
INAUGURAL-DISSERTATION

ZUR ERLANGUNG DER DOKTORWÜRDE DER

NATURWISSENSCHAFTLICH-MATHEMATISCHEN GESAMTFAKULTÄT DER

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

VORGELEGT VON

Diplom-Mathematiker Stefan Wiesberg
aus Heilbronn am Neckar

TAG DER MÜNDLICHEN PRÜFUNG

LINK PATTERNS
IN COMPLEX NETWORKS

BETREUER:

Prof. Dr. Gerhard Reinelt

Prof. Dr. Dres. h. c. Hans Georg Bock

.

ZUSAMMENFASSUNG

Um komplexe Netzwerke dem menschlichen Betrachter zugänglich zu machen, definieren Netz-
werktheoretiker den Begriff des Musters auf vielfältige Weise. Gebräuchliche Definitionen beruhen
auf der Aufteilung der Netzwerkknoten in Gruppen. Diese Aufteilung geschieht in einer Weise,
die Muster in den Verbindungen innerhalb und zwischen den Gruppen erkennen lässt. Bekannte
Beispiele hierfür sind Cluster- und Blockmodell-Ansätze.
In dieser Arbeit betrachten wie die Mustersuche als diskretes mathematisches Optimierungsprob-
lem. Von diesem Standpunkt aus entwickeln wir eine neue mathematische Klassifizierung für
Cluster- und Blockmodell-Verfahren, welche beide Gebiete vereinigt und bisher unabhängig er-
brachte Komplexitätsbeweise zusammenführt. Die Klassifizierung wird außerdem dazu verwen-
det, mathematische Programme für die Mustersuche zu entwickeln und neue Linearisierungsme-
thoden für die enthaltenen Polynomfunktionen zu diskutieren.
Wir wenden unsere Erkenntnisse auf ein neu formuliertes Mustersuch-Problem an. Trotz seiner
einfachen kombinatorischen Struktur können wir bereits seine NP-Schwere nachweisen. Tatsäch-
lich erweist es sich als Verallgemeinerung verschiedener bekannter Probleme, wie dem Traveling-
Salesman- und dem Quadratic-Assignment-Problem. Unser abgeleitetes exaktes Mustersuch-
Verfahren ist bis zu 10.000-mal schneller als vergleichbare Verfahren aus der Literatur. Zur
Demonstration seiner Praktikabilität wenden wir das Verfahren schließlich auf das Welthandels-
netzwerk der Vereinten Nationen an und zeigen, dass das Netzwerk um weniger als 0,14% von
den von uns entdeckten Mustern abweicht.

iii

.

ABSTRACT

Network theorists define patterns in complex networks in various ways to make them accessible to
human beholders. Prominent definitions are thereby based on the partition of the network’s nodes
into groups such that underlying patterns in the link structure become apparent. Clustering and
blockmodeling are two well-known approaches of this kind.
In this thesis, we treat pattern search problems as discrete mathematical optimization problems.
From this viewpoint, we develop a new mathematical classification of clustering and blockmod-
eling approaches, which unifies these two fields and replaces several NP-hardness proofs by a
single one. We furthermore use this classification to develop integer mathematical programming
formulations for pattern search problems and discuss new linearization techniques for polynomial
functions therein. We apply these results to a model for a new pattern search problem. Even
though it is the most basic problem in combinatorial terms, we can prove its NP-hardness. In
fact, we show that it is a generalization of well-known problems including the Traveling Sales-
man and the Quadratic Assignment Problem. Our derived exact pattern search procedure is up to
10,000 times faster than comparable methods from the literature. To demonstrate its practicability,
we finally apply the procedure to the world trade network from the United Nations’ data base and
show that the network deviates by less than 0.14% from the patterns we found.

v

.

ACKNOWLEDGEMENTS / DANKSAGUNG

Diese Arbeit konnte aufgrund der Hilfe zahlreicher Personen verfasst werden, denen ich im Einzel-
nen danken möchte. Zuerst bedanke ich mich bei meinen Betreuern Professor Gerhard Reinelt und
Professor Hans Georg Bock für die Möglichkeit, eine Dissertation an der Fakultät für Mathematik
und Informatik der Universität Heidelberg verfassen zu können, sowie für die regelmäßigen Be-
ratungen. Meinen Kollegen Thorsten Bonato, Nam Ngyu˜̂en und Katarina Gavrić verdanke ich
sowohl eine angenehme Arbeitsatmosphäre als auch viele interessante wissenschaftliche Diskus-
sionen während der seltenen Pausen. Catherine Proux-Wieland danke ich für ihre hervorragende
Unterstützung bei allen organisatorischen und bürokratischen Aufgaben, die mir einige zusätzliche
Zeit für die Forschung gewährte. Mein besonderer Dank gilt auch Dr. Marcus Oswald und Dr.
Hanna Seitz, die mich sowohl direkt als auch durch ihre vorbildliche Art dazu motiviert haben,
mich tiefergehend mit Kombinatorischer Optimierung zu beschäftigen und ein Promotionsstudium
zu beginnen. Darüberhinaus danke ich Professorin Katharina Anna Zweig und Professor Johannes
Glückler für spannende Projekte und unterstützende Diskussionen zum Thema Netzwerkanalyse.
Professorin Elena Fernández, Professor Gábor Galambos und Dr. Miklós Krész bin ich für den
Austausch während mehrwöchiger wissenschaftlicher Aufenthalte in Barcelona und Szegedin
dankbar. Von Herzen aber danke ich Angela Jäschke und meiner Familie, die zu allen Zeiten
den bestmöglichen Ausgleich zur Arbeit zu schaffen wussten.

vii

Link Patterns in Complex Networks

1 Patterns of Link Quantity and Link Existence 1
1.1 Patterns of Link Quantity . 1

1.1.1 Motivation . 1
1.1.2 Feasibility of Blockmodels . 3
1.1.3 Penalties on Blockmodels . 5

1.2 Patterns of Link Existence . 6
1.3 Generalized Graph Types . 7
1.4 Scientific Applications . 9

2 A Classification of Quality Functions 13
2.1 Ideal Blockmodels . 14

2.1.1 The Subgraph Definition . 14
2.1.2 The Node Pair Definition . 15
2.1.3 The Single Node Definition . 16
2.1.4 Variants of Ideality . 16

2.2 Deviations from Ideality . 17
2.2.1 Reasons for Relaxations . 17
2.2.2 General Relaxation . 17
2.2.3 Partition Number Relaxations . 18
2.2.4 Single Node and Node Pair Relaxations 18
2.2.5 Subgraph Relaxations . 20

2.3 The Space of Ideal Blockmodels . 24
2.3.1 Order-Theoretic Lattices . 25

2.4 Computational Complexity of Quality Optimization 26
2.4.1 Sensitive Objective Functions . 26
2.4.2 NP-Hardness Proofs . 28

3 Variables in Integer Programs for Pattern Search Problems 31
3.1 Vertex Assignment Variables x . 31

3.1.1 Constraints on Group Sizes and Numbers of Groups 32
3.1.2 Symmetry Breaking Constraints . 32

3.2 Edge Assignment Variables y . 34
3.2.1 Group Size and Symmetry Breaking Constraints 36
3.2.2 Strengthening the Formulation . 36
3.2.3 Combining x and y Variables . 38

3.3 Equivalence Relation Variables s, Vertex Subset Variables w 39
3.4 Minimum Blockmodel Errors by Polynomial Linearization 41

3.4.1 Linearization of Error Defining Polynomials 41
3.4.2 Bounding the Error From Below . 43
3.4.3 Bounding the Error From Above . 46

4 Branch-and-Cut Algorithms for a Pattern Search Problem 51
4.1 The Optimization Problem . 51

4.1.1 Hypothesis Test . 52
4.1.2 NP-Hardness and Relation to Combinatorial Problems 53
4.1.3 Integer Quadratic Programming Formulations 55

4.2 Computational Setting and Test Instances . 57
4.3 Separation of Cutting Planes . 58

4.3.1 Error Defining Constraints . 59
4.3.2 Cycle Inequalities . 61

4.4 Primal Heuristics . 62
4.5 Dual Heuristics . 65

4.5.1 Decomposition into Overlapping Subgraphs 66
4.5.2 Solution of the Subproblems . 68
4.5.3 Determination of the Subproblems . 69
4.5.4 Computational Tests . 70

4.6 Computational Results . 71
4.6.1 Overall Performance of the Solver . 72
4.6.2 Hardness Dependence on Input Data . 73

5 Link Patterns in the World Trade Network 81
5.1 Data and Goals . 81
5.2 Analysis of the World Trade Network . 83

5.2.1 A Single Arc Type Approach . 84
5.2.2 A Multiple Arc Type Approach . 89

5.3 Classification of Trade Networks . 93

6 Discussion and Future Research 99
6.1 Classification of Approaches . 99
6.2 Algorithmic Improvements . 100
6.3 World Trade Analysis . 101

Appendices 103

Index 115

Bibliography 119

Chapter 1

PATTERNS OF LINK QUANTITY AND LINK EXISTENCE

This chapter gives a short survey on clustering and blockmodeling approaches. In contrast to sur-
veys in literature, the network analytical approaches are classified by their underlying optimization
problems, instead of their field of application, methodological affiliation, or historical order of in-
vention. The survey hence aims to reflect the different mathematical ways to model the problem
of finding link patterns in a given network. Especially, clustering approaches are introduced as
special cases of blockmodeling approaches, even though the first are treated separately in existing
surveys for historical reasons. We present a mathematical notation and framework to express all
existing approaches as mathematical optimization problems.

1.1 PATTERNS OF LINK QUANTITY

1.1.1 Motivation

The structure of large networks is usually not comprehensible to the human beholder, especially
if the network has not been designed by a human architect, but rather evolved over time in a
complex (natural) process. Examples for such networks are social, chemical, economic trading,
psychological, anthropological, or political networks. Nevertheless, researchers in the above men-
tioned fields use the network to gain insight into the underlying processes. A first step is often the
reduction of the network’s complexity with the help of algorithms.
A common approach is to reduce the high number of nodes in the network. This can be achieved
by a grouping of nodes. The goal of the grouping which is discussed in this chapter is the following
one. Group the nodes in a way such that for each pair of groups, there are either very many or very
few links between the groups. In other words, search for a pattern of link density in the network.
Once such a pattern has been found, the network’s complexity has been reduced in the following
way. One can now shrink the groups to single nodes and connect two such nodes by an edge if
the corresponding groups were densely connected prior to the shrinking. Figure 1.1 (left, center)
gives an example of such a partition . A graph G = (V,E) is randomly drawn on the left side.
In the center, a partition of V into 4 groups VA, VB, VC, VD, indicated by 4 different colors can
be seen, such that a density pattern becomes appearent. Densely connected are the group pairs

1

2 PATTERNS OF LINK QUANTITY AND LINK EXISTENCE

AB,BD,DD,CD,CA, sparsely connected are AA,BB,CC,AD,BC. Note that we use a merely in-
tuitive definition of density here for motivational reasons; strict mathematical definitions will be
introduced shortly. The shrunken graph, called image graph, is depicted on the right-hand side.
In this section, we assume that our network is given as an undirected graph G = (V,E) and that
the groups are non-overlapping. More general cases, in which there are weights (on the arcs or on
group pairs), multiple arc types, or overlapping groups are treated in Section 1.3.
We now formalize the notion of density pattern. Furthermore, we introduce functions which
measure the quality of groupings with respect to patterns. We then formalize the optimizational
goal to find the best possible density pattern for a given network.

Density Pattern. For a given network, one is hence interested in a partition P of the nodes
together with a density pattern. Given P, the pattern specifies for each pair of groups whether they
are interpreted to be densly or sparsly connected. A pattern is usually notated as a binary square
matrix I, where the dimension is the number of node groups. An entry IAB is 1 if groups VA and
VB are interpreted to be densly connected, and 0 if they are interpreted to be sparsely connected.
The matrix I is usually called image matrix. It is symmetrical as the network graph is undirected.
The graph whose adjacency matrix is the image matrix is called image graph. Figure 1.1 (right)
shows the image graph to the density pattern described on the previous page. Note that the image
graph can be seen as a simplification of the network structure: There is an edge in the image graph
whereever there are many edges in the original network, and no edge whereever there are only few
edges.

Blockmodels. The pair (P, I) of a partition P and its interpretation, an image matrix I of ap-
propriate dimension, is called a blockmodel. There are several ways to quantify the quality of a
blockmodel for a given network. We will introduce them in Chapter 2. The underlying idea is
usually that the quality is high if the dense (resp. sparse) parts – according to the image matrix –
are actually very dense (resp. sparse), with respect to some density measure for the graph.

Optimization Problem. The specification of a quality function for blockmodels directly leads
to a combinatorial optimization problem: Given a network and a quality function for blockmodels,
find a feasible blockmodel with the highest quality.

A

C

B

D

A B

C D

Figure 1.1: Example of a density pattern.

1.1 PATTERNS OF LINK QUANTITY 3

This problem can be formalized in the following way. We are given a graph G = (V,E) with vertex
set V and edge set E, which represents the network to be searched for patterns. We denote by

• G the set of all undirected graphs,

• Pc(G) the set of all partitions of V with c groups,

• Ic = {0,1}c×c ∩Symc the set of all c× c binary symmetric matrices,

• Bc(G) = Pc(G)× Ic the set of all blockmodels with c groups,

• B(G) = ∪|V |
c=1Bc(G) the set of all blockmodels on G,

• B = ∪G∈GB(G) the set of all blockmodels on all graphs.

The following class of problems is parameterized by a set F ⊆ B of blockmodels, called the set of
feasible blockmodels, and a penalty function p : B → R assigning a penalty value to each block-
model.

BLOCK(F, p).
Instance: A graph G = (V,E).

Task: Minimize p over F∩B(G).

Instead of minimizing a penalty function p, one could equivalently speak of maximizing a quality
function q, say q :=−p. Throughout this thesis, we will use the notion of a penalty function, for
reasons that will become evident in Chapter 2. Besides this deterministic problem formulation,
there are also so-called stochastic approaches. The latter include models on how the network was
generated. See Nunkesser and Sawitzki [NS05] for an overview.
The definition of the Blockmodeling Problem depends on two parameters. First, the set of all
possible blockmodels is restricted to a set F of feasible ones. Second, a penalty function p needs
to be specified. In the following two sections, we survey the most frequent choices for F and p in
research practice.

1.1.2 Feasibility of Blockmodels

The definition of the Blockmodeling problem restricts the set of all possible blockmodels to a set F
of feasible ones. Even though F can be any subset of blockmodels theoretically, only a few special
cases are frequently used in practical research. We discuss them in this section.

Size and Number of Groups. Network analysts sometimes bound the size of groups a priori.
The size of a group is the number of vertices it contains. That is, a blockmodel for a graph is
only in F if the groups in its partition are within given size limits. The reason is to exclude trivial
solutions with very many small groups, as they do not increase the comprehensibility of the net-
work. The same problem occurs for partitions with one very large group. In any case, the trivial
solution in which every node forms a group on its own is often excluded from F. Otherwise, this
partition together with the image matrix I = Ad j(G) is the optimum blockmodel to many of the

4 PATTERNS OF LINK QUANTITY AND LINK EXISTENCE

penalty functions p being surveyed below. The condition that all groups should have approxi-
mately the same size can be modeled by the specification of an appropriate lower bound on the
group sizes as well. Besides the size, the number of groups is often restricted for similar reasons.
However, it is rarely bounded, but mostly fixed to a specific value c ≪ |V |.

Fixed Image Matrix. For some applications, it is useful to test whether a given fixed pattern
describes the network well. This pattern can either be a hypothesis formulated by a network
analyst or be obtained from a fast heuristic algorithm (see Brusco and Steinley [BS09]). The
solution of the Blockmodeling Problem serves the verification or falsification of the hypothetical
pattern. The fixed pattern is notated by an image matrix I′. The set F of feasible blockmodels
contains only blockmodels (P, I) with image matrix I = I′. There are two hypotheses which are
commonly tested: The core-periphery and the identity image matrix. The core-periphery matrix is
2×2 with I11 = 1 and I22 = 0. The other two matrix entries are not important and do not count; see
Chapter 4.1 for weighted image matrices. One hence searches for a partition into two groups only:
The core group and the periphery group. The first one is required to be dense, the latter one sparse
(see Borgatti and Everett [BE00]). An example is depicted in Figure 1.2a. The most important
image matrix is however the identity matrix. If it is fixed, say with size c× c, one searches for a
partition such that the groups themselves are dense, but their interconnections are sparse. This is a
well-known clustering problem with c clusters. An example is depicted in Figure 1.2b. Note that
the image matrix can only be fixed if its dimension and hence the number of groups is also fixed.
Otherwise, it is however possible to fix a family {Ik}

|V |
k=1 of image matrices; one image matrix for

each dimension. For example, the family of identity matrices can be used. That is, Ik is the k× k
identity matrix. The Blockmodeling Problem is then a clustering problem with arbitrary many
clusters.

Rounded Image Matrix. In some approaches, the penalty function p depends solely on the
partition P, but not on the image matrix I. For example, when p measures the deviation of the
inter-group densities from an average density; the larger the deviation, the lower the penalty. The
edge density between two groups A and B is the number of edges between the groups divided
by the maximum possible number of edges. The optimum image matrix can then be created a
posteriori to the solution of the Blockmodeling Problem. This is usually done by rounding the
edge densities. If the edge density between VA and VB is lower than a threshold α , then IAB is
set to 0, otherwise to 1 (α density criterion). The special cases α = 0 and α = 1 are called the
zeroblock and the oneblock criterion. In this case, the set F has the following special form: If
(P, I1) ∈ F∩B(G) and (P, I2) ∈ F∩B(G), then I1 = I2 follows.

Objective Constraints. Instead of minimizing a penalty function p, some researchers consider
the pattern search as a pure feasibility problem. That is, p is implicitly assumed to be constant,
say p ≡ 0. In return, the density and sparsity requirements for a good pattern are formulated as
constraints. The Blockmodeling Problem is then to find any blockmodel which is in F∩B(G)

and thus satisfies all constraints. The constraints could for example require perfect density (all
possible edges exist) for IAB = 1 and perfect sparsity (not a single edge exists) for IAB = 0. This

1.1 PATTERNS OF LINK QUANTITY 5

strict requirement is however often softened in practice. Alba presents an alternative for the special
case of clustering [Alb73]. Instead of allowing only perfect cliques within the groups (clusters),
also n-cliques are considered feasible. An n-clique is a sub graph with the property that the shortest
paths between all vertex pairs in the sub graph is at most n. A 1-clique is hence a clique. A 2-
clique is depicted in Figure 1.2c. For a small fixed number c of groups, F∩B(G) is less likely
to be empty for n > 1. Furthermore, Alba states that n-cliques are also more suitable to describe
friendship cliques (sociometric cliques) in social networks.

1.1.3 Penalties on Blockmodels

One parameter of the Blockmodeling Problem is a function p : B → R. It assigns each block-
model (P, I) a penalty value p(P, I). Chapter 2 gives a survey and classification of all penalty
functions used in pattern search. For this reason, we only give three basic examples in this section,
all of which are specific for patterns of link quantity: Given a partition P and an image matrix I,
they judge how well the demands of I are met by P. That is, whether there are in fact many edges
between groups VA and VB with IAB = 1, and only few edges between VA and VB with IAB = 0. The
three functions could be paraphrased with “the more edges the better”, “the denser the better”, and
“the denser than random the better”.
The following notation will be used. Let [c] := {1, . . . ,c} denote the set of groups of P. Let |VA|
for A ∈ [c] denote the number of vertices in group VA of P. Let One denote the set of group pairs
which are supposed to be densely connected according to the image matrix. The complement set
of pairs is called Zero. Furthermore, denote by m(A,B) the number of actual edges between the
groups VA and VB in P. Let M(A,B) denote the maximum possible number of edges between VA

and VB in P. That is, One := {A,B ∈ [c] | A ≤ B, IAB = 1}, Zero := {A,B ∈ [c] | A ≤ B, IAB = 0},
m(A,B) := ∑u∈A,v∈B Ad j(G)u,v, and

M(A,B) :=

{
|A| · |B| if A ̸= B,

|A| · (|A|−1)/2 otherwise.

The simplest definition of p counts the number of edges in the sparse parts, and the number of
non-edges in the dense parts. The lower this sum, the higher is the quality of the blockmodel. The
penalty p can be expressed as in Formula 1.0a. The second function computes the densities within
the blocks and compares them to the perfect densities 0 and 1. The results are again summed

a) b) c)

Figure 1.2: a) A core-periphery pattern. b) A clustering (identity pattern). c) A 2-clique.

6 PATTERNS OF LINK QUANTITY AND LINK EXISTENCE

up. This function is stated in Formula 1.0b. Girvan and Newman propose that the penalty for
a blockmodel should not only depend on the absolute densities between the groups. Instead, a
partition should be of low penalty only if it is denser than the same partition in a random graph. To
this end, it is necessary that the random graph has the same vertex set as G. Otherwise, the groups
could not be transferred. Let exp(A) denote the number of expected edges within group VA in a
random graph. Their formula 1.0c is restricted to the case where the image matrix is fixed to the
identity matrix and only the diagonal entries count (see Section 4.1 on weighted image matrices).
The number exp(A) of expected edges in VA depends on the used random graph model. Girvan
and Newman propose to consider graphs which have the same vertex degree distribution as G.
From this model they deduce the formula exp(A) = ∑u,v∈A,u̸=v deg(u)deg(v)/2|E|. They call the
value −p(P, I)/2|E| ∈ [−1,1] the modularity of the clustering. Note that in a complete graph G,
any partition P would yield a low penalty according to the first two functions pa and pb. The
modularity, however, would only yield the average value 0. This is because the same densities are
achieved if G is replaced by a random graph with the same vertex distribution, as there is only one
such graph.

pa(P, I) = ∑
(A,B)∈Zero

m(A,B)+ ∑
(A,B)∈One

(M(A,B)−m(A,B)) (1.0a)

pb(P, I) = ∑
(A,B)∈Zero

m(A,B)
M(A,B)

+ ∑
(A,B)∈One

(
1− m(A,B)

M(A,B)

)
(1.0b)

pc(P, I) = ∑
A∈[c]

(
exp(A)− m(A,A)

M(A,A)

)
(1.0c)

1.2 PATTERNS OF LINK EXISTENCE

This section treats the concept of patterns of link existence. Instead of demanding many links
between two vertex groups VA and VB, one demands that many vertices in VA have at least one link
to VB and many vertices in VB have at least one link to VA; the actual number of links is not taken
into account. Analogously, the demand for few links from VA to VB is replaced by the demand for
many vertices without any links from VA to VB.
As in the previous section, a pattern can be notated as a binary matrix, the image matrix I. The
image graph is again the graph whose adjacency matrix is I. Its interpretation differs however:
Wherever there is a link in the image graph between two groups, they are interpreted to be con-
nected (in the above sense). Otherwise, they are interpreted to be disconnected. The major combi-
natorial optimization problem is again the Blockmodeling Problem: Given a network graph, find
a feasible blockmodel which minimizes a penalty function p.

Application Example. As an example, consider a digraph D representing a trade network. The
vertices represent companies, the arcs indicate flows of goods in a given period of time. In the
case that the image graph of the optimal blockmodel is a path graph, we can conclude that the
trading market has the structure of a production chain (see Figure 1.3). Group VA may in this

1.3 GENERALIZED GRAPH TYPES 7

case consist of the companies producing raw materials, group VB consists of resellers, group VC

produces intermediate products out of the raw materials, and so on. Note that in this scenario, it
is not necessary that every raw material producer sells to every reselling company. In fact, there
might be only very few links between VA and VB. Important for the partition is only the fact that
every raw material producer sells to at least one reselling company.

Feasibility of Blockmodels. All of the feasibility constraints discussed in Section 1.1.2 can
be applied to patterns of link existence as well. However, literature exploits only a few of these
possibilities so far. In common practice, the rounding of the image matrix is rarely used. Image
matrix fixation is used [BS09], but there is no distinguished interest in the identity or the core-
periphery matrix. Concerning objective constraints, only the extreme case, but no relaxations are
used: If IAB = 1, then all vertices in VA must have at least one link to VB and vice versa. If IAB = 0,
no vertex in VA can have a link to VB and vice versa.

Penalties on Blockmodels. Penalty functions for general blockmodels are surveyed in Chap-
ter 2. The most prominent example for patterns of link existence is introduced by Batagelj et
al. [BDF92]. Their function p is equivalent to counting the number of incorrect vertices for each
group pair (VA,VB) with A ≤ B: A vertex a ∈VA is correct if it has a link to VB in case that IAB = 1
or it has no link to B in case that IAB = 0.

1.3 GENERALIZED GRAPH TYPES

We introduced the notions of patterns of link density and existence for undirected, simple graphs
only. In this section, we show how the notions are generalized for other graph types. To our
knowledge, there are four different directions of generalization:

1. Directed graphs.

2. Several types of edges in one network, which might also influence each other (multi-relation
models).

3. Several types of nodes in one network, where the arcs are restricted to connect only certain
combinations of node types (multi-way models).

A CB D

A BA C D

... ...

Figure 1.3: A good blockmodel (P, I) for a trading network. Left: P. Right: Image graph to I.

8 PATTERNS OF LINK QUANTITY AND LINK EXISTENCE

4. G is a hypergraph, i. e., an edge does not connect 2, but n vertices to each other (multi-mode
models).

Weighted networks, in which some links are stronger than others, sometimes occur in applica-
tions (see Section 1.4), but are usually reduced to the unweighted case: Either the weights are
ignored [LBJE03] or all values below a threshold a set to zero; the remaining ones to one [Nor07].

Directed Graphs. Directed graphs represent networks with a directed link relation, such as
“sends messages to” or “is chemically transformed into”. A generalization of the pattern notions
for undirected graphs is straightforward. Consider two vertex groups VA and VB. In a pattern of
link density, either many or few arcs exist from VA to VB. In a pattern of link existence, many
vertices in VA have an arc to VB. Note that the image matrix is not necessarily symmetric. That is,
there can be many arcs from VA to VB, but only few arcs from VB to VA.

Multi-Relation Models. In a multi-relation model graph G = (V,E1, . . . ,Ek), there are several
independent edge sets Ei. Each set represents a different kind of relation such as “is a friend of”,
“is a colleague of”, “gives orders to”, “is an enemy of”, etc.
There are two ways of transferring the link pattern notions from the single-relation model. The
first one is obvious: A partition of the vertices V is considered to form a pattern if it forms a pattern
for every single relation E1, . . . ,Ek. The second way is the multiplex equivalence approach: For
each vertex pair (u,v), all edges from u to v are merged to a single edge. This edge gets a label
uniquely representing the combination of the edge types that have been merged. The resulting
graph is called the multiplex graph MPX(G) of G. Now the first way is applicable, if the different
labels are interpreted as different kinds of edges F1, . . . ,Fh.
For an algebraic study on concatenations of relations, such as “is an enemy of a friend”, see
Lerner [Ler05] or Chapter 11 in Wasserman and Faust [WF94].

Multi-Mode and Multi-Way Models. The concepts of multi-way and multi-mode models are
strongly related to each other and quite common in the analysis of data bases. In an m-mode
model, G = (V,E) is a hypergraph, which means that the adjacency matrix Ad j(G) of G is not a
mapping from V ×V to {0,1}, but from V m to {0,1}. That is, every arc connects m vertices at the
same time; the matrix Ad j(G) is m-dimensional.
In practice, most multi-mode are also multi-way models. That is, E is a subset of V1 ×·· ·×Vm,
where for each two sets Vi and Vj holds that either Vi =Vj or Vi ∩Vj = {}. For example, V1 could
be a set of crime types, V2 a set of cities, V3 a set of years, and an arc (v1,v2,v3) exists if a crime
of type v1 happened in city v2 in year v3. If V1, . . . ,Vm consists of at most w disjoint sets, we say
that the model is an m-mode w-way model. The crime example is a 3-mode 3-way model. A
model that considers if person v1 met person v2 on day v3 is a 3-mode 2-way model. Clearly, the
definition of w is dependent of the given adjacency matrix, as otherwise Vi and Vj could always
both be replaced by Vi ∪Vj, decreasing w by 1.
Borgatti and Everett [BE92] extend the pattern notions to multi-mode and multi-way models,
which we express here in a more elementary way and only for unweighted adjacency matrices.
Instead of densly connected group pairs, we need to speak of densly connected tuples of groups.

1.4 SCIENTIFIC APPLICATIONS 9

In a pattern of link density, for each tuple T := (V ′
1, . . . ,V

′
m) of groups, many edges (v1, . . . ,vm) are

demanded to exist in case that the group connection is dense. In the example, crimes in the same
group mostly happen in the same cities in the same years. In a pattern of link existence, many
nodes v ∈ V ′

i are part of an edge (v1, . . . ,vi−1,v,vi+1, . . . ,vm), for all i = 1, . . . ,m. In the example,
many crimes in one group happen in cities in the same group and in years in the same group.

1.4 SCIENTIFIC APPLICATIONS

Link patterns are used mostly to simplify the structure of complex networks. As we have seen, the
image graph can be seen as a simplification of the network graph. This simplification loses only
a small amount of information about the link structure in the following sense: The interpretation
of an edge AB in the image graph as “All possible edges between VA and VB exist.” is almost true,
since most of the edges actually exist. A second application of link patterns is the classification of
networks by their image graphs. In Chapter 5, we will classify trading networks by searching for
a small number of image graphs, such that all network graphs correspond to one of these image
graphs.

Besides the link pattern, the groups themselves can reveal information about the structure of the
network. This is, in fact, the main purpose of clustering, where the image matrix is fixed to the
identity matrix. For example, a clustering of the friends of one person leads to groups that can
often be labeled with “colleagues”, “relatives”, “friends from school”, and so on. The members
of one group mostly know each other, whereas only few of them know members of other groups.
We give an overview on applications where the link pattern, not the groups themselves, reveals
information about the network. We start with three examples for patterns of link density.

Example (World Trade). In an international trade network, vertices represent states. Two
vertices u and v are connected by an arc uv if trade goods are delivered from state u to v within a
given period of time. Weights on the arcs represent the amount of trading goods. The search for
patterns of link density groups states with almost identical trade partners and makes the network
thus more comprehensible. Reichardt and White [RW07] examine the United Nations Commodity
Trade network for the year 2000, containing trading goods of 55 different kinds. They partition the
vertices into 2 to 9 groups, respectively. They conclude that the resulting groups allow for a real-
world interpretation, as they can be easily labeled with terms such as “Central Europe”, “Middle
and South America”, and “Eastern Europe and Northern Africa”. The resulting density pattern for
5 groups is depicted in Figure 1.4 (bold arrows for strong trade, dashed arrows for limited trade).

Example (International Conflicts). In an international conflict network, the vertices represent
again states. The edges are weighted, where the weights represent the amount of affinity between
the two states. Obviously, there is no unique definition of affinity. Practically, it is computed
from several viewpoints and sources, such as whether the states are allies, to which extent they
trade with each other, and if are members in joint intergovernmental organizations. The search for
patterns of link density can verify or falsify common hypotheses about the formation of conflicts

10 PATTERNS OF LINK QUANTITY AND LINK EXISTENCE

between states. Maoz et al. [MKTT06] examine several such hypotheses, such as “The more
similiar the affinities of two states u and v to other states are, the lower is the conflict potential
between u and v.” To test this hypothesis, they combine 5 data sources. All conflicts between
politically relevant states in the years 1816 to 2001 are considered. Through an indirect search for
link density patterns, they find that the hypothesis above is consistently confirmed by their data.

Example (Technology Patents). In a patent network, the vertices represent products. There is
an arc (u,v) if the production of product v requires the use of a technology that has been patented
for product u. The network can thus be interpreted to represent the flow of technological ideas.
Weng et al. [WCHC10] examine a network of patents on methods in the insurance business. To
create this network, they use a database of the United States Patent and Trademark Office. By
searching for patterns of link density, they find the 4-group pattern depicted in Figure 1.4. They
find the real-world interpretation that the patent transfer market has a so-called core-periphery
structure. The technologies located in the core group VA have a better opportunity to become a
dominant design. In contrast, the technologies in the periphery groups VB,VC and VD are depen-
dent on the technological progress in group VA.

The following three application examples consider patterns of link existence.

Example (Food Chain). In a food web, the vertices represent organisms such as animals or
plants. An arc (u,v) indicates that organism u consumes organism v. The computation of pat-
terns of link existence can group the organisms into so-called trophic roles, e.g. the notions of
“occupying a niche” or “being a top-predator”. Luczkovic et al. [LBJE03] compute patterns on a
graph representing the Florida Seagrass Ecosystem. They find 10 groups of animals which allow
a real-world interpretation: The “benthic producers”, the “planktonic producers”, the “planktonic
consumers”, and so on. The pattern explains the structure of the food web, leading to insights such
as “All fish and invertebrates eat at least one benthic and at least one planktonic producer”, and
many more.

Example (World Trade). In a world trade network graph, the vertices represent countries.
An arc (u,v) indicates a flow of commodities from country u to v; its weight gives the value of

A

BCD

E
A: Central Europe

B: East. Euro., North. Afr.

C: Afr., Poly., Mid. East

D: North Am., Jap., SE Asia

E: Mid. & South Am. A

BCD

Figure 1.4: Left: Pattern of link density for world trade. Right: Pattern of link density of technol-
ogy patents in insurance business.

1.4 SCIENTIFIC APPLICATIONS 11

D

A

B

C

E

a

b

c

c

b

c

a

b

d

d

e

e

e

d

d

e

customers products

Figure 1.5: Left: A customer-product graph. Center: A partition of the vertices. Right: The
pattern of the partition in the center.

the commodities within a given year. Patterns of link existence reveal the strategic positions of
countries. It has been argued by Wallerstein that the world trade system does not have a core-
periphery, but a core-semiperiphery-periphery structure. Smith and White [SW92] confirm this
theory by a computation of link existence patterns. Using data on the world commodity trade
flows from the years 1965–1980, semiperipheries are detected. The vertex groups have real-world
interpretations. For example, they find that a new group is formed in the year 1980, which can be
labeled “Fourth World group of very poor African countries”.

Example (Customers and Products). A customer-product network graph consists of two kinds
of vertices: The customers and the products. An edge cp connects a customer c and a product p if
the former bought the latter within a given period of time. The graph is hence bipartite. Accord-
ing to Borgatti and Everett [BE92], the market analysts are interested in two questions: Which
products compete with each other and which types of customers there are. The search for patterns
of link existence can contribute to an answer. At the same time, groups of customers and groups
of products are computed. Customers in the same group buy products from the same groups of
products. Vice versa, products in the same group are the ones being bought by the customers of
the same groups. Without using a priori information about the customers (“Young men with high
income”, “elder workers not interested in sports”), the pattern search allows for an a posteriori
interpretation, which is hence not restricted by uncertain pre-assumptions. Figure 1.5 (left) shows
an example network. The center shows a partition of the customer vertices in groups a,b,c as well
as a partition of the product vertices in groups d and e. If the vertices are partitioned in this way, a
pattern of link existence is created. It is visualized on the right side. It shows that customers in VA

buy only products in VD, customers in VC buy only products in VE , whereas customers in VB buy
both kinds of products.

Chapter 2

A CLASSIFICATION OF QUALITY FUNCTIONS

The Blockmodeling Problem (Page 3) is a family of problems parameterized by a set F of feasible
blockmodels and a penalty function p : B → R to measure the quality of blockmodels; the lower
the value, the higher the quality.

BLOCK(F, p).
Instance: A graph G = (V,E).
Task: Minimize p over F∩B(G).

Recall that a blockmodel consists of a partition P of the vertex set and its interpretation: a pattern
given as a binary matrix I. Literature contains a large variety of penalty functions, which are often
not explicitly stated as such.

In this chapter, we present a new classification for penalty functions. It shows that the design of p
and F go hand in hand in the following process: At the beginning, the set F contains only so-
called ideal blockmodels; a notion to be defined in Section 2.1. The set of all ideal blockmodels is
thereby restricted by the techniques explained in the first chapter (excluding trivial blockmodels,
fixing image matrices, etc.). In the next step, this set is widened to contain also non-ideal block-
models. The penalty function p is then designed to measure the deviation of each blockmodel in
the enlarged set to the ideal ones. This process is explained in detail in Section 2.2.

The new classification has three benefits. First, it is a common theory for the search for clusters,
link density, and link existence patterns, which are usually treated separately. Second, the NP-
hardness of the different realizations of the Blockmodeling Problem is a direct consequence of the
classification. Several separate NP-hardness proofs in literature can now be replaced by a single
one (Section 2.4). Third, it serves as a basis for a methodological discussion of which penalty
function is most suitable under which circumstances.

13

14 A CLASSIFICATION OF QUALITY FUNCTIONS

2.1 IDEAL BLOCKMODELS

In this section, we define ideal blockmodels of link density and existence. In an ideal block-
model (P, I) for link density, all links exist in the dense parts and no links exist in the sparse ones.
In an ideal blockmodel for link existence, either all or no vertices in VA have a neighbor in VB and
vice versa, for all group pairs (VA,VB).
We now formalize the notion of ideal partitions. There are three equivalent graph theoretical
definitions of ideal partitions: The subgraph, the node pair, and the single node definition. They
will be presented in the next three subsections.

2.1.1 The Subgraph Definition

In an ideal blockmodel for density patterns, certain subgraphs are required to be either complete
(all edges exist) or empty (no edge exists). These subgraphs can be formally defined as follows.
Given a partition P, there is one such subgraph GP,A,B for every pair (VA,VB) of groups. It is
obtained from G by deleting all vertices but the ones in VA or VB and deleting all edges but those
connecting an vertex in VA to a vertex in VB. GP,A,B is hence bipartite for A ̸= B. A similar
observation can be made for ideal link existence blockmodels: That all vertices in VA have at least
one neighbor in VB, and vice versa, is equivalent to the statement that GP,A,B contains no isolated
vertices.

Definition 1. Given a graph G, a partition P of its vertex set V into c groups is an

(i) ideal structural c-partition, if for all pairs A,B ∈ [c], the graph GP,A,B is either empty or a
complete (complete bipartite for A ̸= B) graph.

(ii) ideal regular c-partition, if for all pairs A,B ∈ [c], the graph GP,A,B is either empty or
contains no isolated vertices.

From this definition, it is obvious that Property (i) implies (ii). That is, every ideal structural c-
partition is an ideal regular c-partition. Structural and regular partitions are extensively studied by
Lorrain and White [LW71] in the form of equivalence relations (two vertices in the same group

 (i) (ii) (iii)

Figure 2.1: Ideal clique (i), structural (ii), and regular (iii) 3-partitions. In (ii) and (iii), the corre-
sponding image graph is depicted.

2.1 IDEAL BLOCKMODELS 15

are considered to be equivalent to each other), who motivate them by their sociological meaning
in social networks.
The ideality definition can be easily transferred from partitions to blockmodels. An ideal block-
model (P, I) consists of an ideal partition P and an image matrix I which reflects its obvious density
or connectivity pattern:

Definition 2. A blockmodel (P, I) consisting of a c-partition P and a c × c binary matrix I is
called ideal structural (resp. ideal regular) blockmodel if P is an ideal structural (resp. ideal reg-
ular) c-partition and IAB = 0 if and only if GP,A,B is empty. We denote by BS

ideal(c,G) (resp.
BR

ideal(c,G)) the set of all ideal structural (resp. regular) blockmodels with c groups on G. We
write BX

ideal(c,G) in statements which hold for both structural and regular blockmodels. With

BX
ideal(G) = ∪|V |

c=1BX
ideal(c,G) we denote the set of all ideal structural (resp. regular) blockmodels.

2.1.2 The Node Pair Definition

We have seen that ideal partitions can be defined by subgraph characterizations. Equivalently, they
can be defined by properties of same-grouped vertices. In a structural c-partition, two vertices in
the same group have exactly the same neighboring vertices in G. In a regular c-partition, two
vertices in the same group have exactly the same groups in their neighborhoods. Formally, let
N(u) denote the set of vertices that are adjacent to vertex u. Recall that P(u) denotes the group of
vertex u in the partition P. The following definition is equivalent to Definition 1 above.

Definition 3. Given a graph G, a partition P of its vertex set V into c groups is an

(i) ideal structural c-partition, if N(u)\{v}= N(v)\{u} for all u,v ∈V with P(u) = P(v).

(ii) ideal regular c-partition, if {P(w) | w ∈ V,uw ∈ E} = {P(w) | w ∈ V,vw ∈ E} for all
u,v ∈V with P(u) = P(v).

Proposition 1. Definition 1 and Definition 3 are equivalent.

Proof. (i) Consider a partition P which satisfies Definition 1(i). Consider two distinct vertices
u,v ∈ V in the same group VA with A := P(u). Consider B ∈ [c] such that GP,A,B is empty. Then
both u and v do not have any neighbor in VB. Now consider B ∈ [c] such that GP,A,B is complete.
Then u and v are both neighbors to all vertices in VB. All in all, u and v have the same neighbors:
N(u)\{v}=N(v)\{u}. The partition P hence satisfies Definition 3(i). Now consider a partition P
satisfying Definition 3(i). Consider A,B ∈ [c] with vertices a1, . . . ,a|A| and b1, . . . ,b|B| respectively.
In case that a1 does not have a link to VB, no other vertex in VA has a link to VB, as the ai have the
same neighbors pairwisely. In this case, GP,A,B is empty. In case that a1 has a link to VB, say to b1,
all ai have a link to b1. As b1 is hence linked to all ai and all bi have the same neighbors, all bi are
linked to all ai. The graph GP,A,B is hence complete. All in all, P satisfies Definition 1(i).
(ii) Consider a partition P which satisfies Definition 1(ii). Consider two distinct vertices u,v ∈ V
in the same group VA with A := P(u). Consider B ∈ [c] such that GP,A,B is empty. Then both u
and v do not have any neighbor in VB. Now consider B ∈ [c] such that GP,A,B contains no isolated
vertices. Then u and v have both links to VB, as they would be isolated otherwise. All in all, u and
v have the same neighbor groups. The partition P hence satisfies Definition 3(ii). Now consider a

16 A CLASSIFICATION OF QUALITY FUNCTIONS

partition P satisfying Definition 3(ii). Consider A,B ∈ [c] with vertices a1, . . . ,a|A| and b1, . . . ,b|B|
respectively. In case that a1 does not have a link to VB, no other vertex in VA has a link to VB, as
the ai have the same neighbor groups pairwisely. In this case, GP,A,B is empty. In case that a1 has
a link to VB, say to b1, all ai have a link to VB. Hence, no vertex in VA is isolated. Similarily, no
vertex in VB is isolated. The graph GP,A,B is hence without isolated vertices. All in all, P satisfies
Definition 1(ii).

2.1.3 The Single Node Definition

A definition from the perspective of single vertex is only possible with respect to a fixed image
matrix I. In this case, the following single node definition is compatible with the two definitions
above:

Definition 4. Given a graph G and a c× c image matrix I, a partition P of its vertex set V into c
groups is an

(i) an ideal structural c-partition w. r. t. I, if for all u ∈V and all C ∈ [c]: u is adjacent to all
v ∈V with P(v) =C if IP(u)C = 1, and to no v ∈V with P(v) =C if IP(u)C = 0.

(ii) an ideal regular c-partition w. r. t. I, if for all u ∈ V and all C ∈ [c]: u is adjacent to at
least one v ∈V with P(v) =C if IP(u)C = 1, and to no v ∈V with P(v) =C if IP(u)C = 0.

It is obvious that this definition is compatible to the subgraph definition. We thus omit the proof
of the following proposition.

Proposition 2. P is an ideal structural (resp. regular) c-partition w.r.t. I according to Definition 4
if and only if it is an ideal structural (resp. regular) c-partition with image matrix I according to
Definition 1.

2.1.4 Variants of Ideality

Patterns of link existence demand that many vertices in group VA have links to group VB in the case
that the connection between A and B is “dense”. We have formalized this notion by the concept
of ideal regular partitions. There, every vertex in VA is demanded to have at least one link to VB.
Several alternatives have been proposed in literature. We mention them briefly, as they are rarely
used in network analysis practice.

Exact Regular Partitions. Ideal exact regular partitions demand that all vertices in VA have
exactly the same number of neighbors in VB. This number may however differ for each group
pair (VA,VB). Partitions of this kind are also called equitable partitions. Under the latter name,
they have been well investigated in graph theory [Ler05]. Ideal regular partitions are hence a
generalization of equitable partitions.

Perfect Regular Partitions. An ideal regular partition is called perfect if all vertex pairs that
satisfy the regularity conditions are indeed in the same group. Perfect equivalence is mainly of
theoretical interest, as there seems to be no practical reason to restrict regular equivalence this
way [Ler05].

2.2 DEVIATIONS FROM IDEALITY 17

Relative Regular Partitions. Given a partition P0 on V , a refinement P of P0 is called relative
regular to P0 if {P0(w) |w∈V,uw∈E}= {P0(w) |w∈V,vw∈E} for all u,v∈V with P(u)=P(v).
That is, members of the same group in P have the same neighboring groups in P0. An application
is given in the study of interaction between friendship cliques [BE99].

2.2 DEVIATIONS FROM IDEALITY

Given a graph G and one of the two ideal partition types above, there are efficient algorithms to
compute any ideal partition (and thus ideal blockmodel) of this type. However, this is usually not
done in practice. In Section 2.2.1, we list some common reasons for this decision. In Section 2.2.2,
we show that the approaches used in practice can be interpreted as the solution of an optimization
problem on a relaxed ideality definition.

2.2.1 Reasons for Relaxations

There are several reasons why ideal blockmodels are often not directly searched for in practice.
We list four of them.

1. Non-existence of solutions. An ideal partition might only exist for a large number of groups.

2. Real-world modeling reasons. The ideal definition might be too restrictive for the applica-
tion at hand. For example, the graph theoretical definition of clique might be too strict to
describe friendship cliques in social networks, where some edges can be missing.

3. Involvement of statistics. The ideal definition does not allow the definition of statistically
profound criteria for the quality of partitions. In fact, the criteria are purely graph theoretical.

4. Robustness against measuring errors. The extraction of graphs from complex networks
can be erroneous, especially with biological or chemical networks. However, a regular
partition on a graph can turn non-regular by the deletion or addition of one single edge. The
ideal definitions are hence not useful to limit the influence of these errors on the partitions.

2.2.2 General Relaxation

In this section, we show how the penalty function p and the set F of feasible blockmodels are con-
structed hand in hand. This procedure holds for all (non-stochastic) clustering and blockmodeling
approaches which (directly or indirectly) quantify the quality of blockmodels and are reported in
the following survey books: Social Network Analysis by Wasserman and Faust [WF94], Network
Analysis by Brandes and Erlebach [BL10] (except conductance), and Community Detection in
Graphs by Fortunato [For09].

1. A set F ⊆B of feasible blockmodels is chosen as explained in Section 1.1.2. For example by
excluding trivial solutions, demanding minimum group sizes, fixing the number of groups,
or fixing an image matrix.

18 A CLASSIFICATION OF QUALITY FUNCTIONS

2. One of the three equivalent definitions of ideal blockmodels (single node, node pair, and
subgraph definition) is chosen.

3. In the chosen definition of ideal blockmodels, some of the named requirements for the
blockmodels in BX

ideal ∩F are dropped (relaxation step). Let F ′ ⊆ B denote the set of all
blockmodels which satisfy the remaining requirements.

4. F is set to F ∩F ′.

5. The penalty function p is not arbitrary, but measures for each blockmodel B∈B its deviation
from the members of BX

ideal ∩F .

We can now classify the penalty functions by the type of definition chosen in Step 2. Section 2.2.4
treats the use of the single node and the node pair definitions, Section 2.2.5 of the subgraph defi-
nition. First, however, we treat a case in which the choice of the definition is arbitrary:

2.2.3 Partition Number Relaxations

For many applications, a good choice for the number of groups is not a priori known and hence not
fixed to a certain value c. As a low number of groups is usually more suitable for interpretation,
one could penalize larger numbers of groups. We formulate it in terms of the 5-step procedure
above. In Step 1, the set F is chosen to contain only blockmodels with one group only. These are
the “perfect” blockmodels with the lowest possible number of groups. In Step 2, the choice of the
definition is not relevant, as we want to relax the definition of “partition” itself, which appears in
all three definitions. In Step 3, in the requirement that the partition is a c-partition with c = 1, the
requirement “c = 1” is dropped. In Step 5, the penalty function p measures the violation against
this requirement. For example, it can assign each partition P the number c of groups used by P.
The lower the number of groups, the less the amount of penalty.

Example (CATREGE). The algorithm CATREGE [BE93] solves the problem BLOCK for such
a p and the case of regular partitions. I.e., given a graph, it finds an ideal regular c-partition with
the smallest possible c.

2.2.4 Single Node and Node Pair Relaxations

In single node relaxations, the properties named in the single node definition (Definition 4) are
relaxed. Single node definitions are only possible if the image matrix I is fixed.

Example (Nodal Degree Relaxations). An example are the nodal degree relaxations for clus-
terings, i.e., for structural partitions with the image matrix fixed to the identity matrix. The set F
is hence the set of all blockmodels where the image matrix is the identity matrix. Seidman and
Foster [SF78] relax the requirement that every vertex must be adjacent to all other vertices in the
same group by the requirement that every vertex can be non-adjacent to at most k other vertices
in the same group. In a blockmodel in F ′, the subgraphs induced by the groups are hence not
cliques, but so-called k-plexes. The relaxation is not penalized. That is, p is constant, say p ≡ 0.

2.2 DEVIATIONS FROM IDEALITY 19

Analogously, k-cores can be used instead of k-plexes.

We now turn to the more common node pair relaxations. Here, the properties for vertex pairs in
Definition 3 are relaxed. Two forms of p are most commonly used, which will be explained by the
following two examples: p is either constant or decomposable over the set of all vertex pairs.

Example (Sociometric Cliques). Alba [Alb73] finds the graph theoretical definition of clique
to be not perfectly appropriate to describe friendship (or sociometric) cliques in social networks.
He thus relaxes its definition to so-called n-cliques. Here, two vertices in the same group do not
need to be connected by an edge. They need to be connected by a path of length at most n.
The set F is again the set of all blockmodels where the image matrix is the identity matrix. The
edge connection requirement is relaxed. Hence, the set F ′ contains all blockmodels where the
groups induce n-cliques. The penalty function p is chosen to be constant. The problem thus
merely consists in the search for any partition into n-cliques. Similar to the n-clique are the n-clan
and n-club relaxations [Mok79].

We now treat a second common type of node pair relaxation: The vertex similarity approaches.
The set F consists of all blockmodels with rounded image matrix (the kind of rounding needs to be
specified by the network analyst). The node pair definition says that two vertices are in the same
group if they have exactly the same neighbors. This requirement is completely dropped. The set
F ′ is hence the set B of all blockmodels. The penalty function p is constructed as follows. First,
a dissimilarity value puv is introduced for each pair u,v of vertices. It measures how dissimilar
the neighbors of vertex u and v in the same group are. Second, p is defined as the sum over all
dissimilarities:

p(P) = ∑
u,v∈V

puvδ (P(u),P(v)).

Here, puv ≥ 0 are real numbers and δ denotes the Kronecker function. It is 1 if P(u) = P(v) and
0 otherwise. The relaxation technique of using such a decomposable function p is called indirect
blockmodeling approach by Doreian et al. [DBF05].

Example (Structural Partitions). For structural partitions, several functions p of the above
form have been proposed. These propositions were made indirectly by a specification of the
values puv. They quantify how much a partition violates this dropped requirement, that is, to
quantify how dissimilar two vertices are with respect to common neighbors. Most directly, one
can simply count the number of distinct neighbors of u and v:

puv =
|(N(u)\ v)∆(N(v)\u)|

k
(2.1)

where ∆ denotes the symmetric difference of the two sets and k denotes a scalar, which could for
example be constant (k = 1) or the total number of neighbors (k = |(N(u)∪N(v)) \ {u,v}|). In
the latter case, one has to set puv = 0 in case that both u and v have no neighbors at all, in order
to sidestep a division by zero. Alternatively, Burt [Bur76] proposes to use the Euclidian distance

20 A CLASSIFICATION OF QUALITY FUNCTIONS

between the image matrix entries of u and v, that is,

puv =
√

∑
w∈V,w̸=u,v

(Ad j(G)uw −Ad j(G)vw)2. (2.2)

2.2.5 Subgraph Relaxations

In subgraph relaxations, the set F does not necessarily have to be restricted from B. The re-
quirements of Definition 1 for ideal partitions are relaxed. That is, the requirements “GP,A,B is a
complete graph”, “GP,A,B is an empty graph”, or “GP,A,B contains no isolates” are dropped. The
set F ′ is the set B of all blockmodels. The penalty function p then measures the difference between
each sub graph GP,A,B and the ideal complete, empty, or isolate free subgraphs. It hence penalizes
GP,A,B’s deviations from ideality.
There are several ways to measure the distance d between the subgraph GP,A,B and its ideal coun-
terpart subgraph HP,A,B on the same vertex set V . Such distance measures on graph pairs are called
edit distances. A simple but common exemplary form of an edit distance is given by

d(GP,A,B,HP,A,B) = ∑
u,v∈V,u̸=v

|Adj(GP,A,B)u,v −Adj(HP,A,B)u,v|, (2.3)

where Adj denotes the adjacency matrix of the graph. The function counts the number of differ-
ent entries in the adjacency matrices of GP,A,B and HP,A,B. More complex distance functions are
discussed below. The function d measures the distance of GP,A,B to a single ideal subgraph HP,A,B.
We can also measure its distance to a set HP,A,B of ideal subgraphs, by defining it as the distance
of GP,A,B to its closest element in HP,A,B. That is,

d(GP,A,B,HP,A,B) := min
H∈HP,A,B

d(GP,A,B,H).

In the remainder of this section, we will see how ideal graphs HP,A,B are defined. Then, we give
an overview on the distance functions which are used in practice. Subsequently, we show how the
distance value for each group pair can be combined to the total penalty value. We close by some
examples on how subgraph relaxation is used in literature.

Ideal and Average Graphs. The sets of ideal subgraphs HP,A,B consist of subgraphs which are
either complete, empty, or without isolated vertices, as demanded by Definition 1. Precisely, the
set can be defined as follows for the two different pattern types:

(i) structural c-partition: For A = B, the empty graph and the complete graph on VA. For A ̸= B,
the empty graph on VA ∪VB and all complete bipartite graphs on VA ∪VB.

(ii) regular c-partition: For A = B, the empty graph on VA and all graphs on VA which do not
contain isolated vertices. For A ̸= B, the empty graph on VA ∪VB and all bipartite graphs
with shores VA and VB which do not contain isolated vertices.

Note that for every partition P, the set HP,A,B is non-empty. Given a distance function d, the
penalty value pAB for the group pair (VA,VB) is set to pAB = d(GP,A,B,HP,A,B). An alternative to

2.2 DEVIATIONS FROM IDEALITY 21

the comparison to ideal graphs is the comparison to average ones. It has been used for structural
partitions. The average subgraphs are hence neither empty nor complete, but have an average
density. The distance of GP,A,B to the average graphs HP,A,B can then be positive or negative,
depending on whether GP,A,B is denser or sparser than average. The exact definition of HP,A,B

depends on the way “average” is defined; see the example paragraph below.

Overview on Distance Functions. With Function (2.3), we already stated the simplest distance
function to measure the distance between two graphs on the same vertex set. It counts the number
of edges which are different in GP,A,B and the ideal subgraph HP,A,B. However, if GP,A,B is com-
pared to average graphs, the absolute value function is a problem. Here, we want to distinguish
whether GP,A,B is worse or better than average. Hence, Function (2.4) below is more suitable in
this case. The adjacency matrix of HP,A,B is possibly weighted, as average graphs usually do not
have binary edge weights. There is a third function for the case that the edit distance d does not
count edge but vertex differences. Note that there can be no missing vertices in GP,A,B, as adding
a vertex cannot contribute to the transformation of GP,A,B into an ideal subgraph. For this reason,
ideal subgraphs for GP,A,B are defined on vertex sets VA′ ∪VB′ with VA′ ⊆ VA,VB′ ⊆ VB. They are
again either complete, empty, or isolate-free graphs. We do not give a precise definition as vertex
countings are not common in literature. The simple distance function (2.5) counts the number of
vertices that need to be deleted from GP,A,B in order to obtain an ideal subgraph HP,A,B.

d(GP,A,B,HP,A,B) = ∑
u,v∈V,u̸=v

(Adj(GP,A,B)u,v −Adj(HP,A,B)u,v). (2.4)

d(GP,A,B,HP,A,B) = |V (GP,A,B)|− |V (HP,A,B)|. (2.5)

Beside these linear functions, several non-polynomial functions have been proposed. Being de-
rived from general statistical matrix correlation measures, they can be used to compare the adja-
cency matrices of G and H. See Wasserman and Faust [WF94] or Arabie et al. [ABL78] for an
overview.

Combining Subgraph Penalties. In Definition 1, the ideal partition conditions are formulated
as requirements for the subgraphs GP,A,B of G. There is hence a single penalty value pAB(P) =
d(GP,A,B,HP,A,B) for each group pair (A,B). The distance function d is thereby always the same
for all group pairs. There are several ways to combine the values pAB(P) to a total penalty p(P)
for the partition P. In most cases, the pAB values are simply summed up as in Formula (2.6). See
Figure 2.2 for an example for structural 3-partitions: The distance d(GP,A,B,HP,A,B) of the depicted
partition P of the drawn graph G is 3. The reason is that 3 edge changes are at least necessary to
obtain a structural 3-partition: Between groups Gray and Black, add two edges (pGB = 2). Between
groups White and White, delete one edge (pWW = 1). This way, P is an ideal 3-partition for the
graph H∗ in the figure. Its image matrix I∗ is visualized as an image graph on the right side. Hence,
the penalty value for this partition is p(P) = 2+1 = 3.
Instead of summing up, one can use scaling to give the penalty value pAB a higher weight if the
groups A and B are large. The factor is usually 1/mAB, where mAB is the number of possible edges
in the subgraph GP,A,B. More precisely, mAB = |VA| · |VB| if A ̸= B, mAA = |VA| · (|VA|−1), and p is

22 A CLASSIFICATION OF QUALITY FUNCTIONS

defined as in Formula 2.7. In some approaches, the squares of the penalties are summed up instead.
This mostly occurs in so-called χ2 approaches, see Formula (2.8). As an alternative scaling factor,
the distance of GP,A,B to HP,A,B can be seen in relation to the maximum distance dmax

P,A,B of any graph,
on the same vertex set, to HP,A,B. This notion is expressed by Formula (2.9).

p(P) = ∑
A,B∈[c],A≤B

pAB(P) (2.6)

p(P) = ∑
A,B∈[c],A≤B

1
mAB

· pAB(P) (2.7)

p(P) = ∑
A,B∈[c],A≤B

(pAB(P))2 (2.8)

p(P) = ∑
A,B∈[c],A≤B

mAB ·
(pAB(P)

dmax
P,A,B

)2
(2.9)

Examples. We now give some examples on the use of subgraph relaxations in literature. For
each example, we need to specify the following modeling choices:

• Whether ideal or average graphs are used (and how average is defined).

• Which edit distance is used.

• How p(P) is combined from the pAB(P).

Example (Cluster Performance). The performance of a clustering counts the number of miss-
ing edges within the clusters and adds the number of existing edges between the clusters. It is
hence a measure for structural partitions with image matrix fixed to the identity matrix (but can
easily be generalized to the non-fixed case). According to our classification, ideal graphs are used,
the edit distance measures edge differences, and p(P) is simply the sum of the pAB(P).

Example (Maximal Cluster Density.) A basic measure for the quality of a clique partition on
a graph G = (V,E) is the sum over all intra-cluster densities δint(Vi). They give the proportion of
actual edges to theoretically possible edges within the i-th cluster:

δint(Vi) =
internal edges of Vi

|Vi|(|Vi|−1)/2
.

 H* I* G

Figure 2.2: Example for distance function (2.3) when applied to a structural 3-partition problem.

2.2 DEVIATIONS FROM IDEALITY 23

The search for a partition P∗ with maximum total intra-cluster density has the form of the Block-
modeling Problem for structural partitions with image matrix fixed to the identity matrix. Ideal
graphs are used, the edit distance measures edge differences, and the penalty values pAB(P) are
linearly combined by Formula (2.7).

Example (Maximal Structural Density.) Wasserman and Faust explain a simple measure for
structural partitions in their survey [WF94]. It is a generalization of the preceding example from
clique to structural partitions. For each group pair (VA,VB), they sum up the values |IAB −∆AB|.
Here, I denotes the image matrix and ∆AB denotes the density. The density is defined as the
number of edges from vertices in VA vertices in VB, divided by the maximum possible number mAB

of such edges. Hence, ideal graphs are used, the edit distance measures edge differences, and the
penalties pAB(P) are linearly combined by Formula (2.7).

Example (Newman-Girvan-Modularity.) Newman and Girvan [NG04] present a relaxation
for clusterings (structural partitions with image matrix fixed to the sparse identity matrix). That is,
the groups are required to be dense, whereas the inter-group connections are not taken into account.
HP,A,A contains average graphs. More precisely, HP,A,A consists of exactly one graph H = (A,F).
It is a complete graph and the edge weight of uv ∈ F is degG(u)degG(v)/2|E|. This is precisely the
expected number of edges between u and v in a random graph with the same degree distribution
as G. For this reason, H can be interpreted as the average graph w.r.t. the degree distribution
of G. Hence, average graphs are used, edges are relaxed, and the penalties pAA(P) are simply
summed up as in Formula (2.6). The value p(P)/2|E| is called the modularity of P. The factor
1/2|E| is however constant and can thus be ignored in the solution of the Blockmodeling Problem.
Its purpose is to scale the result to a value between −1 and +1. Other so-called Newman-like
modularities can be modeled analogously.

Example (Berkowitz-Carrington-Heil Index.) The index [CHB80] is designed for structural
partitions. The set HP,A,B contains a single average graph H. The user is asked to specify an
average density α from the interval between 0 and 1. The graph H is then the complete (bipartite)
graph with edge weights all α , letting its density equal α . The distance function d is simply (2.3).
Since the index is a χ2 approach, the function p(P) is composed as in (2.9).

Example (Vertex Relaxation.) Batagelj et. al. [BDF92] relax vertices for regular partitions.
They use ideal graphs, relax vertices, and simply sum up the penalties pAB(P). However, they
restrict the set HP,A,B of ideal graphs by allowing only those H ∈ HP,A,B for which it holds that
whenever vertex u has been deleted from GP,A,B and there is an edge uv ∈ E, then v must have been
deleted as well. An optimization heuristic for this function is implemented in UCINET [BEF02].
Brusco and Steinley [BS09] present an exact optimization algorithm based on an integer program-
ming model.

24 A CLASSIFICATION OF QUALITY FUNCTIONS

2.3 THE SPACE OF IDEAL BLOCKMODELS

On a given graph G, there can be several ideal structural (resp. regular) blockmodels. In this
section, we analyze the space of all ideal blockmodels on a fixed graph G. The structure of this
space will contribute to the computational complexity proofs in the following section.
To start with, observe that an ideal structural partition stays ideal if any of its groups is split into
two groups. The same holds for ideal regular blockmodels (P, I) in case that I has a zero diagonal.
Before we prove this observation, let us formalize the split procedure. It turns a blockmodel B
into a blockmodel B′ with one group more, by splitting one of the groups in B into two groups.
To this end, a subset C of the vertex set of one group Vi in B needs to be specified. The following
algorithm then splits this group into the two subgroups C and Vi \C. The image matrix I is updated
by adding a new row and a new column.

SPLIT(B, i,C)

Input: A blockmodel B = (P, I), an index i ∈ {1, . . . , |P|}, and a subset C ⊂Vi, /0 ̸=C ̸=Vi.
Output: A blockmodel B′ = (P′, I′).

1. Set P′ := (V1, . . . ,Vi−1,Vi \C,Vi+1, . . . ,V|P|,C).

2. Set I′ to a |P′|× |P′| binary matrix with

I′cd :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Icd if c,d ∈ {1, . . . , |P|},

Iid if c = |P+1|,d ∈ {1, . . . , |P|},

Idi if d = |P+1|,c ∈ {1, . . . , |P|},

Iii if c = d = |P|+1.

3. Return (P′, I′).

In Step 1, the partition P is updated. The old group Vi is replaced by its subgroup Vi \C. Fur-
thermore, its complement group C is added to the end of P. In Step 2, the image matrix remains
unchanged for all partition pairs that do not involve Vi. Otherwise, the two new groups inherit the
image matrix entries from their parent group Vi. That is, for every group Vj with j ̸= i, the image
matrix entry for the pairs (C,Vj) and (Vi \C,Vj) equals the entry for (Vi,Vj).
According to the following statement, the split transformation preserves ideality for structural
blockmodels. This observation can be found in several textbooks including Scott [Sco02].

Proposition 3. Let B=(P, I) denote an ideal structural blockmodel. The blockmodel SPLIT(B, i,C)
is ideal for all feasible choices of i and C.

We make similar observations for regular blockmodels.

Proposition 4. Let B = (P, I) denote a blockmodel and i an index such that Iii = 0. For all feasible
choices of C, if the blockmodel SPLIT(B, i,C) is regularly ideal then B is regularly ideal.

2.3 THE SPACE OF IDEAL BLOCKMODELS 25

2.3.1 Order-Theoretic Lattices

For every graph G, the ideal blockmodel which requires the lowest number of groups is in fact
uniquely determined. Moreover, all other ideal blockmodels can be obtained from this blockmodel
by a sequence of calls of the SPLIT algorithm. More precisely, the space of all ideal blockmodels
forms a lattice.

Definition 5. (Join, Meet) Given a partially ordered set (X ,≤), the meet x1 ∧ x2 of the elements
x1,x2 ∈ X is the greatest x3 ∈ X with x3 ≤ x1,x3 ≤ x2. The join x1 ∨ x2 is the least x3 ∈ X with
x1 ≤ x3,x2 ≤ x3.

Definition 6. (Bounded Lattice) A partially ordered set (X ,≤) is called a lattice if for every two
elements x1,x2 ∈ X both x1 ∧ x2 and x1 ∨ x2 are in X . A lattice is bounded if there is a greatest
element xG and a least element xL, that is, xL ≤ x ≤ xG for all x ∈ X .

To show that the set (BX
Ideal(G),≤) of all ideal blockmodels is a bounded lattice, we define a partial

ordering ≤. For two blockmodels B,B′ ∈ BX
Ideal(G), we write B = (P, I)≤ B′ = (P′, I′) if for every

group Vi ∈ P, there is a group Vj ∈ P′ with Vi ⊆Vj. In other words, B is lower than B′ if B can be
obtained from B′ by a sequence of split operations.

Theorem 1. [BE89, Sco02] The partially ordered sets (BS
Ideal(G),≤) and (BR

Ideal(G),≤) are
bounded lattices.

The proof for regular blockmodels can be found in Borgatti and Everett [BE89]. Even though it
is given for directed connected graphs without isolates, it can be easily generalized to our case.
Scott [Sco02] states that the structural blockmodels form a sublattice of the regular lattice.

As (BX
Ideal(G),≤) is a bounded lattice, there is a greatest and a least element. The least one is the

blockmodel in which every vertex defines its own group and the image matrix is the adjacency
matrix of G. This holds for both structural and regular ideal blockmodels and for both directed
and undirected graphs and also for (di)graphs with isolated vertices. The greatest element depends
however on the case under consideration.

Proposition 5. The greatest element B = (P, I) of the bounded lattice (BX
Ideal(G),≤) is defined in

the following way:

a) structural (X = S): B is the ideal blockmodel with P(u) = P(v) if and only if N(u)\{v}=
N(v)\{u} for all u,v ∈V .

b) regular (X = S): B is the ideal blockmodel in which P consists of two groups: The isolated
and the non-isolated vertices in G.

The proof follows from the observations that the respective blockmodel is in the lattice (it is ideal)
and that ideality is lost by the merging of any groups. Note that the greatest element for regular
blockmodels is non-trivial if directed graphs are considered. It can however still be computed in
polynomial time by the algorithm CATREGE [BE93].

26 A CLASSIFICATION OF QUALITY FUNCTIONS

Since splitting preserves ideality, we can use the SPLIT procedure to decide whether an ideal c-
partition exists on a given graph G and for a given natural number c.

STRUCTURAL-C-PARTITION(G,c)
Input: A graph G ∈ G, a natural number 1 ≤ c ≤ |V |.
Output: An ideal structural blockmodel on G with c groups (if one exists).

1. Compute the greatest element B = (P, I) of the bounded lattice (BS
Ideal(G),≤).

2. While |P|< c:

2a. Choose i with |Vi| ≥ 2 and C ⊂Vi with /0 ̸=C ̸=Vi.

2b. Set B =SPLIT(B, i,C).

3. If |P|= c: Return B. Else: “There is no such blockmodel.”

2.4 COMPUTATIONAL COMPLEXITY OF QUALITY OPTIMIZATION

In this section, we discuss the computational hardness of minimizing the penalty functions in-
troduced in this chapter. More precisely, we examine the hardness of the following family of
optimization problems and their decision variants. Recall that the family is parameterized by a set
F ⊆ B of feasible blockmodels and a blockmodel penalty function p : B → R.

BLOCK (F, p).
Instance: A graph G = (V,E).
Task: Minimize p over F∩B(G).

BLOCK-DECISION (F, p).
Instance: A graph G = (V,E), a number k ∈ Z.
Question: Is there a B ∈ F∩B(G) with p(B)≤ k?

We will see that the hardness proofs for problem BLOCK(F, p) mainly depend on the feasible set F.
They do however not depend on the precise form of function p. They use only the fact that p has
the property that ideal blockmodels are the optimal ones. We will state common NP-hardness
proofs for all functions with this property. Since we have shown that the functions p in literature
are designed to measure deviations from ideality, this property is in fact very common. Our proofs
can thus be applied simultaneously to most of the penalty functions discussed in this chapter.
In Section 2.4.1, we formalize the common property of the penalty functions and show that al-
most all presented functions share it. In Section 2.4.2, we give the NP-hardness proofs for those
functions.

2.4.1 Sensitive Objective Functions

The following definition of sensitive functions is introduced by Doreian et al. [DBF05] in the more
specific context of direct blockmodeling approaches.

2.4 COMPUTATIONAL COMPLEXITY OF QUALITY OPTIMIZATION 27

Definition 7. A penalty function p : B →R+
0 is called structurally (resp. regularly) sensitive if for

every blockmodel B ∈ B holds that p(B) = 0 if and only if B ∈ BS
Ideal (resp. B ∈ BR

Ideal).

As we have shown that the blockmodel quality functions q in literature can all be seen as penalty
functions, which penalize deviations from ideal blockmodels, it is suggesting that these functions
are sensitive. We will now show formally that this indeed holds for most of them.

Node Pair Relaxations. We show that the dissimilarity functions introduced in Section 2.2.4
are sensitive. It is easy to see that a function of the form p(P) = ∑u,v∈V puvδ (P(u),P(v)) is struc-
turally sensitive if

1. puv = 0 if N(u)\{v}= N(v)\{u},

2. puv > 0 otherwise.

Consider an ideal structural blockmodel. Then, N(u)\{v}= N(v)\{u} holds for all vertex pairs
u,v in the same group. Hence, p(P) = ∑u,v∈V,P(u)=P(v) puv = 0. If the blockmodel is however not
ideal structural, there is at least one vertex pair u,v in the same group with N(u)\{v} ̸=N(v)\{u}.
Hence, p(P) > 0. A penalty function p satisfying Conditions 1 and 2 is hence sensitive. These
conditions apply to both presented vertex similarity approaches. In Formula (2.1), that is,

puv =
|(N(u)\ v)∆(N(v)\u)|

k
,

the symmetric difference is empty if and only if N(u) \ {v} = N(v) \ {u}. In case that k = 0,
which means that both u and v do not have any neighbors at all, we defined puv = 0. Thus, the
conditions apply. It is easy to see that also the Euclidian distance given by Formula (2.2) satisfies
the conditions.

Subgraph Relaxations. We have seen in Section 2.2.5 that all subgraph relaxation approaches
can be characterized by three modeling choices: Whether ideal or average graphs are used, which
edit distance d is used, and how the total penalty p is combined from the group pair penalties pAB.
Such a total penalty function is sensitive if the following conditions hold:

1. ideal graphs are used,

2. d and p are non-negative: d(G,H)≥ 0, p(P)≥ 0,

3. d is coincident: d(G,H) = 0 if and only if G = H,

4. p(P) = 0 if and only if pAC(P) = 0 for all VA,VC ∈ P.

To see this, let B = (P, I) denote an ideal structural or regular blockmodel. The distance value
d(GP,A,B,HP,A,B) equals 0 for every group pair VA,VC ∈ P. The reason is that HP,A,B contains all
ideal subgraphs (Definition see Page 20) and Condition 3 applies. Because of Condition 4, the total
penalty p(P) equals 0 in this case. Otherwise, if B is not ideal, the total penalty is greater than
0 for a analogous argument. It is obvious that d is non-negative and coincident for all presented
edit distances (2.3), (2.4), and (2.5). Furthermore, the non-negativity and Condition 4 apply to all
presented functions for p, that is, for Function (2.6) to (2.9). In case that ideal graphs are used, we
conclude that all presented approaches have sensitive penalty functions.

28 A CLASSIFICATION OF QUALITY FUNCTIONS

2.4.2 NP-Hardness Proofs

Having shown that most of the presented penalty functions have the property of being sensitive,
we can now state complexity results for the optimization of sensitive functions. The hardness of
Problem BLOCK(F, p) (with a sensitive penalty function p) thereby depends on the choice of the
set F of feasible blockmodels. We treat the most common definitions of F: Only blockmodels
with a fixed number of groups, only blockmodels with a fixed image-matrix, only blockmodels
with non-empty classes, and only blockmodels without loops in the image graph. We formalize
these sets with the following notation:

• Bc: All (P, I) ∈ B where P is a c-partition.

• BI: All (P, I′) ∈ B where I′ = I.

• Bnon-empty: All (P, I) ∈ B with P = (V1, . . . ,Vk), where |Vi| ≥ 1 for i = 1, . . . ,k.

• Bno-loop: All (P, I) ∈ B, where diag(I) = 0.

If all blockmodels are chosen to be feasible (F = B), the Blockmodeling Problem is trivial, as the
solution in which every vertex form its own group is already optimal:

Proposition 6. Let p : B → R be sensitive for B. The blockmodel (P, I) ∈ B(G) with P = V (G)

and I = Ad j(G) is then an optimum solution the instance G to BLOCK(B, p).

Proof. The proof follows from the fact that the stated blockmodel (P, I) is both a structural and a
regular partition.

The Blockmodeling Problem turns however non-trivial if the number of groups is fixed to a natural
number c ≥ 2. In this case, the set F contains only those blockmodels (P, I) where P is a c-
partition and I a c× c matrix.

Proposition 7. Let p : B → R be regularly sensitive and F = Bc with c ≥ 2. The problem
BLOCK(F, p) is NP-hard.

Proof. Fiala and Paulusma [FP03] prove that the following decision problem is NP-complete for
all c ≥ 2: Given a graph G = (V,E), is there an ideal regular c-partition on G? This problem
can be transformed to the instance (G′,k) of BLOCK DECISION(F, p) with sensitive p in the fol-
lowing way. Set G′ = G and k = 0. If and only if the answer is “yes”, there is a blockmodel B∗

with p(B∗) = 0 and B∗ is hence an ideal regular c-partition. The answer to Fiala and Paulusma’s
problem is hence “yes” if and only if the answer to BLOCK DECISION(F, p) is “yes”.

The problem stays hard if not only the number of groups c, but the whole image matrix I is fixed.
In this case, the hardness depends on the structure of the fixed image matrix:

Proposition 8. Let p : B → R be regularly sensitive and F = BI . The problem BLOCK(F, p) is
NP-hard in both of the following cases:

a) the image graph of I is connected and has at least 3 vertices,

2.4 COMPUTATIONAL COMPLEXITY OF QUALITY OPTIMIZATION 29

b) the image graph of I has 2 vertices u and v. The edges uv and vv exist (uu may exist or
not).

Proof. a) Fiala and Paulusma [FP03] show that the following decision problem is NP-complete:
Given a graph G and an image matrix I as in a), is there an ideal regular blockmodel with image
matrix I? It can be transformed to BLOCK DECISION(F, p) as in the proof of Proposition 7. b)
Roberts and Sheng [RS01] show that the following decision problem is NP-complete: Given a
graph G and one of the two image matrices I as in b), is there an ideal regular blockmodel with
image matrix I? The transformation is the same as in Proposition 7.

The following two propositions can be proven analogously. That is, there are polynomial transfor-
mations from problems which have been proven to be NP-complete by Fiala and Paulusma [FP03].

Proposition 9. Let p : B → R be regularly sensitive and F = BI ∩Bnon-empty. BLOCK(F, p) is
NP-hard if the image graph of I is not connected, but has a connected component with at least
3 vertices.

Proposition 10. Let p : B → R be regularly sensitive and F = Bc ∩Bno-loop. BLOCK(F, p) is
NP-hard.

The preceeding hardness results treated the case of regular blockmodels. We will now see that
there are also structural problems which are NP-hard:

Proposition 11. Let p : B →R be structurally sensitive and F = BI ∩Bnon-empty. BLOCK(F, p) is
NP-hard if I is the sparse identity matrix in {−,1}c×c.

Proof. If I is the sparse c× c identity matrix, then the elements (P, I) of BIdeal are exactly those
blockmodels where P is a c-clique cover. The decision problem whether G has a c-clique cover
is NP-complete, see Karp [Kar72]. Due to a transformation analogous to the one in the proof of
Proposition 7, the result follows.

We conclude the section with the observation that the problem is polynomially solvable in two
cases where only ideal blockmodels are considered feasible:

Proposition 12. Let p : B → R be the group counting function p(P, I) = |P|. BLOCK(BX
Ideal, p) is

polynomially solvable.

Proof. In this case, the optimum solutions are the greatest elements of the lattice of all ideal block-
models (see Section 2.3). It follows from Proposition 5 that they can be computed in polynomial
time.

Proposition 13. Let p : B → R+
0 be structurally sensitive and F = BS

Ideal ∩ Bc. The problem
BLOCK(F, p) is polynomially solvable.

Proof. The algorithm STRUCTURAL-C-PARTITION(G,c) on Page 26 computes an ideal struc-
tural blockmodel with c groups in polynomial time. This blockmodel is the optimum solution to
BLOCK(F, p).

Chapter 3

VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

We have seen in Chapter 2 that pattern search is in practice performed in the following way: A
penalty function p is defined, which is minimized over a set of feasible blockmodels. A block-
model (P, I) consists of a partition P of the graph’s vertices and its pattern interpretation, an image
matrix I.

We are interested in algorithms that either solve these problems to optimality or give a quality
guarantee on the best solution found. To this end, we consider integer programming formulations.
Such formulations need basic variables to model the partition P of the vertices into groups. There
are hence only a few possibilities to define these basic variables, even though the problems can
largely differ in their objective functions or constraints.

In this chapter, we will treat four different kinds of basic variables: Vertex assignment variables x,
newly introduced edge assignment variables y, equivalence relation variables s, and vertex subset
variables w. They are taken from a survey including [AK08, BS09, CDW08, FMdS+96, JMN93,
KA91,MT98,XTP07]. We discuss each variable type separately: Its variable defining constraints,
the ways to model the set of feasible blockmodels, and derive strong formulations from polyhedral
studies. In Section 3.2.3, we present new methods to efficiently combine variable types.

3.1 VERTEX ASSIGNMENT VARIABLES x

In integer programs for clustering or blockmodeling problems, vertex assignment variables x are
most commonly used. For example, they are used by [FMdS+96] and [JMN93] for clustering
and by [BS09] for structural and regular equivalence. These variables indicate whether vertex u is
assigned to group VA:

xuA =

{
1 if P(u) = A,

0 otherwise,

31

32 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

for all u ∈ V,A ∈ [c]. The corresponding assignment constraints are the following ones, which
simply state that every vertex must be assigned to a group.

∑
c∈C

xuA = 1 for all u ∈V, (3.1)

xuA ∈ {0,1} for all u ∈V,A ∈ [c], (3.2)

Usually, further constraints are added to restrict the number or sizes of groups.

3.1.1 Constraints on Group Sizes and Numbers of Groups

A common constraint on the set F of feasible blockmodels requires the number of groups to be
fixed to an a priorily given number c. This restriction can be naturally modeled with x-variables.
One needs to add the constraint

∑
u∈V

xuA ≥ 1 for all A ∈ [c], (3.3)

stating that every group in P needs to contain at least one vertex. An alternative set of constraints
is presented by Vinod [Vin69] and applied by Berry et al. [BHL+07]. It is inspired by warehouse
location models. Vertices are not assigned to groups, but to group leader vertices. Every group
consists of its group leader and possibly some follower vertices. The basic variables x′uv hence
take the value 1 if and only if vertex u follows vertex v. We set the variable Lv to 1 if vertex v is a
group leader, and 0 otherwise. The constraint set is then the following one: Constraint (3.5) states
that there are exactly k leaders. That is, the solution will have exactly k groups. Constraint (3.6)
states: If vertex u is a follower of v, then v must be a group leader. See Figure 3.1 for an example.

∑
v∈V

x′uv = 1 for all u ∈V, (3.4)

∑
v∈V

Lv = k, (3.5)

∑
u∈V

x′uv ≤ |V | ·Lv for all v ∈V, (3.6)

x′uv ∈ {0,1} for all u,v ∈V, (3.7)

Lv ∈ {0,1} for all v ∈V. (3.8)

Another common constraint on F models the restriction of group sizes. Groups are required to
have a minimum size k. Frequent special cases are the demand for non-empty groups (k = 1)
and for groups of almost equal size (k = ⌊|V |/c⌋). Ji [Ji04] examines such integer programming
models for complete graphs G. For x-variables, the following constraint states that the number of
nodes in group VA is at least k:

∑
u∈V

xuA ≥ k for all A ∈ [c]. (3.9)

3.1.2 Symmetry Breaking Constraints

Every partition P = (V1, . . . ,Vc) is represented by c! distinct feasible x-vectors due to permutations
of the group identification numbers 1, . . . ,c. For every partition P, let XP denote the set of all

3.1 VERTEX ASSIGNMENT VARIABLES x 33

x-vectors representing P. A constraint set is called symmetry breaking if for every partition P, the
constraint set is satisfied by exactly one vector in XP. Such a symmetry breaking constraint set is
proposed by Klein and Aronson [KA91] and later used by Xu et al. [XTP07]. Their constraint set
models two statements:

1. Vertex v can only be in a group Vk with k ∈ Pv := {1,2, . . . ,min{v,c}}. E. g., vertex 1 must
be in group 1, vertex 2 must be either in group 1 or 2, and so on.

2. If a vertex v ≥ 3 is in Vk, then there must be a vertex u < v that is in group Vk−1.

Pv denotes the set of all groups that vertex v can be assigned to according to Statement 1. Let
conversely denote P−1

k the set of all vertices that can be assigned to group Vk. The two statements
above can then be modeled by

∑
A∈Pv

xvA = 1 for all v ∈V, (3.10)

∑
u∈P−1(k−1),

u<v

xu(k−1) ≥ xvk for all v ∈V,v ≥ 3,Vk ∈ Pv. (3.11)

The above constraints have been applied to clustering problems only. They can also be applied to
models for a problem BLOCK (F, p). in case that the set F of feasible blockmodels in the set B of
all blockmodels. The reason is that an ideal structural partition stays ideal structural if the group
identification numbers are permuted; the same holds for regular partitions. We now discuss the
possibilities in case that the set F is restricted.

Group size constraints. Assume F is restricted by group size constraints. That is, there is a
maximum size sk specified for every vertex group Vk. Given a feasible vector, a permutation of
the group ID numbers could then turn the vector infeasible. In this case, the above constraints
cannot be used for symmetry breaking, unless all groups have the same requirement. We propose
the following alternative. Assume w.l.o.g. that the groups are non-increasingly sorted by their
maximum size limits: s1 ≥ s2 ≥ ·· · ≥ sc. The following constraint models that group k must be at

A

C

B

D

L
L

L
L

Figure 3.1: Left: Four groups defined by 4 leader vertices. Right: Interchanging the labels of
groups VA and VB does not affect the feasibility of a solution, as they have exactly the same neigh-
bor groups VA,VB, and VC in the image graph.

34 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

least as large as group k+1:

|V |

∑
v=1

xvk ≥
|V |

∑
v=1

xv(k+1) for all k = 1, . . . ,c−1. (3.12)

If an x-vector describing a partition P violates the constraint, all permutation vectors in XP violate
it as well. For every feasible partition P, there is hence a vector in XP satisfying the constraint.
Note however that the constraint is not symmetry breaking since there can be several vectors in XP

satisfying the constraint. This is due to the fact that same-sized groups can still be permuted
without violating the constraint.

Fixed image matrix. Consider the case where the image matrix is fixed a priorily, but no further
restrictions are imposed on F. If the vertices in group 1 are required to have at least one neighbor in
group 3, whereas the vertices in 2 are required to have no neighbors in 3, then the interchanging of
groups IDs 1 and 2 can turn a feasible vector into an infeasible one. Clearly, only those groups Vk1

and Vk2 may be permuted which have the same requirements concerning the other groups. That
is, k1 and k2 need to have exactly the same neighbors the image graph. Figure 3.1 (right) gives an
example. Let P1,P2, . . . ,Ps denote a partition of the set P of all groups into classes, such that the
groups in Pi pairwisely have exactly the same neighbors in the image graph. Denote by Pi1,Pi2, . . .

the elements of Pi. The following constraints can be used to reduce the amount of symmetry:

|V |

∑
v=1

xu,ik ≥
|V |

∑
v=1

xv,i(k+1) for all i = 1, . . . ,s,k = 1, . . . , |Pi|−1. (3.13)

The constraints models that the groups in Pi need to be ordered by size, for every i = 1, . . . ,s. It is
again not symmetry breaking as it allows same-sized groups to be permuted.

3.2 EDGE ASSIGNMENT VARIABLES y

Objective functions of pattern search problems usually model statements on edges (or non-edges)
of the graph. For example, it is necessary to count the number of edges between certain groups in
case that density patterns are searched for. For patterns of link existence, constraints demanding
the existence of certain edges must be modeled. In these cases, so-called edge assignment variables
are used in the integer programming model.
For two distinct vertices u,v and two vertex groups VA,VB, we set the variable yuA,vB to 1 if both u
is in VA and v is in VB:

yuA,vB =

{
1 if P(u) = A and P(v) = B,

0 otherwise,

For ease of notation, we use both yuA,vB and yvB,uA to denote the same variable in the remainder of
the thesis. In practical integer programming formulations, often only a subset of the y-variables
are actually used. That is, they are introduced not for all vertex pairs, but only for a subset EY .
Let Kn = (Vn,En) denote the complete graph on n vertices. For a subset EY ⊂ En of its edges, we
define the set Y (EY) := {yuA,vB | uv ∈ EY ,A,B ∈ [c]}.

3.2 EDGE ASSIGNMENT VARIABLES y 35

Consider a graph G = (V,E) to be searched for patterns. We will show in this section that it is
sufficient to define the y-variables only on the edge set E to define a partition. They are furthermore
sufficient to formulate most of the common constraints. In this case, EY = E holds for undirected
graphs. In case of a directed graph D = (V,A), the y variables need to be defined on the edge set
of the underlying graph of D. It is the undirected graph which evolves from D by ignoring the
directions of its arcs:

Definition 8. Given a directed graph D = (V,A), its undirected underlying graph GD = (V,E) is
defined by E := {uv | (u,v) ∈ A or (v,u) ∈ A}.

An example for an underlying graph is given in Figure 3.2. In our survey, y-variables are only
used in combination with x variables. However, we present a way to use y-variables exclusively.
In this formulation, the variables do not need to be defined for every vertex pair, but only for those
on a given set EY of vertex pairs. To prove the validity of the subsequent model, we need to define
partition vectors first.

Definition 9. Given the complete graph Kn = (Vn,En), an edge set EY ⊆ En, and a number c of
groups, a binary vector {xuA}u∈V,A∈[c] is called a partition vector if it satisfies Constraint (3.1).
A binary vector {yuA,vB}uv∈EY ,A,B∈[c] is called a partition vector if there is exactly one partition
vector {xuC}u∈V,C∈[c] with xuAxvB = yuA,vB for all uv ∈ EY ,A,B ∈ [c]. This vector x is called the
corresponding partition vector of y. We call (x,y) a partition vector if y is a partition vector and x
is its corresponding partition vector.

Proposition 14. Given the complete graph Kn = (Vn,En), an edge set EY ⊆ En, and a number c of
groups, such that the graph (V,EY) has no isolated vertices, then a vector {yuA,vB}uv∈EY ,A,B∈[c] is a
partition vector if and only if it satisfies the following constraints:

∑
A,B∈[c]

yuA,vB = 1 for all uv ∈ EY , (3.14)

∑
B∈[c]

yuA,vB = ∑
B∈[c]

yuA,wB for all uv,uw ∈ EY ,v ̸= w,A ∈ [c], (3.15)

yuA,vB ∈ {0,1} for all uv ∈ EY ,A,B ∈ [c]. (3.16)

Proof. Clearly, every partition vector y satisfies the above constraints. To prove the opposite
direction, consider a vector y satisfying the constraints. We need to show that there is a unique
partition vector x corresponding to y. We construct x by the following algorithm. Set x to the
zero vector. Then, for each yuA,vB that equals 1, set xuA = 1 and xvB = 1. We now show that x

Figure 3.2: A directed graph (left) and its undirected underlying graph.

36 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

is a partition vector. Assume ∑A∈[c] xuA = 0 for a u ∈ V . Then, ∑A,B∈[c] yuA,vB = 0 for a v, which
contradicts Constraint (3.14). Now assume ∑A∈[c] xuA ≥ 2 for a u ∈ V . Then, both xuA = 1 and
xuA′ = 1 for two different groups VA and VA′ . Hence, yuA,vB = 1 (*) and yuA′,wC = 1 (**) for two
y-variables. By subtracting (**) from Constraint (3.14), we conclude that yuA,wD = 0 (***) for all
D ∈ [c]. We obtain the contradiction

1 ≤ ∑
D∈[c]

yuA,vD = ∑
D∈[c]

yuA,wD = 0.

Here, the inequality holds because of (*), the first equation because of Constraint (3.15), and the
second one because of (***). Hence, yuA,vB and yuA′,wF cannot both be 1 at the same time. Thus,
∑A∈[c] xuA = 1 holds for all u. Hence, x is a partition vector.
Secondly, we need to show that xuAxvB = yuA,vB holds. For yuA,vB = 1, it holds due to the con-
struction of x. For yuA,vB = 0, there must be a variable yuA′,vB′ = 1 with A′ ̸= A because of Con-
straint (3.14). The latter one implies xuA′ = 1. As x is a partition vector, xuA = 0 follows, which
proves the required relation. Thirdly, we need to show that x is the only partition vector for which
this relation holds: Assigning u to VA′ instead of VA would violate the constraint xuAxvB = yuA,vB

for a v in VB.

The number of constraints is in O(c|EY |2), as it is dominated by Constraint (3.15). This con-
straint is an equation for each pair (uv,uw) of edges incident to the same vertex u. Let E(u) =
{e1,e2, . . . ,eN(u)} denote the set of all edges incident to u. It is clearly sufficient to state the equal-
ity for the pairs (e1,e2),(e2,e3), . . . ,(eN(u)−1,eN(u)), as the remaining ones are implied. The total
number of constraints is then in O(c|EY |).
Being a special case of Proposition 14, we conclude that it is sufficient to introduce the y-variables
only on the edges of the graph (or its underlying graph) in case that it does not contain isolated
vertices. Even a subset of the edge set can be sufficient to model the partition itself. Note however,
that the modeling of the objective function can require more variables.

3.2.1 Group Size and Symmetry Breaking Constraints

All constraints which can be expressed in x-variables can be expressed in y-variables as well. If y
is a partition vector, then the sum

∑
B∈[c]

yuA,vB (3.17)

is 1 if and only if vertex u is in VA (for any choice of v ̸= u). It equals 0 otherwise. Hence, the
term xuA can be replaced by the above sum to obtain a corresponding constraint in y-variables.
Especially, group size and symmetry breaking constraints can be expressed in y-variables as well.

3.2.2 Strengthening the Formulation

We show that the following constraints are valid in any formulation using y-variables. They
are adopted from constraints for the quadratic assignment problem (QAP) and the maximum cut
problem (MCP). The first constraint is adopted from Barvinok [Bar92], who introduced it for a

3.2 EDGE ASSIGNMENT VARIABLES y 37

QAP formulation. Let again V denote the vertex set of the input graph D = (V,A(D)) and EY

denote the set of vertex pairs on which y-variables are defined.

Proposition 15. For any 3-cycle vw,wv,vu in (V,EY), two not necessarily distinct vertex groups
VA,VB of P, and a group subset L ⊆ {V1, . . . ,Vc} of P, the following inequality is valid for every
partition vector y:

∑
VC∈L

yuA,wC + ∑
VC∈{V1,...,Vc}\L

yvB,wC ≥ yuA,vB. (3.18)

Proof. Assume that the right-hand side is equal to 1, as the constraint is trivially satisfied other-
wise. That is, u is in VA and v is in VB. By using this information and by substituting each y-variable
on the left-hand side by the product of its two x-variables, the left-hand side reduces to ∑VC∈L xwC+

∑VC∈{V1,...,Vc}\L xwC. This equals ∑VC∈P xwC, which equals 1 because of Constraint 3.1.

Furthermore, several constraints from the maximum cut problem can be transferred. For a vertex
pair subset F ⊆ EY and a group subset L ⊆ {V1, . . . ,Vc} of P, let y(F,L) denote the sum

y(F,L) := ∑
uv∈F

∑
VA∈L,VB∈{V1,...,Vc}\L

(yuA,vB + yuB,vA). (3.19)

If EY is interpreted as the edge set of the graph (V,EY), then y(F,L) is the sum over all edges in F
leaving the group L. See Figure 3.3 for an example.

Proposition 16. Let L ⊂ {V1, . . . ,Vc}, /0 ̸= L ̸= {V1, . . . ,Vc}, be a proper subset of the group set.
Let Q be a cycle in (V,EY) and F ⊆ Q a subset of the cycle with |F | odd. Then,

y(F,L)− y(Q\F,L)≤ |F |−1 (3.20)

is valid for every partition vector y.

Proof. The expression y({uv},L) is in {0,1} for every partition vector y, every uv ∈ EY , and every
L ⊂ {V1, . . . ,Vc} with /0 ̸= L ̸= {V1, . . . ,Vc}. It is 1 if and only if exactly one vertex in {u,v} is in a
group in L. The remainder of the proof follows from the fact that the cycle inequalities are valid
for the max-cut problem, by considering the cut with shores L and {V1, . . . ,Vc}\L.

3

2
1

21

4

F L P \ L

12

32

23

43

34

21

12

32

23

43

34y(F,L)

Figure 3.3: The sets F (left) and L (center). y(F,L) is the sum over all y variables depicted on the
right side.

38 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

Similarly, further subgraph based constraints can be transferred:

Proposition 17. Let L ⊂ {V1, . . . ,Vc}, /0 ̸= L ̸= {V1, . . . ,Vc}, be a subset of the group set. Let
W ⊆V with |W | ≥ 3 be a vertex set which induces a clique (W,F) in (V,EY). Then,

y(F,L)≤
⌈
|W |
2

⌉
·
⌊
|W |
2

⌋
(3.21)

is valid for every partition vector y.

A graph is called a bicycle p-wheel if it consists of a cycle of length p as well as two additional
vertices s and t, which are adjacent to each other and to every vertex in the cycle. The bicyle
5-wheel is depicted in Figure 3.4.

Proposition 18. Let L ⊂ {V1, . . . ,Vc}, /0 ̸= L ̸= {V1, . . . ,Vc}, be a subset of the group set. Let
(W,F) denote a bicycle-p-wheel in (V,EY) with p ≥ 1. Then,

y(F,L)≤ 2p (3.22)

is valid for every partition vector y.

3.2.3 Combining x and y Variables

Both x- and y-variables are co-used within a single model by [JMN93], [XTP07], and [BS09]. We
have seen that every linear term in x-variables can be replaced by a linear term in y-variables. Even
though this allows for pure y-variable models, the authors prefer to use the x-variables to define the
partition, then link the y-variables to them. We will compare these two approaches in Section 4.6.
To link the y to the x-variables, the following products need to be linearized:

yuA,vB = xuA · xvB for all u,v ∈V,u ̸= v,A,B ∈ [c]. (3.23)

The linearization is achieved in the following way by all authors of our survey. We assume again
the variable yuA,vB to exist only for {u,v} ∈ EY , where EY ⊆V ×V is a subset of vertex pairs.

yuA,vB ≤ xuA for all uv ∈ EY ,A,B ∈ [c], (3.24)

yuA,vB ≤ xvB for all uv ∈ EY ,A,B ∈ [c], (3.25)

yuA,vB ≥ xuA + xvB −1 for all uv ∈ EY ,A,B ∈ [c], (3.26)

yuA,vB ∈ {0,1} for all uv ∈ E,A,B ∈ [c]. (3.27)

s

t

Figure 3.4: The bicycle 5-wheel.

3.3 EQUIVALENCE RELATION VARIABLES s, VERTEX SUBSET VARIABLES w 39

This is the standard linearization technique for binary programs. It is introduced by Balas [Bal64]
in 1964 and generally applicable to polynomials of any degree. An alternative is proposed by
Frieze and Yadegar [FY83] in an integer programming formulation for the Quadratic Assignment
Problem. As pointed out by Liberti [Lib07], it can be applied to a wide class of problems. It can
be easily verified that the pattern search problems which we deal with are part of this class. The
linearization constraints are the following ones.

xuA = ∑
B∈[c]

yuA,vB for all (u,v,k) with {u,v} ∈ EY ,A ∈ [c]. (3.28)

Proposition 19. For all binary vectors {xuA}u∈V,A∈[c] and all vectors {yuA,vB}(u,v)∈EY ,A,B∈[c] with
fractional non-negative entries, which satisfy Constraint (3.1) and (3.28), the relation yuA,vB =

xuA · xvB holds for all (u,v) ∈ EY and all A,B ∈ [c].

The proof follows from Liberti [Lib07]. Note that the relation yuA,vB = xuA · xvB does not hold
in LP relaxations of the model. If x is not binary, but can contain any fractional values from
the interval [0,1], the following vector satisfies Constraint (3.1) and (3.28): Set x ≡ 1/c, where
c is the number of vertex groups, yuA,vB = 1/c if A = B and yuA,vB = 0 otherwise. However, the
relation yuA,vB = xuA · xvB does not hold if A ̸= B.
Concerning the redundancy of the equations in Constraint (3.28), we can transfer a result by
Kaibel [Kai97] from his thesis on the Quadratic Assignment Polytope:

Proposition 20. The linear equation system consisting of constraints (3.1) and (3.28) can be turned
into a minimal one in the following way: For every uv ∈ EY , remove exactly one equation (3.28)
of the form (u,v,k).

3.3 EQUIVALENCE RELATION VARIABLES s, VERTEX SUBSET VARIABLES w

In clustering problems, it is relevant whether a certain edge is within a cluster or in-between two
clusters. If the constraints on all clusters (vertex groups) are identical, it is not necessary to know
which clusters the edge connects. In this case, a third kind of basic variable can be used. It exists
for each vertex pair and indicates whether the two vertices are in the same group:

suv =

{
1 if P(u) = P(v),

0 otherwise,

for all unordered vertex pairs {u,v} ⊆ V . Again, only the variables suv with u < v are introduced
for practical computations. In the following, we will identify suv with svu for ease of notation. The
variable defining constraints for s are well-known from models for the clique partitioning problem:

suv + svw − suw ≤ 1 for all distinct u,v,w ∈V, (3.29)

suv ∈ {0,1} for all distinct u,v ∈V. (3.30)

These variables are used by Grötschel and Wakabayashi [GW89], Mehrotra and Trick [MT98],
and Agarwal and Kempe [AK08].

40 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

Constraints on Group Sizes and Numbers of Groups. Constraints on the group sizes can be
modeled with s-variables as well. At least, if the number k of vertices requried in a group is at
least 2 and the same for all groups. We can then require each vertex v to share its color with at
least k−1 other vertices. The demand for groups of almost equal size can be modeled this way.

∑
u∈V\{v}

suv ≥ k−1 for all v ∈V. (3.31)

Let us now consider constraints on the number of groups. The following constraint (3.32) demands
at least two groups. However, there is no possibility to demand at least k groups for general k, as
the number of groups is not directly related to the number of same grouped pairs. It is not true that
a lower number of groups implies a larger number of same grouped pairs. For example, consider a
graph with 8 nodes (Figure 3.5). A partition into 2 groups of sizes 4 and 4 yields ∑u,v∈V suv = 12,
but a partition into 3 groups of sizes 1, 1 and 6 yields a sum of 15 > 12. Nevertheless, we present
a possibility to restrain the number of groups from above. For the typical case k ≪ |V |, we can
achieve this by adding Constraint (3.33).

∑
u,v∈V

suv ≥ 1, (3.32)

∑
u,v∈S,
u̸=v

suv ≥ 1 for all subsets S ⊆V with |S|= k+1. (3.33)

This latter constraint only allows solutions with at most k groups. In this case, there are two
vertices u,v with suv = 1 in every vertex subset S of cardinality k+1. Now assume the model had
a solution s with more than k groups. Let S denote the set that includes an arbitrary representative
node from each group. Choose a subset S′ ⊆ S with exactly k+1 elements. Then, suv = 0 holds for
all distinct nodes u,v ∈ S′. Hence, Constraint (3.33) is violated by S′. Unfortunately, the number
of constraints grows exponentially in the number of vertices. On the other hand, there is a linear
time separation procedure.

Vertex Subset Variables w. A fourth type of variable is used by Mehrotra and Trick [MT98]
in a column generation approach. They define a variable wS for each vertex subset S ⊆V . It takes
the value 1 if S is a group in the final partition, and 0 otherwise. One has to make sure that the
final groups contain all vertices and are non-overlapping. This can be achieved by the following

Figure 3.5: The set of 8 vertices (left) is partitioned into two groups (center) and three groups
(right). Edges represent s-variables.

3.4 MINIMUM BLOCKMODEL ERRORS BY POLYNOMIAL LINEARIZATION 41

constraint. It states that every vertex v must be included in exactly one group:

∑
S:v∈S

wS = 1 for all v ∈V, (3.34)

xS ∈ {0,1} for all S ⊆V. (3.35)

To have exactly k groups, one needs to add the equation ∑S⊆V wS = k to the model. To allow only
certain group sizes, one simply sets wS = 0 for all vertex sets S of inappropriate size.

3.4 MINIMUM BLOCKMODEL ERRORS BY POLYNOMIAL LINEARIZATION

In this chapter, we treat a variable that is needed in models for patterns of link existence. We
introduce it for directed graphs D = (V,A(D)), as the undirected case can be modeled analogously.
Recall that the image matrix entry IAB = 1 requires many vertices in group VA to have at least one
successor vertex in group VB. The penalty variable αv,AB is used to indicate a violation against
this requirement. That is, its value is 1 if vertex v is in group VA, but does not have any successor
in group VB. Similarily, β variables are defined to indicate a violation against the predecessor
requirement. Recall that IAB = 1 also requires many vertices in VB to have at least one predecessor
in group VA. That is,

αv,AB =

{
1 if P(v) = A and there is no w ∈V with (v,w) ∈ A(D) and P(w) = B,

0 otherwise.

βv,AB =

{
1 if P(v) = B and there is no w ∈V with (w,v) ∈ A(D) and P(w) = A,

0 otherwise.

To our knowledge, Brusco and Steinley [BS09] are the only authors to use this variable in an
integer programming model. They use a static constraint to define it. In this chapter, we derive
for each variable an exponential-size family of constraints, where each member of the family can
be used to define the variable. The family evolves through different ways of linearization of the
so-called α-defining polynomial. In Section 4.3, a polynomial time separation procedure to be
used in cutting plane algorithms is described. We furthermore show that the constraint of Brusco
and Steinley is a member of this family.

3.4.1 Linearization of Error Defining Polynomials

We begin with some general assumptions. We assume that the input to our integer programming
model contains a directed graph D = (V,A(D)) to be searched for patterns, as well as a number c
of groups we want to partition the vertex set V into. For ease of notation, let us always consider
the penalty variable α0,AB. I.e., the penalty inducing vertex is 0, and the image matrix entry to be 1
is IAB. We thus omit the indices wherever possible. Furthermore, let us assume that the successor
vertices N+(0) of vertex 0 are {1,2, . . . ,N := deg+(0)}. All assumptions can be made without
loss of generality. Moreover, all results can be easily transferred to β variables as well.

42 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

We will now see how the variable α can be defined by using vertex assignment variables x and
edge assignment variables y from the preceding chapter.
Generally, the variable α can be defined by a constraint

α = p(x,y),

where p(x,y) is a polynomial function in the vertex assignment variables x and the edge assign-
ment variables y. In order to state a possible realization of p(x,y), some further definitions are
required. Recall that xuA = 1 if u is assigned to group A. We define xuA = 1 if u is not in group VA.
Furthermore, we use a similar notation for the edge assignment variables y. The variable yuA,vB
is 1 if u is not in group VA, but v is in group VB. Similarily, yuA,vB is 1 if neither u is in group VA

nor v is in group VB:

xvA := 1− xvA,

yuA,vB := xuA − yuA,vB,

yuA,vB := xvB − yuA,vB,

yuA,vB := yuA,vB − xuA − xvB +1.

Using this notation, the polynomial p(x,y) can be realized as follows.

p(x,y) := x0A

N

∏
v=1

xvB. (3.36)

It takes a value of 1 if and only if vertex 0 is in group VA, but no successor is in group VB. Hence,
the constraint α = p(x,y) defines α . To avoid the distinction between 0 and its successors in more
complex formulae, we introduce

x̃v =

{
x0A if v = 0,

xvB otherwise,
ỹuv =

⎧⎪⎪⎨⎪⎪⎩
y0A,vB if u = 0, v ̸= 0,

yuB,0A if v = 0, u ̸= 0,

yuB,vB if u,v ̸= 0,

(3.37)

and sometimes write ỹuu instead of x̃u. The polynomial defined by Equation (3.36) can now be
re-written as

p(x,y) :=
N

∏
v=0

x̃v. (3.38)

A B

1

0

2

3

N

...

0

1

2

3

Figure 3.6: Left: The standard setting (vertex 0 and its successors 1 to N, groups VA and VB).
Right: Example for α0,AB = 1 (vertex 0 is in VA, but none of its three successors is in VB).

3.4 MINIMUM BLOCKMODEL ERRORS BY POLYNOMIAL LINEARIZATION 43

p(x,y), as realized in Formula (3.38), is a polynomial function of degree N + 1. If N ≤ 1 holds,
i.e., if vertex 0 has either no or one successor, α can be defined by a linear constraint respectively:

α = x0A, (3.39)

α = y0A,1B.

For a greater value of N, there is also a way to define α by linear constraints.

3.4.2 Bounding the Error From Below

As a starting point, the following constraint bounds α from below for all N ≥ 2:

N

∑
v=0

x̃v ≤ α +N. (3.40)

Only if all summands on the left-hand side are 1, the penalty α is forced to be 1 as well. On the
left-hand side of this inequality, the product in Equation (3.38) was replaced by the sum of the
very same variables. More generally, it can be replaced by any sum of products of these variables.
To this end, let S0,S1, . . . ,Sk denote a covering of {0, . . . ,N} with non-empty, possibly overlapping
subsets Si. Then, the following inequality defines α:

k

∑
i=0

∏
v∈Si

x̃v ≤ α + k. (3.41)

Constraint (3.40) is a special case that is obtained by setting Si = {i}. Again, α is forced to be 1
only if all variables on the left-hand side are 1 as well. In this case, vertex 0 is in group VA, but
none of its successors is in group VB. Assuming that all possible y-variables exist in the model,
the constraint is linear in x and y if and only if |Si| ≤ 2 for all i = 0, . . . ,k. In this case, the sets Si

are of the form Si = {ui,vi} for not neccessarily distinct ui and vi. Constraint (3.41) then has the
following linear form:

k

∑
i=0

ỹuivi ≤ α + k. (3.42)

We present two ways to strengthen the linearization in Constraint (3.42). The first linearization
technique to be presented replaces the constant k on the right-hand side by a sum of variables,
which has a value of at most k. To see which variables are used in the replacement, we introduce
an undirected graph Gα = (Vα ,Eα). As on Page 35, let EY denote the set of all vertex pairs for
which all y-variables exist in the model. That is, uv ∈ EY if and only if yuC,vD is in the model for
all C,D ∈ [c]. The graph Gα has the vertex set Vα := {0, . . . ,N}. Its edge set Eα is EY restricted
on the vertices in Vα together with all loop edges vv on all vertices v ∈ {0, . . . ,N} (see Figure 3.7).
Colorings of the edges of Gα are now considered. We call a coloring a blue coloring, if every edge
is either blue or uncolored and the blue edges form an edge cover of Gα . Recall that an edge cover
is a set of edges such that every vertex is incident to at least one edge of the set (see Figure 3.7).
Note that this requirement is equivalent to the covering condition for the sets Si = {ui,vi}, if the
uivi are interpreted as blue edges. Using this notation, Constraint (3.42) can be re-written in the

44 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

following way. There, B ⊆ E(Gα) denotes the set of blue edges in a blue coloring of Gα .

∑
uv∈B

ỹuv ≤ α + |B|−1. (3.43)

Given a blue edge coloring, we call a function r a blue endnode mapping if it maps every blue
edge onto exactly one of its end nodes. Let |r−1(v)| denote the number of blue edges which are
mapped onto vertex v (see Figure 3.7).

Proposition 21. Constraint (3.43) can be strengthened to the following one, where B are the blue
edges in a blue coloring of Gα and r is a blue endnode mapping.

∑
uv∈B

ỹuv + ∏
v=0,...,N:
|r−1(v)|̸=0

x̃v ≤ α + ∑
v=0,...,N

|r−1(v)|x̃v. (3.44)

Proof. Consider a binary partition vector (x∗,y∗). In case that the product equals 1, the sum on
the right-hand side equals |B| and the inequality is hence the same as in Constraint (3.43). Now
consider the case in which the product equals 0. That is, there is a non-empty set X0 of all vertices v
with x̃∗v = 0 and |r−1(v)| ̸= 0. For every w ∈ X0, there are |r−1(w)| variables ỹ∗ on the left-hand
side that equal 0. These are those ỹ variables that correspond to the blue edges which are mapped
onto w by the function r. All in all, at least ∑w∈X0 |r

−1(w)| of the ỹ∗ variables equal 0. The left-hand
side value lhs(x∗,y∗) is hence at most |B|−∑w∈X0 |r

−1(w)|. The right-hand side is α + rhs(x∗,y∗),
where rhs(x∗,y∗) is at least |B| −∑w∈X0 |r

−1(w)|. The constraint is thus satisfied for any binary
value of α .

To our knowledge, α-variables are only used by Brusco and Steinley [BS09] in literature. Let us

1

0 2

3

1

0 2

3

1

0 2

3

0

0

2

1

Figure 3.7: Graph Gα (left), a blue coloring of Gα (center), and a blue endnode mapping of the
blue coloring (right) with values |r−1(v)| at the vertices.

3.4 MINIMUM BLOCKMODEL ERRORS BY POLYNOMIAL LINEARIZATION 45

show that their α defining constraints are of the form described in Constraint (3.44).

N

∑
v=1

y0A,vB +α ≥ x0A (Brusco & Steinley) (3.45)

⇔
N

∑
v=1

y0A,vB ≥−α +1− x0A

⇔
N

∑
v=1

(y0A,vB + x0A)≥−α +1+(N −1)x0A

⇔
N

∑
v=1

(1− y0A,vB)≥ 1−α +(N −1)(1− x0A)

⇔
N

∑
v=1

y0A,vB ≤ α +(N −1)x0A

⇔
N

∑
v=1

ỹ0v ≤ α +(N −1)x̃0

The final inequality is of our type, where the blue edges are the star graph centered at 0 and the
function r maps all blue edges onto vertex 0 (see Figure 3.8).
Constraint (3.44) is not linear in (x,y) if the blue edges are mapped onto 3 or more distinct vertices.
One possibility is to introduce a new variable to represent the product. In this case, at most
2|V | additional variables are needed to define all α and β variables. This number is especially
independent of the number of partitions and the vertex degrees. A second possibility is to use a
weaker, but linear version of the constraint. As an example, define r̃(v)= |r−1(v)|−1, if |r−1(v)| ̸=
0, and r̃(v) = 0 otherwise. The correctness of the following constraint can be easily shown.

∑
uv∈B

ỹuv ≤ α + |B|−1+
N

∑
v=0

r̃(v)(x̃v −1) (3.46)

We now present a second possibility to strengthen Constraint (3.43). Here, further y-variables are
added to the left-hand side of the inequality. They are denoted by ŷ.

ŷuv =

⎧⎪⎪⎨⎪⎪⎩
y0A,vB if u = 0, v ̸= 0,

yuB,0A if v = 0, u ̸= 0,

yuB,vB if u,v ̸= 0.

Again, the variables to be added can be interpreted as edges in Gα . We call them the red edges.
An edge coloring of Gα is called a blue-red coloring, if every edge is either blue, red, or uncolored
and

1. the blue edges form an edge cover of Gα ,

2. every set of h red edges is incident to at least h+1 blue edges, for all h ∈ N+.

An example for a blue-red coloring is depicted in Figure 3.8.

46 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

Proposition 22. Constraint (3.43) can be strengthened to the following one, where B and R are
the blue and red edges in a blue-red coloring of Gα :

∑
uv∈B

ỹuv + ∑
uv∈R

ŷuv ≤ α + |B|−1. (3.47)

Proof. If R is empty, the inequality reduces to Constraint (3.43), the validity of which has already
been proven. Assume R to be non-empty. Consider a binary partition vector y∗ and note that all
entries of ỹ∗ and ŷ∗ are binary. Let R1 denote the subset of R containing those edges uv ∈ R with
y∗uv = 1. Define B0 analogously. By Condition 2, there are at least |R1|+ 1 blue edges incident
to R1. These incident edges are all in B0 by the definition of ỹ and ŷ. It follows that |B0| > |R1|.
Thus, the inequality remains valid if R is non-empty.

3.4.3 Bounding the Error From Above

Even though the values of the α-variables are usually minimized, as α = 1 indicates a deviation
from a pattern of link existence, there are models which require α to take an exact value. In these
cases, α needs additionally to be bounded from above. This can be achieved in a straightforward
way by linearizing the constraint

α ≤
N

∏
v=0

x̃v (3.48)

with the following set of linear constraints:

x̃v ≥ α for all v = 0, . . . ,N. (3.49)

This set of constraints already suffices to set α to 0 in all partitions that are not penalty inducing.
Again, the model formulation can be improved by interpreting these constraints as a subset of a
larger family of constraints. The general form of the member constraints is the following one. It
depends on a set S of indices:

∑
(u,C,v,D)∈S

yuC,vD ≥ α. (3.50)

We now examine for which choices of S the above inequality is valid. To this end, we introduce
for each vertex v the set Penv(α0,AB) of penalty inducing groups:

Penv(α0,AB) =

{
{A} if v = 0,

[c]\{B} otherwise.

1

0 2

3

1

0 2

3

1

0 2

3

Figure 3.8: A graph Gα (left), blue endnode mapping used by Brusco and Steinley (center), and
an example for a blue-red coloring (right) with red (dashed) and blue (solid) edges.

3.4 MINIMUM BLOCKMODEL ERRORS BY POLYNOMIAL LINEARIZATION 47

That is, α0,AB = 1 if and only if every vertex v for v= 0, . . . ,N is assigned to a group in Penv(α0,AB).
We will now show that Constraint (3.50) is valid if the set S is above bounding:

Definition 10. A set S⊆Vα × [c]×Vα × [c] is called above bounding for α , if for each c-partition P
with P(v) ∈ Penv(α) for all v = 0, . . . ,N, there are two distinct indices i, j ∈ {0, . . . ,N} such that
(i,P(i), j,P(j)) ∈ S.

Proposition 23. Constraint (3.50) is a valid inequality if and only if the set S is above bounding
for α .

Proof. Assume the constraint is valid. Then, for every partition P which is error inducing for
α , i. e., α = 1, at least one y-variable on the left-hand side takes a value of 1. This variable
has the form yuP(u)vP(v) with P(u) ∈ Penu(α) and P(v) ∈ Penv(α). Hence, (u,P(u),v,P(v)) ∈ S,
which implies that S is above bounding. Now assume that S is above bounding. Then, for every
partition P which is error inducing, there are two indices i, j with (i,P(i), j,P(j)) ∈ S. Hence, the
variable yiP(i) jP(j) exists on the left-hand side of the constraint and takes the value 1. The constraint
is hence satisfied.

We will show that a set S is above bounding if and only if the following graph GS
α = (V S,ES) does

not contain a generalized hamiltonian cycle. The vertex set V S is the union of N+1 disjoint vertex
sets V S

i :

V S
i = {(i,X) | X ∈ Peni(α)}, (3.51)

V S =
N⋃

i=0

V S
i . (3.52)

The vertices in V S are depicted in Figure 3.9. The edge set ES is the complete (N + 1)-partite
graph with shores V S

i . together with loop edges on all vertices, where all edges in S are removed.

ES ={uv | u ∈V S
i ,v ∈V S

j , i ̸= j}∪{uu | u ∈V S}
\{uv | (u,X ,v,Y) ∈ S}. (3.53)

0A

1A

1C

1D

2A

2C

2D

3A

3C

3D

4A

4C

4D

V S1V S0 V S2 V S3 V S4

Figure 3.9: The sets V S
i for N = 4 and c = 4.

48 VARIABLES IN INTEGER PROGRAMS FOR PATTERN SEARCH PROBLEMS

Definition 11. A clique in GS
α is called a partition spanning clique, if it contains exactly one

vertex of every set V S
i for i = 0, . . . ,N.

Proposition 24. A set S ⊆Vα × [c]×Vα × [c] is above bounding for α , if and only if the graph GS
α

does not contain a partition spanning clique.

Proof. Consider an above bounding set S. Assume that there was a partition spanning clique C
in GS

α . Let (0,X0), . . . ,(N,XN) denote the vertices of the clique. Then, the partition P defined
by P(i) = Xi for i = 0, . . . ,N satisfies P(v) ∈ Penv(α). Hence, as S is above bounding, there are
two indices i, j with (i,Xi, j,X j) ∈ S. This implies that the edge (i,Xi)(j,X j) is not in GS

α , which
contradicts the assumption that C was a clique.
Consider the case that GS

α does not contain a partition spanning clique. Assume that S is not above
bounding. Then, there is a partition P with P(v) ∈ Penv(α) for all v, such that for all index pairs
i, j holds that (i,P(i), j,P(j)) /∈ S. It follows that the vertices (0,P(0)), . . . ,(N,P(N)) induce a
partition spanning clique, which contradicts the assumption.

We now give two examples of above bounding sets which can be used for any number N of
successor vertices. The two sets are visualized in Figures 3.10 and 3.11. In these figures, the
edge (u,X)(v,Y) is drawn if (u,X ,v,Y) ∈ S. To verify that S is indeed above bounding, Proposi-
tion 24 can be used: In the figure, check that there is no stable set containing exactly one vertex
from each partition V S

i .

Proposition 25. .

a) If u,v ∈ {0, . . . ,N} are two distinct vertices, then the following set S is above bounding for
α:

S = {uHvK | H ∈ Penu(α),K ∈ Penw(α)}. (3.54)

b) Let π denote a permutation of the vertices in {0, . . . ,N} with π(0)= 0. Let C∗ : {0, . . . ,N}→
Pen denote a function which assigns every vertex v an element in Penv(α). If the number p
of partitions is at least 3, the following set S is above bounding for α:

S = {(π(v),C∗(π(v)),π(v+1),D) | D ∈ Penπ(v+1)(α)\{C∗(π(v+1))},v = 0, . . . ,N −1}
∪ {(π(N),C∗(π(N)),0,A)}. (3.55)

0A

1A

1C

1D

2A

2C

2D

3A

3C

3D

4A

4C

4D

Figure 3.10: The set S from Proposition 25 a) with c = 4, N = 4, u = 1, and v = 2.

3.4 MINIMUM BLOCKMODEL ERRORS BY POLYNOMIAL LINEARIZATION 49

0A

1A

1C

1D

2A

2C

2D

3A

3C

3D

4A

4C

4D

Figure 3.11: The set S from Proposition 25 b) with c = 4, N = 4, π = id (identity mapping), and
C∗(i) = D for i = 1, . . . ,N, C∗(0) = A.

Proof. .

a) The resulting inequalities can be written in the following way. As they are obviously valid,
S is above bounding according to Proposition 23.

yuD,vD ≥ α if u ̸= 0 ̸= v,

yuC,vD ≥ α if u = 0.

b) Consider a partition P with P(v) ∈ Penv(α) respectively. Assume (π(v),P(π(v)),π(v+
1),P(π(v + 1))) /∈ S for all v = 0, . . . ,N − 1. Then, P(π(N)) = C∗(π(N)) and P(0) =
C∗(0) = A, thus (π(N),P(π(N)),0,P(0)) = (π(N),C ∗ (π(N)),0,A) ∈ S. Hence, S is above
bounding.

Chapter 4

BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

In this chapter, we investigate a specific pattern search problem. We are the first authors to con-
sider it. In our opinion, the problem is interesting for three reasons. First, it can be seen as the
most straightforward model to measure the deviation of a given network from a given pattern, as it
counts the number of non-fitting arcs. Still, we show that this problem is already NP-hard. Second,
we show that the problem is the generalization of several well-studied combinatorial optimization
problems, such as the traveling salesman, the linear ordering, and the quadratic assignment prob-
lem. We show how to exploit these relations algorithmically. Third, the problem can be solved
exactly for real-world problems with more than 100 vertices.
We develop a branch-and-cut algorithm to solve the problem to optimality, whose strength lies
both in the exploitation of the results of Chapter 3, as well as the development of problem-specific
separation routines, as well as primal and dual heuristics. We show that our algorithm is up to
10,000 times faster than comparable models from literature.
Section 4.1 introduces the problem and shows its NP-hardness as well as its relations to its well-
known special cases. Section 4.2 explains the network instances which are used to test all compo-
nents of the branch-and-cut algorithm. In Section 4.3, new cutting plane separation algorithms for
the constraints introduced in the preceding chapter are discussed. Sections 4.4 and 4.5 introduce
new primal and dual heuristics and show their suitability in computational tests respectively. We
finally present computational results for the complete algorithm in Section 4.6.

4.1 THE OPTIMIZATION PROBLEM

In this section, we introduce a combinatorial optimization problem. Even though it is one of
the most simple approaches to search for patterns of link existence, it has not been studied so
far. According to our classification scheme in Chapter 2, it can be characterized as the subgraph
relaxation method with both the most basic distance function and penalty combination function:

• Ideal graphs are used,

• d(GP,A,B,HP,A,B) = ∑u,v∈V,u̸=v |Ad j(GP,A,B)u,v −Ad j(HP,A,B)u,v|,

51

52 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

• p(P) = ∑A,B∈[c],A≤B pAB(P).

To make this chapter self-contained, we shortly motivate and explain this model again. We have
seen in Section 2.2.1 that many real-world networks do not show a clear link pattern in the case
that a small number of vertex groups is demanded. It is thus necessary to relax the strict definition
of ideal regular vertex partitions (Definition 1 on Page 14). If subgraph relaxations are chosen,
we measure for each pattern (image graph) the amount of link changes in the network which are
necessary to obtain a network which perfectly shows the given pattern. The smaller the amount
of necessary changes, the more suitable is the pattern to describe the network’s structure. Possi-
ble “changes” are the addition and deletion of arcs from the network graph. I. e., entries in the
adjacency matrix of the network graph can be changed. The lower the number of changes, the
better the image graph. To sum up, the optimization problem to find the best image graph can be
formulated as follows:

Definition 12. Let D denote a digraph and I a c× c binary matrix for a c ≥ 1. REG(D, I) is the
set of all pairs (H,P), such that H is a graph with the same vertex set as D such that the vertex
partition P is an ideal regular c-partition on H with image matrix I.

Problem 1. Given a digraph D = (V,A) and a number c ≥ 1 of vertex groups, solve

min
I∈{0,1}c×c

min
(H,P)∈REG(D,I)

∑
u,v∈V,u̸=v

|Ad j(D)u,v −Ad j(H)u,v|. (4.1)

The solution of the inner minimization hence gives the number of adjacency matrix changes which
are necessary to obtain a graph which perfectly has the pattern described by image matrix I. The
outer minimization finds the best out of all image matrices. A weighted version of this problem can
be formulated by introducing two weight matrices: A matrix W ∈ R|V |×|V | to specify individual
costs for adding or deleting an arc from D and a matrix B ∈Rc×c to model that the cost for adding
an arc can depend on the groups the arc is added between. In the weighted problem, Formula (4.1)
thus needs to be replaced by

min
I∈{0,1}c×c

min
(H,P)∈REG(D,I)

∑
u,v∈V,u̸=v

WuvBP(u)P(v)|Ad j(D)u,v −Ad j(H)u,v|. (4.2)

4.1.1 Hypothesis Test

Let us now consider the inner minimization in Problem 1. That is, Problem 1 with the additional
constraint that an image matrix I is fixed:

Problem 2. Given a digraph D = (V,A), a number c ≥ 1 of vertex groups, and a c× c binary
matrix I, solve

min
(H,P)∈REG(D,I)

∑
u,v∈V,u̸=v

|Ad j(D)u,v −Ad j(H)u,v|. (4.3)

That is, given a pattern represented by an image matrix I, decide how well the network D matches
the pattern. An example is given in Figure 4.1. Given the image graph in a), whose adjacency
matrix is an image matrix denoted by I, and the digraph D in b), the optimum solution value to

4.1 THE OPTIMIZATION PROBLEM 53

1
2

3

6
4

5a) b) c)

Figure 4.1: Example for Problem 2.

Problem 2 for D and I is 1, as c) shows that only one arc (from 2 to 3) needs to be deleted such
that I is an image matrix for D.
This problem is a so-called hypothesis test. The hypothesis that the given network D has a certain
link pattern can be compared to alternate hypotheses assuming distinct patterns. We have seen in
Section 1.4 that these hypothesis are sometimes formulated by experts in the field of application.
In the case of the world trade network, Wallerstein states the hypothesis that the world trade system
has a core-semiperiphery-periphery rather than a core-periphery structure, which is later confirmed
by Smith and White [SW92]. The two hypotheses can thus be compared by solving Problem 2
for both corresponding image matrices. The hypotheses can also be formulated by heuristics in
the case of the absence of an expert. Brusco and Steinley [BS09] propose a 2-step procedure in
this case: First, a short list I1, . . . , Ik of potentially good image matrices is heuristically obtained.
Second, Problem 2 is solved for all image matrices Ii. The matrix I∗i with the lowest optimum
value represents the actual link pattern in the best way.

4.1.2 NP-Hardness and Relation to Combinatorial Problems

Both Problem 1 and Problem 2 are NP-hard. The proof follows from the fact that the penalty
function (4.1) is regularly sensitive (Definition 7 on Page 27), as the four conditions stated on
Page 27 are all met. The NP-hardness of Problem 1 then follows from Proposition 7 on Page 28,
the NP-hardness of Problem 2 from Proposition 8 on Page 28.
We are the first authors to consider the two optimization problems above. We now show that they
are not only interesting from the viewpoint of network analysis, but also from a combinatorial op-
timization perspective. Problem 2 is in fact a generalization of several well-known combinatorial
optimization problems. Some of them, especially the Quadratic Assignment Problem, are known
to be difficult to solve even for small instance sizes.

Quadratic Assignment. Input of the problem is a number k of facilities (or locations), a k× k
weight matrix W QAP, and a k×k distance matrix BQAP. The problem is to find an assignment f of
facilities to locations such that ∑i, j∈[k],i̸=k W QAP

i, j BQAP
f (i) f (j) is minimized.

The problem can be solved by solving Problem 2 with the following input data. Set D to the
complete graph Kk, I to the k× k zero matrix (see Fig. 4.2 a)), W =W QAP, and B = BQAP.
Consider a solution (H∗,P∗) which takes the optimum value. As all image matrix entries are 0,
all arcs in Kk have been deleted, that is, H∗ is an empty graph. The cost for deleting arc uv is
WuvBP(u)P(v) = W QAP

uv BQAP
P(u)P(v). It is hence the cost for placing facilities u and v at locations P(u)

and P(v) respectively. P∗ is thus the optimum assignment of the facilities to the locations.
Note that because Kk is directed, both of the anti-parallel arcs uv and vu need to be deleted. The

54 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

a) b) c)

Figure 4.2: Image graphs used in the transformations from the Quadratic Assignment (a), Linear
Ordering (b), and Asymmetric Traveling Salesman Problem (c).

optimum value to Problem 2 is hence twice the cost of the optimum quadratic assignment. Alter-
natively, one could set the matrices W = 1

2W QAP and B = 1
2 BQAP.

Linear Ordering. Input of the problem is the complete digraph Kk, with vertex set Vk, and edge
weights puv (preferences). The problem is to find a linear ordering π : V → [k] of the vertices such
that ∑u,v∈V :π(u)<π(v) puv is maximized.

Set D = Kk, I to the |Vk|× |Vk| upper triangular matrix, Wuv = puv, and B ≡ 1.

Consider a solution (H∗,P∗) which takes the optimum value. P∗ assigns every vertex to a distinct
group, hence to a distinct integer in [k] and hence defines an ordering of the vertices. As the image
matrix is upper triangular, the image graph contains exactly all forward arcs, that is, all arcs from i
to j > i. H∗ contains thus only forward arcs. The backward arcs must be deleted from D with the
cost WuvBP(u)P(v) = puv for the arc uv. The total cost is hence the sum of all backward preferences.
Its minimization is equivalent to the maximization of the forward preferences, as it is done in the
Linear Ordering Problem. The ordering induced by P∗ is thus the optimum linear ordering.

The transformations for the following four problems are analogous to the two examples above.

Asymmetric Traveling Salesman. Input of the problem is the complete digraph Kk and arc
weights duv (distances). The problem is to find a directed Hamiltonian cycle with the lowest sum
of distances on its arcs. Set D = Kk, I to a directed cycle graph of length k, Wuv =−duv, and B ≡ 1.

Minimum k-Cut. Input of the problem is a number k of shores and an undirected graph G =

(V,E) with edge weights cuv. The problem is to find a partition P of V into k groups such that the
sum of edges in-between the groups is minimized: min∑u,v∈V :P(u)̸=P(v) cuv.

Set D to G, I to the k× k zero matrix, Wuv = cuv for all uv ∈ E, Wuv = 0 otherwise, and Bi j = 1 for
all i ̸= j Bi j = 0 otherwise.

Minimum Edge Cover. Input of the problem is a graph G = (V,E) with edge weights cuv. The
problem is to find an edge set E ′ ⊆ E with minimum total weight such that every vertex in V is
incident to at least one edge in E ′.

Set D = G, I to a 2× 2 matrix with Ii j = 0 if and only if i = j, Wuv = −1 for uv ∈ E, Wuv = M
otherwise with a large positive number M, and B ≡ 1.

4.1 THE OPTIMIZATION PROBLEM 55

Newman-Girvan Modularity. Input for the problem of maximizing the Newman-Girvan mod-
ularity [NG04] is a graph DM = (VM,AM) and a number k of clusters. The problem is defined on
Page 23.
Set D = DM, I to the k × k zero matrix, Wuv = |N+(u)||N−(v)|/|AM|2 for all u = v, Wuv = 1−
|N+(u)||N−(v)/|AM|2 otherwise, and B ≡ 1.

4.1.3 Integer Quadratic Programming Formulations

We model Problem 1 and 2 as integer quadratic programs. The models are based on the variable
types x, y, s, and α as defined in Chapter 3. To state the model for Problem 1, an additional
variable type is needed. It indicates whether an edge uv exists in the ideal graph H that the original
network D = (V,A) is being compared to.

huv =

{
1 if arc (u,v) exists in the modified network H,
0 otherwise,

for all distinct u,v ∈V . The model can then be formulated as follows.

Model 1.
min
h,x

|A|+ ∑
(u,v)/∈A

huv − ∑
(u,v)∈A

huv

∑
b∈V\{a,v}

sab ·hvb ≥ suv ·hua for all u,v,a ∈V,a ̸= u ̸= v, (4.4)

∑
b∈V\{a,v}

sab ·hbv ≥ suv ·hau for all u,v,a ∈V,a ̸= u ̸= v, (4.5)

∑
u,v∈C

suv ≥ 1 for all C ⊆V with |C|= c+1, (4.6)

suv + svw − suw ≤ 1 for all pairwisely distinct u,v,w ∈V, (4.7)

suv,huv ∈ {0,1} for all u,v ∈V. (4.8)

The objective function minimizes the number of added arcs (∑(u,v)/∈A huv) and the number of re-
moved arcs (|A|−∑(u,v)∈A huv). Constraints (4.4) and (4.5) assure that the partition is ideal regular
on the digraph H: Consider Constraint (4.4). In the case that the right-hand side equals 0, the
constraint is satisfied. If it equals 1, we obtain a situation as depicted in Figure 4.3a): The arc ua
exists in H, u and v are in the same group of the partition. According to Definition 3(ii) on Page 15
for ideal regular partitions, at least one successor vertex bi of v must be in the same group as a,
thus

∑
b∈V,b ̸=a

sab ·hvb ≥ 1.

The constraints (4.6) limit the maximum number of groups to c. The transitivity constraints (4.7)
demand the s-variables to take consistent values.
The model for Problem 2 also requires the introduction of an additional variable type p. For
each pair (A,B) of vertex groups, it specifies the number of arcs from A to B that need to be

56 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

added. Denote by a the number of vertices in A missing an arc into B and by b the number of
vertices in B missing an arc from A. Clearly, max{a,b} arcs need be inserted to obtain the ideal
situation in which all vertices in A have an arc into B and vice versa. Hence, pAB can be defined as
pAB := max{∑u∈V αuAB,∑u∈V βuAB}. Recall that N+(u) (N−(u), resp.) denote the set of successor
(predecessor, resp.) vertices of u in D. We now state a model for Problem 2 without arc weights
(W ≡ 1) and with positive group pair weights (B > 0):

Model 2.
min ∑

(u,v)∈A
∑

a,b∈[c]
Iab=0

Babxuaxvb + ∑
a,b∈[c]
Iab=1

Bab pab (4.9)

∑
a∈[c]

xua = 1 for u ∈V, (4.10)

∑
u∈V

xua ≥ 1 for a ∈ [c], (4.11)

xua + ∑
v∈N+(u)

(1− xvb)≤ αuab + |N+(u)| for u ∈V,a,b ∈ [c], Iab = 1, (4.12)

xub + ∑
v∈N−(u)

(1− xva)≤ βuab + |N−(u)| for u ∈V,a,b ∈ [c], Iab = 1, (4.13)

pab ≥ ∑
u∈V

αuab for a,b ∈ [c], Iab = 1, (4.14)

pab ≥ ∑
u∈V

βuab for a,b ∈ [c], Iab = 1, (4.15)

xua,αuab,βuab binary, pab integer for . . . (see above). (4.16)

We now show the correctness of the formulation. If Iab = 0, then there are no arcs from group a
to group b in an ideal regular partition. The double sum of the objective function hence counts the
number of such arcs, as they need to be deleted to obtain a ideal regular partition. If Iab = 1, then
pab expresses the minimum number of arcs to be added in order to obtain an ideal regular partition
between groups a and b. Constraints (4.10) and (4.11) assure that P is a partition without empty
groups. Constraints (4.14) and (4.15) define pab = max{∑u∈V αuab,∑u∈V βuab} in every optimum
solution. Constraint (4.12) defines the α-variables. If u is in group a, but none of its successors
in b, then the penalty variable αuab is forced to be 1. In any other case, it may take both of the
values 0 and 1. Note that pab will nevertheless have a correct value in every optimum solution due
to the minimization of the objective function. The β variables are defined analogously in (4.13).
In order to linearize Model 2, we introduce edge assignment variables y as in Section 3.2. Recall
that yua,vb models the product xua · xvb. Furthermore, EA denotes the edge set of the underlying

a)

u va b2

b1

b3

a vu b2

b1

b3 b)

Figure 4.3: Explaining Constraints (4.4) and (4.5).

4.2 COMPUTATIONAL SETTING AND TEST INSTANCES 57

undirected graph of D (Page 35). The correctness of the following linearized model follows from
the proofs in Section 3.2.

Model 2-lin.
min ∑

(u,v)∈A
∑

a,b∈[c]
Iab=0

Babyua,vb + ∑
a,b∈[c]
Iab=1

Bab pab (4.17)

Constraints (4.10) - (4.16),

xua = ∑b∈[c] yua,vb for all uv ∈ EA,a ∈ [c], (4.18)

yua,vb ≥ 0 for uv ∈ EA,a,b ∈ [c]. (4.19)

4.2 COMPUTATIONAL SETTING AND TEST INSTANCES

In the following sections, we present primal and dual heuristics, separation routines, and a branch-
and-cut algorithm for the problems above. All of these components are tested separately in order
to measure their individual strength. However, we use a common test environment as well as
common test graph instances, which are introduced in this section.

Computational setting. We implemented all tested models and separation routines in the branch-
and-cut framework SCIP 3.1.0 [Ach09] in C++. In SCIP, we used the default values for all 1628
standard parameters. SCIP uses CPLEX 12.6 as its LP solver. The experiments were carried out
on a desktop computer with 1.9 GHz clock speed and 4 GB random access memory under Ubuntu
Linux 14.04 LTS. A single processor core was used during the computations.

Watts-Strogatz Random Graphs (ws). The Watts-Strogatz algorithm [WS98] is used to gen-
erate random digraphs. It produces digraphs that are similar to social networks with respect to
the properties short average path lengths, high clustering coefficient, and a homogeneous degree
distribution. The digraph D is produced as follows. In a first step, n vertices are created and
numbered 0, . . . ,n−1. Then, each vertex i is linked to its three neighbor vertices i+1, i+2, i+3
(mod n respectively). We give each link a random direction to obtain a digraph. In a second step,
we consider each arc and rewire it with a probability of 10%. To rewire arc (u,v) means that v is
replaced by a random vertex in V \N+(u), where N+(u) are the current successors of u in order
to avoid duplicate links. See Figure 4.4 for an example showing Step 1 (left) and Step 2 (right)
without arc directions. 4×4 image matrices are computed randomly according to a uniform dis-
tribution.

As the tested image graph is computed randomly, we expect a large optimum value; the random
network is unlikely to have the particular structure indicated by the image graph. Moreover, as
the network itself is random, a good description by any image graph is unlikely. For this reason,
we use a second random digraph generator. In a first step, it randomly generates an image graph.
Secondly, it constructs a network that has a perfect regular coloring with the given image graph.

58 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

The optimum value would hence be 0, if it was not for a third step: The random network is distorted
by adding and deleting edges. The amount of distortion can be specified by the user. This pair of
network and image graph models the realistic scenario in which a heuristic or an expert already
provided a good image graph description of the network.

Distorted Random Graphs (rd). Four parameters n, c, d and k are required. First, a num-
ber o of one-entries in the image matrix is randomly chosen from {0, . . . ,c2}. Among all c× c
image matrices with o one entries, one matrix I is randomly chosen. Now, c−1 distinct integers
n1, . . . ,nc−1 are randomly selected from [1,n]. The vertices ni+1 to ni+1 are colored with i+1 for
i = 0, . . . ,c− 1, with n0 = 0 and nc = n. Third, arcs are inserted such that the coloring is regular
with respect to I and the density d is approximately reached. Finally, the resulting digraph is dis-
torted by adding k arcs and deleting from k vertices either all incoming or all outgoing arcs. Let D
denote the distorted digraph. The test is then to solve Problem 2 for digraph D and image matrix I.
We set c = 4 in all tests and generate one set of instances for k = 10 and k = 100 respectively.

German Photo Trading Network (p). We use a real-world network on the trading between
German photo agencies in 2005. It has 70 nodes, but only 87 arcs. As image matrices, we take the
three market structures depicted in Fig. 4.5. The instances are hence named ph A to ph C.

4.3 SEPARATION OF CUTTING PLANES

All constraints in Model 2-lin are polynomial in size and can be added to the initial integer pro-
gramming formulation in a branch-and-cut algorithm. However, we have discussed further con-
straints to strengthen the model formulation, which are exponential in size. It seems reasonable
not to add them to the initial formulation, but to add only a subset of them during the cutting phase
of the algorithm. Given an optimum solution u∗ = (x∗,y∗,α∗,β ∗, p∗) to the current LP relaxation,
the following heuristics try to find a constraint aT u ≤ b which maximizes the amount aT u∗−b of
violation by the LP optimum. We will see that the heuristics improve the LP bounds for 74% of
our test instances.

Figure 4.4: Steps 1 (left) and 2 (right) of the Watts-Strogatz graph generation.

4.3 SEPARATION OF CUTTING PLANES 59

4.3.1 Error Defining Constraints

In Section 3.4.2, we have seen that there are factorially many ways to define each single vari-
able αu,AB. We hence describe a heuristic separation algorithm, which runs in polynomial time.
It separates Constraint (3.47). Let us again assume that we consider those constraints which de-
fine α0,AB and the successor vertices of vertex 0 are {1, . . . ,N}. All other cases can be dealt with
in a perfectly analogous way.

We are given a graph Gα with two types of weights on each edge vw: A blue weight 1− ỹ∗vw and a
red weight ŷ∗vw. We search for a coloring of the edges, where each edge must be either blue, red, or
uncolored. Such a coloring is feasible, if the blue edges form an edge cover and every set of k red
edges is incident to at least k+1 blue edges (for all k ≥ 1). Among all feasible colorings, we search
for the one with the largest total weight of the colored edges. The computational complexity of
this maximization problem is yet unknown. We describe a greedy separation heuristic based on
the following algorithm, which constructs feasible colorings on Gα . Starting with a single blue
edge, it iteratively colors two incident edges red and blue until feasibility is obtained.

Algorithm 1: Red-Blue Tree
Data: Graph Gα = (Vα ,Eα)

Result: Red-blue coloring of Eα

1 All vertices in Gα are unmarked, all edges are uncolored.
2 Choose an edge uv ∈ Eα , color it blue, and mark the vertices u and v.
3 while there are two unmarked vertices b,c ∈Vα and a marked vertex a with
(a,b),(b,c) ∈ Eα do

4 Color (a,b) red and (b,c) blue.
5 Mark b and c.
6 end
7 For all unmarked vertices a ∈Vα : Color (a,a) blue.

After Step 2, the condition that all k red edges are incident to at least k+1 blue edges is satisfied,
as there are no red edges. It is obvious that each iteration of Step 3 preserves this property.
Furthermore, Step 4 preserves it, as no further red edges are added. After Step 2, the blue edges
form an edge cover of the graph induced by all marked vertices. This property is preserved by
Step 3 and 4. After Step 4, all vertices are marked. The resulting coloring is hence feasible.
However, there are feasible colorings which cannot be constructed by the algorithm. An example
is a triangle graph with blue loops on all three vertices and red triangle edges. Figure 4.6 visualizes
the steps of the algorithm from left to right.

A B C D D

C

A B A B C D

a) b) c)

Figure 4.5: Possible market structures of the photo trading network.

60 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

Figure 4.6: Red-Blue Tree: Edges are iteratively colored blue (solid light) and red (dashed).

In the separation algorithm, we use a greedy strategy: The edge uv in Step 1 is chosen randomly.
In Step 3, the vertices a,b,c are chosen such that the total weight is increased by the maximum
possible amount. That is, such that the sum of the red weight of edge (a,b) and the blue weight of
edge (b,c) is maximized. The running time of a trivial implementation of this strategy is in O(d4),
where d is the degree of vertex u. This is still acceptable in practice, since in social networks, the
average node degree is not only a small number, but also constant with respect to |V | [Mel06].

Computational Test Table. We performed computational tests to investigate on the strength of
the presented separation algorithm in practice. The results are given in Table 4.1. In this table,
every row corresponds to an instance, and every instance is characterized by the first five column
entries. T indicates the type of network introduced in the previous section: Watts-Strogatz (ws),
distorted random (rd), or pA, pB, pC (German Photo Trading) with image matrices a) to c) from
Fig. 4.5. V gives the number of vertices, A the number of arcs. The number of one entries in the
image matrix is given in the column I1. Opt gives the optimum solution value if known, otherwise
an upper bound marked by an asterisk (∗). All instances are unweighted, that is, W ≡ 1 and B ≡ 1.
By LP Gap, we denote the relative difference between the value opt in column Opt and the op-
timum value l p of the integer program’s LP relaxation. The gap is hence (Opt − l p)/l p. Note
that Opt does not always contain the optimum solution of the integer program; in the case that
it is unknown, the best known primal heuristic value (marked by an asterisk) is taken from col-
umn Opt. In the case l p = 0, we denote the gap by “∞”. The value l p for the column M2lin is the
LP relaxation value for Model 2-lin. For the column M2lin-α , we compute l p by the following
procedure: Compute the LP relaxation optimum of Model 2-lin. Iteratively separate violated con-
straints of type (3.47) until no violation is found. The resulting optimum value is then a bound on
the LP relaxation value for Model 2-lin with all constraints of type (3.47) added. Analogously, the
values l p for all Barvinok constraints (3.18) are computed. The Barvinok constraints are separated
by complete inspection. The resulting gap is given in column M2lin-Bar.
We report the CPU times for solving Problem 2 to optimality for two algorithms. M2lin and
M2lin-sep are the SCIP implementations of Model 2-lin, where in M2lin-sep α−,β−defining and
Barvinok constraints are separated. The former ones are separated as explained in this section, the
latter ones by enumeration. Separation is only performed in the root node of the branch-and-cut
tree. The CPU times are given in seconds (bold numbers). If an instance could not be solved
within a 1 hour time limit, we report the remaining gap (ub− lb)/lb between the current upper
and lower bound on the optimum value (non-bold numbers).

4.3 SEPARATION OF CUTTING PLANES 61

From the table we conclude the following. The additional α− and β−defining constraints can
improve the LP Gap for only 44% of the tested instances; the Barvinok constraints for 74%. In
the remaining cases, they are not violated by the LP optimum solution. The separation cannot
improve the total running times. A possible explanation is that the time needed for the separation
is relatively large for instances which can be solved by M2lin within a few seconds. If we however
consider instances which are solved by M2lin in the magnitude of minutes or hours and in which
the LP gap M2lin-α is tighter than the one of M2lin, an improvement can be seen. See for example
the ws instance with 24 vertices, where the running time is improved from 1200 to 517 seconds
by the use of separation. To make practical use of this effect, the separation should be started not
from the beginning of the branch-and-cut algorithm, but after a certain time threshold in which the
problem remains unsolved. Furthermore, the separation of α− and β−defining constraints should
be immediately aborted if the first call does not find any violated cut.

4.3.2 Cycle Inequalities

The cycle inequalities presented in Proposition 16 on Page 37 can be exactly separated in time
complexity O(V 32c−1). Note that the number of vertex groups c is a small number in most ap-
plications. For every partition of the vertex groups {V1, . . . ,Vc} into two non-empty groups L and
{V1, . . . ,Vc} \ L, call the separation algorithm by Barahona and Mahjoub [BM86] for the max-
cut problem. In our adaption of the algorithm, the graph (V,EY) needs to be transformed into a
graph G′ in the following way. For every vertex u ∈ V , G′ contains two vertices u′,u′′. For every
edge uv ∈ EY , G′ contains the edges u′v′ and u′′v′′ with weight y∗({uv},L), and the edges u′v′′ and
u′′v′ with weight 1−y∗({uv},L). The search for a most violated cycle in the original graph (V,EY)

is now replaced by the search for a shortest path in the modified graph G′, which starts and ends
at two representatives u′,u′′ of one vertex u and can thus be re-transformed into a cycle. The fact
that the shortest path switches an odd number of times between vertices marked with ’ and ” leads
to an odd number of edges in F after the re-transformation.

Algorithm 2: Cycle Separation
Data: c ≥ 2, V , G′

Result: Path in G′, L∗

1 forall the proper subsets L1 ⊂ [c] do
2 Construct G′ with L = {Vi}i∈L1 .
3 forall the u ∈V do
4 Compute a shortest path from u′ to u′′ in G′.
5 Set l(L1,u) to its length.
6 end
7 end
8 Set (u∗,L∗

1) := argminu∈V,L1⊂[c] l(L1,u).
9 return Shortest path from (u∗)′ to (u∗)′′ and L∗ = {Vi}i∈L∗

1
.

The vertices in the shortest path (without ’ or ”) are the vertices in the cycle. An edge uv is in F ,
if either u′v′′ or u′′v′ is in the shortest path. The corresponding cycle inequality is violated by the
LP optimum if for the length of the shortest path holds l(L∗

1,u
∗)< 1.

62 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

4.4 PRIMAL HEURISTICS

In this section, we introduce primal local search heuristics for Problems 1 and 2. They are general-
izations of the Kernighan-Lin heuristic [KL70] for the Minimum-k-Cut problem with equal shore
sizes. First, we briefly introduce local search heuristics. Then, we explain our new heuristics
for Problems of the BLOCK(F, p) type. We show how to implement this heuristic specifically for
Problems 1 and 2 in a way which was developed together with Rube [Rub13].
Finally, we test the heuristics for both quality and scalability. The test shows that the heuristics
provide near-optimum solutions for graphs with about 100 vertices. For more than 50% percent
of the tested instances, even the optimum solution is found. Testing the scalability, we find that
the heuristics can be applied to instances with a million arcs within one minute on a non-parallel
desktop computer.

Local Search Heuristics. Local Search is a metaheuristic concept for the solution of combina-
torial optimization problems. Starting from a good (or random) feasible solution, a better feasible
solution is obtained through a local change in the original solution. This process is iteratively re-
peated in a usually greedy manner, until no local improvements are possible anymore, the solution
quality increases by very small amounts, or a time limit is reached.
Local search heuristics are applicable to link pattern search problems in a natural way. As every
feasible solution to the corresponding optimization problem BLOCK(F, p) is a blockmodel (P,I),
consisting of a partition P of the vertices and an image matrix I, at least three local changes are
natural:

1. Change an image matrix entry in I (image flip),

2. Move a vertex from one group in P to another (vertex move),

3. Choose two vertices in different groups of P and exchange their group memberships (vertex
swap).

Even though the vertex swap can be simulated by two successive move operations, it is listed
separately, as it is considered a single step in the local search heuristic. Larger subsets of vertices
are usually not reassigned simultaneously for running time reasons.
Well-known metaheuristics which are considered special cases of the local search metaheuristic
are hill climbing, simulated annealing, and tabu search. The latter is known to be implemented in
the network analysis software UCINET 6 [BEF02] for use in most link pattern search algorithms.
However, no implementation details are given.

A Kernighan-Lin Heuristic. We are interested in a heuristic to provide good primal bounds on
the optimum values of Problem 1 and 2. The Kernighan-Lin approach is a local search heuristic de-
veloped by Kernighan and Lin [KL70] for the minimum k-cut problem with vertex groups of equal
size. Later, it was successfully adopted by Bonato [Bon11] for the maximum cut problem. Both
problems can be seen as special cases of the general link pattern search problem BLOCK(F, p).
The following algorithm is our adaption of the Kernighan-Lin metaheuristic for Problem 1 and 2. It
is based on vertex moves and implicit image flips. The heuristic starts with a blockmodel (P0, I0)

4.4 PRIMAL HEURISTICS 63

for the input graph G = (V,E). In every step, it searches for a better blockmodel (Pi+1, Ii+1),
starting from the current blockmodel (Pi, Ii), by performing a sequence of vertex moves. In this
sequence, every vertex of the graph is moved once, unless its move would create an empty group.
After the move, the image matrix is updated as the one minimizing the objective function for
the given partition. Here, the best image matrix is chosen either from the set of all c× c image
matrices (Problem 1) or is constantly the one image matrix which is given in the formulation
of Problem 2. The new blockmodel (Pi+1, Ii+1) is finally chosen to be the best one along the
sequence of vertex moves. Note that the procedure makes a random choice wherever there are
several alternate possibilities of the same quality. The procedure terminates as soon as the best
solution (Pbest , Ibest) cannot be improved anymore.

The set of candidates for Ibest is either the set of all image matrices (Problem 1) or only one image
matrix (Problem 2). The algorithm can be extended to the intermediate case, where some entries
of the image matrix are fixed, whereas the others are being optimized upon. The input to the
algorithm is hence a matrix F ∈ {0,1,∗}c×c, where an asterisk (*) indicates that the corresponding
entry is not fixed to 0 or 1. Given such a matrix F , we denote by I(F) the set of all realizations in
{0,1}c×c of F .

Algorithm 3, the following pseudo code, explains the procedure in greater detail.

Implementation. We implemented the heuristic in C++. The code is attached to the print ver-
sion of this thesis. Nevertheless, we give brief descriptions on the following implementation
choices in this paragraph: The construction of the initial partition P0 in Line 1, the evaluation of
the objective function f in Line 8, and the computation of the best image matrix in Line 8.

The initial partition P0 is constructed randomly: For every vertex u ∈V , a random group is chosen.
In the unlikely case that a group remains empty, a random vertex from another non-empty group
is moved into the empty group.

In Line 8, the objective function f needs to be evaluated for every possible move of u and every
feasible image matrix Ii+1. The following observations are crucial for a reduction of the running
time. Consider Problem 1. By its construction as a subgraph relaxation approach, the objective
function f can be decomposed over the set of all group pairs, that is, f can be written as f (P) =
∑A,B∈[c] pAB(P) , see the paragraph “Combining Subgraph Penalties” on Page 21. Assume that
vertex u is moved from group C to D. In this case, only the values of the form pC·, p·C, pD·,
and p·D may possibly change. The same holds for the image matrix entries IC· and I·D. Instead
of re-evaluating all c2 values, it is hence sufficient to update 4c−4 values. For example, consider
Figure 4.7, where only the penalties for the gray image matrix entries need to be re-evaluated in
the case that a vertex is moved from group C to D. First, consider pCX and ICX for a group VX . In
the case that ICX = 0, the penalty value pCX needs to be decreased by the number of arcs from u
into group X . These arcs, which needed to be deleted in order to obtain an ideal regular partition,
are now not existent anymore due to the move of u; hence, the penalty value decreases. On the
same time, the penalty values pXD need to be increased by the number of arcs going from group VX

to u, in the case that IXD = 0. For group pairs with image matrix value 1, the penalty value can
only increase or decrease by 1. In order to compute the changes in the p-values more quickly,

64 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

Algorithm 3: Adapted Kernighan-Lin Heuristic
Data: Digraph D = (V,A), number c of vertex groups, objective function f : Bc(G)→ R, a

matrix F ∈ {0,1,∗}c×c denoting the feasible image matrices.
Result: Best found blockmodel (Pbest , Ibest)

1 Construct a partition P0 of V .
2 Set Pbest = P0.
3 Set Ibest to argminI∈I(F) f (Pbest , I).
4 Set i = 0 and all vertices v ∈V unmarked.
5 while there are unmarked vertices do
6 Choose an unmarked vertex u and mark it.
7 if u is not the only vertex in its group then
8 Apply a vertex move for u from Pi which minimizes f (Pi+1, Ii+1) over all moves of

u and all Ii+1 ∈ I(F), where Pi+1 is the respective partition after the move.
9 end

10 if f (Pi+1, Ii+1)< f (Pbest , Ibest) then
11 Set Pbest = Pi+1, Ibest = Ii+1.
12 end
13 Set i = i+1.
14 end
15 if f (Pbest , Ibest) = f (P0, I0) then
16 STOP(Return (Pbest , Ibest)).
17 end
18 else
19 Set i = 0, P0 = Pbest . Goto Line 4.
20 end

we store for each vertex u and each class A the number of arcs that u has from and into A. These
values are updated with every vertex move.
Let us now turn to the search for the best image matrix over all Ii+1 ∈ FI in Line 8. In fact, we do
not optimize over the image matrices in our implementation. Instead, for each group pair VA,VB,
two penalty values are constantly stored and updated: A value pAB0 and a value pAB1 for IAB = 0
and IAB = 1 respectively. Only in Line 16, where the best blockmodel is returned, the image
matrix Ibest is actually created: For each pair A,B ∈ [c], the values pAB0 and pAB1 are compared.
The entry AB of Ibest is 0 if the former is lower, 1 if the latter is lower, and a random binary value if
both are equal. In this process, the feasibility constraints for the possible image matrices are taken
into account.
The implemented algorithm also supports both weight types W and B. In the case that a weight
matrix W is used, the update of the values pAB1 however requires the solution of an edge cover
problem. See Rube [Rub13] for details.

Computational Tests. We test Algorithm 3 in its implementation explained in the previous
paragraph. The first test examines the quality of the heuristic solution by a comparison to exact

4.5 DUAL HEURISTICS 65

A B C D E

A

B

C

D

E

Figure 4.7: Penalties to be re-evaluated.

solution values. Table 4.2 shows the results. The test instances are the ones used for the cutting
plane test in Table 4.1. The columns T , V , A, and I1 hence have the same meaning. Column Opt
contains the optimum solution value when the instance is used as an input to the unweighted
Problem 2. Column Heu gives the best heuristic value after 10 runs of Algorithm 3.
We see that the heuristic found the optimum solution for 11 out of the 20 instances. The average
gap (Heu−Opt)/Opt is 10%. Note however that only those instances could be used for the test
for which the optimum solution was found within 1 hour. Their accessibility to the branch-and-cut
algorithm might indicate an instance structure which is also more accessible to the heuristic, even
though there is no direct relation between the two algorithms.
To test the running time of the heuristic, we generated larger instances for which the optimum
solution is unknown. Table 4.3 gives the results. The instances of type rd are generated as ex-
plained in Section 4.2 with k set to 1000 and d to be 20% of the maximum possible number of arcs
given the vertex partition and the image matrix. The graphs of type ws are created as explained in
Section 4.2. Column Problem 2 gives the results for the heuristic solving Problem 2, where a fixed
image matrix is generated as explained in Section 4.2. Column Problem 1 gives the results for the
heuristic solving this problem, i. e., , all image matrices are feasible and part of the optimization
(F = {∗}c×c). Column #rounds gives the number of times Line 4 is executed. One round consists
hence of (at most) |V | vertex moves. Recall that a new round is started until the objective value
cannot be improved anymore within a round. Column time / round gives the total CPU time of the
algorithm divided by the number of rounds.
We observe that the running time increases with the number of arcs rather than the number of
vertices. The number of rounds is lower than 10 for all but two instances. The value of 1 minutes
per round is reached for about 1 million arcs for rd and 100,000 arcs for ws instances. The running
time for Problem 1 is about twice the running time for Problem 2. This is expected since for every
vertex move and every image matrix entry, both possible entries 0 and 1 need to be evaluated in the
former case. However, the total running time is still lower for Problem 1, as the average number
of rounds is only 2.6, compared to 6.8 rounds for Problem 2.

4.5 DUAL HEURISTICS

In this section, we discuss ways to obtain lower bounds on the optimum solution value of Prob-
lem 2. The idea of the approach is the decomposition of the original problem into several smaller

66 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

ones. More precisely, the input digraph is decomposed into overlapping subgraphs, where the
problem is solved on each subgraph separately. The respective solution values are combined to
obtain a lower bound on the solution of the original problem. Details of this procedure as well as
its implementation were developed together with Haas [Haa13].
We will see that for graphs representing social networks (generated by the Watts-Strogatz proce-
dure), the heuristic improves the dual bound significantly. On average, the gap between dual and
primal bound, which lies in [0,1], could be reduced from 0.93 for the LP relaxation to 0.44 for our
heuristic.
In Section 4.5.1, we present the overall method. Sections 4.5.2 and 4.5.3 give details on algo-
rithmic choices and subroutines. Finally, Section 4.5.4 presents computational results on tested
instances.

4.5.1 Decomposition into Overlapping Subgraphs

In the original formulation of Problem 2, the following objective function needs to be minimized,
following the notation of Model 2-lin:

min ∑
(u,v)∈A

∑
a,b∈[c]
Iab=0

Babyua,vb + ∑
a,b∈[c]
Iab=1

Bab pab. (4.20)

Recall that the penalty value pab is the maximum of the total α and the total β penalty for the
vertex group pair (Va,Vb), such that we can equivalently rewrite this function as

min ∑
(u,v)∈A

∑
a,b∈[c]
Iab=0

Babyua,vb + ∑
a,b∈[c]
Iab=1

Bab max{∑
u∈V

αu,ab, ∑
u∈V

βu,ab}. (4.21)

Before this objective function can be decomposed, it needs to be relaxed. That is, we replace it by
the following function, whose values are lower or equal to the above function for any argument.
The optimum value of the latter function is hence a lower bound on the optimum value of the
former, when being optimized over the constraints of Model 2-lin.

min ft = ∑
(u,v)∈A

∑
a,b∈[c]
Iab=0

Babyua,vb + ∑
a,b∈[c]
Iab=1

Bab(t ∑
u∈V

αu,ab +(1− t) ∑
u∈V

βu,ab) (4.22)

for t ∈ [0,1]. This is due to the simple observation that max{a,b} ≥ ta+(1− t)b generally holds
for any two real numbers a,b and any t ∈ [0,1]. In the remainder of this section, we will always use
t = 0.5, even though the following argumentation holds for any other choice of t. The objective
function is hence

min f0.5 = ∑
(u,v)∈A

∑
a,b∈[c]
Iab=0

Babyua,vb + ∑
a,b∈[c]:
Iab=1

(0.5Bab ∑
u∈V

(αu,ab +βu,ab)). (4.23)

It is now possible to rewrite f := f0.5 in the decomposed form f = ∑
k
i=1 gi, with

gi := ∑
(u,v)∈A
u,v∈V i

∑
a,b∈[c]:
Iab=0

Babyua,vb +0.5 ∑
uv∈A:

uv∈δ (V i)

∑
a,b∈[c]:
Iab=0

Babyua,vb + ∑
a,b∈[c]:
Iab=1

(0.5Bab ∑
u∈V i

(αu,ab +βu,ab)),

(4.24)

4.5 DUAL HEURISTICS 67

1

0

3
2

4 5

6

1

0

3
2

4

3
2

4 5

6

Figure 4.8: The partition (left) induces two subgraphs (center, right).

where V i ⊆ V is a subset of the vertex set V of the input graph D = (V,A) and δ (U) is the set of
all arcs leaving or entering a vertex set U ⊆V , that is,

δ (U) := {uv ∈ A | (u ∈U ∧ v /∈U)∨ (u /∈U ∧ v ∈U)}.

Using the above transformation, we deduce Algorithm 4 to obtain a lower bound on the optimum
solution of Problem 2.

Algorithm 4: DualBound
Data: Input to Problem 2
Result: Dual bound L

1 Compute a partition {V 1, . . . ,V k} of V .
2 Set L = 0.
3 for i = i, . . . ,k do
4 Solve Model 2-lin with objective function gi.
5 Increase L by the optimum solution value.
6 end
7 return L

Note that the vertex groups V i are not related to the vertex groups Vi as part of the optimum
blockmodel for Problem 2. The groups V i are merely used within the lower bound computation
algorithm in order to divide the original problem into smaller ones. However, they do not represent
good solutions to Problem 2.
The vertices and arcs appearing in the definition of gi form a subgraph Di of the original input
graph D = (V,A). The vertex set of Di consists of the vertices V i (the core vertices) and all
vertices in V \V i which have at least one arc from or to a core vertex (the periphery vertices). The
arcs of Di are all arcs in A induced by the vertex set of Di, except for those arcs connecting two
periphery vertices. See Figure 4.8 for an example: The graph on the left is partitioned into two
vertex sets by the dashed line. The two resulting subgraphs are depicted in the center and on the
right, with core vertices and periphery vertices colored in white and gray respectively.
To show the correctness of the algorithm, it remains to be proven that ∑

k
i=1 gi is indeed a decom-

position of f :

Proposition 26. Let {V 1, . . . ,V k} denote a partition of V into disjoint non-empty subsets. Then,
f = ∑

k
i=1 gi holds.

68 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

Proof. The definition (4.24) of the function gi consists of three double sums. Obviously, the third
double sums add up to the second double sum in the definition (4.23) of f0.5, as the sets V i form
a disjoint partition. It remains to be shown that the first two double sums for gi add up to the first
double sum for f0.5. The term Babyua,vb is summed up for all arcs (u,v) within the groups, that
is, between core vertices. Furthermore, for all arcs from a core vertex to a periphery vertex, the
term 0.5Babyua,vb is summed up two times: One time u is the core and v is the periphery vertex,
one time vice versa. All in all, the term Babyua,vb is summed up for all (u,v) ∈ A, as in the first
double sum in the formula for f0.5.

Use within Branch-and-Bound. Consider a branch-and-bound algorithm for Problem 2. The
branching rule is the following one: Given the root node in the branch-and-bound tree, choose a
vertex v0 ∈V and create c child nodes. In each child node, v0 is fixed to a different vertex group.
That is, in child i, xv0i is fixed to 1. For the third level of the tree, choose another vertex v1 ∈V and
create c children for every node in the second level by fixing xv11 to xv1c respectively. Continue
this process analogously. Consider two nodes H and L in the tree, where H is the parent of L. Let
v j denote the vertex which was fixed to obtain L from H. To calculate the dual bound for L with
Algorithm 4, it is sufficient to solve the problem in Line 4 only once. Namely, for the objective
function gi such that v j is in V (Di). The objective values of all other problems with objective gi′

(i′ ̸= i) remain unchanged in comparison to H.

4.5.2 Solution of the Subproblems

In the following sense, the optimization problem in Line 4 of Algorithm 4 is usually easier to
solve than the overall Problem 2: On the one hand, it is defined on a lower number of vertices
and arcs. In fact, only the subgraph Di of D, which was defined in the previous subsection, needs
to be considered. On the other hand, the constraints of the integer program Model 2-lin can be
simplified if its objective function is replaced by gi. The model to be solved in Line 4 can be stated
as

Model 3.
mingi

∑
a∈[c]

xua = 1 for u ∈V (Di),

∑
u∈V

xua ≥ 1 for a ∈ [c], (4.25)

xua + ∑
v∈N+(u)

(1− xvb)≤ αuab + |N+(u)| for u ∈V i,a,b ∈ [c], Iab = 1,

xub + ∑
v∈N−(u)

(1− xva)≤ βuab + |N−(u)| for u ∈V i,a,b ∈ [c], Iab = 1,

xua = ∑
b∈[c]

yua,vb for all uv ∈ EA(Di),a ∈ [c],

yua,vb ≥ 0 for EA(Di),a,b ∈ [c],

xua,αuab,βuab binary, for . . . (see above),

4.5 DUAL HEURISTICS 69

where EA(Di) denotes the underlying graph as defined on Page 35. Note that instead of summing
over all u ∈ V in Constraint (4.25), it is sufficient to sum over all vertices in V (Di) together with
min{c, |V | − |V (Di)|} dummy vertices. If c is the minimum, as it is the case in most practical
applications of the heuristic, the constraint is satisfied by the dummy vertices and does not hold
for the original vertices. Hence, empty vertex groups are usually allowed in the subproblems,
leading to two interesting consequences. First, the heuristic provides the same dual bound in the
following two cases:

1. There is only 1 subproblem (all vertices of the input graph are core vertices of this subgraph),

2. There are k subproblems, where k is the number of weakly connected components of the in-
put graph (the vertices of a component are the core vertices of the corresponding subgraph).

This means that the heuristic can be applied to each weakly connected component separately, as
the total dual bound is the sum of the k component bounds. Second, the heuristic should not be
applied if the image matrix has a 1-entry on its diagonal. In the case that each vertex in the input
graph has at least one successor and at least one predecessor, the dual bound will be 0, since all
vertices can be assigned to the group i with image matrix diagonal entry Iii = 1.

4.5.3 Determination of the Subproblems

In Line 1 of Algorithm 4, a partition {V 1, . . . ,V k} of the vertex set V needs to be determined.
The computational experiments of Haas [Haa13] indicate that the quality of the dual bound in-
creases with the number of arcs which are within the subsets V i. Hence, the computation of the
partition results in a clustering problem. Formally, the problem is to find a number k and a parti-
tion {V 1, . . . ,V k} which maximizes

k

∑
i=1

|{uv ∈ A | u,v ∈V i}|.

There is a heuristic by Karger and Stein [KS96] for this problem, which successively contracts
arcs. The contraction contract(u,v) of an arc uv is the replacement the two vertices u and v by
a new (super-)vertex w, where w has an arc to (resp. from) a vertex x (distinct from u,v, ,w) if u
or v had an arc to (resp. from) x prior to the contraction. The Karger algorithm iteratively chooses
a random arc and contracts it, until only k vertices are left. Those k super-vertices determine the
k groups V i by the vertices they include. It has been shown that the probability to find the optimum
solution grows quickly with the number of runs of this randomized algorithm, see Karger and
Stein [KS96] for details.
We adopt this idea to construct a heuristic for the problem in Line 1. For our purposes, it is
important to limit the maximum number smax of vertices per group V i, to reduce the running time
of the subproblem optimization. On the other hand, we need to avoid trivially small groups, as the
resulting contribution to the dual bound L is probably weak in this case.
Our heuristic is a 2-step procedure. Its input is the maximum number smax of vertices per group,
whereas the number k of groups remains unspecified. In the first step, randomly chosen arcs are
again iteratively contracted. However, there is the additional rule that a contraction may only be

70 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

executed if the resulting super-vertex has less than smax/2 vertices. We call these arcs contractable
with respect to the current graph and partition. The procedure stops as soon as there is no con-
tractable arc anymore. In the second step, the resulting groups V i are pairwisely considered. Two
groups are united, if the resulting group has less than smax vertices. The procedure union(V i,V j)

updates the current partition by replacing V i with V i ∪V j and deleting V j. Thus, the first step
avoids large groups, whereas the second step is designed to avoid small ones. The precise heuris-
tic is given as a pseudo code in Algorithm 5.

Algorithm 5: Contraction
Data: D = (V,A), smax

Result: Partition P = {V 1, . . . ,V k}
1 Set P as V u = u for all u ∈V .
2 Compute the set C ⊆ A of contractable arcs w.r.t. P.
3 while C ̸= /0 do
4 Randomly choose (u,v) ∈C.
5 contract(u,v)
6 Update P and C.
7 end
8 for i, j = 1, . . . , |P|, i < j do
9 if |V i|+ |V j| ≤ smax then

10 union(V i,V j)
11 end
12 end
13 return P

4.5.4 Computational Tests

We perform computational tests to examine the quality and speed of the proposed dual bound pro-
cedure. Both quality and running times are compared to the LP relaxation value; the standard dual
bound in branch-and-cut approaches. The LP relaxation value can be computed quicker, since
our procedure requires the solution of several integer programs with binary variables. We will
see, however, that the gap between primal and dual bound can be more than halved by the heuris-
tic, even though only 8-times more computational time is being used (note that most bounding
procedures do not increase the absolute value of the dual bound linearly in time).
Table 4.4 on Page 79 contains the results of our tests. Its entries have the following meaning.
Column T specifies the type of random network, V and A the number of vertices and arcs in
the network. Column I1 gives the number of 1-entries in the image matrix, which is randomly
computed as a 4×4 binary matrix with a diagonal forced to be 0 (see Section 4.5.2). Column opt-
sol gives the optimum solution value for each instance being an input to the unweighted Problem 2.
Column LP and bound gives the values of the LP relaxation of Model 2-lin and our dual bound,

4.6 COMPUTATIONAL RESULTS 71

respectively. Columns ending with -t give the CPU times for computing the respective bound
or optimum solution. Finally, Column # sub gives the number of subproblems generated by our
heuristic.

Before the heuristic can divide the original problem into smaller subproblems, the objective func-
tion needs to be relaxed. The gap between the optimum values of the original problem and the
relaxed problem can hence never be bridged. It is hence a necessary requirement for the applica-
bility of the heuristic that this gap is small. The results of the corresponding test can be obtained
from the left-hand half of Table 4.4. Column opt-sol gives the optimum solution to the original
problem, whereas Column bound gives the optimum solution to the relaxed problem; that is, the
heuristic bound when only 1 subproblem is used. With the exception of the outlier instance ws25,
the gap between the two optima is 4% on average.

Despite of this moderately sized minimum gap, he second test shows that the heuristic can signif-
icantly improve the LP relaxation bound in an acceptable amount of time. To this end, consider
the right-hand side of Table 4.4. For the networks of type ws, we set the maximum size smax of the
vertex subsets V i to 15. That is, every subinstance consists of at most 15 core vertices and their
neighbors. For instances of type rand, a hybrid strategy is used: If the LP relaxation is solved
within less than 10 seconds, smax is set to |V | (marked by an asterisk in Column # sub; the number
of subproblems can still be greater than 1 as connected graph components are treated separately).
Otherwise, it is set to 15. Using this setting, the computation of the heuristic dual bound takes
8.5-times as long as the computation of the LP relaxation on average. On the other hand, we see
that the dual bound can be significantly improved for all instances of type ws. As the instances
are too large to be solved exactly, we use the primal heuristic from Section 4.4 to compute the
gap pb−db/pb between dual and primal bound. For instances of type rand, the reduction is only
from 54.9% to 51.3%, such that the usage of the heuristic is not recommended for this instance
type. However, for instances of type ws, this gap can be significantly reduced from a 93% to a 44%
average.

4.6 COMPUTATIONAL RESULTS

In this section, we test and compare complete branch-and-cut solvers for the unweighted Prob-
lem 2. They combine the components introduced in the previous sections as well as the modeling
choices introduced in Chapter 3.

In Section 4.6.1, we will see that our solver is up to 10,000 times faster than comparable models
from literature when applied to our test instances. Section 4.6.2 examines how to predict the hard-
ness of an instance to our solver, as the number of network vertices turns out to be an unsuitable
indicator.

All models, separation routines and heuristics to be tested were implemented in the branch-and-cut
framework SCIP 3.1.0 [Ach09] in C++. In SCIP, we used the default values for all 1628 standard
parameters. SCIP uses CPLEX 12.6 as its LP solver. See Section 4.2 for details on the computer
system.

72 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

4.6.1 Overall Performance of the Solver

We test the performance of several branch-and-cut solvers for Problem 2. First, a model from
literature is introduced and modified for comparison to our models. Then, the running time table
is explained and discussed.

Model by Brusco and Steinley. To our knowledge, we are the first authors to consider Prob-
lems 1 and 2. In order to examine the quality of our integer programming formulation, we consider
a model by Brusco and Steinley [BS09] for a problem which slightly differs from Problem 2. In-
stead of using our objective function

min ∑
(u,v)∈A

∑
a,b∈[c]
Iab=0

yua,vb + ∑
a,b∈[c]
Iab=1

pab, (4.26)

they minimize

min ∑
(u,v)∈A

∑
a,b∈[c]
Iab=0

yua,vb + ∑
a,b∈[c]
Iab=1

(∑
u∈V

αuab +βuab). (4.27)

That is, they minimize the sum of all α and β variables, instead of their maximum values pi j =

max{∑u∈V αui j,∑u∈V βui j}. Their model can be easily transformed into a model for Problem 2. To
this end, the objective function needs to be replaced and all constraints defining the p-variables
need to be added. We obtain the following modified Brusco-Steinley model for Problem 2. The
difference to Model 2 lies in the way the α- and β -variables are defined by (4.32), (4.33) and that
the Balas linearization (4.29)–(4.31) is used.

Model BS.

min ∑
(u,v)∈A

∑
a,b∈[c]
Iab=0

yua,vb + ∑
a,b∈[c]
Iab=1

pab (4.28)

s.t. (4.10), (4.11), (4.14), (4.15), (4.16), and

yua,vb ≤ xua for all u,v ∈V,u ̸= v,a,b ∈ [c], (4.29)

yua,vb ≤ xvb for all u,v ∈V,u ̸= v,a,b ∈ [c], (4.30)

yua,vb ≥ xua + xvb −1 for all u,v ∈V,u ̸= v,A,B ∈ [c], (4.31)

αuab + ∑
v∈N+(u)

yua,vb ≤ xua for u ∈V,a,b ∈ [c], Iab = 1, (4.32)

βuab + ∑
v∈N−(u)

yub,va ≤ xub for u ∈V,a,b ∈ [c], Iab = 1. (4.33)

Computational Test. The following models are compared to each other. They form a sequence
of improvements from the basic BS model to the fully improved model M2-BC:

4.6 COMPUTATIONAL RESULTS 73

BS. Model BS, the model by Brusco and Steinley transferred to our objective function.
BS-y. Model BS, where y-variables are only used on edges, that is, yua,vb is only intro-

duced for (u,v) ∈ A or (v,u) ∈ A.
BS-FY. Model BS-y, where Balas linearization is replaced by Frieze-Yadegar linearization.
M2. Model2-lin, our model formulation.
M2-BC. Model 2-lin, where Barvinok and α−,β−defining constraints are separated in the

root node and the Kernighan-lin heuristic is called once in the preprocessing phase.

The test instances are described as in Table 4.1 for the separation heuristic, see Page 60. By
LP gap, we denote the relative difference between the optimum solution value opt of the integer
program and the optimum value l p of its LP relaxation. The gap is hence (opt − l p)/l p. Note
that opt may be unknown; in this case, it is replaced by the best-known primal value (marked by
an asterisk). In the case l p = 0, we denote the gap by ∞. We report the CPU times for solving
Problem 2 to optimality. The times are given in seconds (bold numbers). If an instance could not
be solved within a 1 hour time limit, we report the remaining gap (ub− lb)/lb between the current
upper and lower bound on the optimum value (non-bold numbers).

Results. Concerning the running times, the new model formulation M2 leads to better results
than the improved model BS-y from literature for all instances. Either the problem is solved faster
or the gap after one hour is reduced. The maximum improvement is achieved on the rd instance
with 150 vertices, where the solution time could be reduced from 46 hours to 4 seconds by the
use of the new Model 2 in combination with the separation of the new constraints, reducing the
running time by a factor of 40,000.
Concerning the LP gap, the replacement of the Balas by the Frieze-Yadegar linearization (columns
BS/BS-y and BS-FY) leads to a significant improvement of the LP gap in all instances, except for
the ones where the dual bound equals 0 (entry “∞”) in column BS/BS-y. The bound can be further
improved for 74% of the instances by the addition of all α−,β−defining and Barvinok constraints.

4.6.2 Hardness Dependence on Input Data

In this section, we investigate the observation that instances of approximately the same size lead to
significantly different running times. We observe in Table 4.5 that the running times of instances
with approximately the same number of vertices vary to a great extent: The rd instance with 190
vertices can be solved within a second, whereas the dual bound of the instance with 200 vertices is
still 0.0 after one hour. Although we cannot explain the latter effect, it seems that the number I1 of
arcs in the image graph is a suitable indicator for the difficulty of the rd instances to our method:
If the number of arcs is less or equal to 6, the running time is below 30 seconds. If it is larger or
equal to 12, the instance could not be solved within one hour. If it is in-between, the running time
ranges from 31 to 258 seconds.
For the test, we use the Watts Strogatz model (ws) for directed graphs. We fix the number of ver-
tices to 20, the number of arcs to 160, and the number of vertex groups to 4. We create three such
random graphs named graph1 to graph3. The rewire probability in the Watts-Strogatz algorithm
is set to 10%. For each graph and all i = 0, . . . ,12, we randomly generate an image 4× 4 image

74 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

matrix with zeros on the main diagonal and exactly i one entries off-diagonally. The following
figure shows the running times of our solver to optimize the resulting problems.

0 5 10

0

200

400

600

oneblocks

ru
nn

in
g

tim
e

(s
ec

)

graph 1
graph 2
graph 3

0 5 10

0

500

1,000

oneblocks

sum

We see that the running time indeed increases tendentiously with the number of arcs in the image
graph.

To test whether a one entry on the diagonal has an effect on the solution times, we repeat the test
with three graphs named graph4 to graph6. Again, 4× 4 image matrices are randomly created
with a uniform distribution. However, only image matrices with a non-zero diagonal are accepted.
The resulting running times are displayed in the following figure.

0 5 10 15

0

1,000

2,000

oneblocks

ru
nn

in
g

tim
e

(s
ec

)

graph 4
graph 5
graph 6

We observe that the running times increase for 1 to 10 one entries in the image matrix. However,
it decreases between 10 and 12 such entries, i. e., if the image graph is (almost) complete. Further-
more, we do not see any clear running time difference to the zero-diagonal instances. We conclude
that the diagonal entries are not of special importance to the performance of our solver.

We now test how the number of arcs influences the running times of the solver. To this end, we
compute five 4× 4 image matrices im1 to im5 uniformly at random. For each image matrix, we
use the Watts-Strogatz model to generate random graphs with 20 vertices and 40, 80, 120, 160,
200, 240, 280, and 320 arcs. The rewire probability is set to 10%. The running times to solve
these instances are displayed in the following figure.

4.6 COMPUTATIONAL RESULTS 75

20 40 60 80

0

50

100

150

arc density (%)

ru
nn

in
g

tim
e

(s
ec

)

im1
im2
im3
im4
im5

100 200 300

0

100

200

300

400

arcs

sum

We see that the hardest instances are those with a density of about 50%. Both sparser and denser
instances are easier to solve. However, the increase in running time is moderate: The following
figure shows that the time per variable in the model is almost constant in the interesting hard mid
section. Recall that the number of variables is approximately the number of vertex groups times
the number of arcs.

100 200 300

0

5 ·10−2

0.1

arcs

ru
nn

in
g

tim
e

(s
ec

)

sum/#vars

76 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

Instance LP Gap (%) Time (s) / Gap (%)

T V A I1 Opt M2lin M2lin-α M2lin-Bar M2lin M2lin-sep

ws 23 276 8 102* ∞ ∞ 52 43 13

ws 24 288 5 120 ∞ 545 22 1200 517

ws 25 300 3 199 45 45 10 791 813

ws 26 312 8 92 ∞ ∞ 106 956 2399

ws 27 324 7 98* ∞ ∞ 42 27 18

ws 28 336 3 227 35 35 12 986 3

ws 29 348 3 232 40 39 11 3170 2

ws 30 360 5 147 ∞ 461 21 30 2162

rd 130 883 4 16 64 7 7 10 25

rd 140 1147 3 6 0 0 0 1 1

rd 150 1725 7 18 260 125 0 258 4

rd 160 2128 12 16* ∞ ∞ ∞ ∞ ∞

rd 170 1866 7 12 36 8 4 53 92

rd 180 1504 4 17 75 75 36 18 23

rd 190 1260 5 13 0 0 0 2 2

rd 200 4390 14 15* ∞ ∞ ∞ ∞ ∞

rd 40 250 7 25 373 299 194 31 22

rd 42 383 16 32* 166 166 166 128 142

rd 44 233 2 59 1 1 0 1 1

rd 46 468 15 34* 82 82 82 51 61

rd 48 403 15 17* 112 112 112 82 122

rd 50 303 8 45 246 246 47 244 415

rd 52 517 5 49 262 68 18 19 23

rd 54 398 13 41 530 528 529 139 191

pA 70 87 3 33 2 1 1 1 1

pB 70 87 6 101 8 6 6 8 9

pC 70 87 6 63 15 10 10 4 21

Table 4.1: Test of the separation routines.

4.6 COMPUTATIONAL RESULTS 77

T V A I1 Opt Heu

ws 24 288 5 120 120

ws 25 300 3 199 199

ws 26 312 8 92 92

ws 28 336 3 227 227

ws 29 348 3 232 233

ws 30 360 5 147 147

rd 130 883 4 16 16

rd 140 1147 3 6 16

rd 150 1725 7 18 18

rd 170 1866 7 12 12

rd 180 1504 4 17 17

rd 190 1260 5 13 13

rd 40 250 7 25 28

rd 44 233 2 59 59

rd 50 303 8 45 47

rd 52 517 5 49 53

rd 54 398 13 41 42

pA 70 87 3 33 34

pB 70 87 6 101 102

pC 70 87 6 63 65

Table 4.2: Results of the quality test of the primal heuristic.

78 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

Instance Problem 2 Problem 1

T A V I1 # rounds time / round # rounds time / round

rd 149,722 2000 1 2 1s 2 5s

rd 161,634 1000 13 4 7s 2 8s

rd 291,530 3500 2 5 8s 2 44s

rd 456,460 1500 16 1 37s 2 37s

rd 771,887 2500 9 6 56s 2 109s

rd 1,594,178 3000 12 7 167s 2 287s

rd 3,113,115 4000 13 9 457s 1 673s

rd 3,415,494 4500 13 3 620s 1 975s

rd 4,624,531 5000 13 5 767s 2 1461s

ws 12,000 1,000 6 7 1s 3 1s

ws 24,000 2,000 7 7 3s 3 6s

ws 36,000 3,000 6 5 7s 4 15s

ws 48,000 4,000 6 14 13s 3 27s

ws 60,000 5,000 5 8 17s 3 43s

ws 72,000 6,000 5 9 29s 3 64s

ws 84,000 7,000 6 9 42s 5 84s

ws 96,000 8,000 5 9 49s 3 112s

ws 108,000 9,000 7 11 78s 4 143s

ws 120,000 10,000 5 9 82s 3 177s

Table 4.3: Results of the running time tests for the primal heuristic.

4.6 COMPUTATIONAL RESULTS 79

T
V

A
I 1

op
t-

so
l

bo
un

d
op

t-
t

bo
un

d-
t

T
V

A
I 1

L
P

bo
un

d
L

P-
t

bo
un

d-
t

#
su

b

w
s

20
80

5
39

38
.5

3s
3s

w
s

20
0

20
00

5
82

.1
44

7.
5

9s
40

s
22

w
s

25
10

0
9

18
4

17
81

s
47

s
w

s
25

0
25

00
8

0
33

8.
5

3s
27

s
30

w
s

30
12

0
6

53
52

.5
7s

6s
w

s
30

0
30

00
5

14
4.

4
72

4
17

s
46

s
37

w
s

35
14

0
8

30
28

.5
69

7s
59

6s
w

s
35

0
35

00
9

0
50

2.
5

5s
10

1s
42

w
s

40
16

0
9

25
24

16
30

s
10

82
s

w
s

40
0

40
00

6
0

85
1.

5
3s

12
4s

48

w
s

45
18

0
9

≤
30

23
>

36
00

s
12

83
s

w
s

45
0

45
00

7
18

8.
8

10
54

.5
91

s
13

1s
52

w
s

50
20

0
6

85
84

49
s

32
s

w
s

50
0

50
00

7
20

3.
9

79
1.

5
49

s
97

s
62

rd
45

23
7

7
51

49
41

7s
40

3s
rd

20
0

21
17

3
10

1.
4

10
0

1s
2s

11
∗

rd
50

18
5

5
71

68
.5

84
s

34
s

rd
21

0
78

87
9

0
13

9
67

s
45

6s
17

rd
55

46
2

10
52

46
21

s
15

s
rd

22
0

37
58

5
17

1.
6

17
2.

5
4s

7s
1∗

rd
60

20
8

4
74

72
10

2s
42

s
rd

23
0

46
15

4
10

03
.1

10
23

39
s

15
2s

10

rd
75

30
4

2
14

3
13

9.
5

45
s

79
s

rd
24

0
18

12
2

73
62

1s
2s

75
∗

rd
80

28
7

5
56

44
17

s
2s

rd
25

0
84

13
7

3.
41

64
2

20
s

49
2s

20

rd
85

13
9

0
13

9
13

9
1s

1s
rd

26
0

14
60

2
12

0
0

7s
36

00
s

1∗

rd
90

38
3

1
15

5
15

3
2s

1s
rd

27
0

15
25

8
11

0
82

.5
10

35
s

14
17

s
22

rd
95

48
5

6
18

1
17

9.
5

42
9s

31
4s

rd
28

0
91

84
7

43
.7

21
3.

5
83

s
37

1s
22

Ta
bl

e
4.

4:
R

es
ul

ts
of

th
e

co
m

pu
ta

tio
na

lt
es

ts
of

th
e

du
al

he
ur

is
tic

.

80 BRANCH-AND-CUT ALGORITHMS FOR A PATTERN SEARCH PROBLEM

Instance LP Gap (%) Time (s) / Gap (%)

T V A I1 Opt BS / BS-y BS-FY M2-sep BS-y M2 M2-sep

ws 23 276 8 102* ∞ ∞ 52 129 43 13

ws 24 288 5 120 ∞ ∞ 22 83 1200 517

ws 25 300 3 199 ∞ 45 10 123 791 813

ws 26 312 8 92 ∞ ∞ 106 176 956 2399

ws 27 324 7 98* ∞ ∞ 42 206 27 18

ws 28 336 3 227 ∞ 35 12 174 986 3

ws 29 348 3 232 ∞ 40 11 167 3170 2

ws 30 360 5 147 ∞ ∞ 21 159 30 2162

rd 130 883 4 16 966 64 7 473 10 25

rd 140 1147 3 6 0 0 0 150 1 1

rd 150 1725 7 18 350 260 0 8322 258 4

rd 160 2128 12 16* ∞ ∞ ∞ ∞ ∞ ∞

rd 170 1866 7 12 298 36 4 4900 53 92

rd 180 1504 4 17 1600 75 36 846 18 23

rd 190 1260 5 13 1705 0 0 848 2 2

rd 200 4390 14 15* ∞ ∞ ∞ ∞ ∞ ∞

rd 40 250 7 25 733 373 194 2806 31 22

rd 42 383 16 32* ∞ 166 166 314 128 142

rd 44 233 2 59 ∞ 1 0 47 1 1

rd 46 468 15 34* 403 82 82 119 51 61

rd 48 403 15 17* 457 112 112 233 82 122

rd 50 303 8 45 542 246 47 110 244 415

rd 52 517 5 49 4102 262 18 69 19 23

rd 54 398 13 41 1266 530 528 733 139 191

pA 70 87 3 33 388 2 1 19 1 1

pB 70 87 6 101 56 8 6 259 8 9

pC 70 87 6 63 377 15 10 95 4 21

Table 4.5: Results of the computational tests of the complete branch-and-cut solver.

Chapter 5

LINK PATTERNS IN THE WORLD TRADE NETWORK

In this chapter, we show that the heuristics and integer programming-based algorithms developed
in Chapter 4 can be used in practical network analysis.

To this end, we analyze a world trade network provided by the United Nations, which comprises
the pairwise amount of trade between 229 countries.

In Section 5.1, we explain the data, related work and the goals of our analysis. Section 5.2 reports
our search for a pattern which underlies the world trade network. We will see that the network
deviates by only 0.14% from the optimum pattern we have computed. In Section 5.3, we are the
first authors to classify trade networks. That is, for a collection of trade networks for different
commodities, we find common patterns which underlie all of the markets.

5.1 DATA AND GOALS

The Comtrade Database. The United Nations Commodity Trade Statistics Database (COM-
TRADE) [Com15] provides freely available data on international trade. The trade partners are
divided into 288 countries or trade zones, existing currently or in the past. Data on the trade
between these partners are reported by the partners themselves, both on import and export. The
reports were submitted year-wise from 1962 to 2014. For each pair of partners, the user of the
database can choose to download either the total trade or the trade of a single commodity. Com-
modities are thereby defined by different classification schemes. In the remainder of this chapter,
we always use the Standard International Trade Classification, Revision 3 (SITC). The amount of
trade can be either obtained in natural units (kilograms, liters, pieces, etc.) or by its total value in
US-dollars. See [Nat98] for detailed information on the data and its collection.

In this chapter, we examine the trade data report for the year 2010, as extracted in May 2015 from
the database. We did not choose the latest data as it might still be incomplete [Nat]. We consider
only export reports (the sum of exports might not equal the sum of imports for various reasons,
see [Nat]). As a measure of trade amount, we always choose the value of the trade in US dollars.

81

82 LINK PATTERNS IN THE WORLD TRADE NETWORK

Preprocessing the Data. For every commodity (or the “total trade”), we are given a file con-
taining a table in the form of a comma separated list. Every row of the table describes the export
from a country u to another country v. Given n countries and assuming total trade, there are
hence n(n− 1) rows in each file. We transform the table into a weighted digraph D = (V,A),
where the vertices V are the participating countries and the weight wuv on arc (u,v) ∈ A gives the
amount of trade from country u to u in US dollars. In a preprocessing step, we remove some ver-
tices from the digraph as they do not represent single countries, but accumulations (“Europe EU”,
“Eastern Europe”, “The World”), whose member countries are already represented by separate
vertices. Thus, vertices with the following trade partner IDs are deleted: AFR, CAC, EEU, EFT,
ESH, EU, EU2, LAI, NAF, NCA, NEU, OAF, OAM, OAS, OCE, OEU, UMI, USP, WAS, WLD,
XXX, XXY, ZAF, and ZON. These abbreviations are explained in the Table of Country Names on
Page 105.

Goals. For the world trade digraph and some of its sub digraphs, we solve Problem 1: Find the
pattern (image matrix) which describes the digraph’s structure in the most accurate way. That is,
a minimum number of entries in the digraph’s adjacency matrix need to be changed in order to
obtain the pattern. Which number of vertex groups and which pattern describes the trade network
most accurately?

Note that we do not directly answer the question whether the world trade digraph has a clear link
pattern. We merely compute the best description out of all possible patterns. However, we examine
to which extent the found solution depends on the parameter choices in our analysis algorithm.

In Section 5.3, we search for common patterns in 9 trade digraphs for different product groups. Is
there a small number of patterns such that each network can be assigned to one of these patterns?
Does trade in general follow a small number of reoccurring patterns?

Related Usage of the Database. Lloyd et al. [LML09] recently give a survey on publications
on world trade analysis. According to their analysis, the majority of the published approaches
follow a certain scheme. First, for each pair u,v of countries, a similarity value suv is computed.
A large value indicates that u and v should be placed in the same vertex group, whereas a low
value indicates the opposite. The partition P is then obtained by a clustering (clusters contain
large similarity values) or multi-dimensional scaling.

The corresponding image graph I itself is either obtained through a human interpretation of P
or is a priorily assumed. Srholec [Srh06] assumes a core-periphery trade pattern a priorily and
uses a coreness measure to determine which of the groups in P is the core group. Mahutga and
Smith [MS06] determine the core intuitively. Smith and White [SW92] assume a core-semi-
periphery-periphery pattern and find that there are in fact two semi-peripheries. The reason for
this a priori assumption is the work of earlier authors, stating a core-periphery trade structure (see
also Dasandi [Das14]).

In this chapter, our focus lies on the link pattern rather than on the partition of the vertices. We do
not assume any pattern (or collection of possible patterns) a priori. Instead, we optimize over all
patterns to find the most suitable description of the world trade network. The actual partition P of
the countries is stated, but not taken into account.

5.2 ANALYSIS OF THE WORLD TRADE NETWORK 83

A1

A2

B C

REDUNDANCE

A

B C

D2 D1

Figure 5.1: Left: Redundant groups A1 and A2. Right: A degenerated image graph with optimum
vertex partition.

5.2 ANALYSIS OF THE WORLD TRADE NETWORK

We analyze the Comtrade network on total trade as described in the previous section. That is, we
analyze digraphs, where the vertices represent the world’s countries and the arcs give the amount of
trade in the year 2010 quantified in US dollars. Our algorithms search for patterns of link existence
in the given digraphs. The output of the algorithms are hence blockmodels (P, I), consisting of a
partition P of the countries and a link pattern represented by an image matrix I. The penalty value
associated with a blockmodel is thereby measured as in Problem 2 treated in Chapter 4. That is,
we count the number of arcs in the digraph which do not fit the pattern. The lower this number,
the lower the penalty, and thus the higher the quality of the pattern.

In order to exclude trivial and unnecessarily complex solutions from the output of the algorithm,
we define two kinds of unsuitable image matrices: Redundant and degenerated image matrices.

Redundant Image Matrices. Consider two image graphs D1 and D2, where D2 evolves from
D1 by applying the SPLIT operation (Page 24) on a vertex A in D1, where A does not have a
self-loop in D1. The operation splits vertex A into two subvertices A1 and A2. Recall that both
subvertices inherit from A its relations to the other vertices. See Figure 5.1 for an example. D2

now contains redundant information: The network vertices in both vertex groups A1 and A2 do
not trade within the group nor with the other group. Furthermore, they have the same relations
to all other groups. For the analysis of the trade market, both D1 and D2 thus provide exactly
the same information. Clearly, D1 is the preferred representation as it contains no redundant
information. The procedure REDUNDANCE(I), which will be used in our analysis algorithm,
searches for all redundant pairs of vertices in the image graph of I and deletes one vertex in each
pair. Note that the deletion of one vertex of a pair is equivalent to a “merger” of the pair. The
procedure returns the resulting image graph, which is non-redundant in the above sense. For a
multi-digraph, i. e., a digraph D = (V,A1, . . . ,Ar) with several arc sets, the definition is related. A
pair {i, j} ⊆ [c] of image graph vertices is redundant w.r.t. a set {I1, . . . , Ir} of r image matrices,
if it is redundant w.r.t. Ii for all i = 1, . . . ,r. Not only does the reduction lead to a pattern with the
same interpretation, it may also improve the optimum solution value in Problem 2. At least, the
optimum cannot become worse due to the reduction, as the following proposition shows.

84 LINK PATTERNS IN THE WORLD TRADE NETWORK

Proposition 27. The optimum value to Problem 2 for input (D, I) is larger or equal to the optimum
value for input (D,REDUNDANCE(I)).

Proof. Let D(I) denote the digraph with adjacency matrix I. Consider the optimum solution (H∗,P∗)

to Problem 2 with input (D, I). Let opt denote its solution value. In a first step, assume that
REDUNDANCE(I) unions two vertices A1 and A2 in D(I) into a new vertex A. From Proposi-
tion 4 on Page 24 follows that the solution (H∗,P∗) is feasible to Problem 2 with input graph D
and input image matrix REDUNDANCE(I). As the value of this feasible solution is again opt,
the proposition follows from the observation that the REDUNDANCE operation is a sequence of
vertex pair unions.

Note that the proof does not make use of the precise form of the objective function in Problem 2.
The proposition is hence true for any subgraph relaxation approach.

Degenerated Image Matrices. We call a partition P in an optimum solution (P,H) to Prob-
lem 2 degenerated, if one of the vertex groups in P contains the minimum number of vertices
demanded by the model. In our experiments, this minimum group size equals 1. A solution is
hence degenerated if there is a vertex group which contains a single vertex. If only degenerated
solutions are found for a given image matrix with c groups, it is likely that the market has a link
pattern with c−1 groups which is at least as good as the current pattern. In this case, the only rea-
son for one vertex to be placed in the c-th group is probably the minimum group size constraint.
The procedure DEGENERATION(I,P) thus removes all minimum size groups from the image
graph.

In the following two subsections, we present two algorithms for the analysis of the COMTRADE
data set. In the single arc type approach, the data are converted into a digraph D = (V,A). In the
multi arc type approach, we distinguish arcs of different weight. The data is hence converted into
a multi-graph D = (V,A1, . . . ,Ar), where A0 contains the lightest and Ar the heaviest arcs.

5.2.1 A Single Arc Type Approach

In the single arc type approach, we create and analyze a digraph D = (V,A) representing the world
trade network. Output of the analysis algorithm is a blockmodel (P, I), consisting of a partition P
of the countries and a trade pattern encoded as an image matrix I.

Trade Digraph. The complete COMTRADE network, including all countries and all trade
relations, has an arc density of 25.6%. Since it is impossible to find a non-trivial link pattern
in such a dense network, a preprocessing step is required in this approach. This step is called
dichotomization, as it decides for each arc with continuous trade volume whether there exists a
substantial amount of trade or not.
First, we limit the number of vertices to the 50 most-trading countries. To measure the amount
of trade for each country, we compute the maximum of the value of all exports and the value of
all imports. Second, we limit the number of arcs to 400. That is, we delete all but the arcs with
the 400 largest trade volumes from the network. Note that the remaining arcs still carry more than

5.2 ANALYSIS OF THE WORLD TRADE NETWORK 85

80% of the total trade volume. As this choice is however arbitrary, we verify its suitability in a
post-processing step to be explained later.

Trade Analysis Algorithm. The analysis algorithm for D = (V,A) follows a 2-step procedure
proposed by Brusco and Steinley [BS09]. In the first step, a heuristic is used to find several image
matrices I1, . . . , Ik of high quality for the given digraph. Since a heuristic is being used, the penalty
values pheu(Ii) might not be equal to the real quality values p(Ii). In fact, pheu(Ii) ≥ p(Ii) holds.
Hence, in the second step, the exact values p(Ii) are computed for all proposed image matrices Ii.
This computation is NP-hard as shown in Section 4.1.2. We solve it with the branch-and-cut
algorithm developed in Chapter 4. Not only does it compute the penalty value p(Ii), but also a
partition Pi of the countries such that the blockmodel (Pi, Ii) takes the penalty value p(Ii).

The input to the analysis algorithm is a digraph D = (V,A) and a maximum number cmax of vertex
groups to be searched for.

Algorithm 6: Trade Analysis (Single Arc)
Data: Digraph D = (V,A), maximum number cmax of vertex groups, number k of heuristic

runs
Result: Blockmodel (P, I)

1 Set pbest = ∞.
2 Set imagelist2 = · · ·= imagelistcmax = {}.
3 for c = cmax, . . . ,2 do
4 for i = 1, . . . ,k do
5 Obtain blockmodel (P, I) by applying the Kernighan-Lin Algorithm 3 to Problem 1

with c groups.
6 Set I = REDUNDANCE(I).
7 Add I to imagelistdim(I).

8 for c = cmax, . . . ,2 do
9 for I ∈imagelistc do

10 Compute exact optima to Problem 2 for I by branch-and-cut (Section 4.6).
11 if all optima degenerated then
12 Add I′ = DEGENERATION(I,P) to imagelistdim(I′), where (P,H) is an arbitrary

solution.
13 else
14 Set (P,H) to an non-degenerated solution.
15 if p(P, I)< pbest then
16 pbest = p(P, I), Pbest = P, Ibest = I.

17 return (Pbest , Ibest)

In Algorithm 6, Lines 3 to 7 correspond to the first step of the algorithm. For every number of
vertex groups within a meaningful range, image matrices are determined by the Kernighan-Lin
heuristic. In the second step (Lines 8 to 16), the exact quality of these candidate image matrices
is computed. Note that in both steps, the found image matrices are tested for redundancy and

86 LINK PATTERNS IN THE WORLD TRADE NETWORK

degeneration. Afterwards, they are possibly replaced by other matrices of lower dimension.

Degenerated » 4b

deg

Redundant » 4d Degenerated » 3a

deg

deg

5a) penalty = 36 5b) penalty = 25 5c) penalty = 24

deg

Degenerated » 4d

4a) penalty = 40 4b) penalty = 32 4c) penalty = 10 4d) penalty = 19 Redundant » 3b

3a) penalty = 23 3b) penalty = 14 2a) penalty = 10

Figure 5.2: Image graphs found by Algorithm 6 in Line 5. Either the existing (bold) or the non-
existing arcs (dashed) are given. The value penalty gives the objective value computed in Line 10.
Best image graphs are 4c and 2a with a penalty of 10.

Results. Figure 5.2 shows the image graphs found by the Kernighan-Lin heuristic in Algo-
rithm 6 for maximally cmax = 5 vertex groups and k= 10 runs of the heuristic for each fixed number
of groups. Below each image graph, the exact penalty value computed by the exact branch-and-cut
algorithm in Line 10 is given. In case that the image graph is redundant or degenerated, the ID
number of the simplified image graph is given instead.
We see that there are two image graphs with the best penalty value of 10 respectively: Graphs 2a
and 4c. The penalty value of 10 means that 10 out of 2450 entries (0.4%) in the adjacency matrix
of the trade digraph need to be changed in order to perfectly obtain the trade structure of depicted
image graphs.

At most 0.4% of the world trade network’s adjacency matrix needs to be modified to obtain
the trade pattern depicted in Figure 5.4.

5.2 ANALYSIS OF THE WORLD TRADE NETWORK 87

Stability of the image graph

arcs 300 320 340 360 380 400 420 440 460 480 500

penalty 18 15 14 12 10 10 9 8 8 8 7

Figure 5.3: Optimum partition of the 50 most trading countries into 2 groups. The country names
are given in the Appendix on Page 112.

The corresponding country partitions are depicted in Figures 5.4 and 5.3 respectively.

Discussion. As the number 400 of trade arcs under consideration was chosen in a suitable
magnitude, but arbitrarily, the tables below Figures 5.3 and 5.4 prove the stability of the our
solutions a posteriori. If the number of arcs is lowered to 300 or raised to 500, the number of
changed adjacency entries stays within the range of [0.36%,0.66%] for the 4 groups solution and
[0.28%,0.74%] for the 2 groups solution.

We venture a brief interpretation of the 4 groups solution in Figure 5.4. There is a core group
(center) of 9 countries which trade among each other and with all other groups, concerning both
imports and exports. Furthermore, there is a group of 10 periphery countries (top) which are all
specialized on trade with the center group. Hence, they trade neither with other groups nor among
each other. The large left and right groups trade both with the center and with each other. The
difference between the two lies in the observation that the right group additionally trades within
itself.

The interpretation of the 2 groups solution (Figure 5.3) is as follows: It is possible to divide the
countries into two groups such that every country has a trade partner in both its own and in the
other group. Note that this observation is problematic for two reasons. First, it holds for any
partition of the complete graph and often for any partition of dense graphs. The optimality of
this image graph might hence indicate that the choice of 400 arcs is too large for 2 vertex groups
only. Second, the solution is unstable from the vertex perspective: Every vertex could change its

88 LINK PATTERNS IN THE WORLD TRADE NETWORK

Stability of the image graph

arcs 300 320 340 360 380 400 420 440 460 480 500

penalty 16 15 14 11 10 10 11 11 9 10 9

Figure 5.4: Partition of the 50 most trading countries into 4 groups (bottom left). If 0.4% of the
trade adjacency matrix is changed, the depicted trade pattern (bottom right) is obtained. Country
names are given in the Appendix on Page 112 and are visualized in the world map (top).

5.2 ANALYSIS OF THE WORLD TRADE NETWORK 89

group without violating the property that every vertex has a trade partner both in its own and in
the other group. We thus prefer the 4 groups solution as the result of the analysis. Still, we do not
consider the image graph in Figure 5.3 being logically redundant, as its interpretation (“a trade
partner exists in both the own and the other group”) is logically stronger than the interpretation of
the simplified graph consisting of a single vertex with self-loop (“there exists one trade partner”).

5.2.2 A Multiple Arc Type Approach

As the world trade digraph is dense, it hardly contains any link pattern. The only exceptions are
the trivial patterns, in which all country groups trade with each other. In the previous subsection,
the single arc type approach addressed this problem by considering only the m heaviest trade arcs.
In this subsection, we present an alternate approach which considers all trade arcs. To this end, the
arcs are divided into r weight classes. For r = 3, these classes could be labeled low, medium, and
high trade volume. The output of the analysis algorithm is then a multi-relation blockmodel as
introduced on Page 8. It hence consists of one single partition of the countries and r trade patterns
(image graphs); one for each weight class. To our knowledge, we are the first authors to compute
multi-arc blockmodels for trade networks. We now show how Problems 1 and 2 can be formulated
for multi-relation graphs and how the solution algorithms need to be adjusted. Afterwards, we
show how the arc weight classes are computed.

Multi-Relation Problems 1 and 2. In Section 4.1, we introduced Problem 1: For a given
digraph, find a pattern (image matrix I) such that the arc set of D needs to be changed to the lowest
possible amount in order to meet the pattern. The problem was formulated for digraphs with a
single arc set. Given a multi-graph D = (V,A1, . . . ,Ar) with several arc sets Ai, the definition can
be easily adjusted. To this end, define Di := (V,Ai) the digraph which only contains the arcs of
type i.
Problem 1-multi. Given a multi-digraph D = (V,A1, . . . ,Ar) and a number c ≥ 1 of vertex groups,
solve

min
P∈Pc(D)

r

∑
i=1

⎛⎝ min
Ii,Hi:

(Hi,P)∈REG(Di,Ii)

∑
u,v∈V,u̸=v

|Ad j(Di)u,v −Ad j(Hi)u,v|

⎞⎠ . (5.1)

Similarly, Problem 2-multi can be defined by fixing the image matrices I1, . . . , Ir in the inner min-
imization problem.

Multi-Arc Algorithms. The adaption of the Kernighan-Lin heuristic to the multi-arc case is
straight-forward. For every vertex move or swap operation, the error update needs to be computed
for all r arc types successively, but independently. The total running time is hence r-times as
large as in the single arc case. The adaption of the integer programming formulation is unprob-
lematic as well. The variables of types α , β , and p need to be copied r times; once for each arc
type. They are hence provided with an additional index i indicating the arc type: αi,v,AB, βi,v,AB,
pi,AB. Analogously, some constraints need to be copied r-times. The α- and β -defining constraints
from Section 3.4 need to be stated for all new α and β variables. Furthermore, p defining con-
straints (4.14) and (4.15) needs to be stated r-times. That is, all of the constraints and separation

90 LINK PATTERNS IN THE WORLD TRADE NETWORK

routines derived in Chapters 3 and 4 can be used in the multi-arc case as well. In fact, it is not
necessary to link the copies of a variable to each other or to add any further constraints beyond
those. All in all, the resulting integer programming model can be stated as follows.

Model 2-multi.

min
r

∑
i=1

⎛⎜⎜⎝ ∑
(u,v)∈Ai

∑
a,b∈[c]

Ii(a,b)=0

Babxuaxvb + ∑
a,b∈[c]

Ii(a,b)=1

Bab pi,ab

⎞⎟⎟⎠

∑
a∈[c]

xua = 1 for u ∈V,

∑
u∈V

xua ≥ 1 for a ∈ [c],

xua + ∑
v∈N+

i (u)

(1− xvb)≤ αi,u,ab + |N+
i (u)| for i ∈ [r],u ∈V,a,b ∈ [c] with Ii(a,b) = 1,

xub + ∑
v∈N−

i (u)

(1− xva)≤ βi,u,ab + |N−
i (u)| for i ∈ [r],u ∈V,a,b ∈ [c] with Ii(a,b) = 1,

pi,ab ≥ ∑
u∈V

αi,u,ab for i ∈ [r],a,b ∈ [c] with Ii(a,b) = 1,

pi,ab ≥ ∑
u∈V

βi,u,ab for i ∈ [r],a,b ∈ [c] with Ii(a,b) = 1,

xua,αi,u,ab,βi,u,ab binary, pi,ab integer for . . . (see above).

Trade Multi-Digraph. We use the complete trade digraph with all 229 vertices and all 13398
arcs (after preprocessing). In a multi-arc approach, all arcs in the trade network are considered.
They are however partitioned into r non-overlapping sets according to their weight. The network
is hence represented by a multi-digraph D = (V,A1, . . . ,Ar), containing arc sets from light trade
volume arcs A1 to heavy weight trade volume arcs Ar.
The choice of equally sized weight intervals would classify 99% of the arcs as A1, as Figure 5.2.2
shows that the weight distribution is at least exponential. We thus choose equally sized intervals
on the logarithmically scaled axis. Figure 5.2.2 shows the arc classification for r = 3 arc types. To
describe the classification mathematically, let amin and amax denote the minimum and maximum
trade value in the trade network. Define l := lnamin and u := lnamax. The step length s is computed
as (u− l)/r. We then use the following weight intervals for classification:

Class A1 :[el,el+s)

Class A2 :[el+s,el+2s)

Class A3 :[el+2s,el+3s)

...

Class Ar :[el+(r−1)s,el+rs).

5.2 ANALYSIS OF THE WORLD TRADE NETWORK 91

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

100

101

102

103

104

105

arc ID

lo
w

w
ei

gh
t

m
ed

iu
m

w
ei

gh
t

hi
gh

w
ei

gh
t

arc weights

Figure 5.5: Weight distribution of the arcs in the complete trade network.

Trade Analysis Algorithm. Algorithm 7, the multi arc trade analysis algorithm, is similar to
the single-arc algorithm. As additional input parameters, it has bounds rmin and rmax on the num-
ber r of arc types. Furthermore, all digraphs and blockmodels are of the multi type. Note the
following differences to the single arc case. The exact optimization in Line 10 has to be replaced
by the Kernighan-Lin heuristic for Problem 2 (see Section 4.4), because of the large size of the
digraph. Furthermore, the REDUNDANCY routine is removed, since this effect is unlikely in
the case of multiple arc sets. The Kernighan-Lin heuristic tries to find solutions with low penalty
value. As the maximal possible penalty value grows linearly in the number r of arc types, we com-
pensate this effect by a normalization in Lines 14 and 15. This way, we can compare the quality
of solutions with different r-values.

Results. We run Algorithm 7 with the following parameters: rmin = 3, rmax = 5, and k = 10.
The algorithm is executed two times, for c = 4 and c = 6 country groups respectively.
The optimum solution for c = 4 country groups uses r = 4 arc types. The optimum image graphs
for high, upper-medium, lower-medium, and low trade are depicted in Figure 5.6. The penalty
value of this solution is at most 307. This means that at most 0.14% of all possible adjacency
matrix entries need to be changed in the world trade network in order to perfectly obtain the
depicted trade structure. The member countries for each group are given in a table on Page 111.
The optimum solution for c = 6 country groups uses r = 3 arc types. The optimum image graphs
for high, medium, and low trade are depicted in Figure 5.7. Its penalty value is at most 251
(0.16%). The member countries for each group are given in a table on Page 113.

At most 0.16% of the world trade network’s adjacency matrix needs to be modified to obtain
the trade pattern depicted in Figure 5.7.

92 LINK PATTERNS IN THE WORLD TRADE NETWORK

Algorithm 7: Trade Analysis (Multi Arc)
Data: Multi-digraph D = (V,A), bounds rmin and rmax for the number of arc types,

number c of vertex groups, number k of heuristic runs
Result: Multi-blockmodel (P, I1, . . . , Ir)

1 Set pbest = ∞. Set Drmin = · · ·= Drmax = {}. Set imagelist= {}.
2 for r = rmin, . . . ,rmax do
3 Set Dr = (V,A1, . . . ,Ar), where (A1, . . . ,Ar) is a partition of A into r weight classes.
4 for i = 1, . . . ,k do
5 Obtain multi-blockmodel (P, I1, . . . , Ir) by applying the Kernighan-Lin Algorithm 3

to Problem 1 with Dr and c.
6 Add (I1, . . . , Ir) to imagelist.

7 for I = (I1, . . . , Ir) ∈imagelist do
8 for i = 1, . . . ,k do
9 Apply Kernighan-Lin Algorithm to Problem 2 with I, Dr and c.

10 if all optima degenerated then
11 Add I′ = DEGENERATION(I,P) to imagelist, where (P,H) is an arbitrary solution.

12 else
13 Set (P,H) to a non-degenerated solution.
14 if p(P, I)/r < pbest then
15 pbest = p(P, I)/r, Pbest = P, Ibest = I.

16 return (Pbest , Ibest)

Discussion. We briefly interpret the 4 groups solution in Figure 5.6. On a low trade level, we
see that the four groups almost completely trade with each other. The only exception is group D,
which imports from, but does not export to other countries. On the next higher level, we see that
the imports of group D originating in group C vanish. On the high trade level, we see that only
the members of group A trade with each other. The members of this group moreover export to all
other groups on a upper-medium trade level. All of the import is provided by group B. All in all,
we observe a trade power hierarchy of the groups A,B,C, and D in precisely this order.
We now turn to the 6 groups solution in Figure 5.7 on Page 94. On the low trade level, we observe
again almost complete trade relations. The only exceptions are the black and white groups (top
center, bottom center), which both do not export and thus do not trade with each other. The high
trade level view identifies the blue group (bottom right) as the main core group, having strong
relations to the second core group yellow (bottom left). The three groups on the top are periphery
to the core groups (see medium trade level), that is, they do not trade with each other. They can
however be distinguished by their different relations to the core: red (right) has complete relations
to the core and trades among itself, orange (left) has complete relations to the core and does not
trade among itself. The black group (center) only imports from the core, but does not export at
any level.

5.3 CLASSIFICATION OF TRADE NETWORKS 93

 high trade

A

C

B

D

A

C

B

D

upper-medium trade lower medium trade

A

C

B

D

A

C

B

D

low trade

Figure 5.6: The world trade network has the above structure if 0.14% of its adjacency matrix
entries are changed.

5.3 CLASSIFICATION OF TRADE NETWORKS

In the previous section, we were given a single trade network and searched for patterns to describe
it. In this section, we are given several trade networks; one for each group of products. The
problem is to find a small collection of patterns such that every network is well-described by
one of those patterns. That is, we are looking for the most common trade market structures.
This assignment φ is visualized in Figure 5.8 (left). Before we introduce the complete analysis
algorithm, we first explain how a representative subset is chosen from a list of patterns.

Choosing Representative Patterns. Suppose we are given n trade digraphs and m image matri-
ces. For each pair (i, j) of a trade digraph i and an image matrix j, we can compute the penalty Mi j

as the optimum value to Problem 2. That is, Mi j states how many adjacency matrix entries of i
need to be changed in order to obtain the pattern represented by j. As this value can be computed
for all pairs (i, j), we obtain an n×m matrix M containing them. For a given number k, we de-
fine the k image matrices best representing the n trade networks as the solution to the following
optimization problem:

Problem 3. Find an index set S ⊆ {1, . . . ,m} with |S| ≤ k and a mapping φ : [n] → S, such that
max{Mφ(i) j | i = 1, . . . ,n, j ∈ S} is minimized.

The solution (S∗,φ ∗) with value s∗ thus allows a statement of the following form: In each network,
at most s∗ adjacency matrix entries need to be changed such that its pattern is included in S∗.
The problem can be modeled as an integer program in the following way. Using the software
CPLEX 12.6, it could be solved in less than one second in our practical experiments. The program
uses two kinds of binary variables:

s j =

{
1 if index j is in S,

0 otherwise,

xi j =

{
1 if network i is assigned to pattern j,

0 otherwise,

94 LINK PATTERNS IN THE WORLD TRADE NETWORK

Figure 5.7: Optimum solution for 6 country groups and high (top), medium (center), and low
(bottom) trade volume. 0.16% of the world trade network’s adjacency matrix entries need to be
changed to perfectly obtain the depicted structures. In the top figure, we can see some vertical arcs
causing a penalty.

5.3 CLASSIFICATION OF TRADE NETWORKS 95

A

C

B

D

pattern 2

A

C

B

D

pattern 1 graphs image
 matrices

Figure 5.8: Left: Assignment of trade graphs to image matrices. Right: Two patterns which were
frequently found in trade digraphs.

ASSIGN(M,k)

min L

Mi jxi j ≤ L for i = 1, . . . ,n, j1, . . . ,m
m

∑
j=1

s j ≤ k

m

∑
j=1

xi j = 1 for i = 1, . . . ,n

xi j ≤ s j for i = 1, . . . ,n, j = 1, . . . ,m

si,xi j ∈ {0,1} for i = 1, . . . ,n, j = 1, . . . ,m

Classification Algorithm. The analysis of the n trade networks for different product groups is
performed as described in Algorithm 8 below. It consists of four steps. In the first step, the data is
normalized and dichotomized. That is, the arc-weighted digraphs are transformed into unweighted
digraphs by keeping only the nV most-trading vertices and the nA largest arcs. In the second step,
a list I of good image matrices is collected. To this end, the k best image matrices are stored in I for
all networks respectively. Recall that two image matrices are isomorphic if their image graphs are
identical if their vertices are renamed. Before we add a new image matrix to I, we therefore check
whether I already contains an image matrix isomorphic to it. In the third step, we compute how
well the collected image matrices describe the networks. We compute the corresponding penalty
value Mi j for all pairs of networks i and collected image matrices j. In the last step, the networks
are assigned to the image matrices as described in the preceding paragraph.

Data. The network data is again obtained from the COMTRADE database. All settings and
references are identical to the ones stated in the previous section. In this section, however, we did
not request data on the total trade (“all commodities”), but for the 9 major trade sectors according
to the SITC Rev. 3 classification. These sectors are named in the following table. We hence

96 LINK PATTERNS IN THE WORLD TRADE NETWORK

obtained 9 arc-weighted digraphs.

Algorithm 8: Trade Classification
Data: Set D = (D1, . . . ,Dn) of arc-weighted digraphs, numbers nV and nA of vertices and

arcs, number k of candidate search runs per graph, number c of vertex groups
Result: Set I of image matrices, assignment φ : D → I

1 .
2 /* preprocess digraphs */
3 for i = 1, . . . ,n do
4 Delete all but the nV most-trading vertices from Di.
5 Delete all but the nA largest arcs from Di.

6 .
7 /* compute candidate image matrices */
8 Set I to an empty list.
9 for i = 1, . . . ,n do

10 for j = 1, . . . ,k do
11 Obtain blockmodel (P, I) by applying the Kernighan-Lin Algorithm 3 to Problem 1

with Di and c.
12 if I is non-isomorphic to all elements of I then
13 Add I to I.

14 .
15 /* compute assignment matrix */
16 Initialize M as an n×|I| integer matrix.
17 for d = 1, . . . ,n do
18 for i = 1, . . . , |I| do
19 Set M(d, i) to the optimum value to Problem 2 with inputs Dd and Ii by

branch-and-cut (Section 4.6).
20 if All optima degenerated then
21 Set M(d, i) = ∞.

22 .
23 /* compute assignments */
24 for i = 1, . . . , |I| do
25 Set φi to the optimum assignment by solving ASSIGN(M,i) with CPLEX.

26 .
27 return (φ1, . . . ,φ|I|)

5.3 CLASSIFICATION OF TRADE NETWORKS 97

Sector ID Description

0 Food and live animals
1 Beverages and tobacco
2 Crude materials, inedible, except fuels
3 Mineral fuels, lubricants and related materials
4 Animal and vegetable oils, fats and waxes
5 Chemicals and related products, n.e.s.
6 Manufactured goods classified chiefly by material
7 Machinery and transport equipment
8 Miscellaneous manufactured articles

Settings and Results. We apply Algorithm 6 to the n = 9 sector trade digraphs. We choose the
parameters nV = 50, nA = 400, k = 10, c = 4 and comment on their stability in the next paragraph.
The solution time for the exact optimization in Line 19 is limited to 1000 seconds. In case that the
limit is reached, the best known primal solution is returned. The total running time is dominated
by the exact optimization and took 3 hours of CPU time on the computer described in Section 4.2.
The algorithm finds 8 candidate image matrices for the 9 networks. The penalty values Mi j are
given by the following matrix.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

29 26 23 29 40 68 53 49
19 29 24 23 43 72 54 51
22 22 24 26 30 49 39 37
29 19 22 33 ∞ 43 31 30
30 17 19 34 24 46 33 32
34 27 29 40 ∞ 40 34 32
28 23 25 29 31 59 45 42
23 23 25 23 ∞ 59 44 41
19 22 26 20 41 73 55 51

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
If only one image matrix can be chosen, there are two optimum solutions. The two optimum image
graphs are depicted in Figure 5.8 (right). For both of the two image graphs holds: If each out of
the 9 digraphs is changed by at most 29 adjacency matrix entries (1.2%) respectively, all digraphs
perfectly have the structure of the depicted image graph.
If the number of image graphs which can be chosen lies between 2 and 8, there is an optimum
solution which uses 2 image matrices only. It has an even better optimum value of 27 (1.1%). The
statement is as follows.

If each out of the 9 digraphs is changed by at most 1.1% respectively, they perfectly have
one of the two patterns depicted in Figure 5.8.

Verification. We show that the two patterns in Figure 5.8 cannot be found in a random col-
lection of graphs with 50 vertices and 400 arcs. To this end, we computed 9 random digraphs,
where each possible arc had the same probability to be one of the 400 created arcs. We then solve
Problem 3 for these digraphs and the two image graphs in Figure 5.8. For the random graphs, we

98 LINK PATTERNS IN THE WORLD TRADE NETWORK

arcs 300 350 400 450 500

Max. adj. changes 1.5% 1.3% 1.1% 1.1% 1.0%

Table 5.1: The solution quality remains if the number of arcs is slightly increased or decreased.

need to change at least 6.2% of the adjacency matrix entries to obtain the shown patterns. For the
trade graphs, at most 1.1% need to be changed.
We finally try to justify the choice of the parameters and the quality of the solution a posteriori. The
choice of k = 10 candidate images per digraph seems to be sufficient, since out of 90 candidates
found, only a subset of 8 candidates was pairwisely non-isomorphic. The choice of c = 4 vertex
groups is not too large, since otherwise one would expect a larger number of degenerate solutions.
One could however compute solutions with more than 4 groups in future research. The choice
of exactly nA = 400 arcs was arbitrary, but from a range allowing for non-trivial patterns (no
complete and no empty trade pattern). To show that our 2-pattern solution in Figure 5.8 is non-
sensitive to changes in nA, we computed its value to Problem 3 from nA = 300 to nA = 500. The
results are given in Table 5.1.

Chapter 6

DISCUSSION AND FUTURE RESEARCH

In this chapter, we briefly discuss the obtained results with a strong emphasis on open questions
and future research topics.

6.1 CLASSIFICATION OF APPROACHES

In Chapter 2, we presented a classification for clustering and blockmodeling approaches and
showed that these approaches are based on relaxations of graph theoretical partitioning defini-
tions. Basically, there are only three types of relaxations: Single node, node pair, and subgraph
relaxations. The classification unifies link density pattern (including clustering) and link existence
pattern approaches and shows the connections between them.

A drawback of a theory about approaches in literature is clearly its incompleteness as soon as
new kinds of approaches are developed. Furthermore, it does not yet cover approaches in which
group size restrictions are not posed as constraints, but are included in the penalty function p. An
example is the conductance approach for clusterings. To classify this approach, the requirement
for same group sizes needs to be added to the ideality definitions, such that a deviation can be
penalized. We did not include it as most approaches include size restrictions into the constraint
set. However, we also see two kinds of practical benefits to our theory:

Design Of New Approaches. First, the classification allows to generate new approaches by a
series of design choices, which include the relaxation type, the choice between ideal and average
graphs, the combination formula for the penalties, and so on. Not all approaches which can be
generated are actually considered in literature. For example, approaches which use average graphs
usually compare G to a single average graph H, whose edge weights are fractional. This choice
seems to be arbitrary, as one could also use a whole set HP,A,B of unweighted average graphs for the
comparison to G. The classification can hence be used to generate and examine new approaches.
Moreover, it can provide reasons for the non-existence of possible approaches.

99

100 DISCUSSION AND FUTURE RESEARCH

Methodological Guidance. The classification provides a guidance in methodological ques-
tions. Given a network, the analyst needs to choose from a variety of pattern analyzation ap-
proaches. In literature, the choice of the penalty function is most often reasoned by properties of
the function itself, not by its suitability for the given network type and the research question posed.
However, we can derive network-specific rules from the classification:

◦ The question whether vertices or edges should be relaxed depends on the input data. For
example, consider a trade network: the existence of the nodes (countries) is not misled
by measuring errors, whereas the link weights (trade amounts) might be errorenous due to
incomplete or inaccurate reports. Approaches which relax edges are stable against these
deviations and should thus be preferred.

◦ Maximizing the distance to average graphs is preferrable in case that it is import to show
that the computed link pattern is not a random phenomenon. Minimizing the distance to
ideal graphs is the better choice if an almost ideal pattern is assumed to exist in the network.

◦ Pairwise relaxations should only be used if patterns of link quantity are searched for and if
the partition of the vertices is more important than the pattern itself. For patterns of link
quantity, the pairwise Definition 3 states that two vertices in the same group have exactly
the same neighbor vertices. In the pairwise relaxation, it is hence possible to quantify the
amount of identical neighbors by a constant value cuv for every pair {u,v} of vertices. For
patterns of link existence, however, the pairwise definition states that two vertices in the
same group have neighbors in the same groups. This value is however non-constant, as it
depends on the partition of the vertices. Still, many authors compute the similarities cuv

for link existence patterns as well. For example, the earlier the partition algortihm REGE
decides that u and v should belong to distinct groups, the larger the similarity value cuv is
set. That is, for every pair {u,v}, the similarity value cuv is computed with respect to a
different grouping. When the values cuv are finally clustered into groups and the link pattern
is obtained by a rounding procedure, the pattern is hence not guaranteed to be good by any
measurement. We therefore recommend to use the pairwise relaxations only for patterns of
link quantity.

Using the classification, the decision-making process can be performed stepwise: Are ideal or
average graphs more suitable, should edges or vertices be relaxed, should node pairs or subgraphs
be relaxed, how should subgraph penalties be combined, and so on.

6.2 ALGORITHMIC IMPROVEMENTS

In Chapter 4, we developed an exact algorithm for the solution of Problem 2: Given a digraph
and a link existence pattern, compute how well the pattern describes the network. The resulting
branch-and-cut algorithm turned out to be 100 to 10,000 times faster than comparable approaches
from the literature. The greatest portion of the speedup is due to two major reasons: First, the
dimension of the solution space could be significantly reduced. Second, the primal Kernighan-Lin
heuristic turned out to produces near-optimum solutions on our test instances. However, further

6.3 WORLD TRADE ANALYSIS 101

research should consider the dual bound. Even though the dual bound given by the optimum
to the LP-relaxation could be improved by our dual heuristic, the resulting gap between primal
and dual bound remains large for many test instances. Further standard approaches such as the
Lagrangian relaxation failed in our tests and are thus not reported in this thesis. A further research
direction lies in the application of non-linear integer programming techniques. Instead of using
linearizations, which increase the dimension of the solution space to a large extent, the problem
could be solved directly. However, as the integer program is non-binary and the objective function
is non-convex in general, current direct approaches are still slower by several orders of magnitude.

6.3 WORLD TRADE ANALYSIS

In Chapter 5, we analyzed a world trade network provided by the United Nations. We found
patterns of link existence which describe the network well in an absolute sense. That is, the
networks need to be adjusted by a small amount (< 1%) to perfectly match the patterns. Still,
the analysis methods were heuristical: In a first step, a collection of good candidate patterns was
computed. In the second step, their quality was exactly computed. Even though the heuristic
was shown to produce near-optimal solutions on our test instances in Section 4.4, it will likely
miss good candidate patterns in the first step. We thus do not know whether the absolutely good
solutions are also relatively good with respect to other solutions. Future research should focus on
the exact solution of Problem 1 in a single step. To this end, a branch-and-cut algorithm based on
the integer program Model 1 on Page 55 could be developed.
In Section 5.3, we developed a classification algorithm for trade networks and applied it to 9
subnetworks of the world trade network, based on 9 groups of commodities. As these groups are
still quite extensive, future research could investigate on even more specialized sub groups, such
as “sugar” and “mushrooms” instead of “food and live animals”, and classify hundreds of them.
The world trade analysis was conducted to demonstrate the practical usability of the algorithms
developed in the preceding chapters. In future research, we will discuss the computed optimum
patterns with economists in order to investigate on their real-world meanings.

Appendices

103

Table of Country Names

AFG Afghanistan
AFR Africa CAMEU region, nes
AGO Angola
AIA Anguilla
ALB Albania
AND Andorra
ANT Antarctica
ARB Aruba
ARE United Arab Emirates
ARG Argentina
ARM Armenia
ASM American Samoa
ATF Fr. South Antarctic Terr.
ATG Antigua and Barbuda
AUS Australia
AUT Austria
AZE Azerbaijan
BAN Br. Antarctic Terr.
BDI Burundi
BEL Belgium
BEN Benin
BFA Burkina Faso
BGD Bangladesh
BGR Bulgaria
BHR Bahrain
BHS Bahamas
BIH Bosnia Herzegovina
BLR Belarus
BLU Belgium-Luxembourg
BLZ Belize

BMU Bermuda
BOL Bolivia
BRA Brazil
BRB Barbados
BRN Brunei Darussalam
BTN Bhutan
BUN Bunkers
BVT Bouvet Island
BWA Botswana
CAC CACM, nes
CAF Central African Rep.
CAN Canada
CAR Caribbean, nes
CCK Cocos Isds
CHE Switzerland
CHL Chile
CHN China
CIV Cote d’Ivoire
CMR Cameroon
COD Dem. Rep. of the Congo
COG Congo
COK Cook Isds
COL Colombia
COM Comoros
CPV Cape Verde
CRI Costa Rica
CSK Czechoslovakia
CUB Cuba
CXR Christmas Isds
CYM Cayman Isds

105

106

CYP Cyprus
CZE Czech Rep.
DDR Fmr Dem. Rep. of Germany
DEU Fmr Fed. Rep. of Germany
DEU Germany
DJI Djibouti
DMA Dominica
DNK Denmark
DOM Dominican Rep.
DZA Algeria
ECU Ecuador
EEU Eastern Europe, nes
EFT Europe EFTA, nes
EGY Egypt
ERI Eritrea
ESH Western Sahara
ESP Spain
EST Estonia
ETH Ethiopia
ETH Fmr Ethiopia
EU Europe EU, nes
EU2 EU-27
FIN Finland
FJI Fiji
FLK Falkland Isds (Malvinas)
FRA France
FRO Faeroe Isds
FSM FS Micronesia
GAB Gabon
GBR United Kingdom
GEO Georgia
GHA Ghana
GIB Gibraltar
GIN Guinea
GLP Guadeloupe
GMB Gambia
GNB Guinea-Bissau
GNQ Equatorial Guinea

GRC Greece
GRD Grenada
GRL Greenland
GTM Guatemala
GUF French Guiana
GUM Guam
GUY Guyana
HKG China, Hong Kong SAR
HMD Heard Island and McDonald Islands
HND Honduras
HRV Croatia
HTI Haiti
HUN Hungary
IDN Indonesia
IND India
IND India, excl. Sikkim
IOT Br. Indian Ocean Terr.
IRL Ireland
IRN Iran
IRQ Iraq
ISL Iceland
ISR Israel
ITA Italy
JAM Jamaica
JOR Jordan
JPN Japan
KAZ Kazakhstan
KEN Kenya
KGZ Kyrgyzstan
KHM Cambodia
KIR Kiribati
KNA Saint Kitts and Nevis
KNA Saint Kitts, Nevis and Anguilla
KOR Rep. of Korea
KWT Kuwait
LAI LAIA, nes
LAO Lao People’s Dem. Rep.
LBN Lebanon

107

LBR Liberia
LBY Libya
LCA Saint Lucia
LKA Sri Lanka
LSO Lesotho
LTU Lithuania
LUX Luxembourg
LVA Latvia
MAC China, Macao SAR
MAR Morocco
MDA Rep. of Moldova
MDG Madagascar
MDV Maldives
MEX Mexico
MHL Marshall Isds
MKD TFYR of Macedonia
MLI Mali
MLT Malta
MMR Myanmar
MNE Montenegro
MNG Mongolia
MNP N. Mariana Isds
MOZ Mozambique
MRT Mauritania
MSR Montserrat
MTQ Martinique
MUS Mauritius
MWI Malawi
MYS Malaysia
MYT Mayotte
NAF Northern Africa, nes
NAM Namibia
NAN Neth. Antilles
NAN Neth. Antilles and Aruba
NCA North America and Central America,

nes
NCL New Caledonia
NER Niger

NEU Neutral Zone
NFK Norfolk Isds
NGA Nigeria
NIC Nicaragua
NIU Niue
NLD Netherlands
NOR Norway
NPL Nepal
NRU Nauru
NZL New Zealand
OAF Other Africa, nes
OAM Rest of America, nes
OAS Other Asia, nes
OCE Oceania, nes
OEU Other Europe, nes
OMN Oman
PAK East and West Pakistan
PAK Pakistan
PAN Fmr Panama, excl.Canal Zone
PAN Panama
PCI Fmr Pacific Isds
PCN Pitcairn
PCZ Fmr Panama-Canal-Zone
PER Peru
PHL Philippines
PLW Palau
PMA Peninsula Malaysia
PNG Papua New Guinea
POL Poland
PRK Dem. People’s Rep. of Korea
PRT Portugal
PRY Paraguay
PSE Occ. Palestinian Terr.
PYF French Polynesia
QAT Qatar
REU Reunion
RHO Fmr Rhodesia Nyas
ROM Romania

108

RUS Russian Federation
RWA Rwanda
RYU Ryukyu Isd
SAB Sabah
SAR Sarawak
SAU Saudi Arabia
SCG Serbia and Montenegro
SDN Sudan
SEN Senegal
SGP Singapore
SGS South Georgia and the South

Sandwich Islands
SHN Saint Helena
SIK Sikkim
SLB Solomon Isds
SLE Sierra Leone
SLV El Salvador
SMR San Marino
SOM Somalia
SPM Saint Pierre and Miquelon
SRB Serbia
STP Sao Tome and Principe
SUN Fmr USSR
SUR Suriname
SVK Slovakia
SVN Slovenia
SWE Sweden
SWZ Swaziland
SYC Seychelles
SYR Syria
TAN Fmr Tanganyika
TCA Turks and Caicos Isds
TCD Chad
TGO Togo
THA Thailand
TJK Tajikistan
TKL Tokelau
TKM Turkmenistan

TMP Timor-Leste
TON Tonga
TTO Trinidad and Tobago
TUN Tunisia
TUR Turkey
TUV Tuvalu
TZA United Rep. of Tanzania
UGA Uganda
UKR Ukraine
UMI United States Minor Outlying Islands
URY Uruguay
USA USA
USA USA (before 1981)
USP US Misc. Pacific Isds
UZB Uzbekistan
VAT Holy See (Vatican City State)
VCT Saint Vincent and the Grenadines
VDR Fmr Dem. Rep. of Vietnam
VEN Venezuela
VGB Br. Virgin Isds
VIR US Virgin Isds
VNM Fmr Rep. of Vietnam
VNM Viet Nam
VUT Vanuatu
WAS Western Asia, nes
WLD World
WLF Wallis and Futuna Isds
WSM Samoa
XXX Special Categories
XXY Areas, nes
YEM Fmr Arab Rep. of Yemen
YEM Yemen
YMD Fmr Dem. Yemen
YUG Fmr Yugoslavia
ZAF So. African Customs Union
ZAF South Africa
ZAN Fmr Zanzibar and Pemba Isd
ZMB Zambia

109

ZON Free Zones
ZWE Zimbabwe

Country Partitions

Multiple Arc Type, 4 groups, 4 arc types

A AUS ARE ARG AUT BEL BGR BLR BRA CAN CHE
CHL CHN COL CZE DEU DNK DZA ECU EGY ESP
EST FRA GBR GUY HKG HRV HUN IDN IND IRL
IRN ISR ITA JPN KOR LBY LVA MEX MYS NGA
NLD NOR PAN POL PRT ROM RUS SGP SLV SRB
SWE THA TUR UGA UKR USA VNM ZAF

B ALB AZE BFA BGD BIH BOL BWA CIV CMR COG
CRI CYP DOM ETH FIN FJI GEO GHA GRC GTM
HND ISL JOR KAZ KEN KHM LKA LTU LUX MAR
MMR MOZ MRT NAM NZL OMN PAK PER PHL PRY
QAT SDN SEN SUR SVK SVN SYR TGO TTO TUN
TZA URY YEM ZMB ZWE

C AFG ARB ARM ATG BDI BEN BHR BHS BLZ BRB
BTN CAF DMA GMB GRL JAM KGZ LBN MAC MDA
MDG MDV MKD MLI MLT MNE MUS MWI NCL NER
NIC NPL PSE PYF RWA SAU SLB STP TON VCT
VEN VUT WSM

D CYM AGO AIA AND ANT ASM ATF BMU BRN BUN
BVT CCK COD COK COM CPV CUB CXR DJI ERI
FLK FRO FSM GAB GIB GIN GNB GNQ GRD GUM
HMD HTI IOT IRQ KIR KNA KWT LAO LBR LCA
LSO MHL MNG MNP MSR MYT NAN NFK NIU NRU
PCN PLW PNG PRK SGS SHN SLE SMR SOM SPM
SWZ SYC TCA TCD TJK TKL TKM TMP TUV UZB
VAT VGB WLF

111

112

Single Arc Type, 2 groups

Left AUS AUT BEL BRA CZE FRA HKG HUN IRN IRL ITA
JPN MEX MYS NLD NOR PAN PHL PRT ROM SVK ZAF
ESP SWE CHE THA TUR EGY GBR DZA ARG VNM

Right CHL CHN DNK DEU IDN KAZ KOR NGA POL RUS SAU
IND SGP ARE USA QAT

Single Arc Type, 4 groups

Center BRA CHN CZE DEU IND JPN KOR SGP USA

Top ARG EGY HUN PAN PHIL QAT SAU SVK VNM ZAF

Left ARE AUT AUS CHL DNK DZA FIN HKG IDN IRL
KAZ MEX NGA NOR POL ROM TUR

Right BEL CAN CHE ESP FRA GBR IRN ITA MYS NLD
RUS SWE THA

113

Multiple Arc Type, 6 groups, 3 arc types

Upper AFG BHR BOL BLZ KHM CAF CYP LUX MDA NPL
left UGA CMR BEN ETH GEO GMB PSE MRT NER TGO
(orange) BFA YEM KGZ NAM ARB ATG BHS ARM SLB DMA

JAM MAC MWI MDV MNE VUT BTN BDI PYF GRL

Upper CYM IRQ KWT LBR MHL SWZ TJK AGO CPV TCD
center CUB GNQ DJI GAB GIN BMU BRN COD MNG NAN
(black) TKM UZB ASM AND GIB LAO LSO PNG GNB KNA

LCA VGB ERI GUM NIU NFK TMP SOM BUN FRO
PRK TCA

Upper ALB EST GTM ISL JOR LVA LBY LTU MDG MLI
right RWA SRB MKD TZA LKA DOM SLV GHA LBN MOZ
(red) NZL ZWE URY BGD BRB BWA MMR FJI GUY HND

MUS PRY VCT SUR NCL WSM PRK TCA

Lower AUS BGR CAN CHL HRV DNK FIN GRC HKG IRN
left ISR KAZ MYS MAR OMN NGA PAN PHL POL PRT
(yellow) ROM SAU SEN SVN ZAF CHE TUR UKR EGY ZMB

DZA ECU CIV KEN VNM SDN TUN VEN AZE COL
TTO CRI PER

Lower COM SLE HTI STP SYC GRD SMR TON ANT IOT
center CXR CCK COK FLK KIR NRU MNP FSM PLW PCN
(white) SHN AIA SPM TUV WLF MYT ATF VAT MSR TKL

BVT SGS HMD

Lower AUT BEL BIH BRA BLR CHN COG CZE FRA DEU
right HUN IDN IRL ITA JPN KOR MLT MEX NLD NIC
(blue) NOR RUS IND SGP SVK ESP SWE SYR THA ARE

GBR USA ARG PAK QAT

Index

algorithm
cycle separation, 61
dual bound, 67
Kernighan-Lin, 63
red-blue tree, 59
trade analysis, 85, 91

Berkowitz-Carrington-Heil index, 23
bicycle p-wheel, 38
blockmodel, 2

feasible, 3
ideal, 14, 24

blockmodeling
direct approach, 26
indirect approach, 19

BLOCKP, 3
branch-and-bound, 68

CATREGE, 18
classification

of edge weights, 90
of trade networks, 93

clique
n-clique, 5, 19
inequalities, 38
partition spanning, 48
sociometric, 5, 19

cluster
density, 22
performance, 22

clustering problem, 4
column generation, 40
Comtrade, 81

k-core, 19
core-periphery, 82
customer-product network, 11
cutting planes, 58
cycle inequalities, 37, 61

degenerated image matrix, 84
DEGENERATION, 84
density, maximal structural, 23
dichotomization, 84
distance function, 20

edge coloring, 43
blue, 43
blue-red, 45

edit distance, 20
endnode mapping, blue, 44

feasibility of blockmodels, 3

graph
average, 21
underlying, 35, 57

group
leader vertex, 32
number, 32, 40
penalty inducing, 46
size, 32

hamiltonian cycle, 47
heuristic

dual, 65
Karger-Stein, 69
Kernighan-Lin, 62, 85

115

116 INDEX

local search, 62
hypothesis test, 52

image graph, 2
degenerated, 84
fixed, 4
redundant, 83
rounded, 4

image matrix, see image graph
integer quadratic program, 55

lattice, 25
bounded, 25
greatest element, 25
join,meet, 25

linear ordering problem, 54
linearization, 38, 43, 46

Balas, 38
lp gap, 60

maximum cut problem, 36
minimum k-cut problem, 54
minimum edge cover problem, 54
model

multi-mode, 8
multi-relation, 7
multi-way, 8

modularity, 23, 54
multi-dimensional scaling, 82
multiplex equivalence, 8

network
classification, 93
conflicts, 9
customer-product, 11
food chain, 10
multi-arc, 89
patents, 10
photo trade, 58
trade, 9, 10, 81

nodal degree relaxation, 18
NP-hard, 26, 53

partition, 2
exact regular, 16

ideal, 14
ideal regular, 14–16, 52
ideal structural, 14–16
number of, 18
perfect regular, 16
relative regular, 17
size limits, 3

partition vector, 35
pattern

of link density, 1
of link existence, 6

penalty function, 3, 13
penalty inducing, 46
performance of a cluster, 22
k-plex, 18
Problem 1, 52
Problem 1-multi, 89
Problem 2, 52

quadratic assignment problem, 36, 39, 53
quality function, see penalty function

random graph
distorted, 58
Watts-Strogatz, 57

REDUNDANCE, 83
redundant image matrix, 83

SCIP, 57, 71
sensitive function, 26

structurally,regularly, 27
separation, 58
set covering, 43
similarity of vertices, 27
SITC, 81, 95
split procedure, 24
stability, 87, 97
subgraph penalty, 21
symmetry breaking, 32, 36

trade network, 6, 9, 10
traveling salesman problem, 54

vertex
core, 67

INDEX 117

periphery, 67
vertex similarity, 19

weight
on arcs, 52
on blocks, 52

Bibliography

[ABL78] Phipps Arabie, Scott A Boorman, and Paul R Levitt, Constructing blockmodels: How
and why, Journal of Mathematical Psychology 17 (1978), no. 1, 21–63.

[Ach09] Tobias Achterberg, Scip: Solving constraint integer programs, Math. Prog. Comp. 1
(2009), no. 1, 1–41.

[AK08] Gaurav Agarwal and David Kempe, Modularity-maximizing graph communities via
mathematical programming, The European Physical Journal B 66 (2008), no. 3, 409–
418.

[Alb73] Richard D Alba, A graph-theoretic definition of a sociometric clique, Journal of
Mathematical Sociology 3 (1973), no. 1, 113–126.

[Bal64] Egon Balas, Extension de l’algorithme additif a la programmation en nombres en-
tiers et a la programmation non lineaire, CR Acad. Sci. Paris 258 (1964), 5136–5139.

[Bar92] AI Barvinok, Combinatorial complexity of orbits in representations of the symmetric
group, Advances in Soviet Mathematics 9 (1992), 161–182.

[BDF92] Vladimir Batagelj, Patrick Doreian, and Anuška Ferligoj, An optimizational ap-
proach to regular equivalence, Social Networks 14 (1992), no. 1, 121–135.

[BE89] Stephen P Borgatti and Martin G Everett, The class of all regular equivalences: Al-
gebraic structure and computation, Social Networks 11 (1989), no. 1, 65–88.

[BE92] , Regular blockmodels of multiway, multimode matrices, Social Networks 14
(1992), no. 1, 91–120.

[BE93] , Two algorithms for computing regular equivalence, Social Networks 15
(1993), no. 4, 361–376.

[BE99] John P Boyd and Martin G Everett, Relations, residuals, regular interiors, and rela-
tive regular equivalence, Social Networks 21 (1999), no. 2, 147–165.

[BE00] Stephen P Borgatti and Martin G Everett, Models of core/periphery structures, Social
Networks 21 (2000), no. 4, 375–395.

119

120 BIBLIOGRAPHY

[BEF02] Stephen P Borgatti, Martin G Everett, and Linton C Freeman, Ucinet 6 for windows:
Software for social network analysis, Harvard, MA: Analytic Technologies (2002).

[BHL+07] Jonathan W Berry, Bruce Hendrickson, Randall A LaViolette, Vitus J Leung,
and Cynthia A Phillips, Community detection via facility location, arXiv preprint
arXiv:0710.3800 (2007).

[BL10] Ulrik Brandes and Jürgen Lerner, Structural similarity: spectral methods for relaxed
blockmodeling, Journal of classification 27 (2010), no. 3, 279–306.

[BM86] Francisco Barahona and Ali Ridha Mahjoub, On the cut polytope, Mathematical pro-
gramming 36 (1986), no. 2, 157–173.

[Bon11] Thorsten Bonato, Contraction-based separation and lifting for solving the max-cut
problem, Ph.D. thesis, Universitaet Heidelberg, 2011.

[BS09] Michael J Brusco and Douglas Steinley, Integer programs for one-and two-mode
blockmodeling based on prespecified image matrices for structural and regular
equivalence, Journal of Mathematical Psychology 53 (2009), no. 6, 577–585.

[Bur76] Ronald S Burt, Positions in networks, Social forces 55 (1976), no. 1, 93–122.

[CDW08] William YC Chen, Andreas WM Dress, and Q Yu Winking, Community structures
of networks, Mathematics in Computer Science 1 (2008), no. 3, 441–457.

[CHB80] Peter J Carrington, Greg H Heil, and Stephen D Berkowitz, A goodness-of-fit index
for blockmodels, Social Networks 2 (1980), no. 3, 219–234.

[Com15] U.N. Comtrade, United nations commodity trade statistics database, URL:
http://comtrade.un.org (2015).

[Das14] Niheer Dasandi, International inequality and world poverty: A quantitative struc-
tural analysis, New Political Economy 19 (2) (2014), 201–226.

[DBF05] Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj, Generalized blockmodel-
ing, vol. 25, Cambridge University Press, 2005.

[FMdS+96] Carlos E Ferreira, Alexander Martin, Cid C de SOUZA, Robert Weismantel, and
Laurence A. Wolsey, Formulations and valid inequalities for the node capacitated
graph partitioning problem, Mathematical Programming 74 (1996), no. 3, 247–266.

[For09] Santo Fortunato, Community detection in graphs, Physics Reports 486 (2009), no. 3,
75–174.

[FP03] Jiřı́ Fiala and Daniël Paulusma, The computational complexity of the role assignment
problem, Springer, 2003.

[FY83] AM Frieze and J Yadegar, On the quadratic assignment problem, Discrete applied
mathematics 5 (1983), no. 1, 89–98.

BIBLIOGRAPHY 121

[GW89] Martin Grötschel and Yoshiko Wakabayashi, A cutting plane algorithm for a cluster-
ing problem, Mathematical Programming 45 (1989), no. 1-3, 59–96.

[Haa13] Dominik Haas, Relaxierungen des Reguläre-Äquivalenz-Problems, Master’s thesis,
Universität Heidelberg, 2013.

[Ji04] Xiaoyun Ji, Graph partition problems with minimum size constraints, Ph.D. thesis,
Rensselaer Polytechnic Institute, 2004.

[JMN93] Ellis L Johnson, Anuj Mehrotra, and George L Nemhauser, Min-cut clustering, Math-
ematical Programming 62 (1993), no. 1-3, 133–151.

[KA91] Gary Klein and Jay E Aronson, Optimal clustering: A model and method, Naval
Research Logistics (NRL) 38 (1991), no. 3, 447–461.

[Kai97] Volker Kaibel, Polyhedral combinatorics of the quadratic assignment problem, Ph.D.
thesis, Universitaet Koeln, 1997.

[Kar72] Richard M Karp, Reducibility among combinatorial problems, Springer, 1972.

[KL70] Brian W Kernighan and Shen Lin, An efficient heuristic procedure for partitioning
graphs, Bell System Technical Journal 49 (1970), no. 2, 291–307.

[KS96] David R Karger and Clifford Stein, A new approach to the minimum cut problem,
Journal of the ACM (JACM) 43 (1996), no. 4, 601–640.

[LBJE03] Joseph J Luczkovich, Stephen P Borgatti, Jeffrey C Johnson, and Martin G Everett,
Defining and measuring trophic role similarity in food webs using regular equiva-
lence, Journal of Theoretical Biology 220 (2003), no. 3, 303–321.

[Ler05] Jürgen Lerner, Role assignments, Network analysis, Springer, 2005, pp. 216–252.

[Lib07] Leo Liberti, Compact linearization for binary quadratic problems, 4OR 5 (2007),
no. 3, 231–245.

[LML09] Paulette Lloyd, Matthew C Mahutga, and Jan De Leeuw, Looking back and forg-
ing ahead: Thirty years of social network research on the world-system, American
Sociological Association XV (1) (2009), 48–85.

[LW71] Francois Lorrain and Harrison C White, Structural equivalence of individuals in so-
cial networks, The Journal of Mathematical Sociology 1 (1971), no. 1, 49–80.

[Mel06] Guy Melancon, Just how dense are dense graphs in the real world?: a methodolog-
ical note, Proceedings of the 2006 AVI workshop on BEyond time and errors: novel
evaluation methods for information visualization, ACM, 2006, pp. 1–7.

[MKTT06] Zeev Maoz, Ranan D Kuperman, Lesley Terris, and Ilan Talmud, Structural equiva-
lence and international conflict a social networks analysis, Journal of Conflict Res-
olution 50 (2006), no. 5, 664–689.

122 BIBLIOGRAPHY

[Mok79] Robert J. Mokken, Cliques, clubs and clans, Quality and Quantity 13 (1979), 161–
173.

[MS06] Matthew C Mahutga and David A Smith, Globalization, the structure of the world
economy and economic development, IROWS Working Paper #52 (2006).

[MT98] Anuj Mehrotra and Michael A Trick, Cliques and clustering: A combinatorial ap-
proach, Operations Research Letters 22 (1998), no. 1, 1–12.

[Nat] United Nations, http://comtrade.un.org/db/help/ureadmefirst.aspx, May 12th 2015.

[Nat98] , International merchandise trade statistics: Concepts and definitions, Stud-
ies in Methods Series M, No.52, Rev.2, 1998.

[NG04] Mark EJ Newman and Michelle Girvan, Finding and evaluating community structure
in networks, Physical review E 69 (2004), no. 2, 026113.

[Nor07] Carl Nordlund, Identifying regular blocks in valued networks: A heuristic applied
to the st. marks carbon flow data, and international trade in cereal products, Social
Networks 29 (2007), no. 1, 59–69.

[NS05] Marc Nunkesser and Daniel Sawitzki, Blockmodels, Network Analysis, Springer,
2005, pp. 253–292.

[RS01] Fred S Roberts and Li Sheng, How hard is it to determine if a graph has a 2-role
assignment?, Networks 37 (2001), no. 2, 67–73.

[Rub13] Simon Rube, Eine Heuristik zur Bestimmung regulärer Äquivalenzklassen, Master’s
thesis, Universität Heidelberg, 2013.

[RW07] Jörg Reichardt and Douglas R White, Role models for complex networks, The Euro-
pean Physical Journal B-Condensed Matter and Complex Systems 60 (2007), no. 2,
217–224.

[Sco02] John Scott, Social networks: Critical concepts in sociology, vol. 2, Taylor & Francis,
2002.

[SF78] S.B. Seidman and B.L. Foster, A graph-theoretic generalization of the clique concept,
Journal of Mathematical Sociology 6 (1978), 139–154.

[Srh06] Martin Srholec, Fragmentation and trade: A network perspective, ETSG Annual
Conference in Vienna (2006).

[SW92] David A Smith and Douglas R White, Structure and dynamics of the global economy:
Network analysis of international trade 1965–1980, Social Forces 70 (1992), no. 4,
857–893.

[Vin69] Hrishikesh D Vinod, Integer programming and the theory of grouping, Journal of the
American Statistical Association 64 (1969), no. 326, 506–519.

BIBLIOGRAPHY 123

[WCHC10] Calvin S Weng, Wan-Yu Chen, Hui-Ying Hsu, and Shih-Hung Chien, To study the
technological network by structural equivalence, The Journal of High Technology
Management Research 21 (2010), no. 1, 52–63.

[WF94] Stanley Wasserman and Katherine Faust, Social network analysis: Methods and ap-
plications, vol. 8, Cambridge University Press, 1994.

[WS98] DJ Watts and SH Strogatz, Collective dynamics of small-world networks, Nature 393
(6684) (1998), 440–442.

[XTP07] G Xu, S Tsoka, and LG Papageorgiou, Finding community structures in complex net-
works using mixed integer optimisation, The European Physical Journal B 60 (2007),
no. 2, 231–239.

	1 Zusammenfassung
	2 Abstract
	3
	1 Patterns of Link Quantity and Link Existence
	1.1 Patterns of Link Quantity
	1.1.1 Motivation
	1.1.2 Feasibility of Blockmodels
	1.1.3 Penalties on Blockmodels

	1.2 Patterns of Link Existence
	1.3 Generalized Graph Types
	1.4 Scientific Applications

	2 A Classification of Quality Functions
	2.1 Ideal Blockmodels
	2.1.1 The Subgraph Definition
	2.1.2 The Node Pair Definition
	2.1.3 The Single Node Definition
	2.1.4 Variants of Ideality

	2.2 Deviations from Ideality
	2.2.1 Reasons for Relaxations
	2.2.2 General Relaxation
	2.2.3 Partition Number Relaxations
	2.2.4 Single Node and Node Pair Relaxations
	2.2.5 Subgraph Relaxations

	2.3 The Space of Ideal Blockmodels
	2.3.1 Order-Theoretic Lattices

	2.4 Computational Complexity of Quality Optimization
	2.4.1 Sensitive Objective Functions
	2.4.2 NP-Hardness Proofs

	3 Variables in Integer Programs for Pattern Search Problems
	3.1 Vertex Assignment Variables x
	3.1.1 Constraints on Group Sizes and Numbers of Groups
	3.1.2 Symmetry Breaking Constraints

	3.2 Edge Assignment Variables y
	3.2.1 Group Size and Symmetry Breaking Constraints
	3.2.2 Strengthening the Formulation
	3.2.3 Combining x and y Variables

	3.3 Equivalence Relation Variables s, Vertex Subset Variables w
	3.4 Minimum Blockmodel Errors by Polynomial Linearization
	3.4.1 Linearization of Error Defining Polynomials
	3.4.2 Bounding the Error From Below
	3.4.3 Bounding the Error From Above

	4 Branch-and-Cut Algorithms for a Pattern Search Problem
	4.1 The Optimization Problem
	4.1.1 Hypothesis Test
	4.1.2 NP-Hardness and Relation to Combinatorial Problems
	4.1.3 Integer Quadratic Programming Formulations

	4.2 Computational Setting and Test Instances
	4.3 Separation of Cutting Planes
	4.3.1 Error Defining Constraints
	4.3.2 Cycle Inequalities

	4.4 Primal Heuristics
	4.5 Dual Heuristics
	4.5.1 Decomposition into Overlapping Subgraphs
	4.5.2 Solution of the Subproblems
	4.5.3 Determination of the Subproblems
	4.5.4 Computational Tests

	4.6 Computational Results
	4.6.1 Overall Performance of the Solver
	4.6.2 Hardness Dependence on Input Data

	5 Link Patterns in the World Trade Network
	5.1 Data and Goals
	5.2 Analysis of the World Trade Network
	5.2.1 A Single Arc Type Approach
	5.2.2 A Multiple Arc Type Approach

	5.3 Classification of Trade Networks

	6 Discussion and Future Research
	6.1 Classification of Approaches
	6.2 Algorithmic Improvements
	6.3 World Trade Analysis

	Appendices

	Index
	Bibliography

