomenon could not be explained until 

now, since the only post-translational modification known is the SUMOylation at lysine 35 [40-42]. 

Little is known about the higher order structure of papillomavirus L2 proteins. The highly conserved 

N-terminal part of L2 was shown to contain two cysteine residues (C22 and C28) that are 100% 

conserved across the Papillomaviridae. These cysteines are able to generate intra-molecular disulfide 

hairpin loops that seem crucial for PV infectivity. Experiments targeting C22 and C28 demonstrated 

that exchanging either one lead to a loss of infectivity of the corresponding PV [43, 44].  

1.3.1. The role of L2 in capsid assembly and genome encapsidation 

Assembly of the viral capsid 

Within the nucleus L2 is recruited to the PML bodies, facilitated by a specific region at amino acid 

390-420 [45, 46]. Furthermore it has been shown that PML localization of L2 leads to an 

accumulation of L1 and DAXX in the PML bodies. This process might play a role in the assembly of 

viral capsids [47, 48]. Also other viral proteins were detected to accumulate in the PML bodies, for 

example the viral E2 protein. Since E2 has not been identified to be important for viral assembly but 

rather for transcription and replication, recruitment of E2 is supposed to induce replication of the 

viral genome [25, 49]. Beside viral proteins, several cellular proteins have been demonstrated to co-

localize and interact with L2 in the PML bodies. Among other proteins, transcriptional regulators, like 

PATZ and TBX2 and 3 have been identified. Especially PATZ was previously suggested to be an 

important protein, regulating gene transcription and cell differentiation during formation of 

papillomas [50, 51].     

Encapsidation of the viral genome 

The minor capsid protein L2 is also known to play an important role in the encapsidation of the viral 

genome. L2 has been shown to recruit other viral proteins to the ND-10 of the host nucleus. In the 

ND-10, or PML bodies, L2 co-localizes with L1, the viral DNA and E2 and is supposed to organize the 

encapsidation of DNA and the assembly of the L1/L2 viral capsid [45, 52]. Conserved regions at the N- 

and C-terminus of the L2 protein have been described to have DNA binding activity, consisting of 

positively charged basic amino acids [53, 54]. L2 is crucial for encapsidation of the viral genome of 
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different PV types [53, 55-57]. Deleting one of the two regions of L2 did not lead to inhibition of DNA 

encapsidation but rendered the particles non-infectious. Since the regions, described to have DNA 

binding activity, overlap with the nuclear localization signals (NLS) at the N- and C-terminus of L2, 

results gained from the deletion of both regions remain controversial [58-61]. The DNA binding 

activity of L2 is not sequence specific but rather depends on ionic interaction due to the affinity of 

negatively charged DNA and the positively charged amino acid regions of L2 [61].  

1.3.2. HPV entry – from the cell surface to the nucleus   

Binding to heparan sulfate proteoglycans (HSPG) 

The published data about the viral cell binding and entry process are still debated and based on the 

use of L1 and L1/L2 VLPs or PsV. To date, binding and cell entry of PV have not been completely 

revealed, however there are models of the entry process under discussion [33, 62]. The general 

opinion about the binding of HPV to the surface coincides about the initial binding to heparan sulfate 

proteoglycans (HSPGs) either on the cell surface or at the extracellular matrix [33, 63, 64]. HSPGs are 

reported to have different activities in a variety of biological process amongst others these proteins 

serve as attachment receptors for viral and bacterial pathogens [65, 66]. In keratinocytes, the target 

cells of PVs, the most prominent HSPG is known to be syndecan-1. This protein consists of a core 

transmembrane domain (TM) as well as an ectodomain containing between 3 and 5 HS chains. 

Syndecan-1 was described to be highly expressed during wound healing, correlating with the 

necessity of epithelial micro lesions for efficient, natural PV infection [67]. In addition to syndecan-1, 

several HSPGs have also been described as potential binding receptors of different PVs [68, 69]. The 

binding to HSPGs is based on two specific lysine residues in the L1 protein which are located at 

position 278 and 361 of the HPV16 L1 protein [70, 71]. Additionally, modifications, for example 

sulfation of the HSPG receptor seem to have a crucial effect on HPV (especially HPV16 and HPV33) 

binding [72]. The binding of L1 to the corresponding HSPGs leads to a conformational change in the 

L1 protein. This event is supposed to play a role in the transfer of virions to a potential secondary 

receptor facilitating viral entry [73].  

Exposure of the HPV L2 N-terminus and furin cleavage   

In the common binding models, the viral L2 protein, mainly hidden within the capsid, is suggested to 

expose the N-terminal part following the conformational changes in the L1 protein and the 

interaction of L2 with cyclophillin B (CyPB) [34, 74, 75]. CyPB is a peptidyl-prolyl cis-/trans-isomerase, 

known to associate with syndecan-1 after secretion to the extracellular space [76, 77]. After 

exposure of the L2 N-terminus the protein is cleaved at amino acid 12 by a furin protein convertase, 

removing the N-terminal located NLS [33, 34, 63, 73]. In addition, furin cleavage seems to be crucial 
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for infectivity of different PV types. The furin cleavage motif is highly conserved and several PV types 

show decreased infection potential after exposure to furin inhibitors [34]. Moreover, distinct point 

mutations of the furin cleavage site led to the production of infection deficient particles. Further 

analysis of these non-infectious particles showed proper incorporation of L2 and viral DNA during the 

capsid assembly. Whereas the following steps, like cell surface binding as well as uncoating of the 

viral DNA, have been demonstrated to be not affected by these mutations. However, Richards et al. 

could show an accumulation of the L2/viral genome complex in the endosomal compartment. The 

same results could be observed using furin inhibitors. Cleavage by furin protein convertase therefore 

seems to be crucial to facilitate the endosomal escape of the L2/viral genome complex and further 

transport to the nucleus [34].  

 

Figure 4 HPV surface interaction, conformational changes and binding to the target cell. A HPVs are transferred to the 
basement membrane through micro-lesions and bind to the HSPGs. B This binding induces a conformational change in the 
viral L1 capsid protein which leads to the exposure of the L2 N-terminus. The furin cleavage site then gets susceptible for 
the protein convertase which releases aa 1-12. C After a second conformational change in the capsid, the virion is 
transferred to the target cell and binds to a still unknown secondary receptor from where the particle is internalized. Figure 
adopted from [78].   

Furthermore, CyPB is suggested to have additional functions after virus internalization, specifically 

during dissociation of L1 and the L2/viral genome complex [79]. Since furin cleavage also induces a 

second conformational change of the capsid and exposes additional epitopes of L2, another 

hypothesis suggests L2 to bind to the still unknown secondary receptor at the surface of the target 

cell. This suggestion is supported by the identification of two independent L2 epitopes (aa 13-31 and 

aa 108-120) targeted by neutralizing antibodies. The epitope aa 13-31 has been shown to bind the 

cell surface and further contains the highly conserved cysteines (C22 and C28) which are both 

essential for viral infection [31, 37, 43]. In addition, the L2 epitope aa 108-120 has also been reported 

to bind epithelial cells and show high conservation between different types [37]. The involvement of 

a secondary receptor for viral entry is further based on the observation that HSPGs and CyPB do not 

induce endocytosis. These findings strongly support the existence of a secondary receptor or a co-

receptor initiating the internalization of the viral capsids into the host cell [74, 80].  
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Cellular factors involved in the uptake of HPV 

Several publications describe α6-integrin as a promising secondary receptor candidate because of the 

known interactions between integrins, tetraspanins, HSPGs, CyPB and intracellular signaling 

pathways [64, 69, 81]. Additionally, HPV16 PsV have been shown to interact with a HSPG/growth 

factor (GF) complex inducing signaling cascades through the corresponding growth factor receptors 

(GFR). In this context, the PsV are suggested to be covered by HSPG/GF complexes allowing the 

binding to the GFR. One example is the induction of the PI3K/Akt/mTOR signaling pathway by 

activation of the EGFR after binding of HPV16 PsV [62, 82]. The function of L2 during the binding and 

internalization of the virus is still under discussion. While some data clearly show a better infectivity 

of PsV with a high average of L2 incorporation, binding of HPV33 VLPs on HeLa cells have been 

described to be comparable for L1 and L1/L2 VLPs [27, 83, 84]. In 2012, Woodham and colleagues 

identified annexin A2 as an interaction partner of the L2 surface binding epitope 108-126, therefore 

revealing an additional candidate for receptor binding of L2 [85]. The Ca2+- and phospholipid binding 

protein annexin A2 consists of two A2 monomers together with a S100A10 dimer in a 

heterotetrameric complex [86]. The complex is known to be involved in several processes like endo- 

and exocytosis, cell adhesion, membrane fusion as well as binding, uptake and trafficking of a variety 

of viruses [87, 88]. For example, annexin A2 is a receptor for cytomegalovirus (CMV), facilitating CMV 

infection together with a variety of additional molecules, including HSPGs, integrins and EGFR [89, 

90]. The use of a complex set of molecules for viral entry would correlate with the slow and 

asynchronous uptake of HPV because of many rate limiting steps as conformational changes, furin 

cleavage and recruitment of a multitude of surface molecules [80, 91, 92]. Though the process of PV 

internalization could not be completely revealed to date, some of the common pathways have 

already been excluded. The endocytosis of HPV16 could be demonstrated to be clathrin-, caveolae-, 

lipid raft-, flotillin-, cholesterol- and dynamin- independent. However, actin polymerization seems to 

be crucial for HPV16 infection in contrast to Rho-like GTPase activity. The ligand-induced uptake of 

HPV16 might be a new pathway which is closely related to micropinocytosis, depending on multiple 

factors like EGFR, PKC, PI3K and maybe other tyrosine and/or serine/threonine kinases [92, 93].     

Internalization and trafficking of the Viral Particles 

Different PV types have been reported to use variable cellular pathways during the internalization 

process [93-95]. Beside the different PV types, another variable factor for the selection of the 

internalization pathway might be the cell type or the PV genome used in the distinct experiment. 

Whereas L1 only VLPs were shown to enter immune cells via a clathrin-mediated or caveolae-

dependent pathway, L1/L2 VLPs are internalized by clathrin- and caveolae-independent mechanisms 

[96, 97]. This observation leads to the suggestion that L2 might affect directly the selected 
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internalization pathway of the corresponding PV. Studies using Langerhans cells demonstrated 

maturation of L1 VLP-infected cells while L1/L2 VLP treated cells did not enter the maturation 

process [98]. Consistent to these findings, L2 might have another crucial function in escaping the 

immune system which might be due to the selection of an alternative uptake pathway [98]. Infection 

of epithelial cells, the natural target of PVs, led to uptake of the virions and transfer to early 

endosomes followed by transition to late endosomes, an acidification-dependent process [93].  

 

Figure 5 Intracellular trafficking of HPV16. After binding of the virus to the cell surface and the corresponding 
conformational changes in the capsid, the virus is internalized probably by a micropinocytosis related process. During 
internalization the virion is suggested to interaction with different factors, like integrin α6, tetraspanin, GFR and an 
unknown uptake receptor. Actin polymerization leads to the release of the HPV16 containing endocytic vesicle into the 
cytoplasm of the target cell. Acidification of the endosome and interaction with CyPB further lead to the disassembly of L1 
from the L2/viral DNA complex. Several cellular factors, e.g. Rab 7b and Rab 9a, are suggested to play a role in the transition 
of the L2/viral DNA complex to the trans Golgi network (TGN) from where the complex is further transported to the 
nucleus. However, the process of TGN to nucleus trafficking is still unrevealed. Figure adopted from [99].   

Several host cell proteins have been identified, permitting entry and transport of the virions. In PV 

infection CyPB might fulfill two distinct functions during the internalization of the virions. First of all, 

it is supposed to induce the previously described conformational change in the PV capsid, allowing 

furin cleavage [75]. Secondly, CyPB might facilitate the uncoating of the viral DNA in the late 

endosomes, leading to the dissociation of L1 and L2/viral genome complex [79]. While the L2/viral 

genome complex has been reported to escape the late endosome and travel through the trans Golgi 

network (TGN) after dissociation from L1, L1 remains in the late endosomes [100, 101]. In context of 

the described pathway, Day and colleagues described the furin cleavage to be crucial for the PV for 

entry to the TGN and further passage of the L2/viral genome complex. The TGN has been reported to 

be an essential subcellular compartment for transfer of the L2/viral genome complex to the nucleus 
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[102].This data was demonstrated by the dependence of HPV16 infection on Rab7b and Rab9a 

GTPases, which are known to be necessary for the transport of cargos between different cellular 

compartments. Rab7b and Rab9a have been published to be directly involved in transition of cargo 

proteins from the late endosome to the TGN [103]. Other compartments, like the caveosomes and 

the endoplasmatic reticulum (ER) have also been described to be important for intracellular 

trafficking of different PV (BPV1, HPV31 and HPV16) [104-106]. 

Endosomal escape of the L2/viral genome complex 

After encapsidation of the viral DNA, the L2/viral genome complex needs to escape the endosomal 

compartment and further travel to the host cell nucleus. Especially the mechanism leading to the 

endosomal escape is under continuous investigation and not completely understood to date. Kamper 

at al., identified a hydrophobic and basic cluster at the C-terminus of HPV33 L2 which is supposed to 

be able to invade cellular membranes and potentially destabilize the endosomal membrane. Further 

investigations on this L2 region by mutation experiments showed an impaired infectivity of the 

corresponding virus. In this context, the L2/DNA complex was observed to be retained in the late 

endosomes instead of being transported to the nucleus [107]. Another region of L2 which might be 

involved in the endosomal escape of the L2/DNA complex has been described to be a 

transmembrane-like domain at aa 45-67 including several GxxxG motifs [108]. The corresponding 

GxxxG motifs are highly conserved between different PV types which might point to an important 

function of the specific domain. Furthermore, the authors found the structure of this area to be 

alpha-helical with the GxxxG motifs on opposite faces of the helix. This localization allows the self-

association of motifs either homo- or heterotypically. This process might form higher order 

structures, therefore allowing the penetration of the endosomal membrane. This suggestion is 

strongly supported by experiments using altered GxxxG motifs, leading impaired endosomal escape 

of the L2/DNA complex [108].  

A cellular protein, identified to play a role in the endosomal compartment, is sorting nexin 17 

(SNX17), a cytosolic adapter protein involved in endosomal recycling. L2 sequences of several types 

show a conserved SNX17 binding site at around amino acid 245-257. Publications from 2012 and 

2013 demonstrated that knockdown of SNX17 or mutation of the potential SNX17 binding site in L2, 

induced retention of L2 in the late endosome followed by lysosomal degradation [109, 110]. SNX17 is 

strongly connected to the sorting process of cargo proteins within the endosomal network. SNX17 

protects integrins from lysosomal degradation by targeting the intergrins towards a recycling 

pathway [111, 112]. Recently, L2 has been reported to interact with SNX27, which belongs to the 

same protein family as SNX17 [113]. SNX27 is known to at least indirectly interact with the retromer 

complex [114]. SNX27 might be involved in the association of L2 with the retromer complex which 
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has previously been reported by Popa et al. [115]. Association of L2 with the retromer complex was 

described to mediate the endosomal escape and transport of the L2/viral genome complex to the 

TGN [115]. 

 In addition, the dependence of the L2/viral DNA transport on the Rab GTPases might also point to 

the trafficking of L2/viral DNA through the TGN to nucleus. Along this line an interaction of L2 with 

the dynein light chain Tctex1, described to be localized in the Golgi and the interphase nuclei was 

reported [116-118]. Though the final steps of L2/viral genome transport to the nucleus have not 

been revealed, the findings might confirm the hypothesis of L2/viral DNA nuclear entry during 

mitosis and nuclear envelope breakdown. In this context, the Tctex1 might be involved in the 

transition of the L2/viral DNA complex from the Golgi to the kinetochores of mitotic cells [117, 118]. 

However, the details of TGN to nucleus transition of the L2/viral genome complex are still under 

constant research and need to be further elucidated.   

Nuclear Entry of the L2/viral genome complex 

The L2 protein sequence is known to contain two NLS however the mechanism of nuclear entry is not 

completely understood by now.  Pyeon et al. claim that entry of the host cell into mitosis and the 

nuclear breakdown are crucial events for L2 nuclear entry. According to the publication from 2009, 

L2 does not enter the host cell nucleus through the nuclear pores mediated by the NLS sequence of 

L2 [119]. Besides, a nuclear retention signal at amino acid 296-316 has been described, which seems 

to be important for viral infection. In context of a nuclear entry during nuclear breakdown, these 

regions are suggested to facilitate association of L2/viral genome with the nuclear matrix during 

metaphase [120].  
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1.4. Objective 

The HPV minor capsid protein L2 has been reported to be crucial for infectious viral entry and a 

variety of processes during the viral life cycle of several HPVs. Even though some functional domains, 

especially in the highly conserved N-terminus of L2, have already been described (Figure 6), there are 

still many regions in the protein sequence that might play a role in the infection process or during 

formation of new virions after infection.  

 

Figure 6 Summary of described L2 functional domains and epitopes for binding of neutralizing antibodies. Functional 
domains of the PV L2 protein are highlighted with the colored bars, like described in the caption. The furin cleavage site is 
marked by a black arrow, whereas the epitopes for neutralizing antibodies are indicated by the red antibody symbol. Figure 
adopted from [121].  

The objective of the PhD project is the analysis of unrevealed HPV L2 domains to get further insight 

into the functional role of L2. Therefore, the aim of my thesis is the identification and validation of 

cellular proteins interacting with the HPV16 minor capsid protein L2. The first approach (Figure 7, A 

Tandem Affinity Purification (TAP)) focused on the identification of specific interaction candidates 

after overexpression of a tagged HPV16 L2 protein. The tandem-affinity purification (TAP) was used 

to co-purify interacting cellular proteins together with a TAP-tag containing HPV16 L2 fusion protein, 

followed by mass spectrometry (MS) analysis to identify co-purified proteins. In a second approach 

(Figure 7, B Co-Immunoprecipitation (Co-IP)), HPV16 L2 and its potential interaction partners were 

(co-)purified by immunoprecipitation (IP), from cells previously infected with HPV16 PsV. L2-specific 

and L1-specific antibodies were used for precipitation and the co-purified set of proteins was further 

analyzed by MS. Based on the identification of (cross-) neutralizing epitopes (aa 20-38, aa 28-42 and 

aa 64-81) at the N-terminal part of HPV16 L2 [30], the third approach (Figure 7, C Peptide Pull Down 

(PPD)) of the thesis relied on the immobilization of the corresponding epitopes and the identification 

of potential interaction partners by pull-down from cellular extracts. This approach should provide 
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further insight into the function of the specific epitopes within the L2 protein and their role during 

viral infection.  

 

Figure 7 Overview of the PhD thesis workflow. Potential interaction candidates of HPV16 L2 were identified, using three 
independent approaches. A Tandem Affinity Purification, based on the overexpression of a TAP-tagged HPV16 L2 protein 
and the co-puification of interacting proteins. B Co-immunoprecipitation (IP) of HPV16 capsids from cells infected with 
HPV16 PsV and co-purification of potential binding partners. C Peptide Pull Down (PPD), focusing on three biotinylated 
HPV16 L2 epitopes, immobilized on avidin beads and further used for pull-down of interacting proteins from cell extracts. 
To validate potential candidates, the candidates were overexpressed and analyzed in either an alternative precipitation 
method for binding to L2 or immunofluorescence (IF) for co-localization with L2. Additionally, the candidates were down 
regulated by siRNA or shRNA and transduction efficiency of HPV16 PsV was analyzed. Potential binding sites were identified 
by in silico analysis using the eukaryotic linear motif (ELM) online tool. Further investigations on the mechanism have not 
been executed during the experimental phase of the PhD thesis.    

Identified interaction candidates were further validated for their ability to physically bind HPV16 L2 

by alternative precipitation methods and co-localization by immunofluorescence. In addition, HPV16 

PsV transduction was analyzed after downregulation of the expression levels of distinct candidates 

by siRNA and shRNA, respectively. In order to identify potential interaction sites of the validated 

candidates, L2 protein sequences of different low and high risk HPV types were analyzed using the 

eukaryotic linear motif (ELM) online tool for in silico analysis.  Further investigations on the 

mechanism of the corresponding interactions, like the mutation of identified binding sites and the 

analysis of specific steps of the viral life cycle, have not been executed during the thesis. 
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2. Material 

2.1. Biological Material 

2.1.1. Prokaryotic Cells 

Strain Genotyp Company 

E.coli MegaX 
DH10αTM T1R 

F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 
ΔlacX74 recA1 endA1 araD139 Δ(ara leu)7697 
galU galK λ– rpsL nupG tonA 

Invitrogen 

E.coli Solo Pack Gold 
Competent Cells 

Tetr Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 
endA1 supE44 thi-1 recA1 gyrA96 relA1 lac 
Hte [FÅL proAB lacIqZΔM15 Tn10 (TetR)Amy 
CamR] 

Stratagene, Agilent 
Technologies 

E.coli RosettaTM  
F- ompT hsdSB(rB- mB-) gal dcm (DE3) pRARE2 
(CamR) 

Merck4Biosciences 

E.coli SURE (Stop 
Unwanted 
Rearrangement 
Events) Competent 
Bacteria 

e14-(McrA-) Δ(mcrCB-hsdSMR-mrr)171 endA1 
gyrA96 thi-1 supE44 relA1 lac recB recJ sbcC 
umuC::Tn5 (KanR) uvrC 
[F´ proAB lacIqZΔM15 Tn10 (Tetr)] 

Stratagene, Agilent 
Technologies 

2.1.2. Eukaryotic Cells 

Cell Line Description 

HaCaT 
Keratinocyte cell line derived from adult human skin. Spontaneously transformed 
and immortal cell line. Described as aneuploid. Culture medium: supplemented 
DMEM  

HEK 293 
Human embryonic kidney cells derived from a healthy aborted human embryo and 
transformed with E1A/B of Adenovirus 5. Described as hypotriploid. Culture 
medium: supplemented DMEM  

HEK 293TT 
HEK 293 cells stably expressing two copies of the Simian virus (SV) 40 large T-
antigen. Cultured under selective conditions using 62,5µM Hygromycin B. Culture 
medium: supplemented DMEM  

HeLa 
Immortal cell line derived from HPV18 positive human cervical carcinoma of 
Henrietta Lacks. The cells are hypertriploid (3n+). Culture medium: supplemented 
DMEM 

HeLa T 
HeLa cells stably expressing one copy of the Simian virus (SV) 40 large T-antigen. 
Cultured under selective conditions using 125µM Hygromycin B. Culture medium: 
supplemented DMEM 

Phoenix 

Phoenix cells are derived from HEK 293T cells. Constructs capable of producing gag-
pol as well as envelope proteins were introduced into the 293T cells. Therefore the 
cells stably express lentiviral packaging proteins and can be used for Lentivirus 
production. Culture medium: high glucose DMEM, supplemented with 10% FCS, 1% 
P/S, 1% glutamine and 10µg/ml ciprofloxacin 

 

 



Material 

 

19 
 

2.1.3. Pseudoviruses (PSV) 

HPV type Reporter Plasmid Source 

HPV16 Gaussia Luciferase, GFP #988 #1998 N. Thönes/M. Müller 

HPV18 Gaussia Luciferase, GFP #1165 #1166 #1998 J. Schiller/M. Müller 

HPV31 Gaussia Luciferase, GFP #1698 #1998 J. Schiller/C. Buck/M. Müller 

HPV45 Gaussia Luciferase, GFP #2271 #2273 #1998 I. Rubio/M. Müller 

2.1.4. Adeno-associated Viruses (AAV) 

AAV type Reporter Plasmid Source 

AAV2 Gaussia Luciferase, ssDNA #2772 #1814 #3193 A. Sacher/M. Müller 

AAV2 Gaussia Luciferase, scDNA #2772 #1814 #2485 A. Sacher/M. Müller 

2.1.5. Lentiviruses 

shRNA Packaging Plasmids Source 

#3311 pLKO.1 SHC002 shRNA ctrl. #3294 #3295 #3296 This thesis 

#3312 pLKO.1 SHC003 GFP turbo #3294 #3295 #3296 This thesis 

#3344 IRS4_2 shRNA #3294 #3295 #3296 This thesis 

#3345 YWHAZ_1 shRNA #3294 #3295 #3296 This thesis 

#3347 CSE1L_1 shRNA #3294 #3295 #3296 This thesis 

#3348 SPOP_1 shRNA #3294 #3295 #3296 This thesis 

2.2. Media and Supplements 

2.2.1. Procaryotic Cells 

Designation Composition 

Agar Plates 

98,5% LB medium (v/v) 
1.5% bacto-agar (w/v) 

autoclaved 
antibiotics added when < 40⁰C 

Luria Broth (LB) medium 

1% Trypton (w/v) 
0.5% Yeast Extract (w/v) 

0.5% NaCl (w/v) 
in H2O, pH 7.5 

autoclaved 

Antibiotics 
Ampicilin (Amp): 100mg/ml 
Kanamycin (Kan): 25mg/ml 

Zeocin (Zeo): 100mg/ml 
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2.2.2. Eukaryotic Cells 

Media Company 

Dulbecco´s Modified Eagle Medium (DMEM) 
Sigma-Aldrich, Deisenhofen, 

Germany 

 

Supplements Concentration Company 

FCS  PAN Biotec, Aidenbach, Germany 

L-glutamin (200mM) 200mM Genaxxon, Ulm, Germany 

Penicillin/Streptomycin  
(10.000 units/ml Pen and 
10.000µg/ml Strep) 

10.000U/ml Gibco Life Technologies, Paisley, UK 

2.3. Molecular Cloning 

2.3.1. Oligonucleotides for Cloning of HPV16L2 Fragments for TAP 

As template DNA for the PCR of the following HPV16L2 fragments, #893 pUF3 containing the 

humanized HPV16L2 full-length sequence were used.  

BamHI restriction sites were added to the primer sequences, to allow cloning of the amplified DNA 

sequences into the destination vector #2175 pZOME1_C. To improve translation of the HPV16L2 

fragments, the Kozak sequences was included into the forward primer sequences of HPV16L2_Fr2  

(aa 129-334) and HPV16L2_Fr3 (aa 262-473). 

Designation Sequence 5´-3´ 

HPV16L2_Fr1 (aa 1-193)F CTTTGGATCCGCCACCATGAGGCACAAG     

HPV16L2_Fr1 (aa 1-193)R CTTTGGATCCGTAGTTGTGGGTGCTGATGG      

HPV16L2_Fr2 (aa 129-334)F ATTTGGATCCGCCACCATGGACGTGAGCGGCTTCAGCATCACC    

HPV16L2_Fr2 (aa 129-334)R CTTTGGATCCGGTGCTCAGGTCGTAGTAGTAGTG 

HPV16L2_Fr3 (aa 262-473)F CTTTGGATCCGCCACCATGGACGTGGACAACACCCTGTACTTC 

HPV16L2_Fr3 (aa 262-473)R ATTTGGATCCCGCGGCCAGGCTCACG 
highlighted in blue, BamHI restriction site 

highlighted in green, Kozak sequence 

2.3.2. Oligonucleotides for siRNA knockdown 

Designation Taget Sequence Order # (Qiagen, Hilden, Germany) 

Hs-SNX17_1 Flexi tube siRNA CTGGCCCTCGATGCCAAAT SI00107877 

Hs-SNX17_2 Flexi tube siRNA CAGCGAGACTTTCAACAGT SI00107884 

Hs-SNX17_3 Flexi tube siRNA CTCCGCCTACGTGGCCTAT SI00107891 

Hs-SNX17_5 Flexi tube siRNA TACATGCAAGCTGTTCGGC SI03108378 

Hs-IRS4_3 Flexi tube siRNA GAGGGTGACTACATTGAAG SI00053494 

Hs-IRS4_5 Flexi tube siRNA GCGGCGCGTGATCACCCTA SI02631398 

Hs-IRS4_6 Flexi tube siRNA CAGCTCTAGTGACTACGTC SI03068226 
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Hs-IRS4_7 Flexi tube siRNA CAGGCGCTACTTCGTGCTC SI03070620 

Hs-YWHAZ_3 Flexi tube siRNA CAGGTTTATGTTACTTCTA SI00764813 

Hs-YWHAZ_6 Flexi tube siRNA Sequence not provided SI04135663 

Hs-YWHAZ_7 Flexi tube siRNA Sequence not provided SI04295375 

Hs-YWHAZ_8 Flexi tube siRNA Sequence not provided SI04330900 

Hs-CSE1L_2 Flexi tube siRNA CTGACGGTATCAAATATAT SI00025298 

Hs-CSE1L_3 Flexi tube siRNA Sequence not provided SI00025305 

Hs-CSE1L_4 Flexi tube siRNA CAAATGAACTTGTAAACCT SI00025312 

Hs-CSE1L_7 Flexi tube siRNA CAGGATAATGTTATCAAAG SI02654015 

Hs-CAPN2_4 Flexi tube siRNA CTGGAACACTATAGACCCA SI00338114 

Hs-CAPN2_5 Flexi tube siRNA CACCAGCGATACCTACAAG SI03057306 

Hs-CAPN2_6 Flexi tube siRNA CTCGGAGGCCATCACGTTT SI03091648 

Hs-CAPN2_8 Flexi tube siRNA Sequence not provided SI05168996 

Hs-SPOP_2 Flexi tube siRNA CAGGCTCACAAGGCTATCT SI00732214 

Hs-SPOP_6 Flexi tube siRNA Sequence not provided SI04137630 

Hs-SPOP_8 Flexi tube siRNA Sequence not provided SI04327155 

AllStars negative control siRNA Sequence not provided SI03650318 

2.3.3. Oligonucleotides for shRNA knockdown 

All oligonucleotides listed, were ordered and produced at MWG Eurofins in Ebersberg, Germany. 

Designation Sequence 5´-3´ 

IRS4_1 fwd CCGGGCGGAGCCACCCTTCTATAAACTGCAGTTTATAGAAGGGTGGCTCCGCTTTTTG 

IRS4_1 rev AATTCAAAAAGCGGAGCCACCCTTCTATAAACTGCAGTTTATAGAAGGGTGGCTCCGC 

IRS4_2 fwd CCGGCTGAGTGCTGTATGGATATTTCTGCAGAAATATCCATACAGCACTCAGTTTTTG 

IRS4_2 rev AATTCAAAAACTGAGTGCTGTATGGATATTTCTGCAGAAATATCCATACAGCACTCAG 

YWHAZ_1 fwd CCGGGCAGAGAGCAAAGTCTTCTATCTGCAGATAGAAGACTTTGCTCTCTGC-TTTTTG 

YWHAZ_1 rev AATTCAAAAAGCAGAGAGCAAAGTCTTCTATCTGCAGATAGAAGACTTTGCTCTCTGC 

YWHAZ_2 fwd CCGGGCTCGAGAATACAGAGAGAAACTGCAGTTTCTCTCTGTATTCTCGAGCTTTTTG 

YWHAZ_2 rev AATTCAAAAAGCTCGAGAATACAGAGAGAAACTGCAGTTTCTCTCTGTATTCTCGAGC 

CSE1L_1 fwd CCGGCGCTGACAAGTATCTGTGAAACTGCAGTTTCACAGATACTTGTCAGCGTTTTTG 

CSE1L_1 rev AATTCAAAAACGCTGACAAGTATCTGTGAAACTGCAGTTTCACAGATACTTGTCAGCG 

CSE1L_2 fwd CCGGGCATGGAATTACACAAGCAAACTGCAGTTTGCTTGTGTAATTCCATGCTTTTTG 

CSE1L_2 rev AATTCAAAAAGCATGGAATTACACAAGCAAACTGCAGTTTGCTTGTGTAATTCCATGC 

SPOP_1 fwd CCGGCACAAGGCTATCTTAGCAGCTCTGCAGAGCTGCTAAGATAGCCTTGTGTTTTTG 

SPOP_1 rev AATTCAAAAACACAAGGCTATCTTAGCAGCTCTGCAGAGCTGCTAAGATAGCCTTGTG 

SPOP_2 fwd CCGGCTCCTACATGTGGACCATCAACTGCAGTTGATGGTCCACATGTAGGAGTTTTTG 

SPOP_2 rev AATTCAAAAACTCCTACATGTGGACCATCAACTGCAGTTGATGGTCCACATGTAGGAG 
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2.3.4. Plasmids 

Designation Description Reference 

#3 Bluescript KS empty M. Müller 

#893 pUF3 with HPV16L2 M. Müller 

#988 pCDNA 4.0 TO with HPV16 L1 and L2 (IRES)  M. Müller 

#1998 pGF with Gaussia luciferase and GFP C. Buck 

#2175 pZOME1-C eukaryotic vector for TAP M. Müller 

#2459 pZOME1-C with HPV16L2 TAP-tag H. Seitz 

#2800 pZOME1-C with HPV16L2_Fr1 (aa 1-193)  This thesis 

#2801 pZOME1-C with HPV16L2_Fr3 (aa 262-473) This thesis 

#2873 pZOME1-C with HPV16L2_Fr2 (aa 130-334)  This thesis 

#2957 
pDEST15 E.coli expression vector (GST-Tag) Gateway 
compatible 

GPCF, DKFZ 

#2958 
pDEST Mammalian expression vector (N-terminal 
Myc), Gateway compatible 

GPCF, DKFZ 

 
#2959 

pDEST Mammalian expression vector (N-terminal 
Flag), Gateway compatible  

 
GPCF, DKFZ 

#2960 
pDEST Mammalian expression vector (w/o tag), 
Gateway compatible 

GPCF, DKFZ 

#3136 
CSE1L cDNA (closed) in pENTR221, Gateway 
compatible 

GPCF, DKFZ 

#3137 Skp1 cDNA (closed) in pENTR221, Gateway compatible GPCF, DKFZ 

#3138 
YWHAZ cDNA (closed) in pENTR221, Gateway 
compatible 

GPCF, DKFZ 

#3139 
HNRNPK cDNA (closed) in pENTR221, Gateway 
compatible 

GPCF, DKFZ 

#3140 
PSMD12 cDNA (closed) in pENTR221, Gateway 
compatible 

GPCF, DKFZ 

#3142 PSMD12 in pDEST w/o tag (#3140 in 2960)  This thesis 

#3143 Skp1 in pDEST w/o tag (#3137 in 2960)  This thesis 

#3144 CSE1L in pDEST w/o tag (#3136 in 2960) This thesis 

#3145 YWHAZ in pDEST w/o tag (#3138 in 2960)  This thesis 

#3146 HNRNPK in pDEST w/o tag (#3139 in 2960) This thesis 

#3147 N-GST-PSMD12 in pDEST (#3140 in 2957) This thesis 

#3148 N-GST-CSE1L in pDEST (#3136 in 2957)  This thesis 

#3149 N-GST-HNRNPK in pDEST (#3139 in 2957)  This thesis 

#3150 N-Flag-PSMD12 in pDEST (#3140 in 2959)  This thesis 

#3151 N-Flag-Skp1 in pDEST (#3137 in 2959) This thesis 

#3152 N-Flag-CSE1L in pDEST (#3136 in 2959)  This thesis 

#3153 N-Flag-YWHAZ in pDEST (#3138 in 2959)  This thesis 

#3154 N-Flag-HNRNPK in pDEST (#3139 in 2959)  This thesis 

#3155 N-Myc-PSMD12 in pDEST (#3140 in 2958)  This thesis 

#3156 N-Myc-CSE1L in pDEST (#3136 in 2958)  This thesis 

#3157 N-Myc-YWHAZ in pDEST (#3138 in 2958)  This thesis 
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#3158 N-Myc-HNRNPK in pDEST (#3139 in 2958)  This thesis 

#3159 N-Myc-Skp1 in pDEST (#3137 in 2958)  This thesis 

#3185 
eEF1A1 cDNA (closed) in pENTR221, Gateway 
compatible 

GPCF, DKFZ 

#3186 IRS4 cDNA (closed) in pENTR223, Gateway compatible GPCF, DKFZ 

#3188 N-Myc-IRS4 in pDEST (#3186 in #2958) This thesis 

#3189 N-Myc-eEF1A1 in pDEST (#3185 in #2958) This thesis 

#3190 N-Flag-eEF1A1 in pDEST (#3185 in #2959) This thesis 

#3191 N-Flag-IRS4 in pDEST (#3186 in #2959) This thesis 

#3199 N-GST-HNRNPK in pDEST (#3139 in #2957)  This thesis 

#3200 N-GST-CSE1L in pDEST (#3139 in #2957)  This thesis 

#3265 SNX17-GFP Dr. Lawrence Banks 

#3266 SNX-Flag Dr. Lawrence Banks 

#3294 pMDLg/pRRE (Gag/Pol) Addgene, Plasmid #12251 

#3295 pRSV-Rev (Rev) Addgene, Plasmid #12253 

#3296 pMD2.G (VSV G) Addgene, Plasmid #12259 

#3311 
pLKo.1 SHC002 shRNA ctrl. (non-mammalian shRNA 
control) 

Sigma-Aldrich, 
Deisenhofen, 

Germany 

#3312 pLKO.1 SHC003 GFP turbo (positive control) 
Sigma-Aldrich, 

Deisenhofen, Germany 

#3310 pLKO.1 TRC control Addgene, Plasmid #10879 

#3343 IRS4_1 shRNA in pLKO.1 TRC control This thesis 

#3344 IRS4_2 shRNA in pLKO.1 TRC control This thesis 

#3345 YWHAZ_1 shRNA pLKO.1 TRC control This thesis 

#3347 CSE1L_1 shRNA pLKO.1 TRC control This thesis 

#3348 SPOP_1 shRNA pLKO.1 TRC control This thesis 

2.3.5. Enzymes 

Designation Company 

Calf intestine alkaline phosphatase (CIP) New England Biolabs, Frankfurt, Germany 

KOD HiFi Polymerase Novagen/Merck, Darmstadt, Germany 

Quick Ligase New England Biolabs, Frankfurt, Germany 

Restriction enzymes New England Biolabs, Frankfurt, Germany 

RNAse Roche, Mannheim, Germany 

T4 DNA Ligase  New England Biolabs, Frankfurt, Germany 
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2.3.6. Buffers and Solutions for DNA Purification and Analysis 

2.3.6.1. Purification of plasmid DNA  

Designation Composition 

Alkali lysis buffer 
200mM NaOH 
1% SDS (w/v) 

in H2O 

Chloroform-isoamyl alcohol mix (CIA) Chloroform-isoamyl alcohol mix 24:1 

Glucose buffer 

50mM glucose 
10mM EDTA 

25mM Tris HCl 
in H2O, pH 8.0 

Phenol mix 
Phenol-CIA mix 1:1 

100µg hydroxyquinoline per 100ml 

Sodium acetate 
3M sodium acetate 

in H2O, pH 5.2 

1x TE buffer 
10mM Tris 
1mM EDTA 

in H2O, pH 8.0 

2.3.6.2. Agarose Gel Electrophoresis 

Designation Composition/Company 

1% agarose gel 
1% agarose (w/v) 

1x TAE buffer 
0.006% ethidium bromid (v/v)  

Ethidium bromide Roth, Karlsruhe, Germany 

Lambda/HindII marker New England Biolabs, Frankfurt, Germany 

6x loading buffer New England Biolabs, Frankfurt, Germany 

1x TAE buffer 

40mM Tris 
5.71% acetic acid (v/v) 

10% 500mM EDTA, pH 8.0 (v/v) 
in H2O 

Quick-LoadTM 100bp DNA ladder New England Biolabs, Frankfurt, Germany 
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2.4. Buffers and Solutions for Protein Analysis 

2.4.1. SDS-polyacrylamid gels 

Designation Composition 

12.5% separation gel for 5 mini gels 

18.75ml 30% acrylamide solution 
16.88ml 1M Tris/HCl buffer, pH 8.8 

8.48ml H2O 
450µl 10% SDS 
450µl 10% APS 
22.5µl TEMED 

3% stacking gel for 5 mini gels 

1.5ml 30% acrylamide solution 
1.95ml 1M Tris/HCl buffer, pH 6.8 

11.25ml H2O 
150µl 10% SDS 
150µl 10% APS 
22.5µl TEMED 

2.4.2. Electrophoresis 

Designation Composition 

3x protein loading buffer 

30% glycerol 
6% SDS 

15% β-mercaptoethanol 
0.003% bromphenol blue 

187.5mM Tris 
in H2O, pH 6.8 

1x TGS buffer (running buffer) 

2.5mM Tris 
1.45% glycine 

0.1% SDS 
in H2O, pH 8.3 

Tris buffer pH 6.8 
1M Tris/HCl 

0.03% bromphenol blue 
in H2O, pH 6.8 

Tris buffer pH 8.8 
1M Tris/HCl 

in H2O, pH 8.8 

2.4.3. Western Blot Analysis 

Designation Composition 

Blocking buffer 
5% skim milk 

in PBS-T 

1x EMBL buffer 

48mM Tris 
39mM glycine 

1.3mM SDS 
20% methanol 
in H2O, pH 8.2 

1x PBS-T 
0.3% Tween 20 (v/v) 

in 1x PBS 
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2.5. Immunological Methods 

2.5.1. Antibodies 

Designation Description Reference 

14-3-3 ζ (C-
16): sc-1019 

Polyclonal rabbit antibody detecting human YWHAZ. 
Reactive in ELISA, WB, IF, IP and IHC(P). 

Santa Cruz Biotechnology, 
Heidelberg, Germany 

Actin (C4) 
Mouse monoclonal antibody detecting human actin. 
The detected epitope lies between amino acid 18-40. 
Reactive in WB, IF and IHC. 

MP Biomedicals, Solon, 
USA 

AlexaFlour488 
(anti-mouse) 

Goat-anti-mouse coupled with AlexaFlour 488 
Life Technologies, 

Darmstadt, Germany 
AlexaFlour488 
(anti-rabbit) 

Goat-anti-rabbit coupled with AlexaFlour 488 
Life Technologies, 

Darmstadt, Germany 
AlexaFlour594 
(anti-mouse) 

Goat-anti-mouse coupled with AlexaFlour 594 
Life Technologies, 

Darmstadt, Germany 
AlexaFlour 
594 
(anti-rabbit) 

Goat-anti-rabbit coupled with AlexaFlour 594 
Life Technologies, 

Darmstadt, Germany 

Calpain 2 
(CAPN2) 

Mouse monoclonal, used as hybridoma supernatant. 
Reactive in ELISA, WB and IF. 

This thesis 

CAS (H-2):  
sc-271537 

Mouse monoclonal antibody detecting human CSE1L. 
Raised against amino acid 672-971. Reactive in ELISA, 
WB, IF and IP. 

Santa Cruz Biotechnology, 
Heidelberg, Germany 

DAGPO Donkey-anti-goat coupled with HRP 
Santa Cruz Biotechnology, 

Heidelberg, Germany 

GAMPO Goat-anti-mouse coupled with HRP 
Dianova, Hamburg, 

Germany 

GARPO Goat-anti-rabbit coupled with HRP 
Dianova, Hamburg, 

Germany 

Anti-IRS4  
06-771 

Polyclonal rabbit antibody detecting human IRS4. 
Raised against amino acid 1240-1257. Reactive in WB 
and IP. 

Merck Millipore, 
Darmstadt, Germany 

K1L2 
Mouse monoclonal antibody detecting amino acid 74-
77 of HPV16 L2. Reactive in ELISA, WB, and IF. 

I. Rubio/M.Müller 

K4L2 
Mouse monoclonal antibody, detecting amino acid 21-
31 of HPV16 L2. Reactive in ELISA, WB, and IF. 

I. Rubio/M.Müller 

K8L2 
Mouse monoclonal antibody, detecting amino acid 32-
38 of HPV16 L2. Reactive in ELISA, WB, and IF. 

I. Rubio/M.Müller 

K18L2 
Mouse monoclonal antibody, detecting amino acid 22-
30 of HPV16 L2. Reactive in ELISA, WB, and IF. 

I. Rubio/M.Müller 

MD2H11 
Mouse monoclonal antibody, recognizing HPV16 L1 in 
WB, ELISA and IF 

M. Durchdewald/ 
M.Müller 

Myc 
hybridoma 

9E10 mouse monoclonal antibody, raised against myc. 
Used as hybridoma snt. Reactive in WB and IF. 

 

Myc (9E10) 
Mouse monoclonal antibody detecting the epitope 
EQKLISEEDL of human c-myc. 

New England Biolabs, 
Frankfurt, Germany 

Myc (71D10) 
Rabbit monoclonal antibody detecting the epitope 
EQKLISEEDL of human c-myc. 

Cell Signaling Technology, 
Leiden, Netherlands 

Serum #7 
Polyclonal serum derived from a rabbit immunized 
with HPV16 L2-GST. 

M. Müller 
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SNX17 (H-10): 
sc-166957 

Mouse monoclonal antibody detecting SNX17, amino 
acid 270-470. Reactive in ELISA, WB, IF and IP. 

Santa Cruz Biotechnology, 
Heidelberg, Germany 

SPOP (B-8):  
sc-377206 

Mouse monoclonal antibody detecting human SPOP. 
Raised against amino acid 351-374. Reactive in ELISA, 
WB, IF and IP. 

Santa Cruz Biotechnology, 
Heidelberg, Germany 

SPOP (C-14):  
sc-66649 

Goat polyclonal antibody detecting an epitope at the 
C-terminus of human SPOP. Reactive in ELISA, WB, IF 
and IP. 

Santa Cruz Biotechnology, 
Heidelberg, Germany 

2.5.2. Immunoprecipitation (IP) from PSV Infected Cells 

2.5.2.1. Buffers and Solutions 

Designation Composition 

Acetate buffer 
100mM NaAc 
500mM NaCl 

In H2O, pH 4.0 

Blocking buffer 
100mM Tris/HCl 

in H2O, pH 8.0 

Coupling buffer 
100mM NaHCO3 

500mM NaCl 
in H2O, pH 8.3 

EBC lysis buffer 

50mM Tris/HCl pH 8.0 
120mM NaCl 

0.5% NP-40 
1x protease inhibitor tablet (Roche) per 7ml 

in H2O 

3x Loading buffer w/o β-mercapthoethanol  

30% glycerol 
6% SDS 

0.003% bromphenol blue 
187.5mM Tris 
in H2O, pH 6.8 

NET-N buffer 

20mM Tris/HCl, pH 8.0 
100mM NaCl 

1mM EDTA 
1% NP-40 

2.5.2.2. Beads 

Designation Company 

CNBr Activated Sepharose® 4 Fast Flow GE Healthcare, Buckinghamshire, UK 
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2.5.3. Immunoprecipitation (IP) of Overexpressed Proteins 

2.5.3.1. Buffers and Solutions 

Designation Composition 

Non-denaturing lysis buffer (NDLB) 

20mM Tris-HCl, pH 8.0 
137mM NaCl 
10% glycerol 

1% NP-40 
2mM EDTA 

1x protease inhibitor tablet (Roche) per 7ml 
in H2O 

NET-N buffer 

20mM Tris-HCl, pH 8.0 
100mM NaCl 

1mM EDTA 
1% NP-40 

2.5.3.2. Beads 

Designation Company 

GammaBindTM Plus SepharoseTM GE Healthcare, Buckinghamshire, UK 

2.5.4. Immunofluorescence (IF) 

Designation Composition/Company 

Blocking Solution 
1% BSA (w/v) 

in 1x PBS 

DAPI 
100mg/ml 

in 1x PBS 

Fixation Solution 
2% PFA (w/v) 

in 1x PBS 

Mounting medium 
Dianova, Hamburg, 

Germany 

Permeabilization Solution 
0.2% TritonX-100 (v/v) 

in 1x PBS 

Quenching Solution 
50mM Ammoniumchloride 

in 1x PBS 
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2.5.5. Enzyme-linked Immunosorbant Assay (ELISA) 

2.5.5.1. Buffers and Solutions 

Designation Composition 

ABTS 
10mg/ml 2,2´-azino-bis 

(3-ethyl-benzothiazoline-6-sulfonate) 
in H2O 

Blocking buffer 
2% Casein (w/v) 

in 1xPBS 

Coating buffer 
2,5µg/ml Streptavidin 

in H2O 

ELISA substrate buffer 
100mM NaOAc 

50mM NaH2PO4 

 in H2O, pH 4.2 

Streptavidin (1mg/ml) 
250µg/ml streptavidin 

in H2O 

Substrate solution (volume per plate) 
9,5ml ELISA substrate buffer 

0.5ml ABTS 
 4µ H2O2 

2.5.5.2. Peptides 

Designation Sequence Company 

HPV16L2 aa20-38 Biotin-KTCKQAGTCPPDIIPKVEG PSL GmbH, Heidelberg, Germany 

HPV16L2 aa28-42 Biotin-CPPDIIPKVEGKTIA PSL GmbH, Heidelberg, Germany 

HPV16L2 64-82 Biotin-SGTGGRTGYIPLGTRPPT PSL GmbH, Heidelberg, Germany 

2.6. Tandem-Affinity Purification (TAP) 

2.6.1. Buffers and Solutions 

Designation Composition 

Calmodulin binding buffer 

10mM Tris-HCl, pH 8.0 
150mM NaCl 
1mM MgOAc 

1mM Imidazole 
0.1% NP-40 
2mM CaCl2 

10mM β-mercaptoethanol (to be added freshly) 
in H2O 

Calmodulin elution buffer 
50mM NH4HCO3, pH 8.0 

25mM EGTA 
in H2O 

Calmodulin wash buffer 

50mM NH4HCO3, pH 8.0 
75mM NaCl 

1mM MgOAc 
1mM Imidazole 

2mM CaCl2 
in H2O  
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Lysis Buffer 

10% glycerol 
50mM Tris-HCl, pH 8.0 

100mM KCl 
0.1% NP-40 

2mM DTT (to be added freshly) 
1x protease inhibitor tablet (Roche) per reaction 

in H2O 

TEV-buffer 

10mM Tris-HCl, pH 8.0 
150mM NaCl 

0.1% NP-40 
0.5mM EDTA 

1mM DTT (to be added freshly) 
in H2O 

2.6.2. Beads 

Designation Company 

Calmodulin Seoharose 4B GE Healthcare, Buckinghamshire, UK 

IgG SepharoseTM 6 Fast Flow GE Healthcare, Buckinghamshire, UK 

2.7. Peptide Pull Down (PPD) 

2.7.1. Buffers and Solutions 

Designation Composition 

EBC lysis buffer 

50mM Tris/HCl pH 8.0 
120mM NaCl 

0.5% NP-40 
1x protease inhibitor tablet (Roche) per 7ml 

in H2O 

Glycine 
100mM glycine pH 2.8 

in H2O 

PBS 

137mM NaCl 
2,7mM KCl 

4,3mM Na2HPO4 
1,47mM KH2Po4 pH 7.4 

in H2O 

Sodium azide 
10% sodium azide (w/v) 

 in H2O 

TritonX-100 
20% TritonX-100 (v/v) 

 in H2O 

2.7.2. Beads 

Designation Company 

PierceTM Avidin Agarose Thermo Scientific, Schwerte, Germany 
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2.7.3. Peptides 

Designation Sequence Company 

HPV16L2 aa20-38 Biotin-KTCKQAGTCPPDIIPKVEG PSL GmbH, Heidelberg, Germany 

HPV16L2 aa28-42 Biotin-CPPDIIPKVEGKTIA PSL GmbH, Heidelberg, Germany 

HPV16L2 64-82 Biotin-SGTGGRTGYIPLGTRPPT PSL GmbH, Heidelberg, Germany 

2.8. Pseudovirus Production 

2.8.1. Material 

Designation Company 

Benzonase (100.000 U/ml) Merck, Darmstadt, Germany 

Brij58 Sigma-Aldrich, Taufkirchen, Germany 

1x DPBS Gibco Life Technologies, Paisley, UK 

OptiPrepTM (60% w/v) Sigma-Aldrich, Taufkirchen, Germany 

RNase A/T1 mix Fermentas Thermo Scientific, St.Leon-Rot, Germany 

TurbofectTM transfection reagent Fermentas Thermo Scienific, St.Leon-Rot, Germany 

2.8.2. Buffers and Solutions 

Designation Composition/Company 

Brij58 
10% Brij58 (w/v) 

in H2O 

Lysis buffer 
140µl DPBS 

9µl 10% Brij58 
1µl RNase A/T1 mix 

NaCl 
5M NaCl 

in H2O 

2.9. Lentivirus Production 

2.9.1. Buffers and Solutions 

Designation Composition/Company 

Polyethylenimine (PEI) transfection reagent 

1mg/ml PEI 
in H2O, pH 7.0-7.4 

 
Polyscience Inc., Eppelheim, Germany 

1x Phosphate buffered saline (PBS) 

137mM NaCl 
27mM KCl 

10mM Na2HPO4 
1.8mM KH2PO4 
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2.10. Chemicals 

All chemicals were of analytical grade or better and purchased from one of the following companies. 

Company Location 

Applichem Darmstadt, Germany 

Fulka Neu-Ulm, Germany 

Gibco BRL Eggenstein, Germany 

Life Technologies Karlsruhe, Germany 

Fisher-Scientific Schwerte, Germany 

Merck Darmstadt, Germany 

Roche Diagnostics Mannheim, Germany 

Roth Karlsruhe, Germany 

Serva Heidelberg, Germany 

Sigma-Aldrich Munich, Germany 

2.11. Kits 

Designation Company 

Chemiluniscence Kit PicoDetect Applichem, Darmstadt, Germany 

Gaussia Glow-juice BIG Kit PJK, Kleinbittersdorf, Germany 

Qiagen MaxiPrep Kit  Qiagen, Hilden, Germany 

QIAprep Spin Miniprep Kit Qiagen, Hilden, Germany 

QIAquick Gel Extraction Kit Qiagen, Hilden, Germany 

QIAquick PCR Purification Kit Qiagen, Hilden, Germany 

StrataClone Blunt PCR Cloning Kit 
Stratagene Agilent Technologies, La Jolla, 

USA 

2.12. Laboratory Equipment 

2.12.1. Electrical Equipment 

Designation Company 

1420 Multilabel Counter Viktor Perkin Elmar, Norwalk, USA 

800 W microwave Bosch, Gerlingen-Schillerhohe, Germany 

Bacterial culture shaker Informs AG, Bottmingen, Switzerland 

Beckmann XL70 Ultracentrifuge Beckmann Coulter, Krefeld, Germany 

Bio GARD cell culture hood The Baker Company, Sanford, USA 

C1000™ Touch Thermal Cycler BioRad, Munich, Germany 

Combimag Red/RET magnetic stirrer IKA, Staufen, Germany 

Developing Machine AgfaCurix60   Agfa, Munich, Germany 

Duomax 1030 shaker Heidolph, Kelheim, Germany 

EconoPump BioRad, Munich, Germany 
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Electrophoresis chamber Carl Roth GmbH, Karlsruhe, Germany 

Electrophoresis gel slides Carl Roth GmbH, Karlsruhe, Germany 

Electrophoresis power supply ST 606 T Gibco BRL, Eggenstein,  Germany 

Electrophoresis power supply ST PS 305 Gibco BRL, Eggenstein, Germany 

F12-6x500 Rotor Thermo Scientific, Waltham, USA 

Function Line incubator Heraeus, Hanau, Germany 

Gel Doc EZ Imager BioRad, Munich, Germany 

GFC water bath Grant Instruments, Cambridge, UK 

Horizontal Gel Electrophoresis Horizon 11.14 Gibco BRL, Eggenstein, Germany 

Ice maker Hoshizaki, Willich-Munchheide, Germany 

Impulse Sealer RNS Corp, Taipei, Taiwan 

Incubator Innova 4230 New Brunswick Scientific, Edison, USA 

Integra pipetboy Integra Bioscience GmbH, Fernwald, Germany 

Labotect CO2 incubator  Labotect, Göttingen, Germany 

Leica DMIL microscope Leica Microsystems, Wetzlar, Germany 

Liebherr Comfort Liebherr, Biberach, Germany 

Liebherr MedLine Liebherr, Biberach, Germany 

Liebherr Premium Liebherr, Biberach, Germany 

Liebherr ProfiLine Liebherr, Biberach, Germany 

Megafuge 1.0 Heraeus, Hanau, Germany 

Megafuge 1 S-R Heraeus, Hanau, Germany 

MicroPulser™ Electroporator BioRad, Munich, Germany 

Microscope for cell culture Diavert Leitz, Wetzlar, Germany 

Microscope for cell culture Wilorat S Helmut Hund, Wetzlar, Germany 

MilliQ ultra-pure water unit Millipore Merck, Darmstadt, Germany 

MR 2000/2002 magnetic stirrer Heidolph, Kelheim, Germany 

Multifuge 1 S-R Heraeus, Hanau, Germany 

Multiskan GO (ELISA reader) Thermo Scientific, Waltham, USA 

Nanodrop spectrophotometer PegLab, Erlangen, Germany 

Neubauer Counting Chamber Neolab Migge, Heidelberg, Germany 

Nitrogen tank Chrono Messer, Krefeld, Germany 

pH meter Sartorius, Göttingen, Germany 

Polyacrylamid Gel Electrophoresis Chamber Hoefer, San Francisco, USA 

PreCision 50-1200µl (multichannel) Biozym, Hessisch-Oldendorf, Germany 

Refrigerated Sorvall RC6+ centrifuge Thermo Scientific, Waltham, USA 

Refrigerated tabletop centrifuge 5417R Eppendorf, Hamburg, Germany 

Refrigerators and freezers Liebherr, Ochsenhausen, Germany 

Research Pro 1200 (multichannel) Eppendorf, Hamburg, Germany 

Research Pro 300 (multichannel) Eppendorf, Hamburg, Germany 

Sanyo CO2 icubator Sanyo/Panasonic Healthcare 

Sartorius Scale Sartorius, Göttingen, Germany 
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Sterile GARDR III Advance cell culture hood The Baker Company, Sanford, USA 

SW32-Ti Beckman Coulter, Krefeld, Germany 

SW41-Ti Beckman Coulter, Krefeld, Germany 

Tabletop centrifuge 5415 C Eppendorf, Hamburg, Germany 

Test-tube rotator Snijders Scientific, Tilburg, Netherlands 

TH-604 Thermo Scientific, Waltham, USA 

Thermomixer 5436 Eppendorf, Hamburg, Germany 

Thermomixer comfort Eppendorf, Hamburg, Germany 

Transblot SD chamber BioRad, Munich, Germany 

UC water bath Julabo, Seelbach, Germany 

Ultracentrifuge SorvallR Discovery 90 SE Sorvall Hitachi, Newton, USA 

Ultra-low freezer Eppendorf Inc., Ensfield, USA 

Varifuge RF Heraeus, Hanau, Germany 

Vibramax-VXR IKA, Staufen, Germany 

Vortex Genie 2™ Bender and Hobein, Ismaning, Germany 

Western Blot Transfer Chamber BioRad, Munich, Germany 

Western Blot Exposition Cassette Kodak, Stuttgart, Germany 

Zeiss Cell Observer Zeiss, Jena, Germany 

2.12.2. Common use Equipment 

Designation Company 

1,5 ml and 2 ml reaction tubes  Eppendorf, Hamburg, Germany 

15 ml reaction tubes  TPP Trasadingen, Switzerland 

50 ml reaction tubes  Greiner, Frickenhausen, Germany 

25cm2, 75cm2 and 150cm2 tissue culture flasks TPP Trasadingen, Switzerland 

6, 10 and 15 cm cell culture plates Greiner, Frickenhausen, Germany 

6-, 12-, 24-, 48 and 96-well tissue culture plates  TPP Trasadingen, Switzerland 

96-well LIA plate Greiner, Frickenhausen, Germany 

96-well plates polysorb  Nunc, Roskilde, Denmark 

Amersham HyperfilmTM ECL  GE Healthcare, Buckinghamshire, UK 

Bottle top filter  Costar, Coning, USA 

Cell scraper  Sarstedt, Nümbrecht, Germany 

Coverglasses 15mm  Carl Roth GmbH, Karlsruhe, Germany 

Cryotubes, 2 ml  Carl Roth GmbH, Karlsruhe, Germany 

Electroporation cuvettes (25 x 2 mm)  Peqlab, Erlangen, Germany 

Examination gloves Blossom  Mexpo International Inc., USA 

Examination gloves XCEEDTM Nitril Starlab, Ahrensburg, Germany 

Nitrocellulose membrane GE Healthcare, Buckinghamshire, UK 

Objekt slide  

One-time use filter, 0.2/0.4µm Renner, Dannstadt, Germany 
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Parafilm “M”  American National Can, Chicago, USA 

Petri dishes  Greiner, Frickenhausen, Germany 

Pipettes (1000, 200, 20, 10 and 2μl)  Gilson Middleton, USA 

Pipette Tipps (200μl, 10µl) NerbePlus, Winsen/Luhe, Germany 

Pipette Tipps (1000μl, 200μl)  Greiner, Frickenhausen, Germany 

Pipette Tips (10μl)  SorensonTM Bioscience, Salt Lake City, USA 

Syringes and needles  BD Franklin Lakes, USA 

Ultracentrifuge tubes Herolab 13.2ml PA  Beranek, Weinheim, Germany 

Ultra-Centrifuge Tubes SW32  Beranek Laborgeräte, Weinheim, Germany 

Whatman filter paper 3MM Schleicher & Schuell, Dassel, Germany 

2.13. Software 

Designation Company 

Adobe CS4/CS6 Adobe, San Jose, USA 

Clone Manager 9.0  Scientific Educational Software, Cary, USA 

Eucaryotic Linear Motif Resource for functional Sites in 
Proteins (ELM) 

www.elm.eu.org/ 

Endnote X5 Thomson Reuter, New York, USA 

Fiji win64  

Graphpad Prism 5.0 GraphPad Software, La Jolla, USA 

Microsoft Office 2003, 2010 Microsoft, Redmont, USA 

Microsoft Windows XP/8 Microsoft, Redmont, USA 

String 9.0 database www.string-db.org 

Wallac 1420 Workstation Perkin Elmer, Norwalk, USA 

ZEN Black Zeiss, Jena, Germany 

 



Methods 

 

36 
 

3. Methods 

3.1. Cultivation and Manipulation of Prokaryotic Cells 

3.1.1. Cultivation and Storage of Bacteria 

The cultivation of bacteria was performed either in liquid LB medium or on agar plates, containing 

selective antibiotics. After transformation (4.1.3) of the bacteria, 20-150μl bacterial culture were 

plated on Agar plates containing the corresponding antibiotics and incubated at 37⁰C o/n. Each 

colony formed, originated from a single transformed bacterial cell. Therefore, one colony represents 

a single bacterial clone and each cell within this colony contains identical plasmid DNA. For the 

cultivation of bacteria in liquid LB medium, a single colony was transferred to a proper volume of 

liquid LB medium supplemented with the corresponding antibiotics and incubated at 37⁰C o/n on a 

shaker at 200rpm. Two ml liquid culture were used for purification of plasmid DNA by MiniPrep 

(4.3.1.2), whereas larger cultures of 250ml were used for Maxi Preparation (4.3.1.3). For long-term 

storage of verified (sequenced) bacterial clones, 1ml of a liquid culture was transferred to a 2ml 

cryotube and 300µl glycerol were added. The glycerol stocks were stored at -80⁰C.  

3.1.2. Preparation of Electrocompetent Bacteria  

The electrocompetent bacteria used for transformation (4.1.3) derived from the bacterial strain 

MegaX DH10. Before preparing the starting culture, MegaX DH10 were plated from a glycerol stock 

on a LB agar plate without antibiotics and incubated at 37⁰C o/n. A single colony was transferred to 

25ml LB medium and inoculated at 37⁰C o/n on a shaker with 200rpm. After overnight incubation, 

5ml of the bacterial culture were transferred to 400ml of fresh LB medium and inoculated at 37⁰C 

and 200rpm until the culture reached an optical density (OD600) of 0.5-0.6. The bacterial culture was 

then chilled on ice for 30min and harvested by centrifugation at 6.000rpm for 10min at 4⁰C. The 

pellet was resuspended in 30ml ice-cold H2O and transferred to a dialysis tube and dialysed against 

H2O o/n at 4⁰C. The bacterial cells were then harvested by centrifugation at 4000rpm for 10min at 

4⁰C and resuspended in 600µl ice-cold 10% glycerol solution. Ten µl of the bacterial suspension were 

diluted 1:100 in 990µl 10% glycerol and the OD600 was measured. The obtained OD600 was multiplied 

with the volume of the stock suspension (600µl) and the calculated value in µl of glycerol was added 

to the bacterial solution. Aliquots of 40, 80 and 120µl were prepared and snap-frozen in liquid 

nitrogen and stored at -80⁰C.  
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3.1.3. Transformation of Bacteria by Electroporation  

For transformation, electroporation cuvettes were pre-cooled and an aliquot of electrocompetent 

bacteria (4.1.2) was thawed on ice. After the cell were thawed, 1μl of the corresponding ligation mix 

(4.3.2.4) or purified plasmid DNA was transferred to a 1,5ml reaction tube and mixed by pipetting 

with 40µl electrocompetent cells. The mix was transferred to a pre-cooled electroporation cuvette 

and exposed to an electric pulse of 2.5kV and 200Ω for approximately 5ms. This electric pulse led to 

the formation of pores in the cell wall and the following uptake of DNA by the electrocompetent 

bacteria. Subsequently after electroporation, 300μl pre-warmed (37⁰C) LB medium without 

antibiotics were added to the cells which were then incubated at 37⁰C for at least 1h. After 

incubation between 20-150μl of the bacterial suspension were plated on a selective agar plate and 

further incubated overnight at 37⁰C to allow the generation of single clone colonies. 

3.2. Cultivation and Manipulation of Eukaryotic Cell 

3.2.1. Cultivation of Mammalian Cells 

All cell lines were cultivated in an incubator at 37⁰C, 5% CO2 and 90% humidity. Passaging of the cells 

was performed when cells reached around 80% confluency. For this, the medium was aspirated and 

the attached cells were washed once with 1x PBS. To detach the cells from the cell culture flask, 

0.05% trypsin EDTA or 0.25% trypsin EDTA was added to the cells, respectively, depending on the cell 

line used. The cells were incubated for 2-3 minutes and detached by gentle tapping the flask. The 

trypsin was then neutralized by addition of supplemented medium and after proper resuspension, 

the cells were transferred to a 15ml Falcon tube for centrifugation (1900rpm/5min). The cell pellet 

was resuspended in an adequate volume of fresh, supplemented medium, counted in a 

haemocytometer and seeded for experiments and maintenance of the stem culture.   

3.2.2. Cryopreservation and Thawing of Mammalian Cells 

For cryopreservation, the cells were cultivated in 150cm2 culture flask until they reached a 

confluency of about 80%. The cells were then harvested by trypsinization and centrifugation, as 

described in 4.2.1. After centrifugation, the cell pellet was resuspended in 2ml cryomedium and 

aliqouted into 2 cryotube. Freezing of the cells was performed in a slow freeze chamber with 

isopropanol at -80⁰C for at least 24h before the cells were transferred to liquid nitrogen. To thaw 

cryopreserved cells, the vial was incubated in the water bath at 37⁰C until the suspension was 

thawed completely. The cells were immediately transferred to a 15ml Falcon tube containing 10ml 

supplemented medium and centrifuged at 1900rpm for 5min. This step was repeated once before 
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the cells were resuspended in a proper volume of supplemented medium and transferred to a new 

cell culture flask for cultivation.   

3.2.3. Transfection of Mammalian Cells with Turbofect 

For transfection of a 10cm cell culture dish, around 3-4x106 cells were seeded in 10ml supplemented 

medium and incubated at 37⁰C, 5% CO2 (see 4.2.1) for 24h. The transfection was performed by 

preparing the transfection mix, containing 10-15µg plasmid DNA in 1ml medium without 

supplements and 2µl Turbofect per µg DNA (20-30µl). To allow the formation of the transfection 

complex, the mix was incubated at RT for 15-20min. After incubation the transfection mix was added 

drop-wise to the cells. For proper protein expression the cells were incubated with the transfection 

mix for 48-72h at 37⁰C. The amount of DNA and Turbofect was adjusted corresponding to 

manufacturer´s instructions for different cell culture plates (table 1). 

Table 1: Overview of the transfection procedure in different formats 

Cell Culture Plate No. of adherent cells Amount of DNA (µg) Volume of Turbofect (µl) 

96-well plate 0,5-1,2x104 0.2µg 0.4µl 

48-well plate 1,0-3,0x104 0.5µg 1µl 

24-well plate 2,0-6,0x104 1µg 2µl 

12-well plate 0,4-1,2x105 2µg 4µl 

6-well plate 0,8-2,4x105 4µg 6µl 

15cm dish 6-8x106 20µg 40µl 

3.2.4. Transfection of Mammalian Cells with Polyethylenimine (PEI) 

For transfection of a 10cm cell culture dish, around 3-4x106 cells were seeded in 10ml supplemented 

medium and incubated at 37⁰C, 5% CO2 (see 4.2.1) for 24h. To prepare the transfection mix, 62µl H2O 

were transferred into a 15ml Falcon tube as well as 10µg DNA, 1.5ml medium without supplements 

and 31µl PEI transfection reagent. The mix was then vortexed for 10sec and incubated at RT for 

10min to allow the formation of the transfection complex. After incubation, 8.5ml supplemented 

medium were added to the transfection mix and vortexed again. To apply the transfection mix to the 

cells, the medium was aspirated, the transfection mix was added and incubated at 37⁰C, 5% CO2. The 

transfection mix was removed from the cells, 4-14h after transfection and fresh supplemented 

medium was added. For proper protein expression the cells were incubated for another 48h at 37⁰C, 

5% CO2. 
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3.2.5. siRNA Knockdown 

All siRNAs used for the knockdown experiments were obtained from Qiagen in Hilden, Germany. The 

knockdown was performed in 2.4x104 HeLa cells, seeded in 500µl supplemented medium in a 24-well 

plate and incubated for 30-120min at 37⁰C, 5% CO2. Meanwhile, the transfection mix was prepared 

by dilution of 75ng siRNA in 100µl medium without supplements. To complete the transfection mix, 

4.5µl HiPerFect transfection reagent were added to the diluted siRNA and incubated at RT for 5-

10min. The transfection mix was then added drop-wise to the cells and the plate was swirled gently 

to distribute the mix. To allow proper knockdown, the cells were incubated under normal growth 

conditions for 48h at 37⁰C.  

3.3. Molecular Biological Methods 

3.3.1. Purification of plasmid DNA 

3.3.1.1. QIAprep Spin MiniPrep Kit 

Isolation of plasmid DNA with the QIAprep Spin Mini Prep Kit was performed from a single bacterial 

colony previously cultured in 2ml liquid LB medium containing the corresponding antibiotics. The 

preparation of plasmid DNA was performed according to manufacturer´s instructions.  

3.3.1.2. MiniPrep by Birnboim-Doly Method 

Isolation of plasmid DNA according to the Birnboim-Doly method was performed from a single 

bacterial colony previously cultured in 2ml liquid LB medium containing the corresponding 

antibiotics. The cells were harvested from 1.5ml bacterial culture by centrifugation at 13.000rpm for 

2min. The cell pellet was resuspended in 100μl glucose mix and incubated on a shaker for 5-10min at 

RT. To lyse the bacterial cells for the extraction of the plasmid DNA, 200μl lysis buffer were added 

and the mixture was incubated for 5-10min on ice. By addition of 150µl 3M NaAc and incubation on 

ice for 5-10min the lysis reaction was stopped. Afterwards, 450μl phenol were added to the lysed 

cells and the sample was incubated for another 5-10min on a shaker at RT followed by centrifugation 

at 13,000rpm for 5min. The sample was removed from the centrifuge and 380μl of the supernatant 

were transferred to a fresh tube containing 450µl Isopropanol. For precipitation of the plasmid DNA, 

the sample was then incubated at -70⁰C for 10min. The precipitated DNA was collected by 

centrifugation at 13.000rpm for 20-30min at 0⁰C and washed once with 500μl 70% EtOH (13,000rpm/ 

5min/0⁰C). The washing step was repeated once using 500μl EtOH abs. instead of 70% EtOH. After 

the pellet was dried under the cell culture hood, it was resuspended in 60μl H2O. The isolated 

plasmid DNA was stored at 4⁰C. 



Methods 

 

40 
 

3.3.1.3. Qiagen MaxiPrep Kit 

Isolation of plasmid DNA with the Qiagen MaxiPrep Kit was performed using 250ml LB medium with 

corresponding antibiotics which were inoculated with either a few µl from a liquid bacterial culture 

or from a bacterial glycerol stock. The preparation of the plasmid DNA was performed according to 

manufacturer´s instructions.  

3.3.1.4. QIAquick Gel Extraction Kit 

For purification of specific DNA fragments from an analytical agarose gel, the QIAquick Gel Extraction 

Kit from Qiagen was used. The DNA fragments were either produced by PCR or enzymatic restriction 

to cut a specific region of the plasmid DNA. After the DNA fragments were separated by agarose gel 

electrophoresis (4.3.3.1), DNA was visualized with the help of a 254nm UV-light to excise the 

corresponding part of the gel for purification. The following purification procedure was carried out 

according to the manufacturer´s instructions. After purification of the DNA, 5μl of the sample were 

analyzed on a mini agarose gel. 

3.3.2. Manipulation of DNA 

3.3.2.1. Polymerase Chain Reaction (PCR) 

The Polymerase Chain Reaction (PCR) was performed to amplify the DNA sequences of interest for 

cloning into selected destination vectors. The DNA sequences were amplified using corresponding 

template DNAs encoding for the sequence of interest. Primers needed for the amplification process 

were generated with the help of Clone Manager CMSuite9 (3.9) and ordered as well as produced at 

MWG Eurofins, Ebersberg, Germany. Each Primer was generated for a specific cloning process, 

containing different restriction sites and potentially necessary additional sequences (e.g. Kozak 

sequence). The sites to be included into the primer sequence were selected depending on the 

specific destination vector used for later cloning steps. All PCRs were performed using the KOD HiFi 

DNA Polymerase Kit from Novagen/Merck, according to the manufacturer´s instructions (table 2 and 

table 3). The annealing temperature, as well as the number of amplification cycles, strongly depends 

on the primers used for the PCR reaction and were determined by testing different conditions. 
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Table 2: Constituents of PCR reaction mix and volumes  

Component Volume per reaction (50µl) 

10-50ng template DNA xµl 

10x KOD Buffer #2 5µl 

dNTPs (2.5mM each) 2µl 

MgCl2 (25mM) 2µl 

Fwd Primer (100µM) 1µl 

Rev Primer (100µM) 1µl 

KOD Polymerase 1µl 

H2O Add up to 50µl 

Table 3: Standard PCR program for KOD HiFi Polymerase Kit 

Temperature Time  

98⁰C 3min  

98⁰C 20sec 

32 cycles 60⁰C 10sec 

72⁰C 25sec 

72⁰C 5min  

4⁰C ∞  

3.3.2.2. StrataClone Blunt PCR Cloning Kit (TOPO cloning) 

The cloning of blunt end PCR products into the TOPO vector was carried out using the StrataClone 

Blunt PCR Cloning Kit from Stratagene. The cloning procedure was performed according to 

manufacturer´s instructions using the Quick-Reference Protocol, provided with the kit.  

3.3.2.3. Enzymatic restriction 

To test isolated plasmid DNA for the absence or presence of a specific insert, 5μl of the DNA sample 

were transferred to a new Eppendorf tube. For enzymatic restriction a master mix was prepared 

containing the 2μl of the 10x buffer, 0.5μl RNAse, as well as 11μl H2O and 0.5μl of the specific 

enzyme/s per reaction. The 10x buffer used for the master mix is selected according to the 

recommendation of the manufacturer. Afterwards 45μl of the master mix were added to the DNA. 

The reaction was incubated at 37⁰C for at least 2h. To analyze the restricted plasmid DNA, 5μl 

reaction were mixed with 1μl 6x loading dye and a horizontal agarose gelelectrophoresis (4.3.3.1) 

was performed. For a preparative digest of DNA, which was used for ligation, the reaction was scaled 

up to a final volume of 200µl. The digest was performed overnight at 37⁰C. After incubation the 
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reaction was mixed with 6x loading dye and loaded on an analytical Agarose gel (4.3.3.1) and further 

extracted by gel purification (4.3.1.4). 

3.3.2.4. Annealing of shRNA Oligonucleotides for Cloning 

The forward and reverse oligonucleotides for the production of the lentivirus shRNA vectors were 

ordered and produced at MWG Eurofins in Ebersberg, Germany. The sequences were selected, using 

The RNAi Consortium (TRC) portal (http://www.broadinstitute.org/rnai/public/) either by a high 

score and non-overlapping target sequences or by comparison with previously verified target 

sequences used by Sigma-Aldrich for shRNA knockdown. The oligonucleotides were designed to 

create a double-stranded DNA fragment containing restriction enzyme-like cleavage ends (5´-AgeI, 

3´-EcoRI) after annealing. Therefore, a digestion for cloning was not necessary. Furthermore, the 

oligonucleotides were ordered as phosphorylated version to increase the cloning efficiency in the 

later cloning steps. To generate the shRNA encoding DNA fragments for cloning, the corresponding 

forward and reverse oligonucleotides had to be annealed. Therefore, 2.5µl of the forward oligo (top-

strand 100pmol/µl) and 2.5µl of the reverse oligo (bottom-strand 100pmol/µl) were diluted in 40µl 

H2O and 5µl 10x annealing buffer. The reaction was heated up to 95⁰C for 5min in the water bath. 

After 5min the water bath was turned off and the oligonucleotides were annealed by cooling down 

to room temperature o/n. The annealed oligonucleotides were stored at 4⁰C until direct ligation into 

the dephosphorylated destination vector. 

3.3.2.5. Dephosphorylation of DNA ends 

Dephosphorylation was performed to prevent vector self-ligation while cloning. Therefore the 5´-

phosphate groups of the cleaved vector were removed by addition of 2 units calf-intestinal alkaline 

phosphatase (CIP) after enzymatic restriction of the vector. The reaction was incubated at 37⁰C for 

15min, followed by a second incubation at 58⁰C for 15min. To remove the phosphatases after 

dephosphorylation, the vector was gel extracted as described in 4.3.1.4. 

3.3.2.6. Ligation of DNA fragments 

The ligation mix was prepared on ice, according to manufacturer´s instruction from NEB (table 4). 

Vector DNA and insert were used in a molar ratio of 1:3. The ligation mix was either incubated at RT 

for 20min or at 16⁰C o/n.  
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Table 4: Ligation mix 

Component Volume per reaction (20µl) 

10x T4 DNA Ligase Buffer 2µl 

Vector DNA 0.020pmol 

Insert DNA 0.060pmol 

T4 DNA Ligase 1µl 

H2O Add up to 20µl 

3.3.3. Analysis of DNA 

3.3.3.1. Agarose Gel Electrophoresis 

The horizontal agarose gel electrophoresis was performed to analyze DNA fragments after analytical 

enzyme restriction. Therefore, 1% agarose gels were prepared in 1x TAE buffer (3.3.6.2) and 0.006% 

ethidium bromide was added (final concentration 0.72μg/ml). For standard analyses, three mini gels 

were prepared from 100ml agarose solution, whereas for analytical agarose gels, used for gel 

extraction of DNA fragments, 120ml of a 1% agarose solution was used for a single gel. Before 

application of the DNA samples to the gel, the samples were mixed with 6x DNA loading dye in a ratio 

1:6. To determine the size of the corresponding DNA fragments, λ/HindIII-marker as well as 100bp-

marker (3.3.6.2) was loaded on the gel. The electrophoresis was performed at 95V and the DNA 

fragments were visualized by 366nm UV-light. In case of an analytical gel, the voltage was increased 

to 120V for electrophoresis and further preparations were executed using a 254nm UV-light to 

prevent UV dependent mutations. 

3.3.4. Protein Analysis 

3.3.4.1. SDS-polyacrylamid Gel Electrophoresis (SDS-PAGE) 

SDS-polyacrylamide gels were prepared by combining two kinds of gels with different pore size and 

pH, the stacking gel (3% polyacrylamide, pH 6.8) and the separation gel (12.5% polyacrylamide, pH 

8.8). The protein samples were prepared by adding 3x loading buffer (containing SDS and β-

mercaptoethanol) and a denaturation step of the sample at 95⁰C for 10min. After the polymerized 

SDS polyacrylamide gel was placed into the destined running system, 1x TGS running buffer was 

added and the protein samples to be analyzed as well as 3µl protein marker were applied to the 

pockets of the gel. Until the proteins reached the interface of stacking gel to separation gel the 

power was set to 80V and increased afterwards to 120V for separation of the proteins according to 

their molecular weight.  
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3.3.4.2. Coomassie-blue Staining of Protein Gels 

After the protein samples had been separated according to their size by SDS-polyacrylamide gel 

electrophoresis (4.3.4.1), the protein bands were visualized by staining the gel with Gel Code® Blue 

Stain Reagent according to manufacturer´s instructions. 

3.3.4.3. Western Blot Analysis 

For western blot analysis, the proteins had to be transferred from the SDS-polyacrylamide gel to the 

nitrocellulose membrane, where the proteins could be analyzed by specific antibody detection. 

According to the transfer direction determined by the western blot transfer chamber, the 

polyacrylamide gel, soaked in 1x EMBL was placed on top of the nitrocellulose membrane which was 

previously placed on top of three 1xEMBL (3.4.3) saturated Whatman papers. The stack was covered 

with another three Whatman papers that had also been immersed in 1xEMBL. The transfer was then 

performed at 150mA/per gel for 75min to ensure an adequate transfer of all proteins to the 

nitrocellulose membrane. To block remaining protein binding sites on the nitrocellulose membrane, 

the membrane was incubated in 5% skim milk dissolved in 1xPBS-T at RT for 1h. Meanwhile, the 

primary antibody, directed against the protein of interest, was diluted in 5% skim milk PBS-T, 

according to manufacturer´s instructions. The antibody solution was then applied to the membrane 

and incubated either at RT for 1h or at 4⁰C o/n. After incubation with the primary antibody, excess 

antibody was removed by washing the membrane three times with 1xPBS-T for 10min. The 

corresponding secondary antibody conjugated with horse reddish peroxidase (HRP) was diluted 

1:10.000 in 5% skim milk PBS-T and added to the membrane (RT for 1h). The previously described 

washing steps were repeated after incubation of the secondary antibody to remove unbound 

antibody from the membrane. For detection of the proteins solution A, containing luminol plus 

enhancer and solution B, a peroxide solution of the chemiluniscence kit (3.9) were mixed in a 1:1 

ratio and the membrane was incubated in the substrate solution for 1min. The position of the bound 

secondary antibody and therefore indirectly the protein of interest were visualized using light 

sensitive ECL films exposed to the emitted light of the luminescence reaction.  

3.3.4.4. Determination of Protein Concentration by Bradford Assay 

To determine the concentration of protein of a specific sample, a BSA calibration curve was 

generated by titration in a 96-well plate. Therefore a 10µg/µl BSA stock solution was diluted in H2O 

to get a final concentration of 2µg/µl BSA. From this BSA starting dilution a 1:2 dilution series was 

prepared, starting at 2µg/µl up to 0.016µg/µl. H2O alone was used as blank within the Bradford 

assay. The protein samples to be tested were used in 3 different dilutions (in H2O), ranging from a 1:1 
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dilution to a 1:4 dilution. All the samples, as well as the calibration curve and the blank were tested in 

duplicates and the final volume of each sample to be measured was 5µl per well. According to 

manufacturer´s instructions the Bradford reagent was diluted 1:5 in H2O and 200µl were added to 

each well. The absorbance at 595nm was measured after incubation of the Bradford reagent at RT 

for 5min and the protein concentration of the test samples were calculated based on the BSA 

calibration curve. 

3.3.5. Mass Spectrometric Analysis 

To identify potential interaction candidates, co-purified by TAP (4.4.1) or IP (4.4.2), the samples were 

handed over to the Genomics and Proteomics Core Facility (GPCF) at DKFZ for MS analysis. The 

samples were trypsinized, excised from a SDS gel and the peptides were analyzed by MS.    

3.4. Immunological Methods   

3.4.1. Immunoprecipitation (IP) from PsV Infected Cells 

To prepare CNBr beads for IP, 0.57g CNBr sepharose powder (3.5.3.2) was gently resuspended in 

10ml 1M HCl and incubated at RT for 20min while shaking. The beads were then transferred to a 

PolyPrep Chromatography column and washed four times to dryness with 15ml 1M HCl, followed by 

two washing steps using 15ml coupling buffer (3.5.3.1). One bead volume coupling buffer was then 

used to transfer the beads to a new 15ml Falcon tube and the 50% slurry was split in 5x 1ml fractions, 

transferred to a 1.5ml tube and the supernatant was discarded after centrifugation at 1,200rpm for 

2min at 4⁰C. For antibody coupling 1µg antibody per 1µl beads was diluted in coupling buffer to a 

final volume of 750µl. The antibody suspension was added to the CNBr beads and incubated at 4⁰C 

o/n with end over end rotation. 

After the coupling process, the supernatant was removed (1,200rpm/2min/4⁰C) and the beads were 

washed 4-5 times with 1ml coupling buffer. To block remaining binding sites on the CNBr beads, 1ml 

blocking buffer (3.4.3.1) was added and incubated at RT for 2h. The beads were then washed with 

five cycles of 1ml coupling buffer, followed by 1ml acetate buffer. The washing was finished by a final 

wash with 750µl coupling buffer followed by a single wash with 20% ethanol. The beads were 

resuspended 1:1 in 20% ethanol and stored at 4⁰C until further use. 

For IP from PsV infected cells, 1,9x106 HeLa or HEK 293TT cells were seeded in 6cm dishes and 

incubated at 37⁰C, 5% CO2 o/n. The cells were then synchronized at 4⁰C for 30min and incubated for 

another 30min at 4⁰C after addition of PsV diluted 1:200 to allow binding of the viral particles to the 

cell surface. Different PsV were used for infection of the cells, containing HPV16 L1/L2 PsV, HPV16 L1 
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only PsV as well as AAV2 luciferase vectors as control. The cells were transferred to 37⁰C and 

incubated for 8h (PsV infection) and 6h (AAV2 infection), respectively. Afterwards, the cells were 

trypsinized for 30min at 4⁰C, harvested and washed with ice-cold 1xPBS. Centrifugation was 

performed at 1,900rpm for 5min. For lysate preparation, the pellet was resuspended in 500µl ice-

cold EBC lysis buffer (3.5.3.1) and centrifuged at 13,000rpm for 10min at 4⁰C. Meanwhile, 40µl of the 

antibody coupled CNBr slurry was transferred to a new 1.5ml tube and washed three times with NET-

N buffer (3.5.2.2). The cell extract was then added to the beads and incubated at 4⁰C o/n with end 

over end rotation. 

The supernatant and therefore the non-bound protein was removed from the beads by 

centrifugation at 1,200rpm for 2min at 4⁰C and the beads were washed five times with 1ml NET-N 

buffer. After the excess buffer was removed completely, the beads were resuspended in 20µl 1x 

loading buffer without β-mercaptoethanol (3.5.3.1) and boiled at 95⁰C for 10min. The supernatant 

was collected in a new 1.5ml reaction tube and 10µl 3x loading buffer (+β-mercaptoethanol) was 

added. After denaturation of the sample at 95⁰C for 10min, it was stored at -20⁰C for further analysis 

by western blot and MS.  

3.4.2. Immunoprecipitation (IP) of Overexpressed Proteins   

IP was performed from HEK 293TT cell extracts previously transfected (4.2.3) with the Myc-tagged 

potential interaction candidate together with either HPV16L2 or an empty vector. The cell extracts 

were prepared by resuspending the cell pellet, previously washed with ice-cold 1xPBS, in 500µl NDLB 

lysis buffer (3.5.4.1) and incubated on ice for 30min. The lysate was cleared by centrifugation at 

13,000rpm for 10min at 4⁰C.    

For IP, 40µl Protein G sepharose slurry were transferred into a 1.5ml tube and washed twice with 

500µl ice-cold NET-N buffer (3.5.4.1). All the centrifugation steps were performed at 1,200rpm for 

1min at 4°C. The corresponding antibodies, used for IP were coupled to the beads by the addition of 

200µl NET-N buffer containing 1µg antibody and incubation at 4⁰C o/n on a rotating wheel. 

The cleared lysate was added to the antibody-coupled beads and incubated at 4⁰C o/n with constant 

rotation. To remove unspecifically bound contaminants, the beads were washed five times with NET-

N buffer. After the last washing step, excess liquid was removed from the beads and 40µl 1x loading 

buffer were added. The sample was then denatured at 95⁰C for 10min and a small proportion (5µl) 

was used for western blot analysis whereas the remaining sample analyzed by MS. 
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3.4.3. Immunofluorescence (IF) 

For the analysis of proteins by IF, 2x104 HeLa cells were seeded on a cover glass, placed in a 24-well 

plate. The cells were transfected with the corresponding DNA constructs encoding for the proteins of 

interest (4.2.3).  

At the beginning of the staining procedure, the cells were washed once with 1xPBS and fixed on the 

cover glass with 2% PFA at RT for 15min. To reduce autofluorescence based on the aldehyde fixation, 

50mM ammoniumchlorid were added twice to the cells and incubated at RT for 5min. 

Permeabilization of the cells was performed using 0.2% TritonX-100 in PBS at RT for 10min followed 

by three washing steps with 1xPBS. Potential unspecific binding sites were blocked with 1% BSA in 

PBS at RT for 20-30min before application of the primary antibody diluted in 1% BSA at 37°C for 1h. 

Excess antibody was removed by washing the sample 4-5 times with 1xPBS to reduce unspecific 

staining and background fluorescence. The secondary antibody was also diluted in blocking solution 

(1:800) and a dilution of 1:100 DAPI (final concentration 1µg/ml) was added. The solution was 

applied to the cells and incubated at 37°C for 1h. Afterwards the cells were washed 4-5 times with 

1xPBS and the cover glass was removed from the 24-well plate. One drop of mounting medium was 

applied to the cell covered side of the cover glass which was mounted onto a slide. To avoid drying-

out of the sample, the margin of the cover glass was sealed with transparent nail polish. The sample 

was stored at 4°C under dark conditions to avoid bleaching of the fluorophores, coupled to the 

secondary antibody.    

3.4.4. Enzyme-linked Immunosorbant Assay (ELISA) 

To start the ELISA, a microtiter plate was coated with the corresponding coating buffer (3.5.7.2). In 

case of the biotinylated peptide ELISA, 50µl of a coating buffer containing 2.5µg/ml streptavidin was 

added to each well of the microtiter plate. The plate was then incubated at 37°C o/n without a lid, to 

allow the evaporation of the liquid and the coupling of the streptavidin to the surface of the plate. 

After coating, the remaining binding sites on the surface of the plate were blocked with 2% casein in 

PBS (blocking buffer) at RT for 1h. The peptides to be coupled to the plate were diluted in the 

blocking buffer to a final dilution of 0.25µg/µl. Fifty µl of the peptide solution were then added per 

well and incubated for another hour at RT. Unbound peptide was removed from the plate by three 

washing steps with 1xPBS-T before the primary antibody (1:200 in blocking buffers) was applied to 

the wells. The antibody was incubated at RT for 1h and the plate was washed three times to 

eliminate excess primary antibody. The corresponding secondary antibody with conjugated 

horseradish peroxidase was diluted 1:5,000 in 1xPBS-T and 50µl per well were added to the plate. 

After 1h at RT, the plate was washed three times with 1xPBS-T and 100µl substrate solution (3.5.7.2) 
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were added to each well. The reaction was carried out for 10-20min and the absorbance was 

measured at 450nm  

3.5. Tandem Affinity Purification (TAP) 

For TAP, 10x15cm dishes of HEK 293TT cells were transfected (4.2.3) with the corresponding DNA 

constructs. After 72h the cells were harvested by centrifugation at 1,900rpm for 5min and the cell 

pellet was washed twice with 1-5ml ice-cold 1xPBS. The cells were lysed for protein extraction by 

resuspending the pellet in 5ml lysis buffer (3.5.2.1) and incubating on ice for 30min. To remove cell 

debris from the protein extract, the reaction was centrifuged at 13,000rpm for 10min at 4⁰C and the 

supernatant was collected for purification. The first purification step was performed by binding of the 

protein A part of the TAP-tag to IgG sepharose beads. Therefore 75µl IgG sepharose beads were 

transferred to a 1.5ml tube and washed 5 times with 1ml lysis buffer. After centrifugation at 

1,200rpm for 2min at 4⁰C, the IgG sepharose beads were added to the protein extract and incubated 

on a rotating wheel at 4⁰C o/n. 

To harvest the bound protein after incubation, the sample was centrifuged at 1,200rpm for 2min at 

4⁰C, transferred to a 1,5ml tube and the beads were washed three times with 1ml lysis buffer to 

remove unspecifically bound proteins and contaminants. Another three washing steps were 

performed using 1ml of TEV buffer (3.5.2.1). To elute the protein from the IgG beads, the beads were 

resuspended in 225µl TEV buffer and 75µl TEV protease (0.7mg/ml) were added to the sample. The 

cleavage reaction was performed at 4⁰C o/n. 

The eluted protein was collected by centrifugation at 1,200rpm for 2min at 4⁰C and the supernatant 

was transferred to a 2ml tube. To avoid a loss of eluted protein with the IgG beads, the beads were 

resuspended twice in 300µl TEV buffer and centrifuged at 1,200rpm for 2min at 4⁰C and the 

supernatant was harvested in the 2ml tube together with the supernatant from the initial 

centrifugation step. The TEV protease in the 900µl collected supernatant was inhibited by the 

addition of 5µl 1M iodoacetamid (5mM) and 7µl 1M CaCl2. Meanwhile, the calmodulin beads were 

prepared for the second purification step by washing 75µl calmodulin beads 5 times with calmodulin 

binding buffer (3.5.2.1). The beads were then transferred to the collected TEV cleaved supernatant 

and incubated on a rotating wheel at 4⁰C o/n. 

The reaction was centrifuged at 1,200rpm for 2min at 4⁰C and the beads were washed twice with 

1ml calmodulin binding buffer and twice with 1ml calmodulin wash buffer (3.5.2.1). The bound 

protein was finally eluted by denaturation of the sample in 1x loading buffer (SDS and β-

mercaptoethanol) at 95⁰C for 10min. 
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Samples for analysis of the purification procedure were collected at each step of the purification 

process and denatured in 3x loading buffer for analysis by western blot.        

3.6. Peptide Pull Down (PPD) 

The PPD was performed with cell extract from HEK 293TT and HaCaT cells which had either been 

non-transfected or transfected with DNA encoding for a Myc-tagged version of the potential 

interaction candidate.  

Biotinylated HPV16L2 peptides, aa 20-38, aa 28-42 and aa 64-81 were immobilized on avidin beads. 

Therefore, 100µg lyophilized peptide were resuspended in 400µl 1xPBS to get a final peptide 

concentration of 0.25µg/µl. Avidin beads were washed 3-4 times with 400µl 1xPBS/0.1% TritonX-100. 

After the last washing step, excess buffer was removed completely and the beads were resuspended 

1:1 with the previously prepared peptide suspension. Thus, the final concentration of peptide to 

beads was 0.25µg peptide to 1µl avidin beads. To allow proper coupling of the peptides to the beads, 

the peptide-beads mix was incubated at RT for 3h on a rotating wheel. Remaining unbound peptide 

was removed afterwards by washing the beads 3 times with 1xPBS/0.1% TritonX-100. To generate a 

50% bead slurry, the bead-bound peptides were diluted 1:1 in 1xPBS containing 0.1% sodium azide. 

The bead slurry was stored up to one month at 4°C. 

The cells used for PPD were resuspended in a proper volume of EBC lysis buffer (3.5.4.1), incubated 

on ice for 30min and centrifuged at 13,000rpm for 10min at 4°C. The supernatant containing the 

protein extract was analyzed by Bradford assay and the total protein concentration was determined. 

2mg total protein was pre-cleared using 80µl of the immobilized avidin bead slurry without peptide, 

which had previously been washed twice with EBC lysis buffer. The protein extract avidin mixture 

was incubated at 4°C for 1h with rotation and the supernatant was collected afterwards by 

centrifugation. To prepare the peptide-bound beads for PPD, 40µl of the corresponding slurry was 

washed once with EBC lysis buffer and excess buffer was removed carefully. The pre-cleared protein 

extract was then added to the peptide-bound beads and incubated at 4°C o/n on a rotating wheel.  

The supernatant was removed from the beads and unspecifically bound contaminants were removed 

by washing the beads 5 times with 400µl EBC lysis buffer. Peptide-bound proteins were either eluted 

with two rounds of incubation in 2 bed volumes of 100mM glycin pH 2.8 with following pH 

neutralization using 1M Tris pH 8.0 or prepared for western blot analysis by denaturation of the 

proteins in 1x loading buffer at 95⁰C for 10min.      
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3.7. Pseudovirions (PsV) 

3.7.1. Production 

For each pseudovirus (PsV) production, 10x10cm tissue culture dishes with 3-4x106 HEK 293TT cells in 

10ml supplemented medium were prepared and incubated at 37°C, 5% CO2 for around 24h to allow 

attachment of the cells to the dish. The transfection using the corresponding plasmid DNAs, encoding 

the HPV late proteins and the Gaussia luciferase reporter was performed as described in 4.2.3. After 

incubation, the cells were harvested by resuspension and centrifugation at 1,900rpm for 5min. The 

pellet was washed with 1ml DPBS, transferred to a 1.5ml tube and centrifuged at 1,900rpm for 5min 

at 4°C. The pellet was resuspended in an adequate volume of lysis buffer (3.6.2), corresponding to 

the volume of the pellet and incubated at 37°C on a rotating wheel for 24h. The next day, the cell 

suspension was incubated on ice for 5min before adding 0.17 volumes 5M NaCl and another, 5min 

incubation on ice. Cell debris were removed by centrifugation at 10.000rpm for 5min at 4°C and the 

supernatant was transferred to a new 1.5ml tube. The pellet was resuspended in 300µl DPBS/0.8M 

NaCl and centrifuged for a second time at 10.000rpm for 10min at 4°C. The supernatant was 

combined with the supernatant from the previous centrifugation step, 1µl benzonase (100 units) was 

added and incubated at 37°C for 1h. The crude extract was harvested by centrifugation 

(10.000rpm/10min/4⁰C) and collected in a new 1.5ml reaction tube. A small aliquot of the crude 

extract was taken and analyzed in eight serial dilutions, starting at 1:1000 in a PsV-based infection 

assay (4.5.3). The remaining crude extract was used for PsV purification (4.5.2).   

3.7.2. Purification of pseudovirions 

PsV were purified on an iodixanol (OptiPrepTM) density gradient. Therefore, a 27%, 33% and 39% 

Iodixanol solution in DPBS/0.8M NaCl was prepared from the 60% (w/v) iodixanol stock solution. 

Additionally, 100µl phenol red (0.005%) were added to 10ml of the 39% iodixanol solution and a 

SW41Ti centrifuge tube was prepared to produce the density gradient. The iodixanol solutions were 

then carefully stacked on top of each other, starting with 3.3ml 39% iodixanol solution, followed by 

3.3ml 33% and 3.3ml 27% solutions. To allow softening of the interphases, the gradient was 

incubated at 4°C o/n. For purification of PsV from the crude extract, the collected extract (4.5.1) was 

carefully loaded onto the 27% iodixanol solution of the density gradient and centrifuged at 

37,000rpm for 5h at 16°C. After centrifugation, eight fraction of 500µl were collected, starting from 

1cm below the 39%-33% interface of the gradient. A needle was inserted into the wall of the 

centrifuge tube at the desired position and used as a drip to collect eight 500µl fractions drop-wise in 

1.5ml LowBind reaction tubes. The collected fractions were put on ice immediately and the infectivity 
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was analyzed by an infection assay using a constant dilution of 1:1000 of each fraction (4.5.3). The 

fractions were stored at -80°C. 

3.7.3. Pseudovirus-based Infection Assay 

To test the crude extract (4.5.2) and the purified PsV fractions (4.5.3) for PsV infection activity, the 

crude extract was tested in a serial dilution of eight 1:2 dilution steps starting at 1:1,000. Whereas, 

purified fractions were tested in constant 1:1,000 dilutions. In each assay a neutralizing antibody 

control, using K18L2 in a final dilution of 1:1,000 and a neutralization control, using a final 

concentration of 1µg/ml carrageenan was used. The dilution of the crude extract, used for the 

neutralization control was 1:1,000 and the purified fractions used in the control were fraction 2 and 

fraction 3 of the gradient with a final dilution of 1:1,000. The neutralization controls served for 

distinguishing the luciferase activity of free Gaussia luciferase expressed during the PsV production 

process and the activity due to PsV infection during the PsV-based infection assay. First of all, the 

corresponding dilutions of either the crude extract or the fractions were prepared in supplemented 

medium and 50µl were added to each well of a 96-well cell culture plate. For the neutralization 

controls 50µl of a 1:500 dilution of K18L2 and 1:625 of a 1.25mg/ml stock solution carrageenan in 

supplemented medium were added to the corresponding PsV containing wells, respectively. The 

controls were incubated at RT for 20min. 50µl supplemented medium were added to the wells 

containing the crude extract or the purified fractions. Finally, 50µl of a 2,5x105 per ml HeLaT cell 

suspension were added to each well. The plate was wrapped in polythene foil and incubated in a 

melamine chamber containing moist paper towels for 48h at 37⁰C and 5% CO2. For read out of the 

luciferase activity, the corresponding cell culture plates were incubated at RT for 10min and 10µl 

supernatant were transferred to a white 96-well LIA plate. The Gaussia luciferase substrate was 

prepared by adding 100µl Coelenterazine (50X) to 10ml Glow Juice (3.9). 100µl substrate were added 

to 10µl supernatant and the activity was measured in a microplate luminometer after 5 and 15min.  

To determine the specific dilution of a PsV preparation for use in further experiments, active 

fractions were pooled and tested in serial dilutions as described for the crude extract. In further 

experiments the corresponding PsV preparation was used with the dilution giving a RLU of 1,000,000 

after 15min of substrate incubation. For storage 50µl aliquots of the pooled PsV preparation were 

prepared and stored at –80⁰C.      
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3.8. Lentiviruses 

3.8.1. Production using Four Plasmid Transfection System 

For the production of lentiviruses, using the four plasmid transfection system 3x106 HEK 293TT cells 

were seeded in 10cm dishes and incubated at 37⁰C and 5% CO2 o/n. HEK 293TT cells are well 

transfectable and usually show high transfection efficiency. However, unlike the Phoenix cells, this 

cell line does not express any lentiviral packaging proteins. Therefore the cells need to be transfected 

(4.2.4) with the packaging plasmids, encoding gag/pol, rev and VSV G, as well as the corresponding 

plasmid DNA to be packaged. After addition of the transfection mix, the cells were incubated at 37⁰C 

and 5% CO2 for 24h. The medium was changed and the cells were incubated at 37⁰C and 5% CO2 for 

another 24h. Forty-eight h after transfection, the supernatant was collected in a 15ml Falcon tube 

and the cells were discarded. To concentrate the produced lentiviruses, the collected supernatant 

were centrifuged at 13,500rpm for 5h at 4⁰C and the viral pellet was resuspended in 100µl 1xPBS. 

Aliquots of 20µl of each sample were prepared and stored at -80⁰C until further use.  

3.8.2. shRNA Knockdown 

The shRNA nucleotides were obtained from MWG Eurofins in Ebersberg, Germany and cloned into 

the pLKO.1 TRC control vector for production of lentiviruses (4.6.2). For transduction of the cells with 

the corresponding lentiviruses, 0,25x4 HeLa cells were seeded in a 96-well plate with a final volume 

of 200µl and incubated at 37⁰C, 5% CO2 o/n. When the cells were around 30-50% confluent, the 

medium was removed and 100µl fresh medium containing polybrene with a final concentration of 

4µg/ml were added. After gently swirling the plate, 0.8µl of the lentiviruses in 100ml fresh medium 

were added. The plate was incubated at 37⁰C, 5% CO2 o/n before the medium was changed. After 

incubation for another 48h at 37⁰C, 5% CO2 fresh medium was added to the cells containing 1µg/ml 

Puromycin for selection of transduced cells. Afterwards the cells were passaged as described in 4.2.1 

and continuously expanded to bigger cell culture plates. After expansion to the 150cm2 flask, the 

lentivirus transduced knockdown cells were used for the PsV-based infection assay (4.5.3).      
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3.9. Computer-Based Analysis of Protein Sequences (in silico) 

3.9.1. Eukaryotic Linear Motif Resource (ELM) 

The ELM is an online tool for the prediction of potential functional sites in protein sequences. The 

program can only analyze functional sites which are described as linear motifs, which are then 

predicted based on regular expression patterns. Additionally, the results are filtered by cell 

compartment, phylogeny, globular domain clash and structure to provide core functionality. Though 

the ELM contains a large collection of potential functional sites, the analysis by ELM covers not the 

complete set of potential functional sites.    

In addition to the HPV16 L2 full length sequence, also the identified short MEME motifs (4.7.1) were 

analyzed by ELM to identify potential functional sites in the sequence patterns recurring in different 

HPV types. 
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4. Results 

4.1. Purification and Identification of Host Cell Proteins Interacting with HPV16 L2 

The HPV L2 protein plays an important role in the early and late of a viral infection, though it is 

dispensable for the L1 capsid formation. It is known that L2 has several structural and non-structural 

functions during viral infection for example during viral entry. However, many functions of L2 during 

the different stages of the viral life cycle are still not known. Although some functional domains, 

mainly in the N-terminal part of the L2 sequence, have been described, potential functions in the 

remaining protein are still unrevealed. Therefore, three experimental approaches were conducted to 

identify novel HPV L2 interaction partners and to determine their function during viral infection. 

 First, the tandem affinity purification (TAP, 5.1.1) was applied in which HPV16 L2, fused to the TAP 

tag, was overexpressed in mammalian cells and purified by a two-step procedure. Second, cells were 

infected with HPV16 pseudovirions (PsV) and the L2 was precipitated using specific monoclonal 

antibodies directed against L2. The infection with PsV mimics the pathway of a natural infection and 

therefore allowed the co-purification of candidates interacting during viral entry. Third, a pull down 

was performed using three epitopes of HPV16 L2 (aa 20-38, aa 28-42 and aa 64-81). These epitopes 

have been demonstrated to be targets for (cross-) neutralizing antibodies, preventing HPV infection 

in vitro and in vivo. Based on this observation, the three epitopes analyzed in this experiment are 

supposed to have a specific function during viral infection, which might be disrupted by the antibody 

binding. All experiments were conducted under non-denaturing conditions, allowing the co-

purification of L2 bound proteins for further analysis.      

4.1.1. Tandem affinity purification of HPV16 L2 and potential interaction candidates  

For a first identification of potential HPV16 L2 interaction partners, the tandem affinity purification 

(TAP) method was used. This two-step purification method is based on the expression of a HPV16 L2 

TAP-tag fusion protein, which contains a calmodulin binding protein (CBP), a Tobacco Etch Virus 

Protease cleavage site (TEV) and Protein A (ProtA) fused to the target protein HPV16 L2. Four 

different versions of the TAP-tagged protein were produced for purification. First of all, a HPV16 L2 

full length protein, containing the whole amino acid sequence of the uncleaved HPV16 L2. Besides, 

three overlapping HPV16 L2 fragments were fused to the TAP-tag: HPV16 L2_Fr.1 comprised amino 

acids 1-193, HPV16 L2_Fr.2 amino acids 130-334 and HPV16 L2_Fr.3 amino acids 262-473 (Figure 8A). 

HEK 293TT cells were transfected with the corresponding construct and the lysates were used for 

purification 72h post transfection.  
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In the first purification step of the TAP, the corresponding HPV16 L2 TAP tag fusion protein was 

purified by IgG Sepharose, allowing the binding of the ProtA part of the TAP tag to the beads (Figure 

9B). Cellular proteins interacting with HPV16 L2 were co-purified because of the non-denaturing 

conditions of the cell lysis and the TAP procedure. After binding of the fusion protein to the beads, 

unspecifically bound contaminants were removed by several washing steps. To prepare the protein 

for the second round of purification it was eluted from the IgG beads by cleavage with the TEV 

protease, cutting off the ProtA part of the TAP-tag. The eluted protein was then used for the second 

purification step, where it was coupled to calmodulin beads assured by the CBP still fused to the 

HPV16 L2 construct. After binding to the calmodulin beads and the following washing steps, the 

beads were boiled in 1x SDS sample buffer to elute the protein and the co-purified potential 

interaction candidates. At each step of the purification procedure, an aliquot of the supernatant (snt) 

and the beads was taken and analyzed by western blot analysis (Figure 9A HPV16 L2 full length, B 

HPV16 L2_Fr.1, C HPV16 L2_Fr.2 and D HPV16 L2_Fr.3). TEV cleavage to remove the bound HPV16 L2 

TAP-tag construct from the IgG beads, was performed twice (HPV16 L2_Fr.1, HPV16 L2_Fr.2 and 

HPV16 L2_Fr.3) or in case of the HPV16 L2 full length construct, three times. The obtained 

supernatants were used separately for binding to the calmodulin beads and the following purification 

steps. The western blots were stained with a HPV16 L2-specific antibody (K18L2 aa20-38, serum #7 

and α-C-terminal-L2 8c-1) and therefore representing the efficiency of the purification process of the 

different HPV16 L2 TAP-tag constructs. Figure 9A presents the purification of the HPV16 L2 full length 

TAP-tag protein. The first two lanes show samples of the aliquots from the snt and the beads, taken 

after binding of the target protein to the IgG beads. The detected signal showed comparable amount 

of L2 protein in both samples, indicated by the red arrow: HPV6 L2 CBP-ProtA. This indicated that 

only 50% HPV16 L2 TAP-tag was bound and 50% of the protein stayed in the snt even after binding to 

the IgG beads.  In the samples taken during the TEV cleavage, a similar result can be observed 

comparing the snt #1 sample with the sample from the beads, also indicating that about 50% of the 

target protein cannot be eluted properly from the IgG beads. Furthermore, the second and third 

round of protease cleavage could not elute additional target protein from the beads, since HPV16 L2 

is hardly detectable in snt #2 and snt #3. The shift in the molecular weight of the target protein is 

based on the cleavage of the ProtA part (~15kDa) from the TAP-tag. The second purification step is 

represented by the lanes marked with “Purification by Calmodulin beads” also containing aliquots of 

the supernatants (snt #1, snt #2 and snt #3) and the beads (beads #1, beads #2 and beads #3), boiled 

in sample buffer after binding.  
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Figure 8 HPV16 L2 TAP-tag purification and constructs. A Overview of the HPV16 L2 constructs used for TAP. HPV16 L2 full 
length contains the amino acids 1-473, therefore the complete HPV16 L2 sequence. As controls for the MS analysis in the 
later steps, three overlapping HPV16 L2 fragments were generated. HPV16 L2_Fr.1, containing aa 1-193, HPV16 L2_Fr.2, 
containing aa 130-334 and HPV16 L2_Fr.3, containing aa 262-473. All HPV16 L2 constructs are fused to the TAP-tag 
consisting of a calmodulin binding protein (CBP), a TEV (Tobacco Etch virus) protease cleavage site (TEV) and a Protein A 
(ProtA). B Overview of the Purification Process. The target protein putatively interacts with cellular proteins (green, red and 
grey) upon expression in the cell. After lysis of the cells, the complex is purified in a first purification step by binding to IgG 
beads via the ProtA part of the TAP-tag and contaminants (beige) are removed by washing. The complex is eluted by TEV 
protease cleavage and purified by a second purification step mediated by binding of the CBP to Calmodulin beads and 
further washing steps. The beads are then boiled in 1x SDS buffer and the supernatant is analyzed by western blot analysis 
and mass spectrometry. 

The detection of HPV16 L2 in these fractions demonstrated, that almost all of the target protein 

could bind to the beads, since there was no detectable signal in the snt samples. However, 

comparable amounts of HPV16 L2 protein can be detected in the TEV protease cleavage snt #1, 

representing the input of protein into the calmodulin purification and the bead fraction #1 of the 

purification by calmodulin, representing the bound target protein. In addition, the aliquots of bead 

sample #2 and bead sample #3 after calmodulin binding also show less HPV16 L2 compared to the 

bead sample #1, corresponding to the reduced HPV16 L2 input from snt #2 and snt #3 after the 

second and third TEV protease cleavage. 
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The western blots representing the TAP of HPV16 L2_Fr.1 (Figure 9B) and HPV16 L2_Fr.3 (Figure 9D) 

show similar results as the TAP of HPV16 L2 full length in A. Even though the ratios of purified protein 

were slightly different in some of the purification steps compared to the full length TAP, the amount 

of bound protein after the binding to the calmodulin beads was sufficient for MS analysis. A different 

observation could be made for the TAP process of HPV16 L2_Fr.2, shown in figure 9C.  

 

Figure 9 Tandem Affinity Purification. A western blot analysis of the purification using HPV16 L2 full length TAP-tag 
construct. During the purification process, aliquots of the supernatant (snt) and bead fractions were taken at each 
purification step. Volumes loaded to the gel for analysis were adjusted to the corresponding volumes used during the 
purification process. Red arrows indicate the HPV16 L2 full length protein containing the TAP-tag before and after TEV 
cleavage. B Purification using HPV16 L2_Fr.1 TAP-tag construct, containing HPV16 L2 aa 1-193. No antiserum was available, 
detecting this part of L2. C Purification using HPV16 L2_Fr.2 TAP-tag construct, containing HPV16 L2 aa 130-334. D 
Purification using HPV16 L2_Fr.3 TAP-tag construct, containing HPV16 L2 aa 262-473. 

At the beginning of the purification, there was still some protein detectable in the input as well as in 

the beads after the IgG binding. However, after binding to the IgG beads, there is no protein 

detectable in any of the following samples. Since the protein can be detected neither in the snt 

fraction nor in the beads after TEV cleavage, the absence of a signal rather indicates that the 

polyclonal HPV16 L2 antibody (serum #7) was not suitable to detect HPV16 L2_Fr.2. Because of a lack 

of suitable antibodies detecting the amino acid region 130-334, the elution of HPV16 L2_Fr.2 was 
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analyzed by MS even without having a confirmation by western blot analysis. The corresponding snt 

from the calmodulin beads, boiled in 1x SDS sample buffer, were pooled and assigned to the 

Genomics and Proteomics Core Facility (GPCF) at the DKFZ for MS analysis.  

4.1.2. Mass Spectrometric Analysis and Selection of Candidates from TAP  

The samples derived from the tandem affinity purification were analyzed by MS at the GPCF at the 

DKFZ. Two peptide databases were screened to identify potentially interacting candidates. The first 

database used for the identification comprised peptides and the corresponding proteins derived 

from different species. Therefore it was used to confirm the presence of the HPV16 L2 protein and 

thus served as an additional control for a successful purification. The second database was restricted 

to peptides and the corresponding proteins derived from mammalian species and served as basis for 

the actual selection of potential candidates. However, for each of the purifications, the number of 

identified proteins in the different samples required the application of additional selection criteria to 

reduce the number of potential candidates. Therefore, several selection steps were executed to filter 

for the most promising potential HPV16 L2 interaction candidates (Figure 3).  

First of all, the commonly contaminations, appearing regularly in MS analyses were discarded from 

the provided lists of identified proteins. Amongst others, these proteins were for example keratins 

and IgG proteins, which were introduced to the samples because of the handling or the material used 

during the purification process. Furthermore, identified proteins which were indicated to be derived 

from non-human species were analyzed for the existence of human equivalents. Therefore, the 

peptide sequences identified by the MS, representing the corresponding protein were compared to 

the set of peptides expected for a corresponding human protein. Only proteins that had the same 

peptide set for the human equivalent were selected for further analysis, whereas proteins without 

human equivalent were discarded. The remaining proteins were then compared between the 

different samples analyzed. For this, each protein hit was checked for its appearance in each protein 

list derived from the other TAP purifications. Proteins showing up either in a single screen or in more 

than one but in screens using overlapping target proteins were considered as potential partners of 

HPV16 L2. Proteins appearing in the protein lists of non-overlapping target proteins, not sharing any 

amino acid sequences (HPV16 L2_Fr.1 and HPV16 L2_Fr.3), were eliminated from the lists of 

potential interaction candidates. In order to further reduce the number of potential candidates and 

increase the chance of selecting the most promising candidates, also protein hits from a single screen 

were finally discarded, even though this might lead to elimination of true interaction partners. After 

the selection steps, a final set of 29 potentially specific interaction candidates remained and were 

checked in detail by literature research. For further experiments, the focus was set on proteins that 
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had already been published to have a potential function in context of viral infection of any virus, 

except HPV. This selection procedure reduced the number of potential HPV16 L2 interaction 

candidates to a set of 12 potential candidates (Table 5). 



 

 
 

Figure 10 Overview of candidate 

selection. The TAP was performed 

twice, using the HPV16 L2 full length 

TAP construct and once with each of 

the L2 fragments (HPV16 L2_Fr.1, 

HPV16 L2_Fr.2 and HPV16 L2_Fr.3). 

Each MS analysis revealed a different 

number of protein hits from which 

the generally known contaminants, 

like keratins were exclude in the first 

step of the selection procedure (step 

I.). Since peptides identified in the MS 

analysis were compared with a 

database of mammalian proteins, not 

all of the listed proteins were of 

human origin. Therefore the non-

human proteins listed had to be 

analyzed in detail if the detected 

peptide set is equivalent to 

corresponding human proteins (step 

II.). Proteins missing a human 

equivalent were discarded from the 

candidate list. In the third step the 

five protein hit lists were compared 

among each other, to identify 

proteins from non-overlapping 

fragments, e.g. HPV16 L2_Fr.1 and 

HPV16 L2_Fr.3 (step III.). To further 

reduce the number of potential 

candidates, proteins that have not 

been validated by a second screen 

were also discarded from the list of 

potential candidates (step IV.). From 

the remaining 29 candidates, 12 were selected based on literature research and their potential function in context of viral infection (step V.). 
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Table 5: Potential HPV16 L2 interaction candidates identified by tandem affinity purification  

Protein/Description HPV16 L2 fl. HPV16 L2_Fr.1 HPV16 L2_Fr.2 HPV16 L2_Fr.3 

HPV16 L2* 6 peptides 2 peptides 3 peptides - 

Sorting nexin 17 (SNX17) 
(aa 160-164, aa 254-258)** 

- 6 peptides 2 peptides - 

eEF1A1                     
(elongation factor 1 alpha) 

11 peptides - 2 peptides - 

CAPN2                             
(Calpain large subunit 2) 

4 peptides 3 peptides - - 

PSMD12                                
(26S proteasome non-ATPase 
regulatory subunit isoform 12) 

2 peptides 2 peptides - - 

YWHAZ 
(14-3-3 protein/cytosolic 
phospholipase A2) 

1 peptide 2 peptides - - 

PSMD11                                
(26S proteasome subunit 11) 

1 peptides 2 peptides - - 

FLG-2 
(Filaggrin 2) 

1 peptide - - 1 peptide 

CSE1L  
(Exportin-2) 

2 peptides 2 peptides - - 

Skp1 
(S-phase kinase-associated 
protein 1) 

1 peptide - - 1 peptides 

TGM3 
(Transglutaminase E3) 

- - 1 peptide 1 peptides 

hnRNPK 
(transformation upregulated 
nuclear protein) 

3 peptides - 1 peptides 1 peptides 

IRS4 
(insulin receptor substrate 4) 

2 peptides 
4 peptides 

- - 4 peptides 

CAND1 
(cullin-associated NEDD8-
dissociated protein 1) 

3 peptides 2 peptides - - 

* representing the target protein 
** previously published HPV16 L2 interaction partner 
The number of peptides indicated, describes the number of independent peptides identified for the corresponding protein. 
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4.1.3. Immunoprecipitation of L1 and L2 from PSV infected cells (PsV-IP) 

Another approach to identify potential HPV16 L2 interaction candidates was the identification of 

proteins co-purified by IP from cells infected with HPV16 PsV. In contrast to the tandem affinity 

purification, where the HPV16 L2 constructs were overexpressed in the cells, the infection with PsV 

was performed with a non-tagged version of the L2 protein in context of the HPV16 capsid. This was 

supposed to mimic the natural infection pathway in vitro. The infection with HPV16 PsV allowed the 

L2 protein to meet potential interaction partners on its way into the cells in respect of its packaging 

state within the capsid. However, a disadvantage of the IP from infected cells was based on L1/L2 

stoichiometry of the HPV capsid, containing 72 pentamers of the L1 protein but only estimated 12 

molecules of the HPV16 L2 protein.  

4.1.3.1. Selection of antibodies suitable for PsV-IP from infected cells   

To select suitable antibodies for the IP of HPV16 L2 from cell extracts, HEK 293TT cells were infected 

with HPV16 PsV for 5h, 6h, 7h, 8h and 9h after synchronization of the PsV binding to the cell surface. 

After the indicated time of infection, cells were lysed and the cell extract was used for purification of 

HPV16 proteins, using different L1- and L2-specific antibodies, respectively, coupled to Protein G 

Sepharose. Moreover, purified HPV16 PsV, in a non-cellular context, were tested in the IP, to verify 

the general precipitation capability of the specific antibodies. For this initial test, two HPV16 L1-

specific antibodies were used, the 1.3.5.15_L1 which is a mouse derived L1-specific monoclonal 

antibody and the 4543 rabbit L1-specific polyclonal antiserum. These antibodies served as a positive 

control, since both of them are able to precipitate the highly abundant L1 from the infected cells. 

Furthermore, three HPV16 L2-specific monoclonal mouse antibodies were tested for their ability to 

precipitate HPV16 L2 from infected cells. K1L2 aa64-81, targeting the amino acid region aa 64-82 

whereas the antibodies K4L2 aa20-38 and K18L2 aa20-38 are raised against the L2 region aa 20-38. In 

addition to the L1- and L2-specific antibodies, a HPV16 E7-specific antibody was used as a negative 

control. After precipitation, the beads were boiled in 1x SDS sample buffer to elute the precipitated 

proteins for the western blot analysis (Figure 11).  

Analysis of HPV16 L1-specific antibodies for PsV-IP from infected cells 

Figure 11A shows the results of the HPV16 L1 precipitation using the 1.3.5.15_L1 and the 4543 

antiserum. The detection was performed with a mouse-monoclonal HPV16 L1-specific antibody 

(MD2H11_L1). Detection of the HPV16 L2 protein was neglected, due to the low abundance of HPV16 

L2 and hypothesis that even after 9h the L1 and the L2 protein are still assembled in the capsid and 

not yet dissociated. Consistingly, L1 co-precipitated with L2, using L2-specific antibodies. In both IPs 
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(Figure 11A), the HPV16 L1 is clearly detectable at about 55kDa (red arrow HPV16 L1) with a 

detection peak at 8h post infection. Additional, the positive control (PsV only) confirms the 

precipitation ability of the used antibodies, whereas the negative control from w/o PsV does not 

show any detectable HPV16 L1. Since the 1.3.5.15_L1 as well as the antibody used for the detection 

in the western blot derived from the same species (mouse), the heavy chain of the 1.3.5.15_L1 

(~50kDa) appears as an additional signal in all of the samples derived from the IP with 1.3.5.15_L1 

(red arrow Ab heavy chain). The 1.3.5.15_L1 seemed to be more efficient, demonstrated by stronger 

HPV16 L1 signals detected in the samples of the 1.3.5.15_L1 IP.      

 

Figure 11 Western blot analysis of IP from PsV infected cell extracts. A IP was performed using the HPV16 L1-specific 
antibodies 1.3.5.15_L1 (mouse monoclonal) and 4543 (rabbit polyclonal). The analyzed samples were collected 5h, 6h, 7h, 
8h and 9h after PsV infection. In addition cell extract from non-infected cells as well as PsV only were analyzed after IP with 
the indicated antibodies. Red arrows indicate bands corresponding to either HPV16 L1 or IgG heavy chain. B The IP was 
performed with HPV16 L2-specific antibodies to select for a suitable antibody for the PsV-IP experiment. In addition the 
4749 (HPV16 E6-specific) antibody was used as negative control. Samples were collected as describe in A. The IP using the 
K1L2 aa64-81 antibody showed a faint signal in the control w/o PsV which was probably because of a spillover while loading 
of the gel. Besides, HPV16 L1 was detected in the PsV only sample of the 4749 IP probably due to unspecific precipitation.    

Analysis of HPV16 L2-specific antibodies for PsV-IP from infected cells 

In the experiment shown in figure 4B the IPs were performed with the HPV16 L2-specific antibodies 

K1L2 aa64-81, K4L2 aa20-38 and K18L2 aa20-38 and the precipitation negative E7 antibody 4749. The 

detection of the western blot was performed with the HPV16 L1-specific antibody MD2H11_L1. 

Successful precipitation of the PsV could be demonstrated with K1L2 aa64-81 and K4L2 aa20-38. The 

HPV16 L1 protein was detected in all of the samples infected with HPV16 PsV (5h, 6h, 7h, 8h and 9h) 

as well as in the positive control (PsV only). As described previously, a detection peak could be 
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observed after 8h, using the K1L2 aa64-81 for precipitation. Additional bands detected in these 

samples derive from the heavy chain of the antibody, since the precipitation as well as the detection 

was performed with mouse derived antibodies. For the K4L2 aa20-38 IP samples, the observation of 

a detection peak was not clear, since the L1 and the heavy chain formed a strong double band in the 

infected samples and the positive control (PsV only). Because of the signal intensity and the 

proximity of the two signals, it is not clearly visible if there are differences in the IP efficiency at the 

different time points after infection. The lower panel in Figure 4B shows the results of the IPs using 

K18L2 aa20-38 (L2-specific) and 4749 (E7-specific). Even after infection, none of the two antibodies 

showed precipitation of PsV, demonstrated by the absence of a detectable L1 signal. However, the 

western blot shows a signal after IP of PsV only with the E7-specific 4749 antibody at the expected 

molecular weight of HPV16 L1, indicating that there might be some unspecific binding of L1 to the 

beads coupled with 4749. Based on the results in Figure 4, the antibodies 1.3.5.15_L1, K1L2 aa64-81 

and K4L2 aa20-38 were selected for further experiments to identify potential HPV16 L2 interaction 

candidates.    

4.1.3.2. Covalent binding of suitable antibodies to CNBr-beads 

Since the previous experiment demonstrated a high abundance of IgG in the samples after IP when 

using Protein G coupled antibodies, an optimization of the IP protocol was necessary to reduce IgG 

contamination for MS analysis. For this, the Protein G Sepharose was replaced by CNBr beads which 

allow a covalent coupling of antibody and where supposed to reduce the amount of IgG in the 

samples. First of all the coupling efficiency of the selected antibodies (5.1.3.1) to the CNBr beads was 

determined by testing different aliquots, taken during the coupling procedure by SDS-PAGE. Aliquots 

to be tested were taken before coupling to the CNBr beads (Figure 12, input), from the supernatant 

(snt) after coupling and the beads (beads). In addition to the selected antibodies from 5.1.3.1, the 

A20_AAV2 antibody was used in the experiment. The A20_AAV2 antibody served as negative control 

in the following IP experiment.  

Coupling efficiency of different antibodies to CNBr beads 

Figure 12 demonstrates that the coupling was successful for all of the antibodies used in the 

experiment. In each sample, the input showed a high amount of heavy and light chain. The signal 

disappeared after the coupling step (snt), indicating that the IgGs are almost completely bound to 

the beads. Even after denaturation, there was only a faint signal detectable (beads), representing the 

corresponding heavy and light chain. The SDS-PAGE showed clear differences in the amount of 

antibody used in the different input samples. Nevertheless, the results showed that the coupling to 
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the CNBr beads is highly efficient and might be advantageous compared to the use of Protein G 

Sepharose because of reduced abundance of IgG contaminations in the samples. 

 

Figure 12 Coomassie staining of antibody coupling to CNBr beads. The coupling efficiency of different antibodies (K1L2 
aa64-81, K4L2 aa20-38, 1.3.5.15_L1 and A20_AAV2) to CNBr beads was tested using the standard protocol provided by the 
manufacturer. On the Coomassie-blue stained SDS gel, aliquots of the input (amount of antibody used for the coupling 
procedure), the supernatant (snt) after coupling and the beads were analyzed. The arrows indicate the heavy and light 
chain of the antibodies. 

Immunoprecipitation of PsV from infected cells using CNBr-coupled K1L2 aa64-81 

An initial IP experiment to test CNBr-coupled antibody for PsV precipitation was performed using the 

K1L2 aa64-81 in two different concentrations (1µg/µl and 2µg/µl) (Figure 13). For this, CNBr-coupled 

K1L2 aa64-81 was used in the experimental setup describe in 5.1.3.1. The western blot in Figure 13 

shows the detection of HPV16 L2 by K4L2 aa20-38 (upper panel) as well as the detection of HPV16 L1 

by MD2H11_L1 (lower panel). As described previously, the IP was performed 5h, 6h, 7h, 8h and 9h 

after infection with HPV16 PsV as well as from cell extract of non-infected cells (w/o PsV).  

 

Figure 13 Western blot analysis of IP using CNBr coupled K1L2 aa64-81 antibody. 1µg/µl K1L2 aa64-81 and 2µg/µl K1L2 
aa64-81 were coupled to CNBr beads. The following IPs were performed at different time points after PsV infection (5h, 6h, 
7h, 8h and 9h) and as a negative control cell extract of non-infected cells was used for IP (w/o PsV). The upper panel shows 
a western blot using HPV16 L2-specific antibody (K4L2 aa20-38) whereas the lower western blot shows the detection with a 
HPV16 L1-specific antibody (MD2H11_L1), suitable for the detection of denatured protein. The arrows indicate either 
HPV16 L2 or HPV16 L1 in the corresponding blots. 
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All time points post infection showed a clear HPV16 L1 signal, for the IP with either 1µg/µl K1L2 aa64-

81 or the 2µg/µl K1L2 aa64-81. In addition, the absence of an L1 signal in the non-infected control 

samples could be observed. However, for the lower concentration of K1L2 aa64-81, the previously 

described peak of HPV16 L1 detection at 8h could be observed, though, the differences in the signal 

intensity comparing the different time points are not as pronounced as in Figure 4. However, the IPs 

with the higher amount of K1L2 aa64-81 showed the strongest L1 signal at 5h post infection and a 

constant increase from 6h to 9h post infection. The detection of HPV16 L2 revealed only faint bands, 

due to the small abundance of HPV16 L2 within the HPV capsid. Nevertheless, the L2 protein could 

be detected in each sample except the w/o PsV control. The results of the precipitation experiment 

demonstrated that the IP using antibodies coupled to CNBr beads lead to efficient precipitation of 

the HPV16 capsids from infected cells and further reduced the amount of IgG contaminations within. 

4.1.3.3. PsV-IP from infected cells using CNBr-coupled antibodies 

The IP of PsV to be analyzed by MS was performed by infecting either HEK 293TT or HaCaT cells with 

HPV16 PsV, containing the L1 and the L2 protein (HPV16 L1/L2) or HPV16 PsV, containing only the L1 

protein (HPV16 L1 only) for 8h. The L1 only PsV infection served as a control to distinguish potential 

HPV16 L1- from HPV16 L2-interaction candidates, since candidates of both proteins were co-purified 

by precipitation of the assembled HPV16 capsids. As an additional control for the MS analysis, 

another batch of cells was either infected with AAV2 for 6h or mock infected (w/o virus). The IP was 

performed from each infection, using four different antibodies, two HPV16 L2-specific antibodies, 

targeting different regions of the protein (K1L2 aa 64-81 and K4L2 aa 20-38), one HPV16 L1-specific 

antibody (1.3.5.15_L1) and the A20_AAV2 antibody. The antibodies were previously coupled to CNBr 

beads in a ratio of 1µg antibody to 1µl beads. Aliquots of the input from the infection, the 

supernatants (snt) and the beads were taken during the precipitation procedure and analyzed by 

western blot before samples were analyzed by MS. 

Figure 14 shows the result of the IP of HPV16 L1/L2 and HPV16 L1 only PsV, whereas the upper panel 

was detected with an L2-specific antibody (K4L2 aa20-38) and the lower panel with the MD2H11_L1. 

The detection of HPV16 L2 did not lead to any dependable result, since the method was not sensitive 

enough to detect the small amount of HPV16 L2 in the IP samples. However, detection with the 

HPV16 L1-specific antibody demonstrated that the L1 protein could be found in the aliquots of the IP, 

the α-L1 antibody 1.3.5.15_L1 but also the L2-specific antibodies K1L2 aa64-81 and K4L2 aa20-38 

(Figure 14A). HPV16 L1, present in the aliquots of the snt indicated the unbound L1 proportion. This 

might be due to saturation of the binding capacity of the beads coupled antibody sites. The detection 

of HPV16 L1 in the aliquots taken from the bead fractions after purification demonstrated the 
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precipitated L1 by K1L2 aa64-81, K4L2 aa20-38 and 1.3.5.15_L1. Compared to K1L2 aa64-81 and 

1.3.5.15_L1, the IP using K4L2 aa20-38 showed a reduced level of precipitated L1, indicating lower 

precipitation efficiency. The IP of HPV16 L1/L2 PsV with the A20_AAV2 antibody therefore showed 

only a HPV16 L1 signal in the input and snt samples. There is no detectable L1 signal in the bead 

fraction of the IP.  

 

Figure 14 IP of HPV16 PsV from infected cell extracts. A PsV-IP from cell extracts infected with HPV16 L1/L2 PsV using 
different antibodies (K1L2 aa64-81, K4L2 aa20-38, 1.3.5.15_L1 and A20_AAV2) coupled to CNBr beads. The samples 
analyzed were taken before IP (input), and after IP (snt, beads). B PsV-IP from cell extracts infected with HPV16 L1 only PsV. 
Antibodies used for the IP and fractions analyzed were the same as described in A. The upper western blot was detected 
with a HPV16 L2 antibody (K4L2 aa20-38) whereas the lower western blot was detected with a HPV16 L1-specific antibody 
(MD2H11_L1) in A and B. 

The result of the IP of HPV16 L1 only PsV is shown in Figure 7B. Using K1L2 aa64-81, K4L2 aa20-38 

and the A20_AAV2 for precipitation lead to the detection of L1 in the input and the snt exclusively. 

Thus, confirming that the HPV16 L1-only PsV cannot be precipitated by any of the three antibodies. 

In contrast to the antibodies targeting HPV16 L2 and AAV2, the 1.3.5.15_L1 was able to precipitate 

the HPV16 L1 only PsV, represented by detection of HPV16 L1 in the input and in the bead sample. 

There was no detectable signal for HPV16 L1 in the snt fraction after binding to the beads, indicating 

that all PsV could be precipitated from the cell extract. IP samples from 293TT cells infected with 

HPV16 L1/L2, HPV16 L1 only and AAV2 (data not shown) as well as from non-infected cells (data not 

shown), using the four different antibodies were analyzed by MS by the GPCF at the DKFZ.     
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4.1.4. Mass spectrometric analysis and selection of candidates from PsV-IP 

As described previously in paragraph 5.1.2, two protein databases were screened for protein 

identification. One comprised species from different classes, also including viral proteins, thus this 

database served to identify purified HPV16 L1 and HPV16 L2. However, only the IP of HPV16 L1/L2 

and HPV16 L1-only using the 1.3.5.15_L1 antibody could identify HPV16 L1, none of the screens 

identified HPV16 L2. The database comprising species of the mammalian class was used for the 

identification of co-purified interaction candidates. The number of identified proteins was very high 

and required additional selection criteria to reduce the number of candidates (Figure 15). Like in 

5.1.2, generally known contaminants were eliminated in the first selection round (step I.). The 

second selection criterion was based on the comparison of MS results of the different antibodies 

within the same PsV-infected extracts. Co-purified proteins of the A20_AAV2 negative control IP 

were discarded as potential candidates (step II.). Since A20_AAV2 is not able to precipitate either 

HPV16 L1 or HPV16 L2, as confirmed by the MS data, co-purified proteins were suggested to be 

unspecific. For the set of IPs from HPV16 L1 only PsV infected cells, also proteins co-purified with 

K1L2 aa64-81 and K4L2 aa20-38 were used as negative control. Remaining proteins from the HPV16 

L1-only IP were assigned as potential L1 interaction candidates and served as control to distinguish 

between potential L1 and L2 candidates in a later selection step (V.). Additionally, unspecifically co-

purified proteins, identified in the screens from AAV2 (step III.) and non-infected (step IV.) cells were 

discarded from the candidate list. From the remaining 73 candidates of the HPV16 L1/L2 infections, 

15 candidates overlapped with the HPV16 L1-only candidate list. Therefore these 15 proteins were 

suggested to be potential L1 interaction candidates (step V.). Finally, proteins with no human 

equivalent (step VI.) as well as proteins with less than two independently identified peptides (step 

VII.) were eliminated. 
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Figure 15 Overview of the interaction candidate 

selection. The PsV-IP was performed using cells 

infected either with HPV16 L1/L2, HPV16 L1 

only, and AAV2 or w/o virus. For each infection 

four antibodies were used for IP (K1L2 aa64-81, 

K4L2 aa20-38, 1.3.5.15_L1 and A20_AAV2). Each 

MS analysis revealed a different number of 

protein hits from which the generally known 

contaminants, like e.g. keratins were excluded in 

the first selection step (step I.). In step II, the 

K1L2 aa64-81, K4L2 aa20-38 and 1.3.5.15_L1 

protein hit were compared to the corresponding 

A20_AAV2 protein hits of the same virus 

infection to exclude HPV16 unspecific protein 

hits. The remaining proteins were then 

compared to the four AAV2 infected and w/o 

virus IPs and overlapping hits were discarded 

(step III & step IV). Furthermore, protein hits 

appearing in the K1L2 aa64-81 and K4L2 aa20-38 

IP from cells infected with HPV16 L1 only PsV 

were excluded from the corresponding 

1.3.5.15_L1 IP to identify potential HPV16 L1 

interaction candidates. These protein hits were 

compared to the K1L2 aa64-81, K4L2 aa20-38 

and 1.3.5.15_L1 proteins hits and previously 

identified L1 interaction candidates were 

removed (step V). The last selection step (step 

VI) was based on the identification of protein 

hits with human equivalents as potential HPV16 

L2 interaction candidates. Finally, protein hits 

with less than two independent peptides 

identified by MS were discarded from the list of 

potential interaction candidates (step VII). 
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Table 6: Potential HPV16 L2 interaction candidates identified by PsV-IP 

Protein/ Description PsV-IP 

RPS2 
40S ribosomal protein S2 

3 independent peptides 

HIST1H2BB 
Histone H2B type 1-B 

5 independent peptides 

HIST1H1C 
Histone H1.2 

4 independent peptides 

HIST1H2BC 
Histone H2B type 1-C/E/F/G/I 

5 independent peptides 

H3F3A 
Histone H3.3 

4 independent peptides 

CCT5 
T-complex protein 1 subunit epsilon 

4 independent peptides 

CCT3 
T-complex protein 1 subunit gamma 

2 independent peptides 

CCT4 
T-complex protein 1 subunit delta 

2 independent peptides 

PKM 
Pyruvate kinase PKM 

5 independent peptides 

SDHA 
Succinate dehydrogenase [ubiquinone] 
flavoprotein subunit, mitochondrial 

2 independent peptides 

TPM2 
Tropomyosin beta chain 

4 independent peptides 

VIM 
Vimentin 

3 independent peptides 

MYH9 
Myosin-9 

3 independent peptides 

SNRPG 
Small nuclear ribonucleoprotein 

2 independent peptides 

SRI 
Sorcin 

4 independent peptides 

CAD 
CAD protein 

3 independent peptides 

CSE1L * 
Exportin-2 

1 independent peptides 

* was considered as potential candidate because of the identification as potential candidate in paragraph 5.1.2. Though, 
this protein would have been sorted out in the selection process in figure 8 step VII. 
The number of peptides indicated, describes the number of independent peptides identified for the corresponding protein. 
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4.1.5. Peptide pull down (PPD) of potential, epitope interacting candidates from cell 

extracts 

The peptide pull down (PPD) experiment was performed using three different, biotinylated HPV16 L2 

epitopes (aa 20-38, aa 28-42 and aa 64-81) which had previously been demonstrated to be targets 

for neutralizing antibodies. Binding of these regions by antibodies during viral infection has been 

demonstrated to prevent an efficient viral infection in vitro. This observation leads to the hypothesis, 

that the binding of the antibody might inhibit essential steps of the viral infection pathway possibly 

preventing the interaction with a specific cellular protein. To analyze these L2 regions in more detail, 

the corresponding biotinylated peptide was immobilized on avidin beads. The pull down was 

performed using cell extracts from HEK 293TT and HaCaT cells and co-purified proteins were 

analyzed by MS analysis.      

4.1.5.1. Coupling efficiency of biotinylated peptides to avidin beads 

The coupling efficiency of the biotinylated peptides to the avidin beads was confirmed by ELISA. For 

this, the ELISA plate was coated with streptavidin and the input of biotinylated peptide used for 

binding to the avidin beads was analyzed. In addition, the supernatant after binding (snt) and the 

supernatant after low pH glycine treatment (elution) were titrated on the plate (Figure 16). The low 

pH treatment was performed to test the peptide-bead-affinity under elution conditions. A high 

amount of eluted peptide from the beads could probably tamper with the following MS analysis. 

Thus, it was important to optimize the elution conditions to keep the coupled peptides bound to the 

beads while eluting potentially co-purified proteins.  

In Figure 16A,B and C, the titrations of the input, snt and elution sample derived from the three 

coupling processes are presented. The initial amount of peptide, used for the coupling (input), clearly 

demonstrated the presence of the corresponding peptide in the input samples. Comparing the input 

with the snt, representing unbound peptide, the snt showed reduced amount of peptide, indicating 

the successful coupling of the peptide to the avidin beads. This is represented by a lower absorbance 

and a faster decline of the titration curve. The low pH treated (elution) samples of the three HPV16 

L2 peptides show a similar detection level as the corresponding snt samples. Therefore, the result 

indicates, that low pH treatment did not lead to a notable release of the HPV16 L2 peptides from the 

avidin beads. Compared to the L2 peptides aa 20-38 and aa 28-42, the peptide aa 64-81 showed a 

slightly reduced binding efficiency to the avidin beads. In contrast to the other peptides, the snt with 

the unbound peptide of aa 64-81 showed a higher absorbance relative to the input. Nevertheless, 

most of the peptide was bound to the avidin beads, represented by the instant decline of the 

titration curve (Figure 16C).  
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Figure 16 Coupling efficiency of biotinylated peptide to avidin beads and influence of low pH treatment on peptide 
recognition in ELISA. The peptides used for the immobilization on the avidin beads were corresponding to the N-terminal 
epitopes targeted by neutralizing antibodies (HPV16 L2 aa 20-38, HPV16 L2 aa 28-42 and HPV16 L2 aa 64-81). The coupling 
of the biotinylated peptides was performed as described in 4.4.5. Aliquots of the input, used for coupling to the beads as 
well as the supernatant (snt) after binding and the supernatant after low pH elution (elution) were analyzed by ELISA. A 
Coupling efficiency of HPV16 L2 aa 20-38 to avidin beads. The detection was performed using the mouse monoclonal K18L2 
aa20-38 antibody and the corresponding secondary antibody. B  Coupling efficiency of HPV16 L2 aa 28-42 to avidin beads. 
The detection was performed using the mouse monoclonal K8L2 aa28-42 antibody and the corresponding secondary 
antibody. C Coupling efficiency of HPV16 L2 aa 64-81 to avidin beads. The detection was performed using the mouse 
monoclonal K1L2 aa64-81 antibody and the corresponding secondary antibody. D Test of the influence of the low pH 
glycine treatment on the ability of the specific antibody to recognize the corresponding peptides in ELISA. A sample of the 
input was treated with the elution buffer for 10min before neutralizing the pH with Tris pH 8 (Input+Glycine treatment, 
black). The second input sample was added to peptide coupled beads before treatment with the low pH buffer 
(Input+Beads+Elution, dark grey). The third sample represents the input finally added after Tris pH 8 neutralization 
(Input+Elution, light grey). Exemplarily D shows the result of the treatments, using HPV16 L2 aa 20-38. The detection was 
performed with the monoclonal mouse antibody K18L2 aa20-38 and the corresponding secondary antibody (HPV16 L2 aa 
28-42 and HPV16 L2 aa64-81, data not shown).  

In order to rule out any effect of the low pH treatment on the detection efficiency of the peptides in 

the ELISA, the input samples were tested in different setups for the detection ability. In the first 

approach, the low pH glycine buffer was added directly to the aa 20-38 input (Figure 9C, Input + 

Glycine treatment, black). Additionally, the input was either added to bead-coupled aa 20-38 peptide 

before the low pH treatment (Input + Beads + Elution, dark grey) or to the elution aliquot after low 

pH treatment of bead-coupled peptide (Input + Elution, light grey). The data shown in Figure 9D 

demonstrates the representative result of the experiment using the HPV16 L2 aa 20-38 (aa 28-42 and 

aa 64-81, data not shown). The detection levels of the three different samples show a similar 

titration profile development according to the titration of the samples. Thus, low pH treatment does 

not influence the detection of the corresponding peptide in the ELISA assay performed.   
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4.1.5.2. PPD of epitope-specific interaction candidates from cell extracts 

After establishing the immobilization of the peptides representing the L2 neutralizing epitopes, the 

pull down was performed as described in 4.4.5 to identify putative L2 cellular interaction partners. As 

input, either 2mg total protein derived from crude cell extract of either HEK 293TT or HaCaT were 

loaded onto the peptide coupled beads. As controls for the functionality of the assay, two additional 

samples of each peptide were prepared, containing either 25µg of the corresponding, epitope-

specific antibody or a control antibody for the respective peptide. Aliquots of each sample were 

tested by ELISA (Figure 17). In contrast to the previously described ELISA, the plate was coated with 

the biotinylated peptides and the eluted samples were tested for the presence of the co-purified 

positive control antibody.  

For the peptide aa 20-38, the K18L2 aa20-38 antibody (Figure 17B) was used as a positive control for 

the co-purification potential of the pull down protocol. K8L2 aa28-42 antibody served as positive 

control for the aa 28-42 peptide (Figure 17E) and K1L2 aa64-81 (Figure 17H) as positive control for 

the pull down with the aa 64-81 peptide. For each peptide, the input of antibody (input, black), the 

unbound antibody after pull down (snt, dark grey) and the antibody eluted from the beads (elution, 

light grey) was analyzed. The input sample demonstrates the presence of the corresponding antibody 

in the sample by a high absorbance in the ELISA. Furthermore, the results showed a successful 

binding of the antibody to the specific epitopes, since the absorbance in the snt samples is clearly 

reduced. After elution with the low pH glycine buffer, the antibody could be found in the 

corresponding fraction. The increased amount of antibody in the elution compared to the snt, 

indicates that treatment with a low pH buffer interferes with the binding of the antibody and the 

specific epitope and allows elution from the bead-coupled peptide. Comparing the three peptides, aa 

20-38, aa 28-42 and aa 64-81 slight differences could be observed. Whereas, elution of the K8L2 

aa28-42 and K1L2 aa64-81 showed almost the same absorbance as the corresponding input, the 

elution of the K18L2 aa20-38 showed a clear reduction in the amount of antibody compared to the 

input. However, around half of the antibody bound to the HPV16 L2 aa 20-38 peptide could be eluted 

from the beads by the low pH treatment. Thus, the previously described pull down protocol allows 

the binding and co-purification of proteins interacting with the corresponding epitope and the 

elution of the proteins for MS analysis.  

Moreover, the specificity of the pull down protocol was determined by testing negative control 

antibody in the previously described experimental set up. For this, the HPV16 L2 aa 20-38 (Figure 

17C) and HPV16 L2 aa 28-42 (Figure 17F) peptides were tested for pull down of the K1L2 aa64-81 and 

the HPV16 L2 aa64-81 peptide for the pull down of K18L2 aa20-38 (Figure 17I). The results 

demonstrated that the negative control antibody did not cross-react with any of the peptides since 
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there was no antibody detectable. Beside the controls, using either a specific or an unspecific 

antibody, a pull down with cell extract w/o antibody was performed for each peptide (Figure 17A, D 

and G). Since no antibody was added to the corresponding cell extract, the results of the ELISA are 

negative for all of the samples. The elutions derived from the pull down of Figure A, D and G, 

analyzed by MS. In addition to the samples of the PPD from the HEK 293TT extract, the 

corresponding PPDs, using HaCaT cell extract were performed and sent to the GPCF for MS analysis.        

 

Figure 17 Validation of the PPD protocol and the suitability to pull-down and elute potentially interacting candidates. 
Samples of the indicated fractions before (input) and after (snt) the pull down as well as after the low pH treatment 
(elution), were tested for the presence of epitope-specific antibodies by ELISA.  A, D and G Samples sent for MS analysis, no 
antibody added. B, E and H Positive controls, antibody specific for the corresponding peptides was added to the pull down. 
C, F and I Negative control, peptide unspecific antibody was added to the pull down. 
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4.1.6. Mass spectrometric analysis and selection of candidates from PPD 

The selection of candidates from the PPD, provided by the GPCF, was similar to the selection steps I.-

III., described in 5.1.2, starting with the elimination of generally known contaminants (Figure 18, step 

I.). Since the database screened for potential interaction candidates of the PPD comprised only 

human proteins, there were no non-human proteins to remove from the list of potential candidates. 

In step II., protein hits of the aa 20-38 and aa 28-42, respectively, were compared to the PPD of aa 

64-81 to eliminate hits appearing in non-overlapping peptides. Finally, proteins with less than two 

independent peptides identified were discarded (step III.). The selection process narrowed down the 

number of potential candidates to 124 identified for HEK 293TT and 11 in HaCaT cells. Out of these, 

four candidates were overlapping between the HEK 293TT MS screens and the MS HaCaT screens.  

The control database comprising different classes confirmed the results from the experiment in 

5.1.5.1, demonstrating that the bead-coupled peptide remains bound to the beads after elution of 

co-purified proteins. HPV16 L2 was identified only in the sample derived from the HPV16 L2 aa 20-38 

PPD prepared with the HEK 293TT cell extract but not in any of the other samples.   
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Figure 18 Overview of the interaction candidate selection. The PPD was performed with three different biotinylated HPV16 L2 peptides ( aa 20-38, aa 28-42 and aa 64-81), using crude extract of 
either HEK 293TT or HaCaT cells. Each MS analysis revealed a different number of protein hits from which the generally known contaminants, like keratins were exclude in the first step of the 
selection procedure (step I.). In a second step the five protein hit lists derived from the same cell extract were compared to each other, to identify proteins from non-overlapping peptides, e.g. 
HPV16 L2 aa 20-38 and HPV16 L2 aa 64-81 and proteins appearing in the lists of non-overlapping peptides were suggested to be unspecific (step II.). In step III., proteins with less than 2 
independent peptides, identified for the corresponding protein, were also eliminated as potential interaction candidates. 
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Potential, epitope-specific HPV16 L2 interaction candidates identified by PPD 

Table 7: aa 20-38 from 293TT cell extract  

Protein Description 

TUBA1A Tubulin alpha-1A chain  

HNRNPK 
Heterogeneous nuclear 
ribonucleoprotein K  

CCT4 T-complex protein 1 subunit δ  
YBX3 Y-box-binding protein 3  
ANXA5 Annexin A5  

ILF3 
Interleukin enhancer-binding 
factor 3 

EIF5A 
Eukaryotic translation initiation 
factor 5A-1 

PUR6 Multifunctional protein ADE2  
PARK7 Protein DJ-1  

HNRH1 
Heterogeneous nuclear 
ribonucleoprotein H  

ADT2 ADP/ATP translocase 2 

HNRPD 
Heterogeneous nuclear 
ribonucleoprotein D0 

PABP1 Polyadenylate-binding protein 1 
SYIC Isoleucine--tRNA ligase, cytopl.  
CCT3 T-complex protein 1 subunit γ  
RS16 40S ribosomal protein S16  

NACAM 
Nascent polypeptide-associated 
complex subunit alpha, muscle-
specific form  

DYHC1 
Cytoplasmic dynein 1 heavy chain 
1 

ADT3 ADP/ATP translocase 3  
YWHAB 14-3-3 protein beta/alpha  
CAD CAD protein  
EF1D Elongation factor 1-delta 

IF2B1 
Insulin-like growth factor 2 mRNA-
binding protein 1 

EFTU Elongation factor Tu,mitochondrial  
RL13A 60S ribosomal protein L13a 
PCBP2 Poly(rC)-binding protein 2 

ODP2 

Dihydrolipoyllysine-residue 
acetyltransferase component of 
pyruvate dehydrogenase complex, 
mitochondrial 

RL10A 60S ribosomal protein L10a  
CN166 UPF0568 protein C14orf166  
SAHH Adenosylhomocysteinase  
CCT5 T-complex protein 1 subunit ε 

XRCC5 
X-ray repair cross-complementing 
protein 5 

HNRPC 
Heterogeneous nuclear 
ribonucleoproteins C1/C2  

PSA7 Proteasome subunit alpha type-7 
F10A1 Hsc70-interacting protein 
RL5 60S ribosomal protein L5  
RL35 60S ribosomal protein L35 

RM12 
39S ribosomal protein L12, 
mitochondrial  

LRC59 
Leucine-rich repeat-containing 
protein 59 

Table 8: aa 28-42 from 293TT cell extract 

Protein Description 

TBB4B Tubulin beta-4B chain  
PERM Myeloperoxidase  
SPB4 Serpin B4  
LEG7 Galectin-7  
STIP1 Stress-induced-phosphoprotein1  
HBA Hemoglobin subunit alpha 
H2B1B Histone H2B type 1-B  
CATD Cathepsin D  

Table 9: aa 20-38 and aa 28-42 from 293TT 

cell extract 

Protein Description 

CH60 60 kDa heat shock protein, 
mitochondrial 

PYC Pyruvate carboxylase, 
mitochondrial 

ENOA Alpha-enolase 
KPYM Pyruvate kinase PKM  
VIME Vimentin  
TPIS Triosephosphate isomerase  
RLA0 60S acidic ribosomal protein P0  
RSSA 40S ribosomal protein SA 
ATPA ATP synthase subunit alpha, 

mitochondrial  
TCPQ T-complex protein 1 subunit theta  
ATPB ATP synthase subunit beta, 

mitochondrial  
RL12 60S ribosomal protein L12  
YWHAZ 14-3-3 protein zeta/delta  
SYDC Aspartate--tRNA ligase, cytopl. 
KCRB Creatine kinase B-type 
XRCC6 X-ray repair cross-complementing 

protein 6 
YWHAE 14-3-3 protein epsilon 
LDHB L-lactate dehydrogenase B chain  



Results 

 

78 
 

ECH1 Delta(3,5)-Delta(2,4)-dienoyl-CoA 
isomerase, mitochondrial  

YWHAQ 14-3-3 protein theta  
TCPA T-complex protein 1 subunit alpha  
COF1 Cofilin-1  
PPIA Peptidyl-prolyl cis-trans isomerase 

A  
PDIA4 Protein disulfide-isomerase A4 
LDHA L-lactate dehydrogenase A chain  
C1QBP Complement component 1 Q 

subcomponent-binding protein, 
mitochondrial  

PRDX6 Peroxiredoxin-6  
ENPL Endoplasmin  
TCPZ T-complex protein 1 subunit zeta  
MDHM Malate dehydrogenase, 

mitochondrial  
SERA D-3-phosphoglycerate 

dehydrogenase  
CH10 10 kDa heat shock protein, 

mitochondrial  
ALDOA Fructose-bisphosphate aldolase A  
EF1G Elongation factor 1-gamma  
SYRC Arginine--tRNA ligase, cytoplasmic 
RS19 40S ribosomal protein S19 
EF1B Elongation factor 1-beta  
IF4A1 Eukaryotic initiation factor 4A-I  
PCNA Proliferating cell nuclear antigen  
NDKA Nucleoside diphosphate kinaseA 
TPM3 Tropomyosin alpha-3 chain  
MCA3 Eukaryotic translation elongation 

factor 1 epsilon-1  
ROA2 Heterogeneous nuclear 

ribonucleoproteins A2/B1  
RS26 40S ribosomal protein S26  
BLMH Bleomycin hydrolase  
PCBP1 Poly(rC)-binding protein 1  
PROF1* Profilin-1  
PRDX3 Thioredoxin-dependent peroxide 

reductase, mitochondrial 
GLU2B Glucosidase 2 subunit beta  

Table 10: aa 64-81 from 293TT cell extract 

Protein Description 

LCN1 Lipocalin-1  
GSDMA Gasdermin-A  
*
Protein was identified in PPD aa 20-38 and aa 28-42 

from 293TT cell extract as well as in PPD aa 28-42 from 
HaCaT cell extract 

 

 

 

Table 11: Potential candidates, aa 20-38 from 

HaCaT cell extract 

Protein Description 

TRFL Lactotransferrin  
ZG16B Zymogen granule protein 16 

homolog B  
HS71L Heat shock 70 kDa protein 

1-like  
APOD Apolipoprotein D 
CLUS Clusterin  
BPIB1 BPI fold-containing family B 

member 1  

Table 12: Potential candidates, aa 28-42 from 

HaCaT cell extract 

Protein Description 

PROF1* Profilin-1 
*
Protein was identified in PPD aa 20-38 and aa 28-42 

from 293TT cell extract as well as in PPD aa 28-42 from 
HaCaT cell extract 

Table 13: Potential candidates, overlapping 

aa 20-38 and aa 28-42 from HaCaT cell 

extract 

Protein Description 

SPB12 Serpin B12  
SPB3 Serpin B3  
S10A7 Protein S100-A7 
No proteins, matching the exclusion criteria in Figure 18 

were identified for the peptide aa 64-81 from HaCaT cell 

extract. 
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4.1.7. Shortlisting  of candidates from the different MS analyses for further analysis 

In order to select for the most promising HPV16 L2 interaction candidates, the results of the MS 

analyses from paragraphs 5.1.2, 5.1.4 and 5.1.6 were compared. Comparing the selected candidates, 

two proteins were observed to appear in the MS results of two independent experiments. The CSE1L 

was detected in the MS analysis of the TAP (full length HPV16 L2 and HPV16 L2_Fr.1, Table 5) as well 

as in the MS analysis of the PsV-IP (HPV16 L1/L2 K1L2 aa64-81 and MD2H11_L1) (Table 6). Whereas, 

CSE1L was identified in the TAP analysis with at least 2 independent peptides, the result from the 

PsV-IP revealed only one independent peptide in the corresponding screens. Additionally, YWHAZ 

was identified in two MS analyses of basically different experiments (TAP and PPD). The TAP analysis 

showed YWHAZ to be co-purified with the full length HPV16 L2 protein as well as the HPV16 L2_Fr.1 

(aa 1-193). Furthermore, YWHAZ was identified in the PPD from HEK 293TT extracts, using the 

overlapping epitopes aa 20-38 (2 peptides) and aa 28-42 (5 peptides). The PPD from HaCaT cell 

extract identified YWHAZ only in the screen using the epitope aa 28-42 (1 peptide). No further 

overlaps could be observed between the MS analyses from the different experimental set ups. 

Nevertheless, IRS4, CAPN2 and CAND1 were selected as promising interaction candidates of HPV16 

L2. Each of these proteins was detected in the TAP MS in more than one screen of different HPV16 L2 

constructs. Moreover, the number of identified, independent peptides, corresponding to the specific 

protein, was observed to be between 2 and 5. Each protein had at least one peptide set of 3-5 

peptides. From the potential interaction candidates shown in Table 1, three proteins were discarded 

subsequently since they were identified only with a single peptide (FLG2, Skp1, and TGM3). 

Furthermore, the elongation factor 1 alpha was also rejected as potential candidate, since this 

protein appeared unspecifically in each screen of the PsV-IP as well as the PPD samples.  

The PsV-IP MS analysis revealed another set of 16 potential candidates. However, some of these 

candidates were excluded subsequently, since they might have been co-purified because of HPV16 

L2 independent interactions. Amongst others, these proteins were histone proteins, HIST1H1C, 

HIST1H2BC and H3F3A, which might rather be connected to the reporter DNA, still encapsidated by 

L1 and L2. The identification of histones could be considered as positive control for successful IP of 

the PsV from the cells extracts. Several proteins were identified, interacting with actin, a common 

contaminant of MS analyses and therefore might be co-purified with actin instead of HPV16 L2 

specifically (TPM2, VIM, MYH9). Another group of co-purified proteins belong to the T complex 

proteins (CCT5, CCT3 and CCT4), a family of chaperons, involved in protein folding and ciliogenesis. 

Moreover, the ribosomal protein (RPS2), two enzymatic proteins (PKM and CAD), a protein involved 

in mitochondrial electron transport (SDHA) as well as SNRPG (RNA binding component of the 

spliceosome) an SRI (activator of the RYR2 calcium channel) were rejected as potential candidates 
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because of the lack of sufficient evidence for a potential function as HPV16 L2 interaction candidate. 

Furthermore, there were no additional candidates selected from the MS of the PPD, since the 

number of candidates was still too large, even after the selection process (Figure 18) to select for any 

promising candidate from the list of protein hits. 

Table 14: Summary of L2 interaction candidates shortlisted for further analysis 

Protein 5.1.2 TAP 5.1.4 PsV-IP 5.1.6 PPD 

IRS4 
full length L2_1: 2 peptides 
full length L2_2: 4 peptides 
HPV16 L2_Fr.3: 4 peptides 

not identified  not identified 

YWHAZ 
full length L2_2: 1 peptide 
HPV16 L2_Fr.1: 2 peptides 

not identified 
aa 20-38: 5 peptides (293TT) 
aa 28-42: 2 peptides (293TT) 
aa 28-42: 1 peptide (HaCaT) 

CSE1L 
full length L2_2: 2 peptides 
HPV16 L2_Fr.1: 2 peptides 

K1L2 aa64-81: 1 peptide 
MD2H11_L1: 1 peptide 

not identified 

CAPN2 
full length L2_1: 4 peptides 
HPV16 L2_Fr.1: 3 peptides 

not identified not identified 

CAND1 
full length L2_2: 3 peptides 
HPV16 L2_Fr.1: 2 peptides 

not identified not identified 

The number of peptides indicated, describes the number of independent peptides identified for the corresponding protein. 
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4.2. Validation of the Selected Potential Interaction Candidates 

The previously selected interaction candidates (5.17) were further analyzed to verify their potential 

to physically interact with HPV16 L2. Therefore, specific candidates were selected and expressed as a 

fusion protein containing a myc- and flag-tag, respectively. The following experiments were 

performed using the tagged versions of the interaction candidates, as well as an untagged version of 

HPV16 L2 to validate the predicted interaction capacity of the proteins. 

4.2.1. Co-immunoprecipitation (Co-IP) of candidates and L2  after overexpression 

The Co-IP to validate the selected candidates was either performed using an α-myc monoclonal 

antibody for precipitation of the candidate or a polyclonal HPV16 L2-specific rabbit serum (serum #7) 

for precipitation of HPV16 L2. The cell extracts, containing the overexpressed proteins, for both IPs 

derived from the same transfection of cells. The amount of protein used for the IP was analyzed by 

western blot, using either the α-myc or the K4L2 aa20-38 antibody (Figure 19A, B). The candidates 

tested in the presented experiment were IRS4, CAND1, CAPN2, CSE1L, YWHAZ as well as eEF1A1 and 

hnRNPK (both serve as control for unspecific co-purification) which were overexpressed in HEK 293TT 

cells either in absence or presence of HPV16 L2. The red stars in figure 19 highlight unspecifically co-

purified candidates, whereas green stars highlight specifically co-purified candidates. Though 

detection with the α-myc antibody demonstrated that each candidate was expressed, there are 

differences in the expression levels comparing the candidates among each other (Figure 19A). Also 

expression levels of the same candidate varied slightly in absence (w/o) and presence (w/) of HPV16 

L2. It seemed that co-transfection of L2 led to a decreased expression level of the corresponding 

candidates, except for eEF1A1 which showed an increased expression level when co-expressed with 

HPV16 L2. Beside the specific bands, highlighted with stars, unspecific protein bands were detected 

in some samples (e.g. eEF1A1 and IRS4). Figure 19B shows the expression of HPV16 L2 in the 

corresponding cell lysates. The result demonstrated that HPV16 L2 was expressed at similar levels in 

each sample, except for the sample co-transfected with CAPN2.  

Co-IP of HPV16 L2 by precipitation of myc-tagged candidates using an α-myc antibody 

The result of the precipitation with the α-myc antibody is presented in figure 19C and D. The co-

precipitation of HPV16 L2 in the corresponding samples is presented in figure 19D. IP of all myc-

tagged candidates led to co-purification of HPV16 L2, while no L2 was detected when lysates without 

myc-tagged protein were used.  The signal intensity of HPV16 L2 was highly different among the 

different precipitations. YWHAZ showed only a very faint band for co-purified HPV16 L2, whereas the 

samples showed higher amounts of L2. As positive control for precipitation, the samples were tested 
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by western blot after IP for the presence of the myc-tagged candidates (C). The result showed that 

the precipitation of the target proteins was successful as each myc-tagged candidate could be 

detected. Precipitation efficiency varies for the different candidates, but also comparing the same 

candidate in the IP w/o and w/ HPV16L2. Since the IP and the detection of the western blot were 

performed both, using the α-mouse secondary antibody, the heavy (~50kDa) and the light chain 

(~25kDa) were detected additionally.  

 

Figure 19 Co-IP of interaction candidates after overexpression with and without HPV16 L2. The Co-IP was performed using 
either a polyclonal HPV16 L2 rabbit serum (serum #7, diluted 1:100) or a monoclonal α-myc antibody (undiluted). The Input 
of the myc-tagged candidate as well as the HPV16 L2 protein was analyzed by western blot detected either with an α-myc 
(A) or an  α-HPV16 L2 antibody (B). The corresponding extract was splitted into two parts, whereas one part was used for 
an IP of the myc-tagged candidates (C and D) and the other part for an IP against HPV16 L2 (E and F). Red stars highlight 
unspecifically co-purified interaction candidates, green stars highlight the verified candidates and red arrows highlight 
HPV16 L2. Heavy and light chain, derived from the antibodies used for IP, are highlighted with blue arrows.  
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Co-IP of myc-tagged candidates by precipitation of HPV16 L2  

IP of HPV16 L2 was performed using a polyclonal rabbit serum (serum #7). Figure 19F confirms the 

successful precipitation of L2 from the lysates transfected with HPV16 L2 (w/ HPV16 L2). According to 

the lower expression level of L2 when co-expressed with CAPN2 (Figure 19B) the corresponding IP 

revealed less HPV16 L2. Co-precipitation of the myc-tagged candidates was analyzed, using the α-

myc antibody for western blot detection (Figure 19E). All of the candidates were co-purified with 

HPV16 L2 (w/ HPV16 L2), however, showing different precipitation efficiency. IRS4, CAND1, CAPN2, 

CSE1L and YWHAZ were demonstrated to be specifically co-precipitated, since the corresponding 

signals were only detected in the IP w/ HPV16 L2. In contrast, eEF1A1 and hNRNPK could also be 

detected in the samples w/o HPV16 L2. These two proteins seemed to be unspecifically co-purified 

during the IP. The result confirms the ability of a physical interaction of HPV16 L2 with IRS4, CAND1, 

CAPN2, CSE1L and YWHAZ.  

4.2.2. PPD of potential candidates after overexpression 

To further validate the candidates and maybe verify potential interaction sites, the myc-tagged 

candidates were analyzed by PPD after overexpression. For this, 293TT cells were transfected with 

the specific candidate (SNX17, IRS4, YWHAZ, CSE1L, CAPN2 and SPOP) and cell extracts were used for 

pull-down with the three different, biotinylated HPV16 L2 peptides (aa 20-38, aa 28-42 and aa 64-

81). SPOP as a cellular factor for transduction was not identified in any of the previous experiments 

but derived from an independent study (Burkart et al. unpublished) screening for potential AAV VP1 

interaction candidates. Therefore it was included as negative control for further experiments. As 

controls for the specific interaction with the epitopes, blocking of the corresponding binding sites 

were included using either an epitope-specific (K18L2 aa20-38, K8L2 aa28-42 or K1L2 aa64-81) or 

unspecific antibody (mouse serum from a non-immunized mouse or K18L2 aa20-38). The results of 

the experiment are presented in figure 20. The first epitope to be tested was a biotinylated HPV16 L2 

aa 20-38 peptide, which was previously immobilized on avidin beads (Figure 20A and B). The western 

blot analysis in figure 20A shows the PPD using the immobilized peptide without blocking of the 

corresponding peptide as well as blocked with the epitope-specific antibody K18L2 aa20-38. When 

the epitope was available for protein binding (w/o antibody) the purification of YWHAZ and CAPN2 

could be observed. Furthermore, faint bands for IRS4 (~160kDa) and CSE1L (~80kDa), were detected 

in the corresponding PPDs. After blocking of the epitope with K18L2 aa20-38, none of the candidates 

was pulled down by PPD. The control western blot in figure 20B shows the samples of a second PPD 

w/o antibody and the negative mouse serum.  
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Figure 20 Binding of selected candidates to the HPV16 L2 epitopes aa 20-38, aa 28-42 and aa 64-81. The PPD was 
performed using cell extracts from transfected 293TT cells, overexpressing the indicated candidate either as myc-tagged 
protein (SNX17, IRS4, YWHAZ, CSE1L, CAPN2 and SPOP). For detection the indicated primary antibodies (α-myc antibody or 
14-3-3ζ) were used. The immobilized peptides were either not treated at all (w/o antibody), with an epitope unspecific 
antibody (neg. mouse serum or K18L2 aa20-38) or with an epitope-specific antibody (K18L2 aa20-38, K8L2 aa28-42 or K1L2 
aa64-81) to block potential interaction with the candidates. Heavy and light chains derived from the antibody, used to block 
potential binding sites, are highlighted with red arrows whereas the myc-tagged YWHAZ as well as the endogenous YWHAZ 
are highlighted with green arrows. A and B PPD using the immobilized HPV16 L2 aa 20-38 epitope. C, D and E PPD using the 
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immobilized HPV16 L2 aa 28-42 epitope. F and G PPD using the immobilized HPV16 L2 aa 64-81 epitope. Note: SPOP was 
identified as AAV interaction candidate (Burkart et al. unpublished). 

The detection via the α-myc antibody after PPD correlates with the result from A at least in case of 

the YWHAZ. Comparing the two PPD w/o antibody in A and B, the signal representing CAPN2 and 

CSE1L could not be reproduced. A similar result can be observed for the IRS4, since in this sample, 

only the not specifically detected lower band could be detected after PPD w/o antibody. However, 

after treatment of the beads with the neg. mouse serum and the following PPD, YWHAZ could still be 

co-purified with the aa 20-38 biotinylated peptide. Additionally, a faint signal for CAPN2 in the neg. 

mouse serum treated sample was detectable.   

The same experimental set up was performed using the HPV16 L2 aa 28-42 peptide. The samples 

were analyzed by western blot using either the α-myc antibody (C and E) or a α-YWHAZ antibody (D, 

14-3-3ζ). In Figure 20C, the PPD was performed w/o antibody as well as with K8L2 aa28-42, supposed 

to specifically block binding of proteins to the aa 28-42 epitope. When the epitope was available for 

protein binding, YWHAZ could be purified, whereas none of the other samples showed a detectable 

amount of myc-tagged protein. After addition of the epitope specific K8L2 aa28-42, each of the 

antibody treated samples showed a strong detection of unspecific bands, derived from the antibody 

(heavy and light chain, highlighted with red arrows) since K8L2 aa28-42 and the α-myc antibody 

derived from the same host species. Binding of YWHAZ seemed to be inhibited by the epitope-

specific antibody, though the intensity of unspecific signals was too high to conclude certainly. 

Therefore, the corresponding samples were tested, using an YWHAZ-specific antibody derived from 

rabbit for better detection of the protein (D). The result confirmed purification of YWHAZ when the 

epitope was available for binding. The upper band corresponds to the molecular weight of the myc-

tagged YWHAZ, whereas the lower signal corresponds to the endogenous YWHAZ (green arrows). 

After blocking of the epitope with the K8L2 aa28-42, neither the myc-tagged YWHAZ nor the 

endogenous YWHAZ could be detected anymore. Figure 20E presents the result of the second 

experiment, performed without antibody or with the neg. mouse serum as a control. Repetition of 

the PPD w/o antibody showed a similar result as the previous experiment, detecting only YWHAZ-

myc after PPD. Though, YWHAZ could not be purified after incubation of the coupled peptide with 

the neg. mouse serum. In addition, the detection shows pull down of CAPN2 and the unspecific band 

in the IRS4 sample, mentioned previously in Figure 20B. The PPD performed with the peptide aa 64-

81 did not show any purified protein, independent of the availability of the epitope for binding 

(Figure 20F and G). As indicated by the red arrows, the only detectable signal found in F derived from 

the heavy and light chain of the K1L2 aa 64-81, used to block the aa 64-81 for protein interaction.  
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4.2.3. Analysis of co-localization of the candidates and L2 after overexpression 

The IF was performed as previously described using myc- or flag-tagged candidates together with an 

untagged version of HPV16 L2. Both proteins were co-expressed in HeLa cells and stained afterwards 

with a rabbit derived myc-/flag-specific antibody and the K4L2 aa20-38 targeting HPV16 L2. The 

staining was analyzed using the Zeiss Cell Observer and the Zeiss Zen Black Software. As a positive 

control for interaction, a SNX17-GFP construct was used which was kindly provided by the group of 

Dr. Laurence Banks. The staining of the cells was conducted as described in 4.4.4. For quantification 

of subcellular localization of the candidates and HPV16 L2, 50 cells expressing the corresponding set 

of transfected proteins were counted on two independent slides and the localization of each protein 

was analyzed (Figure 21A and B).  

Subcellular localization of potential candidates in absence and presence of HPV16 L2  

Figure 21A presents the quantification of the potential candidates as well as the positive control 

SNX17-GFP in absence (w/o) and presence of HPV16 L2 (w/). SNX17-GFP, previously published to 

interact with L2 [109, 110] was localizes exclusively in the cytoplasm (black) when expressed w/o 

HPV16 L2. Figure 22A, demonstrates the cytoplasmic localization and shows the accumulation of 

SNX17-GFP in speckles throughout the cytoplasm (upper panel). However, co-expression with L2 

shifted SNX17 localization to 70% cytoplasmic, 20% nuclear (dark grey) and 10% cytoplasmic/nuclear. 

Independent of the localization of SNX17-GFP, the protein was found in speckle-like structures. The 

merge of SNX-GFP and the L2 staining demonstrated the co-localization in the speckles, either in the 

cytoplasm or the nucleus (Figure 22A, lower panel). Beside the positive control, YWHAZ and CSE1L 

showed a change in subcellular localization when co-expressed with L2. In absence of L2, 50% of cells 

showed a cytoplasmic localization of YWHAZ, demonstrated in figure 22C (upper panel). In the 

remaining cells, YWHAZ was found in the nucleus (20%) or distributed in nucleus and cytoplasm 

(30%). When co-expressed with HPV16 L2 (YWHAZ w/) the proportion of cells with cytoplasmic 

localization of YWHAZ increased to 75%. Figure 22C (lower panel) shows an example of the YWHAZ 

localization in presence of L2. YWHAZ was mainly found in the cytoplasm and less in the nucleus. Co-

localization could be observed when either L2 was found cytoplasmic together with YWHAZ or in 

some cells when YWHAZ was localized in the nucleus. CSE1L in absence of HPV16 L2 was observed to 

be localized in the nucleus in 98% of the cells. Co-expression of HPV16 L2 (CSE1L w/), however, led to 

an increased distribution of CSE1L in the nucleus and the cytoplasm (light grey). The change of the 

CSE1L localization pattern is demonstrated additionally in Figure 23A, comparing the upper panel 

(w/o L2) and the lower panel (w/ L2). Furthermore, figure 23A shows co-localization of CSE1L and 

HPV16 L2 at the perinuclear region (merge, lower panel). The influence of HPV16 L2 on the 

subcellular localization was observed to be less pronounced for CAPN2 and CAND1. For CAPN2 a 
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slight increase in the cytoplasmic localization (black) could be observed in presence of L2, whereas a 

decrease of cytoplasmic localization (black) was observed when CAND1 was co-expressed with L2. 

 

Figure 21 Subcellular localization of potential candidates in presence or absence of HPV16 L2. The quantification of the IF 
samples was performed by staining two slides with cells overexpressing either the indicated candidate in absence (w/o) or 
presence (w/) of HPV16 L2 or HPV16 L2 only in HeLa cells. The antibodies used for staining of the cells were rabbit derived 
α-myc and α-flag, respectively and the HPV16 L2-specific, mouse monoclonal K4L2 aa20-38. The secondary antibodies were 
coupled to Alexa595 (α-rabbit) and Alexa488 (α-mouse). On each slide, 50 cells expressing the transfected protein set were 
analyzed for the localization of the potential candidate and the localization of HPV16 L2. The quantification data was then 
summarized in the presented bar graphs. Cytoplasmic localization is shown in black, nuclear localization in dark grey and 
the light grey part does represent a localization distributed in the cytoplasm as well as in the nucleus. A Quantification of 
the candidate localization in absence (w/o) or presence (w/) of HPV16 L2. B Quantification of the distribution pattern of 
HPV16 L2 either expressed alone or in presence of the indicated candidate.  

A co-localization of HPV16 L2 and CAPN2 could be observed at the perinuclear region or in some 

cases, when L2 was localized in the cytoplasm of the cell (Figure 23B, lower panel). A similar result 

was observed for the co-localization of CAND1 and HPV16 L2 (Figure 23C). The analysis of IRS4 did 

not show any changes in the localization pattern in presence of HPV16 L2. However, a small number 

of cells showed nuclear localization of IRS4 in a speckle-like pattern (Figure 22B). Co-localization of 

IRS4 and L2 was observed in the described nuclear speckles as well as in rare cases where L2 was 

found to be localized in the cytoplasm.       

Subcellular localization of HPV16 L2 in absence or presence of the potential candidates  

In addition to the localization of potential interaction candidates, the cellular distribution of HPV16 

L2 was analyzed when expressed alone or together with the corresponding candidates (Figure 21B). 

When L2 was expressed in absence of potential interaction candidates, the protein was found to be 

localized mainly in the nucleus (dark grey, 95%). Co-expression with the known interaction candidate 

SNX17-GFP showed a strong effect on L2 localization. L2 was found to be distributed in the nucleus 

and the cytoplasm (light grey) in 50% of the cells, whereas the nuclear (black) proportion of L2 

decreased to 30%. This result was confirmed by the co-localization experiment shown in figure 22A 

(lower panel). The remaining 20% of the cells showed an exclusively cytoplasmic localization of L2 

when co-expressed with SNX17-GFP. The co-expression of L2 with CSE1L showed a shift towards a 



Results 

 

88 
 

more nuclear/cytoplasmic (Figure 21B,light grey and Figure 23A, lower panel) localization of L2, 

though to lower extend than the positive control. An effect on L2 localization could not be observed 

for any of the other candidates. 



 

 
 

 

Figure 22 Subcellular localization of potential interaction candidates in absence and presence of HPV16 L2. The staining of the samples was performed using either a rabbit derived α-myc or a 
rabbit derived α-flag antibody in combination with the corresponding α-rabbit-A488 secondary antibody (green). HPV16 L2 was stained with K4L2 aa20-38 and a α-mouse-A594 antibody (red) as 
well as DAPI (blue) to stain the DNA in the nucleus. A SNX17-GFP expressed without (upper panel) or together with HPV16 L2 (lower panel). B, C Staining of the indicated myc-tagged candidates 
expressed without (upper panel) and with (lower panel) HPV16 L2. D Localization of HPV16 L2 localization when expressed in absence of overexpressed candidate interaction partner. 



 

 
 

 

Figure 23 Subcellular localization of potential interaction candidates in absence and presence of HPV16 L2. The staining of the samples was performed using either a rabbit derived α-myc or a 
rabbit derived α-flag antibody in combination with the corresponding α-rabbit-A488 secondary antibody (green). HPV16 L2 was stained with K4L2 aa20-38 and a α-mouse-A594 antibody (red) as 
well as DAPI (blue) to stain the DNA in the nucleus. A Staining of flag-tagged CSE1L2 expressed without (upper panel) or together with HPV16 L2 (lower panel). B, C Staining of the indicated myc-
tagged candidates expressed without (upper panel) and with (lower panel) HPV16 L2. D Localization of HPV16 L2 localization when expressed in absence of overexpressed candidate interaction 
partner. 
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Co-localization analysis of IRS4, YWHAZ and CSE1L with HPV16 L2  

The co-localization of three selected candidates (IRS4, YWHAZ and CSE1L) as well as the positive 

control (SNX17) with HPV16 L2 was further analyzed by confocal microscopy (Figure 24). Since 

confocal microscopy is specifically designed to detect signals exclusively in the focal plane, this 

method is suitable to further analyze co-localization of the candidates with HPV16L2.  

As described previously, SNX17-GFP was localized mainly in the cytoplasm with an overall staining 

pattern when expressed in absence of HPV16 L2 (Figure 24A, upper panel). After co-expression of 

SNX17-GFP (green) with HPV16 L2 (red) (Figure 24A, lower panels), both proteins were detected in 

dot-like structures mainly in the nucleus but also in the cytoplasm. For both localization patterns 

observed, co-localization in the described speckles could be observed, independent of nuclear or 

cytoplasmic localization. Overexpression of IRS4 alone showed an exclusive localization in the 

cytoplasm of transfected cells (Figure 24B, upper panel). However co-expression of IRS4 together 

with HPV16 L2 led to a more homogenous staining of the cells including staining in the cytoplasm as 

well as in the nucleus. HPV16 L2 seems to recruit some IRS4 to the nucleus, even though only in a 

few cells a partial co-localization at the periphery of the nucleus could be observed (Figure 24B, 

lower panels). In most of the cells co-expressing IRS4 and HPV16 L2 did not show co-localization of 

IRS4 and HPV16 L2 in the nuclear proportion of the proteins. A similar result was obtained analyzing 

YWHAZ. While YWHAZ is mainly localized in the cytoplasm when expressed in absence of HPV16 L2 

(Figure 24C, upper panel), an increased proportion of the protein is located in the nucleus after co-

expression of L2 (Figure 24C, lower panels). Co-localization of YWHAZ and HPV16 L2 in the nucleus 

could be observed in some of the transfected cells. However, transition of YWHAZ to the nucleus did 

not obligatory lead to co-localization of the two proteins. Staining of CSE1L, a member of the 

exportin family, showed a nuclear localization of the protein when expressed alone in the cells 

(Figure 24D, upper panel). In rare cases, an additional staining could be observed in the cytoplasm of 

CSE1L expressing cells in absence of L2 (not shown). When CSE1L was overexpressed together with 

HPV16 L2, the L2 staining was detected exclusively in the nucleus of the transfected cells. Also the 

CSE1L was located predominantly in the nucleus however the transfected cells additionally showed 

increased cytoplasmic CSE1L staining (Figure 24D, lower panels). Even though the intensity of the 

cytoplasmic staining varied, it was observed in most of the cells co-expressing CSE1L and HPV16 L2. 

Furthermore, co-localization of CSE1L and HPV16 L2 could be detected for the proteins localized in 

the nucleus with an accumulation of both proteins towards the periphery of the nucleus.  

The results of the confocal microscopy analysis demonstrated a partial co-localization of IRS4 and 

YWHAZ, respectively, with HPV16 L2 after overexpression of the proteins. Even though the co-
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localization was not observed continuously in all of the cells, an increased nuclear localization of IRS4 

and YWHAZ was found in cells co-expressing HPV16L2. For both proteins, HPV16 L2 seemed to have 

an influence on the subcellular localization, though the interaction might by transient. Additionally 

co-localization of CSE1L with HPV16 L2 could be demonstrated towards the periphery of the nucleus 

and was observed in the majority of transfected cells.  

 



 

 
 

 

Figure 24 Subcellular localization of potential 
interaction candidates in absence and presence 
of HPV16 L2. Potential interaction candidates 
were expressed either in absence or presence of 
HPV16 L2. For visualization purposes, the 
candidates were used as a myc-tagged version, 
except SNX17, which was used as a fusion 
protein with GFP. The staining of the potential 
interaction candidates was performed using a 
rabbit derived α-myc antibody in combination 
with the corresponding α-rabbit-A488 secondary 
antibody (green). HPV16 L2 was stained with 
K4L2 aa20-38 and a α-mouse-A594 antibody 
(red). DAPI (blue) was used to stain the DNA in 
the nuclei. The analysis was performed by 
confocal microscopy. A Staining of SNX17-GFP 
expressed without (upper panel) or together 
with HPV16 L2 (lower panels). B, C and D 
Staining of the indicated myc-tagged candidates 
expressed without (upper panel) and with (lower 
panels) HPV16 L2.  
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4.2.4. Influence of siRNA Knockdown of potential Candidates on HPV16 PsV 

transduction 

To gain further insight in the interaction of the selected candidates with HPV16 L2, siRNA knockdown 

of the corresponding candidates followed by HPV16 PsV transduction was performed. Therefore the 

expression of a specific candidate was down-regulated by treatment with siRNAs, targeting the 

mRNA of interest for degradation. 48h after siRNA treatment, the cells were infected with HPV16 PsV 

and the transduction efficiency was measured by Gaussia luciferase activity 48h post-infection. The 

experiment was performed to analyze the effect of the knockdown of distinct candidates on the 

infectivity of HPV16 PsV. For each candidate, a set of four different siRNAs was tested, targeting 

different regions of the corresponding mRNA. SNX17 was used as a positive control, since knockdown 

of SNX17 has previously been published to reduce HPV16 as well as HPV18 PsV transduction 

efficiency [109, 110]. For each assay performed in this study, the samples were tested in duplicates 

which were individually analyzed by western blot to determine the corresponding protein levels. 

HPV16 transduction efficiency after siRNA knockdown of potential L2 interaction candidates 

Figure 25A represents the summary of three independent siRNA knockdown experiments, using four 

different siRNAs for each candidate (IRS4, YWHAZ, CSE1L, CAPN2, CAND1 and SPOP) as well as the 

positive control SNX17. SPOP was included into the study, since it was previously identified as a AAV 

VP1 interaction candidate in a colleagues study (Burkart et al. unpublished). As negative control, cells 

were treated with a scrambled siRNA control which served as reference for PsV infectivity and 

represents 100% transduction (siRNA ctrl.). Additionally, one sample was not treated with any kind of 

siRNA (w/o siRNA). As published previously, knockdown of SNX17 expression led to reduced HPV16 

PsV transduction at least in three out of the four tested siRNAs. The western blot analysis of the 

protein levels in the corresponding samples could validate successful knockdown for all of the siRNAs 

tested (Figure 25B). Also for the samples treated with the IRS4 siRNA, an inhibited transduction 

efficiency of HPV16 PsV could be observed in three of the tested samples. Even though the effect 

was slightly less pronounced compared to the positive control, the transduction was reduced to 

~60% compared to the reference, treated with the siRNA ctrl.. However, the cells treated with the 

siRNA IRS4_3 showed an increased transduction with PsV of about 20% (Figure 25A). Knockdown of 

IRS4 could not be validated by western blot, due to a lack of a proper primary antibody targeting 

endogenous IRS4.  

Additionally, HPV16 PsV transduction was observed to be decreased in three of the tested YWHAZ 

knockdown samples. Compared to the positive control, the inhibition of PsV infectivity was less 
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efficient with a transduction of about 80% remaining activity compared to the siRNA ctrl. reference. 

Cells treated with the siRNA YWHAZ_7 even showed a slightly increased infection level which was 

similar to the w/o RNA ctrl. (Figure 25A). This might indicate an insufficient knockdown, resulting in a 

higher amount of surviving cells after siRNA treatment.  

 

Figure 25 Influence of siRNA Knockdown of potential Candidates on HPV16 PsV transduction. A Cells were treated either 
with siRNAs targeting the potential interaction candidates (IRS4, YWHAZ, CSE1L, CAPN2, CAND1 and SPOP) or a scrambled 
siRNA control. For each candidate a set of four different siRNA, targeting different regions of the target mRNA, were used. 
As a positive control for reduced transduction with HPV16, siRNAs against SNX17 were included in the assay. The cells were 
infected with HPV16 PsV containing a Gaussia luciferase reporter plasmid and transduction was analyzed 48h after 
infection. B, C, D and E western blot analysis of proteins levels after knockdown of the indicated siRNAs and infection with 
HPV16 PsV. D reduced protein levels of CSE1L_3 might be due to incomplete transfer of proteins to the nitrocellulose 
membrane during western blot analysis. F Transduction of AAV2 was tested after knockdown with four different siRNAs 
targeting either CSE1L or SPOP compared to the cells treated with the scrambled siRNA control. The cells were infected 
with MOI 1000 of AAV2, containing a Gaussia reporter plasmid for 48h. Note: SPOP was previously identified as AAV 
interaction candidate (Burkart et al. unpublished). 
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The analysis of protein levels in the corresponding samples by western blot confirms an insufficient 

knockdown in the samples treated with siRNA YWHAZ_7. In the samples with reduced transduction 

of HPV16 PsV correlating knockdown efficiency on YWHAZ protein levels were observed (Figure 25C).  

The treatment of cells with siRNAs targeting CSE1L led to inhibition of PsV infectivity in all the 

samples except the siRNA CSE1L_3 treated cells. The decrease of HPV16 PsV transduction efficiency 

was observed to be between 50% (CSE1L_2) and 20% (CSE1L_4 and CSE1L_7). However, the cells 

treated with CSE1L_3 showed an opposite effect on transduction with an increase of around 40% 

compared to the siRNA ctrl. (Figure 25A). According to the western blot analyzing of the protein 

levels of CSE1L, the knockdown was most efficient for the sample CSE1L_4 and CSE1L_7 (Figure 25D), 

both showing medium reduction levels in the transduction assay (Figure 25A). The strongest effect in 

the transduction assay was measured in the sample CSE1L_2, though the protein levels in the 

duplicates were only slightly reduced. Intermediate knockdown efficiency was detected for CSE1L_3 

treated cells (Figure 25D) which showed increased transduction with HPV16 PsV (Figure 25A). 

However, the observed reduction in CSE1L protein level in this sample might also be due to 

incomplete transfer of the corresponding proteins during western blot analysis. 

For the analysis of CAPN2 knockdown on the transduction with HPV16, no effect on infectivity could 

be observed (Figure 25A) even though knockdown efficiency was validated for all samples by western 

blot (Figure 25E). A similar result was obtained for CAND1, only a single siRNA (CAND1_4) showed a 

slight inhibiting effect on PsV infection. Since no suitable antibody against CAND1 was available, 

knockdown efficiency was not analyzed for the samples treated with siRNA against CAND1. 

Knockdown of SPOP led to decreased infection levels for all of the tested samples of about 50%-20% 

compared to the siRNA ctrl.. However, protein levels of the samples could not be analyzed since the 

endogenous SPOP protein level in untreated cells was below the detection limit in the western blot 

analysis. The results of the knockdown experiment indicated an inhibiting impact of IRS4, YWHAZ, 

CSE1L and SPOP knockdown on HPV16 PsV transduction. Whereas, knockdown of CAPN2 and CAND1 

did not seem to have any influence on PsV infection.  

Influence of siRNA knockdown of potential HPV16 L2 interaction candidates on AAV2 transduction 

efficiency 

In addition to HPV16 infectivity, the transduction of AAV2 after knockdown of CSE1L and SPOP was 

analyzed. The two candidates were selected, since knockdown of CSE1L repeatedly showed a strong 

influence on AAV2 transduction while using AAV2 as a control for cell toxicity of the siRNA treatment. 

SPOP as a cellular factor for transduction originally derived colleague study (Burkart et al. 

unpublished) in which SPOP was found to be a potential AAV VP1 interaction candidate.  
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Knockdown of CSE1L followed by infection with AAV2 led to a strong increase of transduction 

efficiency for all of the siRNAs used (Figure 25F). According to the knockdown efficiency expected 

from the previously described experiment, the sample treated with CSE1L_7 had the strongest effect 

on AAV2 transduction. The infectivity with AAV2 was increased around 8 fold compared to the 

corresponding siRNA ctrl.. Additionally, SPOP knockdown was analyzed and showed no effect on 

AAV2 transduction for samples treated with SPOP_1 and SPOP_4, but a slight increase of 

transduction efficiency after knockdown with siRNA SPOP_2 and SPOP_3. However, the transduction 

with AAV2 in both cases was observed to be similar to the transduction of cells not treated with 

siRNA (w/o siRNA). These data indicate that the observed negative effects of knockdown of CSE and 

SPOP on HPV16 PSV transduction are not due to unspecific cellular toxicity. The same conclusion 

could be made for IRS4 and YWHAZ, both showing similar transduction rates as the siRNA ctrl. 

reference (data not shown). 

4.2.5. Lentivirus-mediated  shRNA knockdown of potential candidates 

To further confirm the influence of the knockdown of candidates on HPV16 PsV transduction 

lentivirus mediated shRNA knockdown experiments were performed additionally. For this four out of 

the six candidates were selected, including IRS4, YWHAZ, CSE1L and SPOP for further analysis. In 

addition, lentiviruses containing either a shRNA against a non-mammalian target (shRNA ctrl.) or a 

GFP expression plasmid were used as controls for different steps of the experiment.  

HPV16 transduction in selected Lentivirus shRNA knockdown cells 

HeLa cells were infected with shRNA encoding lentiviruses and further selected for puromycin 

resistance. In this approach, only cells transduced with the lentivirus and expressing the 

corresponding plasmid with the puromycin resistance gene were used for further analysis. For each 

lentiviral construct two independent cell cultures were prepared and further tested individually. 

After several passages under puromycin treatment, the selected cells were used for a transduction 

assay with HPV16 PsV and AAV2.  

Figure 26A and 26B represent summaries of two independent experiments. Luciferase activity in IRS4 

and CSE1L knockdown cells, respectively, showed a reduction of infectivity by 50% (IRS4) and 20% 

(CSE1L) compared to the shRNA ctrl.. This observation was in concordance with the results from the 

siRNA knockdown in paragraph 5.2 as well as the results of an experiment with transiently lentivirus 

transduced HeLa cells (data not shown). However, the CSE1L knockdown showed an opposite effect 

in the transient lentivirus transduction experiment, described previously. For knockdown cells using 

shRNA targeting YWHAZ, one out of the two lentiviral transduced cell cultures did not show any 
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effect on HPV16 transduction, whereas the other culture had a 20% reduced transduction rate 

compared to the reference (shRNA ctrl.). This might be due to insufficient knockdown of YWHAZ in 

the cells showing no effect on HPV16 transduction. Compared to the control, the SPOP shRNA 

treated cells showed a slightly increased transduction rate with HPV16 PsV (~10%). As also the 

leintivirus-GFP transduced cells showed slightly elevated HPV16 transduction rates, the effect 

observed in the shRNA SPOP treated cells might be unspecific for the SPOP knockdown.  

 

Figure 26 Transduction with HPV16 and AAV2 after lentivirus infection and selection for lentiviral transduced cells by 
puromycin. HeLa cells were transduced with lentiviruses encoding shRNAs for knockdown of selected candidates (IRS4, 
YWHAZ, CSE1L and SPOP) as well as a non-mammalian control (shRNA ctrl.) and a GFP control. 48h postinfection the cells 
were further cultured in a selection medium containing puromycin to select for lentiviral transduced cells. After several 
passages under puromycin selection, the cells were infected either with HPV16 PsV (A) or AAV2 (B) containing a Gaussia 
luciferase reporter plasmid. 48h post infection transduction was analyzed for luciferase activity.  

The infection of untreated HeLa cells with PsV showed a reduced infection efficiency compared to 

PsV transduction of HeLa cells treated with the shRNA ctrl., indicating a slight effect of either 

lentivirus infection or puromycin selection on HPV16 PsV infection.  

The same experiment was performed using AAV2 for transduction of the selected HeLa cells. After 

several passages of the cells under puromycin treatment strongly increased transduction could be 

observed for YWHAZ knockdown cells. Transduction efficiency of AAV2 was observed to be 3-fold 

over the shRNA ctrl. cultures in both of the YWHAZ knockdown cultures. Additionally, knockdown of 

CSE1L and SPOP showed increased AAV2 infectivity. However, the increase in AAV2 transduction was 

lower than the increase observed for the GFP expressing selected cells, maybe indicating an 

unspecific effect of lentiviral infection with CSE1L and SPOP encoding shRNA or puromycin selection.  
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4.3. In silico analysis of different HPV L2 protein  

In parallel to the identification of interaction candidates, an in vitro analysis of L2 protein sequences 

from different HPV types was performed. For this, a set of 20 L2 sequences, comprising two low risk 

HPV sequences (HPV 6 and 11), 13 high risk HPV sequences (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 

58, 59 and 66) and five sequences from potential high risk HPV types (HPV 25, 53, 68, 73 and 82) 

were analyzed. These sequences were screened by an online program (ELM) which predicts potential 

functional sites in protein sequences. A restriction of the program is the ability to analyze only 

functional sites which are described as linear motifs, thus missing conformational dependent sites. 

The overall analysis of the L2 sequences (between 450 and 473 aa), revealed around 150-200 

potential functional sites. The results included protease cleavage sites, ligand binding sites and sites 

for protein modifications. Since HPV L2 is highly conserved, especially at the N-terminal part of the 

protein, a high number of overlapping hits could be observed in the analysis. 

Because further evidence for the probability of specific functional sites was missing further analysis 

focused on the motifs with low probability values (0.00004-0.0005). A low probability value in the 

ELM analysis describes a high stringency of the corresponding motif sequence to be complied. The 

cut-off at a probability value of 0.0005 was selected since a known functional site, the furin cleavage 

site, which was detected for all of the HPV types shows a probability value of 0.0005. Therefore this 

value was suggested to be stringent enough for a reliable prediction based on the ELM data. Though, 

a lower probability value is not directly linked to an undependable prediction but rather describes 

functional sites with less stringent rules to be complied.  

By analyzing the ELM results based on the stringency of the motifs, some motifs did stand out of the 

high number of potential functional sites. The ELM revealed a phosphotyrosin binding (PTB) domain 

(probability value 0.0001) which is known to act as an adapter or scaffold in several physiological 

process. These domains are known to be ligand binding sites for ligand activated growth factors, 

amongst other proteins and have been strongly associated with endocytic signaling pathways. 

Between two and four corresponding motifs were described in the L2 sequence of each HPV type 

with similar position within L2. In all of the 20 types analyzed the PTB domain was found around 

position aa 154-161 and aa 248-255. Additional PTB domains were found in differing localizations of 

the L2 protein sequence. Another motif which might be involved in several signal pathways and a 

probability value of 0.0002 was the Src homology (SH2) domain. For example adaptor proteins, 

involved in signal transduction of the receptor tyrosine kinase pathway are known to contain SH2 

domains. The SH2 domain was found at position aa 71-74 in the L2 sequence of each type analyzed by 

ELM.  
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Table 15: Examples of potential functional sites of L2 derived from ELM analysis 

Motif Description Pattern 
Probabilit
y Value 

HPV types 

Furin 
cleavage site1 

Recognition site for furin 
protein convertase 

R.[RK]R.* 0.0005 all 

NLS1 
Classical nuclear 
localization signal. 

[^DE]((K[RK])|(RK)) 
[KRP][KR][^DE] * 

0.0002 

HPV 6, 16, 18, 
25, 31, 35, 39, 
45, 51, 53, 59, 
66, 68, 73, 82 

Proprotein 
convertase 7 
cleavage site 

Recognition site for 
proprotein convertase 7 

[R]...[KR]R. * 0.0005 

HPV 6, 11, 16, 
25, 33, 35, 51, 
52, 53, 56, 58, 
66 and 82 

TRFH binding 
motif 

Found in proteins recruited 
to the shelterin complex 
which recognizes telomere 
regions at the 
chromosomes 

[FY].L.P* 0.0002 all 

EVH1 domain 

Protein-protein interaction 
module. EVH1 containing 
proteins are known to be 
associated with the actin 
cytoskeleton reorganization 

[FILVY].{0,1}P.[PAILSK]P* 0.0001 

HPV 6, 11, 16, 
18, 31, 33, 51, 
52, 53, 56, 58, 
59, 66, 73 and 
82 

PDZ domain 

Found in regulatory 
proteins, spending part of 
their time in membrane 
associated complexes. In 
combination with other 
signaling/regulatory 
domains involved in 
processes like transport and 
signal transduction  

...[VLIFY].[ACVILF]$ * 0.0001 

HPV 6, 11, 16, 
18, 31, 33, 35, 
39, 45, 52, 53, 
56, 58, 66 

Fucosylation 
site 

Attachment site for fucose 
residue to a serine. 

C.{3,5}([ST])C  0.00004 all  

  1 
previously published functional sites within the HPV L2 protein sequence 

*Nomenclature see table 116 

However, the high number of potentially functional sites predicted by ELM and the lack of additional 

selection criteria prevented a significant selection of the most promising potential domains. 

Therefore, the ELM results were checked in context of previously identified interaction candidates 

from paragraph 5.1 to predict potential binding sites of the distinct proteins. For description of amino 

acid sequences ELM uses the nomenclature for peptide motifs described in the publication of 

Aasland and colleagues from 2002 [122]. 
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Table 16: Nomenclature of ELM peptide motif description 

Symbol Description 

[capital letters]  Distinct amino acids allowed 
. Unknown, other or any amino acid 
[^..] Listed amino acids are not allowed  
[… ] Amino acid at this position can be any of the indicated amino acids 
{ min, max } Minimum required, maximum allowed amino acids 
$ Matches the carboxy terminal 

(...) 
1. mark positions of, e.g. the amino acid covalently modified 
2. Used to group parts of the expression 

|  Matches either expression, separates two patterns 

Identification of potential ligand binding site of IRS4 

Literature research revealed an IRS-type PTB domain described in the sequence of the IRS4. IRS-type 

PTB domains are known to play a role in the interaction of IRS proteins and the IRS-receptor. The 

ELM describes a potential ligand binding site for proteins containing a Shc-like or an IRS-like PTB 

domain. According to the description, this domain complies one of two possible sequence patterns 

which are either (.[^P].NP.(Y)) or (.[ILVMFY].N..(Y)). The ELM analysis of L2 revealed corresponding 

sites within L2 sequences of different HPV types (Table 17). In the sequence of HPV16 L2, the 

described ligand binding site for IRS4 was identified at three different positions (aa 251-257, aa 261-

267 and aa 360-366). Since IRS4 was previously identified in the TAP for the HPV16 full length and 

the HPV16 L2_Fr.3 (aa 262-473), the result of the ELM is in concordance with the TAP result. The 

ligand binding sites at position aa 261-267 and aa 360-366 are both included in the sequence of 

HPV16 L2_Fr3. However, the third potential domain (aa 251-257) was part of HPV16 L2_Fr.2 which 

did not reveal IRS4 as a potential interaction candidate, maybe due to unfavorable conformation or 

modification of HPV16 L2_Fr.2 in the TAP. Comparing the different HPV L2 sequences for the 

identification of the predicted IRS4 binding site, 12 out of 20 sequences showed one of the ELM 

described patterns.  

Nine out of the 13 high risk HPV types (HPV16, 31, 33, 35, 39, 45, 51, 59 and 66) were observed to 

harbor at least one potential IRS4 binding domain. Furthermore, potential binding sites were 

identified in the low risk HPV types (HPV 6 and 11) and in one of the potential high risk types 

(HPV82). Seven of these HPV types showed a potential IRS4 binding site around position 246-252 and 

251-257 (HPV6, 11, 16, 31, 35, 45 and 59), matching the same ELM pattern ((.[^P].NP.(Y))). The 

corresponding L2 domains were observed to be highly conserved, differing in a single amino acid 

located either at position two or six of the identified pattern. Additionally, for HPV 16 (aa 261-267), 

HPV 33 and HPV 39 an IRS4 binding site was predicted at a more C-terminal position around amino 

acid 350. In all three cases, the protein sequence complied with the ELM pattern (.[ILVMFY].N..(Y)). 
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The sequence of HPV16 (aa 360-366) and HPV39 (aa 355-361) were found to be highly similar 

whereas the HPV33 sequence (aa 337-343) showed strong differences.  

Table 17: Overview of predicted IRS4 ligand sites in the different HPV L2 protein sequences 

HPV type Sequence Position Pattern Probability 

HPV 6 TYDNPVY aa 248-254  (.[^P].NP.(Y))* 0.0001 
HPV11 TYDNPVY aa 247-253 (.[^P].NP.(Y))* 0.0001 

HPV16 
TYDNPAY 
DVDNTLY 
SINNGLY 

aa 251-257 
aa 261-267 
aa 360-366 

(.[^P].NP.(Y))* 

(.[ILVMFY].N..(Y))* 

(.[ILVMFY].N..(Y))* 

0.0001 
0.0001 
0.0001 

HPV18 - not identified  - - 
HPV25 - not identified - - 
HPV31 TYENPAY aa 246-252 (.[^P].NP.(Y))* 0.0001 
HPV33 TVPNEQY aa 337-343  (.[ILVMFY].N..(Y))* 0.0001 
HPV35 TYDNPAY aa 250-256 (.[^P].NP.(Y))* 0.0001 
HPV39 DVDNNTY aa 355-361  (.[ILVMFY].N..(Y))* 0.0001 
HPV45 TFDNPAY aa 250-256 (.[^P].NP.(Y))* 0.0001 
HPV51 NIENPLY aa 157-163  (.[^P].NP.(Y))* 0.0001 
HPV52 - not identified - - 
HPV53 - not identified - - 
HPV56 - not identified - - 
HPV58 - not identified - - 
HPV59 TYDNPAY aa 249-255  (.[^P].NP.(Y))* 0.0001 
HPV66 TITNPLY aa 156-162 (.[^P].NP.(Y))* 0.0001 
HPV68 - not identified - - 
HPV73 - not identified - - 
HPV82 NIENPLY aa 157-163 (.[^P].NP.(Y))* 0.0001 
*Nomenclature see table 16 

Identification of potential ligand binding site of YWHAZ 

YWHAZ belongs to the family of 14-3-3 proteins, interacting with one of three patterns described by 

ELM (mode I binding motif, mode II binding motif or mode III binding motif). The three motifs are 

rather similar and differ only slightly with decreasing stringency from mode I (probability value: 

0.008) to mode III (probability value: 0.0039) (Table 18). Thus, a mode I motif is more stringent than 

mode II or mode III. The ELM analysis of HPV16 L2 identified three potential 14-3-3 ligand sites, 

which were either mode II or mode III. One of the domains was found at the N-terminus of HPV16 L2 

(aa 90-96). This domain confirmed the identification of YWHAZ in the TAP (5.1.1) with HPV16 L2 full 

length and HPV16 L2_Fr.1 (aa 1-193). The other ligand binding sites were located at aa 248-253 

(mode III) and aa 315-321 (mode II). The corresponding positions match HPV16 L2_Fr.2 (aa 130-334) 

and HPV16 L2_Fr.3 (aa 262-473) of the TAP experiment, not revealing YWHAZ as a potential 

interaction candidate. Beside HPV16 L2, the L2 sequences of HPV 31, 33, 35, 52 and 58 were found to 

have a mode II ligand binding site at aa 89-95 (HPV 33, 35 and 52) or aa 90-96 (HPV 31).  
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Table 18: Overview of predicted YWHAZ ligand sites in the different HPV L2 protein sequences 

HPV type Sequence Position Pattern Probability 

HPV 6 
HTTTSI 3 

RLITYD 3 
aa 149-154 
aa 245-250 

[RHK][STALV].([ST]).[PESRDIF]* 0.0039 

HPV11 
RLVTYD 3 

HSVTQS 3 
aa 244-249  
aa 361-366 

[RHK][STALV].([ST]).[PESRDIF] * 0.0039 

HPV16 

RPPLTVD 2 

RSGKSIG 2 

 
KLITYD 3 

aa 90-96  
aa 315-321 

 
aa 248-253 

 
R..[^P]([ST])[IVLM]. * 

 
[RHK][STALV].([ST]).[PESRDIF] * 

 
0.0016 

 
0.0039 

HPV18 

RKRASVT 2 

 
RSGTQI 3 

RSTTSF 3 

aa 9-15 
 

aa 308-313  
aa 364-369 

R..[^P]([ST])[IVLM]. * 
 
 

[RHK][STALV].([ST]).[PESRDIF] * 

0.0016 
 

0.0039 

HPV25 

RQSSTP 1 

 
RDLSSIN 2 

 
RVETTR 3 

aa 244-249 
 

aa 365-371 
 

aa 451-456 

R.[^P]([ST])[^P]P* 
 

R..[^P]([ST])[IVLM]. * 
 

[RHK][STALV].([ST]).[PESRDIF] * 

0.0008 
 

0.0016 
 

0.0039 

HPV31 
RPPVSID 2 

RSGATIG 2 
aa 90-96 

aa 308-314 
R..[^P]([ST])[IVLM]. * 0.0016 

HPV33 

RPPVTVD 2 

 
KLITYD 3 

HSYSTF 3 

aa 89-95 
 

aa 248-253 
aa 379-384 

R..[^P]([ST])[IVLM]. * 
 
 

[RHK][STALV].([ST]).[PESRDIF] * 

0.0016 
 
 

0.0039 

HPV35 
RPPVTVE 2 

 
KLITYD 3 

aa 89-95 
 

aa 247-252    

R..[^P]([ST])[IVLM]. * 
 

[RHK][STALV].([ST]).[PESRDIF] * 

0.0016 
 

0.0039 
HPV39 not identified - - - 
HPV45 KSFTYP 3 aa 366-371   [RHK][STALV].([ST]).[PESRDIF] * 0.0039 

HPV51 
RKRASVT 2 

 
RLYSKS 3 

aa 9-15 
 

aa 226-231 

R..[^P]([ST])[IVLM]. * 
 

[RHK][STALV].([ST]).[PESRDIF] * 

0.0016 
 

0.0039 
HPV52 RPPVTVE 2 aa 89-95 R..[^P]([ST])[IVLM]. * 0.0016 
HPV53 not identified  - - - 
HPV56 not identified  - - - 

HPV58 

RPPVTVD 2 

 
RLVTYD 3 

HSHTSF 3 

aa 89-95 
 

aa 248-253  
aa 381-386 

R..[^P]([ST])[IVLM]. * 
 
 

[RHK][STALV].([ST]).[PESRDIF] * 

0.0016 
 
 

0.0039 
HPV59 not identified  - - - 
HPV66 not identified  - - - 
HPV68 RSHISVP 2 aa 375-381 R..[^P]([ST])[IVLM]. * 0.0016 
HPV73 RLVTYD 3 aa 253-258 [RHK][STALV].([ST]).[PESRDIF] * 0.0039 
HPV82 RKRASVT 2 aa 9-15 R..[^P]([ST])[IVLM]. * 0.0016 
*Nomenclature see table 16 
1 

mode I binding motif 
2 

mode II binding motif 
3 

mode III binding motif 
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All of the predicted YWHAZ ligand binding sites were highly similar, differing only in one of the 

variable amino acid positions. Furthermore, YWHAZ was identified in the PPD using the HPV16 L2 

peptides aa 20-38 and aa 28-42 (5.1.6, Table 3). Though, the ELM did not determine a potential 14-3-

3 interaction site at corresponding positions in the L2 sequence. However, each of the peptides 

contains a pattern similar to the ELM described 14-3-3 ligand binding site. In case of the aa 20-38 

peptide, the pattern at aa 4-10 (KQAGTCP) is comparable to a mode III 14-3-3 motif 

([RHK][STALV].([ST]).[PESRDIF]), except the additional glutamine at position 5. The peptide aa 28-42, 

harbors a pattern at position aa 9-15 (VEGKTIA) similar to a mode II pattern (R..[^P]([ST])[IVLM].). In 

this pattern, the arginine at position 9 was replaced by a valine. However, ELM did not provide any 

information if addition of an amino acid at position 2 of the pattern or a replacement by a 

hydrophobic amino acid is able to inhibit binding of 14-3-3 completely.  

Comparing all of the tested L2 sequences, 15 out of 20 L2 sequences showed at least one of the 

described patterns. Four of the high risk HPV types (HPV 39, 56, 59 and 66) and one potentially high 

risk type (HPV 53) did not harbor a domain matching the 14-3-3 ligand binding site.  

Identification of potential ligand binding site of CSE1L, CAPN2 and CAND1 

An additional potential interaction candidate of HPV16 L2, identified in paragraph 5.1 was found to 

be the CSE1L. However, no binding motif has been described for CSE1L, yet. In contrast, literature 

research about the CAPN2 showed the presence of an EF-hand domain within the CAPN2 protein 

sequence contributing to protein-protein interactions. Additionally, HEAT repeats, representing 

important domains for protein interaction in the CAND1 protein are described in the literature. 

However the ELM analysis did not reveal any sites, potentially interacting with either of the 

described motif in CAPN2 or CAND1 within the L2 protein sequences tested. This might be due to the 

limitations of the ELM program, therefore not revealing any evidence about potential interactions of 

these proteins with L2.   
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5. Discussion 

5.1. Identification and selection of  HPV16 L2 interaction candidates 

Tandem Affinity Purification 

The tandem affinity purification is a two-step purification method which is supposed to result in 

specific co-purification of interacting candidates by reducing the number of contaminants. However, 

for identification of HPV16 L2 interaction candidates this method bears also some disadvantages. 

Since this method is based on the overexpression of the target protein in the cells, the protein is 

mainly limited to the nucleus and the cytosol of expressing cells. In this regard, L2 is only able to 

interact with a selection and not all of the proteins involved in viral infection. Compared to the 

capsid-incorporated L2, exposing only a limited number of epitopes [29-32], most interaction sites of 

the TAP fusion protein are supposed to be available for potential protein interaction. The availability 

of a high number of L2 epitopes makes the TAP method a promising system for the identification of 

potential interaction candidates involved in different steps of the viral infection pathway and life 

cycle.  

Additional experiments were conducted with the aim to incorporate the Tap-tagged version of L2 

into PsV bypassing the disadvantages of the TAP method. PsV produced with the TAP-tagged L2 were 

observed to be less efficient in transduction of infected cells, however showed a similar infectivity as 

L1-only PsV (data not shown). Incorporation of the L2-TAP, though, was confirmed to be successful, 

showing a comparable amount of L2-TAP and non-tagged L2 in the different PsV productions (data 

not shown). Further investigations on the L2-TAP PsV confirmed the PsV to be able to bind to the 

target cells but fail to be internalized (data not shown). Internalization was almost completely 

abolished and demonstrated to be much less efficient than L1 only PsV internalization. Infectious 

particles could only be generated by the production of chimeric PsV containing non-tagged and TAP-

tagged L2 molecules whereas increasing amounts of non-tagged L2 correlated with increased 

transduction efficiency (data not shown). Fusion of L2 to the TAP tag might interfere with proper 

conformation of L2-TAP within the capsid. Little is known about the structure of L2 in general [43] 

and in context of viral capsids.  

 

 

 



Discussion 

 

106 
 

Immunoprecipitation of L2 from PsV infected cells 

As described in the previous paragraph, infectious L2-TAP containing PsV could not be produced. In 

respect to overcome the disadvantages of the TAP method, IP of L2 was therefore performed from 

PsV infected cells using L2-specific antibodies. In contrast to the TAP method, based on the 

overexpression of the bait protein, PsV infection mimics the natural infection pathway, allowing co-

purification of proteins directly involved in the infection process. Even though this method 

overcomes the limitations of L2 localization as described for the TAP method also the IP from 

infected cells bears some limitations. The viral capsid is predominately based on the assembly of L1 

capsomers, representing the main structure [4]. L2, on the contrary, is finally incorporated and with 

around 12-36 molecules represents only a minor proportion of the capsid [27]. Only a limited 

number of L2 proteins enter the target cells via the PsV strongly reducing the availability of protein 

for precipitation. Furthermore, by incorporation of L2 into the viral capsid not all potentially 

functional sites of L2 are exposed for protein interaction, since L2 is mainly hidden within the L1 

composed capsid. Several L2 epitopes, however, have been reported to be exposed even in the 

assembled HPV capsid [29-32]. The infection with PsV mimics the natural infection pathway of HPV, 

therefore allowing identification of interaction partners involved in different steps at different time 

points of HPV infection. Selection of a specific time point for IP represents another limiting factor for 

the identification of partners. Since at a specific time point only a distinct set of proteins can be 

identified and proteins interacting at earlier or later time points postinfection will be omitted due to 

the experimental set up.  

Selection of suitable antibodies for IP of L2 from PsV infected cells 

The limited availability of L2 epitopes made it indispensable to select for antibodies suitable for IP of 

PsV from infected cell extracts. Three L2-specific antibodies as well as two L1-directed antibodies 

were analyzed for their ability to precipitate L1/L2 from PsV infected cells. The two L1 antibodies 

confirmed precipitation of internalized PSV at all time points tested. PsV are entering the cell over a 

long period of time, indicated by constant increase of precipitated L1 signal intensity from 5-8h 

postinfection (Figure 4). Therefore, PsV-IP confirmed previous publications of papillomavirus entry 

kinetics, describing the half time of particle entry to be between 4-12h [94, 123, 124]. However, 

further analysis of the entry kinetics by Schelhaas and colleagues reported a dependence of entry 

kinetics on MOI used for infection [93]. While the half time of particles entering the cells using a low 

MOI was observed to be around 11h, the entry process gets faster with increasing the MOI (~4h). The 

data presented by Schelhaas et al. showed a constant increase of internalized PsV (MOI 10) until 8-9h 

postinfection before the detection by flow cytometry showed 100% internalization. This data 

correlates with the analyses of the performed PsV-IP. The specificity of the selected antibodies for 
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PsV-IP was confirmed by the negative controls. Progressing internalization to other compartments 

might lead to inaccessibility of PsV for precipitation by the applied IP protocol. The drop of L1 

detection after 9h was probably caused by inefficient lysis of PsV containing compartments with the 

standard IP protocol.  

The target regions of the L2 specific antibodies (K1L2 aa 64-81, K4L2 aa 20-38 and K18L2 aa 20-38) 

have previously been reported to be exposed at the surface of HPV capsid [29-31] therefore 

suggested to be available for IP of assembled HPV16 PsV. The results of the IP confirmed the 

availability of the corresponding L2 epitopes (aa 20-38 and aa 64-81) in the assembled PsV capsid by 

precipitation with K1L2 aa 64-81 and K4L2 aa 20-38. The epitopes are exposed even before the initial 

binding to HSPGs and the associated conformational changes confirmed by the precipitation of PsV 

only. However, precipitation targeting the epitope aa 20-38 was demonstrated to be restricted 

depending on the antibody used for the IP. While K4L2 aa 20-38 successfully precipitated L2, K18L2 

aa 20-38 failed to purify PsV from the infected cells as well as from the PsV only. This indicates that 

inefficient L2 precipitation was rather due to modifications of the epitope than the exposure of the 

corresponding epitope. For K18L2 aa 20-38 binding, two cysteines within the corresponding epitope 

are essential for antibody binding [30]. Maybe these essential cysteines are modified somehow 

therefore preventing interaction with K18L2 aa 20-38. Although modification might be a possible 

explanation, also the structure of the PsV might be a limiting factor. In improperly assembled capsids, 

the L2 protein might be incorporated in an unnatural conformation, preventing interaction of K18L2 

aa 20-38. However to make a final conclusion, the status of the corresponding cysteines and PsV 

assembly maybe inhibiting the IP of PsV by K18L2 aa 20-38 still need to be examined further.  

Peptide pull down (PPD) of potential epitope interacting candidates from cell extracts 

Rubio and colleagues identified several L2 epitopes targeted by neutralizing and cross-neutralizing 

antibodies (aa 20-38, aa 28-42 and aa 64-81) [30]. Since binding of these antibodies to the epitopes 

prevents infection in a PV-type specific or even type-independent manner, the epitopes are 

suggested to play an essential role during viral infection which is blocked by antibody binding. 

Potentially the epitopes are interaction sites for cellular proteins involved in internalization or 

trafficking of the virus necessary for the establishment of viral infection. As well as the other 

methods conducted for the identification of interaction partners, the PPD harbors several 

restrictions. Since only small epitopes are used for the identification of binding proteins, the co-

purification is limited to a small set of cellular proteins potentially purified by this method. The 

limitation might probably be an advantage as well by identification of proteins at a restricted 

epitope, thus leading to a simultaneous identification of the corresponding interaction domain. 

However, it has not been shown that these epitopes are the actual target site of a protein interaction 
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inhibited by the neutralizing antibodies. It could also be possible that binding of the neutralizing 

antibody blocks interaction of a cellular protein close to the antibody site by covering only part of the 

interaction domain or by conformational terms. Therefore, proteins binding only part of the epitopes 

or even only close to these epitopes might not be identified due to the reduced number of available 

amino acids.  

Shortlisting of potential interaction candidates of HPV16 L2 for further analysis 

Since exclusion of generally known contaminants, like keratins and IgG, did not lead to a sufficient 

reduction of protein hits, additional criteria were necessary to select for the most promising 

interaction candidates. As an example, proteins were excluded based on the identification in non-

overlapping fragments/peptides (TAP or PPD) or with HPV unrelated antibodies (PsV-IP). Not all of 

these criteria necessarily imply the excluded proteins to be unspecific protein hits, however were 

conducted for more stringent shortlisting of candidates. The exclusion of proteins from non-

overlapping HPV16 L2 fragments, as an example, did not provide direct evidence to the contrary 

about the general existence of a specific protein interaction. Even though the existence of more than 

one protein interaction site might be rather unlikely, it cannot be excluded per se. This is also true, 

considering other criteria, like the elimination of protein hits appearing in a single screen within the 

same experimental set up. Even after selection based on the described criteria, a high number of 

potential candidates remained, thus proteins identified in more than one independent experiment 

were favored.  
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5.2. HPV16 L2 interaction with CSE1L/CAS protein  

Identification of CSE1L (2 peptides) with two overlapping fragments in the TAP was confirmed by 

PsV-IP (1 peptide). Even though, identification of a single peptide (PsV-IP) is not a valid evidence for 

identification of proteins by MS, since a general agreement requires at least two independent 

peptides to be identified, repeated identification in three independent screens supported as true 

interaction candidate.  

CSE1L is also known as exportin-2 or chromosome segregation-1 (yeast homolog) like protein. It was 

first reported as essential factor for importin α re-export to the cytoplasm after cargo release [125].  

However, further investigation revealed additional functions in gene regulation by interaction with 

e.g. p53 [126] and CSE1L is supposed to play a role in apoptosis and proliferation [127, 128]. 

Additionally, CSE1L plays a role in viral infection e.g. in context of HIV [129]. Takeda et al. claimed 

CSE1L to have an essential role in nuclear import of the HIV Vpr protein. Even though there was no 

direct interaction of Vpr and CSE1L, CSE1L has been demonstrated to be important for the NPI-1 

(importin α isotype) mediated nuclear transport of the protein [129]. It is known that HPV L2 protein 

contain two NLS sequences which might be involved in nuclear transport of the protein via importin 

α theoretically bridging HPV L2 with the CSE1L. The obtained data (Co-IP) on the interaction of CSE1L 

with HPV16 L2 validated interaction of the two proteins either directly or in a complex with importin 

α. Furthermore, the interaction with CSE1L in a importin α/importin β complex seems rather likely 

since for HPV11 and BPV1 L2 interaction with the importin complex has been reported already [58, 

130]. There are several hypothesis on the mechanism of nuclear import, with some publications 

claiming nuclear envelope breakdown to be crucial for nuclear transport of the L2/viral DNA complex 

[119]. However, there are still many open questions on the nuclear transition of the L2/viral genome 

complex. Even though the described L2 NLS might not have a specific function during viral infection, 

the sequences might still be essential for establishment of a persistent infection or generation of new 

virions. A function of CSE1L in context of the importin complex might further be confirmed by the 

identification of importin 5 (note: also referred to as importin subunit β-3, member of the importin β 

family) in the TAP MS (HPV16 L2 full length). Importin was excluded for further analysis, however, 

based on the limited number of identified peptides. Members of the importin β family can either act 

to transport cargo proteins alone or in a heterodimeric complex with importin α subunits [131-133]. 

Maybe HPV16 L2 interaction with the heterodimeric importin complex leads to temporary 

interaction of CSE1L which be sufficient for co-purification of CSE1L with L2. This would indicate 

either direct interaction of L2 and CSE1L inducing release of the L2 from the importin complex or an 

indirect interaction of CSE1L with L2 via the interaction with importin α. After overexpression of 

CSE1L together with HPV16 L2, CSE1L shifted from an exclusive nuclear localization to an increased 
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cytoplasmic localization. This might indicate an increased transport through the nuclear envelope, 

thus an increase of importin α re-export to the cytoplasm. Maybe this is due to the overexpression of 

L2 and the involved high abundance of L2 to be transported. Also the co-localization of CSE1L with L2 

mainly at the nuclear periphery and the lack of co-localization in the cytoplasm might support the 

hypothesis that CSE1L is involved in the transport of L2 to the nucleus. Transient interaction of the 

two proteins might for example induce the cargo release after passing the nuclear membrane. The 

role of CSE1L in HPV16 infection was additionally confirmed by a decreased transduction level of 

HPV16 PsV after downregulation of CSE1L. The impaired transduction might in this case not rely on 

reduced internalization or trafficking through endosome or TGN of the PsV but maybe due to 

improper release of the L2/DNA complex from the importin complex with the nucleus.  

5.3. HPV16 L2 interaction with 14-3-3 zeta (YWHAZ) 

YWHAZ was confirmed as potential interaction candidate by MS analysis of five independent 

experiments: the TAP analysis (HPV16 L2 full length → 1 peptide and HPV16 L2_Fr.1 → 2 peptides) as 

well as the PPD MS (HEK 293TT: aa 20-38 and aa 28-42 → both 2 peptides, HaCaT: aa 28-42 → 1 

peptide). Even though in two samples the number of identified peptides did not fulfill general 

criteria, the repeated identification in several independent experiments indicated, YWHAZ is a true 

interaction partner of L2. 

YWHAZ belongs to the 14-3-3 protein family representing the 14-3-3 zeta isoform (note: the 

phosphorylated from of 14-3-3 zeta is referred to as 14-3-3 delta). Proteins of this family represent 

adaptor proteins involved in a variety of signaling pathways, like apoptosis and cell cycle regulation 

[134, 135]. 14-3-3 proteins interact with a wide range of cellular proteins, including kinases, 

phosphatases and transmembrane receptors. Interaction of 14-3-3 proteins, with a specific protein, 

usually regulates the activity of the bound protein. The two major functions of YWHAZ have been 

described to be regulation of cell survival and cell cycle progression. In context of cell survival, 

YWHAZ has been reported to interact with a large number of apoptotic proteins [135, 136]. In 

addition, it is supposed to negatively regulate the G2-M phase checkpoint by modification of cyclin-

dependent kinase activity [137-139]. In this context, 14-3-3 proteins and especially YWHAZ interact 

with phosphorylated regulators of the cell cycle, e.g. CDC25-B and C [137]. These phosphatases 

control G2-M transition by phosphorylation cyclin dependent kinases (CDK) [140]. Interaction of 

YWHAZ, CDC25-C prevents dephosphorylation of CDKs therefore impairing the assembly of e.g. the 

CDK1-cyclinB complex [140]. Additionally, YWHAZ is found in the cytoplasm where it has the ability 

to prevent nuclear import of NLS containing proteins [141] but also in the nucleus where it is 

expected to influence gene expression by regulating distinct transcription factors (e.g. p53) [142]. 

Several interactions with viral proteins have been reported e.g. with NS2 of MVM parvovirus and 
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HPV18 E6 [143, 144]. In context of HPV18 E6 interaction, YWHAZ is supposed to maintain the steady-

state level of E6 expression [143]. In addition to an interaction of YWHAZ and L2 (IP), co-localization 

was demonstrated in the nuclei of overexpressing cells which was induced by a shift of the 

cytoplasmic YWHAZ to the nucleus. According to several publications, 14-3-3 proteins also contribute 

to the nuclear export of proteins as well as their retention in the cytoplasm [145-147]. Additionally, it 

has been demonstrated that 14-3-3 proteins regulate nuclear entry of cellular proteins [141, 148, 

149]. In this regard it has been reported that 14-3-3 proteins mediate nuclear translocation by 

promoting the interaction of NLS containing proteins with importin α [149].  The efficiency of nuclear 

translocation strongly depends on the interaction affinity of the cargo protein to importin α [150], 

making the target sequence recognition a limiting factor [151]. Modifications of several proteins as 

the SV40 LT by phosphorylation have been demonstrated to increase the interaction with importin 

α/importin β complexes [152]. The deletion of the corresponding sites led to significantly lower 

translocation efficiency due to impaired recognition of the SV40 LT NLS sequence by the importin α 

[153]. Proteomic analyses suggested importin α to interact with 14-3-3 proteins [154], even though 

14-3-3 proteins do not harbor an intrinsic NLS sequence. Further investigation demonstrated that the 

cellular proteins e.g. myopodin, binding both, 14-3-3 and importin α, mediating the interaction of the 

14-3-3/myopodin/importin α complex [149]. The authors hypothesized that binding of myopodin to 

14-3-3 might affect the conformation of myopodin, exposing the NLS and therefore making it 

available for binding to importin α [149]. Since the co-localization studies on YWHAZ and HPV16 L2 

revealed an increase in nuclear localized YWHAZ, a function of YWHAZ in L2 nuclear translocation 

might be possible. The partial co-localization of the nuclear YWHAZ and L2 might therefore indicate 

the dissociation of the complex after successful import. Furthermore, the reduced transduction 

efficiency after YWHAZ knockdown indicates a beneficial effect of YWHAZ during the infection 

process, maybe in the translocation process of the L2/DNA complex to the nucleus. However, a 

different function of the interaction of YWHAZ and L2 might also be conceivable. In this regard L2 

might impair a specific function of YWHAZ or recruit YWHAZ to modify the activity of cellular proteins 

by the interaction. Binding of 14-3-3 proteins with their interaction partners is mainly based on the 

recognition of phosphoserines and phosphothreonins [155, 156]. In HPV16 L2, three motifs, comply 

with the recognition criteria for 14-3-3 binding were identified of which the N-terminal binding motif 

(~90-96) was found to be conserved in several other types (HPV 31, 33, 35, 52 and 58). 
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5.4. HPV16 L2 interaction with insulin receptor substrate 4 (IRS4)  

The insulin receptor substrate 4 was identified only by MS in TAP-tag purification, though the protein 

showed up in three independent approaches (both screens with HPV16 L2 full length and the screen 

eith HPV16 L2_Fr.3). In two of the three samples the protein was identified by 4 independent 

peptides, indicating a high likelihood for reliable identification. The third sample also provided two 

independent peptides complying general criteria for MS based protein identification.  

IRS4 belongs to the family of insulin receptor substrates, consisting of IRS1, IRS2 and IRS4 in human 

cells. IRS3 is described to be expressed only in rodents and lacks a human equivalent. The human 

family members of IRS proteins represent a family of proteins strongly connected to signal 

transduction from activated growth factors. IRS members are phosphorylated upon receptor 

stimulation of e.g. the insulin receptor, IGF1R and FGFR [157]. After phosphorylation, IRS proteins 

bind to SH2 domain containing proteins, inducing a signal cascade, regulating cell metabolism and 

proliferation in several human cell lines [157-159]. Beside proliferation, interaction of IRS4 with 

distinct proteins, e.g. Brk was reported to have an influence on cell growth, survival and 

differentiation [160]. IRS4 also plays a role in the Akt signaling pathways through direct interaction 

with the p85 subunit of PI3K [157, 161]. According to the IRS4 activation by the IGF1 receptor, 

phosphorylated IRS4 has additionally been demonstrated to transduce the mitogenic signal derived 

from the activated IGF1R. Furthermore, for different viruses IRS4 was identified to function during 

infection. In this context, elevated IRS4 protein and mRNA level and activation of PI3K have been 

observed after infection with Adenovirus 5 (Ad5) [162, 163]. Interaction of IRS4 and Ad5E1A leads to 

constitutively activated IRS4 and association with PI3K. IRS4 might therefore enhance growth and 

proliferation of Ad5E1 expressing cells [163]. Additionally, a direct interaction of IRS4 and the AAV 

Rep protein was identified by TAP and validated, however the function of this interaction was not 

analyzed further [164].  It is generally known that PI3K/Akt/mTOR activation controls several cellular 

mechanisms, like metabolism growth and survival and proteins synthesis [165]. In viral infection Akt 

represents an essential factor for inhibition of apoptosis to extend the infection cycle. Therefore, 

several viruses acquired strategies to exploit Akt function to benefit in infection [166, 167]. Many 

DNA viruses so far have been reported to activate the PI3K pathway using different strategies. 

Members of the Polyomaviridae, as simian virus 40 (SV40) and mouse polyoma (Py) virus render PI3K 

and Akt constantly activated for transforming purposes [168-175]. One report described IRS1 to be 

required for SV40 transformation and claimed the large T (LT) antigen to IRS1 phosphorylation of Akt 

[176]. For HPV the activation of PI3K and Akt has primarily been described by functions of E6 and E7 

inhibiting apoptosis by activation of the Akt pathway [177-179]. However, recent publication could 

demonstrate an early activation of the PI3K/Akt/mTOR pathway in HPV infection. In this context it 



Discussion 

 

113 
 

has been demonstrated that HPV activates the PI3K/Akt/mTOR pathway via interaction of HPV 

bound to heparan sulfate (HS) and growth factors (GF) with GF receptors [62, 82]. Probably the 

interaction prevents autophagy, playing an essential role in antiviral host cell response [180]. Since 

an activation of PI3K/Akt pathway seems to play a crucial role during viral infection through direct 

activation upon HPV binding, the constant regulation of this pathway during the initial infection 

might also be important. Since the IF data on the co-localization suggests a transient interaction of 

IRS4 and L2, this might indicate an activation of IRS4 function by L2 rather than a binding associated 

function of L2 and IRS4 in a complex. However, the link between L2 predominantly localized in the 

nucleus after overexpression and cytoplasmic IRS4 is still unclear similar to publication about SV40 LT 

and IRS1 [176]. IF analysis revealed an increase in nuclear localized IRS4 when co-expressed with 

HPV16 L2, however the mechanism of this recruitment is not revealed. Interaction domains of IRS4 

have been identified at the C-terminal part of HPV16 L2 correlating with the identification in the TAP-

tag purification. This potential interaction domain was observed to be conserved in seven of the 

tested HPV types (HPV 6, 11, 16, 31, 35, 45 and 59). However, even though HPV18 was not described 

to have a corresponding site for potential IRS4 interaction, transduction experiments using HPV18 

PsV showed decreased transduction after IRS4 knockdown (data not shown). This might indicate the 

existence of an alternative interaction domain for IRS4 in HPV types lacking the described domain for 

HPV16.     

5.5. HPV16 L2 interaction with calpain 4 (CAPN4)  

Calpain 2 was identified in the MS analysis derived from the TAP co-purification using the HPV16 L2 

full length (4 peptides) as well as the HPV16 L2_Fr.1 protein (3 peptides).  

CAPN2 is a calcium-dependent non-lysosomal cysteine protease known to catalyze proteolysis of 

substrates in context of cytoskeletal reorganization and signal transduction. Calpains are involved in 

several processes, including signal transduction, cell proliferation, cell cycle progression, apoptosis 

and membrane fusion [181-183]. CAPN2 represents the catalytic subunit of m-calpain in which forms 

a heterodimer with the regulatory subunit CAPN4. Dissociation of the regulatory subunit from the 

catalytic subunit activates the proteolytic function of CAPN2 [184, 185]. In context of HPV, calpain 

has already been published to have distinct functions. In 2007 Darnell et al. described an interaction 

of HPV E7 with µ-calpain (CAPN1) to be essential for E7-mediated Rb degradation [186]. Calpain has 

also been demonstrated to be important for proteolytic processing of the E1^E4 protein of HPV16 

and HPV18 for the formation of amyloid-like fibers and reorganization of the keratin network [187]. 

Furthermore calpains were identified to enhance herpes simplex virus 1 (HSV-1) intracellular 

trafficking and coxsackie virus B3 (CVB3) entry, trafficking and replication upon infection [188-190]. 

Regarding the function of calpain during viral trafficking, it has been reported that calpains are 
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activated by intracellular calcium (Ca2+) release from the endoplasmatic reticulum (ER). The increase 

in intracellular Ca2+ concentration and calpain activation was demonstrated to facilitate infection 

with many viruses, like HIV, HSV, HCV and rotavirus [191-195]. For HSV-1, CAPN1 had been found to 

trigger entry and migration [189] whereas for CVB3 CAPN2 was found to be activated by Ca2+ release 

[190]. The confirmed interaction of CAPN2 with HPV16 L2 might correlation with a function during 

initial infection similar to other viruses. Instead of a calpain activation through increased intracellular 

Ca2+, HPV16 L2 might bind CAPN2 directing CAPN2 to the actual site of function where CAPN4 is 

displaced. The obtained data on HPV16 PsV transduction after siRNA mediated CAPN2 knockdown do 

not correlate with this hypothesis, since no effect on PsV infectivity was observed. On the one hand 

this might either indicate CAPN2 to have a different role than the expected beneficial effect on initial 

virus infection. On the other hand it might also be possible, that experimental system was not 

suitable to detect a potential influence of CAPN2 on PsV transduction. First of all, Bozym et al. 

reported cell type specific differences of the function of CAPN2 in CVB3 infection, claiming a function 

of CAPN2 in endothelial but not in epithelial cell line [190]. Other reports also revealed a low level of 

calpain expression levels in HeLa cells, compared to e.g. other cancer cell lines, including e.g. a head 

and neck squamous carcinoma cell line [196]. The identification of CAPN2 (TAP) as well as the 

validation of the interaction with L2 by Co-IP, was both performed in HEK293TT cells whereas the IF 

as well as the knockdown experiments was performed in HeLa cells. The selection of a suitable cell 

line to analyze CAPN2 in context with HPV infection and L2 interaction might be crucial. Potentially 

there are differences in CAPN2 expression and function even in cell lines derived from the same 

organ but with different properties (e.g. cancer and non-cancer cell line).  

5.6. HPV16 L2 interaction with cullin-associated and neddylation-

dissociated 1 (CAND1)  

Cullin-associated and neddylation-dissociated protein 1 (CAND1) was identified by MS analysis of the 

TAP co-purified proteins. In this experiment it was determined as potential interaction candidate in 

the HPV16 full length (3 peptides) and HPV16 L2_Fr.1 (2 peptides) TAP. Though there was no 

confirmation of a potential interaction by an additional experiment (e.g. PsV-IP or PPD), the number 

of peptides identified indicated a reliable detection of CAND1 as potential candidate.  

CAND1 is known to directly interact with cullin1 in context of the SCF complex. This complex 

comprises four proteins, Cul1 and the RING domain protein Rbx1, forming the cullin-RING ubiquitin 

ligase, the adapter protein Skp1 and the substrate-binding F-box protein [197]. SCF complexes in 

general allow the recognition of substrates for ubiquitination, the cullin-RING ligases (CRL) function 

as E3 ubiquitin ligases [198]. Neddylation of Cul1 induces rearrangement of the SCF complex, 

specifically in the Cul1-Rbx binding which dissociates CAND1 and allows transfer of ubiquitin from the 
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associated E2 ligase to the substrate [199, 200]. In vitro and in vivo data about CAND1 are 

controversial. While the in vitro analyses of CAND1 suggest an inhibitory function on SCF complex 

assembly and ligase activity, in vivo data in Arabidopsis indicates a positive effect of CAND1 on the 

SCF complex [197, 201-204]. In this context CAND1 is supposed to have a regulatory function in the 

recycling process of substrate receptor modules maintaining proper CRL function. Regarding a 

potential association with viral infection, many viral proteins are reported to act on CRLs, mainly to 

initiate degradation of distinct cellular proteins. Examples are the adenovirus E4orf6 and E1B-55 

[205] and the BZLF1 protein of EBV [206] inducing degradation of APOBEC3G (RNA-editing enzyme) 

and p53, respectively. Additionally, BPFL1, like other herpesvirus homologues of this protein has 

described to have NEDD8 specific deconjugase activity [207, 208]. Interaction of the catalytic site of 

BPLF1 with cullins prevents the binding of CAND1 and induces the proteasomal degradation of 

deneddylated cullins [209]. The inactivation of cullins is supposed to be beneficial for viral infection 

by inhibiting the innate immunity of the host [210-215] but also seems to be crucial for viral 

replication [208]. For HPV L2 proteins no protease activity has been described therefore a direct link 

between the EBV BPLF1 protein and L1 cannot be concluded. However, CAND1 is known to mediate 

the recycling of substrate receptor modules in context of the SCF complexes [198, 203, 204, 216, 

217]. Recent publication reported the CAND1 protein to exchange F-box proteins therefore having an 

essential influence on verity of different SCF complexes. Specifically the promoting function of 

CAND1 in the F-box-cullin 1 assembly was described. Furthermore CAND1 was suggested to even 

favor specific F-box proteins depending on the availability of substrates [218]. Since CAND1 was 

found to bind different cullins, it is suggested that CAND1 similarly affects multiple CRLs [204, 219-

222] and was suggested to function as substrate receptor exchange factor (SREF) for CRLs in general. 

Inhibition of CAND1 was observed to have a negative effect on some but not SCF complexes [204, 

220-222] which might be explained by the differences in the exchange rates of the different SCF 

complexes [218]. Since an interaction of HPV16 L2 with CAND1 was validated (Co-IP and IF), HPV16 

L2 might influence homeostasis of specific cellular proteins by deregulating CRLs through interaction 

with CAND1. The transduction rate of HP16 PsV was not affected by the downregulation of CAND1 

therefore indicating that interaction of HPV16 L2 and CAND1 is not involved in any process of the 

initial infection. However, the deregulation of CRLs might play a role in steps of the viral life cycle 

occurring after the actual viral entry, like the viral assembly.  
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5.7. Conclusion 

In the present study, several proteins have been identified as potential HPV16 L2 interaction partners 

by selection criteria from different MS analyses. The most promising candidates, IRS4, YWHAZ, 

CSE1L, CAPN2 and CAND1 were further validated for their binding capacity and the subcellular 

distribution in presence of HPV16 L2. In transduction experiments analyzing HPV16 PsV efficiency 

after downregulation of the corresponding candidates, the identified interactions were analyzed for 

their contribution in HPV infection. While downregulation of IRS4, YWHAZ and CSE1L inhibited PsV 

transduction, CAPN2 and CAND1 could not be demonstrated to play a role during the initial infection.  

Based on the obtained data, IRS4 is suggested to play a role in maintaining the activation of the 

PI3K/Akt/mTOR pathway which was reported to be activated upon GFR stimulation by virus 

interaction with the host cell surface [62, 82]. Based on the results in this thesis, HPV16 L2 is 

hypothesized to recruit IRS4 to the nucleus where IRS4 gets activated to further supports constant 

PI3K activation and Akt signaling. However, the mechanisms underlying this hypothesis are not 

revealed and require further investigation. YWHAZ was also observed to reduce HPV16 PsV 

infectivity in the knockdown experiments and therefore suggesting YWHAZ either contributing to 

nuclear translocation of the L2/DNA complex or being regulated by L2. For IRS4 and YWHAZ, 

conservation of potential binding motifs in several HPV types could be identified in an in silico 

approach. Results from knockdown experiment including the transduction of HPV18, lacking the 

predicted IRS4 interaction domain led to the suggestion that an alternative binding site might exist in 

HPV18 L2. In addition, knockdown of CSE1L protein expression had also an inhibitory effect on the 

transduction with HPV16 PsV. Since this protein is known to be involved in cargo release from 

importin α/importin β complexes and the re-export of importin α, CSE1L is suggested to be an 

important factor contributing to the translocation of L2 to the nucleus upon initial infection. 

Downregulation of CAPN2 and CAND1 did have any influence on HPV16 PsV transduction in the 

performed experiments. While the interaction with CAND1 is supposed to have a function in CRL 

regulation at a later time point of the viral life cycle CAPN2 is still suggested to play a role in the 

infection pathway. Even though there are strong indications of functional interactions of the 

described proteins with HPV16 L2 further investigation of the mechanisms are indispensable. A 

closer look should be taken to the single steps of viral infection, including entry, trafficking and 

nuclear localization of the HPV16 L2/DNA complex to be able to distinguish the function of the 

proteins at different steps. In case of CAND1 further analysis should be conducted regarding later 

processes of the viral life cycle like the assembly of new virions under knockout conditions. The 

disclosure of the distinct functions of the described L2 interaction partners would maybe reveal 

further insight into the function of the minor capsid protein L2 during the viral life cycle.     
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7. Appendix 

7.1. Supplementary data MS analysis 

Table 19: Overlapping protein hits from L2 full length TAP #1 and #2 

Protein 

complement component 1 Q subcomponent-binding protein, mitochondrial 
DnaJ protein homolog 2 
ruvB-like 1 [Homo sapiens] 
Chain A, Human Mitochondrial Single-Stranded Dna Binding Protein 
ruvB-like 2  
tubulin beta-4B chain 
elongation factor 1-alpha 1 
importin 5 (Importin subunit beta-3) 

 

7.2. Amino Acids 

Table 20: Amino acid one letter code 

A  Alanine 
C  Cysteine 
D  Aspartate 
E  Glutamate 
F  Phenylalanine 
G  Glycine 
H  Histidine 
I  Isoleucine 
K  Lysine 
L   Leucine 

M  Methionine 
N  Asparagine 
P  Proline 
Q  Glutamine 
R  Arginine 
S  Serine 
T  Threonine  
V  Valine 
W  Tryptophan 
Y  Tyrosine 
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7.4. Abbreviations 

A 
aa  amino acid 
AAV  Adeno-associated virus 
Ad  Adenovirus 
Akt  Protein kinase B 
al.  alteres 
APS  Ammonium persulfate 
 
B 
bp  base pairs 
BPV  Bovine papillomavirus 
BSA  Bovine serum albumin 
 
C 
⁰C  Degree Celsius 
CAND1  Cullin-associated and  

neddylation dissociated  
protein 1 

CAPN2  Calpain 2 
CBP  Calmodulin binding peptide 
CDK  cyclin-dependent kinase 
CIA  Chloroform isoamylalcohol 
CIN  Cervical intraepithelial  

neoplasia 
CIP  Calf intestinal alkaline  

phosphatase 

CMV  Cytomegalovirus 
Co-IP  Co-immunoprecipitation 
CRL  Cullin-RING ligase 
CSE1L  exportin-2 or chromosome 

segregation-1 (yeast homolog) 
like protein 

C-terminus Carboxyl-terminus 
CV  coxsackievirus 
 
D 
DAPI  4´,6´-diamidino-2-phenylindol 
DAXX  Death-associated protein 
DMEM  Dulbecco´s modified Eagles 

medium 
DMSO  Dimethyl sulfoxide 
DNA  Deoxyribonucleic acid  
dNTP  Deoxyribonucleotide 

triphosphate 
ds   Double stranded 
DTT  Dithiothreitol 
 
E 
E6  Human papillomavirus early 

protein 6 
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E7 Human papillomavirus early 
protein 7 

EBV  Epstein-Barr virus 
ECL  Enhanced luminescence 
ECM  Extracellular matrix 
E.coli  Escherichia coli 
EDTA  Ethylen-di-amino-tetra-

acetate 
e.g.   Example given 

EGF Epidermal growth factor 
ELISA  Enzyme-linked  

immunosorbent assay 
ER   Endoplasmatic reticulum 
EtOH  Ethanol 
 
F 
FCS  Fetal calf serum 
fwd.  Forward 
 
G 
GAMPO goat anti mouse peroxidase 
GARPO  goat anti rabbit peroxidase 
GF  Growth factor 
GFR  Growth factor receptor 
GLuc  Gaussia luciferase 
GPCF  Genomic & Proteomics Core 

Facility 
 
H 
h  Hours 
HCV  Hepatitis C virus 
HEK  Human embryonic kidney cells 
HeLa  Henrietta Lack´s cells 
HEPES  4-(2-hydroxyethylen)-1-

piperazineethanesulfonic acid 
HIV  Human immunodeficiency 

virus 
HPV  Human papillomavirus 
HRP  Horseradish peroxidase 
HSPG  Heparan sulfate proteoglycan 
HSV  Herpes simplex virus 
 
I 
Ig   Immunglobulin 
IgG  Immunglobulin G 
IGF1  Insulin-like growth factor 1 
IP  Immunoprecipitation 
IRS4  Insulin receptor substrate 4 
 
K 
kb  Kilo base pair 
kDa  Kilo Dalton 

kV  Kilo Volt 
 
L 
l  Liter 
L1 Human papillomavirus major 

capsid protein 
L2  Human papillomavirus minor 

capsid protein 
LB   Luria Broth 
 
M 
M  Molar 
mA  milli Ampère 
MeOH  Methanol 
µg  Microgram 
µl  Microliter 
µM   Micromolar 
µm  Micrometer 
min  minutes 
ml  Milliliter 
mM   Millimolar 
MOI  Multiplicity of infection 
mRNA  Messenger RNA 
MS  Mass-spectrometry 
mTOR  mammalian target of 

rapamycin complex 1 
MVM  Parvovirus minute virus of 

mice 
 
N 
NAc  Sodium acetate  
NES  Nuclear export signal 
NLS  Nuclear localization signal 
nM  Nanomolar 
NPC  Nuclear pore complex 
NS2  MVM nonstructural protein 
nt  Nucleotide 
N-termi nus Amino-terminus 
 
O 
OD  Optical density 
ORF  Open reading frame 
Ori  Origin of replication 
 
P 
PAGE  Polyacrylamid gel 

electrophoresis 
PBS  Phosphate buffered saline 
PBS-T  Phosphate buffered saline-

tween 
PCR  Polymerase chain reaction 
PFA  Paraformaldehyd 
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PI3K  Phosphatidylinositol-4,5-
bisphosphate 3-kinase 

P/S  Penicillin/Streptavidine 
PsV  Pseudovirion 
PV   Papillomavirus  
 
R 
Rb  Retinoblastoma protein 
rev.  Reverse 
RNA  Ribonucleic acid 
rpm   Revolutions per minute 
RT  Room temperature 
 
 
 
S 
SCF  Skp, cullin, F-box containing 

complex 
SDS  Sodium dodecyl sulfate 
sec   Second 
siRNA  Short interference RNA 
shRNA  Short hairpin RNA 
snt  Supernatant 
SPOP  Speckle-type POZ protein 
SREF  Substrate receptor exchange 

factor 
ss  Single stranded 
SV40   Simian virus 40 
SV40 LT  Simian virus 40 large T-antigen 
 
T 
TAE  Tris-acetate-EDTA buffer 
TAP  Tandem affinity purification 
TE  Tris-EDTA buffer 
TEMED  N,N,N´,N´-tetra-

methylethylendiamin 
TEV  Tobacco etch virus 
TGN  Trans-Golgi network 
TGS  Tris-glycin-SDS buffer 
Tris  Tris(hydroxymethyl)-

aminomethan 
 
U 
U  International units for enzyme 

activity  
UV   Ultra violet 
 
V 
Vif  HIV-1 virion infectivity factor 
Vpr  HIV viral protein R 
VLP  Virus-like particle 
v/v   Volume per volume 
 

W 
w/v  Weight per volume 
 
Y 
YWHAZ  14-3-3 zeta 
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