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Abstract 
 

Persistent infections with viruses such as cytomegalovirus (CMV), human immunodeficiency virus 

(HIV) or human papillomavirus (HPV) can lead to serious illnesses or cancer development. There are 

no effective therapies available to permanently eliminate these infections and cure caused diseases. 

With advances in understanding viral biology and biology of immune responses, one could design 

therapies by which the immune system is manipulated in order to eradicate the virus or the virus-

induced illness. To do so, one potential approach is direct identification of viral antigen-derived 

epitopes, which are presented on the surface of infected or diseased cells for immune recognition. 

These epitopes are, in most cases, of low abundance and therefore difficult to identify.   

This work presents the development of a targeted highly specific liquid chromatography-mass 

spectrometry (LC-MS) methodology for detection of low abundant viral epitopes from the surface of 

infected cells. It also offers a solution for detection of epitopes from other complicated experimental 

set-ups, such as identification of low abundant tumor mutation-derived epitopes.   

The methodology was developed first for the detection of human leukocyte antigen (HLA)-A2-

restricted HPV16 E6 and E7 epitopes, and then applied to identify HIV-derived epitopes, and mouse 

(m)CMV-derived epitopes presented by the mouse major histocompatibility (MHC) I complex H-2D
b
. 

The work describes the optimization of isolation, purification and enrichment of T cell epitopes for MS 

detection. First, HLA I-epitope complexes were immunopurified and treated with acid for dissociation 

of complexes. Next, epitope-containing eluates were subjected to various enrichment, purification and 

fractionation strategies, including ultrafiltration, normal and reverse phase chromatography, and a 

newly established chemical tagging strategy for epitope isolation by TiO2 pull down. Finally, epitopes 

were analyzed with a targeted highly specific and sensitive nano-LC-MS
3
 approach, where every 

measured peptide was manually optimized to generate the best possible spectrum.  

The HPV16 E711-19 YMLDLQPET peptide was reported to be presented on HPV16-postive cell lines 

and tumor samples before. We were not able to identify it on the surface of HPV16-transformed cells. 

However, the H-2D
b
-restricted mCMV epitope was successfully detected in high abundance on the 

surface of only 1x10
7
 cells, which is the lowest cell number ever reported for an experiment like this. 

The cell number could even be further reduced. Moreover, three low abundant HLA-A2-restricted HIV-

derived epitopes were successfully detected on the surface of HIV-transfected cells. One of them is 

the first directly identified Nef-derived epitope ever reported. 

In conclusion, this work demonstrates that the developed strategy for direct identification of virus-

derived epitopes on the cell surface is broadly applicable to various MHC I types and virus-infected 

target cells. The methodology can be extended to direct identification of low abundant tumor mutation-

derived epitopes. In general, directly identified epitopes form a solid base of future immunotherapy 

design. 
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Zusammenfassung 
 

Persistierende virale Infektionen, wie zum Beispiel durch das Cytomegalievirus (CMV), das humane 

Immundefizienz-Virus (HIV) oder  das humane Papillomvirus (HPV), können zu schwerwiegenden 

Krankheiten oder Krebs führen. Bis heute gibt es keine effektiven Therapien, die diese Infektionen  

permanent beseitigen oder diese Krankheiten heilen können. Durch Fortschritte im Verständnis der 

Virus- und Immunbiologie können nun Strategien entwickelt werden, die das Immunsystem gezielt 

manipulieren, um das Virus oder die durch das Virus hervorgerufene Krankheit zu eliminieren. Ein 

möglicher Ansatz ist die direkte Identifizierung von Epitopen, die von viralen Antigenen stammen und 

dem Immunsystem auf der Zelloberfläche von infizierten Zellen präsentiert werden. Diese Epitope 

kommen in vielen Fällen nur in geringer Menge vor, und sind aus diesem Grund schwer zu 

detektieren.  

In dieser Arbeit wurde eine hochspezifische massenspektrometrische Methodik (engl. targeted liquid 

chromatography-mass spectrometry, LC-MS) zur Detektion von viralen Epitopen entwickelt, die nur in 

geringer Menge auf der Zelloberfläche von infizierten Zellen vorhanden sind. Diese Methodik 

ermöglicht zudem die Detektion von anderen Epitopen, die in ähnlich komplexen experimentalen 

Ansätzen in geringer Menge präsentiert werden, wie zum Beispiel Epitope, die in Tumorzellen durch 

Tumor-spezifische Mutationen entstehen.  

Die Methodik wurde zunächst für den Nachweis von Epitopen, die von den HPV-Proteinen E6 und E7 

stammen und durch das humane Leukozytenantigen (HLA)-A2 restringiert sind, entwickelt. In der 

Folge wurde die Technik auf die Identifizierung von Maus-CMV- und HIV-abgeleiteten Epitopen 

umgelegt. Diese Arbeit beschreibt die Optimierung der Isolation, Aufreinigung und Anreicherung von 

T-Zell-Epitopen zur MS Detektion. Zuerst wurden HLA Klasse I (HLA I)-Epitop-Komplexe 

immunpräzipitiert und zur Dissoziierung des Komplexes mit Säure behandelt. Danach wurden die 

Eluate, die die Epitope enthalten, verschiedenen Strategien zur Anreicherung, Aufreinigung und 

Fraktionierung unterzogen. Diese umfassten Ultrafiltration, Normalphasen- und Umkehrphasen-

Chromatographie, isoelektrische Fokussierung, sowie eine neu etablierte Strategie, welche auf 

chemischer Markierung und anschließender TiO2-Fällung von zu isolierenden Epitopen basiert. Zuletzt 

wurden die Epitope mit einem hochspezifischen und empfindlichen targeted nano-LC-MS
3
-Ansatz 

analysiert, wobei jedes gemessene Epitop-Peptid manuell optimiert wurde um das bestmögliche 

Spektrum zu generieren. 

Das HPV16 E711-19-Peptid YMLDLQPET wurde in vorangegangen Studien auf der Zelloberfläche von 

HPV16-positiven Zellen und in Tumorproben entdeckt. In dieser Studie gelang es nicht, dieses Peptid 

auf HPV16-transformierten Zellen zu identifizieren. Das Maus-CMV Epitop, welches vom murinen 

Haupthistokompatibilitätskomplex (engl. major histocompatibility complex, MHC) H-2D
b
 präsentiert 

wird, konnte jedoch erfolgreich in großer Menge auf der Zelloberfläsche von nur 1x10
7
 Zellen 

detektiert werden. Dieses ist die geringste Zellzahl, die nach unserem Wissen jemals für ein 

vergleichbares Experiment benötigt wurde. Die Zellzahl könnte sogar noch weiter reduziert werden. 

Darüberhinaus wurden drei HIV-Epitope, die in geringer Menge von HLA-A2 auf der Zelloberfläche 



 

3 

 

von HIV-transfizierten Zellen präsentiert werden, erfolgreich detektiert. Eines davon ist das erste direkt 

identifizierte Epitop, das vom Nef-Protein abgeleitet ist. 

Zusammenfassend zeigt diese Arbeit, dass die entwickelte Strategie zur direkten Identifizierung von 

viralen Epitopen auf Zelloberflächen breit anwendbar ist. Sie kann für die Epitop-Identifizierung auf 

verschiedenen MHC I Typen und in verschiedenen Virus-infizierten Zellen genutzt werden. Die 

Methodik kann zudem erweitert werden, um durch Tumor-spezifische Mutationen entstandene Neo-

Epitope direkt zu identifizieren. Generell sind direkt identifizierte Epitope eine solide Basis für 

zukünftige Ansätze in der Immuntherapie.  
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1. Introduction 

1.1. Viruses 

Viruses are infectious agents which can only survive in a living host cell or organism. They were first 

described as a new type of infectious agent by the Dutch microbiologist Martinus Beijerinck in 1898 

(1). Since then, numerous viruses have been characterized and it has been estimated that 10
31

 

viruses exist on Earth, most of them being phages which infect bacteria (2).  

The main component of a virus structure is genetic material packed in a protein capsid. Some viruses 

are additionally covered with a lipid bilayer (envelope). A common trait of all viruses is that they use 

the host cell machinery for their survival and replication. Thereby, they can kill the host or they stay in 

a so called latent phase where their host organism or cell shows only few or no signs of infection. 

Such viruses can persist in such states for months or even years (1). 

Animal viruses can be divided in seven groups based on their genomic material; single and double 

stranded DNA viruses, double stranded RNA viruses, positive or negative single stranded RNA 

viruses, single stranded RNA retroviruses and double stranded DNA retroviruses (1).   

Some examples of common virus-induced illnesses in humans are the flu or the seasonal cold, which 

are easily eliminated in a healthy individual. However, viruses causing persisting infection are not 

easily cleared. Furthermore, there is no effective cure for infection with many of these viruses. In some 

cases, persistent infection leads to cancer development. Some examples of cancer-inducing viruses 

are the human papillomavirus (HPV) causing cervical cancer (3), human hepatitis B and C viruses 

(HBV and HCV) causing hepatocellular carcinoma (4), human herpes virus 8 (HHV8) causing Kaposi's 

sarcoma (5) or Epstein-Barr virus (EBV) that causes different kinds of lymphomas and 

nasopharyngeal carcinoma (6). 

There is also no cure but only limited therapeutic solutions to manage the infection with viruses 

causing some other serious illnesses, such as the  human immunodeficiency virus (HIV) causing 

acquired immune deficiency syndrome (AIDS), the Ebola virus causing Ebola disease, or the SARS 

coronavirus causing severe acute respiratory syndrome (SARS) (1).  

To prevent the infection with a virus, prophylactic vaccines have been a great leap forward in fighting 

viral illnesses. They have been successfully protecting against measles, mumps, rubella, polio, 

hepatitis A and B, rabies, smallpox, influenza and others. These vaccines induce an immune response 

mainly leading to antibody production. These so-called neutralizing antibodies recognize and eliminate 

viruses when they enter an individual, before target cells can be infected. However, most prophylactic 

vaccines have no therapeutic effects (7).  

The most common therapeutic solutions for virus-induced illnesses are antiviral drugs. They have 

different mechanisms of action and are designed to help combating infections caused by a particular 

virus. Antiviral drugs target different steps in the virus life cycle, such as transcription of viral genetic 

material, viral protein translation and processing, or virus assembly. Despite specific targeting of viral 

biology, these drugs in most cases do not eliminate the virus after infection, but only limit its spreading 

and associated symptoms (1). Therefore, there is a great need to find better treatment options for viral 

diseases.  
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In the past decades, the field of immunology advanced considerably in understanding biological 

mechanisms in greater detail. It was shown that T cells are important to clear persistent viral infections 

(8). Therefore, today, modifying or precise targeting of immune responses can be a solution to combat 

persistent viral infections (9). 

 

1.2. Short introduction to viruses used in this thesis 

1.2.1. Human papillomavirus (HPV) 

HPV is a commonly sexually transmitted virus and up to 95% of the sexually active population is or will 

be exposed to it during their lifetime (10, 11). Persistent infection with some viral HPV types can lead 

to cancer development (12), therefore they are grouped in low-risk or high-risk types. Low-risk types 

can cause warts, whereas persistent infection with high-risk types can lead to cervical cancer, which is 

the second most prevalent cancer in women. Furthermore, high-risk HPV types also cause other ano-

genital cancers and cancer in the head and neck region (13-16).  

 

HPV is a double stranded circular DNA virus (~ 8000 bp) and codes for eight proteins. The early 

proteins E1, E2, E4, E5, E6 and E7 are expressed throughout the course of infection, whereas the late 

proteins L1 and L2 are coding for the viral capsid proteins and are expressed only in the latest phase 

of the viral life cycle (Figure 1) (17, 18).  

 

 

Figure 1. Schematic presentation of the HPV genome. 
Genes are grouped in early (E) and late (L) genes. E1 and E2 are involved in DNA replication, E4 is involved in virion assembly and E5 in 
modulation of replication. The E6 and E7 oncoproteins are responsible for host cell immortalization. The late genes L1 and L2 code for the 
capsid proteins. Illustration adapted from (19).  

 

The viral life cycle starts with infection of the host organism. The viral L1 capsid protein binds to the 

basement membrane under a previously (mechanically) damaged epithelial layer and the virus can be 

internalized into the basal keratinocytes via a so far uncharacterized endocytic pathway. The viral life 

cycle is tightly connected with the differentiation process of epithelial cells (17, 18). Its DNA is 

transferred to the nucleus, where RNA transcription is initiated (20, 21). First, E1 and E2 proteins that 

E1 – replication 
E2 – replication and transcription 
E4 – virion assembly and release 
E5 – modulation of cellular replication 
E6 – prevents apoptosis 
E7 – maintains active cell replication  
L1 – major capsid protein 

L2 – minor capsid protein 
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work as replication factors are expressed. In the first stages of cell proliferation, the E5 protein, which 

acts as a modulator of cellular replication, is expressed as well (17, 18). Next, the E6 and E7 proteins 

are translated. They promote malignant transformation in cells infected with high-risk HPV. They are 

present during the whole viral life cycle. The E6 protein degrades the tumor suppressor protein p53, 

which regulates expression of proteins involved in control of the cell cycle. The E7 protein degrades 

the retinoblastoma protein (pRB) family and associates with cyclins to prevent cell cycle regulation. 

This leads to the accumulation of mutations in the host cell genome, genome instability, malignant 

transformation and eventually cancer development (3, 17).  

In the last stages of the viral life cycle, E4, and the major (L1) and minor (L2) capsid proteins are 

expressed. Capsid proteins are packed together with the viral DNA with the help of the E4 protein to 

form new virions, which are released afterwards by normal cell shedding (17, 18, 22). 

 

The chance to get infected with a high-risk HPV type and consequently develop cancer was reduced 

after prophylactic vaccines were available for immunization of adolescents (19, 23-25). They are virus-

like particle based vaccines, which induce the production of neutralizing antibodies and ensure 

protection for at least 8.5 years with the trials still on-going (26). However, these vaccines have no 

therapeutic effects in already infected individuals (27). Due to socio-economic reasons they are not 

accessible to everyone, especially in developing countries. Therefore, therapeutic solutions are 

needed.  

As it was shown that T cell responses are important to clear HPV infections (28), therapeutic vaccines 

targeting the oncoproteins E6 and E7, which are expressed throughout the whole viral life cycle, 

seems a reasonable approach. Vaccines based on viral proteins or DNA did not give promising results 

(29). However, vaccination with long synthetic peptides derived from E6 and E7 proteins gave 

encouraging results, however only in premalignant stages (30-32). For rational therapeutic vaccine 

design, it is important to identify which viral peptides are truly presented on the surface of the 

transformed cells for immune recognition. This question is addressed, amongst others, in this thesis. 

 

1.2.2. Cytomegalovirus (CMV) 

Human CMV is a highly prevalent and globally distributed virus, with up to 90% of the population being 

latently infected. The virus can infect nearly any cell type and it spreads through saliva, urine, semen, 

cervical secretions, blood transfusions or organ transplantation. Furthermore, it penetrates the 

placenta to infect embryos and fetuses. The infection in healthy immunocompetent individual is usually 

asymptomatic or causes a mild mononucleosis-like syndrome. After primary infection and its 

successful resolving, the virus enters a latency state. However, infection of newborns and 

immunocompromised individuals, such as allograft recipients or HIV infected individuals, can cause 

serious illnesses and health complications. The most common effects in CMV-infected newborns are 

hepatitis, anemia, growth retardation, brain damage and hearing loss. In immunocompromised adults, 

the most common illnesses and complications are hepatitis, colitis, organ dysfunction in allograft 

recipients or death (33).  
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The virus is species-specific, which leads to limitations in in vivo studies of human (h) CMV. Therefore, 

murine (m) CMV in mice is often used as an animal model. mCMV has similar structural and genetic 

characteristics as well as similar adaptation strategies to the host immune system as hCMV (34, 35). 

 

CMV is a herpes virus. It has a linear double stranded DNA composed of app. 230 kbp (36) and it 

contains 165 to 252 open reading frames (37, 38). Based on the timing of the expression, proteins can 

be divided in intermediate early (IE), early (E) and late (L) proteins (39, 40). IE protein expression 

starts directly after viral DNA enters the host cell nucleus. IE proteins are responsible for expression of 

all later viral genes and for modulation of host cell functions (41, 42). E proteins are expressed 4 h 

after infection. They are responsible for host immune system evasion, regulation of viral DNA 

replication and repair. Late genes start to transcribe 24 h post infection and encode for structural 

components and virus assembly (36, 39).  

 

Antiviral therapy with ganciclovir or valganciclovir reduces viral load and prevents development of 

CMV disease in immunocompromised adults. However, there is no effective cure to eliminate the virus 

(43). One of the suggested therapeutic solutions to eliminate the virus is a recombinant CMV vaccine 

expressing dominant viral peptides, which are primarily presented to the immune system on the 

surface of naturally CMV infected cells (44-46). To this end, the dominant peptides need to be 

identified and viruses engineered such that these peptides will be indeed presented by the immune 

system upon the vaccination (45, 46). This can be achieved by direct identification of CMV-derived 

epitopes from cells infected with different CMV mutants by mass spectrometry (MS) analysis, as it was 

demonstrated in this thesis.  

 

1.2.3. Human immunodeficiency virus (HIV) 

HIV is the leading killing infectious agent in the world. According to the World Health Organization 

(WHO), there were approximately 35 million people worldwide living with HIV/AIDS in 2013. The 

number of new infections in 2013 was estimated to be 2.1 million individuals worldwide (47). The virus 

primarily infects CD4+ T cells and macrophages (1, 48). 

 

HIV is a small retrovirus, enclosing reverse transcriptase, protease, integrase, ribonuclease (RNase 

H), and two copies of positive single-stranded RNA. Its viral proteins can be divided in three groups 

based on their function; 1) structural proteins and viral enzymes, 2) regulatory proteins and 3) 

accessory and auxiliary proteins. The viral envelope is composed of glycoproteins (gp)120 and gp 41, 

which are responsible for viral entry. Other structural proteins are matrix protein p17, capsid protein 

p24 and nucleocapsid proteins p7 and p6, which protect RNA from degradation. The reverse 

transcriptase transcribes viral RNA to DNA, whereas the ribonuclease (RNase H) degrades the viral 

RNA template after reverse transcription for complete synthesis of viral double stranded DNA in the 

host cell. The integrase helps integrating viral DNA into the host genome after it has been transcribed 

from single stranded RNA to double stranded DNA. The trans-activator of transcription (Tat) and 

regulator of expression of virion (Rev) proteins are regulatory proteins responsible for viral gene 
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expression. Tat modulates HIV gene transcription through binding to cellular transcription factors, 

whereas Rev mediates the export of unspliced and partially spliced mRNAs from the nucleus.  After 

transcription and translation of the viral genome, proteases are responsible to process viral 

polyproteins to functional proteins. Furthermore, the HIV genome codes for several accessory and 

auxiliary proteins, which are involved in various processes during the viral life cycle. The viral 

infectivity factor (Vif) directs cell proteins responsible for antiviral mechanisms into degradation, 

thereby promoting viral infectivity. The viral proteins R and X (Vpr, Vpx) are involved in trafficking of 

the viral genome to the nucleus for integration into the host genome. Moreover, the Vpr and Vpx 

proteins are involved in cell cycle arrest and induction of apoptosis in proliferating cells. The viral 

protein unique (Vpu) is involved in two different processes; first, it degrades CD4 molecules in the 

endoplasmatic reticulum and second, it enhances virion release. The negative factor (Nef) has several 

functions, namely downregulation of CD4 expression, modulation of the activation of T cell proliferation 

and suppression of apoptosis (1, 48-50).   

 

The acute phase of HIV infection starts 2-3 weeks after infection with a high virus burst. Individuals 

experience flu-like symptoms which resolve spontaneously. Subsequently, the viral load in the blood is 

reduced to a steady state, which is maintained by the equilibrium between virus production and 

clearance. The steady state can persist for months or years. HIV is characterized by high replication 

rates and high error rates of reverse transcriptase, resulting in numerous new viral variants generated 

in individuals and across infected populations per day. This viral diversity hinders effective immune 

recognition by T cells and can result in CD4+ T cell loss. Moreover, high viral diversity renders antiviral 

therapy and vaccine development a challenging task (1, 49).  

 

Numerous antiviral drugs targeting different steps in the HIV life cycle were developed. Standard 

therapies use a combination of several drugs, as mono- or dual-therapies induced drug resistance due 

to high viral mutation rates. However, these drugs only reduce the viral load in the blood, but they do 

not eliminate the virus completely (1, 49). Therefore, other therapeutic solutions are needed.  

CD4+ and CD8+ T cell populations are activated for viral clearance in infected individuals (49, 51). 

Furthermore, vaccines designed based on peptides presented on the surface of infected cells to the 

immune system, induced responses against HIV. This shows that identifying conserved HIV-derived 

peptides presented to immune cells could contribute to therapeutic vaccine development (52). 
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1.3. The immune system  

The immune system is a complex system, which recognizes danger signals originating from 

pathogens, such as bacteria or viruses, from damaged tissue, or from cancer cells. For the purpose of 

finding these danger signals, highly specialized immune system cells circulate through blood and 

tissues for immune surveillance and to trigger immune responses. Cells involved in these processes 

are B and T lymphocytes, dendritic cells (DCs), natural killer (NK) cells, macrophages, monocytes, 

neutrophils and granulocytes, which are all produced and maturated in the lymphoid organs, such as 

bone marrow, spleen, thymus, lymph nodes and tonsils (53).   

 

1.3.1. The innate and adaptive immune system 

Immune responses can be grouped into innate or adaptive immune responses, which are both closely 

connected through signaling and cell interactions. However, they differ in response mechanisms and 

kinetics. 

 

The innate response is the fastest response to pathogens and is thus critical in the first hours or days 

of exposure to a new pathogen. The innate system is not specific for a particular pathogen and it does 

not provide long-lasting immunity. The first defense line are physical body barriers in the form of 

various epithelia. When pathogens enter a tissue, macrophages, monocytes, DCs or neutrophils 

remove them by pino- and phagocytosis. The trigger for pino- and phagocytosis is recognition of 

molecular patterns conserved across broad groups of pathogens. These so called pathogen-

associated molecular patterns (PAMPs) are, for example, bacterial lipids (LPS-lipopolysaccharides), 

peptidoglycanes and mannose-rich oligosaccharides, flagellin and viral RNA. They are recognized by 

pattern recognition receptors, such as Toll-like receptors, which initiate signaling cascades for 

inflammatory cytokine production.   

Professional antigen presenting cells (APCs), such as DCs can present fragments of pathogen 

antigens on the cell surface for interaction and priming of naïve T cells. Hence, they are a link between 

innate and adaptive immunity (53). 

 

The innate response against pathogens triggers adaptive immunity. The key cells of the adaptive 

immune system are B and T lymphocytes. Each cell has a different specificity for antigens due to 

unique receptors on the cell surface developed during the lymphocyte maturation process. After being 

exposed to an antigen presented by a professional APC, naïve lymphocytes undergo clonal 

proliferation and differentiation.  

B cells differentiate into effector cells called plasma cells. These are producing antibodies with the 

same binding properties as the B cell receptor that recognized the particular pathogen. After a 

pathogen is removed, most specific B cells are eliminated. However, a small pool of B cells 

differentiates into memory cells. Hence, the most important B cell functions are antibody production 

and memory B cell development.  

Naïve T cells differentiate into one of the subsets of effector T cells. These are either cytotoxic T 

lymphocytes (CTLs), with the characteristic co-receptor CD8, recognizing peptides presented by major 
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histocompatibility complex I (MHC I) on nucleated, infected cells. The other subset of effector T cells 

are helper T cells, with the characteristic co-receptor CD4, recognizing MHC II-peptide complexes on 

the surface of antigen presenting cells, such as DCs.  As with B cells after pathogen clearance, most 

effector T cells die. A small set of cells, however, remains in the body after pathogen elimination and 

forms a pool of so called T memory cells. These cells provide a faster immune response upon a 

second encounter with the same pathogen. The most important T cell functions are thus screening 

and killing of infected cells, interaction with innate immune cells and memory T cell development (53).  

It was shown that CTLs are important for (spontaneous) virus and tumor eradication (8, 54, 55). As 

this work describes method development for direct detection of MHC I restricted peptides, only 

immunobiology connected to this thesis is described in more detail in the next sections.   

 

1.3.2. Cytotoxic T lymphocytes (CTL) 

CTLs originate from common lymphoid hematopoietic stem cells, which leave the bone marrow for the 

thymus for maturation. T cell precursor cells undergo T-cell receptor (TCR) gene rearrangement 

resulting in an α:β receptor, which consists of an α and β chain as the name suggests. The gene 

rearrangement is highly variable and is, thus, producing up to 10
18

 different TCRs. At this stage, cells 

express both CD8 and CD4 co-receptors simultaneously, and are called double positive thymocytes. 

Afterwards, cells are positively selected by recognizing self-peptide:MHC complexes. Concurrently, 

either CD8 or CD4 expression is terminated, resulting in single positive thymocytes. These cells 

undergo negative selection, which removes cells that react to self-antigen too strongly. Mature single 

positive T cells, which are MHC restricted and self-tolerant, migrate to the periphery for antigen 

recognition as naïve T cells (53). 

 
 

Figure 2. CTL mediated killing. 
The TCR on the surface of an effector CD8+ T cell recognizes a MHC I-epitope complex on the infected cell. The binding of CD8 to the 
MHC I molecule stabilizes the interaction. Target cell killing is mediated by exocytosis of perforin and granzymes, and interaction of Fas 
ligand with its receptor Fas on the target cell. Adapted from (53).    
 

Naïve T cells need to be primed by professional APCs presenting their cognate antigen, in 

combination with CD4+ T cell help, to result in fully activated cytotoxic T lymphocytes (CTLs). CTLs 
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can eliminate nucleated infected, diseased or damaged cells which present their specific 

epitope/antigen. Activated effector CTLs interact with their TCR to the MHC I-epitope complex on the 

target cell. The co-receptor CD8 is important for successful binding (53). 

After successful activation, effector CTLs can eliminate their target cells either through perforin and 

granzyme release or/and through death receptor activation (Fas-Fas ligand interaction). Perforin 

molecules direct granzyme molecules to enter the cell (Figure 2). Granzymes target the electron 

transport chain in mitochondria for activation of the mitochondrial (intrinsic) pathway of apoptosis 

and/or they directly target procaspases. The Fas ligand on the surface of activated CTLs binds the 

death receptor (Fas) on the target cell, which results in activation of the extrinsic pathway of apoptosis 

(53).  

 

1.3.3. The major histocompatibility complex 

The major histocompatibility complex (MHC) is called human leukocyte antigen (HLA) complex in 

humans and was first described as one of the most important compatibility determinants for organ 

transplantation. Its true function, however, is to present peptides derived from antigens originating 

from the cell interior to T cells. There are two classes of MHC molecules, MHC I and MHC II. They 

differ by their structure, how they acquire peptides/epitopes, on which cells they are expressed and to 

which type of T cells they present epitopes.  

 

  

 
Figure 3. Schematic representation of MHC I and II molecules. 
The MHC I molecule is composed of a heavy α chain with three Ig domains and a light non-covalently bound β chain. The α1 and α2 
domains are the most polymorphic domains to ensure versatile binding properties of the peptide binding cleft. The MHC II molecule is 
composed of one α and one β chain. The binding cleft is formed by the α1 and β1 Ig domains. To ensure diverse binding properties of 
peptide binding cleft, these two domains have the highest polymorphism. Adapted from (53). 

 

MHC I is a heterodimeric glycoprotein composed of a heavy α and light β chain. The heavy chain has 

350 amino acids (aa) and a molecular mass of app. 44 kDa. It can be divided into three functional 

regions: external, transmembrane and intra-cytoplasmic. The external part is folded in three 

immunoglobulin (Ig) domains, α1-α3, each comprised of app. 90 aa. The interface of the α1 and α2 

domains forms a closed epitope binding cleft, which non-covalently binds 8-11 aa long peptides. To 

ensure diverse MHC binding properties, the α1 and α2 domains are polymorphic, whereas the α3 
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domain is conserved. A soluble and conserved β chain, called β2-microglobulin (β2M), with a molecular 

mass of app. 12 kDa, is non-covalently associated with the heavy chain (Figure 3). MHC I is 

expressed by all nucleated cells and is recognized by CD8+ T cells. Peptide presentation by MHC I is 

important for intracellular pathogen detection, including viruses.  

MHC II is a heterodimeric glycoprotein composed of one α and β chain with a molecular weight of app. 

30 kDa each. Each of the chains is comprised of two Ig domains. They form an open peptide binding 

cleft at the interface of the α1 and β1 domains. To assure a high binding diversity of the peptide binding 

cleft, these two domains are the most polymorphic. The binding cleft is open, therefore, the MHC II-

restricted peptides have variable lengths spanning from 9 to 25 aa. The α2 and β2 domains are 

conserved (Figure 3). MHC II is only found on APCs, such as DCs, which present peptides derived 

from phagocytosed antigens. MHC II is recognized by CD4+ T cells (53). Since this thesis focuses on 

the detection of MHC I epitopes, only the MHC I antigen presentation process and MHC I 

polymorphism is discussed in more detail.   

 

MHC I-peptide complex generation is a multi-step process and the involved components are termed 

antigen processing machinery (APM). It starts in the cytoplasm with the proteasomal degradation of 

poly-ubiquitinated misfolded or damaged self-proteins or foreign (e.g. viral) proteins (56). The 

proteasome has defined proteolytic activities maintained by the beta subunits 5-7, and proteosomal 

cleavage result in peptides with a length of 2-25 aa. Proteasomal degradation specificities and activity 

alter upon interferon-gamma (IFNγ)  stimulation due to replacement of the catalytic  proteasomal beta 

subunits 5-7 (57) by new beta subunits 8-10. This change produces peptides with different 

characteristics (58, 59). As many proteasomal peptides are too long to be successfully transported 

from the cytoplasm to the endoplasmatic reticulum (ER), where the loading of peptides to the MHC I 

complex takes place, they are trimmed by aminopeptidases in the cytosol (60, 61). Mostly 8-12 aa 

long peptides, but occasionally also longer ones, are selected and transported into the lumen of the 

ER through the transporter associated with antigen processing (TAP) (62, 63). 

 

Loading of peptides on the MHC complex occurs via the peptide loading complex, consisting of the 

transporter TAP, the chaperons tapasin and calreticulin, the thiol oxidoreductase ERp57, and the MHC 

I molecule. A peptide is loaded into the peptide binding cleft and, if too long, trimmed by the 

endoplasmatic reticulum aminopeptidases 1 (ERAP1) and ERAP2 (64). Finally, the assembled MHC I-

peptide complex is transported through the Golgi apparatus to the cell surface for CD8+ T cell 

recognition (65) (Figure 4).    

 

MHC I molecules are encoded in a large chromosomal region with over 200 genes in humans. The 

MHC I α chain and both MHC II chains are located on chromosome 6 in humans and chromosome 17 

in mice. MHC genes are called HLA in humans and H-2 in mice. The β2M gene is located on 

chromosome 15 or 5 in humans or mice, respectively, and is not polymorphic. There are three class I 

genes; A, B and C in humans, and K, D, and L in mice, which are highly polymorphic. Until now, 3,192 

HLA-A, 3,977 HLA-B and 2,740 HLA-C alleles have been identified in humans, with the numbers of 
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newly identified alleles still increasing. (66). Furthermore, every individual is diploid for MHC I genes, 

which results in three to six different MHC I molecules expressed on each cell. Thus, polygeny and 

polymorphism contribute to the high MHC I molecule variability among individuals of the same species 

(53). Most of the differences between MHC I alleles are located in the peptide binding cleft, resulting in 

different binding properties for peptides and TCR recognition (53). 

 

 
 

Figure 4. Schematic representation of the antigen processing machinery. 
The proteasome degrades poly-ubiquitinated proteins into peptides in the cytoplasm. Peptides are transported through the transporter 
associated with antigen processing (TAP) into the lumen of the endoplasmatic reticulum and loaded on empty MHC I molecules with the 
assistance of the peptide loading complex. Subsequently, the MHC I-peptide complex is transported via the Golgi apparatus to the cell 
surface for CD8+ T cell recognition. Adapted from (53, 65). 

 

The pioneering work of Rammensee and colleagues allowed for identification of the first binding 

motives and MHC I binding peptides in 1990 and 1991 (67-69). They used immunopurification of MHC 

I-peptide complexes and Edman degradation to determine which aa are the most prevalent in a 

particular place of the peptide sequence. In 1992, Hunt and colleagues performed similar experiments, 

only with Edman degradation being replaced with MS analysis yielding more identified peptides from 

one sample (70). Both groups reported comparable HLA-A2 binding patterns for the second aa in the 

peptide (position 2), leucine, and the aa at position 9, valine or leucine. The reported dominant peptide 

length was 9 aa (68, 70).  

A peptide binds to the binding cleft non-covalently with hydrogen bonds and ion interactions. The 

interactions are usually strongest on both ends of the binding cleft. The aa of the peptide, which 

interact with the binding cleft the strongest, are called anchor residues and are different for every MHC 

allele. However, binding is influenced by interactions of the cleft with other aa in the peptide to a lesser 

extent as well (71).  

Over the years, MS acquired data contributed to the establishing of peptide binding motives to MHC I 

molecules. They revealed that peptide binding motives are shared among some MHC I alleles, 

allowing their grouping in so called supertype families. For humans, nine supertype families were 

suggested, namely HLA-A1, -A2, -A3, -A24, -B7, -B27, -B44, -B58 and -B62 (72, 73). The grouping is 
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relevant especially for development of epitope-based vaccines, where the immune system can be 

stimulated with a small number of immunogenic peptides binding to all supertype family 

representatives. This enables the use of the same peptide vaccine in individuals bearing different HLA 

I alleles and, thus, a broad applicability across different populations.  

The direct detection of MHC I peptides with MS enabled better understanding of the APM. It allowed 

the detection of differences in posttranslational modification (PTM), such as phosphorylation and 

glycosylation, in healthy and diseased cells (74) and finally the detection of viral (75) and tumor 

specific peptides (74). Furthermore, the direct MS detection of epitopes resulted in the development of 

the first therapeutic vaccine, IMA901, for renal cell carcinoma treatment by Rammensee and 

colleagues, which is currently in late-phase clinical studies (76-78). 

Moreover, the information about peptide binding to MHC I molecules were used for development of 

MHC I peptide prediction algorithms, which are freely available on the internet, such as SYFPEITHI 

(79), immune epitope database (IEDB) (80-82) and NetMHC (83, 84) algorithms. However, prediction 

algorithms only work well for the most frequently studied alleles, where the data pool for algorithm 

training is big, whereas they are less reliable for rare alleles with less available information. Moreover, 

algorithms miss atypical peptides and they do not predict post-translation modifications. Thus, 

prediction algorithms are often combined with in vitro binding studies to confirm the binding properties 

of studied peptides (75). In the case of identifying viral MHC I peptides, the sequence information of a 

particular virus is used to predict possible binders (85, 86). In the case of cancer, the genomic 

sequencing data of cancer cells is compared with those of the healthy cells in order to identify mutated 

proteins. Protein regions containing mutations are used for MHC I prediction analysis and predicted 

binders are tested for their real binding potential in vitro afterwards (87-89). 

Lately, a similar strategy of genetic sequencing and neoantigen (tumor specific epitope) predictions for 

tumor cells was employed in combination with the direct identification of predicted neoantigens with 

MS. Both studies reported the successful identification of novel neoantigens on the surface of tumor 

cells. Furthermore, identified neoantigens evoked T cell responses (90, 91). These studies confirmed 

the importance of direct identification of epitopes by MS analysis for successful design of anti-cancer 

treatment. Moreover, direct MS identification of MHC I epitopes can contribute to therapeutic vaccine 

design to cure persistent viral infections as well. 

 

1.4. Introduction to proteomics mass spectrometry analysis 

The goal of proteomics is a complete characterization of all proteins, their expression, turnover, 

localization, interaction, structure, modifications and activity in an organism, tissue, cell, organelle or 

specific signaling pathway. Thus, this makes proteomics more challenging than genomics, which does 

not vary from cell to cell or upon stimulus-induced changes. Several techniques can be employed for 

protein studies, such as protein microarrays, sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE), western blot or enzyme-linked immunosorbent assay (ELISA). However, 

MS has been the most widely used technique for large scale protein analysis, as it generates broader 

and deeper information than other technologies. This is mostly due to recent instrumentational 

advances, such as higher resolution power, better mass accuracy, sensitivity and scanning rates. A 
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prerequisite for successful MS analysis is suitable sample preparation and separation of proteins or 

peptides (92, 93). Basic liquid chromatography and mass spectrometry principles as well usual 

proteomics sample preparation workflows are introduced in this chapter. 

 

1.4.1. Sample preparation for proteomics mass spectrometry analysis 

The quality of MS data is heavily dependent on sample purity. Thus, protein isolation needs to be cell 

compartment-, cell-, tissue- and organism-specific. Furthermore, protein abundance is important for 

successful MS analysis as well. When a target protein is low abundant in a complex matrix, it can be 

enriched by immunoaffinity isolation or depletion of more abundant proteins. Sample complexity can 

be further reduced by protein fractionation strategies, such as one or two dimensional polyacrylamide 

gel electrophoresis (1D- or 2D-PAGE) or isoelectric focusing (94). 

For effective protein solubilization, SDS is one of the best detergents. However, its usage in MS 

sample preparation is limited due to its influence on downstream sample processing, especially in LC-

MS analysis. To overcome these problems, acid sensitive surfactants, such as Rapigest, have been 

developed. They contain an acid labile moiety, which is cleaved during or after enzymatic digestion 

and removed by short pelleting in a centrifuge (95). After successful solubilization, proteins are 

subjected to enzymatic degradation (96). Various proteolytic enzymes with diverse specificities for 

cleaving the amide bond are commonly used (92).   

Sample complexity reduction on the peptide level can be conducted with one or combinations of more 

chromatographic fractionation strategies, such as strong or weak ion-exchange chromatography or 

isoelectric focusing. Any fractionation strategy used, should exploit different separation chemistry than 

the ones used in the final on-line LC-MS platform to successfully reduce sample complexity. Some of 

the separation strategies have a higher affinity for a particular PTM and are, thus, suitable for 

enrichment of peptides carrying that particular PTM (92).  

 

1.4.2. Liquide chromatography 

The most commonly used separation of peptides and proteins is reverse phase chromatography. 

Especially on the peptide level, reverse phase chromatography is the method of choice as its on-line 

connection to the ESI-MS allows for the automatization of analysis. Most of the LC-MS platforms are 

developed for this configuration. In contrast, hydrophilic interaction liquid chromatography (HILIC) is 

mostly used for pre-fractionation of peptides (97, 98). As these two types of chromatographic 

separation were used in the scope of this thesis, this chapter describes their separation principles. 

 

1.4.2.1. Reverse phase liquid chromatography (RP-LC) 

The stationary phase in RP-LC has a non-polar or hydrophobic surface, whereas the mobile phase is 

hydrophilic, allowing hydrophobic molecules to adsorb and to be retained longer. Usually the 

stationary phase for peptide separation is C18 material, which is silica covered with 18-carbon length 

alkyl groups. Other types of stationary phase include C8 (8-carbon alkyl chains) and C4 (4-carbon 

alkyl chains), which are more suitable for separation of proteins (99). Most reverse phase columns in 
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proteomics are particle-based. However, monolithic columns have been applied successfully as well 

(99). Monolithic columns are filled with a single piece of porous material prepared from silica or 

organic polymers. The advantage of monolithic columns is high permeability and low resistance 

compared to the particle filled columns, allowing the use of longer columns, which provide better 

separation. Monolithic material also allows filling capillaries with smaller inner diameters (e.g. 20 µm), 

compared to particle filled columns (where the smallest routinely used inner diameter is 75 µm) (100). 

However, they are not in common use as their performance is not yet comparable to particle filled 

columns (99). 

Elution from the reverse phase material is usually conducted with a gradient of the mobile phase, 

beginning with high aqueous solvent content and ending with a high content of organic solvent. 

Besides the composition, also the pH of the mobile phase is important, as it can change the retaining 

properties of analytes (101). Chromatography is conducted with ultra/high performance liquid 

chromatography (U/HPLC) systems allowing the usage of long columns with small diameters for better 

separation of analytes. Reverse phase chromatography is usually used for on-line separation of 

peptides before MS analysis. If not specified differently, LC-MS in this thesis stands for reverse phase 

liquid chromatography-mass spectrometry analysis. 

 

1.4.2.2. Hydrophilic interaction liquid chromatography (HILIC) 

The stationary phase of normal phase liquid chromatography (NP-LC) is more hydrophilic than the 

mobile phase, causing more hydrophilic molecules to adsorb. HILIC is a variant of NP-LC with a polar 

stationary phase containing various types of ligands to achieve multiple-interaction solid phases, and 

thus combining characteristics of three major LC methods; normal phase, reverse phase and ion 

chromatography, resulting in different retention and separation selectivities (102). Here, the two most 

broadly used HILIC materials in proteomics are presented; TSKgel and zwitterionic (ZIC) HILIC. 

 

 
 

Figure 5. Schematic representation of TSKgel and ZIC HILIC stationary phases used in this project. 
TSKgel is composed of an amide-silica phase, which binds analytes through hydrogen bonding and ion-exchange interactions. ZIC HILIC 
is composed of zwitterionic sulfoalkylbetaine bound to silica gel. The interactions of analyte and stationary phase are through hydrogen 
bonding and ion-exchange.  Adapted from (97, 102). 
 

TSKgel consists of carbamoyl groups bound to silica gel, known also as amide-silica phase. The 

carbamoyl groups bind carbonyl or hydroxyl groups of the sample through hydrogen bond interactions, 

whereas the silica gel binds through ion-exchange interactions and hydrogen bonding. TSKgel HILIC 

is suitable for separation of peptides, (oligo)saccharides and other polar compounds (Figure 5) (102). 

ZIC HILIC has a zwitterionic sulfoalkylbetaine stationary phase with acidic sulfonic acid groups 

connected to quaternary ammonium groups through a short alkyl linker. Separation is based on 

hydrogen bonding and ion-exchange interactions. It is used for separation of peptides, proteins and 

other small organic molecules (Figure 5) (97, 102).  
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1.4.3. Mass spectrometry 

Mass spectrometry is a method of choice for identification and quantification of biomolecules due to its 

sensitivity, accuracy, high speed and possibility to perform large-scale analysis. This method is based 

on measuring the mass-to-charge ratio (m/z) of analytes. For successful analysis, a generation of gas 

phase ions of the analyte is necessary. This is achieved in the ion source of the MS instrument either 

by loss or gain of charge (e.g. protonation or deprotonation) depending on the ionization technique. 

Next, ions enter the mass analyzer where they are separated based on the m/z and finally, they hit the 

detector, where they produce a record of relative abundance for mass spectrum generation (103).  

 

Biomolecules, such as proteins and peptides, are sensitive molecules which can undergo 

fragmentation when exposed to an excess of energy. To preserve the bioanalyte structure before it 

enters a MS instrument, so called soft ionization methods are in use. The most common ion sources in 

proteomics are matrix-assisted laser desorption/ionization (MALDI), described by Tanaka (104) and 

Karas (105), and electrospray ionization (ESI) described by Fenn (106), all in the 1980s .  

For MALDI, an analyte is first co-crystalized with a high excess of a MALDI matrix on a plate, which is 

afterwards subjected to laser desorption. A laser pulse results in sublimation of matrix and analyte into 

the gas phase, where molecules of matrix and analyte can interact. It is hypothesized that the matrix 

protonates the analyte (107, 108). MALDI ionization mostly produces singly-charged ions. However, 

larger proteins analyzed by MALDI acquire higher charge states. (109). Very high molecular mass 

analytes (up to 300,000 Da) can be ionization with MALDI. The main disadvantage of MALDI is the low 

reproducibility of signal due to non-homogenous distribution of matrix and analyte (110).  

On the contrary, ESI ionization takes place in solution and is therefore suitable for a direct, on-line 

connection with liquid chromatography separation devices. The liquid containing the analyte flows 

through a capillary tip, which is under a strong electrical field. This results in liquid dispersion into 

droplets, and their charging. Charged droplets evaporate, resulting in analyte transfer to the gas phase 

and accumulation of charge on the analyte (111-113). ESI produces multiply charged ions, which is 

well suited for measurement of bigger molecules. As molecular masses are measured as mass-to-

charge ratio, higher charge states reduce m/z and allow for measuring of molecules which would 

otherwise be outside the mass range of mass analyzers. All described traits made ESI-MS in 

combination with on-line LC separation one of the most widespread MS applications in proteomics 

(114). 

 

As mentioned above, mass analyzers separate ions based on their m/z. They can operate in a 

scanning and a selecting mode. In the scanning mode, they monitor all molecules within a specified 

m/z range, which results in a full scan, whereas in the selecting mode, they isolate one ion and filter 

out all others.  

Quadrupole, ion trap, orbitrap, Fourier transform ion cyclotron resonance (FT-ICR) and time-of-flight 

(TOF) are five basic types of mass analyzers currently used for proteomic research. They have 

different designs and performances, so each of them determines m/z ratios differently. For illustration, 

Fourier transform-based mass analyzers have high mass accuracy and resolution (up to 1,000,000) 
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but are slow, whereas quadrupole and ion traps are fast and have low mass accuracy and resolution 

(~1,000). However, different mass analyzers can be combined together in tandem or hybrid 

instruments to use the strengths of each of them (115). 

A quadrupole consists of four parallel metal rods connected pairwise and with an angle of 180°, 

thereby forming a “tube”. Each pair of diagonally opposing rods has the same direct current (DC) or 

radio-frequency (RF) potential, generating an electric field. After the electric field is applied, an ion will 

oscillate depending on its m/z and the time-varying RF field in the quadrupole. The m/z of an ion is 

calculated from the electric field values applied to the quadrupole which allow an ion to pass through 

the analyzer. If the filtering mode of the quadrupole is applied, only ions with a particular m/z will be 

able to pass the analyzer (93). 

The most widely used ion trap in MS is the linear ion trap (LIT), which has the same design as a 

quadrupole. The electric field is created by two-dimensional RF potential, and additionally axial 

stopping and axillary potentials are applied to end of the electrodes. With the stabilizing RF and axial 

potentials, ions are kept in the trap. LIT permits ion acceleration, thereby excitation and consequently 

fragmentation of trapped ions, resulting in MS
2
/MS

3
 spectra (116, 117)  

The orbitrap is based on principles described  by Makarov (118). In brief, it is an electrostatic ion trap, 

where ions are caught between a spindle-shaped inner electrode supplied with high voltage and an 

outer electrode at ground potential. The ions rotate around and oscillate along the inner electrode 

forming complex trajectories. The oscillating signature of an ion is used for calculation of the m/z ratio 

using the Fourier transformation (118, 119). Its advantages are high resolution with high mass 

accuracy and – in modern instruments – high sensitivity and speed. 

FT-ICR was first described in 1974 by Comisarow and Marshall (120). The analyzer allows high 

resolution and high mass accuracy. The most common form of FT-ICR is an open cylinder. Electrodes 

are separated axially in two or four segments (semi cylinders). After ions enter the cell, a RF potential 

is applied to excite them, such that they start to orbit. The potential is turned off and ions move only in 

the magnetic field. Based on the cyclotron frequency in the magnetic field, the m/z of an ion is 

determined using the Fourier transformation (119, 121). 

A TOF analyzer measures the time that an ion with a certain m/z takes to traverse a certain distance in 

a vacuum without an electric field after being accelerated through an electric field. With the 

introduction of a reflector (electric field ion mirror), the flight distance is elongated, which improves the 

resolving power of the instrument. The advantage of TOF analyzers is that their m/z range is almost 

unlimited. Usually TOF analysis is combined with MALDI ionization (122). 

 
As outlined above, every MS instrument determines m/z for measured ions. MS

1
 is the determination 

of the precursor ion m/z. MS
2
 analysis monitors m/z of fragments of this precursor ion. MS

2
 spectrum 

generation starts with m/z determination of the precursor ion by the first MS analyzer. Afterwards, the 

precursor is fragmented and the m/z for fragment ions is determined in the second analyzer for MS
2
 

spectrum generation. Fragments are generated through a process called collision induced dissociation 

(CID), where precursor ions are fragmented in the collision cell, which is a quadrupole filled with inert 

gas, such as helium or argon. The inert gas molecules collide with analytes, resulting in molecule 

breaks (115).  
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Figure 6. Nomenclature of peptide fragmentation by mass spectrometry (MS). 
The charge is on the N-terminus for a-, b- and c-ions, whereas it is on the C-terminus for x-, y-, and z-ions. 

 

Peptides and proteins will preferentially break at the most labile amide bond, resulting in a 

characteristic pattern of so called b- and y-ions. If the charge is on the N-terminus of the peptide, they 

are named b-ions. If the charge is located on the C-terminus of the peptide, ions are referred to as y-

ions. If different types of fragmentation are employed (e.g. electron-transfer dissociation), the 

fragmentation results in a-x and/or c-z ion products (115). The peptide fragment nomenclature 

established by Roepstorff, Fohlmann (123) and Biemann (124) is presented in Figure 6. Mass 

differences between MS
2
 ions allow for aa sequence determination of a peptide. This is achieved by 

comparison of an acquired peptide spectrum with theoretical spectra calculated from a proteomic or 

genomic database with dedicated software (125).  

 

Proteomics MS analysis can be divided into top-down and bottom-up approaches. The top-down 

approach performs analysis of intact proteins, whereas the bottom-up approach requires enzymatic 

cleavage of proteins, which results in shorter peptides. When a bottom-up approach is performed on a 

mixture of proteins, it is called shotgun proteomics (126). Peptides are separated via on-line liquid 

chromatography and directly measured with MS
1
 and/or MS

2
 analysis (127). A database search is 

performed on the resulting MS
2
 spectra for peptide identification. The advantages of the bottom-up 

approach are automatization of LC-MS analysis, well established peptide identification programs and 

quantification strategies. However, only a portion of the protein sequence is covered with this 

approach, meaning that one can miss identification of protein isoforms and localization of 

posttranslational modifications (PTM). Nevertheless, the bottom-up approach is most widely used 

among all proteomics MS analyses (92, 127, 128). 

The top-down approach is a relatively young proteomics MS discipline; therefore it lacks many tools 

that are already available for the bottom-up approach. The top-down approach is mostly performed 

with off-line separation and direct infusion of single proteins or simple protein mixtures for MS analysis, 

whereas on-line LC separation solutions are limited so far. For top-down MS analysis, mostly FT-ICR 

or orbitrap analyzers with high resolution and mass accuracy have been in use, allowing charge state 

determination. Intact proteins can acquire variable charge states; therefore the MS spectrum 

interpretation is complicated with instruments with lower resolving power. The advantages of top-down 

approach are better sequence coverage, isoform detection and identification of more PTMs (127, 128). 
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MS
2
 analysis on the peptide level is performed mostly with an untargeted approach (also referred to as 

shotgun and data-dependent acquisition). In the first analyzer, the m/z of all precursor ions is 

determined, which is referred to as the full scan mode. The most intense precursors are then selected 

for fragmentation and MS
2
 generation. The dynamic exclusion function ensures that an already 

fragmented precursor is not fragmented again for a particular time period, which results in a good 

analytical coverage of peptides and proteins (Figure 7 A). However, an ion of a different peptide but 

with the excluded m/z will not be fragmented either. Thereby, its identity is missed, which makes this 

measuring approach less reproducible and low abundant peptides can be easily missed, especially in 

complex samples (92). Both, lower reproducibility and inability to detect low abundant peptides can be 

partially overcome by employment of long LC separation gradients and pre-fractionation of complex 

samples, which both have drawbacks. Long LC separation gradients reduce the throughput (129) and 

pre-fractionation introduces sample losses (130).  

 

 

 

Figure 7. Comparison of untargeted and targeted MS2 approaches of peptide analysis with an ESI-quadrupole system. 
A) In untargeted approaches, all eluting peptides are scanned for their m/z in the first quadrupole to result in the so called full MS 
spectrum. The most intense precursors are selected for fragmentation in the collision cell and scanned in the third quadrupole for MS2 
spectrum generation. B) In targeted approaches, a predetermined ion precursor is filtered in the first quadrupole and fragmented in the 
collision cell. Selected fragments are filtered in the third quadrupole and only their intensities are measured, while all others are ignored. 
Quantification is possible by comparing peak intensities between samples or with internal standards Q: quadrupole, CID: collision induced 
dissociation. Adapted from (131). 

 

After data acquisition, results are subjected to data base searches for peptide and protein 

identification, where an identity is assigned based on the comparison with theoretical spectra from a 

proteomic or genomic database. With introduction of labeling strategies and sophisticated 

bioinformatics tools, amounts of particular proteins or global proteome changes can be investigated. 

The advantage of data-dependent acquisition lies in its applicability to any sample without prior 

knowledge of its content (92, 127).  
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Targeted MS
2
 analysis was established to improve sensitivity, selectivity, and reproducibility of sample 

analysis and quantification of sample analysis. Several strategies, such as selected reaction 

monitoring (SRM, known also as multiple reaction monitoring MRM), parallel reaction monitoring 

(PRM) and accurate inclusion mass screening have been developed. The common trait of all of them 

is that they measure pre-defined analytes and ignore others. Furthermore, they are able to collect 

target ions for a longer time to increase signal intensity. SRM is usually performed with hybrid triple 

quadrupole-LIT instruments, where the first quadrupole acts as a filter and selects a target ion. The 

selected ion is fragmented in the second quadrupole with CID. The selected, usually most intense, 

fragments are filtered by the third quadrupole before they hit the detector (Figure 7 B). The recorded 

signals allow precise quantification of a peptide and a corresponding protein (131-133).  

Quantification is based on comparing peak intensities of transitions between samples and/or an added 

internal standard. The pair of precursor and fragment ion is called a transition. For reliable detection 

and quantification of a peptide at least three transitions are monitored, and for proteins at least three 

unique peptides are required. Experimental design and data processing of the SRM experiment is 

based on target peptide information obtained in data-dependent acquisition experiments and 

corresponding full MS
2
 spectra. Therefore, detailed knowledge of the target peptide is a prerequisite 

for optimal SRM method design. The method disadvantage is that only a limited number of transitions 

can be measured in one analysis and that optimization of transition is not trivial, as it requires technical 

knowledge and is time consuming. When created, a SRM method can be applied to numerous 

samples with high reproducibility (131-133). Taken together, targeted and untargeted MS
2
 are 

complementary approaches for protein analysis (93).  

 

Equivalent to MS
2
 analysis providing more information than the molecular mass in MS

1
 analysis, 

additional fragmentation stages in MS
3
 analysis provide further information about a MS

2
 fragment.  

MS
3
 analysis is possible with hybrid triple quadrupole-linear ion trap instruments and is widely used for 

small molecule structural studies (134). MS
3
 has higher specificity compared to MS

2
, which makes 

MS
3
 scanning an attractive method also in proteomics as it reduces interferences. MS

3
 in proteomics 

usually operates in a targeted mode and is sometimes also called MRM
3 

(pronounced MRM cubed) 

(134). 

When a selected ion enters the first quadrupole, the m/z is determined and it is allowed to pass into 

the collision cell. The ion is fragmented in the collision cell and the fragments with the most intense 

signal are allowed to enter the linear ion trap (LIT). In the LIT, selected fragments are collected and 

subjected to a second fragmentation. The resulting fragments hit the detector and generate a MS
3
 

spectrum (134) as illustrated in Figure 8.  

During the second fragmentation, the most labile amide bond breaks. MS
3
 y-ions from MS

2
 y-ion 

fragmentation have the same m/z, whereas b-ions have a lower mass, which is reduced by the sum of 

the missing N-terminal aa in the y-precursor and the missing N-terminus. They are designated as bˆ 

(pronounced b hat). Similarly as for y-ions, MS
3
 b-ions from MS

2
 b-ion fragmentation have the same 

m/z, whereas y-ions have a lower mass, which is reduced for the sum of the missing C-terminal aa in 

the b-precursor and the missing C-terminus. They are designated as yˆ (pronounced y hat) (135). 



Introduction 

23 

 

 

 

Figure 8. Schematic representation of a triple quadrupole-linear ion trap instrument and the MS3 spectrum generation principle. 
The upper part illustrates the instrument and the lower part the MS3 spectrum generation principle. After ions enter the instrument, selected 
ions are filtered in the first quadrupole and further fragmented in the collision cell. A selected fragment is filtered in the linear ion trap (LIT) 
and further fragmented for MS3 spectrum generation. Q: quadrupole. Adapted from (131, 134). 

 

For every optimal MS
3
 spectrum, all MS

2
 fragments of interest need to be manually optimized for their 

fragmentation energies, meaning that knowledge about the measured peptide is a crucial prerequisite 

for this methodology. The additional fragmentation and the required energies for optimal spectrum 

generation make MS
3
 scanning highly specific, as the interferences from other ions are minimized, 

and sensitive, as the signal-to-noise ratio is increased. However, not every MS
2 

fragment ion can be 

used for MS
3
 fragmentation. Their sequence needs to be long enough to generate a specific MS

3
 

spectrum (min. 5 aa), and the ion signal intense enough, such that the resulting MS
3
 spectrum has 

intense signals as well (134-136). 

 

Three types of MS instruments were employed during this thesis; ESI-triple quadrupole-linear ion trap 

hybrid instruments (QTrap5500 and 6500, AbSciex), an ESI-quadrupole-orbitrap hybrid instrument (Q-

Exactive, Thermo Scientific) and a MALDI-TOF MS instrument (UltraFlextreme). All three instruments 

analyze in MS
1
 and MS

2
 mode, whereas the QTrap instruments allow measurements in MS

3
 mode as 

well.  

 

1.4.4. Isolation and detection of MHC I peptides with LC-MS 

The MHC I-peptide complex isolation protocol has not changed significantly since it was published in 

the early 1990s (67, 68, 70). MHC I-peptide complexes are isolated by immunoprecipitation (IP) after 

cell lysis with detergents. The choice of available detergents is limited, as they need to preserve the 

3D conformation of the MHC I complex and also be LC-MS friendly. Numerous studies reported the 

usage of CHAPS (67, 68, 91, 137, 138). After the IP, a sample is subjected to acidic elution of bound 

peptides, ultrafiltration and reverse phase purification for peptide extraction. A recent publication 

reported an isolation strategy with reverse phase isolation only (139), which minimizes peptide losses 

occurring during ultrafiltration steps (140, 141). 
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Isolated peptides are then measured with LC-MS
2
 analysis in an untargeted approach, resulting in 

high numbers of identified epitopes and global peptidome analysis as in (139, 142), or in a targeted 

approach for a target peptide verification and quantification across multiple samples (91, 143).   
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2. Aim of this thesis and study design 
 

The overall aim of the group Immunotherapy and -prevention at the DKFZ, Heidelberg, Germany, 

where the work for this thesis was performed, is to develop a therapeutic HPV vaccine.  

As it was shown in the literature before (144), spontaneous regression of HPV induced malignancies is 

induced by T cell mediated immune responses. Thus, the identification of HLA-restricted HPV-derived 

T cell epitopes was chosen as the basis of the project. Up to now, epitope candidates for vaccine 

development in most cases have been indirectly identified with functional cellular assays testing the 

potential immunogenicity of candidate epitopes. However, a good immunogenicity profile does not 

mean that the epitope is actually presented on the surface of HPV-positive cells.  

We addressed this problem by applying the reverse immunology principle (85-88) for direct 

identification of HPV epitopes on cell surfaces by mass spectrometry. We chose HLA-A2 for its high 

frequencies across all populations worldwide (145)  and because the HLA-A2 restricted HPV16 E711-19 

epitope was previously described to be presented on the cell surface of HPV16-transformed cells and 

tumors (146, 147).  

The reverse immunology principle steps that we followed were, first in silico predictions of HPV16 E6 

and E7 epitope binding properties to HLA-A2 molecules. Second, good predicted binders were tested 

for their actual binding in vitro in competition-based binding assays described by Kessler et al. (148, 

149). This part of the study was performed by my colleagues Dr. Stephanie Hoppe and Marius 

Küpper. Finally, strong binding peptides were monitored in MS analysis after their isolation from 

HPV16-transformed cells in context of my thesis (Figure 9).  

The amounts of epitopes presented on the cell surface were expected to be low, due to known HPV 

immune evasion mechanisms (17, 150, 151). Therefore, a targeted, highly sensitive MS
3
 analysis was 

employed (134-136, 152). As the number of analytes that can be monitored during one MS
3
 

measurement is limited, reduction of potential targets for mass spectrometry analysis by preselection 

of potential epitopes – as described above – is essential.  

The aim of this thesis was the development of a mass spectrometry methodology for direct 

identification of viral T cell epitopes from the surface of transfected or infected cells. This included 

isolation, extraction and purification, as well as the LC-MS detection of viral epitopes.  
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Figure 9. Strategy for therapeutic HPV vaccine development of the Immunotherapy and -prevention Research Group. 
Epitopes were predicted in silico for their binding properties. Good predicted binders were tested for their actual binding properties in vitro 
and only good binders were monitored in mass spectrometry analysis after their isolation from the HPV-transformed cells. The red framed 
part of the illustration shows the optimization steps described in this project. The unframed part represents the parts of the strategy that 
were performed in a closely related PhD project within the group.  
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3. Materials and Methods 

3.1. Materials 

3.1.1. Chemicals 

Chemical Company 

2-mercaptoethanol Roth, Karlsruhe, Germany 

2,2,2 trifluoroethanol (TFE) Fluka Analytical, Schnelldorf, Germany 

α-cyano-4-hydroxy-cinnamic acid Sigma-Aldrich, Steinheim, Germany 
Acetone Sigma-Aldrich, Steinheim, Germany 

Acetonitrile (ACN), HPLC/MS grade Biosolve BV, CE Valkenswaard, The Netherlands 
Fluka Analytical, Schnelldorf, Germany 
Sigma-Aldrich, Steinheim, Germany 

Acetic acid, 100 %, glacial Merck Millipore, Billerica, MA, USA 

Ammonium bicarbonate (ABC) Sigma-Aldrich, Steinheim, Germany 

Ammonium hydroxide solution, ≥25% NH3 in H2O Sigma-Aldrich, Steinheim, Germany 

CHAPS  AppliChem, Darmstadt, Germany 

D-Glyceraldehyde 3-phosphate (G3P) 
8 – 13 mg/mL in H2O 

Sigma-Aldrich, Steinheim, Germany 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, Steinheim, Germany 

Dimethyl sulfoxide (DMSO), LC/MS grade Sigma-Aldrich, Steinheim, Germany 

Dithiothreitol (DTT) Sigma-Aldrich, Steinheim, Germany 

Ethyl acetate Sigma-Aldrich, Steinheim, Germany 

Ethanol (EtOH), 96% (v/v) Sigma-Aldrich, Steinheim, Germany 

ECL Western Blotting Substrate, Pierce Thermo Fisher Scientific, Waltham, MA, USA 

Formaldehyde solution, 37% in H2O Sigma-Aldrich, Steinheim, Germany 

Formic acid (FA), LC/MS grade ProteoChem, Inc., Denver, USA 
Biosolve BV, CE Valkenswaard, The Netherlands 

Glycerol, PlusOne (87%) GE Healthcare, Germany 

Glycine Sigma-Aldrich, Steinheim, Germany 

Glycolic acid Sigma-Aldrich, Steinheim, Germany 

Hydrochloric acid (HCl) VWR International, Fontenay-sous-Bois, France 
Sigma-Aldrich, Steinheim, Germany 

IEF minearal oil, PlusOne DryStrip cover fluid GE Healthcare, Germany 

Iodoacetamide (IAA) Sigma-Aldrich, Steinheim, Germany 

IPG buffer, pH 3-10 GE Healthcare, Uppsala, Sweden 

Isopropanol Sigma-Aldrich, Steinheim, Germany 

Laemmli sample buffer (2x) Biorad, Hercules, USA 

Methanol Sigma-Aldrich, Steinheim, Germany 

Methanol, LC-MS grade Biosolve BV, CE Valkenswaard, The Netherlands 
Sigma-Aldrich, Steinheim, Germany 

Phenylmethanesulfonylfluoride (PMSF) Roth, Karlsruhe, Germany 

Polyoxyethylene-sorbitan monolaureate 
(Tween20)   

MP Biomedicals, Illkirch, France 

Potassium chloride (KCl)  Roth, Karlsruhe, Germany 

Potassium dihydrogen phosphate (KH2PO4) Roth, Karlsruhe, Germany 

Powdered milk, blotting grade Roth, Karlsruhe, Germany 

Protease inhibitor cocktail (PIC), cOmplete Mini  Roche Diagnostics, Mannheim, Germany 

Sodium acetate (NaCH3COO) Sigma-Aldrich, Steinheim, Germany 

Sodium azide (NaN3) AppliChem, Darmstadt, Germany 

Sodium cyanoborohydride (NaBH3CN) Sigma-Aldrich, Steinheim, Germany 

Sodium dodecyl sulfate (SDS), ultrapure  Roth, Karlsruhe, Germany 

Sodium bicarbonate (NaHCO3) Sigma-Aldrich, Steinheim, Germany 

Sodium chloride (NaCl)  Sigma-Aldrich, Steinheim, Germany 

Sodium hydroxide (NaOH) Sigma-Aldrich, Steinheim, Germany 

  

  



Materials and Methods 

28 

 

Chemical Company 

Sodium phosphate dibasic dihydrate (Na2HPO4 · 
2H2O) 

Sigma-Aldrich, Steinheim, Germany 

Triethylammonium bicarbonate (TEAB) buffer 
(1M) 

Fluka Analytical, Schnelldorf, Germany 

Trifluoroacetic acid (TFA), >99% pure, protein 
sequencing grade 

Sigma-Aldrich, Steinheim, Germany 

Trizmabase (Tris) Sigma-Aldrich, Steinheim, Germany 

Water (H2O), LC/MS grade Biosolve BV, CE Valkenswaard, The Netherlands 

 

3.1.2. Buffers and solutions 

Name Components 

10x PBS 1.37 M NaCl 
27 mM KCl 
100 mM Na2HPO4 (anhydrous) 
20 mM KH2PO4  
pH=7.2 adjusted with NaOH or HCl 

10x SDS-PAGE running buffer 30 g Tris 
144 g Glycine 
10 g SDS 
ad. 1 L ddH2O 

2x CHAPS buffer 1.2% (w/v) CHAPS 
dissolved in 1x PBS 

2x SDS-PAGE loading buffer 5% 2-mercaptoethanol (v/v) in Laemmli sample 
buffer (2x) 

CHAPS lysis buffer 5.25 mL 2x CHAPS buffer 
1 mM PMSF 
1 cOmplete Mini PIC tablet 

Direct elution buffer 10% acetic acid  
1x cOmplete Mini PIC tablet 
in H2O 

IP elution buffer 0.3% TFA in H2O (all LC-MS grade) 

IP washing buffer 0.6% (w/v) CHAPS 
dissolved in 1x PBS 

G3P reaction solution per a micro-column 40 μL 10 mM TEAB in H2O 
30 μL G3P (stock) 
0.7 μL 0.6 M NaBH3CN 
pH=2 – 2.2 adjusted with TEAB or G3P 

IEF rehydration solution 1x OFFGEL stock solution 

IEF washing solution 50% methanol  
49% H2O 
1% FA (all LC-MS grade) 

OFFGEL stock solution (1.25x) for a sample 4 mL H2O (LC-MS grade) 
40 μL glycerol (87%) 
46 μL IPG buffer, pH 3-10 (stock) 

PMSF stock 100 mM PMSF 
dissolved in 96% ethanol 

TiO2 elution buffer 30% ACN 
60 μL ammonium hydroxide solution (≥25% NH3 
in H2O)  
in H2O pH>11.6 

TiO2 loading buffer 80% ACN  
5% TFA 
1 M glycolic acid in H2O 

TiO2 washing buffer 1 80% ACN 
1% TFA in H2O 

TiO2 washing buffer 2 10% ACN 
0.1% TFA in H2O 
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Name Components 

Ultrafiltration tubes washing buffer 50% Methanol 
0.1% TFA in H2O 

WB blocking  buffer 5% (w/v) milk powder in 1x PBS 

WB transfer buffer 9 g Tris 
43.2 g Glycine 
20% (v/v) methanol 
ad. 3 L ddH2O 

WB washing buffer 0.05% (v/v) Tween20 in 1x PBS 

 

3.1.3. LC mobile phases and other MS solutions 

All reagents were prepared with LC-MS grade. 

Mobile 
phase 

Composition Company Used with 

A 0.1% FA ProteoChem, Inc., Denver, USA nanoAcquity UPLC 
system in DKFZ 0,01% TFA ProteoChem, Inc., Denver, USA 

in H2O Biosolve BV, CE Valkenswaard, The 
Netherlands 

B 0.1% FA ProteoChem, Inc., Denver, USA nanoAcquity UPLC 
system in DKFZ 0,01% TFA ProteoChem, Inc., Denver, USA 

in ACN Biosolve BV, CE Valkenswaard, The 
Netherlands 

A 0.1% FA Biosolve BV, CE Valkenswaard, The 
Netherlands 

nanoAcquity UPLC 
system in ZMBH 

in H2O Biosolve BV, CE Valkenswaard, The 
Netherlands 

B 0.1% FA Biosolve BV, CE Valkenswaard, The 
Netherlands 

nanoAcquity UPLC 
system in ZMBH 

in ACN Biosolve BV, CE Valkenswaard, The 
Netherlands 

A 0.1% FA 
in H2O 

Fluka Analytical, Schnelldorf, Germany speLC 

B 0.1% FA Sigma-Aldrich, Steinheim, Germany speLC 

in ACN Fluka Analytical, Schnelldorf, Germany 

Solvent for 
manual 
injection of 
peptides 

50% ACN Biosolve BV, CE Valkenswaard, The 
Netherlands 

QTrap5500 and 
QTrap6500 

0.1% FA ProteoChem, Inc., Denver, USA 

in H2O Biosolve BV, CE Valkenswaard, The 
Netherlands 

MALDI 
matrix 
solution 

saturated α-
cyano-4-
hydroxycinnamic 
acid in  

Sigma-Aldrich, Steinheim, Germany UltrafleXtreme 

70% ACN Sigma-Aldrich, Steinheim, Germany 

0.1% TFA in 
H2O 

Fluka Analytical, Schnelldorf, Germany 

 

3.1.4. Liquid chromatography and mass spectrometry instrumentation  

Name Company Location 

QTrap5500 Ab Sciex, Foster City, CA, USA ZMBH Proteomics mass 
spectrometry core facility, 
Heidelberg 

QTrap6500 Ab Sciex, Foster City, CA, USA DKFZ, Heidelberg 

Q Exactive Thermo Fisher Scientific, 
Bremen, Germany  

University of Southern 
Denmark, Odense, Denmark 
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Name Company Location 

UltrafleXtreme Bruker Daltonik, Bremen, 
Germany 

University of Southern 
Denmark, Odense, Denmark 

nanoAcquity UPLC system 
 

Waters, Milford, MA, USA ZMBH Proteomics mass 
spectrometry core facility and 
DKFZ, Heidelberg 

speLC system Thermo Fisher Scientific, 
Odense, Denmark 

University of Southern 
Denmark, Odense, Denmark 

 

3.1.5. Other laboratory equipment and instrumentation  

Equipment Name Company 

Analytical balance XS DualRange Mettler Toledo, Glostrup, 
Denmark 

 Ohaus, Nänikon, Switzerland 

Cell counter Countess
TM

 Automated Cell 
Counter 

Invitrogen, Carlsbad, USA 

Cell freezing device Mr. Frosty Bel-Art Products, Wayne, NJ, 
USA 

Cell culture incubator Heracell 150i Thermo Fisher Scientific, 
Waltham, MA, USA 

Cell culture microscope Wilovert Standard 30 Hund Wetzlar, Wetzlar, 
Germany 

Centrifuges Centrifuge 5417R Eppendorf, Hamburg, Germany 

Centrifuge 5418 Eppendorf, Hamburg, Germany 

Megafuge 16R Thermo Fisher Scientific, 
Waltham, USA 

Centrifuge  5424 Eppendorf, Hamburg, Germany 

Centrifuge  5824 R Eppendorf, Hamburg, Germany 

Centrifuge  5810 R Eppendorf, Hamburg, Germany 

Centrifuge 5418 Eppendorf, Hamburg, Germany 

Glass pipets  Hirschmann Labortechnik, 
Eberstadt, Germany 

Glassware Duran Schott, Mainz, Germany  

Fisherbrand Thermo Fisher Scientific, 
Waltham, USA 

Isoelectric focusing device Agilent 3100 OFFGEL 
Fractionator 

Agilent Technologies, Santa 
Clara, CA, USA 

Laminar flow hood SterilGard Class II laminar flow 
hood 

The Baker company, Stanford, 
USA 

Magnetic stirrer CombimagRCO IKA-Werke GmbH, Staufen, 
Germany  

MR-Hei-Standard Heidolph, Instruments, 
Schwabach, Germany 

Neubauer cell counting 
chamber 

Profondeur Brand, Wertheim, Germany 

pH meter 766 Knick, Berlin, Germany 

MP220, InLab Microelectrode Mettler Toledo, Glostrup, 
Denmark 

Pipette-Boy pipetus®-akku Hirschmann Labortechnik, 
Eberstadt, Germany 

Pipettes Pipetman® Gilson, P2, P20, 
P200, P1000, P5000 

Gilson, Bad Camberg, Germany 

FinnPipette F2 Thermo Scientific, Rockford, IL, 
USA 

Power supply EPS500-400, EPS3500 Pharmacia, Uppsala, Sweden 

MP250V MS Major Science, Saratoga, 
CA, USA 
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Equipment Name Company 

Rolling shaker CATMR5 Zipperer, Staufen, Germany 

Rotator  NeoLab, Heidelberg, Germany 

Scale Kern EG 4200-2NM Kern&Sohn, Balingen, Germany 

SDS-PAGE chamber Mini-Protean® Tetra cell Biorad, Hercules, USA 

Thermomixer Thermomixer compact Eppendorf, Hamburg, Germany 

Ultrasonic water bath VWR Ultrasonic cleaner 
USC300TH 

VWR International, Leuven, 
Belgium 

Vacuum centrifuge SpeedVac RVC 2-25 CD plus Martin Christ 
Gefriertrocknungsanlagen 
GmbH, Osterode am Harz, 
Germany 

Speedvac concentrator Bachofer Laboratoriumsgeräte, 
Reutlingen, Germany 

Vortexer Vortex-Genie 2 Scientific Industries, Bohemia, 
NY, USA 

WB chamber Mini Trans-Blot® cell Biorad, Hercules, USA 

WB imaging device Fusion-SL Vilber Lourmat, Eberhardzell, 
Germany 

 

3.1.6. Peptide extraction materials  

Material Name Company 

Cellulose tissue plug for micro-
columns 

Kimtech Science precision 
wipes 

Kimberly-Clark Professional, 
Reigate, Surrey, UK 

C8 micro-column plug Empore Octyl C8 extraction 
disk 

3M company, St. Paul, MN, 
USA 

Extraction pipette tips C18 Bond Elut OMIX pipette tips Agilent Technologies, Santa 
Clara, CA, USA 

Extraction cartridges C18 Seppak Vac 1cc (100 mg) Waters, Milford, MA, USA 

HILIC chromatographic packing TSKgel Amide-80, 3µm Tosoh corporation, Tokyo, 
Japan 

HILIC chromatographic packing SeQuant ZIC-HILIC, 3µm Merck SeQuant AB, Umea, 
Sweden 

RP chromatographic packing Poros® 20 R2 reversed-phased 
resin, 20µm 

Applied Biosystems, Bedford, 
USA  

RP chromatographic packing Oligo R3 reversed-phased 
resin, 50µm 

Applied Biosystems, Bedford, 
USA  

RP chromatographic packing Zorbax SB-C18, 5 µm  Agilent Technologies, Santa 
Clara, CA, USA  

Ultrafiltration tubes, 3 kDa Amicon,  Merck Millipore, Cork, Ireland 

Ultrafiltration tubes, 2 kDa Vivacon 500® Sartorius Stedim, Göttingen 
Germany 

Ultrafiltration tubes, 10 kDa Vivacon 500® Sartorius Stedim, Göttingen 
Germany 

Titanium dioxide TiO2 Titansphere TiO GL Sciences, Tokyo, Japan 

 

3.1.7. Liquid chromatography-mass spectrometry consumables and equipment 

Consumable Name Company Used with 

Ceramic capillary cutter  Thermo Fisher 
Scientific, 
Odense, Denmark 

speLC 

Diamond capillary cutter Shortix Scientific glass 
technology, Singapore 

nanoAcquity UPLC 
system in DKFZ and 
ZMBH 

ESI emitters PicoTips New objective, Woburn, 
USA 

QTrap5500 and 
QTrap6500 
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Consumable Name Company Used with 

In-house packed 
analytical column 

Tubing: 
200 µm ID/350 µm OD, 
length 7 cm  

Polymicro technologies; 
Molex, CM Scientific, 
Silsden, UK 

speLC 

Chromatographic 
packing: 
RaprosilPurAQ 3 µm 
120 C18 material 

Dr. Maisch, 
Ammerbuch, Germany 

nanoAcquity analytical 
column 

nanoAcquity UPLC 
column 75 µm ID, 
length 25 cm, 1,7 µm 
BEH130 C18 material 

Waters, Milford, MA, 
USA 

nanoAcquity UPLC 
system in DKFZ and 
ZMBH 

nanoACQUITY trapping 
column 

Symmetry C18 
nanoACQUITY trap, 5 
µm, 180 µm ID, length 
2 cm, C18 material  

Waters, Milford, MA, 
USA 

nanoAcquity UPLC 
system in ZMBH 

Stage tips  Stage tips C18 
material, 200 µL 

Thermo Fisher 
Scientific, Odense, 
Denmark 

speLC 

Syringes for direct 
injection to the MS 
instrument 

Hamilton SYR 500 µL 
and 1mL 

Hamilton, Reno, USA QTrap5500 and 
QTrap6500 

UPLC vials Plastic LC vials MZ-Analysentechnik, 
Mainz, Germany 

nanoAcquity UPLC 
system in DKFZ and 
ZMBH 

 

3.1.8. Other consumables 

Product Company 

Aluminum foil CeDo GmbH, Mönchengladbach, Germany 

Cell culture dishes (10 cm Ø) TPP, Trasadingen, Switzerland 

Cell culture flasks (25 cm
2
) TPP, Trasadingen, Switzerland 

Cell culture flasks (75 cm
2
) TPP, Trasadingen, Switzerland 

Cell culture flasks (150 cm
2
) TPP, Trasadingen, Switzerland 

Cell scraper Sarstedt, Newton, NC, USA 

Dynabeads®  Invitrogen GmbH, Karlsruhe, Germany 

Falcon Tube (15mL and 50mL) Nerbe Plus, Winsen, Germany 

GammaBind™ Plus Sepharose™ beads  GE Healthcare, Uppsala, Sweden 

Gloves Microflex, Reno, NV, USA 

IPG 24 cm strips, pH 3-10 GE Healthcare, Uppsala, Sweden 

Mini-Protean®  
TGX

 TM
 Gels Any kD

TM
, various combs 

Biorad, Hercules, USA 

Parafilm Bemis, Neeah, WI, USA 

Pipette tips 10, 200, 1000 µL Starlab, Hamburg, Germany  

Pipette tips 20, 200, 1000 µL, Diamond Gilson, Bad Camberg, Germany 

Plastic syringe (5,10 and 20 mL) DB, Drogheda, Ireland  

Polyvinylidene fluoride (PVDF) transfer 
membrane  

Thermo Fisher Scientific, Waltham, USA 

Reaction 
tubes: 

1.5mL and 2 mL Starlab, Hamburg, Germany 

Protein LoBind Tube (1.5 mL) Eppendorf, Hamburg, Germany 

Safeseal Microcentrifuge Tubes, low 
binding (1.7mL) 

Sorenson, Bioscience, Salt Lake City, UT, USA 

Scalpel Feather, Osaka, Japan 

Western Blotting Filter Paper Thermo Scientific, Rockford, IL, USA 
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3.1.9. Enzymes and markers  

Name Company 

Alkaline phosphatase (AP), 20 U/µL Roche, Mannheim, Germany 

Precision Plus Protein™ Kaleidoscope marker Biorad, Hercules, USA 

Trypsin, suitable for protein sequencing Sigma-Aldrich, Steinheim, Germany 

 

3.1.10. Antibodies 

Primary antibodies 

Name Company 

mouse-anti-human HLA-A2 (monoclonal, clone 
BB7.2)   

BD Biosciences, San Diego, CA, USA and a kind 
gift from Prof. Dr. Rammensee (University of 
Tübingen, Germany) 

mouse-anti-mouse H-2D
b
 (monoclonal, clone 28-

14-8) 
BD Biosciences, San Diego, CA, USA 

rabbit-anti-human MHC class I (monoclonal, 
clone EPR1394Y) 

Epitomics, Burlingame, CA, USA 

 

Secondary antibodies 

Name Company 

goat-anti-mouse-IgG (polyclonal, horseradish 
peroxidase-conjugated)  

Jackson ImmunoResearch Laboratories, PA, 
West Grove, USA 

goat-anti-rabbit IgG (polyclonal, horseradish 
peroxidase-conjugated)   

Rockland, Gilbertsville, PA, USA 

 

3.1.11. Cell lines 

Neme Description HPV-
status 

Source Culture 
medium 

Reference 

BSM human, B-LCL, 
suspension 

negative IHWG Cell Bank, Seattle, 
WA, USA 

complete 
RPMI-P 

 

EA human, B-LCL, 
suspension 

negative IHWG Cell Bank, Seattle, 
WA, USA 

complete 
RPMI-P 

 

CaSki human, cervical, 
adherent 

HPV16 + Kindly provided by Felix 
Hoppe-Seyler, F065, DKFZ 

complete 
DMEM 

(153) 

SNU1000 human, cervical, 
adherent 

HPV16 + Korean Cell Line Bank, 
Seoul, South Korea 

complete 
RPMI-H 

(154) 

SNU17 human, cervical, 
adherent 

HPV16 + Korean Cell Line Bank, 
Seoul, South Korea 

complete 
RPMI-H 

(154) 

 

3.1.12. Cell culture basal media and supplements 

Product Company 

Dulbecco’s Modified Eagle Medium (DMEM) Sigma-Aldrich, Taufkirchen, Germany 

RPMI-1640 (1x) with L-glutamine Sigma-Aldrich, Taufkirchen, Germany 

Fetal Calf Serum (FCS) Biowest, Nuaillé, France 
Sigma-Aldrich, Taufkirchen, Germany 

HEPES Life Technologies, Grand Island, NY, USA 

Penicillin/Streptomycin-Solution (P/S)  Sigma-Aldrich, Taufkirchen, Germany 

Sodium pyruvate PAA Laboratories, Cölbe, Germany 

Trypan blue solution Sigma-Aldrich, Taufkirchen, Germany 

Trypsin-EDTA solution Sigma-Aldrich, Taufkirchen, Germany 
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3.1.13. Cell culture media 

Medium Components 

Complete DMEM DMEM, 1% (v/v) P/S, 10% (v/v) FCS 

Complete RPMI-H RPMI-1640, 1% (v/v) P/S, 10% (v/v) FCS, 25 mM 
HEPES, 25 mM NaHCO3 

Complete RPMI-P RPMI-1640, 15% (v/v) FCS, 1% 100 mM sodium 
pyruvate 

 

3.1.14. Synthetic peptides 

All HPV, endogenous and mCMV lyophilized synthetic peptides with a purity of >95% were purchased 

from PSL GmbH (Heidelberg) and the DKFZ Peptide Core Facility (Dr. Rüdiger Pipkorn, Dr. Stefan 

Eichmüller). Peptides were dissolved in DMSO at 10 mg/mL and stored in small aliquots in -80°C. All 

HIV lyophilized synthetic peptides  with >98% purity were purchased from Bio-Synthesis Inc. 

(Lewisville, TX, USA) and dissolved in 10% DMSO in RPMI-1640 medium at 2 mg/mL. They were 

stored in small aliquots in -20°C   

 

3.1.14.1. HLA-A2 binding HPV16 E6 and E7 peptides 

Name Origin Region AA sequence 

E69-17  HPV16 E6 9-17 FQDPQERPI 

E69-19  HPV16 E6 9-19 FQDPQERPIKL 

E625-33 HPV16 E6 25-33 ELQTTIHDI 

E625-33 seq1 HPV16 E6 25-33 ELQTTIHEI 

E77-15 HPV16 E7 7-15 TLHEYMLDL 

E711-18 HPV16 E7 11-18 YMLDLQPE 

E711-19 HPV16 E7 11-19 YMLDLQPET 

E711-20 HPV16 E7 11-20 YMLDLQPETT 

E711-21 HPV16 E7 11-21 YMLDLQPETTD 

E712-19 HPV16 E7 12-19 MLDLQPET 

E712-20 HPV16 E7 12-20 MLDLQPETT 

E777-86 HPV16 E7 77-86 RTLEDLLMGT 

E777-87 HPV16 E7 77-87 RTLEDLLMGTL 

E778-86 HPV16 E7 78-86 TLEDLLMGT 

E781-90 HPV16 E7 81-90 DLLMGTLGIV 

E782-90 HPV16 E7 82-90 LLMGTLGIV 

 

3.1.14.2. HLA-A2 binding HIV peptides 

Name Origin Region AA sequence 

FK10 p15; pol polyprotein 56-65 FLGKIWPSYK 

IV9 reverse transcriptase 
(RT); pol polyprotein 

192-200 ILKEPVHGV 

LI9 Pro; HIV protease, pol 
polyprotein 

61-69 LVGPTPVNI 

VL9 reverse transcriptase 
(RT); pol polyprotein 

30-38 VIYQYMDDL 

VL10 Nef protein 179-188 VLEWRFDSRL 

VV9 p24; gag polyprotein, 
capsid protein 

16-24 VLAEAMSQV 

YI9 reverse transcriptase 
(RT); pol polyprotein 

70-78 YTAFTIPSI 

YL9 p24; gag polyprotein, 
capsid protein 

51-59 YVDRFYKTL 
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3.1.14.3. HIV peptides with concurrent binding motives for HLA-A2 and -B7  

Name Origin Region AA sequence 

AP10 reverse transcriptase 
(RT); pol polyprotein 

182-191 AENREILKEP 

AT9 p17; gag polyprotein, 
matrix protein  

2-10 AVNPGLLET 

EY11 p24; gag polyprotein, 
capsid protein 

46-56 EPFRDYVDRFY 

FF16 p15; pol polyprotein  1-16 FLGKIWPSHKGRPGNF 

HN10 p24; gag polyprotein, 
capsid protein 

72-81 HQAISPRTLN 

IL10 p17; gag polyprotein, 
matrix protein 

29-38 IEIKDTKEAL 

KF13 p15; pol polyprotein 4-16 KIWPSHKGRPGNF 

LQ12 p15; pol polyprotein 130-141 LRSLFGSDPSSQ 

MV9 p24; gag polyprotein, 
capsid protein 

5-13 MTNNPPIPV 

QR14 p17; gag polyprotein, 
matrix protein 

28-41 QLQPSLQTGSEELR 

QS8 p17; gag polyprotein, 
matrix protein 

42-49 QPSLQTGS 

SE10 p15; pol polyprotein 3-12 SRPEPTAPPE 

TE10 reverse transcriptase 
(RT); pol polyprotein 

3-12 TEEKIKALVE 

 

3.1.14.4. HLA-A2 binding endogenous peptides 

Name Origin Region AA sequence 

HLA-A2 positive 
control (PC)1 

p68 RNA helicase 96-104 YLLPAIVHI 

HLA-A2 PC2 coatomer subunit 
gamma-1 

147-155 AIVDKVPSV 

 

3.1.14.5. H-2Db and Kb peptides 

Name Origin Region AA sequence 

HSV-1 peptide (H-2K
b
 

binding) 
HSV-1 glycoprotein B 499-506 SSIEFARL 

mCMV peptide (H-2D
b
 

binding) 
mCMV M45 protein 985-993 HGIRNASFI 

H-2D
b
 PC1 cyclin-dependent 

kinase inhibitor 1B 
33-41 FGPVNHEEL 

H-2D
b
 PC3 spectrin alpha chain 381-389 KALINADEL 

H-2D
b
 PC4 mitotic spindle-

associated MMXD 
complex subunit MIP18 

144-152 AALENTHLL 

 

3.1.15 Software 

Name Company 

Adobe Illustrator CS5 Adobe Systems, San Jose, CA, USA 

Adobe Photoshop CS5 Adobe Systems, San Jose, CA, USA 

Analyst 1.5.2 and 1.6.2 Ab Sciex, Foster City, CA, USA 

EndNote X7.2 Thomas Reuters, Philadelphia, PA, USA 

FlexAnalysis 3.4 Bruker Daltonik, Bremen, Germany 

FlexControl 3.4 Bruker Daltonik, Bremen, Germany 
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Name Company 

MaxQuant 1.5.2.8 (155, 156) MPI of Biochemistry, Martinsried, Germany 

nanoAcquity Console 1.42 Waters, Milford, MA, USA 

MS Office 2010 Microsoft, Redmond, WA, USA 

PRISM 5 GraphPad, LaJolla, CA, USA 

Skyline 2.6.0 (157, 158)  University of Washington, Seattle, USA 

Xcalibur 3.0.63 Thermo Fisher Scientific, Bremen, Germany 

 

3.2. Methods 

3.2.1. Cell culture methods 

All cell lines were maintained in a sterile environment and only sterile equipment, materials, solutions 

and cell culture media were employed. Cells were kept under standard conditions in a humidified 

incubator at 37°C and under 5% CO2. All cell lines were authenticated and regularly checked for 

contaminations by multiplex PCR (Multiplexion GmbH, Heidelberg).  

 

3.2.1.1. Culturing of cell lines 

Adherent cells were cultured in 75 cm
2
 and 150 cm

2 
flasks and suspension cell lines in 75 cm

2 
flasks. 

For passaging of confluent adherent cell lines, medium was aspirated, cells washed with 1x PBS and 

incubated with trypsin-EDTA solution at 37°C until they detached. Trypsin was inactivated by adding 

approx. five-fold access of fresh medium. Cells were resuspended, transferred to 50 mL tubes, filled 

up with fresh medium and subjected to centrifugation at 1400 rpm for 5 min at room temperature (RT). 

Supernatant was discarded and cells were resuspended in fresh medium. The splitting ratio for CaSki 

and SNU17 cells was 1:5 to 1:10 and for SNU1000 1:3 to 1:6. Cells were split after they reached 85 – 

100% confluence and cell culture media was exchanged every 2 to 4 days. 

The suspension cell lines BSM and EA were resuspended by shaking to dissociate cell aggregates 

every day. For splitting and experiments, an aliquot with desired cell number was pelleted in a 15 mL 

or 50 mL tube at 1400 rpm, 5 min, RT. Cells were resuspended in the appropriate volume of medium. 

They were spit every 4 – 5 days. 

 

3.2.1.2. Counting of cells 

The cell suspension or its 1:10 dilution was mixed 1:1 with Trypan blue solution. Cell numbers were 

determined automatically using the Countess® automated cell counter or manually using a Neubauer 

counting chamber (0.1 mm depth). The number of cells determined with manual counting was 

calculated with the formula: 

 

Total cell number =
counted cells

number of large squares
× dilution factor × chamber factor (10000) 
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3.2.1.3. Thawing and freezing of cells 

For thawing, cryovials were taken from the liquid nitrogen tank, immediately incubated in a 37°C water 

bath and cells were then resuspended in a prepared 50 mL tube filled with warm (37°C) fresh medium. 

Cells were pelleted at 1400 rpm, 5 min, RT and supernatant was discarded. The washing step was 

repeated; cells were resuspended in 7 mL medium and seeded in a 25 cm
2 

flask. The medium was 

exchanged 12 – 24 h afterwards.  

In order to freeze cells, a cell suspension was pelleted at 1400 rpm, 5 min, RT; supernatant was 

discarded and cells were resuspended in freezing medium to result in a final concentration of up to 10
7
 

cells/mL. Freezing medium was pre-cooled cell line specific medium containing 10% DMSO and 10% 

FCS additionally to the required ingredients. Aliquots of 1 mL of cell suspension were distributed in 

cryovials, which were immediately placed into the pre-cooled cell freezing device (Mr. Frosty). The cell 

freezing device was left at -80°C for 3 days, when the cryovials were transferred to the liquid nitrogen 

tank for permanent storage.  

 

3.2.1.4. External loading of BSM cells with the E711-19 peptide 

In order to assess the immunoprecipitation (IP) protocol (see 3.2.3.1) and epitope extraction with 

ultrafiltration (see 3.2.4.1), an experiment was performed where HPV16- HLA-A2+ BSM cells were 

exogenously loaded with the peptide E711-19, which was described to be present on CaSki cells and 

cervical cancers from patients (146, 147). Cells were washed with 1x PBS and resuspended in 20 mL 

of fresh medium as described in section 3.2.1.1. Aliquots of 5x10
7
 cells were distributed in new 75 cm

2 

flasks and different amounts of peptide (2 µg, 20 µg and 200 µg) were added to each flask. As the 

peptides were dissolved in DMSO, the first control was cells incubated with 20 µL DMSO, which 

corresponded to the highest amount of DMSO added to cells with 200 µg of peptide. The second 

control was untreated cells. After cells were incubated under standard cell culture conditions for 5 h, 

they were collected in 50 mL tubes and washed five times with 50 mL 1x PBS at 1400 rpm, 5 min, RT. 

Cell pellets were subjected to cell lysis for the IP experiment (see 3.2.3.1) after the last washing step. 

 

3.2.2. Biochemical methods 

3.2.2.1 Sodium Dodecyl sulfate Polyacrylamide Gel Electrophoresis (SDS-
PAGE)  

Equal volumes of sample and 2x SDS-PAGE loading buffer were mixed. They were heated at 95°C for 

10 min in order to denature and reduce proteins in the sample. Samples and protein marker (Precision 

Plus Protein™ Kaleidoscope marker) were loaded on a SDS-PAGE gel in equal amounts. SDS-PAGE 

was performed in a Mini-Protean® Tetra cell using 1x SDS-PAGE running buffer at RT. The first 15 

min of separation were conducted at 90 V, then the voltage was increased to 140 V for approximately 

50 min or until proteins were separated.  
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3.2.2.2. Western Blot (WB) analysis 

SDS-PAGE separated proteins were transferred from the gel to a polyvinylidene fluoride (PVDF) 

membrane, which was activated with 100% methanol for 1 min prior to transfer. The transfer was 

carried out in a Mini Trans-Blot® cell at 30 V for 1.5 h at 4°C in WB transfer buffer.  

The membrane was blocked with 5% milk powder in 1x PBS at RT for 1 h, followed by incubation with 

the primary and secondary antibodies. The primary antibody was diluted 1:1500 in 1x PBS containing 

1.5% milk powder (PBS/1.5%MP). Incubation was performed at RT for 1 h. Unbound primary antibody 

was washed away by incubating the membrane in the WB washing buffer three times for 10 min on a 

rocking platform. The secondary antibody was diluted 1:5000 in PBS/1.5%MP. Incubation was carried 

out at RT for 1 h. The membrane was washed as described above and subsequently incubated in 1 

mL  ECL WB substrate at RT in the dark for 4 min. Chemiluminescence was measured with a Fusion-

SL imaging instrument. All incubation steps after protein transfer to the PVDF membrane were 

performed on a rocking platform, except the final incubation with the ECL WB substrate for WB 

development.  

 

3.2.2.3. In-solution reduction, alkylation and trypsin digest of proteins 

To investigate how proteins bind to the reverse phase material, dry protein fractions were 

resuspended in 40 µL 50% 2,2,2-trifluoroethanol (TFE) in water with rigorous mixing and incubated 1 h 

at 65ºC with 300 rpm mixing for protein denaturation. Subsequently, 3.5 µL of 100 mM dithiothreitol 

(DTT) in 25 mM ammonium bicarbonate were added. The sample was incubated for 30 min at 65 ºC 

with 300 rpm mixing, when 5 µL of 200 mM iodoacetamide (IAA) in 25 mM ammonium bicarbonate 

were added, followed by incubation for 30 min at 65 ºC with 300 rpm mixing in the dark. 180 µL of 25 

mM ammonium bicarbonate and 0.2 µg of trypsin were added to the sample and incubated overnight 

at 37 ºC with 300 rpm mixing. The reaction was quenched by addition of 10% TFA in water for the final 

concentration of 1% TFA. Samples were analyzed by LC-MS
2
.  

 

3.2.3. Epitope isolation strategies 

3.2.3.1. Immunoprecipitation (IP) 

To directly detect naturally processed and presented HPV16 epitopes on the cell surface by MS, IP 

enrichment of MHC class I molecules was optimized. Various parameters were compared and 

optimized, such as the ratio of antibody and bead amounts, incubation times and input cell numbers. 

The optimal protocol is described below. 

 

Cells were seeded in cell culture dishes and grown until they reached 90 – 100% confluence. They 

were grown under standard cell culture conditions as described in section 3.2.1.  

2 mL of GammaBind™ Plus Sepharose™ bead suspension was pelleted at 5000 rpm, 3 min, RT in a 

swinging rotor, supernatant was discarded and 1 mL of 10% acetic acid was added. Beads were 

vigorously mixed and subjected to centrifugation at 5000 rpm, 3 min RT in a swinging rotor. 

Supernatant was removed and beads were washed five times with 1 mL 1x PBS by pelleting as 
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described above. Supernatant was removed and beads were resuspended in 1 mL 0.02% sodium 

azide in 1x PBS and stored at 4°C.  

50 µL of bead suspension (corresponding to 25 µL dry breads) was washed three times with 500 µL IP 

washing buffer. Beads were coupled with 20 µg of the mouse-anti MHC I antibody in 500 µL IP 

washing buffer at RT for 2 to 3 h on a rotator. Beads were washed three times with IP washing buffer 

before incubation with the lysate. 

Cells were washed two times with ice-cold 1x PBS. Suspension cells were harvested with 

centrifugation at 1400 rpm, 5 min, RT, supernatant was removed and cells were set on ice before 1 

mL ice-cold IP lysis buffer was added. Cells were lysed by pipetting. Adherent cells from one 10 cm Ø 

cell culture dish were collected by scraping and lysed in 1 mL of the ice-cold IP lysis buffer. Cells from 

several dishes were pooled in one sample by transferring the lysate from one cell culture dish to the 

next cell culture dish without addition of new IP lysis buffer. The cell lysate was incubated on ice for 10 

min and vortexing was performed every 3 min. Cell lysates were centrifuged for 30 min at 14000 rpm, 

at 4°C. Supernatants were pooled to achieve homogeneity and to be distributed equally to the coupled 

beads. Aliquots of supernatant were mixed with coupled Ab-beads and incubated 3 to 4 h at 4°C on 

the rotator. Beads were pelleted at 5000 rpm, 3 min, at 4°C, supernatant was removed and beads 

were washed twice with 500 µL ice-cold 1:1 diluted IP lysis buffer in 1x PBS, twice with 500 µL ice-

cold IP washing buffer and three times with 500 µL ice-cold 10 mM Tris/HCl buffer, pH 8. Supernatant 

was removed and IP samples were stored at -80°C until further processing and analysis. 

 

3.2.3.2. Epitope elution from an IP sample 

Epitopes dissociate from the MHC I complex at a pH below 2.9, which is required for epitope 

dissociation as described elsewhere (148). Two elution buffers were tested, namely 10% acetic acid or 

0.3% TFA in water, but the later was chosen for the standard protocol. The elution buffer was added to 

the IP sample immediately after the sample was taken from -80°C or immediately after the IP 

experiment. The elution buffer was added in a volume which corresponded to three volumes of the dry 

beads in an IP sample. Usually, 70 – 75 µL of elution buffer was used for one IP sample. 

 

To assess IP protocol efficiency, two murine MHC I restricted peptides were added into the elution 

buffer, as internal standard controls, before the buffer was added to the IP sample. The peptides were 

SSIEFARL, originating from HSV-1, and FGPVNHEEL from mouse cyclin-dependent kinase inhibitor 

1B, which were determined not to bind to HLA-A2 in silico. 

 

3.2.3.3. Direct elution of MHC I bound peptides from the cell surface by acidic 
treatment 

SNU17 cells were seeded in 10 cm Ø cell culture dishes and grown until they reached 90-95% 

confluence. They were grown under standard cell culture conditions as described in section 3.2.1. 

Every cell culture dish was washed extensively three times with 1x PBS. Cells were collected either by 

trypsin-EDTA detachment as described in 3.2.1.1 with three 1x PBS washing steps performed 

afterwards or they were collected by scraping on ice. All the remaining liquid was removed before 1 
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mL per 10
7
 cells of ice-cold elution buffer composed of 10% acetic acid and 1x protease inhibitors in 

water was added. Cell suspension in the elution buffer was transferred in low binding Eppendorf tubes 

and incubated on ice for 10 min with rigorous mixing every 3 min. Subsequently, samples were 

centrifuged at 12000 g for 10 min at 4°C to pellet cells. Eventually, the supernatant was subjected to 

ultrafiltration with 2 kDa cut-off following the protocol described in 3.2.4.1 and then desalted using a 

Seppak cartridge, or it was directly subjected to desalting with the Seppak cartridge as described in 

section 3.2.4.2.2. The sample was vacuum dried prior to LC-MS
3
 analysis or subjected to fractionation 

by isoelectric focusing.  

 

3.2.4. Epitope enrichment and purification strategies 

Several epitope extraction strategies were employed during this thesis project. They were combined in 

various experimental pipelines (Figure 10). This section describes the experimental procedures of 

every method, whereas pipelines are shortly outlined together with results in the Results section.   

 

 

 

Figure 10. Schematic representation of epitope extraction pipelines. 
Colors represent different chemical principles of extractions used in this thesis; green – acetic elution of epitopes from IP sample, army 
green – acetone – ethyl acetate precipitation, orange – hydrophilic liquid chromatography (HILIC), yellow – ultrafiltration, purple – all 
reverse phase (C18) methods, light blue – isoelectric focusing.  

 

3.2.4.1. Ultrafiltration 

The ultrafiltration step was performed in order to reduce IP sample complexity by removing proteins 

from the sample. Ultrafiltration was performed in a table-top centrifuge operating at 15000 g at RT. 

The duration of each centrifugation step depended on the pore size of the ultrafilter membrane. It 

ranged from 10 min for ultrafilters with a cut-off at 10 kDa to 30 min for those with a cut-off at 2 kDa. 

The membrane of the ultrafiltration device was first washed twice with 150 µL 50% MeOH/0.1% TFA in 

water. The device was centrifuged until all the liquid had passed the membrane in the last washing 

step. IP sample eluates were added on the ultrafilter membrane and centrifuged until all the liquid had 
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passed through the membrane. The remains of the IP sample on the membrane were washed twice 

with 150 µL 50% MeOH/0.1% TFA in water until all the liquid had passed through the membrane. The 

filtrate was transferred into a low binding Eppendorf tube and subjected to drying in a vacuum 

centrifuge. The sample was desalted with C18 extraction tips prior to LC-MS
3
 analysis. 

 

3.2.4.2. Reverse phase C18 material enrichment 

To ensure reproducible results in LC-MS analysis, every sample needed to contain the minimum 

possible amount of contaminants, which were introduced during the preparation. The highest 

proportion of contaminants are usually various salts, which can be easily removed by reverse phase 

extraction. Peptides bind to the C18 material whereas salts are washed off. Several applications and 

chromatographic materials were used during this project. 

 

3.2.4.2.1. C18 extraction pipette tip 

IP eluates were directly subjected to C18 extraction with the pipette tip or dried ultrafiltrated IP 

samples were resuspended in 150 µL 3% ACN/0.1% TFA by vigorous mixing and incubation in an 

ultrasound bath for 5 – 10 min at RT before C18 material pipette tip extraction. Bond Elut OMIX pipette 

tips were wetted by aspirating and discarding 100 µL of 50% ACN/0.1% TFA three times. Tips were 

equilibrated three times by aspirating and discarding 100 µL 0.1% TFA. Peptides were bound to the 

C18 material in a tip during 35 cycles of aspirating and dispensing of the sample. Tips were rinsed 

three times by aspirating and discarding 100 µL 0.1% TFA. Peptides were eluted in a low binding 

Eppendorf tube containing 150 µL 50% ACN/0.1% TFA during 20 cycles of aspirating and dispensing 

of the liquid. The eluate from the C18 extraction pipette tip was subjected to drying in a vacuum 

centrifuge. The C18 material resin in the tip was not allowed to dry or to aspirate air in any of the 

steps.  

 

3.2.4.2.2. Seppak C18 extraction cartridge 

The Seppak C18 cartridge has a capacity to bind up to 20 mg of peptides. Due to its bigger size, larger 

volumes than 0.7 mL are required for the experimental procedure. The peptide solutions are applied 

onto the top of the cartridge and pressed through with an overpressure created by a 10 or 20 mL 

plastic syringe, which is mounted on the top of the cartridge. 

Samples were prepared the same way as described in 3.2.4.2.1 using 800 µL 3%ACN/0.1% TFA 

instead. The cartridge was wetted three times with 1 mL 100% ACN, once with 1 mL 70% ACN/0.1% 

TFA and three times with 40% ACN/0.1% TFA. Wetting was followed by equilibrating three times with 

1 mL 0.1% TFA. The sample was then loaded on the cartridge, the flow through collected in a low 

binding Eppendorf tube and dried in a vacuum centrifuge. The cartridge was washed three times with 

1 mL 0.1% TFA and the sample was eluted with 1 mL 50% ACN/0.1% TFA into a low binding 

Eppendorf tube. The eluate was vacuum centrifuged to complete dryness. The flow rate was high 

during wetting, equilibration and washing steps, whereas it was slower than 1 drop/second for binding 
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and elution of the sample. All liquids used for wetting, equilibrating and washing of the Seppak C18 

cartridge were discarded. The C18 material in the cartridge was not allowed to dry in any of the steps.  

 

3.2.4.2.3. Self-packed reverse phase micro-columns 

Micro-columns were prepared similarly as described in (159-161). Briefly, a small plug of the C8 

material from the Empore Octyl C8 extraction disk was punched and packed into a 200 µL pipette tip. 

The Empore Octyl C8 material plug was later exchanged with a 2 mm x 2 mm piece of Kimtech 

cellulose tissue. A cellulose plug was cut out with a scalpel, wetted with a drop of 0.1% TFA in water 

and packed into a 200 µL pipette tip. The cellulose plug in the pipette tip was then washed with 80 µL 

of 0.1% TFA in water by applying the liquid on the top of the tip and pressing it through with an 

overpressure created by a 5 or 10 mL plastic syringe, which was mounted on the top of the pipette tip 

(Figure 11 A). Subsequently, a suspension of C18 chromatographic packing material (R2, Oligo R3 or 

Zorbax) in 50% ACN/0.1% TFA in water was added on the top of the plug and pressure was applied 

with a syringe to result in column packing. Usually, micro-columns with a length of 8 mm were 

produced. A batch of two to three samples was processed using a plastic syringe, whereas more 

samples were processed with a centrifuge for higher throughput. To this end, a micro-column was 

placed through a hole in the lid of a low binding Eppendorf tube with the tip facing down (shown in 

Figure 11 B) and placed in the centrifuge. All solutions (washing and equilibrating solvents and 

samples) were added on the top of the micro-column and span-down with slow speed. Solutions ran 

through the micro-column and were collected in the bottom of the Eppendorf tube. Spinning rates 

depended on the chromatographic material, but were never higher than 1200 g for washing and 

equilibration and 500 g for binding and elution of a sample. A micro-column was never allowed to dry 

out.  

After the micro-column was assembled, it was washed once with 150 µL 50% ACN/0.1% TFA in 

water, once with 150 µL 0.1% TFA in ACN and once with 150 µL 50% ACN/0.1% TFA in water. It was 

equilibrated two times with 150 µL 0.1% TFA in water. Subsequently, a sample was added and the 

flow through was collected. The micro-column was washed two times with 150 µL 0.1% TFA in water 

and placed in a fresh low binding Eppendorf tube for elution of the sample from the micro-column. The 

elution was performed with 150 µL 30-35% ACN/0.1% TFA in water if not specified differently. The 

eluate and flow through were subjected to complete vacuum centrifuge drying before LC-MS
2
/MS

3
 

analysis. 

 

   

 

Figure 11. Illustration of a micro-column. 
It can be mounted on the plastic syringe (A) or in an Eppendorf tube for loading in a centrifuge (B). 
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3.2.4.3 Hydrophilic interaction liquid chromatography (HILIC) enrichment  

An IP eluate was vacuum centrifuged to complete dryness and resuspended in 100 µL 80% ACN/1% 

TFA in water with rigorous vortexing. A micro-column was prepared similarly as described in the 

previous subchapter 3.2.4.2.3 with some modifications required due to the chromatographic material 

chemistry. Either the C8 material from the Empore Octyl C8 extraction disk or the Kimtech cellulose 

tissue piece was used as a micro-column plug. A suspension of the TSKgel or the ZIC-HILIC 

chromatographic packing in 80% ACN/0.1% TFA in water was used instead of C18 material packing. 

A suspension of HILIC chromatographic packing was added on the top of the plug to produce an app. 

6 mm long micro-column. The micro-column was washed once with 150 µL 0.1% TFA in water, once 

with 150 µL 50% ACN/0.1% TFA in water and equilibrated twice with 150 µL 80% ACN/0.1% TFA in 

water. A sample was added and the flow through fraction was collected. The micro-column was 

washed once with 150 µL 80% ACN/0.1% TFA in water and the wash fraction was collected. In usual 

HILIC experiments, the sample is eluted with 150 µL 30% ACN/0.1% TFA in water or with a solvent 

with a lower ACN content. For the purpose of this project, the sample was eluted gradually, starting 

with higher ACN contents in a solvent to lower ACN contents: 70% ACN/0.1% TFA  60% ACN/0.1% 

TFA  50% ACN/0.1% TFA  40% ACN/0.1% TFA  30% ACN/0.1% TFA  20% ACN/0.1% TFA 

 10% ACN/0.1% TFA  0.1% TFA, all in water. Fractions were collected separately and a small 

aliquot was used for MALDI-MS analysis. 

 

3.2.4.4. Acetone – ethyl acetate precipitation 

In order to separate peptides from other proteins and the detergent in an IP sample, an acetone – 

ethyl acetate precipitation was performed. Acetone precipitation is used for protein purification (162), 

whereas ethyl acetate precipitation is described to remove detergents (163). The eluate of three BSM 

IP samples (200 µL) was mixed with 10 pmol of each HPV16 synthetic peptide from the list in 3.1.14.1, 

followed by the addition of 1400 µL of ice-cold acetone. An aliquot of 100 µL was taken for drying in a 

vacuum centrifuge. The rest of the sample was incubated at -20°C overnight. The sample was 

centrifuged at 20000 g at 4°C for 30 min to precipitate proteins. The supernatant was transferred to a 

new low binding Eppendorf tube. The pellet was completely dried in the vacuum centrifuge, whereas 

the supernatant was only partially dried until app. 50 µL of the solvent was left. The partially dried 

supernatant was subjected to the addition of 5.5 µL 10% DMSO, 0.85 µL 100% ACN and 110 µL ethyl 

acetate for precipitation of detergent.  

The sample was immediately vigorously mixed for 90 s and subsequently centrifuged at 15000 g at RT 

for 5 min. 90% of the upper organic layer was transferred in a new Eppendorf tube. 100 µL of fresh 

ethyl-acetate was added into the sample tube, vigorously mixed by vortexing for 90 s and centrifuged 

at 15000 g at RT for 5 min. The upper layer was again added to the tube already containing the 

organic phase from the first extraction step. The bottom layer was transferred to a fresh low binding 

Eppendorf tube. Subsequently, samples were vacuum dried, resuspended in 20 µL 50 mM TEAB and 

analyzed with a MALDI-MS instrument. The workflow is illustrated in Figure 12. 
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Figure 12. A schematic representation of the acetone – ethyl acetate precipitation workflow. 
Dried IP eluate was mixed with acetone and left at -20°C overnight. After centrifugation, the pellet was dried in a vacuum centrifuge; 
whereas the supernatant was transferred into a new Eppendorf tube and partly dried. The partly dried supernatant was subjected to ethyl 
acetate precipitation, resulting in bottom aqueous and top organic phases. They were separated by transferring to new Eppendorf tubes 
and were subsequently vacuum centrifuged to complete dryness before analysis with MALDI-MS.  

 

3.2.4.5. Chemical modification enrichment strategy 

3.2.4.5.1. Chemical modification of primary amines by glyceraldehyde-3-
phosphate (G3P) on a C18 micro-column 

Synthetic peptides or IP eluates were bound and washed on a R2, Oligo R3 or Zorbax micro-column 

as described in section 3.2.4.2.3. The G3P reaction solution, containing 40 µL 0.01M TEAB, 30 µL 

stock G3P and 0.7 µL 0.6M NaBH3CN, was prepared freshly for every experiment. The required pH 2 

– 2.2 of the reaction mix was adjusted with a small volume of TEAB or G3P. The G3P reaction solution 

was added on top of the micro-column and a small aliquot (app. 10 µL) was pressed through with 

overpressure created by a syringe mounted on top of the micro-column. The micro-column was 

incubated at RT for 10 – 15 min before the reaction solution in the micro-column was refreshed by 

pressing a new aliquot through it. The cycles of incubation and reaction solution refreshment were 

repeated until the complete reaction solution was pushed through the micro-column, which took 1.5 to 

2 h. The micro-column was washed with 0.1% TFA in water to remove the remaining reagents. 

Samples were eluted from the micro-column with 35% ACN/0.1% TFA in water and subjected to 

titanium dioxide (TiO2) enrichment. 
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3.2.4.5.2. Titanium dioxide (TiO2) enrichment and dephosphorylation of 
phospho-group containing peptides 

TiO2 enrichment was performed based on methods described in (164, 165). Briefly, corresponding 

amounts of 100% TFA, 100% ACN, water and glycolic acid were added to the micro-column eluate 

after G3P modification to result in final concentration of 80% ACN, 5% TFA and 1 M glycolic acid in 

water. 0.4 mg of dry TiO2 beads were added to the sample and mixed vigorously for 15 min at RT. 

Subsequently, the TiO2 beads were pelleted by a short spin in a centrifuge and the supernatant was 

transferred to new TiO2 beads. The incubation was repeated two times with 0.2 mg TiO2 beads each. 

They were pelleted and the supernatant was saved after the last incubation until after LC-MS
2
/MS

3
 

analysis. If the reaction was successful, the supernatant was discarded. TiO2 beads from all incubation 

steps were combined in a new low binding Eppendorf tube and washed once with 150 µL TiO2 loading 

buffer, once with 150 µL TiO2 washing buffer 1 and once with 150 µL TiO2 washing buffer 2 by 

pelleting in the centrifuge. The supernatant was collected after every washing step. The TiO2 beads 

were vacuum centrifuged to complete dryness and subjected to elution of peptides with 100 µL of TiO2 

elution buffer by vigorous mixing for 15 min at RT. TiO2 beads were pelleted with a short spin in a 

table top centrifuge. Supernatant was transferred to a fresh Eppendorf tube and the elution from TiO2 

beads was repeated. Eluates were combined and 100% TFA was added for pH adjustment in the 

range between 8.5 and 9.2. Subsequently, 20 µL 10x alkaline phosphatase buffer and 0.2 µL alkaline 

phosphatase were added to the sample. The sample was incubated overnight at 37°C, at 400 rpm. 

Samples were dried in the vacuum centrifuge before they were analyzed with speLC-MS
2
 or they were 

desalted on C18 material prior to LC-MS
3
 analysis. 

 

3.2.4.6. Isoelectric focusing (IEF) fractionation 

In order to reduce the complexity of samples acquired during the direct elution of epitopes from the cell 

surface with acetic treatment, samples were fractionated by IEF. This was done on an Agilent 3100 

OFFGEL Fractionator following the instructions of the device manufacturer. The fractionation was 

performed on a 24 cm immobilized pH gradient (IPG) gel strip with the pH ranging from 3 to 10. The 

strip was used together with a 24-well frame, resulting in 24 fractions at the end of the procedure. The 

IPG strip was rehydrated by adding 30 µL of rehydration buffer per well for 20 min. Each sample was 

desalted and vacuum dried before it was resuspended in a solution containing 0.72 mL water and 2.88 

mL OFFGEL stock solution (1.25x) with vigorous mixing. Subsequently, 150 µL of the sample was 

added into each well. The fractionation was conducted with a current of 50 µA and a starting potential 

higher than 200 V. The fractionation was finished when the total energy exceeded 64 kWh, which took 

36 to 48 h. Fractions were collected in fresh low binding Eppendorf tubes. Every well was incubated 

with 200 µL of the IEF washing solution for 35 min and the liquid was combined with the 

corresponding fraction. Fractions were subjected to complete dryness in a vacuum centrifuge and 

desalting using the Zorbax C18 material self-packed micro-columns before they were analyzed with 

LC-MS
3
.  

 

http://www.sigmaaldrich.com/life-science/molecular-biology/molecular-biology-products.html?TablePage=9622709
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3.2.5. Liquid chromatography – mass spectrometry (LC-MS) instrumentation 

Experiments described in this thesis were performed with three LC-MS platforms and one MALDI-TOF 

instrument. All LC-MS
3
 experiments were performed with a nanoAquityUPLC system coupled to a 

QTrap5500 (ZMBH) or a QTrap6500 (DKFZ) mass spectrometer. LC-MS
2
 experiments were done with 

a speLC system coupled to the Q-Exactive mass spectrometer, and MALDI TOF MS experiments 

were performed with the UltrafleXtrem instrument. All LC-MS
2
 and MALDI TOF MS experiments were 

performed during a lab visit from October 2014 to February 2015 at the University of Southern 

Denmark, Odense, Denmark, in the Department for Biochemistry and Molecular Biology, in Prof. Dr. 

Martin R. Larsen’s subgroup within the Protein Research group.  Experimental and technical support 

was kindly given by Prof. Dr. Martin R. Larsen and Dr. Lasse G. Falkenby. Instrument specifications 

and measuring parameters for all platforms are described below.  

 

3.2.5.1. Liquid chromatography separation 

3.2.5.1.1. nanoAcquity UPLC system (DKFZ) 

Dried, desalted samples were resuspended in 3% ACN/0.1% FA in water with 15 s vigorous mixing 

and subjected to incubation in an ultrasonic water bath for 10 min. Subsequently, samples were 

transferred into LC auto sampler vials. For every analysis, 10 µL were injected to the analytical 

column. 

Chromatographic separation was performed on a nanoAquity BEH130 column with a particle size of 

1.7 µm, an inner diameter (ID) of 75 μm and a length of 25 cm, filled with C18 material. Solvent A of 

the mobile phase was composed of 0.1% FA and 0.01% TFA in water. Solvent B consisted of 0.1% FA 

and 0.01% TFA in ACN. The flow rate during the separation was 300 nL/min. A steep linear gradient, 

starting with 3% mobile phase B and increasing to 10% by 1 min, was followed by a slower linear 

gradient, which started with 10% mobile phase B and increased to 40% at minute 50. The column 

oven temperature was set to 45°C. 

 

3.2.5.1.2. nanoAcquity UPLC system (ZMBH) 

Sample preparation was the same as described above for the nanoAcquity UPLC system at the DKFZ. 

For every analysis, 20 µL were injected to the pre-column. 

 

After peptides were captured on the pre-column (nanoAcquity trap, particle size 5 µm, ID 180 µm, 

length 2 cm) at 99.5% mobile phase A with a flow rate of 10 µL/min for 7 min, they were 

chromatographically separated on the analytical column as described above. Solvent A was 

composed of 0.1% FA in water and solvent B of the mobile phase consisted of 0.1% FA in ACN. The 

flow rate during the separation was 225 nL/min. A steep linear gradient, starting with 3.5% mobile 

phase B and increasing to 15% by 2.8 min, was followed by a slower linear gradient, which started 

with 10% mobile phase B and increased to 40% at minute 70. The column oven temperature was set 

to 35°C. 
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3.2.5.1.3. Solid-Phase Extraction Capillary Liquid Chromatography (speLC) 

The speLC system is a high throughput automated solid-phase extraction gradient LC system 

optimized for analysis of sub-complex samples with 100-1000 peptides. It employs gradients shorter 

than 10 min with 1 – 2 µL/min flow rates, which enables analysis of >100 samples per day. The 

system uses disposable micropipette solid phase extraction tips (StageTips) for sample loading. This 

application enables direct concentration and desalting on the StageTip, which makes sample 

preparation faster, as desalting of the sample is not required prior to loading (166). 

 

Dried samples were resuspended in 5 µL 40% ACN/0.1% TFA in water, vigorously mixed for 15 s and 

diluted to a final volume of 100 µL with 0.1% TFA in water. The StageTip preparation steps and 

sample loading were performed by centrifugation in a spin centrifuge with a special adapter to hold 12 

StageTips.  

Each tip was first washed with 20 µL of 0.1% FA in ACN (solvent B), centrifuged for 20 s to push the 

liquid through the resin, followed by an equilibration with 20 µL of 0.1% FA in water (solvent A) and a 

centrifugation for 20 s. An aliquot of sample (usually 5 µL) was loaded on the tip together with 

additional 20 µL of solvent A and centrifuged for 30 s. Subsequently, 40 µL of solvent A were added 

on the tip and centrifuged for 20 s, such that a volume of liquid was left above the resin to prevent its 

drying (166). 

 

SpeLC separation was performed with an in-house prepared column (ID 200µm, length 7 cm) packed 

with 3µm ReprosilPur-AQ 120 C18 material. 

Separation started with an initial 1 min equilibration of the column with 4% solvent B of the mobile 

phase, followed by a linear gradient to 35% solvent B in 5 min. The flow rate was 1.5 µL/min.  

 

3.2.5.2. Mass spectrometry analysis 

3.2.5.2.1. QTrap5500 and QTrap6500 mass spectrometers  

QTrap instruments are hybrid triple quadrupole-linear ion trap low resolution mass spectrometers 

mostly applied for targeted MS
2
 and MS

3
 analysis. The 6500 series is a newer model with improved 

sensitivity and faster LIT scanning speeds compared to the 5500 series. Thus, the QTrap6500 

instrument allows targeted analysis of more analytes. Furthermore, the QTrap6500 permits analysis 

with a low mass profile, measuring until 1000 m/z, and a high mass profile, measuring until 2000 m/z, 

whereas the Qtrap5500 measures only until 1000 m/z.  

  

3.2.5.2.1.1. Manual optimization of MS3 spectra of synthetic peptides  

In order to achieve the highest signals in the MS
3
 spectra, peptide specific parameters, such as 

collision energy (CE), declustering potential (DP) and excitation energy (AF2), were adjusted for each 

peptide precursor and the most intense fragments comprised of ≥ 5 amino acids. The declustering 

potential is an electric potential between the orifice plate (MS instrument entrance) and the ground in 

the skimmer, which is located behind the orifice plate in the MS instrument. The DP minimizes the 

solvent cluster ions, which may be attached to the analyte. The CE accelerates the analyte into the 
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collision cell (2
nd

 quadrupole) for the effective first fragmentation. The AF2 is applied to the MS
2
 

fragment in the linear ion trap (3
rd

 quadrupole) to generate the MS
3
 spectrum. To create a scheduled 

LC-MS
3
 method, the retention time of each peptide was determined after manual MS

3
 optimization.  

 

For these optimizations, synthetic peptides were diluted to a final concentration of 0.5-2.0 µg/mL in 

50% ACN/0.1% FA and injected into the QTrap5500 or QTrap6500 instrument with the built-in syringe 

pump maintaining a constant flow of 5 to 10 µL/min. The positive electron spray voltage on the TurboV 

ion source was set to 5500 V. The curtain gas was set at 20 or 30 psi, ion source gas at 15 psi, 

collision gas (CAD) high and the interface heater temperature at 150°C. The resolution of the first 

quadrupole (Q1) was set at low or unit resolution for the QTrap 5500 or the QTrap 6500, respectively. 

The linear ion trap (LIT) was set to LIT resolution. The LIT scan rate was 1000 Da/s. The QTrap6500 

was operated in the high mass hardware profile measuring until 2000 m/z. 

CE and DP were optimized using the manual compound optimization script in the Analyst 1.5.2 or the 

Analyst 1.6.2 program for the QTrap5500 or the QTrap6500, respectively. The script chooses defined 

numbers of the most intense fragments in the MS
2
 spectra and determines the optimal energies 

required for the highest signals. The average parameter values for DP and CE of the three 

optimization replicates were used to optimize the AF2 value. The optimal AF2 value was determined 

by ramping of the potential from 0.0 to 0.2 V. The used AF2 was determined when the MS
2
 precursor 

intensity was reduced to 5% of its starting intensity.  

The DP, CE and AF2 parameters of a minimum of three fragments per peptide (except H-2D
b
 PC1 

and HSV-peptide for the QTrap5500) were used for building the LC-MS
3
 method and determination of 

the retention time for scheduling of peptides. The optimized parameters for QTrap5500 and 6500 for 

different projects are listed in Tables 1 – 5. 

 

3.2.5.2.1.2. QTrap5500 and QTrap6500 parameters for LC-MS3 analysis 

The mass spectrometers were equipped with a NanoESI III electron spray ionization source with 

PicoTip ESI emitters. Analysis was performed in positive mode with both instruments. Source voltage 

was set at 2700 V or 3000 V and curtain gas at 20 psi or 30 psi for QTrap5500 and QTrap6500, 

respectively. Ion source gas was at 15 psi, CAD high and interface heater temperature at 150°C. The 

resolution of the Q1 was set to low or unit resolution for QTrap5500 and QTrap6500, respectively, and 

the linear ion trap was set to LIT resolution. LIT scan rate was 10000 Da/s, fill time was dynamic and 

MS
3
 excitation time was 25 ms. The QTrap6500 operated in the low mass hardware profile. Manually 

optimized MS
3
 parameters listed in Tables 1 – 5 were used to create LC-MS

3
 methods. 
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Peptide 

name
Peptide sequence

Time 

(min)

MS
1 

precursor

MS
2 

fragment

MS
2 

fragment 

mass

DP CE AF2

b8
2+ 502.23 86 19 0.06

b6 775.34 86 23 0.12

b7 888.43 86 19 0.11

b5 636.30 105 20 0.09

b6 764.36 105 19 0.09

b8 990.46 105 19 0.11

b5 636.30 84 19 0.09

b6 764.36 84 19 0.10

b8 990.46 84 17 0.11

y5 575.27 208 48 0.08

b5 601.30 208 45 0.08

b7 827.40 208 42 0.10

b8 928.44 208 43 0.11

b7-H2O 668.38 70 43 0.08

b8-H2O 781.46 70 39 0.10

b8 799.47 70 35 0.09

y7
2+ 419.20 100 27 0.10

y8 894.43 100 26 0.12

y5 635.35 90 30 0.12

y6 748.44 90 22 0.12

y8 875.57 116 24 0.12

y6 649.40 116 19 0.10

y7 762.49 116 19 0.10

y6-H2O 626.35 66 18 0.15

y6 644.36 66 19 0.09

y7 743.43 66 18 0.10

E7 7-15 TLHEYMLDL 44.9 567.78

E7 11-19 YMLDLQPET 39.4 555.26

E7 11-20 YMLDLQPETT 38.9 605.79

E7 12-20 MLDLQPETT 34.0 1047.50

E7 82-90 LLMGTLGIV 54.3 916.55

H2-Db PC1 FGPVNHEEL 31.5 521.25

HLA-A2 PC2 AIVDKVPSV 32.4 464.28

HSV-1 

peptide
SSIEFARL 39.1 461.75

HLA-A2 PC1 YLLPAIVHI 53.7 519.82

 

Table 1. List of parameters that were used to create a LC-MS3 method for targeted analysis with Qtrap5500. 
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Table 2. List of parameters that were used to create a LC-MS3 method for analysis of the HLA-A2 binding HPV16 derived peptides 
with Qtrap6500. 

 

Peptide 

name
Peptide sequence

Time 

(min)

MS
1 

precursor

MS
2 

fragment

MS
2 

fragment 

mass

DP CE AF2

y7-H2O
2+ 405.21 78 25 0.05

MH-H2O
2+ 526.27 78 15 0.05

y6 699.37 78 23 0.09

y7 827.43 78 21 0.08

b8
2+ 502.23 86 19 0.05

b6 775.34 86 19 0.10

b7 888.43 86 19 0.10

b5 636.30 10 47 0.08

b6 764.36 10 39 0.09

b7 861.42 10 41 0.09

MH-H2O 990.46 10 37 0.09

b5 636.30 111 15 0.08

b6 764.36 111 13 0.10

b8 990.46 111 14 0.11

b5 652.30 111 15 0.08

b6 780.36 111 13 0.10

y5 575.27 86 19 0.08

b5 636.30 86 15 0.09

b6 764.36 86 15 0.09

b8 990.46 86 17 0.09

y5 575.27 86 19 0.08

b5 652.30 86 15 0.09

b6 780.36 86 15 0.09

y5-H2O 544.22 100 33 0.09

y5 562.24 100 21 0.08

b5 636.30 100 23 0.08

b6 764.36 100 21 0.09

y5 575.27 216 47 0.07

b5 601.30 216 45 0.08

b7 827.40 216 43 0.09

b8 928.44 216 43 0.10

b10
2+ 565.80 81 19 0.07

MH-H2O
2+ 622.34 81 21 0.09

b7 841.48 81 29 0.11

b8 972.52 81 29 0.12

b6-H2O 611.36 70 43 0.09

b7-H2O 668.38 70 45 0.09

b8-H2O 781.46 70 39 0.09

b8 799.47 70 35 0.08

y5 552.35 81 27 0.08

y6 649.40 81 21 0.09

y7 762.49 81 19 0.09

y6-H2O 626.35 66 17 0.09

y6 644.36 66 19 0.09

y7 743.43 66 17 0.09

E6 25-33 ELQTTIHDI
28.0/ 

20.0
535.28

E7 7-15 TLHEYMLDL
39.4/ 

31.1
567.78

E7 11-18 YMLDLQPE
35.0/ 

26.8
1008.47

E7 11-19 YMLDLQPET
35.0/ 

26.8
555.26

E7 11-19 YM(Ox)LDLQPET
30.9/ 

22.7
563.26

E7 11-20 YMLDLQPETT
34.7/ 

26.4
605.79

E7 11-20 YM(Ox)LDLQPETT
30.5/ 

22.3
613.78

E7 11-21 YMLDLQPETTD
34.3/ 

26.1
663.30

E7 12-20 MLDLQPETT
29.8/ 

21.7
1047.50

E7 77-87 RTLEDLLMGTL
49.1/ 

41.1
631.34

HLA-A2 PC2 AIVDKVPSV
27.9/ 

19.8
464.28

E7 82-90 LLMGTLGIV
47.5/ 

39.5
916.55

HLA-A2 PC1 YLLPAIVHI
47.3/ 

39.0
519.82



Materials and Methods 

51 

 

Peptide 

name
Peptide sequence

Time 

(min)

MS
1 

precursor

MS
2 

fragment

MS
2 

fragment 

mass

DP CE AF2

619.85 y8 978.54 120 31 0.12

y8
2+ 489.77 70 19 0.08

b9
2+ 546.80 70 19 0.08

y5 680.34 70 23 0.10

b7
2+ 409.25 75 25 0.06

y5 508.29 75 31 0.09

y8
2+ 439.76 60 15 0.10

y6-H2O 619.32 60 17 0.12

y6 640.37 150 45 0.11

b7 664.40 150 45 0.10

y7 697.39 150 45 0.11

b8 778.45 150 42 0.10

b5 667.35 150 48 0.11

y6 784.32 150 49 0.09

b6 798.38 150 47 0.10

y7 947.38 150 48 0.11

b5 667.35 150 50 0.10

b6 814.38 150 47 0.10

y6 800.32 150 49 0.09

y7 963.38 150 48 0.11

y7
2+ 490.26 80 24 0.07

y8-H2O
2+ 545.77 80 24 0.07

y8
2+ 554.78 80 23 0.08

y9
2+

611.32 80 23 0.11

b6 615.32 180 43 0.10

b8-H2O 812.40 180 41 0.10

y8-H2O 830.41 180 39 0.10

MH-H2O 929.48 180 39 0.11

b6 631.32 180 43 0.10

b8-H2O 828.40 180 41 0.10

y8-H2O 846.41 180 39 0.10

MH-H2O 945.48 180 39 0.11

b5-H2O 566.26 160 52 0.09

b6-H2O 679.34 160 41 0.11

b6 697.35 160 41 0.09

b8
2+ 537.27 120 31 0.09

b7 972.49 120 29 0.13

y7
2+ 471.76 80 17 0.08

y8
2+

521.29 80 19 0.10

y5 552.35 81 27 0.08

y6 649.40 81 21 0.09

y7 762.49 81 19 0.09

y6-H2O 626.35 66 17 0.09

y6 644.36 66 19 0.09

y7 743.43 66 17 0.09

HLA-A2 PC1 YLLPAIVHI 47.3 519.82

HLA-A2 PC2 AIVDKVPSV 27.8 464.28

YI9 YTAFTIPSI 46 1012.53

YL9 YVDRFYKTL 29.4

602.82

402.22

VV9 VLAEAMSQV 30.1 947.49

VV9 VLAEAM(Ox)SQV 22.1 963.49

VL9 VIYQYM(Ox)DDL 30.8 1175.53

VL10 VLEWRFDSRL 38.5 440.91

LI9 LVGPTPVNI 34.4 909.54

VL9 VIYQYMDDL 38.7 1159.53

FK10 FLGKIWPSYK 34.9
413.57

IV9 ILKEPVHGV 23.3

496.30

331.20

 

Table 3. List of parameters that were used to create a LC-MS3 method for analysis of the HLA-A2 binding HIV derived peptides 
with Qtrap6500. 



Materials and Methods 

52 

 

Peptide 

name
Peptide sequence

Time 

(min)

MS
1 

precursor

MS
2 

fragment

MS
2 

fragment 

mass

DP CE AF2

b9-H2O
2+ 533.29 125 31 0.09

b9
2+ 542.29 125 29 0.10

b7 826.44 125 31 0.12

400.22 y8
2+

499.79 55 17 0.08

y6-H2O 611.34 51 19 0.10

y6 629.35 51 13 0.11

b7 665.40 51 15 0.10

b8 794.44 51 14 0.10

y10
2+ 689.33 195 39 0.10

MH-H2O
2+ 744.85 195 39 0.11

MH-H2O
3+ 496.90 70 13 0.07

b5-H2O 627.29 70 21 0.13

y11
2+ 641.83 120 31 0.09

y12
2+ 698.37 120 29 0.10

y7 775.42 120 33 0.13

y14
2+

790.92 120 29 0.12

MN-NH3
2+ 560.30 130 27 0.09

y6 687.38 130 29 0.11

y8-NH3 854.47 130 33 0.12

y8 871.50 130 28 0.12

y7 804.45 101 31 0.12

y8 917.53 101 27 0.13

y8
2+ 459.27 40 17 0.09

b9
2+/y9-H2O

2+
514.78 40 19 0.09

MH-NH3
3+ 502.94 90 23 0.09

y10
2+ 548.79 90 27 0.09

y11
2+ 641.83 90 23 0.10

y6 647.33 90 29 0.12

y12
2+

698.37 90 29 0.10

b5 617.38 101 29 0.11

b7 761.43 101 28 0.11

b8 876.46 101 32 0.10

y7-NH3 733.39 40 21 0.11

b7-NH3 751.34 40 17 0.10

b7 768.37 40 13 0.11

y11
2+ 608.81 140 35 0.10

y12
2+ 672.84 140 31 0.09

MH-H2O
2+ 784.41 140 33 0.11

y8 919.45 140 37 0.12

b5 554.29 40 13 0.09

b6-H2O 637.33 40 19 0.10

b6 655.34 40 13 0.10

b7 712.36 40 13 0.10

a7-NH3 694.35 75 29 0.13

a7 711.38 75 33 0.12

b7 739.37 75 23 0.13

y7 740.35 75 21 0.14

a9
2+ 492.81 101 31 0.08

b9
2+ 506.81 101 27 0.07

b7-H2O 782.44 101 29 0.12

387.22 y8
2+

465.29 30 23 0.07

y5 552.35 81 27 0.08

y6 649.40 81 21 0.09

y7 762.49 81 19 0.09

y6-H2O 626.35 66 17 0.09

y7 743.43 66 17 0.09

y6 644.36 66 19 0.09

HLA-A2 PC2 AIVDKVPSV 27.8 464.28

TE10 TEEKIKALVE 25.1
580.33

HLA-A2 PC1 YLLPAIVHI 47.3 519.82

QS8 QPSLQTGS 17.4 409.21

SE10 SRPEPTAPPE 17.6 540.77

MV9 MTNNPPIPV 32.5 491.76

QR14 QLQPSLQTGSEELR 28 793.41

KF13 KIWPSHKGRPGNF 22.6 508.61

LQ12 LRSLFGSDPSSQ 30.4 647.33

IL10 IEIKDTKEAL 25.1

580.33

387.22

502.90

HN10 HQAISPRTLN 19.7 568.81

FF16 FLGKIWPSHKGRPGNF 31.9 614.34

EY11 EPFRDYVDRFY 36.5

753.85

AP10 AENREILKEP 22.2
599.82

AT9 AVNPGLLET 30.9 457.25

 

Table 4. List of parameters that were used to create a LC-MS3 method for analysis of HIV peptides with concurrent binding 
motives for HLA-A2 and -B7 with the Qtrap6500. 



Materials and Methods 

53 

 

Peptide 

name
Peptide sequence

Time 

(min)

MS
1 

precursor

MS
2 

fragment

MS
2 

fragment 

mass

DP CE AF2

a8
2+ 428.23 106 29 0.07

b8
2+ 442.23 106 25 0.06

b7-H2O 718.37 106 31 0.09

y8 877.49 106 27 0.12

MH-H2O
2+ 452.75 86 17 0.07

y5 635.35 86 21 0.09

y6 748.44 86 19 0.09

y7
2+ 419.20 81 23 0.06

b8
2+ 455.70 81 21 0.06

y7 837.41 81 23 0.10

MH-H2O
2+ 484.77 61 15 0.06

b7 726.41 61 21 0.09

b8 855.46 61 17 0.10

y7
2+ 420.23 61 19 0.06

y5 597.33 61 21 0.07

y6 726.38 61 21 0.08

y7 839.46 61 19 0.10

mCMV 

peptide
HGIRNASFI 18.7 507.78

HSV-1 

peptide 
SSIEFARL 24.6 461.75

H2-Db PC4 AALENTHLL 22.9 491.27

H2-Db PC1 FGPVNHEEL 19.4 521.25

H2-Db PC3 KALINADEL 22.9 493.78

 

Table 5. List of parameters that were used to create a LC-MS3 method for analysis of H-2Db binding peptides with the Qtrap6500. 

 

3.2.5.2.2. Q Exactive mass spectrometer 

The Q Exactive is a hybrid quadrupole-orbitrap mass spectrometer which uses a quadrupole for 

precursor ion selection, and a high – resolution accurate mass (HRAM) orbitrap for detection. It can be 

used for targeted and untargeted MS analysis. 

Measurements were performed using a Top2 data dependent acquisition method as described in 

(166). The instrument was measuring all ions in MS
1
 mode (full-scan) and performed MS

2
 

measurement for two of the most intense doubly or triply charged ions from full-scan. The instrument 

was operating with mass resolutions of 35000 and 17500 for the full-scan and MS
2
 measurement, 

respectively. Mass ranges were set to 400 to 1600 m/z, fill times were set to 50 ms for the full scan 

and to 100 ms for MS
2
. Target values were set to 3x10

6
 for full scan and to 5x10

5
 for MS

2
. 

 

3.2.5.2.3. UltrafleXtreme mass spectrometer 

The UltrafleXtreme instrument is a high resolution accurate mass matrix-assisted laser 

desorption/ionization – time-of-flight mass spectrometer (MALDI-TOF MS) equipped with a collision 

cell for MS
2
 analysis. MS

2
 analysis can also be performed in the LIFT mode where elevated laser 

intensity is used for ionization causing analyte fragmentation.  

 

0.5 µL of MALDI matrix solution and 0.5 µl of sample were mixed on the MALDI target and dried 

before analysis. Protein measurements were performed in positive linear MS
1
 mode in a mass range 

of 1000-25000 m/z and peptides were measured in positive reflector MS
1
 mode in a mass range of 

300-1500 m/z with mass resolution >10000. 500 laser shots with 60% laser power were accumulated 

per spectrum in both modes.  
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3.2.6. Data analysis and data processing 

3.2.6.1. MS2 data analysis with the MaxQuant software 

The MaxQuant 1.5.2.8 software (155, 156) was used for spectrum identification and quantification of 

the experiments assessing the binding of proteins from the IP sample to the Seppak cartridge or the 

Zorbax micro-columns. Samples of all fractions and replicates were searched against human and 

mouse sequences from the Uniprot database from NCBI (retrieved December 10th 2014) and 

compared between samples, meaning that a peptide identified in one LC-MS analysis was searched 

for in other LC-MS analysis on MS
1
 and MS

2
 level. The mouse sequence was used to identify anti-

HLA-A2 antibody derived peptides, whereas the human sequence was applied for the identification of 

other cell components. Database search was performed with trypsin as the digestion enzyme with 

zero miscleavages, carbamidomethyl as fixed modification on cysteine, oxidation on methionine as 

variable modification and with 1% false discovery rate. Intensities of unique peptides present in ≥ half 

of the samples and having a MaxQuant score ≥60 were used for quantification. Protein quantification 

was performed by summing peptide intensities of ≥ three unique peptides per protein.  

 

3.2.6.2. MS1 quantification with the Skyline software 

Data processing with the Skyline program (157, 158) was performed for experiments analyzed with the 

HRAM Q Exactive instrument, allowing quantification of peptides on the MS
1
 level. The program 

searched against the HLA-A2 HPV16 E6 and E7 peptides listed in 3.1.14.1. The specified chemical 

modifications were set as variable. The program extracted, assigned and integrated chromatographic 

peaks of ion currents from peptides and their modified counterparts, with all possible modification 

combinations. All peak assignments were manually corrected. The main criteria for manual peak 

selection were retention time and mass accuracy, which was ≤4 ppm. Most peptides were present in 

two different charge states; therefore their co-elution was a further criterion. The instrument resolved 

the isotopic distribution of peptide precursor ion, which was also considered during manual peak 

selection.  

 

3.2.6.3. MS3 data analysis 

MS
3
 data analysis was performed manually by comparing MS

3
 spectra of IP samples with MS

3
 spectra 

of synthetic peptides with the Analyst 1.5.2 and 1.6.2 programs for the QTrap5500 and the 

QTrap6500, respectively. Peak areas were determined using the quantification function of the Analyst 

software. Peak areas of transitions from the same peptide were summed and used for further 

calculations.  

To assess IP protocol efficiency and cell input number for optimal IP yield, the signal areas of the 

naturally presented HLA-A2 binding peptides YLLPAIVHI and AIVDKVPSV were normalized to the 

signal areas of synthetic peptides SSIEFARL (originating from HSV-1 glycoprotein B) and 

FGPVNHEEL (from mouse cyclin-dependent kinase inhibitor 1B), which were added to the IP elution 

buffer. Both synthetic peptides are murine MHC class I restricted and were determined to be non 

binders to HLA-A2 in silico.  
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3.2.6.3. MS1 MALDI TOF data analysis 

The program FlexControl 3.4. was used for UltrafleXtreme instrument operation and data acquisition, 

FlexAnalysis 3.4 was used for data processing and visualization. Spectra were manually inspected for 

the presence of proteins and peptides and their masses manually assigned.  Mass spectra with 

subtracted baseline were used for overlaid representation. 
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4. Results 
 

The first part of the results section describes the optimization of epitope isolation with 

immunoprecipation (IP), followed by the results of different epitope extraction, enrichment and 

purification strategies from the IP. The IP epitope isolation is compared with direct elution of peptides 

from cell surfaces by acetic elution. All tested workflows are illustrated in Figure 10 and were first 

optimized to directly identify HLA-A2 HPV16 E6 and E7 T cell epitopes. They were later applied to two 

other viral infection models as a validation. Those results are described in the final part of the chapter. 

 

4.1. Optimization of the immunoprecipitation (IP) protocol 

To be able to directly detect only HLA-A2 binding peptides from HPV16 transformed cells by LC-MS, 

the immunoprecipitation protocol was optimized first. Immunoprecipitation is a method that isolates a 

protein or protein complexes of interest from a biological sample. An antibody (Ab), which is 

immobilized on protein A or G coated sepharose or magnetic beads, binds a particular antigen. 

Isolated bead-Ab-protein complexes are pelleted in the centrifuge or on a magnet, and the remaining 

biological sample is removed. The protocol can be performed in two ways. (1) The Ab is first incubated 

with the sample to bind target proteins and then beads are added to bind Ab-antigen complexes or (2) 

the Ab is first bound to the beads and Ab-bead complexes are incubated with the sample to affinity 

purify target proteins. In the first approach, the target protein remains longer within the biological 

matrix and thereby the chance for protein degradation by endogenous proteases is increased. 

Therefore, the second approach was selected. Optimization of the IP protocol was driven by the idea 

that every step has to provide the highest yields, which can only be obtained by determination of the 

right Ab:antigen:beads ratios to capture all target molecules from the sample, optimal incubation times 

and optimal buffers. 

 

4.1.1. Optimization of coupling an antibody to sepharose beads 

The first step in our IP protocol is the binding of the mouse anti-HLA-A2 antibody BB7.2 to sepharose 

beads coated with protein G. G protein is a streptococcal protein, which binds the Fc portion of IgG 

antibodies with high affinity. To assess the optimal amount of Ab for saturation of the beads, but on 

the other hand not losing Ab due to oversaturation, a titration experiment was performed. Furthermore, 

the Ab-bead binding kinetics were determined for estimation of the optimal time needed for efficient 

coupling. To do so, 7 aliquots of 25 μL of pelleted beads were incubated with increasing amounts (5, 

10, 25, 50, 70 and 100 µg) of the mouse anti-HLA-A2 antibody. A small aliquot of the supernatant from 

every sample was collected at the beginning of the incubation, 30 min, 1 h, 2 h and 3 h later and 

analyzed by Western blot.  

The bands corresponding to the Ab heavy chain at 50 kDa were not detected after 3 h incubation in 

supernatant when 5 or 10 µg Ab were used, whereas a slight band was detected in the supernatant 

when 25 µg Ab was used (Figure 13 A). Bands from 50, 70 and 100 µg Ab were present in the 

samples after 3 h incubation, but their intensities were decreased compared to the beginning of the 
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incubation, meaning that beads bound some of the Ab but not all because of oversaturation (Figure 13 

A). It was concluded that 25 µL of dry breads bind approx. 20 µg of Ab.  

The time course of the binding reveals that incubation for 2 h at RT is long enough to bind 5 and 10 µg 

of Ab and that saturation of beads was reached in 2 h also for 25 µg of Ab as the band intensities after 

2 h and 3 h incubation were comparable (Figure 13 B).  

From these results the optimal coupling conditions were determined to be 20 µg anti-HLA-A2 Ab with 

25 µl dry beads incubated for 2 h to 3 h at RT in the IP washing buffer. 

 

A 

 

B 

 

Figure 13. Optimization of Ab:beads ratio and incubation time. 
A fixed amount of sepharose beads was incubated with 5 µg, 10 µg, 25 µg, 50 µg, 70 µg or 100 µg of the mouse anti-HLA-A2 antibody in 
the IP washing buffer or with the buffer alone as a control for 3 h. A small aliquot of the supernatant from every sample was collected at the 
beginning of the incubation, 30 min, 1h, 2h and 3h later.  A) Titration of beads with anti-HLA-A2 Ab; B) Kinetics of anti-HLA-A2 Ab binding 
to beads. Equal amounts of supernatants were loaded for SDS-PAGE separation, followed by Western Blot analysis. Detection was 
performed with HRP-conjugated anti-mouse-IgG Ab. 

 

4.1.2. Optimization of other IP protocol parameters 

One important component in cell lysis is the detergent. The choice of possible detergents for our 

purpose was limited, as it needs to preserve the 3D structure of the MHC-peptide complex for a 

successful IP and epitope extraction. Additionally, it needs to be LC-MS friendly and not costly. We 

decided to use CHAPS, also used in the group of Prof. Rammensee  and Prof. Stevanović at the 

University of Tübingen, Germany (67-69, 138, 167, 168), and took their protocol as a basis for our 

protocol with slight modifications. We did not perform the IP on a column but in suspension, as we 

wanted to keep all steps in a small scale for future small tumor specimens. Following the protocol 

described in section 3.2.3.1, experiments were performed to compare different parameters such as the 

time of incubation of the Ab-beads in the lysate, an additional sonication step of the lysate before the 

incubation with Ab-beads, and the use of magnetic beads instead of sepharose beads. Samples were 

analyzed with Western blot or by LC-MS
3
 analysis.  

We saw no improvement in IP yield if the incubation of Ab-beads with the lysate took longer than 3 h 

or if sonication was used to homogenate the lysate. IP with the magnetic beads, which were easier to 

handle, gave results comparable to those from sepharose beads (data not shown). 

Due to the costs, sepharose beads were chosen over magnetic beads. Figure 14 shows a 

representative enrichment of HLA-A2 complexes with the optimized IP protocol. 
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Figure 14. Successful enrichment of HLA-A2 molecules from CaSki cells with the optimized IP protocol. 
The IP sample, cell lysate before and after incubation with Ab-beads and Ab-beads incubated with the IP lysis buffer alone were separated 
by SDS-PAGE and transferred to a PVDF membrane. Detection was performed with rabbit anti-MHC I Ab and HRP-conjugated anti-rabbit-
IgG Ab. The strong bands marked with the arrow correspond to the mass of the HLA I heavy chain (44 kDa). 

 

Western blot detection was performed with a rabbit anti-MHC I Ab, which binds all HLA-I types. A band 

at 44 kDa corresponding to the size of the HLA heavy chain was detected in the lysate before and 

after IP as well as in the IP sample. However, the intensity of the band in the IP sample is significantly 

stronger than that in the lysate before and after incubation with the coupled Ab-beads, indicating 

successful HLA-A2 enrichment. Of note, a band remains visible in the “Lysate after IP”, which is due to 

only HLA-A2 molecules being taken out of the lysate, while all other HLA-I molecules (HLA-A3, -B7, -

B37 and -C7) remain. 

 

4.1.3. Optimization of the cell number per IP sample 

The optimal IP capture of HLA-A2 molecules depends on the ratio of Ab-beads to the number of HLA-

A2 molecules in the cell lysate, which is related to the number of cells and their HLA-A2 expression 

levels. In order to optimize the cell number for an IP sample, aliquots of 20 µg Ab coupled to 25 µL 

pelleted beads were incubated with increasing numbers of CaSki, SNU17 or SNU1000 cells. The IP 

experiment was performed using 2-5 or 2-6, 2-5 and 1, 2, 3 and 5 confluent CaSki, SNU17 and 

SNU1000 dishes, respectively. A 90-95% confluent cell culture dish contains 10
7
 cells on average; 

therefore, dish number is an estimation of the input cell number. IP was performed following the 

protocol described in section 3.2.3.1. Epitopes were dissociated from HLA-A2-peptide complexes by 

acetic treatment with 0.3% TFA in water, subjected to ultrafiltration, desalting with OMIX tips and 

analysis with LC-MS
3
, using the nanoAcquity UPLC-QTrap5500 system. In order to compare IP 

samples, total intensities of the HLA-A2 binding endogenous peptides AIVDKVPSV and YLLPAIVHI, 

which are presented by almost every HLA-A2+ cell (personal communication with Prof. Rammensee), 

were normalized to the total signals from the internal standard peptides FGPVNHEEL and SSIEFARL 

added to the IP elution buffer before epitope elution. The results from two biological replicates from 

CaSki cells and one replicate of SNU17 and SNU1000 cells are depicted in Figure 15.  

For SNU17 and SNU1000, maximum signal intensity was reached with 3 dishes (equivalent to app. 

3x10
7
 cells) per IP sample. Intensity changed <10% compared to IP samples of more cells, owning to 

experimental variance. Signal intensity gains for CaSki IP were highest when ≥4 (replicate I) or ≥5 

dishes (replicate II) were used for an IP sample. The smaller signal increase (<10%) between the last 
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two samples in each replicate indicated that the optimal number of cells to saturate Ab-beads was 

approached. 

 

That means that for an optimal HLA-A2 CaSki IP with 20 µg Ab coupled to 25 µL pelleted beads, 6 

dishes (app. 6x10
7
cells) are necessary.  

Importantly, these results demonstrate that the signal intensity is cell line dependent. Thus, the input 

cell number for optimal IP results needed to be adjusted for each cell line. MS based adjustment would 

be too time-consuming for all cells and all MHC I molecules in our cell line collection, therefore, FACS 

staining was performed to compare CaSki HLA-A2 expression levels with the investigated MHC I 

expression levels of other cell lines by colleagues in the group (S. Hoppe, A. Klevenz, M. Küpper and 

A. Steinbach). These results served as a reference for IPs within the group and for collaboration 

projects. 

  

                           

 

 

 

 

 
 
 
 
 
 
 
Figure 15. Optimization of the input cell number per IP sample. 
Aliquots with fixed amount of Ab-beads were incubated with the lysate from increasing numbers of CaSki, SNU17 or SNU1000 cells (app. 
107 cells/dish). Epitopes were eluted with 0.3% TFA in water containing murine MHC I restricted peptides FGPVNHEEL and SSIEFARL. 
Samples were ultrafiltrated, desalted with OMIX tips and analyzed with the nanoAcqutiy-QTrap5500 platform. Total intensities of the HLA-
A2 endogenous peptides AIVDKVPSV and YLLPAIVHI were normalized to the total intensities of the added synthetic murine MHC I 
peptides. The optimal dish number was reached when the normalized signal changed for ≤10%. Results from two biological replicates of 
CaSki (I –first replicate, II –second replicate) and one of SNU17 and SNU1000 are shown.  

 

4.1.4. LC-MS3 detection of externally pulsed E711-19 on the cell surface 

During all LC-MS
3
 analyses described above, the presence of the HLA-A2 HPV16 E711-19 

YMLDLQPET peptide, which was detected on CaSki cells and tumors before (146, 147), was 

examined. The peptide was not detected in any IP sample. To validate the experimental procedure, 

the target HLA-A2 HPV16 E711-19 YMLDLQPET peptide was externally loaded on the cell surface of 

HPV16 negative cells, BSM, which are homozygous for HLA-A2, -B15 and -C4. Prior to the 

experiment, it was checked in silico with different prediction servers that this peptide does not bind to 

the other two HLA molecules, HLA-B15 and -C4. A suspension containing 5x10
7
 cells was incubated 

either with 2 µg, 20 µg or 200 µg E711-19 peptide, 20 µL DMSO or 20 µL medium. Cells were harvested 

after 5 h incubation and the IP protocol was performed as described in section 3.2.3.1. IP samples 

were then treated with 0.3% TFA in water containing internal standards FGPVNHEEL and SSIEFARL, 

ultrafiltrated, desalted with OMIX tips and analyzed with two technical replicates using LC-MS
3
 

(nanoAcquity UPLC-QTrap6500 system).  
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Figure 16. IP of HLA-A2+HPV- BSM cells externally loaded with the E711-19 YMLDLQPET peptide. 
Cells were incubated with 2, 20, 200 µg E711-19, 20 µL DMSO or left untreated. IP was performed 5 h after incubation; peptides were 
eluted with pH reduction, subjected to ultrafiltration, desalting with OMIX tips and analysis with LC-MS3 using the nanoAcquity UPLC-
QTrap6500 system. All results are representative of one biological replicate. A) – C) Extracted ion chromatogram for transitions b5 
(555.26/636.30), b6 (555.26/764.36) and b8 (555.26/990.46) of synthetic peptide E711-19, representative of one technical replicate; D) Signal 
intensities for E711-19 for two technical replicates for IPs of cells treated with different amounts of E711-19. cps: counts per second, a.u.: 
arbitrary units 

 

The peptide E711-19 YMLDLQPET was detected in all samples where cells were incubated with the 

peptide prior to the IP. The chromatographic profile of three measured transitions showed their co-

elution and their relative intensities at the expected retention time (27.1 – 27.5 min) (Figure 16 A – C). 

The peptide E711-19 was not present in samples where cells were incubated with 20 µL DMSO or were 

left untreated. The detected signals ratios of the E711-19 YMLDLQPET peptide between IP samples 

with different amounts added to cells were around five-fold (Figure 16 D), whereas the ratios of 

actually added amounts of peptide to cells were ten-fold. This means that the signal intensities in the 

LC-MS
3
 analysis of three different conditions partially correlated to the amount which was added to 

cells. The endogenous peptides AIVDKVPSV and YLLPAIVHI were detected in all samples.   

These results show that the experimental setting is capable of capturing endogenous peptides as well 

as our target peptide E711-19 YMLDLQPET, when present in amounts that are high enough to be 

detected with LC-MS
3
.  
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4.2. Epitope extraction, enrichment and purification strategies  

The analysis to find the target peptide E711-19 YMLDLQPET on CaSki or SNU cell lines was repeated 

several times without success, although the same or higher sample input was used as reported 

elsewhere (146). We assumed that the peptide was lost during sample preparation due to absorption 

on the plasticware or on the ultrafiltration device. Therefore, the ultrafiltration step was omitted and 

materials with low binding affinities for proteins and peptides were used throughout the whole 

experimental workflow. 

To exclude the possibility of the IP elution buffer not effectively dissociating epitopes from HLA 

molecules, two elution buffers described in the literature were compared, namely 10% acetic acid in 

water (70) and 0.2% TFA in water (67-69, 138). Two CaSki IP samples prepared in parallel from 6x10
7
 

cells each, were treated either with 70 μL of 10% acetic acid in water or 70 μL of 0.3% TFA in water 

with gentle mixing at RT for 15 minutes. Samples were subjected to desalting with OMIX tips and 

analyzed using LC-MS
3
 methodology (nanoAcquity UPLC-QTrap5500 system). The results showed 

that there was no difference between the two IP elution buffers, as comparable amounts of 

endogenous peptides AIVDKVPSV and YLLPAIVHI were detected in both IP samples (Figure 39 in 

the Appendix). The 0.3% TFA in water elution buffer was chosen for further experiments.  

In this set of experiments, also the presence of the E711-19 YMLDLQPET peptide in the IP samples 

was assessed. The identification of HPV16 E711-19 peptide was not successful. It was assumed that 

the amount of the input material was not sufficient for detection of the target peptide E711-19. Therefore 

ten CaSki IP samples from 6x10
7
 cells each were prepared using five OMIX tips for desalting before 

LC-MS analysis. Increased sample amounts caused the LC column to clog, both on the nanoAquity-

QTrap6500 and the speLC-Q Exactive instuments. Therefore, other enrichment and purification 

strategies were required. 

 

4.2.1. Hydrophilic interaction liquid chromatography (HILIC) 

To examine HILIC as a purification and enrichment strategy, two BSM IP samples were eluted with 70 

µL 0.3% TFA in water each. The elution buffer contained all peptides from 3.1.14.1. IP eluates were 

pulled together to ensure uniform sample composition. An aliquot of 40 µL, taken as a starting IP 

eluate reference, and the rest of the eluate were subjected to vacuum drying. The sample was 

resuspended in 80% ACN/1% TFA and each half was loaded either on a TSKgel- or a ZIC-HILIC 

micro-column (see 3.2.4.3). Fractions were gradually eluted from the micro-columns with a starting 

elution buffer containing high to low % ACN. All fractions, including unbound flow through and washing 

fractions, were dried, resuspended and spotted on the MALDI target plate together with MALDI matrix 

solution.  

Gradual elution from the ZIC-HILIC micro-column showed that peptides and proteins co-eluted, as 

peptides and proteins were present in the same fractions, whereas the TSKgel-HILIC material could 

separate proteins from peptides (Figure 17 and Figure 18).  

Most peptides were contained in the flow through and the wash fractions of the micro-column (red and 

green lines in Figure 17), while most proteins were present in the fractions eluted with 60% and 70% 

ACN/0.1%TFA in water (red and turquoise lines in Figure 18).  



Results 

63 

 

 

Figure 17. MALDI TOF MS peptide profile of BSM IP samples with added peptides, after fractionation with the TSKgel HILIC 
micro-column. 
The IP eluate was subjected to vacuum drying prior to resuspension in 80% ACN/1% TFA. Gradual elution started with an elution buffer 
containing 70% ACN/0.1% TFA and ended with an elution buffer containing 0.1% TFA in water. The analysis was performed with the 
UltrafleXtreme MALDI-TOF MS instrument. Unfractionated IP sample is represented by the blue line. The flow through fraction is shown in 
green and the wash fraction by the red line. The fraction eluted with 70% ACN/0.1% TFA is shown by the grey line which has peaks only in 
the low mass range and no peaks corresponding to peptide masses. All other fractions were not plotted as they were of as low or lower 
intensity as the fraction eluted with 70% ACN/0.1% TFA. Peptide peaks are marked with their masses and names. Peptides were detected 
in the unfractionated IP sample, flow through and wash fraction.  
 
 

 

Figure 18. MALDI TOF MS protein profile of BSM IP samples with added peptides, after fractionation with the TSKgel HILIC micro-
column. 
The IP eluate was subjected to vacuum drying prior to resuspension in 80% ACN/1% TFA. Gradual elution started with an elution buffer 
containing 70% ACN/0.1% TFA and ended with an elution buffer containing 0.1% TFA in water. The analysis was performed with the 
UltrafleXtreme MALDI-TOF MS instrument. The fraction eluted with 70% ACN/0.1% TFA is shown by the red line and the fraction eluted 
with 60% ACN/0.1% TFA in turquoise. The flow through (orange) and the wash fraction (gray) are overlaid on the baseline of the profile. All 
other fractions were not plotted as they had intensity as low as the flow through and the wash fractions. Proteins were detected in the 
unfractionated IP sample and fractions eluting with 60% and 70% ACN/0.1% TFA. Peaks at masses 5865.771 and 11735.868 m/z most 
probably correspond to the β2-microglobulin (β2M) protein. 
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Due to poor ionization of peptides containing no basic amino acids, they were not detected with the 

MALDI-TOF MS. Only peptides E69-17 FQDPQERPI, E69-19 FQDPQERPIKL, E625-33 ELQTTIHDI, E777-

86 RTLEDLLMGT and E777-87 RTLEDLLMGTL were observed. 

Many low molecular mass contaminants (masses below 700 m/z), including CHAPS, were present in 

the fractions rich with peptides, but they were also present in lower intensities in fractions eluting with 

≤70% ACN/0.1% TFA (Figure 17). 

The MALDI TOF MS protein profile revealed the presence of several protein species, many of them 

being contaminants in the IP sample. The intense peaks at 5865.771 and 11735.868 m/z most likely 

corresponded to the β2-microglobulin (β2M) chain (Figure 18). 

Taken together, the TSKgel HILIC is a good alternative for epitope purification and enrichment. 

However, when the experiment was up-scaled, the solubility of the material in the HILIC loading buffer, 

which contains high organic solvent, was limited or ineffective. Therefore, peptide/protein separation 

with HILIC chromatography was not considered to be a suitable sample purification and enrichment 

strategy.  

 

4.2.2. Acetone – ethyl acetate precipitation 

Acetone precipitation is a widely used method in proteomics to isolate proteins (162), whereas ethyl 

acetate precipitation was described as a method to remove a detergent from a sample (163). 

In order to test combined acetone – ethyl acetate precipitation, a workflow was designed such that 

proteins are first removed from the sample by acetone precipitation, leaving unprecipitated peptides in 

the supernatant. Next, the supernatant is subjected to ethyl acetate precipitation to remove detergent 

and thereby achieving peptide enrichment and purification.  

IP eluates of three BSM IP samples, peptide mixture of all peptides from 3.1.14.1 and ice-cold acetone 

were mixed. A portion of the sample was used for direct vacuum drying as an unprocessed reference. 

The rest of the sample was subjected to acetone precipitation. The supernatant was vacuum-dried 

until only 50 μL of liquid remained and subjected to ethyl acetate precipitation. The aqueous bottom 

layer and ethyl acetate top layer were separated by transferring into fresh Eppendorf tubes and dried 

in the vacuum centrifuge. All fractions generated in this experiment, namely acetone pellet, aqueous 

bottom and ethyl acetate top layers, as well as unprocessed sample were resuspended and spotted 

on the MALDI target plate. Samples were measured using the UltrafleXtreme MALDI-TOF MS 

instrument.  

Peptides and CHAPS were present in; acetone pellet, the aqueous and the ethyl acetate top layer 

(Figure 41 in the Appendix). Surprisingly, proteins were detected in the aqueous ethyl acetate layer 

but not in the acetone precipitation pellet (Figure 42 in the Appendix).  

Furthermore, the signals of unprocessed IP sample, which was approximately 7% of the whole sample 

subjected to the precipitation, gave higher results for proteins and peptides than any of the fractions. 

These results showed that the acetone – ethyl acetate precipitation is not a workflow suitable for the 

purification and enrichment of HLA epitopes.  
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4.2.3 Fractionation of IP samples on reverse phase chromatographic material 

None of the strategies described above successfully purified and enriched epitopes from IP samples. 

Therefore, several reverse phase material approaches were examined. We aimed to determine the 

optimal concentrations of organic solvent needed for removing CHAPS and proteins from IP eluates 

for successful epitope enrichment.  

All experiments on micro-columns packed with reverse phase materials were performed as described 

in section 3.2.4.2.3 and on the Seppak cartridge as described in section 3.2.4.2.2.  

 

4.2.3.1 R2 and Oligo R3 micro-column 

In order to determine optimal elution conditions to purify epitopes from the micro-column, three CaSki 

IP samples were eluted with 70 μL 0.3% TFA in water and shortly centrifuged. All eluates were 

combined to ensure sample homogeneity. The supernatant was loaded on the R2 or Oligo R3 micro-

column with the Empore C8 material plug. Both types of micro-column clogged during loading of one 

IP sample eluate.  

Next, the question whether the clogging happened on the C18 material or on the micro-column plug 

was examined. Furthermore, the possibility of using a different material for the plug was assessed. To 

this end, the CaSki IP eluate of four samples was combined and each half was loaded either on a tip 

containing only an Empore C8 material plug or a cellulose Kimtech tissue plug, but no C18 material. 

The IP eluate was easily passing through both materials, causing no clogging. It was concluded that 

the clogging of the micro-columns occurred within the C18 material and not on the plug. 

Additionally, Empore C8 material peptide binding properties were compared with cellulose Kimtech 

tissues. The same amount of HLA-A2 HPV16 peptides (3.1.14.1) was bound to the Oligo R3 micro-

column once with an Empore C8 material and once with an cellulose Kimtech tissue plug. The results 

revealed no difference in micro-column performance, meaning that both materials can be used as a 

micro-column plug. Thus, Kimtech tissue was chosen for further use due to its lower price and easier 

accessibility.  

 

4.2.3.2 Seppak C18 cartridge 

As outlined in the section above, R2 and Oligo R3 micro-columns could not be used for epitope 

purification from the IP sample. Therefore, a purification strategy with a Seppak cartridge was tested. 

The eluates of two CaSki IP samples were combined and loaded on the Seppak cartridge. Loading did 

not reduce the ease with which the liquid was passing through the resin and it did not cause clogging 

of the cartridge.  

Next, an experiment was performed to address the question whether the Seppak cartridge did not clog 

due to bigger volume and larger binding capacities than micro-columns or due to the sample 

contaminants not binding to the Seppak resin. Furthermore, we tested when the components binding 

to the Seppak resin eluted during gradual elution and compared that with an Oligo R3 micro-column.  
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Figure 19. Chromatographic profile (A) and relative protein quantification of an IP sample (B) after fractionation on the Seppak 
cartridge or Oligo R3 micro-column. 
The IP sample was bound to the Seppak resin and gradually eluted with solvents containing low to high % ACN. Fractions were collected 
and subjected to in-solution reduction, alkylation and digestion. Samples were analyzed with the speLC-Q-Exactive platform. A) Start IP-
unfractionated reference IP eluate, FT-Seppak flow through fraction, 10% – 50% ACN-fractions eluted with 10% ACN/0.1% TFA – 50% 
ACN/0.1% TFA in water, wash1-first Seppak wash after IP binding. The black arrow shows the strong CHAPS peak. B) Data processing 
was performed with the MaxQuant program. Protein intensities in fractions were compared relative to the intensities in the unfractionated 
IP sample. FT Seppak-Seppak flow through fraction, FT Oligo R3-Oligo R3 micro-column flow through fraction, 10% – 80% ACN-Seppak 
fractions eluted with 10% ACN/0.1% TFA to 80% ACN/0.1% TFA in water, Wash1-3-first to third Seppak wash after IP binding. Quantified 
proteins are: IgG-sum of intensities for heavy and light chains, Actin and Tubulin-sum of intensities for alpha and beta protein, Keratins-
sum of intensities for I 14, I 17, II 6 and II 7 keratins. Error bars are SD from three technical replicates, except the fractions wash1 and 40% 
ACN with two technical replicates. 
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To do so, three CaSki IP sample eluates were combined, the first aliquot was vacuum dried for a 

reference, the second was loaded on the Seppak cartridge and the third on the Oligo R3 micro-column 

with a Kimtech tissue plug. As expected, it was not possible to wash and elute the sample from the 

Oligo R3 micro-columns due to clogging. Therefore, only the flow through fraction was collected and 

dried in the vacuum centrifuge.  

An aliquot of IP eluate was loaded on the Seppak cartridge without any difficulties. The fractionation 

from the Seppak cartridge was conducted with gradual elution with solvents, with increasing % ACN 

as follows: 10% ACN/0.1% TFA  20% ACN/0.1% TFA  30% ACN/0.1% TFA  40% ACN/0.1% 

TFA  50% ACN/0.1% TFA  60% ACN/0.1% TFA  70% ACN/0.1% TFA  80% ACN/0.1% TFA, 

all in water. All fractions, including flow through and three wash fractions were collected and subjected 

to vacuum drying.  

Fractions generated during the experiment (unprocessed IP eluate, Oligo R3 micro-column flow 

through and all Seppak fractions) were subjected to reduction with DTT, alkylation with IAA and in-

solution trypsin digestion overnight (detailed protocol in section 3.2.2.3).  

 

Equal aliquots of each fraction were measured with the speLC-Q-Exactive MS instrument. The 

chromatographic profile of the LC-MS
2
 analysis for some fractions (the starting unprocessed IP eluate, 

the Seppak flow through, the first Seppak wash and the Seppak fractions eluted with 10% – 50% 

ACN/0.1% TFA) are depicted in Figure 19 A. The comparison of the chromatographic profiles 

indicated that the Seppak flow through contained most of the protein material relative to other fractions 

and that its profile matched well with those of the unprocessed IP eluate. The second and third 

Seppak wash fractions and fractions eluted with higher organic content (≥50% ACN/0.1% TFA) 

contained least detected proteins and their chromatographic profile was comparable to the one from 

the first Seppak wash fraction (light blue in Figure 19 A). 

 

High singly charged peaks with the mass 615.4 m/z detected at a retention time of 8.4 min correspond 

to CHAPS in the sample (black arrow in Figure 19 A). As expected, the highest CHAPS signal was 

observed in the unfractionated sample. CHAPS was detected in the 20% ACN/0.1% TFA fraction in 

low intensity, whereas most of it was present in the fractions eluted with 30% and 40% ACN/0.1% 

TFA. 

Identification and quantification of results was performed using the MaxQuant software version 1.5.2.8, 

as described in 3.2.6.1 (155, 156). The results of a data base search with the analysis software 

revealed that besides the expected antibody and HLA-A2 proteins, also cytoskeleton proteins (tubulin, 

actin, vimentin, plektin), keratin, ribosome subunits, heat shock proteins, histones and others, had 

bound unspecifically to the coupled Ab-beads and were present in the IP samples (8.7. in the 

Appendix). The results for selected proteins are presented as the ratio of intensities in a fraction to the 

intensity in the unprocessed IP eluate in Figure 19 B.  

The results of relative comparison confirmed that most of the proteins were, indeed, contained in the 

Seppak flow through, indicating that the proteins mostly did not bind to the Seppak C18 material. In 

contrast, the Oligo R3 flow through contained little proteins, meaning that they bound to the resin and 
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thereby clogged it. β2M bound the most compared to other proteins and it was present with the highest 

signal in the fraction eluted with 40% ACN/0.1% TFA. 

 

When examining the producers’ descriptions of tested materials, the key difference between the R2 

and Oligo R3 materials and the Seppak cartridge was pore size. The pore size of the Seppak C18 

material was app. 130 Å, whereas the pore size of the R2 and Oligo R3 materials was in the range of 

300 Å to 3000 Å. The pore size of the R2 and Oligo R3 was big enough to enable diffusion and 

retention of proteins into pores, whereas this was prevented or hindered in the Seppak material. 

The only disadvantage of the Seppak cartridge was its bigger volume and amount of the resin, which 

could cause sample losses on the plastic walls or losses due to irreversible binding on the cartridge 

resin. When one works with higher sample amounts such as whole cell lysates, these factors are not 

critical, whereas in our case they could contribute to the loss of already low abundant epitopes and 

preclude their detection with LC-MS.  

 

4.2.3.3 Zorbax micro-column 

In order to minimize possible losses during sample purification, we examined a reverse phase column 

packing the material Zorbax, which has a pore size of 80 Å. It could be easily packed into the micro-

columns. If the hypothesis about the effect of the pore size was true, then the Zorbax material with 

smaller pore size should bind even less proteins from an IP sample than what was observed with the 

Seppak cartridge. 

A similar experimental setting was performed as described above. The Zorbax material was packed in 

a 200 μL tip as described in section 3.2.4.2.3. IP eluate from four SNU17 IP samples was combined 

and the equivalent of three IP samples was loaded on one micro-column, causing no clogging. It is 

important to note that at the end of the loading, the force needed to push the liquid through the micro-

column increased, indicating that with loading of higher amounts of IP eluate, also the Zorbax micro-

column would have clogged.  

The micro-column was washed and fractions were collected during gradual elution with solvents with 

increasing % ACN as follows: 15% ACN/0.1% TFA  20% ACN/0.1% TFA  25% ACN/0.1% TFA  

30% ACN/0.1% TFA  35% ACN/0.1% TFA  40% ACN/0.1% TFA  50% ACN/0.1% TFA  60% 

ACN/0.1% TFA  70% ACN/0.1% TFA, all in water. All fractions including the flow through fraction, 

wash fractions after IP eluate loading, and the IP eluate equivalent to one IP sample were dried in a 

vacuum centrifuge. Subsequently, they were subjected to reduction with DTT, alkylation with IAA and 

in-solution trypsin digestion over night as described in section 3.2.2.3. Samples were measured with 

the speLC-Q-Exactive instrument. The chromatographic profile of the LC-MS
2
 analysis for some 

fractions (one third of the unprocessed IP eluate relative to the amount used for processing with the 

Zorbax micro-column, the Zorbax flow through, the first Zorbax wash and the Zorbax fractions eluted 

with 15% – 50% ACN/0.1% TFA) are depicted in Figure 20 A.  
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Figure 20. Chromatographic profile (A) and relative protein quantification of an IP sample (B) after fractionation on the Zorbax 
micro-column. 
The IP sample was bound to the Zorbax resin and gradually eluted with solvents containing low to high % ACN. Fractions were collected 
and subjected to in-solution reduction, alkylation and digestion. Samples were analyzed with the speLC-Q-Exactive platform. A) 1/3 Start 
IP: 1/3 of unfractionated reference IP eluate, FT: flow through fraction, 15% – 50% ACN: fractions eluted with 15% ACN/0.1% TFA – 50% 
ACN/0.1% TFA in water, Wash1: first Zorbax wash after IP binding. The black arrow shows the CHAPS peak. B) Data processing was 
performed with the MaxQuant program. Protein intensities in fractions were compared to the intensities in the 1/3 of unfractionated IP 
sample. FT: flow through fraction, 15% – 70% ACN: Zorbax fractions eluted with 15% ACN/0.1% TFA to 70% ACN/0.1% TFA in water, 
Wash1-3: first to third Zorbax wash after IP binding. Quantified proteins are: IgG-sum of intensities for heavy and light chains, Actin and 
Tubulin-sum of intensities for alpha and beta protein, Keratins-sum of intensities for I 14, I 17, II 6 and II 7 keratins. Error bars represent the 
SD from a minimum of two technical replicates. 

 

As hypothesized, the comparison of the chromatographic profiles shows that the Zorbax flow through 

contained most of the proteins material relative to other fractions. Expectedly, the profile of the flow 
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through contained more peaks than the unprocessed IP sample, as the latter corresponded to 1/3 of 

what was used for binding to the micro-column. The second and the third Zorbax wash fractions and 

fractions eluted with 60% or 70% ACN/0.1% TFA in water contained least detected peptides and their 

chromatographic profile was comparable to that from the fractions eluted with 50% ACN/0.1% TFA 

(light pink in Figure 20 A). 

The singly charged CHAPS peak with 615.4 m/z was detected at 8.4 min (black arrow in Figure 20 A). 

Expectedly, CHAPS was detected in in the unfractionated sample as well as in the fractions eluted 

with 25% and 30% ACN/0.1% TFA. 

 

The identification results (Figure 20 B) confirmed the presence of numerous protein contaminants 

such as cytoskeleton proteins (tubulin, actin, plektin), keratin, ribosome subunits, histones and others 

in the IP eluate. As seen before, the biggest proportion of proteins represented keratins, which is not 

surprising as the SNU17 cells used for this experiment derive from keratinocytes.  

The relative quantification results for selected proteins are presented as the ratio of intensities in a 

fraction to the intensity of the same protein in one third of unprocessed IP eluate in Figure 20 B. Most 

of the proteins were present in the Zorbax flow through, indicating that the proteins mostly did not bind 

to the micro-column resin, or they bound irreversibly as their relative intensities did not result near 

100% (ratio at 3) but more at 50% (ratio at 1.5). β2M binds the strongest to the Zorbax resin compared 

to other proteins and it was present with the highest signal in the fraction eluted with 35% ACN/0.1% 

TFA. The amounts of proteins present in other fractions were so low that they could be considered as 

a background or blank sample signals, which was reflected in the results in Figure 20 A, B.  

Taken together, the results of gradual elution of an IP eluate from the Zorbax C18 material confirmed 

the hypothesis that the pore size had an impact on binding of protein contaminants on the reverse 

phase material and clogging of the micro-column.  

 

 
 

Figure 21. Gradual elution of HLA-A2 HPV16 synthetic peptides from the Zorbax micro-column. 
100 pmol/peptide in the BSM IP eluate were bound to the micro-column and eluted with increasing % ACN. Fractions were collected, 
vacuum dried and analyzed with the speLC-Q-Exactive platform. Data was processed with the Skyline program. Signal intensities are 
plotted for every peptide in each fraction. 20% – 37% ACN-Zorbax fractions eluted with 20% ACN/0.1% TFA to 37% ACN/0.1% TFA in 
water. Error bars represent the SD from two technical replicates.  
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After finding an experimental set-up that separates proteins from peptides, we next wanted to examine 

the possibility of separating peptides from CHAPS by sequential elution. A similar gradual elution 

experiment was performed with 100 pmol per peptide of target HLA-A2 HPV16 E6 and E7 (3.1.14.1) 

and endogenous control synthetic peptides (3.1.14.4) in the BSM IP eluate from one IP sample. As 

seen in the previous experiment, CHAPS eluted from the Zorbax material with the solvent containing 

25% to 30% ACN/0.1% TFA. Therefore, the gradual elution was performed with solvents composed of 

% ACN closer to that range, such that they followed the series: 20% ACN/0.1% TFA  23% 

ACN/0.1% TFA  27% ACN/0.1% TFA  30 ACN/0.1% TFA  34% ACN/0.1% TFA  37% 

ACN/0.1% TFA  40% ACN/0.1% TFA  43% ACN/0.1% TFA, all in water. Fractions were vacuum 

dried, resuspended and analyzed on the speLC-Q-Exactive instrument in two technical replicates.  

The MS
1
 intensities of each peptide in all fractions are depicted in Figure 21, except those eluted with 

40% and 43% ACN/0.1% TFA, which contained no peptides.  

Most of the HLA-A2 HPV16 peptides already eluted with the solvent containing 20% ACN/0.1% TFA in 

water. However, some of them were more hydrophobic and eluted with up to 30% ACN/0.1% TFA in 

water. Thus, effective elution of all HLA-A2 HPV16 peptides can be conducted with ≥30% ACN/0.1% 

TFA in water.  

Narrowing down the ACN concentration range in the elution buffer showed that the highest CHAPS 

signals were in fractions eluted with 23% and 27% ACN/0.1% TFA in water (Figure 22), whereas other 

fractions contained minimal CHAPS signals. CHAPS eluted in the same fractions as some of the more 

hydrophobic epitopes, therefore, the sequential elution of epitopes from the Zorbax micro-column to 

reduce the amount of CHAPS in the IP eluate without losing some of more hydrophobic peptides was 

not possible. Thus, we did not employ this strategy.     

 

 

Figure 22. LC-MS chromatographic profile of CHAPS in different fractions after gradual elution from the Zorbax micro-column. 
100 pmol/peptide in the BSM IP eluate were bound to the micro-column and eluted with increasing % ACN. Fractions were collected, 
vacuum dried and analyzed with the speLC-Q-Exactive platform. 20% – 40% ACN-Zorbax fractions eluted with 20% ACN/0.1% TFA to 
40% ACN/0.1% TFA in water. 
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4.2.4. Comparison of RP extraction methods and ultrafiltration 

To evaluate the peptide recoveries from the C18 material extraction methodologies established during 

this thesis, they were compared with ultrafiltration which is widely employed for separation of proteins 

and peptides in proteomics. This is also the case for the preparation of MHC I IP samples (70, 138). 

To this end, ten BSM IP sample eluates were combined, distributed in two aliquots and then mixed 

with the HLA-A2 HPV16 synthetic peptides (3.1.14.1) in low and high amounts. The first aliquot 

contained 600 fmol/peptide, whereas the second aliquot contained 600 pmol/peptide. Each of the 

aliquots was distributed equally among five extraction materials such that every sample at the 

beginning of the processing contained 120 fmol/peptide or 120 pmol/peptide. Five extraction options 

were used for processing: 2 kDa Vivacon ultrafilters, 10 kDa Vivacon ultrafilters, 10 kDa Amicon 

ultrafilters, Seppak C18 1 mL cartridges, and Zorbax C18 material micro-columns (as described in 

sections 3.2.4.1, 3.2.4.2.2 and 3.2.4.2.3, respectively). Elution of samples from the Seppak cartridge 

and the Zorbax micro-column was performed with 35% ACN/0.1% TFA. All the samples were dried in 

a vacuum centrifuge.  

The unprocessed starting IP sample with added peptides would have caused clogging of the LC 

column, as experienced before, therefore, the pure peptide mixtures with the same concentration as 

those added to the IP eluates were used as a reference. All samples and pure peptides were analyzed 

using the speLC-Q-Exactive instrument.  

 

All methionine containing peptides underwent oxidation on the methionine, resulting in two distinct 

chromatographic peaks with the unmodified peptide eluting later. These peptides were quantified as 

the sum of unoxidized and oxidized counterparts. Selected methionine containing peptides (on the 

right of the red line in Figure 23 A, B) are only shown in the unoxidized form for demonstration of 

methionine oxidation levels.  

When bigger amounts of peptides were added into the sample (120 pmol/peptide), there were no 

differences between tested extraction strategies for most of the peptides (Figure 23 A). The degree of 

methionine oxidation was lowest for extraction with the Zorbax micro-column among all tested 

strategies, as the signal for unoxidized methionine was highest (right side of the graph in Figure 23 A). 

The unoxidized methionine signals for other extraction options were lower, indicating a higher 

oxidation degree.  

The recovery of smaller amounts of peptides (120 fmol/peptide) after IP eluate processing was best 

with the Zorbax micro-columns for almost all peptides (Figure 23 B).  

When small amounts of peptides were added to the IP eluate, the methionine oxidized in all peptides 

to high degrees after processing with ultrafilters and to a lesser degree with Seppak. Least oxidized 

peptides were detected after processing with the Zorbax micro-column (right side of the graph in 

Figure 23 B). The degree of methionine oxidation was in general higher in IP samples containing less 

peptides than in IP eluates containing higher peptide amounts, despite the same sample processing.  

It is important to note that none of the tested strategies removed CHAPS, because its signal was 

detected in every measured sample. 
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Figure 23. Comparison of different epitope extraction methods with high or low amounts of peptides in the IP eluate. 
 A) 120 pmol/peptide or B) 120 fmol/peptide were added into BSM IP eluates for each extraction method test. Samples were processed, 
vacuum dried and analyzed with the speLC-Q-Exactive instrument. Data processing and MS1 relative quantification were performed with 
the Skyline program (157, 158). Peptide intensities in every sample were compared to the intensities in the unprocessed starting peptide 
mixture. Signal intensities of methionine containing peptides were calculated as intensity sum of oxidized and unoxidized counterparts. 
Results on the right of the red line represent the ratio of selected only unoxidized peptides to the total peptide signal in the starting mixture 
(oxidized and unoxidized). 10kDa: ultrafiltration with 10 kDa Vivacon ultrafilters, 2kDa: ultrafiltration with 2 kDa Vivacon ultrafilters, Amicon: 
ultrafiltration with 10 kDa Amicon ultrafilters, Seppak: processing with the Seppak cartridge, Zorbax: processing with the Zorbax micro-
column. Error bars represent the SD from three technical replicates.  

 

Taken together, in the case of high amounts of target peptide, all of the tested extraction strategies 

gave good results. When smaller amounts of target peptides were present in the IP sample, the 

Zorbax micro-column yielded a better performance than the other extraction strategies. Furthermore, 
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processing with the Zorbax micro-column caused least methionine oxidation, both with low and high 

peptide amounts.  

The reasons for this are the smaller volume of the Zorbax resin and the smaller plastic surfaces where 

low abundant peptides could adsorb. This test showed the importance of experimental set up down-

scaling for minimizing losses, when the amount of input material is low or investigated peptides are of 

low abundance.  

 

4.2.5. Chemical tagging of primary amines for purification of epitopes  

4.2.5.1. Method optimization on synthetic peptides 

As shown in the previous chapter (4.2.3.4), the purification and enrichment strategy using Zorbax C18 

micro-columns effectively separated peptides from most of the protein contaminants but not from 

CHAPS. To overcome this problem, we examined the possibility of chemical labeling of peptides with 

a tag containing a phospho-group, which can subsequently be enriched either by immobilized metal 

affinity chromatography (IMAC) (169-171) or titanium dioxide (TiO2) pull down (164, 165). It was 

shown before that TiO2 does not bind detergents. Moreover, detergents did not significantly influence 

the binding affinity of TiO2 for phospho-peptides, whereas detergents affected the phospho-peptide 

isolation with the IMAC enrichment (172).  

 

Chemical modifications on peptides most commonly target reactive groups, such as primary amine (-

NH2), carboxyl (-COOH) or thiol (-SH) group. As our target peptides do not contain any cysteines with 

thiol groups, a modification can be performed either on the primary amine or the carboxyl group. Most 

chemical tagging reactions for isotope labeled quantification strategies, such as iTRAQ, TMT or 

dimethyl labeling, are directed against the primary amine group. The yields of chemical labeling with 

these reagents are >97% (173-176). To be able to exploit similar reaction principles and to keep the 

cost of labeling reagents low, a reaction based on the dimethyl labeling mechanism was selected.  

 

Relative quantification with dimethyl labeling in proteomics is based on the reaction of several 

isotopomers of formaldehyde and cyanoborohydride, with primary amines, which results in the 

introduction of two methyl groups. Biological samples to be compared are labeled on primary amines 

with different isotopomeric methyl groups and mixed in one sample afterwards. Thus, the relative 

comparison between different biological samples in one LC-MS analysis is possible. 

Dimethyl labeling is based on the reaction of primary amines with aldehydes to form imine or Schiff 

bases, which can be reduced with sodium cyanoborohydride (NaBH3CN) or sodium 

triacetoxyborohydride (NaBH(OCOCH3)3) to amine (Figure 24 A) to result in a new C-N molecular 

bond (177-179). The reaction takes place on primary amines of the N-terminus and lysine (Lys) side 

chains with formaldehyde following the scheme in Figure 24 B.  
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Figure 24. Formation of C-N bond through imine formation followed by reduction and chemical reaction of dimethyl labeling. 
A) General chemical reaction of a new C-N bond formation through imine – Schiff base. An aldehyde reacts with an amine to form an imine 
or Schiff base, which can be reduced to a new amine with NaBH3CN. Adapted from (173). B) A specific case of imine formation in dimethyl 
labeling reaction, which takes place on primary amines (peptide N-terminus and Lys side chains). Adapted from (176). R: remainder of the 
molecule. 

 

The primary amines on the N-terminus and on the Lys side chain have different pKa values, meaning 

that they react in different pH environments. The N-terminal amine group readily reacts at lower pH, 

whereas the primary amine group on the Lys side chain at higher pH. The optimal pH for nearly 100% 

conversion of dimethyl labeling on both the N-terminus and on the Lys side chain was reported to be 5 

to 8.5 (176). 

The reaction can be performed in-solution, online on the LC column or on resin (176). The latter was 

chosen for this project for several reasons. Firstly, peptides from an IP eluate are bound on the 

reverse phase micro-column for peptide isolation anyway. Secondly, remaining reagents can be easily 

removed by washing the resin after the reaction and modified peptides subsequently eluted from the 

resin for further processing. Thus, at least one drying step of peptides from IP eluates is avoided and 

losses due to repetitive drying and dissolving steps minimized. 

 

 

 
Figure 25. Chemical formula of glyceraldehyde-3-phosphate (G3P) and hypothesized products 
A) Chemical formula of glyceraldehyde-3-phosphate (G3P) selected as the tagging reagent, B) Hypothesized products after G3P labeling 
of primary amines. 
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In order to exploit the dimethyl labeling chemical principles for this project, another molecule was 

needed instead of formaldehyde. The required functional groups in the tagging molecule were an 

aldehyde group, which was necessary for the reaction to occur, and a phospho-group necessary for 

TiO2 separation of peptides from CHAPS. Moreover, the reagent should ideally be commercially 

available. We found glyceraldehyde-3-phosphate (G3P), whose formula is depicted in Figure 25 A. We 

hypothesized that the reaction will result in products carrying a single or a double G3P tag on the 

primary amine (Figure 25 B).  

Before any modification was tested on the IP eluate, it needed to give optimal results with synthetic 

peptides. Therefore, all optimization experiments described below were conducted with the HLA-A2 

HPV16 synthetic peptide mixture (3.1.14.1) and synthetic endogenous peptides (3.1.14.4). 

 

Before the G3P labeling experiment was performed on the resin, the dimethyl labeling reaction was 

tested on the Oligo R3 micro-column. Furthermore, reaction buffers with different pH were compared 

to test effects on the reaction yields. 100 pmol/peptide of the HLA-A2 HPV16 synthetic peptides were 

bound on three micro-columns. The reaction was performed as described in section 3.2.4.5.1, with the 

only change that 60 µL 0.05 M NaCH3COO with pH 2.8, 5.5 or 8.2 were mixed with 0.6 µL 4% (vol/vol) 

formaldehyde and 0.6 µL 0.6 M NaBH3CN and added on the top of the micro-columns. An aliquot 

(app. 10 µL) of the reaction mixture was pressed through by overpressure created with a syringe 

mounted on the top of a micro-column. The micro-column was incubated at RT for 10 – 15 min before 

the reaction solution in the micro-column was refreshed with a new aliquot (app. 10 µL). The 

remaining reagents were washed away with 0.1% TFA in water, peptides eluted with 35% ACN/0.1% 

TFA, vacuum dried and analyzed with the speLC-Q Exactive instrument. Results were processed with 

the Skyline software, which searched for the HLA-A2 HPV16 and endogenous synthetic peptides with 

dimethyl modifications on the N-terminus and Lys. All peptides were modified only on the N-terminus 

in the reaction with pH 2.8, whereas at pH 5.5 the conversion partially happened also on Lys side 

chains, resulting in mixed products. Peptides fully converted on the N-terminus and Lys side chains at 

pH 8.2. The reaction gave almost 100% conversion rate.  

 

Based on the results of the dimethyl labeling reaction, the reaction with the chosen labeling reagent 

G3P was performed, following the protocol described in the section 3.2.4.5.1 and similarly as 

described above. The pH values were adjusted to 3.5, 5.5 and 7.2. Peptides were eluted from the 

micro-columns after the reaction and analyzed on the speLC-Q Exactive instrument. Results were 

inspected manually and analyzed for product intensities using the Skyline program, searching against 

target peptides with possible modifications. The results showed the presence of the singly G3P 

labeled product (Figure 26) but also a product which had a 14 Da higher molecular mass than 

expected (G3P+14). The MS
2
 spectra of a representative peptide E69-19 FQDPQERPIKL, showing a 

successful modification at pH 5.5, are depicted in Figure 26 A, B and C. It can be observed that the 

peptide was modified on the N-terminus, as the characteristic peak for N-terminal phenylalanine (F) at 

120.08 m/z shifted for 154.01 to 274.09 or for 168.02 to 288.10 m/z (marked in red in Figure 26 A, B 

and C), whereas most other characteristic peaks remained unchanged. Surprisingly, the modification 
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was identified only on the N-terminus, but not on the Lys side chain, also in the sample with increased 

pH. This can be deducted from the dominant y8 peak at 980.59 m/z, which did not shift for 154 or 168 

m/z.  

 

 

 
Figure 26. G3P tagging of the peptide E69-19, FQDPQERPIKL, resulted in successful modification on the N-terminus. 
HLA-A2 HPV16 peptides were bound to the Oligo R3 micro-column and subjected to chemical tagging with G3P. Peptides were washed 
and eluted prior to speLC-Q-Exacitve analysis. A)  MS2 spectrum of unmodified FQDPQERPIKL, B) MS2 spectrum of singly G3P modified 
peptide, C) MS2 spectrum of G3P+14 modified FQDPQERPIKL. The light brown peaks are plotted to the axes on the right for better 
representation of characteristic low intensity peaks. N-terminal phenylalanine and its modified counterparts together with the y8 ion, are 
marked in red in A-C. D) Overlaid LC-MS2 chromatographic profile of unmodified peptides and peptides modified at pH 5.5, showing the 
decrease of signal intensity between samples.   

 

The signals for doubly G3P labeled products were almost as low as those from the background, which 

could be due to the reaction predominantly resulting in singly labeled products, or impaired ionization 

of the doubly labeled molecule (180-182) due to the introduction of two phospho-groups. Furthermore, 

small amounts of peptides with a mass increase of 28 Da were detected in samples of the reaction at 

pH 7.2. The amounts of various species were pH dependent such that singly G3P (+154 Da) labeled 

product was most abundant at pH 3.5, and G3P+14 (+168 Da) modified products most abundant at pH 

7.2.  
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All G3P modified peptides had reduced signal intensities relative to the unmodified counterpart, owing 

to the reduced ionization because of the introduced phospho-group (180-182). Therefore, the overall 

intensity of the LC-MS chromatographic profile after modification was lower. Furthermore, its 

complexity was increased, due to the presence of more products than in the sample of unmodified 

peptides (Figure 26 D). 

 

To investigate how introduced phospho-groups hindered ionization of G3P modified peptides an 

additional step of dephosphorylation with alkaline phosphatase was introduced into the workflow (180-

182). Ideally, enzymatic dephosphorylation would be performed directly after TiO2 pull down in the 

TiO2 elution buffer with appropriate pH adjustment to prevent additional losses due to drying of the 

sample prior to the enzymatic reaction. To investigate this possibility, a test was conducted where 

G3P-modified peptides after reaction at pH 5.5 were resuspended in TiO2 elution buffer and the pH 

was adjusted to 9 with formic acid. A first aliquot was subjected to direct drying in the vacuum 

centrifuge as a reference, whereas a second aliquot was incubated with alkaline phosphatase for 1 h 

at 37 °C and with mixing at 400 rpm. Samples were subjected to analysis with the speLC-Q-Exactive. 

Data were inspected manually and analyzed for product intensities using the Skyline program, 

searching against target peptides with possible modifications.   

The masses for modifications after dephosphorylation were expected to be increased by 74 Da 

(dephosphorylated single G3P), 88 Da (dephosphorylated G3P+14) or 148 Da (dephosphorylated 

double G3P) compared to the unmodified counterpart. Results showed that most of the peptides were 

dephosphorylated, resulting in two to ten-fold gains in signal intensities for the dephosphorylated 

single G3P (+74 Da) peptides (Figure 27) and similarly for dephosphorylated G3P+14 (+88 Da) 

peptides. Signal gains were highest for peptides containing no basic amino acids. Furthermore, peaks 

for doubly G3P modified dephosphorylated peptides (+148 Da) could now be observed. It is important 

to note that a small portion of the G3P modified peptides underwent spontaneous dephosphorylation 

prior to the enzymatic reaction (purple bars in Figure 27). 

Manual inspection of spectra revealed the presence of additional side products which were not 

expected from the chemistry of the reaction and were not observed prior to enzymatic 

dephosphorylation. Peaks with the following masses were detected on primary amines: 44 Da, 58.1 

Da and 118 Da. The masses correspond to the normal G3P expected modifications after 

dephosphorylation 74 Da, 88 Da and 148 Da, respectively, but with a mass loss of 30 Da each. MS
2
 

spectra of expected and side products are depicted in Figure 28 for the representative peptide E69-19 

FQDPQERPIKL.  

 



Results 

79 

 

 
 

Figure 27. Enzymatic dephosphorylation of G3P modified peptides increased signal intensities. 
G3P modified peptides were resuspended in TiO2 elution buffer and pH was adjusted to 9. One aliquot was subjected to direct vacuum 
drying as a reference, whereas the second was enzymatically dephosphorylated with alkaline phosphatase for 1h, 37 °C, 400 rpm. 
Samples were analyzed with the speLC-Q-Exacitve instrument and data quantified with the Skyline program for peptides with the single 
dephosphorylated G3P tag (+74 Da). Before dephosphorylation: spontaneous dephosphorylation before enzymatic reaction; after 
dephosphorylation: product generated after enzymatic dephosphorylation. Error bars represent the SD from two technical replicates. 

 

The single G3P dephosphorylated (+74 Da) peptides and side products with mass increases of 44 Da, 

58 Da or 88 Da acquired the modification on the N-terminus (Figure 28 A – D), as the N-terminal 

phenylalanine mass changed for the respective mass, whereas the characteristic y8 peak (980.59) did 

not undergo any mass shifts. Importantly, the mass increase of 88 Da can originate from 

dephosphorylated G3P+14 and also from a peptide with doubly G3P dephosphorylated modification 

and the mass loss of 30 Da on each of the G3P dephosphorylated tags (+2x44 Da). They could be 

located on the N-terminus and render the same MS
2
 spectrum with the characteristic peak at 208.13. 

If the +88 Da modification occurred with a distribution of the G3P tags between the N-terminus and a 

Lys side chain, then the products would be distinguishable in the MS
2
 spectra (Figure 28 F and I). The 

spectrum in Figure 28 F shows a +88 Da product on either the N-terminus alone or as a distribution of 

two 44 Da modifications on the N-terminus and Lys with mass shifts from 120.08 to 164.11 or 208.13 

for +44 Da or +88 Da tags, respectively, and 980.59 to 1024.62 for a +44 Da tag. The spectrum in 

Figure 28 I shows a +88 Da product again on the N-terminus alone or as a distribution of +74 and +14 

Da modifications on the N-terminus and Lys with mass shifts from 120.08 to 194.12 or 208.13 for +74 

Da or +88 Da tags, respectively and 980.59 to 994.61 for a +14 Da tag. These results showed that the 

+14 Da group bound to the primary amine either in combination with the G3P tag or alone. We also 

observed a product with +28 Da on primary amines at higher pH.  

 

The doubly G3P dephosphorylated peptide (+148 Da) appeared with the modification either only on 

the N-terminus as in Figure 28 G with a peak at 268.16 and no change at y8 (980.59), or as a 

distribution of the single G3P dephosphorylated tag on the N-terminus and Lys (Figure 43 in the 

Appendix). 
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The side product with the mass increase of 118 Da was a mixture of three different products as seen 

in Figure 28 H. The +118 Da was a combination of a single G3P dephosphorylated (+74 Da) tag and 

its counterpart with the 30 Da mass lose (+44 Da). As seen for +88 and +148 Da tags, they were 

located either on the N-terminus or distributed among the N-terminus and Lys, which was also 

observed for the +118 Da modification. The observed mass shifts were from 120.08 to 164.11, 194.12 

or 238.14 for +44 Da, +74 Da and +118 Da tag on the N-terminus, respectively, whereas the mass 

shifts from 980.59 to 1024.62 or 1054.63 for +44 Da or +74 Da tag on the y8 fragment, respectively. 

 

As reactions gave various side products, a new experiment was conducted in order to determine a 

most optimal pH where one of the species should have a dominant signal. The same experimental set 

up for the G3P chemical modification, as described above, was performed for the following pH 

conditions: 1.5, 2, 2.5, 3, 3.5, 4, 5.5, 7 and 8. 100 fmol/peptide were bound on each of nine Zorbax 

micro-columns and one aliquot was vacuum dried directly for relative comparison of signal intensities 

of unmodified and modified peptides. After G3P modification on the Zorbax micro-column, half of the 

eluate was subjected to direct vacuum drying and another half to peptide isolation with TiO2 pull down 

and enzymatic dephosphorylation. All samples were measured with the speLC-Q Exactive instrument.  

The most intense products after G3P modification on the Zorbax micro-column before and after TiO2 

pull down for two representative peptides E69-19 FQDPQERPIKL and E711-19 YMLDLQPET are 

depicted in Figure 29 A and B. The highest signal intensities were detected for singly G3P (+154 Da) 

modified peptides after elution from the Zorbax micro-column and dephosphorylated singly G3P (+74 

Da) modified peptides after the TiO2 isolation and dephosphorylation. In both cases, the intensities 

were higher when the G3P modification was performed at lower pH. The intensities decreased with 

increasing reaction pH. The intensities of dephosphorylated doubly G3P (+148 Da) modified peptides 

were low at low pH. The signal intensities for the singly G3P+14 Da (+168 Da) modified peptides after 

modification and elution from the Zorbax micro-column and dephosphorylated singly G3P+14 Da (+88 

Da) modified peptides after TiO2 isolation and dephosphorylation increased with the modification 

reaction performed with increasing pH until pH=5.5 and then the amounts decreased again. At pH 

>5.5 the product with 28 Da mass gain was observed for the E711-19 YMLDLQPET peptide. A 

proportion of E711-19 YMLDLQPET peptide was left unmodified after the reaction on the Zorbax micro-

column at lower pH conditions, which was observed also for some other peptides. 

As peptide E69-19 FQDPQERPIKL contains two primary amines, the possible products were more 

diverse than for the E711-19 peptide. Beside products described above, more of low intensity were 

observed at higher pHs, namely +162 Da (74+88 Da), +192 Da (44+148 Da), +132 Da (44+88=58+74 

Da), +222 Da (3x74 Da), showing that one or two G3P molecules reacted with the same primary 

amine.  
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Figure 28. MS2 spectra of observed products after dephosphorylation of G3P modified peptide E69-19 FQDPQERPIKL. 
G3P modified peptides were treated with alkaline phosphatase before they were analyzed with the speLC-Q-Exactive instrument. The light brown peaks are plotted to the axes on the right for better representation of 
characteristic low intensity peaks. Characteristic peaks for N-terminal phenylalanine (120.08 m/z) and y8 (980.59 m/z) together with their modified counterparts are marked in red to demonstrate the position of 
modification in the peptide.
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Figure 29. Signal intensities of various modifications on the representative peptides E69-19 and E711-19 and comparison of most 
intense signals for a selection of HLA-A2 peptides. 
HPV16 HLA-A2 peptides were either bound on the Zorbax micro-column for G3P modification at different pH or vacuum dried for a 
reference. Peptides were eluted after the G3P reaction and one half was subjected to vacuum drying and the other half to TiO2 pull down 
followed by dephosphorylation. Analysis was performed with the speLC-Q-Exactive instrument and data processed with the Skyline 
program. The MS1 intensities of modified peptides tagged at different pH conditions were compared to the intensities of peptides before 
modification. A) E69-19 FQDPQERPIKL most intense peptide products; B) E711-19 YMLDLQPET most intense peptide products; C) A 
selection of other dephosphorylated singly G3P (+74 Da) modified peptides after TiO2 isolation and dephosphorylation; D) A selection of 
other dephosphorylated singly G3P+14 Da (+88 Da) modified peptides after TiO2 isolation and dephosphorylation; Z:  peptide in a sample 
analyzed after the G3P reaction and elution from the Zorbax micro-column, T: peptide in a sample analyzed after TiO2 isolation and 
dephosphorylation; M(Ox) and MetOx: oxidized methionine in a peptide. Error bars represent the SD from a minimum of two technical 
replicates.    

 

However, the most dominant signals were those for singly G3P (+154 Da) modified and 

dephosphorylated singly G3P (+74 Da) modified peptides when the reaction was performed at lower 

pH. From these results, it was concluded that the most optimal pH for the reaction will be ~2 as at an 

even lower pH some of the peptides did not react effectively, leaving a higher proportion of unmodified 

peptides, whereas at higher pH the mixture of products got more complex.  

 

The MS
1
 signal intensities of other peptides with singly dephosphorylated G3P (+74 Da) or singly 

dephosphorylated G3P+14 (+88 Da) modifications were compared relative to the signal of unmodified 

counterparts (Figure 29 C, D). The trend of the pH effect on the amount of the dephosphorylated singly 

G3P (+74 Da) modified or of the dephosphorylated singly G3P+14 (+88 Da) modified peptides was 

similar as described above. The optimal pH for the reaction of other peptides was also in the low pH 

range between 1.5 and 2.5. Furthermore, sample processing introduced oxidation of methionine, 

which led to different retention times on the LC system, resulting in two separately eluting species. 

Thus, total signal intensities of methionine containing peptides were approximately equally distributed 

between the unoxidized and oxidized counterparts.  
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The final signal intensities for the pH conditions giving the highest signals were peptide dependent and 

were between 20% and 30% of those before the reaction for most of the peptides. Two peptides gave 

higher signal intensities and three had intensities below 20% (Figure 29 A, B).  

  

The final experimental workflow for epitope extraction that was optimized through steps described in 

this subchapter is schematically presented in Figure 30. In brief, after isolation of HLA-peptide 

complexes from the sepharose beads, peptides are dissociated from the HLA complexes by acetic 

treatment. IP samples contain protein contaminants and detergent. The protein content can be 

reduced with sample processing on micro-colums packed with Zorbax resin, which does not bind 

bigger proteins, but still binds detergent and peptides. Peptides bound on the micro-column resin are 

then subjected to chemical modification with glyceraldehyde 3-phophate (G3P) at pH 2. Remaining 

reagents are removed by micro-column washing, and peptides are eluted with 30%-35% ACN/0.1% 

TFA in water. Peptides are separated from the detergent by binding to titanium dioxide (TiO2) beads 

via a phospho-group introduced during chemical tagging. Subsequently, after elution from TiO2 beads, 

peptides are subjected to enzymatic dephosphorylation, vacuum drying, desalting and LC-MS 

analysis.   
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Figure 30. Experimental workflow for epitope extraction from an IP sample with the G3P tagging and TiO2 pull down. 
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4.2.5.2. G3P chemical modification of IP samples 

The optimized workflow for isolation of epitopes based on G3P chemical tagging described above was 

applied to IP samples of CaSki, SNU17 and SNU1000 cells. The experiment with CaSki cells was 

performed three times with 4, 8 or 18 IP samples and for SNU17 and SNU1000 cells once with 8 IP 

samples each. LC-MS
2
 analysis was conducted with the speLC-Q-Exactive instrument. 

 

 

 
Figure 31. MS2 spectra for endogenous peptides AIVDKVPSV and YLLPAIVHI successfully identified in HLA-A2 IP samples from 
CaSki, SNU17 and SNU1000 cells. 
Samples were prepared following the established protocol for isolation of epitopes with G3P tagging, TiO2 pull down and 
dephosphorylation. Subsequently, samples were analyzed with the speLC-Q-Exactive instrument. MS2 spectra of IP samples (B – D, F – 
H) are compared to the MS2 spectrum of the singly G3P-tagged dephosphorylated (+74 Da) synthetic peptide acquired in previous 
experiment (A and E). The light brown peaks are plotted to the axes on the right for better representation of characteristic low intensity 
peaks.   
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The signal for CHAPS was not detected in any of the measured IP samples. The endogenous 

AIVDKVPSV and YLLPAIVHI peptides were successfully identified in all CaSki and SNU17 IP samples 

as MS
2
 spectrum for modified synthetic peptide match with the spectrum identified in the IP samples 

(Figure 31 A – C and E – G). Only peptide AIVDKVPSV was identified in SNU1000 IP samples, 

whereas peptides YLLPAIVHI was not detected (Figure 31 D, H).  

None of the target HLA-A2 HPV16 peptides was detected in any of the IP samples analyzed. With this 

experiment we showed that the established experimental workflow successfully isolates epitopes from 

all IP contaminants in the IP sample.  

 

4.3. Comparison of immunoprecipitation and direct elution of epitopes 
from the cell surface by acetic treatment 

Direct elution of epitopes from the cell surface is another method of epitope isolation, which is 

performed easily and fast. On the other hand, it can be only employed for suspension cells and 

adherent monolayer cell culture cells, which can easily be collected by centrifugation or scraping. 

However, the method is not HLA-specific and elutes all epitopes and other cell surface molecules 

which dissociate in a low pH environment.  

To assess the efficiency of the direct elution strategy, a comparison of HLA-A2 IP and direct elution of 

epitopes was conducted with 10
8
 SNU17 cells each. Direct elution from cells and IP were performed 

as described in sections 3.2.3.3 and 3.2.3.1, respectively. Cells for direct elution of epitopes were once 

collected with trypsin treatment and once with gentle scraping on ice with 10% acetic acid. 

Trypsin detaches cells but also cuts proteins and peptides from the cell surface, therefore less 

complex samples and lower amounts of eluted peptides were expected. Directly eluted samples were 

subjected to 2 kDa ultrafiltration and desalting on the Seppak cartridge as the volume of the sample in 

total was 9 mL. The IP samples were treated with 0.3% TFA in water and extraction was done on the 

Zorbax micro-column. IP or directly eluted samples was analyzed using LC-MS
3
.  

Directly eluted samples collected either by scraping or trypsin treatment resulted in high signals 

throughout the whole LC separation indicating the sample complexity (Figure 32), which is greatly 

reduced in the IP sample, as only minor background peaks and the two dominant peaks of 

endogenous peptides AIVDKVPSV and YLLPAIVHI were detected at 28.5 min and 47.2 min, 

respectively (Figure 32 B). It is important to note that the pressure on the LC device was elevated or 

reached its maximum during the separation of the directly eluted sample of cells collected by scraping, 

whereas this did not happen in the sample from trypsin treated cells or the IP sample.  

The MS
3
 methodology measures only pre-optimized transitions, resulting in high specificity, high 

sensitivity and low or no background or interferences. This was found to be true for the less complex 

IP sample, but not for the directly eluted samples, despite reducing their complexity with 2 kDa 

ultrafiltration. Literally, every programmed transition generated a complex MS
3
 spectrum in the directly 

eluted samples (Figure 44).  
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Figure 32. Comparison of direct elution of epitopes from the SNU17 cell surface and HLA-A2 IP. 
Directly eluted samples were collected with scraping or trypsin treatment, subjected to 10% acetic acid treatment, 2kDa ultrafiltration and 
Seppak enrichment. The IP sample was eluted with 0.3% TFA and purified on the Zorbax micro-column. Samples were analyzed with the 
nanoAcquity UPLC-QTrap6500 platform. A) LC-MS3 chromatographic profile of all three samples. B) LC-MS3 chromatographic profile of 
the IP sample only. Peaks for the endogenous peptides AIVDKVPSV and YLLPAIVHI are marked. C) Signal intensities of the endogenous 
peptides AIVDKVPSV and YLLPAIVHI in all three samples. Error bars represent SD of minimal two technical replicates for the IP and 
directly eluted samples of trypsin collected cells and one technical replicate of directly eluted samples of cells collected with scraping. 

 

The signal intensities of the endogenous peptides AIVDKVPSV and YLLPAIVHI were compared in all 

three samples (Figure 32 C). Intensities were highest in the IP sample and comparable or lower in the 

directly eluted sample of trypsin collected cells, whereas they were greatly reduced in the directly 

eluted sample of cells collected by scraping.  

Based on the results described above, pre-fractionation strategies using different separation chemistry 

than the reverse phase materials are required for improved identification of target peptides from 

directly eluted samples. Isoelectric focusing (IEF), which separates peptides and proteins based on 

their isoelectric point (183, 184), was employed in this project. To this end, SNU17 cells were 

subjected to mild acetic treatment for direct elution of epitopes, desalting with a Seppak cartridge, IEF 

fractionation and LC-MS
3
 analysis. The endogenous peptide YLLPAIVHI was successfully focused to 

fraction 15 with a pH between 7.9 and 8.2 (Figure 45), whereas the endogenous peptide AIVDKVPSV 

was detected in multiple fractions with low intensities. Target HPV16 E6 and E7 peptides were not 

detected in any of the fractions. As the endogenous peptide AIVDKVPSV was not successfully 

focused to one fraction, IEF was not considered optimal for pre-fractionation of directly eluted epitopes 

from the cell surface. 
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4.4. Identification of viral epitopes 

4.4.1. HPV16 E6 and E7 epitopes in HPV16 transformed cells 

As indicated in previous subchapters, surface presentation of peptide E711-19 in the CaSki, SNU17 and 

SNU1000 cell lines could not be confirmed with our experimental workflow. However, endogenous 

peptides AIVDKVPSV and YLLPAIVHI were detected in every HLA-A2 IP sample measured, indicating 

that the workflow for sample preparation and analysis worked. Moreover, the experiment with external 

pulsing of the HPV negative cell line BSM with the peptide E711-19 resulted in identification of the target 

peptide as well as endogenous peptides AIVDKVPSV and YLLPAIVHI, further confirming the 

efficiency of the workflow. 

 

4.4.2. mCMV derived H-2Db epitopes in the virus transfected cells 

The aim of the cooperation project with the Prof. Čičin-Šain’s group at the Helmholtz Centre for 

Infection Research (Braunschweig, Germany) was to confirm the presence of the known murine 

cytomegalovirus (mCMV) M45 protein derived epitope HGIRNASFI in complex with MHC I H-2D
b
 

molecules in cells infected with different mCMV mutants: mCMV wild type (mCMV
WT

), mCMV
M45IA

 

and mCMV
M45 C-term

. The mCMV mutants induced different HGIRNASFI-specific CD8+ T cell responses 

upon in vivo infection and differential activation of a M45-specific cytotoxic T-cell line (CTL) upon in 

vitro co-culture with virus-infected cells. As mCMV biology is not the main focus of this study, only a 

short description of the recombinant viruses used in the study is provided here. The mCMV
WT

 

recombinant contained the HGIRNASFI epitope at its endogenous position within the M45 protein and 

it induced M45-specific CD8 T-cell responses in vivo but did not activate the CTL in vitro. The 

mCMV
M45IA

 recombinant did not present the endogenous M45 epitope due to the introduced 

mutation. However, the C-term mutant expressed the HGIRNASFI epitope “ectopically” at the C-

terminal end of the M45 protein. This mutant induced much stronger M45-specific CD8 T-cell 

responses in vivo and did activate the CTL in vitro. 

The biological experiments and IP isolation, following our optimazed protocol, were performed in 

Braunschweig, whereas epitope elution, extraction, and analysis by LC-MS
3
 were performed by me. 

The aforementioned mCMV viruses were used for infection of 1x10
7
 liver sinusoidal endothelial cells 

(LSEC) each. 1x10
7
 uninfected LSEC cells were used as a control. Cells were subjected to H-2D

b
 IP, 

acetic treatment, ultrafiltration, desalting with OMIX tips and LC-MS
3
 data analysis.  

Three endogenous H-2D
b
 restricted epitopes, AALENTHLL, FGPVNHEEL and KALINADEL, were 

monitored to ensure the quality of IP sample preparation and subsequent analysis. All three peptides 

were detected in every IP sample. FGPVNHEEL intensity was low, whereas AALENTHLL and 

KALINADEL, which co-eluted in the same chromatographic peak, had high intensity (Figure 33 A).  
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Figure 33. Detection of the mCMV H-2Db restricted HGIRNASFI epitope.  
LSEC cells were infected with one of three mCMV mutants or left untreated prior to H-2Db IP. Samples were subjected to ultrafiltration and 
desalting with OMIX C18 tips prior to LC-MS3 analysis with the nanoAcquity UPLC-QTrap6500 platform. A) LC-MS3 chromatographic 
profile for all investigated samples. Arrows point to the mCMV (HGIRNASFI) and the H-2Db endogenous peptides (low abundant 
FGPVNHEEL and co-eluting abundant AALENTHLL and KALINADEL); B) Extracted ion chromatogram for transitions: a8

2+ 
(507.78/428.23), b8

2+ (507.78/442.23), b7-H2O (507.78/718.37) and y8 (507.78/877.49) for the synthetic peptide HGIRNASFI; C) Extracted 
ion chromatogram for transitions 507.78/428.23, 507.78/442.23, 507.78/718.37 and 507.78/877.49 for the peptide detected in the IP 
sample from cells infected with mCMVM45 C-term; D) MS3 spectrum for transition a8

2+ (507.78/428.23) detected for the synthetic peptide 
HGIRNASFI (black) and for the same transition in the IP sample from cells infected with mCMVM45 C-term.  
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The mCMV H-2D
b
 restricted peptide HGIRNASFI was successfully identified in the IP sample from the 

LSEC cells infected with mCMV
M45 C-term

 in high abundance, whereas it was not detected in any other 

IP sample (Figure 33 A). The identity of the HGIRNASFI peptide in the LSEC mCMV
M45 C-term

 IP 

sample was confirmed with several criteria. First, the retention time for the peptide detected in the IP 

sample was within 15 s of that from the synthetic HGIRNASFI peptide. Second, the extracted ion 

chromatograms for all transitions in IP samples displayed the matching profile with those of the 

standard peptides (Figure 33 B,C). Finally, MS
3
 spectra were monitored for four transitions and all of 

them matched between the synthetic HGIRNASFI peptide and the peptide identified in the IP sample.  

For clarity of presentation, only one of them is shown in Figure 33 D. MS
3
 spectra for the IP sample 

and the synthetic peptide are presented on the same axis, with one turned upward and the other 

downward for better representation of the matching MS
3
 fingerprint. Results were confirmed in three 

independent biological replicates. 

 

4.4.3. Detection of HIV immunodominant epitopes 

In a collaborative study with Dr. LeGall’s group at the Ragon Institute of MGH, MIT and Harvard, 

(Cambridge, MA, USA) we aimed at targeted identification of well-known HLA-A2-restricted HIV-

derived immunodominant epitopes, as reported in the Los Alamos Database HIV-1 (185). These 

epitopes were identified by ELIspot screening using long HIV peptides exogenously pulsed onto cells. 

The LeGall group has established an unbiased, untargeted MS-based approach to identify MHC-

bound epitopes directly eluted from the surface of live HIV-positive cells (manuscript submitted
1
). They 

identified a number of potentially novel HIV epitopes presented by HIV transfected 293T cells 

expressing HLA-A2 and HLA-B7 molecules, and several of the previously reported HIV epitopes 

derived from the HIV-Gag and Pol proteins. Since an untargeted approach is less sensitive and non-

specifically dissociated epitopes from all HLA class I molecules expressed on the surface are also 

contained in the sample, we applied our targeted LC-MS
3
 analysis to investigate the surface 

presentation of the best known immunodominant HIV epitopes, specifically presented on HLA-A2 

molecules. Furthermore, we investigated whether particular peptides bind to HLA-A2 or other HLA 

molecules with similar binding motives, particularly to HLA-B7. For our targeted approach, 1x10
8
 293T 

cells were transfected with the HIV-R5 strain pseudotyped with VSVg or left untransfected as a control 

and subjected to HLA-A2 IP isolation. Epitopes were subsequently isolated by acetic treatment and 

binding to the Zorbax micro-column (section 3.2.4.2.3). The LC-MS
3
 analysis was performed once 

monitoring peptides with HLA-A2 binding motives and once monitoring peptides with concurrent 

binding motives for HLA-A2 and HLA-B7. The isolated MHC peptides were analyzed in a single 

experiment. The endogenous HLA-A2 restricted epitopes AIVDKVPSV and YLLPAIVHI were 

monitored by LC-MS
3
 to ensure the quality of IP sample preparation and subsequent analysis. The 

intensity of AIVDKVPSV was high in control 293T cells, whereas its abundance decreased to almost 

the detection limit upon HIV transfection, indicating displacement of self-epitopes by HIV-derived ones. 

YLLPAIVHI remained highly abundant in the IP samples obtained from control and HIV transfected 

293T cells. Among the targeted immunodominant HIV HLA-A2 epitopes, EPFRDYVDRFY, 

FLGKIWPSYK and VLEWRFDSRL were successfully identified with low abundance in the IP sample 

2Rucevic M, Kourjian G, Boucau J, Garcia Bertran W, Berberich MJ, Walker BD and LeGall S. MHC-bound HIV peptides identified from 

various cell types reveal common nested peptides and novel T cell responses. 
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of HIV transfected 293T cells, but not in the control 293T cells (Figure 34, Figure 35, Figure 36). 

Identities of these three HLA-A2 HIV epitopes were confirmed with the same criteria as for the mCMV 

HGIRNASFI peptide described in the previous subchapter. However, the retention times for peptides 

detected in the IP sample was shifted for up to 45 s relative to the synthetic counterparts. The 

extracted ion chromatograms for all transitions in IP sample displayed the matching profile with those 

of the standard peptides (Figure 34, Figure 35, Figure 36 A and D).  

 

 

Figure 34. Detection of the HIV HLA-A2-restricted EPFRDYVDRFY epitope. 
293T cells were transfected with the HIV-R5 strain pseudotyped with VSVg or left untransfected as a control prior to HLA-A2 IP. Samples 
were subjected to Zorbax micro-column purification and subsequently to LC-MS3 analysis with the nanoAcquity UPLC-QTrap6500 platform. 
A) Extracted ion chromatogram for transitions: MH-H2O3+ (502.90/496.90), b5-H2O (502.90/627.29), y10

2+ (753.85/689.33) and MH-H2O2+ 
(753.85/744.85) for the synthetic peptide EPFRDYVDRFY; B) MS3 spectrum for transition b5-H2O (502.90/627.29) for the synthetic peptide 
EPFRDYVDRFY; C) MS3 spectrum for transition MH-H2O2+ (753.85/744.85) detected for the synthetic peptide EPFRDYVDRFY; D) 
Extracted ion chromatogram for transitions: 502.90/496.90, 502.90/627.29, 753.85/689.33 and 753.85/744.85 for the peptide detected in 
the HLA-A2 IP sample from HIV transfected 293T cells; E) MS3 spectrum for transition 502.90/627.29 detected in the IP sample; F) MS3 
spectrum for transition 753.85/744.85 detected in the IP sample of HIV transfected cells. 
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Overall intensity of all three identified HIV peptides was low. Therefore, not every MS
3
 fragmentation 

resulted in a MS
3
 spectra fingerprint with matching ratios of peak intensities equivalent to those 

obtained for the synthetic peptide. However, the most characteristic dominant peaks were detected in 

all spectra for all transitions. MS
3
 spectra were monitored for four transitions per peptide but only two 

of them are shown in Figure 34, Figure 35, Figure 36 panels B, C, E and F for clarity reasons.  

 

 

Figure 35. Detection of the HIV HLA-A2-restricted FLGKIWPSYK epitope. 
293T cells were transfected with the HIV-R5 strain pseudotyped with VSVg or left untransfected as a control prior to IP. Samples were 
subjected to Zorbax micro-column purification and to LC-MS3 analysis with the nanoAcquity UPLC-QTrap6500 platform. A) Extracted ion 
chromatogram for transitions: y8

2+ (413.57/489.77), b9
2+ (413.57/546.80), y5 (413.57/680.34) and y8 (619.85/978.54) for the synthetic 

peptide FLGKIWPSYK; B) MS3 spectrum for transition y8
2+ (413.57/489.77) detected for the synthetic peptide FLGKIWPSYK; C) MS3 

spectrum for transition b9
2+ (413.57/546.80) detected for the synthetic peptide FLGKIWPSYK; D) Extracted ion chromatogram for 

transitions: 413.57/489.77, 413.57/546.80, 413.57/680.34 and 619.85/978.54 for the peptide detected in the HLA-A2 IP sample from HIV 
transfected cells; E) MS3 spectrum for transition 413.57/489.77 detected in the IP sample; F) MS3 spectrum for transition  413.57/546.80 
detected in the IP sample of HIV transfected cells. 
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Figure 36. Detection of the HIV HLA-A2-restricted VLEWRFDSRL epitope. 
293T cells were transfected with the HIV-R5 strain pseudotyped with VSVg or left untransfected as a control prior to IP. Samples were 
subjected to Zorbax micro-column purification and to LC-MS3 analysis with the nanoAcquity UPLC-QTrap6500 platform. A) Extracted ion 
chromatogram for transitions: y7

2+ (440.91/490.26), y8-H2O2+ (440.91/545.77), y8
2+ (413.57/554.78) and y9

2+ (440.91/611.32) for the 
synthetic peptide VLEWRFDSRL; B) MS3 spectrum for MS3 transition y8

2+ (413.57/554.78) detected for the synthetic peptide 
VLEWRFDSRL; C) MS3 spectrum for MS3 transition y9

2+ (440.91/611.32) detected for the synthetic peptide VLEWRFDSRL; D) Extracted 
ion chromatogram for transitions: 440.91/490.26), 440.91/545.77, 413.57/554.78 and 440.91/611.32 for the peptide detected in the HLA-A2 
IP sample from HIV transfected cells; E) MS3 spectrum for MS3 transition 413.57/554.78 detected in the IP sample; F) MS3 spectrum for 
MS3 transition 440.91/611.32 detected in the IP sample of HIV transfected cells. 
 

Peptide FLGKIWPSYK was detected with the lowest abundance among the three identified peptides. 

Therefore, its spectra in Figure 35 F only contain the dominant peaks but their relative intensities do 

not match the relative intensities of the synthetic peptide, as the peptide was at the border of detection. 

Due to the better MS
3
 spectrum quality in Figure 35 E and the presence of dominant peaks in the other 

two MS
3
 transitions, this peptide was still confirmed to be present, but has to be validated in future 

experiments. The peptide EPFRDYVDRFY, which contained concurrent binding motives for HLA-A2 
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and HLA-B7 molecules, was identified in the HLA-A2 IP (Figure 34).  This confirmed its surface 

presentation on HLA-A2 molecules on HIV transfected 293T cells. Whether it can also bind to the 

HLA-B7 molecule remains to be confirmed in subsequent independent experiments with HLA-B7-

specific IP of HIV transfected 293T cells. The HIV Nef derived peptide VLEWRFDSRL, a well 

described immunodominant epitope, was also identified. It is the first directly identified Nef-derived 

epitope reported so far. Together, all three peptides were reliably detected. 
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5. Discussion 
 

Major histocompatibility class I complexes (MHC I), in humans called human leukocyte antigens (HLA) 

I, present epitopes on surface of all nucleated cells to CD8+ T cells. Hence, they are a link between 

the interior of a cell and the immune system. They allow T cell recognition and discrimination between 

self and non-self in the case of infection and also between normal and tumor cells. Thus, activation of 

the immune system with peptides originally presented by tumor cells or persistently infected cells, as in 

the case of some viruses, is an attractive concept which became one of the pillars in modern 

immunotherapy approaches (89).  

The first clinical trial based on the first epitope identified to be tumor-associated was initiated soon 

after their discovery and was administered as a peptide vaccination (186). MHC I epitopes were first 

identified indirectly in cell based assays, which did not provide proof that the immunologically active 

epitope is really presented on the cell surface. Therefore there was a great need for direct epitope 

identification. The first studies from 1990 were performed with the Edman degradation, where the 

binding motives of an allele were studied. Low numbers of peptide sequences were identified (67-69). 

The breakthrough happened two years later when the Edman degradation was replaced by mass 

spectrometry (MS) analysis, which allowed for identification of more epitopes (70, 187). Since then, 

leading laboratories in the field identified numerous tumor-associated epitopes and many of them 

entered clinical trials, with the IMA901 vaccination being the first therapeutic vaccine for renal cell 

carcinoma (76-78). Moreover, direct identification with MS analysis facilitated antigen processing 

machinery studies and contributed to the understanding of MHC binding motives (74).  

Despite technological advances in the MS field, resulting in fast and sensitive high – resolution 

accurate mass (HRAM) instruments, samples today are measured in data-dependent MS acquisition 

with these instruments (known as shotgun), which lack reproducibility and can easily miss low 

abundant epitopes (92, 127). 

To overcome the challenge of limited sample amounts and low epitope abundance, we aimed to 

develop a methodology for targeted identification of human papillomavirus (HPV)16 E6 and E7 

epitopes presented on the cell surface. Furthermore, we aimed to extend the methodology to detect 

epitopes from other viruses to demonstrate its broad applicability. To this end, targeted MS analysis 

was employed, which is more sensitive than data-dependent analysis used in other studies. Our 

approach measures only pre-defined and pre-programed analytes, resulting in longer measuring times 

per analyte for more intense signals (114, 131-133, 188, 189). To improve the analysis further, we 

used an MS
3
 scanning approach, which is more specific than MS

2
 analysis due to minimized 

interferences from other co-eluting species and more sensitive due to increased signal-to-noise ratio 

(134-136).  

 

High-risk types of HPV cause cervical cancer and other malignancies of anogenital and oropharyngeal 

epithelia. HPV16 is the causative agent in approximately 50% of all cervical cancers (190, 191), which 

is the third most common cancer in women worldwide (192-194). Furthermore, HPV16 has been 

associated with oropharyngeal head and neck squamous cell carcinoma, which incidence increased 
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over the past decade (195, 196). Although prophylactic vaccines were introduced, they do not protect 

against already existing infection. Moreover, they are not accessible to everyone, especially in the 

developing countries due to their high cost. Therefore, there is a need for effective treatment options.  

HPV16-induced malignant transformation is mediated by two viral oncoproteins, E6 and E7, which are 

expressed in all stages of HPV-mediated malignancy and are foreign to the body. Thus, these proteins 

are attractive targets for therapeutic vaccine design. (25, 29, 197). Identification of HPV16 E6 and E7-

derived epitopes presented on the surface of infected cells represents a step in the direction to reach 

this goal. 

 

We approached the problem of targeting low abundant HPV16 E6 and E7 epitopes with a reverse 

immunology strategy (87), where the number of potential epitope candidates is reduced by in silico 

predictions and in vitro binding assay selection, such that only strong binding peptides are then 

monitored in a targeted fashion during MS analysis of isolated HLA I-epitope complexes from the 

surface of HPV16-transformed cells. In the scope of this project, a methodology for efficient epitope 

isolation, enrichment and purification was developed, together with a targeted highly specific and 

sensitive LC-MS
3
 analysis.  

HPV16 E6 and E7-derived T cell epitopes were expected to be of low abundance due to viral immune 

evading mechanisms, resulting in low expression levels of the oncoproteins E6 and E7 and down-

regulation of HLA-peptides complexes on HPV16-transformed cells. Thus, special care was taken to 

maintain high experimental yields throughout the whole methodology development, be it for HLA-

peptide complex isolation or epitope purification and enrichment. Furthermore, we aimed to establish 

an experimental pipeline with small material input amounts as it is planned to be extended to small 

biopsy specimens, allowing direct LC-MS identification of HPV epitopes in cancer patients.  

As mentioned above, the developed methodology was later successfully applied to murine 

cytomegalovirus (mCMV) and human immunodeficiency virus (HIV)-derived epitope identification in 

two collaborative projects. 

 

5.1. Optimization of immunoprecipitation  

Immunoprecipitation (IP) of MHC peptides can be performed on columns or in suspensions in 

Eppendorf tubes. The on-column application is suitable for larger amounts of material, such as whole 

tumors (138, 198). As outlined above, our starting material amounts were expected to be low, 

therefore we decided to establish our workflow in the low-scale suspension-based platform. 

For effective isolation of membrane proteins, the choice of the detergent in the lysis buffer is important. 

Cleavable detergents are employed in usual LC-MS proteomics studies. These detergents precipitate 

after sample acidification and can be easily pelleted, whereas the supernatant is used for downstream 

sample processing causing no interferences with the workflow. Unfortunately, all detergents from this 

group are denaturating, which would cause MHC I-peptide complex disassembly and peptide loss. 

Therefore, these detergents were not applicable to our project. The suitable detergent that we found, 

which is LC-MS friendly and maintains the protein 3D structure, was CHAPS. Thus, the employed lysis 

buffer was as in (67, 68, 91, 137, 138, 167, 168). 
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Other parameters for the optimal IP protocol, such as Ab:beads:MHC complex ratios and incubation 

times, were determined during this work. As shown in section 4.1, IP was successfully optimized for 

HLA-A2 molecules. The optimal ratio of Ab and beads was determined to be 20 µg Ab for 25 µL of 

pelleted beads. The ratio of Ab and beads was significantly lower than that reported by the producer, 

which was approximately 10 mg of murine Ab for 1 mL of pelleted beads, which equals 250 µg of Ab 

for 25 µL of pelleted beads. Presumably, this is due to higher affinity of the Ab used in the producer’s 

study for sepharose beads. Moreover, efficient Ab-bead binding occurred after 2 h of incubation at RT 

(Figure 13). Sufficient incubation of the cell lysate with coupled Ab-bead complexes was determined to 

be 3 h, when the signal for the HLA heavy chain at 44 kDa was detected in the IP sample (Figure 14). 

It was also detected in the lysate before and after incubation with the Ab-bead complexes. This was 

due to WB staining performed with an anti-HLA I Ab that recognizes all types of HLA I molecules. On 

CaSki cells, HLA-A2, -A3, -B7, -B37 and -C7 are expressed. Thus, the band in the lysate before the IP 

consisted of all listed HLA molecules, and after IP of remaining HLA I molecules. However, the 

intensity of the 44 kDa band in the IP sample compared to the lysate was higher, showing successful 

enrichment of HLA-A2 (Figure 14). From this experiment, it is difficult to estimate how many HLA-A2 

complexes were left uncaptured in the lysate after the IP procedure, as all HLA I molecules were 

stained in WB not only HLA-A2. Unfortunately, no suitable antibody to distinguish HLA-A2 from other 

alleles in WB experiments was available. 

In order to capture most of the HLA-A2 molecules from the sample, a titration experiment was 

performed, where lysates of increasing numbers of cells were incubated with a fixed amount of 

coupled Ab-beads. The required number of cells to result in the highest LC-MS
3
 signal intensities for 

endogenous peptides, thereby indicating saturation of most binding places on the Ab-bead complexes, 

was 6x10
7
 for CaSki cells and 3x10

7
 for SNU17 and SNU1000 cells (Figure 15). However, it may be 

possible that there are still some unbound HLA-A2 molecules left in the lysate after the IP.  

HLA-epitope complexes dissociate after acetic treatment. Two acetic buffers described in the literature 

were compared, namely 0.3% TFA (67-69, 138) and 10% acetic acid, both in water (70, 187). The LC-

MS
3
 results were comparable (Figure 39 in the Appendix), meaning that the composition is not as 

important as the correct pH of the elution buffer, which has to be below pH 2.9 as described in (148, 

149). It can be assumed that other buffers with the required pH would perform similarly. 0.3% TFA in 

water was chosen for our protocol. 

All samples were subjected to ultrafiltration and desalting prior to LC-MS
3
 analysis as described in 

(138, 198). The highly abundant HLA-A2-restricted endogenous peptides AIVDKVPSV and 

YLLPAIVHI, which were measured to control quality of sample preparation and LC-MS
3
 analysis, were 

detected in all measured samples. In contrast, the target peptide HLA-A2 HPV16 E711-19 

YMLDLQPET, which was identified by MS
3
 on CaSki cells before (146), was not detected. 

The IP protocol and epitope extraction with ultrafiltration and desalting was further validated by an 

experiment, where the target HLA-A2 HPV16 E711-19 YMLDLQPET peptide was externally loaded on 

the cell surface of HPV16- HLA-A2+ BSM cells. As demonstrated in Figure 16, the HLA-A2 HPV16 

E711-19 YMLDLQPET target peptide was successfully detected in all samples where peptide was 

added to cells prior to the IP, indicating that the E711-19 peptide can be detected with the established 
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methodology. However, the ratios of identified target peptide between samples were app. fivefold 

(Figure 16 D), whereas the ratios of actually added amounts of peptide to cells were tenfold. This 

difference could be due to sample preparation or unexamined biological reasons.  

 

We assumed that the E711-19 target peptide in the IP samples from HPV16+ cells adsorbed to the 

ultrafiltration membrane, which caused its loss and prevented LC-MS
3
 identification due to low peptide 

amounts. Therefore the ultrafiltration step was omitted and the extraction was performed with OMIX 

tips. Unfortunately, the target peptide was still not detected. In order to reliably identify the target 

peptide E711-19, the sample input per one LC-MS
3
 analysis was up-scaled, which lead to clogging of 

the LC column or severely elevated LC system pressure on all LC-MS platforms used in this study, 

indicating the necessity to examine other epitope extraction and purification methodologies. Moreover, 

plasticware with low affinity for protein was used to further minimize potential peptide losses in all 

sample preparation steps. 

 

5.2. Epitope extraction, enrichment and purification strategies  

In large scale epitome identification, epitopes are eluted from an immunoaffinity column, subjected to 

ultrafiltration and to desalting with C18 material in a pipette tip (138, 198). As described before, we 

aimed to replace the ultrafiltration step with other strategies which remove contaminating proteins and 

detergents, as we expected they were the major reason for clogging of the LC column. The widely 

applied ultrafiltration-desalting workflow removes proteins, but detergents remain in the sample despite 

extensive washing. It was reported that detergents influence reverse phase LC separation and MS 

detection of peptides (163, 199, 200), therefore we aimed to eliminate detergents and proteins with 

different approaches.  

Hydrophilic interaction liquid chromatography (HILIC) is a variant of normal phase liquid 

chromatography which combines characteristics of three major LC methods; normal phase, reverse 

phase and ion chromatography. Hence, HILIC exhibits different retention and separation 

characteristics than reverse phase chromatography, which is the most widely used separation 

methodology for proteomics MS analysis (102). Two resins commonly used in proteomics, TSKgel and 

ZIC HILIC, with different chemistries of the stationary phase, were assessed (97, 102, 201). We 

assumed that the separation of epitopes from other sample components is possible, because they 

would differentially retain on the HILIC material.  

The gradual elution from ZIC HILIC did not separate peptides from contaminants, as they were 

contained together in the same elution fractions, whereas the TSKgel HILIC separated peptides from 

proteins. Peptides were contained in the flow through and wash fractions, whereas proteins eluted in 

60% or 70% ACN/0.1% TFA fractions (Figure 17, Figure 18). However, low mass contaminants and 

detergent were still present in the same fractions as the ones containing the peptides. Still, a reduction 

of sample complexity was achieved, making TSKgel HILIC a promising strategy for sample preparation 

to start with. However, up-scaling of the experimental workflow resulted in ineffective dissolving of dry 

IP eluate in the solvent with a high proportion of organic content, therefore, HILIC was not suitable for 

this project. 
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Acetone precipitation is a widely used method for protein isolation and buffer exchange in proteomics, 

which is required to minimize interferences of the downstream sample preparation steps, e.g. trypsin 

digest, where high urea contents would be hindering the reaction. Acetone precipitates proteins, which 

are pelleted in the centrifuge, and the supernatant containing undesirable compounds can be removed 

(162). We aimed to use this strategy for removing proteins from the peptides contained in the 

supernatant. Ethyl acetate precipitation was described as a method for detergent removal. Here, 

detergent diffuses from the aqueous solution into the organic solvent ethyl acetate. The two phases 

form distinct layers after short centrifugation. Layers can be easily transferred to new tubes, achieving 

the separation of detergent from components contained in the aqueous phase (163, 199, 200). We 

here aimed to remove peptides from detergent. 

However, the result of the experiment was a distribution of peptides, detergent and other low mass 

contaminants over all fractions, whereas proteins were detected in the aqueous ethyl acetate bottom 

layer (Figure 41,Figure 42). Moreover, the intensities of all peptides and proteins in the fractions were 

significantly reduced compared to approximately 7% of unprocessed starting IP sample, indicating that 

this experimental procedure caused significant losses. The peptides probably remained in the small 

volume of the interface liquid which was left in the Eppendorf tube after separation of organic and 

aqueous layer after ethyl acetate precipitation. Taken together, the acetone – ethyl acetate 

precipitation was not suitable for extraction of peptides from an IP eluate due to high losses. The 

ineffectiveness of the experimental set up could be explained with the high hydrophobicity of our target 

peptides, which caused a distribution between organic and aqueous solvent.  

 

Reverse phase chromatography is the method of choice for protein and peptide separation in 

proteomics. Reverse phase chromatography binds more hydrophobic peptides and proteins, whereas 

hydrophilic compounds, such as salts are not retained on the stationary phase. This allows for an easy 

removal of hydrophilic contaminants from the sample, which could cause interferences during LC-MS 

analysis. Furthermore, peptides and proteins are retained differently on the stationary phase, which 

facilitates separation (92). Therefore, we assessed several reverse phase applications to separate 

contaminants from epitopes by sequential elution.  

As described before, OMIX C18 material pipette tips caused clogging of the LC analytical columns, 

when they were used without prior ultrafiltration of the IP eluate. Similarly, micro-columns packed with 

R2 and Oligo R3 reverse phase materials clogged after loading of small IP eluate amounts. Next, 

Seppak cartridges were assessed as they were used for solid phase extraction of peptides in (202). 

Loading of the IP eluate was easy and did not cause any backpressure increase or clogging. Seppak 

cartridges have bigger volumes and consequently higher binding capacities than the above described 

materials. To examine whether unproblematic loading was due to unsaturated Seppak resin or to the 

sample contaminants not being retained on the resin, IP eluate fractions were examined after gradual 

elution for their protein and detergent content. They revealed that cell components other than MHC I 

complexes unspecifically bound to the coupled Ab-beads (8.7. in the Appendix). In the ideal setting, 

this should not happen as a specific antibody was used to capture MHC I complexes only. Moreover, 

protein contaminants were mostly contained in the Seppak flow through fraction, whereas only small 
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amounts of proteins were identified in the flow through of the Oligo R3 material. This indicated that 

protein contaminants were not retained on the Seppak resin but they were on the Oligo R3 material, 

which clogged (Figure 19). Besides protein contaminants, also the detergent CHAPS was detected 

with an intense peak in fractions eluted with 30% and 40% ACN/0.1%TFA in water from the Seppak 

cartridge. These results showed that Seppak could be used as an alternative for reduction of IP eluate 

complexity as a big proportion of proteins was removed. 

The main difference between both tested reverse phase materials was the pore size, which was 130 Å 

or 300 – 3000 Å for Seppak or R2 and Oligo R3, respectively. To be able to keep the experimental 

workflow in small scale to prevent sample losses on surfaces of the used equipment, a micro-column 

packed with Zorbax reverse phase material with a pore size of 80 Å was examined. Loading of the IP 

eluate was effortless for the amount equivalent to three IP eluates and could have been increased 

further. However, it is important to note that the backpressure increased slightly, indicating that 

eventually this material would have clogged as well. The amount of loaded material causing no 

clogging was significantly higher than that loaded on the R2 and Oligo R3 material. The loaded IP 

sample was gradually eluted and examined in a similar experiment as with the Seppak cartridge. It 

was hypothesized that Zorbax material should bind fewer proteins than Seppak due to its smaller pore 

size. This was indeed confirmed as all Zorbax fractions contained fewer proteins than the Seppak 

fractions (compare Figure 19 B and Figure 20 B)  

The protein identifications results (8.7. in the Attachment) were comparable for Seppak and Zorbax, 

showing that numerous protein contaminants such as cytoskeleton proteins (tubulin, actin, plektin), 

keratin, ribosome subunits, histones and others were present in the IP sample. This further confirms 

the known fact that coupled Ab-beads have affinity not only for the target antigen but also for other 

proteins (203). The biggest proportions of identified proteins were represented by keratins. Keratins 

are known contaminants in MS proteomics introduced by insufficiently careful sample handling (204). 

In our case, the starting material was keratinocytes, which are rich in keratins anyway. Thus, we 

assume that most of the identified keratins in our samples stemmed from the sample source cells 

themselves. 

β2 microglobulin (β2M) was the protein which was retained on both resins to the highest proportions. Its 

signal was highest in the fractions eluted with 35% and 40% ACN/0.1%TFA from Zorbax and Seppak. 

β2M is the smallest detected protein in the IP eluate with a mass of 12 kDa. This indicates that the 80 

Å pore size was big enough to bind β2M. Presumably, materials with smaller pore size than the Zorbax 

material potentially bind less β2M. This would allow processing of more IP samples through the same 

micro-column. One would need to determine the optimal pore size which will still allow epitopes to be 

retained but not β2M. This approach could be a solution for separating peptides from proteins (instead 

of ultrafiltration) also in other applications, e.g. antimicrobial peptide detection from complex protein 

matrixes (205). 

 

After removing proteins from the IP sample on the Zorbax micro-column, the detergent CHAPS still 

remained in the sample and eluted from the resin together with peptides at 23% – 27% ACN/0.1% TFA 

in water (Figure 22). Therefore, sequential elution of peptides and CHAPS was not possible as the 
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most hydrophobic peptides eluted with 30% ACN/0.1% TFA in water (Figure 21). The sequential 

elution strategy might be exploited for more hydrophilic epitopes, but only after empirical confirmation 

with synthetic peptides, proving that they all elute with the solvent containing less than 23% ACN/0.1% 

TFA in water. This criterion highly depends on HLA I binding properties, as some HLA I molecules are 

prone to bind more hydrophobic peptides (e.g. HLA-A2) than others (e.g. HLA-A3, -A11) (79). 

We observed that CHAPS eluted later than all peptides from the speLC column (at 8.4 min) with an 

intense narrow peak, whereas it eluted earlier than the most hydrophobic peptides from the Zorbax 

material. Moreover, our collaboration partners from the Ragon Institute of MGH, MIT and Harvard 

(Cambridge, MA, USA) observed that CHAPS eluted in a broad peak over several minutes on their 

chromatographic system. This indicates that C18 materials from different producers have different 

retaining specificities and that examining C18 materials from several manufacturers could result in 

finding more suitable ones for sequential separation of all peptides from CHAPS.  

 

In order to evaluate C18 extraction of peptides from IP samples, the different C18 materials were 

compared with ultrafiltration strategies which are commonly used for epitope analysis (138, 198). All 

samples gave intense CHAPS signals, confirming that these extraction strategies did not remove the 

detergent. Furthermore, the results showed that all separation strategies gave comparable outcomes 

with high input material amounts, whereas low input amounts had better recoveries with reverse phase 

isolation strategies. The best among those was separation with Zorbax micro-columns (Figure 23). 

The worst recovery was observed for small sample input on ultrafiltration devices, despite extensive 

washing with organic solvent composed of 50% methanol/0.1% TFA in water. This was probably due 

to high proportions of peptides absorbing to the ultrafilter surfaces as also seen in (140, 141). The 

effect was not as prominent when higher input material amounts were used.   

Detergents are known to prevent peptide binding to (plastic) surfaces (172, 206), which could explain 

the observed higher intensity of peptide signals for the experimental set up with lower peptide 

amounts. This is the only positive trait of detergents, but their negative features outweigh this positive 

effect by far.  

All extraction strategies increased methionine oxidation in methionine containing peptides. The 

proportion of oxidized peptides was higher for the series of experiments with low material amounts, but 

among those it was the lowest for samples processed with the Zorbax micro-column (Figure 23 B).   

With this set of experiments we showed that the Zorbax micro-column had the lowest losses of 

peptides compared with other sample extraction solutions, and that less peptides underwent 

methionine oxidation. Furthermore, we showed the importance of downscaling the volumes and 

contact surfaces for sample processing when the expected starting amounts of target peptides are 

low. 

 

5.2.1. Chemical tagging for removal of detergent 

As outlined above, none of the strategies employed so far removed CHAPS from the IP eluate. To 

overcome this challenge, we established a chemical tagging strategy for peptides, which exploits the 

chemical principles of dimethyl labeling (173, 176) for introduction of a glyceraldehyde 3-phosphate 
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(G3P) tag. The reaction takes place on primary amines (N-terminal and on lysine (Lys) side chains) 

and results in single and double tagging on the same primary amine group. The G3P molecule 

contains an aldehyde group for reactions to occur and a phospho-group for TiO2 isolation (164, 165). 

This tagging strategy represents an ideal solution for detergent removal, as detergents do not bind to 

TiO2 nor influence binding of phospho-group containing peptides to TiO2 (172).  

We aimed to optimize the tagging reaction on the C18 micro-column resin, which would allow 

separation of peptides from protein contaminants before the reaction, and easy removal of residual 

reagents after completion of the reaction. Modified peptides were finally eluted from the micro-column 

and directly subjected to TiO2 pull down. With this workflow, the number of drying and resuspending 

cycles, and consequently sample losses, was minimized. 

 

As a first step, the chemical yields of an ordinary dimethyl labeling reaction on the resin of the C18 

micro-column (176) were examined. The results confirmed that the reaction takes place dominantly on 

the N-terminal primary amine at lower pH (2.8), whereas at pH 5.5, the reaction occurred on the N-

terminal and partially also on the Lys side chain primary amine group. At pH 8.2, the reaction resulted 

in nearly 100% conversion of the peptides on both types of primary amines. This experiment showed 

that it is possible to apply the dimethyl labeling chemical principles to peptides bound on the C18 

micro-column.  

 

We then proceeded to G3P labeling. First experiments at pH 3.5, 5.5 or 7.2 gave singly G3P tagged 

products and products with a G3P tag carrying an additional 14 Da mass increase (Figure 26). The 

amounts of the latter product were increased when the reaction was conducted at a pH higher than 

3.5. Amounts were highest at pH 5.5. At pH 7.2, another product with a mass increase of 28 Da 

appeared. Doubly tagged peptides were not observed in high amounts in MS analysis after the 

reaction, due to the phospho-group hindering efficient ionization of peptides (180, 182, 207). The 

doubly tagged peptides were observed only when G3P tagged peptides were subjected to enzymatic 

dephosphorylation for phospho-group removal. This also led to overall higher signal intensities of 

modified dephosphorylated peptides in the MS analysis than those of their phospho-group containing 

counterparts (Figure 27). 

Dephosphorylation of the G3P tagged peptides modified at pH 5.5 resulted in the expected products, 

which had mass increases of 74 Da, 88 Da or 148 Da (Figure 28 A, D, G). Manual inspection of 

spectra for the E69-19 FQDPQERPIKL peptide revealed other side reaction products with mass 

increases of 44 Da, 58 Da or 118 Da (Figure 28  B, C, H). These unexpected products corresponded 

to the expected tag masses, but with a 30 Da mass loss. The +88 Da tag had the form of the expected 

14 Da+74 Da tag, but could also result from a 2x44 Da tag on the same or separate primary amine 

groups (Figure 28 D, F, I). Similarly, the 148 Da mass increase corresponded to 2x the 74 Da tag 

(Figure 28 G, Figure 43 B). Reaction products at pH 5.5 contained tags either only on the N-terminal 

amine group or on both N-terminal and Lys side chain primary amines in different combinations, such 

that a distribution of tags among both amine groups was observed. This is exemplified in the spectrum 
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in Figure 28 H for a +118 Da modified peptide, which was modified on the N-terminal amine group with 

either +44 Da, +74 Da or +118 Da and on Lys it was unmodified or modified with +44 Da or +74 Da. 

As many side products were observed, the optimal pH condition for the highest product signal was 

examined with several pH reaction buffers. Peptides were isolated by TiO2 pull down and subjected to 

enzymatic dephosphorylation. Besides the above described products, additional low abundant 

modifications of the peptide E69-19 FQDPQERPIKL were observed: +162 Da (74+88 Da), +192 Da 

(44+148 Da), +132 Da (44+88=58+74 Da), and +222 Da (3x74 Da). 

Quantification of the most abundant reaction products showed that the highest signals were those of 

singly G3P modified peptides (+154 Da before dephosphorylation, and +74 Da after 

dephosphorylation), when the reaction took place at pH~2 for the selected peptide E69-19 

FQDPQERPIKL. At higher pH, more side products appeared and thus the signal was distributed 

among them. Therefore, the most suitable pH for peptides with a Lys in their sequence would be at a 

pH between 1.5 – 2 (Figure 29 A). 

The pH was of less importance for E711-19 YMLDLQPET conversion, as the product intensities did not 

change significantly when increasing the pH up to 3.5 (Figure 29 B). However, it was also observed 

that at pH 1.5 no complete modification was achieved for the E711-19 peptide (Figure 29 B). 

Furthermore, several other peptides were left unmodified at pH 1.5 as well, meaning that pH 1.5 was 

not suitable for their conversion. In the end, pH 2 – 2.2 was chosen as a compromise for the best 

reaction conditions for the majority of peptides. The determined pH was significantly lower than the pH 

required for ordinary dimethyl labeling reactions.  

 

The overall experimental pipeline for chemical labeling is schematically represented in Figure 30. 

Briefly, the IP sample is subjected to acetic treatment for MHC I-peptide complex disassembly. The 

sample is then transferred onto a Zorbax micro-column, where the majority of proteins is removed, 

whereas peptide and detergent bind to the Zorbax material. On the column, G3P tagging of primary 

amines is performed. Subsequently, the remaining reagents are removed from the micro-column and 

modified peptides are eluted. TiO2 pull-down is performed for separation of modified peptides from the 

detergent CHAPS. Afterwards, peptides are subjected to enzymatic dephosphorylation, which 

improves peptide signal intensity during MS analysis. Finally, samples are desalted and subjected to 

LC-MS
2
/MS

3
 analysis.   

 

Manual inspection of the N-terminal phenylalanine ion (F) of the E69-19 FQDPQERPIKL peptide in 

either the unmodified (mass 120.08 m/z in Figure 28 E) or the +74 Da form (mass 194.12 m/z in 

Figure 28 A) with the elemental composition calculator of the Xcalibur program assigned the right 

elemental composition for both of them, C8H10N or C11H16O2N, respectively This demonstrated the 

calculator’s correctness and its applicablity to other modifications on the N-terminal phenylalanine ion. 

The difference between +74 Da and +88 Da tagged N-terminal phenylalanine ions, with the elemental 

compositions C11H16O2N and C12H18O2N, respectively, was CH2, which resulted in a 14 Da mass shift. 

This mass shift could correspond to the elemental composition of a methyl group, which could be 



Discussion 

106 

 

formed after reaction of formaldehyde with primary amine groups, as also seen in dimethyl labeling 

reactions.  

Molecular formulas assigned to the N-terminal phenylalanine ion with +44 Da or +58 Da tags were 

C10H14ON or C11H16ON, respectively. The comparison of the chemical compositions between +74 Da 

and +44 Da as well as between the +88 Da and +58 Da tagged N-terminal phenylalanine ions 

revealed that the difference between both pairs was CH2O, corresponding to a mass difference of 30 

Da and the elemental composition of formaldehyde.  

After G3P dephosphorylation, the remaining part of the tag molecule with a mass of 74 Da contains 

vicinal diols, whose C-C bond (Figure 37 A) can undergo cleavage in oxidative conditions. The vicinal-

diol cleavage usually takes place with sodium periodate (NaIO4) or lead tetraacetate (Pb(OAc)4), 

resulting in the formation of aldehydes and ketones (208). Presumably, the vicinal-diol bond cleavage 

happened within the G3P tag after dephosphorylation without addition of any of the above mentioned 

reagents, resulting in the observed mass reduction of 30 Da, which corresponds to formaldehyde 

(Figure 37 A).  

Presumably, a similar reaction as described above also happened as a side reaction of the G3P 

modification, which resulted in a G3P+14 Da tag and the presence of a +28 Da side product after G3P 

tagging under increasing pH. Spontaneous G3P dephosphorylation was the prerequisite reaction for 

vicinal-diol formation, which lead to bond cleavage in the residual G3P molecule and formaldehyde 

formation. Most likely, this formaldehyde was then competing with unmodified G3P to bind to the 

primary amine, resulting in the formation of G3P+14 Da, where +14 Da corresponds to a methyl group 

on the primary amine. Along these lines, the +28 Da product corresponds to dimethyl labeled primary 

amines. The suggested molecular formulas of the most frequently detected products are depicted in 

Figure 37 B. 

 

 

 
Figure 37. Vicinal-diol bond cleavage and molecular formulas of the most frequent modifications after G3P modification. 
A) Vicinal-diol bond cleavage, which occurred to a singly dephosphorylated G3P modified peptide and B) molecular formulas of the most 
frequent modifications on primary amines after G3P reaction and enzymatic dephosphorylation. 

 



Discussion 

107 

 

One way to minimize formation of side products in the dephosphorylation step, is to exchange alkaline 

phosphatase with acid phosphatase, active at a lower pH. Judging from the G3P reaction taking place 

at pH 5.5, yielding a high amount of +14 Da products (Figure 29), one could try the enzymatic 

dephosphorylation at pH 4, which is the lowest pH optimum of commercially available enzymes. 

Presumably, the side reaction of vicinal-diol cleavage would be minimized, but not fully prevented. To 

achieve less vicinal-diol cleavage, the employed enzyme should be fully active at a pH below 3.5. One 

could also try chemical dephosphorylation with 70% hydrogen fluoride (HF)-pyridine (207, 209). 

However, possible new side reactions on the tag would need to be examined first.  

 

In order to overcome all side reactions due to vicinal-diol cleavage, one could investigate the reaction 

with a different tagging molecule, e.g. 3-(phosphonooxy)-propanal (Figure 38). However, this molecule 

is not commercially available and would need to be synthesized custom-made.  

 

Figure 38. An alternative tagging molecule. 
Chemical formula of 3-(phosphonooxy)-propanal, which could be used as an alternative tagging molecule.  

 

In addition to being present in low abundance, the majority of target HLA-A2 HPV16 E6 and E7 

peptides contain methionine, which can undergo oxidation during sample preparation, resulting in two 

distinct chromatographic peaks, with the unmodified peptide eluting later. As seen in Figure 23, 

oxidation took place already at the peptide extraction level and was also observed after chemical 

modification of peptides.  

The oxidation level increased with every additional processing step. This was seen by the relative 

amount of the G3P singly modified E711-19 YMLDLQPET +154 Da product with or without oxidation 

(Figure 29 B, +154 MetOx Z and +154 Z) being more in favor of the unoxidized peptide. In contrast, 

the amount of oxidized peptide after dephosphorylation (Figure 29 B +74 MetOx T and +74 T) was 

increased, yielding signals with comparable intensities for oxidized and unoxidized peptide.  

It would be desirable that either the oxidized or the unoxidized form would dominate to avoid spreading 

of total peptide amount in two distinctly eluting species. As methionine oxidation is unavoidable, a 

reaction which allows complete methionine oxidation might be considered. One could examine an 

additional mild performic acid oxidation reaction to fully convert methionines into methionine sulfoxide 

as described in (210). In this reference, the reaction was performed on the protein level and resulted in 

complete conversion of methionine into methionine sulfoxide and of cysteine into cysteic acid without 

reactions on other amino acids. Besides free cysteines, also those forming disulfide bonds were 

converted, making this reaction an attractive way to solve two challenges at once, full methionine 

oxidation and avoidance of reduction and alkylation reaction of cysteines. Ideally, this reaction could 

be performed on the micro-column before G3P tagging to avoid any other side reactions on the tag.  

 

Due to the above described side reactions of vicinal-diol cleavage and methionine oxidation, the 

intensity of the most dominant dephosphorylated singly G3P tagged peptides was  20-30% of those of 
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their unmodified counterparts before the reaction (Figure 29 C). One exception is the peptide E69-19 

with 50-60% reaction yield at pH 2. Low reaction yields are the limiting factor of this experimental 

setup. However, it allows for detergent removal, which critically influences the LC separation and MS 

detection. Presumably, the suggested improvements of the tagging pipeline could increase the 

reaction yield to over 50% for most peptides.   

 

5.3. Identification of viral epitopes 

5.3.1. Identification of HPV16 epitopes 

The target peptide E711-19 YMLDLQPET was not detected with any of the assessed IP sample 

preparations and detection strategies, although it was reported to be detected in cervical cancer cell 

lines and patient tumor biopsies with MS
3
 analysis before (146, 147). However, endogenous HLA-A2-

restricted peptides were detected in every measured sample. To be able to detect HPV16 E6 and E7-

derived low abundant epitopes, we employed highly sensitive and specific LC-MS
3
 analysis, where 

fragmentation energies need to be manually optimized for every transition (pair of peptide precursor 

and its MS
2
 fragment) for optimal MS

3
 spectrum generation. 

The first reason for unsuccessful identification of the E711-19 peptide could be that our examined 

workflows resulted in high losses of the peptide, so that its amount dropped below the LC-MS
3
 

detection limit, which was estimated to be 0.3 fmol per analysis on our Qtrap6500 instrument (Figure 

40). The estimated amount of E711-19 peptide in (146) was 25 peptide copies per CaSki cell, resulting 

in 2 – 3 fmol per one IP sample with the assumption of no sample preparation losses. Ten IP samples, 

even if processed with ultrafiltration with high sample losses, should thus have contained enough E711-

19 peptide to detect the oxidized or unoxidized peptide form. This was however not the case. Moreover, 

18 chemically tagged CaSki IP samples, containing no detergent which could interfere with column 

binding, elution and peptide ionization, were analyzed on the highly sensitive HRAM Q-Exactive 

instrument and also did not result in E711-19 peptide identification. However, after external pulsing on 

the surface of HLA-A2+ HPV16- BSM cells, the E711-19 peptide was successfully detected with the 

optimized IP protocol and ultrafiltration extraction,  indicating that the experimental pipeline is capable 

of successfully isolating the peptide (Figure 16). 

In contrast to our experimental workflow, after IP isolation of HLA-A2-peptide complexes and acetic 

dissociation, the methodology described in (146) used epitope extraction by C18 material pipette tips 

as the only purification strategy. Moreover, MS
3
 measurement of the eluate was performed with direct 

injection into the instrument without prior chromatographic separation. Results were then analyzed 

with a specially developed probabilistic Poisson-transformation analysis (152), which calculates the 

possibility of a target peptide being present in the sample (146). The instrument used for 

measurements was a QTrap4000, which is the first generation of QTraps. This instrument is a low 

resolution instrument and does not have high mass accuracy. The authors overcame these problems 

by introducing a second fragmentation step resulting in a MS
3
 spectrum, which reduces interferences 

and increases specificity and sensitivity of the analysis. The instrument that was used for most of the 

targeted LC-MS
3
 analysis in this study is a QTrap6500, which is the third and most recently improved 

generation of QTrap instruments. According to the producer’s specifications, sensitivity of the 
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QTrap6500 for targeted MS
2
 and MS

3
 scanning modes is improved by two orders of magnitude 

compared to the first QTrap4000 model. Furthermore, the linear ion trap (LIT) scanning speed in the 

MS
3
 mode in the QTrap6500 is fast enough to allow measurements in the on-line LC configuration, 

which is not possible with the Qtrap4000. The advantage of LC-MS
3
 is the possibility of separation and 

concentration of analytes, permitting the identification of less abundant compounds. It can be 

speculated that the identified E711-19 peptide in (146, 147) was a spectrum of interfering species with 

similar masses as the target peptide, generating a cumulative MS
3
 spectrum with E711-19 characteristic 

peaks, which originally did not belong to the target peptide, but still generated a positive result after 

statistical data processing. This theory is supported by the results observed in the experiment where 

we compared HLA-A2 IP with direct elution of epitopes from the cell surface. The directly eluted 

sample was so complex that many measured transitions resulted in rich MS
3
 spectra (Figure 44). This 

was observed despite 2 kDa ultrafiltration, which removed many contaminants. These results can be 

explained by the limited scope of used methodology dealing with highly complex samples and the 

measuring principles of the QTrap instruments. The instruments isolate precursor ions with m/z within 

0.7 Da windows, which is a rather broad range in modern mass spectrometry. All ions corresponding 

to this criterion will pass to the collision cell for the first fragmentation. The same holds true in the LIT, 

where ions with m/z within a pre-set window are subjected to the second fragmentation. When a 

sample is as complex as one from direct elution or an IP sample that is not separated on the LC 

system prior to MS
3
 analysis, the probability is high that other precursors and their fragment ions 

correspond to the set m/z windows and programed energies. This will result in fragmentation and 

complex MS
3
 spectra generation for multiple ions simultaneously, which cannot be assigned to any 

particular analyte anymore. 

  

Beside the differences between our and the previously reported (146, 147) methodology, another 

reason for unsuccessful E711-19 peptide identification could be that the peptide is simply not presented 

on CaSki and any other analyzed cells that were used during this project. Also in the Prof. Reinherz 

lab at the Dana-Farber Cancer Institute, Harvard Medical School (Boston, MA, USA), where the 

studies reported in (146, 147) were conducted, it was later observed that the detection of  E711-19 on 

CaSki cells in later passages of cell culture  was not successful (personal communication with Dr. 

Keskin, Harvard Medical School).  As our CaSki cells were a kind gift from Prof. Hoppe-Seyler, DKFZ, 

Heidelberg, who could not provide us with the passage number of the cells, we assume that they were 

in late passages and had lost surface presentation of the E711-19 peptide. Only experiments with cells 

at a low passage number, and using a workflow that removes all interfering contaminants, will reveal if 

the reason for as yet unsuccessful identification of the target peptide E711-19 was due to cell biology or 

experimental reasons. 

 

5.3.2. Identification of mCMV epitopes 

In collaboration with the group of Prof. Čičin-Šain at the Helmholtz Centre for Infection Research 

(Braunschweig, Germany), we investigated the presence of the epitope HGIRNASFI in complex with 

the murine MHC I molecule H-2D
b
 on the surface of cells infected with one of three murine 
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cytomegalovirus (mCMV) clones; mCMV wild type (mCMV
WT

), mCMV
M45IA

 or mCMV
M45 C-term

. 

Monitored H-2D
b
 endogenous peptides AALENTHLL, FGPVNHEEL and KALINADEL were detected in 

all measured samples. Based on previous biological results, the peptide HGIRNASFI was expected to 

be present in small amounts on the wild type virus and in higher amounts in the mCMV
M45 C-term

 clone. 

However, the peptide HGIRNASFI was not expected to be presented on the cells transfected with the  

mCMV
M45IA

 clone. 

The HGIRNASFI peptide was only detected once at the very limit of detection in cells infected with the 

wild type virus, despite observed T cell activation in the biological system and thus indirect proof of its 

presence on cells. This shows that T cells require only low copy numbers of epitopes per cell for 

effective immune responses (manuscript submitted
1
). 

We successfully identified the peptide HGIRNASFI on the mCMV
M45 C-term

 clone (manuscript 

submitted
1
). It is important to note that only 10

7
 cells were used for IP sample generation, which is the 

lowest number of cells used for direct LC-MS
2
/MS

3
 identification of epitopes that we are aware of. 

Judging from the signal intensity of the target peptide HGIRNASFI on the cells infected with the 

mCMV
M45 C-term

 clone, the input could even be reduced to 5x10
5
 or 1x10

6
 cells per IP sample for 

reliable epitope identification with the described workflow. Presumably, we could also reduce the input 

cell number further when exchanging the ultrafiltration step with Zorbax micro-column epitope 

purification.  

 

5.3.3. Identification of HIV epitopes  

In collaboration with the group of Dr. LeGall at the Ragon Institute of MGH, MIT and Harvard 

(Cambridge, MA, USA), we aimed to identify naturally presented HIV epitopes on 293T HIV-

transfected cells. The above mentioned group has successfully established an untargeted MS 

identification workflow of epitopes from directly eluted cells (manuscript submitted
2
). The scope of this 

approach is however limited, as untargeted MS
2
 measurement is less sensitive than a targeted 

approach. In the collaboration project, we aimed to identify previously reported epitopes, that were 

identified through biological assays (185), which the LeGall group was not able to detect with their 

experimental system.  

Following our optimal HLA-A2 IP protocol and Zorbax purification of epitopes, we were able to identify 

the endogenous HLA-A2-restricted peptides AIVDKVPSV and YLLPAIVHI in all samples. Furthermore, 

three low abundant HLA-A2-restricted HIV-derived epitopes, EPFRDYVDRFY, FLGKIWPSYK and 

VLEWRFDSRL, were detected on the surface of HIV transfected cells. The p24-derived epitope 

EPFRDYVDRFY has concurrent binding motives for HLA-A2 and -B7. In the above mentioned 

experiment, we were able to show that it was presented on HLA-A2 molecules. Theoretically, it could 

be presented by HLA-B7 as well, but this needs to be investigated in a separate HLA-B7 IP 

experiment. The VLEWRFDSRL peptide is the first Nef-derived epitope that was directly identified on 

the cell surface by LC-MS
2
/MS

3
 analysis. 

1Dekhtiarenko I, Fischer S, Blatnik R, Holzki JK, Bokner L, Marandu TF, Hoppe S, Lisnić B, May T, Lemmermann NAW, Holtappels R, 
Reddehase MJ, Riemer AB, Cicin-Sain L. C-terminal epitope localization facilitates antigen processing, direct presentation and T-cell 
memory inflation. 
 

2Rucevic M, Kourjian G, Boucau J, Garcia Bertran W, Berberich MJ, Walker BD and LeGall S. MHC-bound HIV peptides identified from 
various cell types reveal common nested peptides and novel T cell responses. 
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6. Conclusions and Future Perspectives 
 

In this thesis, a methodology for isolation, purification and enrichment of cell-surface displayed T cell 

epitopes for MS detection was optimized. Epitopes were isolated from cells by affinity purification of 

MHC I-epitope complexes or by mild acetic treatment of life cells for direct elution from the cell surface. 

Epitope-containing eluates were subjected to various enrichment, purification and fractionation 

strategies, including ultrafiltration, normal and reverse phase chromatography, isoelectric focusing, 

and a newly established chemical tagging strategy for epitope isolation by TiO2 pull down. The 

methodology was developed first for detection of HLA-A2-restricted HPV16 E6 and E7 epitopes, and 

then applied to detect mCMV- and HIV-derived epitopes. We were not able to identify the HPV16 E711-

19 YMLDLQPET peptide on the surface of HPV16-transformed cells, although it was reported to be 

detected on cell lines and tumor samples before (146, 147). This can be explained by peptide losses 

during sample preparation, the presence of detergent influencing LC separation, or by the fact that the 

peptide was not presented by our HPV16-transformed cells, as they were analyzed at a very high 

passage number. To be able to identify the target peptide on the surface of CaSki and other HPV16-

transforemd cells, various experiments will need to be performed with low passage cells and complete 

removal of sample contaminants to minimize their influence on the LC separation and MS
2
/MS

3
 

detection. 

However, the H-2D
b
-restricted mCMV epitope HGIRNASFI was detected in high abundance on the 

surface of 1x10
7
 cells. The cell number needed for these experiments was the lowest reported so far 

for MS-based epitope detection, and it could be further reduced to 1x10
6
 for still reliable identification. 

Furthermore, three low abundant HLA-A2-restricted HIV-derived epitopes, EPFRDYVDRFY, 

FLGKIWPSYK and VLEWRFDSRL, were successfully detected. The epitope VLEWRFDSRL is the 

first directly MS-identified Nef-derived epitope reported. Taken together, this confirms the efficiency of 

the developed methodological pipeline and its broad applicability to various MHC I types and virus 

infected target cells.  

 

Also other researchers in the field have struggled with identification of low abundant (mainly tumor-

derived) epitopes, which was due to older, less sensitive, LC-MS instrumentation. In addition, they only 

measured in an untargeted manner, which is less sensitive than the targeted approach (114, 131-133, 

188, 189). Furthermore, difficulties could also originate from insufficient sample purification influencing 

LC-MS
2
 detection. Usually, all studies were performed with bigger sample inputs using on-column 

immunoaffinity purification strategies for MHC I-peptide complexes. Samples were then subjected to 

purification with ultrafiltration and reverse phase extraction (138, 198). None of the respective papers 

reported an influence of residual detergent in the sample on epitope identification. This could be due to 

either sufficient detergent removal or use of other LC-MS systems, which were not affected by 

detergents.   

 

In the past years, LC-MS technology and sample preparation methodologies in proteomics advanced 

in a way that complex samples need less fractionation steps, and LC-MS
2
 analyses result in a high 
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number of identified peptides and proteins. The same holds true for the identification of HLA 

peptidomes. A recent publication reported the identification of over 22,000 unique HLA peptides in 

seven cancer cell lines (139), demonstrating that high numbers of HLA peptides can be measured in a 

single study. However, this untargeted approach is less sensitive than targeted approaches; therefore 

many low abundant peptides remain undiscovered.  

 

To overcome the challenge of low epitope abundance, just recently genome sequencing data of tumor 

samples to identify mutated proteins were used for in silico predictions and targeted identification of 

predicted epitopes on the tumor cell surfaces. This workflow resulted in the identification of several 

novel tumor-mutation-derived neoantigens (90, 91). Thus, these studies represent a milestone in 

tumor-derived neoantigen detection methodology. 

 

On the other hand, new data-independent measuring methodologies, such as MS
E
 (211) or the most 

widely used SWATH-MS (212), have been developed. SWATH analysis is performed with HRAM 

quadrupole-quadrupole time-of-flight (Qq-TOF) instruments and combines targeted selected reaction 

monitoring and untargeted shotgun MS
2
 analysis. The instrument measures and fragments all ions 

that enter the mass spectrometer, resulting in highly complex spectra. To process these complex data 

sets, SWATH-MS results are analyzed by targeted extraction data mining, using spectral libraries. 

SWATH-MS analysis allows identification and quantification of acquired data at the same time. 

Furthermore, SWATH-MS measurement permits the detection of low abundant species and the 

possibility of reanalysis of obtained data at a later time point with improved spectral libraries (212). 

One of the main efforts in the epitope mass spectrometry community is to establish HLA peptidome 

MS spectral databases using HRAM MS instruments from normal, infected, damaged and malignant 

cells for comparative studies and tumor epitope identification. When these spectral libraries are 

generated SWATH-MS analysis can be performed and results used for future development of 

therapies against infectious diseases, autoimmune disorders, and cancer (137). Based on the 

presented approach, one could prepare a spectral library of all possible HPV E6 and E7 epitopes with 

synthetic peptides and then measure samples from HPV-transformed cells for identification and 

quantification of target low abundant peptides.  

 

Another alternative option for IP eluate analysis would be capillary electrophoresis-electrospray 

ionization mass spectrometry (CESI-MS), which uses capillary electrophoresis for peptide separation 

instead of reverse phase liquid chromatography. The capillary electrophoreses device is on-line 

connected to a MS instrument. It maintains low nanoL/min flows, allowing concentration of analytes in 

smaller volumes, thereby increasing sensitivity. Furthermore, it has no sample carry-over, is not 

influenced by detergents and can separate peptides from proteins. CESI can be coupled to a triple 

quadrupole-linear ion trap instrument for targeted analysis, as well as to a HRAM Qq-TOF instrument 

to perform SWATH analysis (personal communication with Dr. Müller, Sciex GmbH, Darmstadt, 

Germany and Prof. Imhof, Ludwig-Maximilians-University Munich, Medical Faculty, Department of 

Molecular Biology, Martinsried, Germany).  
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In conclusion, the identification of low abundant epitopes will remain a challenging task, as long as the 

advanced MS technologies described above are not in standard use. However, our targeted MS 

approach can identify low abundant epitopes, as demonstrated in this work for HIV- and mCMV-

derived epitopes. In combination with genome sequencing and identification of mutated proteins in 

tumors, our methodology can also be applied to the targeted identification of mutated tumor 

neoantigens, which are in general presented in low amounts on the cell surface and thus difficult to 

detect. The developed methodology is also very useful in the case of restricted starting sample 

amounts. In conclusion, the presented methodology can contribute to identification of epitopes for 

future immunotherapy design and/or therapeutic cancer vaccine development. 
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8. Appendix 

8.1. Comparison of elution buffers 

 

Figure 39. Comparison of the IP elution buffers 10% acetic acid and 0.3% TFA. 
Two CaSki HLA-A2 IP samples from 6x107 cells each were treated either with 70 µL 10% acetic acid in water or 70 µL 0.3% TFA in water 
containing murine MHC I restricted peptides FGPVNHEEL and SSIEFARL. Samples were ultrafiltered, desalted with the OMIX tips and 
analyzed with the nanoAcqutiy-QTrap5500 platform. Total intensities of the HLA-A2 endogenous peptides AIVDKVPSV and YLLPAIVHI 
were normalized to the total intensities of the added synthetic murine MHC I peptides. The results from one experimental replicate are 
shown. 

 

8.2. Determining the limit of specific peptide detection 

To determine the limit of detection (LOD) for the E711-19 YMLDLQPET peptide, a synthetic peptide was 

added to an HLA-A3 IP eluate from HPV16 negative EA cells to ensure similar sample composition as 

in the HLA-A2 IP from HPV16-transformed cells. 

An HLA-A3 IP was performed from 1x10
8
 EA cells and subjected to acidic elution. The IP eluate was 

ultrafiltered, desalted with OMIX tips and divided in equal aliquots. The synthetic peptide was spiked 

into the samples to be injected at amounts corresponding to 0.01 fmol, 0.1 fmol, 1 fmol, 10 fmol or 100 

fmol. Every sample was analyzed in three technical replicates. The following three MS
3
 transitions 

were measured to confirm peptide identity; b5 (555.26/636.30), b6 (555.26/764.36) and b8 

(555.26/990.46). MS
3
 spectra were reliably detected for all transitions with characteristic fragmentation 

patterns when 1 fmol or higher concentrations of the peptide were used for analysis (Figure 40 A – F). 

No signal was detected when 0.1 fmol or less of the peptide was analyzed.  

The limit of detection (LOD) was determined with a calibration curve (213, 214) (Figure 40 G), based 

on the formula LOD=LOB+10xSD, where the LOB is the signal of a blank sample and SD its standard 

deviation, to result in a conservative LOD value (213). The LOD for the E711-19 YMLDLQPET was 

estimated to be 0.3 fmol. 
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Figure 40. Determination of the limit of detection (LOD) for the peptide E711-19 YMLDLQPET. 
An EA HLA-A3 IP eluate was subjected to ultrafiltration and desalting with OMIX tips prior to the addition of the synthetic peptide E711-19 
YMLDLQPET. The peptide was added to result in 0.01 fmol, 0.1 fmol, 1 fmol, 10 fmol and 100 fmol per LC-MS3 analysis. LC-MS3 analysis 
was performed with the nanoAcquity UPLC-QTrap6500 system. A) – C) Extracted ion chromatograms for transitions b5 (555.26/636.30), b6 
(555.26/764.36) and b8 (555.26/990.46) of synthetic peptide E711-19, representative of one technical replicate; D) – F) MS3 spectrum for 
transition b6 (555.26/764.36) for the E7 11-19 peptide, representative of one technical replicate; G) Calibration curve from three technical 
replicates for the peptide E711-19 at 1 fmol, 10 fmol and 100 fmol per analysis.  
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8.3. Acetone – ethyl acetate precipitation 

 

 
 
 

 
 
Figure 41. MALDI TOF MS peptide profile of a BSM IP sample with added peptides, after fractionation with acetone – ethyl acetate 
precipitation. 
The IP eluate was subjected to acetone precipitation overnight and subsequently centrifuged to separate the protein pellet from peptides in 
the supernatant. The supernatant was subsequently vacuum dried to reduce its volume and precipitated with ethyl acetate to separate 
detergent and peptides. The starting unprocessed sample, acetone precipitation pellet, organic ethyl acetate top layer and aqueous ethyl 
acetate bottom layer were subjected to vacuum drying, resuspending in 50% ACN/0.1% TFA and MALDI TOF analysis with the 
UltrafleXtreme instrument. A) All fractions; B) all fractions except the unprocessed IP sample for better presentation of less intense signals. 
The unprocessed IP sample is represented by the blue line, the acetone pellet by the black line, the aqueous ethyl acetate bottom layer by 
the red lineand the organic ethyl acetate top layer by the green line. Both ethyl acetone fractions are directly overlaid, therefore the red line 
is not visible. Peptide peaks and the CHAPS peak are marked with their masses and names. Peptides and CHAPS were detected in all 
fractions.  

A 

B 
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Figure 42. MALDI TOF MS protein profile of a BSM IP sample with added peptides after fractionation with acetone – ethyl acetate 
precipitation. 
The IP eluate was subjected to acetone precipitation overnight and subsequently centrifugation to separate protein pellet from peptides in 
supernatant. The supernatant was subsequently vacuum dried to reduce its volume and precipitated with the ethyl acetate to separate 
detergent and peptides. The starting unprocessed sample, acetone precipitation pellet, organic ethyl acetate top layer and aqueous ethyl 
acetate bottom layer were subjected to vacuum drying, resuspending in 50% ACN/0.1% TFA and MALDI TOF analysis with the 
UltrafleXtreme instrument. The unprocessed IP sample is represented by the blue line, the acetone pellet by black line, the aqueous ethyl 
acetate bottom layer by the red line and the organic ethyl acetate top layer by the green line. Proteins were detected in the unprocessed IP 
sample and the aqueous ethyl acetate bottom layer fraction.  

 

8.4. G3P tagging product 

 

 
 
Figure 43. MS2 spectra of the peptide E69-19 FQDPQERPIKL and its +148 Da product after G3P modification and 
dephosphorylation. 
G3P modified peptides were treated with alkaline phosphatase before they were analyzed with the speLC-Q-Exactive instrument. 
Characteristic peaks for the N-terminal phenylalanine (102.08 m/z) and y8 (980.59 m/z) in (A) together with their +74 Da modified 
counterparts (194.12 and 1054.63 m/z) in (B) are marked in red. The 74 Da mass shifts of other characteristic peaks at 849.50, 867.51, 
963.57, 1095.62 in (A) to 923.54, 941.54, 1037.61 and 1169.66 in (B), are marked in green.  
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8.5. MS3 spectra in a complex sample 
 

 
 
Figure 44. Detection of cumulative MS3 spectra in a complex sample. 
1x108 CaSki cells were subjected to mild acetic treatment for direct elution of epitopes. The eluate was subjected to 2 kDa ultrafiltration and 
purification with a Seppak cartridge prior to LC-MS3 analysis with the nanoAcquity UPLC-QTrap6500 system. A) MS3 spectrum for 
transition y6 (535.28/699.37) for the synthetic peptide E625-33 ELQTTIHDI; B) MS3 spectrum for transition b6 (555.26/764.36) for the 
synthetic peptide E711-19 YMLDLQPET; C) MS3 spectrum for transition 535.28/699.37 detected in the directly eluted sample and D) MS3 
spectrum for transition 555.26/764.36 detected in the directly eluted sample. MS3 spectra in the directly eluted sample were generated 
within 1 minute of the expected elution time for the synthetic peptide. MS3 spectra of the directly eluted sample contain numerous 
unspecific signals.    
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8.6. Isoelectric focusing 

 

 
 
Figure 45. Isoelectric focusing (IEF) of directly eluted epitopes resulted in focusing of the endogenous peptide YLLPAIVHI in one 
fraction. 
1x108 SNU17 cells were subjected to mild acetic treatment for direct elution of epitopes. The eluate was subjected to purification with a 
Seppak cartridge, vacuum dried and then fractionated by IEF. Fractions were desalted with a Zorbax micro-column prior to LC-MS3 
analysis with the nanoAcquity UPLC-QTrap6500 system. A) LC-MS3 chromatographic profile for the endogenous peptide YLLPAIVHI 
detected in high abundance in fraction 15; B) Extracted ion chromatogram for transitions y5 (519.82/552.35), y6 (519.82/649.40) and y7 
(519.82/762.49) of the synthetic peptide YLLPAIVHI; C) MS3 spectrum for the  transition y6 (519.82/649.40) for the synthetic peptide 
YLLPAIVHI; D) extracted ion chromatogram for the transitions 519.82/552.35, 519.82/649.40 and 519.82/762.49 detected in IEF fraction 
15; E) MS3 spectrum for the transition 519.82/649.40 detected in IEF fraction 15. 
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8.7. Detection of proteins in IP samples after fractionation 

Lists of identified peptides and proteins after IP sample fractionations with a Seppak cartridge or a 

Zorbax micro-column are presented in digital format in Microsoft Office Excel files on the compact disc 

provided at the back of the thesis.  

 

 

 

 

 


