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Abstract

A heavy-ion storage ring can be operated as an isochronous mass spectrometer with a particular
ion-optical setting. However, the isochronism condition cannot be fulfilled for all the stored ions due
to the large momentum acceptance of the ring, which restricts the measurement precision. Although
this anisochronism effect can be corrected for by measuring the velocity of each ion with two time-
of-flight detectors, the number of admissible ions is severely limited by this detection technique. As
a complementary approach, it is proposed to measure the magnetic rigidities of the circulating ions
non-interceptively with an intensity-sensitive and a position-resolving cavity jointly to overcome this
limitation. Moreover, this approach also enables simultaneous lifetime measurements of the stored
ions.

In this dissertation, the correction method for the anisochronism effect with a cavity doublet is
outlined. An innovative design of the position cavity is then introduced, which offsets the cavity from
the central orbit and exploits the resonant monopole mode. Based on this concept, a rectangular and
an elliptic cavity are investigated by analytic and numerical means in compliance with the machine
parameters of the Collector Ring. Afterwards, two scaled prototypes are tested on an automatic test
bench with great efficiency and accuracy. The results are then compared with the simulations and found
to be in good agreement.

Zusammenfassung

Ein Schwerionen-Speicherring kann durch eine spezielle Ionenoptik als isochrones Massenspek-
trometer betricben werden. Jedoch kann aufgrund der groffen Impulsakzeptanz des Rings die
Isochroniebedingung nicht fiir alle gespeicherten Ionen erfillt werden, wodurch die Messgenauigkeit
beschranktist. Der Effekt der Anisochronie kann zwar durch Messen der Geschwindigkeit jedes einzel-
nen Ions mit zwei Flugzeitdetektoren korrigiert werden, jedoch ist die Anzahl der messbaren Ionen
durch diese Detektionsmethode deutlich beschrianke. Als ein komplementirer Ansatz wird vorgeschla-
gen, die magnetische Steifigkeit der umlaufenden Ionen zerstorungsfrei gleichzeitig mit einer inten-
sitdtssensitiven und einer positionsempfindlichen Kavitit zu messen, um diese Einschrinkung zu iiber-
winden. Dariiber hinaus erméglicht dieser Ansatz die simultane Messung der Lebenszeiten der gespe-
icherten Ionen.

In dieser Dissertation ist die Methode zur Korrektur des Anisochronieeffekts durch ein Kavitits-
dublett dargestellt. Es wird ein innovatives Design der positionsempfindlichen Kavitit vorgestellt,
wobei die Kavitit gegentiber dem zentralen Orbit versetzt ist und die resonante Monopol-Mode ver-
wendet wird. Aufbauend auf diesem Konzept wird eine rechteckige und eine elliptische Kavitit an-
alytisch und numerisch unter Beriicksichtigung der Maschinenparameter des Collector Rings unter-
sucht. Daraufhin werden zwei skalierte Prototypen an einem automatisierten Messaufbau mit hoher
Effizienz und Genauigkeit getestet. Die Ergebnisse werden mit den Simulationen verglichen und eine
gute Ubereinstimmung festgestellt.



CONTENTS
Co===9

Introduction

1.1

1.2

1.3

Nuclear Physics at Storage Rings . . . . . ... ...
1.I.1 NuclearMass . .. ... ...........
1.1.2 Nuclear Lifetime . . . . ... ... .....
1.1.3 Beta-Delayed Neutron Emission . . . . . . .
Mass Measurement with Storage Rings . . . . . . .
1.2.1 Schottky Mass Spectrometry . . . . . .. ..
1.2.2 Isochronous Mass Spectrometry . . . .. ..
1.2.3 Schottky Spectroscopy in Isochronous Mode

Motivation . . . .. ... ... L o

Cavity Basics

2.1
22
23
2.4

2.5

Standing Wave Cavity . . . ... ... .......
Detuning by Perturbations . . . . . ... ... ...
Figuresof Merit . . . ... ... ..........
Power Coupling . . .. ........ ... ...
24.1 CouplingSchemes . .. ... ... .....
2.4.2 Frequency Spectrum of Coupled Signal . . .
Correction for Anisochronism Effect . . . . .. ..

Conceptual Design

3.1
3.2

Historical Perspective . . . . ... ... ... ...
Design Criteria . . . . . ... ............
3.2.1 Isochronous Modes of Collector Ring . . . .
3.2.2 Requirement Specifications . . . . . .. . ..

3.3 AnalyticSketch. . ... ... o Lo

3.4

3.3.1 RectangularCavity . . . . ... ... ....
332 EllipticCavity . ...............
Computational Refinement . . . . ... ... ...
3.4.1 Apertures with Beam Pipes . . . . . ... ..

3.4.2 Higher-OrderModes . . . . ... ... ...
3.4.3 Installationof Plungers . . . . .. ... ...

Empirical Justification

4.1
4.2
4.3

Prototype Cavities . . . . ... ... ... .....
Scattering Parameters . . . . ... ...
StaticTest. . . ... ... ... . ... . ..., .

O ] WV Nk W N —

oe}

DO = = e e e e T
— 00 N N AW o O

AN L LD W W W NN NI
— 00 N O\ RO S 0NN DN

N
N



43.1 TestBenchSetup . . ... ... ... .. .. 48

432 DebutofPrototypes . . . .. ... ... 50

43.3 Driftof ResonantFrequency . . . . .. ... ... .. .. L L. 52

434 Determination of Relative Permittivity . . . . . . .. ... ... ... .. ... 53

43.5 DetuningbyPlungers. . . . . ... ... L oo o 55

4.3.6 Dampingof Higher-OrderModes . . . . .. ... ............... 56

44 DynamicTest. . . . . .. oo e 57
441 TestBenchSetup . . ... ... ... .. .. 57

442 ProfilingDetuned Frequency . . . . . . .. ... . L Lo L 59

443 ProfilingElectricField . . . ... ... ... ... .. . 0 ... 60

444 ProfilingShuntImpedance . . . . .. ... ... ... L L. 61

5 Conclusion 67
A Maxwell’'s Equations 70
A.1 Cartesian Coordinate System . . . . . . ... ... 71
A2 Cylindrical Coordinate System . . . . . . .. ... ... 73
A.3 Elliptic Cylindrical Coordinate System . . . . . . ... .. ... ... ........ 74
A.3.1 Elliptic Coordinate System . . . . . . .. ... . L Lo 74

A.32 MathieuFunctions . . . . . .. ... L L L 76

B Engineering Drawings 79
Bibliography 86

II



1 INTRODUCTION
Co=s==9

Heavy-ion storage rings have continually been advancing research in nuclear, atomic, and molecular
physics. When coupled to radioactive beam facilities, they offer unprecedented opportunities for a
close study of moderately and highly charged ions of exotic nuclei, especially in the relativistic regime.
For a comprehensive review, see e.g. [1-4].

Asof2015, there exist two heavy-ion storage rings in operation around the world—the Experimen-
tal Storage Ring (ESR) at GSI in Darmstadt [5], and the experimental Cooler Storage Ring (CSRe)
at IMP in Lanzhou [6]. The schematic layouts of the former and the latter are illustrated in figs. 1.1
and 1.2, respectively. Both facilities are able to produce, accelerate, and store a broad spectrum of nu-
clides from the lightest hydrogen to the heaviest uranium. Meanwhile a handful of new rings that
particularly aim at exotic nuclei and molecular clusters of experimental interest in various regions of
the nuclear chart are coming online in the near future. See chapter 5 for more details.
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Figure |.I  Schematic layout of the ESR. The ring has a circumference of 108.36 m and a maximum
magnetic rigidity of 10 T-m. Apart from the essential lattice magnets for steering the beam, it is also
equipped with an electron cooler for the electron cooling, as well as a pickup and a kicker station for
the stochastic cooling. Moreover, several experimental apparatus are installed into the ring as well.
Shown in the layout are gas-jet target, in-ring Time-Of-Flight (TOF) detector, capacitive Schottky
pickup, cavity-based Schottky resonator, and five particle detectors housed in pockets integrated into
the vacaum chamber.
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Figure 1.2 Schematic layout of the CSRe. The ring hasa circumference of 128.8 m and a maximum
magnetic rigidity of 8.4 T-m. An electron cooler has been installed already, yet a stochastic cooling
system is in development. For the experimental purpose, a gas-jet target, a cavity-based Schottky res-
onator, and a Time-Of-Flight (TOF) detector are also installed into the ring. Together shown in the
layout are a pair of newly deployed TOF detectors in a straight section.

|.1 Nuclear Physics at Storage Rings

A storage ring can turn into a mass spectrometer with a special ion-optical setting and/or incorpo-
rating beam-cooling techniques [7]. Due to the large momentum acceptance of the ring [8], cocktail
beams, which consist of ions of various species, can be stored simultaneously in the ring. This allows
for direct ion identifications and in situ mass calibrations, thus leads to a great mass resolving power
(10°-10°) and a fine mass measurement precision (1076~1077) [9, 10].

On the other hand, a storage ring can be employed for the study of decay spectroscopy when it is
equipped with time-resolving detectors [ 11-13]. Due toits ultra-high vacuum (107'°~107"2 mbar) [8],
stored ions can survive sufficiently long in the ring against atomic charge exchange reactions with the
residual gas unless they decay first. Various kinds of radioactive (e.g. «- and f-) decays have extensively
been investigated mainly at the ESR for the last two decades [2]. A measurable range of nuclear life-
times from a few tens of microseconds to several decades has been achieved there [14-16].

Investigations on the -delayed nucleon emissions are also feasible with a storage ring, of which a
special case—@-delayed neutron emission—was already proposed for the ESR and the envisaged Col-

lector Ring (CR) at FAIR [17].

[.1.1  Nuclear Mass

The nuclear mass is a direct observable of the complex interplay among strong, weak, and electro-
magnetic interactions inside a nucleus. As an experimental criterion, it is used to examine the validity
and reliability of a nuclear structure theory [ 18]. Through such an inspection, the discrepancy between
measured and predicted mass values often led to a new discovery. For instance, the nuclear shell closure
at nucleon numbers of 20, 50, 82, and 126 was discovered [19] by comparing measured masses at that
time with the liquid drop model [20]. Nuclear masses are also essential in astrophysics for modeling the
processes of nucleosynthesis, stellar evolution, and stellar explosion [21]. After F. W. Aston precisely
measured the masses of hydrogen and helium [22], A. S. Eddington soon realized that the mass defect



of helium could explain the origin of the solar energy [23].

Nowadays, the measured nuclear mass surface is mapped towards the nucleon drip-lines, owing to
the advancement of precision mass spectrometry by means of ion trapping. Not only will this impose
stringent tests on theoretical predictability, but also peculiar phenomena may emerge [24-28]. Two
complementary approaches via Penning traps and storage rings are intensively exploited in order to
investigate ions in great detail. While the mass measurements of radioactive nuclei with a Penning trap
usually deliver high-precision results (1077~10"*), the masses of short-lived nuclei with lifetimes of the
order of submillisecond can be measured with a storage ring. In this chapter, emphases are focused on
the investigations on nuclear properties with storage rings. For a comprehensive review on the physical
experiments with Penning traps, see e.g. [29, 30].

One of the remarkable achievements by virtue of storage rings may be attributed to the mass mea-
surement of 2** Hg, of which only one hydrogen-like ion was recorded throughout an entire two-week
experiment at the ESR [25]. The measured mass is the last missing piece of information for computing
the average proton-neutron interaction strength, 07’ on> of 219Pb. It is found that 87" on of 21°Pb is about
2.5 times smaller than that of the doubly magic 208ph, which is consistent with the theoretical predic-
tion. The result suggests that possible shell quenching and new shell closure in the nuclear region far
from @-stability could be investigated by examining dV/,,

In nuclear astrophysics, experimental masses of exotic nuclei measured with storage rings are cru-
cial for constraining the pathways of the rapid neutron-capture process (r-process) for the neutron-rich
nuclei [31], and of the rapid proton-capture process (rp-process) for the proton-rich nuclei [32]. The
mass of the proton-unbound ¢ As measured at the CSRe decisively concludes that **Ge is most likely
not a waiting point—a nucleus can capture no more protons, thus must wait for f-decay—in the evo-
lution of X-ray bursts [33]. Another marvelous result delivered at the CSRe is the mass of *Cr, which
rejects the hypothesis on the Ca-Sc cycle formed along the rp-process path [34].

In contrast to the -stability, which exists in the ground states of nuclei, there is also a metastability
found in the excited states, usually termed as isomers [35]. The conventional technique for detecting
such an isomer is the gamma spectroscopy by correlating the production of the isomer with emitted
photons from its de-excitation. Due to the accidental background correlation, this method is limited
in the short half-lives of isomers with an upper bound of one millisecond [36, 37]. Asa complementary
technique, the mass spectrometry at a storage ring is able to identify an isomer by detecting the mass
difference from its ground state with almost no upper limits in time [38-40]. In addition, the de-
excitation to the ground state can be observed within the storage, hence the lifetime can simultaneously
be determined [41-44].

[.1.2 Nuclear Lifetime

The pursuit of nuclear f-decay of highly charged nuclei was actually one of the driving forces that
motivated the construction of the ESR [45]. This s of particular importance for a better understanding
of the nucleosynthesis taking place in the stellar interiors. It is generally believed that the stellar nucle-
osynthesis proceeds in a hot environment (30-100 keV), where few or even zero electrons are bound to
anucleus [46]. Under such an extreme condition, the p-decay of a nucleus could behave differently than
in the neutral atom. For instance, the decay channel of the orbital electron capture (EC) is completely
shut off for a bare ion, while the bound state B-decay (3, ) could become energetically possible [47].

A series of pilot experiments addressing nuclear lifetimes were conducted at the ESR, and had
demonstrated the great success of its commissioning. It was revealed in 1992 that although a neu-
tral '3 Dy is stable against any radioactive decay, a fully ionized *Dy*** can B; -decay into either the
K or the L shell of its daughter nucleus '®Ho®"*. This discovery marked the first observation of the
B, -decay [48]. The reported half-life of 48(3) d set an upper limit (275 €V) on the mass of the electron
neutrino [49]. Another experiment in the same campaign was the decay study on the bare ¥ Re, which



had a profound impact on the galactic chronology [16]. Once all the orbital electrons are stripped off
from '8 Re, the B, -decay can drastically reduce the half-life by more than 9 orders of magnitude. The
measured half-life of 32.9(20) a led to a more accurate estimate of the age of our Galaxy.

Due to the large momentum acceptance of a storage ring, various decay channels—such as EC,
B*, By » and the continuum state f-decay (B )—may distinctly be observed, and the corresponding
lifetimes can selectively be measured. As a merit, the branching ratio of a certain decay channel can be
determined without ambiguity [50]. Some initiatives have been made at the ESR, and the results are
extraordinary [51-56]. A selected list includes:

o The pure B* branches were measured for the bare >?8Fe and 3¢ Fe, and the sum of * and branches
were measured for the bare >>®Mn and 3*™Fe [51];

o The ratio of B - to B, -decay rates was determined for the bare 27 T1 [53];

¢ One-half enhancement of the EC decay rate was revealed for the hydrogen-like 140Dpp and 12Pm
with respect to the helium-like counterparts [54, 55].

Beta decay can also be investigated on an event-by-event basis, from which the single-ion decay
spectroscopy stems. By virtue of a Schottky resonator—a Radio Frequency (RF) cavity that detects
the statistical Schottky noise of ions—with an extraordinary sensitivity and a fine time resolution [11],
the fates of stored ions can be tracked for each particle. The lifetime is deducible by counting the de-
cay events as a function of elapsed time. Surprisingly, a sinusoid-modulated exponential curve with a
period of about 7 s was observed for two kinds of ions, namely **Pr>®* and "2Pm®* [57]. This pe-
culiar phenomenon immediately stimulated an intense debate about the possible origin in the physics
community, as the modulation is not predicted within the present knowledge about the electroweak
interaction. So far, no conclusive explanations have been agreed on. For more details, see [57-59] and
references cited therein.

In addition to (-decay, systematic studies on a-dacay of heavy nuclei in high atomic charge states
have been proposed for the ESR to address the electron screening effect on the a-emitters [60, 61]. It
is predicted that the decay constant will be affected by a few thousandths, which is an important pa-
rameter in nuclear astrophysics for the understanding of nuclear reactions at stellar energies. Although
several preparatory tests have been performed at the ESR, the schedule for the whole program is not
yet clear [62].

|.1.3 Beta-Delayed Neutron Emission

For a neutron-rich nucleus, if the B-decay energy exceeds the neutron separation energy of the cor-
responding daughter nucleus, the latter may de-excite by emitting a neutron rather than a high energy
photon [63]. This process is named p-delayed neutron emission (B). It starts to play a role in the
freeze-out phase of the r-process, where the neutron source ceases and the synthesized nuclei #-decay
back to the stability [64]. Astrophysical models have shown that

_ is imperative to moderate the

staggering in the simulated abundance curve of the nuclides, so as to be consistent with the observa-
tion [65]. Also, the experimental data of the B, -decay are important for the safety control in nuclear
reactors, in particular throughout the shutdown stage [66].

A storage ring is suitable for studying the 8. -decay as well [67]. The mother ions can be monitored
by a Schottky resonator, while the daughter ions can be intercepted by particle detectors housed in
pockets next to the vacuum chamber (fig. 1.1) [68]. Note that this detection scheme was successfully
demonstrated at the ESR, where 2 Pb%'* and 2’ Pb®* were measured by an capacitive Schottky pickup
and a particle detector on the inner side in an arc section, respectively [53]. In the CR, two opposite
pocket positions are foreseen in the middle of both arc sections. With the neutron-rich secondary beam



provided by the FAIR, investigations on the 3, -decay will become one of the highlight experimental
programs addressed at the CR.

.2 Mass Measurement with Storage Rings

A storage rings is a trapping device in which ions circulate periodically for an extended period of
time. The revolution frequency f;., of an ion depends on its mass-to-charge ratio 72/¢q and velocity v.

The quantitative relation among their relative deviations can, to a first-order approximation, be formu-

lated as [7]
Sew _ 19(m/q) ( 72> o
7)) v

Jeev 7 (mlq)

where y is the relativistic factor and y, is the transition energy of the ring, which is governed by the ion

: (1.1)

optics.

It is clear in eq. (1.1) that £;,, is influenced not only by 72/4, but also by v. That is to say, the revo-
lution frequencies of ions of the same kind are subject to their velocity spread in the ring. In order to
turn a storage ring to a precision mass spectrometer, the influence from the second term in eq. (1.1) has

to be minimized. To this end, two distinct approaches have been exploited by:
e reducing the velocity spread dv — 0 by means of beam coolings [69-71];
e operating the ring at the transition energy y — 5, — 0 [72].

These two approaches correspondingly give rise to the Schottky Mass Spectrometry (SMS) and the Iso-
chronous Mass Spectrometry (IMS). The harvest of nuclear masses measured with two complimentary
techniques at the ESR and CSRe is compiled into fig. 1.3.

|.2.1  Schottky Mass Spectrometry

The SMS is named after W. Schottky, who first discovered a new kind of noise when he was study-
ing the fluctuation of electron current in a vacuum tube [74]. The noise arose from the finite number
of randomly distributed electrons in the current. Later, it was revealed that proton beams in the In-
tersecting Storage Rings (ISR) at CERN also exhibit such a noise [75]. Usually, the Schottky noise
of an ion beam in a storage ring is non-interceptively coupled by a pickup, followed by amplifications,
and finally analyzed in frequency domain by the Fourier transformation. Among the vast information
contained in a Schottky noise spectrum [76], the revolution frequency of the ion and the correspond-
ing momentum spread are of the SMS’ concern [77]. In order to enhance the mass resolving power
and improve the measurement precision, the momentum spread is to be reduced by applying various

cooling techniques to the beam.

Beam Cooling

The purpose of cooling is to contract the beam distributions in size and momentum, i.. to increase
the phase space density. So far, three cooling techniques—Ilaser cooling, electron cooling, and stochas-
tic cooling—have successtully been applied to hot ions in a storage ring [78].

The laser cooling slows ions down by virtue of radiation pressure. The method was first proposed
by T. W. Hinsch and A. L. Schawlow [69]. When a laser is illuminated head-on towards an ion beam,
an absorption resonance will appear once the Doppler-shifted laser frequency coincides with one of the
atomic transitions of the ions. Shortly after that, the ions will de-excite by emitting photons isotropi-
cally in their own co-moving frame. Effectively, the ensemble of ions receives unidirectional momen-
tum transfer. Due to the Doppler resonance, fast ions are decelerated while slow ions are nearly intact.
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Figure |.3  Chart of the nuclides featuring the achievements of the mass measurements at the ESR
and CSRe. Each square denotes a nuclide. The blue ones are the nuclides whose masses were measured
via the Schottky Mass Spectrometry (SMS), while the red ones were measured via the Isochronous
Mass Spectrometry (IMS). The stable nuclides are colored in black. The gray squares are the nuclides
with experimentally known masses according to the latest Atomic Mass Evaluation (AME2012) [73].

(Adapted from [1].)

By sweeping the laser frequency, the velocity spread of ions can gradually be reduced [79]. However,
the laser cooling is not a versatile technique, because of a limited number of available laser frequencies
and the request for bound electrons.

The idea of using a cold electron beam to cool a hot ion beam was conceived by G. I. Budker [71]. A
well collimated, monochromatic electron beam prepared from a cathode is merged with an ion beam,
of which the mean velocity should be matched to that of the electrons. A plasma is hence formed in the
overlapping region. The Coulomb interaction inside the plasma tends to equilibrate the temperatures
of the electrons and ions. The heated electrons are attracted by the anode and then collected by the
collector, while fresh and cold electrons are continuously injected from the cathode. Eventually the
ion beam will end up with the same velocity as that of the electron beam [80]. The electron cooling is a
universal method that can even be applied to bare ions. However, it is not so efficient for very hot ion
beams, since the cooling time is proportional to the cube of the velocity spread, i.e. 7, o< dv°.

The stochastic cooling was invented by S. van der Meer [70]. It requires a pickup and a kicker station
carefully arranged along the ring. The distance between them is a quarter, possibly plus half-integers,
wavelength of the betatron oscillation, such that the position displacement at the pickup station can
be translated to the impulse at the kicker station to correct the orbit. By this means, the betatron oscil-
lation gets damped. A similar principle can be applied to the longitudinal direction as well [81]. This
technique is designed for a certain ion velocity though, the total phase space volume can be reduced sig-
nificantly within one second. Itis often adopted as a pre-cooling to save the subsequent electron cooling
time due to the cubic dependence on the velocity spread [82]. For a typical mass measurement, the cool-



ing cycle of a secondary beam is about a few seconds, and the momentum spread can, after undergoing
the phase transition to a one-dimensionally ordered beam, be narrowed down to 2 x 1077 [83].

1.2.2  Isochronous Mass Spectrometry

In the case of IMS, the storage ring is tuned to a special ion-optical mode, namely the isochronous
mode, usually with a smaller transition energy 7, to fall into the energy range of stored ions. For the ions
that fulfill the isochronism conditiony = 7,, the orbital change compensates the velocity deviation so as
to retain the same revolution frequency [84]. Asaside effect of the isochronous setting, the dispersion
function becomes larger, which suppresses the momentum acceptance of the ring by up to one order of
magnitude compared to the one in the standard mode [85].

Nevertheless, the IMS is preferable to the SMS for short-lived exotic nuclei, since no cooling pro-
cedures are employed. The revolution timestamps of every ion inside the ring are registered by a Time-
Of-Flight (TOF) detector, which comprises a very thin carbon foil coated with cesium iodide, and
a Micro-Channel Plate (MCP) [12, 13]. At each time when the ion penetrates the foil, secondary
electrons are released from the surface and guided to the MCP, signaling the completion of one lap.
Due to the energy loss in the foil, any ion can only circulate about one millisecond till it terminate on
the vacuum chamber [2]. Fortunately, two-hundred-microsecond data are enough to determine the
revolution frequencies with sufficient precisions to allow for competitive mass measurements of the
nuclei [86].

In practice, the isochronism condition cannot strictly be fulfilled for a broad spectrum of nuclides
because of the anisochronism effect [87]. This effect can broaden peak widths in the revolution time
spectrum, and may even distort the Gaussian shape of some peaks for the ions that are considerably off
the transition energy [88], which imposes systematic errors on the mean revolution times. Therefore,
precision measurements necessitate corrections for the anisochronism effect.

Anisochronism Effect

Generally speaking, the anisochronism effect stems from two sources, namely the chromatic aber-
ration of the ion optics and the diversity of the stored ion species [89]. The former is extrinsic whereas
the latter is intrinsic.

For a realistic storage ring, imperfections—such as misalignment, fringe field, and closed-orbit
distortion—are inevitable. All of these factors contribute to a variable transition energy, i.c. 7, de-
pends on the revolution orbit. The imperfections can be corrected by introducing higher-order fields
in the ring. Much effort is being devoted to the optimization of the magnetic lattices in various storage
rings [90, 91].

Even if y, stays constant, the anisochronism still takes effect for most kinds of ions. It is clear in
eq. (1.1) that the isochronism condition can only be fulfilled for a specific species with a certain y
(fig. 1.4). In other words, the revolution times for other species are smeared out due to the inevitable
momentum spreads. The asymmetric distribution of the magnetic rigidities of ions, which can often
happen due to the production mechanism and transmission scheme, will also distort the peak shape in
the revolution time spectrum. Therefore, additional means are required to ensure precise and accurate
measurement results.

One way could be to restrict the magnetic rigidities of the injected ions by placing a slit in the
fragment separator upstream from the storage ring. This so-called Bp-tagging method was successfully
demonstrated at the ESR (fig. 1.4) [88]. The result showed that the mass resolving power was improved
by up to one order of magnitude and the accuracy was more than twice better. However, a drawback
of this method was the strong reduction of the transmission efficiency.

Meanwhile, it was proposed to determine the velocity of each ion inside the ring in parallel to
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Figure 1.4  Isochronism curves of the ESR for ions with different mass-to-charge ratios. The ab-
scissa is the relative change of the magnetic rigidity of an ion species, while the ordinate is the relative
change of its revolution time. The red curve was measured by sweeping the voltage of the electron
cooler when the ESR was operated in the isochronous mode. The blue and green ones were deduced
by assuming the identical orbital length for ions with the same magnetic rigidity. The white band in
the middle indicates a selected window of the Bp-tagging method to restrict the momentum spread
of the ions during that experiment. (Adapted from [88].)

the measurement of its revolution time [92]. Later, this approach was realized at the CSRe with two
newly installed TOF detectors in a straight section (fig. 1.2). The mass resolving power is expected to
increase significantly. Since this method does not constrain the transmission efficiency, it is in particular
advantageous for the nuclei with extremely low yields.

1.2.3  Schottky Spectroscopy in Isochronous Mode

The successful commissioning of an intensity-sensitive and time-resolving Schottky resonator at the
ESR (fig. 1.1) has opened up an innovative window towards the Schottky spectroscopy in the isochro-
nous mode [11]. Investigations on nuclear masses and lifetimes could be addressed at a storage ring
simultaneously with almost no upper limits in time. In particular, the fast response and fine resolution
of the Schottky resonator allow for the measurements of short-lived nuclei with lifetimes of the order
from millisecond to second, which fills the gap left by the IMS and SMS.

Figure 1.5 shows a Schottky power spectrogram from a pilot experiment conducted at the ESR in
the isochronous mode [93]. A mass resolving power of 10°> was achieved, which was comparable to

that obtained with a TOF detector. The traces of the helium-like ?!*Ra®"* and hydrogen-like 2! Fr%¢*
can neatly be separated in fig. 1.5, while the time resolution is merely 32 ms.

.3 Motivation

Having demonstrated the potential of the Schottky spectroscopy in the isochronous mode, the
Schottky resonator also inspired a cavity-based method to correct for the anisochronism effect. By ad-
ditionally employing a position-resolving cavity at the dispersive location of the ring, the revolution
orbits—and hence the magnetic rigidities—of the stored ions can be distinguished. Recalling the defi-
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Figure .5 Schottky power spectrogram of two ion species in the ESR when it was operated in
the isochronous mode. The signal was detected by an intensity-sensitive and time-resolving Schottky
resonator, and displayed at a higher harmonic of the revolution frequency. On the left hand side, a

86+

single ion of !>Ra®* can unambiguously be identified, since the trace is abruptly terminated due to

decay.

nition of the magnetic rigidity:

Bo=m (?) , (12)

essentially, the velocities of the ions are measured. Similar to the double-TOF technique, the correction
for the anisochronism effect can thus be applied with an intensity and a position cavity.

It is important to note that the cavity-doublet technique excels in several aspects due to its non-
interceptive detection nature and broad dynamic range of the detectable signal strength. Every stored
ion above a certain charge threshold can be detected by the cavity doublet without interfering the mo-
tion of the ion. On the contrary, the carbon foils of the TOF detectors obstruct the revolutions of the
ions such that the latter can survive no longer than half a millisecond, irrespective of their intrinsic ra-
dioactive properties, which consequently sets an upper limit on the measurable lifetimes. The size of the
foil also imposes a practical constraint on the acceptance of the ring, and hence a stringent requirement
on the lattice magnets. Moreover, the TOF detection efficiency will strongly be suppressed by dozens
of ions passing through the foil in one shot, because the arrival time of each ion is hardly possible to
identify from the superposed multi-particle signal [94]. An even larger beam intensity will harm the
foil and could permanently damage it. Therefore, in spite of the acceptance of the ring and the yields
of the secondary nuclei, the total number of stored ions at each injection is carefully controlled for the
TOF-based IMS. In contrast, this will not be the case for the cavity doublet, and in fact, high-intensity
beams are more favored to efficiently accumulate statistics.

To surpass the limits of the double-TOF technique, the feasibility of using a cavity doublet for
the isochronous mass measurements has been explored. The thorough details about the principle of
the position detection by a cavity, the methodology of the correction for the anisochronism effect,
the design of position cavities, and the benchtop test of prototypes are put forward in the rest of this
dissertation.



2 CAVITY BASICS
Co===9

An ideal cavity is a void space enclosed by conducting walls, in which ElectroMagnetic (EM) fields
are confined. In practice, additional holes exist on the walls to allow for coupling the cavity with the
surroundings [95]. The RF Cavity is a key device that can commonly be found on any linear or circular
accelerator. It is used to interact with beams, mainly, with its electric field.

Nowadays, there are enormous cavities of different kinds deployed to serve numerous purposes [96].
Based on the wave mode, they can be divided into travelling wave cavities (high acceleration efficiency)
and standing wave cavities (high detection sensitivity). Based on the electrical conductivity of the walls,
there are normal-conducting cavities (room temperature) and superconducting cavities (cryogenic en-
vironment). Based on the direction of the EM energy flowing through the couplers, a cavity can be
cither a beam diagnostic device (e.g. current monitor, position monitor), or a beam manipulating de-
vice (e.g. acceleration cavity, crab cavity, buncher, chopper). Based on the orientation of the EM fields,
a cavity can have Transverse Magnetic (TM; great coupling strength with beams), Transverse Electric
(TE; little power loss on walls), and Transverse ElectroMagnetic (TEM; mostly used in low frequency
regime) fields.

Due to the practical reason that the new position cavity is intended to detect relativistic single ions,
only the standing wave cavity in the TM modes are treated henceforth.

2.1 Standing Wave Cavity

A typical standing wave cavity exhibits a cylindrical shape with various cross sections (e.g. circular,
rectangular, and elliptic). In order to allow for the beam passage, a pair of opposite apertures are usually
machined on both flat ends of the cavity. In contrast, couplers are usually mounted on the curved wall.

For the sake of simplicity, first consider a fully closed cavity without any holes in it. According
to classical electrodynamics, the EM fields inside a source-free cavity is governed by the homogeneous
Maxwell’s equations [97]:

V-E=0, (2.1
V-H-=0, (2.2
- oH
VxE=—y—, 2
X (‘{Oat (3)
~ OE
H=:¢—. 24
V X Xy (24)

Further assume that the electrical conductivity of the walls is zero. This leads to the boundary condi-
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tions:

nxE=0, (2.5)

n-H=0. (2.6)

Here, E is the electric field, H is the magnetic field, and n is the normal vector to the boundary. More-
over, ¢, and g, are the permittivity and permeability in vacuum, respectively.

The general solutions of EM fields are too complicated to be written down. However, due to the
linearity of eqs. (2.1) to (2.6), the principle of superposition holds: The sum of any two solutionsissstill a
valid solution. Hence, one can designate some special solutions with the simplest form as the primitives,
which are conventionally termed as eigenmodes, or modes. Thereafter, any solution can be expressed
as a proper superposition of those modes [95]. Within the context of TM modes, the longitudinal
component of the magnetic field vanishes. Instead, the electric field largely coincides with the beam
path, which offers a strong coupling between the cavity and beam.

It can be shown that the explicit form of an eigenmode is the product of a sinusoidal temporal and
a complex spatial function [97]. When expressed via the phasor notation, it reads

(x,2) = E(x)e ™, (2.7)
(x,2) = H(x)e @=9),

where x represents spatial coordinates, ¢ is time, w, is the angular eigenfrequency, and ¢ denotes the
phase difference between the magnetic and electric field. The spatial functions E and H describes the
EM field patterns in this mode at a particular moment. After taking the oscillating exponential factor
into account, the EM fields are actually varying periodically. Consequently, standing waves are estab-
lished inside the cavity.
The phase difference ¢ can be computed, for instance, by substituting egs. (2.7) and (2.8) into
eq. (2.3):
V X E = iwyu,He?. (2.9)

Since both E and H are real, the imaginary part ie on the right hand side of eq. (2.9) must cancel out.
It appears that two values ¢ = +7/2 both fulfill the condition. In fact, they essentially describe the
same scenario: either the magnetic field is /2 behind the electric field, or the flipped magnetic field is
7/2 ahead of the electric field. To avoid any possible confusions, ¢ = 7/2 is adopted exclusively. In a
similar manner, eq. (2.4) together with eqs. (2.7) and (2.8) leads to

V X H = —wy,E. (2.10)

According to egs. (2.5) and (2.6), the electric field must be perpendicular to the walls, and the
magnetic field must be tangential. Otherwise, they have to vanish on the walls. Because of the fixed
dimensions of the cavity, only particular wave patterns with certain wavelengths can fit into the cavity.
Therefore, the eigenfrequency only takes some discrete values, which are determined by the dimensions
of the cavity. In particular, two modes—namely monopole and dipole mode—are of practical interest.
Their EM field patterns are illustrated in fig. 2.1, in the case of a pillbox cavity. The monopole mode
can easily be excited with the strongest magnitude. The concentration of its electric field around the
center makes it perfectly suitable for either the beam acceleration or the beam intensity detection. On
the other hand, the dipole mode lies in frequency next to the monopole mode. The mirror symmetry
of its EM fields is usually used for the beam position detection [98].

The stored energy inside a cavity is carried by the electric and magnetic field. The contribution
from each part can be calculated by integrating the time-averaged energy density over the cavity volume
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Figure 2.1  EM field patterns for the monopole mode (left) and the dipole mode (right) in a pill-
box cavity. The fields are presented in a circular cross section perpendicular to the axial direction.
The electric field strength is normalized and color-coded, where positive represents the field point-
ing out of the page and negative represents the opposite direction. The magnetic field is illustrated
with arrows, of which the head points to the field direction and the length is proportional to the field

strength.
v [95):
1 €)= £0n
W, = dV—Rc(— -E*): dr Lp2, (2.11)
AR el
1 bory 13 Hoqr2
W = dV—Rc(—H-H*)z dr o, (2.12)
L2 AR

where W, and W, are the time-averaged electric and magnetic energy, respectively. The asterisk de-
notes complex conjugate. By virtue of the vector identity

V- (ExH)=H:-(VXE)—E-(V xH), (2.13)
egs. (2.9) and (2.10) jointly give rise to the difference between W/, and WV, :

W.o—w :L/dVv-(ExH). (2.14)

m
4w, J,

According to the divergence theorem, the volume integral on the right hand side of eq. (2.14) can be
replaced by a surface integral:

We—Wm:L?gdAn-(ExH), (2.15)
4wy J,

which essentially equals zero since E x H is, as a corollary of the boundary conditions, everywhere
tangential to the surface 4.

Because the electric field oscillates synchronously with the magnetic field with 7/2 phase off, the
same amount of energy is being transformed back and forth between these two kinds of fields. As one
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reaches its maximum magnitude, the other fades out. The total energy /7, on the other hand, remains
constant:

W=W.+ W, (2.16)
- [ar 2= [ arfone. (2.17)
2 2
V V

2.2 Detuning by Perturbations

The boundary of a cavity defines the configurations of the EM standing waves and their associated
frequencies. Any deformation on the cavity walls will change the field patterns and, most probably,
also the frequencies. The quantitative relation between an infinitesimal change (i.c. perturbation) of
the boundary and the resultant frequency shift (i.e. detuning) was first derived by J. Miiller [99], and
then reformulated by J. C. Slater in a succinct form [100]:

ow (ugH?* — ¢, E*)0V

= . 2.18
w, 4w (2.18)

Here, dw = w — w, is the detuning angular frequency, w is the detuned angular frequency by the
perturbation, and 7 is the volume removed from the cavity. The EM fields E and H are the local
values at §77. Once the boundary is pushed inwards, the frequency will increase if the magnetic field is
stronger at the perturbed location, and decrease if the electric field is stronger there. Only in some rare
situations where the electric and magnetic field balance, the frequency remains the same.

Equation (2.18) provides a useful guidance to designing a tuner for a cavity, in case the eigenfre-
quency of a specific mode needs to be altered in reality. Often, a cylindrical stub, or plunger in jargon,
is mounted on the side of the cavity for the detuning. The frequency changes as the plunger is advanced
or retracted. In general, the magnetic field is dominant on the edge in the TM modes, therefore, the
plunger should preferably be placed at the location of the strongest magnetic field.

Apart from perturbing the boundary, a cavity can be detuned as well by inserting an dielectric ob-
ject [101, 102]. This can be understood by imagining an exaggerative scenario where the cavity is filled
with a dielectric medium. The speed of light in this medium is always smaller than that in free space,
whereas the wavelength should not change since the boundary is the same. Consequently, the fre-
quency, which is the ratio of the speed of light to the wavelength, must be smaller. In other words,
under no circumstances may a dielectric object raise the frequency.

The simplified expression of the detuning frequency is, based on some reasonable stipulations, given

as [101]
ow (e, —1)E-EoV
— = —— , 2.1
W 4W (2.19)

where ¢, is the relative permittivity of the dielectric object, 8V is its volume, and E is the unperturbed
clectric field at where the object is placed while E is the perturbed one there. Likewise, eq. (2.19) is
more accurate when the perturbing object is infinitesimally small.

In practice, eq. (2.19) finds its application in profiling the electric field strength inside a cavity. To
this end, a small dielectric bead is usually used as the perturbing object due to its simple geometry. Let
7, be the radius of the bead. Recall that the electric field E” within a sphere in a homogeneous external

field Eis [102]
3

e+ 2

r

/

E, (2.20)
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eq. (2.19) can, in the quasi-static approximation, be reformulated to

dw  mey(e, — 1) E?
w, (e, +2)W

(2.21)

The usage of eq. (2.21) is dual: Either the relative permittivity of an unknown material can be char-
acterized provided that the cavity dimensions are well controlled and the electric field is analytically
clear; Or the electric field of a cavity under test can be determined with a well known bead. The size of
the perturbing bead should be insignificant, such that eq. (2.21) can deliver accurate results. Calcula-
tions have shown that the ratio between the radii of the bead and cavity ought to be smaller than 0.083
to limit the error to no more than 1 % [102]. Additionally, the bead must be kept away from the walls in
order to avoid the image charge effect, which will cause an extra amount of detuning frequency [103].

2.3 Figures of Merit

Due to the induction of the magnetic field inside a cavity, there exists an image current flowing on
the inner surface of the metallic walls with the same magnitude as the beam current but in the opposite
direction [104]. At room temperature, any metal has a nonzero resistivity, therefore the ohmic loss of
the EM energy is inevitable. A dimensionless quantity, named quality factor Q,,, is thus assigned to the
cavity to characterize the capability of preserving the EM energy [105]:

0, =2 W (2.22)
P

diss

where Py, is the dissipated power on the walls, which can be expressed as

dw
diss — _? (223)
Itis then straightforward from eqs. (2.22) and (2.23) to find that /7 decays exponentially with a lifetime
of Q,/w,. However, it should be noted that with the presence of the ohmic loss, the cavity is actually
detuned from w,. For a high-Q (10 and above) cavity, which is commonly used, the change is so small
that it is often omitted.
In order to maintain the EM fields inside the cavity, energy compensation, either by an RF generator

or by a beam, is obligatory. This scenario is essentially a driven oscillation, which can mathematically
be modeled as [105]

d&*F L% dF
drz  Q, dr

where J represents either the electric field or the magnetic field, D is the amplitude of the driving

+ Wy F = De ™, (2.24)

force, and w is the driving angular frequency. The solution to eq. (2.24) consists of a transient term
which diminishes eventually, and a persistent term which oscillates at the driving frequency. The steady
amplitude A in the end is obtained by substituting an ansatz F = Ae ™ into eq. (2.24):

D
(0§ — @?) — iwgw/Q,

It can be seen from eq. (2.25) that | 4| becomes maximum when @ = @, (again, in the high-Q ap-

A=

(2.25)

proximation). In other words, when the driving frequency is tuned to the eigenfrequency of the cavity,
the strongest EM fields are excited inside the cavity. This phenomenon is named resonance. A cavity is
therefore alias resonator. In the vicinity of the resonant frequency, eq. (2.25) can be approximated to

Ay
—2iQ, (dw/wy) + 17

A = (2.26)
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where A, = iDQ,/w} is the resonant amplitude.
The stored energy /¥ is proportional to the square of the modulus of A, which can be derived from
eq. (2.26) as
W = W inas (2.27)
403 (Ow/wy)? + 17 '
where W, .. o |A,|* is the maximum EM energy. Equation (2.27) defines the resonance curve of
the cavity, which has the shape of the Lorentzian distribution (fig. 2.2). The quality factor Q, can be

1.0 T T T

05F .

WIW,,

—|/(|2Q0) 0 |/(2IQ0)

dw/w

0.0

Figure 2.2 Schematic plot of the resonance curve of a cavity with a quality factor of Q,,.

inferred from this curve via the Full Width at Half Maximum (FWHM):

Q, =

_ % (2.28)
Awpywiam
In comparison with the quality factor, the ohmic loss on the cavity walls can also be characterized
by a lumped resistor with an effective shunt impedance R, It is defined as [95]
5 Ul

= el 2.29
h Pdiss ( )

where U, is the acceleration voltage across the cavity gap. Note that for some historical reasons, two
versions of the definition are widely used in parallel: One has a factor of one-half whereas the other
does not. The one adopted here follows the convention from an early electron linac in Stanford [106].

The acceleration voltage is the amount of voltage a particle sees as it passes the cavity [107]. In con-
trast to a traveling wave cavity where the particle rides on the acceleration phase, the oscillation of the

electric field in a standing wave cavity must be accounted for. Having said that, U, . can be computed

by integrating the longitudinal component of the electric field, z - E withz being the normalized axial

basis vector, over the cavity depth 4:

a2 .
Uacc = dz/i -E (230)
—d/
/2
= dz E,(x)e @), (2.31)
—d/2
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Here, the time # is no longer an independent variable of the spatial coordinates. Itis worth noting thatin
reality, any cavity has an aperture on each end to allow for the beam passage, which causes the EM fields
to extend into the adjacent vacuum chamber. As a result, the lower and upper bound of the integral
in eq. (2.31) should in principle be extended to —oo and +00, respectively. A practical measure is to
take the bounds sufficiently far from the cavity where the EM fields are negligible. It is also emphasised
in eq. (2.31) that the electric field varies with the transverse coordinates. Therefore, the acceleration
voltage is position dependent, and so is the shunt impedance.

The asynchronism effect of a standing wave cavity on a particle can be characterized by the transit
time factor T . It is defined as the modulus of the acceleration voltage normalized to a fictional one
where the particle sees a frozen electric field [107]:

‘ d/2 dZE efiwot
- z
T = d/2 )

d/2
Lo 2 Ee

(2.32)

For the simple modes, such as monopole and dipole mode, E, is uniform in the longitudinal direction.
Consequently, eq. (2.32) can further be developed to

1 d/2 Wz
T =- dz cos <L> (2.33)
dJ) g v
T
= 20 gin (”“) , (2.34)
Tfttr TO

where v is the velocity of the particle, z, = d/v is the transit time for passing through the cavity, and
T, = 2m/w, is the oscillation period of the electric field. It is clear in fig. 2.3 that T is close to unity for
a short transit time, which means a high acceleration efficiency. It becomes zero when 7, is a multiple

_0.4 | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 2.3 Transit time factor of a cavity as a function of normalized transit time of a particle.

of T}. It can even be negative for certain transit times, which means that the particle gets decelerated.
The realistic design of a cavity should keep a short gap so as to attain a high transit time factor.
Combining eqs. (2.29), (2.31), and (2.32) results in

R, =R, T? (2.35)
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where the shunt impedance R, has been defined as

( /2 dzEz>2

Ry =-~—2 (2.36)
h Pdiss

Here, R, is solely dependent on the cavity while R, is also dependent on the velocity of the particle be-
cause of J'. More often, the characteristic shunt impedance R, / Q) is used instead, because it is uniquely
determined by the dimensions of the cavity, irrespective of ohmic loss on the walls [107]. In particular,
it quantifies the coupling strength between the cavity and beam in terms of transferring energy. The
characteristic shunt impedance is given, after substituting eq. (2.36) into eq. (2.22), as

2 2
Ry _ ([ypdeE) (2.37)
9y w W . .

2.4 Power Coupling

For the successful operation of a cavity, an RF coupler is indispensable for bonding the cavity with
the surroundings [ 108]. The flow of the EM energy via the coupler is in general bidirectional, although
the exact direction depends on the purpose that the cavity serves. The energy is to be fed into a cavity
for the beam acceleration, but extracted from a cavity for the beam detection. In the following, much
attention will be paid to the latter due to the objective of the position detection by a cavity.

2.4.1  Coupling Schemes

A coupler is the interface between a cavity and a transmission line, which can be either a coaxial
cable (low frequency, little power) or a waveguide (high frequency, huge power). Based on the coupled
field, it can be divided into electric, magnetic, and electromagnetic coupler [108], which are schemati-
cally shown in fig. 2.4.

NN NN NN\
cavity cavity cavity

NNNNN\

NNNNWN NNNNWN !
coaxial coaxial waveguide
cable cable

Figure 2.4 Schematics of electric (left), magnetic (middle), and electromagnetic (right) coupler.

An electric coupler is normally a probe extending into a cavity. It can be modeled as an electric
dipole P, of which the moment is determined by its length. The coupling strength is proportional
to the scalar product P - E, where E is the electric field strength at the location of the coupler. In
comparison, a magnetic coupler is a loop placed inside a cavity. It can be modeled as a magnetic dipole
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M, of which the moment is determined by its area. The coupling strength is proportional to the scalar
product M-H, where H is the magnetic field strength at the location of the coupler. An electromagnetic
coupler interacts with both EM fields. It is usually an aperture on the wall of a cavity and connected
to a waveguide, through which the EM waves inside the cavity can propagate into the waveguide. The
coupling strength has both electric and magnetic contribution.

In analogy with eq. (2.22), the coupled power P, from the cavity to a load can be described via

coup
the external quality factor Q. [108]:
w
Qe = ;0 : (2.38)

coup

The total power loss P, is thus related to the loaded quality factor Q,,4:

woW woW
= = ) 2.39
Qload Ptot Pdiss + Pcoup ( )

Substituting eqs. (2.22) and (2.38) into eq. (2.39) simply leads to

1 1 1

— =

Qload QO Qext
Moreover, it is convenient to define a ratio, named coupling coefficient x, to characterize the efficiency
of the coupler in transferring the EM energy to the load:

(2.40)

P
T (2.41)
Pdiss Q,ext

In particular when x = 1, it is called critical coupling, where no incident EM waves are reflected at the
coupler and the maximum power flows into the load. Other than that, overcouplingand undercoupling
can be differentiated for x > 1 and x < 1, respectively [108].

The optimization of a coupler is an art in itself. To name a few, the length of a probe or the orienta-
tion of a loop can be adjusted to attain the critical coupling. When a cavity resonates in the monopole
mode, a loop should be mounted on the curved wall for the intensity detection due to the dominant
magnetic field on the edge. However, in the case of dipole mode, two symmetrically arranged loops on
the curved wall or probes on a flat end should be adopted, such that the difference of these two signals
rejects the parasitic monopole mode and hence improves the accuracy of the position detection [109].

2.4.2  Frequency Spectrum of Coupled Signal

When a cavity is employed as a beam diagnostic device, the coupled signal contains rich informa-
tion about the beam dynamics, especially when the signal is analyzed in frequency domain. This is in
particular beneficial for a circular accelerator, where a beam passes the cavity periodically, already sug-
gesting some pattern in the frequency spectrum. In the case of a coasting beam, the charged particles
spread over the whole ring and circulate independently. The incoherent signal coupled by a cavity is,
after deducting the DC component, the Schottky noise of the beam, which allows for investigations
on the individual particles, rather than treating the beam as a whole. The Schottky noise also exists for
abunched beam, although on an unfavorable stage in competition with a much stronger coherent sig-
nal. Being influenced by the periodic motion of all the bunches, the frequency spectrum also becomes
complicated [110]. For the nuclear mass measurements with storage rings, the cocktail beams of exotic
nuclei in the experiments are normally un-bunched. Therefore, the signal of a coasting beam will only
be treated in the following.
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and the depth

of a detecting cavity is negligibly small (thin cavity approximation). As a result, the current j] of the
charged particle seen by the cavity is a train of delta functions [111]:

I(z) an(f—f—E> (2.42)

where 7 is the time when the particle passes the cavity in its zeroth lap. The Fourier transform of the

Suppose a particle j with charge g is circulating in a storage ring at a frequency f,,,,

current [] is given as

L(f) = / - drfj(t)e‘iz"ﬁ (2.43)

o +00
= qf;ev Z 3(][ -7 rev)eiinSj’ (244)

where 19 = 2nf,..t; and the relation

rev ]
+00 +o0
Z efiZﬂ'”f/frev :f;eV Z (;(f —n rev) (2.45)

has been used. Equation (2.44) shows that, apart from a DC component (z = 0), the current of a
charged particle comprises an infinite number of harmonics (z = 41, 42, ...) at the frequencies evenly
spaced by £,

Now, let N particles of the same species occupy the whole ring while circulating at the same fre-
quency. They are merely distinguished by the initial azimuthal positions {9, }, which are randomly
distributed in an interval of [0, 27). The total current [ in frequency domain is the sum of eq. (2.44)
over the index j:

qfr‘ev i 5\(f -7 rev) EN: Ciin&j‘ (246)
n=—00 j=1

Itis clear from eq. (2.46) to find that the ensemble average (/) contains only the DC component, which
is the macroscopic beam current. On the contrary, the Schottky noise, defined as Iy, = I — (I), is the
microscopic fluctuation of the beam current.

It is intuitive to speculate that the power spectral density S of the Schottky noise is the quadratic of
I, In fact, the exact relation is given as [ 111]

Lsen (e (f7)) = SO —f7)- (247)
By virtue of eq. (2.46), the left hand side of eq. (2.47) can be expanded to

N

< Sch(f) Sch(f re Z g(f " tev a(f rev Z B n19 mSk (248)
n, m70 Jr k=1
= NPLO( = £) D3 — nfey), (2.49)

n#0

where the expectation (e {931 is nonzero only if 7 = 2 and j = k. Equatingeqs. (2.47) and (2.49)
immediately leads to

2N N —nf) (2.50)

n#O

= 2Ngf2, Zé(f M) (2.51)
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The factor of two in eq. (2.51) is based on the fact that the negative frequency is just a mathematical
construct for aiding analysis, and should be superposed to the opposite frequency when interpreting
the result in the physical world.

Accordingto eq. (2.51), the power spectral density of the Schottky noise is proportional to the par-
ticle number. Each particle contributes the same amount of 24*fi¢, 8 (f — nf., ) to the zth harmonic. In

reality, the revolution frequencies of different particles certainly mamfest deviations spreading around

rev

a mean value £,,. Let @ be the normalized (to unity) distribution of the particles in the revolution
frequency. Equation (2.51) should be modified to

frev
S(f) = / d‘,/["CV N® (fl:ev zq rev Z 3(](' I'CV (2'52)
frev
+oo f;ev 1
= 2Nq rev Z/ d.fl"CV ®<}(1:CV>;3 ( rev _€> (2'53)
n=1 ﬁev
+00 1
— ZNq o Z ;(D <j;p> s (254)

n=1

where f

rev

an frev define the bounds of the revolution frequency spread.

A message conveyed in eq. (2.54) is that, after taking the frequency spread into account, the spectral
line at every harmonic is smeared out into a wide Schottky band. Because @ is defined as a function
of the revolution frequency, f = #f,., must hold at the zth harmonic, which means that the band
width Af and the centroid frequency f; scale linearly with 7. Thus, the relative spread of the revolution
frequency can be calculated via Af'/f, at any harmonic. Moreover, the power spectral density at the #th
harmonic S, can be extracted from eq. (2.54), and given as

2Nq2 rzv (I) (f;CV )

n

S, (nfes) = (2.55)
It is clear in eq. (2.55) that the band height is inversely proportional to 7, but the band power—the
integral of S, over the entire band—remains the same. Figure 2.5 illustrates the Schottky bands of a
coasting beam with an exaggerated revolution frequency spread. Each band carries the identical infor-
mation about the beam. As a rule of thumb, to handle the Schottky noise at a higher harmonic is always
preferable, provided that the Schottky bands are not overlapped and still distinct from other kinds of
noises [112]. B

If the detecting cavity is exactly tuned into the #th harmonic (w, = 2mnf,,,), it can be modeled
with an intrinsic resistor Ry, and a transformer-bridged resistor R;, where the transformer models the
coupler. These two elements are connected in parallel to an ideal current source 7, which models the
beam [104]. Based on eq. (2.41), the coupling coefficient x quantitatively relates Ry, and R;:

Pcoup _ Rsh
Pdiss Rl '

(2.56)

X =

Using eqs. (2.40), (2.41), and (2.56), after some basic circuit analyses, the power flowing into the load
is given as

2 Qﬁ)ad
Paoy = LR (2.57)

where I’ is recognized as §,, in eq. (2.55). Therefore, eq. (2.57) can be finalized to

2Ng*
P _ q rech QJ

coup

. QoéaitR (2.58)
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Figure 2.5  Schematic plot of the power spectral density of the Schottky noise of a coasting beam in
a storage ring. The green areas centering at every multiple of the mean revolution frequency represent
the Schottky bands at different harmonics. The blue curve is the superposition of all the bands. In
the plot, the Schottky bands starts to overlap at the fourth harmonic. From the eighth harmonic, the
overlapping is so dramatic that the total Schottky noise becomes a plateau. Note that the frequency
spread is intentionally exaggerated for a better presentation.

It is worth noting that eq. (2.58) is rooted in the thin cavity approximation. Revoking this approxi-
mation mainly results in two consequences: The transit time factor needs to be incorporated such that
R, in cq. (2.58) should be replaced with R, and the signal starts to roll off at a frequency of the order
of 1/¢,,, where #,, is the transit time [110]. Also, attention should be paid to the position dependence
of the shunt impedance (cf. fig. 2.1). This feature can be exploited to distinguish the revolution orbits
of the particles by comparing the signal power. However, as a side effect, the betatron motion of the
beam will additionally contribute transverse side bands to the Schottky spectrum [110]. Fortunately,
thanks to the low intensity of the cocktail beams in the typical mass measurement experiments, this

problem is not a critical concern.

2.5 Correction for Anisochronism Effect

By revisiting eq. (1.2), it is found that the mass-to-charge ratio of an ion is determined by its mag-
netic rigidity and velocity. The velocity is the product of the orbital length and revolution frequency,
where the former is again determined by the magnetic rigidity. In all, 72/4 is a function of two inde-
pendent variables, namely Bp and /,

rev

. By using an intensity cavity of which the shunt impedance barely
varies with the horizontal position, only the mean revolution frequency can be attained for each kind
of nuclei. It is obviously insufficient to evaluate the nuclear masses without the information about the
magnetic rigidities. Consequently, the results are not robustly accurate, and the uncertainties are thus
overestimated.

This issue can be overcome by introducing a position cavity adjacent to the intensity cavity [113].

This cavity doublet is then able to measure Bp along with f..,, given that the momentum dispersion is

sufficiently large at the location of the cavity doublet. By fixing the magnetic rigidity and determining
the corresponding revolution frequency for each kind of nuclei, the mass-to-charge ratios are solely

dependent on the determined revolution frequencies. From there on, the Correlation Matrix Method
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can readily be used to evaluate the nuclear masses [ 114, 115]. It is important to note that this detection
scheme with a cavity doublet is intrinsically free of the anisochronism effect, provided that the ion
optics of the ring is isochronously optimized. Therefore, the results can significantly be improved in
both accuracy and precision.

Having outlined the analysis procedure, it is time to supplement the missing route from a fixed mag-
netic rigidity to the corresponding revolution frequency. Essentially, it is the correspondence between
the revolution frequency and horizontal position that needs to be pursued. Let | and L denote the in-
tensity cavity and the position cavity, respectively. Both cavities have been tuned to the same resonant
frequency. According to eq. (2.58), the ratio of the coupled power from two cavities is independent of

the beam attributes: » R
1 1
L) -k (—) , (2.59)
(P> Ry )

coup

where a constant K wraps all the ratios of the quality factors:

(3.8, (8), o

ext

The left hand side of eq. (2.59) is a function of the revolution frequency f.,,, in contrast to the

horizontal position x for the right hand side:

ev’

(jj_) = Pller): (261)

coup

(%) =), (2.62)

Eventually, the correspondence between f;,, and x is obtained by substituting eqs. (2.61) and (2.62)
into eq. (2.59):
Jrew = PTHKR(%)] = §(x), (2.63)

where P is presumed to be invertible, and P ~! denotes its inverse. A counterexample would be the case

of the isochronous ions, where f,

o, Isindependent of x, or at least the frequency spread is comparable to

the frequency resolution of the detection system. Although the present method with a cavity doublet
cannot be applied to this very case, it is sufficiently accurate to work with the mean revolution frequency
extracted from the Schottky spectrum of the intensity cavity.

Having obtained the gauge function G for each kind of nuclei, it is then straightforward to compute
the representative revolution frequency f,,, by substituting for the horizontal position with an arbitrary
> Once Kiep 18 chosen, it has to remain constant throughout the entire process. However, in
practice, functions P and X are only experimentally known at a set of discrete points, rather than in

a continuous interval. For instance, P is obtained from the Schottky spectra of both cavities at the

value x,,

frequencies that are evenly spaced by the resolution, while % is obtained from the benchtop measure-
ments at the sample positions. In order to attain the gauge function, the parametric regression, usually
by a polynomial, of the discrete points is a prerequisite for both 7! and . Note that in eq. (2.63),
P~ is directly involved in G, so £,., should be the dependent variable while (P, /P ),,,, should be the
independent variable for the regression.

The regression uncertainty is dependent on the sample size. More discrete points will lead to a
better regression accuracy. The sample size can be augmented by, for instance, improving the frequency
resolution in the Schottky spectrum. This is equivalent to the prolongation of the frame length for the
Fourier transformation. However, the frequency uncertainty may increase as well due to the instability
of the power supplies for the magnets. A judicious compromise of the frequency resolution thus needs
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to be found. Alternatively, along frame of data can be split into several small parts, to which the Fourier
transformation is applied separately. The averaged spectrum of them will render a better signal-to-noise
ratio. In addition, an average can even be applied among different storage cycles to accumulate statistics,
which is beneficial for the rare nuclei with low yields.
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3  CONCEPTUAL DESIGN
Cosy=29

The design of a position-resolving cavity is essentially a task of optimizing its geometry so as to max-
imize the gradient of the shunt impedance in a transverse direction, while still complying with realistic
constraints in different aspects (e.g. beam dynamics, aperture size). Needless to say, the quantification
of the EM fields inside the cavity plays a central role throughout the entire design stage. Yet they can
analytically be carried out for only a few simple structures, a numerical approach by means of the Fi-
nite Element Method (FEM) provides a more general solution in case the structure becomes complex.
Before diving into the iterations of the design right away, it is instructive to take a retrospective look at
successful implementations of the RF cavity for the beam position detection.

3.1 Historical Perspective

The concept of integrating a cavity into the beam position detection to enhance the signal-to-noise
ratio was originally proposed by R. Bergere e 4l. in 1962 [116]. Figure 3.1 illustrates a symmetric
configuration of four identical cavities in their design for an electron linac in Saclay. It was in fact

%
=

e

/

V

=

Figure 3.1  Schematic view of a Beam Position Monitor (BPM) with four identical cavities pro-
posed by R. Bergere e# 4l. . The cavities are connected to the beam pipe via slots. The beam-induced
EM fields are enhanced by the cavities, and then picked up by loop couplers. (Adapted from [116].)

an improvement of a button Beam Position Monitor (BPM) by replacing the coupling buttons with
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cavities. The electron-radiated magnetic field propagated via slots and resonated in cavities at 3 GHz.
Then, four coupling loops on the edge picked up the field in these cavities.

To detect the beam position by using an RF cavity in its true sense was explored by P. Brunet ez
al. [117], and first realized at Stanford Linear Accelerator Center (SLAC) [118]. The detection sys-
tem comprised two orthogonally placed rectangular position cavities resonating in the dipole mode,
through which electron beams passed directly. In addition, a circular intensity cavity operating in the
monopole mode was installed nearby to offer the phase reference for the other two. The magnitude of
a phase-calibrated signal of any position cavity implied the amount of a corresponding beam displace-
ment, while the polarity indicated the direction. So if there was no signal, the beam was in the center.
Following the pioneering work at SLAC, a handful of rectangular cavities have come into operation for
the beam position detection in various accelerator facilities [ 119-121]. The main advantage of the rect-
angular shape is the ability to well separate the signals for the horizontal and vertical displacement in
frequency domain. This can be obtained by deviating the length and width of a cavity to a considerable

degree (fig. 3.2).

position intensity
cavity cavity

waveguide

coupling slot ™

Figure 3.2 Photo of a Beam Position Monitor (BPM) block developed at KEK. The height of the
rectangular position cavity is 6 mm, while the width is 12 mm. The signals for the horizontal and
vertical displacement are selectively coupled by the orthogonal waveguides via the coupling slots. The
resonant frequency is 5.7 GHz for the horizontal direction, and 6.4 GHz for the vertical direction.
The circular intensity cavity serves as a reference. (Adopted from [120].)

Beinga cousin of the rectangular cavity, a circular counterpart has been adopted much more widely
at different laboratories around the world, due to its geometric simplicity for manufacture. Since the
debut at Chalk River Laboratories (CRL) in 1979 [122], the circular position cavities have been de-
ployed or designed for the beam diagnostics in Free-Electron Laser (FEL) facilities [ 123-125], electron
positron colliders [126—129], and fixed target accelerators [ 130, 131]. Due to the rotational symme-
try of the circular cavity, there are actually two dipole modes degenerating in frequency with mutually
orthogonal field orientations. Consequently, the interference between the two signals for the horizon-
tal and vertical displacement, termed as crosstalk, may become evident for a high-intensity beam. It
is therefore quite standard to plug in four identical waveguides, which are evenly spaced by 90° in the
azimuthal direction around the cavity, to selectively couple out specific dipole fields and meanwhile
reject the monopole contamination. Although most of the circular position cavities are operated in
companion with electron beams, only one special design aims at the position detection for heavy ions.
Figure 3.3 illustrates the cavity BPM for the CR at FAIR presented by M. Hansli ez a/. [132]. The high-
light of this design is the ability to self-calibrate the position signal with the reference signal picked up
by a coupling loop in the neutral plane of the dipole mode.
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Figure 3.3  Circular Beam Position Monitor (BPM) designed for the CR at FAIR. The dipole
mode is coupled out by two opposite waveguides, while the monopole mode is picked up by aloop in
the middle. The ceramic shield isolates the cavity from the ultra-high vacuum inside the beam pipe.
(Adopted from [132].)

In order to improve the position resolution and intensity sensitivity of a circular cavity, two kinds
of modifications can be applied to the cavity geometry. In the left panel of fig. 3.4, the vicinity of
the beam pipe is pushed inwards, forming nose cones on both sides of the cavity. It can be shown

a8

nose COE%Q N

beam ——> beam ——>

~ 7

cavity

r

cavity " r

7 7

Figure 3.4 Two commonly used modifications to a circular cavity to improve the position resolu-
tion and intensity sensitivity. Shown on the left hand side is a so-called re-entrant cavity, where nose
cones are formed around the beam pipe on both sides of the cavity. Shown on the right hand side is a
so-called choke mode cavity proposed by T. Shintake. The choke structure is an extruded ring coaxial
with the beam pipe to pick up the desirable mode. The other modes will be damped by an RF absorber
filled on the edge. (Right panel adapted from [133].)

that this deformation significantly concentrates the electric field in the pipe region, thus increases the
shunt impedance [134]. The utilization of such a shape has already been implemented worldwide in
several designs [135-137]. The right panel of fig. 3.4 sketches a so-called choke mode cavity that was
proposed by T. Shintake [133]. It was supposed to trap the desirable mode by a choke structure with a
radius of quarter wavelength of that mode, and damp parasitic modes with an RF absorber filled on the
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edge. This special arrangement can effectively purify the dipole field in the case of the beam position
detection, and eventually lead to a good signal-to-noise ratio.

A common feature shared by the aforementioned designs is that all the cavities resonate in the
dipole mode to detect the displacements of bunched beams. Since the electric field in the dipole mode
is antisymmetric about the central plane, the shunt impedance is very little near the center. Fortunately,
abunched beam induces a coherent signal inside the cavity, which scales with the square of the particle
number and thus compensates the weakness of the coupling strength [110].

However, for a coasting beam in a typical mass measurement experiment, the Schottky signal scales
linearly with the particle number. The low intensity of the beam (a few ions for the nuclei of interest)
imposes an even greater challenge on the position detection in the dipole mode. To circumvent these
limitations, it is proposed to exploit the monopole mode of a cavity and offset the beam pipe to one
side [138]. This kind of design can deliver a higher shunt impedance, while still enjoying a large electric
field gradient in a half of the cavity. In order to minimize the crosstalk between two transverse direc-
tions, it is suggested to stretch the cavity in one direction such that the gradient of the shunt impedance
lies mostly in the other direction within the aperture region.

3.2 Design Criteria

Although the conception of a novel position cavity has been established, further developments
into a functional design necessitate realistic parameters from a specific storage ring. In fact, the cavity
is planned for the deployment in the Collector Ring (CR) at FAIR in Darmstadt, in order to attend
to the experimental duties assigned by the Isomeric beams, Llfetimes and MAsses (ILIMA) collabora-
tion [139].

3.2.1 Isochronous Modes of Collector Ring

The CRis the first storage ring cascaded downstream a synchrotron (SIS100) and a fragment sepa-
rator (Super-FRS). It has a circumference 0of 221.45 m and a maximum magnetic rigidity of 13 T-m. In
order to effectively accept hot radioactive ion beams and, possibly, antiprotons, the CR will be equipped
with vacuum chambers in an excessive size (41 cm by 20 cm inside the dipole magnets). The main ob-
jective of the CR is to rapidly cool the injected beams by means of the stochastic cooling. The cooled
beams will then be transferred to the subsequent rings for physical experiments.

Additionally, the CR can be operated as an isochronous mass spectrometer once the ion optics is
tuned isochronously [140]. In order to be able to store a broader nuclide region towards the neutron
and proton drip-line, the CR will incorporate three isochronous ion-optical settings with transition
energies of 1.43,1.67,and 1.84 (fig. 3.5). The comparison among these isochronous modes is presented
in table 3.1.

Table 3.1  Machine parameters of the CR in three isochronous modes. The kinematic quantities
are calculated for the isochronous ions.

Isochronous mode I II II

Transition energy 1.43 1.67 1.84
Velocity [c] 0.715 0.801 0.839
Revolution frequency [MHz] 0.968 1.084 1.136
Kinetic energy [MeV-u™!] 400 625 790
Transverse acceptance [mm- mrad] 100 100 100
Momentum acceptance [%] 4+0.22 +0.46 40.62
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Figure 3.5  Chart of the nuclides featuring the theoretical storage capability of the CR. The black

borderline sketches the nuclide region with known masses. The colored sectors schematically indicate

the nuclide regions that can be stored in the CR in the isochronous modes with three ion-optical set-
tings. The magnetic rigidity Bp ranges from 8 T-m to 13 T m for cach transition energy y,. (Adapted
from [140].)

3.2.2 Requirement Specifications

The experiment programs proposed by the ILIMA aim at precision measurements of the funda-
mental properties, such as masses and lifetimes, of exotic nuclei near or on the nucleon drip-lines in
their ground and isomeric states. Due to the low yields of those nuclei, single-particle sensitivity is re-
quired for the position cavity. Moreover, the cavity should enable a good mass resolving power of the
order of 10° within a short time of 20 ms [141].

The coupled signal from the cavity will be processed in frequency domain. Each frequency spec-
trum is obtained by gathering a sufficient number (e.g. 1024) of signal samples to apply the Fourier
transformation, which leads to a certain latency. A low latency can be attained at a cost of a coarse
frequency resolution, due to the reciprocal relation between them. Therefore, the required frequency

resolution Jf is given as
1
5 =
f 20 ms

Note that a factor of two is not directly involved in the calculation though, the result is credible in
accord with the Nyquist-Shannon sampling theorem, which states that when digitizing an analog sig-

=50 Hz. (3.1)

nal, a sampling rate of twice the maximum frequency of the original signal is sufficient to retain its
fidelity [142, 143]. This is because in practice, usually two independent Analog-to-Digital Converters
(ADC:s) with a phase difference of /2 digitize the coupled signal synchronously to preserve the full
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information of the amplitude and phase [144]. The effective sampling rate is thus doubled.

A coarse frequency resolution can be compensated by selecting a Schottky band at a higher har-
monic so as to achieve the required mass resolving power. According to eq. (1.1), by neglecting the
second term on the right hand side, the preferable resonant frequency of the cavity f; is given as

2
£ = % = 1.84% x 10 x 50 Hz = 169.28 MHz. (32)
The transition energy of the third isochronous mode in table 3.1 is taken for the calculation, since it
represents the least favorable scenario. Any resonant frequency higher than 169.28 MHz will deliver a
better mass resolving power than 10° for all the three modes.

On the other hand, a large shunt impedance is a prerequisite for the single-particle sensitivity. To
assess the required value, first consider a single ion with a moderate charge state of 60 in the CR. The
Schottky signal power Py, of the ion detected by the cavity can be obtained by integrating the distri-
bution function @ in eq. (2.58), which gives rise to

Rsh
9

where a critical coupling is assumed. Next consider the thermal effect as the only contribution to the
noise, of which the power P, amounts to [145, 146]

P = @) (5] Qs (33

Pth = 4kB Ta_\f‘, (3.4)

where ky is the Boltzmann’s constant and 7" is the absolute temperature of the detection system. The
ion optics of the CRis assumed to be stable during 20 ms, such that the bandwidth of the ion is limited
to the frequency resolution df. The signal-to-noise ratio is conservatively estimated to be four-to-one
for the ion on the central orbit. By virtue of egs. (3.3) and (3.4), this ratio leads to

Rsh _ 4'/€B Ta){PSch
Q,O Qload (%ev)zpth

where T is taken as a room temperature of 295 K and Q

=37.78, (3.5)

is moderately assumed to be 10°. The rev-
olution frequency in the first isochronous mode in table 3.1 is taken for the calculation, again because

oad

it represents the least favorable scenario.
To summarize, all the design specifications of the position cavity are prescribed in table 3.2.

Table 3.2 Design specifications of the position-resolving cavity in accordance with the require-
ments assigned by the ILIMA collaboration. The characteristic shunt impedance is for the central

orbit.
Item Value  Unit
Width of aperture 41 cm
Height of aperture 20 cm
Resonant frequency 169.28 MHz
Time resolution 20 ms
Frequency resolution 50 Hz

Charac. shunt impedance (middle) 37.7 Q
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3.3 Analytic Sketch

The base geometry of the position cavity is selected to be a rectangular prism or an elliptic cylinder.
These kinds of shapes are simple, robust, and easy to manufacture. Most importantly, the RF properties
can precisely be understood by analytic means. Since no preferences on any shape is evident at the
moment, they will be equally treated and regularly compared throughout the design process.

3.3.1 Rectangular Cavity
A plain, fully closed rectangular cavity with height 4, width 4, and depth 4 is illustrated in fig. 3.6,

along with an associated Cartesian coordinate system, of which the origin is located in the center and
the z-axis points to the beam passage direction.

J Y
front view side view
| b/4
<>
‘ X z
ﬂ ,,,,,,,,,,
<>
b d

Figure 3.6  Schematic views of a rectangular cavity. The origin of the Cartesian coordinates is in the
center of the cavity. The x-, y-, and z-axes lie in the horizontal, vertical, and longitudinal directions,
respectively. The orientation of the coordinates follows the convention in the accelerator community.
The location of the aperture is indicated with a dotted rectangle in the front view.

The mathematical expressions of the EM fields inside the cavity can be obtained by solving Maxwell’s
equations, and essentially, after the separation of the temporal and spatial part, by solving the Helm-
holtz equations in the Cartesian coordinate system:

V2E + (%)215 -0, (3.6)
V2H + (%)ZH 0, (3.7)

where ¢ is the speed of light in free space, E and H are the spatial parts of the electric and the magnetic

field strength, respectively.
While a more general solution of the EM fields is documented in appendix A.1, a particular one of
the electric field in the monopole mode is transcribed as follows:

E, =0, (3.8)

Ey =0,

E, = E, cos (E) cos <E> , (3.10)
b a
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where E|) is a scaling factor. Note that eq. (3.10) slightly differs from eq. (A.35), because the origin
of the coordinate system has been translated from a vertex of the cavity to the center. The resonant
frequency f; is determined by the dimensions via

c 1 1
ﬁ)zi\/;Jrﬁ- (3.11)

With the quantitative distribution of the electric field obtained, it is now feasible to calculate the
characteristic shunt impedance of the cavity. Substituting eqs. (3.10) and (3.11) into eq. (2.37), and
using eq. (2.17) eventually result in

¢ (D)) o)

Itis clear in eq. (3.12) that the characteristic shunt impedance is also determined by the dimensions
of the cavity, but independent of the field strength or the total energy. Second, it varies with transverse
coordinates x and y: It peaks in the center where x = y = 0, then gradually decreases as x and y slide
towards the lateral, and finally vanishes at the boundary where x = +6/2 ory = +4/2. Because of this
feature, an aperture can be machined, for instance, on the left side of the cavity to allow for the beam
passage. The exact location is indicated with a dotted rectangle in the front view of the cavity in fig. 3.6.
Within the aperture region, the shunt impedance monotonically increases from left to right.

Ideally, the gradient of the shunt impedance ought to align with the x-axis in that region to elim-
inate the x-y crosstalk. In other words, the contours of the shunt impedance map should be straight
and perpendicular to the horizontal direction. However, from eq. (3.12), a certain deviation from the
ideal case is inevitable. This is in particular prominent near the center of the cavity, i.e. at the right end
of the aperture. A quantity named skewness is introduced to characterize to which extent, in reality,
the contour deviates from a straight line. It is defined as the horizontal span of the rightmost contour
that connects the upper-right and lower-right vertex of the aperture. To rephrase it in mathematical
language, let (—x,,7,) be the upper-right vertex. Due to the mirror symmetry, (—x,, —y,) must be
the lower-right vertex. Suppose that the rightmost contour intersects the axis of symmetry at (—x;, 0),
then the skewness s is given as s = x; — x,.. Note that all the variables are positive, since the minus sign
is explicitly written.

Recalling the aperture size in table 3.2, the intercept can be calculated by equating the shunt impe-
dances at those two points:

Rsh b _ Rsh —x
) (20.5— Z’IO> = QO( ,0), (3.13)

which results in a skewness of

b 205t w 10w b
§ = —arccos [cos < — —> cos <—>] — — +20.5, (3.14)
T b 4 a 4

where all the variables are in a unit of centimeter.

The skewness can be reduced by increasing the aspect ratio 4/, i.e. by stretching the height and/or
squeezing the width. It is obvious that the width of the cavity should at least be twice as much as that
of the aperture. There is also a certain limit for the stretch of the height due to practical constraints,
such as the available space to accommodate the cavity, and the ultra-high vacuum requirement in the
CR. Besides, the expansion of the cavity will reduce the resonant frequency, to which a lower bound
has been assigned in table 3.2. In all, the optimization of the design is to seek an adequate compromise
after taking these factors into account.
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Figure 3.7 Dependence graph for the design of a rectangular position cavity. Shown on the left
hand side is the dependence of the resonant frequency on the transverse dimensions of the cavity. The
design specifications favor a higher resonant frequency. Shown on the right hand side is the depen-
dence of the skewness on the transverse dimensions. A lower skewness is favored for the design. For
both subgraphs, the infeasible regions are colored in gray. The optimum point is marked with a blue

dot.

The dependence graph of f, and s on (4, b) can visually assist in selecting the optimum value. Fig-
ure 3.7 shows such a graph, where the color-coded resonant frequency and skewness are presented in
the left and right panel, respectively. Except for the gray areas which mean infeasible for both sub-
graphs, the combination (4, #) favors dark red for the fj-subgraph, but light yellow for the s-subgraph.
The optimum (4, 4) = (180, 100) is finally selected in the overlapped region of two feasible areas.

Consequently, the resonant frequency is determined to be 171.48 MHz, and the skewness is 2.63 cm.
According to eq. (3.12), Ry, /Q, now solely depends on d. Therefore, the requirement of the shunt
impedance in table 3.2 can be translated onto the depth of the cavity. By substituting (x,y) = (—6/4,0)
into eq. (3.12), it is found that & should be greater than 16.18 cm. An even larger depth can lead to
a higher characteristic shunt impedance, but also a lower transit time factor. Therefore, the effective
shunt impedance may not increase accordingly. A depth of 16 cm is eventually decided on. As can be
seen from fig. 3.8, the transit time factors are very close to unity for all the transition energies.

By virtue of eq. (3.12), the shunt impedance map within the aperture is drawn in fig. 3.9. Although
the contour is more curved at the right end of the aperture, this may not be a critical issue because
most ions are expected to pass through in the middle, where the contours are quite straight. Due to the
same reason, the low magnitude of the shunt impedance at the left end can only weaken the signal to
alimited extent. For the sake of convenience, the key parameters of the rectangular cavity are listed in

table 3.3.

3.3.2 Elliptic Cavity
An elliptic cavity with height 4, width 4, and depth 4 is illustrated in fig. 3.10, together with an

associated Cartesian coordinate system. The origin of the coordinates is located in the center, while
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Figure 3.8  Transit time factors as a function of the depth of the rectangular cavity for the three
transition energies. The vertical line at 16 cm indicates the selected value.
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Figure 3.9  Shunt impedance map of the rectangular cavity in the aperture region. Note that the
coordinates are based on a new Cartesian system, of which the origin has been translated to the center
of the aperture.

the z-axis lies in the beam passage direction. To analytically solve the EM fields inside the cavity, it
is convenient to expand eqs. (3.6) and (3.7), however, in an elliptic cylindrical coordinate system. Its
origin and z-axis are the same as those in the Cartesian coordinate system, whereas the rest coordinates
(v,9) in the transverse plane can be transformed to (x, y) via

x = rsinhvcos?, (3.15)

y =rcoshvsin?, (3.16)



Table 3.3 Design parameters of the rectangular cavity. The characteristic shunt impedanccs are
sampled at the left end, in the middle, and at the right end of the horizontal axis of symmetry of the

aperture.
Item Value  Unit
Height 180 cm
Width 100 cm
Depth 16 cm
Skewness 2.63 cm
Resonant frequency 171.48 MHz
Charac. shunt impedance (left) 1.5 Q
Charac. shunt impedance (middle) 37.3 Q
Charac. shunt impedance (right) 73.1 Q
v J
front view side view
X z
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<>
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Figure 3.10  Similar to fig. 3.6, for an elliptic cavity.

where the radial coordinate » is a nonnegative real number, and the azimuthal coordinate 3 is between
0 and 2m. The electric field in the monopole mode is given as

E =0, (3.17)
Ey =0, (3.18)
E, = E, Cey(n:7) ce, (9 + 2 a) , (3.19)

where E|, is a scaling factor, ce; is the even Mathieu equation of order zero, Ce, is the even modified
Mathieu equation of order zero, and # is a particular parameter that is determined by the ratio 6/4. The
reader is advised to refer to appendix A.3 for more details. Note that eq. (3.19) slightly differs from
eq. (A.86), because the elliptic coordinates have been rotated counterclockwise by /2. Moreover, the
resonant frequency f;, of the monopole mode is determined by 2 and 4 via

2c | u
ﬁ) = ? 42 . bz' (320)
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The characteristic shunt impedance of the elliptic cavity can be calculated by substituting egs. (3.19)
and (3.20) into eq. (2.37), and using eq. (2.17):

Ry 2uycd Ceg (v 1) ce2 (S + /2 1)
Q  alar = b2) [0 & [77 dS(sinh” 5 + cos? §) Ced (3 ) e} (S + /23 )

. (321)

where 7 and & are dummy variables.

The dependence of £ on (4, b) is visualized in the left panel of fig. 3.11. The skewness can be de-
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Figure 3.1l  Similar to fig. 3.7, for an elliptic cavity.

fined in the same manner as before. However, an analytic formula of s is impossible to attain. The
dependence of s on (4, 4) by numerical means is visualized in the right panel of fig. 3.11. Based on
the dependence graph, the optimum (4,4) = (190,110) is hence chosen, which leads to a resonant
frequency of 169.76 MHz and a skewness of 2.75 cm.

According to eq. (3.21), a minimum depth of 15.63 cm is compulsory for the elliptic cavity to
fulfill the requirement of the shunt impedance in table 3.2. The final decision is made on 16 ¢cm, which
happens to be identical for both rectangular and elliptic cavity. Likewise, the transit time factors and
shunt impedance map for the elliptic cavity are plotted in figs. 3.12 and 3.13, respectively. The key
parameters of the elliptic cavity are listed in table 3.4.

Although the two cavities are intentionally designed to be comparable, some subtle differences are
still in existence. For instance, the height and width of the elliptic cavity are a little larger than those
of the rectangular cavity, which results in a slightly lower resonant frequency. By comparison between
figs. 3.9 and 3.13, it is found that the contour of the shunt impedance map is straighter for the rectan-
gular cavity. However, the quantitative comparison between tables 3.3 and 3.4 reveal that the elliptic
cavity exhibits a bit higher shunt impedance in the whole aperture region. The transit time factors, on
the other hand, are nearly the same for both cavities.
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Figure 3.12  Similar to fig. 3.8, for the elliptic cavity.
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Figure 3.13  Similar to fig. 3.9, for the elliptic cavity.

Table 3.4 Similar to table 3.3, for the elliptic cavity.

[tem Value  Unit
Height 190 cm
Width 110 cm
Depth 16 cm
Skewness 2.75 cm
Resonant frequency 169.76 MHz
Charac. shunt impedance (left) 2.8 Q
Charac. shunt impedance (middle) 38.6 Q
Charac. shunt impedance (right) 76.8 Q

3.4 Computational Refinement

Once the structure of a cavity becomes complex, the analytic approach is no longer adequate to
carry on the design process. Fortunately, computer codes by numerical means are available to take over
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to solve Maxwell’s equations in a meshed volume. Here, a proprietary software— CST MICROWAVE
STUDIO®—is adopted to simulate EM fields inside the rectangular and elliptic cavity, when beam
pipes and plungers are incorporated.

Before the tool is deployed, it should be benchmarked in order to demonstrate its reliability. The
calculations of the resonant frequency and shunt impedance are hence repeated by the CST for both
cavities. The simulated values are listed in table 3.5. By comparison to tables 3.3 and 3.4, it is found

Table 3.5 Benchmarking of the CST by calculating the resonant frequencies and the characteris-
tic shunt impedances of both cavities. The indicated locations in parentheses are the same as those

described in table 3.3.
Cavity Rectangular  Elliptic
Resonant frequency [MHz] 171.48 169.76
Charac. shunt impedance (left) [Q] 1.5 2.8
Charac. shunt impedance (middle) [Q] 37.2 38.6
Charac. shunt impedance (right) [Q] 73.1 76.8

that the simulated results are in excellent agreement with the analytic solutions.

3.4.1 Apertures with Beam Pipes

In order to allow for the beam passage, two opposite rectangular apertures need to be machined on
the flat ends of the cavity. The center of the aperture is horizontally offset from the center of the cavity
to the left side by a quarter width of the cavity. In addition, a beam pipe is attached to each aperture to
mimic the vacuum chamber in the CR. The length of the pipe is three times as much as the depth of
the cavity, i.e. 48 cm.

The two kinds of cavities together with the beam pipes are modeled with the CST, and the elec-
tric fields are simulated subsequently. Afterwards, the characteristic shunt impedances are calculated
according to eq. (2.37). Note that the CST has internally normalized the EM fields to a total energy of
1]. The definite integral of E, in the numerator in eq. (2.37) is approximated by using the trapezoidal
rule between z = 456 cm with a step of 0.2 cm.

The results are visualized in the shunt impedance maps in figs. 3.14 and 3.15 for both cavities.

10 T T
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=
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Figure 3.14  Shunt impedance map of the rectangular cavity in the aperture region with beam pipes
attached.
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Figure 3.15  Similar to fig. 3.14, for the elliptic cavity.

Unfortunately, an abnormal pattern is presented for both cavities. This is due to the abrupt edges of the
apertures, where the EM fields are severely distorted by the discontinuity of the boundary condition.
As a remedy, the edges are rounded by a radius of 1.2 cm (fig. 3.16). The resultant shunt impedance

rounded edges
J
% X
z

Figure 3.16  Three-dimensional models of the rectangular and elliptic cavity used for the simula-
tion with the CST. The edges formed between the cavities and beam pipes are rounded by a radius of

1.2cm.

maps are presented in figs. 3.17 and 3.18.

It is apparent from figs. 3.17 and 3.18 to find that in spite of the ripples folded on the contours, the
shunt impedances follow a general ascending trend from left to right. The contours in the right half are
denser than those in the left half, which means a better position resolution ought to be expected near
the cavity center, whereas in the middle region the contours still resemble straight lines. The dynamic
ranges of the shunt impedances are also enhanced to more than 80 Q, because of the extra electric fields
extending into the beam pipes from the neighborhoods.

3.4.2 Higher-Order Modes

Although the position cavity is designed to resonate in the monopole mode with the lowest res-
onant frequency, the coupled signal may get contaminated by other Higher-Order Modes (HOMs).
This can be caused by a significant presence of the electric field in a HOM in the aperture region, which
interacts with the beam as it passes through the cavity. This effect will even become prominent, if the
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Figure 3.17  Shunt impedance map of the rectangular cavity in the aperture region with pipes at-

tached and edges rounded.
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Figure 3.18  Similar to fig. 3.17, for the elliptic cavity.

resonance curve of the HOM is so broad that it extends to the frequency regime of the monopole mode.
To study the possible contaminations by the HOMs, the EM fields in two other modes, namely dipole
and tripole mode, are also simulated with the CST.

The resonant frequencies of two cavities in the monopole, dipole, and tripole mode are listed in

table 3.6 for comparison. It is then apparent that the three modes of the elliptic cavity spread a little

Table 3.6  Resonant frequencies of the first three modes in the rectangular and elliptic cavity.

Eigenmode Rectangular  Elliptic
fo [IMHz]  f; [MHz]
Monopole 171.546  170.043
Dipole 218.956  228.083
Tripole 292.860  300.622

more sparsely in frequency. Moreover, the shunt impedance maps in the HOMs for both cavities are
presented in figs. 3.19 to 3.22. By comparison between figs. 3.19 and 3.21, the shunt impedance maps
are similar for the rectangular and elliptic cavity. The rather low magnitude of the shunt impedance
implies a weaker coupling strength between the cavity and beam in the dipole mode than that in the
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Figure 3.19  Similar to fig. 3.17, for the dipole mode.
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Figure 3.20  Similar to fig. 3.17, for the tripole mode.
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Figure 3.21  Similar to fig. 3.19, for the elliptic cavity.

monopole mode. In contrast, according to figs. 3.20 and 3.22, the shunt impedance maps exhibit dis-
tinct patterns in the tripole mode for the two cavities. Although the shunt impedance is insignificant

for the elliptic cavity, it surely presents a moderate magnitude for the rectangular cavity in particular

near the cavity center. However, according to table 3.6, the tripole mode is much separated from the
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Figure 3.22  Similar to fig. 3.20, for the elliptic cavity.

monopole mode in frequency, and can hence be rejected by a proper band-pass filter.

As a precautionary measure, several probe couplers terminated by 50 €2 resistances can be mounted
onto the position cavity to damp the dipole and tripole mode [138]. They will be located on a flat end
of the cavity at the antinodes of the electric fields in the HOMs so as to efficiently absorb the EM
energies from these parasitic modes. By means of simulation, the coordinates (x, y) of the antinodes
in centimeter, after being rounded to the nearest integer, are listed in table 3.7 for the rectangular and
elliptic cavity. Note that for the tripole mode, there is in fact one more antinode lying in the horizontal

Table 3.7  Transverse coordinates of the antinodes of the electric fields in the Higher-Order Modes
(HOMs) for the rectangular and elliptic cavity. The origin of the coordinates is in the center of each

cavity.
HOM Rectangular Elliptic
x[em]  y[em] x[em] y[em]
Dipole -2 442 -2 440
Tripole —4  4£60 —12  £52

central plane of the cavity. However, this location is reckoned not suitable for mounting a damping
coupler because it will act on the monopole mode as well.

3.4.3 |Installation of Plungers

Since the CR will be operated in the three isochronous modes with various transition energies, the
resonant frequency of the position cavity will fall into the Schottky bands of the isochronous ions at
different harmonics. In order to maximize the signal-to-noise ratio, the resonant frequency f; should

preferably align with the revolution frequency £, of the isochronous ion at the corresponding har-

monic. Based on the revolution frequencies in table 3.1, and the simulated resonant frequencies of the
rectangular cavity (171.55 MHz) and the elliptic cavity (170.04 MHz), the target resonant frequen-

cies of both cavities can be calculated for all the isochronous modes. The results are listed in table 3.8.

Consequently, the detuning interval of the resonant frequency is [171.536, 172.356] MHz for the
rectangular cavity, and [170.188, 170.4] MHz for the elliptic cavity. This can be attained by installing
plungers into the cavity. The installation spots are on the circumference of the cavity on the right hand
side, such that the plungers will not interfere too much with the electric field in the aperture region,
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Table 3.8 Target resonant frequencies of the rectangular and elliptic cavity in accord with the
revolution frequencies in the three isochronous modes.

Isochronous Rectangular Elliptic
Mode f,., [MHz] Harmonic f;[MHz] Harmonic f [MHz]
I 0.968 178 172.304 176 170.368
II 1.084 159 172.356 157 170.188
111 1.136 151 171.536 150 170.400

but can also detune the resonant frequency by reshaping the boundary on the edge. For the sake of
symmetry, two cylindrical plungers with a radius of 6 cm are placed in the horizontal planesaty = +-4/4
for each cavity (fig. 3.23). Due to the curvature of the side face of the elliptic cavity, the plungers are

plungers

J

L.

Figure 3.23  Three-dimensional models of the rectangular and elliptic cavity featuring plungers in-

z

stalled on the circumferences. The locations of plungers are offset halfway from the horizontal central
plane to either side. The orientation of the plungers for the elliptic cavity are also rotated by an angle
of +18.5° to meet the curvature of the circumference.

angled at 18.5° to orthogonally fit into the surface.

In the detuning procedure, two plungers will be moved inwards or outwards by a stepper motor
with the same displacement. The dependencies of the resonant frequency f; on the plunger position
%, are simulated with the CST for the rectangular and elliptic cavity, which are shown in figs. 3.24
and 3.25, respectively. The green area indicates the detuning interval of the resonant frequency, while
the red dot stands for the initial resonant frequency where the plungers align with the cavity wall.
Clearly, a wider tunable range is required for the rectangular cavity, which corresponds to a displace-
ment range of nearly 5 cm.
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Figure 3.24 Detuned frequency of the rectangular cavity as a function of the plunger position.
The negative position means that the plungers are inside the cavity. The green band represents the
target zone, while the red dot indicates the initial resonant frequency.
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Figure 3.25  Similar to fig. 3.24, for the elliptic cavity.
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4  EMPIRICAL JUSTIFICATION
Co===9

As an old proverb goes, “the proof of the pudding is in the eating”. One cannot judge the quality
of anything until one has tried, used, or experienced it. The same holds for the development of a cavity.
No matter how convincing the analytic and computational results in chapter 3 may look like, without
being tested in practice, it is nothing but a design concept. When the concept is being put into realiza-
tion, it will most likely face a lot of practical challenges arising from different aspects in an unexpected
way. Therefore, technically speaking, the development will never be finished until the position cavity is
installed into the CR and functions normally as expected. Unfortunately, this long-term goal is already
beyond the time scale of the present thesis work. But for now, some empirical actions, such as manu-
facture of prototypes and benchtop tests on them, have been taken to advance one step closer towards

the final goal.

4.1 Prototype Cavities

Based on the conceptual design, two scaled prototypes of the rectangular and elliptic cavity have
been considered to manufacture. All the dimensions—the heights, widths, and depths of the cavities, as
well as those of the beam pipes—are scaled down by a factor of four in order to adapt to the test bench.
Moreover, the rounding radius of the edges of the apertures and the radius of the plungers are also
reduced by the same factor. The new sizes are listed in table 4.1. According to egs. (3.11) and (3.20),

Table 4.1  Dimensions of the scaled prototype cavities, as well as the associated parts.
Item Height [cm] Width [cm] Depth [em] Radius [cm]
Rectangular 45 25 4 -
Elliptic 47.5 27.5 4 -
Pipe 5 10.25 12 -
Plunger 5 - - 1.5
Rounded Edge - - - 0.3

the new resonant frequency will be four times as much as the original one, which is 686.18 MHz for the
rectangular prototype and 680.17 MHz for the elliptic prototype. On the contrary, the characteristic
shunt impedance will not be affected by the scaling according to egs. (3.12) and (3.21).

Apart from the two prototypes, a calibration cavity is additionally designed. It will be used to de-
termine the relative permittivity of a dielectric bead, which is crucial for profiling the electric fields
inside the prototypes by means of perturbation. The shape of a circular pillbox is selected for the cali-
bration cavity, because it is so simple that the cavity can precisely be manufactured, and the EM fields
can analytically be computed. The radius of the cavity is 16.8 cm such that the resonant frequency of
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the monopole mode—682.98 MHz according to eq. (A.60)—lies between the resonant frequencies
of both prototypes. Only by this means can the determined relative permittivity be helpful in the fre-
quency region of interest. During the calibration process, the bead with a diameter of 5 mm will be
placed in the center of the cavity. In order to minimize the image charge effect, the depth of the cavity
is chosen to be 10 cm. The three-dimensional models of the cavity family are depicted in fig. 4.1.

holes for
loop couplers

holes for
probe couplers

holes for
placing bead

Figure 4.1  Three-dimensional models of the rectangular, elliptic, and circular prototype cavity.
The pairs of the big holes on the sides of the rectangular and elliptic cavity are reserved for plungers.
The small holes on the three cavities are intended for different purposes. The unoccupied ones will be
blocked by screws. See the text for more details.

For the capability of mounting couplers, a number of holes are to be bored through on the cavity
walls, of which some are visible in fig. 4.1. These holes will then be threaded to match a BNC bulkhead
jack connector. The boring locations of the holes are mirror symmetric about the horizontal central
plane of the cavity. For all the three cavities, the holes on the circumferences are intended for mounting
loop couplers to pick up the magnetic fields, while the ones on the flat ends serve different purposes. In
the cases of the rectangular and elliptic cavity, the holes on the front faces coincide with the antinodes
of the electric fields, based on, after scaling down by a factor of four, table 3.7, and will be used for
mounting probe couplers to damp the HOMs, except for those lateral holes which are used for coupling
signals with loop couplers. The hole on the lid of the circular cavity allows for suspending the perturbing
bead with a cotton thread. During the benchtop tests, the unoccupied holes will be blocked by screws so
as to restore the boundary condition at these locations. For this reason, the hole is in fact a placeholder,
which is extensible for the supplementary features on demand.

The prototypes have been manufactured by Kreff GmbH in Biebergemiind, based on the engineer-
ing drawings in appendix B. Each cavity was machined in two parts: a flat lid and a hollow body with
the circumference. The body part was milled out of a bulk of aluminium alloy AIMgSil. This kind
of material is well known for its light weight, good electrical conductivity, and high corrosion resis-
tance. For the lid, the material was changed to AIMg4.5Mn due to its excellent flatness tolerance and
exceptional shape stability. Afterwards, these two parts were assembled by screwing firmly with helical
thread inserts used. In contrast to welding, this can retain the shape of each part without introducing
any heat distortion whatsoever. Like the cavity bodies, the beam pipes were also made of AIMgSil,
whereas the blocking screws and plungers were made of stainless steel 1.4301 due to its great hardness
for being compatible with threading. The inner edges of the rectangular cavity and those of the beam
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pipes in the longitudinal direction are rounded by a radius of 3 mm instead of being right angles, due
to the size limit of the milling cutter. The thickness of all the cavity walls are at least 10 mm, which
is the length of the blocking screws. Therefore, the holes were first counterbored to reduce the local
thickness wherever necessary. To help the rectangular and elliptic cavity stand on the test bench, a pair
of upright holders were also built for each of them. The final products are pictured in fig. 4.2.

elliptic
cavity

& plungers

blocking
screws

Figure 4.2 Photograph of the rectangular, elliptic, and circular prototype cavity.

4.2 Scattering Parameters

The scattering parameters (S-parameters) play a central role in characterizing the RF responses of a
multi-port network to EM stimuli in the microwave regime [147]. For high frequencies, the concepts
of voltage and current are no longer adequate to describe a circuit, because the EM wavelengths are so
short that the circuit elements are actually distributed over the whole network, and quite often, it is not
so easy to accurately define the reference planes. Therefore, the so-called power wave can be adopted
instead, if the power relations among different ports of the network are the main concern [148].

While a more general definition about the power wave in a multi-port network has been given
in [148], a basic two-port network is treated here, which is illustrated in fig. 4.3. At the #th port with

= 1 or 2, the incident power wave 4, and the reflected power wave &, are defined as

V47,

éln = 2—\/70, (41)
p = V=%l (4.2)

7,

where 7, and I, are the voltage and current flowing into the port, respectively, and Z, is an arbitrary
reference impedance, but normally chosen to be the characteristic impedance of the transmission line.
The incident and reflected power at this port are simply |, |* and |5,

Now assume that the network only contains linear elements. The relations between {4,,} and {4, }

2 respectively.

can thus be expressed by a set of linear equations:

b, = 8,4, + 4, (4.3)
bz = 834, + $pay, (4.4)
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Figure 4.3  Two-port network featuring the S-parameters between the ports. An incident power
wave is represented by an arrow pointing inwards a port, while an arrow pointing outwards represents
a reflected power wave.

or in the matrix form:

b, _( Su S a
(172)_(521 522)<"2)’ (43)

(4.6)

=
I
w

»

where $ is known as the power wave scattering matrix. Each element of the matrix is an S-parameter.
For instance, S, can be calculated via

b
Sn:_l

a)

_Z,—Z,
CZ+Z,

a)=

(4.7)

where eqs. (4.1) and (4.2) have been substituted in, and Z, is the shunt impedance looking into the first
port. The right hand side of eq. (4.7) is recognized as the reflection coefficient at the first port. Actually,
all the diagonal elements in a scattering matrix are the reflection coefficients at the corresponding ports
of a multi-port network [148]. On the other hand, the off-diagonal elements quantify the transmission
behaviors between any two ports.

For a two-port network, if §;, = 5, then it is reciprocal. Most passive elements—such as resistor,
capacitor, inductor, and transformer—are reciprocal. If §;; = S,, also holds, then the network is
symmetric as well. Moreover, the network is lossless if $ is unitary, i.c. STS = 1, where the dagger
denotes conjugate transpose.

In general, the S-parameters are complex numbers, so are the impedances. Equation (4.7) actually
projects the impedance plane to the reflection coeficient plane in complex domain via the M6bius
transformation [149]:

27,1

== 4.8
Y ZZy+ 1 (48)

This has been demonstrated to be a powerful tool, and been exploited intensively in microwave engi-
neering. The most widely used application may be the renowned Smith chart [150]. It is essentially
the polar representation of the reflection coefhicient, but with circular grids added to indicate the cor-
responding impedances before the transformation. It has proven to be extremely useful for analyzing
lumped element circuits and solving matching problems.
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In the high-Q approximation, an RF cavity can be modeled as a parallel circuit with a resistor, a
capacitor, and an inductor in the vicinity of its resonance [151]. The resistance is a constant, whereas
the capacitance and inductance vary with frequency. In the impedance plane, as the frequency sweeps,
the locus is a straight line perpendicular to the real axis, where the intercept is on the resonance. Cor-
respondingly, the locus of the reflection coeflicient is a circle, due to the property of the circle inversion
of the Mobius transformation. The size of the circle indicates the coupling coefficient x, e.g. the former
collapses to a point when » = 0. An accurate estimation of the coupling coefficient can be obtained by
alinear fractional curve fitting of the reflection coefficient [151].

The transmission coeflicient S, , on the other hand, is usually interpreted in a Cartesian coordinate
system where the square of its magnitude is plotted versus the frequency. It is the ratio between the
delivered power at port 2 and the available power at port 1, and hence proportional to the EM energy

stored in the cavity. According to eq. (2.27), |S,,|* can be fitted by a Lorentzian function. Afterwards,
the resonant frequency and quality factor are straightforward to obtain from the fitting parameters.
Note that the quality factor here is the loaded one Q,, 4, since the couplings at two ports are present.

In practice, the S-parameters of a cavity can be measured by a Vector Network Analyzer (VNA).
Usually the two ports of a Device Under Test (DUT) are connected with the test ports on the VNA
via phase-stable precision cables. Depending on the S-parameter to be measured, the RF generator at
each port is accordingly switched on or off. The incident and reflected power waves at each port are
separated by a directional coupler. Then, these two courses of waves are processed by the independent
reference and measurement channels, respectively. The ratio between them are analyzed by a built-in
computer and displayed on the screen. In order to minimize systematic errors, the VNA ought to be
calibrated at both ports under the Match, Open, Short, and Through (MOST) conditions prior to the
test.

4.3 Static Test

The benchtop tests on the prototypes proceed in two subsequent steps, namely static and dynamic
test. In the former, a cavity under test is staying still for the measurements of several scalar RF proper-
ties, such as the resonant frequency and quality factor. The effect of the ambient temperature and the
detuning by perturbations are also addressed in the static test.

4.3.1 Test Bench Setup

The setup of the test bench is pictured in fig. 4.4. It mainly consists of two measuring instruments,
i.e. a VNA and a digital multimeter, a controlling PC, and a cavity under test. Two loop couplers are
mounted on the circumference of the cavity. The coupler is based on a BNC bulkhead jack connector
soldered with a silver wire on top of it (fig. 4.5). It is then screwed into a side hole of the cavity, and
locked by a nut squeezing against a star washer (fig. 4.6). The VNA (Rohde & Schwarz ZVL6) is first
calibrated with a calibration kit (Rohde & Schwarz ZV-Z135), then connected to the two couplers
via high-quality microwave cables (HUBER+SUHNER SUCOFLEX_104_PE) to measure the S-
parameters of the cavity. In addition, the multimeter (Agilent 34410A) logs the ambient temperature
with a thermistor (Agilent E2308A) during the test. Both instruments are remotely controlled by the
PC running on a Linux system. They are communicated over Ethernet through an Ethernet hub with
the PC.

On the software side, a dedicated Java application has been prepared to handle all the communi-
cations between the PC and instruments. First, the PC sends out instructions with the syntax of the
Standard Commands for Programmable Instruments (SCPI) to the VNA and multimeter to initiate
the measurement. Afterwards, the PC retrieves measured data from the instruments when they have
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Figure 4.4  Setup of the static test bench. The cavity under test is exemplified by the circular one.
The Vector Network Analyzer (VINA) measures the S-parameters, while the multimeter together with
the thermistor monitors the ambient temperature. The PC coordinates the entire test process. See

siIver/||

the text for more details.

wires

loop coupler
probe coupler

Figure 4.5 Closeup of a loop and a probe coupler based on BNC bulkhead jack connectors. The
loop and probe are made from silver wires, and soldered on top of the connectors.

Figure 4.6  Closeup of mounting a BNC connector, which can be locked by the nut squeezing
against the star washer.
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taken ten consecutive measurements and averaged the results. The data are then written to the local
disk in the form of plain text, and can later be accessed by any networked computer within GSI.

4.3.2 Debut of Prototypes

The first impression on the prototypes in terms of RF properties is presented by their S-parameters.
From the §,, measurements, the resonant frequencies and quality factors can be deduced. Although
the presence of the two loop couplers will inevitably influence the measured results, their effect can be
minimized by carefully turning the orientations of the loops such that the resonance circles of §;; and
S,, almost collapse to points. This condition will always be examined for the three cavities throughout
the entire benchtop test.

The frequency span for the measurements is selected to be approximately three times as much as
the FWHM of the resonance curve of a cavity. The span is then evenly sampled to 801 frequencies by
the VNA, at which the reflection and transmission coeflicients are measured. The §;, and S, of the
circular cavity are plotted in a polar system in fig. 4.7, while the |, |* is plotted against / in a Cartesian
system in fig. 4.8.

90°

270°

Figure 4.7 Reflection coefhicients of the circular cavity in a polar system. The coupling coefhicients
at both ports are negligible, since the resonance circles almost collapse to points.

Itis clear in fig. 4.7 that the coupling coeflicient is negligible. Therefore, the quality factor obtained
from fig. 4.8 is almost the unloaded one. By fitting the resonance curve in fig. 4.8 with a Lorentzian
function, the resonant frequency f; is 682.770 63(8)(68) MHz, and the unloaded quality factor Q,, is
14 845(62). Note that the uncertainty of the resonant frequency comprises statistic (first) and system-
atic (second) contribution. The statistic uncertainty is a result of the parametric fitting by incorporating
an intrinsic uncertainty of 0.3 dB for each point on the trace, while the systematic uncertainty is due to
an instability of 107¢ of the internal reference frequency of the VNA. When computing the unloaded
quality factor by using eq. (2.28), both uncertainties are taken into account.

Likewise, the same loop couplers are mounted laterally on the front face of either the rectangular
or the elliptic cavity for test. The results of the transmission measurements of both cavities are plotted
in figs. 4.9 and 4.10, while the plots for the reflection measurements are very similar to fig. 4.7, and thus
omitted for brevity. The variance among the magnitudes of the resonance curves in figs. 4.8 to 4.10 is
caused by the slightly different coupling coefficients for the three cavities.
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Figure 4.8  Resonance curve of the circular cavity. Shown in blue is the measured |S,;|* together
with an uncertainty of 0.3 dB at each trace point. Shown in white is the fitted Lorentzian function.
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Figure 4.9  Similar to fig. 4.8, for the rectangular cavity.

Table 4.2 Measured resonant frequencies f; and unloaded quality factors Q) of the three cavities.
The corresponding uncertainties are denoted by 7.

Cavity fo [IMHz] & (ﬂ))stat (kHz] & (ﬁ))m [kHz] Qp O'(QO)

Circular 682.770 63 0.08 0.68 14845 62
Rectangular  685.577 40 0.18 0.69 5815 24
Eﬂiptic 679.507 02 0.17 0.68 6136 26

The resonant frequencies and quality factors of the three cavities are compiled in table 4.2. Note
that all the three resonant frequencies are slightly off the simulated ones, which can be attributed to
the perturbation by the loop couplers. The quality factor of the circular cavity is more than twice larger
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Figure 4.10  Similar to fig. 4.8, for the elliptic cavity.

than those of the other two, because the EM fields are better confined inside.

4.3.3 Drift of Resonant Frequency

It is worth noting in table 4.2 that the measurement technique is so sensitive that less than one kilo-
hertz difference can be distinguished out of more than half a gigahertz. Since the cavities are exposed to
a regular environment and no particular measures of temperature control are applied, it is of practical
importance to investigate the effect of the ambient temperature on the cavities. As a result, the reso-
nant frequency of the circular cavity and the ambient temperature have been monitored continually
for about 54 h. The plots of them versus the duration are presented in fig. 4.11.
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Figure 4.1  Drifts of the ambient temperature and the resonant frequency of the circular cav-

ity during a long period. The widths of the curves represent their associated uncertainties, which is
+0.2 °C for the temperature, and obtained from the fitting for the frequency.
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A strong correlation between the resonant frequency and ambient temperature can clearly be spot-
ted in fig. 4.11. This can be explained by the thermal expansion of the material. When the environment
becomes warmer, the cavity walls stretch longer, which enlarges the inner volume. Since the resonant
frequency is, in general, inversely proportional to the cavity dimensions, it gets lower. It is important
to note that any material requires a response time to adapt to a new temperature. Consequently, the
blue curve in fig. 4.11 is much smoother than the green one, and lags by nearly one hour. Besides, the
fact that a temperature burst at the tenth hour only causes a short plateau in the blue curve can also be
attributed to this reason.

A little quantitative comparison has been performed as well between the frequency shift and tem-
perature drift. Taking the period from 25 h to 35 h as an example, the frequency shifts about 95 kHz

while the temperature drifts about 10 °C. The relative change of the resonant frequency is

95 kHz

X2 39 % 104, 4
68275MHz 7% (49)

According to the material datasheet, the thermal linear expansion coefficient is 23.4 x 107¢°C™ ! at
room temperature, which leads to the relative change of the cavity radius:

(23.4 x 107¢°C™1) x 10°C = 2.34 x 1074 (4.10)

The two quantities are of the same order of magnitude. The small difference may be due to the response
time of the material. The feature of the cavity being sensitive to the ambient temperature necessitates a
counteract in the dynamic test, since it usually lasts for several hours.

4.3.4 Determination of Relative Permittivity

For the perturbation measurements, a ceramic bead with a diameter of 5 mm is adopted as the per-
turbing object. The bead is bored through the center with a small hole, and pierced by a cotton thread
with aknotat an end (fig. 4.12). It is then placed inside the circular cavity across the top hole, followed

digital caliper, inchimm

cotton thread

Aeramic bead

Figure 4.12  Closeup of the ceramic bead demonstrating its size in millimeter.

by blocking the hole with a screw. The rather low relative permittivity of the cotton (around two) makes
it quite suitable for suspending the bead in the air, such that the detuning frequency is mainly caused
by the bead. To ensure that the bead is in the center of the cavity, the hole has intentionally been offset
from the center by its radius, and the inner length of the thread is adjusted to 5 cm.

The relative permittivity of the bead is determined from the detuning frequency based on eq. (2.21).
To simplify the calculation, it is better to reformulate eq. (2.21) to

Ff _ _"‘bE2
fo w’
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where
gy (e, — Vi

e, +2

is the form factor that only depends on the bead. The electric field E at the location of the bead, and the
total EM energy W in eq. (4.11) can be developed by virtue of egs. (2.17) and (A.56). In the course of
the derivation, the indefinite integral equation

[ s ta) = S U ax) + ) (413)

will be helpful. Here, /, and J; are the Bessel functions of order zero and one, respectively.
In the end, the form factor can be computed via

_7150]12(].01)426{5}[" (414)
2fo

where j, is the first root of /, « is the radius of the cavity, and 4 is the depth of the cavity. Besides, Jf

is the detuning frequency and f; is the reference frequency without the perturbation. The comparison

(4.12)

ab:

ay, =

between the two separate transmission measurements before and after the bead is placed inside the cav-
ity is presented in fig. 4.13. The reference frequency f; is 682.775 87(8)(68) MHz, while the detuned

7 I I I I I I I
B reference

6 I perturbation

5_

1S, [* [1077]
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Figure 4.13  Transmission measurements of the circular cavity before and after the perturbation
by the ceramic bead. The measured data together with the associated uncertainties are represented by
filled areas. The fitted Lorentzian functions are shown with white curves.

frequency f is 682.753 35(7)(68) MHz. The form factor is obtained accordingly:
2, = 3.489(17) x 1072 F-m™2. (4.15)

The uncertainty of the radius 2 and the depth 4 of the circular cavity is estimated to be 0.02 mm based
on the manufacture precision. Note that only the statistic uncertainties of f; and / propagate into Jf,
since the systematic ones are canceled out by the subtraction.
Subsequently, the relative permittivity of the bead is calculated by inverting eq. (4.12):
3
ey + 2,

g = b T (4.16)

3 .
71'50 Vb - ab

The result is 13.2(8), where the uncertainty of the bead radius is estimated to be 0.01 mm.

54



4.3.5 Detuning by Plungers

To investigate the detuning effect of the plungers, the transmission coefhicients are measured for
both cavities, while the plungers are manually turned stepwise with a step of 1 mm. The position of the
plungers X,1 Tanges from —5 mm to 5 mm, where the negative value means that the plungers are inside
the cavity. The resonant frequency of the cavity at each step is obtained afterwards via a parametric
ficting. The results are shown in figs. 4.14 and 4.15 for the rectangular and elliptic cavity, respectively.
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Figure 4.14  Detuned frequency of the rectangular cavity as a function of the plunger position.

The negative position means that the plungers are inside the cavity. The uncertainty is invisible, since
it is smaller than the marker size.

800 —— : . . .

600

400

200

—200 [ 1

£, = 679.75 MHz [kHz]
o
I
1

—400 - . .

—600 [ 3 1

—-800 ] ] ] ] ]

xp [mm]

Figure 4.15  Similar to fig. 4.14, for the elliptic cavity.

It is interesting to note in figs. 4.14 and 4.15 that both cavities exhibit nearly the same tunable
range. However, the elliptic cavity manifests a slightly higher relative detuning due to its lower resonant
frequency.
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4.3.6 Damping of Higher-Order Modes

The parasitic higher-order modes can be damped by probe couplers terminated by 50 Q resistances.
Similar to the loop coupler, the probe coupler is also based on a BNC connector soldered with a silver
wire on top of it (fig. 4.5). There are in all four of them mounted on the front face of cither the rect-
angular or the elliptic cavity for test. The frequency spans of the transmission measurements are now
extended to accommodate the first three resonances for both cavities. The number of trace points is
also increased to 1601.

The comparison between the S,,’s before and after the damping couplers are mounted on the rect-
angular cavity is presented in fig. 4.16. It is clear in fig. 4.16 that all the modes are affected though,
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Figure 4.16  Transmission curves of the rectangular cavity containing the first three resonances.
The blue one is measured before the damping couplers for the Higher-Order Modes (HOMs) are
mounted to the cavity, while the green one is measured after that. The uncertainty is invisible, since it
is smaller than the line width.

the dipole and tripole mode are much more damped by the couplers. Meanwhile, their resonance fre-
quencies and quality factors become smaller also due to the influence of the couplers. The quantitative
comparison about the resonant frequencies and signal strengths on resonance is tabulated in table 4.3.

Table 4.3 Comparison about the first three resonances of the rectangular cavity before and after
the damping couplers for the Higher-Order Modes (HOMs) are mounted.

Eigenmode = Without damping With damping Difference

fo [MHz] S [dB] ﬁ) [MHz] S [dB] Aﬁ) [MHz] AS, [dB]
Monopole 685.65  —44.0 680.59  —60.9 —5.06 —16.9
Dipole 875.33 —37.0 862.84 —57.6 —12.49 —20.6
Tripole 1170.98 —26.7 1156.46 —50.4 —14.52 —23.7

Likewise, the transmission curves of the elliptic cavity before and after the damping couplers are
mounted is presented in fig. 4.17. The resonant frequencies and signal strengths of the first three modes
in the elliptic cavity are listed in table 4.4.
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Figure 4.17  Similar to fig. 4.16, for the elliptic cavity.
Table 4.4 Similar to table 4.3, for the elliptic cavity.
Eigenmode ~ Without damping With damping Difference
fo [MHz] 8, [dB] f;[MHz] S, [dB] Af,[MHz] AS,, [dB]
Monopole 679.58  —55.9 674.59  —70.3 —4.99 —14.4
Dipole 911.86  —46.9 896.89  —73.3 —14.97 —26.4
Tripole 1201.84  —55.9 118759 —81.1 —14.25 —25.2

4.4 Dynamic Test

During the dynamic test, the electric field inside the beam pipe is profiled by placing the ceramic
bead at various sample positions for each cavity. Afterwards, the shuntimpedance in the aperture region
is accordingly computed.

Usually the cavity under test is seated at a fixed position, while the bead is pulled by a stepper mo-
tor via pulleys. As a result, this method is known as the bead-pull perturbation. However, the method
suffers from the stretch problem of the supporting thread for the bead, which causes the bead vibrat-
ing during the movement and may introduce positioning errors. To circumvent this issue, a different
scheme is adopted in the present dynamic test, where the bead is fixed and the cavity is moved instead.

4.4.1 Test Bench Setup

The setup of the test bench is pictured in fig. 4.18, together with an associated Cartesian coordi-
nate system. Note that the origin of the system is actually in the center of the beam pipe, but translated
in fig. 4.18 only for a better visibility. In addition to all the devices that are used before, several new
equipments are incorporated in the dynamic test. First of all, a motorized displacement unit (isel LES
series) is employed to bear the cavity under test to various positions. It consists of two linear actua-
tors lying orthogonally in the horizontal plane, as well as two auxiliary passive supports. The unit was
shipped with a motor controller (isel iMC-S8), which is capable of remote control. However, it only
provides a serial port for communication. As a result, a serial-Ethernet converter bridges the PC and
motor controller to translate commands. The VNA is seated on the same actuator as the cavity is, such
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Figure 4.18  Setup of the dynamic test bench. The origin of the Cartesian coordinate system is in
the center of the beam pipe, but translated in the photograph for a better visibility. The orientation
of the coordinates follows the convention in the accelerator community. All the devices in fig. 4.4
are retained. The cavity is borne by the motorized displacement unit to various positions in the hori-
zontal plane. The height gauges support the ceramic bead via a cotton thread, and also allow for fine
adjustments in the vertical direction. See the text for more details.

that it co-moves with the cavity in the z direction to reduce the stretch of the microwave cables. A cot-
ton thread with the ceramic bead is crossed through the beam pipe and fastened on two height gauges
(Vogel 341116) on cither side of the cavity (fig. 4.19). Apart from being a holder for the thread, the

| B

height gauge

e e

beam pipe

3 ‘ J

Figure 4.19  Closeup of the ceramic bead placed in the center of the beam pipe. It is supported by
a pair of height gauges via a cotton thread crossing though the center of the bead. The captured height
gauge is on the far side of the camera, while the other one stands behind. The rounded edges of the
apertures are also visible in the photograph.

height gauge also allows for a precise adjustment in the y direction with its vernier scale. Finally, an
optical table (Thorlabs T1220C) with a feature of passive vibration damping serves as a stable base for
the movement system.

The Java application has correspondingly been adapted. Its main improvement is the ability to effi-
ciently coordinate the movement-measurement cycles. In the present test, the motorized unit displaces
the cavity to a predefined position at a speed of 5 cm- s~ 1. Then, the application pauses for 0.1 s for re-
establishing stable EM fields inside the cavity, and damping, although least likely, the vibration of the
bead due to the cavity movement. Afterwards, the VNA and multimeter perform ten consecutive mea-
surements, average results, and transfer them back to the PC. After the data have been written to a text
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file, the PC initiates another cycle. It is worth noting that the positioning uncertainty of the motorized
unit is negligible, as this has been proven by a long-term test run, where the cavity exactly returned to
the starting point after 100 times of repetitive two-dimensional movements.

4.4.2 Profiling Detuned Frequency

The detuned frequency in the beam pipe is profiled with the ceramic bead in the horizontal central
plane. The profiling area is 27 cm by 9 cm that covers the entire horizontal extent of the beam pipe.
The area is first meshed into a grid with a spacing of 5 mm in either direction, which is the same as the
diameter of the bead. Then, the cavity is displaced in an x-major order to traverse all the grid nodes.
That is to say, the cavity subsequently goes through all the points with the same x-coordinate till it
advances to the next one. Afterwards, the detuned frequency of the cavity is extracted from the S,
measurement for each position.

The profiled frequency map of the rectangular cavity is visualized in fig. 4.20. It is apparent in
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Figure 4.20 Detuned frequency map of the rectangular cavity in the whole beam pipe at y = 0.
The coordinates are the same as those shown in fig. 4.18. The cavity gap is between z = 42 cm.

fig. 4.20 that the detuning is prominent in the top central region, which is close to the cavity center.
This agrees with the expectation, since the electric field mostly concentrates there. It is also noticeable
in fig. 4.20 that the resonant frequency is still detuned even outside the cavity gap, which is between
z = 42cm. This can be attributed to the extension of the electric field into the beam pipe. The
frequency tends to be constant towards both ends of the beam pipe, but exhibits a variation in the
x direction. This is due to the thermal effect, since the complete profiling process lasts for more than
five hours. A similar map for the elliptic cavity is visualized in fig. 4.21, where the thermal effect is more
prominent.

Due to the influence of the ambient temperature, a single reference measurement without the per-
turbation is clearly no longer adequate for accurately deducing the profile of the electric field. It is thus
proposed to adopt a multi-reference scheme to correct for this parasitic effect. Specifically, a reference
measurement at the location of an insignificant electric field will be performed prior to each perturba-
tion measurement in the region of interest. The insignificance of the electric field can be indicated by
the invariance of the detuned frequency in the z direction. To this end, the topmost slice of the detuned
frequency map in figs. 4.20 and 4.21, where the electric field extends the furthest into the beam pipe, is
focused on to define the practical borders of the field. Their corresponding plots are shown in figs. 4.22
and 4.23.

Based on figs. 4.22 and 4.23, an interval from —5.5 cm to 5.5 cm in the z direction is visually se-
lected for the perturbation measurements. The reference position is selected to be even further away
from the middle to prepare for contingencies. In fact, two symmetric reference positionsatz = 410 cm
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Figure 4.22  Detuned frequency of the rectangular cavity as a function of z, where x = 4.5 cm and

y = 0. The coordinates are the same as those shown in fig. 4.18. The width of the curve represents the
associated uncertainty. The pair of vertical lines at z = 4-5.5 cm indicate the profiling range in the z
direction for the perturbation measurements.

are nominated, out of which the nearer one to the current position is chosen for each perturbation mea-
surement to save the total profiling time.

4.4.3 Profiling Electric Field

Likewise, the electric field is profiled on a grid of 11 cm by 9 cm with a spacing of 5 mm in either
direction. A perturbation measurement and its corresponding reference measurement are performed
for all the grid nodes in an x-major order. Then, the profiling plane is translated in the y direction,
and the whole process is repeated. In all, nine planes from —2 cm to 2 cm with a spacing of 5 mm are
traversed to cover the vertical extent of the beam pipe.

For the calculation of the electric field from the detuned frequency, it is convenient to reformulate

eq. (2.37) to

2
R N d/2 E
= = dz —= , (4.17)
9, Lan V@
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Figure 4.23  Similar to fig. 4.22, for the elliptic cavity.

where the integrand E,/+/w, W is the normalized electric field, and the integral range should now be
replaced with the profilinginterval in the z direction. By virtue of eq. (4.11), itis related to the detuning
frequency via
E —9
a— y 5 (4.18)
Ve W 2Ty fy
provided that the electric field E only has a z-component E,.
In reality, the detuning frequency df is not guaranteed to be negative semidefinite, i.e. the detuned

frequency / may become even larger than the reference frequency f; due to the statistical fluctuation
in the measurement. This is most likely to happen for the perturbation measurement with a very weak
clectric field. Therefore, the raw data need some polish before substituting into eq. (4.18), otherwise it
will lead to nonphysical results. In order to neutralize the singularities, the detuning frequency is artifi-
cially assigned to zero if its absolute value is no greater than its uncertainty. The physical interpretation
is that the detuning frequency is negligible within the resolution of the measuring system.

After the polish, the resultant maps of the normalized electric fields in the horizontal central planes
are visualized in figs. 4.24 and 4.25 for the rectangular and elliptic cavity. The field maps in other
planes present a similarity to figs. 4.24 and 4.25. By means of perturbation, it is finally possible to
see the gradual variation of the electric field in the beam pipe, which is in good agreement with the
expectation.

4.4.4 Profiling Shunt Impedance

Having profiled the electric field, the shunt impedance is straightforward to obtain by integrating
the normalized electric field along the z-axis according to eq. (4.17). The integral is numerically ap-
proximated based on the mid-ordinate rule. The measured shunt impedances in the horizontal central
planes are plotted in figs. 4.26 and 4.27 for the rectangular and elliptic cavity. The ascending trend in
figs. 4.26 and 4.27 ensures the position-resolving abilities of both cavities. The rather high characteristic
shunt impedance around the middle also reflects the intensity sensitivity for both cavities.

Three representative R, / Qs at the left end, in the middle, and at the right end are listed in table 4.5
for the rectangular and elliptic cavity. By comparing the values in table 4.5 with those in tables 3.3
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Figure 4.24 Normalized electric field of the rectangular cavity in the beam pipe at y = 0. The
coordinates are the same as those shown in fig. 4.18.
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Figure 4.25  Similar to fig. 4.24, for the elliptic cavity.

Table 4.5  Characteristic shunt impedances at the left end, in the middle, and at the right end of
the beam pipe for the rectangular and elliptic cavity. The corresponding uncertainties are denoted by

7.
Location Rectangular Elliptic

Ry, /0Q, [©] U'(Rsh/Qo) [Q]  Ry/9Q, [Q] U'(Rsh/Q,o) [Q]

Left 1.30 0.17 2.47 0.25

Middle 29.11 0.79 30.44 0.79

Right 93.04 1.25 106.48 1.49

and 3.4, it is found that the measured ones in general exhibit a little deficiency except at the right end,
where the values are suspiciously excessive. This anomalous phenomenon is also observed in other
horizontal planes, as shown in the shunt impedance maps in figs. 4.28 and 4.29 for the rectangular and
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Figure 4.26  Characteristic shunt impedance of the rectangular cavity as a function of x at y =
0. The coordinates are the same as those shown in fig. 4.18. The length of each bar represents the
associated uncertainty.
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Figure 4.27  Similar to fig. 4.26, for the elliptic cavity.

elliptic cavity, respectively. It is interesting to note in figs. 4.28 and 4.29 that the shunt impedance
seems enhanced as well at the top and on the bottom. In fact, this apparent enhancement is an artifact
of the perturbation method.

First of all, at the locations of the anomalies the ceramic bead is very close (around 3 mm) to the
walls of the beam pipes. Therefore, the image charge effect has to be accounted for, which is embodied
in a correction term y to be added to eq. (4.18) when calculating the normalized electric field [152]:

E i
LA , 4.1
w W 2n(1 + y)afi (4.19)

where y is a polynomial of the ratio between the bead radius 7, and twice the distance from the bead
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Figure 4.28  Shunt impedance map of the rectangular cavity in the aperture region. The coordi-
nates are the same as those shown in fig. 4.18.
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Figure 4.29  Similar to fig. 4.28, for the elliptic cavity.

center to the wall /. It is given as

3 6 8
p Ty ) _ 4(e, — 1) LA 16(e, — 1)* LA 144(¢, — 1)* LN (4.20)
21, e, +2 \ 24 (e, +2)2 \ 2/, (26, +3)(e, +2) \ 24,
In fact, the sum of four variants of eq. (4.20) should be substituted into eq. (4.19) in order to take
into account all the image charges in the four cardinal directions. The correction is then applied to the
perturbation measurements outside the cavity gap, and the corrected shunt impedance map is visualized

in figs. 4.30 and 4.31 for the rectangular and elliptic cavity, respectively.
A visual comparison among figs. 4.28 to 4.31 immediately suggests that the image charge effect is

just a minor cause for the anomaly. In fact, the latter is mainly due to the incapability of distinguishing
the field orientation with the ceramic bead. The spherical symmetry of the bead results in its isotropic
form factor, i.e. #, is independent of the orientation of E. Therefore, according to eq. (4.11), the detun-
ing frequency is determined by the total electric field strength. However, only the z-component of the
clectric field is substituted into eq. (2.37) to compute the characteristic shunt impedance. If the electric
field lies off the z direction, the shunt impedance is then overestimated by using eqs. (4.17) and (4.18).

This speculation is endorsed by the simulation. The simulated electric field orientation inside the
beam pipe of the rectangular cavity is depicted in figs. 4.32 and 4.33 for the horizontal and vertical
central plane, respectively. 'The plots for the elliptic cavity are very similar to these figures, and thus
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Figure 4.30  Shunt impedance map of the rectangular cavity in the aperture region, after the cor-
rection for the image charge effect is applied (cf. fig. 4.28). The coordinates are the same as those
shown in fig. 4.18.
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Figure 4.31  Similar to fig. 4.30, for the elliptic cavity (cf. fig. 4.29).

omitted for brevity. It is clear in figs. 4.32 and 4.33 that the electric field deviates from the z direction
in the vicinity of apertures, which unravels the puzzle in figs. 4.28 and 4.29.

The blindness to the field orientation can be surpassed by breaking the spherical symmetry via
adopting an asymmetric geometry and/or an anisotropic material. Asa generalization of the sphere, the
ellipsoid presents a triaxial form factor, which perturbs the electric field variously at different orienta-
tions [153]. Note that two shapes of practically available objects—needle and disk—can be reckoned
special cases of the ellipsoid, i.c. the prolate and oblate spheroid [154]. The orientation of the elec-
tric field can also be distinguished by an anisotropic dielectric material, even if it is in the shape of a
sphere. Furthermore, an ellipsoid with an anisotropic permittivity can, although less practical, be used
to profile the electric field in both magnitude and orientation [155].
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Figure 4.32  Simulated electric field orientation of the rectangular cavity in the beam pipe aty = 0.
The coordinates are the same as those shown in fig. 4.18. The arrow length is proportional to the field
strength, while the arrow head points to the field orientation. The cavity gap is between z = £2 cm.
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S5 (CONCLUSION
Co===9

Since the commissioning of the ESR in 1990, the research in nuclear physics has benefited from
heavy-ion storage rings for the last few decades. Due to the ultra-high vacuum in the ring, a broad
range of short-lived exotic nuclei close to the nucleon drip-lines in high atomic charge states could
be stored for a sufficiently long time. Consequently, a set of sophisticated spectroscopic techniques
could be applied to the stored ions for the systematic investigations on their fundamental properties,
e.g. masses and lifetimes, in the ground and isomeric states. In particular, the Schottky spectroscopy in
the isochronous mode—a study on the Schottky noise of the stored beam while the ion optics of the
ring is set to isochronism—by means of an intensity-sensitive and time-resolving RF cavity enables the
simultaneous measurements of masses and lifetimes of short-lived nuclei in the subsecond regime.

However, due to the large momentum acceptance of the ring, the isochronism condition cannot be
fulfilled for every species of the stored ions. In order to correct for this anisochronism effect, it is pro-
posed to additionally employ a position-resolving cavity adjacent to the existing one at the dispersive
location to help distinguish the revolution orbit of each ion along with the measurement of its revolu-
tion frequency. Through the theoretical description on the detection principle of an RF cavity as well
as the Schottky power spectral density of a coasting beam presented in chapter 2, it is concluded that
the coupled signal strength of the beam is proportional to the characteristic shunt impedance of the
cavity. The variance of the shunt impedance within the aperture region reflects the position-resolving
ability of the cavity. By normalizing the signal strength from the position cavity with respect to that
from the intensity cavity, the horizontal position of an ion can thus be inferred. The correction method
for the anisochronism effect with the extra position information is then outlined in section 2.5. Briefly,
a common reference orbit is appointed in the first place for all the ions of different species. After the
relation between the revolution frequency and horizontal position is attained for each species, the rep-
resentative frequencies can be deduced as if all the ions are on the reference orbit. Then, the evaluated
nuclear masses based on the representative frequencies are intrinsically free of the anisochronism effect.

Unlike the conventional position cavity that employs the dipole mode to produce a horizontally
variant shunt impedance distribution, an innovative design that exploits the monopole mode and off-
sets the cavity away from the central orbit is explored in chapter 3. This configuration can achieve a
quite amount of shunt impedance in the aperture region, while the distribution still exhibits an in-
clined trend from one end to the other, which significantly improves the signal-to-noise ratio, and thus
is especially advantageous for the exotic nuclei with low yields. The design specifications of the cavity
are assessed according to the machine parameters of the CR in three isochronous modes, and in accor-
dance with the technical requirements assigned by the ILIMA collaboration. In order to minimize the
crosstalk between the two transverse directions, the height and width of the position cavity are inten-
tionally deviated from each other, which has inspired two variants of the cavity, namely the rectangular
and elliptic cavity. The optimization of the design is performed on both of them. First, the dimensions
of the cavity are selected by virtue of the dependence graph in figs. 3.7 and 3.11 for the rectangular and
elliptic cavity, respectively. Then, the computational approach takes over to account for the apertures

67



with beam pipes, the higher-order modes, and the detuning by plungers. Based on the simulation, it is
important to round the edges of the apertures in order to attain a gradually ascending shunt impedance
from left to right in the aperture region. The simulated shunt impedance maps for the rectangular and
elliptic cavity are presented in figs. 3.17 and 3.18, respectively.

After the designs of the two cavities have been finalized, a scaled prototype is manufactured accord-
ingly for each of them to justify the design concept. Moreover, a circular pillbox cavity is constructed to
calibrate the relative permittivity of a ceramic bead, which is the key to the profiling of the electric field
by perturbation. The details about the static and dynamic test on both prototype cavities as well as the
calibration cavity is thoroughly documented in chapter 4. The static test bench (fig. 4.4) consists of a
VNA for the measurements of S-parameters, a multimeter with a thermistor for the monitoring of the
ambient temperature, and a PC runninga dedicated Java application for the coordination of the whole
test process. It is of practical importance to note that the measurement technique is so sensitive that
the effect of the temperature drift actually needs to be corrected for. The detuning by the plungers and
the damping of the higher-order modes by the probe couplers are also demonstrated in the test. In the
dynamic test (fig. 4.18), in order to profile the electric fields inside the cavities, a motorized displace-
ment unit with an associated motor controller is additionally incorporated into the setup. The ceramic
bead is pierced by a cotton thread, and then attached to a pair of height gauges equipped with vernier
scales, which also allow for fine adjustments in the vertical direction. The profiling region of the electric
field is meshed into a grid. For each perturbation measurement at the grid node, a preceding reference
measurement without perturbation is applied as well to minimize the thermal effect. The normalized
electric field is then obtained from the detuning frequency, and the shunt impedance is approximated
by a numerical integral of the electric field along the z-axis. The apparent shunt impedance excess near
the beam pipe, after the deduction of the image charge effect, in the measurements (figs. 4.30 and 4.31)
can be attributed to the artifact of the perturbation method with the ceramic bead that the orientation
of the electric field is not detectable. Apart from that, the benchtop measurements are in good agree-
ment with the computational simulations, which justifies the innovative design of a position-resolving
cavity.

Since the two kinds of cavities are originally intended for being comparable, the mechanical pa-
rameters of both cavities are very alike, some of them are even identical. Nevertheless, several subtle
differences do exist. The elliptic cavity is a little larger than the rectangular one, which causes a slightly
lower resonant frequency. As a tradeofl, the rectangular cavity gains a bit more mass resolving power.
The straighter shunt impedance contours in the rectangular cavity also lead to less crosstalk. On the
other hand, the overall characteristic shunt impedance is a little higher for the elliptic cavity, which
delivers slightly better intensity sensitivity. The wider spread of the first three resonances also results
in less contamination in the monopole mode for the elliptic cavity. In all, both cavities are eligible for
attending to the experimental duties.

The installing location for the position cavity in the CR should preferably coincide with the loca-
tion of the largest momentum dispersion, which must be next to a dipole magnet in an arc section. The
exact spot ought to be decided on by referring to the simulated results of the beam dynamics in the
ring, and by considering the other elements nearby. The available space in the longitudinal direction
should be enough to accommodate both the position and intensity cavity. In addition, it is suggested
to install a pair of beam scrapers adjacent to the cavity doublet to allow for a direct calibration of the
gauge function, ie. f,,, = G(x), with a ray of ions, of which the horizontal position can precisely be
controlled by the slit. This method is complementary to the benchtop measurement, but expected to
deliver a more accurate result since the gauge function can directly be obtained. On the other hand,
the benchtop measurement can be improved as well by adopting a dielectric needle or disk to measure
the magnitude and orientation of the electric field inside a cavity.

So far, the design of the position cavity is CR-oriented, the methodology presented in this disser-
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tation is, however, certainly universal, and can easily be adapted to other storage rings on demand, such
as the ESR and CSRe. Furthermore, the cavity doublet and the correction method for the anisochro-
nism effect may also find their applications in the isochronous mass measurements in a few new storage
rings that will be operational in the near future. Specifically, these include the Rare-RI Ring (R3) at
RIKEN [156], the Test Storage Ring (TSR) at CERN [157], and the Spectrometry Ring (SRing) at
HIAF [158].

The R3 is a cyclotron-based storage ring dedicated to the precision mass measurements of the neu-
tron rich nuclei, in particular along the pathway of the r-process, by means of the IMS. The isochronous
ion-optical setting of the ring can be achieved by tuning the trim coils on the inner sides of the dipole
magnets. The measurements on the exotic nuclei are on a single-ion basis, where the produced sec-
ondary nuclei are identified in-flight by means of their positions, timings, and energy losses, and gated
by a fast kicker at the entrance of the ring such that only the nuclei of interest get stored. Within this
experimental scheme, it is expected to attain a measurement precision of the order of 107 with a mea-
surement time shorter than 1 ms. Therefore, the relative stability of the magnetic field and the relative
uncertainty of the timing system must be controlled on the same level.

The TSR, on the other hand, aims at the low energy regime (0.5-10 MeV-u?), and, after being
shipped from MPIK to CERN, will be coupled to an Isotope Separation On-Line (ISOL) radioactive
beam facility. With the high-quality secondary beams delivered from the post-accelerator, a number of
exciting experimental programs, such as the lifetimes of ’Be in different atomic charge states, in-flight
B-decay of light exotic nuclei, and capture reactions for the astrophysical p-process, could for the first
time be addressed. The TSR may also be employed for the removal of isobaric contaminants from the
stored ion beams and for the systematic studies within the neutrino beam program.

Similar to the CR at FAIR, the SRing at HIAF also serves two purposes for the high-intensity
and high-energy rare isotope beams: collecting and stochastic pre-cooling of the injected beam, and
nuclear mass measurements by means of the IMS. When operated in the isochronous mode, the SRing
is an achromatic magnetic spectrometer with a momentum acceptance of +0.45 % and a transverse
acceptance of 30 mm-mrad at the transition energy of 1.835. Heavy ions with a maximum magnetic
rigidity of 20 T-m can be stored in the ring. Due to its resemblance to the CR, the SRing will be the
next favorable ring to test the detection scheme with a cavity doublet and the correction method for
the anisochronism effect in the nuclear mass measurements.
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A MAXWELLS EQUATIONS
Cosy=29

Maxwell’s equations, together with the Lorentz force law, have laid the foundation for classical
electrodynamics. The most widely adopted form of Maxwell’s equations is a set of partial differential
equations, which reads

V.-E="'e, (A.1)
13
V-H=0, (A2)
. oH
E=—u—1, A.
V x “ (A.3)
VxH=]J, + g%—f, (A.4)

where E is electric field, H is magnetic field, p, is electric charge density, J. is electric current density, ¢
is permittivity of medium, and g is permeability of medium.
For the free space without sources, eqs. (A.1) to (A.4) reduce to a homogeneous form:

V-E=0, (A.5)
V-H=0 (A.6)
. oH
E=—u,—, A.
V x o (A7)
- oE
H=¢—, A8
V x f03, (A.8)
where ¢, and g, are the permittivity and permeability of free space, respectively. By virtue of the vector
identity
Vx(VxA)=V(V-A)— V?3A, (A.9)
taking the curl of eq. (A.7) and plugging in eq. (A.5) lead to the wave equation of the electric field:
- OE
V’E — =0, A.10
c?or? ( )

where the speed of light in free space ¢ is related to ¢, and g, via
1

v €otho .

By means of separation of variables: E(x,#) = E(x)7'(), where x represents spatial coordinates
and 7 is time, eq. (A.10) can be decoupled to a temporal part—a second-order ordinary differential

(A.11)

c =
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equation:
&7
dr?

and a spatial part—the Helmholtz partial differential equation:

+ T =0, (A.12)

V2E + £*E = 0, (A.13)

where the constant £ is named wavenumber.

The solution to eq. (A.12) is a linear combination of sine and cosine functions. It can be gener-
alized as e’ with an angular frequency w, = ck. The solution to eq. (A.13) depends on boundary
conditions. For instance, a perfectly conductive boundary leads to

nxE=0, (A.14)
n-H=0, (A.15)

where n is the normal vector to the boundary. The geometry of the boundary decides the most appro-
priate coordinate system in which eq. (A.13) is to be solved.
Likewise, the wave equation and the Helmholtz equation of the magnetic field read

-~  J*H
H — =0, A.16
Vv c2ot? ( )
V2H + #*H = 0, (A.17)

with ﬁ(x t) = H(x)e ieor—m/2),

A.l  Cartesian Coordinate System

Fora rectangular cavity, it is convenient to solve eq. (A. 1 3) in a Cartesian coordinate system. Leta,
b, and d be the height, width, and depth of the cavity, respectively. Without loss of generality, assume
the relation 2 > & > d holds. The origin of the coordinate system is located at a vertex of the cavity.
Three mutually orthogonal axes x, y, and z align with & (horizontal), 2 (vertical), and 4 (longitudinal),
respectively.

The explicit form of the Laplace operator V?* in the Cartesian coordinates reads

o2 9% o?
A A8
V=Tt (A.18)
The electric field E can be expanded as
E(x) = E (x,,2)x + E, (x,9,2)y + E,(x,9,2)z. (A.19)

The hatted letters X, y, and z denote normalized basis vectors in the horizontal, vertical, and longitudi-
nal directions, respectively. As a result, eq. (A.13) in fact consists of three scalar equations:

82 82 09?
9? 9? 92

(J 3 3 *’*) re) =0 (A20
92 o2 9?

(ax + g + a—z2 + /€2> Ez<X,_y, Z) =0. (AZZ)
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Again, eqs. (A.20) to (A.22) can be solved via separation of variables. The general solution is com-
plicated though, a particular solution that fulfills eq. (A.14) neatly reads [97]

E, (%,9,2) = E,q cos(k.x) sin(k,y) sin(k,z), (A.23)

E (x, y,2) = E, sin(k x) co (kyy) sin(k,z), (A.24)

E (x,9,z) = E, sin(k, x) sin (kyy) cos(k,z), (A.25)
) nt mt [m

Wlth kx = 7, ky = 7, kz = Z (A26)

Here, the nonnegative integers 7, 72, and / are mode numbers which define EM field patterns; E , E)/O’

and E are scaling factors, and, according to eq. (A.5), are constrained via

k.E,+kE,+kE., (A.27)

%7~ x0 y—y0
Besides, £_, ky, and 4, alone must fulfill the relation
2 2 2 2 w%
kithky +k =k =—. (A.28)

(A

Based on eq. (A.7), after taking into account the phase difference, the magnetic field H can be
obtained via

H=—— VxE (A.29)
“oko
which delivers
kE,—kE,
H (x,9,2) = e A sin(k,x) cos(k,y) cos(k,z2), (A.30)
“oHo
k.E,, —k.E, _
H (x,y,2) = % cos(k,x) sin(k,y) cos(k,2), (A31)
0o
kE.,—k.E,
H (x,9,z) = # cos(k,x) cos(k,y) sin(k,z). (A.32)
@oHo

In particular, the fundamental mode with the lowest frequency, which is also the monopole mode,
is given by the mode numbers (7,72,/) = (1,1,0). Note that (1,0,0) does not exist, according to
eq. (A.27). The EM fields in such a mode are given as

E =0, (A33)
E =0, (A.34)
E, = E;sin (E) sin <ﬂ> , (A.35)
b a
E
H, =— 0 in (E> cos (ﬂ) , (A.36)
Wotod b a
H, = o cos (E) sin <ﬂ> , (A.37)
N2 b a
H, =0, (A.38)
with a resonant frequency
c |1 1



A.2  Cylindrical Coordinate System

A cylindrical coordinate system is suitable for solving eq. (A.13) in a circular cylindrical cavity. Let
aand d be the radius and height of the cavity, respectively. The origin of the coordinate system islocated
in the center of one circular face. Three coordinates 7, 3, and z denote the radial, azimuthal, and axial
direction, respectively.

In such a coordinate system, the electric field is expressed as

E(x) = E,(r,%,2)r + Es(r,3,2) + E,(r,3,2)z, (A.40)

where hatted symbols are normalized basis vectors in the corresponding directions. The Laplace oper-
ator now becomes

d d 92 9?2
Bl Cewl R el it A4l
v ror (’a) * 72992 + 22 ( )
Likewise, eq. (A.13) can be expanded to a set of scalar equations:
[ 90 d o* CHE,
ror \ or 32 HE | Er9.2) =0, A42
| ror (rar> * r2o3? + dz2 +k | (r.9,2) =0 ( )
[ 9 P 92 Ry 2-
a a 82 az 2_
| or <a_> g g TR | B =0, (A.44)

While the general solution to egs. (A.42) to (A.44) can be calculated by separation of variables,
the main interest will be focused on a particular subset where the magnetic field does not have an axial

component. This narrows the scope down to the TM modes. The exact formulae are given as [97]

E = —E:Z—kz]; (k,7) cos(n3) sin(k,z), (A.45)
E, - %‘)kvﬂ (k.7) sin(n9) sin(k.2), (A.46)
2y
E, = EJ,(k,r)cos(nd)cos(k,z), (A.47)
H = % 7 (k) sin(n9) cos(k2), (A.48)
2y
H = %]; (k,7) cos(nd) cos(k,z), (A.49)
H =0, (A.50)

where E|, is a scaling factor, J, is the Bessel function of order 7, and J is its corresponding derivative.
Moreover, 7, k,, and k, are separation constants, among which 7 is a nonnegative integer and the other

two fulfill the relation ,

Rk === (A51)

c

It can also be verified that E and H fulfill eq. (A.29) by virtue of egs. (A.11) and (A.51).
According to eq. (A.15), H, must vanish when » = 4, which essentially requires that

]n(krd> = 0’ = kr =]”_m’ (ASZ)

a
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where j, . is the mth root of J,. From eq. (A.14), it is required that £, and E5 must vanish when z = 4.
Therefore, the following equation must hold:
) [m
sin(k,d) =0, = k = 7 (A53)
where / is a nonnegative integer.
In particular, the EM fields in the monopole mode, by letting (7, 72,/) = (0, 1,0), read

E =0, (A.54)

E; =0, (A55)
_ Jor”

E, =E, <—> , (A.56)

a
H =0, (A.57)
Eywoega ., (Joi”
Hy = === <]L> , (A.58)
Joi a
H, =0, (A59)
with the lowest resonant frequency

Joi¢

=0 A.60

fo 2ma ( )

A.3  Elliptic Cylindrical Coordinate System

An elliptic cylindrical coordinate system is a generalization of a cylindrical coordinate system, which
is useful for solving the Helmholtz equation in a cylindrical cavity with an elliptic cross section. By
virtue of a Cartesian coordinate system, the widely adopted definition of the elliptic cylindrical coor-
dinates (v, 3, z) reads

x = rcoshvcos?, (A.61)
y =rsinhvsind, (A.62)
z =3z, (A.63)
where v € [0,+00) and § € [0, 2m). Occasionally, it is convenient to organize egs. (A.61) and (A.62)

into a compact form:

x + iy = rcosh(v + i9). (A.64)

A.3.1 Elliptic Coordinate System

The first two coordinates (,3) in egs. (A.61) and (A.62) span a two-dimensional elliptic coordi-
nate subsystem, where the coordinate curves are confocal ellipses and hyperbolae with a focal length of
7. In addition, all the ellipses and hyperbolae intersect at right angles, because (v, 3) is an orthogonal
coordinate system.

A special elliptic coordinate system with » = 1 is illustrated in fig. A.1. It is then clear that an
ellipse can be formed by fixing v and only varying 3. The size of the ellipse is defined by », whereas the
eccentricity is determined by ». The major axis 2 and the minor axis 4 of the ellipse can be transformed
from » and v via

a = 2r cosh v, (A.65)
b = 2rsinh v, (A.66)
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Figure A.l  Elliptic coordinate system with a unitary focal length. The blue ellipses are coordi-
nate curves of », while the green hyperbolae are coordinate curves of 3. The red dots represent their
common foci.

or vice versa:

22
=, (A.67)
v = artanh (é> . (A.68)

a

Note that a polar coordinate system can be reckoned a special case of the elliptic coordinate system in
thelimitof7 — 0as the foci collapse to one pointaat the origin. Therefore, the coordinate 3 analogously
indicates the azimuthal direction in the elliptic coordinates.

Suppose that the origin of the elliptic cylindrical coordinate system is located in the center of one
base of the cavity, while the z-axis lies in the axial direction. The electric field E is then expanded as

E(x) = E,(v,9,2) + Es(»,3,2) + E,(»,3,2)z, (A.69)

where hatted symbols are normalized basis vectors for the corresponding coordinates. The Laplace
operator in the elliptic cylindrical coordinate system reads

1 9?2 92 Q2
= - —_— _
V= 7’2(Sinh2 v + sin® 9) (81)2 + asz) + 922 (A.70)

Now eq. (A.13) can explicitly be expressed as

| 1 K Jfa—erkz-Eb9 )=0 (A71)
| 72(sinh” v + sin> §) \0v> 9% 922 | »,4,2) =0, ,
- ) RS P
| 72(sinh® » + sin® ) (8_1)2 + ﬁ) + 22 + k| Es(v,9,2) =0, (A.72)
- . 2 3 ]

N2 Y Y E ,19', = 0 A
|2 (sinh? v + sin” 9) (81)2 * 392) toa | B0 (A.73)



Analytically solving the general solution to egs. (A.71) to (A.73) is much more challenging than do-
ing so in a cylindrical coordinate system. Even for the particular solution in the TM modes, it presents
great difficulties. Here, the attention is only paid to the monopole mode. In analogy with egs. (A.54)
to (A.59), it is reasonable to stipulate that E, = E; = H, = 0, while £, H,, and Hy are indepen-
dent of z. The effort is then focused on solving a two-dimensional Helmholtz equation in an elliptic
coordinate system.

Substituting £, (v,3) = N (v)®(9) into eq. (A.73) leads to

2
(ilT? + (Br*sin® 3+ £,)© = 0, (A.74)
2
ciljj + (K*7*sinh® v — £)N = 0, (A.75)

where £, is a separation constant. By virtue of the relations:

Gl S = 1_+'5<29), (A76)
sinh”» = % (A.77)

egs. (A.74) and (A.75) can be reformulated to
(57? + [w — 21 cos(29)]® = 0, (A.78)
d;jf — [ — 2ucosh(29)]N =0, (A.79)

where the substitutions

“= @, (A.80)
w = ? + k, (A.81)

have been applied.

A.3.2 Mathieu Functions

Equations (A.78) and (A.79) are known as the ordinary and modified Mathieu equation, respec-
tively. Their corresponding solutions are the Mathieu functions and the modified Mathieu functions.
From the similarity between elliptic and polar coordinates, it can be shown that in the limit of » — 0
the Mathieu functions degenerate to the sinusoidal functions, while the modified Mathieu functions
degenerate to the Bessel functions [159].

The Mathieu functions have two independent families, namely ce , (3; #) and se , (3; #), with even
and odd polarity, respectively. The nonnegative integer 7 runs from zero for ce,,, but only from one
for se,,. The Mathieu functions depend not only on the variable &, but also on the parameter #. The
rotational symmetry of the boundary requires that ce,, and se,, are periodic with a period of 7w (7 is
even) or 27 (72 is odd), which assigns a discrete set of values, i.c. eigenvalues, to w in eq. (A.78). When
sorted in an ascending order, the ordinal rank of w is indexed by 72. Given a particular combination of
(#,m), w is accordingly fixed.

Recalling the electric field pattern in the monopole mode in a circular cavity, it is natural to imagine
that £, does not change its sign in the whole cross section and concentrates in the central region as
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Figure A.2  Even Mathieu function of order zero with various parameters.

well for an elliptic cavity. Therefore, ce, is the only solution that can correctly describe the azimuthal
behavior of E, [159]. The visualization of ce,(9; #) with different parameters is plotted in fig. A.2.
Likewise, the modified Mathieu functions also have two independent families, namely Ce,, (v; )
and Se,, (v; #), with even and odd polarity, respectively. The mode number 7 is the same as the one
in ce,, and se,, because of the joint constants # and w in egs. (A.78) and (A.79). Having selected ce,,
as the azimuthal part of £, only Ce, and Se, are eligible for the radial part. However, due to the odd
polarity, Se, vanishes when » = 0, which should obviously be discarded. The visualization of Ce (v; )

with different parameters is plotted in fig. A.3.
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Figure A.3  Even modified Mathieu function of order zero with various parameters.

The complete expression of E, hence reads

E, = EyCey(v; 1) cey(S 1),
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where E|) is a scaling factor. The free parameter # can be determined by applying the boundary condi-
tion, which requires that £, vanishes at the elliptic boundary according to eq. (A.14). Let ¢, be the
first root of Ce,(v; #). It must comply with the boundary shape. That is to say, ¢y; can be determined
from the major and minor axis of the ellipse by substituting for » in eq. (A.68). With ¢,; known, the pa-
rameter # in this case can be obtained accordingly by solving Ce(c,;; #) = 0. Combining eqs. (A.67)
and (A.80) leads to a resonant frequency

~

_Zc u

h= N (A.83)

The magnetic field components H, and Hy can be obtained by virtue of eq. (A.29). The full expres-
sions of EM fields in the monopole mode are given as

E o, (A.84)
o (A.85)
E. = E, Cey(% ) cey (3 ), (A.86)
- Ey Cey(v ) cey(%5) (A.87)
2‘440(\/5(sinh2 v + sin® 9)
H - Eq Cey (1) cey(%57) (A.88)
2%05\/ﬁ(sinh2 v+ sin* 9)
i -0 (A.89)

where cej) is the derivative of ce,, with respect to 3, and Cej, is the derivative of Ce, with respect to ».
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B ENGINEERING DRAWINGS
Co===9

The engineering drawings for the manufacture of prototype cavities are reprinted with permission
from Kref§ GmbH. Each drawing is scaled down by a factor of eight. The reader is advised to refer to
the electronic version of this dissertation for a better readability. As an index, table B.1 summarizes all
the parts of the cavities.

Table B.I  Lookup table containing sheet numbers of drawings and the corresponding cavity parts.
Sheet number Description
15.024.01.00 circular cavity
15.024.01.01 cavity body
15.024.01.02 cavity lid
15.024.02.00  rectangular cavity
15.024.02.01 cavity body
15.024.02.02 cavity lid
15.024.03.00 elliptic cavity
15.024.03.01 cavity lid
15.024.03.02 cavity body
15.024.02.03 beam pipe
15.024.02.04 plunger
15.024.02.05 holder
15.024.02.06 stud
15.024.03.03 blocking screw
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