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Abstract

Background: Disrupted bile secretion leads to liver damage characterized by inflammation, fibrosis, eventually
cirrhosis, and hepatocellular cancer. As obstructive cholestasis often progresses insidiously, markers for the diagnosis
and staging of the disease are urgently needed. To this end, we compiled a comprehensive data set of serum
markers, histological parameters and transcript profiles at 8 time points of disease progression after bile duct
ligation (BDL) in mice, aiming at identifying a set of parameters that could be used as robust biomarkers for
transition of different disease progression phases.

Results: Statistical analysis of the more than 6,000 data points revealed distinct temporal phases of disease. Time
course correlation analysis of biochemical, histochemical and mRNA transcript parameters (=factors) defined 6
clusters for different phases of disease progression. The number of CTGF-positive cells provided the most reliable
overall measure for disease progression at histological level, bilirubin at biochemical level, and metalloproteinase
inhibitor 1 (Timp1) at transcript level. Prominent molecular events exhibited by strong transcript peaks are found for
the transcriptional regulator Nr0b2 (Shp) and 1,25-dihydroxyvitamin D(3) 24-hydroxylase (Cyp24a1) at 6 h. Based on
these clusters, we constructed a decision tree of factor combinations potentially useful as markers for different time
intervals of disease progression. Best prediction for onset of disease is achieved by fibronectin (Fn1), for early
disease phase by Cytochrome P450 1A2 (Cyp1a2), passage to perpetuation phase by collagen1α-1 (Col1a1), and
transition to the progression phase by interleukin 17-a (Il17a), with early and late progression separated by Col1a1.
Notably, these predictions remained stable even for randomly chosen small sub-sets of factors selected from the
clusters.

Conclusion: Our detailed time-resolved explorative study of liver homogenates following BDL revealed a well-
coordinated response, resulting in disease phase dependent parameter modulations at morphological, biochemical,
metabolic and gene expression levels. Interestingly, a small set of selected parameters can be used as diagnostic
markers to predict disease stages in mice with cholestatic liver disease.
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Background
Cholestatic liver diseases are caused by an impaired flow
of bile from liver to duodenum. A major component of
bile are the bile salts, strong detergents required for ex-
traction of lipids from apical membrane of hepatocytes
into bile fluid and emulgation of lipids in the gut. More-
over, bile fluid comprises numerous endogenous prod-
ucts (e.g. bilirubin) and potentially toxic compounds
resulting from the clearance function of the liver. Hence,
accumulation of bile compounds due to cholestasis
causes unspecific cellular damage that initiates a cascade
of inflammatory and fibrogenic events in the liver. At
the cellular and molecular level, these comprise, among
others, necrosis of hepatocytes and cholangiocytes, acti-
vation of macrophages, releasing pro-inflammatory
cytokines and chemokines, neutrophil infiltration, cho-
langiocyte and hepatocyte proliferation, stellate cell acti-
vation with progressive fibrosis causing secondary biliary
cirrhosis, and ultimately liver failure or progression into
liver cancer [1].
Multiple pathologies may represent the primary trigger

of impaired bile flow, e.g. defects in export of bile from
hepatocytes to bile canaliculi (hepatocellular cholestasis),
obstruction of bile ducts by gall stones or local tumor
impingement (extrahepatic cholestasis) [2]. Among the
most common cholestatic liver diseases in the adult
population are primary biliary cirrhosis (PBC) and pri-
mary sclerosing cholangitis (PSC), while biliary atresia
and Alagille syndrome are found in the pediatric
population [3–5]. The corresponding experimental
model to induce obstructive cholestatic injury in mice
and rats is surgical bile duct ligation (BDL) [6, 7],
which results in stereotypical histopathological pheno-
types as in human cholestasis. The BDL experimental
model has been well described and evaluated in rats
and mice and is widely used to study cholestatic liver
injury and fibrogenesis [8].
Chronic liver diseases (CLD), like cholestasis, repre-

sent with characteristic temporal morphologic, biochem-
ical and molecular changes in liver and serum. For
instance, in the BDL model, an early phase of acute hep-
atocyte injury is followed by a proliferative response of
different parenchymal and non-parenchymal liver cell
types, up-regulation of pro-inflammatory and pro-
fibrotic cytokines and metabolic enzymes, presenting as
liver fibrosis after around 7 days [7, 8]. Such alteration
dynamics can be exploited to identify biomarkers of spe-
cific stages of disease progression and disease severity.
Hitherto, semi-quantitative morphological scoring is the
standard technique for grading and staging a CLD. How-
ever, the availability of high-throughput technologies en-
ables to flank the histological assessment of injured
tissue with a comprehensive molecular profiling of gene
transcripts, gene products (proteins) and metabolites, in

liver tissue as well as in serum of patients and animal
models. Such analyses not only will provide a more de-
tailed characterization and thus more refined staging of
disease progression, they also lead to a deeper under-
standing of the molecular networks governing histo-
logical and pathophysical alterations observed at higher
scales of tissue organization. The identification of key
processes triggering the transition between different
phases of disease progression based on high (or inter-
mediate) throughput experimental data from different
levels of cellular organization requires mathematical
analyses, which take into account multiple parallel pro-
cesses and process dynamics.
In this study, we wanted to systemize existing and

newly acquired knowledge on morphological, biochem-
ical and molecular biomarkers of cholestasis, and
analyze disease progression following BDL in mice in a
time resolved comprehensive manner. Our approach sets
itself apart from existing studies, which either describe
the time course of a limited number of selected parame-
ters after BDL [7, 8], or provide gene expression signa-
tures for a limited number of time points, thereby
missing the acute damage after BDL in the first 24 h and
long-term effects after 7 days [9]. None of these preced-
ing studies applied predictive models based on acquired
time course data. Therefore, a central aim of our study
was to identify molecular markers for temporal progres-
sion of BDL cholestasis by correlating high-accuracy
image data and transcriptional profiles of a set of prese-
lected targets with pathobiochemical markers of obstruct-
ive cholestasis. We collected from 8 different time points
after BDL more than 6,000 experimental data points
(Additional file 1), comprising immunohistochemistry,
biochemistry and molecular profiling measures. Statistical
methods were applied to unravel robust interrelations in
this large-scale data set, and to find clusters of parameters
corresponding to characteristic time profiles of disease on-
set/progression. We correlated level and timing of patho-
physiological events with transcriptional changes, in order
to define molecular markers, and developed predictive de-
cision trees on a subset of biomarkers for the assessment
of different disease phases as they occur during develop-
ment of cholestasis.

Methods
Ethic statement
All experiments were approved by the local government
Landesamt für Landwirtschaft, Lebensmittelsicherheit
und Fischerei Mecklenburg-Voprommern (LALLF M-V/
TSD/7221.3-1.2-049/09) and performed in accordance
with the German legislation on protection of animals and
the National Institutes of “Health Guide for the Care and
Use of Laboratory Animals” (Institute of Laboratory
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Animal Resources, National Research Council; NIH publi-
cation 86–23 revised 1985).

Mice
Male C57BL/6 J (Charles River Laboratories, Sulzfeld,
Germany) at 8–10 weeks of age with a body weight of
23–26 g were kept on water and standard laboratory
chow ad libitum.

Surgical procedure and experimental groups
Mice were anesthetized by breathing isoflurane (1.5 vol%).
BDL was performed after midline laparotomy. The com-
mon bile duct was ligated three times with 5–0 silk and
transected between the two most distal ligations. Sham
operation was performed similarly, except for ligation and
transection of the bile duct (0 h, n = 5). All surgical proce-
dures were performed under aseptic conditions. Animals
were allowed to recover from anesthesia and surgery
under a red warming lamp and were held in single cages
until subsequent experiments followed at postoperative
hours 6, 12, 18 and 30 (n = 5 animals per time point), and
at 2, 5 and 14 days after BDL (n = 5 animals per time
point). Sham-operated animals without BDL served as
controls (n = 5). To analyze the regenerative response in
regard to proliferation of different cell types, 5-bromo-2-
deoxyuridine (BrdU; 50 mg/kg bw ip) was injected 1 h
prior to harvest of liver tissue. BrdU incorporation into
DNA was analyzed by immunohistochemistry. To obtain
blood and liver samples, mice were killed at the indicated
time points. Liver tissue was partially embedded in paraf-
fin for morphology analysis and snap frozen for molecular
biology and biochemistry analyses. In addition, liver tissue
served for the parallel Taqman qRT-PCR using microflui-
dic Fluidigm Biomark™ platform (Fluidigm, CA, USA).

Hematological measurements and plasma enzyme levels
Animals were anesthetized and exsanguinated by punc-
ture of the vena cava inferior. Red blood cell and blood
platelets count, hemoglobin, and hematocrit were assessed
with an automated cell counter (Sysmex KX-21, Sysmex).
Plasma activities of alanine aminotransferase (ALT), aspar-
tate aminotransferase (AST) and glutamate dehydrogen-
ase (GLDH) were measured spectrophotometrically.

Assays
EDTA plasma served for the analysis of albumin as a
parameter of liver function, which was determined with
a commercially available enzyme-linked immunosorbent
assay kit in accordance with the manufacturer’s instruc-
tions (Assaypro, MO, USA).

Histopathology and image analysis
Liver tissue samples were fixed in formalin for 2 to
3 days and embedded in paraffin. 5 μm sections were

stained with hematoxylin and eosin (H&E) for routine
examination and quantification of bile infarcts. Sirius
red staining served for quantification of collagen depos-
ition. All samples from a series of experiments were
stained simultaneously and evaluated in a blinded man-
ner. For histomorphometric analysis, images of 20 ran-
dom low power fields (x10 magnification, Olympus BX
51, Hamburg, Germany) were acquired with a Color
View II FW camera (Color View, Munich, Germany)
and evaluated using an image analysis system (Adobe
Photoshop, Adobe Systems, Uxbridge, UK). Fibrosis de-
position was quantified as a percentage of Sirius red
stained area compared with the total section area. The
surfaces of large centrilobular veins and large portal
tracts were excluded from this calculation. Bile infarcts
were quantified in H&E-stained sections in a similar
manner and the percentage of the focal necrosis surface
to the whole liver section area was assessed.

Immunohistochemistry and image analysis
For analyzing DNA-incorporated BrdU in liver cells,
4 μm sections collected on poly-L-lysine-coated glass
slides were incubated with monoclonal mouse anti-BrdU
antibody (1:50; Dako Cytomation, Hamburg, Germany)
overnight at 4 °C, followed by horseradish-peroxidase
(HRP)-conjugated goat anti-mouse immunoglobin
(LSAB kit plus; Dako). Sites of peroxidase-binding were
detected by 3,3’-diaminobenzidine (Dako). Sections were
counterstained with hemalaun. BrdU-positive hepatocel-
lular nuclei were counted in a blinded manner within 30
consecutive high power fields (HPF) (x40 objective, nu-
merical aperture 0.65) and are given as cells/mm2. In
analogy, BrdU-expressing non-parenchymal cells were
assessed and also given as cells/mm2.
To specify the proliferative response of non-

parenchymal cells upon BDL, we performed double im-
munohistochemistry of BrdU with specific markers for
different liver cells: F4-80/BrdU for Kupffer cells and
SM22α/BrdU for biliary epithelial cells (BECs). For each
protocol, the immune-staining procedure for the specific
marker was conducted after the BrdU staining protocol.
Resident liver macrophages were analyzed using the F4-
80 antigen (1:10; Serotec, Oxford, UK). Overnight (ON)
incubation (4 °C) with the first antibody (polyclonal rat
anti-F4-80) was followed by alkaline-phosphatase (AP)
conjugated mouse anti-rat immunoglobulin (1:200; Santa
Cruz Biotechnology, Santa Cruz, CA, USA). The sites of
AP-binding were detected using the chromogen fuchsin
(Dako).
BECs and oval cells were detected by ON incubation

(4 °C) with a polyclonal rabbit anti-SM22α antibody
(1:100; Abcam, Cambridge, UK) followed by AP conju-
gated goat anti-rabbit immunoglobulin as secondary
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antibody (1:100; Dako). The sites of AP-binding were de-
tected by Permanent Red (Dako).
Slides were viewed under a light microscope (Olympus

BX 51) and the number of BrdU-positive cells co-
expressing F4-80 or SM22α were counted in a blinded
manner within 30 consecutive high power fields (HPF)
(x40 objective, numerical aperture 0.65) and are given as
cells/mm2.
Antibodies for detection of α-SMA in HSCs and of

S100a4-positive cells were from DAKO (M0851 and
A5114, 1:500 and 1:200 dilution, respectively). CTGF
antibody was from Santa Cruz (sc-1439, 1:200 dilution).
Sections were de-paraffinized in serial ethanol dilutions.
After a PBS wash, sections were transferred into 10 mM
sodium citrate buffer (pH 6.0) and antigen unmasking
was performed in a microwave. After cooling down, sec-
tions were incubated in peroxidase blocking reagent
(Dako) for 1 h and with primary antibodies ON at 4 °C.
EnVision peroxidase (Dako) was applied for 1 h at room
temperature after a PBS wash next day. Sections were
developed with diaminobenzidine for 5 min. The num-
ber of α-SMA-, CTGF- and S100a4-positive cells was
quantified under a Leica light microscope (x20) by
counting three fields.

High-throughput quantitative Taqman RT-PCR analysis
Total RNA was isolated from the liver tissue samples
using RNeasy Mini Kit including on column genomic
DNA digestion with RNase free DNase Set (Qiagen, Hil-
den, Germany). RNA was reverse transcribed to cDNA
with TaqMan Reverse Transcription Reagents (Applera
GmbH, Darmstadt, Germany). For quantitative real-
time PCR, we used the Fluidigm’s Biomark high-
throughput qPCR chip platform (Fluidigm Corporation,
San Francisco, CA, USA) with pre-designed gene expres-
sion assays from Applied Biosystems, according to the
manufacturer’s instructions [10]. Data were analyzed using
the ddCt method and expression values were normalized
to the expression levels of the Gapdh gene.

Statistical data analysis
Dimension reduction
A one-way analysis of variance (ANOVA) was applied to
reduce the data set to the parameter subset showing sig-
nificant (padj < 0.05) up- or down-regulation during the
time course. Multiple testing correction was performed
using the Holm procedure [11]. To specifically test for
the initial changes, a two-tailed unpaired t-test (Welch
correction for nonhomogeneity of variance) was per-
formed for all factors between the classes 0 h and 6 h.

Correlation analysis
Correlation between two factor time courses was calcu-
lated via YS3, a modified correlation coefficient based

similarity measure for clustering time-course gene ex-
pression data [12]. The correlation Yi,j

S3 between two fac-
tors i and j is the linear combination of three terms: i) a
classical correlation part based on Spearman correlation
S�i;j; iiÞ A�

i;j
� accounting for the similarity in changes be-

tween the two time courses, and iii) Mi,j
* comparing the

location of the minimum and maximum values of the
time course (see [12] and Additional file 2, correlation
analysis for definitions). Si,j

* is calculated on individual
data points, Ai,

*
j
* and Mi,j

* on the mean time courses aver-
aged over the repeats per time point. For the calculation
of the similarity of changes within time courses, Ai,

*
j
*, we

used Spearman (S) correlation which is more robust
against outliers as Pearson (R) correlation:

A�
i;j
� ¼ S di; dj

� � þ 1
� �

=2
YS

i;j
3 ¼ ω1S�i;j þ ω2A�

i;j
� þ ω3M�

i;j

In the analysis, the following weights were used: ω1 =

0.5, ω2 = 0.3, ω3 = 0.2. All reported correlations are �Y S
i

; j3 values in the interval [−1,1]:

�Y S
i ; j

3 ¼ 2 �Y S
i ; j

3 − 0:5
� �

Cluster analysis of the correlation matrix used
complete-linkage hierarchical clustering with Euclidian
distance measurement. This combination of complete-
linkage with Ys provided the best enrichments on gene
expression time series in a recent comparison of
methods [13, 14]. The number of clusters Nc = 6, was se-
lected as maximum number of clusters so that all clus-
ters contain more than one factor. Normalization of
factors was performed separately for each factor fk for all
time points i = 1, … ,Nt and repeats r = 1, … ,Nr

with Nt = 8 and Nr = 5 via

�f k ti;r
� � ¼ f k ti;r

� �
− < f k >

� �
max f k

� �
− min f k

� �

Decision trees
For the prediction of distinct time points of disease pro-
gression, a regression tree with the mean normalized
factor data of the 6 clusters as predictor variables and
the log transformed time points ~t i as dependent variable
was fitted based on recursive partitioning using rpart
[15]. Logarithmic transformation was performed to ob-
tain approximately equal distant time points.

~t i ¼ log ti þ 1ð Þ
The regression tree was fitted using the complete

training set (Ns = NtNr = 40) with the minimum num-
ber of observations in a node, for which a split was com-
puted being 6, the minimum number of observations in
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a terminal node as 2, and the complexity parameter
cp = 0.01. The splitting criterion, deciding which
predictor variable gives the best split for nodes in the

regression tree was ST − (SL + SR), with ST ¼ Σ
~t ι − < ~t >ð Þ2 the sum of squares for node T, and ST
and SL the sums of squares for the left and right
child. A leave one out approach was used to test the ro-
bustness of the predicted time classes and predictive per-
formance: For each sample (NS = 40 mice), the regression
tree was generated under the exclusion of data from the
sample with subsequent prediction on the left out test
data (see Additional file 2, decision trees).
The predictive capacity of the regression tree was eval-

uated using all single combinations of individual factors
from the clusters (88572) and a random subset of 10000
two factor combinations from each cluster. Predictions
for a given combination of factors 〈f1〉, … , 〈f6〉 from the
6 clusters were scored, using the root mean square dis-
tance on log scale d, with the best combination of fac-
tors minimizing d.

dð f 1h i; … ; f 6h iÞ ¼ 1
NS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ
NS

i¼1
tprei − texpi

� �2r

All computations were performed in R with source code
data and the full analysis available from http://matthias-
koenig.github.io/bdl-analysis (doi:10.5281/zenodo.32577)
and Additional file 2.

Results and discussion
Temporal changes of biochemical, cellular and
histochemical markers after BDL
In mice, BDL over 14 days induces time dependently
progressing stages of a secondary biliary CLD. The first
week begins with an acute cholestatic injury, associated
with necroinflammation that is followed by a chronic in-
jury stage, comprising hepatitis and liver fibrosis. Macro-
scopically, marked dilation of the gallbladder and
formation of bilioma are found, in line with weight loss
and a mortality rate of 10 % in the first week due to bile
leakage and rupture of the gallbladder [16]. Pathophysio-
logically, BDL disturbs glandular liver function and
hepatobiliary transport, comprising detoxification and
secretion functions, including bile formation. Obstruc-
tion of the bile duct leads to afflux of newly generated
bile fluid. The main components of the bile, bile acids
and phospholipids, induce toxicity and damage towards
hepatocytes and cholangiocytes, therewith initiating the
disease process. Rapidly after BDL, mice develop ob-
structive jaundice and cholestasis, as displayed by mark-
edly elevated serum transaminase activity and bilirubin
levels (Fig. 1), macroscopically evident from yellow ears
and urine. Within the first 30 h, there is a massive re-
lease of liver enzymes, like ALT and GLDH, reflecting

hepatocyte damage as initial pathophysiological event in
the process of BDL-induced liver fibrosis (Fig. 1a, b).
Plasma levels of diagnostic liver enzymes remain ele-

vated over several days, but then drop to reach values that
were only slightly above those of sham operated mice until
day 14. Concomitantly, liver detoxification capacity is de-
teriorated, as indicated by the rise of total bilirubin, a clas-
sical plasma marker of cholestasis (Fig. 1c). Notably, the
plasma level of albumin, an important parameter for the
evaluation of liver function remains relatively constant
over the time course of 14 days (Fig. 1d). The systemic
blood cell count (Table 1) shows constant levels of eryth-
rocytes and platelets up to day 5. In contrast, leukocytes
decrease by 50 % during the first two days, reflecting
intrahepatic cell entrapment, and recover to values of
sham operated animals within the subsequent observation
period. During progression of fibrosis, red blood cells,
hemoglobin and hematocrit are slightly decreasing.
In consequence of intrahepatic toxic bile accumula-

tion, progressive development of confluent bile lakes is a
hallmark of cholestasis. Histological quantification of
bile infarcts, defined as clusters of injured hepatocytes,
reveals a steady rise of infarct areas until day 14 after
BDL (Fig. 2a). The typical appearance of liver tissue at
representative time points after BDL using H&E staining
is depicted in Fig. 2b. Further histopathological changes
of the livers after BDL include enlargement of portal
tracts, dilation of bile canaliculi as well as proliferation
of BECs and oval cells (Fig. 3a), resulting in formation of
artificial bile ductules (Fig. 2c), a cellular response termed
‘ductular reaction’ [7, 17]. Recent data from lineage tracing
experiments indicate however that BECs and oval cells do
not contribute to the population of ECM producing/fibro-
genic cells, which in the BDL model is largely consisting
of hepatic stellate cells (HSCs) [18].
The inflammatory response resulting from chronic

hepatocyte injury is reflected by accumulation of im-
mune cells in the liver, among others, T cells, macro-
phages and dendritic cells, which are mainly found
within and around bile infarct areas (Fig. 2c, asterisk)
[19]. It is initiated by resident liver cells, primarily liver
macrophages (Kupffer cells, KC) and activated HSCs,
both secreting a wide range of cytokines and chemo-
kines, which determine quality and quantity of inflam-
matory and consequently fibrotic responses [20, 21].
Upon parenchymal damage, quiescent HSCs undergo a
phenotypical change to myofibroblasts (MFBs). The
most prominent role of MFBs is gain of a migratory
phenotype and extracellular matrix (ECM) production
and reorganization, as reflected by, among others, in-
creased synthesis of α-SMA, type I collagen and TIMPs. A
marked increase of the number of α-SMA- and S100a4-
positive cells, as measured by immunohistochemistry, is
observed after BDL (Fig. 3b, c). Migration of MFBs to the
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site of injury and their contractility contribute to liver
scarring and portal hypertension. This is accompanied by
parenchymal cell proliferation, which begins at day 2 as
regenerative response and which decreases at day 14
(Fig. 3d). With a slightly faster response as compared to
HSCs, KCs start to proliferate at the 30 h time point upon
BDL (Fig. 3e). The overall hepatic proliferative response as

analyzed by immunohistochemistry is confirmed by ele-
vated mRNA expression of Ki67 (Fig. 4a).
Between day 5 and 14 after BDL, periportal alterations

are associated with fibrotic changes. As demonstrated by
Sirius red staining, extensive fibrosis, characterized by a
several-fold increase of collagen deposition (Fig. 4b), in-
cluding bridging, occurs at day 5 after BDL (Fig. 4c). We

Table 1 Systemic blood cell count of sham-operated mice (S) and mice, which underwent BDL. Values are given as means ± SEM

Erythrocytes [*1012/L] Platelets [*109/L] Leukocytes [*109/L] Hemoglobin [mmol/L] Hematocrit

S 8.4 ± 0.1 1177 ± 60 7.5 ± 0.3 7.9 ± 0.1 44.8 ± 0.7

6 h 8.1 ± 0.1 1061 ± 39 4.2 ± 0.5 7.7 ± 0.1 42.8 ± 0.7

12 h 8.2 ± 0.1 1036 ± 47 4.5 ± 0.4 7.7 ± 0.1 43.0 ± 0.6

18 h 8.7 ± 0.3 856 ± 110 4.1 ± 0.2 8.1 ± 0.3 45.6 ± 1.9

30 h 8.5 ± 0.5 1071 ± 100 5.8 ± 0.9 7.9 ± 0.5 44.9 ± 2.8

2 d 8.7 ± 0.2 1117 ± 65 4.7 ± 1.3 6.5 ± 1.7 45.9 ± 0.9

5 d 8.7 ± 0.3 1295 ± 107 7.6 ± 1.2 7.8 ± 0.3 46.5 ± 1.6

14 d 7.6 ± 1.4 1362 ± 58 7.4 ± 1.1 6.6 ± 0.2 38.4 ± 1.3

A

B

C

D

ALT bilirubin

GLDH albumin

Fig. 1 Analysis of liver injury and function. Plasma activities of alanine aminotransferase (ALT) (a) and glutamate dehydrogenase (GLDH) (b) and
concentrations of plasma bilirubin (c) and albumin (d) at multiple time points after BDL. Values are given in means ± SEM of five independent
experiments per time point
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further stained for connective tissue growth factor
(CTGF), a prominent fibrogenic cytokine and enhancer
of TGF-β effects [22]. Appearance of CTGF-positive
cells starts as early as 12 h upon BDL and their count
increases continuously (Fig. 3f ).

Time phases of disease progression after BDL
To define distinct disease progression phases upon
BDL damage, time-resolved transcriptomics profiles of
three preselected gene panels relating to (1) hepatocyte
metabolism, (2) fibrogenesis, and (3) inflammation
were measured using the Fluidigm platform (Fig. 5,
Additional file 2 explorative data analysis) and
matched with biochemical and histological markers.
Selection of representative genes for (1) ADME- (ab-
sorption, distribution, metabolism, and excretion)

(Fig. 5a) (2) fibrogenesis- (Fig. 5b), and (3)
inflammation-related genes (Fig. 5c) was hereby made
based on state-of the art knowledge.
In a first step, ANOVA was applied to reduce the

complete set of biochemical, histochemical and tran-
script data, consisting of 153 parameters (=factors), to a
subset showing significant (pad j < 0.05) changes during
the disease time course (Additional file 2, dimension re-
duction). This reduced the number to 90 factors, com-
prising two biochemical markers (bilirubin, GLDH),
eight (immuno)-histological markers (BEC, NPC (non-
parenchymal cells), Kupffer cells, Sirius red, bile infarcts,
CTGF, α-SMA, S100a4) and 80 genes (14/47 ADME-, 22/
46 fibrosis-, 44/47 inflammation-panel). Many of the
ADME- and fibrosis-genes were filtered out, whereas al-
most all genes of the inflammation panel were retained.

A

B

5 d 14 d 2 d 30 h 

S 6 h 12 h 

C

5 d 

18 h 

bile infarcts

Fig. 2 Quantification of bile infarcts in H&E stained liver sections at multiple time points after BDL (a). Values are given in means ± SEM of five
independent experiments per time point. Representative H&E stainings of paraffin embedded liver sections for each time point after BDL (b; arrows
indicate bile lakes; magnification x10) with higher magnifications (x40) in (c), displaying cellular infiltrates (asterisk) and formation of artificial bile
ductules (arrowhead)
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Fig. 3 (See legend on next page.)
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The top significant factors were: Cyp1a2 (Fig. 6a),
serum bilirubin (Fig. 1c), Il10rb, Tgfb1, Ccl2, Cd86,
Ccr2, and Mrc1. Within the filtered subset, a bivariate
time-dependent correlation analysis (Methods and
Additional file 2 correlation analysis) was performed
for all pairs of factors to identify those displaying
similar temporal profiles (Fig. 7), with the top correla-
tions for biochemical, histological and immunostain-
ing factors depicted in Fig. 8. Based on the obtained
correlation matrix, a hierarchical cluster analysis was
applied, resulting in 6 clusters with distinct time
courses that comprise between 2–61 factors, and
which, attain their maximum at different time points
(see Fig. 9). The identified clusters comprise both
‘classical’ biochemical and histochemical factors as
well as genes characteristic for a specific phase of dis-
ease progression.

Correlations between transcripts and non-transcript
factors
The time course of each ‘classical’ factor contained in the
ANOVA-subset can be correlated with the expression
time course of at least one gene (Fig. 8a). Only for GLDH
and Sirius Red, the correlations are weak. Notably, all top
correlations to genes come either from cluster 4 or cluster
1. Bilirubin, bile infarcts and immunostainings (α-SMA,
CTGF and S100a4), all have high correlations among each
other, so do the BrdU positive BEC, KC and HSC mea-
surements (Fig. 8b). GLDH and Sirius red do not show
high correlation with any other classical factor. In the fol-
lowing, the top correlated factors are discussed in the con-
text of different aspects of the disease process (Fig. 8c).

Initial response
Immediately after BDL, there is a massive release of liver
enzymes until day 5, followed by a drop down to almost

(See figure on previous page.)
Fig. 3 Analysis of the proliferative and cellular response at multiple time points after BDL. Quantitative immunohistochemical analysis of BrdU
positive biliary epithelial cells (a), liver cells positive for α-SMA (b) and S100a4 (c), BrdU positive hepatocytes (d) and Kupffer cells (e) and CTGF positive
cells (f). Values are given in means ± SEM of five independent experiments per time point. Corresponding representative immunohistochemical
stainings are shown in the right panel (magnifications x40)

A B

5 d 14 d 2 d 30 h 

S 6 h 12 h 18 h 

C

Mki67 Sirius red

Fig. 4 Analysis of proliferation and extracellular matrix accumulation. mRNA quantification of the proliferation marker Ki67 (a) by Fluidigm real-
time PCR. Values are given in means ± SEM of five independent experiments per time point. Quantitative analysis of extracellular matrix deposition
(b) and representative histological images (c; magnification x10) of Sirius red positive areas at multiple time points after BDL. Values are given in
means ± SEM of five independent experiments per time point
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values of sham-operated livers (Fig. 1a, b). GLDH and
ALT show a strong initial increase, whereby GLDH in
contrast to ALT increases further up to 18 h, before its
gradual decrease. GLDH is highly correlated with
members of cluster 3 (Figs. 8c and 9c), the early up-
regulated transcripts Fn1 (fibronectin, Fig. 6g) and
Sult1a1 (Sulfotransferase 1A1).
Initial molecular events with strong transcript peaks are

visible at 6 h for members of cluster 2, the transcriptional
regulator Nr0b2 (small heterodimer partner, SHP, Fig. 6d)

and Cyp24a1 (mitochondrial 1,25-dihydroxyvitamin D3
24-hydroxylase, see Fig. 6b). Nr0b2 was previously associ-
ated with cirrhosis and hepatic tumors [23]. A functional
role for Shp was supported by the fact that cholestatic
liver fibrosis induced by BDL is increased in SHP−/−
mice [24]. Additionally up-regulated transcripts at 6 h
(Additional file 2, t-test for initial phase) are Tnfrsf1a (Fig. 6l),
Il6st (Interleukin-6 receptor subunit beta), Osmr, Cd14, Cxcl1/
2, Timp1 and Hmox1 (heme oxygenase), the latter in line with
reported marked increase in heme oxygenase activity following

Fig. 5 Heat maps displaying gene expression pattern at multiple time points after BDL. Gene expression relative to the Gapdh gene, obtained
from Fluidigm qPCR, are shown as fold changes to sham operated mice (0 h) and are displayed in log2 scale. Red colour indicates down-regulation
(log2 of 2), blue up-regulation (log2 of −2) and white transcription fold changes about 1 (log2 of 0). a selected ADME genes, (b) selected fibrogenesis
genes, and (c) selected inflammation genes
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BDL in rats [25]. Marked initial down-regulation is present,
among others, for Cdh2, Pde4a and the main enzyme of bile
acid synthesis Cyp7a1 (cholesterol-7-α-hydroxylase), which can
be interpreted as a fast and straightforward response to chole-
stasis. As underlying mechanism for such expression down-
regulation, activation of the JNK/c-Jun pathway has been pro-
posed [26].

Macroscopic organ damage
Necroinflammation is caused by BDL-induced intrahe-
patic toxic bile accumulation with individual liver cell
death and progressive development of confluent bile

infarct areas, as documented by H&E staining in
Fig. 2b. The total area of infarcts increases steadily
with relatively high variance (Fig. 2a). Bilirubin
(Fig. 1c) shows the highest correlation with bile in-
farcts, followed by the immunostainings for CTGF
(Fig. 3f ) and α-SMA (Fig. 3b). At the mRNA expres-
sion level, Gsta2 (Glutathione S-transferase A2),
Gstm1 (glutathione-S-transferase mu 1, Fig. 6c) and
Timp1 (Metalloproteinase inhibitor 1) display the
highest positive correlation. Timp1 is a metallopro-
teinase inhibitor that functions by forming one to one
complexes with target metalloproteinases, such as

Il2 

Cyp1a2 Col1 1 

Col3 1 Cyp24a1 

Gstm1 Fn1 Il28b 

Tgfb2 

Nr0b2 IL17a Tnfrsf1a 

A

B

C

D

E

F

G

H

I

J

K

L

Fig. 6 mRNA quantification of selected genes by Fluidigm real-time PCR displayed in log2 scale. a Cyp1a2, (b) Cyp24a1, (c) Gstm1, (d) Nr0b2, (e)
Col1α1, (f) Col3α1, (g), Fn1, (h) Il17a, (i) Tgfb2, (j) Il2, (k) Il28b, (l) Tnfrsf1a. Values are given in means ± SEM of five independent experiments per
time point
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collagenases. In contrast, Cyp1a2 (Cytochrome P450
1A2, Fig. 6a) and Cyp2e1 (Cytochrome P450 2E1) are
highly anti-correlated to the bile infarct area, with
Cyp1a2 decreasing continuously after BDL, which is
in line with observations in rats [27].

Loss of liver function
Liver function after BDL was representatively mea-
sured using albumin (Fig. 1d) and bilirubin (Fig. 1c)
levels. Surprisingly, albumin synthesis is maintained
relatively constant over the observation period of

Fig. 7 Correlation matrix of factors. Matrix of correlation coefficients between subset of factors, which changed significantly after BDL as determined
by ANOVA. Correlation coefficients are YS3 correlations, with positive correlation depicted in blue, negative correlation in red, according to color key.
Side dendrogram shows the results of hierarchical clustering with the resulting six time course clusters c1-c6 marked in the color sidebar (see Fig. 9 for
time courses corresponding to the individual clusters). Histological factors are marked with H, immunostainings with A, and biochemical factors with B.
The list of full names corresponding to the factor abbreviations is provided in Additional file 2, gene probes
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14 days, and was consequently filtered out via
ANOVA. Bilirubin, on the other hand increases con-
tinuously after BDL. The highest positive correlation
with serum bilirubin levels is observed for the tran-
scripts Timp1, Cd14, Ccl2 (chemokine C-C motif lig-
and 2), a soluble biomarker for hepatic fibrosis in
NAFLD [28], and Ccl3 (Fig. 8c). Notably, a very high
negative correlation is present for bilirubin and
Slc10a1 (Sodium/bile acid cotransporter), encoding
the Na + −taurocholate co-transporting polypeptide,
which transports bile acids as part of the hepatic so-
dium bile acid uptake system. The decrease in
Slc10a1 has been shown to protect hepatocytes from
cholestasis-induced injury [29].

Hepatic cell proliferative response
During disease progression, various hepatic cell types start
proliferating, as documented by (co)-immunostaining with
BrdU and cell type specific markers (Fig. 3), and which is
indirectly reflected by the marked up-regulation of Ki67
mRNA (Fig. 4a). The observed time course is principally
very similar in hepatocytes, KC and BECs, resulting in a
high correlation within this group (Fig. 8b).
Hepatocyte proliferation occurs between 30 h and

2 days, as monitored by the parameter BrdU-positive
hepatocytes (Fig. 3d). S100a4 positive cells represent
Kupffer cells (KC, liver macrophages), which infiltrate
the damaged liver tissue, become activated and prolifer-
ate starting at 30 h, to reach a maximum at day 2 and to

Fig. 8 Histological (H), biochemical (B), and immunostaining (A) correlations. Top correlations between classical and transcriptional
factors (numerical values provided in Additional file 2). Correlation coefficients are YS3 correlations with positive correlation depicted
in blue, negative correlation in red, according to color key. a Top correlation between histological, biochemical and immunostaining
factors with gene transcripts (area of circles corresponds to the correlation coefficients). Only genes with at least one YS3 correlation
of abs(YS3) > =0.6 are shown. Genes are sorted based on hierarchical clustering in Fig. 7 with corresponding clusters depicted in the
side color bar (C4 and C1). b Correlation between histological, biochemical, and immunostaining factors with color coding analogue
to a. c Highest absolute correlations between classical factors (histological, biochemical, and immunostaining), and all other factors.
Data sorted from left to right by absolute value of correlation. Color and size of the filled pie corresponds to the respective
correlation value, with positive correlation in blue and negative correlation in red
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decrease proliferative activity again thereafter. KC num-
bers are highly correlated to the transcript Mki67 (anti-
gen Ki-67), a known proliferation marker, followed by
the transcripts Birc5 (Baculoviral IAP repeat-containing
protein 5, survivin) and Notch1, a transmembrane re-
ceptor involved in developmental processes (Fig. 8c).
BEC display the highest proliferative activity between

day 2 and 5 after BDL, with minor activity after 30 h.
Interestingly, the highest correlations between BECs and
transcripts are all negative, namely Cyp2c37 (Cytochrome

P450 2C37), Slc10a1, Cyp2e1, and Cyp2c29 (Fig. 8c). From
these, Cyp2c37 and Slc10a1 are interesting candidates,
since they are with Cyp1a2 and Ppara the only factors
from the top correlations (Fig. 8a) which are from time
course cluster C1 and have high negative correlations with
the classical factors.

Increase in fibrogenic cells
In accordance with the reported proliferative activity of
HSCs and recruitment of KCs to the area of injury,

Fig. 9 Time course clusters in BDL. Six time course clusters (a-f corresponding to cluster 1-6) resulting from hierarchical clustering (see Fig. 7). The
mean cluster time course (averaged over all factors and repeats) is depicted in blue, all representatives of the respective cluster in grey. The
shaded blue area corresponds to the standard deviation between the mean time courses of the representatives in the cluster. The top correla-
tions between the mean cluster time course and factors in the cluster are listed above the time course (color coding analog to Fig. 8c with posi-
tive correlations in blue and negative correlations in red) with histological factors marked with H, immunostainings with A, and biochemical
factors with B. The cluster members are fully enumerated for all clusters with exception of cluster 4. The full set of members and respective correl-
ation to the mean cluster time course for cluster 4 are: Timp1 (0.94), bilirubin (B 0.92), Ccr2 (0.92), CTGF (A 0.91), Tgfbr2 (0.89), α-SMA (A 0.89), Ccl5
(0.88), Tgfb1 (0.88), Ccl3 (0.87), Tnc (0.87), Cd14 (0.87), Ccl2 (0.86), Cd86 (0.86), Pdgfb (0.86), Col1a1 (0.86), Cxcl3 (0.86), Ccl4 (0.85), Cxcl5 (0.85), Il10ra
(0.85), Col3a1 (0.85), Il10rb (0.84), Ccl7 (0.82), Cd69 (0.82), Ifnar1 (0.82), Tnf (0.82), Osm (0.81), Sparc (0.8), Il6 (0.8), Tnfrsf1b (0.8), Cxcr2 (0.78), Il1b
(0.78), Timp2 (0.77), Ifnar2 (0.77), Ccr5 (0.77), Il10 (0.76), Osmr (0.75), Gsta2 (0.74), Il4 (0.71), Ifng (0.71), Ccl8 (0.71), Hgf (0.7), Bak1 (0.7), Mrc1 (0.69),
Tgfb2 (0.69), Ccr3 (0.68), Actb (0.68), S100a4 (A 0.66), Il13 (0.66), Met (0.66), bile infarcts (H 0.65), Il6st (0.63), Tnfrsf1a (0.63), Mki67 (0.62), Birc5 (0.6),
Ctgf (0.58), BEC (H 0.56), Bax (0.56), Notch1 (0.54), Cxcr1 (0.51), Gstm1 (0.45), Cdh1 (0.42)
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immunohistochemical analyses demonstrate the gradual
rise in CTGF- (Fig. 3f ), α-SMA- (Fig. 3b) and S100a4-
expressing cells (Fig. 3c). These markers reflect activated
HSCs and activated KCs. CTGF and α-SMA are highly
correlated to each other (respective top correlation
Fig. 8c), with S100a4 having a strong correlation to both
of them (Fig. 8b).
CTGF is a highly pro-fibrogenic protein expressed

by HSCs, BECs and hepatocytes [30, 31] and mediates
extracellular matrix modulating properties. Levels of
CTGF have been reported significantly up-regulated
in experimental liver fibrogenesis and human chronic
liver disease patients of various etiologies [32, 33].
CTGF-positive cell number is the best candidate to
monitor the disease progress among the selected bio-
chemical, histological and immunostaining parameters,
showing a steady increase with comparatively little
variance (among top ANOVA results, padj = 7.9E-10).
This is consistent with data from other studies, which
observed a correlation of increased CTGF levels with
histological fibrosis stages [34, 35]. Since CTGF can
be measured in patients’ blood, it was suggested as
valuable diagnostic marker with potential application
in the follow-up of patients suffering from chronic
liver diseases [36]. The highest transcript correlation
with CTGF positive cell number shows Tgfb2 (cytokine
TGF-β2, Fig. 6i), followed by Pdgfb (platelet-derived
growth factor subunit B). TGF-β is the major stimulus for
CTGF expression in hepatocytes [37], and elevated levels
of Tgfb2 were reported for BDL rats [38]. Pdgfb has been
reported up-regulated in liver inflammation and fibrosis
[39]. Additionally, there are considerable correlations to
several other genes such as Tgfbr2, encoding the trans-
forming growth factor β receptor 2 [40], Cd14, Cxcl5,
Ccr2, and Timp1.
α-SMA-positive cells, representing activated HSC, in-

crease steadily during disease progression (Fig. 3b), and
are highly correlated to CTGF. Consequently, the top
transcript correlations are very similar: Tgfb2, Cxcl4,
Timp1, Tnc, and Pdgfb. Notably, α-SMA staining, but
also CTGF and S100a, show strong negative correlations
to Cyp1a2 (Fig. 6a), known as downregulated in liver cir-
rhosis [41], and to Ppara (Fig. 8a).
S100a4-positive cells, which are steadily rising until

day 2, after which they stay elevated (Fig. 3c), are also
good markers for disease progression, presenting with a
similar time course than CTGF (Fig. 3b), but with a lar-
ger variation from the 18 h time point on. Many tran-
scripts are highly correlated with S100a4, e.g. Pdgfb,
Birc5, Tgfb2 and Notch1.

Fibrosis
The progression of fibrogenesis is histomorphologically
characterized by excessive deposition of extracellular

matrix, visible by Sirius red staining of liver slices
(Fig. 4b, c). Surprisingly, Sirius red did not display high
correlations to other factors (Fig. 8, a-c), mainly due to
the high variability in measurements from 0 h to 2 days,
and therefore was in this study not a very reliable pre-
dictor for fibrogenesis. After day 2, a strong increase in
Sirius red was observed. Both Col1a1 (fibrillar collagen
1α1, Fig. 6e) and Col3a1 (fibrillar collagen 3α1, Fig. 6f )
transcripts, which predominantly exist in fibrotic livers,
show up-regulation beginning 30 h after BDL that con-
tinuously increases with severity of liver fibrosis up to
14 days. Among the peptide mediators, Tgfb1 and Tgfb2
(Tgf-β isoforms 1 and 2) expression is increasing after
2 days, confirming their postulated role as fibrogenic
master cytokines [42]. Tgfb, encoding the cytokine TGF-
β is well known to correspond with the fibrotic process
in a positive feedback loop [43]. Further, its expression is
associated with induction of fibrogenesis-related genes
(Fig. 5b), which particularly are representative for HSC
activation. The dynamics of the inflammation gene sig-
nature (Fig. 5c) nicely matches with the increase in the
number of proliferating Kupffer cells (F4-80/BrdU stain-
ing values) observed from day 2 onwards (Fig. 3e). Very
low expression levels are present immediately after BDL,
except for the chemokines Cxcl1 und 2. Starting at time
points between 2 and 5 days after BDL, most cytokines
and chemokines in the list were strongly upregulated
until day 14. During the perpetuation phase (18 h - 2 days),
paracrine and autocrine cytokines amplify hepatic inflam-
mation and HSC activation, resulting in continued ECM
remodeling, characterized by enhanced mRNA expression
of both, fibrillar collagen1α1 and 3α1 (Fig. 6e and f).

Markers of disease progression
Main focus of this study was to detect factors and factor
combinations which best characterize particular stages
of the disease process. Here, we discuss in more detail
the biological significance of the six time course clusters.
Cluster 1 (Fig. 9a) decreases continuously over time

with no classical factor included in c1. Most of the
members (8/11) are from the ADME panel, with excep-
tion of Rarres1 and Egfr coming from the fibrosis panel.
All members of cluster 1 have very high significance in
the ANOVA, but for Rarres1 (padj = 0.036). The ADME
genes in c1 display decreased expression during late ini-
tial, perpetuation and progression phase. Top correla-
tions with the cluster mean time course are in
decreasing order Cyp2c37, Cyp2e1, Cyp2e29, Ugt1a1,
Cyp1a2 (Fig. 6a), Rarres1 and Slc10a1, remarkably con-
taining many enzymes of the cytochrome P450 system.
Down-regulation of Ugt1a1 (UDP-glucuronosyl-transfer-
ase 1A), the main enzyme for conjugation of bilirubin,
and Slc10a1, encoding the Na + −taurocholate co-
transporting polypeptide, which transports bile acids, are
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protective against the increased concentration of conju-
gated bilirubin in hepatocytes after BDL.
Cluster 2 (Fig. 9b) consists of strong transcript peaks

at 6 h for the transcriptional regulator Nr0b2 (SHP,
Fig. 6d) and Cyp24a1 (Fig. 6b), both probes of the
ADME chip. Nr0b2 (padj = 1.30E− 7) and Cyp24a1 (padj
= 9.88E− 3) both present with very high ANOVA signifi-
cance. Other transcripts also show an increase in the ini-
tial phase at 6 h, for instance members of cluster 3, but
none of them decreases to baseline during disease pro-
gression from 18 h up to 14 days. This makes Nr0b2
and Cyp24a1 the most interesting candidates for detect-
ing the initial phase of cholestasis (3 h – 6 h).
Cluster 3 (Fig. 9c) is characterized by an increase in

the initial phase up to 18 h with subsequent decrease
during disease progression up to 14 days. The cluster
consists of the biochemical factor GLDH, the fibrosis
transcript Fn1 (Fibronectin, Fig. 6g), and the ADME
gene Sulf1a1 (Sulfotransferase 1A1), making this cluster
interesting because of the combination of various factor
types.
Cluster 4 (Fig. 9d) shows continuous increase starting

in the initial phase, lasting throughout disease progres-
sion up to 14 days. Consequently, members of the clus-
ter are good candidates to predict continuous disease
progression (fibrosis). Among the top candidates are bili-
rubin, CTGF and α-SMA. Cluster 4 is the largest cluster,
containing 61/90 significant factors of the ANOVA. Not-
ably, most of the classical markers are contained in clus-
ter 4, that is bilirubin, CTGF α-SMA, S100a4, bile
infarcts and BEC. All transcripts in c4 either belong to
inflammation or fibrosis panels, except Gsta2 and Gstm1
(ADME panel). The top transcript correlation with the
cluster mean comprises Timp1, followed by Ccr2, and
Tgfbr2, with a large number of transcripts showing high
correlation to the cluster mean.
The time course of cluster 5 (Fig. 9e) is highly similar

to c4, but increasing only after around 30 h compared to
the continuous increase of c4 starting already in the ini-
tial damage phase. Cluster 5 contains the classical
markers NPCs, Kupffer cells and Sirius red. Top correl-
ating transcripts are Gdl2 and Cyp7a1, which show in-
creasing values starting at around 30 h, despite a strong
down-regulation in the initial phase (see above). Notably,
the interleukins Il2, Il17a (interleukin-17A, Fig. 6h) and
Il28b (interleukin 28β, Fig. 6k), altogether secreted pro-
teins, are members of c5, and are, likely detectable in
blood, thus representing candidate diagnostic markers.
Il17a (interleukin-17A, Fig. 6h), plays a pivotal role in
cholestatic liver fibrosis in mice by participation in acti-
vation of KCs and HSCs [44].
Cluster 6 (Fig. 9f ) is characterized by an initial de-

crease, followed by an increase in the late initial phase at
12 h up to 2 days, and subsequent decrease during

disease progression at 5 days and 14 days. Both cluster
members, Cdh2 (cadherin 2) and Bad1, are part of the fi-
brosis panel. Cluster 6 shows a similar up and down
regulation than c3, but the increase starts later, the de-
crease starts later and the maximum transcript values
are consequently shifted to a later time point.
The large majority of histologic parameters, cell count

observations, as well as most genes related to inflamma-
tion and fibrogenesis increased with disease progression,
either in a continuous manner starting in the perpetu-
ation phase after around 1 day or latest beginning at day
5 (cluster 4 and 5). Based on the strong increase be-
tween day 2 and 5 in cluster 5 (but also in cluster 4), we
conclude that transition from disease stage at day 2 to
progression at day 5 can be easily monitored. This tran-
sition could provide valuable information for clinical
practice, as serum bilirubin is among the top correlation
candidates of cluster 4, the interleukins (Il2, Il17a, Il28b,
Fig. 6h and k) of cluster 5, as well as the growth factors
(Pdgfb, Tgfb1, Tgfb2, Hgf; Fig. 6i) of cluster 4, all of
which are secreted factors and can be measured in
blood. Furthermore, additional prominent candidates of
cluster 4 are extracellular matrix components (Sparc,
Col3a1, Col1a1, Fig. 6f and e).
Cluster 4 is representative for disease progression

due to the continuous increase of factors starting
already in the initial phase. Counting CTGF-positive
cells presents as the most reliable overall measure for
disease progression at histological level, bilirubin at
biochemical level, and metalloproteinase inhibitor 1
(Timp1) at transcript level.
Interestingly, no histological, biochemical or immuno-

staining based factors were found in clusters c1, c2 and
c6. The transcripts in these clusters provide unique time
course information, which cannot be captured with the
subset of analyzed histological markers, thereby provid-
ing crucial information for the initial and perpetuation
phase, not attainable via c3, c4 and c5.

Decision trees for disease progression
We next wanted to determine, which of the analyzed
factors are best suited as markers for particular stages of
the disease process. To this end, we constructed a deci-
sion tree (Fig. 10) based on the time course of the nor-
malized clusters (Fig. 9). This so called regression tree
allows to predict a specific time interval of the disease
process upon combining the dynamics of factors from
the clusters (Fig. 10). The algorithm used for construct-
ing the decision tree avoids over-fitting of data by balan-
cing the number of knots against robustness of the
classification tested by cross-validation. Consequently,
the decision tree assigns a cluster pattern to time inter-
vals of disease progression, rather than to discrete ex-
perimental time points, which results in 6 time classes.

Abshagen et al. BMC Systems Biology  (2015) 9:83 Page 16 of 21



Interestingly, mainly time points in late initial and per-
petuation phases (12 h, 18 h, 30 h, 48 h) were merged
into time classes, whereas the control (0 h), early initial
(6 h), and progression phases (5 days, 14 days) remained
almost unchanged. Robustness of predicted time classes
and prediction performance were tested with a leave one
out approach, resulting in reproducible time classes and
good prediction performance, when using left out test
data (Additional file 2, decision tree).
The resulting regression tree exploits time course in-

formation from clusters c1, c3, c4 and c5, whereas clus-
ters c2 and c6 are not used. Cluster 4 possesses the
strongest discriminating power, performing the import-
ant split between early phase after BDL (classes 0 h, 6 h
and 14 h with range 0 h-21.8 h) and later perpetuation
and progression phases (classes 34 h, 6 days,14 days,
with range 21.8 h-14 days). If the mean value of a factor
in cluster c4 is smaller than −0.12 at a measured time
point, this time point is classified as not later than
21.8 h. A more detailed assignment of the respective
time interval requires interrogation of additional clus-
ters. The value of c3 decides between control and initial

phase, with subsequent splitting based on c1 into early
and late initial phase. Analogue, the value of c5 decides
between perpetuation and progression phase, with sub-
sequent c4 based splitting in early and late progression
phase. Note that the values of cluster 4 appear twice in
the decision tree, owing to the monotonous increase
after BDL.
The predictive performance of the regression tree for

the mean cluster data is depicted in Fig. 10b (blue), pro-
viding information of experimental time point classifica-
tions. All samples of control, 6 h, and 14 days are
assigned to their respective time classes 0 h, 6 h and
14 days, whereas neighboring time points are combined
in classes 14 h, 34 h and 6 days. In addition, we evalu-
ated the decision tree based on a subset of factors from
time course clusters, using either a single or two factors
randomly chosen from each cluster, and used their
values for predictions (Fig. 10b, single and double fac-
tors). Even with only one factor selected from c1, c3, c4
and c5, surprisingly consistent classifications were
achieved. As expected, the quality of predictions im-
proved by increasing the number of factors. With our

Fig. 10 Decision tree for disease progression. (a) Regression tree for the prediction of time phases after BDL based on mean cluster time courses
(Fig. 9). Splitting rules are depicted at the respective branching points of the tree, with left branches correspond to ‘yes’, right branches to ‘no’
decisions. In addition to the cluster used in the decisions, also the best gene representatives from the respective cluster is shown above the
decision rule. The regression tree classifies the data in six time classes 0 h, 6 h, 14 h, 24 h, 6d, 14d with information on mean time, range, number
and percentage of samples falling in the respective class listed. In addition to the tree based on the mean cluster time courses (mean cluster), the
best tree only using a single gene transcript from every cluster is shown (best gene). The best decision tree based on genes, histological,
biochemical, and immunostaining factors (not shown) is highly similar to the depicted best gene tree, with the single change of using S100a4
instead of Col1a1 for the decision on cluster c4 and allowing GLDH as equally good alternative to Fn1 in c3. (b) Predictive performance of
decision tree. The predictive performance of the regression tree was evaluated using all single factor combinations from the individual clusters
(white), a random sample (N = 10000) of two factors from each cluster (gray), the best gene representative tree (red), and the mean cluster data
(blue, trainings data). For all classes of the decision tree the histogram of predicted vs. experimental data are shown
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approach, we are able to predict control, early initial and
late progression phases with high accuracy, whereas the
intermediate phase of disease progression shows more
misclassifications, in case of single and double factor
analyses.
The best performing decision tree based on a single

transcript from each cluster (Fig. 10a) splits on Col1a1
(Collagen alpha-1(I) chain, c4), Fn1 (Fibronectin, c3),
Cyp1a2 (Cytochrome P450 1A2, c1), and Il17a (Interleu-
kin-17A, c5), all important factors involved in disease
progression (discussed above). The best performing deci-
sion tree based on all factors, i.e. histological, biochem-
ical, immunostaining factors, and transcripts, resulted in
a highly similar tree to the best tree based solely on tran-
scription factors, with the single change of using S100a4
instead of Col1a1 for c4 splitting, and providing GLDH
as alternative factor to Fn1 to perform the c3 split. By
selecting a subset of good performing transcripts, a very
good prediction performance can be achieved already on
a small subset of factors (Fig. 10b red).

Individual variability
We observed a large variability for many analyzed fac-
tors, when comparing individual mice of the same time
points. For example at day 5, the infarct area varies be-
tween 0.9 % and 12 % (Fig. 2a), and the collagen depos-
ition area measured by Sirius red varies between 0.8 %
and 5.9 % (Fig. 4b). Similar inter individual variability
can be observed for proliferative activity (BECs Fig. 3a,
Kupffer cells Fig. 3e) or expression of collagen (Col1a1
Fig. 6e, Col3a1 Fig. 6f ), to name a few. Such large vari-
ation in parameters during perpetuation and especially
progression phases are an intriguing finding, considering
homogeneity of the experimental system and the rela-
tively short time frame of 14 days (see also heatmap of
time courses in Additional file 2). A possible explanation
is different individual pace of disease onset or progres-
sion due to variations in susceptibility and/or repair ac-
tivity to the damage induced by BDL. As a consequence,
heterogeneous time courses develop, with highly affected
mice showing strong signs of fibrosis earlier.
Another hypothesis for this result is variable routes of

disease progression. For example, one route is character-
ized by a strong increase in necrotic tissue and a weaker
activation of HSCs with lower expression changes of in-
flammation factors. Another route is represented by
strong activation of fibrogenesis factors, and finally
macroscopically visible scar tissue. Both routes are simi-
larly connected to loss of liver function, however, histo-
pathological presentation is quite different. The first
route is depicted with a large amount of necrotic tissue,
while the second route contains large areas of fibrotic
tissue. Such alternative disease routes could be of far-
reaching importance for an individualized therapy, as

obviously medical interventions avoiding necrosis sig-
nificantly differ from interventions to reduce overshoot-
ing fibrosis. The design of the study, which included
sacrification of mice after a defined time, did not allow
to answer whether alternate developments, as macro-
scopically identified in late time points, can be similarly
differentiated at earlier time points.

Conclusion
The time resolved analysis of a wide range of parameters
in bile duct ligated mice has shown that many of the
preselected factors share the pattern of increase
throughout disease progression (Fig. 9). Particularly pro-
nounced changes were observed during transition from
perpetuation to progression phase, 2 to 5 days after
BDL, characterized by strong increases of parameters,
such as Il17A, Il2, Il28b or Il13. This information has
strong clinical relevance, as it indicates a robust switch-
ing point, and human homologs of the respective inter-
leukins are top candidates to be used as clinical markers.
Main points are summarized in Fig. 11, bringing the dif-
ferent aspects, phases and markers together.
Our experiments also found previously unknown mo-

lecular events, which are probably elements of a wider
transcriptional reprograming related to damage or tissue
repair activity. For instance, there are strong transcript
peaks for SHP (Nr0b2) at 6 h, which now needs a fo-
cused analysis to delineate the chain of molecular inter-
actions causing it and the functional consequences for
disease onset and progression or its repair.
Based on time course correlation analyses, we found a

distinct molecular and pathomorphological patterns re-
lated to disease phases following BDL. From a subset of
parameters of these patterns, we propose a decision tree,
such as in Fig. 11, as a promising tool for assessment of
disease progression. Notably, our approach allows pre-
diction of disease progression from an arbitrary subset
of measured parameters. Therefore, as a next step, suit-
ability of the parameters selected from the mouse model
need to be confirmed for human patients as e.g. in [45].
In this study, the relationship of portal inflammation to
ductular reaction and thus, the correlation with disease
severity was investigated in NAFLD liver biopsy sections
by analyzing selected inflammatory and broad leukocyte
subset markers [45].
Translation from mouse models into human patients

is challenging, however, should be the final aim of all
studies with animal disease models. One major drawback
is that animal disease models develop in a very short
time frame, e.g. 14 days for BDL, whereas in human, a
chronic liver disease in many cases requires decades
until occurrence of a progressed disease stage. Another
challenge is that except from blood samples, no time
course estimation of disease dynamics can be performed
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in human, since usually only one or in best cases a sec-
ond biopsy sample is available for a patient. However, we
believe that a thorough analysis of multiple parameters
in such patient samples can be matched with dense time
course analyses of animal models as presented in the
present report and, upon further optimization, finally
may lead to improved estimation of the patients disease
stage and therapy decisions.
Many of the measured parameters display quite

large variability, which may be one of the reasons
why translation of a set of such parameters into diag-
nostic approaches has not proven sufficiently robust
for predictions in human patients with chronic liver
diseases. The here suggested approach of pooling in-
formation of factors falling in the same time course
classes could be a possible solution for more robust
predictors in the future.
Taken together, the detailed time-resolved profiling of

mouse liver samples following BDL revealed a coordi-
nated response, resulting in disease phase dependent
modulations at morphological, biochemical, metabolic
and gene expression levels, which can be used as diag-
nostic markers to predict a disease stage more thor-
oughly. Such approach is recommended for human
patient cohorts, to generate similar prediction trees
based on estimating a maximum amount of parameters
for improved diagnosis.
To further elucidate the regulatory network behind

the disease stage related expression signatures, add-
itional studies are needed, which have to include
knowledge on transcription factor activation due to
accumulation of bile salts and shared transcription
factor binding motifs of genes belonging to the same
transcript cluster.

Availability of supporting data
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